David Dritschel IUTAM Bookseries
Editor

IJUTAM Symposium
on Turbulence in the
Atmosphere and Oceans

Proceedings of the IUTAM Symposium
on Turbulence in the Atmosphere and Oceans,
Cambridge, UK, December 8—12, 2008

@ Springer



IUTAM Symposium on Turbulence
in the Atmosphere and Oceans



IUTAM BOOKSERIES
Volume 28

Series Editors

G.M.L. Gladwell, University of Waterloo, Waterloo, Ontario, Canada
R. Moreau, INPG, Grenoble, France

Editorial Board

J. Engelbrecht, Institute of Cybernetics, Tallinn, Estonia

L.B. Freund, Brown University, Providence, USA

A. Kluwick, Technische Universitt, Vienna, Austria

H.K. Moffatt, University of Cambridge, Cambridge, UK

N. Olhoff, Aalborg University, Aalborg, Denmark

K. Tsutomu, IIDS, Tokyo, Japan

D. van Campen, Technical University Eindhoven, Eindhoven,
The Netherlands

Z. Zheng, Chinese Academy of Sciences, Beijing, China

Aims and Scope of the Series

The IUTAM Bookseries publishes the proceedings of IUTAM symposia under the
auspices of the [IUTAM Board.

For other titles published in this series, go to
www.springer.com/series/7695


http://www.springer.com/series/7695

David Dritschel
Editor

IUTAM Symposium
on Turbulence in the
Atmosphere and Oceans

Proceedings of the IUTAM Symposium
on Turbulence in the Atmosphere and Oceans,
Cambridge, UK, December 8—12, 2008

@ Springer



Editor

David Dritschel

University of St Andrews
Mathematical Institute

St Andrews, Fife KY16 9SS
UK

dgd@mcs.st-and.ac.uk

ISSN 1875-3507 e-ISSN 1875-3493

ISBN 978-94-007-0359-9 e-ISBN 978-94-007-0360-5
DOI 10.1007/978-94-007-0360-5

Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media B.V. 2010

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: VTEX, Vilnius
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


mailto:dgd@mcs.st-and.ac.uk
http://www.springer.com
http://www.springer.com/mycopy

¢ LN -~ N /u . N
sl Uwd ol L of s A (S0 J:..

. s S - ’ 4 e
s &S g gl wo S r{ L Jw
. . . g " . N / /-«
)uul&/iu’;ﬁtu{{&j ezl (f/.J Ld!
& R -~ ‘0'0'0/ /,-'
YNt VAR IPAUL s sl by

7. s/
$x o b g Jéu/)

The elephant was in a dark house Some Hindus had brought it for exhibition
As it was impossible to see it by eye In the dark people felt it with their palms
The palm of one fell on the trunk ‘This is like a water-spout’ he said

The hand of one reached the ear To him it was evidently like a fan

Had they had a candle in their palms They would have said the same

Extract taken from “Tales from Masnavi”, “The Elephant”, by
Jalal ad-Din Muhammad Rim7 (1207 - 1273)



Preface

The text of the Persian poet Riimi, written some eight centuries ago, and reproduced
at the beginning of this book is still relevant to many of our pursuits of knowledge,
not least of turbulence. The text illustrates the inability people have in seeing the
whole thing, the ‘big picture’. Everybody looks into the problem from his/her view-
point, and that leads to disagreement and controversy. If we could see the whole
thing, our understanding would become complete and there would be no contro-
versy.

The turbulent motion of the atmosphere and oceans, at the heart of the observed
general circulation, is undoubtedly very complex and difficult to understand in its
entirety. Even ‘bare’ turbulence, without rotation and stratification whose effects
are paramount in the atmosphere and oceans, still poses great fundamental chal-
lenges for understanding after a century of research. Rotating stratified turbulence
is a relatively new research topic. It is also far richer, exhibiting a host of distinct
wave types interacting in a complicated and often subtle way with long-lived co-
herent structures such as jets or currents and vortices. All of this is tied together
by basic fluid-dynamical nonlinearity, and this gives rise to a multitude of phenom-
ena: spontaneous wave emission, wave-induced transport, both direct and inverse
energy scale cascades, lateral and vertical anisotropy, fronts and transport barriers,
anomalous transport in coherent vortices, and a very wide range of dynamical and
thermodynamical instabilities.

This book stems from the [IUTAM symposium “Rotating Stratified Turbulence
and Turbulence in the Atmosphere and Oceans” which took place at the Isaac New-
ton Institute for Mathematical Sciences in Cambridge from 8 to 12 December 2008,
and came at the end of a four-month Programme on “High Reynolds Number Tur-
bulence”. This symposium, widely attended by researchers from around the world,
aimed to better understand the complex nature of fluid flows found in Nature, partic-
ularly in the Earth’s atmosphere and oceans, but also in other planetary atmospheres
and in the Sun’s interior. Talks covered a broad range of subjects, from theoretical
studies of fundamental vortex interactions, to laboratory experiments and observa-
tions, and to state-of-the-art computational studies. The full programme and videos
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viii Preface

of many of the talks can be found at www . newton.ac .uk/programmes/HRT/
hrtwO4p.html.

The present volume presents a cross-section of the research presented at the sym-
posium, or in some cases, of the research inspired by it. Herein, 23 peer-reviewed
papers are collected (39 talks were presented). The research is loosely divided into
four main topics: (1) Waves and Imbalance, (2) Turbulence and Convection, (3) In-
stability and Vortex Dynamics, and (4) Jets: Formation and Structure. In (1), the
impact of waves, principally inertia—gravity waves, on the circulation of the atmo-
sphere and oceans is examined. In (2), the distinguishing anisotropic features of
atmospheric and oceanic turbulence, and of solar convection, that arise from rota-
tion and stratification are discussed. In (3), vortex dynamical instabilities as well as
the interactions between coherent vortices in rotating, stratified flows are examined.
And in (4), various models and theories are put forward to explain the formation
and persistence of “jets”, nearly zonal currents in the atmosphere and oceans, in the
giant gas planets, and probably also in the solar interior.

Research on these topics is rapidly developing, yet we still have much to learn,
and there is no shortage of controversy! This volume brings together in a concise
way current research by eminent mathematicians, scientists and engineers. As such,
this makes an excellent resource for future studies exploring fundamental aspects of
atmospheric and oceanic turbulence.

St Andrews,

July 2010 David Dritschel
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Part I
Waves and Imbalance



On spontaneous imbalance and ocean
turbulence: generalizations of the
Paparella—Young epsilon theorem

Michael E. Mclntyre

Abstract Recent progress in understanding the balance—imbalance problem is high-
lighted, with emphasis on spontaneous-imbalance phenomena associated with the
exponentially fast “wave capture” of inertia—gravity waves. These phenomena are
excluded from shallow-water models and are outside the scope of the classical
Lighthill theory. Also discussed is progress on a different topic, an effort to extend
the Paparella—Young epsilon theorem to realistic ocean models. The theorem con-
strains turbulent dissipation rates € in horizontal-convection thought-experiments,
in which mechanically-driven stirring is switched off. The theorem bears on the
so-called “ocean heat engine” and “ocean desert” controversies. The original the-
orem (2002) applied only to very idealized ocean models. Several restrictions on
the original proof can now be lifted including the restriction to a linear, thermal-
only equation of state. The theorem can now be proved for fairly realistic equations
of state that include thermobaric effects, and nonlinearity in both temperature and
salinity. The restriction to Boussinesq flow can also be lifted. The increased realism
comes at some cost in terms of weakening the constraint on e. The constraint is
further weakened if one allows for the finite depth of penetration of solar radiation.
This is collaborative work with Francesco Paparella and William Young.

1 Introduction

Following the organizers’ aims, I had originally undertaken to talk only about the
first topic in this paper, spontaneous imbalance and accurate PV (potential vorticity)
inversion. Recent progress in that field has been remarkable, throwing a clear light
on where the Lighthill paradigm is relevant and where it is not, as well as finding
the first accurate and completely self-consistent PV inversion operators. However,

Michael E. Mclntyre, Department of Applied Mathematics and Theoretical Physics, Wilber-
force Rd, Cambridge CB3 OWA, United Kingdom. http://www.atm.damtp.cam.ac.uk/
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most of what I had to say about this is already in print elsewhere [12; 13]. Here I
give only a quick summary, in Section 2, then move on to the second topic.

The second topic concerns the oceanic MOC, the meridional overturning cir-
culation. It is sometimes called the thermohaline “conveyor belt” despite having
nothing like the inextensibility of a real mechanical conveyor belt. The aspect cru-
cial to questions such as the desertification, or not, of the upper ocean under global
warming is the rising branch relative to the stratification surfaces in the main ther-
mocline and elsewhere. It is upward material transport across stratification surfaces
that is germane to questions about the supply of nutrients to the upper ocean [21],
and hence about desertification or not.

It has sometimes been thought that buoyancy forcing alone can “drive the
conveyor belt”, a scenario much discussed under the heading “horizontal convec-
tion”. The idea seems to be that the cooling of the sea surface in high latitudes is
the main control, not only driving the deep-convective plumes and gravity currents
of which the downward branch is composed but also supplying sufficient stirring,
hence diapycnal mixing, to sustain the upward branch against the stable stratifica-
tion N2 Clearly the plumes and gravity currents must cause a certain amount of
stirring and mixing.

Such a picture might tempt one to suppose that the “conveyor belt” circulation
is something that can be shut off entirely by reducing the buoyancy forcing — by
either warming or freshening the high-latitude sea surface, or both. A contrary view
is that the upward branch depends, rather, on mechanical stirring by winds, tides,
and possibly biota [2; 15; 25; 28]. In that case the upward branch would hardly
be affected by shutting off the few tens of sverdrups [5] of flow in the downward
branch. The sole effect would be to make the stratification surfaces drift downward,
very gradually, without much affecting the upward material transport across them.!

The theorem of Paparella and Young published in 2002 [19], hereafter PY02,
puts important and mathematically rigorous constraints on our thinking about these
questions. It does so by placing a severe upper bound on the average turbulent dis-
sipation rates ¢ attainable in a horizontal-convection scenario for small molecular
diffusivities. If one accepts the usual empirical (Ellison—Britter—Osborn) relation
between ¢ values and diapycnal mixing rates

K. ~ ye/N? (1)

where K is the vertical eddy diffusivity describing the mixing, and y < 0.2, see e.g.
[17], also [11], then one can strengthen the arguments for the importance of me-

! For instance “very gradually” would mean a downward drift of just under a kilometre per millen-
nium for every ten sverdrups of downward flow that remained shut off. This downward drift of the
stratification surfaces would not, however, detach the main thermocline from its Southern Ocean
outcrop and therefore would not shut off the wind-driven mechanical stirring and Ekman transport
across the outcropping stratification surfaces, contributing to the “upward” branch [25, & refs.].
This is because of the way in which the speed of the Antarctic Circumpolar Current is regulated
internally, almost independently of wind stress but very much favouring the outcropping, e.g. [22]
& refs. — a very different circumstance from that in the hothouse climate of the early Eocene 50
million years ago, when the Sun was about half a percent cooler but the Drake Passage still closed.
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chanical stirring to the upward branch [14; 15; 28], including the superficial stirring
and Ekman transport across the Southern Ocean outcrop [25, & refs.], and hence
to the transports of nutrients across the ocean’s stratification surfaces into the upper
ocean, along with other questions about the oceanic general circulation.

However, PY02’s epsilon theorem applies only to a highly idealized Boussinesq
ocean model, in a rectangular domain, with a linear equation of state that neglects
salinity altogether. In my talk at the international Workshop on 10 December 2008
I described a generalization in which all these restrictions were lifted except the
Boussinesq approximation. (A video of the talk, “Beyond Lighthill...”, was made
publicly available via http://sms.cam.ac.uk/media/518985/formats
later that month.) In particular, the new epsilon theorem allowed for arbitrary bot-
tom topography, curved geopotentials and an equation of state that included not
only salinity, but also the two main nonlinearities of real seawater, the thermal and
thermobaric nonlinearities. This was work in collaboration with Francesco Papar-
ella and William R. Young. Young had earlier reported our first breakthrough, the
first result for a nonlinear equation of state, to the Stockholm Sandstrom Centennial
Meeting on 3 November 2008.

As shown in Sects. 3 and 4 below, the key to proving these generalized epsilon
theorems, and further generalizations arrived at after the Workshop, was to exploit
Young’s formulation of Boussinesq energetics. The formulation is a simple way of
handling thermobaricity and is essentially that given, with due acknowledgement, on
p- 73 of the textbook by Vallis [26]. Young (personal communication and ref. [30])
beautifully clarifies the way in which a vestige of the thermodynamic energies sur-
vives in the Boussinesq limit, adding to the gravitational potential energy.

Armed with Young’s formulation, we were able to go on to prove epsilon theo-
rems for still more realistic equations of state, including those being standardized
by the international SCOR/IAPSO Working Group 127 on the Thermodynamics
and Equation of State of Seawater. The accuracies are state of the art, comparable
to those in recent publications such as [3; 7]. In addition, we were able to lift the
Boussinesq restriction and thereby shed a fundamentally new light on the subject.
A full report is in preparation, whose first part is to be submitted to the Journal of
Fluid Mechanics, hereafter “JFM”.

A few days before submission of the present paper, we learned that Jonas Ny-
cander [16] had independently arrived at a generalized epsilon theorem based on
Young’s Boussinesq energy equation, (13) below, and a nonlinear equation of state
almost the same as (20) below. Nycander’s Boussinesq result almost exactly par-
allels the result to be described in Sect. 4 below, and reported in my December
Workshop talk.

2 Spontaneous imbalance

The recent progress in this area concerns spontaneous imbalance of the kind dis-
covered in the 1990s by O’Sullivan and Dunkerton [18], in continuously stratified
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flows. In particular, it is now clear why these continuously stratified scenarios — let
us call them OSD-type scenarios — are at an opposite extreme to what would be
expected from the Lighthill theory [9], which applies not only to Lighthill’s origi-
nal case of acoustic imbalance but also to typical shallow-water scenarios [4]. The
Lighthill theory is the classic milestone in the field. When it was published in 1952
it offered profound new insights. These were the first generic insights into the na-
ture of spontaneous imbalance, even though not all-embracing, as it now turns out.
A review and historical perspective may be found in [12].2

In brief, the continuously stratified, OSD-type scenarios differ drastically from
Lighthill-type scenarios in three respects. First, the radiation reaction on the wave
generation region is substantial. In a Lighthill scenario, by contrast, the radiation
reaction is weak, permitting non-iterative computation of the spontaneous imbal-
ance and the resulting wave emission after first computing the vortical motion using
PV inversion, i.e. altogether neglecting the wave emission. This was Lighthill’s most
fundamental point. The vortical motion can be regarded as known before computing
the wave emission.

Such non-iterative computation is impossible in an OSD-type scenario. The vor-
tical motion and wave emission are intimately part of each other throughout the
wave source region. As pointed out in [12], the wave emission process is fundamen-
tally similar to mountain-wave generation except in one crucial respect. In order for
the analogy to be accurate, recognizing the substantial radiation reaction, one must
consider the notional mountain to be made of an elastic substance so pliable that
the wave emission process substantially changes the shape of the mountain, hence
substantially changes the vertical velocity field.

The second and related respect is the lack of scale separation in the wave source
region, in an OSD-type scenario. The reason why the spontaneous wave emission
is weak in a Lighthill scenario is the destructive interference arising from scale
separation. The emitted waves have typical scales, or reciprocal wavenumbers, that
greatly exceed typical vortex scales. In an OSD scenario, by contrast, the waves arise
in the source region with reciprocal wavenumbers indistinguishable from typical
scales of the vortex motion. As they propagate away from the source region the
waves undergo “wave capture”, or strain-enhanced critical-layer absorption, with
wavenumbers increasing exponentially fast [20, & refs.]. This ensures that back-
reflection and resonance phenomena are negligible and that the radiation reaction
on the source is similar to that of waves satisfying a radiation condition.

The third respect is unsteadiness versus quasi-steadiness of the wave emission
process. In a Lighthill scenario, unsteadiness of the vortical motion is a crucial part
of the spontaneous-imbalance mechanism. In an OSD scenario, with its mountain-
wave-like character, it is now clear that one can have inertia—gravity wave emission
from a steady vortical flow. Perhaps the first work to point clearly to that fact was the
study reported in [24], in which a surface temperature front was prevented from col-
lapsing by applying an artificial diffusivity, holding the front approximately steady.
Recently, examples have come to light for which perfectly steady flow is a natural

2 Also available from www . atm. damtp.cam.ac.uk/people/mem/#imbalance
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idealization. These are the propagating vortex dipoles described in several recent
papers including [23] and [27]. They were discovered through high-resolution nu-
merical experiments. The review in [12] gives a careful description and comparison
between the two best-resolved cases, including the evidence for a substantial radia-
tion reaction.

3 Epsilon theorems for realistic ocean models

PYO02’s epsilon theorem [19] constrains the turbulent dissipation rates & attainable
in an idealized horizontal-convection scenario. A Boussinesq liquid in a rigid, ther-
mally insulating, box-shaped container of depth H, with gravity uniform and the
top surface exactly horizontal, is set in motion purely by maintaining a nonuniform
temperature ¥ at the top surface. The buoyancy acceleration b is a linear function of
¥ alone. No mechanical stirring is allowed. A statistically steady state is assumed.
For this scenario PYO02 rigorously established a bound proportional to the range Ab
of buoyancy-acceleration values at the top surface,

(e) < xkAb/H 2)

where the double angle brackets denote the domain and time average and where K
is the thermal molecular diffusivity. Therefore, in particular, {(¢}) goes to zero as the
first power of x in the limit of small molecular diffusivities, for instance holding the
Prandtl number v/ constant where v is the molecular diffusivity of momentum.
The vanishing of {(¢)) in that limit was at first called an “anti-turbulence theorem”.
However, we now prefer to call it an “epsilon theorem” for two reasons, first because
the theorem does not rule out locally finite € values in the limit, in shrinking sub-
volumes of the domain, and second because, even if ¢ were to go to zero at the
same rate as {(e)) in all locations, it would still be possible to have weak yet fully-
developed turbulence in the sense of having a Richardson cascade and a vanishingly
small Kolmogorov scale (v/e)'/* o< k!/2

Now the key to proving epsilon theorems is to avoid considering the complete
energetics. Indeed, one must dissect the complete energetics in a certain way. This
happens automatically for the Boussinesq equations and is one of the facts implicitly
exploited in PY02’s proof, along with the linearity of the equation of state, b o 9.
In the Boussinesq equations the internal and chemical energies of seawater are rel-
egated to an almost passive role. For the full equations the proof is harder to spot
because the complete energetics must, of course, take account of the full thermody-
namics including the internal and chemical energies.

Even within the Boussinesq equations there are nontrivial technical obstacles to
be overcome, beyond making the geometry and the centrifugal-gravitational field
more realistic. They concern the nonlinearities in realistic equations of state for sea-
water. The first steps toward overcoming these obstacles were taken by Francesco
Paparella, William R. Young and myself, working together last year. The key was
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to recognize first that a mathematical device used in PY02, consisting of two suc-
cessive integrations with respect to altitude z — the steps leading from (2.1b,c) to
(2.3) and then to (3.3), in ref. [19] — could be replaced by a single integration after
multiplication by z. The second step was to recognize that this integration was a
pointer toward using the Boussinesq energy formulation discovered by Young (per-
sonal communication and ref. [30]), working on a different problem after PY02 was
published. For a general, nonlinear equation of state the crucial step is to introduce
a quantity most aptly called the dynamic enthalpy, which in this context takes on
the superficial appearance of a buoyancy-associated potential energy, the quantity
denoted by IT in Eq. (2.116) of Vallis [26] but here denoted by h* in order to flag the
connection with enthalpy. That connection is carefully explained in [30]. It clarifies
the “almost passive” role of the internal and chemical energies.

Consider a domain like that in Fig. 1 with arbitrary topography and curved geopo-
tentials. It is now easiest to take the Boussinesq equations in coordinate-independent
form

Du/Dr+2Q xu+Vp—bVZ = V.o, 3)
DY/Dt = —V-Jy, (4)

DS/Dt = —V-Js, (5)
Vau=0, (6)

where Q is the Earth’s angular velocity, D/Dt the material derivative d/dt+u -V,
u(x,?) the relative velocity, p(x,t) the pressure anomaly with the reference density
p = po = 1 in suitable units, Z = Z(x) a scaled geopotential height to be defined
below, with its zero level at the top surface, 6 the viscous stress tensor with compo-
nents o;; = 0j; while S and ¥ are salinity and conservative temperature [10], and Jg

Heat In Heat Out

01 % /_/ /)
U3

V4

z=0

Fig. 1 Schematic of a model ocean. Instead of PY02’s idealized rectangular domain, arbitrary
topography is allowed, across which there are no salt or heat fluxes. The geothermal heat flux is
assumed negligible. Salinity as well as temperature variations are allowed, as is a fully nonlinear
equation of state. The effective geopotentials (gravitational plus centrifugal) are allowed to curve
realistically, with gravity plus centrifugal force nonuniform, and Z the geopotential altitude.
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and Jy their molecular-diffusive fluxes in suitable units. These may include cross-
diffusivities arising from the Soret and Dufour effects and other thermodynamic
dependences. The nonlinear equation of state has the generic form

b=0b(9,2,5) . @)

To help formalize the Boussinesq limit, it is convenient to define Z as the actual
geopotential relative to the top surface divided by a constant reference value gg
of the gravity acceleration g, so that Z is approximately the geometric altitude
and VZ approximately a unit vertical vector. Then b is —go times the fractional
density anomaly. Thermobaric nonlinearities are represented within the Boussinesq
framework by the dependence of b on Z, since the background reference pressure
= —pogoZ + (surface pressure). Defining W := DZ/Dr and ¢ := Vu:0 = u; ;0;j,
the local per-unit-mass viscous rate of conversion of mechanical energy into thermal
energy, and taking the scalar product of (3) with u we have, using incompressibility
(6),

9
o (2luf?) = wb + V-{u(zu +p) —wo} = — (8)

where V- (w-0) = (1;0j;) ;. The problem now is what to do with the buoyancy term
Wb. Standard ways to turn it into a rate of change of potential energy fail because
of thermobaricity. The difficulty can be overcome by introducing Young’s dynamic
enthalpy W (personal communication and ref. [30]), whose definition is

59,2,5) /sz‘ZS iz . ©)
Then, by the chain rule,

Dh*

Dr = Wb+ 2(9,2,5) (10)

where the dissipative contribution

JhFDY I DS

720,25 = 355 * 35 Dr (1
oht oh*
=5y V'Jﬂ_XV'JS- (12)

Then from (6), (8) and (10) we have an equation whose left-hand side is in conser-
vation form,

(P +4) + V-{u(Jul +p ) —uo) = e+ 2(9,25), (13)

and whose domain and time average is, for the statistically steady state,
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(e) — (2(9.2.9) =0, (14)

there being no mass flow across the boundary, u-fi = 0 where i is the outward
normal, and no work done by surface viscous stresses since there is no mechanical
stirring e.g. by wind stress at the top surface. Using (12) we now have

() — (Jo-V(91%/00) + I5-V(IN*/3S))) = 0 (15)

after integrating by parts. This last step produces no boundary terms — the most
crucial step in proving an epsilon theorem — because of (a) the vanishing of J4-ii
and Js-fi on the topography and (b) the vanishing of dh*/d® and dh*/dS, thanks
to (9), on the top surface where Z = 0. On the top surface Jy-1i and Js-fi need not
vanish, indeed cannot both vanish if the system is to be forced into motion without
mechanical stirring.

Now the most accurate models of seawater all assume, with strong justification,
that conditions are everywhere close to local thermodynamic equilibrium. Thus the
temperature T is well defined, and Jy and Jg can be expressed as linear combina-
tions of VT and Vu where u is the chemical potential of salt relative to water [8].
The expressions for J» and Js include the Dufour and Soret cross-diffusive terms.
Respectively, those terms represent a contribution to J from Vu and to Jg from
VT. Since T and u are functions of state we may write

T =T(8,25) and pu=u(dzSs) (16)

where the functional dependence, expressing local thermodynamic equilibrium,
may reasonably be assumed smooth. Then Jy and Js become linear combinations
of V©¥, VZ and VS, and the second term in (15) a quadratic form in the components
of V¥, VZ and VS. That is, (15) has the form

(e) + k0 (A|VO]* + BVD-VS + C|VS]* +
+ DV9-VZ + EVS-VZ + FIVZ]*) =0, (17

where the coefficients A, B, .. are smooth functions of ¥, Z, and S. The coefficient
Kp is a reference diffusivity, whose ratio to each actual molecular diffusivity and
cross-diffusivity (including v, the molecular diffusivity of momentum) will be held
constant in the small-diffusivities limit kp — 0. This is the natural generalization of
PY02’s constant Prandtl number. The coefficients A, B,... F are bounded as xy — 0.
As illustrated in the next section, the terms on the second line of (17) can
be bounded as kp — 0, under reasonable assumptions, using the fact that Z is a
smoothly-varying field independent of ky. An epsilon theorem ((e)) = O(kp) can
then be proved whenever the first line of (17) is non-negative definite, which is true

if
A>0, C>0, and B>—4AC <0 (18)

for all oceanographically relevant values of ¥, Z, and S. For if kp times the sec-
ond line of (17) goes to zero in the limit then both ((¢)) and the rest of the first
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line, when non-negative, must go to zero together in the limit. If (18) holds with
A, B, and B? — 4AC bounded away from zero for fixed, nonzero Z, then (17) also
puts significant constraints on the mean square gradients of ¥ and S, supplementing
comparison-function constraints of the kind found by Balmforth and Young [1] and
Winters and Young [29]. By themselves, the latter constraints would be insufficient
to control the mean square gradients tightly enough to produce an epsilon theorem.

As will be noted in the next section, (18) is satisfied by the usual nonlinear mod-
els of seawater properties as described, for instance, in [26]. We are currently inves-
tigating whether (18) is satisfied by the still more accurate, state-of-the-art model
currently being standardized by SCOR/IAPSO Working Group 127. The calcula-
tions are laborious but it seems clear that (18) is satisfied by this model as well,
albeit by a slender margin at abyssal depths. The slender margin is mainly due to a
contribution to the coefficient B not from the Dufour and Soret effects but from the
interdependence of T, ¥ and S expressed by (16).

If (18) were violated, as appears thermodynamically possible, and realizable for
conceivable fluid microstructures, then our proof would fail. Rather than signalling
any dramatically different fluid behaviour, I suspect that this would merely widen
the gap between what is true and what is provable, or what has so far been provable.

4 Specific examples

For illustrative purposes we simplify the expressions for Jy and Js [8] to
Jo = —«(VO—-IVZ) and Js = —x5(VS+IVZ), 19)

in units compatible with (4) and (5), where s is the molecular salt diffusivity. The
correction terms in Iy and Iy are necessary in order that Jy and Js vanish when
VT =0 and Vu = 0. Both Iy and Iy are positive. In the case of I this allows the
salinity S to find its natural scale height, with S diminishing upward under gravity
at ~ 3%okm™'in a stagnant ocean with Jg = 0 [6, & refs.]. Conservative tem-
perature ¥, being numerically close to the ordinary potential temperature [10], in-
creases upward at ~ 0.15 Kkm ™! in an isothermal stagnant ocean. Other small con-
tributions to the fluxes arising from (16) and from the Dufour and Soret effects are
neglected. They will be re-introduced and carefully discussed in our JFM paper.

For the equation of state we take a model similar to that in [26] except for the
inclusion of a nonlinear term in salinity S,

* * Z
b(0.2.5) = g0 { Bol1 =¥ pun2) + 1850% — B + 5S4 S 1 0
0

* * * Z
= ht = —goZ{ﬁﬂ (1—1%y PogoZ)ﬁ+%ﬁ§ﬁ2—ﬁss+%ﬁs52+%} - 2D
0
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Here 9 and S are defined as increments relative to reference values such as Ty =
273K, So = 35%o, while By, ¥*, po. B3, Bs, B, and co are positive constants. To a
first approximation, (20) represents the the two principal nonlinearities of seawater,
the thermobaricity y* and the temperature nonlinearity 3, along with the weaker
salinity nonlinearity fig, as well as (:omplressibility.3 Then

ahi L % * ahi .
P _80Z(ﬁ19 —3Y ﬁﬂPOgOZ—i—ﬂﬂﬁ) and 35 = 202 (Bs— BES), (22)
so that
oht i )
V% = —20ZB3 VO —g0(Bs — v BopogoZ + B )VZ

dh*
and Vﬁ = —g0ZBsVS+go(Bs—BsS)VZ. (23)

The expression go(By — v*Bupogol + By ¥) multiplying VZ is always positive-
valued for seawater (even well below freezing temperatures), because at realistic

salinities the ratio By /By is typically well above 10K, for instance 16.7 K with the
values in footnote 3. Substituting (19) and (23) into (15) we recover (17) with

A = ®oBygol2] . (242)

B=0, (24b)

C = ksPsgolz], (24¢)

D = —&ggo(Bs + ¥ BopogolZ| + B3 V) — ke T Byg0lZ , (24d)
E = Rsgo (Bs — BsS) + KsIsPBs golZl , (24e)

F = Rogoly (Bo + ¥ BopogolZ| + Bs D) + Rsgols (Bs — BsS) . (24)

where Ky := Kk/Kp and K := Ks/Kp, both order-unity quantities. Thus all the coef-
ficients A, B, ..., F are order-unity quantities in the limit ko — 0.

We can now see PY02’s result in perspective. It is the case A=B=C =E =
F =0; the bound (2) comes from the D term in the second line of (17) with D = con-

3 The positive constant ¢g is a nominal sound speed, notwithstanding that the actual Boussi-
nesq sound speed is infinite because of the incompressibility condition (6); in any case the
Y term makes the actual sound speed differ from the nominal co, typically by a few percent,
unless ¥ = 0. Table 1.2 of Vallis [26] gives a sufficient idea of the orders of magnitude: ¢y = 1490
ms~!, By =1.67x107*K™", y* =1.2x1078Pa~! (this is Vallis’s y*, his y* increased by
a small increment +0.07 x 1078Pa™!), py = 1.027 x 10°kgm >, B = 1.0 x 10°K~2, and
Bs = 0.78 x 1072 %5 Over the full range of oceanic conditions B is always positive, with or-
der of magnitude 3§ > 0.5 x 107% %4 % and reaching just over twice this value in some conditions,
according to the accurate equation of state defined by Table B2 of [7]. Values of the molecular
diffusivities x and Ky are respectively of the order of 10~ m?s~! and 1072 m?s~!.
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stant, allowing a trivial integration by parts, leaving only a term bounded by a geo-
metric factor ~ H ! times kgoBy A = kAb, with A as in (2). The term —k (bV>Z)
vanishes in PY02’s case of uniform gravity.

In the more general case defined by (20)—(24), the crucial definiteness condition
(18) is satisfied thanks to the lucky accident that 8 and B¢ are both positive for
seawater (typical values in footnote 3). This enables us to prove a strong epsilon
theorem. The bound is still O(kp) in the limit, as in PY02. The independent work of
Nycander [16] produced a similarly strong bound, O(kp), albeit for the slightly less
general case A > 0 with B=C = F = 0. There, the adiabatic gradients I'y and Ig in
(19) were taken to be zero along with 3.

However, these epsilon theorems with ((e)) = O(kp) all rely on assuming con-
stancy of the coefficients By etc. in (20). For then we can still bound the D and E
terms in the second line of (17) since the potentially dangerous factors 9V and
SVS take the form of gradients, %V( ®?) and %V(Sz), so that we can again integrate
by parts and use the boundedness of |V2Z |. This eliminates the gradients of ¥ and
S from the second line of (17), again giving a bound as the first power of k.

When the coefficients are fully variable, however, such integrations by parts in
the second line of (17) do not eliminate the gradients of ¥ and S, which if not inte-
grated away can be dangerous because of the small scales in the ¥ and S fields. We
then have to resort to a blunter tool, the Cauchy—Schwartz inequality. Despite this,
it turns out to be possible to obtain bounds that are asymptotically nearly as good
as in PY02, under reasonable assumptions. They are “nearly as good” in the sense
that the bounds are proportional to the first power of kj times only a logarithmic
factor, () = O(kplnkp). This comes from exploiting the constraints mentioned
below (18).

5 Concluding remarks

Apart from lifting the Boussinesq restriction, the JFM paper will prove the {(e)) =
O(xoInkp) result and will push further toward the most realistic possible thermo-
dynamics and equation of state. In a subsequent paper to the Journal of Physical
Oceanography it is hoped to discuss the extent to which these epsilon theorems
constrain our understanding of the real oceans’ upper and lower meridional over-
turning circulations, taking account of the extent to which the bounds on ((e)) are
further degraded by allowing a finite depth of radiative penetration of surface heat-
ing from the visible solar spectrum. The emphasis will then shift away from the
asymptotic behaviour and will focus, rather, on the best numerical bounds on ((¢))
obtainable for realistically small but finite values of k.
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Inertia-gravity-wave generation:
a geometric-optics approach

J. M. Aspden and J. Vanneste

Abstract The generation of inertia-gravity waves in the atmosphere and oceans is
examined using a geometric-optics approach. This approach considers the dynam-
ics of a small-scale wavepacket in prescribed time-dependent, balanced flows. The
wavepacket is assumed to be in the so-called wave-capture regime, where the wave
intrinsic frequency is negligible compared to the Doppler shift. The dynamics is
reduced to a number of ordinary differential equations describing the evolution of
the wavepacket position, of its wavevector, and of three scalar fields describing the
wavepacket amplitude and polarisation. The approach clearly identifies two classes
of wave-generation processes: unbalanced instabilities, associated with linear inter-
actions between inertia-gravity waves, and spontaneous generation, associated with
a conversion between vortical and inertia-gravity modes. Applications to simple
steady flows and to random-strain models are discussed.

1 Introduction

The dynamics of the atmosphere and ocean is dominated by large-scale, slow mo-
tion in nearly geostrophic and hydrostatic balance. Small-scale, fast motion, in the
form of inertia-gravity waves can play an important role, however, for instance by
transporting momentum or by enhancing mixing. There is, therefore, considerable
interest in identifying and quantifying sources of wave activity. Among the source
mechanisms, one has proved particularly elusive: the dynamical generation of waves
by the evolving balanced flow, often termed spontaneous generation. The difficulty
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in capturing this mechanism stems from the smallness of the waves and from the
ambiguity that exists in the separation between balanced flow and waves. Nonethe-
less, several recent results, both numerical and analytical, have clearly demonstrated
that spontaneous generation occurs in the small-Rossby-number regime relevant to
most of the atmosphere and oceans [22; 17; 23; 24; 18; 16, and references therein].
Asymptotic results, in particular, show that the waves generated in this regime are
exponentially small in the Rossby number [22; 20; 21].

The asymptotic work carried so far, relying on the smallness of the Rossby num-
ber, has been limited to very simple flows. Here, we propose an alternative approach,
based on a spatial-scale separation between waves and balanced flows. This ap-
proach can in principle be applied to complex flows, e.g. derived from numerical
simulations. It is motivated by the observation that, in many realistic circumstances,
the inertia-gravity waves that are generated have a much smaller scale than the bal-
anced flow. A key advantage is that there is no restriction to a large frequency sep-
aration between waves and flow, so that the wave generation can be captured when
it is at it largest, that is, when relatively short time scales appear. The exponential
smallness is of course recovered in the limit of small Rossby number.

2 Geometric-optics approach

The approach we propose is closely related to the geometric-optics approach to
stability reviewed in Ref. [7]. This has recently been applied to rotating-stratified
flows in [8], where equations equivalent to the ones we now derive have been ob-
tained. The approach considers the evolution of a wavepacket with small wave-
length superimposed to a spatially-varying, time-independent basic flow, with ve-
locity U = (U,V,0) satisfying V- U = 0. The perturbation fields, in particular the
x-component of the velocity, are written in the form

u(x,1) = a(x,1)e®™/H f e (1

where (I < 1 characterises the spatial scale separation. Introduction into the three-
dimensional Boussinesq equations gives

D6 06

—=—+4+U-V6=0 2

Dt ot * @
at leading order in y. This equation governs the change in the phase 6(x,t)/u of

wavepackets whose trajectories obey
Dx
—=U 3
D ; 3)

that is, they are simply advected by the basic flow. Taking the gradient of (2) leads
to
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Dk
Dt
where k = (k,l,m) = V0 is the wavevector (scaled by u). This is the standard WKB
result for waves whose frequency

— (VU)K “)

w=U-k (5)

is entirely associated with the Doppler shift. This is a natural outcome for small-
scale inertia-gravity waves, since their intrinsic frequencies

o = £ (P + N2+ 12) " /x, 6)

where x = |K|, are formally smaller by a factor y than the Doppler shift frequency.
(Here f and N are the Coriolis and Brunt—Viisild frequencies, respectively.) The
regime considered here, where wavepackets are simply advected by the flow, can
be recognised as the wave-capture regime examined in Refs. [3; 4]. Note that this
regime is a feature of three-dimensional stratified fluids without analogue in the
shallow-water model.

Carrying out the expansion to the next order in u leads to a system of equations
governing the evolution of the complex amplitudes #4(x,t), ¥(x,t), etc. along the
wavepacket trajectory. This system can be reduced to a set of three equations for the
amplitudes of divergence 0(x,t), vertical vorticity §(x,f), and potential vorticity
4(x,1). Ignoring the effects of the basic-flow buoyancy, these equations reduce to

l;_(f B (mK_Zf + k:;rcleNZ + K2(Z;nj_ 3 (kl(QU — 0,V) + 129,V —kzayU)> ;
- (%U@U +19.V) o
) W%ilz)(kl OV +QU) + oV +k2axU>> 5ot
ll)f - ®)
%? - €))

where o = f+Q +19,U/m—kd.V /m and Q = d,V — d,U. The perturbation ve-
locity field 1 is reconstructed from 5 and ¢ according to

1

0=

(ilé —ik8, ikl — izS) .

Equations (3)-(4) and (7)-(9) form a closed system of nine ordinary differen-
tial equations governing the position, wavevector and amplitude of the wavepacket.
They can be solved for a given, possibly time-dependent, flow to assess whether
perturbations to this flow grow; when the Rossby number is small, the perturbation
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can further be approximately decomposed into a balanced (or vortical) part and an
inertia-gravity-wave part, and the growth of latter implies a mechanism of inertia-
gravity-wave generation.

When U is zero or uniform, the wavevector k is constant, and the system (7)—(9)
is readily solved by letting

(875761,\) zexp(—iwlt)e, (10)

where e is a constant three-dimensional vector. The corresponding eigenvalue prob-
lem for w; has the three solutions @; = 0 and the two values given in (6) corre-
sponding to the vortical mode and the two inertia-gravity modes, respectively. A
non-uniform U has two consequences for (7)—(9): first, it leads to a time-dependent
wavevector Kk, and second it directly introduces terms proportional to VU. In general,
the ordinary differential equations (3)—(4) and (7)—(9) need to be solved numerically.
Some general comments about the behaviour of their solutions can nonetheless be
made. To the order of accuracy considered, the perturbation potential vorticity has a
constant amplitude: §(¢) = §(0). The equations (7)—(8) for 0 and { are then equiv-
alent to the equations governing a linear oscillator with time-dependent frequency
and time-dependent forcing. Note that the wavevector enters these equations only
through its direction k/x

For small Rossby number, the frequency of this oscillator is approximately given
by (6); it depends on time on a scale fixed by the Lagrangian time-scale of the
strain VU. This gives a good local definition of a Rossby number as the inverse
of the product of this time scale by @;. When this number is small, the growth of
free-oscillations in (0, ) — the mark of inertia-gravity-wave generation — is very
weak; in fact, it can be expected to be exponentially small in the Rossby num-
ber if the (Lagrangian) time dependence of VU is smooth (real analytic). Two
mechanisms of wave generation can be distinguished. First, for §(0) # 0, the re-
sponse of (3 , f ) is balanced to all orders in the Rossby numbers; any transient be-
haviour of VU does however lead to exponentially small free oscillations. Since
these cannot be eliminated by initialisation, the mechanism is one of genuine spon-
taneous generation [22; 21]; it may be interpreted as a conversion from the vor-
tical mode into the two gravity-wave modes. Note that this conversion is not a
conservative one since the background flow provides a source of energy. The sec-
ond mechanism is active with § = 0. In this case, the equations for (9, () describe
a slowly varying (unforced) oscillator, and the adiabatic invariance of the action,
which holds to all orders in the Rossby nl}mper, applies; thus, in a transient sce-
nario where U is uniform as 7 — oo, (0,{) can only change by an exponen-
tially small amount. However, if U remains time dependent, e.g. if the wavepacket
trajectories are periodic or chaotic, the changes can accumulate, leading to the
growth of (8, ¢ ). This mechanism of inertia-gravity-wave generation can be in-
terpreted as a form of parametric instability. In the next section, we discuss solu-
tions of (3)-(4) and (7)-(9) in simple flows which illustrate the mechanisms just
described.
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3 Applications to simple flows

We consider three time-independent flows: a vertically sheared, horizontally strained
flow, an elliptical flow, and a dipolar flow. We then briefly discuss the behaviour that
can be expected in more complex flows with chaotic wavepacket trajectories on the
basis of random-strain models.

3.1 Horizontal strain and vertical shear

Perhaps the simplest flow leading to a non-trivial time dependence of k is a pure
strain flow. Here we consider the added effect of a vertical strain and take U =
(Bx,—By+ Xz,0) for some constants 3 > 0 and X. We focus on the case § =0 and
on the long time behaviour, when the wavevector is approximately

(k,1,m) ~ (0,eP" zeP/B),

up to an irrelevant constant factor. This leads to constant coefficients in (7)—(8) and

A A

to a solution (0, ) «< exp(ot), where the growth rate o satisfies

22+N2ﬁ2/f2>1/2_

Zo_ﬂﬁ:<[324 [

A 2

Thus the divergence and vertical vorticity (0, () of the wavepacket increases expo-
nentially. Their growth rate is however less than the growth rate 3 of the wavevector
magnitude x. Still, the unbounded growth of (3 , Z:’ ) is significant: in particular it
implies the growth of the vertical gradient of the density and the ultimate breaking

of the wavepacket (cf. [4]).

3.2 Elliptical flow

The parametric instability associated with periodic fluctuations of k is illustrated by
the uniform-vorticity elliptical flow U = (ay, —by,0), where a and b are constants
satisfying ab > 0. The instability of this flow is an example of elliptical instabil-
ity [10], here of a rotating stratified fluid. Equations (7)—(8) have periodic coeffi-
cents, and their stability can be analysed using Floquet theory. Numerical and ex-
plicit results in the limit of small eccentricity |a/b — 1| < 1 have been obtained by
several authors [10; 13; 12]. They indicate that perturbations whose wavenumber
satisfy some resonance conditions grow. In the presence of rotation and stratifica-
tion, the growth rates decrease rapidly, however. More specifically, for N > f, the
growth rates can be shown to be exponentially small in the Rossby number /ab/ f.
They never vanish, so that elliptical flows, both anticyclonic (ab > 0) and cyclonic
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Fig. 1 Trajectories of three x10°
wavepackets in the flow gen- 1
erated by a quasi-geostrophic

dipole. The location of the

two point vortices is indicated 0.5p
by circles. The wavepack-
ets, which travel in the plane
z = 0 of the dipole, are char- Yol o
acterised by their distance

d =50, 100 and 150 km from
the axis of the dipole as = co. —0.5t

(ab < 0) are unstable, albeit in exponentially narrow bands of wavenumbers (see [2]
for asymptotic estimates of the growth rates). Qualitatively, the same conclusions
are expected to hold for all time-independent flows with closed particle trajectories
and hence closed wavepacket trajectories.

3.3 Dipole

To illustrate the spontaneous generation of inertia-gravity waves by wavepackets
with § # 0, we consider the evolution of a wavepacket in the simple flow corre-
sponding, in the three-dimensional quasi-geostrophic approximation, to a dipole.
(This flow is only a solution of the fluid equations in the limit of large f and N,
but we use it as a crude model since we expect the qualitative properties of the
wavepacket evolution to be insensitive to the details of the flow.) The potential vor-
ticity of the dipole is O = x(6(x — L) — 6(x+L))8(y)6(z), with the separation of
the point vortices chosen to be 2L = 250 km. The strength k was taken such that the
propagation speed of the dipole is 10 m s~ !. It is convenient to think of this dipole as
arrested by a uniform flow; wavepackets located at large distances from the dipole
in the y-direction are then swept past the dipole and experience a transient change
of wavevector. Figure 1 shows the corresponding trajectories in the (x,y)-plane for
three wavepackets located at distances d = 50, 100 and 150 km from the dipole axis
as |t| — teo. Since the flow is uniform for + — +oo, we can use the exact solu-
tion (10) to decompose the perturbation into a vortical mode and two inertia-gravity
waves for |¢| large. For 1 — —co, we assume that only the vortical mode is excited.
As a result of the transient activity, the inertia-gravity-wave modes are excited and
their amplitude A(¢) becomes simply A(#) ~ Ao exp(+iw;t) as ¢ — oo. The constant
A is therefore an appropriate measure of the spontaneous generation that occurs.
We report results obtained for a wavepacket with m/v/k? + 1% ~ 10 located in
the plane z = 0 of the dipole. The other relevant parameters are f = 10~% s~! and
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Fig. 2 Inertia-gravity waves generated spontaneously as vortical-mode wavepackets are swept past
a dipole. The left panel shows the amplitude of one of the two inertia-gravity-wave mode as a
function of time for wavepackets located at distances d = 25,50 and 100 km (from top to bottom
curves) of the dipole axis as t — Zeoo. The top and bottom curves are offset by 1 unit in the
A-direction. The right panel shows the ampltitude of the inertia-gravity-wave mode as t — oo as a
function of the distance d of the wavepacket to the dipole axis.

N = 1072 s~!. Figure 2 shows results obtained for the different values of the dis-
tance d of the wavepacket to the dipole axis. The left panel shows the amplitude of
the inertia-gravity-wave component of the flow (obtained by projecting (0,¢,4) on
one of the inertia-gravity-wave mode) for d = 25, 50 and 100 km. It demonstrates
clearly the appearance of fast oscillations that follows the transient behaviour asso-
ciated with the encounter with the dipole. It also illustrates the strong dependence
of the inertia-gravity-wave ampliude on d which can be thought of as a proxy for
an inverse Rossby number. The right panel of Figure 2 shows the magnitude of the
amplitude A.. that characterises the inertia-gravity waves for t — oo. It uses linear—
logarithmic coordinates to demonstrate the exponential dependence of A. on d and
hence on the inverse Rossby number. Note that an exponential-asymptotics analysis
similar to that of Ref. [22] could be carried out to obtain an explicit approximation
for Ae.

3.4 Random-strain models

As is well known from the study of particle advection, the trajectories of particles
and hence wavepackets are typically chaotic when the velocity field is time depen-
dent. The Lagrangian time dependence of the strain VU that appears on the right-
hand side of (4) is therefore very complicated; it is natural to model it by a station-
ary random process. This is the key idea of the random-strain models proposed by
Kraichan [11] in the context of passive-scalar avection (the scalar-concentration gra-
dient obeys (4)). Haynes and Anglade [9] considered random-strain models adapted
to the layerwise two-dimensional nature of geophysical flows and concluded that
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while, typically, k — oo, the aspect ratio m/v/k* +[2 reaches a stationary distri-
bution. Since this ratio together with VU determine the coefficients of (7)—(8) for
g = 0 for random-strain models, these equations are essentially those of a linear os-
cillator with stationary random coefficients. This observation makes it possible to
draw some conclusion about the behaviour of (3, ). First, these quantities typically
grow exponentially, with a deterministic growth rate defined by lim, ...z 'log||,
say, that can be recognised as the Lyapunov exponent of the system. Second, in
the limit of small Rossby number, naturally defined using the correlation time of
the random process determining the oscillator frequency, the growth rate can be
expected to depend crucially on the smoothness of this process. Specifically, the
explicit results available for closely related problems [1; 6] suggest that the growth
rate is proportional to the power spectrum of the random process evaluated at twice
the average oscillator frequency. In the small-Rossby-number limit this average fre-
quency is in the tail of the spectrum and hence entirely controlled by the smoothness
of the process. In particular, if the process is real-analytic, the growth rate will be
exponentially small in the Rossby number. Thus spontaneous inertia-gravity-wave
generation is predicted by random-strain models to have a similar Rossby-number
dependence in complex flows as in simple steady flows. The key assumption, which
may not always be satisfied, is that the Lagrangian time series of VU is real-analytic.
Note that a simple model for which analytic progress is possible would take VU
to be a white noise so as to apply the techniques developed for the Kazantsev—
Kraichnan models of kinematic dynamo and passive-scalar advection (see, e.g.,
[5; 14] and references therein). This would however be appropriate only for flows
with correlation times short compared to f~! and to the inverse strain.

4 Discussion

This paper applies the geometric-optics approach to fluid stability (e.g. [7]) in order
to study the spontaneous generation of inertia-gravity waves in a variety of flows.
This application, which requires introducing the effect of rotation and stratifica-
tion, is straightforward because of the particular dispersion relation of inertia-gravity
waves: since their intrinsic frequency remains O(1) as |k| — oo, the kinematics of
short waves is dominated by the Doppler shift, and wavepackets are simply advected
by flows like fluid particles. Nine coupled ordinary differential equations govern the
dynamics of the wavepackets, with three controlling their amplitude. This implies
that the three types of modes that can be identified when U is uniform — the vor-
tical mode and the two inertia-gravity modes — are strongly coupled. Only when
the Lagrangian evolution is slow compared to the inertia-gravity-wave frequency,
that is, in the limit of small (Lagrangian) Rossby number, are they asymptotically
decoupled. It is interesting to note that the three amplitude equations then form a
two-time-scale system with the same structure as the complete (partial differential)
fluid equations [25]. The general conclusions that can be drawn for these system
apply, and the generation of inertia-gravity waves, either through spontaneous con-
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version of the vortical modes or through unbalanced instabilities, is exponentially
weak in the Rossby number. The simple models discussed in this paper make this
explicit.

The key interest of the geometric-optics approach is that it makes it possible to
examine the growth of perturbations to solutions of partial-differential equations
by solving ordinary differential equations. (See Refs. [19; 15] for an alternative
approach, namely the pressureless approximation, which also leads to ordinary dif-
ferential equations.) Here we have considered highly idealised flows for which the
velocity field can be written in closed form. This is not necessary, and our future
work will implement the solutions of the amplitude equations (7)—(9) for more com-
plex flows obtained from numerical simulations. It will also consider the scaling
f, N =0(u~") for which the intrinsic frequency is of the same order as the Doppler
shift; in this case interactions between the vortical and inertia-gravity modes remain
possible, but they are exponentially small in .
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Parallels between stratification and rotation in
hydrodynamics, and between both of them and
external magnetic field in
magnetohydrodynamics, with applications to
nonlinear waves

S. Medvedev and V. Zeitlin

Abstract We revisit the well-known analogy between the effects of stratification
and rotation in hydrodynamics, and between both and the external magnetic field
in magnetohydrodynamics. After sketching the similarities among models in what
concerns linear and nonlinear stationary waves, we show that the Hamiltonian struc-
ture of the 2D versions of the models is the same, and use this fact to 1) find a
canonical (skew-diagonal) form of the Hamiltonian equations, and 2) to treat in a
unified manner the problem of weak turbulence of, respectively, internal gravity, gy-
roscopic, and Alfven waves in scale-invariant limits. We thus find stationary energy
spectra in the long- and short-wave limits for all three types of waves.

1 Introduction

The analogy between the effects of rotation and stratification in hydrodynamics, and
between both and magnetic field in magnetohydrodynamics (MHD below) is well-
known and is, in fact, part of folklore. In what follows, we will remind this analogy
and its precise mathematical meaning using the simplest 2D models, and then ex-
ploit it in the context of weak turbulence of waves engendered by each effect, i.e.
respectively, internal gravity waves, gyroscopic waves, and Alfvén waves. We will
thus show how some recent results on gyroscopic waves may be obtained without
calculations from the earlier ones for internal gravity waves, and also get new results
on wave turbulence in 2D MHD.
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2 Models

We use the 2D, or 2.5D equations, corresponding to full non-dissipative 3D models
with imposed symmetry with respect to translations in one spatial direction, and
present them one by one below, describing in short the basic properties.

2.1 2D stratified Boussinesq equations

The stratified Boussinesq equations in the vertical (i.e. parallel to gravity accelera-
tion) plane with no rotation (2D SB) are written as

u; +uuy +ww, + ¢ =0,
wr +uwy +ww, + 2+ ¢, = 0,
uy+w, =0, E+uZ,+w=,=0. (D)
8(p(z)+0)

Po
p(2), 0= L _geopotential, Po - constant normalization density, ¢ - density pertur-

5 Po
bation.
In streamfunction/buoyancy variables they are rewritten as

Here = = - full buoyancy, including effects of background stratification

Ay + 7 (v, Ay) +E =0,
E+ 7 (y,5) =0 )

where y - streamfunction, ¢ is Jacobian in x — z plane, and A is Laplacian.
The conserved energy is

1 =2
E:E/dxdz (Cl,l/-i-ﬁ), 3)

where { = — A - horizontal vorticity, N = const - Brunt Viisili frequency, and we
suppose for simplicity from now on that p(z) = —N?z.
An important hydrostatic (long-wave) limit of (2) is:

Ver + F (W, W) + Ex = 0,
2.2 2.5D rotating Euler equations

Rotating Euler equations in the vertical (i.e. parallel to the rotation axis) plane (2.5D
RE) are written as
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v +uvy +wv, + fu =0,
u +uuy +ww, — fv+ ¢, =0,
uy+w, =0, wy+uw,+ww,+ ¢, = 0. o)

Here f = 2€2 - Coriolis parameter, €2 - overall angular velocity. In streamfunction/-
geostrophic momentum variables they are rewritten as:

Ayi+ 7 (v,Ay)+ M =0,
M+ 7 (y,M) = 0. (6)
v - streamfunction, { = —Aw - (horizontal) vorticity, M = f(v+ fx) - geostrophic
momentum.
The analogy between stratification and rotation becomes obvious as these equa-

tions are identical to 2D SD up to the changes M — =, z — x and sign changes. The
conserved energy is also similar to SD:

1 M?
£ [ (gwﬂ). )

An important geostrophic (long-wave) limit of (6) is:

Vixr + /(W, lI/x)c) +M; =0,
M+ 7 (M) = 0. ®)

The parallel with hydrostatic limit in SB is obvious.

2.3 2D magnetohydrodynamics

For 2D motions in the x — z plane, the equations of 2D MHD read:

V.v=0, V-h=0
Vvi+v-Vv—h-Vh+ P =0,
h,—VA(vAh) =0. ©)

. . . 2 .
Here v, h - velocity and magnetic fiel in the plane, P* = P+ }‘7 - magnetic pressure.
In streamfunction/magnetic potential variables they are rewritten as:

Ay + 7 (v, Ay) = 7 (a,4a) = 0,
a+ 7 (y,a) =0. (10)
Here y - streamfunction, a - magnetic potential, j = —Aa - electric current perpen-

dicular to the plane.
The conserved energy is:
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1
E:E/dxdz(Cl/H-aj). (an
In the presence of constant external (mean) magnetic field:
h=H+n, H=const (12)

Without loss of generality H = HX, and we replace a — —Hz+ a. An analog of
hydrostatic and geostrophic balances is “magnetic balance”:

Hay, =P, = —P,=—HAa=Hj. (13)

3 Similarity between models I: waves and structures

3.1 Linear waves

Each of the effects: stratification, rotation, external magnetic field engenders its
proper type of linear waves which are obtained by straightforward linearization
in SB and RE, and linearization about constant H in MHD. All these waves are
anisotropic.

* SB: internal gravity waves with dispersion relation:

2 , K
0’ =N>—— 14
k2 +m?’ (9
* RE: inertial (gyroscopic) waves with dispersion relation:

2

=1 k> +m? 15
e MHD: Alfven waves with dispersion relation:
w® = H*k?; (16)

Above w - wavefrequency, k = kX + m2 - wavevector. The important limits corre-
sponding to quasi -vertical and quasi-horizontal propagation in SB and RE, respec-
tively, are (only positive branches of dispersion relation displayed):

1. K> < m?:

. SB )
w=N—, (17)
m

2
w:f<l—k—2>; (18)
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2. m* < k?
« SB
m2
wN(lzkz), (19)
« RE m
w:f? (20)

Remarks: In these limits frequencies are either homogeneous functions of k,m, or
constants plus homogeneous functions. Frequency of Alfvén waves is always ho-
mogeneous. The limit k> < m? in SB (m*> < k* in RE) corresponds to hydrostatic
(geostrophic) limit. In MHD it corresponds to magnetic balance. The similarity be-
tween SB and RE is again seen in the identical (up to replacement k < m) dispersion
relations.

3.2 Structures: nonlinear waves/vortices

The analogy between the models is also clearly seen if one considers their fully
nonlinear stationary solutions

3.2.1 Stationary solutions in SB and RE

* SB

1

X

)

S (v, Ay) +
P2

)

0
0. ey

M [

/(WvAW)+Mz =0,
J(y.M) =0. 22)

Hence = = Z(y), M = M(y), respectively, and
Ay +E'(y)z=F(y), (23)

Ay +M (y)z=G(y), (24)

where Z(y),M(y),F(y),G(y) are arbitrary functions to be determined from
boundary conditions.

Remarks:
The well-known Long’s waves (e.g. [1]) in SB belong to this class. “Long’s waves”
in RE may be obtained by replacements = — M, x — z, F — G giving vertically
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propagating stationary waves from the same equations. Hydrostatic limit, much

studied for mountain waves is analogous to geostrophic limit in this context. Long’s
waves may have recirculation cores [1].

3.2.2 Stationary solutions in MHD

Stationary solutions of MHD obey the equations:

/(W?AW)_/((J’A&) =0,
7 (y.a) = 0. 25)

Hence a = A(y) and
(1= W) dw -4 (A" (v) (Vv?) = H(w), (26)

where A(y), H(y) to be determined from b.c.

4 Similarity between models II: geometry

4.1 Hamiltonian structure

The similarity between the models becomes transparent if one considers their
Hamiltonian strudture. The first observation is that in all three models the energy
is a quadratic functional and the Casimir invariants are conserved

/dxdz V)44 (V) = const, (27)

where ¥ is &, M, and a in SB, RE, and MHD respectively, and .% (¥), 4(¥) are
arbitrary functions.

All models have the same Hamiltonian structure [2; 3] given by the Hamiltonian,
which is the energy functional, and the following non-canonical Poisson bracket

(PB) for any pair of functionals &7 (§, %), B({,V):

e = [t s (5.57)+

o0 09X 0 OA
| (Gesr) ()] e
The equations of motion, thus, are:

Ct:{C7H}v 7/1:{7/7[—1} (29)
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This Hamiltonian structure is degenerate. Degeneracy is lifted on the hypersurface
of constant Casimirs, which constitutes the true phase-space.

