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Preface

The phase diagram is one of the most extensively used disciplines in the Applied
Sciences. They are relevant to different areas both in science and engineering, as
well as to the various branches of the national economy. In many scientific and
technical specialties, such as physics, chemistry, geology, materials science and
technology, chemical engineering, etc, it is easy to find its application that strongly
shows the importance of phase diagram in the science and technology today.

In the early stages of development, phase diagrams were mainly obtained from
experimental measurements. With the increasing number of the system compo-
nents as well as the severe demands placed on experimental materials requiring
corrosion-resistant, heat-resistant, etc, the experimental methods were no longer
able to meet these requirements, especially with respect to generating multi-
component phase diagrams. The theoretical calculation of phase diagram has now
become the principal method for obtaining the desired phase diagrams. This route
has been especially favored by the rapid advance of research and development in
computer science and technology that induced the “art” of phase diagram calcu-
lation to a new level. Under these circumstances, the continuing research on the
theory of phase diagrams has recently and naturally becomes the topic of great
and lasting interest, to both applied scientists and engineers alike.

Research on the theory of phase diagrams may be divided into two categories.
The first category involves the research needed to study the necessary conditions
that all phase diagrams must satisfy. For instance, abstracting the physical con-
cepts from concrete phase diagrams such as the specific number of phases, the
number of independent components, the degrees of freedom, etc; and then estab-
lishing the relationship between these parameters belong the first category work,
though, that can not be used to construct a specific phase diagram, they are strict
and absolute and give an universal principle in evaluating a particular phase di-
agram obtained from experiments. Any phase diagram violating this relationship
must be incorrect. The second category of theory concerns the sufficient condi-
tions for a concrete phase diagram; they study the quantitative relation of the
thermodynamic properties of each component in specific phase equilibrium with
temperature, pressure and composition, etc. Based on this quantitative relation,
a complete and specific phase diagram can be constructed. This particular topic
has attracted many scientists and researchers devoting their efforts in this subject
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over recent years. The combination of these two category theories has constituted
a whole theory of phase diagram.

The great thermodynamic and statistical physicist Josiah Willard Gibbs, was
the founder of the theory of the first category. The “phase rule” derived by him
is a typical classic work in this aspect. After Gibbs, many scientists, for example,
Palatnik and Landau, and various other scholars engaged in the research under-
taken by this circle, achieved some success. The great scientist and the founder of
solid state chemistry, Carl Wagner, was the pioneer of the theory for the second
category. Early in those years, in which the computer was becoming developed, he
had pointed to the importance of studying the relation between the phase diagrams
and the materials thermodynamic properties. The relation existing between the
phase boundaries and the corresponding thermodynamic properties, as deduced
by him, are still extensively applied today. Other scientists, for example, Hilde-
brand, Mitering, Richardson, et al., have also made important contributions. The
CALPHAD technology has played a great role for promoting the calculation of
phase diagrams. It is worthy mentioning that the Chinese scholars have also made
some significant contribution in both of these two category works that shouldn’t
be ignored.

Through his deep level research over several decades, Professor Muyu Zhao has
made a significant contribution to the research on the theory of phase diagrams. For
the theory of the first category, he has systematically deduced new ideas, derived
a series of new relation, constructed a whole and unique systematic theory, and
applied it to real phase diagrams, obtaining good results in the process. In addition
to this considerable task, he has also undertaken many pioneering works, involving
both experimental and theoretical research on high pressure phase diagrams.

In his book The Boundary Theory of Phase Diagrams and Its Application, Pro-
fessor Muyu Zhao has collected the results of his research over several decades, and
presented them systematically and completely, as his substantial theoretical works.
Besides this work on the theory of the first category, as mentioned above, this book
also contains the contents and related works on the second category. We sincerely
hope that the publication of this book will bring some new energy to the phase
diagram research.

Kuo-Chih Chou

Professor, University of Science and Technology Beijing

Member of Chinese Academy of Sciences

Beijing, 18 January 2008



Comment

There are two main rules governing the construction and interpretation of phase
diagrams, the phase rule by Gibbs and the contact rule by Palatnik and Landau.
Many years ago professor Muyu Zhao was intrigued by the fact that both rules need
special instructions when applied to mixed phase diagrams, i.e., diagrams with
both potential and molar axes. This has caused much confusion for generations of
students of materials science and has forced teachers to invent explanations that
can be criticized by observant students. It is evident that there is a considerable
need for better understanding of these difficulties. The reason of the difficulties is
that the phase rule is strictly valid for diagrams with only potential axes and the
contact rule for diagrams with only molar axes. In practice, it is more common to
use a mixture of axes, e.g. the temperature-mole fraction diagrams, which is the
type the students are first confronted with.

Professor Zhao has devoted many years of interest and energy to resolve these
difficulties and he is to be congratulated finally to be able to present his results in
a monograph that will give a wider audience a chance to get a coherent picture of
his work.

Dr. Mats Hillert

Emeritus Professor at

Dept. of Materials Science and Engineering

KTH (Royal Institute of Technology)

SE-10044, Stockholm, Sweden

Stockholm, 16 March 2008



Introduction

Phase diagrams are among the most extensively used guides in materials science
and engineering, and constitute the basic roadmap for alloy designers.

In its simple form, phase diagram consists of phase regions and their boundaries.
The aim of the present text is to discuss the problem of how the phase regions and
their boundaries compose a phase diagram.

We have studied the relationship among neighboring phase regions and their
boundaries for nearly thirty years. Over this time, a few new concepts have been
introduced, and, by application of the relevant thermodynamic principles, a sys-
tematic boundary theory of phase diagrams has been worked out. In this approach,
all the relationships among the neighboring phase regions and their boundaries, for
both simple and more complex, multicomponent phase diagrams, of all types, can
be satisfactorily explained by reference to the so called “The boundary theory”.

In this book, we contribute the most volume to discuss the isobaric T -xi phase
diagrams. However, with the generalized boundary theory for the p-T -xi multi-
component phase diagram, this theory is easily to apply in p-T phase diagrams
and those diagrams with only mole fraction axes. In the p-T -xi multicomponent
phase diagram, if we keep the pressure and temperature constant, or keep the com-
positions invariable, it will be the “pure” mole fraction-mole fraction, or potential
P -T axes phase diagram. We have discussed these problems in Chapter 3, section
3.6 and Chapter 9, sections 9.2 and 9.3.

Moreover, we have found that there is a lot of application for the boundary
theory, and thus we have written a substantial chapter to discuss the important
application. In that chapter, the use of the boundary theory of phase diagrams in
some specific roles, e.g. calculation, determination, assessment and comprehension
of phase diagrams, is discussed. Based on the boundary theory, we have designed a
new method for the determination of the multicomponent isothermal sections (see
Chapter 7, section 7.5).

Professors at several universities in China have taught the boundary theory and
its application, in those courses concerned with the phase diagram theory and its
practice. One of these professors has told the author of this book: “The students
are interested in this theory and, · · · via its application in some representative
examples, are able to learn much from it.”

Thus, in this book, we have specially concentrated on and discussed the follow-
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ing 6 points:

1. We discriminate the conception of “phase point” and “system point” in phase
diagrams, and find the “phase boundary”, besides the “boundary” in common
sense, is a real entity within the phase diagrams (see Chapter 2, subsection 2.2.8).
Based on this concept and on other thermodynamic principles, we may proceed to
construct a boundary theory of phase diagrams.

2. There is a certain relationship between the dimension of phase boundary
and the number of total different phases in neighboring phase regions. A theorem
describes this relationship. We clearly demonstrate that the “theorem of the cor-
responding relationship” (TCR) is indeed a fully independent theorem, and is not
a variation of the phase rule (see Chapter 2, section 2.4).

3. Two equations of the relation among the dimensions of the phase boundary
and the dimensions of the boundary are derived. This is the “boundary theory”,
the very core of this monograph, which explains well the different types of phase
transitions within phase diagram. Thence, the rule of how the phase regions com-
pose a phase diagram has been expounded (see Chapter 2, section 2.6).

4. We have compared the differences between the Palatnik-Landau’s “contact
rule” for the phase regions, and the “boundary theory” in details (see Chapter
3, section 3.6) and conclusions of the added value of the boundary theory can be
appreciated.

5. Gupta’s overlapping ZPF (Zero Phase Fraction) lines method for the con-
struction of multicomponent isothermal sections, with limited information, is a very
important method and widely applied in phase diagram calculation. The boundary
theory, on the other hand, provides an alternative under the same circumstance
(see Chapter 5, sections 5.3 and 5.4). To determine experimentally isothermal
multicomponent sections, the boundary theory may be more useful (see Chapter
5, section 5.5). Based on the boundary theory, we have designed a new method to
determine isothermal multicomponent sections (see Chapter 7, section 7.5).

6. A more general boundary theory of the multi-component p-T -xi phase di-
agrams is described in Chapter 8. Applying this theory, we have worked out a
thermodynamic method for calculating the multicomponent, high-pressure phase
diagrams. We have been able to calculate high-pressure phase diagrams not only
for binary, but also ternary alloys. The high pressure (up to several GPa) phase
diagrams of the Cd-Pb-Sn and Cd-Sn-Zn systems are calculated, and verified by
reference to the experimentally derived phase diagrams. These calculated high-
pressure binary and ternary alloy phase diagrams agree well with the experimen-
tally derived ones (see Chapters 8, 9, 10 and 11).
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Chapter 1

The Phase Rule, Its Deduction and

Application

1.1 Why do We Discuss the Phase Rule at First

The Gibbs phase rule is now a long established principle of Chemistry, very well
known by all physical chemists and materials scientists. So, why do we still need to
write a chapter to discuss this classic, fundamental law of Chemical science, at the
outset of this treatise?

Textbooks, as published for the explanation of physical chemistry and the use
of phase diagrams, usually present only a simple method for the “deduction” of the
phase rule. However, the original “rule” as deduced by Gibbs himself, is both strict
and well thought-out, indeed students can learn much from his method. The Gibbs-
Roozebooms method, though simple, is, nevertheless, full of wisdom. The deduction
of the phase rule under the circumstance, involving particular chemical reactions,
by application of the mathematical method of Gibbs free energy minimization, is
today, only presented in a few monographs. By means of this method however, both
the phase rule, and the law of mass action used for the chemical equilibrium, are
successfully deduced. This is indeed a very interesting circumstance.

When applying the phase rule, an important and difficult problem to treat is
the determination of the number of independent components involved. Generally,
ordinary Physical Chemistry texts only present Jouguet’s method for the deduction
of this number and do not discuss either the strengths and or the shortcomings, of
this method. Here, we present another useful approach, i.e. that of the Brinkley’s
method and these two methods will be shortly compared in detail.

The application of the phase rule is generally not a very easy task, so here we
will also address some brief remarks to the resolution of this problem.

Usually, we apply the phase rule and then discuss the differences between the
phase rule predictions and our theory, as set out in detail in Chapter 2. Therefore,
at first, a special introductory chapter is now provided, being devoted to a discussion
of the phase rule.
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1.2 Different Methods for Deducing the Phase Rule: The

Method of Gibbs Himself, Gibbs-Roozeboom’s Method

and the Method of Gibbs Free Energy Minimization

The phase rule is the most important principle concerning the phase equilibrium.
In 1875–1878, the now famous physicist J. Willard Gibbs established the phase rule.
Because his work was published in the rather obscure Transactions of the Connecti-
cut Academy, and the phase rule itself, was embedded in an abstruse mathematical
feature, this rule did not initially attract much attention in scientific circles until
Roozeboom “stripped off” its abstract mathematical disguise, and exposed its phys-
ical meanings, thereafter using it to analyze some concrete heterogeneous equilibria.
Nowadays, the importance of the phase rule is very widely recognized. Thus, it is
used not only to summarize vast and diverse equilibrium regularities, but it is also
used in the study of unknown systems, acting as an effectual guidance tool.

Although it is now more than a century that has passed since the phase rule was
established, and there have been a large number of books expounding its qualities,
there is yet still a necessity for studying the precise understanding and application
of the phase rule.

The phase rule itself can be deduced in different ways. Even though the same
result is achieved from these different approaches, they do not, by any means, amount
to mere repetition. The different deduction routes help us to penetrate the phase
rule from different viewpoints, and, at the same time, to both widen and enliven our
philosophical thoughts as well.

1.2.1 The deduction of the phase rule in the circumstances without
chemical reaction

1.2.1.1 Gibbs’ method [Gibbs, 1950]

Gibbs studied a closed system and assumed that entropy S and volume V of the
system were kept constant, the equilibrium condition of the system would be: the
internal energy U of the system must be at a minimum.

Supposing that there is a closed system, and that each component is distributed
in every phase and is mobile among these phases. U, V, S, p, T and M are the internal
energy, volume, entropy, pressure, temperature and the total molar number of the
entire system, respectively. Mi and xi are the mole number and mole fraction of i-th
component in the system. uj , vj , sj , pj , tj and mj are the internal energy, volume,
entropy, pressure, temperature and mole number of the j-th phase of the system,
respectively. mij , xij and μij are the mole number, mole fraction and chemical
potential of i-th component in the j-th phase. N is the number of components and
φ is the number of phases existing in the system. In these circumstances, one then
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has the following straightforward relationship

xi = Mi/M (i = 1, 2, · · · , N) (1-1)

xij = mij/mj (i = 1, 2, · · · , N ; j = 1, 2, · · · , φ) (1-2)∑
i

xi = 1,
∑

i

xij = 1 (j = 1, 2, · · · , φ) (1-3)

∑
i

mij = mj (i = 1, 2, · · · , N) (1-4)

∑
j

mij = Mi (j = 1, 2, · · · , φ) (1-4a)

∑
j

mj = M (j = 1, 2, · · · , φ) (1-5)

According to thermodynamic principles, the internal energy of each phase, uj , is
a function of the entropy, volume and all of the mole numbers of the j-th phase.

uj = uj(sj , vj , m1j , m2j , · · · , mNj) (1-6)

The total differential of uj can be represented as follows:

duj =
(

∂uj

∂sj

)
vj ,mij

dsj +
(

∂uj

∂vj

)
sj ,mij

dvj +
∑

i

(
∂uj

∂mij

)
sj ,vj

dmij ,

(j = 1, 2, · · · , φ) (1-7)

or
duj = tjdsj − pjdvj +

∑
i

μijdmij , (j = 1, 2, · · · , φ) (1-8)

Where:

tj =
(

∂uj

∂sj

)
vj ,mij

, (j = 1, 2, · · · , φ) (1-9)

pj = −
(

∂uj

∂vj

)
sj ,mij

, (j = 1, 2, · · · , φ) (1-10)

μi,j =
∂uj

∂mi,j
, (i = 1, 2, · · · , N ; j = 1, 2, · · · , φ) (1-11)

If the values of s, v and Mi of the system are kept constant, i.e.,

δS = δs1 + δs2 + · · · + δsφ = 0 (1-12)

δV = δv1 + δv2 + · · · + δvφ = 0 (1-13)

δMi = δmi1 + δmi2 + · · · + δmiφ = 0 (i = 1, 2, · · · , N) (1-14)
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Then equilibrium condition of the system will be:

δU = δu1 + δu2 + · · · + δuφ � 0 (1-15)

Substituting eq.(1-8) into eq. (1-15), it follows that:

δU =
φ∑

j=1

(tjδsj + pjδvj) +
φ∑

j=1

N∑
i=1

μijδmij � 0 (1-16)

Expressing the variations, δmij , δsij and δvij , of the q-th phase by the corresponding
variations of the other phases, and in making use of eqs. (1-12)–(1-14), one has:

δsq = −
φ∑

j=1

′δsj (1-17)

δvq = −
φ∑

j=1

′δvj (1-18)

δmiq = −
φ∑

j=1

′δmij (1-19)

The symbol
∑′

denotes the summation over all j′s except j = q. Substituting
the eqs.(1-17)–(1-19) into eq.(1-16), each item of eq.(1-16) can be written in the
following form:

φ∑
j=1

tiδsj =
φ∑

j=1

′tjδsj + tqδsq

=
φ∑

j=1

′tjδsj − tq

φ∑
j=1

′δsj

=
φ∑

j=1

′(tj − tq)δsj

Then eq.(1-16) may be written as:

dU =
φ∑

j=1

′(tj − tq)δsj −
φ∑

j=1

′(pj − pq)δvj +
N∑

i=1

φ∑
j=1

′(μij − μiq)δmij � 0 (1-20)

All the variations remaining in eq.(1-20): δs1, δs2, · · · , δsq−1, δsq+1, · · · , δsφ; δv1,

δv2, · · · , δvq−1, δvq+1, · · · , δvφ; δmi1, δmi2, · · · , δmi(q−1), δmi(q+1), · · · , δmiφ, (i = 1,

2, · · · , N) are completely independent of each other and may take positive, negative
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or zero values. It is easy to demonstrate that the coefficients of all the variations
entering into the inequality (1-20) must be rigorously equal to zero; for if some of
these coefficients had non-zero values, we could give the variations with positive
coefficients negative values and the variations with negative coefficients positive val-
ues (since the variations are completely arbitrary). Then, the left-hand side of the
inequality (1-20) would be negative. This is a violation of the equilibrium condition.
Therefore, if the values of all the variations entering into the inequality (1-20) are
completely independent, then all the coefficients must be equal to zero. This means
that the left-hand side of the inequality (1-20) is rigorously equal to zero, and the
following additional conditions, of necessity, must be satisfied:

pj = pq, (j = 1, 2, · · · , q − 1, q + 1, · · · , φ)
tj = tq, (j = 1, 2, · · · , q − 1, q + 1, · · · , φ)

μij = μiq, (j = 1, 2, · · · , q − 1, q + 1, · · · , φ)

Thus, we arrive at the Gibbs’ phase equilibrium relation:

t1 = t2 = · · · = tφ = T (1-21)

p1 = p2 = · · · = pφ = p (1-22)

μi1 = μi2 = · · · = μiφ = μi, (i = 1, 2, · · · , N) (1-23)

From these relations, the phase rule may be derived. Thus, for the system considered,
there are (Nφ+2) parameters: T, p and Nφ concentration parameters. In accordance
with eq. (1-23), there are N(φ−1) phase equilibrium conditions, and φ normalization
conditions: ∑

i

xij = 1 (j = 1, 2, · · · , φ) (1-3)

There are N(φ + 1) + φ equilibrium conditions in total. Therefore, the number of
degrees of freedom for the system must be:

f = Nφ + 2 − [N(φ − 1) + φ] = N − φ + 2 (1-24)

This is the well known phase rule.
In the above derivation, it is assumed that each component exists in each and

every phase of the system. In fact, this assumption is unnecessary. Even though some
components are absent from some phases, the phase rule still holds. For example, the
k-th component is absent from the l-th phase, i.e. mkl = 0, and let the appearance
of this k-th component in the l-th phase not be excluded. Then, the variation, δmkl,

can not have a negative value, for the mole number of the k-th component in the l-th
phase can not be less than zero. In this case, it can not follow from eq. (1-20) that
the chemical potential μkl of the k-th component in the l-th phase should necessarily
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be equal to the chemical potentials, μk1, μk2, · · · , μk(l−1), μk(l+1), · · · , μkφ, of the k-
th component in other phase. However, eq.(1-20) does require that μkl should not be
less than the other μkj . If μkl < μkj(j �= l), the k-th component would automatically
transit from the j-th phase into the l-th phase, in order to decrease the total energy
of the system, therefore, the condition

μkl > μkj , (j = 1, 2, · · · , l − 1, l + 1, · · · , φ) (1-25)

is required to describe the fact that the k-th component is absent from the l-th
phase, while its appearance is not excluded. (Note: δmkl � 0, and can not be a
negative variation, eq.(1-25) is consistent with eq.(1-16) or eq.(1-20))

The physical meaning of eq. (1-25) is that the work that must be performed to
introduce k-th component into l-th phase is no less than those to introduce it into
other phases, so that the k-th component existing in other phases can not automat-
ically shift to the l-th phase. This is the reason that there is no k-th component
in the l-th phase. The situation, i.e. that some components are absent from some
phases, does not warrant the denial of the relevant chemical potential. However, this
chemical potential no longer participates in the eq. (1-23), thereby decreasing by
one the total number of the equilibrium relation. That is to say, if a component is
absent in any phase, the numbers of the concentration parameters, and the equilib-
rium conditions, will be decreased simultaneously by one. Therefore, the expression
(1-24) of the phase rule is still valid.

The above deduction of the phase rule is the original version advanced by J.
Willard Gibbs himself; it is both rigorous and full of wisdom!

1.2.1.2 Gibbs-Roozeboom’s method

Let us select temperature T, pressure p and the chemical potentials of all compo-
nents as the parameters. Under the circumstance of phase equilibria, the chemical
potentials of an independent component in the different phases are the same. If there
are N components in the system, there must be N different chemical potentials to
describe them respectively. The number of all the independent parameters is N +2.
There exists one equation of state concerning the (N +2) parameters in every phase:
Fj(T, p, μ1, μ2, · · · , μN ) = 0(j = 1, 2, · · · , φ), and there are φ state equations in all.
Thereafter, the number of degrees of freedom of the equilibrium system is:

f = N + 2 − φ (1-26)

Laconic as the method is, the physical meanings of every term in the phase rule
are expressed very distinctly. N refers the number of the chemical potentials of the
independent components, 2 are temperature and pressure of the system, N + 2 is
the number of the independent parameters of the system, φ is the number of state
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equations, so the number of degrees of freedom is (N +2−φ). It is really admirable
that the phase rule, as used so widely, can be derived in such a brief way, in addition
to each term having its own, distinct physical meaning. This derivation provides us
with enlightenment that one must have a profound and distinct grasp of the nature
of a matter such that one may well know the inherent relationship and thence reveal
the relative laws of relationship so readily.

1.2.2 The determination of the phase rule involving the circumstances
of chemical reactions, the method of the Gibbs free energy mini-
mization

If there are phase transitions and chemical reactions simultaneously existing in a
multicomponent heterogeneous system, the equilibrium of the system can only be
achieved when conditions of both the phase equilibrium and the chemical equilibrium
are satisfied. At the constant T and p, the Gibbs free energy of the system must be
at a minimum.

Based on the principle of Gibbs free energy minimization, the conditions for
phase equilibrium and chemical equilibrium can both be deduced simultaneously. In
other words, one may obtain the results of the application, of the phase rule and the
law of mass action, on the chemical reactions at the same time. Unfortunately, the
deduction is rather long, although quite interesting.

1.2.2.1 The chemical formulas for both the independent components and the derived
components and the relation existing between them

Let us first discuss some important concepts. Suppose that there are N com-
ponents in the system, they may be as molecules or as ions, i.e. various chemical
species. Let Ai be their formula, i = 1, 2, · · · , N. They are distributed over some φ

phases. In the state of constant T and p, the system may achieve both phase equi-
librium and chemical equilibrium. Thence, by assuming that there are r′ possible
chemical reactions, including both the dependent and independent ones, among the
N components, all of the chemical reactions can be written as follows:

N∑
i=1

νjiAi = 0, (j = 1, 2, · · · , r′) (1-27)

Or in the matrix form:⎡
⎢⎢⎢⎢⎢⎣

ν1,1 · · · ν1,i · · · ν1,N
...

...
...

νj,1 · · · νj,i · · · νj,N
...

...
...

νr′,1 · · · νr′,i · · · νr′,N

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

A1
...

Ai
...

AN

⎤
⎥⎥⎥⎥⎥⎦ = 0 (1-28)
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where νji is the stoichiometric coefficient of component Ai in the j-th chemical
reaction. For example, the j-th chemical reaction in the system is:

1 × C + 1 × CO2 − 2 × CO = 0

so νj,CO = −2. Some of the r′ reactions are independent, while others are dependent.
In accordance with mathematical principles, if the rank of the matrix be composed of
νji, is r, the number of independent reactions is r, i.e. there are only r independent
reactions among the r′ reactions mentioned above. All of the r′ − r remaining
reactions can be derived as a linear combinations of the r independent reactions.
Because there are r independent reactions among the N components, r independent
equilibrium chemical conditions are required to describe them. Therefore, only the
(N − r) concentrations of the components are independent variables. The number
of the independent components is thus:

C = N − r (1-29)

Dividing the N components into two groups, i.e., those that are independent compo-
nents, having the chemical formulas of Ac, c = 1, 2, · · · , C, while the others consist of
the derived components, whose chemical formulas are Ak, k = C +1, C +2, · · · , C +
r = N, r in all. While it is sure that Ak can be written as a linear combinations
of the Ac, i.e. components, Ak may be obtained from the mutual reactions of the
components, Ac. ∑

νkcAc = Ak (1-30)

In recalling the example mentioned above, there is an independent reaction taking
place among the C, CO and CO2 components in the system. Let C and CO2 be the
independent components, then the derived component, CO, may be written as:

1
2
C +

1
2
CO2 = CO (1-31)

Further, suppose that M elements constitute the N components, and the element
symbols are referred to by Ee, e = 1, 2, · · · , M, then the chemical formula for any
component can be written as a linear combinations of the elemental symbols

Ac =
M∑

e=1

ace × Ee, (C = 1, 2, · · · , C) (1-32)

Ak =
M∑

e=1

ake × Ee, (k = C + 1, C + 2, · · · , N) (1-33)
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ace, ake are the stoichiometric coefficient of Ee, constituting Ac and Ak respectively.
The above system can be rewritten as:

Ac C = 1 × C + 0 × O (1-34)

CO2 = 1 × C + 2 × O (1-35)

Ak CO = 1 × C + 1 × O (1-36)

All ake can thus be expressed through the linear combinations of ace :

ake =
M∑

e=1

νkc × ace (1-37)

According to eq. (1-31) above, CO is formed by C and CO2. Atoms C and O of the
molecule CO come from C and CO2 respectively. The coefficients of atoms C and
O in CO are also from those coefficients of the atoms of C and CO2 in eq. (1-31).

aCO,C = νCO,C × aC,C + νCO,CO2
× aCO2,C =

1
2
× 1 +

1
2
× 1 = 1

aCO,O = νCO,C × aC,O + νCO,CO2
× aCO2,O =

1
2
× 0 +

1
2
× 2 = 1

CO = aCO,C × C + aCO,O × O = 1 × C + 1 × O

These are the chemical formulas for both the independent components and for
the derived components, and for the relation between them.

1.2.2.2 The derivation of the conditions of chemical equilibria and phase equilibria
[Van Zeggeren and Story, 1970; Zemansky, 1968]

Let mcj , mkj , μcj and μkj be the mole numbers and the chemical potentials of
the independent component Ac, and the derived component Ak, in the j-th phase
respectively. The Gibbs free energy of the system can then be written as:

G =
∑

j

∑
c

mcj × μcj +
∑

j

∑
k

mkj × μkj (1-38)

Each element in the system follows the conservation of mass condition:∑
j

∑
c

mcj × ace +
∑

j

∑
k

mkj × ake − Me = 0 (e = 1, 2, · · · , M) (1-39)

Me is the total mole number of the element e in the system, which may also be
called the element abundance, e = 1, 2, · · · , M . In a closed system, and, irrespective
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of whatever chemical reactions and phase transitions that may occur, the total mole
number of each element in the system is invariant.

At constant p and T , the equilibrium condition of the system is that where the
Gibbs free energy of the system is at its minimum, presupposing that constrained
conditions, eqs.(1-39), are satisfied. The usual method employed to solve such ques-
tions is the Lagrange’s uncertain factor method. Let the function L be

L = G −
∑

e

λe ×
[ ∑

j

∑
c

mcj × ace +
∑

j

∑
k

mkj × akj − Me

]
(1-40)

This corresponds to multiplying every equation of the eqs. (1-39) by the factor λe,
then adding the Gibbs free energy of the system, G. The variables in function L are
mcj and mkj . To satisfy the constrained conditions (1-39), and the minimization of
G, let

∂L

∂m cj
= 0 (1-41)

∂L

∂mkj
= 0 (1-42)

If
∂L

∂m cj
= 0

μcj −
∑

e

λe × ace = 0, (c = 1, 2, · · · , C; j = 1, 2, · · · , φ) (1-43)

If
∂L

∂mkj
= 0

μkj −
∑

e

λe × ake = 0, (k = C + 1, C + 2, · · · , N ; j = 1, 2, · · · , φ) (1-44)

In substituting (1-37) into (1-44), the substitution gives rise to

μkj −
∑

e

λe ×
[∑

c

νkc × ace

]
= μkj −

∑
c

νkc ×
∑

e

[λe × ace] = 0 (1-45)

Similarly, in substituting (1-43) into (1-45), one also gives rise to

μkj −
∑

c

νkc × μcj = 0, (k = C + 1, · · · , N ; j = 1, 2, · · · , φ) (1-46)

Let us now consider the meanings of eqs. (1-43), (1-44) and (1-46). In eq. (1-43),
λe and ace are all constants, as is

∑
e

λe × ace. This means that μcj in any phase is

the same constant, i.e.