4.2 Geometry of the phase space and nonconstrained dynamical
variables

The underlying geometry follows from the symmetry with respect to the group of
transformations [2]:

¢ — C(X(x,z),Z(x,z))—/(A(x,y),“I/(X(x,z),Z(x,z)),
YV — YV (X(x,2),Z(x,z), FX,Z)=1, (30)

which leaves the Casimirs invariant and sweeps the phase-space starting from arbi-
trary initial condititions {y(x,z), %(x,z). Hence the parameters of area-preserving
diffeomorphisms (i.e. their generating functions), and A are true dynamical vari-
ables. The PB is still non-canonical in these variables, its recursive (skew-)diagonal-
isation using Lagrangian variables was proposed in [3] for strong stratification (ro-
tation/magnetic field). This transformation obviously renders the Hamiltonian non-
quadratic. Below, we will use a related, but more general method developed in [4]
for the systems of this kind.

4.3 Casting PB to the canonical form

We sketch here the method of [4], as applied to SB, extension to RE and MHD
is straightforward. The approach consists in diagonalization of PB order by order
in inverse stratification (or rotation, or magnetic field), although all parameters are
taken to be unity in the rest of this section to simplify the formulae (the details will
be presented elsewhere).

The operator of the Poisson bracket in §, & variables for SB is

Q)

A change of dependent variables u = (u,u) = (§,&) — v:
v=u—fi[u,u] —f>[u,u,u] + O(u?), (32)

gives the skew-diagonal (canonical) PB operator:

= (g %) o). (33)
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The inverse change of variables is needed in order to calculate the Hamiltonian, it is
given by:

u=v+f[v,v]+£ [ [v,v],V] + £ [V, £ [V, V] + 2 [v, v, V] + O(v}).  (34)

Here 1
fi[u,u] = §Alus—lu. (35)
and 1
fo(u,u,u] = 2 hu,uls 'y, (36)
with
bluul = A\ T*+TA, +TST"
5 2 1
= —§AIS"A1 +3 (B19:S™'A1 —A1S710By) — 531531, (37)
where 0 | ) 0 ' )
_ j e ULye j U2,
B] — (/(axlth,') O ) (38)
and 1 1 1 1
T = —§A1S’1 + 5Blaxs”, T = —§S’1A1 — §S"8x31. (39)

This construction allows to rewrite SB, RE and MHD in canonical form and
to calculate, order by order, the cubic, quartic etc corrections to the Hamiltonian,
describing wave interactions.

5 Triad and quartet wave interactions and wave turbulence
(WT)

The canonical Hamiltonian structure allows to understand underlying dynamics in
standard terms of coupled oscillators and gives a fast track for obtaining stationary
spectra of ensembles of weakly nonlinear waves under the standard WT hypotheses.

5.1 The WT algorithm

Let us remind that WT approach consists in:

¢ Analyzing the dispersion relation and checking whether the dispersion law is of
the decay (3-wave resonances) or non-decay (4-wave resonances only) type

* Taking a system in canonical Hamiltonian form and applying the standard recipes
(e.g [6]), i.e.: random-phase approximation, quasi-Gaussian closure,



Stratification, Rotation, Magnetic Field 35

* Getting kinetic equation (KE) for average wave-density using these recipies.
* Looking for stationary spectra annihilating the collision integral in KE.

Remarks:

The collision integral in the KE for a decay spectrum is entirely defined by the cubic
part of the Hamiltonian. The collision integral in the KE for a non-decay spectrum
is defined from both cubic and quartic parts of the Hamiltonian.

5.2 Known situations leading to get-it-by-hand solutions for
stationary energy spectra in WT

Although solutions of the kinetic equation can be always sought numerically, if the
dispersion law and interaction coefficients are scale invariant, stationary power-law
spectra may be found “by hand” by factorizing the collision integral and looking for
spectra annihilating each factor. There is a number of situations studied in literature
when this is possible, falling in 3 classes:

1. Homogeneous isotropic dispersion (decay and non-decay): @ o< |k|*
2. Directionally homogeneous decay dispersion: @ o< k%m”
3. Non-decay dispersion of the form: @ o< const + |k|%, @ o< const +k%m".

The methods of factorization of the collision integral in the corresponding cases
use conformal transformations either in the frequency space [5], or in the wavenum-
ber space [7] in cases 1,2, and conformal transformation in the wavenumber space
[8; 9] in case 3. The solutions always contain a Rayleigh-Jeans equipartition spec-
trum, the constant energy-flux spectrum and, in the non-decay case, the constant
wave-momentum flux spectrum.

5.3 WT: decay spectra for gravity, gyroscopic and Alfvéen waves

By applying the technique sketched above to the dispersion relations (16) - (20), we
get the stationary spectra for weakly nonlinear waves in all three of our models:

* Internal gravity waves in the limit k < m.
Energy spectrum

3 3
€ock 2m 2 (40)
* Gyroscopic waves in the limit m < k.
Energy spectrum
gock Im 2 (41)

e Alfven waves

— Limit k < m:
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Energy spectrum
gock 3m! (42)

— Limit m < k:
Energy spectrum

gock Im > (43)

Comments:

The spectrum of internal gravity waves (40) was obtained before without using the
Hamiltonian structure (i.e. using constrained origainal variables) with the same re-
sult [10; 11]. This gives a proof that constraints are inessential for 3-wave inter-
actions. The spectrum of gyroscopic waves (41) obtained recently in [12] follows
without calculation from those of gravity waves in the corresponding limit. The
spectra of Alfven waves are apparently new.

5.4 WT: non-decay spectra for gravity and gyroscopic waves

Similarly, in the non-decay case we get the spectra which are apparently new for
internal gravity waves and gyroscopic waves:

* Internal gravity waves in the limit m < k:

1. Energy spectrum corresponding to a constant energy flux:
gock Im3 (44)
2. Energy spectrum corresponding to a constant wavenumber flux:
5 5
gk 3m 3 (45)
* Gyroscopic waves k < m:

The spectra are obtained by exchanging k and m in previous formulae.

A discussion of physical realisability and applications of thus derived wave-
spectra is beyond the scope of the present paper.

6 Conclusions

Thus we have shown that 2D SB and 2.5D RE system are identical, up to replace-
ments: geostrophic momentum « buoyancy, and x < z. The results for structures
(nonlinear waves with or without vortex cores) and wave turbulence obtained in one
model are immediately transposable for the other. The 2D MHD is close yet dif-
ferent due to the different form of the Hamiltonian, although the PB bracket is the
same. The unified treatment of 2D SB, RE and MHD models, especially in what
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concerns their canonical Hamiltonian structure, allowed us to understand and sys-
temize the previous results on wave-turbulence spectra in these models and obtain
some new ones.

It is worth noting that similar results and conclusions may be obtained in another
“symmetric” 2D situation, namely axisymmetric flows, where translational invari-
ance of the above-considered models is replaced by rotational invariance.
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Generation of an internal tide by surface
tide/eddy resonant interactions

M.-P. Lelong and E. Kunze

Abstract The interaction of surface tidal currents and baroclinic geostrophic eddies
is considered to determine whether energy can be transferred to baroclinic tides by
this process. Theoretical and numerical analyses reveals that when the surface tide
is uniform in the horizontal, the interaction is identically zero, even under resonant
conditions. The resonant interaction results in maximum internal wave excitation
when the horizontal scale of the tide is comparable to that of the eddies. Thus, this
process is not an efficient mechanism for internal wave excitation in the deep ocean
where barotropic tides vary over much larger scales than the eddies, but it may
provide an additional wave source at low latitudes and in coastal regions where tidal
horizontal modulation by topography can be significant.

1 Introduction

A series of surface-drifter observations in the western boundary current of the
subpolar North Pacific found intense near-inertial/near-diurnal frequency motions
trapped within anticyclonic warm-core rings (Rogachev et al., 1992; Rogachev
et al., 1996; Rogachev and Carmack, 2002). The authors speculated that the lower
bound of the internal wave frequency band had been locally decreased by the rings’
negative vorticity (Kunze, 1985), thereby trapping near-inertial waves within the
rings. The proximity of near-inertial and near-diurnal frequencies led them to con-
jecture that the observed waves might have resulted from a diurnal-tide/eddy in-
teraction. However, given their limited data, they could not rule out the role of
wind-forcing or subinertial instability, and the evidence for the suspected role of
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the barotropic tide was circumstantial. Nor was the interpretation of these observa-
tions substantiated by any rigorous theoretical arguments.

Research into tidal generation of linear internal waves in the deep ocean has
largely focused on the interaction of surface tidal currents with topography (e.g.
Cox and Sandstrom, 1962; Wunsch, 1975; Simmons et al., 2004; Garrett and Kunze,
2007), but the mechanism of tide/eddy interaction has not, to our knowledge, been
previously considered. The objective of our combined theoretical and numerical
study is to assess conditions under which internal waves can be generated following
interaction of an oscillating tidal current with a baroclinic geostrophic eddy field.

A summary of the weakly nonlinear theory, first presented in Lelong and Kunze
(2009), is given in Section 2. Numerical results are presented in section 3. Section
4 includes a discussion of results and concluding remarks.

2 Problem definition

This section provides a mathematical description of the problem. Equations of mo-
tion are given in Sec. 2.1. The analogy between resonant wave triads and tide/eddy
interactions is explained in Sec. 2.2, followed by a summary of the multiple-scale
analysis in Sec. 2.3.

2.1 Governing equations

Because of their barotropic structure, tidal flow studies are typically formulated with
the rotating shallow-water equations. Here, the focus on internal wave generation
and the baroclinicity of the eddy field suggests instead that we use a 3D Boussinesq
model with f-plane rotation,

8uh

W+(uh~Vh)uh+waa—uZh +Vup+fé xuy = é1F(x,y,t) (la)
ow ow dp _
%Jr(uh-vh)ber%Jerw =0 (1)
ot dz
Vioun+ 2 — 0, (1d)
dz

where uy, = {u,v} is the horizontal velocity, w the vertical velocity, b = —gp /po the

_84dp()

the
po dz

buoyancy and p the pressure. f is the Coriolis frequency and N =
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constant buoyancy frequency, defined in terms of the mean density profile p(z). é;
and &3 are unit vectors in the x and z directions.
The effect of the barotropic tide is incorporated as a time-dependent forcing term

2 2
a) p—
F(x,y,t) = U(Ly)lTlfcos it

on the right-hand-side of the x-momentum equation. This forcing represents a pa-
rameterization of the variation of sea-surface slope with the tidal cycle and is chosen
to elicit a response of the form u = U(x,y) sin @,z where ; denotes the tidal fre-
quency. In the following analysis, we will assume that U is a function of y only,
U=U(y).

The eddy field, consisting of an array of 3D Taylor-Green vortices, is introduced
as an initial condition in geostrophic and hydrostatic balance,

u(t =0) = U,(t = 0) coskpxsinlpycosmyz (2a)
du

Wt =0) =~ [ 5 li-ody (2b)

w(t=0) = (2¢)

b(r=0) =

0
/ Fli-od 2d)
0=/

v(t = 0)d (2e)

2.2 Wave-triad interactions

The interaction between a barotropic tide and an eddy field bears similarities with
internal wave-triad interactions where the resonant interaction of two waves leads
to the excitation of a third (McComas and Bretherton, 1977; Miiller et al., 1986),
and with the resonant interaction between wind-forced pure inertial oscillations and
a turbulent mesoscale eddy field that results in the excitation of a propagating near-
inertial internal wave (Danioux and Klein, 2008).

To illustrate the analogy, we consider a barotropic semidiurnal tide with wavevec-
tor k1 = {0,1;,0} and frequency ; in the presence of an eddy field characterized by
wavevector Ky = {ka,l»,m,} and advective time-scale 1/(xz - U,) > 27/, where

U, is a typical eddy velocity and x» = \/kg + l% +m%. The nonlinear quadratic in-
teraction of the tide with the eddies excites motions with functional form

el[kzx + (Z| + lz)y +mpyz £ (D]l]
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As in the wave-wave interaction problem, the resulting signal is weak under most
conditions. However, if the scales of the barotropic tide and eddy field are such that
resonance conditions,

K1 + Ky = K3 (3a)
0 = 0(K] £K3). (3b)

where o is the internal wave dispersion relation

N+ B) 4 fPmy A
w(K3)— k%—l—l%—i—m% ) ( )

then resonance conditions are satisfied and stronger interaction possible, exciting
an inertia-gravity wave (IGW) whose frequency ;3 matches that of the tide w; and
wavevector k3 = {ks,l3,m3} = {kp,l; +1,m;}. In this case, the resonant triad is
comprised of the barotropic tide, eddy field and IGW components with characteris-
tic scales given above.

2.3 Multiple-scale analysis

The interaction has been examined with a weakly nonlinear multiple-scale pertur-
bation method based on a fast wavelike timescale Ty ~ 1/f, and a much longer,
advective eddy timescale T} ~ L/U, where L is a typical eddy radius (Lelong and
Kunze, 2009). The ratio of the two timescales defines a small parameter, U,/ fL = &,
known as the Rossby number. In the usual fashion, all variables are expressed as
power series expansions in € (Kevorkian and Cole, 1981), e.g. for velocity,

u(x;1,t) = u® (x;00,11) + eu(l)(x;tom) + 0(82)

where #p and #; denote nondimensionalized fast and slow times respectively such

that d/dt = d/dtg+€d /dty.

The next step consists in delineating the triad components. To lowest order in &€,
we assume that both tide and eddy velocities are entirely horizontal.

The barotropic tide velocity is defined to be the vertically averaged horizontal
velocity over the domain depth H

- 1 H
ugr = up(X;fo,11) = ﬁ/o uy (x:t0,11) dz. )
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The tide oscillates on the fast timescale but its amplitude may be modulated on the
slower timescale. Tidal equations are obtained by vertically averaging Eqs. la-d.

The eddy velocity is independent of the fast timescale and defined as the tempo-
rally averaged horizontal velocity

1 10+7T
. (X,11) =un(X;00,11) = ;/ uh (X 70,11) dTo (6)
fo

where Tp < T < T1. Eddy field equations are obtained by temporally averaging
Egs. la-d.

The residual horizontal velocity which is ascribed to internal waves possesses
vertical structure and is a function of both timescales. To lowest order, the vertical
velocity is entirely assigned to the wave component,

Uyave = {uh —UpT — U, W}- @)

Therefore, the internal wave evolution is best described by a forced wave equa-
tion for w, derived from Eqgs. la-d through algebraic manipulation. In nondimen-
sional form, it is

32 82 92 az
82ﬁvﬁw+ W(a—;;) Viw+ 8—;; —e(F+F+FB+FE+F5)+eF+e'F
0 0
(®)
where the right-hand-side forcing terms
2
F = at_azvh'[(uh'vh)uh] (9a)
82 8uh
B = T&zvh : [Wa—z} (9b)
B = —Vi[u,-V,b] (9c)
db
Fa = =Vilwa] (9d)
0
Fs = 5 {es- [V (u-Vju,)J} (%)
0
Fg = _EV% [uy, - V] (9f)
_ 9 2 8W
5 _Evh[wa_z] %)

The scaling is based on the requirements that (i) Coriolis and pressure-gradient
terms be of the same order and present in the lowest-order equations, (ii) buoyancy
and pressure fields be in hydrostatic balance. We make the additional reasonable
assumption that H ~ €L and W ~ gU, where W is the vertical velocity scale.This
sets H/L = O(¢). Typical oceanic values for f/N are O(10~2), of the same order as
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€ based on a midlatitude f = 10~%s~!, U, of O(0.1ms™ ') and L of O(10°m). There-
fore, the Burger number Bu = (NH /fL) ~ O(1).

Homogeneous solutions of Eq. 8 are of the form exp[ti(kx+ ly+mz+ wr))
where @* = 14 (k*+1%)/m? is the nondimensional form of Eq. 4 when m >
(k*+12).

At O(1) and O(¢), all solutions to Eq. 8 are trivial, implying that w(®) and w(!)
are 0. Hence, only forcing terms Fy, F3 and F5 contribute at O(g?).

Not all solutions of Eq. 8 represent propagating IGWs, but our present focus will
be on forced solutions that exhibit propagating internal-wave

expEi(kox + (I] £ )y +maz £ ;1))

behaviour, described in Sec. 2.2. Forcing terms which satisfy the homogeneous
equation elicit a resonant response, similar to the resonance of a harmonic oscillator
forced at its natural frequency. Resonant solutions can only be excited if the F; terms
project onto matching frequency and wavenumber ranges (Ford et al., 2000). This
implies that eddy/eddy interactions, which occur on very long time-scales, cannot
excite an internal tide since their projection onto the IGW-frequency band is zero.
Similarly, barotropic tide/tide interactions cannot project onto IGW vertical scales
which are much smaller. Therefore, for the purpose of studying IGW generation, we
need only consider tide/eddy contributions These terms are of the form sin 6+ and
cos 0 where

0L =kx+ (l] + lz)y +myz— w1ty = ksx + l3y + m3z % wsty.
We assume, without loss of generality, that terms with phase
0 =kix+ (L +h)y+mz— oty

excite a resonant response.
Coefficients Cs and C, corresponding to resonant eddy/tide forcing terms sin 6
and cos 0 in Eq. 9a-g are then readily computed,

kolym 31
Cultn) = ) (1)l (0) == (14 377) (10)
2
Lim k2 2k2 @?
Co(tr) = ul® (1)) (1) 22 (=g + -2 — [+ =250, (11)
16(1)1 lz lz

For circularly shaped eddies (kp = I5), Cs and C,. achieve a maximum when
2 l

I = _§lz and [; = —22 respectively, which implies that /; /I, must be O(1) for
w

1
resonant forcing to be most effective.

(0)

When barotropic tidal wavenumber /; =0, Fl(o) =0since Vj,-u,’ = 0. Moreover,

the sum of F3(0> and FS(O) exactly cancels due to thermal-wind balance. Therefore, if
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the barotropic tide velocity is uniform, no waves can be excited since all tide/eddy
forcing terms vanish. This result is independent of whether resonance conditions are
satisfied or not. Physically, this situation corresponds to a periodic advection of the
entire water column by the tidal current. Without any horizontal modulation, this
type of motion cannot transfer horizontal energy to vertical motions.

Additional details of the weakly nonlinear solutions are given in Lelong and
Kunze (2009).

3 Numerical simulations

Numerical simulations were performed to check the weakly nonlinear theory. The
numerical model solves the three-dimensional Boussinesq equations on the f-plane
(Winters et al., 2004) in a domain of dimension L, x Ly, x L,. Boundary conditions
are periodic in both horizontal directions and free-slip in the vertical. To assess
the role of the barotropic tide, we compare the evolution of two different simula-
tions (Runs A and B) that differ only in their tidal forcing. In both cases, the initial
condition consists of a field of vortices in geostrophic and hydrostatic equilibrium,
modulated by Gaussian (in x) and exponential (in z) envelope functions to confine
the eddy field to upper and middle regions of the domain. This configuration allows
generated waves to radiate away from the presumed eddy source region. The initial
vorticity distribution for Run B is shown in Fig. 1.

Tidal forcing is ramped up to full strength over five tidal cycles to ensure smooth-
ness of solutions. Principal run parameters are given in Table 1. Coriolis and buoy-

Table 1 Simulation parameters for domain size L, X Ly X L., tidal wavelength A; and eddy wave-
length A,.

Run Tide L, L, L, M A

A 0.03ms ! 625x10%m 25%x10°m 2400m oo 3.12 x 10*m
B 0.03ms ! 4x10*m 1.6 x 100m 2400m 1.33x10*m 2x 10*m

ancy frequencies are f = 10~*s~! and N = 5 x 1073s~! respectively. This yields
N/f =50, somewhat smaller than typical oceanic values. Using a reduced value of
N/ f while simultaneously reducing horizontal scales of eddies and tide preserves
dynamical similarity with oceanographically relevant parameter regimes in situa-
tions such as this one where the large range of spatial and temporal scales that must
be resolved becomes prohibitively expensive (e.g. Lelong and Sundermeyer, 2005).

Runs A and B differ in the horizontal scale, A; = 27/}, of the tidal forcing. In
Run A, A is much larger than the scale of the dominant eddies A, = 21/, a case
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Fig. 1 vertical (a) and horizontal (b) cross-sections of vorticity field at # = 0 for Run B. Arrows
indicate the direction and spatial variation of the barotropic tidal forcing.

characteristic of deep-ocean conditions. In contrast, in Run B, 1; = O(1,), as might
occur on the continental shelf or at low latitudes. In both Runs A and B, eddy and
tide parameters are chosen to satisfy resonance conditions Eqgs. 3a,b.

All runs, including one in which the tide was turned off (not shown), exhibit
some degree of initial low-level internal wave radiation. Some weak radiation oc-
curs because the balance of the initial flow is inherently limited by finite numerical
resolution. This was confirmed by noting a decrease in initial wave radiation with
increasing numerical resolution (not shown). Another source of waves arises be-
cause the initial array of localized vortices is not a rigorously exact solution of the
nonlinear equations (in contrast to the periodic array of vortices defined in Eq. 2).
Over time, nonlinear effects act to distort the initial state, resulting in some wave
radiation. This was verified numerically by performing a linear simulation in which
nonlinear terms and tidal forcing were set to zero. In this case (not shown), the vor-
tices retained their initial balanced state and the resulting early-time wave radiation
was several orders of magnitude lower than in the nonlinear case.

In Run B, eddy and tidal scales are chosen to maximize the strength of the forcing
terms in Eq. 10. L, encompasses exactly two A, and three A;. To allow for horizon-
tal and vertical wave propagation, Ly = 4L,, and in the vertical L, = 6A,, where
lzg =2r / my.

If residual u# and v (defined by Eq. 7) and w indeed represent linear internal waves
of frequency ®; with wavevector k3, then u and v components should be 7/2 out
of phase and their amplitudes should differ by a factor of @;/f. Similarly, w will
be 7 out of phase with residual u and scale as (k;,, /m3)u. Residual u, (@;/f)v and
—(m3 /K, )w are plotted for each simulation in Fig. 2. In Run A (Fig. 2a), corre-
sponding to the case where /; = 0 in the theory, residual horizontal velocities are
inertial oscillations (Lelong and Kunze, 2009). The residual velocities in Run B, for
which resonant forcing is maximum, are an order of magnitude larger than in Run A
and have phase behavior consistent with propagating internal waves. The velocities,
which are initially zero, begin to grow in response to the strong interaction between
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tidal and eddy fields. (Fig. 2b). They oscillate with the tidal frequency and their
amplitudes grow on the slow time scale.
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Fig. 2 Time evolution of u, (@ /f)v and —(m3/x;,)w for (a) Run A (4; >> 15) and (b) Run B
(M = A3), at a point away from the eddy field.

Cross-sections of w at three different times for Run B are shown in Fig. 3. The
first emitted waves, visible on the outer edges of Fig. 3 (a,d) are barotropic and lack
horizontal structure. These weak waves radiate in response to the initial adjustment
discussed above. The next set of emitted waves, visible on the flanks of the eddy
region by t = 7T [Fig. 3 (b,e)], are much stronger and exhibit well defined vertical
and horizontal structure. By t = 10T (Fig. 3(c,f), definite mode-1 horizontal wave-
length in y and mode-6 vertical wavelength are evident (Fig. 3(b,e)], corresponding
to Iz = 1 — b, and m3 = my, as predicted by the theory for resonantly forced waves.
Analysis shows that the energy source for the waves is the eddy field rather than
the tide (Lelong and Kunze, 2009). This is quite different from the resonant forcing
of internal waves by interaction of near-inertial oscillations and geostrophic eddies
(Danioux and Klein, 2008), in which the eddy field acts as a catalyst in transferring
near-inertial energy to waves.
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Fig. 3 Cross-sections of w in Run B at t=3.5 T (a,d), t=7 T (b,e) and 10 T (c,f); T is the tidal
period. Left panels represent vertical cross-sections (only top half of domain is shown), right panels
horizontal cross-sections; dashed lines indicate corresponding positions of horizontal and vertical
planes. Displayed data spans &2 x 10~*m s~ 1.

4 Conclusions

The interaction of a barotropic tide with a geostrophic eddy field as a potential in-
ternal wave source has been examined theoretically and numerically. As predicted
by the theory, interaction is negligible when the tidal wavelength is much larger
than the eddies’ even when resonance conditions are met. When the tide varies
on lengthscales comparable to the eddy field’s, resonant interaction is maximized.
This is unlikely to occur in the mid- and high-latitude open ocean where barotropic
tidal lengths are O(1000 km) while dominant eddy lengthscales are at the Rossby
lengthscale U/f ~ O(100 km). These two lengthscales become more compara-
ble on the continental shelf and at low latitudes. We conclude that the mechanism
of eddy/tide interaction, conjectured by Rogachev et al. (1992) to explain the in-
tense near-inertial waves observed in western North Pacific anticyclonic vortices, is
unlikely. The observed oscillations were more likely wind-generated near-inertial
waves.
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Though there is little barotropic variance outside of tidal frequencies, higher fre-
quencies with lengthscales matching those of the eddy field will more efficiently
transfer energy to internal waves than tidal frequencies (Lelong and Kunze, 2009).
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Generation of harmonics and sub-harmonics
from an internal tide in a uniformly stratified
fluid: numerical and laboratory experiments

Ivane Pairaud, Chantal Staquet, Jo€l Sommeria and Mahdi M. Mahdizadeh

Abstract This paper focuses on the internal tide emitted from a continental slope in
a uniformly stratified fluid. Results from numerical simulations using the MITgcm
and from laboratory experiments performed on the Coriolis platform in Grenoble are
compared. Due to their peculiar dispersion relation, internal gravity waves organize
into localized beams of energy. We show that the beam structure is well-predicted
by the viscous theory of [10], assuming that the internal gravity wave field is emitted
by a horizontally oscillating cylinder whose radius is the radius of curvature of the
topography at the beam emission. The wave beam can bear a sub-harmonic para-
metric instability whose vertical scale is recovered from resonant interaction theory.
Reflection of the wave beam on the bottom leads to the generation of harmonic
beams, consisting of free and trapped waves.

1 Introduction

The oceanic tide can be considered as a barotropic (vertically uniform) oscillating
current. In the presence of density stratification, the upward motion induced by bot-
tom topography generates an internal tide. This mechanism is active at mid-ocean
ridges and at continental slopes (such as the Bay of Biscay), as documented from
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satellite altimetry and moored current meter data. Internal tide has been given much
attention for the last ten years in relation with their role in deep ocean mixing, as
reviewed by [3]. The magnitude and distribution of mixing indeed influences the
whole process of oceanic thermohaline circulation ([2]). Mixing is produced from
the internal tide by the degradation of the internal tide into turbulence through a
sequence of instabilities, involving resonant interactions (such as parametric insta-
bility [8; 17; 4]) or shear or buoyancy induced instabilities.

Several laboratory experiments of internal wave generation by oscillating bodies
have been performed since the pioneering work of [18]. The case of a horizontally
oscillating cylinder has been recently studied by [25] as a simple model of internal
tide generation. Indeed, in a frame of reference attached to the barotropic tide, the
topography oscillates horizontally and the active part of the topography may be
modeled as a cylinder. [19] considered an isolated topography while the case of a
continental slope was addressed by [1], [6] and [21].

The numerical modelling of the internal tide first relied on the hydrostatic ap-
proximation and solved the equations of motions in an oceanic context (f.i. [9]). To
our knowledge, the first non-hydrostatic numerical simulation of internal tide emis-
sion was performed by [12] with the MITgcm, focusing upon energy transfer from
the barotropic tide to internal tides for an isolated topography. Further works were
conducted along the same lines by [13] and [14] for the same topography. The case
of a continental slope was considered by [5] and [4]. All these numerical works were
performed in a two-dimensional vertical plane and for an idealized topography. The
case of a three-dimensional realistic topography with non-hydrostatic equations was
tackled by [11].

In the present paper, the internal tide is generated by a simple two-dimensional
continental slope in a uniformly stratified ocean and modeled by joint numerical
simulations and laboratory experiments. Their set-ups are described in Sect. 2. The
internal tide emission is discussed and illustrated from our results in Sect. 3. The
main features of the internal tide are presented in the next sections: (i) its spatial
structure close to the emission region is well predicted by a viscous theoretical
model of internal wave emission by a horizontally oscillating cylinder (Sect. 4),
(i) it can bear a sub-harmonic instability of small vertical scale (Sect. 5), (iii) har-
monic components can be generated from the bottom reflexion region (Sect. 6). We
conclude in Sect. 7.

2 Experimental set-ups

2.1 Laboratory experiments

A tidal current is forced along a channel, 4 meter wide, built inside the circular tank
of the Coriolis platform, 13 meters in diameter (see Fig. 1). The results of the present
paper are obtained in the absence of rotation. The barotropic tide is produced by the
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horizontal oscillation of a piston, filling the whole section of the channel. At the
opposite end, the channel is open, so that the flow can escape side-way over the
topography. Let d and o be the amplitude and frequency of the motion of the piston
respectively. In the present paper, the values for d and 27/ are 0.6 cm and 26 s
respectively, except in Sect. 5 where d =2 cm.

A linear density stratification is introduced by salinity while the tank is filled.
Since there is no flux of salinity through the surface and through the bottom of the
tank, the linear density profile is slowly eroded by mixed layers developing from
these boundaries. Nevertheless their thickness remains limited to a few cm during a
whole set of experiments (several weeks) with no significant evolution of the strat-
ification in the interior. The data presented here correspond to a stratification with
uniform Brunt-Viisild frequency Ny, = 0.71+£0.2 rad/s~!, except for a bottom
mixed layer ~ 9 cm thick and a surface mixed layer ~ 3 cm thick.

The laboratory configuration is designed by similarity with a typical oceanic con-
figuration, as described in the numerical simulations of the internal tide by [5]. To
reach regimes of inertial dynamics, with weak viscous damping, we need a suffi-
ciently deep water, so we choose a total depth of H = 90 cm, with a shelf height
equal to 76.5 cm. The topography is made of a constant slope 0.5, with inclination
angle 30°, matched with the flat continental shelf through a section with radius of
curvature R = 180 cm. If this is assumed to represent an ocean 4.5 km deep, the
vertical scaling factor is 1/5000. At this scale, the available channel length of 10 m
represents 50 km. To simulate the process over a distance of 250 km, allowing space
for internal tide propagation, reflection and breaking, we need to apply a distortion
of aspect ratio by a factor 5. Hence, the slope is five times larger in the experiment
than in the ocean (typical value 0.1). We expect that such a distortion has only a
weak influence on the dynamics. Note that within the hydrostatic approximation,
the dynamics is strictly invariant by a change of aspect ratio in the absence of vis-
cosity effect or turbulence parameterisation.

The main measurement tool is Particle Image Velocimetry (PIV) providing ve-
locity fields in a vertical plane. Polystyrene particles (300 um in diameter) sorted
in density are used to get a uniform seeding over the fluid depth. The vertical laser
sheet is obtained by a 6 watt continuous Yag laser and an oscillating mirror while
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Fig. 1 Sketch of the laboratory experiment.
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the images are obtained by two CCD cameras looking through windows on the side
of the channel. A few velocity fields have been also obtained from a top view with
a horizontal laser plane.

2.2 Numerical simulations

The simulations are based on the numerical model developed at MIT by [16], which
we adapted to the experimental configuration. The code solves the nonlinear non-
hydrostatic Navier-Stokes equations in the Boussinesq approximation using a finite
volume method and a Cartesian coordinate system. Since the topography in the lab-
oratory experiment is two-dimensional and the Coriolis platform is non rotating, we
assume that the flow dynamics is two-dimensional in a vertical plane. The horizontal
and vertical dimensions of the numerical domain are exactly those of the laboratory
experiment as is also the topography we impose. The coordinate system (O, x,z) we
use is such that x increases from the shelf to the piston and z = 0 at the bottom. The
position of O along the x-axis is located at the crossing of the line z = 76.5 cm (on
the shelf) and the line of maximum slope tangent to the topography.

We performed direct numerical simulations that is, no subgrid scale modelling
is used. The value of the viscosity is set to 1072 cm?/s, as in the laboratory experi-
ments, while the Prandtl number is set to 1 (against 700 in the experiments).

The MITgcm has an implicit free-surface formulation and no-flux boundary con-
ditions are applied to the density field at the surface and at the bottom. Free-slip
boundary conditions are applied to the velocity components.

We chose N = 0.72 rad/s in the simulation which we impose from the free surface
down to a height z = 9 cm, below which the density is uniform. Thus, we ignored
the thin surface mixed layer of the experiments but reproduced the bottom mixed
layer.

The forcing generated by the piston is modeled by imposing a barotropic flux
at the two vertical boundaries. This flux is oscillating in time at the excitation fre-
quency . Measurements of the barotropic component in the experiment indicate
that it is partly blocked by the topography, so that the forcing amplitude decreases
from the piston to the shelf-break by typically 50 %. The constant barotropic flux
introduced in the computation is therefore adjusted to match the measured value
over the topography, in the region of internal tide generation. Thus, in the numerical
simulation, d = 0.24 cm except in Sect. 5 where d = 0.5 cm.

We use a resolution of 1202 grid points along the horizontal direction, with
dx = 0.91 cm. Along the vertical, the grid size is constant and equal to dz = 0.28
cm, implying that the number of grid points is 320 over the plain and 48 over the
shelf. This resolution may be considered as large since, in an ocean model, it would
correspond to a horizontal resolution of 45 m and to a vertical direction of 14 m.
One tidal period is simulated by 200 time steps, with dt = 0.1305 s.

All simulations are started from rest and run over 40 forcing periods.
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3 Emission of the wave beam

Internal gravity waves are dispersive waves with an anisotropic dispersion relation
(f.i. [15]). For a plane wave in a stratified medium with constant N, the wave vector
k and frequency  are indeed related by @w* = N?sin’6, where 6 is the angle of k
with the vertical. The group velocity is perpendicular to K, therefore aligned with
the fluid velocity. As a consequence, any object oscillating at a frequency @ smaller
than N emits internal gravity waves, which carry the energy along directions with
angle 0 with respect to the horizontal. Energy is concentrated along these directions
within wave beams. This striking property is nicely illustrated by the laboratory
experiments of [18]. The experiments also show that the beams are tangent to the
object as a consequence of the impermeability condition. Beams are thus emitted
from °‘critical’ points, where the boundary is perpendicular to k. The slope is re-
ferred to as being ‘critical’ there. In the case of a cylinder, the energy of the source
distributes among four beams, associated with upward and downward (as well as
leftward and rightward) propagation.

The theory of wave emission by a cylinder has been derived in the far-field by
[24] and later in the near-field by [10]. In the latter, the structure of the wave beam
depends both upon the ratio s/R, where s is the distance along the beam from the
object and R the radius of the cylinder, and on the ratio 8 /R, where § = /V/w is the
thickness of the viscous boundary layer on the object. It is assumed that & is much
smaller than R. In this case, near the cylinder, the energy of each beam actually
possesses two maxima, which eventually merge into a single one away from the
cylinder under the action of viscosity. For a very large cylinder, the two maxima
are well pronounced, which results in two distinct wave beams on each side of the
object.

The internal tide can be viewed as the wave emission from an horizontally oscil-
lating topography, in a frame of reference attached to the barotropic tide. In the case
of a continental slope, the energy will be able to propagate in two directions only.
This result is illustrated in Fig. 2 where color maps of the along-beam velocity are
displayed for the laboratory experiment (frame a) and for the numerical simulation
(frame b). Our study is focused on the beam propagating toward the deep ocean, and
the beam propagating leftward (toward the shelf) is not shown in these figures.

A good agreement is observed between the simulation and the experiment, the
emission location, thickness and amplitude of the wave beams being the same. Note
that, already after 8 periods, the maximum amplitude of the velocity field is 1 cm/s
that is, at least three times larger than the forcing amplitude.

Fig. 2 shows that the most active part of the topography is the region where the
beam is tangent to the slope that is at the critical point. Hence, we may compare our
results for wave emission to the theoretical predictions of [10] for a cylinder with
radius R=1.80 tangent to the slope at the critical point. Such a comparison was also
made by [25], [19] and [6] using data from their laboratory experiments.
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4 Spatial structure of the wave beam

In the theory of [10], the linear Boussinesq equations of motions are solved in a
two-dimensional vertical plane and for a constant N fluid, for a solution which is
harmonic in time. The key assumptions of the model lie in the boundary conditions
for the velocity field. This field vanishes at infinity, as expected. On the cylinder,
the thickness of the viscous boundary layer 0 is assumed to be much smaller than
the cylinder radius so that free-slip boundary conditions can be set. As a result, an
analytic expression for the stream function can be obtained, from which the along-
beam velocity field Uyg can be inferred. Following [10], let s and 1 be the along-
and cross-beam coordinates respectively, the origin of the coordinate system being
at the center of the cylinder (hence 11/R =1 at the beam center). Omitting time
harmonic dependence, Upk (s,n) is expressed as

U (s,1) = — 20 10 /+ Ty (k)exp (-k%i + ikﬂ) dk, (1)
2 0 R R
where s > 0, Up is the velocity amplitude of the cylinder, A = (tan6/2)(5/R)? and
J1 (k) is the first order Bessel function.
In the present work, we compute in the absolute frame of reference the veloc-
ity filtered at the forcing frequency, which therefore involves the baroclinic and
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barotropic tidal signals. The corresponding analytical expression of the along-beam
velocity component, denoted U, is therefore (omitting again time dependence)

Us(s,m) = —Unxk(s,n) + Usr, ()

where Upr is the barotropic component of the velocity, which depends upon x. Ugr
is computed as the vertical average of the horizontal velocity component. When
used in equation (2), the factor Uy in equation (1) is taken as the amplitude of the
barotropic velocity at the critical point.

Maps of U; are plotted in Fig. 2c. The topography has been added to facilitate
comparison with the results from the numerical simulations and laboratory experi-
ments (but we recall that waves are emitted by a horizontally oscillating cylinder in
the theory). The agreement between the three approaches is quite good, the beam
amplitudes differing by 20% at most.

5 Parametric instability of the wave beam

It has been known since [7] and [20] that plane monochromatic internal gravity
waves may be unstable through parametric subharmonic instability (PSI). This in-
stability is a special case of resonant interactions which occur among a wave triad.
Let (ko, @), (ki,o;) and (ka,@;) denote the wave vector and frequency of each
member of the triad. Since the waves form a triad, kg +k; +k, = 0. Resonance oc-
curs when a temporal resonance relation is also satisfied : @y + ®; + @, = 0. In the
case of PSI, one wave of small amplitude, referred to as the primary wave, interacts
with two waves of much smaller amplitude such that |e;| ~ |@;| ~ |@|/2, where
index O refers to the primary wave. The instability promotes the growth of small
scale waves with respect to the primary wave scale.

As discussed above, the internal tide is emitted as a wave beam, which can be
viewed as a plane wave whose amplitude is modulated across the beam ([22]). This
implies that a wave beam of infinite extent is a solution of the Boussinesq equa-
tions in the absence of viscosity, as is a plane wave in an infinite medium. Hence,
such a wave beam could bear a PSI. This was shown indeed by [4] from numerical
simulations of internal tide emission at a continental slope in an oceanic context.

In the present case of joint numerical and laboratory experiments, no PSI was
detectable for the forcing amplitude used in Fig. 2. Since the growth rate of PSI
is proportional to the amplitude of the wave beam, we ran a computation doubling
the forcing amplitude. The result is displayed in Fig. 3a, where we plot the time
average amplitude of the horizontal velocity component filtered at half the forcing
frequency. Quasi-horizontal structures (actually whose direction makes the angle
asin(@/2N) with the horizontal) appear. These structures are of alternate sign along
the vertical (it is not visible since the amplitude of the velocity field is plotted).
The same spatial pattern was obtained by [4]. We performed this filtering operation
on the experimental data, for the same forcing amplitude (frame 3b): similar quasi-
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horizontal structures appear, with comparable amplitude, demonstrating for the first
time in a laboratory experiment that PSI can appear in a wave beam. Note that the
maximum amplitude of the perturbation is only 4 times smaller than the maximum
amplitude of the wave beam from which the perturbation developed.

The spatial structure of this perturbation displays a well-defined vertical scale,
which can be computed from resonant interaction theory. Fig. 3¢ displays the growth
rate of the instability as a function of the vertical component of the wave vector &,
for the parameters of the computation. In the absence of viscous effects, the growth
rate saturates as k; — oo so that viscous effects, in damping the largest wavenumbers,
introduce a scale selection. The value of k, for which the growth rate is maximum
should provide the scale of the instability visible in Fig. 3a and 3b. We find from
Fig. 3c that this vertical wavelength is about 8§ cm, which compares well with that
of the quasi-horizontal structures displayed in frames a) and b). This result confirms
that the instability is of parametric sub-harmonic type.
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6 Generation of harmonics

When the wave beam hits the bottom mixed layer, a reflected beam is created. While
no harmonic wave is generated by the reflection of a plane internal gravity wave on
a flat bottom, this result does not hold any longer for a wave beam ([23]). This
theoretical prediction was verified by [5] and is also found in the present numerical
simulation, as shown in Fig. 4b. This figure displays the time average amplitude of
the horizontal velocity component filtered at twice the forcing frequency (which is
smaller than N). The harmonic wave reflects also at the top boundary of the mixed
layer and on the piston, which accounts for the perturbed signal for x larger than
about 4 m. Fig. 4a shows that a similar harmonic wave is created in the laboratory
experiment. It is noteworthy that, both in the laboratory and numerical experiments,
a harmonic wave is also trapped in the primary reflected wave beam.

7 Conclusion

The purpose of this short paper was to provide the main characteristics of the weakly
nonlinear dynamics of the internal tide emitted at a continental slope in a uniformly
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Fig. 4 (a) Laboratory experiment. Amplitude of the horizontal velocity component filtered at twice
the forcing frequency and averaged over forcing periods 18 to 21; (b) Same as (a) for the numerical
simulation.
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stratified non rotating fluid. These are the spatial structure of the wave beam and
two processes of energy transfer toward smaller scales. Large scale laboratory ex-
periments were performed on the Coriolis platform, so that inertial dynamics can
be reached, and compared with well-resolved numerical simulations using the non
hydrostatic MITgcem for the same sets of parameters.

We analysed the emission of the wave beam in light of the theory of [10], when
the oscillating source is a cylinder with radius equal to the radius of curvature of
the topography at the critical slope. A very good agreement is found between the
laboratory and numerical experiments and the theory, with differences not larger
than 20%. This shows that the radius of curvature of the topography at the critical
slope, along with viscosity, control the beam formation and possibly the beam width.
The theory of [10] should provide such dependencies.

The beam can be unstable to parametric sub-harmonic instability (PSI) if the time
scale of the instability (namely, the inverse growth rate) is smaller than the viscous
time at the scale of the instability. A PSI was observed both in the laboratory and in
the numerical experiments, associated with strikingly quasi-horizontal phase lines
of comparable amplitude. We checked that the vertical wavelength of the perturba-
tion matches the prediction from resonant interaction theory. When extrapolated to
the ocean, using a simple similarity argument, this vertical wavelength is 400 m,
associated with layers of half that height. The much higher value of the Reynolds
number in the ocean compared to the present experiments would actually select an
even smaller scale. If these layers become unstable (through buoyancy induced in-
stability), an appreciable vertical part of the ocean would be mixed.

We also showed that harmonic beams can be created when the incident wave
beam interacts with the reflected beam at the bottom mixed layer, a part of the har-
monic wave field being trapped in the reflected beam. The same behavior is ob-
served in the numerical simulation and, for the first time again, in the laboratory
experiments.
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Deep ocean mixing by near-inertial waves

Victor I. Shrira and William A. Townsend

Abstract We consider a novel mechanism of deep ocean mixing caused by breaking
of near inertial waves propagating poleward beyond the inertial latitude. On the non-
traditional beta plane a noticeable portion of incident inertial waves is not reflected
at the inertial latitude but goes through; these waves propagate several hundred kilo-
meters further poleward trapped in three narrowing waveguides. Most of the wave
energy passing through becomes trapped into the waveguide adjacent to the ocean
bottom. The focus of the paper is on describing the wave evolution in this guide and
mixing it causes. First we find an asymptotic analytic solution describing the linear
evolution of a wave packet of finite bandwidth taking into account its viscous dissi-
pation. As the wavelength and waveguide width decrease with the distance from the
inertial latitude the vertical shear increases sharply. Assuming total mixing in the
areas where the Richardson number is less than 1/4 and neglecting the relaxation
and turbulent diffusion at the boundaries of the mixed region we find the domain of
mixed fluid created by the chosen wave packet. The mixing changes the basic strat-
ification in such a way that in the modified density structure each subsequent packet
propagates faster and correspondingly with a weaker spatial decay, thus extending
the mixed fluid domain further poleward. The process continues until a balance is
reached between the decrease in buoyancy and increase in viscosity inside the mixed
domain.
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1 Introduction

The existing ocean circulation models heavily depend on the parameterisation of
the subgrid motions. To reproduce the existing pattern of global circulation the
abyssal basin-average vertical diffusivity K, should be quite high, which implies ex-
istence of intense mixing in the deep ocean [4]. The experimental data suggest much
stronger diffusivity near the bottom [9]. The required mixing is widely believed to
be provided by internal wave breaking, however, specific mechanisms (apart from
the critical reflection by bottom relief) leading to wave breaking have not even been
identified. In [2] it was found that near inertial waves pass through the inertial lat-
itude and then tend to focus, primarily, near the bottom. It was then hypothesized
that such a focussing of near inertial waves might lead to wave breaking and thus
provide the mixing in the deep ocean. In this work we elaborate this idea by devel-
oping quantitative description of the processes leading to wave breaking and thus
suggest a plausible mechanism of wave breaking in the abyssal ocean. The paper
just briefly outlines the mechanism; details of the analytic derivations and discus-
sion of parameter space will be reported elsewhere.

2 Basic Equations and WKB

We start with the Boussinesq equations for a density-stratified viscous fluid on
the non-traditional B-plane in a standard Cartesian frame with coordinates x (east-
wards), y (northwards) and z (vertical, upwards), with corresponding velocity u =
(u,v,w), reduced pressure p, and buoyancy b. We assume the bottom to be flat. The
linearized equations of motion are

wy— fv+fw = —pe+ vz, (1a)
Vit fu=—py+vvg, (1b)
wy — fu=—p.+b+vw, (Ic)
Uy +vy+w, =0, (1d)
b, +N*(z)w = Kb, (le)

where N is the buoyancy frequency, v and x are the eddy viscosity and diffusivity.
The horizontal and vertical Coriolis parameters f and f = fy + By are given at a
fixed latitude ¢ by

- . 2|Q2|cos¢
(7. J0) =210 (cosp.sing),  p= 2L, @
with Q and R being the Earth’s angular velocity and radius respectively. The system
has two boundaries, a rigid boundary at the bottom of the ocean z = 0 with the no-

slip condition u(0) = v(0) = 0, and a free surface at the top of ocean of the depth H
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where we use the ‘rigid lid” approximation, i.e., w(H) = 0.

We are primarily interested in poleward propagation of near-inertial waves. Since
for such waves with any initially arbitrary wavevector its meridional component
tends to become infinite [2], we confine our consideration to strictly meridional
wave propagation, that is d, = 0. Starting with the linear inviscid problem with no
diffusion simplifies the boundary conditions to

w(0) =w(H) =0. 3)
By introducing stream-function ¥ defined as
v="¥, w=—%¥, @
the system of equations (la-1e) reduces to
AW+ NPy o+ [ [Py + 2/ T+ BTV =0, )
while the boundary conditions (3) become
¥,(0) ="¥,(H) =0. (6)

After Fourier transform with respect to time the system (5, 6) represents a mixed
type (Tricomi) type problem with complicated geometry and, correspondingly, there
is no standard method of solving it. Nevertheless it is straightforward to find its char-
acteristics for a harmonic in time component. They are plotted in Fig. 1 for a typical
oceanic stratification, which gives an idea on the character of wave evolution. Char-
acteristics could be interpreted as wave rays (e.g. [6]). At the inertial latitude some
rays are reflected, while some go through. Those which go through are trapped in
one of three narrowing waveguides centred at the minima of N. The picture sug-
gests that there is no reflection beyond the inertial latitude. In this paper we examine
waves in the bottom wave guide beyond the inertial latitude, while the reflection and
propagation in the immediate vicinity of this latitude (shaded in grey) is not consid-
ered. In itself the analysis of characteristics carried out for the bottom waveguide
in [3] does not allow one to construct the solution. However, the large separation
of scales between the inhomogeneity due to the B-plane and the wavelengths under
consideration at the core of the beta-plane concept, prompts us to apply the WKB
approach.

Consider a near-inertial wave on the non-traditional 3-plane (f # 0) beyond the
inertial latitude and assume there are no other large scale ambient wave-motions,
leaving the only large scale inhomogeneity to be caused by the meridional variation
of the vertical Coriolis parameter f. This inhomogeneity has characteristic length
L~ %" = Rtan¢ ~ R. As we are interested in waves of much smaller characteristic

wavelength A9 < L there is a natural small parameter €
1

€ ZOL<< @)
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Fig. 1 (a) A typical ocean stratification profile N(z). (b) Characteristics: thin solid — characteristics
going through, thin dashed — reflected characteristics, thick solid — boundary of the hypebolicity/el-
lipticity domains, thick dashed vertical line — inertial latitude. Solution is sought to the right of the
grey zone.

where [y is the characteristic wavenumber. Rewriting equation (5) in terms of ap-
propriately scaled variables we get

AW, + Ny + f(ey)* W + [Py +2f (e9) fH. = —€BIE. (8)

The limit € — O represents the situation where the Coriolis parameter f ceases to
depend upon the meridional coordinate y, and thus becomes the case of the non-
traditional f-plane considered in detail in [2]. In the f-plane limit a simple solvable
boundary-value problem specifying wavenumber / for a given frequency ¢ can be
found by substituting

17

This gives a Sturm-Liouville boundary value problem for y:

¥ =wy(zl, G)ei<ly_6t+5z), where 6 =

€))

2

‘I///+12 NZ(Z)_O-

st TV w=0:  wo—wim-o, o

o2 — f2

for a given stratification profile N(z). As we are looking for mechanisms of mixing
in the deep ocean, here we consider only the bottom waveguide following [2], where
the profile can be approximated by Nz(z) = Ng + Yz For this stratification profile
the boundary value problem (10) reduces to the Airy equation, then on simplifying
the upper boundary condition by moving it to z = o, we find solution in terms of the
Airy function
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A
_ (23],
Y a<W)A1(l |:Z VIC}) ’ (11)
2 . .
where ="t C=f=o% A= (fF)-(N -0+ ])C.

and a(y) is amplitude of the chosen eigenmode [2]. The bottom boundary condition
gives the wavenumbers /,, in terms of the zeros of Ai({) denoted —s,,, where n is the
vertical mode number and s,, are known positive constants (e.g. [1], §10.4):

3/2

&:iwﬁ(%) (12)

The group velocity is given by

o0 FAS/2
al 3/2 2_g24 P2 ' (13)
110Csy' “[4A +3C(Ng — 02+ 2 +C)]

At the tip of the hyperbolicity domain we have a singularity: /,, = oo; in some vicin-
ity of the singularity the asymptotics in terms of the distance to the singularity y
acquire the following simple form

W)~ S, (14)
Importantly these asymptotics imply that the WKB approach becomes more accu-
rate as the wave approaches the singularity, and in the limit when it reaches the
singularity the expansion becomes exact! When € is small but nonzero in equation
(8) we can apply a WKB expansion

"y
¥ = ®,)(z,€y) expi[/ In(ey1)dy, — ot] + 2 €"%¥(m) (2, €). (15)

Yi m,s=1

where y; is the initial position of the wave. Substituting this into (8) and taking only
the n-th mode gives to leading order the f-plane solution (10), while to O(¢g) the
orthogonality conditions lead to the conservation of wave action equation which
explicitly gives the amplitude of v as

7 °° ~ Ao -1/2
Ay) = ao (172/3/0 (N3 — 02+ )+ fF8 + T2 BIyz)Ai(z— sn)zdz) ,

(16)

where ag sets the initial amplitude. The small § asymptotics for the amplitude near
the singularity are

agy) ~ 18 ~ 9714, (17

It can be shown that these asymptotics provide a good description of wave amplitude
evolution over the entire range of the WKB validity. So far we have considered a
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single Fourier harmonic inside the waveguide, however, in reality the waves exist in
the form of finite bandwidth packets. Since each Fourier component has a singularity
at a different position, as the packet moves poleward it will be spread out as its
harmonics move towards their own singular point, while at the same time the packet
will be vertically focussed by the narrowing waveguide. By adopting the approach
by [5] it is possible to show that a packet will become focussed at the singularity
of its central frequency, although the harmonic spreading has a restraining effect on
the amplitude growth: the small j asymptotics for the amplitude of stream function
becomes ay,) ~ )75/ 4. The decrease of a(y) does not prevent infinite (albeit slower)
growth of velocities and vertical shear.

The inviscid and non-diffusive form of the equations (la-1e) enabled us to find
the dispersion law and amplitude evolution. These results however need to be re-
visited with viscosity and diffusion taken into account. To find the first order con-
tribution due to the viscous and diffusion terms an asymptotic procedure was ap-
plied based upon small characteristic value of the eddy viscosity Vv and the dif-
fusivity (presumed to be of the same order). This provided an O(V) correction to
the frequency. When the Ekman layer at the ocean bottom was also accounted for,
this gives an O(y/V) correction to the frequency. We select an initial value of y
already at some distance y* past the inertial latitude so that the WKB expansion be-
comes valid (at a latitude of 45° with a stratification given by Ny = 2.5 x 10~4s~1,
71 =4 x 1071%,~ 1572 this distance was ~ 11km), and set this to be our origin in the
y direction. To explore the potential for mixing we calculate the vertical shear and
the Richardson number Ri(z,y), Ri = N(z)/(u?(z,y) +v*(z,y)).

The necessary condition for loss of stability by a density stratified parallel shear
flow is Ri < 1/4 [7],[8] and, since the waves we are interested in are reasonably
close to being a parallel flow, we look for regions with large vertical shear. We make
a strong assumption that whenever the Richardson number drops below the critical
value the wave breaks and total mixing of the highly sheared domain resulting in
complete homogenization of density takes place. We introduce the initial Richard-
son number by Rip = Ri(z = 0,y = 0). Recall that here y = 0 corresponds to the
initial position y* of the wave packet chosen to be at the boundary of the WKB va-
lidity range, typically the initial point is about 10km past the inertial latitude. Figure
2(a) illustrates meridional evolution of wave parameters. We calculated various am-
plitudes at the bottom of the ocean (z = 0) and normalized them with respect to their
initial value at y = 0. The inverse Richardson number growth is the fastest but that
it is also the first to fall off due to viscous effects. Note that there is a wide range
of parameters where the Richardson number is well below the critical value of 1/4
while the nonlinearity parameter is still small, which a posteriori justifies the use
of linear theory in this range. Figure 2(b) shows vertical dependence of normalized
shear on depth and meridional coordinate. The vertical shear of a wavepacket is the
highest at the bottom of the ocean for small y; it is in this region we would expect
to see wave-breaking and mixing. This is illustrated by figure 3: there is a domain
at the bottom of thickness varying from zero to a maximum and then back to zero
where this condition is satisfied which we refer to as the ‘mixed layer’ or ‘mixed
domain’. From initial examination of parameter space it appears that the thickness
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Fig.2 (a): Amplitudes of the velocities u and v (thin line), vertical shear (dashed line), nonlinearity
(dotted line) and inverse Richardson number (thick line) with respect to meridional coordinate y,
relative to their initial values at y = 0. (b): Distribution of vertical shear normalized with respect
to the shear at the bottom of the ocean, z = 0. Isolines for the amplitude are 0.99, 0.9, 0.5, 0.1,
0.001 (from bottom to top). The thick dashed black line shows the hyperbolicity condition (the
waveguide). The parameter values are: ¢ =45°, No=2.5x 1074571, 9, =4 x 10710 1572, v =
1079m2s7 1.

of the mixed layer is increased by decreasing the initial Richardson number Rij, or
decreasing the bottom value of buoyancy frequency Np. Inside the mixed layer the
effect of wave-breaking would homogenize the density, decreasing the local buoy-
ancy frequency to the limit specified by the compressibility, and, crucially, increase
the eddy viscosity in the layer. Since the decrease of N decreases the Richardson
number for subsequent waves passing through the mixed region, the area of the
mixed domain tends to increase, on the other hand, the increased viscosity decreases
the wave amplitude and shear, which acts to shrink the mixed domain. To try to un-
derstand how this would effect potential wave-breaking we incorporated the mixed
domain into our model.

3 Mixed Bottom Layer

We now consider a two layer system with a common boundary at z = zo(y). In the
upper region we have the usual equations of motion (la-1le) with velocities u =
(u,v,w) and a reduced pressure p. In this region N’ remains unperturbed (N? =
Ng + %z) and we neglect viscosity and diffusion. In the lower ‘mixed’ layer, again
we have equations (1a-1e) but with velocities # = (i, 9,W), and a reduced pressure
p. The buoyancy is N(z)> = N7 < N3 + y1zo where Nj is constant. The ‘rigid lid’
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Fig. 3 Contour plots of Ri with isolines for Ri = 1/4, 1, 2, 10, 102, 10* (bottom to top respectively).

Left Figures: Ry = 40; Right Figures: Ry = 5; Top Figures: Ny = 2.5 x 10~*s~!; Bottom Figures:
No =2 x 107*s71; All Figures: y1 =4 x 10791572, v = 10 m?s~ 1.

condition at z = H > zp, and lower boundary at z = 0 remain and in addition the
usual matching condition is applied at the interface z = zg: the vertical velocity and
pressure in both layers should be equal on the boundary, that is

(18a)
(18b)

w(z0) = W(z0)

p(z0) = 2L p(z0),
Pos

where por and pop are the characteristic density in the top and bottom layers respec-
tively. The equations of motion for the upper layer reduce to the Airy-equation and
by extending again the upper boundary condition to infinity give the solution
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The equations for the bottom layer admit a solution of the form ¥ = BjsinAz+
B; cos Az, with By and B; constant in z, then the application of the bottom boundary
condition yields

- : 02 —Nj o2 f?
W = B;siniz, A= \/12 [fz — Gé + G _ff2)2 . (20)

The matching conditions (18a, 18b) specify the new dispersion relation in the im-
plicit form

v =TAi(2), where 2=1?/3 <z+ Ti =constant.  (19)

PPtandzg = A _(ZA) ,
Ai'(%)

where Ai’ denotes the derivative of the Airy function Ai with respect to its argument
and 7y = Z at z = z9. When zo = 0 this condition reduces to that of the single layer
problem, Ai(7p) = 0. To find the new dispersion relation this equation is solved
numerically. The new dispersion found by solving (21) numerically modifies the
system in two ways. First, the change in wavenumber /,, affects the amplitude growth
of v and, crucially, the increase of the group velocity decreases the time it takes for
a packet to reach any particular point y. The latter is particularly important since
this determines how far poleward the packet could advance before the increased
eddy viscosity decreases shear to insignificant levels.

21

4 Discussion

First we summarize in plain words what has been done and then discuss some per-
spective directions of further studies.