μc1 = μc2 = · · · = μcφ = μc (c = 1, 2, · · · , C) (1-47)
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In the similar way,
∑

e

λe × ake in eq. (1-44) is also constant, then

μk1 = μk2 = · · · = μkφ = μk, (k = C + 1, C + 2, · · · , N) (1-48)

All of these eqs.(1-47) and (1-48), are the phase equilibrium conditions. The μk

parameter, however, is not independent, and can be obtained through a linear com-
bination of μc, in accordance with eqs. (1-46), (1-47) and (1-48). Hence

μk =
∑

c

νkcμc, (k = C + 1, · · · , N) (1-49)

Eq. (1-49) is just the condition for the chemical equilibrium conditions. By inserting
the following equation into eq. (1-49)

μi = μ0
i + RT lnpi (1-50)

μi = μ∗
i + RT lnxi (1-51)

(μ0
i and μ∗

i are the chemical potentials in their standard states), one will achieve the
mass action law:

p−1
k

∏
c

pνkc
c = Kpk (1-52)

x−1
k

∏
c

xνkc
c = Kck (1-53)

In eq. (1-49), k = C+1, · · · , N, there are N−C = r chemical equilibrium conditions.
Finally, the phase rule can be deduced as follows. Because the independent

parameters are restricted by the phase equilibrium conditions, the chemical potential
of each component in all phases must be equal to each other, as presented in eqs.
(1-47) and (1-48). There are C different μc and (N −C) different μk. In taking the
temperature and pressure into account, the total number of independent parameters
is (N + 2) in all. There are r chemical equilibrium conditions in eq. (1-49) and φ

state equations for all the phases. Therefore, the number of degrees of freedom, i.e.
the number of the remaining parameters that can be varied independently is

f = N + 2 − r − φ = (N − r) − φ + 2 = C − φ + 2 (1-54)

C = N − r, is the number of the independent components. This is just the phase
rule in the particular circumstance with chemical reactions. If there are other inde-
pendent constraining conditions, regarding the concentrations of these components(
condition

∑
xij = 1 is exclusive

)
, e.g., Z such conditions, the number of degrees

of freedom of the system will accordingly be decreased by Z.

f = (N − r − Z) − φ + 2 (1-55)
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C = N − r − Z (1-56)

Eq.(1-55) is the general expression of the phase rule, and eq. (1-56) is the formula
for the determination of the number of independent components by the Jouguet’s
method. The basic principle of eq. (1-56) is that: if some equilibrium conditions (r)
correspond to the independent chemical reactions among the N components, and
other constraining conditions (Z) for concentrations are then added in, the number
of independent components correspondingly decreases, as presented in eq. (1-56).
Item C = (N−r−Z) is usually described as the number of independent components.

Suppose there are other parameters besides T, p and μi affecting the system,
such as the electric field, surface tension, etc., the number of which is K, then the
number of degrees of freedom will accordingly increase by K. In this case, the phase
rule should be rewritten as

f = (N − r − Z) + 2 − φ + K (1-57)

The process used to derive the phase rule, as presented above, is somewhat compli-
cated, but it also includes those circumstance involving chemical reactions. More-
over, the physical meaning in the process and the items of eq. (1-57) are all lucid,
because the derivation is drawn from the universal principle of Gibbs free energy
minimization.

The number of independent components is the minimum number of chemical
species that can present all of the compositions in the phases of an equilibrium
system. The number of degrees of freedom of the equilibrium system is the number
of parameters (e.g. T, p and concentration) that can be varied freely within limits,
without either inducing the formation of new phases or the disappearance of the
original phases. Once the independent parameters, the number of which equals
f are fixed, the equilibrium state of the system is established. Some “concrete”
examples will be given hereinafter.

1.3 Determination of the Number of Independent Compo-

nents by Brinkley’s Method

1.3.1 Brinkley’s method

When applying the phase rule, one may well feel confused about the determina-
tion of the number of independent components. Usually, eq.(1-56), i.e. Jouguet’s
method, is used for this purpose. While this method is of universal application, many
difficulties are still encountered when applying it. In particular, a system for which
its original compositions are known only, but its final equilibrium state is less well
known, it is then difficult to determine either the N or the r parameters. Because
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of interactions among the chemical species, such as chemical reactions, ionizations
and associations, etc., the actual species probably existing in the equilibrium state
may be a great many and are usually not the same as the original species. Even the
existing forms of some components are ambiguous. In this case, the determination
of N is rather difficult. Moreover, if N is larger, the number of chemical reactions
among all possible components will increase dramatically. To actually write out the
“menu” of possible chemical reactions existing in the system is not a “cushy” job,
while to select the independent ones from all possible reactions, is also not an easy
task. For example, AlCl3 dissolves in water, it ionizes, hydrolyses and is partially
re-deposited in the form of Al(OH)3. Such a system is really quite complicated (see
subsection 3.4). Therefore it is a somewhat strenuous task to deal with the problem
regarding the number of independent components, by the Jouguet’s method. We will
later introduce a more convenient method to deal with the number of independent
components, existing especially in a high-temperature complex system.

Although this method was suggested by Brinkley in early 1946 [Brinkley, 1946],
it did not initially attract much attention for the original formula was not perfect.
Now that this method has been improved, it is widely used. The revised Brinkley’s
formula is as follows [van Zeggeren et al, 1970]:

C = M + r∗ − Z (1-58)

M is the number of elements in the system, Z is the number of other restrictive
conditions placed upon the component concentrations, these being the same as those
used in the Jouguet’s method. Because of some kinetic restrictive conditions, some of
the originally independent chemical reactions are interrupted, the number of which
is r∗. For example, at room temperature, and without a catalyst, there is no reaction
between the H2 and O2 in a system composed of H2, O2 and H2O, i.e. the reaction
(1-59) does not occur:

H2 +
1
2
O2 = H2O (1-59)

So r∗ = 1.

The principle on which Brinkley’s method relies is: chemical components are
composed of elemental atoms with various chemical stoichiometric coefficients. Brink-
ley’s method tries to determine the relation among the stoichiometric coefficients of
the elemental atoms, constituting the various components to determine the number
of independent components. In a closed system, M elements comprise N compo-
nents. As presented above, the chemical formula of the i-th component Ai (i=1,
2, · · · , N) may be written as ∑

e

ai,e × Ee = Ai (1-32)
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Ee is the symbol of e-th element, e = 1, 2, · · · , M. ai,e is the number of atoms of Ee

in the chemical formula Ai. Take a matrix to represent the chemical formulas of all
the components:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 · · · a1,e · · · a1,M

...
...

...
ai,1 · · · ai,e · · · ai,M

...
...

...
aM,1 · · · aM,e · · · aM,M

...
...

...
aN,1 · · · aN,e · · · aN,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

E1

...
Ee

...
EM

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

...
Ai

...
AM

...
AN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1-60)

If the rank of the matrix {aie} is C, the number of independent components is C.
Brinkley pointed out that if N � M, C � M. If N � M , C � N . That is, C � min
{N, M}. A more detailed description is set out below.

Initially, we discuss the case of N � M . In general, this is true, especially in
the more complex systems. If no two or more elements among the M elements form
only one atomic group of invariant composition, and all N components constituted
by M elements can react with each other, the rank of the above matrix {aie} is
M (M is the number of columns, and the number of columns M < the number of
rows N), i.e. there are M formulas that are independent of one another among N

chemical formulas. None of the M chemical formulas can be represented by a linear
combination of other formulas among these M formulas, while any one of the N −M

remainder chemical formulas can be represented by those of M formulas.
Randomly choosing Ac(c = 1, 2, · · · , M) different components from Ai(i = 1,

2, · · · , N), the rule of the selection is that any elements present must appear at
least once in the M formulas. In deleting the terms of i > M, representing the
respective components in eq.(1-60), it follows that⎡

⎢⎢⎢⎢⎢⎢⎣

a1,1 · · · a1,e · · · a1,M

...
...

...
ac,1 · · · ac,e · · · ac,M

...
...

...
aM,1 · · · aM,e · · · aM,M

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

E1

...
Ee

...
EM

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A1

...
Ac

...
AM

⎤
⎥⎥⎥⎥⎥⎥⎦

(1-61)

in which all of the elements ace are constant. This equation represents Ac by ace

and Ee. The number of A′
cs (c = 1, 2, · · · , M) we have chosen is equal to the number

of E′
es (e = 1, 2, · · · , M). Thus, the matrix ace is a square matrix. Ee can be solved

inversely from ace and Ac.
[ac,e] · [Ee] = [Ac]
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[ai,e]−1[ai,e] · [Ee] = E[Ee] = [ai,e]−1[Ai]

[Ee] = [ai,e]−1[Ai]

where [ace]−1 is the converse matrix of [ace], E is a unit matrix.
In chemical terms, it is in-reverse to represent the atoms of Ee(e = 1, 2, · · · , M)

by chemical formulas Ac(c = 1, 2, · · · , M) and ace(c = 1, 2, · · · , M). All of the
chemical formulas of remainder component Ak(k = M + 1, M + 2, · · · , N) can be
represented by ake(k = M + 1, M + 2, · · · , N) and Ee. Thus Ak may be repre-
sented indirectly by ake and [ace]−1, that is to say, the A′

cs (c = 1, 2, · · · , M) are
independent, while the A′

k s (k = M + 1, M + 2, · · · , N) are derivative.
The chemical formulas of the derived components may be represented by those

of the independent components. Still considering the system of C, CO2 and CO as
an example, one has ⎡

⎣ 1 0
1 2
1 1

⎤
⎦

⎡
⎣ C

O

⎤
⎦ =

⎡
⎣ C

CO2

CO

⎤
⎦

By solving the matrix [
1 0
1 2

] [
C
O

]
=

[
C

CO2

]

Atoms of elements C and O can be represented by C (simple substance) and CO2,
i.e.

1 × C(simple substance) + 0 × CO2 = C(element)

−1
2
× C(simple substance)+

1
2
× CO2 = O(element)

Thus the derivative component CO can be represented through atoms C and O by
the independent components C (graphite) and CO2

CO = 1 × C(atom) + 1 × O(atom)

= 1 × [1 × C(simple substance) + 0 × CO2)]+

1 ×
[
−1

2
× C(simple substance) +

1
2
× CO2

]

=
1
2
C(simple substance) +

1
2
CO2

The independent components are C and CO2, the derived component is CO. The
number of the independent components and the number of the elements are equal,
i.e.

C = M (1-62)

Certainly, the premise Z = 0 is needed, as well as r∗ = 0, which means N components
may react with each other, in principle.
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If there are some kinetic restrictions that inhibit one or more components from
participating in the chemical reactions, assuming the number of such independent
reactions which do not occur due to kinetic restrictions be r∗, there must actually
be r∗ more components, being also independent, besides the M independent compo-
nents. Although the chemical formulas of these r∗ components may be represented
formally by linear combinations of the chemical formulas of other components, i.e.
any one of the r∗ components may be obtained through a chemical reaction, joined
by other components, it is in fact impossible for the reactions, corresponding to
these linear combinations, to actually occur. Therefore, the number of independent
components should increase by r∗. If there are also Z independent restrictive condi-
tions on the component concentrations, the number of the independent components
should also decrease by Z. Finally, C = M + r∗ − Z, this is eq. (1-58).

In general, especially in high-temperature systems where existing gases, parti-
cipate in the complicated chemical reactions, Z = r∗ = 0 usually applies, so that
C = M . In this case, neither N , the number of components, nor r, the number of
independent chemical reactions, necessarily need to be determined. The number of
elements M will give the number C directly. The number of M is easy to determine,
provided that the initial conditions of the system are given. People may appreciate
the convenience of the Brinkley’s method on such occasions.

The M independent components of the system should be chosen in this way, such
that any one of the M elements will appear in those chemical formulas of the inde-
pendent components, at least once. The reason for doing so is very understandable,
and we have already discussed it when analyzing eq. (1-61).

When the N � M, Brinkley’s method fails, we have to use Jouguet’s method
to count C. Fortunately, in these cases, N and r are usually small and easy to deal
with.

1.3.2 The relation between the Brinkley’s method and the Jouguet’s
methods [Zhao et al., 1992]

Formally, the expressions given by Brinkley, and by Jouguet, seem to be quite
different:

C = N − Z − r (1-56)

C = M + r∗ − Z (1-58)

However, when N > M , i.e.when Brinkley’s method is found to be valid, these two
expressions can be derived from each other. Since both expressions can correctly
resolve the same question from the two different points of view, they certainly do
both reach the same goal but by taking different routes.
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According to the Brinkley’s method, when Z = r∗ = 0, then C = M . There
are M independent components, and N − M derived components as well, in the
system. All of the chemical formulas of the derived components may be represented
by linear combinations of the M independent components. Each linear combination
corresponds to an independent chemical reaction; the number of these reactions is
N − M . If some kinetic restrictions inhibit r∗ independent chemical reactions, the
number of independent chemical reactions that actually occur is

r = N − M − r∗ (1-63)

i.e.
M + r∗ = N − r (1-64)

if r∗ �= 0, Z �= 0, in accordance with Brinkley’s formula and eq.(1-64) we have

C = M + r∗ − Z

= N − r − Z

Inversely, according to Jouguet’s formula and eq. (1-64), we may also obtain

C = M + r∗ − Z Q.E.D.

It is shown that Brinkley’s formula and Jouguet’s formula are equivalent when N >

M.

If N < M , the rank of matrix {aie} is related only to N , thus Jouguet’s formula
is the unique alternative.

1.3.3 The strengths and shortcomings of both the Brinkley’s method
and the Jouguet’s method [Zhao et al, 1992]

The biggest value of the Jouguet’s method lies in its universality. A weakness
is its tediousness in use, as well as its fallibility, while applying it to complicated
equilibrium systems.

The main shortcoming of the Brinkley’s method is that it is only valid when
N > M . Its superiority lies in the point that it is both convenient and concise in
use. Its wide application range, especially in high-temperature systems, makes the
Brinkley’s method more recommendable than the Jouguet’s method. Later, we will
set out several examples to illustrate these points further.

Brinkley’s method is conveniently able be used to treat systems of high-tempera-
ture, complex, chemical equilibrium. In this case, one usually has the conditions
that Z = r∗ = 0, so C = M . Thus, we have to decide neither N nor r, and the
number of independent components C can be derived directly from the number of
elements in the system, for example, in taking a system comprised of three elements,
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e.g. C, H and O, and five components: C, CO, CO2, H2 and H2O. According to the
principle for selecting the independent components, we choose CO, CO2 and H2 as
these independent components among the five initial components. In these cases,
the elements C, H and O appear in the three selected chemical formulas, at least
once.

Besides the M independent components, there are the N − M derived compo-
nents also. The chemical formulas of any one “derived” component can be faithfully
represented by a linear combination of the chemical formulas of the M independent
components. For the system being considered, we have

C= 2CO − CO2

H2O= H2 + CO2 − CO

Each combination corresponds to an independent chemical reaction. Thus, it is very
easy to obtain, not only the number of the “independent” chemical reactions, but
also the chemical equations for these reactions. Finally, we wish to emphasize that, if
there are other independent restrictive conditions on the component concentrations,
and independent reactions occur in the system, then:

C = M + r∗ − Z

The number of actual independent chemical reactions, r, is still determined by

r = N − M − r∗

This equation has nothing to do with Z, whether Z is equal to zero or not.
Because restrictive conditions on the concentrations influence only the extent of the
process of chemical reaction, it does not however influence its basic occurrence.

1.3.4 Examples

1. Consider a system containing C2H6, C2H4, C2H2, H2 and graphite. The
contained elements are C and H only. At high temperature, these components can
react with each other. If the quantities of these five components are arbitrary,
Z = r∗ = 0, then it is easy to derive that:

C = M = 2

If Jouguet’s method is used in this example, one has, first of all, to write down
all of the possible reactions that can occur amongst the five components,

C2H2 = 2C + H2 (1-65)

C2H4 = 2C + 2H2 (1-66)

C2H6 = 2C + 3H2 (1-67)
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C2H6 = C2H4 + H2 (1-68)

C2H4 = C2H2 + H2 (1-69)

C2H6 = C2H2 + 2H2 (1-70)

Then, using the method of linear combination or, by determining the rank of the
matrix considering the stoichiometric coefficients of the components of those chem-
ical reactions, one can find r = 3. For example, let us choose eqs. (1-65)–(1-67)
to be the independent reactions, eqs.(1-68)–(1-70) can be derived from them. For
N = 5, r = 3, and Z = 0, Jouguet’s formula yields C=5− 3− 0=2. The results from
both of these methods are the same. But the Brinkley’s method is much simpler.

2. The reduction of SiCl4 by H2 is an important process for the manufacture of
semiconductor materials. At 1500K, there are six major species present: Si (solid),
H2, HCl, SiCl2, SiCl4 and SiHCl3. They are all capable of reacting with one another.
Some possible reactions can be written down, according to Jouguet’s method:

SiCl4 + 2H2 = Si(s) + 4HCl (1-71)

SiCl4 + Si(s) = 2SiCl2 (1-72)

SiCl2 + H2 = Si(s) + 2HCl (1-73)

SiHCl3 + H2 = Si(s) + 3HCl (1-74)

SiHCl3 = SiCl2 + HCl (1-75)

Other reactions can also be set out in a similar way. In all of these reactions, only
three of them are fully independent. So r = 3, C = 6 − 3 = 3. If we consider more
components, for example, SiH2Cl2, SiH3Cl and SiH4, more reactions may be written
into the program. At last, for r = 6, N = 9, and C = 9 − 6 = 3, C does not change.
Using Brinkley’s method, for both cases, we get C = M = 3.

It is illustrative from above example that Brinkley’s method is very conve-
nient when applied to high-temperature, complex systems. However, the Brinkley’s
method does have its own limitations.

3. Consider the system containing KCNS, Fe(CNS)3, K2SO4, and Fe2(SO4)3,
with arbitrary quantities. There is one common independent reaction among them:

Fe2(SO4)3 + 6KCNS = 2Fe(CNS)3 + 3K2SO4 (1-76)

Here N = 4, M = 6 then M > N . As mentioned above, Brinkley’s method is invalid
in this case, and Jouguet’s method is the unique alternative.

C = N − r = 4 − 1 = 3
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4. The equilibrium system of an electrolyte solution [Zemansky, 1968]. Supposing
KH2PO4 is dissolved in water, KH2PO4 undergoes three ionization steps, forming
H2PO−

4 , HPO2−
4 , PO3−

4 and K+, and the water may also ionize. There are four
elements and eight components: KH2PO4, H2PO−

4 , HPO2−
4 , PO3−

4 , K+, H+, H2O
and OH− in the system.

Fig. 1.1 The ionization of KH2PO4 and water.

According to Jouguet’s method, we must first determine which reactions are inde-
pendent.

H2O = H+ + OH− (1-77)

KH2PO4 = K+ + H2PO−
4 (1-78)

H2PO−
4 = H+ + HPO2−

4 (1-79)

HPO2−
4 = H+ + PO3−

4 (1-80)

There are two constraining conditions with respect to the concentrations, arising
from the initial composition and ionization conditions:

[K+] = [PO3−
4 ] + [HPO2−

4 ] + [H2PO−
4 ] (1-81)

[H+] = 2[PO3−
4 ] + [HPO2−

4 ] + [OH−] (1-82)

[K+], [H+] etc. are the concentrations of the ions in the solution. In addition, there
is also an electroneutrality condition:

[K+] + [H+] = 3[PO3−
4 ] + 2[HPO2−

4 ] + [H2PO−
4 ] + [OH−] (1-83)

Since eq.(1-81)+eq.(1-82)=eq.(1-83), there are only two independent equations for
the concentrations of ions. Then, r = 4, Z = 2, N = 8, and C = N − Z − r =
8 − 2 − 4 = 2.
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In the Brinkley’s method, only the value of Z must be considered: Z = 2 (eqs.
(1-81) and (1-82)), so C = M − Z = 4 − 2 = 2.

5. Partial precipitation in an electrolyte solution [Zemansky, 1986]
Consider the system of AlCl3 dissolved in water as an example. AlCl3 may

dissociate, hydrolyze, and the Al3+ partially precipitate in the form of Al(OH)3.
There are eight components: H2O, AlCl3, Al(OH)3, HCl, H+, Al3+, Cl− and OH−,
and each can react with each other (see Fig. 1.2).

Fig. 1.2 AlCl3 dissolved in water; it may dissociate, hydrolyze, and Al3+ partially precipitates.

According to Jouguet’s method, the independent reaction must be determined
first.

H2O = H+ + OH− (1-84)

AlCl3 = Al3+ + 3Cl− (1-85)

Al(OH)3 = Al3+ + 3OH− (1-86)

HCl = H+ + Cl− (1-87)

At first glance, another reaction also seems to exist:

3H2O + AlCl3 = Al(OH)3 + 3HCl (1-88)

However, it can be seen that eq.(1-88) is not independent, because it is a linear com-
binations of four other equations: 3× eq.(1-84) + eq.(1-85) – eq.(1-86) − 3×eq.(1-87)
= eq.(1-88). Actually, other possible species may also be written down. Because
both the numbers of species and the number of independent reactions increase si-
multaneously, they contribute nothing to the final result of counting the number
of independent components. Besides, there is only one electroneutrality condition,
because of the partial precipitation of Al(OH)3.

3[Al3+] + [H+] = [OH−] + [Cl−] (1-89)
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Unlike the fourth example, here N =8, r=4, Z =1 (eq.(1-89)) and C =3. It is a very
interesting case where there are now three independent components, at equilibrium,
in a system that was composed of two chemical substances in its initial state. This
is ascribed to the partial precipitation of the Al(OH)3 phase.

By the Brinkley’s method: M = 4, Z = 1, C = 4− 1 = 3. The result is the same,
but the treatment is simpler.

Next, we will provide three examples of the determination of independent com-
ponents found in complex phase diagrams.

6. Phase diagram of the system Ga-Al-As. Two compounds, GaAs and AlAs,
exist in this system. With the Jouguet’s method, we can write down the following
independent reactions:

Ga + As= GaAs
Al + As = AlAs

By Jouguet’s method, N = 5, r = 2, Z = 0 and C = 5 − 2 = 3. According to
the Brinkley’s method: because Ga, As, GaAs and AlAs can react with each other
at high temperature, r∗ = 0, C = M = 3. The application of Brinkley’s method
is easier. Usually, Ga, Al and As are chosen as the independent components, the
system is a ternary one.

7. Phase diagram of the system made up of complex oxides. Consider the
system of FeO-Fe2O3-SiO2 for example, it being important during several metallur-
gical and geological processes. There exists many other components: e.g. Fe2O3,
FeO·SiO2, (FeO)2·SiO2 and Fe2O3·FeO·SiO2 etc, and there are also three elements
in the system, if Z = r∗ = 0, C = M = 3. FeO, Fe2O3 and SiO2 may be selected as
independent components among the overall components. In the chemical formulas
for the three components, each element appears at least once. It is a matter of fact
that the actual phase diagram is represented by these three components. But the
application of Jouguet’s method is rather complicated, it is omitted here.

8. Phase diagram of the complex saline system of Mg2+-Na+-Cl−-SO2−
4 -H2O

system.
In this system, there are many stable solid compounds: MgSO4·7H2O, MgSO4·

6H2O, MgSO4· H2O, Na2Mg(SO4)2·4H2O, Na12Mg7(SO4)13·15H2O, Na6Mg(SO4)4,
Na21MgCl3(SO4)10, NaCl, Na2SO4·10H2O, and Na2SO4 etc. In addition, some
metastable compounds are also possible. It would be a very complicated exercise to
use the Jouguet’s method to deal with this system.

According to the Brinkley’s method, M=5, since S, O and H form one invariant
atomic radical and one invariant compound SO2−

4 and H2O, they are counted as two
“elements” only [Zhao, 1981], in addition, there is an electroneutrality condition:

2[Mg2+] + [Na+] = [Cl−] + 2[SO2−
4 ] (1-90)



1.4 Some Remarks on the Application of the Phase Rule 25

so Z = 1, and

C = M − Z = 5 − 1 = 4

Therefore this system is a quaternary one. The application of the Brinkley’s method
is rather simple.

Conclusion: as indicated above, the Brinkley’s method does have its particular
merit in counting the number of the independent components. This section may be
useful for the teachers of Physical Chemistry and Chemical Thermodynamics.

1.4 Some Remarks on the Application of the Phase Rule

The phase rule is an important regulation. Though concrete equilibrium condi-
tions and concentrations can not be gained from it, the phase rule has important
and general guiding significance. Even for the system whose theoretical relation
is still not clear, the phase rule can describe the fundamental characteristics of its
equilibrium state. The extent of the application of the phase rule is probably wider
than that of any other law in Physical Chemistry.

Formally, the phase rule is a very simple expression. It is easy to use the phase
rule in summarizing the known experimental facts. While using the phase rule
to study an unknown system, one may find that much circumspection is needed.
The correct conclusion will be drawn only when the distinct physical concepts are
held. In science history, there were such instances that the abuse of the phase rule
interrupted people to probe deeply into the essence of matters, with the result that
erroneous conclusions have remained for a long time without being redressed.

The correct use of the phase rule depends on the correct determination of the
values of N, C and φ and if there are other parameters, than p, T, xi, affecting the
system equilibrium. On this basis, it is easier to calculate the number of the degrees
of freedom.

Bear in mind that the phase rule treats actual thermodynamic equilibrium sys-
tems only. This is very significant, when analyzing mineral systems and silicate
systems, for these systems are usually not in real equilibrium states.

For a known equilibrium system, the chemical species and the number of them
are given. But, for an unknown multicomponent, multiphase equilibrium system, it
is hard to determine the number of N , because only the initial composition is known.
Of course, according to the initial compositions and abundant thermodynamic data,
it is possible to evaluate the species and their relative amounts in the equilibrium
system. Nevertheless, it is also troublesome. In these cases, the Brinkley’s method
is most appropriate.
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For a known equilibrium system, the number of phases of the system is known.
For an unknown system, e.g. when dealing with a complex chemical equilibrium
system or a system whose phase diagram is “uncharted”, one may “estimate” the
possible phases and the total number of them, approximately, from the possible
species and their forms in the equilibrium.

Sometimes, one may reversely reckon the probable maximum of the number of
the phases, based on the phase rule:

φ = C − f + 2

With constant pressure, because f � 0, then φ � C + 1, or φmax = C + 1.

Under some particular circumstances, it is advantageous to scrutinize whether
there are other parameters than T, p, and xi affecting the equilibrium of the system,
such as the intensity of the electromagnetic field, the surface tension and internal
elastic stress, and so on. For instance, according to the phase rule, the vapor pressure
and solubility of pure solid substances are constant, if the parameters p and T are
taken into account. If the dispersivity is large, then the influence of the surface
tension must be considered. At a given temperature, the vapor pressure and the
solubility of pure solid substance in another solvent increases with the dispersivity.

The following examples of reduction of zinc oxide [Fu, 1963], illustrate the appli-
cation of the phase rule.

For the smelting of zinc, the zinc sulphide ore is usually calcined to zinc oxide,
and then it is reduced with carbon at 1200◦C. There are ZnO (solid), Zn (vapor,
liquid or solid), C (solid), CO and CO2 in the equilibrium system. Initially, we
discuss the case in which the Zn is present in the gaseous state.

We will determine the number of independent components using the Brinkley’s
method, then derive the number of degrees of freedom for the system from the phase
rule and then explain the meanings of the results.

M=3, for the system considered, CO and CO2 are produced from the reactions
between the C and ZnO. The oxygen in the CO and CO2 comes from the ZnO. So
long as there is a Zn atom in the vapor phase, there will be an O atom in the CO
or CO2 present in the vapor phase, too.

pZn = pCO + pCO2 (1-91)

Z = 1, then C = M − Z = 3 − 1 = 2. There are three phases in the system (vapor,
ZnO (s) and C). According to the phase rule:

f = C − φ + 2 = 2 − 3 + 2 = 1

The system has only one degree of freedom.
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If the smelting furnace is directly connected to atmosphere (i.e. at atmospheric
pressure), the total pressure should be

p = pZn + pCO + pCO2 = 1 × 105Pa (1-92)

so ZnO can be reduced continuously to form Zn vapor. With the p fixed, the
equilibrium state can only be established when the temperature approaches a definite
fixed value, T 0, because of the premise f = 1.

The number of independent components is two; if ZnO and C are selected as
independent components, all of the elements are involved. As mentioned above,
whether Z=0 or not, one has

r = N − M − r∗ = 5 − 3 − 0 = 2 (1-93)

The number of independent reactions is two. They may be written as

ZnO(s) + C(s) = CO + Zn(g) (1-94)

2CO(g) = CO2 + C(s) (1-95)

Thus, all of the five components appear. The other possible reactions are not inde-
pendent. According to the mass action law:

pCOpZn = Kp4 = f4(T ) (1-96)

pCO2/p2
CO = Kp5 = f5(T ) (1-97)

The variables in the system are: pCO, pCO2 , pZn, T , and p, five in all. There are
four equilibrium conditions, eqs.(1-91), (1-92), (1-96) and (1-97), so the number of
independent variables is only one. If the total pressure, p, is set at 105 Pa, then T 0

(the equilibrium temperature), pCO, pCO2 and pZn could be solved from the above
four equations, the equilibrium state of the system could therefore be determined.

Next, we discuss the circumstance where liquid zinc is generated. Here, we
consider that the temperature of the whole system is identical and no cool condenser
is used. Suppose that the temperature is higher than T 0 as mentioned above, the
total vapor pressure will then exceed atmospheric. As the temperature increases, the
pZn rises quickly. Once the equilibrium partial pressure pZn (owing to the chemical
reaction) in the system comes up to or slightly over the vapor pressure of pure
liquid zinc at that temperature, liquid zinc will start to be condensed. This may
be attributed to the fact that, due to the chemical reaction, the equilibrium pZn

in the system increases more quickly than the vapor pressure of liquid zinc, when
the temperature is increasing. Because of the formation of liquid zinc, a new phase
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appears in the system. In this case, eq. (1-91) is untenable because of the existence
of the liquid zinc. The number of degree of freedom of the system is still one. The
reader may write out the relevant equations applicable to this circumstance and
thence analyze the meaning of the process degrees of freedom.

This example fully illustrates that the phase rule can determine the fundamental
characteristics of the equilibrium system. For more detailed information on the
system in question, we need to have the thermodynamic knowledge and the process
data to calculate the complex chemical equilibrium involved in this example of an
important everyday metallurgical process.

References-1

S. R. Brinkley. 1946. Note on the Conditions of equilibrium for systems of many con-

stituents. J. Chem. Phys., 14: 563, 564, 686

Ying Fu. 1963. Introduction to Chemical Thermodynamics. Beijing: Science Press (in

Chinese)

J. W. Gibbs. 1950. The Collected works of J. W. Gibbs. Vol.1. New Haven: Yale University

Press

F. Van Zeggeren, S. H. Storey. 1970. The computation of chemical equilibria. Chap-

ter 2 The foundations of chemical equilibrium computation. Cambridge: Cambridge

University Press

M. W. Zemansky. 1968. Heat and Thermodynamics. 5th ed. New York: McGraw-Hill Inc.

Muyu Zhao, Zichen Wang, Liangzhi Xiao. 1992. The determination of the number of

independent components by Brinkley’s method. J. Chem. Education, 69(7): 539

Summary of Part One

We start this book by refreshing our knowledge of the famous Gibbs’ phase rule.

f = N + 2 − φ

The different methods to derive this rule, be rigorous or be concise, all are full of the
forerunners’ wisdom and fascinating for the successive scholars and students. We
trust that reader’s acquaintance of these fundamental scientific trains of thoughts
and skills, will be much helpful to understand the major content of this book.

The determination of the number of independent components in an equilibrium
system is critical for the application of the phase rule. We introduce two well es-
tablished methods here, Brinkley’s and Jouguet’s methods, and compare the merits
and shortcomings of these two methods. Brinkley’s method is generally difficult to
find in textbooks, but very useful for the researchers, engineers and students in the
fields of chemical engineering and materials science.
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Chapter 2

The Boundary Theory of Isobaric Phase

Diagrams

—Rules for Phase Diagram Construction

2.1 Introduction

A phase diagram is constituted by the phase regions displayed and their bound-
aries. The relationship among neighboring phase regions (abbreviated to NPRs),
and the NPRs’ boundaries is of a certain regularity. In other words, the phase re-
gions and their boundaries must follow certain rules in order to constitute a correct
phase diagram. The phase rule, which defines the relation among the number of
components, number of phases and degrees of freedom of an equilibrium system,
is infallibly applicable in every phase diagram. However, it does not cover the re-
lationship and the regularity among the NPRs and their boundaries in the phase
diagrams. For example, it would be difficult to answer the following questions:

(1) If the phase assemblages of two NPRs are known, what are the characteristics
of the boundaries between them?

(2) If the phase assemblage of the first NPR and the characteristic of the bound-
ary between two NPRs are known, what is the phase assemblage of the second NPR?

In practice, understanding the relationship among NPRs and their boundaries
is very important. Firstly, a thorough comprehension and interpretation of a phase
diagram is impossible until one masters the relationship among the NPRs and their
boundaries within the phase diagram, especially the complicated phase diagrams.

Secondly, when the available experimental data are not adequate, the rules gov-
erning the boundaries may help to “sketch in” the relevant boundary lines between
the NPRs, and to then design the further experimental points. Knowledge of the re-
lationship among the NPRs and their boundaries is particularly useful when judging
the authenticity of a phase diagram.

We have now developed a method, for applying our boundary theory and other
thermodynamic principles, in order to determine the isobaric, multicomponent hori-
zontal (isothermal) sections, the particular method used will be presented in
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Chapter 7.
Thirdly, the rules concerning boundaries are helpful in setting up the thermody-

namic equations for the calculation of phase diagrams.
Since these rules concerning boundaries are so important for phase diagram stud-

ies, many scientists have been engaged, over recent decades, in contributing to this
project. Thus, in 1915, Schreinmakers “worked out” Schreinmakers’ rule [Schrein-
makers, 1915]. This rule points out that a given phase region containing N phases
would either be: a) a neighbor in a phase region containing (N+1) phases, or b) in
contact with a phase region containing (N+2) phases by a boundary point. This
rule is usually known as the “cross rule”. Vogel-Masing’s rule is similar to that of
Schreinmakers’. Later, Palatnik and Landau (here abbreviated to P-L) theoretically
deduced the “contact rule of phase regions” [Palatnik and Landau, 1955, 1964].
Around the same time, Rhines summarized the “ten rules which must be obeyed
when constructing ternary phase diagrams” [Rhines, 1956]. Much later, Gupta et
al. deduced the overlapping ZPF (Zero Phase Fraction) lines method [Gupta et al,
1986]. The concept of the ZPF line is that the line for each phase divides a two
dimensional, multicomponent section into two regions; where, on the one side of the
line, the phase is generated, while on the other side, it is not. By overlapping the
ZPF lines, the two- dimensional, multicomponent section with limited information
may be constructed. Gupta’s method is a very practical one and it has been widely
applied in phase diagram calculation. M. Hillert and A. Pelton [Hillert, 1988, 1993,
1998; Pelton, 2001] have also contributed to the theory concerning the boundary
features of phase diagrams.

In the present Chapter, some basic concepts that underlie the construction of
phase diagrams are discussed. Based on these concepts, and on fundamental ther-
modynamic principles, the Theorem of Corresponding Relationship (abbreviated to
TCR), and its corollaries, are deduced. Furthermore, the relation between the di-
mensions of the boundary R′

1, and the dimensions of the phase boundary R1, and its
theoretical proof, are presented. These are the main components of the boundary
theory of isobaric phase diagrams.

2.2 Several Basic Concepts for Underlying the Phase Dia-

gram

2.2.1 Coordinate axes

There are two types of axes involved: (a) the molar axes, for example, xi (mole
fraction of i-th component in the system), and Sm (molar entropy) etc., and (b) the
potential axes, for example, temperature T and pressure p, etc., i.e. the intensive
properties. As most scientific and technological literatures apply the axes of mixed
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type, i.e. T, p and xi, we use the same nomenclature here in this publication.

2.2.2 The phase point and the system point

There are two categories of “point” used in a phase diagram.
The system point is the representative point (T, p, xi) of a system in a phase

diagram under a defined condition. T and p represent the temperature and pressure
respectively; xi is the mole fraction of the i-th component in the system. Obviously,
every point within a phase diagram could be the system point. In other words, the
system points can fill the whole available space of the phase diagram, see Fig. 2.1(c).

The phase point is a representative point (T, p, xij) in a phase. xij is the mole
fraction of the i-th component in the j-th phase. Phase points exist only in single-
phase regions and their boundaries, see Fig. 2.1(b). In a single-phase region, the
phase points and the system points are identical. For two- or multi- phase regions,
there are no phase points in their interior parts but phase points can occur on the
boundaries between the two- or multi-phase regions, with the single phase regions.

For the general case, there is no phase point on those boundaries lying between
the two- or multi- phase regions with other two- or multi- phase regions. In a few
special cases, however, there may be a phase point between those pairs of phase
regions, see later discussion.

Fig. 2.1 (a) One typical binary isobaric phase diagram; (b) phase points exist only in the single

phase region; (c) but the system points are everywhere. p=const.

2.2.3 The isobaric phase diagram and its dimensions

In the isobaric phase diagram, pressure p is kept constant. The variables of the
system are T and xi(i=1, 2, · · · , N). The variables of the phase point are T and
xij (i = 1, 2, · · · , N ; j = 1, 2, · · · , φ), there exist:

N∑
i=1

xi = 1
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N∑
i=1

xi,j = 1 (j = 1, 2, · · · , φ)

So, for both the system point and the phase point, the number of their independent
variables is N(N − 1 from the molar relationship, either for system point or phase
point; and one from temperature). The space of N dimensions may be used to
describe the system point, the phase point, the phase region and the phase diagram.
Therefore, the dimension of the isobaric phase diagram, R, is equal to the number
of components N .

R = N (2-1)

2.2.4 The phase, the phase region and the number of phases existing in
the phase region

A phase is a homogeneous part of the system, of which the physical and chemical
state is uniform; no demarcation exists inside the part. There are boundaries be-
tween the different phases. If a phase region consists of only one phase, it is called
a one-phase or a homogeneous phase region. If a phase region consists of more than
one phase, it is called a two- or multi-phase region; or a heterogeneous phase region.

A phase region is a part of a phase diagram, it is so defined that the dimensions
of which are equal to the dimensions of the phase diagram. The phase region is a
closed domain, it includes the interior part and its boundary. If we define all phase
regions as being open domains, there would be no system point on the boundaries,
this is surely not correct. The binary phase diagram, as shown in Fig. 2.1(a), is
composed of six phase regions, seven boundary lines and five boundary points. Line
cEd is a line only, with no tangible width. It can not be considered to exist as a
phase region. Generally, in our theory, any region whose dimensions are inferior to
the dimensions of the phase diagram is not considered a phase region.

Let the number of phases in any phase region be φ, evidently φ � 1. Next, since
the dimensions of the phase region are equal to the dimensions of the phase diagram,
then the temperature of the system must be an independent variable. So, f � 1, f

is the degrees of freedom of an equilibrium system. According to the phase rule,
φ = N + 1− f, at constant pressure, when f � 1, φ � N. So, in any phase region of
a phase diagram, there is

N � φ � 1 (2-2)

2.2.5 Neighboring phase regions (abbreviated to NPRs) and the total
number of all the different phases present in them, Φ

Here, let us initially discuss the case of two NPRs with a common boundary.
Assume that the first NPR contains φ1 phases, they are f1, f2, · · · , fφ

C
, fφ

C
+1, · · · ,



2.2 Several Basic Concepts for Underlying the Phase Diagram 35

fφC+q1 , φ1 = φC + q1; and the second NPR contains φ2 phases, they are f1, f2, · · · ,

fφC
, fφC+1′ , fφC+2′ , · · · , fφC+q2 , φ2 = φC +q2. Among all of these, phases f1, f2, · · · ,

fφC
belong to both NPRs, so that the number of these common phases is φC . The

total number of all different phases in the two NPRs is denoted by Φ. For two NPRs,
Φ = φC + q1 + q2. Evidently, Φ = φ1 + φ2 − φC , then

φC = φ1 + φ2 − Φ (2-3)

The total number of all the different phases, Φ, is an important characteristic of the
phase equilibrium represented in the boundary between NPRs in the phase diagram,
this has not been revealed or underlined in the previous researches numerated in sec-
tion 2.1. We have distinguished this concept in 1983 [Zhao, 1983], it is an important
concept of our boundary theory.

2.2.6 The maximum phase number in any phase region of the two or
more NPRs, φmax

It has been proved (eq. (2-2)) that the number of phases which exist in any phase
region in the isobaric phase diagram of N -components, φ � N, so, the maximum
number of phases in any phase regions is

φmax = N (2-4)

2.2.7 The boundary and the phase boundary among two or more NPRs

2.2.7.1 Boundary

Conventionally, people call the geometrical demarcation among two or more NPRs
as the “boundary”. According to the number of components of the phase diagram,
a boundary could be a point, a line, a surface · · · until (N − 1) dimensions of the
entity occupies the space. This concept of the boundary is widely used in most
references to phase diagrams, in addition to Palatnik and Landau’s contact rule. In
our boundary theory, we use it in its conventional meaning, and recognize that a
boundary is the set of system points and its dimensions are denoted as R′

1.

2.2.7.2 Phase boundary

From the viewpoint of the phase point (see subsection 2.2.2) in the study of
the boundary between two NPRs, we can define the phase boundary as the set
of the equilibrium phase points of the equilibrium system existing on the common
boundary. The dimensions of the phase boundary are denoted by R1.

Example 2-2-1. See the NPRs (L+S1)/L in Fig. 2.1(a), the phase region (L+S1)
neighbors the phase region L. φ1=2(L,S1); φ2 = 1(L); φmax = 2;Φ = 2(L,S1);φC =
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1(L);φC = φ1 + φ2 − Φ = 1 + 2 − 2 = 1, the common phase is the liquid phase,
L. The boundary between NPRs (L+S1)/L is the line aE, R′

1 = 1. But we consider
that the phase boundary lines between (L+S1)/L are lines aE and ac! Note: line
ac is actually not between the NPRs (L+S1)/L. According to the level rule, all
components of the system existing on the boundary are distributed over the common
phase, L, existing on the phase boundary, aE, but an infinitesimal amount of the
components is distributed over the non-common phase, S1, existing on the phase
boundary line ac in principle. This is why we consider that the phase boundary
lines between NPRs (L+S1)/L are the lines aE and ac, but aE is the main phase
boundary line.

In this case, R1 = R′
1 = 1, the dimension of the boundary being equal to the

dimension of the phase boundary.
Example 2-2-2. Two NPRs (S1+L)/(S1+S2) see Fig.2.1(a), φ1=2(S1, L), φ2 =2

(S1, S2), φmax=2, Φ=3(L,S1, S2), φC = 1(S1). For the boundary line cE, R′
1=1, it

is composed of system points. The phase boundary consists merely of three phase
points: c(S1), d(S2) and E(L), R1=0. In this example, the phase boundary does
not coincide with the “boundary” and R′

1 �= R1. This example demonstrates the
difference that exists between the boundary and the phase boundary.

2.2.7.3 The relationship among the NPRs and their boundaries

The most important physical parameters that determine the relationship among
NPRs and their boundaries are Φ, φC , R1 and R′

1. If the assemblages of two NPRs
are known, then the values of Φ and φC can be readily calculated. According to the
boundary theory, the value of R1 can be calculated from Φ, while the value of R′

1 can
be calculated from R1 and φC (see later paragraphs). The relationship among the
NPRs and their boundaries can be determined by use of the following parameters:
Φ, φC , R1 and R′

1.

2.2.8 More on the phase boundary concept

In many literature references, the term “phase boundary” is often mentioned and
is usually used to indicate the boundary of a phase, or of a single-phase region.
However the meaning of “phase boundary” in our boundary theory is different, here
we define that the phase boundary should be the set of “equilibrium phase points”
of the equilibrium system existing on the boundary. Meanwhile, we deem that the
phase point is more important than the system point, and the phase boundary is
more important than the boundary, when problems of the phase equilibrium are
being discussed.

The phase boundary is a “real entity” in the structure of phase diagram, the
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existence of this entity is no longer in doubt. From the examples listed in the
previous section, it can be seen that a system, existing on the boundary between
NPRs under a given condition, is usually distributed in the different phases that are
present. Consequently, the conventional “boundary” does not necessarily coincide
with the “phase boundary”.

There is no such “concept” in Palatnik-Landau’s contact rule; this makes it
difficult to apply their rule in certain boundary between NPRs in the phase di-
agram. For example, when explaining the “boundary” line cEd, in Fig. 2.1(a),
they have to introduce the extra concept of “degenerate region”, that expands the
line into a two-dimensional phase region to thereby explain the shift of the phase
number in NPRs. There are many other similar examples, please see Chapter 3,
section 3.6.

Based on the concept of the phase boundary, and on other thermodynamic prin-
ciples, we have worked out a systematic boundary theory for phase diagrams. All
of the difficulties that Palatnik-Landau’s theory was not able to resolve, may now
be otherwise resolved by the boundary theory (see the detailed theory description
in Chapter 3).

The conception of the “phase boundary” has been generally accepted and is
highly appreciated by many Chinese scientists. A few books on phase diagram
topics, and some professors at various universities in China, have now introduced
this concept and apply it in their pedagogic practices. Professor Chu-Kun Kuo et
al. (Shanghai Institute of Ceramics, Chinese Academy of Science) have presented
the boundary theory, especially the concept of the phase boundary, in their book
“High Temperature Phase Equilibrium and Phase Diagrams” (Shanghai Scientific
and Technical Publisher, 1987, in Chinese). This book has also been published in
English by Pergamen Press (New York). Professor J. K. Liang (Institute of Physics,
Beijing, Chinese Academy of Science) presented the boundary theory, including the
concept of the phase boundary, in greater detail, in his book “Phase Diagrams and
Phase Structures” (Science Press, Beijing, 1993, in Chinese) Section 1.7. Professor
Hui-An Yin (Chengdu University of Technology) presented the boundary theory,
more completely, in the book “Multicomponent Phase Diagram” (Peking University
Press, Beijing, 2002, in Chinese). He emphasized that “the phase boundary is dif-
ferent from other theories and that it is thus a very important concept.” There are
also other books (in Chinese), which apply the concept of the phase boundary to
investigate the phase diagrams. Professor Yun-Sheng Chen (Northwest University,
Xi’an) had taught the “boundary theory” concept in his course “Phase Diagrams”
for several years, and he reported that students are interested in the theory and
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learn much from the study of it.

2.3 The Theorem of the Corresponding Relationship between

the Total Number of All the Different Phases in NPRs Φ

and the Dimensions of the Phase Boundary R1 in Phase

Diagrams, and Its Theoretical Deduction

2.3.1 The theorem of the corresponding relationship between Φ and R1

The theorem of the corresponding relationship between Φ (the total number of
all the different phases in NPRs) and R1 (dimensions of the phase boundary) in
phase diagrams, is abbreviated as TCR in this text and is expressed as follows:

For p-T -xi phase diagrams in the general case

R1 = (N − Z − r) − Φ + 2 (2-5′)

For isobaric phase diagrams

R1 = (N − Z − r) − Φ + 1 (2-6′)

Here, p, pressure; T , temperature; N , the number of components; r, the number
of independent chemical reactions occurring in the system; Z, the number of inde-
pendent conditions which constrain the concentrations of components, except the
condition

∑
i

xi = 1,
∑

i

xi,j = 1, where xi and xi,j denote the mole fractions of the

i-th component in the system and the j-th phase, j = 1, 2, · · · , φ respectively. The
item (N−Z−r) is “called” the number of independent components in the references
of chemical thermodynamics (see Chapter 1). TCR expounds the corresponding re-
lationship between Φ and R1.

In general cases, Z = r = 0 for p-T -xi phase diagrams, TCR is expressed as

R1 = N − Φ + 2 (2-5)

For isobaric phase diagrams,

R1 = N − Φ + 1 (2-6)

2.3.2 The theoretical deduction of TCR

The boundary is a part “in common” between the two NPRs. The system existing
on the boundary must satisfy the phase equilibrium conditions for both NPRs. Let
the first NPR and the second NPR contain (φC + q1) phases, and (φC + q2) phases,
respectively. We now write the phase equilibrium conditions of the system in the first
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and the second NPRs, respectively. For a given temperature and pressure condition,
the equilibrium system in the first NPR must satisfy the following phase equilibrium
conditions:

μ′
i,1 = μ′

i,2 = · · · = μ′
i,φc

= μ′
i,(φc+1) = · · · = μ′

i,(φc+q1)
(i = 1, 2, · · · , N)

N∑
i=1

x′
i,j = 1 (j = 1, 2, · · · , φC , φC + 1 · · · , φC + q1)

Here, μi,j denotes the chemical potential of the i-th component in the j-th phase.
Similarly, there exist phase equilibrium conditions for the equilibrium system in the
second NPR:

μ′′
i,1 = μ′′

i,2 = · · · = μ′′
i,φc

= μ′′
i,(φc+1′) = · · · = μ′′

i,(φc+q2)
(i = 1, 2, · · · , N)

N∑
i=1

x′′
i,j = 1 (j = 1, 2, · · · , φC , φC + 1′, · · · , φC + q2)

Since the boundary is a part “in common” of the two NPRs, when the equilibrium
systems exist on the boundary, they must have

x′
i,j = x′′

i,j = xi,j (i = 1, 2, · · · , N ; j = 1, 2, · · · , φC)

μ′
i,j = μ′′

i,j = μi,j (i = 1, 2, · · · , N ; j = 1, 2, · · · , φC)

By applying the equilibrium relation on the boundary, the following unique phase
equilibrium equations are obtained:

μi,1 = μi,2 = · · · = μi,φc
= μ′

i,(φc+1) = · · · = μ′
i,(φc+q1)

= μ′′
i,(φc+1′) = · · · = μ′′

i,(φc+q2)

(i = 1, 2 · · · , N)

N∑
i=1

xi,j = 1 (j = 1, 2, · · · , φC)

N∑
i=1

x′
i,j = 1 (j = φC + 1, · · · , φC + q1)

N∑
i=1

x′′
i,j = 1 (j = φC + 1′, · · · , φC + q2)

The number of independent equations in this set of equations is

N(φC + q1 + q2 − 1) + φC + q1 + q2



40 Chapter 2 The Boundary Theory of Isobaric Phase Diagrams

Since μi,j is a function of T , p, xi,j , the unknown parameters describing the equilib-
rium phase points of the system at the phase boundary are: T, p and xi,j , x

′
i,j′ , x′′

i,j ,
there are a total of N(φC + q1 + q2)+2 unknowns. Therefore, the equilibrium phase
points may exist in the space of R1 dimensions,

R1 = N(φC + q1 + q2) + 2 − N(φC + q1 + q2 − 1) − (φC + q1 + q2)

= N − (φC + q1 + q2) + 2

The total number of different phases in the two NPRs, Φ is

Φ = φC + q1 + q2

So
R1 = N − Φ + 2 (2-5)

If p=const
R1 = N − Φ + 1 (2-6)

If there are r independent chemical reactions, and Z other independent constrained
conditions, for the system existing on the boundary, then

R1 = (N − r − Z) − Φ + 2 (2-5′)

At constant pressure,

R1 = (N − r − Z) − Φ + 1 (2-6′)

Let us apply this theorem to analyze the phase boundary of NPRs in Fig. 2.1(a),
for NPRs L/(L+S1), the dimension of the phase boundary

R1 = (2 − 0 − 0) − 2 + 1 = 1 (See eq.(2-6′))

It is the line aE, which implies that when the liquid phase, L and the phase region,
(S1+L) in the phase diagram (Fig. 2.1a) meet together, its phase boundary (also
“boundary” in this case) has only one degree of freedom. It is not uncommon
for students to interrogate the following problem when they are studying phase
diagrams, “if a system exists exactly on the line aE in Fig.2.1(a), has the system: 1)
only one homogenous liquid phase, or 2) two mixed liquid-solid phases? If there is
only one phase, then, by the phase rule, f = N −φ+1 = 2−1+1 = 2. But this line
has only one independent variable. Why?” By applying the boundary theory, the
concepts of the boundary and the phase boundary are rigorously distinguished, and
thus this question may be easily responded too. According to TCR, the dimension
of the phase boundary line, aE, “really is equal to 1”.
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For NPRs (S1+L)/ (S1+S2), from TCR, the dimension of their phase boundary,

R1 = 2 − 3 + 1 = 0

From Fig. 2.1(a), the phase boundary between NPRs (S1+L)/ (S1+S2) contains
three invariant phase points; c (S1), E (L) and d (S2). Their dimension really is
zero.

If φC =0, eq.(2-5) is still valid. When more than two NPRs meet at a common
boundary, one may write different phase equilibrium equations for the systems in dif-
ferent NPRs, the same conclusion as eq. (2-5), may be derived. Detailed discussion
on this matter is omitted here.

2.4 The Theorem of the Corresponding Relationship (TCR)

is an Independent Theorem, Not a Variant of the Phase

Rule

In contrivance of TCR, many query that TCR is essential the phase rule, or at the
most, a variant of it in presentation. “Is not ‘the phase number of equilibrium system
φ’, the same as ‘the number of total different phases in all the neighboring phase
regions Φ’? If so, why use two different symbols?” It is a good question. Actually,
this is a key point in this theory. Many consider it redundant in conceptions at the
first glance over it. This is a very important issue to clear up before we are to go
further in the boundary theory.

We emphasize that f and R1, φ and Φ are different in definition (see Table below)
and they treat different objects.

The Phase Rule TCR

Object Equilibrium system NPRs and their boundaries

The parameters

f—The freedom of the

equilibrium system

R1—The dimension of

phase boundary

φ—The phase number of

the equilibrium system

Φ—The total phase number

in all neighboring

phase regions

When discussing the equilibrium system existing on the boundary, the phase rule
reads:

f = N − φ + 2

Here f is the number of degrees of freedom, φ is the number of phases in the
equilibrium system.

When considering the relationship among NPRs and their boundaries, the TCR
asserts that:

R1 = N − Φ + 2 (2-7)
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Here Φ is the total number of all different phases existing in the NPRs, R1 is the
dimensions of the phase boundary between NPRs.

These two rules are similar in form, and particularly, when the equilibrium system
is on the boundary, R1 = f . However, they are indeed different in “essence”. For
example, suppose the system is on point E in the binary phase diagram shown in
Fig. 2.1(a). The degree of freedom of the system equals zero, implying that the
system does not have any freedom in changing either its temperature or its molar
fraction, if three phases co-exist. f = N −φ+1 = 2−3+1 = 0. On the other hand,
TCR gives R1 = N − Φ + 1 = 2 − 3 + 1 = 0. Here the zero is the dimension of the
phase boundary, which actually involves the three invariant point c, E and d.

Indeed, when the equilibrium system is on the boundary, “the phase number of
equilibrium system φ” and “the total phase number of different phases in NPRs Φ”
are the same in value, but only in value, they are not the same thing. When the
system considered is not on the boundary but in other part of a phase diagram, the
φ and Φ may be different in value. Let’s go into following scenarios, see Fig. 2.2
and Fig. 2.3 in next page.

Fig. 2.2 A typical ternary phase diagram.

At point b (see Fig. 2.2 and Fig. 2.3(a)), the system at this point involves three
phases: liquid, S1 and S2. The phase rule counts the number of phases in equilibrium
as, φ =3. But TCR considers that that point “b” is neighboring four phase regions,
and there are three (in all) different phases in these 4-phase regions, Φ=3. Here, φ

and Φ are equal in value.
At the star position (in liquid phase region L) (see Fig. 2.2 and Fig. 2.3(b)),

the system contains only L phase, φ=1. The TCR always looks at the boundary in
phase diagram, so (1) if it is over the boundary point b, as discussed above, Φ=3;
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(2) if over the boundary bd (heavy black line), Φ=2. In these two cases, we may see
clearly, φ and Φ are talking different things.

Phase rule: At the point b, there are three phases S1, S2, and L, coexisting in system, thus φ=3.

TCR: Around the point b, there are 4 neighboring phase regions, and the total different phases

Φ=3.

Phase rule: At the point ∗, the system contains liquid phase only, φ =1.

TCR: Over the line bd, there are 2 neighboring phase regions, and the total different phases Φ=2.

Fig. 2.3 φ and Φ are of different physical meaning and they are used from different stand points.

Generally speaking, in the phase diagram, when we are using the phase rule, we
stand on “point” (0-dimension), i.e., system point. We determine how many phases
may be coexisting under this equilibrium condition.

While using TCR to investigate the phase diagram, we are thinking in N -
dimension (N � 2, the dimension of phase diagram or section). We first focused on
the boundary, be point, or line etc., then we count how many NPRs there are and
how many different phases there are. This outlook is illuminated in Fig. 2.3(a), and
2.3(b), which may be helpful to understand the method of this theory.

In this book, we have explained that we can deduce the phase boundary dimen-
sion if we know Φ, vise versa. We also give some examples to show that the phase
rule cannot solve the problems.

Let us consider an isobaric, quinary eutectic phase diagram as another example,
where there are 32 NPRs meeting at the eutectic point. When the equilibrium
system existing at this point, by the phase rule, f = N − φ + 1, f = 0, so φ=6. We
are sure that there are 6 phases present in the equilibrium system at this eutectic
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point, but can we be certain of the total number of different phases in all of the
32 phase regions? What is the situation if it is, in reality, a phase diagram of 6-
components or an even greater number system? In particular, could we deduce the
phase number in any individual phase region, when just some of the cases are given?

It is on this point that the TCR distinguishes itself from the phase rule. By
applying the TCR in isobaric, quinary phase diagrams, when the phase boundary
existing at the eutectic or peritectic point. If given the dimension of the phase
boundary R1=0, then

Φ = N − R1 + 1 = 5 − 0 + 1 = 6

We are confident that the total number of different phases in all of the 32 NPRs,
in contact at the eutectic or peritectic point, is 6. Further, if we know the concrete
phase combination in any phase region, and the boundary between the NPRs, we
could also know the situation in its neighboring phase region, thanks to TCR and
its corollaries. Though when discussing the system on the boundary and the rela-
tionship among the NPRs and their boundaries, the value of f or φ equals the value
of R1 or Φ, respectively. They are equal to each other in value only, their meanings
are different and they refer to different objects. From the parameters R1 and Φ, we
may obtain many useful results that the phase rule cannot deal with (See Chapter
3 to Chapter 6).

The phase rule was deduced more than one hundred years ago by J. W. Gibbs.
However, the mere application of the phase rule did not solve all problems, for
example, those concerning the relationship between NPRs and their boundaries in
phase diagrams. This is why so many scientists have continued to “work out” various
empirical and theoretical rules about these problems in respect to phase diagram
science.

TCR is derived mathematically from thermodynamic principles and it is valid in
all cases. By applying TCR, we may deduce a systematic boundary theory that can
deal with all the problems concerning the relationship among the NPRs and their
boundaries. The deduction of TCR didn’t involve the application of the phase rule,
and, as a matter of fact, TCR cannot be deduced from phase rule.

In summary, it is stated that TCR is an independent theorem, it is not a variant
of the phase rule.

2.5 Corollaries of TCR for Isobaric Phase Diagrams

In combining TCR and some basic characteristics of isobaric phase diagrams,
several corollaries of TCR may be obtained. These corollaries help to determine
the ranges and regularities of variations in Φ, R1 and φC values in isobaric phase
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diagrams of different types. In the general case, Z = r = 0, and for isobaric phase
diagrams, p = constant.

1st corollary: The range of variations in the value of Φ in binary and multicom-
ponent isobaric phase diagrams.

Since R1 = N −Φ +1 and R1 � 0, N +1 � Φ; and two NPRs contain two phases
at least, thence

(N + 1) � Φ � 2

2nd corollary: The range of variations in the value of R1 in isobaric, binary and
multicomponent phase diagrams.

Since Φ �2, and R1 = N − Φ + 1, (N − 1) � R1, that is

(N − 1) � R1 � 0

3rd corollary: For two NPRs of isobaric binary and multicomponent phase dia-
grams, there are two cases satisfying R1 = 0 and φC = 0.

(1) When two single-phase regions meet each other at a single phase point,

φC = 0, R1 = 0.

For the general isobaric phase diagram, there is Z = r = 0 as a whole, but in
this phase diagram, there may occur some single points, for which

Z �= 0

If two single-phase regions, fj and fk should meet at a common phase boundary,
every pair of phase points at this phase boundary satisfies

x1,j = x1,k, x2,j = x2,k, · · · , xN,j = xN,k

There are (N − 1) independent equations constraining the concentrations, i.e. Z =
N − 1, and r = 0, Φ = 2, p = constant, so:

R1 = N − (N − 1) − 2 + 1 = 0

Since R1 = 0, there is a single phase point satisfying this condition, R1 = 0 and
φC =0.