It is well known that shoaling surface waves almost always break at surf zone
because of their shortening and steepening in the process. Our key result is that
for near-inertial waves at moderate latitudes a similar ‘surf zone’ is everywhere:
at any point there are near-inertial waves which due to inhomogeneity provided
by the beta effect experience shortening and steepening strong enough for wave
breaking to occur. Note that the mechanism of wave breaking is entirely different
and quite peculiar: waves develop very strong vertical shear remaining essentially
linear. This allowed us to describe in great detail the evolution of wave packets (up
to the breaking) taking into account all essential factors while remaining within the
framework of linearized problem. The greatest uncertainty in our analysis is due to
the value of eddy viscosity which is presumed to be constant in time and prescribed.
To be on the safe side we took quite large values of viscosity, which nevertheless
did not prevent development of strong vertical shear. Therefore our main conclusion
about the existence of ‘surf zones’ at the bottom is quite robust. However the size
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of the domain with high shear is sensitive to the value of viscosity and should be
treated with caution. It is possible to develop a coupled quasi-linear model where
wave evolution remains linear while the eddy viscosity is specified by local time
dependent shear produced by the wave; the eddy viscosity will affect slow evolution
of wave amplitude and hence shear, thus closing the feedback loop. A lesser but still
essential element of uncertainty is the link between the ‘initial amplitudes’ of wave
packets we take as our starting point at a distance y* past the inertial latitude and the
incident inertial waves. A preliminary analysis in terms of characteristics was done
in [3], where a share of the incident wave energy going through was estimated to
be 10-30%. Our analysis of sensitivity of evolution to the initial Richardson number
illustrated by figure 3, where the Richardson numbers were initially one order of
magnitude different, suggests that the outcome is robust.

The adopted model of mixing is very basic and relies entirely on the critical
Richardson number reasoning. It neglects local adjustment of eddy viscosity to ver-
tical shear and relaxation processes. It seems reasonable to assume that wave break-
ing which is expected to occur regularly as in the surf zone, makes by far the greatest
contribution to mixing. Such a model enables us to find the domain of fluid mixed by
breaking and its dependence on relevant parameters. The present model is determin-
istic. One of the most interesting and relatively straightforward extensions would be
to consider mixing caused by random incoming waves. Taking into account relax-
ation of small scale turbulence would certainly enrich the model. However at the
moment it is not clear whether an analytical advance is possible or numerical simu-
lation is the only option. It is worth noting that direct numerical simulation (DNS) is
not an easy option: so far even the evolution of a linear wave packet beyond the iner-
tial latitude has not been reproduced numerically. The unresolved difficulty seems to
be in ensuring much lower level of numerical viscosity than it is common for other
applications. An additional difficulty for DNS is the high sensitivity of the outcome
to the parametrization of eddy viscosity. Hence the hybrid models incorporating an-
alytical results and insights of this work but still requiring numerics might prove a
perspective way forward.
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Part 11
Turbulence and Convection



Eddies and Circulation: Lessons from Oceans
and the GFD Lab

Peter B. Rhines

Abstract This is a discussion of aspects of the energy-dominant eddies/waves of the
global ocean emphasizing their finite-amplitude dynamics in the upper levels of the
ocean and their reshaping of the deep branches of the general circulation. We rely
heavily on observations which, only in the past few years have achieved the status of
a global quasi-synoptic observing system, making possible an increasingly complete
understanding of the time-dependent oceans. In stratified oceans and atmospheres
a significant fraction of the baroclinic energy is captured in mesoscale structures
which resist the classic cascades of geostrophic turbulence toward barotropic (depth-
independent) states and thence to larger horizontal scale. Eddies both stir the deep
ocean, shape its PV field, transfer surface momentum downward to drive large re-
circulation gyres, and greatly alter the western boundary currents. In effect, eddies
redefine the general circulation.

1 Introduction

Planetary fluids inherit the angular momentum of their planets. Concentrated and
diluted, and fragmented into a complex potential vorticity (PV) field, the polar an-
gular momentum controls the circulation under a limited budget of energy. In par-
ticular, wherever energy decays, planetary PV takes control of the dynamics and
atmospheres and oceans tend to flow along latitude circles. This control is mani-
fested in the ‘stiffness’ and ‘PV elasticity’ of rotating fluids which leads to many
kinds of wave motion, and to extreme limitation of turbulent mixing. It works most
strongly in the vertical, as resistance to stretching of planetary vorticity (the vortic-
ity contributed by the mean rotation of the Earth). In the horizontal the gradient of
the vertical component of planetary vorticity, f = 2€2 sin(latitude), provides elastic-
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ity which yields Rossby waves. This elasticity is strongly controlling only for large
horizontal scales. When PV variations are no longer dominated by their large-scale
gradient, the variability evolves as geostrophic turbulence, yet it seems never to be
far out of reach of wave dynamics. The time-averaged circulation of the upper ocean
(Fig. 1a) corresponds to the large scale PV field, yet both vary greatly beneath the
surface. PV is a conservable quantity (conserved following fluid elements in ab-
sence of external forcing and dissipation), giving great importance to maps of mean
PV. Motivated by theory, we constructed the first extensive PV maps in the early
1980s (McDowell et al. 1982), and yet the interplay of circulation and PV is only
now coming clear.
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Fig. 1 (a, above) Time-mean surface circulation of the oceans (expressed in cm. of sea-surface
elevation, Maximenko and Niiler, 2004; (b, below), eddy kinetic energy (cmzsecfz) at the ocean
surface, averages formed from surface drifting buoy data (Lumpkin, 2003).
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Ocean eddies are distinctly smaller in scale than the dominant eddies of Earth’s
atmosphere (roughly 1/10 as wide, ~ 100km diameter), leading to difficulties in ob-
servation and simulation. Yet, we anticipate that their smallness may lead to bulk
effects on ocean gyres and global overturning which could be somewhat insensitive
to phase and other detail. The mean circulation of the fluid, together with the plan-
etary vorticity, determines curves of constant PV, which cover the nearly horizontal
surfaces of constant potential density. If we imagine the energy of the system de-
creasing toward zero, fluid can then only circulate along these curves of constant
mean PV. It is a highly constrained system, in which fluid motion both responds to
and reshapes the PV field. Rigid boundaries (the solid Earth) and fluid layers with
strong stratification contribute an extra, concentrated contribution, acting as delta-
function sheets of PV.

The fluid finds ways of dealing with limited energy and with control by the large-
scale PV gradient: for example sculpting PV ‘staircases’ in the smoothly sloping
meridional variation of planetary vorticity, f. PV gradients are concentrated at the
‘risers’, promoting both long-lived solitary vortices and attendant jet streams on the
‘treads’ of the staircase. As a result we see numerous zonal jets and semi-permanent
eddies on the great gas-giant planets which rotate rapidly and are subject to strong
B-control. Weaker f3-control exists in Earth’s eddy-enhanced atmospheric subpolar
jet streams (estimates of globally averaged kinetic energy density are 10° J m~2
for the atmosphere and 0.8 x 10* J m~2 for the oceans, Oort et al. 1994). ! There
are other ways to overcome the PV constraint, in particular in the development of
intense, ‘hard-core’, cyclones and anticyclones.

The basic cascades of stratified, rotating turbulence toward large lateral scale and
toward barotropic (tall or depth-independent) form (e.g., Rhines, 1977, 1979) can
be resisted, and indeed much of the world ocean is dominated by eddies that are
neither barotropic nor particularly large in the horizontal. This does not mean, how-
ever, that nonlinear effects are negligible. The ocean eddy spectrum takes on three
interesting limits: geostrophic turbulence at the mesoscale, sub-mesoscale turbu-
lence enhanced at top and bottom boundaries, and super-mesoscale eddies, actually
nonlinear Rossby waves, particularly in the upper half of the water column.

The extensive research into the wave/turbulence dynamics of the energy con-
taining eddies is beyond the scope of this review. However, there is considerable
evidence for both nonlinear transformations inherent in the enstrophy cascade, and
their limitation by quasi-linear dynamics of Rossby waves/baroclinic instability. In
both oceans and atmosphere, topographic PV is strongly active. Solid-Earth topog-
raphy, like energy, has a broad, red wavenumber spectrum. This acts to scatter en-
ergy toward high wavenumber (accelerating the enstrophy cascade) yet also to sta-
bilize energy in topographic/Rossby waves. A primary effect at the mesoscale is the
form-stress interaction, in which Rossby-wave drag exerts a westward force on the
fluid at scales comparable to or greater than that of the topography. In ocean basins
with topographic large-scale PV this becomes a cyclonic force inducing basin-scale
circulation. The quasi-geostrophic wave/turbulence problem initially developed for

' A 2006 Chapman Conference focused on ‘Jets and Annular Structures’ is recorded in a high-
lighted collection of Journal of Atmospheric Sciences (2008); see Baldwin et al. (2008).
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the simple f3-plane relates not only to the wave/eddy field but also to poleward heat-
flux and the formation of the basic stable density stratification. This applies to the
atmospheric troposphere (e.g. Schneider, 2005) and, potentially to the ocean, which
is usually cast as a problem in laminar overturning with microscopic mixing.

Frontogenesis near the surface and bottom boundaries of the fluid yields the en-
ergetic sub-mesoscale (eddy diameters from a few km to a few tens of km). This has
become a subject of great interest in the ocean surface layers (e.g. Klein et al., 2008).
It emerges in models as lateral resolution is increased. In the 3200 km-wide square
ocean basin simulations of Siegel et al. (2001), driven by wind-stress at the surface,
there is a factor of ten increase in near-surface eddy kinetic energy at 1.5 km res-
olution, compared with, say, 25 km resolution. Northward PV flux by near-surface
eddies also increases by roughly 50% over this range of lateral resolution. Surface
geostrophic turbulence is an idealized limit of this near-boundary, sub-mesoscale
turbulence, and was proposed by Bretherton (private communication, 1965) and de-
veloped by Blumen (1978) and Held et al. (1995). In this limit a zero-PV interior
is slaved to the horizontal advection of density anomalies (a.k.a. delta-function PV
anomalies) at the surface of the fluid. Computationally, it is an elegantly simple
two-dimensional calculation. More advanced models show that restratification oc-
curs near the surface when ageostrophic velocities allow sloping density surfaces
to relax toward the horizon, as in geostrophic adjustment. The observed ocean has
some of the characteristics of these three limits:

* near-surface sub-mesoscale eddies with Rossby numbers that are not small (for
example ranging from f to 3 f in the Siegel et al., (op. cit.) simulations)

* mesoscale eddies with large vertical scale, including barotropic eddies (tall
mesoscale eddies reaching from top to bottom, steered and possibly generated
by the topography of the bottom, particulary prevalent at high, subpolar latitudes
where f is strong and stratification is weak), and,

* nonlinear Rossby waves, often manifested as ‘super-mesoscale’ cores of water
and PV propagating westward across subtropical and tropical oceans.

The key distinguishing feature of these three limits is the source of PV structure:
at the smallest scale, the PV expressing surface density variations; at the mesoscale
the PV relating to the thickness variations and relative vorticity of the mean cir-
culation, and finally the larger eddy scales for which planetary PV (the f-effect)
organizes eddy activity. The distinctions between near-surface eddy fields and those
filling the rest of the water column carry over to wavenumber spectra which tend to
be flat (typically varying like k~2) near the surface and steeply red (typically k3 to
k=) through the interior of the fluid (Klein et al. (op. cit.)).

Eddies in the oceans range widely in amplitude, and this greatly influences the
competition between turbulent and wave- dynamics. At the ocean surface we know
this field better than anywhere else. Ridges of eddy kinetic energy (Fig. 1b) reflect
the major jet-like currents. Secondary maxima may be connected with topographic
enhancement, coastal upwelling zones, wind forcing and deep convective forcing
at high latitude. Eddy generation is favored also in latitudes of westward upper-
ocean flow, where the meridional PV gradient of the ocean gyres can oppose f3,
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thus allowing baroclinic instability. This may explain the ridges of eddy energy
near latitude 20° in most oceans. The lateral sizes of eddy/wave activity also range
widely, and are strongly correlated with latitude. Baroclinic instability theory and its
generalization as geostrophic turbulence favors scales near the Rossby deformation
scale L ~ Lp = ¢o/f ~ NH/f or ratio of phase speed ¢y of long gravity waves
in the vertical mode of interest, to the Coriolis frequency f. N is the buoyancy
frequency and H the vertical height scale of the eddy. Lp decreases strongly toward
high latitude, doubly so, as both f~! and N decrease poleward. For this reason,
barotropic eddies are more prevalent at high latitude.

Surprisingly, the ratio of kinetic energy in the eddies to that in the time-averaged
circulation greatly exceeds unity in the ‘quiet’ parts of the oceans, whereas the ra-
tio is of order unity in the most energetic jets. More usually, classical turbulence
is bounded in amplitude by the mean flow that generates it. This surprise suggests
that the Peclét number of the ocean circulation gyres, the ratio Pe = UL, /x of
mean advection U to eddy stirring (with Taylor Lagrangian diffusivity x) of some
scalar conservable quantity, is not far from unity, even in the ‘quiet mid-ocean’.
Here L, is the width of the mean ocean gyre. Maps of this quantity (Rhines &
Schopp, 1991) from models agree, estimating Pe ~ 3 to 5 in mid-ocean, somewhat
larger in boundary currents. Observations of the wide dispersal of passive chemical
tracers throughout gyres support these numbers. Similarly, the nonlinearity parame-
ter, the wave steepness (current speed/phase speed or lateral peak-to-trough particle
displacement/wavelength), varies greatly with position and latitude. For barotropic
Rossby waves of scale L this is (U’/BL?)'/2, U’ being the rms horizontal fluid ve-
locity. Baroclinic Rossby waves at the deformation radius scale have phase speed
BL% = BN2H?/ £, and their wave steepness U /BL? varies greatly with latitude as
2, B and N? all decrease poleward. The tropics tend to be wavelike, and higher
latitudes to be turbulent for these reasons.

Despite all the study by the fluid dynamics community, and numerous hard-cover
monographs and textbooks (some even available on your Kindle) there is little clear
insight as to what eddies actually do and how they behave in Nature. Too much of
the dialogue on large-scale turbulence ignores the rich observational database. We
saw in this symposium debate over basic questions of general ocean circulation: for
example: where is the turbulence that brings the dense cold waters of the abyss back
to the sea surface in the oceanic meridional overturning circulation? Very recently
a global observing system for the oceans has reached full strength. Satellite altime-
try provides global coverage of the surface geostrophic circulation each 10 days
or so. The ARGO array of 3000 neutrally buoyant, vertically profiling, subsurface
floats was completed in November 2007. Symbolic of the diverse array of remark-
able instruments drifting, moored, self-propelled, launched or towed from ships, or
looking down from Space, the ARGO network and its companion instruments give
us global, somewhat synoptic observations of oceanic hydrography (temperature,
salinity) and currents, and they begin to provide chemical and biological fields such
as dissolved oxygen, chlorophyll and nitrate. Descending down the 10 decades of
length scale that mark ocean velocity and scalar property fields (10* km to 1 mm)
we now have articulate ‘cat-scans’ of ocean microscale turbulence, the rich texture
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of submesoscale eddies and their fine-structure decoration (through geoseismics,
optical imaging and microstructure probes on freely falling profiles and gliders).

The ‘geography’ of PV involves several disparate scales (PV = (f + {)/h, where
¢ is vertical vorticity and 4 is the vertical thickness of a layer bounded by two nearby
potential density surfaces, with special amendment at solid boundaries). The dis-
parate scales arise from the planetary vorticity (with vertical component f), vertical
thickness (h) of the larger gyres and jets of circulation, relative vorticity () related
to zonal currents, and the turbulent PV of eddies and waves themselves. Even in the
PV of a turbulent flow there are distinct differences in scale between thickness-PV
and relative vorticity-PV, the latter tending to have smaller scale and more localized
flux divergence.

2 Deep pathways in the oceanic overturning circulation

The energy flow-chart for the climate ‘heat-engine’ involves meridional transports
of heat and fresh-water. Global meridional overturning circulations of oceans and
atmospheres (MOCs) are full of subtlety, and are challenging to theory, models and
observations alike. The Coriolis constraint reduces the strength of these circulations,
relative to unfettered convection of a non-rotating fluid. Oceans benefit from topo-
graphic basins which promote meridional flow without the severe constraint of polar
angular momentum conservation: the water can lean on the continents to balance the
east-west Coriolis force. The up-down part of the MOC is equally difficult to ob-
serve and understand: where do cold, dense waters rise back to the sea surface to
close the circulation? Here we have the modest goal of describing one piece of the
global oceanic overturning: the southward flow of cold, dense waters from the head-
waters of the MOC in the far northern Atlantic and Arctic to the south, joining the
southern sources from around Antarctica. This southward flow has long been por-
trayed as a narrow, deep western boundary current in the ‘conveyor belt’ idealization
of the MOC.

When the eddy form-stress mechanism for transferring momentum vertically
through the fluid was understood it became apparent that this is a potent mecha-
nism for driving deep ocean circulation. Form stress is simply the horizontal pres-
sure force (per square m) exerted by fluid on a sloping surface, either sloping bot-
tom topography or a sloping density interface. It yields the general-circulation-scale
version of barotropization in fields of geostrophic turbulence. Form-stress is also
related to the lateral eddy transport of the thickness part of PV, and has become cod-
ified in the Eliassen-Palm momentum flux. In the vicinity of intense jet-like currents
form stress drives deep countercurrents and in basin geometries these close to form
deep recirculation gyres (Rhines & Holland, 1979).

At the same time stirring by the eddies produces a Lagrangian circulation very
different from the laminar models in textbooks. A recent example came from theory
to early circulation models and finally to direct Lagrangian observations of Bower et
al. (2009). The southward flowing branch of the MOC in the Atlantic forms a clas-
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sic western boundary current visible along the continental rise of the US. However
this deep artery is not a conveyor belt but is stochastically occupied by cold, dense
waters from far north. Deep RAFOS floats, launched in the subpolar latitudes at lo-
cations carefully chosen to correspond to the dense outflows from the Labrador Sea,
drift like water parcels, yet do not simply follow the western boundary southward
(Fig. 2). Instead, many of them recirculate at high latitude before entering the broad
gyres of the Newfoundland Basin. They populate the entire western basin of the N.
Atlantic, traveling in the recirculations induced by the Gulf Stream overhead. The
figure combines 40 float trajectories, all launched near the western boundary near
Newfoundland with numerical model simulations showing the widely spread, aver-
aged southward transport across latitude lines (thick solid curves). The circles in the
deep western boundary current show by their size the transport of water of far north-
ern origins. At Cape Hatteras (36°N) only 3% of the modeled transport lay in the
boundary current, and 0.1% had arrived there along the direct boundary pathway.
This picture was anticipated through chemical tracer data (e.g., tritium and CFCs
(chlorofluorocarbons); Jenkins and Rhines (1980), Lebel et al. (2008) which show
the dense waters to have western boundary current cores, yet also be distributed
widely across the western basin).

Eddies affect the deep circulation in many ways. Here we see them drive deep
gyres of mean circulation from above, largely by inviscid form stress. Stirring by ed-
dies also forms a stochastic Lagrangian circulation; and, quite separately, the mean
PV fields shaped by eddy PV flux (as well as by mean advection) provide contin-
uous pathways for circulation connecting subpolar and subtropical latitudes. In yet
another form of eddy/mean-flow interaction, the source of eddy energy comes from
instability of the time-averaged circulation, which is favored in regions where the
mean PV gradient has opposing directions at different depths.

Wind and buoyancy flux at the sea-surface combine to drive the circulation. Eddy
effects cause the wind-driven and buoyancy-driven circulations to interact and over-
lap in ways unforeseen in classical portrayals of ocean dynamics. In fact, the very
definition of ocean circulation requires some acuity in the presence of eddies. There
are single Eulerian time-averaged mean velocity and mass fields, yet an infinity of
Lagrangian-mean circulations (since the Lagrangian particle trajectories X (¢; Xo, )
depend on the launch location Xy and time #(). Perhaps more relevant to the MOC
and climate are the transports of heat, salt, mass and chemical tracers by the velocity
field, and these can be displayed on the key phase plane of physical oceanography,
the potential temperature/salinity plane (e.g., Bailey et al. 2005).

3 Eddies and Rossby waves in the upper ocean

A dynamic life-cycle which has received much attention is the generation of zonal
jets by PV stirring due to mesoscale eddies, and conversely the basic instabilities
of jets and boundary currents yielding such eddies. In ocean basins there are other
life-cycles of great interest, owing to the gyres of mean circulation which are not
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Fig. 2 RAFOS float tractories (chaotic curved trajectories) at the depths of Labrador Sea Water,
launched at 700m and 1500m depths at roughly 50°N, at the western boundary of the subpolar
Atlantic Ocean (Bower et al., 2009). The floats are dominated by eddy activity, and over time in-
dicate widespread pathways to the south. Numerical simulations with the high-resolution FLAME
model (solid blue curves) show the transport of simulated floats offshore of the 4000m isobath in
the same region. The transport is distributed across the western one-half of the ocean, carried in
eddy-driven gyres of recirculation, yet the flow rejoins the classic western boundary pathway at
latitude 27°N, far to the south. Coloured circles indicate transport associated with modeled floats
exclusively inshore of the 4000m isobath (ei, yellow), floats moving both inshore and offshore of
that isobath (ai, red) where the circle radius is proportional to volume transport.

purely zonal. Kim (1974) and Rhines (1977) showed how meridional mean circu-
lations are baroclinically unstable to zonal-jet-like disturbances which are not in-
hibited by the B-effect. The simplest example is a baroclinic Rossby wave with
purely meridional velocities, either propagating or made stationary on a gentle east-
ward barotropic flow. The instability evolves toward Lp-scale (Rossby deformation
scale-) eddies; some of this energy will barotropize, and the eddies then jump from
slow baroclinic to much faster barotropic Rossby wave propagation. Generation of
alternating zonal flows can then occur. But if the energy level is not sufficient to be
free of B-control (and if the stratification is concentrated in the upper ocean, or if
bottom topography is present) the cascade into the barotropic mode is incomplete,
and nonlinear baroclinic eddies remain viable for long times. This life-cycle helps
us to understand the world-wide existence of something like nonlinear baroclinic
Rossby waves somewhat larger in lateral scale than Lp (Chelton et al. 2007). Does
jB-control arrest turbulence cascades in the baroclinic mode, when U’/(BL3) ~ 1,
as has been demonstrated for barotropic flows? Theiss (2007) argues in favor, apply-
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ing familiar wave-steepness/turbulence cascade arguments. Surprisingly, a decisive
numerical study does not yet seem to have been made. Yet once closed PV contours
have formed (the eddies reaching large-enough amplitude to overcome f3) then we
know that long-lived westward drifting vortices can occur.

These baroclinic eddies occupy the upper few hundred metres of the world ocean
and are clearly visible with satellite altimetry. They were first observed in the MODE
and POLYGON experiments of the early 1970s (MODE group, 1978). Temperature
and velocity time-series (Fig. 3) show such an eddy passing westward by the central
mooring of MODE-1, at 28°N, 70°W. The PV distribution in this same eddy (Fig.
4, McWilliams, 1980) shows the dominance of the thickness component of PV, with
markedly smaller contribution from relative vorticity. This helps us to understand
the apparently long life of these baroclinic eddies, as tending toward the planetary-
geostrophic limit (L > Lp) in which thickness dominates, PV = f/hs where hg is
isopycnal layer thickness. Maps of ocean-wide PV, for example, are strongly domi-
nated by f/h.
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Fig. 3 Time series of temperatures at a fixed mooring on the Hatteras Abyssal Plain, 28°N, 70°W
(depths below surface indicated), vs. year-day of 1973. The strong, warm anticylonic eddy is most
intense in the upper km of the ocean, yet it excites higher frequency oscillations below.
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Fig. 4 Potential vorticity (PV) in the MODE-1 eddy (1973 day 140 at 150m depth) in the western
N Atlantic. Clockwise from top left: streamfunction, thickness contribution to PV, relative vorticity
contribution to PV, total PV. The + sign indicates the position of the central mooring, Fig. 3 from
McWilliams (1977).

While detailed evaluation of advection of PV in McWilliams’ study suffered
from sampling limitations, the PV itself was uncontrovertibly dominated by the
eddy scale. This was guaranteed by the diameter of the eddies, which at ~ 250km
was significantly greater than Lp. The structure of the eddy differed from a 1st-
baroclinic-mode linear Rossby wave in several respects: the wave-steepness was
roughly 5 (the ratio U /c); the currents above and below the thermocline were not in
anti-phase; the surface density perturbation did not vanish, and, as we shall discuss,
the eddy transported mass westward.

A modern reconstruction can be seen (Fig. 5) in eddy-resolving numerical mod-
els; here the Japan Earth Simulator fields (OFES), 54 levels, 1/10 degree horizontal
resolution, 97-year integration) show the dominance of eddy PV in the upper ocean,
yet as one descends the §-gradient (with larger values toward the north) asserts it-
self in the less energetic deep water (Nakamura & Kagimoto, 2006). In the upper
ocean mixed layer (upper left panel), frontal structures appear which are associated
with the dominant baroclinic eddies and can be enhanced by wind-forcing.

Modern observations have now revealed similar structures in the surface eleva-
tion field (hence in the sub-surface pressure) throughout the world ocean. Altimetry
satellites, for example the TOPEX-Poseidon and JASON series from NASA, and
European Space Agency satellites, map the elevation field with resolution of a few
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Fig. 5 PV fields at 25m, 150m, 500m and 3000m (clockwise from upper left) in the OFES Japan
Earth Simulator ocean model, 20-30°N, 60-70°W (Dr. M. Nakamura, personal communication).
This much larger region shows several MODE-type eddies, as well as the background f gradient
(PV increasing northward). The strongest eddy, in the southwest region, has size and intensity
similar to the observations. PV is wrapped into an isolated core at 150m depth and deeper, while
at the surface small-scale fronts intensity round the periphery of the eddies. These eddies move
predominantly westward, transporting fluid with them.

cm. vertically, and can resolve eddies with diameter greater than 50 to 100 km,
when they are sufficiently energetic. Surface elevation is a geostrophic streamfunc-
tion, y, for the upper ocean, and animations show a dimpled pattern of y that drifts
westward almost everywhere, at latitudes less than about 45°. (Fig. 6, Chelton et
al., 2007). The major exception to this rule is in the Antarctic Circumpolar Current
which is broad and swift, and lies at high latitude: it creates topographically locked
stationary eddies and eastward-advected eddies. Even the Gulf Stream, Kuroshio
and Somali boundary currents are hard-pressed to advect patterns downstream and
exhibit nearly stationary meanders.

The magnificent animation of Fig. 6, showing the world ocean’s surface pres-
sure field (extending from 1992 to the present) is full of waves, el Nino events and
instabilities as well as the ubiquitous mesoscale eddies/waves. Using two or more
satellites, these features are convincingly resolved and there is much verification
from in situ observations. Of particular relevance here is the likelihood (or near cer-
tainty) that eddies with these amplitudes can carry fluid with them. The PV field
is dominated by the layer thickness, and using observed vertical structure, the PV
features are seen to propagate with the eddies; barring an unlikely form of local
forcing and dissipation this tells us that the enclosed cores are indeed moving water.
Dramatic verification has been made in a few cases: the MODE-1 eddy was itself
the first; RAFOS floats launched by Dr. C. Collins off the California coast became
repeatedly trapped in (predominantly anticyclonic eddies) which marched westward
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Fig. 6 Sea-surface height anomaly map for 25 March 1998, from the Topex/POSEIDON and ERS-
1 satellite altimeters, which provide sampling of the world ocean approximately every 10 days.
Chelton et al. analyze the thousands of baroclinic, generally westward propagating eddies visible
here. They generally mark strong generation sites or strong mean circulation features. Only in the
Antarctic Circumpolar Current and the western boundary currents is the eastward flow fast enough
to make the eddies stationary or eastward propagating. A strong el Nino event yields high pressure
(warm ocean) in the eastern tropical Pacific.

and were closely identified with altimetrically observed eddies (Chelton, personal
communication). In addition there are examples of biological communities embed-
ded in this family of eddies (e.g., Nicholson et al. 2008).

Upper ocean mesoscale eddies propagate westward with speeds close to BL3,
the long-wave linear Rossby wavespeed, and they also migrate gradually poleward
(if cyclonic) or equatorward (if anticyclonic); Chelton et al. (2007). There is no
shortage of theoretical reasons for the small excess in westward propagation speed
observed by the satellite altimeters, relative to linear theory. However, the mani-
festly nonlinear nature of these eddies is a more compelling challenge to theory
and modelling. At length scales greater than Lp, long-lived eddies are increasingly
likely. With simple layered stratification there are characteristic solutions for Rossby
waves in which nonlinearity is retained for the finite layer thickness variations, yet
not for ageostrophic effects (e.g., Anderson & Killworth, 1979; Rhines 1989). Typ-
ically, for stratification concentrated in the upper half of the fluid, wave steepening
occurs at leading, westward side of a warm anticyclone; oppositely for a cold cy-
clone. The theory allows closed PV cores and eddy transport of fluid, with westward
propagation. However these reduced gravity ‘1 1/2 layer’ models ignore the interac-
tion of barotropic and baroclinic modes which are demonstrably active for realistic
models of the oceanic stratification (and in observations of the vertical structure of
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velocity in mesoscale eddies, Fig. 3b). Typical simulations starting with single iso-
lated baroclinic vortices (e.g., Matsurra 1995, Chassignet & Cushman-Roisin 1991)
show lateral radiation of barotropic Rossby waves, including excitation of the deeper
layers beneath the vortex as part of this process. Complex evolution of PV occurs,
involving shedding of the slowly-flowing outer sheath of the vortex, while the re-
maining eddy core propagates westward.

Understanding of the generation of the Rossby wave/eddies of the upper ocean
remains incomplete. The prime suspect has always been the instability of west-
ern boundary currents which themselves dominate the kinetic energy of the ocean.
However, these cannot readily explain the westward propagating eddies which seem
to require energy sources at latitudes distant from, and far east of, the boundary
currents. We know of some sources: radiation from the eastern boundaries of the
oceans, from instabilities or seasonal pulsation of the near-boundary circulation, or
large-scale flow past topographic features, for example. Just as we see in the MODE-
1 observations, models of initially isolated eddies show generation of fast barotropic
Rossby waves by the baroclinic vortex, and these are manifested as higher frequen-
cies and phase speeds at deeper levels. LeCointre et al. (2008) show in model studies
a variation in mean phase propagation with depth, in this same sense.

In addition, eddy-energy maps (e.g., Fig. 1b) show stripes of high energy ap-
pearing in mid-ocean. In the Antarctic Circumpolar Current and detached western
boundary currents, bottom topography can create unstable wake vortices. West of
Hawaii, there is a ridge of elevated eddy activity that extends across several thousand
km. High-resolution wind-stress maps show in fact that Hawaii leaves a wind-wake
in the same region, and the island topography itself can shed eddies. Mid-ocean
baroclinic instability, particularly in the North- and South Equatorial currents (the
westward limbs of the subtropical gyres) has long been suspected. With increasing
resolution, models are beginning to yield clear portraits of eddy generation by such
forcing.

Finally, we reproduce Lagrangian portraits of flow close to the actual movement
of fluid parcels in the deep ocean, from RAFOS floats in the North Atlantic (Fig. 7a)
and from ARGO floats in the Pacific (Fig. 7b). Neutrally buoyant floats developed by
John Swallow and Thomas Rossby gave us the first animated views of the flow of the
deep ocean. It is immediately evident from these figures that this is a turbulent ocean,
in which the displacement of marked particles is comparable with the mesoscale
size of the dominant eddies, and in which jet-like deep zonal currents emerge at
low to moderate latitude. The archive for this data is at Woods Hole Oceanographic
Institution, http://wfdac.whoi.edu/.

4 Notes from the GFD Lab

While numerical experiments dominate our field, laboratory simulations of nonlin-
ear Rossby waves provide high spatial resolution, non-hydrostatic effects, interac-
tion of geostrophically balanced circulations with ageostrophic internal waves and
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Fig. 7 (a), above: isobaric RAFOS float trajectories at 700m depth in the North Atlantic; (b), be-
low: ARGO floats with depths ranging from 750m to 1550m (mostly between 800 and 900m).
Note the prevalence of zonally extended Lagrangian circulation features, and the generally turbu-
lent appearance of the particle trajectories.
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submesoscale eddies, and a rich array of turbulent mixing. A new measurement
technique, reminiscent of satellite altimetry, yields ‘global’ fields of fluid surface el-
evation, hence of surface circulation (Rhines et al., 2007, Afanasyev et al., 2009). In
stratified experiments at the Geophysical Fluid Dynamics lab of University of Wash-
ington, we include also simultaneous imaging of layer thicknesses which yields
baroclinic velocity fields and potential vorticity. In Fig. 8 we show the field of pres-
sure (surface elevation; surface V), particle trajectories and vertical vorticity for a
flow on a polar B-plane (North Pole at the center). This particular experiment is
not a complete ocean analog because the basin-scale depth variation mimicking 3
is confined to the lower layer. A source of buoyant fluid (fresh water) is injected
steadily onto a bed of denser salt water from a point source at 9 o’clock in the fig-
ures (at the end of the radial arm). In time this forms a §-plume, that is, a gyre of
circulation elongated by Rossby-wave propagation westward from the source. This
gyre is unstable to mesoscale eddies which populate its periphery. As the particle
trajectories show, the wave steepness of these eddies is near unity. They propagate
with barotropic ‘roots’ as Rossby waves yet participate in fluid transport. The vor-
ticity of the upper layer (Fig. 8e) is accurately recovered, and exhibits intense cores
which move with the fluid. Cyclones migrate poleward, anticyclones equatorward
as in Nature. Two velocity and y cross-sections are plotted in the lower right panels
f and g (their locations are marked in Figs. 8b and 8c).

5 Conclusion

Nonlinear Rossby waves in the upper ocean represent a novel mode of ocean circu-
lation: they carry fluid westward in their cores. The Chelton et al., op. cit. analysis
of their nonlinear nature is convincing, yet we anticipate a fuller understanding of
their generation and interaction with the mean circulation. More generally, we see
multiple modes of interaction between eddies and the general circulation, includ-
ing fully dynamic feedbacks. The geography of the time-averaged PV field, mapped
on isopycnal surfaces, together with its top and bottom boundary singular-sheets,
is a key control over, and consequence of, these feedbacks. Despite arguments that
the atmospheric circulation is not far from quasi-linear dynamics (e.g. Schneider et
al., op. cit.) we find the ocean to depend on geostrophic turbulence in many ways.
The linear/nonlinear interplay in the atmosphere itself can be essential even where
the enstrophy cascade is not active. Further progress may come quickly, from the
newly established global observing system recently put into place, and from a wide
spectrum of innovative measurement techniques already in the field. We now have
the observational and model-based tools with which to gain a much more complete
understanding of the ocean circulation and its variable climate.
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Fig. 8 Circulation on a laboratory polar 3-plane observed (as fluid surface elevation) from above
with optical altimetry. The source is at 10 o’clock. (a): Large vortices formed by baroclinic mean-
ders are slowly moving along the wall of the tank in the clockwise direction. The Northern flank
of the beta-plume is visible as a jet-like flow. (b): The plume extends to the entire tank. Small scale
jets are formed. (c): Two small eddies (at 1 and 2 o’clock) are pinched-off from the jet, f = 380 s
(125 rotations of the table). (d): Traces left by particles floating on the surface during the interval
of 100 s. (e): Relative vorticity field. (f): Velocity (points) and vorticity (circles) profiles measured
along the line across the jet as shown in plate b. (g): Profiles of y-component of velocity and vor-
ticity along the line parallel to the x-axis through the centre of the frontal eddy visible at 2 o’clock
in plate c. (Afanasyev et al. 2009).
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Observations on Rapidly Rotating Turbulence

P A Davidson, P J Staplehurst and S B Dalziel

Abstract Experiments on rapidly rotating turbulence have been reported in recent
years in which the Rossby number, Ro, drifts down towards unity as the energy
of the turbulence decays [1; 2]. The experiments were performed in a large vessel,
approximately 35 integral scales in each direction. Moreover, any mean flow was
carefully suppressed and so the resulting motion constitutes a good approximation
to homogeneous turbulence. In line with other experiments, and certain numeri-
cal simulations, four robust phenomena were observed: (i) when Ro reaches a value
close to unity, columnar eddies start to form and these eventually dominate the large,
energy-containing scales; (ii) during the formation of these columnar eddies, the in-
tegral scale parallel to the rotation axis grows linearly with time; (iii) more cyclones
than anticyclones are observed; and (iv) the rate of energy decay is reduced by ro-
tation. The experiments also show that, despite the fact that Ro ~ 1, the columnar
eddies form through simple linear wave propagation, in which inertial waves pump
energy along the rotation axis. In this paper we explain: (i) why columnar vortices
form in such experiments; (ii) why linear behaviour dominates the dynamics in [2],
even though Ro ~ 1; and (iii) why cyclones are more frequently observed than an-
ticyclones. We also re-examine the energy decay data in [2] and show that, to a
reasonable approximation, it takes the form u?> ~ (Q¢)~!. We offer one possible
explanation for this behaviour.

1 Introduction

We consider rapidly-rotating turbulence in which the fluctuating velocity in the ro-
tating frame, u, is smaller than, or of the order of, |£2|¢, where = Q& is the bulk
rotation vector and ¢ a suitably defined integral scale. It is well known that such
turbulence is characterised by the presence of large columnar eddies aligned with
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the rotation axis [1]—[5], and there has been much discussion as to the mechanism
by which these columnar structures form. The various theories differ in detail but
all agree that inertial waves play an important role. Nearly all theories focus on the
case Ro = u/Q¢ < 1 and suggest that anisotropy results from a weak non-linear
coupling of the waves (so-called resonant triads), operating over a long period of
time [6]-[9].

However, a quite different, and simpler, explanation for the growth of the colum-
nar eddies was put forward in [1]. It too is posed in the context of Ro < 1, but does
not require non-linearity. Rather, it relies on the idea that eddies can elongate along
the rotation axis by radiating energy in the form of linear inertial waves. This leads
to the prediction, which can be tested in the laboratory, that the eddies, and hence the
integral scale parallel to €, will elongate at a rate set by the group velocity of inertial
waves. The idea is the following. Consider unforced turbulence which decays from
an initial condition composed of a sea of spatially compact blobs of vorticity (ed-
dies). This is a reasonable idealisation of an experiment in which the fluid is stirred
up by a grid and then left to itself. For Ro < 1, each blob of vorticity present in the
initial condition will spontaneously radiate energy in the form of inertial waves, and
that energy will propagate in a direction set by the group velocity,

¢, = +2k x (2 x k)/|k|*. (1)

Now a blob of vorticity of arbitrary shape should yield, on being Fourier trans-
formed, an energy distribution which varies in an arbitrary fashion across the
wavevectors, K. Since the orientation of ¢, depends on k in accordance with 1, we
might anticipate that the energy of each eddy will disperse in all directions, showing
no particular preference to propagate along the rotation axis, and so no tendency to
elongate the eddy into a columnar vortex. However, it was pointed out in [1] that this
dispersion of energy is subject to certain integral constraints, and that consequently,
it is not quite as random as might at first be thought. In particular, it was noted that,
within the framework of linear dynamics (Ro < 1), the axial components of linear
and angular impulse of a vortex blob, which are measures of the linear and angular
momentum of the eddy, are confined for all time to the cylindrical region of space
which circumscribes the vortex at + = 0. In short, the axial components of linear
and angular momentum can disperse along the rotation axis only. This, in turn, con-
strains the way in which energy can radiate away from a blob of vorticity, focussing
the dispersion of energy onto the rotation axis. Thus each vortex blob present in the
initial condition will spontaneously convert itself into a columnar structure through
linear wave propagation, with the length of each columnar eddy growing at a rate
setby 1, i.e. £, ~ 0Qt, where 0 is the initial scale of the blob.

It turns out that this process is exactly what is observed in the experiments of
[2], and we shall review briefly the theory of [1] in §2 and the experiments of [2]
in §3. Curiously, though, the theory of [1] was developed for Ro < 1, whereas the
experiments of [2] show columnar growth via linear wave propagation at Ro ~ 1.
It is natural to ask why a low-Ro theory persists in practice up to Ro ~ 1. We shall
provide an explanation for this in §4, as well as for the observed asymmetry between
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cyclones and anti-cyclones. Finally, in §6, we re-examine the energy decay data of
[2] and show that, to a good approximation, it takes the form u? ~ (€¢)~!. We offer
one possible explanation for this behaviour.

2 How Columnar Eddies Form at Low Ro

Let us start by summarizing the linear theory of [1], which offers a simple expla-
nation for the growth of columnar structures at low Ro. Consider the initial value
problem consisting of a localised blob of vorticity sitting in an otherwise quiescent,
rapidly-rotating fluid. Let the characteristic scale of the blob be § and a typical ve-
locity be u. If Ro = u/€ 8 < 1 then the inertial force in the rotating frame, u- Vu, is
much weaker than the Coriolis force, 2u x €2, and the governing equation of inviscid
motion can be linearized to give

W 2ux@-V(p/p). @

The subsequent motion then consists of a spectrum of linear inertial waves whose
group velocity is dictated by the initial distribution of k in accordance with 1. Thus
the energy will disperse in all directions with a typical speed of |c,| ~ £26. How-
ever, this radiation of energy is subject to a powerful constraint, which systemati-
cally favours dispersion of energy along the rotation axis. Let V¢ be a cylindrical
volume of radius R and infinite length that encloses the vorticity field @ at r = 0;
the so-called tangent cylinder. Then it is shown in [1] that the axial component of
the angular impulse, % J[xx (xx @)],dV, which is equal to the angular momen-
tum held in the tangent cylinder, jVR [x xu],dV, is conserved for all time. In short,
angular momentum can disperse along the rotation axis only.

This constraint systematically biases the dispersion of energy. For example, as
the energy radiates to fill a volume whose size grows as (cgt)? ~ (6Qt)3, we would
expect that conservation of energy requires the velocity outside the tangent cylin-
der to fall as |u| ~ |uo|(£)~3/2. However, inside the tangent cylinder the angular
momentum is confined to a cylindrical region of volume, cgtSZ ~ Q183, and so the
characteristic velocity inside the cylinder falls more slowly, as |[u| ~ |ug|(Q7)~!. Tt
follows that the energy density inside the tangent cylinder is significantly greater
than that outside, and so the dominant influence of inertial wave radiation is to
spread the energy of the vortex along the rotation axis. (If the eddy happens to have
zero angular impulse, we arrive at exactly the same conclusions by considering the
conservation of linear impulse.) Moreover, these two scalings, |u| ~ [ug|(2¢)~! in-
side Vg and |u| ~ |uo|(€r)~3/2 outside, can be confirmed by detailed calculation
using stationary phase.

A simple, almost trivial, example illustrates the point. Suppose our initial condi-
tion consists of

u=Arexp|— (r2 +Zz) /52] & 3)
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Fig. 1 An initial blob of vorticity converts itself into a pair of columnar eddies (Taylor columns)
via inertial wave propagation, Ro < 1.

in cylindrical polar coordinates, where A as a measure of the initial vortex strength.
Then 2 yields the axisymmetric wave equation

2 2 2
J [alar 9’ 2T, W

o "arrar ' azz] 22y 5z

where I' = rug. This may be solved using a Hankel-cosine transform, which

yields
ey, 2Kr 2 Qr\? 2 Qn\?

M@NAS/ eXp — 37? — 54’? dK,

)

where J| is the usual Bessel function and k = k,8 /2. Evidently, the kinetic energy
disperses along the z-axis forming two columnar structures of radius 6 and length
£, ~ 8Q1t, and whose centres are located at z = +8Q¢. This is illustrated in figure
1. Of course these two lobes of vorticity are just transient Taylor columns. The
precise form of 5 for £2¢ > 1 may be found by insisting that the arguments in the
exponentials remain of order unity at Q¢ — . At location z = §Q¢, for example,
we find

+exp

ug(t — 0o) ~ AS(n'/?/e)Jy (2r)8)(Q1) 7", (6)

yielding ug ~ A (1)~ inside the tangent cylinder and ug ~ A8 (Q1)~3/2(r/z)~1/2
outside the cylinder, in line with the discussion above.
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Now consider an initial condition consisting of many such eddies randomly but
uniformly distributed in space. It is readily confirmed (see [2]) that, for Ro < 1, the
two-point velocity correlation @ (r) = (uy (x)-uy (x+r)) takes the form

2
A l 2/°° 3 2 2Kr| B r/_/_Z.QI
0, ~0) +2<u>0 K’e Jo< 5 >{exp[ <5 —
2
_<u+2_ﬂt>]}d,<
o K

where Kk =k, 8/2, 1 and // indicate components perpendicular and parallel to the

+ exp

rotation axis, and Qi‘v) is a steady contribution to Q| which need not concern us
here. The time-dependent part of the correlation is centred on r/, ~ +06Q¢ and its
characteristic axial length-scale grows as ¢, ~ 0Qt, as shown schematically in figure
2. Evidently Q| mimics, albeit in a statistical sense, the behaviour of the individual
eddies shown in figure 1.

0, (r, =0, - 0% (r, = 0.

7

Fig. 2 Schematic illustration of the time-dependent term in the autocorrelation Q for Ro < 1.

For Q1 >> 1 the autocorrelation Q| is self-similar if r,, is scaled by 2Q 61, which
admits the simple physical interpretation that all of the eddies grow in the axial di-
rection at the rate ¢, ~ 8Qzr. It is readily confirmed that the parallel velocity cor-
relation (u/,(x) -u,/(x+r)) behaves in exactly the same way, as do the equivalent
two-point vorticity correlations. In [2] it is argued that this behaviour is not particu-
lar to the model eddy described by 3, but rather generalises to any kind of eddy;
i.e. in all cases we would expect the autocorrelations to be self-similar at large
times when r/, is normalised by 2€26t. We may think of this as the hallmark of
energy dispersion by linear inertial waves propagating from a sea of compact vortex
blobs.

Note, however, that it is important in this analysis that we start with spatially
compact blobs of vorticity, which is typical of the vorticity field behind a grid. It is
this particular initial condition which provides an arrow of time and ensures that we
move from spherical-like objects to columnar structures. This is important, because
many numerical simulations have initial conditions in which the phase information
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is scrambled, so that there is no phase coherence, and hence no coherent structures
in physical space. Such atypical initial conditions may behave quite differently.

3 The Experimental Evidence at Ro ~ 1

We now turn to the experiments of [2]. Here Ro drifts down towards unity as the
energy of the flow decays. The high initial value of Ro ensures that no waves are
generated by the grid used to create the turbulence, and so those waves which do
appear arise from the turbulence itself. The experiments were performed in a large
vessel, 35 integral scales across, and any mean flow was suppressed so that the
resulting motion is a good approximation to homogeneous turbulence. Four robust
phenomena were observed:

» when Ro = u/Q/{ reaches a value close to unity, columnar eddies start to form
and these eventually dominate the large, energy-containing scales;

* during the formation of these columnar eddies, the integral scale parallel to Q
grows linearly in time, ¢, ~ £y€2t, where ¢ is the initial integral scale;

* more cyclones than anticyclones are observed, as in other experiments;

* the rate of energy decay is reduced by rotation.

We shall discuss items (iii) and (iv) shortly. Here we focus on the first two ob-
servations. The fact that the integral scale grows as £, ~ §Q¢ is highly suggestive
that the columnar eddies form by linear wave propagation, and not by resonant triad
interactions. This is perhaps surprising, since Ro ~ 1. In order to check this hypoth-
esis, two-point autocorrelations where measured as a function of r,, and 7. This was
done for four different experiments which had varying values of £ and ¢, but were
otherwise similar. According to linear theory, the autocorrelations from all four ex-
periments and at all times in each experiment should collapse onto a single universal
curve, provided r;, is normalised by €2/yr. This is exactly what was found, so there
is no doubt that the columnar vortices seen in [2] were formed by linear wave prop-
agation, despite the fact that Ro ~ 1.

Note, however, that it is only the large energy-containing vortices which form
columnar vortices. Most of the enstrophy, on the other hand, is held in much smaller
vortices. Moreover, since Ro ~ 1 based on the large scales, the effective Rossby
number for these smaller enstrophy-containing eddies will be large. This suggests
that we have two types of dynamics occurring simultaneously in the turbulence: the
large eddies form columnar structures through linear wave propagation, but these
columnar eddies are immersed in a sea of smaller vortices which continue to evolve
in a highly non-linear way. Of course, the anisotropy created at the large scales by
linear inertial wave propagation can then feed non-linearly into the smaller eddies,
because these sit in the shadow of the large columnar vortices and so are subject to
a strain field whose axial length scale grows as ¢, ~ ¢(t.
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4 Why Linear Behaviour at Ro ~ 1?

Let us now consider the curious observation that linear wave propagation can per-
sist up to a Rossby number of Ro ~ 1. A sequence of numerical simulations were
undertaken in [10] to investigate this very point, in which a single eddy was allowed
to evolve in the presence of background rotation. In the rotating frame the eddy
had an initial condition very similar to 3 and the Rossby number was defined as
Ro = |umax|/2€26. A wide range of initial values of Ro were considered, from 0.1
to 4.0, and both cyclones and anticyclones were computed. For small Ro the eddies
evolved into columnar structures as shown in figure 1, and of course there is no dif-
ference between the behaviour of cyclones and anticyclones in the linear regime. At
high Ro, on the other hand, the vortices burst radially outward under the influence of
the centrifugal force, generating a secondary flow which sweeps all of the vorticity
into a thin axisymmetric vortex sheet. The sheet then thins exponentially fast [11].
This is illustrated schematically in figure 3. Evidently, the fate of a vortex is very
different depending on whether the flow is dominated by linear inertial waves or by
non-linear dynamics.

Perhaps the most surprising aspect of the computations is that the transition from
almost purely linear to fully non-linear behaviour is abrupt. In the case of cyclones
the transition occurs in the narrow range 1.4 < Ro < 3.0, with columnar vortex
formation below Ro = 1.4 and centrifugal bursting for Ro > 3.0. The equivalent
range for anticyclones is also surprisingly narrow, 0.4 < Ro < 1.6. Of course these
findings relate to a very particular initial condition, but they do at least illustrate how
quasi-linear inertial wave propagation can persist up to Rossby numbers of Ro ~ 1,
which is consistent with the experiments of [2].

5 Why a Cyclone-Anticyclone Asymmetry?

The results of [10] are also interesting from the point of view of the observed domi-
nance of cyclones over anticyclones. Notice that the transition range of Ro is differ-
ent for cyclones and anticyclones, with the anticyclones requiring a lower value of
Ro to form columnar structures. It is argued in [10] that this is not just an artefact of
the particular initial condition used, but is in fact a generic feature of cyclones and
anticyclones. The point is this: centrifugal bursting is driven by regions in which,
in an inertial frame of reference, Rayleigh’s discriminant is negative, oI 2 /dr < 0.
(Here I is the angular momentum in the inertial frame, I' = rug + Qr%.) The phys-
ical significance of the criterion dI"2/dr < 0 is most readily understood in terms of
the well-known analogy between swirling and stratified fluids, in which 92 /dr<0
corresponds to heavy fluid imbedded within a region of light fluid [10]. In any event,
loosely speaking, the numerical simulations in [10] show that columnar vortices
form provided that, everywhere in the initial condition, we satisfy oI /ar > 0.
Conversely, the vortex will burst radially outward if there is a significant region in
which 912 /dr < 0. Moreover, it is shown in [10] that, if we consider a sequence of
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Fig. 3 Schematic illustration of the radial bursting of a vortex under the influence of the centrifugal
force. The vortex generates a secondary poloidal flow which sweeps all of the vorticity into a thin
axisymmetic vortex sheet. The sheet then thins exponentially fast. Ro >> 1. (i) Initial condition, (ii)
generation of azimuthal vorticity by differential rotation, (iii) poloidal motion, (iv) poloidal motion
sweeps the angular momentum radially outward, (v) eventually a vortex sheet forms

initial conditions in which Ro increases progressively from Ro < 1 up to Ro ~ 1, an-
ticyclones will exhibit regions of negative dI'2/dr before cyclones. In short, the fact
that the transition range of Ro noted in [10] is lower for anticyclones than cyclones
is not particular to initial condition 3, but rather is a generic feature of anticyclones.

Let us now return to the experiments of [2]. Initially, we have a high value of
Ro, but as Ro drifts down towards Ro ~ 1, columnar eddies start to appear. From
the asymmetry described above, we might expect the first columnar structures to
be cyclones, with significantly lower values of Ro needed to generate anti-cyclonic
columns. Note, however, that while this cartoon is consistent with the experimental
evidence, several other explanations for the dominance of cyclones have been put
forward (see, e.g. [12]).

6 The Rate of Energy Decay

We conclude by discussing the rate of energy decay in rotating turbulence, which is
known to be suppressed by the rotation. It is shown in [13] that, subject to certain
caveats, such as the spectral tensor,®;;, taking the form @; j(k —0) ~ K2, homoge-
nous turbulent flows which are statistically axisymmetric posses the Loitsyanky-like
invariant
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I= —/riQL(r)dr = constant @)

This includes MHD, stratified and rotating turbulence. If the large scales in such
a flow are self-similar, and they usually are, then this requires uiéiﬁ /) = constant,
where ¢ and ¢, are suitably defined transverse and longitudinal integral scales.
Moreover, we have already seen that, once the Rossby number falls below Ro ~ 1,
¢, grows as £, ~ £o€t. It follows that, in freely-decaying, rapidly-rotating turbu-
lence, uiﬁ‘iéo ~ (.Qt)_l. This is interesting because the decay data of [2], which
has been replotted in figure 4, seems to follow a power law reasonably close to
ui ~ (Q1)~!. Given that £, does not change significantly during the rapid growth
of £, this is reasonably consistent with u3 ¢4 £y ~ (Q1)~".
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Fig. 4 Plot of energy versus time from the experiments of [2]. The solid line is u?> ~ (Qt)~!
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Equilibration of Inertial Instability in Rotating
Flow

Daan D.J.A. van Sommeren, George F. Carnevale, Rudolf C. Kloosterziel and
Paolo Orlandi

Abstract Unstable vortices in a rotating environment may breakup due to the com-
bined effect of inertial and barotropic instabilities. Recent advances in the theory of
inertial instability of vortices provide a prediction of the equilibrated state if inertial
instability acts alone. This prediction combined with what is known about barotropic
instability gives the possibility of predicting the end state of a vortex breakup subject
to both inertial and barotropic instability.

1 Introduction

Through a series of laboratory experiments, Kloosterziel and van Heijst (1991) ex-
plored the breakup and restabilization of freely evolving unstable vortices in a ro-
tating flow. Although the breakup of unstable anticyclones involved a highly three-
dimensional turbulent stage, in the end the effect of rotation dominated and the final
by-products of the breakup were combinations of stable monopolar, dipolar and
tripolar vortices with the axes of the vortices aligned along the axes of the ambient
rotation. These experiments were performed in a rotating tank of water. The initial
vortex was created by placing a hollow cylinder within the tank, with its axis aligned
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(a) (b) (©)

L

Fig. 1 Vortex breakup leading to a tripole in a laboratory experiment. The evolution takes place in
30 cm of water in a rotating tank. The photographs are taken from above with a camera mounted
in the rotating frame on the axis of rotation.

along the axis of rotation. The water in the cylinder was stirred anticyclonically, dye
was added for visualization, and then the cylinder was removed vertically, thus re-
leasing the vortex. The subsequent evolution was then photographed from above by
a camera mounted in the rotating frame of the tank. In figure 1, we see the results of
such an experiment. In panel (a) we see the early stage of the breakup of the vortex
in which the flow is very three-dimensional. As time evolves, the ambient rotation
suppresses vertical motion and the flow becomes more two dimensional. In panel (c)
the flow has organized into a tripolar vortex with an anticyclone in the center and
two cyclones for satellites. Another example is shown in figure 2 where the final
result is a pair of dipoles (compact cyclone-anticyclone pairs) moving away from
each other. Kloosterziel and van Heijst (1991) hypothesized that the complex three-
dimensional evolution of the unstable anticyclones was a result of combined inertial
(i.e. centrifugal) and barotropic instabilities. Three-dimensional numerical simula-
tions by Orlandi and Carnevale (1999) confirmed this hypothesis. At that point, the
theory of barotropic instability of vortices, essentially a two dimensional process,
had already been highly developed, and it became clear that barotropic instability
was responsible for the final phase of the breakup that produced the monopolar,
dipolar and tripolar by-products. It was also demonstrated numerically that it was
centrifugal instability that led to the intense vertical overturning motion that created
the initial turbulent phase of breakup, and that this phase primed the flow for sub-
sequent barotropic instability. However, a theory of the long term tendency of the
inertial instability was lacking, and this prevented prediction of the combined effects
of the two instabilities. Recently Kloosterziel et al (2007) returned to this problem
and have provided a theory of saturation of inertial instability that fills the gap. We
are now in a position to predict the outcome of the breakup of the vortices under
certain circumstances based on the combination of the theory of inertial instability
and simple two-dimensional simulations of barotropic instability.

In their pure form, these instabilities are not fully three-dimensional. The baro-
tropic instability is an instability on horizontal shear and can be understood in terms
of two-dimensional dynamics in a plane perpendicular to the ambient rotation axis.
Inertial instability is an axisymmetric instability producing perturbations symmet-
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0%\1?

Fig. 2 Vortex breakup leading to two dipoles.

ric about the axis of the main vortex. The relevant features of how these instabilities
evolve in pure form is discussed in sections 2 and 3. In section 4, we will propose and
test a way of combining those theories to yield a prediction for the final state result-
ing from the breakup of a given unstable anticyclone under fully three-dimensional
dynamics.

2 Pure Barotropic Instability

The criterion for barotropic instability was originally given by Rayleigh (1880)
for planar flows. This is a necessary criterion that requires the vorticity to have
an extremum somewhere in the flow (Rayleigh’s inflection point theorem, see
e.g. Drazin and Reid, 1984). The generalization to a circularly symmetric vortex
is straightforward and requires that the radial gradient of vorticity vanish some-
where in the flow. We are directly concerned with isolated vortices (i.e. vortices
with zero net circulation). Such vortices, necessarily having both positive and nega-
tive relative vorticity, always satisfy the criterion for barotropic instability. A simple
model of a zero circulation vortex that is amenable to analytical progress from the
point of view of stability is the two-patch model consisting of an inner core of con-
stant vorticity and an annulus of opposite signed vorticity. This model was explored
with linear stability theory by Flierl (1988). Through normal-mode analysis, he was
able to give growth rates for various azimuthal modes. He demonstrated that if the
outer annulus is sufficiently broad, the flow is stable, even though the Rayleigh
necessary criterion for instability is satisfied. Thus there is a threshold for insta-
bility and this involves the size of the jump in vorticity between the core and the
annulus. Kloosterziel and Carnevale (1992) confirmed this by considering the ex-
tremal properties of a linear combination of the total energy and angular momentum.
Carton et al (1989) studied the stability of a family of zero-circulation anticyclones
with smooth vorticity profile which in non-dimensional form is
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Fig. 3 (a) Profiles of vorticity for different o. (b) Growth rate for azimuthal modes m =2,3,4.
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2
where r is the radial distance from the center of the vortex. This family is parame-
terized by o which is known as the steepness parameter. The vorticity distribution
for this family is shown in figure 3a for a few values of ¢. The higher the value of
a, the higher are the gradients of vorticity on each side of the peak.