For examples, please see subsection 3.3.2.3, Fig. 3.4 or Rhines’ first empirical
rule in section 3.5.

(2) When N � 2, R1 = 0, and the phase transition occurs at the invariant
temperature. There is a boundary with (φmax + 1) = (N + 1) coexisting phases
between two NPRs during the phase transition.

R1 = 0, Φ = N + 1
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If φ1 = N, φ2 = 1

φC = φ1 + φ2 − Φ = N + 1 − (N + 1) = 0

This case satisfies R1 = 0 and φC = 0.
4th corollary: Excluding the two cases mentioned in corollary 3, if R1 �1, the

range of variations of the value of φC should be:

(Φ − 1) � φC � 1

We can use the “reduction to absurdity” method to prove this corollary. Two
NPRs must have at least one common system point, otherwise they are not neigh-
bors to each other. The system existing at the common system point must satisfy
the equilibrium conditions for both of the two NPRs. Let the first and second
NPRs contain φ1 and φ2 phases respectively, and assume φC=0. m1, m2, · · · , mφ1 ;
m1′ , m2′ , · · · , mφ2 ; xi,1, xi,2, · · · , xi,φ1 ; xi,1′ , xi,2′ , · · · , xi,φ2(i = 1, 2, · · · , N) are the
total amounts in moles and the mole fractions of different components in differ-
ent phases in the first and the second NPRs, respectively. In the system, xi (i =
1, 2, · · · , N), is the mole fraction of the i-th component in the system. Temperature
T is also a variable. The total number of unknowns in the whole system is:

φ1 + φ2 + Nφ1 + Nφ2 + N + 1 = N(φ1 + φ2) + φ1 + φ2 + N + 1

The system has the following phase equilibrium conditions:

μi,1 = μi,2 = · · · = μi,φ1 = μi,1′ = μi,2′ = · · · = μi,φ2 (i = 1, 2, · · · , N)

there are total N (φ1+φ2−1) phase equilibrium equations. The different components
of the system satisfy the following mass balance equations: (Where M is the mole
number of the system.).
For the first NPR,

xi,1m1 + xi,2m2 + · · · + xi,φ1mφ1 = Mxi (2-8)

(i = 1, 2, · · · , N ;N equations)

For the second NPR,

xx,1′m1′ + xi,2′m2′ + · · · + xi,φ2mφ2 = Mxi (2-9)

(i = 1, 2, · · · , N ;N equations)

And the following equations also hold:

N∑
i=1

xi,j = 1, (j = 1, 2, · · · , φ1;φ1 equations), (2-10)
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N∑
i=1

xi,j′ = 1, (j′ = 1′, 2′, · · · , φ2;φ2 equations), (2-11)

From equations (2-8) and (2-10),

φ1∑
j=1

xi,jmj =
φ1∑

j=1

mj =
N∑

i=1

xi

φ1∑
j=1

mj

Then:
N∑

i=1

xi = 1

So this equation is not an independent equation. Since the system is the same,
there induces another independent equation.

φ1∑
j=1

mj =
φ2∑

j′=1′
mj′

The total number of independent equations is

N(φ1 + φ2 − 1) + N + N + φ1 + φ2 + 1 = N(φ1 + φ2) + φ1 + φ2 + N + 1

Therefore, the number of degrees of freedom of the equilibrium system, existing on
the boundary with φC =0 is:

f = (N + 1)(φ1 + φ2) + N + 1 − [(N + 1)(φ1 + φ2) + N + 1] = 0

The dimension of the phase boundary, R1 = f =0. This is to say if φC = 0, R1

must be zero. By reduction to absurdity, when R1 �1, then φC �1.
On the other hand, (φC)max can not be equal to Φ, otherwise the two NPRs are

identical, so (φC)max � (Φ − 1). Finally, we obtain, if R1 �1,

(Φ − 1) � φC � 1

5th corollary: For isobaric binary and multicomponent phase diagrams, when
R1 =0, the phase transition occurs at an invariant temperature and there is a bound-
ary with (φmax+1) = (N +1) coexisting phases between two NPRs during the phase
transition;

(Φ − 2) � φC � 0

When R1 = 0,Φ = N + 1. φmax = N (eq.(2-4)), and φC can not be equal to φmax,
otherwise the two NPRs are identical, so

φC � (φmax − 1) = (N − 1) = (Φ − 2)
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Thus (Φ − 2) � φC

The 3rd corollary has indicated that, when R1 = 0, φC may be equal to zero, so
the 5th corollary holds.

In summary, for binary and multicomponent isobaric phase diagrams with Z =
r = 0, the ranges and regularities of variations of R1, Φ and φC have been worked
out.

2.6 The Relationship between the Dimensions of the Phase

Boundary R1 and the Dimensions of the Boundary R′
1

for Isobaric Multicomponent Phase Diagrams

According to TCR, the value of R1 may be calculated from Φ. But the most
boundaries as shown on the phase diagrams, especially in the multicomponent phase
diagrams, are sets of system points (“boundaries” as defined in section 2.2.7.1), and
not phase boundaries (i.e., sets of phase points). It is now appropriate to discuss
how to derive the value of R′

1 from R1 and φC .

2.6.1 The qualitative explanation of the two formulas between R′
1 and

R1

1. When N � 2, R1 = 0, the phase transition occurs at an invariant temperature
and there is a boundary with (φmax+1) = (N +1) coexisting phases between the two
NPRs during the phase transition. The mass of the system may be distributed over
φC common phases and one non-common phase (this will be proved theoretically
later), there is a formula between R′

1 and R1:

R′
1 = R1 + φC (since R1 = 0) (2-12)

Consider two NPRs (L+S1)/(S1+S2) in Fig. 2.1(a) to illustrate the application
of eq. (2-12). During the process of invariant phase transition (R1 =0), for the
system on the boundary between (L+S1)/(S1+S2), when it still exists in the phase
region (L+S1), the mass of the system may be distributed among one common phase
S1 and one non-common phase L. Phases L, S1 and S2 coexist during the process
of transition; since (φmax+1)=(N+1)=3, this observation tallies with the condition
mentioned above.

From Φ = 3, R1 = N − Φ + 1 = 0, and φC = 1(S1), according to the eq.
(2-12), R′

1 = 0 + 1 = 1. Thus the boundary between NPRs (L+S1)/(S1+S2) is
one-dimensional, it is an isothermal line. Another example is the boundary between
NPRs L/(S1+S2) in Fig. 2.1(a); R′

1 = 0. The phase transition occurs at an invariant
temperature and there is a boundary with (φmax + 1) coexisting phases during the
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phase transition, and φC =0, then

R′
1 = 0 + 0 = 0

The boundary is an invariant point.
Let us discuss how eq. (2-12) is obtained. Eq. (2-12) is used to calculate R′

1

from R1. The first step is to fix the equilibrium phase points at the given condition,
and then find out the dimensions of the element in which the system points are
distributed. For NPRs (L+S1)/(S1+S2), the phase boundary has R1 =0, the phase
points are fixed themselves, see Fig. 2.4.

Fig. 2.4 A typical isobaric binary diagram.

The mass of the system is distributed in a common phase S1, represented by
point c, and a non-common phase L, represented by point E. According to mass
balance principle, the system point M must exist at the tie-line of two phase points,
c and E. In this case, the mass of the system may be distributed over a non-common
phase, this is possible only for the condition: R1 =0, the phase transition occurs at
an invariant temperature, and there is a boundary with (φmax+1) coexisting phases
between the two NPRs during the invariant phase transition. Here, φC = 1, the
system points exist in the one-dimensional “tie-line” of two phase points, i.e. the
tie-line with φC(= 1) dimension,

R′
1 = R1 + φC = 0 + 1 = 1

The circumstances of isobaric, ternary phase diagrams are similar. Let us take
an isobaric ternary, partially miscible, eutectic phase diagram, for example. We
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discuss the boundary with (φmax + 1 = 4) coexisting phases between the two NPRs
(L+S1+S2)/(S1+S2+S3), the invariant phase transition occurs between two NPRs.
φC = 2(S1, S2), the mass of the system is distributed over two common phases S1

and S2, represented by point a and b, respectively, and one non-common phase, L
represented by point E. According to the mass balance principle, the system points
exist in the triangle formed by three phase points: a, b and E (φC + 1 = 3). This
triangle is two-dimensional, i.e. R′

1 = φC = 2, or R′
1 = R1 + φC (see Fig. 2.5).

Fig. 2.5 System point and phase points of the system at the eutectic

temperature in a ternary phase diagram.

For the isobaric phase diagrams of N -components (N�3), when R1 = 0, the
phase transition occurs at an invariant temperature, and there is a boundary with
(φmax+1) coexisting phases during the phase transition, the mass of the system being
distributed over (φC + 1) phases, represented by φC common-phase points and one
non-common phase point. Similarly, it may be shown that the system points exist
in an φC-dimensional boundary, formed by (φC + 1) phase points as vertexes, i.e.

R′
1 = φC or R′

1 = R1 + φC

2. For other cases, for the system at the boundary, the mass of the system may
be distributed only over common phases.

R′
1 = R1 + (φC − 1) (2-13)

For example, let us discuss the boundary of NPRs L/(L+S1) in Fig. 2.4. R1 =
N −Φ +1 = 1, φC=1(L). R′

1 = 1+1−1 = 1, R′
1 = R1 =1, so it is a one-dimensional

boundary and also a one-dimensional phase boundary.
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Let us now discuss how eq. (2-13) is obtained. Initially, the phase points are
fixed; after fixing the temperature (the phase points are the fixed points, a2 and L2

(see Fig. 2.4)). All of the system mass is distributed over the common phase L, at
the phase point L2. The system point, M2, coincides with the common phase point
L2, it is a zero-dimensional point. Here, φC=1, so the system point exists at the
point with (φC − 1) = 0 dimension. When the temperature varies, the phase point
varies with the temperature, so R1=1; and the system point varies in the same way,
R′

1 =1, i.e.

R′
1 = R1 + (φC − 1) = 1 + 1 − 1 = 1

For NPRs (L+S1)/(L+S1+S2) in a ternary isobaric phase diagram, one has R1 =
N − Φ + 1 = 3 − 3 + 1 = 1, φC=2. In fixing the temperature, the phase points are
then fixed too. The phase points are L1 of the common phases L and a1, the phase
point of another common phase, S1 (see Fig. 2.6).

Fig. 2.6 Phase points and tie-lines in a ternary phase diagram,

and temperature varies, R1=1.

According to the method as outlined above, at a given temperature, the system
points must exist on the tie-line formed by phase points L1 and a1, of the common
phases L and S1, i.e. the system points exist on the tie-line of the (φC − 1)=1
dimension. The phase points vary as the temperature changes, R1=1. The tie-line,
on which the system points exist, also varies. The locus of the tie-line varying with
the temperature is a plane of two dimensions. So

R′
1 = R1 + (φC − 1) = 1 + 2 − 1 = 2

Similarly, eq. (2-13) can be obtained for the isobaric phase diagrams of N -
components (N � 3).
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2.6.2 The theoretical proof of the two formulae between R1 and R′
1 in

N �2 isobaric phase diagrams

2.6.2.1 Two types of phase transitions in the phase diagram

For the system in the first NPR transfers to the second NPR by the phase tran-
sition, there are two different types of the phase transitions, it is well known in
phase equilibrium, let us just apply these characteristics to deduce the two formulae
between R1 and R′

1.
1. Type 1
R1 �1, when the phase transition just starts to occur or the two NPRs exist over

the boundary in equilibrium, all the components of the system can distribute itself
over the common phases of NPRs only.

Let us discuss the phase region (L) → phase region (L+S1), see Fig.2.7. First,
the system exists in the liquid phase (point p1). If temperature T decreases, the
system reaches the boundary line, aE, at point M1, the phase transition then starts,
and the NPRs L/ (L+S1) still exists in equilibrium. All components of the system
are distributed over the common phase L only, the amount of non-common phase
S1 is really infinitesimal. This is the basic characteristic of the phase transition of
this first type.

Fig. 2.7 Two types of phase transitions and a special case of phase region transfer.

Let T decreases further, the system is now divided into two phases, i.e. the
system distributes over the common phase, L (at point M2) and the non-common
phase, S1 (at point L2). This really is another problem—the phase transition occurs
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inside the two-phase region (L+S1), it is not the phase transition that occurs on the
boundary between NPRs L/(L+S1).

2. Type 2
When R1=0, during the invariant phase transitions at the invariant temperature,

the components of the system can be distributed over all of the coexisting phases of
NPRs.

Let us now discuss the phase transition (L+S2) → (S1+S2) (Fig.2.7). At first, the
system exists at p2, in the phase region (L+S2). The temperature is now decreasing.
When the system point reaches the Ed line but the invariant phase transition has
not yet started, the system then contains one common phase, S2, and one non-
common phase, L. At this point, the invariant phase transition starts and continues.
Another non-common phase, S1, starts to form and increases, while the non-common
phase, L, in the original phase region (L+S2), decreases. In the course of the whole
invariant phase transition, there are 3 phases =(φmax +1) = (N + 1)(i.e. S2, L and
S1) coexisting in the system. These three phases may have definite and different
amounts of components. When the phase transitions go further, the amount of S1

increases while the amount of L gradually decreasing to zero at last. Following the
invariant phase transition, the system now contains one common phase, S2, and
one non-common phase, S1 the latter being the phase appearing during the phase
transition.

2.6.2.2 A special case of the phase region transfer

Let the phase region (L+S1) transfer to phase region (L+S2) at the eutectic tem-
perature. See Fig.2.7. Suppose the system point is q1 at the beginning, then, at con-
stant TE (eutectic temperature), component B is gradually introduced into the sys-
tem, whence xB increases while xA decreases. When the system point reaches point
E, the system distributes over the phase L (the common phase of NPRs (L+S1)/
(L+S2)) only (this is a very important characteristic!). By introducing more of
component B into the system, while the temperature is maintained constant, the
non-common phase, S2 then appears and gradually increases. The non-common
phase component of the original phase region, S1 has already disappeared. The
system then has one common phase, L and one non-common phase, S2, the system
representative point now being q2.

This case just outlined is not a true real phase transition, it amounts only to
a phase region transfer occurring when some additional component input into the
system at the invariant temperature.

This case actually exists in the phase diagram. We have to discuss it in due
course but it is not all that important.
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2.6.2.3 The theoretical proof of eq. (2-13), R′
1=R1 + φC − 1

There are two cases of R1 only: R1 �1 and R1=0.
In the first instance, we will discuss the case of R1 �1 and the phase transition

of the first type.
The system is in equilibrium on the boundary, the system components are dis-

tributed over the common phases.
For a given initial condition, e.g. T , p are kept constant, the phase composi-

tions are then fixed. Assume that the first NPR contains phases: f1, f2, · · · , fφC
,

fφC+1, · · · , fφC+q1 , the second NPR contains: f1, f2, · · · , fφC
, fφC+1′ , · · · , fφC+q2 ,

where f1, f2, · · · , fφC
are those common phases existing in both NPRs. And

fφC+1, · · · , fφC+q1 are those phases existing only in the first NPR, and fφC+1′ , · · · ,

fφC+q2 are those phases existing only in the second NPR. Now, in accord with the
4th corollary, and for this case where R1 �1, (Φ − 1) � φC �1, there are, during
the phase transition, q1 original phases disappearing and q2 new phases appearing.
According to the mass balance principle (i.e. the level rule, the center of gravity
rule and the extended center of gravity rule, [P-L, 1964]), when the system point
is exactly on the boundary, all components of the system are distributed among
the common phases of the NPRs and the total of the masses of the “disappearing”
phases and the newly “appearing” phases are infinitesimal.

Since all components of the system existing at the boundary are distributed over
the common phases, the following equations stand (mj and M are the mole number
of j-th phase, and the mole number of the overall system, respectively):

x1,1m1 + x1,2m2 + · · · + x1,jmj + · · · + x1,φC
mφC

= Mx1

x2,1m1 + x2,2m2 + · · · + x2,jmj + · · · + x2,φC
mφC

= Mx2

...
xN,1m1 + xN,2m2 + · · · + xN,jmj + · · · + xN,φC

mφC
= MxN

The both sides of each equation mentioned above are now divided by M , and
thus

yj =
mj

M

xi,1y1 + xi,2y2 + · · · + xi,jyj + · · · + xi,φC
yφC

= xi(i = 1, 2, · · · , N)
φC∑
j=1

yj = 1

From linear algebra, applied to the set of equations above, the φC common phase
points on the boundary form φC concentration vectors {x1,j , x2,j , . . . , xi,j , . . . , xN,j},
j = 1, 2, · · · , φC in N -dimensional space. These φC concentration vectors are linearly
independent in the phase diagram space of N dimensions, with the exception that
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they are related, one to another, with the phase equilibrium conditions; they (serving
as vertexes) are able to construct a hyperplane of (φC − 1) dimensions. On the
other hand, the N concentration vectors of system points {x1,x2, . . . , xN} are linear
combinations of the φC concentration vectors of phase points. Because 1� yj �0

and
φC∑
j=1

yj = 1, the vectors of the system points {x1,x2, . . . , xN} must be within the

same hyperplane of (φC − 1) dimensions and cannot be outside of it.
Let the conditions now be changed, for example, by T, etc. being varied. If there

are R1 parameters being varied, the equilibrium phase points of the common phases
(i.e. the vertexes of hyperplane of (φC − 1) dimensions mentioned above) may move
in the space of R1 dimensions, and the hyperplane over which the system points
exist, may also move in this space of R1 dimensions (Please see the example in
section 2.6.1.1 and Fig.2.4 and its explanation, this argument may then be more
easily understood). So now the total dimensions of the space in which the system
points exist on the boundary, are (R1 + φC − 1), i.e.

R′
1 = R1 + (φC − 1) (2-13)

Next, we discuss the case of R1 = 0 and R′
1 = R1+(φC −1). This actually occurs

on the invariant isothermal line, for example, the eutectic line. The transfer from
one NPR to another NPR is driven by the change of system composition. When
the system exists at this boundary, then, by mass balance principle, all masses of
the system components are distributed over the common phases, i.e. the masses of
components, in those original phases disappearing and in those phases newly ap-
pearing, are infinitesimal. In this case, φC �1, between these two NPRs, there are
φC common phase points. These phase points construct a hyperplane of (φC − 1)
dimensions, all of the components are distributed over the common phases. This sit-
uation is similar to the case: R1 �1 and R′

1 = R1 +(φC −1), as discussed previously.
When the values of the phase points {xi,j} (i = 1, 2, · · · , N ; j = 1, 2, · · · , φC ) are
given, all those system points {xi}(i = 1, 2, · · · , N) satisfying the phase equilibrium
conditions are distributed over the concentration hyperplane of (φC − 1) dimensions
and so fill the whole hyperplane but can not exceed it. So, in this case, the dimen-
sions of the hyperplane over which the system points are distributed, are: (φC − 1).
Although the equilibrium phase points are invariant, R1 =0, the relation between
R1 and R′

1 is still in the form of

R′
1 = R1 + (φC − 1).

This case is not really a phase transition, it is only a phase region transfer.
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2.6.2.4 The theoretical proof of R1 =0, there is an invariant phase transition be-
tween two NPRs and R′

1 = R1 + φC

Let us now discuss the phase transition of the second type (ref. subsection
2.6.1.1).

Consider the case, N�2, R1=0 and the phase transition occurring at the invariant
(eutectic or peritectic) temperature, there exists an invariant region of (φmax +
1)=(N + 1) coexisting phases between the two NPRs during the phase transition.

When the temperature decreases, the system reaches the invariant region from
the first NPR while the phase transition has not yet started. All components of
the system are distributed over the phases of the first NPR. As the phase transition
proceeds, the non-common phases of the first NPR decrease continuously while the
non-common phases, existing within the second NPR, newly appear and increase
gradually. In the course of this invariant phase transition, all phases in both NPRs
simultaneously exist, while the amounts of all of these phases vary continuously.
Until the invariant phase transition ends, all components are distributed over those
phases existing in the second NPR.

In the case of: R1 =0 and Φ =(N + 1), and according to eq.(2-4), φmax = N ;
then φ1 � N , φ2 �N ; since Φ > N , in this case, even φ1 = φ2 = N , two NPRs are
still not identical.

Let the phases in the first NPR be f1, f2, · · · , fφ1 . When the system just reaches
the invariant phase transition temperature, all components still being distributed
over the phases of the first NPR, the following relation among the compositions of
the system points {xi}(i = 1, 2, · · · , N) and the compositions of the phase points
{xi,j} (i = 1, 2, · · · , N ; j = 1, 2, · · · , φ1) are valid:

x1,1m1 + x1,2m2 + · · · + x1,φ1mφ1 = Mx1

x2,1m1 + x2,2m2 + · · · + x2,φ1mφ1 = Mx2

...
xN,1m1 + xN,2m2 + · · · + xN,φ1mφ1 = MxN

(2-14)

m1, m2, · · · , mφ1 are the sum of all the masses of the components (i = 1, 2, · · · , N)
in the j-th phase (j = 1, 2, · · · , φ1) in the first NPR, M is the total amount of
these component masses in the system. When the invariant phase transition is just
terminated, the mass of the system is wholly distributed over the second NPR.
The following relation, then existing among the compositions of the system points
{xi} and the phase compositions of the phase points in the second NPR {xi,j′}(i =
1, 2, · · · , N ; j′ = 1′, 2′, · · · , φ2), is valid. Then:

x1,1′m1′ + x1,2′m2′ + · · · + x1,φ2mφ2 = Mx1

x2,1′m1′ + x2,2′m2′ + · · · + x2,φ2mφ2 = Mx2

...
xN,1′m1′ + xN,2′m2′ + · · · + xN,φ2mφ2 = MxN

(2-15)
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where m1′ , m2′ , · · · , mφ2 are the sum of the masses of all the components (i =
1, 2, · · · , N) in the j′-th phase (j′ = 1′, 2′, · · · , φ2) in the second NPR. In the case of
an invariant phase transition at an invariant temperature, the phase compositions
are also invariant, so all {xi,j} and {xi,j′} are known fixed values. Since there are φC

common phases in the two NPRs, some concentration vectors of {xi,j} and {xi,j′}
are in common, but the masses of the common phases in the two NPRs are still
different in values. So m1, m2, · · · , mφ1 , m1′ , m2′ , · · · , mφ2 ;xi(i = 1, 2, · · · , N) are

the independent variables. Since
φ1∑

j=1

mj = M , so M is not an independent variable.

For the same system, the following relation holds:

φ1∑
j=1

mj =
φ2∑

j′=1

mj′ (2-16)

Considering eqs.(2-14), (2-15) and (2-16) to be true independent equations, thence

N∑
i=1

xi = 1

is not an independent equation. There are a total (2N +1) of independent equations
in eqs (2-14)–(2-16). The independent variables are xi(i = 1, 2, · · · , N), mj(j =
1, 2, · · · , φ1), mj′(j′ = 1′, 2′, · · · , φ2). The number of independent variables is;

N + φ1 + φ2 = N + Φ + φC = 2N + 1 + φC

The dimensions of the solution for equations (2-14)∼(2-16) are

2N + 1 + φC − (2N + 1) = φC

so the dimensions of the system points R′
1 are φC . Although R1 =0, for uniformity,

we write
R′

1 = R1 + φC (2-12)

If φC =0, R′
1 = 0, the system point has a unique solution, the two NPRs have only

one common system point.
When φC �=0, the hyperplane of dimensions, φC , over which the system points

of the boundary are distributed, is constructed in such a way. φC common phases
have φC common phase points, furthermore, when φC = 0, there is still a common
system point so there are (φC + 1) common phase points or common system points.
According to the 5th corollary, φC �(Φ − 2) = N − 1, so

(φC + 1) � N
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Besides, these (φC +1) common phase points or system points are related one to
another within the phase equilibrium conditions. Further, they are linearly indepen-
dent within their concentration space of N dimensions. These (φC + 1) points serve
as vertexes to form a hyperplane of φC dimensions, over which the system points are
distributed. The hyperplane of φC dimensions is a common component of both of
the NPRs. The dimensions of boundary R1 are φC , and eq.(2-12) is therefore valid.

Finally, we may now try to explain the character of the only common system point
existing between the two NPRs. When R1=0, phase transition occurs at the invariant
temperature, and there exists an invariant region containing (φmax + 1)=(N + 1)
phases, situated between two NPRs during the invariant phase transition. When
φC = 0, and φ1 = N and φ2 =1, in this case, the only single common system point,
situated between the two NPRs, is the equilibrium phase point of the only one phase
of the second NPR.

Since all equilibrium phase points over the invariant region are indeed invariants,
these equilibrium phase points of the second NPR are therefore invariants also. In
this single-phase region, the phase point coincides with the system point, therefore
this phase point is also a system point on the boundary of the second NPR. It has
been shown that, when R′

1 = R1 + φC , φC = 0 and R1 = 0, the “common” system
point of the two NPRs is unique. So the common system point is the only single
phase point of the second NPR located in the invariant region.

As indicated above, we have presented equations for the calculation of R′
1 from

values of R1 and φC , and the corresponding theoretical proof of these equations.
The difference between these equations

R′
1 = R1 + φC (2-12)

R′
1 = R1 + (φC − 1) (2-13)

is not simply due to “plus or minus” one artificially, it reflects on the difference
between the two different types of phase transitions in the phase diagram. Further,
these two equations are deduced theoretically when treating the different types of
phase transitions.

2.7 The Summary of the Boundary Theory of Isobaric Phase

Diagrams

The basic points of the boundary theory of isobaric phase diagrams are:
1. The concept of the phase boundary has been put forward and the relation

between the “phase boundary” and the “boundary” and their differences, has deter-
mined. We have revealed the concept of Φ, i.e., the total number of different phases
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present in all NPRs. The assemblage of NPRs phases is the important feature of the
phase diagram. From these assemblages of NPRs phases, the important parameters
Φ and φC are able to be calculated. From Φ and φC , according to the later points,
the parameters R1 and R′

1 may also be obtained.
2. Based on the above concepts, along with the phase equilibrium equations for

the equilibrium system existing on the boundary, the theorem of corresponding rela-
tionship (TCR) between Φ and R1 is obtained. For use in isobaric phase diagrams,
and in general cases, Z=0, r=0, R1 = N − Φ + 1. This is eq. (2-6).

We have demonstrated that TCR is an independent theorem, not a variant of
the phase rule.

3. Through logical deduction, we have obtained five corollaries for the TCR,
which determine both the ranges and regularities in the variation of Φ, φC and R1.
These corollaries are useful in dealing with problems concerning the phase diagram.

4. Based on the relation between the phase point compositions, the system point
compositions, and the mass balance principle, the two equations for calculating R′

1

from the values of R1 and φC are theoretically demonstrated. For phase transitions
of the first type, R1 � 1. When the phase transition commences, the equilibrium
system can be distributed over the common phases between the NPRs only, R′

1 =
R1 + (φC − 1), eq.(2-13). For phase transitions of the second type, when R1=0, the
phase transition occurs at an invariant temperature, and there is an invariant region
of coexisting (N+1) phases between the two NPRs during the phase transition,
R′

1 = R1 + φC , eq.(2-12).
The difference between eqs(2-13) and (2-12) is not due to artificial plus or minus

one, but due to the difference of two types of phase transitions in the real phase
diagram.

5. Eqs. (2-6), (2-12) and (2-13) are the three principal formulas for the boundary
theory of isobaric phase diagrams.

If Φ, φC , R1 and R′
1 are given parameters, then the relationship among the

NPRs and their boundaries can be well explained. With the aid of the boundary
theory of phase diagrams, one now may well understand how phase regions and their
boundaries can be manipulated to construct both the “elegance” and the “utility”
of phase diagrams!
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Chapter 3

Application of the Boundary Theory to

Unary, Binary and Ternary Phase

Diagrams
– Comparison of the Boundary Theory Application

and Palatnik-Landau’s Contact Rule of Phase

Regions

According to the boundary theory of isobaric phase diagrams, the relationship
among NPRs and their boundaries in unary, binary and ternary phase diagrams
of all types (including isothermal and isopleth sections), could, with advantage, be
systematically clarified. With the aid of boundary theory, Rhines’ ten empirical
rules concerning the construction of complicated ternary phase diagrams from phase
diagram units are well expounded. A comparison, made between the boundary
theory and Palatnik-Landau’s contact rule of phase regions, is also presented in this
chapter.

3.1 Determination of Phase Assemblages of NPRs and the

Characteristics of Their Boundaries by the Boundary The-

ory

3.1.1 Determination of the phase assemblage of the second NPR, when
the phase assemblage of the first NPR, and the characteristics of
the boundary between the two NPRs, are known

According to eq. (2-12) or (2-13)

R′
1 = R1 + φC

R′
1 = R1 + φC − 1

From R′
1 and R1, the value of φC can be obtained.

φC = φ1 + φ2 − Φ

φ2 = Φ + φC − φ1
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The number of the common phases of the two NPRs is φC , the phase number
of those phases existing only in the first NPR is (φ1 − φC). Therefore, the phase
number of those existing only in the second NPR is:

φ2 − φC = (Φ + φC − φ1) − φC = Φ − φ1

Thus, the number of phases of the second NPR, φ2, the number of common phases
of the two NPRs, φC , and the phase number belonging only to the second NPR
(φ2 − φC), are all determined.

3.1.2 The determination of the characteristics of the boundary between
the two NPRs

When the phase assemblages of the two NPRs are given, the characteristics of
the boundary between them can be determined as follows. If the values of φ1, φ2, φC

and Φ are known, then, by the boundary theory, the value of R1 may be calculated
with Φ, while the value of R′

1 may be obtained with eq.(2-12) or (2-13), from the
values of R1 and φC . Therefore, the characteristics of the boundary can be well
determined.

3.1.3 Examples

Take NPRs L/(S1+L) and their boundary, as shown in Fig. 3.1, as an example.

Fig. 3.1 The isobaric, eutectic binary phase diagram.

If the first NPR and the characteristics of the boundary, aE, are already given,
i.e. φ1 = 1, R′

1 = 1, R1 = 1, then the phase assemblage of the second NPR may be
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determined.
Φ = N + 1 − R1 = 2 + 1 − 1 = 2

Through eq. (2-13), the number of the common phases existing in both NPRs,
becomes:

φC = R′
1 + 1 − R1 = 1 + 1 − 1 = 1

The phase number of the second NPR,

φ2 = Φ + φC − φ1 = 2 + 1 − 1 = 2

The number of phases existing only in the second NPR,

φ2 − φC = Φ − φ1 = 2 − 1 = 1

Therefore, the phase number of the second NPR is 2. It has one phase “in
common” with the first NPR and one phase belonging only to itself, so the phase
assemblage of the second NPR is well determined.

If the phase assemblage of the first NPR is (L+S1), and the phase assemblage of
the second NPR is (S1+S2), then the characteristics of their boundary are able to
be determined. The dimension of their phase boundary is given by

R1 = N + 1 − Φ = 2 + 1 − 3 = 0

The dimension of the boundary may be determined through eq. (2-12),

R′
1 = R1 + φC = 0 + 1 = 1

By this means, the characteristics of the boundary between the two NPRs have
been able to be well determined.

3.2 Application of the Boundary Theory to Unary Phase

Diagrams

The phase diagrams for unary systems are very simple (see Fig. 3.2). They can
be readily interpreted by means of the TCR approach without the need for use of
any additional concepts. According to the TCR for unary phase diagrams (N = 1),

R1 = N − Φ + 2 = 3 − Φ

Φ 2 3

R1 1 0

The phase boundary line point

example oa, ob, oc o
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Fig. 3.2 is a real p-T phase diagram, excluding composition variables. This is
not the type of isobaric T -xi phase diagram, but the phase diagram of potential
axes only.

Fig. 3.2 A typical phase diagram for a unary system.

Palatnik-Landau’s contact rule can not treat such a simple phase diagram , see
later section 3.6.3.

3.3 Application of the Boundary Theory to Binary Phase Di-

agrams

3.3.1 The general analyses of isobaric binary phase diagrams

The relationship among NPRs and their boundaries for isobaric phase diagrams
is shown in Table 3.1.

Table 3.1 The variations of Φ, R1, φC , φmax and R′
1 of a binary phase diagram

(r = Z = 0, p = constant, R1 = 3 − Φ)

Φ(3 � Φ � 2) 2 3

R1(1 � R1 � 0) 1 0

φmax 2 2

φC φC = 1 1 � φC � 0

R′
1 R′

1 = R1 + φC − 1 R′
1 = R1 + φC

The phase assemblages of two NPRs fi/(fi + fj)

φC = 1, R′
1 = 1

(fi + fj)/(fj + fk)

φC = 0, R′
1 = 0

L/(S1 + S2)

(fi + fj)/fk

Where fi, fj and fk denote different phases (i, j, k=1, 2, 3; i �= j �= k).
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3.3.2 Analyses of some typical isobaric binary phase diagrams

3.3.2.1 A typical isobaric binary phase diagram

A typical isobaric binary phase diagram is shown in Fig.3.1. A few particular
points only are now discussed,

(1) The boundary point, E, between NPRs L/(S1+S2) in Fig. 3.1. Φ = 3, R1 = 0,

NPRs L and (S1+S2) exist on the opposite sides of the invariant region; during
the invariant phase transition, there coexist (φmax+1)=(N+1) = 3 phases in this
invariant region, and φC=0.

R′
1 = R1 + φC = 0 + 0 = 0

(2) The point a, b in Fig. 3.1. This may be considered from two different view
points. Take the point “a” as an example. Point a may be considered as the melting
point of the pure component, A. Since N=1,

R1 = N + 1 − Φ = 1 + 1 − 2 = 0

Or, from the viewpoint of the binary phase diagram, point a may be considered as
the boundary of NPRs L/S1. Φ=2, and the compositions of the liquid and solid
phases are identical, x1,L = x1,S1 , Z=1,

R1 = N + 1 − Z − Φ = 2 + 1 − 1 − 2 = 0

Therefore, point a is a phase boundary point.
Palatnik-Landau’s contact rule cannot treat such a simple phase diagram, see

later section 3.6.3.

3.3.2.2 SiO2-Al2O3 phase diagram

The SiO2-Al2O3 phase diagram is shown in Fig. 3.3 see next page (where, S or A
represents SiO2 or Al2O3 respectively). The boundary point, M, may be considered
as the melting point of the 3Al2O3·2SiO2, it is a phase boundary point between
the two single-phases. In the single-phase region, the phase point coincides with
the system point, so it also serves as a boundary point between the two single-phase
regions. The boundary line, Me, is the single, solid phase line of the composite-oxide,
3Al2O3·2SiO2.

3.3.2.3 The phase diagram of the system, KCl-NaCl, with a melting point minimum

The NaCl-KCl phase diagram is shown in Fig. 3.4. M is the boundary point
between the two single-phase regions, L and S, Φ=2, while the compositions of the
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solid and liquid phase are identical, x1,S = x1,L, Z=1,

R1 = (N − Z) − Φ + 1 = (2 − 1) − 2 + 1 = 0

Fig. 3.3 SiO2-Al2O3 phase diagram.

Fig. 3.4 NaCl-KCl phase diagram.

The point M is a phase boundary point between the two NPRs L and S. In
the single-phase region, the phase point tallies with the system point, therefore this
phase boundary point is also a boundary point.



3.3 Application of the Boundary Theory to Binary Phase Diagrams 67

3.3.3 A few cases are beyond the scope of the boundary theory

3.3.3.1 The line Mcde in the SiO2-Al2O3 binary phase diagram (Fig. 3.3)

Take line de as an example. There are three different phases, S, A3S2 and
A, in the NPRs on either side of line de. The total compositions of the systems,
presented in NPRs on either side of line de are different. The transfer, from the
phase region (S+A3S2) to that of (A3S2+A), can only be realized by changing the
system composition. As discussed in section 2.6.2, this “change” is really not an
equilibrium phase transition. The three phases, S, A3S2 and A, cannot “coexist in
equilibrium” on the line, de. This is an important difference between line de and
other boundary lines between the NPRs. Since the boundary theory only deals with
the case where different equilibrium phases are coexisting in two or more NPRs.
Thus, the boundary theory does not apply to this particular case certainly.

3.3.3.2 The case of the phase region II (L+S), is shown in Fig. 3.4 to be passing
to the phase region III (L+S), through the point M, as indicated in Fig. 3.4.

The phase regions, II and III, are really the same two-phase regions, (L+S), point
M being a “singular point” in this phase region. Because the NPRs discussed in the
boundary theory must be different phase regions in the phase diagram, the point M
is “out of the question” with respect to the relationship among the NPRs and their
boundary, nor does the boundary theory “work” in such cases.

3.3.4 Critical point

There is a critical point, K, within the phase diagram, as shown in Fig. 3.5.

Fig. 3.5 Isobaric phase diagram with critical point.
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The critical point satisfies the following two equations:(
∂μ

∂x

)
p,T

= 0

(
∂2μ

∂x2

)
p,T

= 0

The critical point is also a “singular” point; thus it may be “discussed”, along
with other principles of the phase equilibrium, and it cannot be treated by the
boundary theory.

As these 3 cases are beyond the scope of the boundary theory, therefore, the
boundary theory cannot treat these cases surely.

3.4 Application of the Boundary Theory to Ternary Phase

Diagrams

3.4.1 The general analysis

In a ternary phase diagram, there are three, and only three, types of phase
equilibrium that can exist on the boundaries, i.e. two-, three- and four-phase equi-
librium. The general relationship among NPRs and their boundaries in ternary
phase diagrams are summarized in the following Table 3.2.

Table 3.2 The variations of Φ, R1, φC and R′
1 of ternary phase diagrams

(r = Z = 0, p = constant, R1 = 4 − Φ)

3.4.2 Isothermal sections of isobaric, ternary phase diagrams

The isothermal section is also called the horizontal section. In isothermal sections,
the temperature is kept constant, therefore, in regular sections, the dimensions of the
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phase boundaries (R1)H (H is an abbreviation of “Horizontal”)and the dimensions
of boundaries (R′

1)H of isothermal sections are one less than the dimensions of the
phase boundaries, R1, and the dimensions of boundaries, R′

1 of the space phase
diagrams, respectively, i.e.

(R1)H = R1 − 1 (3-1)

(R1)H = 3 − Φ (3-1′)

(R′
1)H = R′

1 − 1 (3-2)

For the special case, where the isothermal section crosses the extreme point or
the invariant transition point, the phase boundary, or the boundary, is associated
with this special point when it satisfies the following equations:

(R1)H = R1 (3-3)

(R′
1)H = R′

1 (3-4)

If all boundaries and phase boundaries in the isothermal section satisfy eqs.(3-1)
and (3-2), this section is called the “regular section”. If a particular boundary or
phase boundary of an isothermal section exist, which does not satisfy eq. (3-1) or
(3-2), this section is called the “irregular section”.

Here, only the regular, isothermal ternary sections are analyzed.
There are two types of boundaries, i.e. boundary lines and boundary points, in

the isothermal ternary section.
For isobaric, ternary phase diagrams,

R1 = N + 1 − Φ = 4 − Φ

In the isobaric phase diagram, when R1 �1, then φC �1 (4th corollary, see section
2.5),

R′
1 = R1 + φC − 1 = 4 − Φ + φC − 1

= 3 − Φ + φC

For regular, isobaric isothermal sections,

(R1)H = R1 − 1 = 3 − Φ (3-5)

(R′
1)H = R1 − 1 = 2 − Φ + φC (3-6)

Let us discuss the two types of boundaries separately. They are the boundary
line and the boundary point.
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3.4.3 The two types of boundaries

3.4.3.1 The boundary line

The condition of the boundary line is (R′
1)H = 1, by eq.(3-6):

1 = 2 − Φ + φC

φC = Φ − 1

According to the different values of Φ, one can divide the boundary lines into
two classes:

(1) Φ=2, (R1)H = 3−Φ=1, so the boundary and phase boundary have the same
dimensions, and φC=1.

φ1 = 1, φC = 1, so φ2 = 2.

φ1 = 2, φC = 1, so φ2 = Φ − φ1 + φC = 2 − 2 + 1 = 1

These two cases are similar: the phase assemblages of the NPRs on the two sides
of the boundaries of both cases, may be expressed as NPRs fi/(fi + fj).

(2) Φ = 3, (R1)H = 3−Φ = 0. Since (R′
1)H �= (R1)H, these boundary lines are no

longer phase boundary lines. These boundary lines therefore consist only of system
points.

By eq. (3-6),
(R′

1)H = 2 − Φ + φC = φC − 1

1 = (R′
1)H = φC − 1

thence
φC = 2

Φ − φC = 1

If φ1=2,
φ2 = Φ − φ1 + φC = 3 − 2 + 2 = 3

The phase assemblages of the two NPRs on both sides of these boundaries are
of the type of NPRs: (fi + fj)/(fi + fj + fk).

If φ1 = 3, φ2 = 2, the phase assemblages of the two NPRs are NPRs (fi + fj +
fk)/(fi + fj). These two cases are similar, only the order of the NPRs is inverted.

3.4.3.2 The boundary point

The condition of the boundary point is (R′
1)H=0, (R1)H � 0, so Φ � 3, see

eq. (3-1′).
Suppose that Φ � 2, R1 = (N + 1) − Φ = 3 + 1 − Φ = 4 − Φ � 2,

(R1)H = R1 − 1 � 1
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This contradicts the “premise” of (R′
1)H=0 and (R1)H �0, and thus the case is

impossible.
Therefore, there is only one solution, i.e. Φ=3.

(R1)H = 3 − Φ = 0

0 = (R1)H = 2 − Φ + φC = 2 − 3 + φC = φC − 1

φC = 1

and
Φ − φC = 2

The number of non-common phases in the two NPRs is 2, and (R′
1)H = 0, so the

two NPRs can intersect with each other only at a fixed point.
If φ1 = 1 : since φC=1 and Φ=3, φ2=3, the two NPRs are the type of NPRs,

fi/(fi + fj + fk), and can intersect at a point which is a phase point of the “phase
in common”, fi.

If φ1=2: since φC=1 and Φ=3, φ2=2, the two NPRs are of the type of NPRs
(fi+fj)/(fj+fk); NPRs intersect at a boundary point which is also a phase point of
the common phase fj .

Through discussion of the isobaric, isothermal ternary section, in conjunction
with the “boundary theory of phase diagrams”, the characteristics of the boundaries
of sections of this type, are well determined.

The results of the boundary theory of the isobaric, isothermal ternary section
may be summarized, as follows:

The cases

R1 � 1, φC � 1

R′
1 = R1 + φC − 1

Φ (R′
1)H (R1)H φC

The phase assemblages

of two NPRs

2 1 1 1 fi/(fi+fj)

3 1 0 2 (fi+fj)/(fi+fj+fk)

3 0 0 1
fi/(fi + fj + fk)

(fi + fj)/(fj + fk)

Notice: In regular isobaric, isothermal ternary phase diagrams, there is no case of Φ=4.

We will compare these results from the boundary theory viewpoint with those of
Palatnik-Landau’s theory, for isothermal ternary sections, later in section 3.6.

3.4.4 Typical isopleth sections (or vertical sections) of isobaric ternary
phase diagrams

3.4.4.1 A brief analysis of the isobaric ternary isopleth section

The ternary isopleth section is a much more complicated structure than the
isothermal ternary section. Although the isopleth section is depicted as being on a
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plane, only the total composition of the system is constrained by a certain condition,
the temperature of the system being a variable and the two phase compositions
concentrations are also variables. The number of the independent variables of the
equilibrium section is still three, i.e. the same as in the spatial ternary phase diagram.
However, there are some differences between the isopleth section and the spatial
ternary phase diagram, but, from the viewpoint of the phase equilibrium, both
exhibit much similarity.

3.4.4.2 The characteristics of the boundary lines on a typical, regular isobaric
ternary isopleth section

Based on the phase assemblages of those NPRs situated on the isobaric ternary
isopleth section, the characteristics of the boundary lines between these NPRs may
also be determined. Fig. 3.6 shows a typical, isobaric ternary isopleth section.

There are three types of boundary lines and two types of boundary points in this
section. These are now discussed separately.

Fig. 3.6 Isobaric eutectic ternary isopleth section.

(1) The boundary lines of the first type are the lines de, ef, fg; the NPRs on the
two sides of these lines have Φ = 2, φC = 1 (the common phase is L).

According to the boundary theory,

R1 = (N + 1) − Φ = 4 − 2 = 2
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And R1 �1,

R′
1 = R1 + φC − 1 = 2 + 1 − 1 = 2

(R1)i = R1 − 1 = 1, (R′
1)i = R′

1 − 1 = 1

(R1)i = (R′
1)i

The boundary and the phase boundary in the corresponding space of the isobaric
ternary phase diagram are both of the same phase boundary plane of the common
phase, L. This boundary plane intersects the isopleth section on a curved line. This
is a phase boundary line, constituted by the equilibrium phase points.

(2) The boundary lines of the second type are lines mj, jh, he, ek, kf, fi, il and
ln. Consider line “he” as an example.

The NPRs (L+S2)/(L+S1+S2), on both sides of line he, have Φ=3, φC=2, so
R1 = 4−Φ = 1. In this case, the phase boundary of the corresponding spatial phase
diagram, is a one-dimensional curved phase boundary line. Since φC=2, there are
two such boundaries. At constant temperature, one may find two equilibrium phase
points on the two phase boundary lines and the tie-line connects these two phase
points. As the temperature changes, the loci of the moving tie-lines form the curved,
two-dimensional boundary plane which is made up of system points. The boundary
line, he, is the intersection of the boundary plane on the isopleth section. So line
“he” also consists of system points. In addition to “he”, all of the other lines may
be discussed in a similar way.

(3) The boundary line of the third type is that of line jkl, the NPRs on both
sides of this boundary line satisfy the condition: Φ = 4, R1=0; so temperature of
boundary line being invariant. Consider, as an example, the boundary line, jk, lying
between NPRs (L+S1+S2)/(S1+S2+S3). The phase transition is an invariant one,
there is a (N+1)=4 four-phase region coexisting between these NPRs and φC=2,
thus:

R′
1 = R1 + φC = 0 + 2 = 2

The corresponding boundary in the spatial phase diagram is a boundary plane
(since temperature is maintained constant). Line jk is the intersection line of this
boundary plane on the isopleth section; it also consists of system points only.

There are also four equilibrium phase points; they are not shown in the regular
sections. They do not occur on the line jkl.

3.4.4.3 The characteristics of the boundary points in the regular, isobaric ternary
isopleth section

There are two types of boundary points:
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(1) The phase boundary points, e and f, the NPRs on both sides of these phase
points satisfy the conditions Φ=3, φC=1 and R1=1,

R′
1 = R1 + φC − 1 = 1 + 1 − 1 = 1

R′
1 = R1 = 1

So, in the corresponding spatial phase diagram, the boundary and phase bound-
ary are both of the same phase boundary line of the common phase, L. Point e (or
f) is the crossing point of this phase boundary line on the isopleth section. It is an
equilibrium phase point of the common phase, L.

(2) The boundary point. The three boundary points, j, k, and l (see Fig. 3.6),
have been discussed earlier in the discussion on the boundary lines of the third type.
Within the regular isopleth sections, they are all system points.

3.4.5 The boundary theory of isobaric ternary isopleth sections

3.4.5.1 The basic principles

The independent variables of the isobaric, ternary phase diagram are: T , x1

and x2 (the mole fractions of the composition of the ternary system, xi, i=1,2,3;∑
xi = 1), the isobaric ternary phase diagram being three-dimensional. If one

mole fraction of the system composition (e.g. x1)is kept constant, the dimensions
of the phase boundary (R1)i and boundary (R′

1)i of the isopleth section are one
dimension less than the dimensions of the phase boundary R1 and boundary R′

1 of
the corresponding spatial phase diagram, respectively.

(R1)i = R1 − 1

(R′
1)i = R′

1 − 1

}
(3-7)

We now discuss the characteristics of phase boundaries and the boundaries of
the isopleth section, associated with the values of the phase boundaries dimensions
of the corresponding spatial phase diagram.

3.4.5.2 The case of R1 �1

(1) When R1 �1, then φC �1 and R′
1 = R1 + φC − 1

If R1 �1, and there are boundary lines with (R′
1)i = 1, then, in accord with the

boundary theory, the following equations may be deduced for the isobaric ternary
isopleth section:

(R1)i = R1 − 1 = N + 1 − Φ − 1

(R1)i = 3 − Φ (3-8)

(R′
1)i = R′

1 − 1 = (R1 + φC − 1) − 1 = (N + 1 − Φ) + (φC − 1) − 1



3.4 Application of the Boundary Theory to Ternary Phase Diagrams 75

(R′
1)i = φC + 2 − Φ (3-9)

When (R′
1)i = 1,

1 = φC + 2 − Φ

Φ − φC = 1 (3-10)

The number of phase differences, between the two NPRs with a boundary line,
is one.

The phase assemblages of the two NPRs in this case are of the types: NPRs
fi/(fi + fj) and (fi + fj)/(fi + fj + fk).

If fi/(fi + fj), Φ=2, φC=1.

(R1)i = 3 − Φ = 1

(R′
1)i = φC + 2 − Φ = 1

(R1)i = (R′
1)i = 1

So, the boundary line is also a phase boundary line.
In NPRs, (fi + fj)/(fi + fj + fk), Φ = 3, φC = 2.

(R1)i = 3 − Φ = 0

(R′
1)i = φC + 2 − Φ = 1

(R′
1)i = 1 > (R1)i = 0

Thus, the boundary line is a boundary line only, and it does not act as a phase
boundary line.

We may now summarize the above descriptions in a table. For isobaric ternary
isopleth sections, when R1 � 1, (R′

1)i = 1.

Phase assemblages φC (R1)i (R′
1)i

fi/(fi + fj) 1 1 1

(fi + fj)/(fi + fj + fk) 2 0 1

(2) When the case of R1 � 1 and there are boundary points at the isobaric
ternary isopleth section, i.e. (R′

1)i = 0.

For the case: (R′
1)i = (R1)i = 0, i.e. the boundary points are also phase boundary

points.
When (R′

1)i = (R1)i = 0, according to eq. (3-8),

0 = (R1)i = 3 − Φ

Φ=3. In this case, the boundary point in the isobaric ternary isopleth section may
also be a phase boundary point.
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∵ 0 = (R′
1)i = φC + 2 − Φ (see eq.(3-9))

φC = Φ − 2

Since Φ=3, φC=1, the phase assemblages of two NPRs in this case must be of the
type of NPRs fi/(fi + fj + fk) or (fi + fj)/(fj + fk) with (R′

1)i = (R1)i = 0.

3.4.5.3 The case of the isobaric, ternary spatial phase diagram, R1=0; and two
NPRs exist on the same side, above the invariant phase transition temperature.
There is no (3+1) = 4 four-phase coexisting invariant region between the two NPRs,
then R′

1 = R1 + φC − 1

(1) In this case, in the isopleth section, there is no boundary line with (R′
1)i=1.

This may be proved as follows:
since

R1 = 0

(R′
1)i = R′

1 − 1 = (R1 + φC − 1) − 1

if 1 = (R′
1)i = 0 + φC − 2,

φC = 3

Since φmax = N = 3, see (2-4), now, φC = 3, the phase assemblages of the two
NPRs are identical, it is meaningless; so, in this case, R1 = 0 and R′

1 = R1 +φC − 1
in the isopleth section, thus there is no boundary line with (R′

1)i = 1.

(2) So (R′
1)i=0

R1 = 0, R′
1 = R1 + φC − 1,

(R′
1)i = (0 + φC − 1) − 1 = 0

φC = 2

R1 = 0,Φ = 4, φmax = 3, so the phase assemblages of the two NPRs of this case is
of the type of NPRs (fi + fj + fk)/(fj + fk + fm). The transfer between (fi + fj +
fk)/(fj + fk + fm) is not a phase transition, it occurs only when the composition of
the system changes.

3.4.5.4 The case: in the isobaric ternary phase diagram, R1=0; an invariant phase
transition from one NPR to another exists, and there is a (N+1)= 4 four-phase
invariant region, situated between the two NPRs, so R′

1 = R1 + φC

In this case, in the isopleth section, there may be boundary lines and boundary
points between the two NPRs.

(1) The case: there exists the boundary line with (R′
1)i = 1 between the two

NPRs
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since
R1 = 0,Φ = N + 1 = 4, (R1)i = R1 − 1 = −1

1 = (R′
1)i = R′

1 − 1 = (R1 + φC) − 1 = φC − 1

Then φC=2 and φmax=3.
So, in this case, the phase assemblages of the two NPRs are of the type of NPRs

(fi + fj + fk)/(fi + fk + fm).
(2) The case: there is the boundary point (R′

1)i = 0 between the two NPRs.

R1 = 0,Φ = N + 1 − R1 = 3 + 1 = 4, (R1)i = −1.

0 = (R′
1)i = R′

1 − 1 = (R1 + φC) − 1 = φC − 1

φC = 1

and φmax=3, so the phase assemblages of the two NPRs in this case must be of the
type of NPRs (fi + fj)/(fj + fk + fm).

We now summarize the results of the boundary theory examination of the isobaric
isopleth ternary section, see Table 3.3.

Table 3.3 The variations of Φ, (R′
1)i, (R1)i and φC of the isobaric ternary isopleth

No. The cases Φ (R′
1)i (R1)i φC

The phase assemblages

of two NPRs

1 R1 � 1, φC � 1 2 1 1 1 fi/(fi + fj)

3 1 0 2 (fi + fj)/(fi + fj + fk)

R′
1 = R1 + φC − 1 3 0 0 1

fi/(fi + fj + fk)

(fi + fj)/(fj + fk)

2
R1 = 0

R′
1 = R1 + φC − 1

4 0 −1 2 (fi + fj + fk)/(fj + fk + fm)

3 R1 = 0 4 0 −1 1 (fi + fm)/(fi + fj + fk)

R′
1 = R1 + φC 4 1 −1 2 (fi + fj + fk)/(fi + fj + fm)

3.4.5.5 The analysis of regular and irregular isopleth sections with the boundary
theory

For the regular isopleth section, when R1=0,

(R1)i = R1 − 1 = −1

That is to say, the equilibrium phase points at the invariant phase transition
region are unable to be shown on the regular isopleth section, since an isopleth
section does not usually cross the invariant equilibrium phase point.

But, the position of a special isopleth section is chosen here in such a way that the
isopleth section does cross one or two invariant phase points, this or these invariant
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phase points are shown naturally in this isopleth section, then it does not satisfy the
rule of (R1)i = −1 (since R1=0). This section is irregular.

A eutectic ternary system is taken as an example to explain the characteristics
of the boundaries in the isopleth sections. The projection of this ternary system is
shown in Fig. 3.7.

Figs. 3.8, 3.9 and 3.10 are of three further isopleth sections of this system.

Fig. 3.7 The projection of a ternary eutectic phase diagram.

Fig. 3.8 A regular isopleth section.
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The composition lines a1b1, a3b3 and a4b4 are shown in Fig. 3.7 also.
(1) The discussion on Fig. 3.8.
This section is a typical, regular isopleth section. The boundaries with R1 > 0

have been discussed in section 3.4.4. Here we discuss the case of R1=0 only.
Initially, the phase region L does not come into contact with the phase region

(S1+S2+C),(C is pure solid phase, not a solid solution). Let us explain this case.
Though phase regions L and (S1+S2+C) do not contact each other, the value of Φ for
these two non-neighboring phase regions, L and (S1+S2+C), may still be counted.

R1 = 4 − Φ = 4 − 4 = 0

(R1)i = R1 − 1 = −1

and there is an invariant phase transition, from one NPR to another, along with a
(N+1)=4 four-phase invariant region between NPRs and φC=0,

R′
1 = R1 + φC

(R′
1)i = R′

1 − 1 = (R1 + φC) − 1 = −1

(R1)i = (R′
1)i = −1 < 0

Therefore, the boundary between phase regions L/(S1+S2+C) can not exist in
the regular isobaric, ternary isopleth section.

Boundary points, a and b, between NPRs (L+S1)/(S1+S2+C) and (L+S2)/
(S1+S2+C), have R1=0, (R1)i = −1, φC=1.

(R′
1)i = (R1 + φC) − 1 = 0

So, the boundary points a, b, are system points only.
The boundary lines, da, ab and bf, between the NPRs (L+S1+C)/(S1+S2+C),

(L+S1+S2)/(S1+S2+C) and (L+S2+C)/(S1+S2+C), respectively, have Φ=4, R1=0.
There is also an invariant phase transition and a (N+1)=4 four-phase, coexisting
invariant region, between the NPRs, and φC=2,

R′
1 = R1 + φC = 2

(R′
1)i = R′

1 − 1 = 1

So, lines da, ab and bf are boundary lines which consist of system points.
At last, we now discuss the boundary points a and b between NPRs (L+S1+C)/

(L+S1+S2) and (L+S1+S2)/(L+S2+C) respectively. These NPRs exist on the same
side of the invariant transition region, φC=2. There is no (N+1=4) four-phase,
coexisting region between the NPRs, and the equation, R′

1 = R1 + φC − 1, is valid.

R′
1 = 0 + 2 − 1 = 1

(R′
1)i = R′

1 − 1 = 1 − 1 = 0
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So, the NPRs in this case can only make contact at individual points. The
transfer between (L+S1+C)/(L+S1+S2) or (L+S1+S2)/(L+S2+C) is not a phase
transition, the phase region transfer from one NPR to another can occur only when
the composition of the system changes.

Let us discuss point 1 and 2 (Fig. 3.8) further. According to the boundary
theory, since the points 1 and 2 are the boundaries in the two binary systems (A-C)
and (B-C), respectively. Take point 1 to discuss, it is the boundary between NPRs
(L+S1)/(S1+C) (it is similar to (S1+L)/(S1+S2) in Fig. 3.1),

R′
1 = R1 + φC = 0 + 1 = 1

But, the composition of one component is fixed in the isopleth section, (R′
1)i =

R′
1 − 1 = 0, therefore the boundary in the isopleth section is a point, it is point 1;

it is not necessary to pull point 1 open to a line section 1-1’ (This is what Palatnik-
Landau did, please see Fig. 3.12.). The discussion on the point 2 is similar to that
of point 1.

(2) The discussion of one irregular isopleth section, see Fig. 3.9. In this figure,
there is only one irregular boundary, i.e. the boundary point e (E) between NPRs
L/(S1+S2+C).

As discussed previously, for this boundary to exist in a regular isopleth section,
it would have:

(R1)i = −1

(R′
1)i = −1

i.e., in the regular isopleth section, there cannot have any common boundary between
these NPRs L/(S1+S2+C). But, the composition line of the system a3b3 in Fig. 3.7
just crosses the ternary eutectic point——the phase point E of phase L, and it is
the only one common system point e(E) between NPRs L/(S1+S2+C), as shown in
Fig. 3.9. This boundary point e(E) exists on this four-phase coexisting plane, it is
naturally shown in Fig. 3.9. The reason for this is very clear from the viewpoint of
geometry.

Palatnik-Landau simply pointed out that the contact rule is not valid in this case,
without their offering any plausible explanation for the invalidity [Palatnik-Landau,
1964].

(3) The discussion of Fig. 3.10, another irregular isopleth section.
In Fig. 3.10, there are two equilibrium phase points O(S1) and e(L) (point e

is also the ternary eutectic point E,) existing on this isopleth section. The tie-
line, Oe, of these two equilibrium phase points occurs naturally in this isopleth
(see line a4b4 in Fig. 3.7). Line a4b4 in Fig. 3.7 is just the tie-line, Oe, shown
in Fig. 3.10. According to the previous discussion, the tie-line, Oe, has to be
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the boundary line between NPRs (L+S1)/(S1+S2+C), therefore, the boundary line
between (L+S1)/(S1+S2+C) occurs fully on this isopleth section. (In general cases,
when the number of phase differences between the two phase regions is three, these
two phase regions cannot be in contact with each other in a regular isopleth section)

Fig. 3.9 An irregular isopleth section.