Linear stability analysis was used to calculate the growth of perturbations of
azimuthal wavenumber m (Carton et al, 1989; Carnevale and Kloosterziel, 1994).
There are no growing modes for o < 1.85. As o is increased above this criti-
cal value, the m = 2 mode is the first to go unstable. The instability of this mode
leads to tripole formation. As « is increased further, higher azimuthal modes be-
come unstable. The growth rates of the first three unstable azimuthal modes are
shown in figure 3b, drawn from data taken from Kloosterziel and Carnevale (1999).
The result of this succession of an increasing number of unstable modes with in-
creasing o is that the evolution is increasingly more complex with higher o. Be-
cause barotropic instability is two-dimensional, it is easily simulated numerically.
The results of the instability for any profile and any initial perturbation are read-
ily predicted by numerical simulation. For small-scale small-amplitude initial per-
turbations, the vortex evolves into a tripole for 1.85 < oo < 3 (Carton and Legras,
1994; Kloosterziel and Carnevale, 1999). For higher values, the vortex can go
through a remarkable array of forms depending on how many azimuthal modes
are unstable. The final result is typically made up of monopoles, dipoles and
tripoles. Although Carnevale and Kloosterziel (1994) demonstrated that a quadra-
pole is also possible, this is very weakly stable and rarely observed as a final state
(Kloosterziel and Carnevale, 1999).
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Fig. 4 (a)The construction used to determine the new angular momentum resulting from inviscid
mixing of momentum for an anticyclone. The thin curve is the angular momentum of the original
anticyclonic vortex. The thick curve is the equilibrated angular momentum. (b) The azimuthal
velocity field based on the equilibrated angular momentum shown in panel (a).

3 Pure Inertial Instability

Inertial instability of a vortex in ideal form is an axisymmetric flow problem. The
instability appears as rings of perturbation vorticity that surround the main vor-
tex. The necessary and sufficient criterion for centrifugal instability is that the
magnitude of the absolute angular momentum decreases somewhere in the flow
(Rayleigh, 1916; Kloosterziel and van Heijst, 1991). The absolute angular momen-
tum is L = r(V + Qr) where V is the azimuthal velocity of the flow, Q2 the ambient
rotation rate, and r the radial distance from the center of the vortex. Inertial instabil-
ity will occur in the inviscid case if and only if dL? /dr < 0 somewhere in the flow.
This is an inviscid criterion; sufficiently high viscosity (small Reynolds number) can
prevent the instability from developing.

In Kloosterziel et al (2007), we studied the unfolding of inertial instability and
the subsequent evolution of the vortex. We were trying to understand the tendency
of the inertial instability acting alone. In order to isolate the effects of this instabil-
ity from all others, we ran axisymmetric simulations. The simulations were run long
enough to see the linear instability saturate by non-linear effects and the restabiliza-
tion of the vortex.

Through a series of such simulations, we were able to deduce general rules for
predicting the final state of a vortex that underwent inertial instability. The effect of
the instability is to redistribute angular momentum in such a way that the resulting
vortex is inertially stable. In some sense, this is obviously necessary, yet the form
that the final profile of angular momentum would take and, in particular, the radial
range over which the angular momentum would be distributed were not obvious a
priori. The initial instability region is the radial range over which dL? /dr < 0. How-
ever, the rib vortices that grow from the instability propagate beyond the boundaries
of this region. Through the synthesis of the results of all of our simulations, we ob-
tained a method for predicting, in the high Reynolds number limit, the final velocity
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Fig. 5 Schematic showing the basics of the prediction method proposed here.

profile with a simple rule based on total absolute angular momentum conservation.
This prediction can be understood in terms of the diagram shown in figure 4a. The
effect of the instability is to thoroughly mix the negative absolute angular momen-
tum with the positive from the axis of the vortex out to a point r = r, that is just as far
as necessary to make the total or net absolute angular momentum within that radius
zero. For any initial given anticyclonic profile Vj(r), the value of 7. can determined
from the following formula:

/Orc Lo(r)rdr=0 (2)

where Lo(r) = r(Vo(r) + Qr).

The prediction then is that for inviscid flow the inertial instability will be stabi-
lized with the flow reaching a distribution such that L(r) =0 for 0 < r < r., while
L(r) = Lo(r) for r. < r. This profile for L is shown as the dark line in figure 4a. The
corresponding prediction for the equilibrated velocity field is

V(ir) =—Qr 0<r<re (3)

= Vo(r) re <T.

The profile for the equilibrated V is shown as the dark line in figure 4b.

4 Full 3D Simulation vs. Prediction

Now that we finally have ‘theories’ for the equilibration of both barotropic and iner-
tial instability, we can try to put the both of these together to predict the outcome of a
fully three-dimensional representation of the breakup of a vortex that involves both
instabilities. The situation that is most amenable for this kind of prediction would
be the case in which the vortex is initially barotropically stable but inertially un-
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stable. This would test the scenario proposed by Kloosterziel and van Heijst (1991)
and Orlandi and Carnevale (1999) in which there is a fast inertial instability that
transforms the flow into a barotropically unstable flow after which two-dimensional
processes tear the vortex apart creating the final combinations of monopoles, dipoles
and tripoles. Since we do not have an analytic prediction for the result of barotropic
instability for a general unstable profile, we will use a two-dimensional simula-
tion as a substitute. Thus the overall prediction is obtained by first taking an initial
velocity profile and determining the result of inertial instability acting alone by us-
ing equation (3). Then that inertially equilibrated profile, with an added random
small-scale perturbation, is used as the basis for a two-dimensional simulation of
the barotropic instability acting alone. Our program is schematically represented
in figure 5. The top part of the figure indicates the 3D simulation, the bottom the
prediction method consisting of the analytic prediction for the result of inertial in-
stability followed by the application of 2D simulation of the barotropic instability to
obtain the resulting profile. We then compare the results to see how faithful the pre-
diction can be. For this study we will consider a vortex from the family of vortices
introduced in section 2 above.

In equation (1), we gave a non-dimensional form of the vorticity field for this
family. The dimensional form of the velocity profile can be written as

V(r) = %az/pw“x “

where p = r/ ¥, £ is the length scale of the vortex, and % is the signed velocity
amplitude. We define the Rossby and Reynolds numbers for this flow as

Ro=%/f¥ and Re=%%L/v, (5)

respectively, where f = 2.2 is the Coriolis parameter.

As explained in section 2, this profile is barotropically stable for o < 1.85. For
the rest of the paper, we will consider only the case with o« = 1.8. The initial con-
dition for this problem is barotropically stable, although not far from the barotropic
stability boundary. As explained in section 3, the flow will be inertially unstable
where dL?/dr < 0. For the anticyclonic profile with o = 1.8, this condition can
only be met for Ro < —1. We have performed many three-dimensional simulations
sweeping through a range of Rossby numbers. The three-dimensional numerical
simulations were performed using a finite difference code in cylindrical geometry
(see Orlandi, 2000 for details). The code allows coordinate stretching in the ra-
dial direction, and this stretching was used to maximize the resolution in the region
0 < r/% < 2, where most of the important evolution takes place. The domain has
a maximum radius at r/.Z = 6. There was no stretching in the azimuthal or verti-
cal directions. The 3D simulations reported here are based on a resolution of 128
points for each coordinate. The simulations are performed with Re = 15000. For the
barotropic part of the prediction, we used the same cylindrical code but in a two-
dimensional mode. The resolution in the radial and azimuthal directions was kept
as in the fully three-dimensional simulations. For the two-dimensional simulations,
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Fig. 6 Comparison of the results of the three-dimensional simulation with the prediction. (a) Vor-
ticity field at the midplane at time r = 160~ in the fully three-dimensional simulation. (b) Pre-
dicted vorticity field at time T = 140f~! in the two-dimensional simulation of the barotropic part
of the prediction. The isolevels increase from -1.15f (black) to 0.65f (grey) with increments of
0.1f. The coordinates (x,y) are scaled with .Z. (o = 1.8, Ro = —2.35, Re = 15000).

Re = 15000 was also used. A random variation of one percent was added to the
amplitude of the initial azimuthal velocity at every point in the flow.

An example of how well the prediction can do is shown in figure 6. The prediction
for this Rossby number (Ro = —2.35) is for the formation of a tripole, as in the
laboratory experiment shown in figure 1. In figure 6a we show the vorticity field on
the mid-level horizontal plane at time ¢+ = 160. The result is a tripole as predicted.
The vorticity field compares well with the vorticity field from the prediction at time
T = 140 shown in figure 6b. In the 3D simulation the time ¢ is the time from when
the initial perturbed condition is allowed to evolve freely. In the prediction, 7 is the
time after which the barotropic simulation has been initiated based on a randomly
perturbed version of the inertially equilibrated profile. The prediction and the 3D
result correspond very closely in form, and they are not very far off quantitatively,
although the 3D simulation does have a minimum vorticity about 10 percent more
negative than found in the prediction. The orientation of the final structure is not very
important since this depends on the orientation of the initial small-scale perturbation
field. For example, if we took the perturbation field used in the prediction for this
case and simply rotated it by ¢ degrees, the final image of the prediction would be
rotated by that much. Since the random perturbation used in the 3D simulation and
in the 2D perturbation are unrelated except in scale and amplitude, but not in phase,
the relative orientation of the final results is irrelevant.

Another example is shown in figure 7. The prediction for this Rossby number
(Ro = —3.0) is for the formation of two dipoles propagating away from each other
as in the laboratory experiment shown in figure 2. The result from the 3D simulation
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Fig. 7 Comparison of the results of the three-dimensional simulation with the prediction. (a) Vor-
ticity field at the midplane at time r = 120/~ in the fully three-dimensional simulation. (b) Pre-
dicted vorticity field at time T = 80! in the two-dimensional simulation of the barotropic part of
the prediction. The isolevels increase from -1.15 f (black) to 0.65 f (grey) with increments of 0.1 f
(oe =1.8, Ro= —3.0, Re = 15000).

SIMULATION |FINAL STRUCTURE| PREDICTION

-3.5 < Ro <-24] TWODIPOLES |-35 < Ro <-23

-24 < Ro <-2.2 TRIPOLE 2.3 < Ro <-2.1

-22 < Ro <-1.0 MONOPOLE -2.1 < Ro <-1.0

Table 1 Comparison of regime boundary predictions with results from 3D simulations for the
anticyclone with o = 1.8.

is a set of dipoles as predicted. The image for the 3D simulation is the vorticity field
at the mid plane at time ¢t = 120. This field compares well with the vorticity in the
prediction at time T = 80. Here too, the prediction and the 3D result correspond very
closely.

The skill of our predictions can also be tested by considering the ranges of Ro
over which different outcomes occur. Simulations were performed for Ro ranging
from -1 down to -3.5. The results are shown table 1. The predicted regime bound-
aries are at Ro=-2.1 and -2.3. These are reasonably close to the values found in the
3D simulations, i.e. Ro=-2.2 and -2.4.
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5 Discussion

The comparison between the simulations and the prediction for the case o = 1.8 is
very promising. It suggests that for flows in which the inertial instability is much
faster than the barotropic, we can separate their effects for prediction purposes.
However, this will not be the case for all vortices. For example, as we increase the
value of o above 1.85 the barotropic instability will occur simultaneously with the
centrifugal instability from the initial time and the ratio of the barotropic instability
growth rate to the inertial instability growth rate will decrease with increasing . It
is reasonable to suspect that the higher the value of o the less skill this prediction
method will have. We are in the process of testing this limit.

The type of analysis used here may someday be useful in parameterizing the ef-
fect of vortex instabilities on the evolution of vortices in general circulation models
where those vortices are under-resolved.
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Quasigeostrophic and stratified turbulence
in the atmosphere

Peter Bartello

Abstract New simulations of rotating and stratified turbulence are presented. The
goal of simulating a large-scale régime dominated by quasigeostrophic flow and a
small-scale régime consistent with recent simulations of stratified turbulence was
successfully achieved. Interestingly, the transition scale exhibited a scaling break
in the energy spectrum much like that observed in the Gage-Nastrom atmospheric
data. An attempt is made to situate objectively these results amongst a variety of oth-
ers. The latter were obtained with atmospheric numerical models and observations
and employed different techniques to separate the turbulence into quasigeostrophic
(large-scale) and more general (small-scale) motions. Although the present idealised
simulations agree with observations at this level, much of the atmospheric context
is missing, there are other ways to produce the spectral scaling break and more ob-
servations are required.

1 Introduction

In the late 1970’s the Global Atmospheric Sampling Program (GARP) produced
wind and temperature data that allowed for the calculation of the atmospheric ki-
netic and potential energy spectra over the range from O(10*) km down to O(1)
km. It became apparent that the large-scale k;3 spectrum, where kj, is the horizontal
wavenumber, became more shallow at scales between 100 to 1000 km ([12, 13]).
Since these horizontal scales are far from being isotropic in the troposphere, initial
speculation in [12, 21] suggested that the shallow mesoscale range was due to an in-
verse cascade, along the lines of that observed in two-dimensional flow, from small
convective scales towards larger scales. On the other hand [39] argued that the shal-
low range was dominated by inertial gravity waves resulting from the larger-scale
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motion. [10] provided the conceptual framework in terms of a spectrum of gravity
waves, each on the threshold of breaking, radiating from either convective or shear
instabilities. Unfortunately, their framework predicted the form of the vertical en-
ergy spectrum, while the Gage-Nastrom data yielded only the horizontal spectrum.

The Gage-Lilly inverse cascade mechanism was subsequently explored numeri-
cally in [15] in idealized fluid dynamical simulations of stratified turbulence. They
found that an inverse cascade was not observed in stratified Boussinesq simulations
without rotation. Since the energy reached statistical stationarity with only small-
scale dissipation, it must have been transferred to smaller scales (see also the recent
work in [19]). Several simulations were performed in the 1990’s by several authors,
as reviewed in [30]. Of relevance here is the study [28], which showed that an inverse

cascade, along with a k;s/ 3 spectrum could be obtained when sufficient rotation was
added. It was shown in [1] that this régime corresponded to low-Rossby, low-Froude
dynamics leading to quasigeostrophy in the large scales, but could not be invoked at
convective scales.

Since then more data have become available supporting the shallowing of the
spectrum in the mesoscale, with spectral slopes in the -5/3 to -2 range. [23] calcu-
lated the structure functions of MOZAIC aircraft data (similar to those of GARP)
to deduce the cascade directions. It was found in [9, 26] that the mesoscale -5/3
range occured in conjunction with a downscale cascade, also in contradiction to the
Gage-Lilly phenomenology.

More recently, three studies have emerged that present further attempts to de-
scribe the mesoscale atmospheric spectrum from very different theoretical perspec-
tives. First is [38], claiming that both the steep large-scale spectrum and the shallow
mesoscale spectrum can be simulated using a two-layer quasigeostrophic model.
[33] showed that the small-scale spectrum could be the result of insufficient numer-
ical dissipation, whereupon [37] replied that it was correctly scaled to the atmo-
sphere.

The second recent study is [25], where it is argued that stratified Boussinesq
turbulence forced at large scales leads to a downscale cascade with horizontal
wavenumber spectrum proportional to £2/ 3k;5/ 3. Based on [24], it was reasoned
that such a stratified-only cascade could prevail as long as the velocity-based Rossby
number was greater than 0.1. It would seem reasonable to expect that rotational ef-
fects are at least present, if not predominant, over part of the mesoscale range as
it includes scales up to O(10?> — 10%) km. We aim to extend Lindborg’s study by
attempting to reproduce the transition to the large-scale steep spectrum, where rota-
tion is important.

Finally, the third and most recent set of studies are described in [35, 36]. They
have argued from the completely different perspective that the kink in the atmo-
spheric energy spectrum can be explained within quasigeostrophic theory, using a
more realistic top and bottom boundary. They suggest that the coupling between sur-
face quasigeostrophic flow, with no potential vorticity in the interior, and the interior
flow, naturally leads to a break in the slope of the energy spectrum. In the first ap-
proximation they view the tropopause as a frictionless surface of constant z with no
normal flow. If surface quasigeostrophy on the tropopause plays an important role
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in the atmosphere, it would suggest that at different heights between the ground and
the tropopause, the spectral transition occurs at different horizontal wavenumbers.
The observational record is currently unable to confirm or deny this as commercial
airplanes fly near the tropopause. Unfortunately, as the present study employs pe-
riodic boundary conditions in the vertical, these results cannot be used to shed any
light on the role of surfaces in a context more general than quasigeostrophy.

[1] presented numerical simulations of rotating stratified Boussinesq turbulence
in which the flow was decomposed into geostrophic and ageostrophic normal
modes. The simulations were initialized isotropically and allowed to decay un-
der the influence of hyperviscosity. The contribution to the total energy from the
geostrophic (low-frequency) and ageostrophic (high linear frequency) modes was
then calculated. At large times there emerged a steep geostrophic spectrum and
a much more shallow ageostrophic spectrum, such that they crossed at an inter-
mediate wavenumber. Following [43], the simulation results were intrepeted as a
first-order decoupling of the QG flow from the linear wave modes, implying a QG
inverse cascade of energy as in [8]. Statistical mechanical arguments, verified by
simulations, pointed to a downscale cascade of wave energy. Since this paper was
published fourteen years ago, the author has often speculated that this is the mech-
anism for the shallow mesoscale atmospheric spectrum. This picture is consistent
with the earlier work [39].

There has been recent interest in the mesoscale spectrum as realistic models now
resolve these scales cleanly. Although idealised fluid dynamical models and realis-
tic atmospheric models seemed irreconcilable in [22], there was an early hint of the
spectral transition in the Sky-Hi model in [18]. More recently, the WRF model has
clearly shown the break in [32]. When “divergence damping” was applied, the shal-
low mesoscale spectrum became steep, near k;3, lending support to the idea this
spectral zone is not completely dominated by rotational modes. [14] shows clear
spectral transitions in extensive sensitivity tests with a high-resolution global model.
Below the transition scale, rotational modes are more energetic than horizontally di-
vergent ones, but only by an order one factor. [42] also observed a spectral transition
in dry simulations of a baroclinic life cycle. They find a significant decrease in the
mesoscale range’s amplitude and a transition at higher wavenumbers than in the ob-
servations and conclude, in agreement with [14], that moist processes are required
to obtain the correct energy. It should be noted that scales below the transition scale
in all these realistic models are rather influenced by uncertain physics parameterisa-
tions and model diffusion. In addition, recent work on stratified turbulence has iden-
tified vertical resolution requirements (see e.g. [34, 19]) that are at best marginally
attained with current realistic models. Finally, the ECMWEF forcast model shows the
steep large-scale spectrum continuing down to its dissipation range and truncation.
This is likely due to semi-Lagrangian advection being too dissipative at third-order
interpolation (see [5]). [31] proposed making up the energy deficiency by stochasti-
cally forcing a white-noise spectrum in rotational modes.

It is worth noting that these results show similarities to recent work in realistic
ocean modelling, where [7] also noted a transition to a less steep spectrum at scales
well below the deformation radius. Such a transition was confirmed in the simu-
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lations of [17], where surface ageostrophic energy spectra were considerably less
steep than those of the total velocity.

[3] showed that the interplay between rotational and divergent modes was com-
pletely spurious when semi-implicit and split-explicit numerics were combined with
large time steps. In order to reproduce the resonance phenomena that determine
the interactions and hence the cascades, accurate temporal resolution of the linear
wave frequencies is required. In addition, [2] showed that excessive vertical diffu-
sion could result in a spurious inverse energy cascade resembling the Gage-Lilly
phenomenology. For these reasons it is important to understand the dry dynamics in
the mesoscale, both as a first step in formulating a theory, and as it will surely aide
in optimizing numerical approaches.

The main goal of this contribution is therefore to explore whether both ranges
of the atmospheric spectrum can be simulated at statistical stationarity in forced
Boussinesq flow and interpreted in terms of the cascades of geostrophic and ageo-
strophic modes. If so, this implies that divergent energy may play a significant role in
the mesoscale energy spectrum. We also seek to determine the wavenumber depen-
dence of this spectum. Indeed, a steep geostrophic modal spectrum can be obtained
in conjunction with a more shallow divergent modal spectrum at statistical station-
arity. Given large-scale geostrophy and a sufficiently large scale separation, the two
cross. Towards smaller scales, the two types of modes display parallel spectra, in-
dicating the linear terms defining them are no longer predominant. Although this
picture is consistent with the observations, caution is required since the simplicity
of the context does not capture much of the atmosphere.

2 Divergent and geostrophic modes

As a first approximation to atmospheric flow, we examine the rotating stratified
Boussinesq equations. In this section important features of the normal-mode de-
composition presented in [1] are pointed out. In terms of the velocity u; and the
buoyancy variable b the inviscid equations on an f-plane are,
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where f is the Coriolis parameter and N is the Brunt-Viisild frequency. The Rossby
number is Ro = U/fL, where U and L are characteristic velocity and horizontal
length scales. The Froude number is Fr = U/NH, with H being a characteristic
vertical scale. (Only the vertical Froude number will be referred to here.) Forcing
and viscous terms have been omitted, but the numerical section below discusses the
forcing, hyperviscosity and Rayleigh damping employed in this study.

The variables that diagonalise the linear terms are composed of the zero-frequency
geostrophic mode and two inertia-gravity modes whose frequencies are =0, where
02 = (f*k2+N?k2)/k*. The total energy can be written Er = Eg + E4, where E is
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the geostrophic energy and Ej4 is the ageostrophic energy. Applying the projection
onto the new variables is straightforward for both the usual variables and the various
terms in their tendency equations. Definitions of spectra follow in the standard way
(see e.g. [20]).

It was shown in [41] that to leading order when the Froude number is small,
the mean-square potential vorticity (potential enstrophy) is V ~ V. In other words,
only the geostrophic modes contribute to the linear PV (see also [11]). Both ver-
tical vorticity and vertical buoyancy gradients contribute to the geostrophic mode
(as in the PV). The ageostrophic modes account for all horizontal divergence, ver-
tical velocity and the inertial-wave component of the vertical vorticity. The latter
underlines differences between these 3D normal modes and the more usual vorticity
and divergence decomposition on a constant vertical level. Since both geostrophic
and ageostrophic modes contribute to the vertical vorticity on a 2D surface, recent
observational and model results concerning relative energies of rotational and di-
vergent motions must be interpreted with caution as these do not possess the linear
PV-based dynamical distinction of our decomposition. More work needs to be done
to facilitate such comparisons.

Finally, there is the delicate issue of “balance” in large-scale atmospheric flow.
Since balance is more subtle than simple geostrophy, there is a contribution to
the ageostrophic modes that describes higher-order corrections to balance rather
than high-frequency waves. For example, [41] compared model vertical velocities
to those obtained with the “omega equation” and the geostrophic modes (see e.g.
[16]). They found the true variance exceeded the QG level by a factor of over seven
at a velocity-based Rossby number of 0.09, implying that the unbalanced contribu-
tion far exceeds the correction to geostrophy at typical mesoscale Rossby numbers.
There are of course higher order definitions of balance, but for the purpose at hand
it is sufficient simply to avoid using the term “waves” to describe the ageostrophic
modes in a nonlinear context.

3 The numerical configuration

The Boussinesq equations were integrated using a pseudo-spectral method in triply-
periodic cartesian f-plane geometry. This configuration is standard in turbulence
studies and, while it does not resemble the atmosphere, the aim is to see if it con-
tains the necessary ingredients for the spectral transition, i.e. the modal interplay in
turbulence that is sufficiently QG at large scale.

Given the atmospheric ratio N to f is most often quoted as 100 to one, we would
have preferred to integrate the model on a domain whose vertical periodicity length
was one one hundredth of its horizontal length. The approach would then be to use
N/f =100 and to force a set of quasigeostrophic baroclinic Fourier modes whose
length scale ratio was also 100 to one. This represents the large-scale injection of
quasigeostrophic energy from baroclinic instability. From these QG large scales we
wish to simulate the transition(s) to the mesoscale régime, where rotation is less
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important, down to the almost isotropic scales required for accurate simulation of
stratified turbulence, as described in [34]. The latter requires an isotropic resolution.

Unfortunately, the available computing resources make this impossible. In nu-
merical simulations that resolve the dissipation explicitly, scales below O(10) grid
points, at least, are dominated by dissipation. If we require approximately 50 vertical
grid points to ensure that at least some of the dynamics are not swamped by model
dissipation (this would require hyperviscosity), then we would need 5000 horizontal
grid points. It is possible that this is, or shortly will be, at the limit of today’s com-
puters. In any event, the same logic and strategy was adopted, but the ratio N/ f was
reduced to ten. As a result we must sacrifice any hope of exact atmospheric scaling
of the results.

The model employs the de-aliased pseudo-spectral method with leap-frog time
stepping and a weak Robert filter. The buoyancy variable b and the vorticity are
integrated with the normal-mode projections being applied only at output times.
The collocation grid was 500 x 500 x 50. The vertical domain size was one tenth
that of the horizontal domain such that Ax = Ay = Az.

The forcing takes the form Flf/ ) = C(/>(k)Gl((j )(1), where j specifies the normal
mode being forced, C/) (k) is the constant-in-time wavevector-dependent ampli-
tude, and Gl((j ) (¢) is a random process that gives the time dependence. Gl((J ) (¢) satis-
fies <G|((/) (t)) =0 and <G|(<j) (to)GE,”) (to+1)) = 8juSpe /7, where the decorrelation
time, T, is set at 25 timesteps in order to inhibit computational 2A¢ oscillations.
Gl((j )(t) was computed by drawing a Gaussian random number f,, (with zero mean
and unit variance) at every time level n, setting Gl((j ) (nAt) = aGl<(j ) ((n=1D)At)+ B fn,
and requiring @ = €2*/7 and o2 4+ % = 1.

The horizontally-isotropic forcing was applied to a band of wavenumbers centred
on horizontal wavenumber two and was active only at vertical wavenumbers +20.
A set of baroclinic geostrophic modes was forced such that C\/) (k) is non-zero only
if |k, —2| < 1, |k.| = 20 and j = 0 in which case it was C(*) (k) = a(k, — 1)(3 — k),
with a = 0.09. This forcing term is added to the nonlinear version of the normal-
mode amplitude equation.

At the numerical resolutions employed in this study, the use of the Laplacian
dissipation operator would preclude an inertial range. One solution is to employ a
sub-grid scale parameterization. Another is to use an iterated Laplacian (i.e. hyper-
viscosity), which restricts the effects of dissipation to a narrow range of scales and
is trivially implemented in a pseudo-spectral model. [4] discusses the relationship
between hyperviscosity and eddy viscosity in rotating stratified turbulence.

Cylindrical hyperviscosity was employed to be consistent with the spectral trun-
cation. The dissipation of momentum and buoyancy are given by identical opera-
tors Dy, = Dj, = vip(—1)"1V2" + v (—1)"+192" /972", In all simulations n = 4 and
v, = v, = 8.4 x 1077, yielding a dissipation range of at least a decade in all runs.
In addition, since most of the simulations involve low Rossby and Froude numbers,
there is an approximate decoupling of geostrophic modes from ageostrophic modes,
at least in the large scales. In this case a strong inverse cascade of geostrophic energy
results and we have dealt with it by including a Rayleigh damping term in all vari-
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ables with coefficient of 0.1, corresponding to an e-folding time of approximately
200 eddy turnover times, based on rms total vorticity. Physically, this corresponds
to the simplest representation (Ekman) of a boundary layer.

4 Results

A rather inefficient QG model can be obtained by setting the ageostrophic modal
amplitudes to zero at every time step in the present model (see e.g. [29]). This trun-
cation was applied to the baroclinic forcing described above and spun up to statisti-
cal stationarity, providing a quasigeostrophic initial condition for all the simulations
described below. They were simply the continuations of the QG spin-up simulation
at various values of f and N after ceasing to project the results onto the geostrophic
modes only.

10 10
Ro=2.24 —
R0=0.74
R0=0.47 -
M R0=0.21 -
Ro=0.11
1f 1 N 3
_§~ 8| /\
T i
0.1¢ 0.1
Ro=2.24 —
Ro=0.74
R0=0.47 e
R0=0.21
Ro=0.11
0.01 0.0
30 31 32 33 34 35 36 37 38 39 40 30 31 32 33 34 35 36 37 38 39 40
time time

Fig. 1 Time series of the Rossby (left) and vertical Froude (right) numbers. All simulations were
initialised with statistically stationary fields from a quasigeostrophic model. Quantities discussed
below were averaged over the period beginning at r = 33.

In Figure 1 we display time series of the Rossby and Froude numbers. Vorticity-
based quantities (Ro = (w?)'/2/f, Fr = (w?)'/? /N) were employed to emphasise
the small-scale dynamics in this search for a spectral kink. It has been pointed out
that, when the spectrum is shallow, vorticity-based quantities are dependent on the
Reynolds number. The simulations presented below are rather dominated by quasi-
geostrophic large-scale flows and this was not a problem.

The figure shows that statistical stationarity in the presence of ageostrophic
modes has been achieved. Note there is little change from the curves’ initial values
at low Ro and Fr, as the ageostrophic modes saturate at relatively low amplitudes.
As these curves are normalised vorticities, not even the small scales of the flow are
much affected. At large Ro and Fr, there is an initial adjustment, followed by a
longer stationary régime. Average quantities were obtained over 33 < ¢ < 40.
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Fig. 2 The average Froude number versus the average Rossby number. Quasigeostrophic scaling
implies Ro ~ Fr, whereas recent work on stratified turbulence suggests Fr ~ 1 when rotation is
not important.

It is important to know the extent to which quasigeostrophic scaling holds. Large-
scale quasigeostrophy may be the result of the forcing, with & ~ % or Ro ~ Fr, but
does this extend down to the small scales and the vorticity field? In Figure 2 we
plot the average vertical Froude number versus Rossby number for all simulations.
Quasigeostrophic scaling is evident over the low-Ro range in that the two stay pro-
portional to each other. Recently, [6], [40] and [25] have noted the tendency for
stratified turbulence to adjust to Fr ~ 1 when rotation is absent or negligible. This
seems consistent with the single point at the largest Rossby number. For a more
complete look at this transition see [41].
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Fig. 3 The average horizontal energy spectrum at various Rossby numbers.
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Figure 3 displays the time-average total energy spectrum as a function of horizon-
tal wavenumber for a variety of Rossby numbers. A small kink resembling the at-
mospheric spectrum is apparent at the larger Rossby numbers. At very small Rossby
numbers the spectrum is very steep and shows only a weak dependence on Ro. In
this limit it is indistinguishable from the quasigeostrophic spin-up simulation (not
shown).
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Fig. 4 The averaged total energy spectrum of the simulation at the highest Ro, along with its
contributions from geostrophic modes and ageostrophic modes. Left: the usual log-log plot, Right:
lin-log plot compensated by k%/3.

Given the results of Figures 2 and 3, in Figure 4 we take a closer look at the
simulation with the highest Ro. Here, we decompose the energy into geostrophic

and ageostrophic parts. Also displayed is a lin-log spectrum compensated by kZ/ It

appears the ageostrophic spectrum is quite close to being proportional to k;s/ 3 At
higher ky, if Re is large enough, geostrophic and ageostrophic spectra are expected
to become parallel in the ratio of 1:2 as their quasi-linear dynamical basis is under-
mined at these scales. Note that this simulation was repeated with a Rayleigh dissi-
pation extending from the minimum wavenumber out to only the third wavenumber
bin, beyond which it was set to zero. Apart from slightly higher energies near the
transition scale, the results were qualitatively similar with an equally clear spectral
transition.

In Figure 5 horizontal (top panel) and vertical (bottom panel) cross sections of lo-
cal Ro= o,/ f are displayed for the simulation at the largest global Ro = (w?) 12/f.
In the early stages of ageostrophic modal growth, anticyclonic regions showed more
small-scale activity than cyclonic ones, consistent with inertial instability (see also
[27]). After statistical stationarity was reached (as in the figure), the vorticity field
appeared as a mixture of small-scale structure superimposed on the long filaments
of QG and 2D turbulence. Note that, while the Rossby number based on the rms
vertical vorticity was only approximately 2.2, point values exceed +25. As in many
other simulations of turbulence, the histogram of grid-point vorticities showed close
to exponential tails.
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Fig. 5 The final vorticity field normalised by the Coriolis parameter, f, for the simulation with
largest global Rossby number, Ro = 2.24. Top panel: xy-plane, Bottom panel: xz-plane.

In Figure 6 the time-average flux of total energy is shown. At low Ro this is
very negative at low kj,, indicating a transfer to larger scales. Since the forcing is
at horizontal wavenumber two, this is absorbed by the Rayleigh dissipation term.
At larger kj, the flux returns to zero downscale of the forcing, but the wavenumber
at which it does so is an increasing function of Ro. Ultimately, at the highest Ro
simulated, the flux is significant and downscale until the dissipation is reached near
the truncation scale. The spectral transition around k;, ~ 20 that is clearly visible in
the energy spectrum is much less obvious in the flux spectrum.

5 Conclusions

Although many elements of the atmospheric context are missing in this highly ide-
alized study, we have clearly managed to simulate a robust spectrum with a large-
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Fig. 6 Spectral energy flux as a function of horizontal wavenumber at various Rossby numbers.
Positive (respectively negative) fluxes imply a transfer to smaller (respectively larger) scales.

scale steep range and a small-scale shallow range. While at this resolution only
one Rossby number could show the transition clearly, and only one low value of
N/ f was employed, the small-scale damping was well resolved and the result was
insensitive to the Rayleigh dissipation at high wavenumbers. The interpretation in
terms of the first-order decoupling of vortical from ageostrophic modes applies to
the large scales at least. At larger Rossby number, this decoupling was not present
in the small-scale shallow range, where statistics were consistent with stratified tur-
bulence, as discussed in [25].

The relationship between the imbalance of the “interior flow” simulated here and
surface processes discussed in a QG context in [35, 36] needs to be elucidated. In
particular, in order to test their relative roles, it would be necessary to place upper
and lower surfaces within a non-hydrostatic Boussinesq framework.

The issue of the exact spectral slopes also needs to be examined using more real-
istic values of N/ f and at higher resolution. The latter would also permit testing the
sensitivity of the transition simulated here to the Reynolds number, as well as a more
careful examination of the extent to which the small-scale régime is consistent with
recent studies of stratified turbulence. Two of these ([19] and [40]) noted spuriously
steep horizontal energy spectra with insufficient vertical resolution. In light of this
it seems surprising that hydrostatic GCM models are able to simulate the shallow
mesoscale range. In order to determine whether the same dynamics are present in
all models, work must be done on the relative roles of PV-possessing modes and
those without PV in more realistic geometry. Finally, as stressed recently by [42],
the analysis must be fully three-dimensional to account for vertical fluxes.
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A Perspective on Submesoscale Geophysical
Turbulence

James C. McWilliams

1 The Dynamical Regime of Submesoscale Turbulence

Define the submesoscale regime as the geophysical fluid dynamics that arise from
advective processes and that have a marginal degree of dynamical control by plan-
etary rotation and stable density stratification. The degrees are conventionally mea-
sured by a Rossby number, Ro = V/fL (V a horizontal speed, f the Coriolis fre-
quency, L a horizontal length), and a Froude number, Fr =V /NH (N a stratifica-
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Fig. 1 Sketch of the flow of dynamical control and energy from the global forcing of the general
circulation through the balanced mesoscale and partially-balanced submesoscale ranges down to
the isotropic microscale where dissipation occurs.
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tion frequency, H a vertical length), respectively; small Ro, Fr imply strong control.
This regime lies in between the highly anisotropic (H < L) planetary and mesoscale
regimes on larger scales — with small Ro, Fr, hence approximate diagnostic force
balances: geostrophic in the horizontal direction and hydrostatic in the vertical direc-
tion — and the more isotropic microscale regime — with large Ro, Fr, hence little or
no rotational, stratified control and frequent violations of diagnostic force balance.
The activation of the submesoscale is primarily by energy transfer from mesoscale
flows. Submesoscale turbulence occurs in both the ocean and atmosphere on hori-
zontal scales < ¢(10) km and time scales < ¢(10°) s. Inertia-gravity waves are
considered a separate phenomenon since they have primarily non-advective genera-
tion and evolution, although they often co-populate the same space and time scales
as submesoscale flows. Clouds are also considered as a separate phenomenon not
considered here. Thus, the submesoscale regime is perhaps less simply matched
to the atmosphere than the ocean, though relevant for both. My focus below is
oceanic.

Much of our dynamical understanding of larger-scale dynamics comes from the
asymptotic approximation with Ro Fr — 0, called quasigeostrophy or, more gen-
erally, balanced dynamics. Two important properties of quasigeostrophic turbulence
[4] are (1) inverse energy cascade and vanishing energy dissipation rate when the
Reynolds number Re = VL/v (v the viscosity)) is large, and (2) asymptotic consis-
tency of the foundational assumptions of small Ro, Fr in turbulent spectra even in
the large horizontal and vertical wavenumber ranges.

Inverse cascade poses a conundrum about the energy balance of the general cir-
culation: how is climate equilibrium achieved with sufficient dissipation to balance
continual large-scale forcing by planetary radiation and surface wind stress? Quasi-
geostrophic asymptotic consistency says there is no relief from this conundrum in
the small-scale limit, apart from whatever dissipation might occur in parameterized
turbulent boundary layers. However, another answer might come from the partial
invalidity of these two properties of balanced, large-scale flows if there were mech-
anisms for forward energy cascade as a route to unbalanced turbulence and viscous
dissipation as in Kolmogorov’s theory (Fig. 1). This possibility is now known to be
true, and submesoscale turbulence is the collective term for its occurrence. We are
still in an early phase of learning about submesoscale turbulence, as previous com-
putational and observational limitations (plus a few mental ones as well) are now
being overcome.

There is certainly the possibility that submesoscale flows, as defined here, might
interact with inertia-gravity waves because of their scale overlap. Similarly, as part
of their loss of geostrophic, hydrostatic balance, submesoscale flows can sometimes
exhibit “spontaneous emission” of subsequently propagating inertia-gravity waves
[24; 26]. However, this is not an evident feature of the illustrative flows presented in
this essay, where the transfer of energy from the mesoscale into the submesoscale is
primarily a local advective process.
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2 The Frontogenetic Route

Two computational testbed problems for the possibility of submesoscale turbulence
are sketched in Fig. 2. In each problem, as with the general circulation itself, there
is a mean, large-scale forcing of a mean circulation that is unstable to approxi-
mately quasigeostrophic mesoscale eddies that evolve into turbulence. Calculations
are made with large computational grids and large Re, and they are integrated to a
period of stationary statistical equilibrium.

With increasing Re and grid size, each of these simulations spontaneously ex-
hibits a submesoscale transition evident in much bigger small-scale variances in
velocity, buoyancy (temperature), and vorticity than are consistent with quasi-
geostrophic turbulent cascades. The initiating mechanism is frontogenesis, locally
acting much as originally described in the atmospheric synoptic regime [10], but
in the oceanic context it is much more pervasive than historically envisioned in the
weather context: near-surface temperature gradients in the presence of horizontal
deformation flows (e.g., uy = —ox, vg = ay, wy = 0, with 2a the rate of strain)
have super-exponentially growing vertical and horizontal gradients in combination
with a geostrophic along-front flow and an ageostrophic secondary circulation in the
cross-frontal section. In these flows mesoscale eddies provide the important defor-
mation flows around their periphery, and the submesoscale variances are largest
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Fig. 2 Idealized problems for investigating the transition from mesoscale to submesoscale tur-
bulence. The Eastern Boundary Current has an equatorward wind forcing, flat bottom, straight
coastline, variable f(y), open lateral boundaries (except at the coast), and a shallow thermocline.
Offshore surface Ekman transport causes coastal upwelling. Eady’s problem has an artificially-
maintained uniform vertical shear flow with uniform N and f, horizontal periodicity, and flux-free
top and bottom boundaries. [2; 20]
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there (Fig. 3). Ro and Fr become locally &'(1) or larger because of their large
horizontal and vertical shears, even while Ro, Fr remain small for the mean and
mesoscale flow components. For example, the vertical vorticity @* is larger than f
many places in Fig. 3, and this is a local measure of Ro > 1. Frontogenesis often
leads to submesoscale frontal instability [18] (Fig. 4), generating frontal meanders
and fragmentation, and giving rise to coherent vortices. These mechanisms develop
positive (cyclonic) skewness in ®* and negative (downwelling) skewness in verti-
cal velocity w, both as expected from frontogenesis theory. The w magnitudes are
much larger than those associated with larger flow scales, indicating that the subme-
soscale will dominate vertical material and buoyancy fluxes near the surface [11].
The vertical buoyancy flux (W'T’ > 0) has a restratifying effect on the mean ver-
tical buoyancy profile, thus working against the destratifying microscale turbulent
fluxes (i.e., mixing) in the surface boundary layer; it also converts potential energy
to kinetic. Overall dissipation in the upper ocean is enhanced by the surface concen-
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Fig. 3 Snapshot of surface vertical vorticity ®° normalized by f in an idealized Eastern Boundary
Current. Intense submesoscale activity — fronts, frontal instabilities, and coherent vortices —
occurs near the boundary and surrounding the mesoscale eddy centers. [2]
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tration of submesoscale frontogenesis coincident with wind-driven boundary-layer
turbulence.

Diagnostic force balances are only partially valid in the submesoscale range, con-
sistent with the theoretically predicted conditions for loss of temporal integrability
with purely balanced dynamics [27].

Following the path of Kolmogorov for isotropic, homogeneous (non-rotating, un-
stratified) turbulence, basic descriptions of turbulence are often made with wavenum-
ber spectra and spectral fluxes'. In the submesoscale regime the kinetic energy (KE)
is primarily horizontal, and the most relevant potential energy is the available com-
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Fig. 4 Instantaneous horizontal maps of vertical velocity w (left column) and temperature 7T (right
column) in Eady’s flow at an interior vertical level. Units for the dependent variables and coordinate
axes are non-dimensional. The spatial extent of the subdomain is a small fraction of both the total
domain and the first baroclinic deformation radius. In the top row the dominant submesoscale front
in T is stable and has a frontogenetic secondary circulation in w (downward on the dense side and

upward on the light side). In the bottom row the dominant front is actively unstable (primarily by
horizontal shear instability). [20]

! Most natural systems are inhomogeneous and exhibit intermittency in the form of spatially sparse
coherent structures (e.g., fronts). So a spectral description of turbulent dynamics is only a partial
characterization at best.
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ponent (APE) [9]. In the range of wavenumbers dominated by submesoscale fron-
togenesis, the horizontal wavenumber kj, spectra for horizontal velocity (KE) and
temperature have approximately k;z shapes (shallower than the quasigeostrophic
enstrophy inertial-range shape of kf). This is consistent with ship-survey and satel-
lite measurements [7] in the relevant wavenumber range. For even smaller scales,
which we associate with the arrest of frontogenesis through frontal instability, both

the KE and APE spectra shallow slightly toward a k;s/ 3 shape, with the KE spec-
trum amplitude about 3 to 4 times larger than for APE [21]. Advective spectral
energy fluxes show forward APE flux at almost all k;, and show inverse flux for
KE in the mesoscale and larger submesoscale ranges, reversing to forward flux at
larger wavenumbers [2; 20]. The spectral fluxes are nearly independent of kj, in the
sub-frontal range, consistent with the concept of a constant-flux, inertial-cascade
range. Thus, at the smallest scales, both KE and APE exhibit forward energy cas-
cades that plausibly continue down through the microscales to viscous and diffusive
energy dissipation and provide significant energy for diapycnal material mixing (of-
ten attributed to breaking inertia-gravity waves). These idealized problems give a
qualitatively sufficient answer to the conundrum of balanced inverse energy cascade
and a turbulent route to dissipation (Sec. 1), though it has yet to be quantified for
the general circulation.

Geophysical fluid dynamicists have found the asymptotic model called surface
quasigeostrophy (SQG) a useful paradigm. SQG is defined as geostrophic, hydro-
static balance for flows with nonzero surface horizontal buoyancy gradient and
zero interior potential vorticity [8]. It manifests frontogenesis, shallow wavenum-
ber spectra, and forward cascade of APE near the surface. On the other hand, SQG
does not allow the types of frontal instability that seem most relevant, violations of
diagnostic force balance, ®* and w skewness, nor forward energy flux for volume-
integrated KE + APE.

3 Other Submesoscale Generation Routes

Mixed-Layer Instability

Because of boundary-layer mixing, near-surface stratification is often weak. This
implies that the quasigeostrophic baroclinic instability of a vertically sheared current
occurs with a smaller horizontal scale than the baroclinic deformation radius typical
of mesoscale currents [1]. This mechanism is therefore a source of submesoscale
energy in the upper ocean. It is not an important process in the two flows in Sec.
2, neither of which have a thick mixed layer that favors this type of instability;
nevertheless, once generated, these submesoscale currents may undergo analogous
frontogenetic and frontal instability on even smaller scales. However, in a simulation
of wintertime circulation over the Argentinian shelf [3], outbreaks of submesoscale
mixed-layer instability arise even in the presence of parameterized boundary-layer
turbulence.
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Wakes and Topography

Flows past islands and headlands develop narrow lateral boundary layers whose in-
stabilities may spawn mesoscale and submesoscale eddies after separation [6]. More
generally, Earth’s topography has a broad kj, spectrum, so adjacent mesoscale flows
can transfer energy directly into the submesoscale range, either through balanced
dynamics or as lee or boundary-trapped waves (quasi-stationary inertia-gravity
waves). This mechanism is as yet little explored for turbulent flows, but it seems
likely to be an important source of submesoscale energization, loss of diagnostic
force balance, and forward energy cascade.

Localized Diapycnal Mixing

In a rotating, stratified fluid, a localized diapycnal mixing event in the interior is fol-
lowed by adjustment toward a balanced, isolated, anticyclonic vortex after radiating
inertia-gravity waves [17]. The plausible sources of mixing are bottom boundary
interactions (e.g., a detaching turbulent boundary layer) or breaking inertia-gravity
waves [13]. The oceanic interior is known to be full of sparsely distributed, long-
lived anticyclones [16].
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Fig. 5 Sketch of the configuration for 2D filamentogenesis in a horizontal deformation flow
(ug,v4,0). Lateral and vertical scales of the filament shrink with time; the buoyancy field b and
along-filament flow v stay close to hydrostatic, geostrophic balance. The secondary circulation
(u,0,w) has two cells with intense central surface convergence and downwelling. [19]
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Filamentogenesis

Balanced mesoscale dynamics are effective at generating elongated filaments in po-
tential vorticity and material concentrations (tracers) along interior isopycnal sur-
faces and in temperature or other tracers along the surface. The filaments them-
selves have an essentially passive dynamics in quasigeostrophy, including in SQG,
when they are under the influence of a strong strain field associated with the larger
mesoscale eddies; nevertheless, they do have an associated ageostrophic secondary
circulation that may have large w near the surface [11]. In more general dynamics
the filamentary gradients can grow super-exponentially in a deformation flow, anal-
ogous to frontogenesis, and exhibit stronger secondary circulations with an asym-
metric dependence on the sign of the buoyancy (temperature) anomaly in the fil-
amentary core [19]. A surface cold filament (Fig. 5) has intense surface conver-
gence and central downwelling. Since surface convergence concentrates buoyant
surfactants, which in turn suppresses short surface gravity waves, filamentogenesis
is a plausible explanation for the abundant lines visible in reflectance images (e.g.,
sun glint and Synthetic Aperture Radar) with approximately submesoscale spac-
ing.

Spirals on the Sea
An old mystery is the spiral patterns of surfactant lines frequently seen in reflectance

images; from the spiral-arm orientation, they are interpreted as cyclonic vortices, al-
though this has never been confirmed with measurements in situ [22]. In a regional
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Fig. 6 Snapshot of a subdomain from a regional simulation of the upwelling circulation off Peru
[5] showing a submesoscale surface cyclonic spiral vortex with frontal and filamentary arms seen
in @/ f (left) and w (right) in a near-surface horizontal plane. Notice the mixture of two-signed
frontal and one-signed filamentary lines in the secondary circulation outside the vortex core.
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simulation of the equilibrium upwelling circulation off Peru [5], the use of aggres-
sive grid-refinement into the submesoscale range allows spontaneous development
of submesoscale spiral eddies through cyclogenesis by the roll-up of antecedent
frontal and filamentary lines. In their mature stage the vortices show active verti-
cal velocity and surface convergence along the spiral arms left over from the vortex
generation event (Fig. 6). An unresolved question is why near-surface submesoscale
activity is dominated by different mixtures of frontogenesis, mixed-layer instability,
filamentogenesis, or spiral eddy generation in different situations; our present hy-
pothesis is that the upper-ocean stratification profile has a strong role in this selec-
tion.

4 Stratified, Non-Rotating Turbulence

Strong stratification even in the absence of rotation supports two distinct classes
of flow: internal gravity waves and stratified turbulence. The latter has anisotropic
flows with small w, sometimes referred to as pancake vortices, and its available di-
agnostic force balance state is hydrostatic and cyclostrophic (not geostrophic since
f =0). The two classes often evolve with little mutual interaction. For a long time
the energy cascade in stratified turbulence was poorly determined, but recent simu-
lations with large Re show that the cascade is almost entirely in the forward direction
and furthermore leads to large vertical shear with local Fr ~ 1 (i.e., H =V /N) and
to overturning motions at small scales reminiscent of Kelvin-Helmholtz instability
[23; 12]. When Fr, = V/NL is small enough, an inertial-cascade range develops

with nearly constant energy flux and a wavenumber spectrum shape of k;s/ 3 for
both KE and APE, with the KE spectrum amplitude about 3 to 4 times larger than
APE [14]. There is a striking phenomenological similarity between the energy cas-
cade behaviors in stratified turbulence and in rotating, stratified turbulence in the
sub-frontal range (Sec. 2). Extending from the purely stratified regime with F;, < 1,
increased f initiates a transition to some inverse energy cascade at larger scales [25].
These results suggest a rather seamless continuity from the submesoscale regime
down to the isotropization events that terminate the stratified regime and initiate the
microscale regime (Fig. 1). The inertial-range in stratified turbulence is a possible
explanation for measured wavenumber spectra [15]. However, in a space of possi-
ble (Ro, Fry,) values, it remains to be determined when, with increasing kj, in the
energy cascades toward smaller scales, rotational dynamical control wanes before
stratified control does. For example, centrifugal instability (i.e., due to a change in
sign of potential vorticity) is a process that may make a direct transition from rota-
tional control to microscale turbulence without an intervening stratified turbulence
regime.
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5 Summary

In a rotating, stratified fluid, submesoscale turbulence may arise despite the stric-
tures implied by quasigeostrophic dynamics. Submesoscale turbulence is character-
ized by forward energy cascade and partial violation of diagnostic force balance,
providing a conduit from the planetary general circulation down to microscale mix-
ing and dissipation. The variety of possible submesoscale phenomena in the atmo-
sphere and ocean is still being explored.

Given a sustained fluctuation energy through-put (e.g., from mean-flow instabil-
ity) and dynamical equilibration away from solid boundaries and with large enough
Re, then the following propositions seem to be valid:

¢ rotating, stratified turbulence: for any energy-peak Ro, Fr < 1 — no matter
how small — frontogenesis and other mechanisms induce a submesoscale transi-
tion to an anisotropic, unbalanced forward energy cascade with local Ro, Fr ~ 1
and increasing with k;,.

* non-rotating, stratified turbulence:
For any energy-peak Fry,, H/L < 1 — no matter how small — the forward energy
cascade extends in k;, to Kelvin-Helmholtz overturning with local Fr,H/L ~ 1,
hence a transition to Kolmogorov’s isotropic regime.

These are non-uniform Ro, Fr — 0 asymptotic behaviors for multi-scale rotating,
stratified turbulence at large Re, and are contrary to historical understanding.
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Spectra and Distribution Functions of Stably
Stratified Turbulence

Jackson R. Herring & Yoshifumi Kimura

Abstract We examine homogeneous stably stratified turbulence both freely decay-
ing and randomly forced cases. Our principal focus is the scale size distribution of
the eddies and waves (spectra) comprising the flow. We also present results for the
rate of decay for unforced flows. The tools used in both spectral and decay studies
are direct numerical simulations (DNS), combined with elements of the statistical
theory of turbulence. For situationally maintained flows, our results are consistent
with spectra that are steeper than Kolmogorov at large scales but fair over into the
normal isotropic inertial range at smaller scales. The DNS decay rate of freely de-
caying strongly stratified turbulence is consistent with #~!. For stratified flow, our
simulations are consistent with a near equilibration between waves and vortical ed-
dies.

1 Equations of Motion and their Economical Representation

The Navier—Stokes equations under the Boussinesq approximation may be non-
dimensionalized as:

(0 —VHu=—-Vp—u-Vu—§Ne+2Q xu (1)
(0, —oV?)0 =Nw—u-Vo 2)
V-u=0. (3)
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Here u = (u,v,w) and 6 is the deviation of the temperature field from its mean,
which has constant vertical gradient. We shall study the solutions to the N-S system
numerically in the homogeneous context in which the Fourier transforms of the
fields in (1), (2), (3) are the variables advanced Forward in time from their initial
values. We find it convenient to represent the velocity field u(k) by:

u e1 (k)¢ (k) + 2 (k) s (k)
e o= (kxg)/[kxg| €
e ko (k> 8) /[l x (kx g)
where e is:
eletel [ sinp  —cos¢ 0 5)
el el e3 [ | costcosp cos¥sing —sind
We may replace the Fourier transforms of u(k, ), 0 (k,) by (¢1,¢2,0) =¥ (i=1,2,3):
AY +L¥ =NL 6)
where
0 - 0
L={¢% 0 & 7
—-0-~0

Here, € = 2Qcos?, ¥ = Nsind, and NL represents the nonlinear terms: NL =
(F\,F», F3). Eigenvalues of L are A = i(+06,0), 6 = V/N2sin2 8 + 4Q2cos2 9.

In the discussion to follow, we shall sometimes find it convenient to employ a
representation of (6) in which the linear part is diagonal. The transformation that
diagonalizes (6) and (7) is:

7 ic/V2 —ic/V2 s ) (1
v =14 1/V2 1/Vv2 0 2 0 (®)
Y3 is/\2 —is/\2 —c 3

R X

where, y; = (Li|y), and ¢ = € /0, s = . /c. Here |L;) are the eigen vectors of L.
The matrix above has its inverse as its conjugate adjoint. The equations for y; are
then:

J+ic 0 0 X1 —ic 1 —is F
0 9—ic 0% mbs=4iclis 28 9)
0 0 3; X3 s 0 —c 2
with
X1 —ic 1 —is (Z)l
X2 = ic 1 is (023 (10)
X3 s 0 ¢ 0

Recall (¢1,¢2,60) = (y1, vz, w3) and (8) which says:
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ic( ) = 1( +x2) =
= — — ) , = — s =
Vi > X1 —X2)+5X3, 42 NG X1+X2),¥3

is

2(%1 —x2)—cxs (1)

S
N

2 Some Historical Comments

Large scale atmospheric motion is largely two—dimensional both because of ge-
ometrical constraints and because its stable stratification and rotation combine to
give a dynamics that is to first order layered two-dimensional flow. The observed
horizontal spectrum in the mesoscale range has been measured by Nastrom, Gage,
& Jasperson (1984) to be near k| ~ k=373, Here, k, = (kx,ky,O). This suggested
to the above authors that the dynamics could be an inverse cascade range which is
forced at small thunder-storm scales. One problem with this interpretation is that
the assumption underlying quasi-geostrophy become progressively weaker as the
scale of the flow becomes smaller; the Rossby number, whose smallness is needed
to assure the validity of the quasi-geostrophic theory, becomes of order unity in the
scale-region where needed.

Nonetheless, it could be that strongly stratified turbulence could be in some sense
two dimensional so that the violation of the quasi-geostrophic constraints is not a
problem. Here we note the work of Riley et al. (1982), and Lilly (1983). Their re-
search indicated that two-dimensional flow in decoupled horizontal layers emerged
as the leading order description in the limit as the (inverse N) Froude number van-
ishes. Their approximation was re-formulated by Grote and Majda (1997), with es-
sentially the same result but more rigor.

Early attempts to confirm an inverse cascade numerically were not successful.
One such study is reproduced in Fig. 1 (from Herring & Métais 1989). Here, the
two-dimensional small scale forcing and spectral range (64°) is identical to that of
Lilly (1971). During the initial 2-D phase, the total energy gradually grows, typical
of forced flows without large scale damping. At t=1, a small three dimensional per-
turbation (@) is introduced. It grows exponentially in approximate accord with the
empirical rule of Rotta (1951). Spectra for @; are shown in in the top part of the
figure after these components have reached their stationary values. Several values
of N are shown, but for none of these is there a significant inverse cascade.

We note that @ (k) is a rough measure of the two-dimensional energy.! Ap-
parently the two dimensional layers which move in opposing direction as proposed

! @, (k, ) also contributes to the horizontal energy. We have,
(uy (x)-uy (x+ag) = /exp(igﬁ K)dkokydky - { @y (ki k) + Do (ky,k;)cos> B} (12)
Similarly,

wEx)wx+af)) = /exp(iCﬁ-k)dkszdkL @y (ky k:)sin?® = .F (k, k) (13)
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Fig.1 Upper panel: @; (k, ) energy spectra for differing values of N = 7(0,10,20,30). Curve A is
unperturbed 2-D turbulence randomly forced at k| = 12. Curves marked B, C, & D are progressive
the larger N. Three lower panels: evolution of total horizontal (top curves); potential energy and
vertical kinetic energy, lower two. The vertical motion is introduced as a small initial perturbation.
Three stratifications are shown, as labeled in the top right-hand corner of the panels.

by Riley et al. (1982) exert sufficient friction on each other to arrest any possible

inverse cascade.
We should note that the characterization of the spectra of stratified turbulence
with their horizontal or vertical projections is an inadequate characterization. In
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Fig. 2 Enstrophy distribution just before stratification is switched on at the time of maximum total
enstrophy. From Herring et al. (2006).

these crude early simulations we recorded the number of spherical harmonics
P,(cos®) needed to describe the three dimensional spectra. We estimated (unpub-
lished) n ~ 10.

3 More Recent Numerical Results

Higher resolution DNS affords a more detailed glimpse into the structures of strati-
fied flows. This is illustrated in Fig. 2 and Fig. 3, as taken from Herring et al. (2006),
for which the resolution is 5123.

Fig. 2 show (for decaying turbulence) the enstrophy distribution for unstratified
flow. The usual vortex “worms” are seen. Fig. 3 shows the enstrophy distribution
after a new equilibrium with strong stratification is established. The vortex tubes or
“worms” are now replaced by “scattered pancakes”. There seems to be an occasional
pairing of vortex patches, and indicated by the arrow in Fig. 3.



148 Jackson R. Herring & Yoshifumi Kimura

Fig. 3 Enstrophy distribution several eddy circulation times after stratification (N2> = 100) is
switched on. From Herring et al. (2006).

Isotropic turbulence is known to have strong departures from Gaussianity. Thus
although the distribution function for the velocity field is near Gaussian that for its
gradients is more nearly exponential or even more more “fat tailed”. It is interesting
in this connection that stratification seems to restore a Gaussianity. This is demon-
strated in Fig. 4 which shows the PDF for du/dz (from Métais & Herring 1987).
We remark that the same “Gaussianization” applies to the Eulerian acceleration:
for isotropic turbulence, the PDF of the acceleration is broader than exponential,
while that for strongly stratified turbulence more nearly Gaussian. The approximate
picture of stratified flow as layered two dimensional flow is certainly born out in
these simulations but the strongly intermittent character of two dimensional turbu-
lence is not a feature of stratified turbulence. Some insight into why this is so has
been suggested by Fincham et al. (1994), who argued that by tracing a vortex line
that connects to adjacent vortices one can see that the strong isolated vortices often
found in two-dimensional turbulence are prohibited.

For strong stratification one could argue that rapid distortion theory (RDT) may
be invoked as a suitable basis for understanding the flow. In fact, Kaneda and Ishida
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Fig.4 PDF of du, /dz for stratified turbulence as compared to unstratified. From Métais & Herring
(1989).

(2000) have proposed this as a procedure to estimate the suppression on vertical
diffusion in stratified turbulence. Our simulations give satisfactory results for the
case in which both rotation and strong stratification are present. However, if only
stratification is present, RDT tends to over estimate the suppression of vertical dif-
fusion. This is shown in Fig. 5. Thus RDT tends to underestimate the squashing of
vortex patches, which means that non-linear effects must play a significant role in
enhancing two-dimensionality.

Finally we present spectra @1 = (|¢|?), @ = (|¢>|*) and © = (|6|?). These quan-
tities are anisotropic and we show here only their cylindrically accumulated values
(®(k,)---) and spherically accumulated spectra (@(|k|)---). The first of these re-
lates to the spectra that measure the horizontal covariance.” The cylindrically ac-
cumulated spectra are depicted in Fig. 6, while those spherically accumulated are
in Fig. 7. Here, N = 10, a quite strong stratification. We note that @, and © are
quite similar, with @ ~ @, for N = 10.? For the spherically accumulated spectra
(Fig. 8) there seems little evidence of a power law, except at large |k|, where one
may argue for |k| 3. The &, spectra, however show evidence for @ (k) ~ k7> and

D (k) ~k >

2 We note here that the second order structure function,

Fp(d) = ((ue(x) — ue(x +1id))?) (14)

~ 71:/0%[{]1 (x)/x}xm0 — 1 () /x] Dy (k) )k dky + O{ Dok, ,k;)}, x=k, d (15)

3 The non dimensionalization used in the DNS has the N removed from equation (1), and the Nw
of (2) replaced by N?w.
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Fig. 5 Single particle diffusion, DNS solid line, RDT dashed line.

We should remark that spectra of these figures are at resolution 5123. More recent
higher resolution simulations at 1024 show a similarity to these spectra. They are
at higher Reynolds number and both the -3 and -2 power laws fair over into an
approximate -5/3 law at higher & .

4 Interpretation of DNS

The random pancake structures of Fig. 3 may be partially understood in terms of
standard perturbation theory for the the spectra, (u(k)u(—k)). Consider stratified
flow in the diagonal representation of (9) and (10). If we take the forcing terms
as random driving force, then a standard estimate of the resulting magnitude of
(X2, x3) (w and 0, essentially) would say that those amplitudes with minimum o
would be strongest. One way of achieving this is to have most of the participating
wave vectors horizontal. If these vectors point in different directions at different
heights, the flow is layered. Such an argument does not distinguish between hori-
zontal streaks and flattened pancakes. Another possible arrangement is simply two
dimensional flow, but as seen from Fig. 1, such is unstable.

Our results found here are consistent with @y (k) ~ kf and @, (k) ~ klz. As
noted earlier, at larger &, , the 10243 simulations indicate that these fair over into
-5/3, as indicated by Fig. 8 (Kimura & Herring 2010). A possible explanation for
these results may be found in examining the normal mode analysis as in (9) and (10).
A closure approximation to these equations would suggest that the eddy viscosity
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Fig. 6 Snapshot of @ (k, ), ®>(ky) and O(k,) spectra for the case in which ®;is randomly
forced at k| =5. Time of snapshot: = 27.5 eddy circulation times; stratification, N = 10; viscosity,
v =0.001.

that would determine the steady state intensities for isotropic turbulence should be
augmented by the factor ¢ = Nsind for stratified flow. Of course that makes the
eddy damping complex, but the dispersive nature of gravity wave would impart a
real damping effect when averaged over the polar angle. We have suggested in the
past (Kimura & Herring 1996) that such an analysis implies a spectrum

@, (k) = yVeNk > (16)

provided N is much larger than the eddy turnover frequency. For @, the case is less
clear since the frequency for ¢; in (9) and (10) is zero. Notice that here we have
not distinguished between |k| and &, , since our rough argument does not take into
account the degree of anisotropy. Other proposals for the dependence of the energy
spectrum on stratification are by Holloway (1988) and Carnevale et al. (2001).

5 Concluding Comments

Our DNS indicates that stratified turbulence to be much less intermittent than
isotropic turbulence. The vortex tubes of the later are replaced by “scattered pan-
cakes” of the former. For strong stratification, we have suggested two spectral re-
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Fig.8 @, (k) (left panel) and @, (k) (right) at late time after stationary state is reached. Vertical
stripe indicates forcing scales for ¢; (k). ¢» (k) is unforced.

gions: a large-scale k=2 followed by k—5/3. We have found preliminary evidence
for such power laws, but only for the horizontally gathered vertical spectrum, and
only for @ (k). For the horizontal spectrum, we suggest @ (k; ~ k=3 followed by
k=3/3. Such is indicated by the spectra of Fig. 8, at (10243). In this way—perhaps—
our DNS are reconciled with other theories and simulations such as those of Linborg
(2006), Brethouwer, Billant, Lindborg & Chomez (2007), and Riley (2008) and the
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theoretical results of Godeferd & Cambon (1994), and of Sukoriansky & Galperin,
(2006) However, there is clearly a need for higher resolution to confirm these con-
clusions. We remark that our proposal that E(k) ~ k2 implies a lessening of the
decay turbulence rate to (') or less is an asymptotic suggestion. That is, given any
v, 3an N 3 E(k) ~ k=2 followed by a k—>/3 range for sufficiently small v. If a
substantial k—5/3 range exists, then the decay rate would be determined by the -5/3
range, and a standard decay rate (t~'%7) should follow.
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Modeling mixing in two-dimensional turbulence
and stratified fluids

Antoine Venaille and Joel Sommeria

Abstract A phenomenological model for turbulent mixing in a stratified fluid is
presented. This model describes the evolution of the local probability distribution
for the fluid density. It is based on an analogy between the mixing of vorticity in 2D
turbulent flows and the mixing of density in (3D) turbulent flows.

1 Introduction

Models of turbulent mixing in stratified fluids are of wide interest in the context of
oceanic and atmospheric flows, especially for sub-grid scale parameterization [5].
Although the processes of turbulent density mixing occur at small scales and short
time scales, they considerably influence large scale dynamics by controlling water
mass properties and the global stratification. It is therefore compulsory to describe
carefully these processes.

We propose in this paper a new approach to describe the evolution of the local
probability density function (PDF) for the fluid density. The advantage of such a
statistical approach is to predict a coarse grained evolution of the system, without
describing the complicated fine grained dynamics, but while keeping track of the
conserved quantities of this dynamics, which are important physical constraints.

The most commonly used models for small scale density mixing are based on
variations around the k — € models (see part I and III of [1] for a review). In those
approaches, turbulence is represented locally by two parameters for which a dy-
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namical equation based on turbulent diffusivity is proposed: the turbulent kinetic
energy and either a length or a time scale of the flow. In those models, the effect of
density fluctuations are ignored, and their ability to describe properly mixing pro-
cess strongly relies on parameterization of turbulent diffusion coefficients from the
(locally) averaged quantities. Refinement of those models take into account higher
order moments of the density (up to the fourth), and in some cases nonlocal effects
[14; 5].

In parallel to those approaches, an idealized stochastic model (referred to as one-
dimensional turbulence) has been applied for mixing in stratified flows [4]. This
model mimics the effects of turbulent cascade, buoyancy and advection on a vertical
realization of the density field.

Surprisingly, there has been no attempt to combine the classical modeling of
mixing in terms of turbulent diffusion, with a model for the temporal evolution for
the probability distribution of density. Beyond the advantage of describing the tem-
poral evolution of the density distribution, such a model can give insight into the
role played by density fluctuations in mixing processes. The density in a turbulent
stratified flow, as vorticity in a 2D turbulent flow, is a scalar quantity that needs to
satisfy conservation laws. Those constraints prevent complete mixing of the scalar.
The idea of equilibrium statistical mechanics that are well known for the case of
vorticity in 2D flows have been recently applied for stratified fluids in an idealized
case [12]. We propose in this paper a phenomenological approach for the (out of
equilibrium) turbulent mixing in stratified flows, on the basis of this analogy be-
tween the mixing of vorticity in 2D turbulent flows and the mixing of buoyancy in
3D turbulent stratified flows.

The paper is organized as follows: i) We briefly review the statistical theory of
2D flow, and then present the analogy with stratified flows. ii) We propose relaxation
equations toward the equilibrium states for stratified flows, based on a work devel-
oped previously in the context of 2D flows. Two physical mechanisms are taken
into account: turbulent diffusion and buoyancy effects, that tend to drive back the
system toward a background “sorted” density profile (which minimizes the poten-
tial energy for a given global distribution of density). iii) We incorporate to those
relaxation equations a mechanism of dissipation of the density fluctuations, due to
turbulent cascade effects that tend to smooth out the density field by transfers from
large to small scales iv) we discuss simple limit cases of the previous model v) we
explain how the dynamical equations proposed in this paper could be adapted in a
more general and realistic context.
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2 An analogy between statistical mechanics of 2D flows and
density stratified fluids

2.1 Statistical mechanics of 2D flows

The Euler equations can be expressed as a transport equation of the vorticity
®(x,y,7) in a domain &

Jo+u-Vo=0 with u=<—%—l;f,%—il) and w=Ay, (1)
where the (non-divergent) velocity field is expressed in terms of a stream function
. The transport equation conserves the energy functional E = % I (Vl;/)zdxdy =
—1 [, @ydxdy and the global distribution of vorticity levels g(o) = [, 8(®w —
0)dxdy (equivalent to the conservation of the infinite number of Casimir functionals
€.lq) = [ 8(q)dxdy, where g is any continuous function on 2).

The Euler equations are known to develop complex vorticity filaments at finer
and finer scales as time goes on. Rather than describing the fine-grained structures of
the flow, equilibrium statistical theories of two dimensional turbulent flows predict
final organization of the flow at a coarse grained level [10; 8]. The macroscopic
state is given by a field p(x,y, o) representing the probability density of finding the
vorticity level o in a small neighborhood of the position (x,y). From this field, one
can compute the coarse-grained vorticity field and stream function by inverting the
Laplacian with appropriate boundary conditions

w:/podo, @ =AY )

The rationale of the theory is that most accessible microscopic states will ap-
proach the macroscopic state which maximizes the mixing entropy .#[p] =
— |y [ pInpdxdydo. Assuming ergodicity, the equilibrium statistical theory pro-
vides a variational problem: the most probable (or equilibrium) macroscopic state p
maximizes the mixing entropy with the constraints provided by the conservation of
the energy and the global distribution of fine-grained vorticity levels (both quantities
can be theoretically computed from the initial condition):

¢lp)= [ [povdsayo Vo dolp) = [ pdsdy 3)
9 9

Notice that the energy of the fluctuations are supposed to tend to zero due to the
dominance of small scale fluctuations. The variational problem can be summarized
as follows:

S(E,g)= max {S[p]|&[p]=E &ds[p]=g(o)} 4)
{pIN[p]=1}
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Much effort has been devoted to the study of the equilibrium states of the RSM
theory. It has been applied in particular to explain the robustness of the Great Red
Spot in the Jovian atmosphere [2].

2.2 Statistical mechanics of stratified fluids

Let us consider now the mixing of the density anomaly b = g (pfuiz — o) /po in
the framework of the Boussinesq approximation (b is the opposite of the buoyancy).
This is a tracer advected by a (3D) turbulent non divergent velocity field v:

0:b+vVb = KkAb 5
0v+vVv=—-VP—-bk+VvAv+F 6)

where F is a mechanical forcing and k is the vertical unit vector.

In the absence of forcing and dissipation (F = 0, k¥ = v = 0), the total energy
of the flow E = [, (%v2 +bz) dxdydz and the global distribution of density levels
glo)= ‘17‘ [y 8(b— 0)dxdydz are conserved. We suppose in addition that the mean
value of the velocity field at any location is zero: there is no mean flow.

We define a microscopic state as a given fine grained density field b(x,y,z) and
velocity field v(x,y,z). From the knowledge of a microscopic configuration, one can
compute the conserved quantities E, g(o). The problem is assumed to be statistically
homogeneous on horizontal planes &2, (parallel to Oxy). An integration over the
directions x and y will be considered as an ensemble average, and denoted by an
upper bar: b(z) = ﬁ [, bdxdy.

A macroscopic state of the system is given by the field p(z,0,v) that describes
the probability to measure a given scalar and velocity value at height z. As for the
mixing of the vorticity in 2D flows, the most probable macroscopic state is the one
that maximize the mixing entropy . = — f[o H] ﬁ*w teofd f[am’_n ] JpInpdodvdz
(the bounds of integration will be dropped for simplicity) among all the states that
satisfy the constraints of the problem, namely the energy conservation

é"[p]zéi[l)]—i—é"p[p]:///p (V;Jroz) dzdodv —E, )

and the conservation of the global scalar distribution:

Holp) = [ [ pdav=g(0) ®)

where H is the total height of the domain. We make at this point the strong as-
sumption that each microscopic state is accessible, and compute the most probable
macroscopic state satisfying the constraints of the problem, as in the case of vorticity
in 2D flows.
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In order to compute critical points of the variational problem, we introduce the
Lagrange multipliers 8 and y(o) associated respectively with the energy (7) and
with the constraints of the global vorticity distribution (8), and then compute first
variations with respect to p:

5.9 — BSE + /'y(c;)a%da —0. ©)

This gives [ [ [ (=1 —1In(p) — Bv? — Bzo +7) Spdvdodz =0. Since this equal-
ity holds for any variation 6p, we obtain

p =Aexp (—Bv?*/2—Boz+7(0)) (10)

The value of the Lagrange multipliers 8 and y(o) are determined by the ex-
pression of the constraints &[p] = E and 5[p] = g(0), and A is a normalization
factor.

Notice that the PDF (10) of the statistical equilibrium can be expressed as a prod-
uct of a PDF for density and velocity, which means that b and v are two independent
quantities. The predicted velocity distribution is Gaussian, and is isotropic. The pre-
dicted isotropy is not likely to be observed in a real flow, in which vertical motion
is inhibited by stratification. However, a careful examination of the flow structure at
the interface of two turbulent layers of different density shows that mixing occurs
mainly by the occurrence of intermittent (both in time and space) turbulent patches
that break the interface, stir and mix the density of the patches [6]. At the early stage
of those mixing events, the distinction between vertical and horizontal velocities is
not obvious.

The predicted velocity profile does not depend on z; the kinetic energy profile
e(z) is therefore constant along the vertical axis, with

_1 2 _ 351
efz//v pdeV—zﬁ . 11

The inverse of B (a “temperature” of the turbulent field) is thus proportional to
the variance of the velocity fluctuations. This implies that 8 > 0. In the following,
we shall focus on the density distribution p(0,z) (and the associated moments),
ignoring the independent distribution in velocity.

p(0.5) = Bexp(~Boz+7(0)) , 7= [o"pdo (12

We can then find another expression for 3, which links this quantity with a form
of potential energy, related to density fluctuations:

y fo”(ﬁ—#)dz fo”(ﬁ—#)dz
pr=— T obdz  b0)—b(H) (13)
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Let us consider as an example an initial state composed of two density values
(b =0 and b = 0p). Let us first assume that both values are in equal proportions.
According to equation (12), the probability p to measure b = oy at height z is

e Bou(z=H/2)
PR = e (14)

The vertical profile of the mean density at statistical equilibrium is then b(z) =
0op(z), a Fermi-Dirac distribution, represented in figure (1). This expression has
been proposed recently by [12], using similar arguments.

Assuming ergodicity, such an equilibrium state is expected to be reached if the
inertial time scale 7 ~ ﬂl/ 2H is smaller than time scales of forcing and dissipat-
ing mechanisms. Let us notice that in the limit of infinit boundaries (H — o),
the inertial time scale tends to infinity, and one can not expect to reach the equi-
librium state. More generally, real flows are out of equilibrium systems, and the
computation of the equilibrium states is only a starting point before more complex
approaches.

Another case of interest is the dilute limit, for which the global probability [ pdz
to measure the level oy tend to zero while keeping constant oy [ pdz. This would
correspond to the case of a sediment suspension, for which the Boussinesq approx-
imation done earlier is no more valid, but it would be straightforward to generalize
this result to a non Boussinesq flow. In this limit, we recover the standard expression
p(z) ~ exp—f oz for a gas in a uniform gravity field.

— 200

-==20

°

o=1

Fig. 1 Equilibrium profile for a two level system. We represent b(z) = o p(z,t) where p is given
by equation (14), for three different values of f3.
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3 Relaxation toward statistical equilibrium

We propose in this section an equation describing the relaxation toward the statisti-
cal equilibrium state. The general idea is that the system will evolve with increasing
mixing entropy while preserving its conserved quantities.

We introduce the turbulent flux of probability J(o,z,¢) (directed along z) and
still consider that there are neither sinks nor sources for the density o. The temporal
evolution of the PDF p(0o,z,1) thus satisfies the general conservation law

Ap+0.J=0, (15)

with J = 0 at lower and upper boundaries. This equation conserves the global density
distribution, since d; ( féq pdz) = 0. A convenient way to obtain an equation for the

relaxation toward an entropy maximum is to assume that J maximizes the entropy
production at fixed energy (with a condition of bounded fluxes). A similar approach
has been previously applied to 2D and geostrophic turbulence [9; 3].

The entropy production reads S = — [ J(d.p/p)dodz, and the time derivative of
the energy reads

] H H H H
& =d; </ edz) +/ ozd,pdodz = d; </ edz) +/ oJdodz (16)
0 0 0 0

We assume in addition that the flux J is bounded at each location, [(J?/2p)do <
C(z) (the quantity J?>/p can be considered as the square of a diffusion velocity, a
natural quantity to bound). In order to ensure the conservation of the norm [ pdo =
1, we impose the additional constraint [Jdo = 0 at any height z. Then the first
variation (with respect to the flux J) of the entropy production with the constraints
of the problem gives

6S—[35<§"—/%%8Jdcdz—/C(z)SJdez:O, (17)

where f3, {(z) and —1/D(z) are Lagrange parameters associated with the different
constraints. A direct computation of those critical points gives

J=-D(dp+B(c—-b)p), (18)

where {(z) has been determined by using [ Jdo = 0. The coefficient D must be pos-
itive for the entropy production to be positive. We expect this diffusion coefficient to
be related to the turbulent kinetic energy and a characteristic turbulent length scale
1,D~le'2.

We assume at this stage that / (hence D) is constant, and we make the strong as-
sumption that velocity reaches its equilibrium distribution much faster that density,
which means that the kinetic energy does not depend on z, with e = % B~!. These
hypothesis will be relaxed later on.
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We distinguish two contributions to J in (18): a “down-gradient” diffusion term
and a sedimentation term, which tends to drive back a fluid particle with density o
to its equilibrium position, where b=o.

When J = 0, turbulent diffusion and sedimentation cancel each other, yielding
d.p=—PBp (G — 5) , whose solution is the vertical profile (12) of the statistical equi-
librium.

We use the energy conservation & = 0 and equation (16) to compute the kinetic
energy:

e= %ﬁ—l, %dle: %/(bszz) dz— (b(0)—b(H)) . (19)

At equilibrium (d;e = 0), we recover equation (13) that links the kinetic energy e
to the fluctuations of density. Since e > 0, we see that this equilibrium results from
a competition between density fluctuations that tend to increase the kinetic energy
and the (vertically integrated) stratification (b(0) — b(H)) that tends to decrease the
kinetic energy e if the profile is stable ( 5(0) > b(H) ). Let us also notice that an
unstable profile ( b(0) < b(H) ) cannot correspond to a stationary state, since the
term (b(0) — b(H)) acts then as a source of kinetic energy.

4 Dissipation of density fluctuations by turbulent cascade

The existence of a turbulent cascade implies that the global distribution of g(o) is
actually not conserved: fluctuations are transferred to smaller and smaller scales,
until molecular diffusive effects occur. For instance, in a system initially composed
of two levels {0, 0p}, this will create a third level %0'0, and so on. ..

This effect has to be taken into account in relaxation equations toward equilib-
rium, by adding a dissipation term in the dynamical equation (15) of the density
distribution:

op + 0. =s%:[p] (20)

where s(z) is a straining rate depending mainly on the velocity field properties in
each horizontal plane. At a given height z, the term %.(c) depends on the whole
PDF p(+,z). This operator must conserve the norm and the mean of the distribution
([P.do=0 and [9.0dc =0), and should dissipate the fluctuations at a rate

s~el/? /1 depending on the local strain of the flow. One should have J; (b_2 — 52) =

— 72\ .
—s (b2 —b") in the absence of other processes.

To estimate Z,, several models have been developed in the context of mixing
of reactive flows [11]. We choose here a simple model based on a self-convolution
process:

-~

Fe(K) = (PINp — k0P)  De(K) = / % 9.(6)do , @1



Modeling mixing in two-dimensional turbulence and stratified fluids 163

where p and @C are Laplace transform of p and .. In the absence of other pro-
cesses, the model predict that an initial PDF will evolve by a succession of self
convolutions of the PDF, corresponding to the addition of concentrations of inde-
pendent scalar sheets becoming adjacent due to random turbulent motion, and si-
multaneously elongated by straining (see [13] for a more detailed presentation and
discussion of the model).

Let us discuss the consequence of the addition of such a dissipation term %,
whatever its explicit form. The total energy E = 3HB ™! + [bzdz is still a con-
served quantity in the presence of this dissipation term. Then equation (19) is still
valid. If the initial condition is an equilibrium state, the dissipation will lower the

contribution of the fluctuation term (ﬁ — Bz) in equation (19), which will imply a

decrease of the kinetic energy, and thus an increase of the potential energy of the
system.

5 A simple example: mixing of a two layer stratified fluid

To illustrate the mechanisms presented in previous sections, we consider an ideal-
ized situation for which the kinetic energy (hence f3) is fixed and study the time
evolution of the PDF p by equations (18), (20) and (21). The unrealistic hypothesis
of a fixed kinetic energy will be relaxed later on.

Since the diffusion coefficient D is assumed to be constant, the time unit can be
always chosen such that D = 1, then the dynamical equation for the PDF is

Kp = 9up +B0:((6-0)p) + T T , (22)

where TzZsIs = 5. There are two independent parameters, namely f3, linked to the
imposed kinetic energy, and the time scale of the dissipation process 7 ;55. The pa-
rameter [ can be expressed as a sedimentation time scale T4, = L/ 3 00, where 0y
is the density of the unmixed dense fluid, and L is a characteristic scale of the mean
profile E(z). The behavior depends on the values of 7,5, and Teg;, With respect to
the diffusion time scale 7 ;77 = L?. We distinguish four limit cases:

* i) Diffusion and sedimentation dominate dissipation (Tgirr ~ Tsedim < Tdiss:
The system relaxes toward the statistical equilibrium state corresponding to the
(fixed) value of . On a longer time scale, new density levels are created or de-
stroyed by the dissipation mechanism. The system then goes through a sequence
of equilibrium states until it reaches the homogeneous (fully mixed) state.

* ii) Dissipation dominates sedimentation and diffusion (7yiss < Taifs ~ Tsedim):
The fluctuations of the initial state are first dissipated. Then the mean profile
evolves through the diffusive mechanism ;b = d..b until complete mixing is
achieved.
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* iii) Diffusion dominates dissipation which dominates sedimentation (77 <
Taiss < Tsedim)- The mean profile evolves mainly by the diffusive process b =
d.:b, until reaching an homogeneous mean vertical profile. Fluctuations around
the mean are then dissipated.

* iv) Sedimentation dominates dissipation, which dominates diffusion (Tyg;; <
Taiss < Tgirf). The system relaxes first toward the sorted profile (the potential
energy minimum for a given global distribution of density levels). There are no
more fluctuations in this state, and the vertical profile evolves by the diffusive
process d;b = d,.b until complete homogenization is achieved.

In cases ii) and iii), taking into account fluctuations around the mean profile is
not particularly relevant, since the evolution of the mean vertical profile does not
depends on these fluctuations. In case iv), the fluctuations are important in the early
evolution of the flow, but the knowledge of the initial condition is sufficient to de-
termine the sorted profile, and then the evolution equation does not imply any fluc-
tuations.

a) )

0

0 S 0

0 0

Fig. 2 Relaxation toward the equilibrium state (dashed red line) for a two level system, with f =
20, H =1, op = 1, for three different initial profiles represented in bold plain green line. The thin
plain blue curve represent the density profile at successive times with constant time interval.

Let us then consider case i). We first display in figure 2 the relaxation toward an
equilibrium state for a two level system (b =0 or b = 6p = 1 in equal proportions),
in a case without dissipation. The value of B =2/(3e) is still supposed to be fixed.
Three different initial conditions are considered: a) the initial state is completely
mixed (Vz, p(0,z) = p(0p,z) = 1/2); b) the initial state is the sorted profile (the
dense fluid is at the bottom) c) the initial state corresponds to the highest possible
potential energy (the dense fluid is at the top, which is an instable initial condition).

Let us now consider the evolution of the density profile when the dissipation term
is taken into account, figure 3. The initial condition is the equilibrium profile of the
two level system for 3 = 200. The time scale for dissipation is T ;55 ~ 1000, which is
much greater than the characteristic time for relaxation toward equilibrium, of order
one. The temporal evolution of the mean profile is represented in figure 3-a. Far from
the interface (figure 3-b), the PDF is a sharp peak, there is almost no fluctuation, but
the density of the peak decreases little by little. Closer to the interface (figure 3-c),
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Fig. 3 a) Temporal evolution of the mean profile between ¢ = 0 and 7,,,, = 1000. The initial
condition is the equilibrium profile of a two-level system characterized by 8 = 200, 75, = 1000
b-c-d) Temporal evolution of the PDF at different altitudes z.

the PDF is asymmetric, with important fluctuations. Finally, at the middle of the
interface (figure 3-d), the PDF is symmetric. The extreme values G, and G4y Of
density progressively diminish.

Let us stress that the evolution of the vertical profile is not given by a classic
turbulent diffusion: at leading order, diffusion is compensated by sedimentation.
The temporal evolution is driven by the dissipation term that creates intermediate
density levels, changing little by little the equilibrium profile.

6 Coupling the model with an equation for the Kkinetic energy

In the general case, the kinetic energy e (and then f) is not uniform, but should
satisfy itself a diffusion equation. We assume that its diffusivity has a similar form as
for density fluctuations, namely D ~ le'/2. We furthermore introduce a dissipation
term a4l ' ¢3/? (the usual Kolmogoroff scaling for a turbulent cascade), a production
term &2 = F.v and take into account the exchange with potential energy due to the
buoyancy flux. This yields the energy equation

ore = a30. (lel/zaze) - /cho —ayl PP+ p (23)
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One can check that in the absence of production and dissipation, the total energy
E = fOH (0z+ e)dz is indeed conserved by equations (15) and (23).

Now that the kinetic energy e varies in space and time, let us assume that the
kinetic energy still satisfies locally the link (11) with the inverse temperature 3
obtained at equilibrium: e(z,¢) = (3/2)B 7! (z,1).

Since the diffusion coefficient D in the buoyancy flux (18) depends on the kinetic
energy, D = a;le'/?, it is also time and space dependent. The mean density flux is

then .
' - - 2
[ oiao = -ai (1672 3) - 5 (7-57) ). o

Notice that this buoyancy term has the same form as in the case of the “level 3 con-
figuration” in the hierarchy of models by Mellor and Yamada [7].

Let us summarize the full model for the temporal evolution of the kinetic energy
e(z,t) and the density PDF p(z,0,?):

ap = —dJ+ayl e ? 9, (25)
J=—a (le‘/z3zp+3e*‘/2p(o—6) /2) (26)
9 = (PInp—Kkop) Fo= / %P (0)do @7)

ore = azo, (lel/z&ze) —|—/J6d6 —agl P (28)

There are four intrinsic non-dimensional constants of order unity: i) a; and a3 quan-
tify the turbulent diffusivity for density fluctuations and kinetic energy (velocity
fluctuations) respectively. ii) ap and a4 quantify the rate of cascade of density and
velocity fluctuations respectively. An additional relation should be given to deter-
mine the turbulent scale /. This could be done in the spirit of the k-& model or
mixing length theories. Finally the forcing term & could represent energy injection
by external effects, like oscillating grid. Extension to shear driven turbulence should
be proposed for more general cases.

7 Conclusion and perspectives

We have proposed a model for turbulent mixing in a stratified fluid. While most
turbulence models deal with the mean and variance of fluctuating quantities, this
model predicts the whole probability distribution of density fluctuations. It can deal
with highly non-Gaussian distributions. The structure of the model is derived from
conservation laws and general principles of entropy production maximization. It can
account for re-stratification by gravity. Tests are needed for the validation in more
realistic configurations.
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The solar tachocline: a study in stably stratified
MHD turbulence

Steven Tobias

Abstract In this paper I shall describe the dynamics of the solar tachocline. This
region at the base of the solar convection zone is believed to play a key role in
the generation of the solar activity cycle. Moreover it provides the motivation for
a wide-ranging study of the properties of stably stratified rotating turbulence in the
presence of a magnetic field. I shall discuss how the presence of even a weak large-
scale magnetic field may lead to suppression of the turbulent correlations that drive
zonal flows in neutral fluids.

1 Introduction

The dynamics of rotating stably stratified fluids has been investigated intensively
over the past decades largely owing to its importance for understanding the be-
haviour of the Earth’s atmosphere and oceans (see e.g. Pedlosky 1982) and the outer
layers of the giant gas planets (see e.g. Marcus 1993). The presence of stratification
and rotation leads to behaviour that is fundamentally different from that of homo-
geneous istropic flows. One of the central issues is the role of turbulence in such an
environment — in particular the nature of transport. In neutral fluids turbulence may
transport momentum or passive or active scalars and often the goal is to seek an un-
derstanding of the consequences for the large-scale fluid flows of such turbulence.
The presence of rotation and stratification is known to introduce correlations within
the turbulence that are not present for isotropic and homogeneous flows and it is the
presence of these that can lead to counter-intuitive dynamics on the large scales.

In recent years there has been an increased interest in understanding the interac-
tions of stably stratified rotating flows with magnetic fields. This is largely due to
the importance of these interactions in determining the dynamics of stably stratified
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stellar interiors and possibly the outer layers of extra-solar planets. In particular the
dynamics of the solar tachocline, which is believed to play a key role in the gener-
ation of the solar magnetic activity cycle, is controlled by the complicated interac-
tions of magnetic field and turbulence in a rotating stably stratified environment.

In this paper, I shall briefly summarise the physics of the solar tachocline (in
section 2) and then discuss the modelling of the interaction of flows with magnetic
fields that has been undertaken in this emerging discipline.

2 The Solar Tachocline

In this section I shall briefly describe the observations and physical processes of
the solar tachocline, explain why an understanding of the dynamics is considered
vital for models of the generation of the Sun’s magnetic field, and also why this
region can be considered an interesting test-bed for models of stratified rotating
magnetohydrodynamic (MHD) turbulence. The physics of the tachocline is varied
and complicated and so I shall only describe the observations and processes that
support the case for an understanding of stably stratified MHD turbulence. A more
complete picture can be obtained by the interested reader by examining the reviews
by Tobias (2005), or Miesch (2005), or the collection of papers edited by Hughes,
Rosner & Weiss (2007).

2.1 Properties of the solar tachocline

The sun’s magnetic field is believed to be generated by a hydromagnetic dynamo
operating in the solar interior. This dynamo is responsible for the large-scale eleven
year activity cycle manifested in sunspots, solar flares and the solar corona. It is
fair to say that no consensus has been reached on the precise ingredients that are
necessary to explain solar magnetic activity, though it is commonly believed that
the systematic activity arises via the interaction of rotation, turbulence, differential
rotation and magnetic fields. For recent discussions of solar dynamo theory see the
reviews of Ossendrijver (2003), Charbonneau (2005), Tobias & Weiss (2007) or
Weiss & Thompson (2009). It is, however, widely believed that a crucial ingredi-
ent of solar dynamo action is the stretching of magnetic field lines via differential
rotation. This process (often termed the w-effect) is analogous to vortex stretching
in neutral fluids. The differential rotation (or global azimuthal shear flow) leads to
the generation of strong azimuthal (toroidal) magnetic field from weaker meridional
(poloidal) magnetic field. It is this toroidal field that is believed to lose stability and
rise through the solar interior to form sunspots at the solar surface.

Hence differential rotation is a key feature of solar dynamo models. It is well
established that the Sun rotates differentially, with surface observations suggesting
that the solar equator completes a rotation in approximately 25 days; and the poles
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Fig. 1 The solar interior rotation profile as determined by helioseismology (courtesy M.J. Thomp-
son)

30 days. This latitudinal differential rotation has been included in dynamo models
for many years. However, the rotation profile of the solar interior has only been
determined in the past twenty-five years using the science of helioseismology. Here
continuous observation of acoustic oscillations at the solar surface leads to the deter-
mination of the the pattern of differential rotation (as shown in Figure 1). The data
is consistent with the surface differential profile being largely maintained through-
out the solar convection zone on radial lines; the solar convection zone comprises
the outer 30% of the Sun by radius. Beneath the convection zone lies the stably
stratified radiative zone, which appears to rotate largely as a solid body at an inter-
mediate rate found at mid-latitudes in the convection zone. These two differential
rotation profiles are matched via a thin radial shear layer at (and below) the base
of the convection zone, which has been termed the tachocline (in analogy with the
thermocline in the Earth’s oceans and atmosphere).

The detailed structure of the tachocline is still uncertain; helioseismology can
only determine some properties with a certain accuracy and can only provide up-
per bounds for such crucial properties as the thickness of the layer. For a de-
tailed discussion of the limitations of helioseismology as applied to the tachocline
see Christensen-Dalsgaard & Thompson (2007). Here we simply state that the
tachocline is located at 0.69 Rs and is prolate (with its position varying by 2% in
radius). An upper bound for the thickness of the tachocline is 0.04 Rg, however es-
timates from sound-speed inversions place the thickness at 0.019 Ry.

In terms of physical properties, the tachocline is a high density, high temper-
ature collisional plasma (p ~ 0.2 g/em?, T ~ 2.0 x 10°K). This suggests that in
order to model the tachocline the equations of magnetohydrodynamics (with no fur-
ther plasma effects included) are adequate. From the point of fluid dynamics, the
tachocline is moderately rotating (rotationally influenced though not rotationally
constrained). The top of the tachocline is believed to be in the convection zone and
so superadiabatically stratified (although the convection transforms this region to a
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state of adiabaticity). The convection is believed to overshoot into the upper lay-
ers of the nominally sub-adiabatic region, contributing to mixing there, though the
extent of penetration is still uncertain (see e.g. Brummell et al 2002, Tobias et al
2001). Deeper in the tachocline the subadiabatic gradient becomes larger and stable
stratification is believed to play a key role in the dynamics — the non-dimensional
parameters will be given later. It is this region that motivates the current programme
of research into the dynamics of magnetised stably stratified fluids.

2.2 Why is the tachocline there — and so thin?

The fundamental problem concerning the tachocline is that of its very existence. The
angular momentum distribution in the solar convection zone is very different to that
in the solar interior with the thin matching layer of the tachocline providing a bound-
ary layer between the two regions. A natural question to ask is therefore why has the
angular momentum distribution of the convection zone not been propagated into the
solar interior? To answer this question it is important to identify the processes that
could contribute to the transport of the azimuthal component of the angular momen-
tum (i.e. L = prug sin ¥¥) from the convection zone inwards. The first is large-scale
meridional flows (i.e. flows in the (r, ¥ )-plane); these simply redistribute large-scale
angular momentum. The other two processes believed to be of significance are more
subtle and arise owing to turbulent interactions. Reynolds stresses transport angular
momentum via the net (averaged) effect of interactions via the turbulent velocity and
the small-scale azimuthal flow. For these to transport angular momentum efficiently
non-trivial correlations between the velocity components must exist. A similar pro-
cess arises from the turbulent Maxwell stress that contributes to the Lorentz force in
the momentum equation; here non-trivial correlations between the fluctuating mag-
netic fields and the azimuthal small-scale magnetic field can act so as to modify the
momentum transport. Both of these effects are poorly understood and, as we shall
see, are often parameterised in terms of poorly constrained transport coefficients. It
is correctly argued that for the solar interior the contribution to angular momentum
transport from molecular viscous effects is likely to be overwhelmed by those from
turbulence and large-scale flows.

The seminal paper for our understanding of the tachocline is Spiegel & Zahn
(1992), where the problem of the existence of the tachocline was first discussed.
For the evolution of the tachocline on long time-scales it is convenient to take the
angular momentum distribution of the convection zone as a given outer boundary
condition for the solar radiative zone (which evolves on much longer timescales).
Spiegel & Zahn argued that in the absence of turbulence and magnetic fields this
latitudinal distribution would be transported via a radiation-drive meridional flow
into the deeper solar interior. Although this meridional flow is slow (with a turnover
time of ~ 10° years) it is still capable of significantly broadening the tachocline
over the lifetime of the Sun (~ 10° years). They therefore argued that some other
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process must be acting so as to keep the tachocline thin. Given the above discus-
sions, it is obvious that this process must either be turbulent in nature or involve
magnetic fields (or both). Spiegel & Zahn opted for the presence of stably stratified
hydrodynamic turbulence. They argued as follows: the overall stable stratification
will lead to the two-dimensionalisation of turbulence (if any turbulence exists). This
two-dimensional turbulence can be parameterised as an anisotropic turbulent vis-
cosity acting more efficiently on latitudinal gradients of angular momentum than
radial gradients. This anistropic viscosity can act so as to prevent the spread of the
tachocline into the interior.

There are a number of obvious questions that arise immediately from the argu-
ment postulated by Spiegel & Zahn. The first is to question the assumption of the
presence of turbulence. There are a number of linear instabilities that may lead to
turbulence in the solar tachocline (which is at high Reynolds number). Some of
these are magnetic in origin — for example magnetic buoyancy instabilities (see
e.g. Hughes 2008) or joint instabilities (see e.g. Gilman & Cally 2008). Some how-
ever can be considered in a purely hydrodynamics framework — for example GSF
instabilities, which are axisymmetric versions of baroclinic Eady modes that arise
owing to the small thermal Prandtl number of the tachocline (see e.g. Rashid et
al 2008). Another source of turbulence in the tachocline is the forcing from the
convection zone. As noted above the upper surface of the tachocline is continually
forced by overshooting convective downwards sinking plumes. For the purposes of
modelling the tachocline these may be thought of as short duration forcing events
that act in conjunction with the large-scale stresses that arise from the differential
rotation in the convection zone. The second question, given the undoubted presence
of turbulence, is how should such turbulence be parametrised in a rotating stably
stratified environment in the presence of potential magnetic fields? Gough & Mcln-
tyre (1998) argue that within the hydrodynamic framework it is incorrect to model
the transport properties of such turbulence via an anisotropic viscosity (or friction)
term. They argue that stratified turbulence is long known to act so as to mix poten-
tial vorticity (PV) and so drive the system away from solid body rotation. In this
respect the turbulence should be modelled as an “anti-friction” (see also Mclntyre
2003). Of course this particular argument takes no account of the presence of mag-
netic fields, and therefore provides motivation for an investigation of the dynamics
of magnetised, stratified rotating turbulence.

We conclude this section by discussing a set of alternative models for confining
the tachocline. It has long been understood that even a weak large-scale magnetic
field in the deep solar interior can keep the radiative interior and core rotating as a
solid body. Mestel & Weiss (1987) estimate that a field as weak as 1073 -10"%G
is strong enough to achieve this and that it is likely that a relic field of this size re-
mains from the formation of the Sun. However MacGregor & Charbonneau (1999)
suggested that in order to explain the presence of the tachocline the large-scale field
lines need to be contained in the radiative interior (otherwise the angular momentum
of the convection zone may propagate into the interior along field-lines). Various
mechanisms have been proposed for confining the field to the radiative interior in-
cluding the action of a two-cell meridional flow (Gough & Mclntyre 1998, Garaud
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2002, Garaud & Garaud 2008) and turbulent pumping of magnetic fields (Tobias et
al 2001). However magnetic coupling between the convection zone and interior is
often used to explain the spin-down of the star over its evolution, so this coupling
must be large enough to spin down the star but not so large as to destroy the thin
tachocline. One possibility is to place the magnetic coupling at mid-latitudes where
the angular velocity of the convection zone matches that of the interior, whilst con-
fining the magnetic field at high and low latitudes (Tobias 2005). If one adopts this
magnetic mechanism for keeping the tachocline thin then it is also of interest to
understand the transport properties of stratified magnetised turbulence, but now it is
important to understand the magnetic as well as hydrodynamic transport properties.

3 Simplified models of stratified MHD turbulence

3.1 The parameter regime

As noted above, the tachocline is a region of strong shear that straddles the base of
the solar convection zone and the top of the radiative zone below. As such, the non-
dimensional parameters that control the evolution are functions of position and take
on a range of values. In addition the amplitude of turbulent flows and the strength
of magnetic fields are poorly constrained. For this reason, it is possible to give only
an indication of the size of non-dimensional ratios that are important for modelling.
The strong stratification at the base of the tachocline leads to a Froude Number
Fr~0.01 —0.1 and a Richardson number Ri ~ 10> — 10. The turbulence is rotation-
ally influenced as measured by a Rossby number Ro ~ 0.1 — 1.0 and Ekman number
Ek ~ 1071, Any flows that are present will be turbulent owing to the large values
of the fluids Reynolds and magnetic Reynolds numbers (Re ~ 10'°, Rm ~ 10%).
Finally although the magnetic field is strong enough to influence the dynamics of
the tachocline, it must do so in a subtle manner — the ratio of the gas pressure to
the magnetic pressure 3 ~ 10* — 10°. All of these numbers are calculated assuming
global lengthscales, so that a latitudinal lengthscale L is taken to be the circumfer-
ence of the tachocline and a vertical lengthscale H is taken to be the thickness of
the tachocline. Hence the ratios for local dynamics may vary considerably from the
values quoted above.

3.2 A hierarchy of models

In theory one would like to construct a self-consistent model of the solar tachocline,
including the generation of magnetic field by dynamo action the emergence of ac-
tive regions via magnetic buoyancy and the turbulent transport of stably stratified
rotating MHD. It is clearly impossible with current computational resources to sim-
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ulate the equations of compressible MHD at the parameter values given above for
the tachocline. Progress can be made by constructing simplified models that illumi-
nates the particular physics of interest. For example, magnetic buoyancy instabilities
rely on retaining some effects of compressibility and so can only be studied within
a fully compressible, anelastic or magneto-Boussinesq model. Turbulent transport
in the tachocline is not believed to be sensitive to the degree of compressibility and
so may be studied within the framework of incompressible Boussinesq MHD. In
this manner a hierarchy of models, including fully three dimensional compressible
MHD, three-dimensional Boussinesq, two-dimensional shallow water MHD (see
Gilman 2001) and strictly two-dimensional MHD models can be constructed. Which
framework is chosen depends largely on the physics that is to be studied. In the con-
cluding section I shall comment on the possible future directions for research. How-
ever in the next subsection I shall briefly describe the simplest possible calculation
that sheds light on the role of large-scale magnetic fields in modifying the trans-
port properties of rotating stratified turbulence — forced magnetised turbulence on
a B-plane.

3.3 Formation of jets on a magnetised -plane

The model (Tobias er al 2007, 2009) considers the evolution of turbulence on a
magnetised B-plane. A local Cartesian axis is adopted with x representing longitude,
y representing co-latitude and z representing radius. Rotation is included in the f3-
plane approximation by setting £ = (f + By) e;. In the two-dimensional model both
the flows and magnetic field are considered independent of radius z, so thatu = V x
(y(x,y)e;) and B = Bge, + V x (A(x,y)e;), so that the magnetic field is assumed
to have a mean component (By) in the x-direction. Within this model the dynamics
is controlled by evolution equations for the vertical components of the vorticity
® = —V?y and the flux function A i.e.

a, = J(y,®) + By, +J(A,V?A) — BoV?A, + vV 0 + Gy, (1)

Ar=J(y,A) +Boyi +nV°4, )

where J(a,b) = a,by, — ayb, and Go(x,y,t) is the z-component of the couple. Exten-
sive numerical solutions of these equations with periodic boundary conditions have
been undertaken. The forcing is small-scale and homogeneous to allow for the pos-
sibility of an inverse cascade. The other parameters are chosen so that Re and Rm are
large, whilst 8 is moderate corresponding to the ordering found in the tachocline.
In the absence of a mean magnetic field (By), the vector potential must decay in two
dimensions and the situation reverts to the well known hydrodynamic case (see e.g.
Rhines 1975, Diamond et al 2005). Here the two-dimensionality leads to an inverse
cascade, which in the presence of the anisotropy provided by the § term leads to the
formation of jets. This jet formation process can be visualised as occurring due to
the merging of elongated vortices or the interaction of nonlinear dispersive Rossby
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waves (Diamond et al 2007). The inverse cascade is halted on a scale where mean
flow advection balances the By, term (or alternatively where the decorrelation rate
of the Rossby waves balances the frequency). This scale given by k, = (B/U) 1/2 js
often termed the Rhines scale. The inverse cascade is also often thought of as arising
from the constraint of conservation of potential vorticity which is homogenised by
the formation of jets.

Tobias et al (2007) demonstrated that the presence of a mean magnetic field can
have a significant effect on the generation of zonal flows (jets). They found that if
By is sufficiently large (i.e. above a threshold that depends on Rm) the formation of
jets is suppressed and the turbulence remains small scale. Diamond et al (2007) had
argued that the presence of a magnetic field will introduce a competition between
dispersive Rossby waves and non-dispersive Alfvén waves. The decorrelation of
Rossby waves may now be influenced by magnetic fields and this may lead to the
suppression of jets. It is also possible to view the suppression of jets as a straight-
forward competition between Reynolds and Maxwell stresses. The equation for the
evolution of the zonal flows % in the presence of field is (Tobias et al 2009)

dy*’

)
dJt  dy

(wv—B,By) = v 3)
For the strictly two-dimensional turbulence investigated, the Maxwell stresses act so
as to cancel out the Reynolds stresses on average, leading to the suppression of the
jets. It remains to be seen whether this cancellation is quite so exact if the assump-
tion of two-dimensionality is relaxed. A final complementary way of understanding
the result is to note that the presence of the Lorentz force term J(A, V2A) — ByV2A,
in the equation for w breaks the conservation of potential vorticity constraint of the
inviscid system. Since this ideal invariant is often used to explain the inverse cas-
cade process, its absence in the presence of a magnetic field may be significant in
preventing the formation of jets.

This model demonstrates that magnetic fields may have a profound effect on the
transport properties of rotating turbulence. The model is the simplest possible and it
remains to be seen whether the conclusions carry through to more realistic scenarios
which do not include such drastic simplifications of the system.

4 Future directions

Clearly the assumption of strict two-dimensionality for the flow and field places
severe restrictions on the nature of the turbulence. This limit of ‘infinite stratifica-
tion’ has an inherent decoupling of vertical layers with the dynamics in each layer
independent of nearest neighbours. Moreover the two dimensionality of the system
precludes the generation of magnetic field via dynamo action and so field will decay
unless the source term provided by an imposed mean field is included. Moving away
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from this restriction will involve the construction of models of increasing complex-
1ty.

Effects of finite deformation radius can be included within the two-dimensional
MHD system. In the solar tachocline the deformation radius is large (but finite) in
the deep tachocline, but gets small at the base of the solar convection zone. The
inclusion of a finite deformation radius in the hydrodynamic system may have sig-
nificant effects on the jet formation and profiles and so it is of interest to examine the
role of magnetic fields in this system. The next level of sophistication in modelling
is to relax the assumption of strict two-dimensionality and allow deformations of the
layer depth. It has been demonstrated that this shallow water MHD system can al-
low self-consistent generation of magnetic fields via dynamo action (Tobias 2009).
Moreover rundown experiments in spherical shells have indicated that the presence
of magnetic fields may continue to modify significantly the transport properties of
the turbulence (Cho 2009). Within simplified models it is interesting also to examine
the effects of the coupling of layers. Here the coupling may be via a common po-
tential vorticity profile (as in atmospheric models), but also may include the effects
of poloidal fields. The role of the Lorentz force in breaking the homogenization of
potential vorticity (PV) can be investigated b examining the classic problem of jet
breakdown. Here the instability of a jet profile can lead to turbulence which is me-
diated via the conservation of (PV). In the presence of a magnetic field, both the
breakdown of the jet and the subsequent turbulence will be modified

Of course, these simplified models should be compared with simulations of three-
dimensional MHD turbulence. Recent simulations of stably stratified rotating and
non-rotating hydrodynamic turbulence have shown that the degree of decoupling
between layers is not as great as might have been expected (Waite & Bartello 2006,
Lindborg 2006). Moreover it is to be expected that even weak magnetic fields will
play an important role in determining the dynamics in such systems. Finally this
system is of interest from a dynamo theory perspective. It may be the case that
the interaction of stably stratified turbulence and shear flows will lead to the self
consistent generation of large-scale magnetic fields. Such a result would be of great
importance for our understanding of the solar dynamo.
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Some Unusual Properties of Turbulent
Convection and Dynamos in Rotating Spherical
Shells

F. H. Busse and R. D. Simitev

Abstract The dynamics of convecting fluids in rotating spherical shells is governed
at Prandtl numbers of the order unity by the interaction between differential rota-
tion and roll-like convection eddies. While the differential rotation is driven by the
Reynolds stresses of the eddies, its shearing action inhibits convection and causes
phenomena such as localized convection and turbulent relaxation oscillations. The
response of the system is enriched in the case of dynamo action. Lorentz forces may
brake either entirely or partially the geostrophic differential rotation and give rise to
two rather different dynamo states. Bistability of turbulent dynamos exists for mag-
netic Prandtl numbers of the order unity. While the ratios between mean magnetic
and kinetic energies differ by a factor of 5 or more for the two dynamo states, the
mean convective heat transports are nearly the same. They are much larger than in
the absence of a magnetic field.

1 Introduction

Convection of an electrically conducting fluid in a rotating system represents a basic
dynamical process in planetary interiors and in stars. Astrophysicists and geophysi-
cists have long been interested in the mechanisms that govern the convective heat
transport and the generation of magnetic fields by convection in those systems. The
availability in recent years of large scale computer capacities has permitted numer-
ical simulations of detailed models for those processes. In particular, it has become
possible to model the global properties of convection and dynamos in rotating spher-
ical fluid shells to which this paper is addressed. Only the larger length scales can be
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taken into account in the numerical computations, of course, and eddy diffusivities
are usually introduced to model the influence of the smaller unresolved scales of the
turbulent flows.

A difficulty arises from the fact that it can not generally be assumed that all eddy
diffusivities are equal. First, they apply to scalar as well as to vector quantities,
such as temperature and magnetic fields. Secondly, the diffusivities in the absence
of turbulence differ enormously such that the turbulence may not be sufficiently
strong to equalize them. In the Earth’s liquid core, for instance, the magnetic diffu-
sivity is large enough to be taken into account without the consideration of an eddy
contribution while a comparable eddy viscosity would have to exceed the probable
molecular viscosity value by a factor of at least 10°. As has been demonstrated in
the past [12] the dynamics of convection in rotating spherical shells and its dynamo
action are very sensitive to ratios of diffusivities, especially to the Prandtl number
around its usually assumed value of unity.

More complex methods for treating effects of turbulence could eventually be
used, such as k — €-models, and the undoubtedly important anisotropy of turbulent
diffusivities in rotating systems could also be considered. Since these influences
are difficult to evaluate, however, we shall restrict the attention in this paper to a
minimum of physical parameters. In spite of this restriction a number of charac-
teristic features of convection and its dynamos in rotating spherical shells can be
demonstrated that are likely to exist as coherent spatio-temporal structures in natu-
ral systems.

2 Mathematical formulation of the problem and methods of
solution

We consider a rotating spherical fluid shell of thickness d and assume that a static
state exists with the temperature distribution Ts = Ty — Bd?r?/2. Here rd is the
length of the position vector with respect to the center of the sphere. The grav-
ity field is given by g = —dyr. In addition to d, the time d°/v, the temperature
v2/yod* and the magnetic flux density v(up)'/?/d are used as scales for the di-
mensionless description of the problem where v denotes the kinematic viscosity of
the fluid, x its thermal diffusivity, p its density and p is its magnetic permeability.
Since we shall assume the Boussinesq approximation material properties are re-
garded as constants except for the temperature dependence of the density described
by o« = —(dp/dT)/p which is taken into account only in the gravity term. Both,
the velocity field v and the magnetic flux density B, are solenoidal vector fields for
which the general representation

v=Vx(Vuxr)+Vwxr, B=Vx(Vhixr)+Vgxr, (1)

can be employed. By multiplying the (curl)? and the curl of the Navier-Stokes equa-
tions of motion by r we obtain two equations for # and w,
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(V2= 0,) 25 +10p)Viu+192w— 0 = —1r-Vx [Vx (v-Vv—B-VB)], (2)
(V2= 0) % +1d)w—12u=1-V x (v-Vv—B-VB), 3)
where J; denotes the partial derivative with respect to time ¢ and where d, is the
partial derivative with respect to the angle ¢ of a spherical system of coordinates
r, 0, @. For further details we refer to [12]. The operators .25 and 2 are defined by
L=V + 8r(r28r),
2=rcosOV? — (L +7rd,)(cos 09, —r ' sin0dp).

The heat equation for the dimensionless deviation © from the static temperature
distribution can be written in the form

V2O +R%u=P(d;+v-V)O, 4)

and the equations for / and g are obtained through the multiplication of the equation
of induction and of its curl by r,

V2 %h = P,[0L5h — -V x (v X B)], 5)
V2.Lhg = Pylds L2g —1-V x (V x (VX B))]. (6)

The Rayleigh number R, the Coriolis number 7, the Prandtl number P and the mag-
netic Prandtl number P, are defined by

6 2
R:ayﬁd7 1229d7 P

1% 1%
VK \% K

3 Pm:zv (7)

where A is the magnetic diffusivity. For the static temperature distribution we have
chosen the case of a homogeneously heated sphere. This state is traditionally used
for the analysis of convection in self-gravitating spheres and offers the numerical ad-
vantage that for Rayleigh numbers close to the critical value R, the strength of con-
vection does not differ much near the inner and outer boundaries. As the Rayleigh
number increases beyond R, heat enters increasingly at the inner boundary and is
delivered by convection to the outer boundary. When R reaches a high multiple of
R, the heat generated internally in the fluid becomes negligible in comparison to the
heat transported by convection from the inner to the outer boundary. The buoyancy
distribution then becomes similar to that of a spherical shell with imposed tem-
perature contrast and without internal heating. At low supercritical Rayleigh num-
bers some differences in the dynamo action of convection flows driven by different
forms of heating have been noticed [8]. A stronger preference for dipolar dynamos
has been found in the absence of internal heating, while with internal heating both,
quadrupolar and dipolar dynamos can be found.
Fixed temperatures and stress-free boundaries,

u=2u=0,(w/r)=0=0 atr=r,=n/(1-n)andr=r,=1/(1-10), (8)
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Fig. 1 Convection columns in a rotating spherical fluid shell for t = 10*, R=2.8-10°, P = 1.
Blue and red surfaces correspond to a constant positive and negative value of the radial velocity.

will be assumed where 1 denotes radius ratio, 11 = r;/r,. In the following only
n = 0.4 will be used. For the magnetic field electrically insulating boundaries are
assumed such that the poloidal function # must be matched to the function /1 which
describes the potential fields outside the fluid shell,

g=h—h=0,(h—h)=0 atr=ri=n/(1—-n)andr=r,=1/(1-7). (9)

But computations for the case of an inner boundary with no-slip conditions and
an electrical conductivity equal to that of the fluid have also been done [12]. The
numerical integration of the equations together with the boundary conditions pro-
ceeds with the pseudo-spectral method as described in [14] and [15] which is based
on an expansion of all dependent variables in spherical harmonics for the 0, ¢-
dependences, i.e.

u=y UJ"(r,t)P"(cos 0) exp{imp} (10)

I,m

and analogous expressions for the other variables, w,@, h and g. P/"* denotes the as-
sociated Legendre functions. For the r-dependence expansions in Chebychev poly-
nomials are used. For further details see also [12]. For the non-magnetic convection
calculations to be reported in the following a minimum of 33 collocation points in
the radial direction and spherical harmonics up to the order 64 have been used. The
resolution has been increased to 41 or 55 collocation points and spherical harmonics
up to the order 96 or 128 in the case of dynamo simulations.
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Fig. 2 Time series of energy densities of convection for P =1, 7 = 10* and R = 2.8 x 10°, 3.0 x
10%, 3.5 x 10%, 7 x 10°, 12 x 10°, (from top to bottom). Solid and dashed lines indicate E; and
E;, respectively. The Nusselt number Nu; is indicated by dotted lines and measured at the right
ordinate.

3 Convection in rotating spherical shells

For an introduction to the problem of convection in spherical shells we refer to the
review [2] and to the respective chapter in the book [5]. Additional information can
be found in the papers by Grote and Busse [6], Jones et al. [7], Christensen [4]
and Simitev and Busse [11]. Typically the onset of convection occurs in the form
of progradely propagating thermal Rossby waves as illustrated in figure 1. Only for
low Prandtl numbers P, i.e. P < 10/4/7 according to [1], the onset occurs in the
form of inertial waves attached to the outer equatorial boundary of the fluid shell as
is discussed in [16], [17], [1].

Because of the symmetry of the velocity field with respect to the equatorial plane
it is sufficient to plot streamlines in this plane, given by rdu/dr = const., to charac-
terize the convection flow. This has been done in figures 3 and 5. Even in the case of
turbulent convection the part of the velocity field that is antisymmetric with respect
to the equatorial plane is rather small as long as the parameter 7 is sufficiently large.

As the Rayleigh number R grows beyond its critical value R, the thermal Rossby
waves become modified by a sequence of bifurcations similar to those found in
other problems of convection. First, oscillations of the amplitude are observed, then
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Fig. 3 Localized convection for R =7 x 103, T = 1.5 x 10*, P = 0.5 The streamlines, rdu/de =
const. (upper row) and the isotherms, ® = const. (lower row), are shown in the equatorial plane
for equidistant times (from left to right) with Az = 0.03.

another bifurcation causes a low wavenumber modulation as function of the azimuth
[11]. Finally, a chaotic state of convection is obtained.