Fig. 3.10 Another irregular isopleth section.
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Surely, the Palatnik-Landau’s contact rule is invalid in all of these cases shown
in Figs. 3.8, 3.9 and 3.10, they modified the real phase diagrams into other unac-
ceptable forms [Palatnik and Landau, 1964].

3.5 Explanation of Rhines’ Ten Empirical Rules for Con-

structing Complicated Ternary Phase Diagrams with the

Bounary Theory

Now let us turn to explain N. Rhines’ ten empirical rules which must be obeyed
in the construction of a complicated, ternary phase diagram from the phase diagram
units [Rhines, 1956]. All ten of the empirical rules may well be expounded by
application of the boundary theory.

For assisting the reading convenience of the same empirical rule, we cite Rhines’
description at first; then we elaborate our explanation with the use of symbols and
equations. All the symbols used here are similar to those used for Table 3.2.

(1) “Single-phase regions may meet one another at single points, these points are
also the temperature maxima or minima.”

fi/fj ,Φ = 2, Z = 2(x1,i = x1,j , x2,i = x2,j), φC = 0,

R1 = (N − Z) + 1 − Φ = (3 − 2) + 1 − 2 = 0

In the single-phase region, the phase point coincides with the system point.
Therefore, R′

1 = 0 also. Only single points satisfy these conditions.
(2) “One-phase regions are elsewhere separated from each other by two-phase

regions representing the two phases concerned; thus the bounding surfaces of single-
phase regions are always the ‘boundaries’ of two-phase regions.”

fi/(fi + fj)/fj ,Φ = 2, R1 = N + 1 − Φ = 2, φC = 1

R′
1 = (R1 + φC − 1) = 2 + 1 − 1 = 2, R′

1 = R1 = 2

Therefore, the boundaries of the two NPRs fi/(fi+fj), or (fi+fj)/fj are the
phase boundary planes of the common phases; fi or fj .

(3) “One-phase fields touch three-phase regions only at lines which are generally
non-isothermal.”

fi/(fi + fj + fk),Φ = 3, R1 = N + 1 − Φ = 3 + 1 − 3 = 1, φC = 1

R′
1 = (R1 + φC − 1) = 1 + 1 − 1 = 1, R′

1 = R1 = 1

So, boundaries are generally identified by non-isothermal, phase boundary lines
(∴ R1 = 1).
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(4) “One-phase regions touch four-phase reaction planes only at a single point.”

fi/(fj + fk + fm),Φ = 4, R1 = N + 1 − Φ = 3 + 1 − 4 = 0, φC = 0

R′
1 = R1 + φC = 0 + 0 = 0, R′

1 = R1 = 0

Thus, single-phase regions can meet at single phase boundary points with two-
dimensional, four-phase boundary planes.

(5) “Two-phase regions touch each other along lines, which are, in general, non-
isothermal.”

(fi + fj)/(fj + fk),Φ = 3, R1 = N + 1 − Φ = 3 + 1 − 3 = 1, φC = 1

R′
1 = (R1 + φC − 1) = 1 + 1 − 1 = 1, R′

1 = R1 = 1

So, the boundaries are constituted of non-isothermal phase boundary lines, they
are sets of phase equilibrium points of the systems.

In addition, there is also one condition which has not been considered by Rhines.
In isobaric ternary phase diagrams involving peritectic transitions, two two-phase
regions, (fi+fj)/(fk+fm), meet at a single point with the four-phase plane, since:

Φ = 4, R1 = N + 1 − Φ = 3 + 1 − 4 = 0, φC = 0,

R′
1 = R1 + φC = 0 + 0 = 0.

Because the phase assemblages of the two-phase regions are different, there are
no common phases, and thus the boundaries between the NPRs (fi+fj)/(fk+fm),
consist of common system points only.

(6) “Two-phase regions are elsewhere separated by one- and three-phase regions,
by the bounding surfaces that they are enclosing.”

(7) “Two-phase regions meet three-phase regions upon ‘ruled’ bounding surfaces
generated by the limiting tie-lines.”

The case of (6):

NPRs(fi + fj)/fj/(fj + fk),Φ = 2,

R1 = N + 1 − Φ = 3 + 1 − 2 = 2,

φC = 1, R′
1 = R1 + φC − 1 = 2 + 1 − 1 = 2,

R′
1 = R1 = 2

Phase boundary planes between the NPRs, (fi+fj)/fj or fj/(fj+fk), are the
common phase boundary planes of the common phases, fj .
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The cases of (6) and (7):

NPRs(fi + fj)/(fi + fj + fk)/(fj + fk),

Φ = 3, R1 = N + 1 − Φ = 3 + 1 − 3 = 1

φC = 2, R′
1 = R1 + φC − 1 = 1 + 2 − 1 = 2,

R1 < R′
1 = 2

The boundary planes are formed in such a manner. At a given temperature, the
tie-line connects the two equilibrium phase points at the two phases, boundary lines.
When the temperature changes, the loci of the moving tie-lines form the boundary
planes; they consist of sets of system points and are not phase boundary planes.

(8) “Two-phase regions touch four-phase region planes along single isothermal
lines, which are the limiting tie-lines.”

NPRs(fi + fj)/(fj + fk + fm),Φ = 4, R1 = N + 1 − Φ = 3 + 1 − 4 = 0,

φC = 1, R′
1 = R1 + φC = 0 + 1 = 1

R′
1 = 1 > R1 = 0

So, this single isothermal line is the tie-line of one common phase point (of the
common phase, fj) and one common system point.

(9) “Three-phase regions meet each other nowhere except at four-phase reaction
isotherms.”

NPRs (fi + fj + fk)/(fj + fk + fm),Φ = 4, R1 = N + 1−Φ = 3 + 1− 4 = 0, φC = 2

If there is an invariant phase transition and a region of (N+1) coexisting phases
between the two NPRs, then

R′
1 = R1 + φC = 0 + 2 = 2

The boundary is the plane formed by connecting the two common phase points
(since there are two common phases) and one common system point.

If the two three-phase regions exist on the same side of the invariant region,
i.e. there is no invariant phase transition and no (N+1) phases coexisting region
between the two three-phase regions, then

R1 = 0, φC = 2, R′
1 = R1 + φC − 1 = 0 + 2 − 1 = 1

The boundary between the two three-phase regions is the tie-line of two phase
points of the two common phases.

Except for the above conditions, two three-phase regions cannot meet each other
elsewhere. For the isobaric ternary phase diagram, 2� R1 �0, besides the four-phase
coexisting plane, there must be: R1=1 or R1=2.
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If R1=1, then φC �1. Assume the first NPR to be (fi+fj+fk), and φC=1, then
the second NPR must be (fk+fm+fn), so Φ=5. But, in the isobaric ternary phase
diagrams, Φ � 4, so this case is impossible. If φC=2, Φ=4, R1=0, then it is in
contradiction with the premise of R1=1. If φC=3, then the two three-phase regions
have become identical, i.e., it is meaningless. The “maxima” of φC is three, thus it
has no other possibility. If

R1 = 2,Φ = N + 1 − R1 = 3 + 1 − 2 = 2,

but three-phase regions already have three phases, R1=2, thus Φ=2 is impossible in
this particular case.

(10) “Three-phase regions are elsewhere separated and bounded by two-phase re-
gions involving those phases that are held in common by the neighboring three-phase
regions.”

The NPRs in this case may thus be written as:

(fi + fj + fk)/(fj + fk)/(fj + fk + fm),Φ = 3, R1 = N + 1 − Φ = 3 + 1 − 3 = 1,

φC = 2, R′
1 = R1 + φC − 1 = 1 + 2 − 1 = 2,

R1 < R′
1 = 2

The boundary planes are the loci of the moving tie-lines connecting two isother-
mal phase points, when the temperature changes.

Rhines’ description is not complete. A supplement should be made so that three-
phase regions may be separated by single-phase regions, i.e. NPRs (fi+fj+fk)/fk/
(fk+fm+fn), in this case,

Φ = 3, R1 = 1,

φC = 1, R′
1 = R1 + φC − 1 = 1 + 1 − 1 = 1,

R′
1 = R1 = 1

The phase boundary lines are those phase boundary lines that lie between (fi +
fj + fk)/fk and fk/(fk + fm + fn), respectively.

3.6 Comparison of the Boundary Theory and the P-L′s Con-

tact Rule of Phase Regions

3.6.1 The deduction of contact rules of phase regions by applying the
boundary theory

Palatnik-Landau’s contact rule of phase regions (title abbreviated to the “con-
tact rule”) [Palatnik-Landau, 1964] was deduced in 1955. In this respect, Palatnik-
Landau’s work is an important contribution to the phase theory.
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The problem to be solved by the contact rule is that: when the phase assemblages
of two NPRs are given, the dimensions of the boundary between these two NPRs
may be determined. The equation is:

R′
1 = R − D+ − D− � 0 (3-11)

where, R is the dimension of the phase diagram(or its horizontal sections); D+ or
D− is the number of phases, which respectively either appear newly or disappear in
crossing the boundary from the first NPR to the second.

In Palatnik-Landau’s publications [Palatnik-Landau, 1964], the dimensions of the
boundary are denoted as “R1”. It is essential that “R′

1” appears in our boundary
theory. In order to avoid confusion, we explicitly use R′

1 for the boundaries in this
text, when discussing P-L’s contact rule.

The contact rule can be deduced from the boundary theory easily.
Through the definition of D+ and D−, (D++D−) is the total number of the dif-

ferent phases, which exist merely in either one or other of the two NPRs. (D++D−)
does not include the number of common phases existing in both of the two NPRs,
φC . The total phase number in the two NPRs is:

Φ = D+ + D− + φC (3-12)

From the TCR of isobaric phase diagrams, and with Z = r=0

R1 = N + 1 − Φ (3-13)

For the system of (1) N �2, R1 �1; or (2) N �2, R1=0, there is no invariant
phase transition among the NPRs, and no invariant region of (φC + 1) = (N + 1)
coexisting phases, among the two NPRs during the phase region transfer, from one
NPR to another.

R′
1 = R1 + φC − 1 (see (2-13))

And for the isobaric phase diagrams:

R = N (see (2-1))

We insert eqs. (3-12), (3-13) and (2-1) into eq. (2-13), so that

R′
1 = R1 + φC − 1 = (N + 1 − Φ) + [Φ − (D+ + D−)] − 1

R′
1 = N − (D+ + D−) = R − (D+ + D−) (3-14)

This is the contact rule. This deduction is very simple. In the original work of
Palatnik and Landau [Palatnik-Landau, 1964], their deduction is rather complicated.
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On the other hand, none of the three important formulas of the boundary theory
could be derived either from the contact rule or from the whole Palatnik-Landau’s
theory. The boundary theory may thus be considered to be both more fundamental
and comprehensive.

3.6.2 The meanings of the parameters used in the boundary theory are
clearer than those used in the Palatnik-Landau’s theory

When discussing the crossing of the boundary, from the first NPR to the second
NPR, besides D+ and D−, P-L introduced D0 denotes the phases remaining from
the first NPR to the second. This parameter really is the φC (the number of phases
coexisting in both NPRs) referred to in the boundary theory.

By P-L’s theory, the number of total different phases in all the NPRs is denoted
by (D0 + D+ + D−), but parameter Φ in our theory is more straightforward. Simi-
larly, according to P-L’s theory, the phase number in the first NPR and the second
NPR, describing by (D0+D+) and (D0 +D−), but our notation(φ1 and φ2) appears
to be more concise.

The significant difference existing between the boundary theory and P-L’s contact
rule, is however, the application of the concept of “phase boundary”. Without the
use of this concept, the contact rule of phase regions encounters many difficulties in
its applications.

3.6.3 The difficulties of applying the contact rule

In the course of deducing the contact rule by the application of boundary theory,
some conditions have been introduced, i.e.“Z = r = 0; and the system of N �2,
R1 �1; or N �2, R1=0, however, there is no invariant phase transition between
the NPRs and no invariant region of (Φ + 1) = (N + 1) coexisting phases between
the two NPRs during the phase region transfer, from one NPR to another, where
R′

1 = R1+φC−1.” We are introducing these presumptive conditions to facilitate our
deduction of the contact rule. And we found that the constraint of these conditions
on the contact rule is universal. In normal phase diagram work, if any of these
conditions should not be satisfied, then the contact rule would be invalid. In the
following examples, we will present several difficult situations for the contact rule
application, and how Palatnik and Landau have to transform the real phase diagrams
to fit their own formula.

(1) When N < 2, i.e. N=1, they modified the real unary phase diagram (see Fig.
3.2 in section 3.2) into Fig. 3.11.
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Fig. 3.11 The modified unary phase diagram (depicted by Palatnik-Landau).

(2) When N � 2, R1 = 0, and there is an invariant phase transition among the
NPRs, and an invariant region of (Φ+1)=(N+1) coexisting phases among the two
NPRs during the phase transition, then the contact rule is invalid, see Fig. 3.1. In
this case, Palatnik and Landau had to introduce the concept of degeneracy, thereby
transforming Fig. 3.1 into Fig. 3.12.

Fig. 3.12 The binary eutectic phase diagram depicted by Palatnik-Landau.

In P-L’s figure, the melting points of components A and B are extended to two
sections of lines, a-a’ and b-b’; and the boundary line, cEd, is extended to a 3-phase
region. Thus Palatnik and Landau are able to explain this figure by the contact
rule. (The boundary theory is able to explain these types of phase transitions more
naturally, see subsection 3.3.2.1)
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3. When phase diagram with Z �=0 are examined; for example, Z=1, as the
phase diagram with the minimum (or maximum) melting point, the contact rule
cannot be applied either.

The boundary theory has been able to explain this type of phase diagram (Fig.
3.4), without resort to any “artificial supplementary modification” (see subsection
3.3.2.3). On the other hand, in order to apply the contact rule, the real phase
diagram has to be transformed to the shape illustrated in Fig. 3.13. As with many
other transformations illustrated previously, these “modified” phase diagrams appear
to be both strange and unreasonable.

For ternary phase diagrams, there are more circumstances which could not be
explained by the contact rule, they have been mentioned in subsection 3.4.5.5 of this
chapter.

Fig. 3.13 The binary, eutectic phase diagram, with minimum melting point, as modified by

Palatnik-Landau.

3.6.4 The merits of the boundary theory

Given the phase assemblages of two NPRs, the contact rule generates the bound-
ary dimensions only, but the boundary theory can determine both the dimensions
of the boundary, along with the dimensions of the phase boundary.

Consider Fig. 3.14 as an example.
This phase diagram is a phase diagram at constant T and p. It is one of the

phase diagrams of the type with molar-molar axes only.
Here, we discuss the boundary lines, ab, between (S1+L)/(L+S1+S2), and fg,

between L/(L+S3). According to the contact rule, ab and fg have the following
characteristics:

R′
1 = R − (D+ + D−) = 2 − 1 = 1
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Fig. 3.14 A regular, isobaric, isothermal section of a ternary eutectic phase diagram.

They are both one-dimensional boundaries, their differences can not be distin-
guished by the contact rule.

Using the boundary theory, applied to line fg:

R1 = (N + 1) − Φ = 3 + 1 − 2 = 2

(R1)H = R1 − 1 = 3 − Φ = 3 − 2 = 1

R′
1 = R1 + φC − 1 = 2 + 1 − 1 = 2

(R′
1)H = R′

1 − 1 = 2 − 1 = 1

(R1)H = (R′
1)H = 1

So, the boundary line, fg, is also a phase boundary line, being the boundary line
of the common phase L between NPRs L/(L+S3).

But, for the boundary line ab, between NPRs (S1+L)/(L+S1+S2),

R1 = (N + 1) − Φ = 3 + 1 − 3 = 1

(R1)H = R1 − 1 = 0

and φC=2,
R′

1 = R1 + φC − 1 = 1 + 2 − 1 = 2

(R′
1)H = R′

1 − 1 = 2 − 1 = 1

(R1)H < (R′
1)H = 1

So, line ab is a boundary line only, but it is not a phase boundary line. It
is actually the “tie-line” connecting two common phase points: a(S1) and b(L),
between NPRs (S1+L)/(L+S1+S2).

Analyses above show this phase diagram can be treated by contact rule; but less
information can be obtained by applying contact rule than those by applying the
boundary theory.
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All of the boundary lines displayed in Fig. 3.14 may be discussed in the similar
way by reference to the boundary theory.

That is to say, the boundary theory is able to treat the phase diagram with mole
fraction-mole fraction axes only, and its treatment is much better than that of the
P-L’s contact rule.

The boundary theory can provide the systematic analysis to even multicompo-
nent phase diagrams, of all the different types (see early sections 3.2, 3.3, 3.4, 3.5 in
this chapter and Chapters 4, 5 and 6).

The contact rule can only deal with those isobaric, molar-molar axes phase di-
agrams, but boundary theory has also been extended to treat the p−T −xi or
high-pressure, multi- component types of phase diagrams.

Based on the boundary theory of these phase diagrams and on other thermo-
dynamic principles, we have designed a method to calculate the phase diagrams
of the high-pressure systems. With the aid of this method, the high-pressure bi-
nary and ternary phase diagrams of the Cd-Pb-Sn and Cd-Sn-Zn systems have been
calculated. These calculated high-pressure phase diagrams tally well with the ex-
perimentally determined ones (see Chapters 8, 9, 10 and 11).

Summarizing, “the contact rule”, developed by Palatnik and Landau, has been
a very important achievement in the phase diagram research field. The formula is
both concise and easy to apply. Unfortunately, its success is limited only to some
general cases. As we have illustrated above, in many situations where the contact rule
becomes invalid, researchers have had to introduce many “artificial transformations”
in order to fit the data to the formula. As most published phase diagrams have been
elaborately determined, either by experimental methods and/or through calculation
with the aid of thermodynamic models, such alterations will result in, at least, some
confusion in the understanding of phase diagrams, and thence make transformed
phase diagrams both of impaired creditability and in becoming unacceptable with
respect to supporting a theoretical deduction.

References-3

P. Gordon. 1968. Principles of Phase Diagrams in Materials Systems. New York: McGraw-

Hill

L. S. Palatnik, A. I. Landau. 1964. Phase Equilibria in Multicomponent Phase Diagrams.

New York: Holt Rinehart and Winston, Inc

F. N. Rhines. 1956. Phase Diagram in Metallurgy. New York: McGraw-Hill

Muyu Zhao. 1983. The theorem of corresponding relation between neighboring phase

regions and their boundaries in phase diagrams. CALPHAD, 7(3): 185-199



Chapter 4

The Application of the Boundary Theory

of Phase Diagrams to the Quaternary and

Higher Number Component Phase Diagrams

4.1 Introduction

In the text books dedicated to phase diagrams, isobaric phase diagrams are
presented primarily as unary, binary and ternary phase diagrams. In the case of
displays of two dimensional planes, the quaternary and higher component multidi-
mensional phase diagrams can only be presented as sections or projections. The
isobaric, multicomponent horizontal and vertical sections are the particular sections
of importance. In order to discuss sections of these types, the boundary theory of
phase diagrams is helpful. Moreover, higher dimensional phase diagrams can be
inferred from lower ones, for example, in the calculation of isobaric ternary sections,
one usually starts from the “side lines” of the binary systems; in these cases, the ap-
plication of boundary theory is very enlightening. For the construction, application
or learning/teaching of quaternary or more component system phase diagrams, the
boundary theory for these phase diagrams is both useful and indispensable, since
most people are usually not familiar with such complicated phase systems and their
diagrammatic representation.

4.2 The Relationship among NPRs and their Boundaries in

a Typical, Isobaric, Quaternary Phase Diagram

Quaternary phase diagrams are generally complicated. In applying the bound-
ary theory to these phase diagrams, the boundary theory for such types of phase
diagrams may be obtained. To be concise, only the relationship among the NPRs
and their boundaries of these phase diagrams, are cited in the tables.

For general use, isobaric phase diagrams, where r = Z=0, p=const., the regular-
ities in the variations of R1, Φ, φC and R′

1 in the isobaric quaternary phase diagram,
is shown in Table 4.1.
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Table 4.1 Regularities in the variations of R1,Φ, φC and R′
1 in isobaric, quaternary

phase diagrams

R1 = 5 − Φ

R1(3� R1 �0) 3 2 1 0

Φ(5�Φ�2) 2 3 4 5

φmax 2 3 4 4

φC 1 2� φC �1 3� φC �1 3�φC �0

R′
1 3 φC+1 φC φ

1)
C or φC − 1

1) There is an invariant phase transition between two NPRs.

Table 4.2 Phase assemblages under different conditions are shown for the isobaric

quaternary phase diagrams
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In Table 4.2, we explain all the cases of phase assemblages of NPRs with different
values of R1. The notations used are: L, liquid phase, assuming that all components
are completely miscible with one another in the liquid state; S1, S2, S3 and S4

are four solid solutions, i, j, k, m = 1, 2, 3, 4, and i �= j �= k �= m. For example,
L/(L+Si)(4), since i=1, 2, 3, 4, (4) denotes 4 different phase assemblages counted
by the method of permutations and combinations.

In Table 4.2, only the cases given are: where (1) R1 � 1, R′
1 = R1 + φC − 1,

(2) R1=0 and there is an invariant phase transition between two NPRs, R′
1 = R1 +

φC .

All of the above discussion points are valid for the following types of phase
diagram cases: (1) In liquid and solid states, all components are completely miscible
with one another; (2) Components are soluble with one another only in the liquid
state. They are only partially soluble with one another in the solid state. Eutectic
events may occur in the system; and (3) Peritectic events may occur in the system.

4.3 During Temperature Decreasing, Some Cases of Varia-

tions of the NPRs and their Boundaries, May be En-

countered for Several Types of Quaternary Isobaric Phase

Diagrams

4.3.1 The simple quaternary phase diagram, in which, (a) the liquid
state components are completely miscible, but (b) the same com-
ponents are completely insoluble with one another, in the solid
state

For further examination, these components are denoted by A, B, C and D. The
pure solid state components remain denoted by the identities: S1, S2, S3 and S4.
There also exists one invariant, quaternary eutectic transition.

L → (S1 + S2 + S3 + S4)

In addition, binary and ternary eutectic transitions also exist. High-temperature,
stable phase regions are the liquid-solid coexisting phase regions, these are as follows:
L + Si(4) (since i=1, 2, 3, 4, so there are 4 such phase regions, 4 being used to
represent the number of such phase regions). Below, the notations are similar: (L +
Si + Sj)(6); (L + Si + Sj + Sk)(4). The low-temperature, stable phase region is (S1

+ S2 + S3 + S4) (1). Therefore there are 16 phase regions in the phase diagram. The
binary, ternary and quaternary eutectic points are denoted respectively, by Eij(6)
(as i, j = 1, 2, 3, 4 and i �= j, i.e. there are 6 binary, eutectic points.), Eijk(4) and
E1234(1).

We now discuss the cases of the variations of the NPRs and their boundaries,
during a decreasing temperature regime.
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For this phase diagram, R1 = N − Φ + 1 = 5 − Φ, 3 � R1 � 0.

At elevated temperature, the liquid phase L is stable. As the temperature de-
creases, phase transitions commence to occur in the system, R1 decreases from 3 to
2, then to 1 and finally to 0.

1. For phase region L, when the temperature decreases, the regularities of the
phase transitions are:

(1) With decreasing temperature, phase transition occurs, in most cases, within
the composition tetrahedron, A, B, C, D: L → (L + Si) (4) (since, i = 1, 2, 3, 4,
there are 4 such phase transitions), Φ = 2,

R1 = 4 − Φ + 1 = 5 − Φ = 3

R′
1 = R1 + φC − 1 = 3 − 1 + 1 = 3

R′
1 = R1

Thus, the 3-dimensional boundaries between L/(L+Si) also act as phase bound-
aries, i.e. the boundaries are composed of “system points” which also act as phase
points.

(2) If the total composition point of the system is located on the “special” curved
surface, i.e. where the curved surface passes through points Eij , Eijk, E1234, Eijm,
Eij (6 such surfaces), and temperature decreases to a “certain temperature”, then
a phase transition occurs, L→(L + Si +Sj), where two solid phases are deposited
from the liquid phase. There are 6 such phase transitions.

φC = 1

Φ = 3

R1 = 5 − Φ = 2

R′
1 = R1 + φC − 1 = 2 + 1 − 1 = 2

The two-dimensional boundaries, lying between L/(L+Si+Sj), are also phase
boundaries, i.e. the boundaries are composed of the system points (also phase
points).

(3) If the composition point of the system is located on the special curves, i.e.

those curves that pass through Eijk → E1234(4), then, when the temperature de-
creases further to a certain temperature, 3 solid phases commence to deposit from
the liquid phase L, i.e. L→(L+Si+Sj+Sk) (6 such phase transitions),

Φ = 4, φC = 1

R1 = 5 − Φ = 1

R′
1 = R1 + φC − 1 = 1 + 1 − 1 = 1

R′
1 = R1
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The boundary lines between L/(L+ Si+Sj+Sk) are phase boundary lines also.
(4) When the composition point of the system is located just at the point, E1234,

in the composition tetrahedron, the temperature decreases to the quaternary eutectic
temperature, and a phase transition occurs, i.e. L→(L+S1+S2+S3+S4)(1), i.e. 4
phases deposit from the liquid phase, L.

Φ = 5, φC = 0

R1 = 5 − Φ = 5 − 5 = 0

R′
1 = R1 + φC = 0 + 0 = 0

Since there is an invariant transition between two NPRs, equation R′
1 = R1 + φC is

valid, the boundary point being a phase point, too.
2. For the phase region (L+Si), when the temperature decreases, the regularities

of the phase transitions occur:
(1) For the most of the systems for which the system points exist in the phase

region, one more solid phase will be deposited, when the temperature decreases, i.e.

(L+Si) →(L+Si+Sj) (the number of such phase transitions being 12).
For the boundaries between (L+Si)/(L+Si+Sj), Φ=3, φC=2,

R1 = N − Φ + 1 = 2

R′
1 = R1 + φC − 1 = 2 + 2 − 1 = 3

R′
1 �= R1

So, the boundaries are of 3 dimensional boundaries only, they are not phase bound-
aries anyway!

(2) If the composition points of the system(s) are located on special curved
surfaces, then the solid phase Si deposits continuously, and the system point falls
to “that of” the curves, Eijk−E1234, solid phases Si, Sj and Sk, deposited from
the liquid phase, i.e. (L+Si) →(L+Si+Sj+Sk) (12 such phase transitions), Φ = 4,
φC=2,

R1 = 5 − Φ = 1

R′
1 = R1 + φC − 1 = 2

R′
1 �= R1

The boundaries between (L+Si)/(L+Si+Sj+Sk) are only of two dimensional
boundaries (not phase boundaries).

(3) If the composition points of the systems are located on the curved line,
connecting the pure Si and E1234 of the composition tetrahedron, then, when the
solid phase deposits continuously, and the system point falls to the point at E1234;
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4 solid phases S1, S2, S3 and S4, would then be deposited simultaneously from the
liquid phase, i.e. (L+Si) →(S1+S2+S3+S4) (4)

Φ = 5, φC = 1,

R1 = 0

R′
1 = R1 + φC = 1

These boundaries are boundary lines only, not phase boundary lines.
3. The regularities of the variations of the phase region (L+Si+Sj), during the

temperature decrease period:
(1) For “ordinary cases”, when the solid phases, Si and Sj , are depositing conti-

nuously, the system point would fall to that of the curved surface passing through
Eijk and E1234, further solid phase would then be deposited, i.e. (L+Si+Sj) →(L+
Si+Sj+Sk), Φ=4, φC = 3,

R1 = 5 − Φ = 1

R′
1 = R1 + φC − 1 = 3

The boundaries are 3-dimensional boundaries only (not phase boundaries).
(2) In a special case, when the solid phases Si, Sj and Sk are being deposited

continuously, the system point falls to that of the eutectic point, E1234, then 4 solid
phases, S1, S2, S3 and S4 would also deposit simultaneously, i.e. (L+Si+Sj) →
(S1+S2+S3+S4)(6), Φ=5, φC=2,

R1 = 0

R′
1 = R1 + φC = 2

since there is an invariant phase transition. The boundaries are two dimensional
boundaries only. The boundary is located on the non-variant, phase transition plane;
it is a triangle tie-plane, formed by connecting the three boundary points.

4. The regularity of the phase transitions of the phase regions (L+Si+Sj+Sk)
(4), during the temperature decrease period

When the solids (Si, Sj , Sk) are depositing continuously, the system point falls to
point E1234; one further solid phase then deposits, (L+Si+Sj+Sk) →(S1+S2+S3+S4)
(4), Φ = 5, φC = 3,

R1 = 0

R′
1 = R1 + φC = 3

The boundaries are 3-dimensional boundaries only (not phase boundaries).
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4.3.2 The isobaric quaternary phase diagram, in which the 4 compo-
nents in the liquid state are completely miscible, but, in the solid
state, they are partially soluble in one another

The liquid phase region and liquid-solid co-existing phase region of these phase
diagrams are basically similar to those of the simple quaternary phase diagram,
but here the solid phases are actual “solid solutions”, so the case is a much more
complicated one. The solid phase regions have Si(4), (Si+Sj)(6), (Si+Sj+Sk)(4),
(S1+S2+S3+S4)(1), and the liquid phase L(1), the solid-liquid co-existing phase
regions being (L+Si)(4), (L+Si+Sj)(6) and (L+Si+Sj+Sk) (4). Thus, there are 30
phase regions to be included in this phase diagram.

There are also: binary, ternary and quaternary eutectic points, Eij(6), Eijk(4)
and E1234(1) for consideration.

During the temperature decrease, the regularities of the variations of NPRs and
their boundaries are much more complicated situations for this phase diagram. Let
us now discuss it briefly.

The high-temperature-stable phase is the liquid phase, L. During the temperature
decrease period, the regularities of variations of NPRs and their boundaries, are
similar to that of a simple, isobaric quaternary phase diagram, but the deposited
solid phases are all solid solutions.