4 Chaotic convection

The sequence of transitions can also visualized through the time dependence of
average quantities such as the contributions to the kinetic energy density. These are
defined by

E,=(Vx(Vaxr) /2, E ={Vwxr|?)/)2 (11a)
E,={(|Vx(Vaxr) /2, E={Vwxr|?/)2 (11b)

where the angular brackets indicate the average over the fluid shell and where i
refers to the azimuthally averaged component of u and u is given by u = u — . At
low supercritical Rayleigh numbers the energy densities corresponding to steadily
drifting thermal Rossby waves are constant in time and are not included in figure 2.
The onset of vacillations manifests itself in the sinusoidal oscillations of the kinetic
energies as shown in the top plot of figure 2. Also plotted in figure 2 is the Nusselt
number Nu; measuring the efficiency of the convective heat transport at the inner
boundary,
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Nu;j=1- P o (12)
ri dr
r=r;

where the double bar indicates the average over the spherical surface. FE, describes
the energy density of the differential rotation which increases strongly with increas-
ing R as can be noticed in the lower plots of figure 2. This increase is caused by the
strong azimuthal Reynolds stress exerted by the convection eddies resulting from
their inclination with respect to radial direction as is apparent in figure 1. The in-
creasing shear of the differential rotation tends to inhibit convection, however, in
that it shears off the convection eddies. This is a consequence of the nearly two-
dimensional nature of the dynamics in a rotating system: Because of the require-
ment that the structure of convection approaches closely the Taylor-Proudman con-
dition, there is no possibility for a reorientation of the convection rolls as happens
in non-rotating systems. In the rotating sphere convection thus generates the agent
that tends to destroy it. A precarious balance in the form localized convection is
the result. As shown in figure 3 convection occurs only in a restricted azimuthal
section of the spherical shell where its amplitude is strong enough to overcome the
inhibiting influence of the shear. For the geostrophic zonal flow it does not matter
whether it is driven locally or more uniformly around the azimuth. Since in the non-
convecting region thermal buoyancy accumulates, the advection of this buoyancy
by the differential rotation strengthens and stabilizes the localized convection.

At even higher Rayleigh numbers this balance no longer works and instead of a
localization in space the localization of convection in time is initiated as is shown in
figures 4 and 5. Here convection exist only for a short period while the differential
rotation is sufficiently weak. As the amplitude of convection grows, the differen-
tial rotation grows even more strongly since the Reynolds stress increases with the
square of the amplitude. Soon the shearing action becomes strong enough to cut off
convection. Now a viscous diffusion time must pass before the differential rotation
has decayed sufficiently such that convection may start growing again. It is remark-
able to see how the chaotic system exhibits its nearly periodic relaxation oscillations
as shown in figure 4.

In figure 5 a sequence of plots is shown at four instances around the time of a con-
vection peak. At first there is hardly any convection, - the dotted lines just indicate
zero. At the next instance the differential rotation as shown by the upper row has
decayed sufficiently such that convection columns can grow reaching nearly their
maximum amplitude in the third plot. At the same time the differential rotation has
grown as well and begins to exert its inhibiting effect such that convection decays at
the fourth instance of the sequence, while the differential rotation reaches its max-
imum. It should be mentioned that localized convection and relaxation oscillations
occur at moderate Prandtl numbers of the order unity or less. At higher values of P
Reynolds stresses are no longer sufficiently powerful to generate a strong differen-
tial rotation. Instead variations of the temperature field caused by the dependence of
the convective heat transport on latitude induce a differential rotation in the form of
a thermal wind.
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Fig. 4 Relaxation oscillations of chaotic convection in the case 7 = 10, R=6.5-10°, P=0.5.
The energy densities E, (solid line), E; (dashed line), E, (dotted line) and the Nusselt number
(dash-dotted line, right ordinate) are shown as function of time.

Fig. 5 Sequence of plots starting at t = 2.31143 and equidistant in time (A7 = 0.01) for the same
case as in Fig. 8. Lines of constant iz, and streamlines 7sin 09gh =const. in the meridional plane,
are shown in the left and right halves, respectively, of the upper row. The lower row shows corre-
sponding streamlines, rdu/d @ = const., in the equatorial plane.

The convective heat transport in the case of localized convection as well as in
the case of relaxation oscillations is much reduced, of course, relative to a case
without strong differential rotation. This causes the magnetic field to enter the prob-
lem in a crucial way provided the electrical conductivity is sufficiently high. By
putting brakes on the differential rotation through its Lorentz force the magnetic
field permits a much higher heat transport than would be possible in an electrically-
insulating fluid. This is the basic reason that the Earth’s core as well as other planets
with convecting cores and rotating stars exhibit magnetic fields. A demonstration of
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10°x5 | |

Fig. 6 Transition from a dynamo state to a state of chaotic relaxation oscillations for 7 = 1.5 x
10*, R=1.2x10°% P = P, = 0.5. The energy density E, (dotted line), the total magnetic energy
density (dashed line) and the Nusselt number Nu; (solid line, right ordinate) are shown as function
of time.

this effect is seen in figure 6 where by chance the convection driven dynamo was
just marginal such that it could not recover after a downward fluctuation of the mag-
netic field. Hence the relaxation oscillations with their much reduced average heat
flux take over from the dynamo state.

S Distinct turbulent dynamos at identical parameter values

Convection driven dynamos in rotating spherical fluid shells are often subcritical as
is apparent in figure 6, for instance. At somewhat higher Rayleigh numbers con-
vection with a strong magnetic field will persist. On the other hand the dynamo will
decay when the magnetic field is artificially reduced to, say, a quarter of its averaged
energy. There thus exists the possibility of a convection driven dynamo state and of a
non-magnetic convection state at identical values of the external parameters R, T, P.
The bistable coexistence of a non-magnetic convection state and a dynamo state is
typical for subcritical bifurcations as in the analogous coexistence of laminar and
turbulent states in shear flows.

More surprising is the fact that two different turbulent dynamo states can exist at
identical values of the external parameters which now should include the magnetic



190 F. H. Busse and R. D. Simitev

600 600

400 J

Il
0.5 1.0 1.5

Fig. 7 Two distinct dynamos at identical parameter values, T=5x 103, R=5x10°, P=P, = 1.
Upper (lower) plots show time series of quadrupolar (dipolar) magnetic energy densities. Thick
lines indicate mean torodial (solid lines) and poloidal (dashed lines) energy components. Thin
lines indicate the same for the fluctuating components.

Prandtl number P,,. An example is shown in figure 7 where a spherical dynamo of
mixed parity, i.e. with dipolar and quadrupolar components, and a purely quadrupo-
lar dynamo evolve in time at identical external parameters. In the latter case the
exponential decay of dipolar disturbances is clearly demonstrated. In figure 7 mag-
netic energy densities have been plotted that are defined in analogy to expressions
(12),

M,={(Vx(Vhxr)[*)/2, M,=( Vg xr|*)/2 (13a)
M, = (| Vx(Vh,xr)[*Y/2, M,={ Vg xr|*)/2. (13b)

An even more surprising case is that of two convection driven dynamos without
any distinction in symmetry, just with differences in the magnitude of various energy
densities as is apparent from figure 8. While a strong mean poloidal magnetic field as
shown in the left half of figure 8 acts as an efficient brake on the differential rotation
as measured by E,, it also inhibits convection. The alternative dynamo on the right
side of the figure is characterized by a relatively weak mean magnetic field and
dominant fluctuating components. Here the kinetic energy densities of convection
are larger, but the differential rotation is still much weaker than it would be in the
non-magnetic case.
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Fig. 8 Time series of two different chaotic attractors are shown - a MD (left column (a,b)) and a
FD dynamo (right column (c,d)) both in the case R = 3.5 x 10°,1=4%x10*, P=0.5and P, = 1.
The top two panels (a,c) show magnetic energy densities. and the bottom two panels (b,d) show
kinetic energy densities in the presence of the magnetic field. The components M, are shown by
thick solid black lines, while X;, X, > and X, are shown in red green and blue respectively. X stands
for either M or E.
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Fig. 9 The upper row shows the hysteresis effect in the ratio of magnetic to kinetic energy, E /M,
at T =3 x 10* (a) as a function of the Prandtl number in the case of R = 3.5 x 100, P/P, =0.5;
(b) as a function of the ratio P/P, in the case of R = 3.5 x 10%, P = 0.75 and (c) as a function
of the Rayleigh number in the case P = 0.75, P, = 1.5. Full and empty symbols indicate FD
and MD dynamos, respectively and circles and squares indicate the two hysteresis branches. The
critical value of R for the onset of thermal convection for the cases shown in (¢) is R, = 659145. A
transition from FD to MD dynamos as P/P,, decreases in (b) is expected, but is not indicated owing
to lack of data. The lower row shows the value Nu; of the Nusselt number at » = r; for the same
dynamo cases. Values for non-magnetic convection are indicated by triangles for comparison.
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The bistability in the form of two different types of dynamos is not a singular
phenomenon, but exists over an extended region of the parameter space. Since the
region includes values of the Prandtl number of the order unity which has been
the preferred value of P in many simulations of convection driven dynamos the
phenomenon of bistable dynamos is of considerable importance. The first results
of our extensive numerical simulations can be found in [13]. A typical diagram is
shown in figure 9. The extended regime of coexistence of the two types of dynamo
is bounded by transitions where one of the two dynamos ceases to be stable and
evolves into the other one within a magnetic diffusion time. A basic reason for the
competitiveness of both dynamos is that they exhibit essentially the same convective
heat transport as measured by the Nusselt number Nu;. The lower half of figure 9
not only demonstrates the surprising coincidence of the heat transports of the two
dynamo types, but also indicates that these heat transports by far exceed those found
in the absence of a magnetic field.

Recently the computations have been extended to higher rotation rates as shown
in figure 10. At T =4 x 10* the same phenomenon of bistability has been found as
at T =3 x 10*. Again, the two kinds of dynamo exhibit the same heat transport as
indicated in the lower part of figure 10.

6 Concluding remarks

The existence of two distinct turbulent states is a rare phenomenon, although exam-
ples exist in non-magnetic hydrodynamics, see, for instance, [10] [9]. In magneto-
hydrodynamics an electrically conducting fluid in the presence of a magnetic field
offers new degrees of freedom which allow more than a single balance between the
various forces operating in turbulent states. Initial conditions thus determine which
of the competing states is actually realized.

The possibility of bistability could be of interest for the interpretation of plane-
tary and stellar magnetism. Magnetic hysteresis effects associated with stellar oscil-
lations may eventually be explained in this way. Anyone involved with numerical
simulations of convection driven dynamos should be aware that his solutions could
change drastically after different initial conditions have been introduced.
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Zigzag instability of the Karman vortex street in
stratified and rotating fluids

Axel Deloncle, Paul Billant and Jean-Marc Chomaz

Abstract We investigate the three-dimensional stability of the Kdrman vortex street
in a stratified and rotating fluid by means of an asymptotic theory for long-vertical
wavelength and well-separated vortices. It is found that the Karman street with close
rows is unstable to the zigzag instability when the fluid is strongly stratified inde-
pendently of the background rotation. The zigzag instability bends the vortices with
almost no internal deformation. The results are in excellent agreement with direct
numerical stability analyses and may explain the formation of layers commonly ob-
served in stratified flows.

1 Introduction

Karman vortex streets can be observed in geophysical flows for instance in the wake
of mountains or islands [7]. They consists in two staggered rows of vortices (Fig. 1).
Much attention has been devoted to the two-dimensional stability of this flow in ho-
mogeneous fluid using point vortices (see [10]). The three-dimensional stability has
been addressed by [14]. Their analysis is based on vortex filaments and is there-
fore limited to long axial wavelengths and well-separated vortices. They found that
the Kdrmdn vortex street is unstable to three-dimensional or two-dimensional dis-
turbances depending on the spacing ratio of the street. The stability of such two-

Axel Deloncle
Hydrodynamics Laboratory (LadHyX), Ecole Polytechnique, 91128 Palaiseau Cedex, France,
e-mail: axel .deloncle@ladhyx.polytechnique. fr

Paul Billant
Hydrodynamics Laboratory (LadHyX), Ecole Polytechnique, 91128 Palaiseau Cedex, France,
e-mail: billant@ladhyx.polytechnique. fr

Jean-Marc Chomaz
Hydrodynamics Laboratory (LadHyX), Ecole Polytechnique, 91128 Palaiseau Cedex, France,
e-mail: chomaz@ladhyx.polytechnique.fr

D. Dritschel (ed.), IUTAM Symposium on Turbulence in the Atmosphere and Oceans, 197
IUTAM Bookseries 28, DOI 10.1007/978-94-007-0360-5-16,
© Springer Science+Business Media B.V. 2010


mailto:axel.deloncle@ladhyx.polytechnique.fr
mailto:billant@ladhyx.polytechnique.fr
mailto:chomaz@ladhyx.polytechnique.fr
http://dx.doi.org/10.1007/978-94-007-0360-5_16

198 Axel Deloncle, Paul Billant and Jean-Marc Chomaz

dimensional vortex array has been little addressed in a stably stratified and rotating
fluid. [12] have investigated numerically the stability of an infinite vortex row but
only in a weakly stratified and rotating fluid. Experiments in a strongly stratified
fluid have shown the formation of horizontal layers by the destabilization of the
vortex streets created by towing a rake of vertical cylinders [8] or a rake of vertical
flat plates [13].

The stability of a pair of columnar vertical vortices in a stratified rotating fluid
has shown the existence of a three-dimensional instability called zigzag instability
[2; 11] or tall-column instability [6] that vertically bends the vortices with little inter-
nal deformation. [1; 3] recently derived a general theory to treat the stability of vor-
tices for long-axial-wavelength bending perturbations and well-separated vortices
in a stratified and rotating fluid. Their analysis led to stability equations formally
identical to the ones given by [4] in homogeneous fluid except that the expressions
of the self-induction and mutual induction functions differ between homogeneous
fluid and stratified and rotating fluid. This asymptotic theory gives results in ex-
cellent agreement with full numerical stability analysis of the zigzag instability of
vortex pairs. Here, we make use of this approach to study the three-dimensional sta-
bility of the Karmén vortex street in a stratified and rotating fluid. The results are
compared to direct numerical stability analyses [5].

2 Problem formulation

2.1 Pair of vortices in a stratified and rotating fluid

For clarity, we first present the stability equations for two vortices in a stratified and
rotating fluid. The generalization to the Kdrméan street is straightforward from this
case. We denote I7 and I5, the circulations of the two vertical vortices of radius
a separated by a distance b. The Froude and Rossby numbers of each vortex are
defined as follows:

|Ti| L

Fy = . Roj= —_ with i={1,2}, 1
i = sran RO fpag, Wit i={12} M

where N is the Brunt—Viisilid frequency and €2, is the rotation rate about the vertical
axis.

The asymptotic theory is based on three assumptions. First, it is assumed that the
vortices are well-separated: a < b. The second hypothesis is that the perturbations
consist in bending deformations of the vortices with a small vertical wavenumber k,
such that k,Fj;a < max(1,+/Fj;)min(1,Ro;). These two assumptions are similar to
those assumed in vortex stability analysis using vortex filaments in a homogeneous
fluid [4; 14]. The last assumption is that the strains I;/ 27h?* are small compared
to the Brunt—Viisili frequency, or equivalently: Fj,; < b*/a®. Since b/a >> 1, this
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condition is not only satisfied for strongly stratified fluids (i.e. F; < 1) but also
weakly stratified fluids in the range: 1 < F; < b*/a?.

The position of each vortex core is assumed to be perturbed by an amount
(Axy,Ayy) and (Axy, Ay,). Writing these perturbations in the form:

(A~xi,A~y,') = (Axi,Ayi)eikzz—FC.C., 2)

where c.c. denotes the complex conjugate, and using the three hypothesis mentioned
above, the following evolution equations for the perturbations of the first vortex have
been obtained by means of an asymptotic analysis

dAx; I I
= —— Ay +—=F(B)A 3
i S 5 (B)Ay2 3)
(7= L e FuRor) ) Ayt + 1 (ke Fig Roy) A
o 7 ) e 75 ) )
dAy; 2 I>
22 A+ 2 y(B)A 4
dt a0t g X (B)Ax: @

I I
— (f— %ame(szhl 7R01)> Axi + |2—7Jw1m(kz7Fh1 ,Ro1)Ay1.

The complementary pair of equations for the second vortex are found by interchang-
ing the subscripts 1 and 2. These equations are written in the frame of reference ro-
tating at angular velocity f + €2, where the base flow is steady. f = (I7 + I3)/2mb?
is the rate at which the unperturbed vortices rotate around each other. The functions
v and Y are the mutual-induction functions and ® = Wge + 10y, is the self-induction
function which can be complex in a stratified and rotating fluid. These functions will
be detailed below.

These equations have the same form as the ones derived by [4] or [9] for a pair of
vortices in a homogeneous fluid using the Biot—Savart law to compute the induced
motion of the vortices and the cut-off approximation to determine the self-induced
velocity of the individual vortices.

The physical meaning of the three terms in the righthand side of (3) is the follow-
ing. The first term represents the strain effect of the basic flow field of one vortex
on the perturbation sustained by the other vortex. The second term is the mutual-
induction effect, i.e. the effect of the perturbation of one vortex on the basic flow of
the other vortex. This effect depends on the mutual-induction functions:

x(B)=-B’K{(B),  w(B)=PBKi(B), (5)

where 8 = bk,Fj,1 /|Ro1| = bk Fyp/|Roz| and K| is the modified Bessel function of
the second kind of first order. These functions are the equivalent, in a stratified and
rotating fluid, of the Crow’s first and second mutual-induction functions [4]. ¥ and
v are equal to unity for § = 0 and then goes to zero exponentially for large 3.

The last term represents the effect of the rotation of the vortex pair at angu-
lar velocity f and the self-induction effect, i.e. the effect of a vortex on itself. If
alone, this self-induction corresponds to a rotation of the vortex at angular velocity
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I /21 wg, around its unperturbed location. When wy,, < 0, this rotation is damped
atrate 6 = |I"| /2 @y, In a stratified and rotating fluid, the self-induction function!
is given by:

K2F? ak,Fy,
ke, Fyi,Ro;) = =1 —1 : Fyi,Ro:) = Ye
(D( 2y Lhiy 0) 2R0,'2( n<2|R0i|>+6< his 0) Y>a (6)

where 7, = 0.5772 is the Euler constant and § is a parameter depending on the
Froude number F;,;, the Rossby number Ro; and the non-dimensional angular veloc-
ity 2 of the individual vortices:

Mo (RoQ (&) + 1)
—n%)linm A 539(5)2Wd5—1nno @)

8(Fy,Ro)
In this paper, we consider the Lamb—Oseen profile: Q(r) = (1/r%) (1 —exp(—r?)).
In this case, the self-induction is real and positive for F;, < 1 whatever Ro in con-
trast to homogeneous fluids for which it is negative. For Fj, > 1, the self-induction
becomes complex with a negative imaginary part @y, because the bending distur-
bances are damped by a viscous critical layer at the radius where the angular velocity
of the vortex is equal to the Brunt—Viisild frequency.

2.2 Kdrmadn vortex street in a stratified and rotating fluid

b
=

It ) . . . tho

(e

<+—>
b/2

Fig. 1 Sketch of the Kdrman vortex street. The vortices are initially two-dimensional with their
axis in the vertical direction. The rows are infinite.

The Karman vortex street consists in a staggered double row of two-dimensional
vertical vortices (Fig. 1). The vortices of the upper row have a positive circulation I"
while those of the lower row have a negative circulation —I". The distance between
the two rows is A. The vortices on each row are separated by a distance b and the
two rows are staggered by a distance b/2. All the vortices have the same radius a.

1 Note that the self-induction function is not exactly defined as in [4] or [14].
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The whole unperturbed vortex array moves with a uniform velocity in the frame
of reference rotating at rate €2, about the vertical axis. Since all vortices have the
same absolute circulation, they are characterized by a single Froude number Fj, =
r/ 2ma®N. In contrast, the Rossby number of the vortices of the upper row is Ro =
I' /Ama €2, while the Rossby number of the vortices of the lower row is opposite:
—Ro.

[14] have investigated the stability of the Kdrman vortex street in a homogeneous
fluid in the limit of well-separated vortices and long-wavelength bending pertur-
bations following Crow’s stability analysis of a counter-rotating vortex pair. Their
stability equations have the same form as (3) except that they sum up all the strain
and mutual-induction effects of each vortex of the array. In order to determine the
three-dimensional stability of vortex arrays in a stratified and rotating fluid, we can
thus follow the analysis of [14], except that the mutual-induction and self-induction
functions have to be replaced by those valid in a stratified and rotating fluid.

By summing up the straining and the mutual induction effects due to each vortex,
the following evolution equations for the perturbations of a vortex m in the upper
row are found:

dAxi r Ial

& = *EwRe(kth»Ro)Ayl,erEwlm(kzthvRo)Axl,m
7£ AY1m — YpmAY1 p
2m o, b2,
_,_L 2 (l;czim - hz)Ayl,m - (Bgml//qm - thqm)AyZ,q
4 )
2 4 Lom
_’_L quh [ZAth - (%qm + qu)szva (8)
2w < Lém
dAy, r I
Tm - +Ea)Re(kZ7Fh7R0)Axl.m + E(D[m(kz,Fh,RO)AYI,m
_L Axl,m_%pmAxl.p
2n pF£m blz’m
r 5 (B2, —h?)Axy w— (Bfim Ham — W2 Wam) Axa 4
2 4 Lym
7£ b‘]mh [2AY1,m - (qu + Wqu)AyZﬂ} 9)
2w < Lém ’

where by = (p—m)b, byn = (q—m+1/2)b and Lém =h*+ Eém. The subscripts on
y and y indicate that the function arguments are |b,, |k.F;, /Ro and |Lg|k.Fj, / Ro for
subscripts pm and gm respectively. Similar equations are found for a vortex (2,n) in

the lower row. We consider linear perturbations of the form:



202 Axel Deloncle, Paul Billant and Jean-Marc Chomaz

(AX1my Ay1m) = (Axy, Ayy)elmotot (10)
(Axom; Ayan) = (Axy, Ayy)elT2)0+01 (11)

with o the growth rate and 0 < ¢ < 7. As shown by [14], ¢ /b can be considered as a
wavenumber of the disturbance in the row direction. However, it is more convenient
to introduce the wavelength of the disturbance b = 27b/¢ in the row direction
with 2 < pu < oo, A value u = 2 implies a periodicity every two vortices, U = 4
every four vortices and so on, while i = e means that all the vortices on a single
row are displaced in the same direction.

Following [14], it is also convenient to introduce symmetric and antisymmetric
modes:

(Axg, Ayg) = (Ax) +Axp, Ay; — Ayr),
(Axq,Ayy) = (Ax) — Axy, Ay + Ayo).

The physical meaning of these modes can be easily understood in the case [ = oo,
i.e. when all vortices of a given row are displaced in the same direction. The symmet-
ric mode corresponds then to a displacement of each row in the same x—direction
but in opposite y—direction, i.e. a modulation of the row spacing 4 along the verti-
cal direction. Conversely, the antisymmetric mode corresponds to displacements of
each row in opposite x—direction but in the same y—direction, i.e. a vertical modu-
lation of the interval b/2 in the x—direction between the two rows.

However, contrary to homogeneous fluids studied by [14], the symmetric and
antisymmetric modes do not always decouple because the self-induction for the
vortices of the upper and lower rows are not equal: @(k;, Fy, Ro) # o (k;, Fj,, —Ro).
A decoupling is recovered only in the limits Ro — oo and Ro — 0.

Inserting (10-11) into (8-9) and the corresponding equations for the lower row
leads to an eigenvalue problem which can be easily solved [5].

3 Results

Fig. 2(a) shows the case of the Kdrmén vortex street with close rows Kk = /b= 0.2
for a low Froude number Fj, = 0.1. The nondimensional theoretical growth rate
2nb*c /T of the dominant mode is plotted (solid lines) as a function of the rescaled
vertical wavenumber bFjk, for different Rossby numbers from Ro = co to Ro =0.75.
The dominant instability is three-dimensional and the rotation decreases the most
amplified rescaled wavenumber. The maximum growth rate also decreases signif-
icantly (~ 40%) when Ro goes from Ro = o= to Ro = 6 but then remains approx-
imately constant when Ro is further decreased. The perturbations induced by this
three-dimensional instability are sketched on Fig. 3 for Ro = co. The instability is a
zizag instability that bends all the vortices of a row in the same direction (i.e. U = o)
but the two rows are bended in opposite direction, i.e. in a symmetric manner. The
interval between the two rows is thus modulated along the vertical. Strikingly, this
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is the opposite to the case of a homogeneous fluid where the symmetric mode is
stable while the antisymmetric mode is three-dimensionally unstable [14]. For finite
Ro, the eigenmode is not perfectly symmetric: the vortices in the lower row which
are anticyclonic are more displaced than the cyclonic vortices in the upper row. The
symbols in Fig. 2(a) show the results of a direct numerical stability analysis for a
large Reynolds number close to the inviscid limit Re = 50000 [5]. We see that there
is a perfect agreement for small values of k, between the numerical and theoretical
results (solid lines). Small departures at large wavenumbers are observed because
the asymptotic theory is restricted to long-wavelength disturbances. Nevertheless,
the agreement is very good and the theory predicts very well the most unstable ver-
tical wavenumber k4, and the maximum growth rate.

(b) K=0.5

0 5 10 15 0 5 10 15
bE, k. bE k

h vz

Fig. 2 Nondimensional growth rate 2b>c /T" of the dominant mode as a function of the rescaled
vertical wavenumber bFjk;, for Fj, = 0.1 for the Kdrmdn vortex street with (a) close rows x = 0.2
and (D) distant rows k = 0.5. The symbols correspond to the numerical results and the solid lines to
the asymptotic theory. In each plot, the curves from right to left correspond to the Rossby numbers:
Ro =00 (+), Ro=6(A), Ro=2 (o), Ro=0.75 (O).

Fig. 2(b) is similar to 2(a) but for a Kdrmén vortex street with more distant rows
K = 0.5. In this case, the most unstable mode is two-dimensional (k,,.x = 0) and
thereby not affected by rotation. However, the band of unstable vertical wavenum-
bers narrows dramatically when the rotation increases. The agreement between nu-
merical (symbols) and theoretical (solid lines) results is excellent over almost all the
unstable band of vertical wavenumbers k.. The dominant eigenmode has (t =2, i.e.
this instability is a two-dimensional pairing instability which tends to move closer
or away adjacent vortices of a given row [14].

By varying x and i, we have found that the zigzag instability with (t = eo remains
dominant for approximately k¥ < 0.4. When the two vortex rows are more distant
K 2 0.4, the dominant overall instability becomes the y = 2 two-dimensional pairing
instability.

We now set the Rossby number to Ro = o= (no background rotation) and inves-
tigate the effect of the Froude number for k¥ = 0.2. Fig. 4 shows the growth rate of
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Fig. 3 Sketch of the dominant instability of the Karmén vortex street with close rows k¥ = 0.2
for F, = 0.1 and Ro = . The top figure is a three-dimensional view of the bending deformations
induced by the isntability. The displacements of the vortices in the horizontal cross section are
indicated in the bottom figure. The dominant instability is a symmetric zigzag instability.

the dominant mode for various Froude numbers from strong stratification (F, = 0.1)
to moderate stratification (F, = 1.2). In all cases, the agreement between numer-
ical (symbols) and theoretical (solid lines) results is very good although a slight
departure is observed at large wavenumbers. We see that the growth rate curves for
F;, =0.1 and F, = 1 are almost similar except a small decrease in the most amplified
rescaled wavenumber. The stratification has thus little effect on the zigzag instabil-
ity as long as F;, < 1. However, when the Froude number is further increased to
Fy = 1.2, an abrupt drop of 50% of the maximum growth rate is observed. This is
due to the damping of the zigzag instability by a viscous critical layer that appears
for F, > 1.
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Fig. 4 Nondimensional growth rate 2b?>c /T of the dominant mode as a function of the rescaled
vertical wavenumber bFj,k, with Ro = e for the Karman vortex street with close rows k¥ = 0.2.
The symbols correspond to the numerical results and the solid lines to the asymptotic theory. The
curves from right to left correspond to the Froude numbers: F;, = 0.1 (+), Fj, = 1. (A), F;, = 1.2 ().

4 Conclusion

We have investigated theoretically and numerically the three-dimensional stability
of a Kdrmén vortex street in a stratified and rotating fluid. The theoretical and nu-
merical results are in excellent agreement for all the Rossby and Froude numbers
investigated. This agreement proves that the asymptotic theory captures the physics
of the instabilities due to the vortex interactions in stratified and rotating fluids.
Furthermore, it works well for finite wavelengths and for close vortices despite the
assumptions used in the asymptotics: long-wavelength bending perturbations and
well-separated vortices.

If we summarize the stability results, we have found that when the fluid is suf-
ficiently stratified, i.e. F;, < 1.3 — 1.6, the instability is three-dimensional whatever
the Rossby number for the Kdrman vortex street with close rows. It is a bending
instability of the same type as the zigzag instability of vortex pairs. This instability
might explain the destabilization of the Karmén vortex streets observed experimen-
tally in stratified fluids by [8] and [13]. The Karman vortex street for distant rows is
most unstable to a two-dimensional pairing instability for any Rossby number.
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Instabilities of a columnar vortex in a stratified
fluid

Patrice Meunier, Nicolas Boulanger, Xavier Riedinger and Stéphane Le Dizes

Abstract In this paper, we show that the presence of a vertical density gradient can
destabilise a Gaussian vortex in two different ways. First, when the vortex axis is
slightly tilted with respect to the vertical and if its Froude number is larger than one,
the vortex exhibits strong axial flows inside a critical layer, which lead to a violent
three-dimensional instability. Second, when the vortex axis is vertical, the vortex is
weakly unstable by emission of internal gravity waves. Theoretical predictions for
both instabilities are compared with experimental evidences.

1 Introduction

It is well known that rotating and stratified turbulence contains many vortices whose
axes tend to align with the background rotation axis and the density gradient direc-
tion. It is thus of interest to study the stability of such vortices to gain comprehension
on the mechanisms which drive rotating and stratified turbulence. As a first step, we
will focus here on the effect of stratification only.

There exist many inviscid instabilities which can destabilise a vortex in a homo-
geneous fluid. When the velocity profile of the vortex satisfies the Rayleigh criterion,
the vortex is subject to a centrifugal instability. Otherwise, all the eigenmodes of the
vortex (called vortex Kelvin modes) are neutral and can only grow due to an external
forcing. For example, the presence of a second vortex can induce two different insta-
bilities: the large wavelength Crow instability [5] and the short wavelength elliptical
instability [9].

The presence of a stable stratification modifies the characteristics of these three
instabilities. The Rayleigh criterion is not modified by stratification but the instabil-
ity is weaker as soon as viscous effects are also considered [8]. The Crow instability
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is transformed into a zig-zag instability [1; 6]. And the elliptical instability is weak-
ened due to the appearance of critical points in the vortex Kelvin modes [10].

We show in this paper that the presence of stratification can also destabilise a
centrifugally stable vortex. After describing the vortex and the density profile in
section 2, we first focus on the effect of a tilt of the vortex in section 3. We then study
the instabilities of a vertical vortex in section 4 and finally conclude in section 5.

2 A Gaussian vortex in a stratified fluid

We wish to study the stability of a Gaussian vortex, whose angular velocity profile

is defined as: r
Q=2

r 2mr?

(1—e /e (1)

for a vortex of circulation I" and core size a. Such a vortex is stable with respect
to the centrifugal instability in a non-stratified fluid. It is also interesting because it
is the attractive solution for any localised patch of vorticity evolving due to viscous
diffusion.

This vortex is placed in a vertical density stratification p(z), which is assumed to
be linear and characterized by a constant buoyancy frequency N=+/—(g/p)(dp/9z).
We consider that the vortex axis may be tilted with respect to the vertical with an
angle o, as shown on Fig. 1(a).

This system is characterised by two non-dimensional parameters: the Froude
number F = I" /2xNa?* and the Reynolds number Re = I"/v.

T
(a) (b)

Fig. 1 (a) Sketch of a vortex inclined of an angle o with respect to a stable linear density stratfica-
tion p(z). (b) Experimental velocity field (and vorticity contours) obtained for a vortex generated
by a flat plate impulsively rotated in a stratified fluid measured by PIV.
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Experimentally, it is possible to create a Gaussian vortex by rotating a flap impul-
sively in a fluid initially at rest. Some PIV measurements (shown on Fig. 1b) allow
to check that the vortex is circular and close to Gaussian. The linear stratification of
the fluid is obtained using the two-tank method with salted water.

The linear temporal stability characteristics of the vertical vortex have also been
obtained by a numerical spectral method.

3 Instabilities of a tilted vortex

We show in this section that the presence of a small tilt angle o can drastically
change the structure and the stability of the vortex when its Froude number is larger
than one.

3.1 Spatial structure of a tilted vortex

It has been shown [2] that tilting the vortex induces an axial velocity w proportional
to the tilt angle ¢ for small angles:

rQ(r)?

m sin O (2)

w=0ao

where 0 is the angle with respect to the direction of the tilt. At low Froude number,
the vertical velocity decreases as 1 /N2 and thus vanishes, leading to the same model
of vortex described by [4], where the circular streamlines are horizontal but with
their centers aligned on a tilted axis. However, when the Froude number is larger
than 1, this solution diverges at the critical radius r, where the angular velocity
Q(r.) equals the buoyancy frequency N. This creates a critical layer with strong
axial velocities.

Theoretically, the addition of the viscous terms smoothes the singularity in a
viscous critical layer of width Re~1/3_In this layer, the axial velocity reaches values
of order azRe'/3. In Fig. 2, the analytic solution is compared to the experimental PIV
measurement of the axial velocity. A good qualitative and quantitative agreement is
observed. A cut along the direction of the tilt (x-axis) indicates that the velocity
profile contains a strong positive jet on one side and a strong negative jet on the
other side. On the contrary, the velocity profile in the direction perpendicular to the
tilt (y-axis) exhibits two shear layers on each side of the vortex center.
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Fig. 2 (a) Theoretical and (b) experimental contours of axial velocity in a horizontal plane, for a
vortex tilted with an angle @ = 0.07 rad. Re =450 and F = 3.2.

3.2 Tilt-induced instabilities

The presence of strong axial flows inside the critical layers can destabilise the vor-
tex. Indeed, when the Reynolds number or the tilt angle is increased, the vortex
suddenly exhibits strong three-dimensional perturbations which lead to a turbulent
flow inside the vortex. Such perturbations are shown on the photographs of Fig. 3 in
two different sideviews.

Fig. 3(a) shows a shadowgraph visualisation in the vertical longitudinal plane
(i.e. the plane of the figure in Fig. 1), where the vortex thus appears tilted. The
visualisation highlights a row of clockwise vortices on each side of the vortex. These
vortices correspond to Kelvin-Helmbholtz billows issued from a Kelvin-Helmholtz
instability of the shear present in thes critical layer. In the tilted longitudinal plane
(i.e. normal to the plane of the figure in Fig. 1), on the other hand, the perturbation
seems to contain a row of alternate vortices on each side (see Fig. 3b), which is due
to the sinuous mode of a jet instability.

These mechanisms are further confirmed by PIV measurements in these two
planes shown in Fig. 4. In the vertical longitudinal plane (Fig. 4a), the jet insta-
bility made of alternate vortices is clearly visible on each side of the vortex axis.
In the tilted longitudinal plane (Fig. 4b), each mixing layer destabilizes in a row of
vortices. It can be noted that the different instabilities do not correspond between
visualisations and PIV measurements: they are in phase quadrature. This is due to
the fact that density structures are advected by the vortex and they are thus maxi-
mal at the end of the forcing by the flow, and not in the plane where the forcing is
maximal.
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Fig. 3 Shadowgraph visualisation of the tilt-induced instabilities in (a) the vertical longitudinal
plane and (b) the tilted longitudinal plane. F = 3, Re = 720, oo = 0.07rad.

Fig. 4 PIV measurements of the instantaneous azimuthal vorticity showing the tilt-induced insta-
bilities in (a) the vertical longitudinal plane and (b) the tilted longitudinal plane.

A local stability analysis has been performed [3] and proves that the three-
dimensional instability of the vortex is indeed linked to a local shear or jet insta-
bility inside the critical layer. The growth rate (of the order of 0.1ctRe?/N)) and the
wavelength are in good quantitative agreement with the observations. Moreover, a
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qualitative criterion for the stability of a tilted stratified vortex can be obtained by
saying that the growth rate must be larger than the angular frequency of the vortex.
The vortex is thus unstable when otRe?> > 1 and for F > 1.

3.3 Consequences

These local instabilities create a strong turbulent flow inside the vortex. However,
the vortex is not broken and its circulation remains constant even in the presence of
instabilities. The only effect of the instabilities on the global properties of the vortex
is to increase its core size a if the Froude number F is slightly larger than 1. This
can be understood by the fact that for Froude of order 1, the critical layer is close
to the vortex center and the mixing created by the instabilities can thus diffuse the
vorticity more efficiently than for very large Froude number (for which the critical
layer is far from the vortex center). In the presence of instabilities, the vortex core
size increases, leading to a decrease of the Froude number until it becomes smaller
than one at which the critical layer suddenly disappears.

Since the control parameter of the instability is azRe?/3, for the large Reynolds
numbers of geophysical flow, vortices are expected to be unstable for very small
tilt angle. This instability should create a deficit of vortices with a Froude number
slightly above one, which could be interesting to analyse in oceanic and atmospheric
data..

The strong axial velocity created in the critical layer may also be a visible effect.
It could have an important impact on the diapycnal mixing in geophysical flows. It
would be interesting to quantify its real contribution in oceans.

4 Radiative instability

We now focus on the stability of a Gaussian vortex whose axis is aligned with the
density gradient (or = 0).

4.1 Linear stability analysis

A linear stability analysis has been performed using a pseudo-spectral Chebyshev
code. The boundary conditions, especially the condition of radiation at infinity, have
been implemented by considering an integration in the complex plane. Further ex-
planations on the numerical technique can be obtained in [12].

Figure 5(a) shows the growth rate of the most unstable eigenmode as functions of
Froude and Reynolds numbers. Its spatial structure exhibits two opposite sign vor-
tices at the center surrounded by weak edges spiralling around the vortex, associated
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Fig. 5 (a) Growth rate of the most unstable mode for a vertical vortex in a stratified fluid. (b)
Structure of the most unstable mode for Re = 10° and F = 1.5.

with internal gravity waves. This instablity is due to the gravity wave emission, as
described in [7] and [11]. It can be understood as an interaction between the vortex
Kelvin mode (creating the two central vortices) and internal gravity waves which
radiate to infinity. Such a description has also been given in [13].

It can be noted that the vortex is unstable for any Reynolds number and is max-
imal for Froude numbers around 1. The damping of the instability at large Froude
number is due to the appearance of a critical point in the eigenmode. The damping
of the instability at small Froude numbers is due to viscous effects: the wavelength
scales as F for small Froude numbers, and the viscous damping rate vk? thus in-
creases as F~2 when F tends to zero. These two effects explain why the instability
is only present on a band of Froude numbers around one.

4.2 Experimental evidence?

Experiments have been performed to try to observe this instability. However, the
growth rate of this instability is very small (close to 0.1% of the maximal angular
velocity of the vortex) and the experimental results are not clear. The vortex center,
visualised by a dye, usually exhibits an undulation as shown on Fig. 6 in the unstable
region of the parameter space. The wavelength of the undulation is of the order of
the most unstable wavelength found theoretically although it is usually larger. For
the parameters of Fig. 6, the wavelength was measured to be twice larger than the
predicted wavelength.
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vortex in a stratified fluid
(sideview). F = 1.15, Re =
610.
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Fig. 6 Dye visualisation of \
the instability of a vertical =
3
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5 Conclusion

We have shown that the presence of stratification can drastically change the stability
properties of a Gaussian vortex. Two cases have been studied. We have demonstrated
that the presence of small tilt between the vortex axis and the density gradients can
induce strong axial flows inside a critical layer, which lead to three-dimensional
perturbations due to a Kelvin-Helmholtz or a jet instability. These instabilities are
extremely violent and appear for very small tilt angles at large Reynolds numbers.
Theoretical predictions are confirmed by experimental visualisations and measure-
ments.

In a second study, we have shown theoretically that a vertical Gaussian vortex is
unstable in a stably-stratified fluid whatever the Reynolds number in an interval of
Froude number around one. The unstable mode creates an undulation of the vortex
centerline and is associated with an emission of internal gravity waves far from the
vortex center.

We believe that these results are interesting for geophysical applications because
they show that the coherent structures found in stratified turbulence may not be sta-
ble, especially at high Reynolds numbers. Indeed, it is natural to think that vortices
in a turbulent flow might experience a small tilt angle due to a small vertical shear or
to the presence of weak internal waves. These vortices would thus be subject to the
tilt-induced instability which is extremely powerful, even for small tilt angles. This
would mean that stratified turbulence is not similar to a two-dimensional turbulence
composed of horizontal vortices but that it is composed of intense three-dimensional
motions at least for Froude numbers around 1. Another interesting consequence is
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that there is a coupling between vortices and internal gravity waves since vortices
can emit internal gravity waves.
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Geostrophic vortex alignment in external shear
or strain

Xavier Perrot, Xavier Carton, and Alan Guillou

Abstract The interaction of two identical vortices at different depths is studied in
a two-layer quasi-geostrophic flow with external shear or strain. The equilibria and
stability of point vortices are computed, as well as their possible resonance with
the forcing. The various evolutions of finite-area vortices (alignment, co-rotation,
equilibria, oscillations) are presented and compared with point-vortex dynamics.

1 Introduction

Vortex alignment is the process via which two like-signed vortices at different
depths join their central axes and form a taller structure. In geostrophic turbulence,
vortex alignment has been related to the barotropisation of energy and enstrophy
[13; 14; 5; 6]. Several studies have analysed the alignment process for two vor-
tices isolated from any background flow. With a two-layer quasi-geostrophic model,
Polvani [12] showed that two initially circular vortices with uniform potential vor-
ticity align if they are larger (or on the order of) the deformation radius, and if they
are initially separated by less than 3.3 radii (case of equal layer thicknesses). Cor-
reard and Carton [2] showed that alignment is sensitive to the initial distribution of
potential vorticity, and can be weakened or prevented by hetonic effects. Sutyrin et
al [16] also found a critical vertical separation between the vortex cores, beyond
which alignment does not occur.

In the ocean and atmosphere, observations of vortices undergoing vertical align-
ment include the interaction of eddies Leo and Maria near the East Australian Cur-
rent [3], and that of weak tornado-like vortices [18]. The former observation was
modeled by Nof and Dewar [7], who concluded that the alignment of nonlinear lens
eddies is a slow process, involving the formation of “arms” circling each eddy, and
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a final oscillation of the aligned vortex. The alignment (or realignment) of atmo-
spheric vortices was modeled by several authors [17; 15] with continuously strati-
fied quasi-geostrophic models. These studies indicated that tilted vortices realign if
they are larger than the deformation radius. Otherwise, an azimuthal mode 1 pertur-
bation propagates around the vortex, and realignment does not occur.

Both in geostrophic turbulence and in planetary observations, vortices under-
going alignment are often submitted to external influences. But alignment of vor-
tices in shear or strain has not yet been studied. Recently, vortex merger with back-
ground flow was studied in two-dimensional flows [1; 4; 8; 9; 10; 11]. These studies
showed that external strain can substantially modify the nonlinear evolution of two
like-signed vortices. The present study extends these studies to stratified flows and
addresses the interaction of two like-signed, pointwise or finite-area vortices, at dif-
ferent depths, with (steady or unsteady) background strain and rotation.

Section 2 adresses the point-vortex evolutions (equilibria and their stability, res-
onance and chaos). Section 3 considers the nonlinear regimes of two finite-area
vortices, lying in two adjacent layers in a quasi-geostrophic model.

2 Physical configuration and model equations

Vortex alignment is studied in a two-layer quasi-geostrophic model, governed by
the evolution of layerwise potential vorticity ¢, (j = 1,2):

dqffa.JA.7V2. V4,
7 g+ (Wja%) =WV2Vigj+VaVig;
with

4=V +F(yi—y;), k=3—j

and F; is the layer coupling coefficient. The internal radius of deformation is
Ry =1/+/FiF> and 7 is its inverse. Here the two layers have equal thicknesses.

The flow configuration is described by figure 1. Due to center symmetry, the point
vortex study can describe the motion of any of the two vortices (e.g. that located at
(p, 0)). Its equations of motion are

p = —spsin(20) (1)
: 1
poO = E—Z}/Kl(Zyp)—i-pa)—spcos(ZG) 2)
with s = 87S/I",0 = 8wQ/I" where S and  are the external strain and rotation

rates, and I" is the area integral of potential vorticity. Finally we note that s and @
can vary with time.
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A XQ

Fig. 1 Two point vortices in a two-layer model with imposed strain and solid-body rotation; the
solid line indicates the upper layer vortex, the dashed line the lower layer one.

3 Evolution of two point-vortices in external strain and rotation

Perrot and Carton [8] have studied in detail the equilibria and stability for this two-
vortex problem for steady external flow. We only recall the results here. The center
of the plane (p = 0) is a neutral position in the absence of strain and a saddle point
in its presence. The other equilibria are given by

1
6o, = n7r/2 and W _KI(VOn) + ch(),l =0 3)
n
n+1
where Vo, = 2ypo, and §, = %w. The stability of these equilibria is

shown on figure 2. The oscillation frequency around the neutral equilibrium is
1/2
fo= [250(*1)"“[% — LK1 (2¥pon) — 47*Ko(27P0n)]] 2.

We restrict our study to (ep < 0,9 > 0, |ao| > |so|), where, apart from the center,
one neutral equilibrium and one unstable equilibrium exist, and we now analyse the
vortex motion when the external flow is unsteady:

s =s0(1+€8cos(for)), @ = wy(1+€>8cos(for))

First, we study the vicinity of the neutral equilibrium. The periodic vortex motion
can resonate with the external flow, and this resonance is calculated via an expansion
of the vortex position in €: p(r) = po+€pi(t) + ..., () = 6o+ €6;(r)+... and a
multiple time scale expansion d; = d;, + €9, + .... At first order in €, the equation
describes the periodic rotation of the vortex displaced from the neutral point:
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Fig. 2 Equilibria and their stability, for steady external flow, in the (wy, so) plane (the center of the
physical plane which is a saddle-point in the presence of strain, and a neutral point in its absence,
is not included in this description).

p1(to,11,12) = A(ty, 1) 4 A% (1), 1) e~ o0

61(0) = oK [A 11 2)e"8 — A (1, 1))

Computation of second and third-order leads to an amplitude equation which de-
scribes the slow-time modulation of vortex motion around the neutral points

, 3R 10Q* (=1)"so—ay  ;
— 312 _ _ 2 llez
dLA(L) =i|fiK T T 6f0 |A(5)] A(t2)+174 7ok de 4)
with

_ Npj+Mpj—1
Kp;

8y2 8yt 8y 209
Ko(2ypo) + | =3 + 5 | K1 (2vpo)

= Uo7 e ot " 307

o= Mpo+Lpy !
Kpj

67" 6y 4y°
M = ——Ko(2ypo) — | 5 + —— | K1(2¥po)

Py [pS p i

a7

4y
L= EKOQVPO) + P—(%K] (27po) -

A Runge-Kutta integration of the point-vortex motion equations shows agreement
with the amplitude equation within 3% for small é (see again [8]). The main result



Geostrophic vortex alignment in external shear or strain 221

SEmore

Fig. 3 Chaotic regions (in red) for § = 0.001 and 6 = 0.1 in the Poincaré section.

is that, for 6 < &, the vortex distance to the neutral point is always bounded above
by its initial value. For 6 > J., the vortex distance to the neutral point is always
larger than or equal to its initial value. For 6 > &; >> &, the vortex distance from
the neutral point is no more oscillatory, but grows to a large value and varies chaot-
ically.

To understand how chaos appears, we now study the flow around the unsta-
ble equilibrium. There, the flow undergoes Hamiltonian chaos as soon as & > 0.
The Melnikov function (see 5) shows that the heteroclinic trajectories intersect and
that chaos appears in their vicinity as soon as the external flow is unsteady. Chaos
spreads into the Poincaré section from the initial location of the heteroclinic tra-
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Fig. 4 Evidence for Cantor sets (in dashed red lines) in the 6 = 0.01 Poincaré section; the Cantor
sets lie next to the chaotic region.
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Fig. 5 Nonlinear regimes for two finite-area, piecewise-constant vortices in the 2s,d /2 parameter
plane; + indicate vortex alignment, x is co-rotation, * for equilibria, and squares for oscillations
around equilibria. The dashed lines are boundaries of the vortex oscillation regime and of the
alignment regime. The solid lines represent the condition for point vortex equilibria.
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jectories via the destabilisation of the KAM tori (see figure 3); Cantor sets appear
(see figure 4) before being replaced by chaos [19]. When vortices enter the chaotic
region, they can move far away from their initial position.

4 Nonlinear regimes of finite-area vortices with background
strain and rotation
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Fig. 6 Case of vortex equilibrium: Time evolution of potential vorticity (white contours) and of
Okubo-Weiss criterion (squared deformation minus squared vorticity, color scale) in the upper
layer of the flow, at time t = 0,7.967,15.927,23.877 (upper left, upper right, lower left, lower
right). Solid lines are the strain axes, dashed contour is the initial vortex boundary.

In this section, we model numerically the time evolution of piecewise-constant,
finite-area vortices, located in each layer of our two-layer quasi-geostrophic model,
and initially separated horizontally. These vortices are submitted to the same exter-
nal strain and rotation as their pointwise counterparts. This numerical integration
is performed with a pseudo-spectral code, based on Fourier projection and trunca-
tion of the quasi-geostrophic equations with 256x256 colocation points. The domain
is 4m-periodic in each horizontal direction. Biharmonic dissipation is added to the
potential vorticity equation to remove enstrophy accumulation at small scales. The
initial conditions are also slightly smoothed in potential vorticity to avoid the Gibbs
phenomenon. We have checked that the outcome of the numerical model does not
substantially depend on this smoothing (provided numerical instability is avoided).
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Fig. 7 Same as fig.6 for the case of oscillation near equilibrium: Time shown are r =
3.58t,11.547,19.5071,27.457.

Firstly we study the evolution of two equal, like-signed vortices, under steady
strain and rotation. These vortices have unit potential vorticity inside radius R, and
are initially separated by an intercentroid distance d. We have set R =0.5,R; = 0.25
considering Polvani’s study of vortex alignment without external flow [12]. We vary
wyp and so under the condition wy = £2s9 < 0. Figure 5 shows the various nonlinear
regimes of the vortex doublet in the (259, d /2) parameter plane.

For sg < 0, vortices align for small values of d, whereas they co-rotate for large
values of d. Between the regions of alignment and of co-rotation, lies a region where
the two vortices are located at or near the neutral points of the point-vortex prob-
lem. There, the vortices are either stationary, or they rotate around the equilibrium
position. This similarity between pointwise and finite-area vortex behaviors holds
as long as d is large enough (that is, not for large negative s¢). Indeed, under such
conditions, the velocity far field of the two types of vortices is comparable.

For so > 0, the location of neutral and saddle-points of the point-vortex prob-
lem are inverted with respect to sop < 0. If the two vortices lie initially between
the saddle-points, strain brings them closer to each other, thus favoring alignment.
This is observed for 259 = 0.005 for instance. When alignment does not occur, vor-
tices co-rotate. But here, finite-area vortices cannot reach steady states, nor oscillate
around them, since the point-vortex equilibria are unstable.

The time evolution of vortices in the upper layer is shown on figure 6 for equi-
libria, and on figure 7 for oscillations around the equilibria. Vortex deformation is
concentrated near its periphery and towards the center of the plane.
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For larger values of |sg| than those thown here, vortices become irreversibly elon-
gated, along the extension axis of the external strain, so that they do not have time
to interact.

Secondly, we investigate the influence of a time-varying strain and rotation on
vortex alignment: we set § = 0.25. Model simulations show that this influence is
weak for close vortices, except for weak strain, where co-rotating “figure-8” equi-
libria are found. More straining out is observed for distant vortices. Steady states
disappear and are replaced by very slow oscillation regimes. For stronger unsteady
strain, distant vortices move irregularly in the plane, and are eroded more rapidly
than for steady strain.

5 Conclusions

The influence of external strain and rotation on geostrophic vortex alignment was
studied both for point and finite-area vortices. For point vortices, steady external
flow allows the existence of equilibrium positions, which can be neutral or unstable.
The addition of an oscillatory component to the external flow results in a modulation
of vortex rotation around neutral points: vortices follow inward or outward spiraling
trajectories, depending on time and on the amplitude of unsteady external flow. For
large unsteady external flow, vortices move sufficiently far away from the neutral
points to reach the chaotic region of the plane. As soon as unsteady external flow is
added, chaos appears in the vinicity of the heteroclinic trajectories which cross (as
shown theoretically via the Melnikov function and also numerically). Chaos spreads
out in the plane as the unsteady part of strain (and rotation) grows: KAM tori are
replaced by Cantor sets and by chaotic region.

For finite-area cyclones with positive strain, nonlinear evolutions are compara-
ble to those without external flow, though alignment is favored by strain for close
enough vortices: close vortices align, distant vortices co-rotate. When strain is neg-
ative, the presence of neutral equilibria strongly modifies this picture by introduc-
ing an intermediate regime dominated by these equilibria, in agreement with point-
vortex dynamics.

Extension of this work to continuously stratified fluid and to nongeostrophic dy-
namics should be performed to provide more realism with regard to oceanic and
atmospheric situations.
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Appendix

The onset of Hamiltonian chaos is related to the destabilisation of the heteroclinic
curves, the trajectories of point vortices along the stable and the unstable directions
from/to the saddle points (the unstable equilibria). To show that the heteroclinic
curves cross, we use the Melnikov theory [19]. Expanding 1-2, we obtain:

p = —sopsin(260) — [8socos(ot)psin(20)]
. 1
po = o 2yK; (2yp) + wop — sop cos(26) +
g[8y cos(at)p — 596 cos(o1)p cos(26)]

Then the distance between two heteroclinic curves is:

+o0
M(ny) = / 500 (14 2ypo(T)K1(2yp0(7)))sin(26 (7)) cos(o(T+19))dT  (5)
where 6) and py are the solution of the stationary equation of motion at the saddle-
point. In fact in the stationary case the equation of motion (1-2) derive from a Hamil-
tonian (H):

H(p,6) =1n(2p)+Ko(27p)+%pz— %OPZCOS(ZG) 6)

We compute R(p,,6,) and H(p,,6,). As the Hamiltonian is constant along a trajec-
tory, we have
H(p,0) =H(p;,6;) @)

which implies:

2
1 In %2 +p7 (s0c08(26,) — @) +2Ko(27p) — 2Ko(2YPr)
0(p) :iiarccos 2 +—

sop? S0

defined for p such that

2
In ﬁ—z +p7 (s0c05(26,) — @) +2Ko(27p) — 2Ko(2YP) |
= r + - 6

—1;1].
Sop2 S0 }

f(p)

For the particular case where neutral points and saddle points exist, and where
(pr6;r) = (po, 6o) at the saddle-point, a study of f(p) shows that the variation of
f depends on the sign of sp.

If s > 0O:
pl O po  Foe
fl4ee + 0 — 0°
fl—eo /1 N\, %
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If s < O:
p| O po oo
fl+ 0 —o + 0
flre -1,/ 2

where |@y/so| > 1.

This implies the existence of two finite values p; and p, between which f(p) €
[—1;1].

After some algebra, the Melnikov function is shown to be:
M(ty) = Acos(oty) + Bsin(otp) 3)

where A = [7 508 (1 +2ypo(7)K1(2¥po(7))) sin(260(7)) cos(o7)dT and
B = —[TZ506(1+2ypo(7)K1(2¥po(7)))sin(260(7))sin(c7)dT (these two inte-
grals are finite).

Because of the form of (8), the Melnikov function has an infinity of zeros. This
implies a topological destabilisation of the heteroclinic curves. The onset of Hamil-
tonian chaos depends only on the crossing of heteroclinic curves. Therefore chaos
appears as soon as 6 > 0.

References

[1] Carton, X., Legras, B. and G. Maze (2002) Two-dimensional vortex merger in
an external strain field. Journal of Turbulence, 3, article 045 (IoP electronic
publication)

[2] Corréard, S. and X. Carton (1998) Vertical alignment of geostrophic vortices:
on the influence of the initial distribution of potential vorticity. Simulation and
identification of organised structures in flows, Kluwer Acad. Publ., 52, 191—
200.

[3] Creswell, G.R. and R. Legeckis (1987) Eddies off southeastern Australia,
1980/91. Deep-Sea Res., 34, 1527-1562.

[4] Maze, G., Carton, X. and G. Lapeyre (2004) Dynamics of a 2D vortex doublet
under external deformation. Reg. Chaot. Dyn., 9, 4, 477-497

[5] McWilliams, J.C. (1989) Statistical properties of decaying geostrophic turbu-
lence. J. Fluid Mech., 198, 199-230.

[6] McWilliams, J.C. (1990) The vortices of geostrophic turbulence. J. Fluid
Mech., 219, 387-404.

[7] Nof, D. and W.K. Dewar (1994) Alignment of lenses: laboratory and numerical
experiments. Deep-Sea Res., 41, 1207-1229.



228 Xavier Perrot, Xavier Carton, and Alan Guillou

[8] Perrot, X. and X. Carton (2007) Baroclinic point vortex interaction in a time-
varying flow. Proceedings of the 18th CFM (Grenoble), article 1315, 6 pp
(available from http://irevues.inist.fr/cfm2007).

[9] Perrot, X. and X. Carton (2008) Vortex interaction in an unsteady large-scale
shear/strain flow. In Hamiltonian Dynamics, Vortices and Turbulence, IUTAM
conference proceedings, Springer Verlag, 373-382.

[10] Perrot, X. and X. Carton (2009) Point-vortex interaction in an oscillatory de-
formation field: Hamiltonian dynamics, harmonic resonance and transition to
chaos. Discr. Cont. Dyn. Syst. B, 11, 971-995

[11] Perrot, X. and X. Carton (2010) Barotropic vortex interaction in a non uniform
flow. Theor. Comp. Fluid Dyn., 24, 95-100

[12] Polvani, L.M. (1991) Two-layer geostrophic vortex dynamics. Part 2. Align-
ment and two-layer V-States. J. Fluid Mech., 225, 241-270.

[13] Rhines, P.B. (1979) Geostrophic turbulence. Ann. Rev. Fluid Mech., 11, 401-
441.

[14] Salmon, R. (1980) Baroclinic instability and geostrophic turbulence. Geophys.
Astrophys. Fluid Dyn., 15, 167-211.

[15] Schecter, D.A., Montgomery, M.T. and P.D. Reasor (2002) A theory for the
vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci. 59, 150-168.

[16] Sutyrin, G.G., McWilliams, J.C. and R. Saravanan (1998) Co-rotating station-
ary states and vertical alignment of geostrophic vortices with thin cores. J.
Fluid Mech., 357, 321-349.

[17] Viera, F. (1995) On the alignment and axisymmetrisation of a vertically tilted
geostrophic vortex. J. Fluid Mech., 289, 29-50.

[18] Willoughby, H.E. (1990) Temporal changes of the primary circulation in trop-
ical cyclones. J. Atmos. Sci., 47, 242-264.

[19] H. Dang-Vu and C. Delcarte, Bifurcations et Chaos, une Introduction a la Dy-
namique Contemporaine. Ellipses, Paris, 2000.


http://irevues.inist.fr/cfm2007

Equilibrium States of Quasi-geostrophic Point
Vortices

T. Miyazaki, H. Kimura and S. Hoshi

Abstract The statistical equilibrium state of quasi-geostrophic point vortices is
investigated numerically and theoretically. The numerical computations are per-
formed using the fast special-purpose computer for molecular dynamics simula-
tions, MDGRAPE-2/3. The equilibrium state is affected by the vertical distribution
of vortices and the total energy of the vortex system. The most probable vortex
distributions are determined based on the maximum entropy theory. We introduce
a simplified patch model, which explains the influence of the total energy on the
equilibrium state, qualitatively.

1 Introduction

Geophysical flows are under strong influence of the buoyancy and the Coriolis force.
These effects suppress vertical motion, and geophysical flows are considered to be
two-dimensional at the lowest order of approximation. There have been a number
of theoretical and numerical studies on two-dimensional vortex systems. The sta-
tistical mechanics of two-dimensional point vortices was investigated by Onsager
(1949) [1], Joyce & Montgomery (1973) [2], Kida (1975) [3] as well as Lundgren
& Pointin (1977) [4]. Recently, Yatsuyanagi et al. (2005) [5] performed a large nu-
merical simulation of two-dimensional point vortices (N = 6724), and investigated
their statistical properties, renewing the interest in this classical subject.

In actual geophysical flows, the fluid motion is almost confined within a horizon-
tal plane, but different flow patterns are allowed on different horizontal planes. The
next order approximation of geophysical flows is the ‘quasi-geostrophic approxima-
tion” (Pedlosky (1979) [6]), which incorporates this three-dimensionality. The nu-
merical simulations by McWilliams ef al. (1994) [7] of decaying quasi-geostrophic
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turbulence indicate that the vorticity field develops coherent vortex structures, and
that their interactions dominate the dynamics of the turbulence. Meacham et al.
(1997) [8] obtained a series of exact unsteady solutions representing an ellipsoidal
vortex patch of uniform potential vorticity under the quasi-geostrophic approxima-
tion. Miyazaki et al. (2001) [9] developed an ellipsoidal vortex model based on
Meacham’s solution. Later, Dritschel ef al. (2004) [10] proposed an improved el-
lipsoidal vortex model, in which a matrix is used to specify an ellipsoid and each
ellipsoid is represented by several discrete point vortices in the evaluation of the in-
teraction energy. Li et al. (2006) [11] proposed further refinements, by introducing
a new set of nearly canonical variables with clear geometrical meaning and con-
structed a natural sequence of vortex models from the point model (N degrees of
freedom) through the wire-(spheroidal) model (2N degrees of freedom) to the ellip-
soidal model (3N degrees of freedom).

Recently, our group investigated the statistical properties of QG point vortices
both theoretically and numerically (Hoshi & Miyazaki (2008) [12]). Numerical sim-
ulations of N-vortex system (N = 2000) in an infinite fluid domain are performed
using a fast special-purpose computer for molecular dynamics simulations. Axisym-
metric equilibrium states were formed after some evolution. The most probable dis-
tributions were determined theoretically, based on the maximum entropy theory. The
theoretically predicted distribution agreed with the numerical one fairly well.

In this paper, we investigate the influence of the vertical vorticity distibution and
the total energy, by performing a number of numerical simulations. We also intro-
duce a simplified maximum entropy theory (patch model), in order to explain the
parameter dependence found numerically. The angular momentum constraint plays
a crucial role, as was pointed out for a two-layer quasi-geostrophic point vortex
system (DiBattista & Majda (2001) [13]).

2 Quasi-geostrophic Approximation and Equations of Motion

We can introduce a stream-function ¥ (x, y, z), because the fluid motion in each hor-
izontal plane is two-dimensional:

e e
M—a—y,v——g- (1)

The time-evolution under the quasi-geostrophic approximation

(8 ¥ J 8‘1’8)

E+8—yax dx dy 7=0, @

means that the potential vorticity ¢ is conserved [6]:

9>  9* 9?
) : 3)

qAT<M+8)12+812
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In the point vortex system, we assume that the potential vorticity is 0-function-
like concentrated at N points (R;,i = 1,2,...,N) with strength I;:

[i5(r—R;). )

M=

q:
i=1

Each vortex is advected by the flow field induced by other vortices.

It is known that the system of two-dimensional point vortices is a Hamiltonian
dynamical system with the logarithmic interaction energy. Similarly, the Hamilto-
nian of a quasi-geostrophic N point vortex system is given as the summation of the
interaction energy of N(N — 1) /2 vortex-pairs:

N A
I.T;
H= H:.: H..=—*"J

(i.4)

®)

Here, Hy,;; is the interaction energy between two point vortices located at R; =
(X;,Y;,Z;) and R; = (X;,Y;,Z;) with strength I7 and I}. The summation is taken
for N(N — 1) /2 pairs of vortices.

We have the canonical equations of motion for the i—th vortex:

dX, 10H dY,  10H

— =, = 6
dt L[ JY;’ dt I; 0X; ©)

The center of the vorticity (P,Q) and the angular momentum [ are conserved
besides the energy H (Hamiltonian itself):

(7

~

Il
M=
;><)
Q

Il
M=
§<)

((XP+Y7). (8)

~
Il
.MZ
>

Il
—

We shift the coordinate origin to the vorticity center, i.e., P = Q = 0, below. The
length scale is normalized using (I/ fmml)l/ 2 Here

M=

€))

Eotal =

denotes the total strength of vortices. The time is scaled by the mean potential vor-

ticity, and the Hamiltonian H (interaction energy) is normalized by (Zf»vzl I ie.,
2

E =H / Eotal :
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3 Equilibrium States of Quasi-geostrophic Point Vortices

We performed numerical simulation of mono-disperse (identical [ifori=1,2,...,N)
quasi-geostrophic point vortices (N = 2000 — 8000), starting from several initial dis-
tributions. Here, we assume a top hat vertical distribution, i.e., P(z) = 1/2z;4y for
|z] < Zumax- We must be careful in preparing the horizontal distributions. Hoshi &
Miyazaki (2008) [12] located the vortices randomly and uniformly in a cubic box,
whose size was scaled using the length (I/I7,,,;)"/2. The uniform random distri-
bution, however, produces relatively low energy ensumbles under the constraint of
fixed angular momentum. Thus, the most probable state with E = E, = 3.054 x 1072
(in Hoshi & Miyazaki (2008) [12]: we redifine E = E. as E = E,, in this paper) did
not correspond to the zero inverse temperature state, but it was a possitive temper-
ature state. Here we use the normal (Gauss) distribution in the x and y directions,
whereas the vertical distribution is specified by the above P(z). We show the num-
ber of states as a function of energy in Fig. 1. The solid red line (right) is the result
by the Gauss distribution and the broken green line (left) is by the uniform random
distribution. We notice that the left side of the peak (E = E,; = 3.130 x 1072) of
the solid red line is the positive temperature region and the right side is the nega-
tive temperature region. We consider the third case E = E, = 3.291 x 1072 as an
example of negative temperature state.

Nomal random number ——

N w1 O

Number of States : W(E)(x10%)

(=
w

3.05 3.1 3.15 3.2
Nomalized Energy : E(x107%)

Fig. 1 Number of states as a function of energy E. The energy of the most probable state produced
by the uniform random number (broken green line) is E = E, = 3.054 x 1072 and that by Gaussian
(solid red line) random number is E = E; = 3.130 x 1072,

We use the adaptive time integrator from the LSODE-package. Since single pre-
cision computations are performed by MDGRAPE-2/3, the energy is conserved
within the numerical round-off error (6 significant digits). Similarly, the angular
momentum / and the vorticity center are conserved up to 6 significant digits.

We investigate the statistics of the equilibrium state, which is obtained after t =
10 ~ 20 (in units of the inverse mean potential vorticity). Figs. 2(a)-(c) illustrate the
equilibrium states for three different energy values £ = E),, E;;; and Ej,, respectively.
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These figures are the projections onto the xz—plane (y = 0). These equilibrium states
are axisymmetric and we notice clear differences in the distribution of vortices. The
radial distribution for £ = E,, expands slightly at the center (z = 0) and that for the
zero inverse temperature (E = E;) is almost independent of z, whereas that for the
negative temperature E = E,, expands near the upper and lower lids.

2 2 2
1 1} 1
20 woof w0
1 A 1
%52 o T2 3 252 o 1z 3 252 N

Fig. 2 Equilibrium state for (a) E = E,, = 3.054 x 1072, (b)E = E,; =3.130 x 102, (c)E=E, =
3.291 x 1072

We consider the probability distribution F(r,z), which is a function of the ra-
dial coordinate r and the vertical coordinate z, in order to get quantitative infor-
mation. Fig.3(a) (red line) shows the three-dimensional view of the equilibrium
distribution F”(r,z) = 27FP(r,z)/P(z) starting from the state of highest multiplic-
ity produced using uniform random distribution. We can see in Fig. 3(a), which is
originally from Hoshi & Miyazaki (2008) [12], that the equilibrium distribution
is almost z-independent for |z| < 0.6205 = z5,,./2, whereas it becomes more con-
centrated near the axis as |z| increases. The probability density distribution of the
center region seems similar to that of the two-dimensional point vortices. The three-
dimensional effect appears near the upper and lower lids in the tighter concentra-
tion of vortices around the axis of symmetry. Below, we will refer to this as the
‘end-effect’. In contrast, the equilibrium distribution F*(r,z) = 2xF% (r,z)/P(z)
(Fig. 3(b): red line) for the zero inverse temperature (the state of highest multiplic-
ity produced using the Gaussian random numbers) is completely independent of z.
This fact can be proved theoretically based on the maximum entropy theory, in the
following section (green line). The next figure (Fig. 3(c)) shows the equilibrium dis-
tribution £7(r,z) = 2rF"(r,z)/P(z) for high energy case E = E,. The distribution
of the center region shrinks and that of the lids spreads wider. The ‘end-effect’ is
inverted.

Thus, in the positive temperature region with lower energy, the ‘end-effect’ oc-
curs as the tighter concentaration near the upper and lower lids. On the other hand,
the radial distribution near the lids expands and that of center region shrinks in the
negative temperature region with higher energy.

We performed some additional numerical simulations in the positive tempera-
ture region, in which the vortices were located in two ‘rectangular parallelepipeds’
(2.432 % 2.432 x 4.864, N =4000 and 2.432 x 2.432 x 9.728, N = 8000), in order to
see the characteristics of the ‘end-effect’ clearer. We compare the ‘rectangular paral-
lelepiped cases’ and the ‘cubic case’. Fig. 4 shows the equilibrium probability distri-
butions F'(r,z) = 27F (r,z) /P(z) for these three cases. We can see, in the ‘rectangular
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these cases and will become even sharper for higher boxes, where the distribution
will consist of the central two-dimensional distribution and those of the thin upper

and lower lid regions. In the following section, we discuss the influence of the to-
tal energy on the ‘end-effect’, based on the maximum entropy theory applied to a

ior becomes wider compared with the ‘cubic case’. Thus, the lid regions, where the
‘end-effect’ is observed, become relatively narrower. The ‘end-effect’ is sharper in
simplified model distribution (patch model).

parallelepiped cases’, that the center region with essentially two-dimensional behav-

Fig. 4 Comparison of equilibrium distributions for three box-heights.
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4 Maximum Entropy Theory

In this section, the equilibrium distribution is determined theoretically, based on
the maximum entropy theory, which was applied to the system of two-dimensional
point vortices repeatedly. We assume that N vortices are placed in the vertical range

71 < z < zp. The strength of each vortex is taken to be unity (H 2.8 = 1). The
energy E is the only parameter that determines the equilibrium distribution for a
fixed angular momentum /(= I/N = 1). The number density n(r,?) is related to
the probability distribution function F(r,t) = n(r,t)/N. The vertical distribution of

vortices
7) = //F(r)dxdy (/: P(z)dz = 1>  r=(6,,2), (10)

does not change in time, because each vortex moves only in that horizontal plane
where it had been located initially.
We introduce the Shannon entropy

log2 — —N///F(r)logF(r)dr, (11

as the logarithm of the partition function Z. The angular momentum / and the energy
H (in mean field approximation) can be expressed via

i:// (x2+y2)F(r)dr:1, (12)
= IS e, 3
respectively.

The maximum entropy theory assumes that the equilibrium distribution should
maximize Z, under the constraints of fixed P(z), I and E. Then, the equilibrium
distribution satisfies the following nonlinear integral equation, which is derived by
requiring that the first variation of Z should vanish:

logF (r) + 1+ ou(z) + B(x* +¥%) /// =0. (14)

=

with the Lagrange multipliers a(z),  and y (inverse temperature) associated with
P(z), I and E, respectively.
4.1 Zero Inverse Temperature State

We have an exact solution of the above equation for the zero inverse temperature
state, where the Lagrange multiplier 7y is zero. Here, the Gaussian radial distribution
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gives the maximum entropy state:
P
F(rz) = —7(:) exp(—r?). (15)

The Lagrange multiplier 8 is determined to be unity, using the constraint on the
total angular momentum. We can see that the numerically obtained equilibrium for
this case (E = 3.130 x 1072) in the previous section is actually a z-independent
Gaussian distribution (See Fig.3(b): green line). This observation confirms that the
numerically obtained equilibrium state is actually the state of maximum entropy.

4.2 Positive and Negative Temperature States

For general cases, we must solve the integral equation numerically, using an ap-
propriate iteration method. Because the equilibrium distribution for the positive and
negative temperature states is a function of r and gz, it requires long computational
time and a good initial guess to obtain convergence. The main concern is whether the
‘end-effect’ found for the equilibrium states of general temperature can be captured
theoretically.

We solve the integral equation by a numerical iteration (Eq. (14)). The Gaussian
integration method with six points (z; = 0, 0.331, 0.639, 0.899, 1.09, 1.20) in the
interval [—Zuax, Zmax) 1S used in evaluating the vertical integration, which is enough
to capture the ‘end-effect’. The obtained equilibrium distribution £7(r,z;) agrees
fairly well with that of the direct numerical simulation (Fig. 3(a): green line ([12])).
This confirms that the numerically obtained equilibriums are actually the maximum
entropy states under the constraints of the total energy and the angular momentum,
even for general cases.

4.3 Patch Model

In the previous subsection, we have seen that the maximum entropy approach works
well even for a continuous three-dimensional distribution. It is, however, difficult to
investigate a large parameter regime because the numerical iteration is quite time-
consuming. Therefore, we introduce as further simplification, ‘a patch model’, in
which the probability density is assumed to be a constant within a certain radius
a(z) around the axis and else vanishes:

, for0<r<alz)

0, forr>a(z).

(16)
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Here P(z) is the vertical distribution given in Eq. (10). We approximate a continuous
radial distribution by a top hat with the same zeroth and second order moments. The
problem is reduced to find a(z) that maximizes the entropy under the constraints of
the fixed angular momentum and the fixed energy.

It is of interest to investigate the influence of the energy E on the equilib-
rium distribution. Fig.5(a) illustrates the vertical profile of the normalized an-
gular momentum J*(z* = z/Zmqx), Which is related to the patch radius a(z) by
J*(z*) = a*(z)/2, for various values of the energy. The five energy levels, i.e.,
E = 3.0350 x 1072, 3.0400 x 102, 3.0454 x 1072, 3.0540 x 10~2, 3.0600 x 102
are studied via a Gaussian integration with thirty points. At the zero inverse temper-
ature under the patch approximation (E = E;;, = 3.0454 x 1072), J*(z*) is indepen-
dent of the vertical height. This energy value is smaller than E = E_;; = 3.130 x 1072
for the Gaussian distribution, which is similar to the fact that the uniform random
numbers produce ralatively low energy ensembles than the Gaussian random num-
bers. The vertical distribution of the angular momentum J*(z*) changes with the
energy, although the integrated value of the angular momentum remains constant
(I = 1). As the energy is decreased (in the positive temperature region), the patch-
radius increases for |z| < 0.66|zuqy| and decreases for |z| = 0.66|zuqy|. In contrast,
as the energy is increased (in the negative temperature region), the inverse ‘end-
effect’ appears, i.e., the distribution of center region becomes tighter and those of
the lids become wider. We illustrate the vertical distribution of the normalized angu-
lar momentum in Fig. 5(b) corresponding to the numerical equilibrium distributions
obtained in the previous section. We can see that the patch model captures the influ-
ence of the total energy, qualitatively.

18 ; 18
E=3.035x107 —— E=3.054x107
1.6 E=3.040x10° — | E 1 E=3.130x10"2
' E=3.045x102 — | £ I e it
- 2 =3.054x _
1.4 E=3.054x10" —— g 14 E=3.130x10"2(fitting) ——
T o E=3.060x107 — 212 E=3.236x10"(fitting) ——
v 1. . .,
= -
[
1 — = =
2
0.8 <
0.6 0.6
0 0.2 04 0.6 0.8 0 0.2 04 0.6 0.8
121=12/ 2] L2

Fig. 5 Angular momentum profile J*(z*): (a) Patch model, (b) Numerical data (lines are data fits).

The interpretation of this behavior is complicated. The entropy becomes larger if
the distribution spreads wider in the radial direction, which is, in turn, constrained
by the angular momentum invariance. The energy increases if the distribution is con-
centrated more closely around the axis of symmetry. The angular momentum is de-
termined by a simple summation of the value on each horizontal plane, whereas the
energy is determined by the whole three-dimensional distribution. The ‘end-effect’
appears as a delicate balance between these competing effects. The distribution in
the center region has stronger influence on the energy, which expands radially for
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lower energy and shrinks for higher energy. In order to keep the angular momentum
unchanged, the distribution near the lids should shrink for lower energy and should
expand for higher energy. Thus, the ‘end-effect’ for lower energy (positive temper-
ature) appears as tighter concentration near the axis of symmetry, and the inverse is
observed for higher energy (negative temperature).

5 Summary

We have investigated the statistics of quasi-geostrophic point vortices both numeri-
cally and theoretically. The axisymmetric equilibrium distribution is obtained after
t = 10 ~ 20. The equilibrium distribution at zero inverse temperature is uniform
vertically and Gaussian in the radial direction. In the positive temperature region,
the equilibrium distribution near to the center of the vertical axis is similar to that of
two-dimensional point vortices, whereas the distribution near the upper and lower
lids under the influence of the ‘end-effect’ concentrates more tightly around the
axis of symmetry. In contrast, the equilibrium distribution in the negative temper-
ature region shrinks in the center and expands near the lids. The results based on
the maximum entropy theory are in good agreement with the numerical equilibrium
distributions. As the energy increases, the vortices are concentrated closer to the
axis of symmetry in the center region, whereas the vortex cloud expands near the
upper and lower lids, in order to keep the total angular momentum unchanged. A
simple patch model captures the essential mechanism of the ‘end-effect’, predicting
the vertical distribution of angular momentum, qualitatively.
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Part IV
Jets: Formation and Structure



The structure of zonal jets in shallow water
turbulence on the sphere

R. K. Scott

Abstract This paper reviews some recent results concerning the formation and
structure of zonal jets in forced shallow water turbulence on the surface of a rotating
sphere. Attention is given to the role of the Rossby deformation radius in determin-
ing the degree to which jets align zonally; to the limiting case of the axisymmetric
“potential vorticity staircase”; and to the issue of equatorial superrotation, which
is shown to arise robustly when energy is dissipated through a representation of
radiative relaxation.

1 Introduction

The large-scale motions of planetary atmospheres and oceans, constrained by strong
stable stratification and rapid rotation, are characterized in part by quasi-two dimen-
sional turbulent motion and in part by coherent structures, such as vortices, zonal
jets, and low-frequency waves. These motions are intimately linked and understand-
ing their complex and multiscale interactions presents a complex and formidable
challenge. Broadly speaking, turbulent motions can be thought of as occurring pri-
marily at small scales and zonal jets and wave motions at large scales. However,
turbulence is organized into latitudinal bands by these zonal jets, while the jets them-
selves are maintained against dissipation by turbulent and wave motions, via eddy
momentum fluxes [e.g., 15; 2, and references therein]. Examples of zonal jets in-
clude the winter polar night jet in the Earth’s stratosphere and the sub-tropical jet
stream (both driven diabatically but intensified by wave/turbulent processes), and,
perhaps most famously, the jets responsible for the characteristic banded structure
observed on the giant planets. These zonal jets are instrumental in determining the
transport of heat, chemical tracers, kinetic energy and angular momentum. Trans-
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port is rapid along the jet axis, but is strongly inhibited across the jet axis due to
enhanced “Rossby wave elasticity”, the dynamic resiliance of jets to latitudinal dis-
placements, and strong latitudinal shear on the jet flanks. Transport of water vapor
within the troposphere, for example, a major influence on climate, is sensitive to the
latitudinal position of the atmospheric jet stream. In the stratosphere, details of wave
breaking in the vicinity of the polar night jet determine the meridional transport of
chemical species involved in ozone chemistry and ultimately determines the rate of
ozone recovery [30]. On the giant planets, jets separate regions of different trace
chemical composition, giving rise to the coloured bands.

The emergence of zonal jets in geostrophic turbulence can be associated with
the action of Rossby waves in arresting the upscale cascade of energy in a two-
dimensional turbulent flow [20; 29]. As energy accumulates at larger scales and
lower frequencies, a point is reached where wave motions become significant and
their capacity for long-range momentum transport leads to zonal accelerations and
the emergence of well-defined zonal jets. In the simple geometry of the S-plane,
where planetary rotation varies linearly about a typical midlatitude value, zonal jets
possess a well-defined latitudinal structure [e.g., 14; 10; 6] with a direct relation-
ship between jet strength and spacing that is now reasonably well understood. At
scales for which advection of relative vorticity { dominates advection of planetary
vorticity, the gradient of planetary rotation 3 can be neglected and a timescale for
the motion at scale L ~ k! can be taken as T ~ (kU)~!, where k is a wavenumber,
or inverse length scale and U is a typical velocity [see, e.g., 27, for an overview].
In such a flow, classical phenomenology predicts that energy cascades to ever larger
scales, coherent vortices merge and grow. However, the advection of planetary vor-
ticity also supports the propagation of Rossby waves with frequency @ satisfing
the dispersion relation @ = k3 /(k? 4 1?) (although this must be modified when sig-
nificant zonal motions are present), where now k and / are zonal and latitudinal
wavenumbers, respectively. These waves will be excited if there is an overlap be-
tween the frequency of the turbulent motion with the frequency of the waves, i.e.
when T ~ @', and this occurs at the Rhines scale, Lry ~ 1/U/B. Low frequency
wave motions and accompanying radiation stresses make possible long range trans-
port of zonal momentum and thereby give rise to coherent zonal jets, providing an
effective halt to the inverse energy cascade at a Rhines scale Lgy [20; 29].

These predictions have been generally well supported by many numerical, exper-
imental and observational studies. In particular, numerical calculations have verified
the direct relation between jet spacing and either the initial energy in the freely de-
caying case [e.g. 31; 3; 4; 12], or the forcing amplitude in the continuously forced
case [e.g. 28; 18; 10]. Typically zonal jets are found that are very steady in time.
Other studies have demonstrated a similarity between power spectra of simulations
and observations from the giant planets [9; 11; 24] or considered the effect of dissi-
pation on jet spacing [23; 25].

The remainder of this paper reviews and updates some recent results of shallow
water turbulence on the surface of a rotating sphere, examining, separately, the ef-
fects of compressibility or free surface deformations together with the associated
means of energy dissipation [21; 22] and the consequences of global angular mo-
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mentum and barotropic stability constraints [8], of which the latter provides a simple
relation between jet spacing and jet strength that is independent of the phenomenol-
ogy reviewed above. In particular, and as discussed further below, we venture the
suggestion that the deformation radius appropriate to jets on the giant planets may be
larger than usually considered, based on an examination of the degree of zonal align-
ment of high latitude jets in numerical simulations. We also summarize the recent
result of Scott & Polvani [22] that a representation of large-scale energy dissipa-
tion through radiative process, or thermal damping, leads robustly to superrotating
equatorial jets, even in the case of small deformation radius.

2 Jet undulations

Including the effects of compressiblility introduces another length scale, the de-
formation radius, Lp, representing the scale on which gravitational and rotational
forces are comparable. In the Earth’s troposphere Lp = a, the planetary radius, in
the oceans Lp =~ 0.1a, while in the atmospheres of Jupiter and Saturn Lp ~ 0.025a
[e.g. 5; 13]. Purely 2D flow is recovered in the limit Lp — . Accounting for finite
Lp alters the Rossby wave dispersion relation and suggests a modified Rhines scale
Lgn ~ /U/B(1— @) where o = U/BL3,. This means that when L3, < U/ (i.e.
a > 1), there will be no overlap between the turbulent and wave motions and that
the flow will remain isotropic [19; 23; 26]. On the sphere Lp varies with latitude,
increasing toward the equator; therefore, for certain parameters a dual regime may
exist comprising isotropic 2D turbulent motion at high latitudes and coherent jets at
low latitudes.

Fig. 1 shows snapshots of relative vorticity from simulations with random
isotropic vorticity forcing at small scales, similar to those described in [21] but
repeated here at higher resolution, and illustrates the influence of the latitudinal
variation of Lp on the emerging structure of goestrophic turbulence. Sharp jumps
in values correspond to eastward jets. In (a), where Lp/a = 1 at the pole, jets are
visible at all latitudes across the sphere and are strongly zonal. By contrast, in (b),
where Lp/a = 0.025 at the pole, jets only appear at low and mid-latitudes. At higher
latitudes the jets become increasingly undular until, in polar regions there are no jets
at all, and instead the flow is dominated by circular vortices. This behaviour is con-
sistent with the scaling arguments just presented [see 21, for further discussion].

At values of deformation radius typical of the giant planets planets, numerical
experiments consistently produce high latitude jets that are significantly more un-
dular than their planetary counterparts. Only at values of deformation radius double
or more the planetary values do we begin to see stongly zonal jets at mid and high
latitudes. Estimates of deformation radius for the giant planets are, however, typi-
cally inferred from observations or numerical modelling of the structure of coherent
vortices such as the Great Red Spot [e.g. 5; 13]. The aforementioned numerical
experiments suggest, therefore, that jets may have a deeper structure, and a corre-
spondingly larger effective deformation radius, than smaller scale vortices. Such a
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Fig. 1 Illustration of the latitudinal confinement of zonal jets: Lp/a = 1 (left), Lp = 0.025 (right);
shaded quantity is the relative vorticity, the contours in the lower panels show the potential vorticity.
Top: equatorial view; bottom: polar view.

structure may arise naturally through the process of barotropization and is observed
to occur in many flows in the terrestrial atmosphere and oceans. In the above ex-
periments, high latitudes cease to be strongly zonal when Lp/a is below around
0.1.

Although the polar views of relative vorticity field shown in Fig. 1 appear in-
creasingly isotropic at small Lp/a, an examination of the potential vorticity field
(blue contours) indicates the flow is not isotropic. Contours of potential vorticity are
highly undular but nevertheless circumscribe the pole. Interestingly, the strong co-
herent cyclonic vortices seen near the pole are a persistent feature of these and many
other numerical experiments and bear some resemblence to the polar cyclones ob-
served on Jupiter and Saturn.
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3 The potential vorticity staircase

Several recent studies [2; 7; 8; 16] have emphasized the dual role of turbulent mixing
and long-range interactions, the latter arising from the property of potential vorticity
inversion and including long-range momentum transport by waves. In fact, the idea
of inhomogeneous mixing of potential vorticity in the context of Rossby wave—mean
flow interaction appeared over 25 years ago in the McIntyre [15] review of strato-
spheric sudden warmings and the related discussion by McIntyre & Palmer [17] of a
midlatitude “surf zone” bounded on both sides by sharp gradients of potential vortic-
ity and tracer. Material conservation and invertibility of potential vorticity give rise
to a “Rossby-wave elasticity” or resiliance to latitudinal displacements of regions of
strong potential vorticity gradients. Mixing of potential vorticity is therefore highly
inhomogeneous: stronger gradients have greater elasticity and so resist mixing by
eddy or wave motions; where gradients are weaker, mixing is stronger and contours
of constant potential vorticity can be more easily deformed irreversibly. Mixing here
means latitudinal mixing across the planetary vorticity gradient and thus acts to fur-
ther weaken local potential vorticity gradients in mixing regions, and strengthen
them in between. Zonal jets are a direct consequence of the resulting potential vor-
ticity staircase structure through the relation

1 dm

q:_a_zﬁ (1)

where it =sin @, ¢ is latitude, m = acos ¢ (Qacos ¢ + i) is the angular momentum,
i is the zonal velocity, 2 is the planetary rotation, and the overbar denotes a zonal
mean. The potential vorticity staircase solution corresponds to latitudinal bands of
constant g separated by jumps, as shown in Fig. 2. According to (1), uniform g im-
plies that 7z is linear in u. The associated i is then obtained from the departure of m
from the parabolic profile of the resting atmosphere. The construction shown here
follows that of Dunkerton & Scott [8]. Note that the staircase construction gives
an immediate explanation, which is hidden in the phenomenological arguments re-
viewed in §1, of the asymmetry between sharp, narrow prograde jets and broad,
weak retrograde flow generically observed in geostrophic turbulence.

If further we assume a rearrangement of potential vorticity from a resting atmo-
sphere that conserves total angular momentum and assume that the resulting flow be
barotropically stable, then the staircase construction also provides an explicit con-
straint on the jet spacing for a given jet strength: geometrically, it is easy to see
that we may either have a few strong jets or many weak ones, as illustrated by the
two rows in Fig. 2. We may term the scale arising from this constraint a “geometric
Rhines scale” [8], since it arises independently of any details of the turbulent phe-
nomenology or potential vorticity mixing. It complements the notion of dynamical
Rhines scale discussed in §1 (Rhines, 1975) or similar estimates based on the spec-
tral flux of energy (Maltrud and Vallis, 1991), but is conceptually simpler, requiring
only that potential vorticity be homogenized within mixing zones located between
prograde jets, in a barotropically stable configuration. Further analysis shows that



248 R. K. Scott

) 0 2 0 1 -0.2 0.2
1
= of
-1 ¢
0 1 -0.2 0.0 02

Fig. 2 Illustration of the potential vorticity staircase and the geometric Rhines constraint; top, few
large steps; bottom, many small ones; g (left), m (centre) i (right), against 4 = sin@, where ¢ is
latitude. Dotted lines correspond to an atmosphere at rest.

jets are spaced slightly further apart than predicted by the arguments of §1. Since
the staircase solution assumes perfect homogenization of potential vorticity between
jets it should also be considered as a limiting situation.

The f-plane case with finite Lp/a was discussed in Dritschel & McIntyre [7].
There, exact solutions were found for the staircase solution, which led to the es-
timate Lier ~ max(LRh,Lﬁh /Lp) for the jet spacing. In other words the jet spacing
scales as Lgry at large Lp, but is modified for Lp < Lry. Note, however, that in the
latter case, zonal jets are typically undular, similar to the high latitudes of Fig. 1,
and their identification becomes increasingly difficult, since, for example, zonal av-
eraging will smooth out the along jet velocity.

The scaling for the barotropic case on the sphere was confirmed to hold over a
wide range of energy injection rates [8]. A further example is shown in Fig. 3, for a
case of finite deformation radius with small-scale forcing and large-scale energy dis-
sipation by thermal relaxation. In this case, the potential vorticity profile is close to
the limiting case of the perfect staircase, and the corresponding jet asymmetries are
apparent. The full potential vorticity field is also shown and illustrates the turbulent
mixing between the locations of strong gradients.

4 Equatorial superrotation

With physically appropriate parameters, Cho & Polvani [4] showed that the scale
of zonal jets in freely decaying shallow water turbulence was consistent with the
observed zonal mean winds of the four giant planets. However that study, and many
others since have found that equatorial jets tend to be subrotating, or retrograde,
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Fig. 3 Forced numerical staircase for a case with Lp = 0.05 and radiative relaxation: left, g and i;
right, the potential vorticity.

when Lp/a is small, in contrast to the equatorial jets observed on Jupiter and Sat-
urn. Although this result has sometimes been used in arguments for the role of deep
convection as the driving mechanism for the observed jets, it is important to remem-
ber that subrotating jets are only predominant at small Lp/a: when Lp/a is large
subrotating and superrotating equatorial jets appear to emerge with approximately
equal probability when forced randomly, as was demonstrated in an ensemble of
calculations performed by [8].

The staircase construction discussed above is again useful in understanding the
nature of the equatorial jets. Whether an equatorial jet is superrotating or subro-
tating is determined simply by whether the equator coincides with a potential vor-
ticity jump or mixing zone. The emergence of equatorial superrotation in a non-
axisymmetric, turbulent flow can be understood in terms of the Taylor identity
[16], relating eddy potential vorticity fluxes and eddy momentum flux convergence,
which, in the simplest case of barotropic motion, takes the form

= 1d (= 2
Vg = adu(uv 1 [.L). 2)
Advective mixing of potential vorticity is always associated with a downgradient
potential vorticity flux or divergence of eddy momentum flux, and a consequent
reduction of angular momentum and deceleration of the zonal velocity. To establish
a potential vorticity jump at the equator, a nonadvective upgradient flux is necessary,
giving rise to a local acceleration of the zonal velocity: positive jets must necessarily
be associated with positive /¢’. Such upgradient fluxes are associated with wave
transience or dissipation.

While subrotating and superrotating jets appear equally likely at large Lp/a, re-
cent calculations [22] have shown that even at small Lp it is possible to ensure the
emergence of superrotation, simply by including the physical mechanism of ther-
mal relaxation. That the nature of the equatorial jets depends on details of energy
dissipation is perhaps not surprising, in view of the above and the work of [1] that
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demonstrated a sensitivity of mean flow changes at the equator to dissipation of
Rossby-gravity waves. The example in Fig. 3 illustrates a typical example of equa-
torial superrotation obtained in the presence of thermal dissipation, despite a small
value of Lp/a.

5 Open questions: the nature of forcing and dissipation

The degree to which potential vorticity homogenisation occurs between jets will
depend both on the way in which the mixing is forced and on the form of energy
dissipation at large scales. What forms are used should be dictated by the physical
situation of interest. On the gas giants, for example, the absence of a solid ground
beneath the weather layers of these atmospheres together with measurements of
radiative fluxes suggest that thermal relaxation is a more appropriate choice of dis-
sipation than frictional damping.

The issue of forcing poses a major challenge. Potential vorticity mixing results
from the motion of both coherent vortices and Rossby wave breaking. Random,
isotropic forcing in spectral space, as was used in the experiments reported above,
is convenient, but its effect on potential vorticity mixing may differ significantly
from physical space forcing because of the loss of phase information.

Moreover, in a physical system, the zonal flows that arise from potential vortic-
ity mixing will themselves affect the efficiency of a given forcing mechanism, for
example by fixing the regions where waves may propagate and break. In a perfect
potential vorticity staircase, waves are excluded from the regions between jets and
may exist only on the discontinuities themselves, as edge waves (some instances
can be discerned in Fig. 3). Forcing with a fixed rate of energy input, as is typically
used in numerical studies of two-dimensional or geostrophic turbulence, and in the
calculations presented here, ignores the natural adjustment of energy uptake by the
flow as zonal jets intensify. In the terrestrial atmosphere the forcing of large-scale
wave motions by topographic effects and land-sea temperature contrasts is relatively
well-understood. On the gas giants, on the other hand, very little is known about the
motion of the atmospheres at depth and the correct choice of forcing remains diffi-
cult to determine.
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equatorial region. The appearance of the intense retrograde jets can be understood
by the angular momentum transport associated with the propagation and absorp-
tion of Rossby waves. When the flow is non-divergent, long Rossby waves tend
to be absorbed around the poles. In contrast, when Fr is large, Rossby waves can
hardly propagate poleward and tend to be absorbed near the equator. The direction
of the equatorial jet, however, is not always retrograde. Our ensemble experiments
showed the emergence of a prograde jet, though less likely. This result is contrasted
with the previous studies that reported retrograde equatorial jets in most cases for
shallow-water turbulence. Furthermore, a mean zonal flow induced by wave-wave
interactions was examined using a weakly nonlinear model to clarify the accelera-
tion mechanisms of the equatorial jet. The second-order acceleration is induced by
the Rossby waves and mixed Rossby-gravity waves and the acceleration mechanism
can be categorized into two types.

1 Introduction

In late 1970s, the first research on two-dimensional turbulence on a rotating sphere
was done numerically by Williams [17], where he showed that a zonally banded
structure of stream function field which resembles telescope images of Jupiter was
formed. While that study treated a forced-dissipative turbulence, numerical experi-
ments on decaying turbulence on a rotating sphere were firstly conducted by Yoden
and Yamada [18]. They showed that spontaneous formation of retrograde circumpo-
lar jets from turbulent initial fields is a robust feature of two-dimensional decaying
turbulence on a rotating sphere. While these studies considered 2D non-divergent
fluid, the effect of horizontal divergence was firstly incorporated by Cho and Polvani
[1]. They studied decaying shallow water turbulence on a rotating sphere to show
spontaneous appearance of a retrograde equatorial jet as a robust result. After these
several studies on turbulence on a rotating sphere have been done both for forced-
dissipative and decaying cases. For forced-dissipative turbulence, a non-divergent
case are studied by Nozawa and Yoden [8; 9] and a shallow water case by Scott and
Polvani [12]. For decaying turbulence, the mechanism of flow pattern formation has
been studied thoroughly with high-resolution numerical models [3; 6; 14; 15; 19].
Those studies, however, treated a non-divergent case only. Therefore, the mecha-
nism how the horizontal divergence effect causes a retrograde equatorial jet in de-
caying turbulence had not been explored in detail.

Recently, our research group published two papers on this subject as a fruit of
Chapman Conference on Jets and Annular Structures in Geophysics held in 2006.!
Hayashi et al. [4] clarified the horizontal divergence effect on producing retrograde
jets whether at the poles or at the equator with parameter sweep experiments, while
Kitamura and Ishioka [7] conducted a large number of ensemble experiments to
study the formation mechanism of the equatorial jet and the robustness of the ap-

1 http://www-mete.kugi.kyoto-u.ac.jp/yoden/research/Chapman_Web/

ChapmanConference2006Jets.htm
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pearance of the retrograde equatorial jet, in other words, whether a prograde equa-
torial can be formed or not 2. In this article, we review the spontaneous polar/equa-
torial jet formation process in decaying 2D non-divergent/shallow water turbulence
on a rotating sphere referring to the results of these two papers. Furthermore, very
recent developments on shallow water turbulence by other research groups are also
mentioned.

2 Parameter sweep experiments (Hayashi et al., 2007)

The system under consideration is a 2D flow on a rotating sphere which is described
by the following shallow water equations.

D 1 0

F;l —uvtan@ —2Qvsing = 2 ﬁ + (hyper-viscosity),
10

Fj —u*tan ¢ +2Qusing = — "2 % + (hyper-viscosity),

Dn du d(vcosd)\ e
o +(1+1n) <cos 007 + 05090 ) (hyper-diffusivity).

Here, ¢ is the time normalized by a/U, a is the radius of the sphere, U is the velocity
scale, A is the longitude, ¢ is the latitude, 1) is the surface elevation normalized by
H, which is the mean depth of the fluid, (u,v) is the (eastward, northward) velocity
normalized by U, 2 is the rotation rate of the sphere normalized by U /a, Fr =
U/+/gH is the Froude number, and g is the gravity acceleration.

The basic equations are spatially discretized using the Galerkin spectral method
with spherical harmonics of truncation wavenumber 170 and time-integrated with
the classical 4th order Runge-Kutta method from a random vorticity field which has
an energy peak at the total wavenumber 50.

To study the effect of the horizontal divergence and the rotation rate, parame-
ter sweep experiments are conducted changing Fr and 2. Used parameter settings
are summarized in Table 1 with four important numbers for dynamical understand-
ing, kﬁ, Lpp, Lpe, and (5 deduced from Q and Fr 3 #. Here, the setting of Fr =0
corresponds to the non-divergent case.

Flow patterns appearing from the decaying turbulence depend on the horizon-
tal divergence effect. Figure 1 shows snapshots of vorticity fields at t = 5 inte-

2 Jacono et al. [5] showed a possibility of a prograde equatorial jet when Ro and Fr are relatively
large. However, they did not conduct ensemble experiments so that the possibility in which a
prograde equatorial jet is formed was not explored.

3 In some cases, the numerical resolution is not enough to resolve the radius of deformation.
However, since the initially given field has the larger resolvable scales, these results are robust
qualitatively to increasing resolution if the initial field is kept unchanged.

4 Although the value of Fr2Q is very large in some cases, no “dry-up” occurred in the course of
time-evolutions because gravity modes are dominant in the initial field in those cases.
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Table 1 Summary of the experimental parameters: kg = /2 cos ¢ /(u) : the Rhines wavenum-

ber where (u>~: V2, Lpp: the radius of deformation at the poles, Lp,: the equatorial radius of
deformation, ¢: the latitude where Lp =1/ kﬁ, Lp =Lpp /sin¢: the radius of deformation.

Q Fr kﬁ ((]) = 0) LDp LDe d)

0 1/V10 0 0 0 -

25 1/4/10 59  0.063 0.25 0.37(21°)
50 1/4/10 84  0.032 0.18 0.26 (15°)
100 1/4/10 12 0.016 0.13 0.19(11°)
400 1/4/10 24 0.004 0.063 0.09 (5°)
400 1/4/100 24 0.013 0.11 0.30 (17°)
400 1/4/1000 24 0.04 0.2 0.86(49°)
400 1/4/10000 24 0.13 0.35 1.47(84°)
400 0 24 o oo -

4000 1/4/10 75 0.0004 0.02 0.03 (1.7°)

Vorticity Vorticity
t=5.0sec t=5.0sec

Vorticity
t=5.0sec

Contour interval=20.0

(a) Fr=1/4/10 (b) Fr = 1/+/100 (c) Fr =1/4/1000
Vorticity

Vorticity
t=5.0sec

t=5.0sec

t=5.0sec

megas400, g=10000, Omegas=400, gein,
Ussqri2, =1 Ussqrt, =1
Contour interval200 Contour internval=20.0 Conbour intenals100

(e) Fr=0 (f) Initial vorticity

(d) Fr = 1/+/10000

Fig. 1 Vorticity at t = 5 for various values of Fr with £2 = 400 (a—e), and the initial vorticity field
(f). Contour intervals are 20 for (a) to (e) and 100 for (f). O contour is suppressed. Gray to bluish
colors indicate negative values. (adopted from [4]).

grated from the same initial random vorticity field (f) for five values of Fr with a
fixed Q =400°. When Fr = 1 / /100 (b), coherent vortices appear in high latitudes
and zonally elongated structures appear in low latitudes. The boundary latitude be-
tween the coherent vortices and the zonally elongated structures shifts equatorward
for Fr = 1/1/10 case (a) while it shifts poleward for Fr = 1/1/1000 case (c). For
Fr = 1/4/10000 case (d) and non-divergent case (e), the zonally elongated struc-

5 The coherent vortices in high latitudes in Figs 1(a,b) are not mere remnants of the initial field
because they have strong cyclonic/anticyclonic asymmetry.
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Fig. 2 Time evolutions of zonal mean angular momentum ucos ¢ with £2 =400 for various values
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(adopted from [4]).
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Fig. 3 Same as Fig. 2 but for various values of  with Fr=1/ V10. (adopted from [4]).

tures fill all over the sphere. The latitude ¢ where the radius of deformation Lp

equals the Rhines scale defined as 1/kg = \/(u)/(2€2cos ¢) gives a good estimate
of the boundary latitudes (Table 1). The result that the latitude ¢ roughly divides
the structure of vorticity field is consistent with the finding of Theiss [16], where
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the quasi-geostrophic equation on a plane with variable 8 is used. The reason why
a banded structure cannot develop where ¢ > (13, that is, Lp < 1/ kﬁ, can be under-
stood as follows. For a zonal banded structure to appear, the linear effect (the 3
effect) must overwhelm the nonlinear advection effect, which leads to anisotropy.
When Lp < 1/ kﬁ’ however, Rossby waves become almost non-dispersive in advec-
tion time scale so that the linear effect cannot overwhelm the nonlinear effect. This
interpretation is firstly introduced by Okuno and Masuda [10] in 2003. For further
discussion, see our paper [4].

The importance of ¢ can be also seen in the corresponding time evolutions of
zonal mean angular momentum (Fig. 2). For Fr = 1/4/1000 case, a banded struc-
ture of zonal mean angular momentum with alternating flow directions develops in
middle and low latitudes. The latitudinal extent of a banded structure is roughly es-
timated by ¢ (indicated by “x” in the figure) as seen in Fig. 1(c). This is also the
case in the other figures of Fig. 2. It can be seen in the time evolutions that a banded
structure is established by the time ¢ ~ 1.0. On the other hand, retrograde polar jets
in (e) and retrograde equatorial jets in (a) and (b) grow continuously and relatively
slowly, which is suggestive that these retrograde jets are intensified through accu-
mulation of eddy angular momentum by Rossby waves.

While the direction of the equatorial jets seen in Figs. 2(a) and (b) are retrograde,
it is not always the case. Figure 3 shows the dependence of the time evolution of
zonal mean angular momentum on the rotation rate £2. When the rotation is rapid as
(c), (d), (e), and (f), the direction is retrograde. For slow rotation case (b), however,
a prograde equatorial jet develops. Whether this prograde jet formation is a very
rare case depending on the initial condition or not must be checked with ensemble
experiments. This is the main subject of the next section.

3 Ensemble experiments (Kitamura and Ishioka, 2007)

To examine the possibility of the appearance of a prograde equatorial jet from decay-
ing shallow water turbulence on a rotating sphere as seen in the previous section, Ki-
tamura and Ishioka [7] conducted a large number of ensemble experiments changing
initial random vorticity field (up to 1000 members). The experimental settings and
the numerical method is almost the same as in the previous section [4] except for the
value of initial root mean square velocity (u): The initial (u) is set to /2 in [4], while
itis set to 1 here in [7]. Therefore, for example, Fr = 0.3 in this section corresponds
to Fr=0.3/ V2 ~0.21 in the previous section. Furthermore, in this section, the ef-
fect of rotation is indicated by the Rossby number Ro = (u) /(2Q) so that Ro = 0.03
in this section corresponds to 2 = v/2/(2Ro) ~ 23.6 in the previous section.

The direction of an equatorial jet emerging from decaying shallow water turbu-
lence is not always retrograde depending on experimental parameters as seen in the
end of the previous section. Figure 4 shows histograms of the zonal mean zonal flow
at the equator ((u)eq) at t = 5 and ¢ = 15 for three values of Ro. While the distri-
butions of the histograms are almost symmetric at t = 5, the distributions shift to
the retrograde side as time goes on. A retrograde equatorial jet is formed in all the
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ensemble members at r = 15 for Ro = 0.01. For Ro = 0.02 and Ro = 0.03 cases, on
the other hand, a retrograde jet survives in some ensemble members till # = 15. In
particular, the number of the members of (u)eq > 0.5 increases in the period from
t =5tot =15 for Ro = 0.03, which indicates that there are some mechanisms ac-
celerating an equatorial jet not only westward to the retrograde direction but also
eastward to the prograde direction.

As pointed out in the previous section, the slowness of the acceleration of an
equatorial jet seems to indicate that the acceleration caused by momentum trans-
fer due to waves. To examine this effect, linearized equations with a time-constant
zonally symmetric basic flow, [u], are integrated from the eddy fields at 7 = 5 up
to 125-member ensembles which are obtained by the full nonlinear time integra-
tions. In the time integrations, second order acceleration of mean zonal flow by the
linear disturbances is evaluated. Furthermore, the initial eddy field is decomposed
into normal-mode waves so that contributions by each mode-coupling to the ac-
celeration can be evaluated. Figure 5 shows ensemble mean of the second order
acceleration between t = 5 and ¢ = 15 for the basic flow with [#] = 0 in Ro = 0.03
and Fr = 0.3 cases. The second order acceleration is almost completely due to cou-
plings of Rossby waves (here, westward Rossby-Gravity waves are categorized into
Rossby waves for convenience) and it is westward at the equator not only in retro-
grade members but also prograde members. Retrograde acceleration mechanism by
Rossby waves can be explained as follows. While the zonal wavenumber k and the
zonal phase velocity ¢ are conserved along a ray in the WKB approximation, the
meridional wavenumber / varies so that the dispersion relation,

PP =—(k+1/Lp) +qy/(@—c),

is satisfied. Here, & and g are the zonal velocity and potential vorticity of the basic
flow, respectively. Here, in this relation, ! becomes larger when the deformation
radius Lp increases as the wave packet approaches the equator, or when the phase
velocity is closer to the zonal velocity of the basic flow. Large / leads to quick
dissipation of the Rossby wave packet so that it leaves its pseudomomentum.

The second order acceleration of Rossby waves cannot cause a prograde equato-
rial jet with the zero basic flow as seen above. With a non-zero basic flow, however,
the situation changes because the basic flow changes the propagation properties
of linear waves. Figure 6 shows the second order acceleration evaluated in time-
integrations of linearized equations with a weak prograde basic flow. In this case,
the acceleration at the equator is prograde. Decomposing the acceleration, a half of
the prograde accelerations can be attributed to westward Rossby-gravity waves as
shown in Fig. 6(right). The mechanism of this acceleration can be understood by
wave tilting as follows. When there is an equatorial jet as a basic state, equatorial
waves may be modified by the jet shear. For the modified waves, there can be corre-
lation between u’ and v/, which induces meridional transfer of zonal momentum as
shown in Fig. 7. Therefore, if a weak prograde zonal flow is formed by chance in an
early stage of nonlinear time evolutions, a prograde acceleration by the waves can
breed a prograde equatorial jet.
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Fig. 4 Histograms of the zonal mean zonal flow at the equator for Fr= 0.3 cases: (left) Ro= 0.01,
(middle) Ro= 0.02, (right) Ro= 0.03. Snapshots at t = 5 (top) and ¢ = 15 (bottom) are shown.
(adopted from [7]).
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Fig.5 Acceleration of zonal mean zonal angular momentum between ¢t = 5 and r = 15. The vertical
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ensemble members in Ro= 0.03, and (bottom) for 50 retrograde ensemble members in Ro= 0.03
are used. (left) The acceleration obtained in the full nonlinear model. (middle) The second or-
der acceleration induced by the Rossby modes (including westward Rossby-gravity modes) only.
(right) The second order acceleration induced by the other components. (adopted from [7]).

4 Summary and Discussion

In this short article, we briefly reviewed two of our recent papers conducting
parameter-sweep and large-ensemble experiments for decaying shallow water turbu-
lence on a rotating sphere. One of main results in the parameter sweep experiments
is that whether the radius of deformation Lp, is larger than the Rhines scale 1/ k[;
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mean. (left) The acceleration induced by the Rossby modes (including westward Rossby-gravity
modes) only. (middle) The acceleration induced by the other components. (right) The acceleration
induced by westward propagating Rossby-gravity modes. (adopted from [7]).
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is important for the jet formation. Recently, Sayanagi et al. [11] showed that this
is also true in 3D B-plane turbulence. For the equatorial jet formation, the large-
ensemble nonlinear and linear experiments showed that it can be understood by the
acceleration mainly due to weakly-nonlinear wave dynamics. One significant result
in the ensemble experiments is that a prograde equatorial jet is obtained with a fixed
possibility when Ro is not very small.

The formation of a prograde equatorial jet from a turbulent flow is a hot topic
relating to the outer giant planets, Jupiter and Saturn. Recently, Scott and Polvani
[13] showed that a robust prograde equatorial jet emerges from a forced-dissipative
shallow water turbulence on a rotating sphere with an imitated Newtonian cooling
effect. The obtained prograde jet is so robust independent of experimental param-
eters that there must exist some other formation mechanisms than the weak non-
linear acceleration mechanism proposed by Kitamura and Ishioka [7]. Farrel and
Toannou [2] applied Stochastic Structural Stability Theory (SSST) to shallow water
forced-dissipative turbulence on a f3-plane to obtain both prograde and retrograde
equatorial jets when the forcing is weak though the system is a little different from
that concerned in this article. For strong forcing, however, a retrograde equatorial
jet loses stability, which leads to the dominance of a prograde equatorial jet. Al-
though the latter case seems due to the barotropic instability of the retrograde zonal
jet, the former case where an equatorial jet of both direction is possible seems re-
lated to the positive-feedback acceleration mechanism proposed by [7]. However,
as described in Hayashi et al. [4], further investigations seem to be still needed to
understand forced-dissipative and decaying shallow water turbulence on a rotating
sphere comprehensively.
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Triple cascade behaviour in QG and drift
turbulence and generation of zonal jets

Sergey Nazarenko, Brenda Quinn

Abstract We study quasi-geostrophic turbulence and plasma drift turbulence within
the Charney-Hasegawa-Mima (CHM) model extending the work reported in [24].
We focus, theoretically and using numerical simulations, on conservation of zonos-
trophy and on its role in the formation of the zonal jets. The zonostrophy invari-
ant was first predicted in [6; 5] in two special cases — large-scale turbulence and
anisotropic turbulence. Papers [6; 5] also predicted that the three invariants, energy,
enstrophy and zonostrophy, will cascade anisotropically into non-intersecting sec-
tors in the k-space, so that the energy cascade is “pushed” into the large-scale zonal
scales. In the present paper, we consider the scales much less than the Rossby defor-
mation radius and generalise the Fjgrtoft argument of [6; 5] to find the directions of
the three cascades in this case. For the first time, we demonstrate numerically that
zonostrophy is well conserved by the CHM model, and that the energy, enstrophy
and zonostrophy cascade as prescribed by the Fjgrtoft argument if the nonlinearity is
sufficiently weak. Moreover, numerically we observe that zonostrophy is conserved
surprisingly well at late times and the triple-cascade picture is rather accurate even
if the initial nonlinearity is strong.

1 Introduction and the model

Zonal jets are prominent features in geophysical fluids, e.g. atmospheres of Jupiter
and Saturn [29; 28; 11] and the earths’ atmosphere [20; 13] and oceans [13; 11; 23].
Zonal jets have also been observed in fusion plasmas [9]. Zonal jets are important
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because they can suppress the small-scale turbulence and block the transport in both
geophysical settings [17] and in plasmas [4; 33; 9].

Two main zonal jet generation mechanisms considered in the literature are the
modulational instability [21; 12; 18; 22; 30; 25; 31; 8] and the anisotropic inverse
cascade [34; 26; 27; 4]. The inverse cascade mechanism brings the energy from ini-
tial small-scale turbulence to the large-scale zonal flows in a step-by-step (local in
the scale space) transfer mechanism similar to the inverse cascade in 2D Navier-
Stokes turbulence [10; 19]. On the other hand, the modulational instability brings
energy to the large zonal scales directly, skipping the intermediate scales. It ap-
pears to be more relevant if the small-scale turbulence has a narrow initial spectrum,
whereas the cascade picture is more accurate when the initial spectrum is broad. We
will report on our recent analytical and numerical studies of the modulational insta-
bility elsewhere [8], whereas the present paper will focus on the turbulent cascades.

The mechanism for an inverse cascade in geophysical quasi-geostrophic (QG)
turbulence and in plasma drift turbulence is quite similar to the one of the 2D Navier-
Stokes turbulence [10; 19], but the presence of the beta-effect (non-uniform rota-
tion of geophysical fluids or plasma inhomogeneity) makes this cascade anisotropic
leading to condensation into large-scale zonal flows rather than round vortices
[34; 26; 27].

In this paper we will follow the approach put forward in papers [6; 5] which is
most relevant (and asymptotically rigorous) when the QG/drift turbulence is weak.
In this case the turbulence is dominated by waves which are involved in triad inter-
actions. These three-wave interactions are shown to conserve an additional positive
quadratic invariant. This invariant and the other two quadratic invariants, the en-
ergy and the potential enstrophy, are involved in a triple cascade process, which can
be described via an argument similar to the standard Fjgrtoft argument originally
developed for the 2D Navier-Stokes turbulence [10]. It was found that each of the
invariants is forced by the other two to cascade into its own anisotropic sector of
scales and, in particular, the energy is forced to cascade to long zonal scales. Con-
sidering its important role in the zonation process, hereafter we will label the extra
invariant as zonostrophy.

On the other hand, work [6; 5] was limited to considering either very large scales
(longer than the Rossby deformation radius or the Larmor radius) or to the scales
which are already anisotropic and are close to zonal. Besides, the conservation of
the extra invariant is based on the weakness of nonlinearity and on the randomness
of phases (conditions of validity of the wave kinetic equation), which, even when
present initially, can break down later on during the zonation process. Thus, numer-
ical checks of robustness of the zonostrophy conservation were needed, and they
have not been done until the work reported in the present paper.

Soon after papers [6; 5], the zonostrophy invariant was generalized to the whole
of the k-space in [1]. This was a significant achievement because the extra invari-
ant of such a kind appeared to be unique for Rossby/drift systems and is not ob-
served in any other known nonlinear wave model [2]. Besides, its conservation has
revealed interesting geometrical properties of the wave dispersion relation [2]. Un-
fortunately, the general expression for zonostrophy appeared to have a form for
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which the Fjgrtoft argument cannot be used (not scale invariant, not sign-definite).
However, an alternative zonation argument was put forward in [3].

In the present paper we will focus on the special case when the scales are much
smaller than the deformation (Larmor) radius, which is the most important and fre-
quently considered limit (at least in the GFD context). Taking the respective limit
in the general zonostrophy expression obtained in [1], we obtain the zonostrophy
expression for such small-scale turbulence and show that it is positive and scale
invariant. The latter observation is extremely important because it means that we
can once again apply the generalized Fjgrtoft argument developed in [6; 5], which
is done in the present paper. Note that the Fjgrtoft argument of [6; 5] is somewhat
preferential over the argument presented in [3] because it predicts not only zonation
but also the anisotropic k-space flow paths of the three invariants during the zonation
process.

Having obtained these analytical predictions, we then proceed to direct numeri-
cal simulations (DNS) of the QG/drift turbulence to (i) test the conservation of the
zonostrophy for different levels of initial nonlinearity, and (ii) test predictions of
the generalized Fjgrtoft argument by tracking in time the transfer path of the three
invariants in the k-space. As a result, we confirm conservation of zonostrophy and
its important role in directing the energy to the zonal jet scales.

2 Charney-Hasegawa-Mima model

The reason why geophysical quasi-geostrophic (QG) flows and plasma drift tur-
bulence are often mentioned together (in particular when discussing the zonal jet
formation) is that some basic linear and nonlinear properties in these two systems
can be described by the same PDE, the Charney-Hasegawa-Mima (CHM) equation
[7; 15]:

Ay + By + (oY) Ay — (dyy)d Ay =0, (1)

where  is the streamfunction, f3 is a constant proportional to the gradient of the
horizontal rotation frequency or of the plasma density in the GFD and plasma con-
texts respectively. In the GFD context, the x-axis is in the west-east and the y-axis
is along the south-north directions respectively. In plasmas, the y-axis is along the
plasma density gradient and the x-axis, of course, is transverse to this direction.
Here, we consider only small-scale turbulence with scales much smaller than the
Rossby deformation radius in GFD and the ion Larmor radius in plasma contexts
(this has already been taken into account in the CHM model, (1)).