During the temperature decrease, the phase regions for the three types: (L+Si),
(L+ Si+Sj) and (L+Si+Sj+Sk), have the similar phase transitions of corresponding
phase regions of the simple, quaternary phase diagram.

Since the deposited solids are true solid solutions, the phase region, for the three
regions mentioned above, has another property in common: i.e. the value of R1

does not decrease, it remains unchanged. Therefore, these phase regions all have the
following phase transitions:

(L + Si) → Si(4),Φ = 2, φC = 1,

R1 = 5 − 2 = 3

R′
1 = 3 + 1 − 1 = 3

Here the boundaries between (L+Si)/Si are 3-dimensional boundaries (also phase
boundaries).

(L + Si + Sj) → (Si + Sj)(6),Φ = 3, φC = 2,

R1 = 5 − 3 = 2

R′
1 = 2 + 2 − 1 = 3

R′
1 �= R1

The boundaries between (L+Si+Sj)/(Si+Sj) are 3-dimentional boundaries only (not
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phase boundaries).

(L + Si + Sj + Sk) → (Si + Sj + Sk)(4),Φ = 4, φC = 3,

R1 = 5 − 4 = 1

R′
1 = R1 + φC − 1 = 1 + 3 − 1 = 3

R′
1 �= R1

i.e., the boundaries lying between (L+Si+Sj+Sk)/(Si+Sj+Sk) are 3-dimentional
boundaries only.

Further, vertical sections of the isobaric quaternary phase diagrams of the various
types may be explained with the use of the boundary theory.

Consider a typical vertical section, though, in this vertical section, the composi-
tions of B% and D% of the systems are kept constant, the phase compositions of all
components (including B and D) in the systems are otherwise variable. Thus, the
characteristics of this vertical section are similar to the 4-dimensional quaternary
phase diagram (see Fig. 4.1). Therefore, the relation, R1 = 5 − Φ, still holds.

Fig. 4.1 A typical vertical section of a “partially” soluble quaternary eutectic system [Rhines,

1956].

L denotes the liquid phase; 1, 2, 3, 4 denotes the solid solutions S1, S2, S3 and S4 respectively.

In this vertical section, the compositions of the two components are held constant.
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So, for the regular sections, the dimensions of the phase boundary and the boundary,
(R′

1)V and (R1)V (v is an abbreviation of “Vertical”) have the following equations,
where R1 and R′

1 are the dimensions of the boundary and phase boundary in the
corresponding, quaternary phase diagram.

(R′
1)V = R′

1 − 2 (4-1)

(R1)V = R1 − 2 (4-2)

Fig. 4.1 is a regular section, the meaning of the boundaries on this section will now
be discussed.

4.3.2.1 The boundary lines

Lines ab and bc are the boundaries existing between the two NPRs with Φ=2.
They have:

(R1)V = R1 − 2 = (4 − Φ + 1) − 2 = (4 − 2 + 1) − 2 = 1

(R′
1)V = R′

1 − 2 = (R1 + φC − 1) − 2 = (1 + 2 − 1) − 2 = 1

Thus, ab and bc are boundary lines, and they are also phase boundary lines.
For lines: de, eb, bf and fg, the two NPRs around these lines have Φ = 3, φC = 2

(R1)V = R1 − 2 = (4 − 3 + 1) − 2 = (2) − 2 = 0

(R′
1)V = R′

1 − 2 = (R1 + φC − 1) − 2 = (2 + 2 − 1) − 2 = 1

Thus, these lines are only boundary lines, they are not phase boundary lines.
Lines, nj, jh, hk, ke, ef, fl, li, im and mo, and the two NPRs around these lines,

have Φ = 4, φC = 3

nj:(S1+S2+S3+S4)/(S1+S2+S4),

jh:(S1+S2+S4)/(L+S1+S2+S4),

hk:(L+S1+S2+S4)/(L+S1+S4),

ke:(L+S1+S3+S4)/(L+S1+S4),

ef:(L+S1+S3+S4)/(L+S1+S3),

fl:(L+S1+S3+S4)/(L+S3+S4),

li:(L+S2+S3+S4)/(L+S3+S4),

im:(L+S2+S3+S4)/(S2+S3+S4),

mo:(S2+S3+S4)/(S1+S2+S3+S4),

(R1)V = R1 − 2 = (4 − 4 + 1) − 2 = −1

(R′
1)V = R′

1 − 2 = (R1 + φC − 1) − 2 = (1 + 3 − 1) − 2 = 1
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Therefore, these lines are also boundary lines only.
Boundary line jklm, the NPRs around this line are (L+Si+Sj+Sk)/(S1+S2+S3+S4),

Φ=5, R1=0. This means that there are only invariable phase points in the 4-
dimensional phase diagram. But

(R1)V = R1 − 2 = −2

So, these phase points cannot be presented in the two-dimensional vertical section.
φC=3, and there is an invariant phase transition between the two NPRs, then:

R1 = 0

(R1)V = −2

R′
1 = R1 + φC = 0 + 3 = 3

(R′
1)V = R′

1 − 2 = 3 − 2 = 1

Therefore, boundary line jklm is also a boundary line only. The points, j, k, l and
m, are boundary points, too.

4.3.2.2 Boundary points

(1) Boundary point b
Around point b, there are NPRs L/(L+S1+S3), or NPRs (L+S1)/(L+S3), or

NPRs L, (L+S3), (L+S1+S3) and (L+S1). For all these sets of NPRs, Φ=3, φC=1,

R1 = 5 − 3 = 2

R′
1 = R1 + φC − 1 = 2

(R1)V = R1 − 2 = 0

(R′
1)V = R′

1 − 2 = 0

So boundary b is a phase point.
(2) Boundary points e and f
The NPRs around them have Φ=4, φC =2,

R1 = 5 − 4 = 1

R′
1 = R1 + φC − 1 = 1 + 2 − 1 = 2

(R1)V = 1 − 2 = −1

(R′
1)V = 2 − 2 = 0

So point e and f are boundary points only.
Through the discussion above, the characteristics of different kinds of boundaries

are differentiated.
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Boundary lines ab and bc are also phase boundary lines. All other boundary
lines are boundary lines only. Boundary point b is a phase point, while boundary
point e and f are boundary points only.

We may now depict a series of vertical sections having different compositions, as
shown in Fig. 4.2.

Fig. 4.2 A series of vertical sections of a quaternary eutectic system, in which the solid

components are partially soluble with each other [Rhines, 1956].

All of the notations of Fig. 4.2 are similar to those of Fig. 4.1.
In Fig. 4.2, the binary eutectic points, E12, E23 and E24, and ternary eutectic

points, E124 and E234, present on the vertical axes. This figure can be readily
explained as it is similar to Fig. 4.1. The explanation is however omitted here.

4.3.3 Isobaric quaternary phase diagrams with peritectic transitions

Peritectic transitions have three types:

(L+Si) →(Sj+Sk+Sm)

(L+Si+Sj) →(Sk+Sm)

(L+Si+Sj+Sk) →Sm

In the phase diagrams for each type, the NPRs phase assemblages have different
combinations. As a result, all of these phase diagrams are very complicated, on
the whole. In comparison with the simpler eutectic phase diagrams, the peritectic
ones have more peculiarities, e.g. the temperature ranges for liquid state existence
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are often greater, while the concentration ranges for the solid solutions existence
are wider. Thus, phase diagrams of the peritectic types are both more diversified
in form and are also more complicated. However, there are, in principle, no basic
differences between the eutectic and the peritectic phase diagram.

For the purpose of space saving, only one typical vertical section of a quaternary
peritectic phase diagram, with the phase transition of the type (L+Si) →(Sj+Sk+Sm)
is discussed here (see Fig. 4.3).

Fig. 4.3 A typical vertical section of a quaternary, peritectic system. L denotes the liquid phase,

1, 2, 3, 4 denote the solid solutions (S1, S2, S3 and S4) respectively [Rhines, 1956].

4.3.3.1 Boundary lines

Boundary lines, ab, bc, cd satisfy the combinations: Φ=2, φC=1

R1 = 3

R′
1 = R1 + φC − 1 = 3

Thus
(R′

1)V = R′
1 − 2 = 1
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(R1)V = R1 − 2 = 1

Therefore, these three boundary lines are all boundary lines and phase boundary
lines.

Boundary lines: eb, bi, ic and cf. These lines satisfy the combinations Φ=3,
φC=2

R1 = 2

R′
1 = R1 + φC − 1 = 2 + 2 − 1 = 3

(R1)V = 2 − 2 = 0

(R′
1)V = 3 − 2 = 1

(R1)V �= (R′
1)V, these lines function as boundary lines, only.

Boundary lines ok, kg, gh, hi, ij, jm, ml and lp. These lines satisfy the conditions,
Φ=4, φC =3

R1 = 1

R′
1 = R1 + φC − 1 = 1 + 3 − 1 = 3

(R1)V = 1 − 2 = −1

(R′
1)V = 3 − 2 = 1

So, these eight boundary lines function as boundary lines, only.
Boundary line, khlj. There is an invariant phase transition, located between the

two NPRs here, the equation, R′
1 = R1+φC therefore holds. This line, khlj, satisfies

the conditions:
Φ = 5, φC = 3,

R1 = 0

R′
1 = R1 + φC = 3

(R1)V = R1 − 2 = −2

(R′
1)V = R′

1 − 2 = 1

This line is a boundary line only, no phase point exists over it.

4.3.3.2 Boundary points

Point b and c. They satisfy the conditions: Φ=3, φC=1

R1 = 2

R′
1 = R1 + φC − 1 = 2 + 1 − 1 = 2

(R1)V = 2 − 2 = 0

(R′
1)V = 2 − 2 = 0

Thus, points b and c are both boundary points and phase boundary points.
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Point i. It satisfies the conditions Φ=4, φC=2

R1 = 1

R′
1 = R1 + φC − 1 = 1 + 2 − 1 = 2

(R1)V = R1 − 2 = −1

(R′
1)V = R′

1 − 2 = 1

Thus, it is a boundary point only.
We can now discuss the cooling history of the system whose composition is re-

presented by I.
The discussion starts from the liquid phase, L. With the declining temperature,

the system point of phase L eventually touches line bc, the phase transition occur-
ring: L→ (L+S4). With further temperature decrease, the system point reaches line
ci, and the phase transition occurs: (L+S4) → (L+S3+S4). When the system point
reaches line ij, the phase transition occurs: (L+S3+S4) → (L+S1+S3+S4). With
continuing temperature decrease, the system reaches the peritectic line, lj, and the
peritectic reaction occurs:

(L + S1 + S3 + S4) → (L + S2 + S3 + S4),Φ = 5, φC = 3,

R1 = 0

R′
1 = R1 + φC = 3

(R1)V = −2

(R′
1)V = 3 − 2 = 1

The boundary line, lj, is a boundary line only.
With the temperature decreasing further:

(L+S2+S3+S4) → (S2+S3+S4) → (S1+S2+S3+S4)

This process is easy to explain and so it is not discussed further here.

4.3.4 Quaternary phase diagrams, in which the systems have either com-
pounds or intermediate phases or maximum (or minimum) melting
points

In these cases, it is better to discuss the phase diagrams with the TCR in the
form:

R1 = (N − r − Z) − Φ + 1

Or, one may divide the phase diagram into several, independent simpler parts, and
then discuss them in the usual manner.
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4.4 The Isobaric Quinary Phase Diagrams

Here, the boundary theory may be used to discuss the quinary or even higher
number-component phase diagrams.

In the general case of the isobaric phase diagram, Z = r=0, the characteristic of
the relation between NPRs and their boundaries is outlined in Table 4.3.

Table 4.3 Z = r = 0, the characteristic of the variations of R1,Φ, φC and R′
1 in

isobaric, quinary phase diagrams

R1 = 6 − Φ

R1(4� R1 �0) 4 3 2 1 0

Φ(6� Φ �2) 2 3 4 5 6

φC 1 2� φC �1 3� φC �1 4� φC �1 4� φC �0

R′
1 4 φC+2 φC + 1 φC φ

1)
C or φC − 1

1) There is an invariant phase transition between the two NPRs.

Similarly, we may also apply the comparable method, as applied in quaternary
phase diagrams, to discuss isobaric, quinary phase diagrams, i.e. list all combinations
of phase assemblages of NPRs under the conditions of different values for R1 and
Φ. Since there are no new things of basic manipulations and principles involved in
these higher order component assemblages, the analysis and discussion being just
more complicated, the analysis of the higher order structures are omitted from this
present analysis.

4.5 Conclusion

The above “outline” discussions have shown that “the boundary theory” may
be employed to both analyze and synthesize multicomponent phase diagrams. This
examination has shown that “the boundary theory” of multicomponent phase dia-
grams, is both correct and useful.
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Chapter 5

The Boundary Theory in Construction of

Multicomponent Isothermal Sections

5.1 The Relationship among Neighboring Phase Regions

(NPRs) and Their Boundaries in Isobaric Isothermal

Multicomponent Sections

5.1.1 General rules

The general regular isothermal sections satisfy the condition of R1 �1.
In the regular isothermal sections of N -component system, besides T and p, the

compositions of (N -3) components are also kept constant.

(R′
1)H = R′

1 − 1 − (N − 3) = R′
1 − (N − 2) (5-1)

(R1)H = R1 − 1 − (N − 3) = R1 − (N − 2) (5-2)

where (R′
1)H and (R1)H are the dimensions of the boundary and the phase boundary

in the regular isobaric isothermal section of the N -component system respectively.
In isobaric phase diagrams, the theorem of corresponding relationship (TCR) is

as follows:
R1 = N − Φ + 1

then
(R1)H = (N − Φ + 1) − (N − 2) = 3 − Φ (5-3)

(R′
1)H = (R1 + φC − 1) − (N − 2) = φC − Φ + 2 (5-4)

For the isobaric isothermal section, if

(R1)H = (R′
1)H (5-5)

Then the boundary coincides with the phase boundary each other, i.e., the system
points on the boundary are phase points at the same time. If in any case

(R1)H < (R′
1)H (5-6)

The boundary in the regular section is no longer a phase boundary.
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5.1.2 The two types of boundaries in isobaric isothermal multicompo-
nent sections

5.1.2.1 The boundary lines

When Φ − φC=1 (5-7)

(R′
1)H = φC − Φ + 2 = 1

This is to say, if the number difference of the phases between two NPRs is one,
there should be a boundary line between them.

When Φ = 2, φC = 1,

(R1)H = 3 − Φ = 1

(R′
1)H = (R1)H

In this case, the boundary line is also a phase boundary line.
When Φ = 3,

(R1)H = 3 − Φ = 0

The boundary line consists of system points only.

5.1.2.2 The boundary point

When Φ = 3, φC = 1, and

Φ − φC = 2 (5-8)

(R′
1)H = φC − Φ + 2 = 0

Therefore, if the number of phase differences between two NPRs is two, there could
be only one boundary point between these two NPRs. Since (R1)H = 3 − Φ=0, the
boundary point between two NPRs is a phase boundary point at the same time.

If Φ � 4, according to the boundary theory, (R1)H should be less than zero, i.e.,

(R1)H � −1 (5-9)

It means that the boundary point between the two NPRs could not be a phase
boundary point. The meaning of the negative dimension of the phase boundary will
be explained in the next section.

The cross rule, well-known in the phase diagram research community, describes a
fundamental regulation in phase regions transfer. This rule points out that a phase
region containing N phases would either be a neighbor to a phase region containing
(N +1) phases, demarcated by a boundary line, or would be in contact with a phase
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region containing (N + 2) phases by a boundary point. From the view point of the
results of phase region transfer: “A boundary point is equivalent to two boundary
lines.”

In Fig. 5.1, it can be seen that the boundary between those NPRs is a boundary
line if there is only one phase difference between the two NPRs, for example, phase
region AOB to BOC, BOC to COD, COD to DOA etc. For two phase differences,
the boundary dividing them is a boundary point, for example AOB to COD, BOC
to AOD etc. Following the course of the phase region evolution from one NPR to
another, the system in the NPR AOB could reach COD by crossing the boundary
point O; or by passing the AO and OD two boundary lines. This is to say, from
the result of the phase region transfer, one boundary point O between two NPRs
AOB/COD is equivalent to two boundary lines, AO and OD, among the three NPRs
AOB/AOD/COD. From the discussion above (eqs. (5-3) to (5-9)), we can see that
the boundary theory interprets the “cross rule” clearly, and more information can
be derived from the boundary theory.

Fig. 5.1 One boundary point is equivalent to two boundary lines.

5.1.2.3 In case Φ − φC � 3

(R′
1)H = φC − Φ + 2 � −1 (5-10)

The unrealistic negative dimension of the boundary implies that it is actually
impossible for these two phase regions to contact each other in a regular isobaric
isothermal section. They are non-contact or non-neighboring phase regions. This is
a useful guide line for constructing multicomponent isothermal sections, which helps
us to judge the situations where certain phase regions will never be neighbours to
each other, due to their make-up from a particular combination of phases.

The above conclusions have nothing to do with the value of N , so they apply to
the regular isothermal sections of all the ternary and multicomponent systems.
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It is worthy mentioning here that the “cross rule” describes well the situations
that four phase boundaries meet at a single point; however, there are cases in which
one cross-over points connecting more than four lines, or the cases where less than
four lines meet together. Such “violation” of the “cross rule” is often seen at special
points, for example, at a “nodal plexus” or “nodal foci”, where the phase regions
degeneration occurred [Prince, 1966]. With the exception of this kind of “violation”,
the “cross rule” restrictions hold true in general. This chapter discusses only the
general regular isothermal sections, we will not involve those exceptions.

5.2 The Non-Contact Phase Regions and the Boundaries

between Them

5.2.1 The number of boundaries existing between non-contact phase
regions

Assume two non-contact (or non-neighboring) phase regions be

PR1/ . . . . . . /PRk

f1+f2 + · · · + fφC
+ fφC+1 + · · ·fφC+q/· · ·/f1 + f2 + · · · + fφC

+fφC+1′+···+fφC+q′

The system in the phase region PR1 goes through a series of phase regions and
boundaries, and eventually arrives at the phase region PRk at last. Although the
phase regions PR1 and PRk do not contact each other, the total number of the
different phases existing in these two phase regions, Φ may be counted also.

Φ = φC + q + q′ (5-11)

The number of phases belonging to either one phase region alone is

Φ − φC = q + q′ (5-12)

According to the boundary theory, the following corollary may be deduced.
The systems within the phase region PR1 must transfer through the (q + q′)

boundary lines or the (q + q′ − 2p) boundary lines and p boundary points to reach
the non-contact phase region, PRk.

Since the phase region PR1 passes through one boundary line to reach the phase
region PR2, the phase difference existing between these two phase regions (Φ − φC)
must be one, i.e. there is one non-common phase between these two phase regions.
Again, the phase region PR2 transfers through another boundary line to the phase
region PR3, the phase difference between the latter two phase regions (Φ − φC) =
1 . If counting the phase differences between the two non-contact phase regions
PR1/PR3, (Φ − φC) = 2 and so on. Counting the phase differences between the
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phase regions, PR1/PRk, the phase differences Φ − φC = (q + q′), it means that the
systems in the phase region PR1 must transfer through the (q + q′) boundary lines
to arrive at PRk. Recalling that “one boundary point is equivalent to two boundary
lines”, the system in the phase region PR1 may also transfer through the (q+q′−2p)
boundary lines, plus p boundary points, to arrive at PRk.

5.2.2 The course takes a zigzag path

If the path for the transfer of the phase regions takes a zigzag route, 2n (n=integer)
more boundary lines must be passed. During the transfer of the phase regions from
PR1 to PRk, if one phase common for these two phase regions disappears, then it
must reappear again. An example is given in Fig. 5.2.

Fig. 5.2 Transfer from PR (S1+S2) to PR (S1+S2+S3).

It is possible to transfer from the phase region (S1+S2) to the phase region
(S1+S2+S3) by passing only one boundary line separating them. If the transfer
took the path as (S1+S2) → S1 → (S1+S3) → (S1+S2+S3), phase S2 disappears at
once and then reappears again. The transfer of the phase regions must pass two extra
boundary lines, one for the disappearance of S2 and another for its reappearance.
On the other hand, if one phase, it being “non-existent” in both phase regions,
should appear in the course of the transfer of the phase regions, it also needs to take
two more boundary lines. For example, the phase region S1 in Fig. 5.3 can transfer
to the phase region (S1+S2) directly, by crossing only the one boundary line that
separates them. There is no phase S3 in both of the phase regions S1 and (S1+S2)
and thus there is no necessity for S3 to appear. However, if the transference of the
phase regions takes the path S1 → (S1+S3) → (S1+S2+S3) → (S1+S2), one “extra”
phase, S3, is created and must go, two more boundary lines for this scenario are
necessary, see next page.

In summary, during the transfer course of phase region PR1 to phase region PRk,

if λ1 phases existing in both of phase regions PR1 and PRk disappear, it must cross
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Fig. 5.3 Transfer from PR (S1) to PR (S1+S2).

2λ1 “extra” boundary lines. And if λ2 extra phases are not existent in both phase
regions PR1 and PRk appears, the transference of phase regions must cross 2λ2

“extra” boundary lines also.
If between the two non-contact phase regions PR1 and PRk, there are λ3 new

phases forming, then 2 λ3 more boundary lines must appear between these two phase
regions, the reason being similar to that mentioned above.

5.3 Construction of an Isothermal Quinary Section, with Lim-

ited Information

5.3.1 The method of the boundary theory

Let us take Fig. 5.4 to illustrate how a sketch of an isothermal section can be
formed from limited experimental information.

There are five components A, B, C, D and E, in the system. The temperature and
compositions of D and E are held constant in order to produce a two-dimensional,
isothermal section. Five phases, namely α, β, γ, δ and ε exist in this system; they
are rich in components A, B, C, D and E, respectively. Fig. 5.4 (a) demonstrates
all 21 experimentally determined the phase assemblages with different compositions
(The positions of the samples are shown by the identified dots in the figure. This
figure was taken from Gupta’s paper [Gupta et al., 1986]). These experimental data
are far from sufficient to depict an experimental phase diagram. On the other hand,
they have been enough to enable us to delineate a prototype of the phase diagram
that will help to the further investigation on this system.

With the principle of the boundary theory, some boundary lines can be drawn
easily with the available information. The two NPRs 2(α+ε, or in brief, αε)/3(α+β+
ε, or in brief, αβε) have the following characteristics: φ2=2, φ3=3, φC=2, Φ−φC=1,
it satisfies the condition for the existence of a boundary line between the two NPRs
(eq.( 5-7)). One boundary line may be drawn between the two NPRs 2(αε)/3(αβε).
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Around point a, there are two pairs of NPRs 2(αε)/4(βε) and 5(ε)/3(αβε). These
two pairs of NPRs satisfy the condition for the existence of a phase boundary point
(Φ=3, φC=1, Φ−φC=2) (eq.(5-8)), point a being a phase boundary point. Similarly,

Fig. 5.4 (a) all the known information on a quinary system;

(b) the isothermal phase diagram section deduced by the boundary theory.
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one may also draw boundary lines ac, ad and dk, directly between the pairs of
NPRs, 5(ε)/2(αε), 5(ε)/4(βε) and 5(ε)/10(δε) respectively. Since for all of these
boundary lines, Φ=2, φC=1, Φ − φC=1, they satisfy the condition of occurring
a phase boundary line. Also, boundary lines ae, df, dg, hk, lm, mn, ij and the
two boundary points d and m may be obtained. As all of the NPRs around these
boundary lines have Φ�3, these lines are boundary lines only. Point d (Φ=3) is a
phase boundary point, point m (Φ > 3) is only a boundary point.

Phase region 7 is of (αγε) assemblage, and lines mj and mc may be drawn to
separate it from the other three NPRs. However, to finally settle the connection of
the phase regions 7, 9, 10, 5 and 2, there appears a necessity of existing an extra
phase region 6 in this area, which the limited experimental data failed to recognize.
Our deduction is as follows.

For two pairs of NPRs 5(ε)/7(αγε) and 5(ε)/9(γδε), they have the following
characteristics: Φ=3, φC=1 and Φ − φC=2, the phase region 5 must be in con-
tact with the other two NPRs with individual phase boundary points. For NPRs
7(αγε) /9(γδε), they have Φ=4, φC=2 and Φ − φC=2, therefore a single boundary
point must exist between them. Further examination of the pairs of phase regions
2(αε)/9(γδε), 8(αγδε)/ 5(ε) and 7(αγε)/10(δε), indicate that they can not contact
each other as they have: Φ=4, φC=1 and Φ − φC=3. Based on all of these assess-
ments, we are sure that there should be a phase region 6, being delimited by the
three boundary lines jc, ck, jk and the three boundary points c, j, k; and its actual
phase assemblage cannot be other than (γε).

Thus, all boundary lines, boundary points and phase assemblages are determined
in accordance with the principles of the boundary theory.

5.3.2 Gupta’s method for constructing multi-component isothermal sec-
tions [Gupta et al., 1986]

Gupta et al. worked out an overlapping ZPF (Zero Phase Fraction) lines method
to construct a multi-component isothermal section with limited information. The
principle employed is as follows. First, the ZPF line, with the given phase assem-
blages of a few system points, is drawn. This line is drawn in such a way that a
phase is located on one side of the line but not on the other. If there are φ phases on
the phase diagram, there are therefore φ ZPF lines. By means of these ZPF lines,
the phase diagram is divided into several regions. This is the isothermal section that
is being sought.

Gupta et al. constructed a fictitious isothermal quinary section of the quinary
system of Fig 5.4 (a) with the ZPF method. By overlapping the ZPF lines, the
desired section is obtained. For this quinary section, there are 5 phases: α, β, γ,
δ and ε. Since the ε phase is present in all of the phase regions, there is therefore
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no ZPF line for fε=0, 4 ZPF lines are drawn. By means of the overlapping 4 ZPF
lines, the desired section is obtained in Fig. 5.5.

Fig.5.5 The two-dimensional section is completed by overlapping

ZPF lines using 21 sample dots [Gupta et al., 1986].

This method, indeed, is quick and effective to construct the phase diagram with
limited data. It also successfully predicted the phase region 6, which was not con-
firmed by the experiments. But, on the other hand, the freedom in drawing the
ZPF lines within the scarce experimental points will bring an uncertainty in re-
sulted phase diagram. As Gupta et al. described, “Regions can be made to appear
or disappear by the use of an arbitrary shift of the lines. For example, the ZPF
lines of α, γ and δ can be shifted to cause field (ε + γ) to disappear and a new field
containing (α + δ + ε) to appear.” This is the situation presented in Fig. 5.6.

According to Gupta et al., “Both possibilities are topologically valid . . . ”. We
have examined and confirmed that both the results show no violation of the principles
of thermodynamic equilibrium and mass conservation. The situation becomes thus
delicate, because in the real world, there should be only one authentic phase diagram
for a system. Which one, Fig. 5.5 or Fig. 5.6, is correct? Here we see the trouble
from the inherent arbitrariness in depicting the ZPF lines. The phase diagram
(Fig. 5.4(b)) derived from different principle of the boundary theory conforms to
the depiction of Fig. 5.5, may raise a higher odds for that section to be true.

In general cases, it is more common to see that if an i-th component increases
in the system, then the quantity of the phase rich of i-th component will increase
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correspondently, rather than diminishing or vanishing. Compare the 5.4(b), from
the phase region 7 (αγε) to 6 (γε), and the Fig. 5.6, from the phase region 7 (αγε) to
6’(αδε), the former appears more probable to occur, as the component C increases in
the system and γ-phase is rich of component C. However, a definitive answer relies
on the further experimental work, as Gupta et al. had it, “. . . additional samples in
the vicinity of the controversial region must be studied to determine its true nature.”

Fig. 5.6 Another possible section created by applying the ZPF method.

5.4 The Method of Constructing an Isothermal Eight-

Component Section

We now treat a more complicated system to illustrate the operation of “the
boundary theory” method; the system is also taken from Gupta’s paper [Gupta et
al., 1986]. The system of this isothermal section contains eight components (Al, C,
Fe, Si, Mn, Cr, Mo and Nb), eleven phases and 35 phase regions. In this isothermal
section, there are also five components with fixed compositions (Fe, 62 wt%; Mn, 15
wt%; Cr, 12 wt%; Mo, 2 wt%; Nb, 1 wt%). The other three components (Al+Si+C)
wt% = 8 wt%. Temperature is held at 700◦C. The eleven phases in the section
are α-Fe, Cr, graphite (denoted by G), β-Mn(denoted by βn), MSi(M is metal, MSi
is abbreviated to 1S, the method of abbreviation being similar below), M3Si(3S),
Fe5Si3(F5S3), Mn5Si3(n5S3), M2C(2C), M3C(3C) and M23C6(23C6) respectively. All
of the phase regions contain α-Fe and Cr, and are not marked in Fig. 5.7. There
are only fourteen phase regions that are determined by experiments, they are phase
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regions 1, 2, 3, 13, 16, 18, 24, 27, 31, 32, 34, 36, 37 and 38, denoted by a dot in each
identified phase region, see Fig. 5.7.

Fig. 5.7 A horizontal section of an eight-component system.

At constant temperature and pressure, the boundary theory gives Φmax=8. Ap-
plying the method discussed above, we may now depict directly the boundary lines
between following pairs of NPRs:

1/2, (it denotes NPRs 1/2, i.e. NPRs βn/(βn, 23C6)), one more phase 23C6

appears in NPR 2, it is presented by an underline. This is the situation Φ = 2,
φC = 1, Φ − φC = 1. We have been made familiar with this type of NPRs, two
NPRs of this type have a phase boundary line between them. We treat other pairs
using the same principle (Φ − φC = 1) and thence set the boundary lines between
the following pairs.