Let us put our system in a periodic square box with side length L and introduce
the Fourier transform of the streamfunction,

1 e
Vi = E/II/(X)E KX dx,
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where k = (ky, k) is a wavevector in the 2D plane. In k-space the CHM equation
(1) becomes:

] N
=i+ Y T(kKki k) Uk, U, , 2
k;+ko=k
where B
X
== 3)

is the dispersion relation for the frequency of linear waves (Rossby or drift waves in

the GFD and plasma contexts respectively), k = |k|, and

(ki x ka), (k —k3)
k2

T(k,ki,ky) =— “)

is a nonlinear interaction coefficient.

3 Conservation of energy and enstrophy

It is well known that the CHM equation, (1) conserves the energy and the enstrophy
which in physical space are defined respectively as

1
E= /(vw)2 dx 5)
and |
_ 2
Q- 2/(Aly) dx. ©)

In Fourier space these conserved quantities can be expressed in terms of the wave
action

K
K) — .
We have
E= [ o dk )
and
Q- / ke dK. ®)

4 Conservation of zonostrophy

The energy and the enstrophy are exact invariants of the small-scale CHM model
(1). Zonostrophy is an exact invariant of the kinetic equation:
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Ay = / Vizel” 8(k1 + ko — k)3 (w(k) + 0 (k) — (k) x ©)
[n(k;)n(ka) — 2n(K)n(k;) sign — n(K)n(ky) sign (kekoy)] dk dks,

where

Viok = |kekick 1/2<@+@—ﬁ>.
12k | xR 1x 2x| k% k% K2
Thus, it should be clear that the zonostrophy is only proven to be a conserved quan-
tity under the same conditions for which the kinetic equation (9) is valid, namely
weak nonlinearity and random phases. It is presently unknown if the zonostrophy
conservation extends to a broader range of situations or not. Thus, the numerical
tests of zonostrophy conservation are crucial, and this is one of the aims of the
present work.
In terms of the wave action spectrum, zonostrophy Z can be written as

7= / G dK, (10)

where function {x is the density of zonostrophy in the k-space which satisfies the
triad resonance condition

C(k) = C(ki)+ (ko) (11)

for all wavevectors k,k; and k, which lie on the resonant surface given by the
solutions of the wavevector and frequency resonance conditions,

k=k; +ko (12)

and
o(k) = o(k;)+ o(ks). (13)

Expressions for {x were first found in [6; 5] in the special cases of large-scale tur-
bulence (pk < 1 where p is the Rossby deformation radius in GFD or ion Larmor
radius in plasmas) and for anisotropic turbulence (k, < k), after which a general
expression was found for all k’s in [1]. This expression is

ky +kev3 ky —kxv3
¢ (k) = arctan M — arctan 4
pK? pk?

(14)
This expression can change sign and it is not a scale-invariant function of the
wavevector components, which means that one cannot use the generalized Fjgrtoft
argument of [6; 5] to find the cascade directions in such a general case.

To find zonostrophy in the special case of small-scale turbulence (which is con-
sidered in the present paper) we have to take the limit pk — oo in the general expres-
sion (14). It turns out that naively taking limit leads to an already known integral,
the energy and one has to go to further orders in the Taylor expansion of (14) until
we reach an expression which is independent of E and €2. Interestingly, such an
independent invariant appears only in the fifth order, and the derivation details are
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given in Appendix A. The result is

E=—tim P (¢~ 2vAa/pp) = K0
=83 P)= 0
The integral (10) with the density (15) is an exact invariant of the kinetic equation
(9) and thus it is an approximate invariant of the small-scale CHM equation (1).
Later on we will examine numerically the precision with which this invariant is
conserved.

Expression (15) for the new invariant in the small-scale limit, pk > 1, allows us
to explicitly see that the invariant’s density is strictly positive and scale-invariant,
which is good news because once again one can use the generalized Fjgrtoft argu-
ment of [6; 5] to find the cascade directions of the three invariants: the energy, the
enstrophy and the zonostrophy.

(k* +5ky). (15)

5 Triple cascade behaviour

5.1 Dual cascades in 2D Navier-Stokes turbulence

Before we present the generalized Fjgrtoft argument, we will remind the reader of
the classical Fjgrtoft argument leading to the prediction of the dual cascade be-
haviour in 2D Navier-Stokes turbulence [10]. This will be instructive because by
now there exists several versions of such an argument and the one we use here is not
necessarily the most familiar.

Energy Enstrophy

0 NN NNk

Kf K+

Fig. 1 Dual cascade behaviour in 2D Navier-Stokes turbulence.

Let us consider 2D turbulence described by the Navier-Stokes equations excited
at some forcing scale ~ ko and dissipated at very large (~ k_ < ko) and at very
small scales (~ ki > kg), see Fig. 1. The conservative ranges between the forcing
scale and the dissipation scales, k_ < k < ko and ko < k < k. are called the inertial
ranges. The two conserved quantities in this case, in the absence of forcing and dis-
sipation, are the energy and the enstrophy which are given by the same expressions
as for the small-scale CHM model, namely by (5) and (6) in the x-space and by
(7) and (8) in the k-space. In the presence of forcing and dissipation in steady-state
turbulence, the rate of production of the energy and the enstrophy by forcing must
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be exactly the same as the dissipation rates, € and 1 respectively. Our task now is to
determined where exactly E and €2 are dissipated, at ~ k_ or at ~ k..

First, we note that the k-space densities of E and Q differ by a factor of k2, and
therefore the energy dissipation rate € is related to the enstrophy dissipation rate 1
as 1 ~ ko’e. Now, let us suppose ad absurdum that at ~ k the energy is dissipated
at a rate comparable to the rate of production at the forcing scales, i.e. ~ €. But
this would mean that the enstrophy would be dissipated at the rate ~ kis which is
impossible in steady state since this amount greatly exceeds the rate of the enstrophy
production 1 ~~ ko>e. Thus we conclude that most of the energy must be dissipated
at the scales ~ k_, i.e. that the energy cascade is inverse (with respect to its direction
in 3D turbulence).

Similarly, assuming ad absurdum that most of the enstrophy is dissipated at ~ k_
would also lead to a conclusion that the amount of energy dissipated is much greater
than the energy produced, which is impossible. Therefore, the enstrophy cascade is
direct, i.e. it is dissipated at wavenumbers ~ k which are greater than the forcing
scale k.

5.2 Triple cascades in CHM turbulence

From the Fjgrtoft argument presented above, the reader should notice that the quan-
tities that determine the cascade directions are the k-space densities of the invariants
or, more precisely, the scaling of the ratios of these densities with k. It is also im-
portant that these k-space densities are positive (as is the case for E,Q and Z in
our situation, see (7), (8) and (15)) because otherwise a large positive and a large
negative amount of the same invariant could be produced in different corners of the
k-space, with the net result zero and the Fjgrtoft argument would not work. Further,
it is important that all of the invariants have the same scaling with respect to the
turbulence intensity so that their ratios are functions of k and not of the turbulent
intensity. This condition is satisfied, for both Navier-Stokes and in the CHM model
since E, 2 and Z are linear in n, see (7), (8) and (15).

The ratio of the k-space densities of Q and E is k> which allows us to conclude
that 2 must go to k > ko and E must cascade to k < ko. In other words, each of
the invariants cascades to the scales where its density is dominant over the density
of the other invariant. This argument is easily generalizable to the CHM model and
the respective three invariants, E, Q2 and Z. Now we have three invariants, and the
cascade picture would necessarily be anisotropic (it is impossible to divide the 2D
k-space into three non-intersecting cascade regions in an isotropic way).

Let us suppose that turbulence is produced near ko = (kOX,koy) and it can be
dissipated only in regions which are separated in scales from the forcing scale, i.e.
either at k > kg (short scales), or at k, < ko, (nearly zonal scales), or at ky, < koy
(nearly meridional scales), see Fig. (2). Then each of the invariants (e.g. E), must
cascade to the scales where its density is dominant over the densities of the other
two invariants (e.g. £2 and Z). The boundaries between the cascading ranges lie on
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the curves in the k-space where the ratios of the different invariant densities (taken
pairwise) remain constant (equal to the respective initial values).

We note that because kZ < kx2 + Sky2 < 5k2, and because because the Fjgrtoft
argument operates only with the strong inequalities (> and < rather than > and
>), we can replace the zonostrophy density (15) with a simpler expression,

~ k>
Gk ~ R (16)

Thus we have for the boundaries between the different cascade sectors, see
Fig. (2):

* E/Q boundary: As for the 2D Navier-Stokes turbulence considered before, we
have for this boundary separating the energy and the enstrophy cascades,

K~ i3, a7

(i.e. a circle in the 2D k-space, kf +ky2, = k(z).)

* E/Z boundary: Equating the ratio of the energy density || to the zonostrophy
density k,> /k® to the initial value of this ratio, we get for the boundary separating
the energy and the zonostrophy cascades,

I3 [k ~ k3 ko (18)

* Q/Z boundary: Equating the ratio of the enstrophy density &, to the zonostrophy
density k,> /K3 to the initial value of this ratio, we get for the boundary separating
the enstrophy and the zonostrophy cascades,

Kk [k ~ kg /Koy (19)

The first of these expressions, (17), says that (like in 2D turbulence before) the
energy must go to larger scales and the enstrophy must go to smaller scales.

The second expression, (18), says that the energy must go to the zonal scales,
ky > k,. Moreover, this expression also poses a particular restriction on the path of
the energy to the zonal scales, e.g. for k, > k, it should zonate at least as fast as
ky = const ki/3, see Fig. (2).

The last relation, (19), is also interesting. Because k > k., the curve (18) intersects
the k,-axis at a finite distance,

ke~ kg Ik (20)

We see that the zonostrophy cannot cascade too far to large k’s, unless one starts with
nearly zonal scales, ko, >> kox. In particular, if ko, = ko, we have ky = 21/0k, i.e. the
maximal allowed wavenumber for the zonostrohy cascade is practically the same as
the initial scale. In other words, in this case the zonostrophy can only cascade to the
larger scales.
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0.5
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X0

Fig. 2 Non-intersecting sectors for triple cascade as predicted by the generalized Fjgrtoft argu-
ment.

5.3 Alternative argument for zonation

The generalized Fjgrtoft argument presented above was based on the zonostrophy
conservation which was proven for the wave kinetic equation and therefore, it is
expected to work well for the weakly nonlinear case. However, later we are going to
present numerics in which we “push” the formal boundaries of validity and test the
performance of the triple cascade picture in the case when the initial nonlinearity is
strong.

Because we are going to consider cases with strong nonlinearity, we would like
to mention an alternative argument for zonation which makes sense when the ini-
tial turbulence is strong. Suppose that turbulence is forced strongly at large k’s,
so strongly that the linear term is negligible compared to the nonlinear one in the
CHM equation (1). Since the linear term is the only source of anisotropy in the
CHM model, the system is expected to build an isotropic inverse energy cascade
identical to one of the 2D Navier-Stokes turbulence. As the inverse cascade pro-
gresses toward the larger scales, the linear dynamics (f3-effect) become more and
more important. A well-known boundary exists which defines the crossover from
strong to weak turbulence, dominated by weakly nonlinear waves. This boundary is
defined by the transitional wavenumber where the characteristic times of the linear
and the nonlinear dynamics become equal. As it follows from the above speculation
about the inverse cascade, the scaling for the nonlinear time has to be taken from a
Kolmogorov-type estimate, Ty ~ (8k2)’1/ 3 and the linear time is just the inverse
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wave frequency, 7, = k% /(Bk,). Equating Ty and 7, we get
K = ke, 1

where kg = (B3/€)!/>. This curve is plotted in Fig. (3) and it is the well-known
‘dumb-bell’ or ‘lazy 8’ curve [16; 32]. For the modes which lie outside the curve,
isotropic turbulence is the dominant process, whereas for those modes inside the
dumb-bell, anisotropic Rossby wave turbulence is the dominant process.

ky
1.0

H Strong turbulence

Weak wave turbulence

L 1 L L L L L L L L L
-0.5 0.5

Weak wave turbulence

Strong turbulence H

-1.0-

Fig. 3 Dumb-bell curve in the Fourier space defining crossover from strong to weak turbulence.

The alternative zonation argument is based on the observation that weak wave
turbulence is much less efficient in supporting the energy cascade than the strongly
nonlinear interactions. Thus one can suppose that the energy cascade does not pen-
etrate inside of the dumb-bell curve, but rather, it turns and continues along this
curve to the larger scales. This condition that the linear and the nonlinear times are
balanced scale-by-scale could be called a “critical balance”, in analogy with similar
arguments about the critical balance state discussed in MHD turbulence [14].

The critical balance picture would mean that the energy cascade path of zonation
would be given by expression (21), which incidentally is very close to the path
predicted by the Fjgrtoft argument (18), if ko ~ kg (the power 3 /8 indeed very close
to 1/3).

A closer look reveals that the alternative zonation argument is actually not so
“alternative” as it does not contradict our generalized Fjgrtoft argument based on
the zonostrophy concentration. Indeed, if the energy followed a path through the
scales at which the linear and the nonlinear timescales balance then the zonostrophy
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would flow below this path, i.e. to the weakly nonlinear scales. Thus, the zonos-
trophy would be supported at the weakly nonlinear scales and therefore would be
conserved (even though both the energy and the enstrophy would be supported in
the intermediately and strongly nonlinear scales in this case). But then all the three
invariants are conserved (no need for weak nonlinearity for conservation of E and
Q) and the generalized Fjgrtoft argument is once again valid.

One should also keep in mind that for the dumb-bell curve the estimation of the
shape is only approximate because it is based on the expression for Ty; which is
valid, strictly speaking, only at k’s which are much greater than the dumb-bell (i.e.
in the region of the isotropic inverse cascade). With this observation, we can put
together the “kinematic” view of the Fjgrtoft argument and the “dynamic” critical
balance condition, and suggest that:

e Invariants E, Q and Z cascade in the sectors prescribed by the generalized
Fjgrtoft argument, i.e. (17), (18) and (19).

» The energy cascade follows a path along the scales at which Ty, ~ 77, which lies
somewhere in the sector (18) and which does not strictly follow the dumb-bell
prescription (21) (because of the unprecise definition of the dumb-bell discussed
above).

* This picture is of course preceded by the usual isotropic inverse cascade of E in
the case when the initial turbulence is very strong.

We emphasize that in this section we only considered the case when the initial
turbulence is strong. If the initial turbulence is weak, i.e. well within the dumb-bell,
then the energy cascade path remains in the weakly nonlinear scales (at least for a
while) rather than lie on the dumb-bell curve.

Now we will proceed to testing our theoretical predictions about the conservation
of the zonostrophy and the triple cascade behavior via numerical simulations of the
CHM equation in the Fourier space, Eqn (2).

6 Numerical study

A pseudospectral code has been written to solve equation (2). No dissipation is used
and the initial condition is given by

(9 g

k2

Ui |i=0 = Ae + image, (22)
where ko and k, are constants and @ are random independent phases, and by “im-
age” we mean the mirror-reflected spectrum with respect to the k, axis. Note that
only the semi-plane k, > 0 was used in our computations because of the symmetry
Wk = Y arising from the fact that the streamfunction y in the CHM equation (1)
is a real function.

We opted to simulate such an evolving non-dissipative system rather than a
forced/dissipated steady-state turbulence considered by the Fjgrtoft argument be-
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cause it appears to be more physically relevant (since there appears to be no phys-
ically meaningful dissipation acting selectively on nearly zonal and nearly merid-
ional scales only). Yet, we hope that the cascade picture obtained via the Fjgrtoft
argument is meaningful for such decaying turbulence too, similar to what appears
to be the case e.g. in the 2D Navier-Stokes turbulence.

Of course, when calculating a non-dissipative system one has to be aware of
the possible bottleneck accumulation of turbulence near the maximum wavenum-
ber after the turbulent front reaches these scales. Thus we make sure to stop our
simulations before this happens.

6.1 Centroids

To quantify the cascades of the energy, enstrophy and zonostrophy in the time-
evolving non-dissipative turbulence we introduce the centroids (“‘centres of mass”)
of the total of each invariant defined respectively as follows,

1 "~
ki(r) = 5 [ ki dk (23)
ko(1) = é / ki g dk, (24)
1 ki 2 2\ (2 12
ke(r) = 5 [ K5 (2 + 5k2) i P k. 25)

Of course, it is not apriori clear if the Fjgrtoft argument formulated for the
steady-state forced/dissipated turbulence has a predictive power for the trajectories
of the centroids in the k-space. In the present paper we “experimentally” verify that
this is indeed the case.

For the 2D Navier-Stokes (Euler), it is actually possible to recast the Fjgrtoft ar-
gument for the non-dissipative evolving turbulence directly in terms of the centroids
in a rigorous way, see Appendix B. However, the structure of the CHM is more in-
volved and it is not clear if one can produce a generalized Fjgrtoft’s argument for
the triple cascades in terms of the centroids in a rigorous way. This is certainly an
interesting question to be addressed in future.'

1 'We have been able to find some of the relevant inequalities in terms of the centroids, but most of
the conditions restricting the triple cascade sectors are still missing.
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6.2 Settings for the weakly nonlinear and the strongly nonlinear
runs

We have chosen two sets of parameters to be used in two runs corresponding to
weak and strong initial nonlinearities respectively.

The weakly nonlinear and the strongly nonlinear runs were performed at res-
olutions 512% and 1024 respectively. This is because the weakly nonlinear sys-
tems evolve much slower that the strongly nonlinear ones and one has to compute
them for much longer. Correspondingly, the centre of the initial spectrum and its
width were chosen to be kg = (20,20) and k, = 8 in the weakly nonlinear run and
ko = (40,40) and k, = 16 in the strongly nonlinear run.

The initial amplitudes in the weakly nonlinear and the strongly nonlinear runs
are A =10"% and A = 5 x 1077 respectively. Determining the relevant degree of
nonlinearity ¢ that corresponds to these initial conditions is tricky. One can directly
estimate the linear and the nonlinear terms in the Eqn (2) and take into account the
fact that there will be statistical cancellations in the sum of the nonlinear term due
to the random phases, i.e. schematically

N
Y individual-term; | ~ VN |individual-term| .
j=1

This way we get an estimate

oo 2\/2_7rﬁk8k*A’
which gives 6 ~ 0.09 for the weakly nonlinear run and ¢ ~ 0.7 for the strongly
nonlinear run. However, it is likely that in the strongly nonlinear case the phases
will quickly become correlated to a certain degree. Evaluating the nonlinear term
in the extreme case when the phases are totally coherent would give an extra factor
of v/N ~ 2+/mk? ~ 100, so we would have for the strongly nonlinear run ¢ ~ 70,
which obviously is an overestimate. From common sense, in a non-rigorous way, we
believe that the true relevant value for o in this case is closer to the random-phase

estimate, but perhaps slightly higher, e.g. 0 ~ 1 —2, which is approximately “on the
dumb-bell”.

(26)

6.3 Weakly nonlinear case

For this case, the degree of nonlinearity is weak, o ~ 0.09, so that the initial tur-
bulence is well within the dumb-bell. Fig. (4) shows the conservation of each in-
variant. Because of the slow weakly nonlinear evolution, any quantity proportional
to the turbulent intensity could look “conserved”, so to demonstrate the true con-
servation of the zonostrophy we plot its time evolution along with a non-conserved
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quantity, [ w?dx. It is clear that all three invariants, E,  and Z are well conserved.
Namely, the energy is conserved within 0.01%, the enstrophy - within 0.15% and
the zonostrophy is conserved within 1 %. Note that this is a first numerical demon-
stration of the conservation of the zonostrophy invariant. We remind the reader that
Z is precisely conserved by the wave kinetic equation (9) and therefore its conser-
vation by the dynamical CHM equation (2) is subject to the applicability conditions
of this kinetic equation, namely the weak nonlinearity and the random phases. It
is not apriori clear how well these conditions are satisfied throughout the k-space
(particularly near the zonal scales).

The cascade directions for E, €2 and Z are plotted in Fig. (5) in terms of the paths
followed by the respective centroids, (23), (24) and (25). Note that for convenience
we normalize the centroids to their initial values, kg, ko and k5, (which are differ-
ent from ko) so that the centroid paths start from the same point in Fig. (5).

In Fig. (5) we see that each invariant cascades well into its predicted sector. In-
terestingly, the enstrophy and the zonostrophy paths are well inside their respec-
tive cascade sectors, whereas the energy follows the boundary of its sector with the
zonostrophy sector. One should remember, however, that the boundaries between the
sectors are not sharp because the Fjgrtoft argument operates with strong inequalities
(< and > rather than < and >).
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Fig. 4 Conservation of energy, enstrophy and zonostrophy for the weakly nonlinear case. Non-
conserved quantity ¥? also shown.

Three successive frames of the energy spectrum in the 2D k-space along with the
x-space frames of vorticity distributions at the same moments of time for the weak
nonlinearity case are shown in Fig. (8). The initial spectrum, which represents a
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Fig. 5 The cascades of energy, enstrophy and zonostrophy for the weakly nonlinear case, tracked
by their centroids.

gaussian spot centered at K¢y and its mirror image, is seen to grow “arms” toward the
coordinate origin, so that a closed “ring” forms and then starts shrinking in size. The
ring is suggestive of the dumb-bell shape (when complemented with the other half
of the distribution at k, < 0), although the similarity is only visual rather than quanti-
tative, because the nonlinearity is quite small. Presumably, the growing of arms and
the ring shrinking are indicative of the structure of the anisotropic inverse energy
cascade process. On the respective vorticity x-plots, we see initial dominant short-
wave components propagating at £45¢ (corresponding to the position of the initial
maxima in the spectrum) which in time evolve into a more disordered turbulent state
with a predominant zonal orientation.

6.4 Strongly nonlinear case

For this case, ¢ ~ 1 —2 so that the initial turbulence is near the boundary of the
dumb-bell. Fig. (6) shows the conservation of each invariant. While the energy and
enstrophy are still well conserved (the energy within 0.2% and the enstrophy - within
1.2%), the zonostrophy is not conserved initially. This is not surprising considering
that the zonostrophy is only expected to be conserved if the nonlinearity is weak.
What is more interesting, however, is that the zonostrophy growth saturates as time
proceeds, so that the zonostrophy is rather well conserved in this case for large times.
This suggests, as we argued before, that for large times the scales that support the
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zonostrophy invariant are weakly nonlinear, even though the energy scales proba-
bly remain moderately nonlinear, and the enstrophy scales are definitely strongly
nonlinear.

The cascade paths for £, €2 and Z in terms of the respective centroids are plotted
in Fig. (7). Once again we see a picture which is similar to the one already observed
for the weakly nonlinear case: the enstrophy and the zonostrophy cascades lie well
inside their respective theoretically predicted sectors, and the energy cascade fol-
lows the boundary of its sector. It is quite possible that the energy path lies in the
“critically balanced” scales where the nonlinear and the linear time scales are of
the same order. However the measurement of the nonlinear time scale is quite am-
biguous and it is still unclear if the critical balance approach can be formulated in
a more precise way in this case. In any case, one can clearly see that even in this
strongly nonlinear case the zonostrophy invariant is conserved for large times, and
that the triple cascade picture predicted using this invariant provides a reasonable
description of the turbulence evolution and explanation of the zonal jet formation.

We have also looked at the energy spectra in the 2D wavenumber space and at the
2D vorticity distributions on the x-plane evolving in time, see Fig. (9). The essential
features of the evolution of these distributions appeared to be remarkably similar
to the ones of the weakly nonlinear case, with somewhat more evident zonal jets
at later times. This can be explained by the fact that the strongly nonlinear systems
evolve faster than the weakly nonlinear ones, so that what we see here is a more
advanced stage of zonation.

5.5 ‘
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Fig. 6 Conservation of energy, enstrophy and zonostrophy for the strongly nonlinear case. Non-
conserved quantity ¥ also shown.
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Fig.7 The cascades of energy, enstrophy and zonostrophy for the strongly nonlinear case, tracked
by their centroids.

7 Summary

In the present paper the generalized Fjgrtoft argument was used to predict a triple
cascade behaviour of the CHM turbulence, in which the energy, the enstrophy and
the zonostrophy are cascading into their respective non-intersecting sectors in the
scale space. These cascades are anisotropic and the energy cascade is predicted to be
directed to the zonal scales, which provides a physical explanation and the character
of the formation of the zonal jets in such systems.

The zonostrophy conservation, as well as the triple cascade picture, were tested
numerically for the cases of both weak and strong initial nonlinearities. The zonos-
trophy invariant was shown to be well conserved in the weakly nonlinear case.
Moreover, the zonostrophy conservation was also observed for the case with strong
initial nonlinearity after a transient non-conservative time interval. Presumably, this
is because the zonostrophy moves in time to the scales that are weakly nonlinear
(even though the energy and the enstrophy remain in the strongly nonlinear parts of
the Fourier space). Using the energy, the enstrophy and the zonostrophy centroids
for tracking the transfers of these invariants in the Fourier space, we demonstrated
that all the three invariants cascade as prescribed by the triple cascade Fjgrtoft argu-
ment in both the weakly nonlinear and in the strongly nonlinear cases. The energy
appears to be somewhat special among the three invariants in that it tends to cas-
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Fig. 8 Contour plots of the 2D energy spectrum in k-space (left) and corresponding contours of
vorticity in x-space (right) for the weakly nonlinear case.

cade along the edge of the sector allowed by the Fjgrtoft argument, namely along
the curve k o k;/3.

We believe that further studies would be helpful, both theoretical and numerical,
for establishing the conditions under which the zonostrophy is conserved, in par-
ticular finding out the extent to which the statistical properties of the system (e.g.
random phases) are important in addition to weak nonlinearity of the zonostrophy
supporting scales. It would be also interesting to study the behaviour of zonostro-
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Fig. 9 Contour plots of the 2D energy spectrum in k-space (left) and corresponding contours of
vorticity in x-space (right) for the strongly nonlinear case.

phy in the other setups within the CHM model, e.g. the modulational instability and
truncated systems of coupled resonant triads.
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Appendix A - Small-scale limit of Zonostrophy

The general expression for the zonostrophy density is given by [1]:

—kV/3 ky +ke/3
Y7

¢ = arctan >——="— ky — arctan

e ok 27)

Expanding this expression in the powers of 1/p up to ninth order, we get
(- 23k
—2V3

g

[k} +6k2k2 + 5k

pskw

+2V3

27
7k1 7[5 R 2T + 1SR + K]

—2V3

+28k§k§, +K]+0(p ).

8 672 474
5 k,g [9k% + 108KSK? + 126K}k

We note that the Taylor expansion of the frequency @y = —fB/(k* + p~2) in the
powers of 1/p is

oo oo n 2 k
o = Z o' 2 1)"p 2’; . 28)
=t = (Pk)

We see that in the leading order § = ﬁ 5 a)k, i.e. in the small-scale limit { is propor-

tional to the energy and not an independent invariant.

Thus, to find the truly independent invariant in the small-scale limit we must
subtract this “energy” part. To have a simpler expression which is p-independent in
the leading order, we will also multiply the result by — f Re-defined this way, the
zonostrophy invariant is

5=—7(C 2V30/Bp) =

S SKEHKE kP 6K2KE+3ky _2kE +26k0KkE 4 30ktk + 6k2k:
2 ko p2k14 +5 p4k13 );

which in the limit p — oo becomes the expression we were looking for,

2 2
Ll

{=k~"m (29)
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Appendix B - Fjgrtoft argument in terms of the centroids

Let us consider an evolving hydrodynamic 2D turbulence in the absence of forcing
and dissipation. Here we will re-formulate the Fjgrtoft argument in terms of the
energy and enstrophy centroids in the k and / (i.e. scale) spaces. This formulation
will be rigorous and quite useful for visualizing the directions of transfer of of the
energy and the enstrophy. In contrast with the version of the Fjgrtoft argument give
in the main text, this formulation is for a non-dissipative turbulence rather than a
forced/dissipated system.
The energy and the enstrophy k-centroids are defined respectively as

ke = /OwkEkdk/E, (30)
ko = /Omk3Ekdk/Q, (31)
and the energy and the enstrophy /-centroids as defined respectively as
g = /Omk*‘Ekdk/E, (32)
lo = /:kEkdk/Q = kE/Q, (33)

where E} is the 1D energy spectrum (i.e. the energy density in |k|).

Theorem 1 Assuming that the integrals defining E,Q kg kq,lg and lg converge,
the following inequalities hold,

ke < \/QJE, (34)
ko > \/QJE, (35)
kpkg > Q/E, (36)
le > \E/Q, 37)
lo < VE/Q, (38)
Iglog > E/Q. (39)

We are going to prove this theorem using Cauchy-Schwartz inequality?, which
states that

1/2 1/2

/0 " (k) dk

| wf(k)g(k)dk‘ < ] [ ra

2 The suggestion to use the Cauchy-Schwartz inequality for reformulating the Fjgrtoft argument in
terms of the centroids was made to us by Gregory Eyink during the INI workshop the proceedings
of which are published in this book.
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for any functions f(k),g(k) € L>. We will only deal with positive functions, so the
absolute value brackets may be omitted. Being in L? in our case means that all the
relevant integrals converge, as suggested in the statement of the problem.

First, let us consider integral [kE dk and apply Cauchy-Schwartz inequality as
follows,

- - - 12 /e 12
/kEdk:/ (kEl/z)(El/z)dk<</ szdk) (/ Edk) ,
0 0 0 0

which immediately yields (34) and (38).
Second, let us consider Q = [ k*E dk and split it as,

oo oo - 12 / oo 1/2
/szdk:/ (k3/2E1/2)(k1/2E1/2)dk§(/ k3Edk) (/ kEdk) ,
0 0 0 0

which immediately yields (36). Combining (36) with (34) gives (35).
Now, let us split [ kE dk in a different way,

/kEdk:/ (k3/2E]/2)(k'/ZE]/Z)dkg(/ k3Edk) (/ k'Edk)
0 JO JO 0

which immediately yields (39). Combining (39) with (38) gives (37).

We see that according to inequalities (34) and (35), during the system’s evolution
the energy centroid kg () is bounded from above and the enstrophy centroid kg (¢) is
bounded from below (both by the same wavenumber k = 1/ /E), as one would ex-
pect from Fjgrtoft argument. Further, inequality (36) means that if kg () happened to
move to small £’s then kg (¢) must move to large k’s, that is roughly, there cannot be
inverse cascade of energy without a forward cascade of enstrophy. Note that there is
no complimentary restriction which would oblige kg () to become small when kg (¢)
goes large, so the k-centriod part of the Fjgrtoft argument is asymmetric, and one has
to consider the /-centroids to make it symmetric. Indeed, in additions to conditions
(37) and (38) which are similar to (34) and (35), we have inequality (39) meaning
that if /o (¢) happened to move to small I’s then I () must move to large I’s, i.e. any
forward cascade of enstrophy must be accompanied by an inverse cascade of energy.

Importantly, we do not always have kg ~ 1/Ig and kg ~ 1/lq. Indeed, consider
a state with spectrum Ej ~ k=3/3 for k, < k < kp (with k;, > k,) and E; = 0 outside
of this range. It is easy to see that for this state kp ~ k,i/s 52/3 and Ig ~ 1/k, (ie.
kE e I/ZE) al’ldkg ~ l/lQ Nkb.

1/2
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The HyperCASL algorithm

David G. Dritschel and Jérome Fontane

Abstract This paper outlines a major new extension to the diabatic Contour-
Advective Semi-Lagrangian (CASL) algorithm [5; 8]. The extension, called the
‘HyperCASL’ (HCASL) algorithm, advects material potential vorticity contours
like in CASL, but treats diabatic forcing or damping with a Vortex-In-Cell (VIC)
algorithm. As a result, HCASL is fully Lagrangian regarding advection. A conven-
tional underlying grid is used as in CASL for ‘inversion’, namely for obtaining the
advecting velocity from the potential vorticity.

1 Introduction

Herein we outline a powerful new approach to the simulation of layerwise-2D geo-
physical flows. Our approach combines the CASL algorithm [5; 6; 7; 8; 11], a hy-
brid contour-dynamics [21] method exploiting the efficiency gained by the use of
an underlying grid, with a vortex-in-cell method [2]. The latter is here used to com-
pensate for errors arising from contour regularisation or ‘surgery’ [3; 4] appearing
at the level of the grid. In this way, (essential) dissipation occurs only at sub-grid
scales, and there is no direct impact of surgery on the computed velocity field, which
is obtained on the grid by standard spectral methods. This is particularly important
for long-term simulations, where error accumulation needs to be minimised [10].
This new approach, here coined the ‘HyperCASL algorithm’, also allows for gen-
eral non-conservative effects, by design. For instance, one may take account of ra-
diative (thermal) effects which drive a given flow to some thermal equilibrium distri-
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bution (which is unstable in the case of the Earth’s atmosphere, see [1; 16; 18; 9] &
refs. therein). Or, one can account for ‘Ekman pumping” which converts wind stress
at the ocean’s surface into a vorticity source or sink there [14]. In fact, in the algo-
rithm outlined below, very general forms of forcing or damping can be accounted
for (e.g. stochastic, small-scale convection, etc.).

2 Brief Description of the Numerical Algorithm

In previous works, various means to include such forcing and damping in the CASL
algorithm have been described and tested. In [8], the dynamical evolution equation
for the scalar potential vorticity (PV) g was split into two equations

un DQd
0 ; — =S
Dt Dt

6]

where D/Dt = d/dt+u -V is the material derivative, S(x,f) is any source term,
and we require g = g, + qg4. Here, g, is called the ‘adiabatic PV’ and ¢, is called
the ‘diabatic PV’. The adiabatic PV is materially conserved, whereas the diabatic
PV changes on fluid ‘particles’ in response to the ‘forcing’ S. Note, the velocity u
is obtained from the combined PV ¢ (and in general other fields e.g. representing
non-advective processes like gravity wave propagation), so the equations are in fact
coupled. Nevertheless, adding them together gives Dg/Dr = S, which is the exact
equation satisfied by PV.

The reason for splitting the PV equation is to exploit the numerical advantages
of CASL in modelling conservative, adiabatic PV evolution. The CASL algorithm
is capable of following extraordinary detail at a tiny fraction of the cost of conven-
tional (e.g. pseudo-spectral) methods [6; 11]. The CASL algorithm evolves g, by
contour advection — merely moving a set of ‘nodes’ {x;} (i=1, ..., n) on contours
representing the field g,:

dX,‘

dr
The contours separate regions of uniform ¢g,, and since they are normally generated
by contouring a prescribed gridded field, the jump in g, across each contour is a
fixed constant Ag. It is noteworthy that a modest number of contours can represent
a continuous PV distribution astonishingly well [11].

Contours, however, are poorly suited for representing diabatic effects, i.e. forcing
and damping. The diabatic PV g, is better handled by other numerical methods, and
in [8], a standard ‘semi-Lagrangian’ method [20; 12] was employed. The semi-
Lagrangian method approximates the trajectories of fluid particles which arrive at
grid points at the end of a time step. The method therefore obtains the positions of
particles at the beginning of a time step, and from these positions, the initial value
of g4, using a bi-cubic interpolation formula. If the source S = 0, then this value of
qq 1s simply copied into the value for the grid point lying at the end of each particle

=u(x;,t). ()
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trajectory. This appears to solve Dg, /Dt = 0 exactly, except that interpolation errors
induce significant numerical diffusion [6]. The method is used in [8] with S # 0
simply because it is convenient to obtain the integral of S along trajectories, and
because there is no CFL or numerical stability restriction on the time step.

More recently, long-time integrations of 2D turbulence were carried out using a
similar approach, except that a standard pseudo-spectral method was used to handle
qq [10]. In these integrations, g; was not used to represent some prescribed diabatic
source S, but rather errors coming from the regularisation of contours or ‘surgery’
that is necessary for efficiency and for maintaining adequate point resolution along
contours. For short to moderate integrations, this error is not significant, as demon-
strated in a recent comparison between the CASL and pseudo-spectral methods [11].
But for long integrations, this error leads to spurious growth in the large-scale en-
ergy spectrum, and often a small growth in the total energy. Essentially, the removal
of thin PV filaments by surgery projects on a broad range of wavenumbers in spec-
tral space. This problem was solved in [10] by taking the error from surgery (and
from periodic re-contouring, see below) and transferring it to g, as a source, thereby
removing all error explicitly at the level of the grid (in fact, a similar procedure was
also carried out in [8]).

The evolution of g; within a standard pseudo-spectral method cannot however be
accomplished without numerical diffusion. Whereas in the semi-Lagrangian method
this diffusion is implicit in the interpolation of the trajectory starting positions, in
the pseudo-spectral method this diffusion must be added explicitly to the evolution
equation. In [10], ordinary molecular-like diffusion was used, at the smallest possi-
ble level, to minimise diffusion.

An alternative approach, using sets of contours having different PV jumps (Ag,
0Aq, a*Aq, ..., oo < 1) is described in [15]. In this approach, it is possible to dis-
pense entirely with the semi-Lagrangian and pseudo-spectral methods, and instead
treat the source S by judicious and frequent contouring, thereby using contours only.
However, contouring is not an efficient procedure, and the algorithm is complicated
by the need to specify many control parameters.

2.1 Fully Lagrangian Advection

We demonstrate next that the diabatic evolution of g4 can be accomplished simply
and efficiently in a fully Lagrangian manner, and without numerical diffusion all
the way down to the grid scale. In this new approach, all dissipation takes place at
sub-grid scales (principally by contour surgery).' Instead of conventional grid-based

1 Arguably, such dissipation is an essential feature of any discrete approximation to a fluid dynami-
cal system, even when the system is perfectly conservative. Even the ‘perfect’ discrete model which
obtains the exact average value of fields over grid cells would exhibit apparent dissipation, simply
because averaging appears diffusive. Squared integrals of quantities like g> would appear to dimin-
ish even though they are constant in the original system. A simple thought experiment is a tracer
6 being stirred by the 2D potential flow (—cy/r?,cx/r?) where c is a constant and r> = x> +y?. In
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methods, we employ an array of point vortices to model diabatic PV evolution, i.e.
solve Dg, /Dt = S. In our approach, this equation is solved exactly at the level of
the grid. This is accomplished by letting the circulations I of individual vortices
vary with time. By choosing dI}/dt appropriately, we can ensure that Dg; /Dt = S
is satisfied at every grid point.

2.2 Transfer of Diabatic Forcing to Point Vortices

The essential details of the method are given next. Here, we consider the simplest
2D rectangular domain, which may be periodic. We suppose we have divided this
domain into some convenient regular grid, with grid lengths Ax and Ay. At any given
time ¢, we arrange to have m X m point vortices per grid box, on average (typically,
we use m = 2, the minimum value that works). Every so often, the vortices are re-
arranged on a regular grid and their circulations I; are modified to ensure that the
re-arrangement has no effect on the PV they induce at each grid point.> As in the
CASL algorithm [5], we use bi-linear interpolation to transfer information from the
grid to the vortices, and, here, vice versa. For example, the PV at a grid point (i, j)
due to point vortices is obtained by the sum

qa= Y, Wijkdk (3)
kEGl‘j

where G;; is the domain consisting of the (typically 4) grid boxes surrounding (i, j),
w; jx are the bi-linear interpolation weights, and gx = I3 AxAy are normalised circu-
lations (having units of PV). The weights are explicitly given by

wijk = (1 = | — | /Ax) (1 = |y — 3;|/AY) “)

where (xg,yy) is the position of vortex k, and (¥;,;) are the coordinates of grid point
(i, 7). The vortices lying within G;; are found simply by integer arithmetic.

All of this is standard. The difficulty we face with diabatic forcing is that we are
given Dg, /Dt (as some function S(x,7)), and we must therefore invert

d
Si= 3 wip—k )

time, without diffusion the tracer will spiral ever more tightly, eventually reaching arbitrary small
scales. While the integral of 8% remains conserved in time, any averaging of 8 before computing
this integral will result in a smaller value — apparent dissipation.

2 We typically re-arrange the vortices when the integral ]Z] | |maxd? = 0.5, where { is the relative
vertical vorticity and f is the previous time the vortices were re-arranged. This ensures that the
vortex array does not get too deformed, and that minimal computational effort is put into the re-
arrangement.
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to find dgy/dt. (Note that we do not need to include dw;j/dr; this term makes no

contribution as can be seen in the adiabatic case when S = 0 and dg;/df = 0.) There

are potentially many solutions to this problem. Here, we seek the solution for which

the local vortex density p; multiplied by dg,/df can be expressed as a bi-linear in-

terpolation of an unknown gridded field F’ over the grid box B;; containing vortex k:
dac _ oop o lop L o1 g

Pk dr = Wi E,] +Wk E+l,j +Wk Ft,]+1+Wk E+1,]+1~ (6)

Here, w,‘fﬁ =Wita,j+B i above (commas between indices added). The vortex density
Pr is found itself by bi-linear interpolation; first we compute the density at each grid
point p;; from

Pij= D, Wijk )
kEGij
then we set
00 = 10 = 01 = 11 =
Pk = Wi Pij+wi Pir1,j Wi Pijr1+Wg Pit1,j+1- (8)

We solve for dgy/dr iteratively, normally starting from the known value at the
previous time step (or fractional time step). Occasionally, after re-arranging the vor-
tices, we do not have a known value, so we make a guess using 6 with F = S. On
a regular array, the method described below converges most rapidly [13], so a poor
starting guess is not problematic.

The following describes one iteration of the procedure. We first initialise a resid-
ual matrix R;; = S;; outside the iteration loop. Then, the first step is to subtract
the right-hand-side of 5 from R;;, thereby redefining the residual. If this residual is
zero, we have clearly solved the problem. In general it is not, and so we add the
right-hand-side of 6, with Fj; = R;j, to dg,/dr. We then check if max |R;;| < €, some
preset tolerance. If it is, we are finished, otherwise we carry out another iteration.

This procedure is simple and efficient. Typically at most a few tens of iterations
are ever required for an accurate representation of the gridded source S;;. And, while
we may use 4 times as many vortices as grid points, the operations over vortices are
all simple and add only a small extra cost to the complete numerical algorithm. Full
details of these costs, together with inter-algorithm comparisons, are presented in a
longer article [13].

3 An Example: A Diabatically-Forced Jet

Here, we illustrate the new HyperCASL algorithm in the simulation of a jet over
weak topography. The jet, a parallel flow u(y), is in thermal equilibrium, but the
equilibrium is arranged to be unstable. As in a previous study [8], we use the
standard quasi-geostrophic equations governing the motion of a mid-latitude 2D
shallow-water flow in near hydrostatic and geostrophic equilibrium:



294 David G. Dritschel and Jérome Fontane

%7W7We7£ (9)

Dt twl} T

_ dy Jdy
2— 2 = — M = = _—
(V2 =Lp )W =g+ gvo — By ; u=(u,v) ( oy’ 8x> .

Here vy is the streamfunction, y, is a prescribed thermal equilibrium streamfunction,
Ty, is the thermal damping time, Lp is the Rossby deformation length (= /gH/ fo
where g is gravity, H is the mean fluid depth, and f; is the mean Coriolis frequency),
¢ = V2 is the relative vertical vorticity, T is the Ekman damping time, gpoy is the
PV associated with bottom topography at z = b(x) (gpot = —fb/H), and f is the
variation of the Coriolis frequency across the domain. Here, we consider a doubly-
periodic domain of (scaled) dimensions 27 X 27. This dynamical system is rich in
parameters and not well understood; yet, it is a major simplification of the equations
used e.g. in weather forecasting and ocean modelling.

The specific simulation illustrated starts from a state of rest with y,(y) =
—WUmaxsech(y/w)tanh(y/w), with w = 0.2 and Upax = 1, the maximum equilib-
rium jet velocity occurring at y = 0. We take a random bottom topography with spec-
trum (or shell integral of squared Fourier coefficients) proportional to Bk/ (k> -+ k(z))Z,
where k = |Kk| is the wavenumber, with ko = 10 and B chosen to give a maximum
gbot of 0.047. This is a small amplitude topography, as the PV associated with the
W, (y) is nearly 100 times larger. The purpose of the topography is simply to desta-
bilise the jet. We also take 7, = 20 and Tk = o (no Ekman damping), Lp = 0.1 and
B=0.

Numerically, we simulate the flow on a basic grid of dimensions 256 x 256
(called the ‘inversion grid’ since this is the grid used to find y and u given g in 9).
For efficiency, we take the minimum number of 2 x 2 point vortices per grid box to
uptake forcing and surgical errors (see below). We choose a PV jump Ag = 0.47
across all contours, and a PV ‘conversion grid’ 4 times finer (in each direction)
than the inversion grid (for converting the contours to gridded values). The latter is
standard. What is new here are proposed fixed settings for the contour resolution
parameters. Based on exhaustive tests reported in [13], we fix the maximum node
separation (L on the contours at 1.25Ax, where Ax = 27/256 is the inversion grid
length, and we fix the surgical scale 8 at Ax/16. Coupling this with the required
relationship § = p?L/4, this implies a dimensionless node separation parameter
U = 0.2 and a characteristic length L = 6.25Ax. Fixing (L in this way ensures con-
tours can bend in response to the flow field. This is important.

Contours are regularised by surgery whenever fti) |8 |maxd? exceeds 2.5, where 7
is the previous surgery time. The value of 2.5 was obtained by carefully analysing
contour stretching characteristics [13]. Every 20th regularisation, surgery is replaced
by recontouring [8], to transfer the PV in the vortices to contours, and to avoid po-
tential errors of overlapping contours [19]. New contours are built on an ultra-fine
‘contouring grid’ 16 times finer (in each direction) than the inversion grid, after
merging the contour and point vortex PV on this grid. Note: the contouring grid
length matches the surgical scale; this new setting has been found to markedly im-
prove conservation properties [13]. The gridded PV associated with the new con-
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tours will generally not match the original PV on the inversion grid, and so the dif-
ference is given to the point vortices at the beginning of the next simulation cycle.
In this way, neither surgery nor recontouring changes the gridded PV.

The time step At is adapted to accurately resolve the vortical motion by setting
At = min(0.0625,7/10|{|max ). A 4th-order Runge-Kutta method is used for inte-
grating 2 for the contour nodes and for the point vortices.

_~

Fig. 1 The PV g within the inner half of the domain |y| < 7/2 at times 7 = 25 and 50 (top row),
att =75 and r = 425 (middle row), and at = 450 and 475 (bottom row). A linear grey scale is
used with white being the highest PV value and black being the lowest. The maximum value of ||
at these times is 9.55, 12.96, 13.94, 14.98, 14.51 and 15.64, respectively.

Figure 1 exhibits the evolution of the PV field ¢ at early times (top row) and at
late times (bottom row). See also figure 2 for an enlarged view of the final time, t =
500. The flow becomes statistically stationary with nearly constant levels of energy
and enstrophy (mean-square PV) from ¢ = 100 to 500, the end of the simulation (a
unit of time here roughly corresponds to a day — the time mean value of |{|max
is 5.55 while that of s is 2.94). A jet spanning part of the domain forms and
moves eastward by gobbling up vortices left in the wake of the jet and shedding
new vortices. The late time images shown in the bottom row reveal the wealth of
detail that can be captured by the HyperCASL algorithm at modest resolution. The
images were created by merging the contour and point vortex PV on the ultra-fine
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contouring grid (here 4096 x 4096). The entire simulation took 8 hours on a single
2.4GHz Intel processor.

Fig. 2 An enlarged view of the PV ¢ at the final time ¢ = 500, rendered as in figure 1. The
maximum value of |g| is 15.20.

4 Conclusions and Future Extensions

The HyperCASL algorithm represents a radically new opportunity for modelling
complex geophysical flows efficiently. Preliminary results indicate that potentially
enormous gains in accuracy may result by applying and generalising this new ap-
proach. Extensions to more complete equation sets are straightforward (cf. [7]), and
for these an accurate treatment of PV is also vital for an accurate representation of
the complete dynamics. There are also some challenges, such as treating spherical
geometry (the atmosphere) or complex domains (the oceans). HyperCASL is not
limited to PV, but can be applied to other tracers (like chemical species in the at-
mosphere), including moisture. In particular, modelling water vapour by contours
and subgrid-scale convection by Lagrangian particles may be a timely opportunity
to improve the forecasting of precipitation [17].

Acknowledgements DGD would like to thank the staff at the Isaac Newton Institute in Cambridge
for their help in creating an ideal atmosphere for the [IUTAM/INI symposium.



The HyperCASL algorithm 297

References

[1] Andrews, D.G., Holton, J.R., Leovy, C.B.: Middle Atmosphere Dynamics.
Academic Press (1987)

[2] Christiansen, J.P., Zabusky, N.J.: Instability, coalescence and fission of finite-
area vortex structures. J. Fluid Mech. 61, 219-243 (1973)

[3] Dritschel, D.G.: Contour surgery: a topological reconnection scheme for ex-
tended integrations using contour dynamics. J. Comput. Phys. 77, 240-266
(1988)

[4] Dritschel, D.G.: Contour dynamics and contour surgery: numerical algo-
rithms for extended, high-resolution modelling of vortex dynamics in two-
dimensional, inviscid, incompressible flows. Computer Phys. Rep. 10, 77-146
(1989)

[5] Dritschel, D.G., Ambaum, M.H.P.: A contour-advective semi-Lagrangian nu-
merical algorithm for simulating fine-scale conservative dynamical fields.
Quart. J. Roy. Meteorol. Soc. 123, 1097-1130 (1997)

[6] Dritschel, D.G., Polvani, L.M., Mohebalhojeh, A.R.: The contour-advective
semi-Lagrangian algorithm for the shallow water equations. Mon. Wea. Rev.
127, 1551-1565 (1999)

[7] Dritschel, D.G., Vitidez, A.: A balanced approach to modelling rotating stably-
stratified geophysical flows. J. Fluid Mech. 488, 123-150 (2003)

[8] Dritschel, D.G., Ambaum, M.H.P.: The diabatic contour advective semi-
Lagrangian algorithm. Mon. Weather Rev. 134, 2503-2514 (2006)

[9] Dritschel, D.G., McIntyre, M.E.: Multiple jets as PV staircases: the Phillips
effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855-874
(2008)

[10] Dritschel, D.G., Scott, R.K., Macaskill, C., Gottwald, G.A., Tran, C.V.: Unify-
ing scaling theory for vortex dynamics in two-dimensional turbulence. Phys.
Rev. Lett. 101, 094501 (2008)

[11] Dritschel, D.G., Scott, R.K.: On the simulation of nearly inviscid two-
dimensional turbulence. J. Comput. Phys. 228, 2707-2711 (2009)

[12] Durran, R.R.: Numerical Methods for Wave Equations in Geophysical Fluid
Dynamics. Springer (1999)

[13] Fontane, J., Dritschel, D.G.: The HyperCASL Algorithm: a new approach to
the numerical simulation of geophysical flows. J. Comput. Phys. 228, 6411-
6425 (2009)

[14] Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press (1982)

[15] Mohebalhojeh, A.R., Dritschel, D.G.: The diabatic contour-advective semi-
Lagrangian algorithms for the spherical shallow water equations. Mon. Wea.
Rev. 137, 2979-2994 (2009)

[16] Panetta, R.L.: Zonal jets in wide baroclinically unstable regions: persistence
and scale selection. J. Atmos. Sci. 50, 2073-2106 (1993)

[17] Pierrehumbert, R.T.: The hydrologic cycle in deep time climate problems. Na-
ture 419, 191-198 (2002)

[18] Rhines, P.B.: Jets. Chaos 4, 313-339 (1994)



298 David G. Dritschel and Jérome Fontane

[19] Schaerf, T.M.: On contour crossings in contour-advective simulations of geo-
physical fluid flows, Ph.D. Thesis, University of Sydney (2006)

[20] Smolarkiewicz, P.K., Pudykiewicz, P.: A class of semi-Lagrangian approxima-
tions for fluids. J. Atmos. Sci. 49, 2082-2096 (1992)

[21] Zabusky, N.J., Hughes, M.H., Roberts, K.V.: Contour dynamics for the Euler
equations in 2 dimensions. J. Comput. Phys. 30, 96-106 (1979)



	Preface
	Contents
	List of Contributors
	Waves and Imbalance
	On spontaneous imbalance and ocean turbulence: generalizations of the Paparella--Young epsilon theorem
	Introduction
	Spontaneous imbalance
	Epsilon theorems for realistic ocean models
	Specific examples
	Concluding remarks
	References

	Inertia-gravity-wave generation: a geometric-optics approach
	Introduction
	Geometric-optics approach
	Applications to simple flows
	Horizontal strain and vertical shear
	Elliptical flow
	Dipole
	Random-strain models

	Discussion
	References

	Parallels between stratification and rotation in hydrodynamics, and between both of them and external magnetic field in magnetohydrodynamics, with applications to nonlinear waves
	Introduction
	Models
	2D stratified Boussinesq equations
	2.5D rotating Euler equations 
	2D magnetohydrodynamics

	Similarity between models I: waves and structures
	Linear waves
	Structures: nonlinear waves/vortices

	Similarity between models II: geometry
	Hamiltonian structure
	Geometry of the phase space and nonconstrained dynamical variables
	Casting PB to the canonical form

	Triad and quartet wave interactions and wave turbulence (WT)
	The WT algorithm
	Known situations leading to get-it-by-hand solutions for stationary energy spectra in WT
	WT: decay spectra for gravity, gyroscopic and Alfvèn waves
	WT: non-decay spectra for gravity and gyroscopic waves

	Conclusions
	References

	Generation of an internal tide by surface tide/eddy resonant interactions
	Introduction
	Problem definition
	Governing equations
	Wave-triad interactions
	Multiple-scale analysis

	Numerical simulations
	Conclusions
	References

	Generation of harmonics and sub-harmonics from an internal tide in a uniformly stratified fluid: numerical and laboratory experiments
	Introduction
	Experimental set-ups
	Laboratory experiments
	Numerical simulations

	Emission of the wave beam
	Spatial structure of the wave beam
	Parametric instability of the wave beam
	Generation of harmonics
	Conclusion
	References

	Deep ocean mixing by near-inertial waves
	Introduction
	Basic Equations and WKB
	Mixed Bottom Layer
	Discussion
	References


	Turbulence and Convection
	Eddies and Circulation: Lessons from Oceans and the GFD Lab
	Introduction
	Deep pathways in the oceanic overturning circulation
	Eddies and Rossby waves in the upper ocean
	Notes from the GFD Lab
	Conclusion
	References

	Observations on Rapidly Rotating Turbulence
	Introduction
	How Columnar Eddies Form at Low Ro
	The Experimental Evidence at Ro1
	Why Linear Behaviour at Ro1?
	Why a Cyclone-Anticyclone Asymmetry?
	The Rate of Energy Decay
	References

	Equilibration of Inertial Instability in Rotating Flow
	Introduction
	Pure Barotropic Instability
	Pure Inertial Instability
	Full 3D Simulation vs. Prediction
	Discussion
	References

	Quasigeostrophic and stratified turbulence in the atmosphere
	Introduction
	Divergent and geostrophic modes
	The numerical configuration
	Results
	Conclusions
	References

	A Perspective on Submesoscale Geophysical Turbulence
	The Dynamical Regime of Submesoscale Turbulence
	The Frontogenetic Route
	Other Submesoscale Generation Routes
	Stratified, Non-Rotating Turbulence
	Summary
	References

	Spectra and Distribution Functions of Stably Stratified Turbulence
	Equations of Motion and their Economical Representation
	Some Historical Comments
	More Recent Numerical Results
	Interpretation of DNS
	Concluding Comments
	References

	Modeling mixing in two-dimensional turbulence and stratified fluids
	Introduction
	An analogy between statistical mechanics of 2D flows and density stratified fluids
	Statistical mechanics of 2D flows
	Statistical mechanics of stratified fluids

	Relaxation toward statistical equilibrium
	Dissipation of density fluctuations by turbulent cascade
	A simple example: mixing of a two layer stratified fluid
	Coupling the model with an equation for the kinetic energy
	Conclusion and perspectives
	References

	The solar tachocline: a study in stably stratified MHD turbulence
	Introduction
	The Solar Tachocline
	Properties of the solar tachocline
	Why is the tachocline there --- and so thin?

	Simplified models of stratified MHD turbulence
	The parameter regime
	A hierarchy of models
	Formation of jets on a magnetised -plane

	Future directions
	References

	Some Unusual Properties of Turbulent Convection and Dynamos in Rotating Spherical Shells
	Introduction
	Mathematical formulation of the problem and methods of solution
	Convection in rotating spherical shells
	Chaotic convection
	Distinct turbulent dynamos at identical parameter values
	Concluding remarks
	References


	Instability and Vortex Dynamics
	Zigzag instability of the Kármán vortex street in stratified and rotating fluids
	Introduction
	Problem formulation
	Pair of vortices in a stratified and rotating fluid
	Kármán vortex street in a stratified and rotating fluid

	Results
	Conclusion
	References

	Instabilities of a columnar vortex in a stratified fluid
	Introduction
	A Gaussian vortex in a stratified fluid
	Instabilities of a tilted vortex
	Spatial structure of a tilted vortex
	Tilt-induced instabilities
	Consequences

	Radiative instability
	Linear stability analysis
	Experimental evidence?

	Conclusion
	References

	Geostrophic vortex alignment in external shear or strain
	Introduction
	Physical configuration and model equations
	Evolution of two point-vortices in external strain and rotation
	Nonlinear regimes of finite-area vortices with background strain and rotation
	Conclusions
	Appendix: Melnikov Theory
	References

	Equilibrium States of Quasi-geostrophic Point Vortices
	Introduction
	Quasi-geostrophic Approximation and Equations of Motion
	Equilibrium States of Quasi-geostrophic Point Vortices
	Maximum Entropy Theory
	Zero Inverse Temperature State
	Positive and Negative Temperature States
	Patch Model

	Summary
	References


	Jets: Formation and Structure
	The structure of zonal jets in shallow water turbulence on the sphere
	Introduction
	Jet undulations
	The potential vorticity staircase
	Equatorial superrotation
	Open questions: the nature of forcing and dissipation
	References

	Jet formation in decaying two-dimensional turbulence on a rotating sphere
	Introduction
	Parameter sweep experiments (Hayashi et al., 2007)
	Ensemble experiments (Kitamura and Ishioka, 2007)
	Summary and Discussion
	References

	Triple cascade behaviour in QG and drift turbulence and generation of zonal jets
	Introduction and the model
	Charney-Hasegawa-Mima model
	Conservation of energy and enstrophy
	Conservation of zonostrophy
	Triple cascade behaviour
	Dual cascades in 2D Navier-Stokes turbulence
	Triple cascades in CHM turbulence
	Alternative argument for zonation

	Numerical study
	Centroids
	Settings for the weakly nonlinear and the strongly nonlinear runs
	Weakly nonlinear case
	Strongly nonlinear case

	Summary
	References

	The HyperCASL algorithm
	Introduction
	Brief Description of the Numerical Algorithm
	Fully Lagrangian Advection
	Transfer of Diabatic Forcing to Point Vortices

	An Example: A Diabatically-Forced Jet
	Conclusions and Future Extensions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