2/3 (βn,23C6/βn,23C6,1S)
31/27 (2C,23C6/2C,23C6,1S)
31/32 (2C,23C6/2C,23C6,3C)
37/32 (2C,3C/2C,3C,23C6)
37/34 (2C,3C/2C,3C,F5S3)
37/38 ((2C,3C/2C,3C,G)
34/24 (2C,3C,F5S3/2C,3C,F5S3,1S)
16/18 (1S,3S,F5S3,n5S3/1S,3S,F5S3,n5S3,2C)
13/16 (1S,3S,F5S3/1S,3S,F5S3,n5S3)
These ten lines are drawn as full lines in Fig. 5.8. This result is directly from

the limited experimental information and the boundary theory. A vast vacant area
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remains in this section as we do not have any experimental data for the possible
phase regions. The marked unknown phase regions in Fig. 5.8 are the final results
when our derivation was completed. For the moment, these unknown phase regions
are delineated by 44 dotted lines.

This figure was depicted by the present authors, but the system was taken from
Gupta’s paper [Gupta et al., 1986].

Fig. 5.8 The incomplete section for the eight component system.

(The unknown boundary lines are shown in dotted lines; shows the identified phase regions.)

We first find the number of boundary lines and boundary points for those non-
contact phase regions(Table 5.1). Applying the principles discussed in section 5.2,
the number of boundaries existing between non-contact phase regions may be ob-
tained. A few examples, but not a complete collection, are listed in Table 5.2.
In doing so, we now know how many possible boundary lines exist between these
non-contact phase regions, and a tentative plot of the section could be made. For
example, knowing that there are 2 lines between NPR 34 and 36, we are confident
to cut out the phase region 35 from the consideration.

Table 5.1 The number of boundaries between two non-contact phase regions

Phase regions Φ φC Φ − φC
The number of possible

boundary lines or points

No. No. Points Lines

34 36 7 5 2 0 2

34 18 8 4 4 2(or0) 0(or4)

24 36 8 5 3 1(or0) 1(or3)

24 16 8 4 4 2(or0) 0(or4)

27 24 7 4 3 0(or1) 3(or1)
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Table 5.2 Determination of the phases in the 4th NPR in sequence

3 known NPRs The 4th NPR 3 known NPRs The 4th NPR

1, 2, 3, 4 13,21,22, 11

27,31,32, 28 26,22,11, 8

32,37,34, 33 27,26,8, 7

28,32,33, 25 7, 8, 11, 9

27,28,25, 26 3, 7, 9, 6

24,25,26, 23 6, 9, 11, 10

13,16,18, 21 10,11,13, 12

21,23,24, 20 6, 10,12, 5

20,24,34, 35 3, 7, 27, 29

20,35,36, 19 2, 3, 29, 30

21,23,26, 22

Next, we determine the phase region and its phase assemblage from the known
NPRs. Inside the horizontal section, if there are three phase regions in contact at
a boundary point, a fourth phase region must appear. If the phase assemblages in
the three among the four NPRs are known, the fourth may be determined. Table
5.2 summarizes our deductions.

Thus, all boundary lines and phases present in the twenty-one unknown phase
regions are determined, leading to the assembly of Table 5.3, and thence the whole
isothermal section is constructed.

Table 5.3 The phase assemblages present in phase regions shown in Fig. 5.7

No. Phase assemblages No. Phase assemblages

1 βn 20 2C,3C,1S,3S,F5S3

2 βn,23C6 21 2C,1S,3S,F5S3

3 βn,23C6,1S 22 2C,23C6,1S,3S,F5S3

4 βn,1S 23 2C,1S,F5S3

5 βn,1S,3S 24 2C,3C,1S,F5S3

6 βn,1S,3S,23C6 25 2C,3C,23C6,1S,F5S3

7 1S,23C6 26 2C,23C6,1S,F5S3

8 1S,F5S3,23C6 27 2C,23C6,1S

9 23C6,1S,3S 28 2C,3C,1S,23C6

10 βn,1S,3S,23C6,F5S3 29 βn,1S,2C,23C6

11 1S,3S,23C6,F5S3 30 23C6,βn,2C

12 βn,1S,3S,F5S3 31 2C,23C6

13 1S,3S,F5S3 32 2C,3C,23C6

14 — 33 2C,3C,23C6,F5S3

15 — 34 2C,3C,F5S3

16 1S,3S,F5S3,n5S3 35 2C,3C,3S,F5S3

17 — 36 2C,3C,F5S3,3S,n5S3

18 2C,1S,3S,F5S3,n5S3 37 2C,3C

19 2C,3C,1S,3S,F5S3,n5S3 38 2C,3C,G

Note: All of the phases contain the phases α-Fe and Cr which are not shown in this table.
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The phase assemblages of all the phase regions presented in the isothermal sec-
tion, as deduced from the different starting points, are the same, we did such work
twenty years ago. We encourage our readers to try to construct this section, or to
repeat some part of it, so as to become more familiar with the general method of
the boundary theory applications.

Applying the overlapping ZPF lines method, Gupta et al. derived the isothermal
section shown in Fig. 5.9. Comparing Fig. 5.9 and 5.7 (Fig.5.8 is the same as 5.7),
it is seen that there is difference in number of phase regions. Our deduction does
not include the phase regions 14, 15 and 17. As a matter of fact, if the middle
part of ZPF line 23/6—23/6 and line Mn5Si3—Mn5Si3 retreat a little each other,
i.e. the middle part of line 23/6-23/6 shifts to left side and the middle part of ZPF
line Mn5Si3-Mn5Si3 shifts to right side, then they would not cross each other, the
phase region 13 would contact phase region 21 directly and the phase regions 14 and
15 would disappear. As to the region 17, since all the MSi-containing experimental

Fig. 5.9 An isothermal section of eight component system

depicted by Gupta et al. [Gupta et al., 1986].
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points has been enveloped by the long ZPF line fMSi=0 (across the middle-lower
part of the triangle), the short ZPF line fMSi=0 at the corner appears somehow
unconvincing, as there is not any experimental data indicating that there is a phase
region without MSi phase.

5.5 Summary of Using the Boundary Theory Method

In this chapter, we present a method to construct the phase diagrams of multi-
component system with limited experimental data. This method employs the fun-
damental principle of the boundary theory to delineate the boundary line in an
unknown phase diagram, and to determine the phase regions and their phase as-
semblages. The difficulty of this method is that it requires a good understanding
of the boundary theory. Some more exercises may be necessary at the beginning
with relatively simple systems. But, we suppose that to comprehend the boundary
theory is not an exorbitant task for our readers.

The Gupta’s method had been widely used for the same purpose. The overlap-
ping ZPF line demonstrates certain arbitrariness in constructing the phase diagram.

Applying the boundary theory to construct the phase diagram is definitive.
Moreover, the boundary theory is also able to discuss the relation existing between
the non-contact phase regions in the isothermal sections. Through the parameter
(Φ − φC) of the non-contact phase regions, the number of boundary lines, or the
number of boundary lines and boundary points, can be calculated. Thus, the method
of the boundary theory is a powerful technique for use in the construction of com-
plex section phase diagrams. The results so derived are supported by one of the
ZPF operation. Unfortunately, we have not been able to confirm the authenticity
among the different ZPF results. This implies that we still have great deal to learn
in the rules of phase diagram structure. Before any cogent theory available, the ulti-
mate conclusion relies on the availability of experimental observation. The sketched
phase diagrams, such as Fig. 5.4 and 5.7 may be the useful map for scientists and
researchers to select the new experimental point on the isothermal phase diagrams
concerned.
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Chapter 6

The Boundary Theory of Multicomponent

Isobaric Isopleth Sections

6.1 Introduction

When the temperature is varying, the equilibrium phase transitions within sys-
tem of three or more components, at constant pressure, may be described by means
of isobaric isopleth (or vertical) sections. Thus, isopleths have important applica-
tion over a great range of the different disciplines within the various sciences and
technologies. In applying the boundary theory to isopleth section, the relationship
among the NPRs and their boundaries in the isobaric isopleths may be systemati-
cally clarified.

The temperature of the isopleth section is a variable, thus the isopleth section
is a much more complicated component than the isothermal section. While there
are differences between the isopleth section and the corresponding spatial phase
diagram, from the viewpoint of phase equilibrium, both have many similarities. In
the following paragraphs, the isopleth section, associated with the corresponding
spatial phase diagram, is discussed.

6.1.1 General rules

The isobaric N -component phase diagram is presented here in N -dimensional
space. In this phase diagram, there are variables xi (i = 1, 2, · · · , N) and T , but∑

xi = 1, the number of independent variables, in all are N . In order to present the
phase equilibrium relation in a two-dimension isopleth plane, (N − 2) compositional
variables must be fixed. So the dimensions of phase boundaries (R1)i and boun-
daries (R′

1)i (here, subscript i is the abbreviation for isopleth) in the regular isobaric
isopleth section, are (N − 2) less than the dimensions of phase boundaries, R1 and
the boundaries, R′

1 of the corresponding isobaric space phase diagrams respectively,
i.e.

(R1)i = R1 − (N − 2) (6-1)

(R′
1)i = R′

1 − (N − 2) (6-2)
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In the following paragraphs, we discuss the relation among NPRs and their
boundaries, according to the different values of R1.

6.2 The Characteristics of Boundaries in Isopleth Sections

for the Case of N � 2 and R1 � 1

When N � 2, R1 � 1, then φC � 1 and R′
1 = R1 + φC − 1.

6.2.1 N � 2 and R1 � 1, there is boundary line (R′
1)i = 1 in the isopleth

section

According to the boundary theory of phase diagrams, the following equations
may be deduced:

(R1)i = R1 − (N − 2)

= (N + 1 − Φ) − (N − 2)

= 3 − Φ (6-3)

(R′
1)i = R′

1 − (N − 2)

= (R1 + φC − 1) − (N − 2)

= (N + 1 − Φ + φC − 1) − (N − 2)

= φC + 2 − Φ (6-4)

When (R′
1)i = 1,

1 = φC + 2 − Φ, Φ − φC = 1 (6-5)

i.e. the phase difference of two NPRs is one, there is a boundary line between the
two NPRs. The phase assemblages of the two NPRs are

(f1 + f2 + · · · + fφC
)/(f1 + f2 + · · · + fφC

+ fφC+1).

If
(R1)i = (R′

1)i = 1 (6-6)

i.e. the boundary line is also a phase boundary line.
Since (R1)i = 3 − Φ (eq.(6-3)), if (R1)i = 1, Φ=2.
Since N � 2 and R1 � 1, φC � 1, when Φ = 2, the only possibility is φC = 1.

Therefore phase assemblages of two NPRs which satisfy eq. (6-6) must be NPRs
fi/(fi + fj), i �= j.

In short, N � 2, R1 � 1, (R1)i=(R′
1)i = 1, then Φ = 2, φC = 1, the phase

assemblages of two NPRs are fi/(fi + fj).
When (R1)i < 1,

(R1)i = 3 − Φ < 1, Φ � 3 (6-7)
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That is: N � 2, R1 � 1, and Φ � 3, (R′
1)i = 1, then the boundary lines between

the two NPRs are boundary lines only, and not phase boundary lines.
In the mean time, because R1 � 1,

Φ = N + 1 − R1 � N

So, N � Φ � 3, according to eq. (6-5), φC = Φ − 1,

and
(N − 1) � φC � 2 (6-8)

The ranges and regularities of the variations in Φ and φC of these boundaries,
among NPRs are wholly determined by eqs. (6-5), (6-7) and (6-8).

According to eqs. (6-1), (6-2), (6-5), (6-7) and (6-8), if the phase assemblages of
two NPRs are given, the values of Φ, φC , R1, R′

1, (R1)i and (R′
1)i of the system of

four, five and six components may be deduced logically, see Table 6.1.

Table 6.1 The characteristics of the NPRs and their boundaries when

N � 2, R1 � 1, (R1)i � (R′
1)i = 1

N 4 5 6

Φ 2, 3, 4 2, 3, 4, 5 2, 3, 4, 5, 6

φC = Φ − 1 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5

R1 = N + 1 − Φ 3, 2, 1 4, 3, 2, 1 5, 4, 3, 2, 1

R′
1 = R1 + φC − 1 3, 3, 3 4, 4, 4, 4 5, 5, 5, 5, 5

(R′
1)i = R′

1 − (N − 2) 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1, 1

(R1)i = R1 − (N − 2) 1, 0,−1 1, 0,−1,−2 1, 0,−1,−2,−3

In Table 6.1, when (R1)i=(R′
1)i, the boundary line is also a phase boundary line. When

(R1)i < (R′
1)i = 1, the boundary lines are boundaries only. When Φ=3, (R1)i=0, there may exist

a phase boundary point between two NPRs. When (R1)i = −1,−2,−3, there is no phase boundary

point between two NPRs.

6.2.2 N � 2, R1 � 1, and there are boundary points (R′
1)i = 0 in the

isopleth section

6.2.2.1 The case (1): the boundary point is also a phase boundary point in the
isopleth section.

When (R1)i=(R′
1)i=0, by eq. (6-3)

(R1)i = 3 − Φ = 0

Φ = 3

Thus, in the isobaric multicomponent phase diagram, there are three different
phases in the two NPRs, Φ=3; then there is a boundary point also a phase point
between the two NPRs in the isopleth section.
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Since (R′
1)i = φC + 2 − Φ = 0, see eq. (6-4).

φC = Φ − 2 = 1

Φ − φC = 2

Φ=3, φC = 1, the phase assemblages of the two NPRs must be NPRs of the type,
fi/(fi + fj + fk) or (fi + fj)/(fj + fk), i, j, k = 1, 2, 3, i �= j �= k. There are two
different phases between the two NPRs.

6.2.2.2 The case (2): in the isopleth section, there are boundary points, but not
phase boundary points, i.e. 0=(R′

1)i > (R1)i.

0 > (R1)i = 3 − Φ,Φ > 3, i.e.

Φ � 4.

Since in the isobaric phase diagram, when R1 � 1, N � Φ, then

N � Φ � 4 (6-9)

0 = (R′
1)i = φC + 2 − Φ

φC = Φ − 2 (6-10)

Φ − φC = 2

Therefore, the phase assemblages of the two NPRs are of the types NPRs (f1 +
f2 + · · ·+ fφC

)/(f1 + f2 + · · ·+ fφC
+ fφC+1 + fφC+2) or NPRs (f1 + f2 + · · ·+ fφC

+
fφC+1)/(f1 + f2 + · · · + fφC

+ fφC+1′).
In the isobaric ternary phase diagram, these is no case of R1 � 1 and Φ � 4, so it

is impossible existing boundary point of this type. According to eqs.(6-9), (6-10) and
other equations, the characteristics of the boundaries in four and more component
isopleth sections may be deduced, as shown in Table 6.2.

Table 6.2 Characteristics of the boundaries in the case of N � 2, R1 � 1,

0 = (R′
1)i � (R1)i

N 4 5 6

Φ 4 4, 5 4, 5, 6

φC = Φ − 2 2 2, 3 2, 3, 4

R1 = N + 1 − Φ 1 2, 1 3, 2, 1

R′
1 = R1 + φC − 1 2 3, 3 4, 4, 4

(R′
1)i = R′

1 − (N − 2) 0 0, 0 0, 0, 0

(R1)i = R1 − (N − 2) −1 −1,−2 −1,−2,−3

When (R′
1)i=0 and (R′

1)i > (R1)i, the boundary point is no longer a phase point.
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6.3 The Characteristics of Boundaries in the Isopleth Section

for the Case of N � 2, R1 = 0, there is no Invariant Phase

Transition between the two NPRs

In this case, one NPR transfers to another, only when the composition of the
system changes. R′

1 = R1 + φC − 1 still holds.

6.3.1 There is no boundary line between the two NPRs for the above
mentioned case

This may be proved as follows:
Since R1=0,

(R′
1)i =R′

1 − (N − 2)

=(R1 + φC − 1) − (N − 2)

(R′
1)i =φC − N + 1 (6-11)

If (R′
1)i = 1, φC = N . Then, according to the phase rule, for the isobaric phase

diagram, R1=0, φ = N . Now, φC = N , the phase assemblages of the two NPRs are
identical, it is meaningless.

Therefore, under the above mentioned condition, there is no boundary line with
(R′

1)i = 1 in the isopleth section.

6.3.2 The boundary points with (R′
1)i = 0

According to eq. (6-11), if (R′
1)i=0,

φC = N − 1 (6-12)

R1 = 0

Φ = N + 1 − R1 = N + 1 (6-13)

From eqs. (6-11), (6-12) and (6-13), the characteristics of the boundaries of this
type are shown in Table 6.3.

Table 6.3 Characteristics of the boundaries for the case of: N � 2, R1 = 0,

R′
1 = R1 + φC − 1,0 = (R′

1)i > (R1)i

N 4 5 6

Φ = N+1 5 6 7

φC = N − 1 3 4 5

R1 0 0 0

R′
1 = R1 + φC − 1 2 3 4

(R′
1)i = R′

1 − (N − 2) 0 0 0

(R1)i = R1 − (N − 2) −2 −3 −4
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Let us now discuss the phase assemblages of two NPRs. According to the phase
rule, in the isobaric phase diagram, for the number of phases in any phase region,
φ, there is N � φ �1, see eq. (2-2).

If φ1 = N
φ2 =Φ + φC − φ1

=(N + 1) + (N − 1) − N

=N

i.e. φ1 = φ2 = N , φC = N − 1.

This does not contradict the boundary theory, therefore it is possible. Also, there
is only one possibility, all other phase assemblage combinations are impossible. This
may be proved as follows:

If φ1 < N

φ2 =Φ + φC − φ1 = (N + 1) + (N − 1) − φ1

=2N − φ1 > N

According to the phase rule, this is impossible.
Therefore, the phase assemblages of two NPRs are

NPRs (f1 + f2 + · · · + fφC
+ fφC+1)/(f1 + f2 + · · · + fφC

+ fφC+1′).

6.4 The Case of N � 2, R1 = 0, there is an Invariant Phase

Transition between the two NPRs. In this Case, there

may be a Boundary Line or a Boundary Point between

two NPRs

6.4.1 In the isopleth section, boundary lines exist: (R′
1)i = 1 between

the NPRs in the above condition

∵ R1 = 0

Φ = N + 1 (6-14)

and
1 = (R′

1)i =R′
1 − (N − 2)

=R1 + φC − (N − 2)

=φC − (N − 2)
so

φC = N − 1 (6-15)

From the eqs.(6-14), (6-15) etc, the characteristics of the boundaries may be
obtained, see Table 6.4.

Then, let us discuss the phase assemblages of the two NPRs.
Since φ1 � N
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Table 6.4 Characteristics of boundaries for the case: N � 2, R1=0, there is an

invariant phase transition between NPRs, R′
1 = R1 + φC , 1 = (R′

1)i > (R1)i

N 4 5 6

Φ = N + 1 5 6 7

φC = N − 1 3 4 5

R1 0 0 0

R′
1 = R1 + φC 3 4 5

(R′
1)i = R′

1 − (N − 2) 1 1 1

(R1)i = R1 − (N − 2) −2 −3 −4

If φ1 = N

φ2 =Φ + φC − φ1 = (N + 1) + (N + 1) − N

=N

φ1 =φ2 = N

There is the only one possibility. If φ1 < N ,
φ2 =Φ + φC − φ1

=(N + 1) + (N + 1) − φ1

=2N − φ1 > N

It is impossible.
Therefore, the phase assemblages of two NPRs are:

NPRs(f1 + f2 + · · · + fφC
+ fφC+1)/(f1 + f2 + · · · + fφC

+ fφC+1′).

6.4.2 The boundary points (R′
1)i = 0 between the two NPRs in the case

mentioned above

Since R1 = 0, Φ = N + 1
and

0 =(R′
1)i = R′

1 − (N − 2)

=R1 + φC − (N − 2)

=φC − (N − 2)

φC = (N − 2) (6-16)

The characteristics of boundary points of this type are shown in Table 6.5.

Table 6.5 Characteristics of the boundary points in the case: N � 2, R1 � 0,

R′
1 = R1 + φC , 0 = (R′

1)i > (R1)i

N 4 5 6

Φ = N + 1 5 6 7

φC = N − 2 2 3 4

R1 0 0 0

(R′
1)i = R′

1 − (N − 2) 0 0 0

(R1)i = R1 − (N − 2) −2 −3 −4
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The boundary point is no longer a phase boundary point.
Let us discuss the phase assemblages for the two NPRs.
Since φ � N , if φ1 = N

φ2 =Φ + φC − φ1

=(N + 1) + (N − 2) − N

=N − 1

The only possibility is: φ1 = N (or N − 1), φ2 = N − 1 (or N).
If φ1 < (N − 1), φ2 > N , then, according to the phase rule, it is impossible.
The above discussion clarifies the whole boundaries matter, i.e. there being three

main types and five minor classes within the regular isobaric isopleth sections of an
N -component system (in the general case, Z = r = 0). These are the most common
types of boundaries encountered in multicomponent, isobaric isopleth sections. Even
in the irregular, isobaric isopleth sections, there are only a few cases here eqs. (6-1)
and (6-2) are not obeyed; in these cases, the boundary theory still holds.

The cases of Z �= r �= 0 are very rare. In these few cases, the TCR must be
written in the form (see (2-6′)):

R1 = (N − r − Z) − Φ + 1

The boundary theory of phase diagrams still holds in these cases, where r is the
number of independent reactions occurring within the system, and Z is the number
of other restrictive conditions acting upon the component concentrations (exception:∑

xi = 1).

6.5 Example

Let us now apply the boundary theory of isobaric, isopleth section to the analysis
of one example.

A regular isobaric isopleth section of a quinary eutectic system is shown as fol-
lows:

For the quinary system,

R1 = N + 1 − Φ = 6 − Φ

Φ = 6 − R1

(R1)i = 6 − Φ − 3 = 3 − Φ

1. ab, bc lines, Φ = 2, φC = 1, R′
1 = R1 + φC − 1.

(R1)i = 3 − Φ = 1
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(R′
1)i =(R1 + φC − 1) − (N − 2)

=(N − Φ + 1 + φC − 1) − (N − 2)

=φC − Φ + 2

=1

Thus, they are the boundary lines and the phase boundary lines too. This case is
shown in Fig. 6.1.

Fig. 6.1 The isopleth section of an isobaric, quinary eutectic system L liquid phase; 1, 2, 3, 4

and 5 represent S1 ∼S5 solid solution phases. [Rhines, 1956].

Point b. This is the boundary phase point between (L+S1)/(L+S5), or between
L/(L+S1+S5), Φ=3, φC = 1.

Φ − φC = 2

(R1)i = 3 − Φ = 0

(R′
1)i =(R1 + φC − 1) − (N − 2)

=φC − Φ + 2

=1 − 3 + 2 = 0
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(R′
1)i = (R1)i = 0

Thus, point b is both a boundary point and a phase point. It is a phase point of the
common phase L, see subsection 6.2.2.1.

2. Lines de, eb, bf and fg. Φ=3, φC = 2, R′
1 = R1 + φC − 1

(R1)i = 3 − Φ = 0

(R′
1)i = φC − Φ + 2 = 2 − 3 + 2 = 1

(R1)i < (R′
1)i = 1

So these lines are boundary lines only.
Point e and f. Point e is taken for discussion.
Point e is a boundary point located between NPRs (L+S1+S2)/(L+S1+S5), or

(L+S1+S2)/(L+S1)/(L+S1+S5)/(L+S1+S2+S5); Φ=4, φC = 2,

(R1)i = 3 − Φ = −1

(R′
1)i =(R1 + φC − 1) − (N − 2)

=φC − Φ + 2 = 0
(6-4)

So, point e is a boundary point only. This case is shown in Table 6.2.
3. Lines hi, ie, ej, jf, fk and kl, Φ = 4, φC = 2, R′

1 = R1 + φC − 1.

(R1)i = 3 − Φ = −1

(R′
1)i =(R1 + φC − 1) − (N − 2)

=φC − Φ + 2

=1 > (R1)i

Thus, these lines are boundary lines only. This case is set out in Table 6.1.
4. Point i, j and k. Consider point i for discussion, Φ=5, φC=3, R′

1 = R1+φC−1.

(R1)i = 3 − Φ = −2

(R′
1)i =(R1 + φC − 1) − (N − 2)

=φC − Φ + 2 = 0 > (R1)i = −2

Therefore, point i is a boundary point only. This case is also shown in Table 6.2.
Lines un, nm, mo, oi, ip, pj, jg, gk, kr, rs, st and tv, Φ=5, φC=4,

R′
1 = R1 + φC − 1.

(R1)i = 3 − 5 = −2
(R′

1)i =(R1 + φC − 1) − (N − 2)

=φC − Φ + 2

=1 > (R1)i = −2
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These lines are boundary lines only. This case is shown in Table 6.1.
5. Lines no, op, pg, gr and rt. Φ=6, φC=4, R′

1 = R1 + φC (since there is an
invariant phase transition between the two NPRs, and R′

1 = R1 + φC).

(R1)i = 3 − Φ = −3

(R′
1)i =(R1 + φC) − (N − 2) = (N − Φ + 1 + φC) − (N − 2)

=φC − Φ + 3 = 1 > (R1)i = −3

These are boundary lines only. The case is shown in Table 6.4
6. Point n, o, p, g, r and t.
Consider point o as an example of the group. This point is the boundary point

between (L+S1+S2+S3)/(S1+S2+S3+S4+S5).
Φ=6, φC=3, R′

1 = R1 + φC (since there is an invariant phase transition between
the two NPRs)

(R1)i = 3 − Φ = −3

(R′
1)i =(R1 + φC) − (N − 2)

=φC − Φ + 3 = 3 − 6 + 3 = 0

(R′
1)i = 0 > (R1)i = −3

So, point o and the other points; n, p, q, r and t, are all examples of boundary
points, only. This is shown in Table 6.5.

Therefore, to this point, all of the boundary points and boundary lines have been
“explained” with reference to the boundary theory of isobaric, isopleths sections.
Thus it may be reasonably said that the boundary theory is seen to be a useful
theoretical tool with which to analyze the isobaric isopleths sections.

6.6 The Theory of Two-Dimensional Sections of Isobaric Mul-

ticomponent Phase Diagrams

The “forms” of isothermal sections and of isopleths sections are very different.
We have discussed these two types of sections in separate chapters, i.e. Chapter 5
and Chapter 6, just for convenience of the explanations offered. We may now discuss
them in a more unified manner.

The dimensions of isobaric phase diagrams of N -component systems, the dimen-
sions of their boundaries and of the phase boundaries, are denoted by N , R′

1 and
R1, respectively.

Let the N -component phase diagram be cut (horizontally or vertically) once, the
dimensions of the section obtained being (N − 1). In order to show the phase equi-
librium relation of the isobaric N -component phase diagram, on a two-dimensional
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plane (including the isothermal and isopleth sections), the dimensions of the section
must be decreased by (N − 2). The compositions of (N − 2) components must be
fixed; or the compositions of (N − 3) components, and the temperature, must be
fixed. Their boundaries dimensions and the dimensions of their phase boundaries
must be deduced by minus (N − 2). That is:

(R′
1)s = R′

1 − (N − 2) (6-17)

(R1)s = R1 − (N − 2) (6-18)

The subscript “s” means “section”.
If all boundaries in the two-dimensional sections obey eqs.(6-17) and (6-18), they

are called regular sections. Even in irregular sections, only few boundaries do not
obey eqs. (6-17) and (6-18). In these cases, one must treat the problem starting
from the corresponding spatial phase diagram, and applying eqs.(2-6), (2-12) and
(2-13) to solve these problems.

Applying equations:
R1 = N − Φ + 1 (2-6)

R′
1 = R1 + φC (2-12)

R′
1 = R1 + φC − 1 (2-13)

and eqs.(6-17) and (6-18), to the two-dimensional sections of the ternary and qua-
ternary systems, then, Table 6.6 and 6.7 are obtained.

Table 6.6 Regularities of variations of Φ, φC , R1, R′
1, (R′

1)s and (R1)s of the

two-dimensional sections of ternary systems

Φ 2 3 4

R1 2 1 0

φC 1 2� φC �1 2� φC � 0

R′
1 2 R1 + φC − 1 = φC R1 + φC = φC

(R1)s = R1 − 1 1 0 −1

(R′
1)s = R′

1 − 1 1 φC − 1 φC − 1

Phase assemblages

of two NPRs

i, j, k, m = 1, 2, 3, 4

i �= j �= k �= m

fi/(fi + fj)

φC = 2, (R′
1)S = 1

(fi + fj)/

(fi + fj + fm)

φC = 2, (R′
1)v = 1

(fi + fj + fk)/

(fj + fk + fm)

φC = 1, (R′
1)S=0

fj/(fi + fj + fk)

(fi + fj)/(fj + fk)

φC = 1, (R′
1)v=0

(fi + fj)/

(fj + fk + fm)

Note: There is no case for Φ = 4 in the regular isobaric section of the ternary system. The

cases within the black line square only exit in the vertical section. The dimension of the boundary

in the vertical section is denoted by (R′
1)v.
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Table 6.7 Regularities of variations of Φ, R1, φC , R′
1, (R1)s and (R′

1)s of the

two-dimensional sections of the quaternary systems

Φ 2 3 4 5

R1 3 2 1 0

φC 1 2 � φC �1 3� φC �1 3� φC � 0

R′
1 3 R1 + φC − 1 = R1 + φC −1 = φC R1 + φC = φC

φC + 1

(R1)s = R1 − 2 1 0 −1 −2

(R′
1)s = R′

1 − 2 1 φC − 1 φC − 2 φC − 2

The phase

assemblages

in two NPRs

i, j, k, m, n =

1,2,3,4,5,

i �= j �= k �= m �= n

fi/(fi + fj)

φC = 2

(R′
1)s = 1

(fi + fj)/

(fi + fj + fk)

φC = 3

(R′
1)s = 1

(fj + fk + fm)/

(fj + fk + fm + fn)

φC = 3

(R′
1)v = 1

(fi + fj + fk + fm)/

(fj + fk + fm + fn)

φC = 1

(R1)s=0

(fi)/(fi + fj + fk)

(fi + fj)/(fj + fk)

φC = 2

(R′
1)s=0

(fi + fj + fk)/

(fj + fk + fm)

φC = 2

(R′
1)v=0

(fi + fj + fk)/

(fj + fk + fm + fn)

The forms of the horizontal sections and vertical (isopleth) sections are very dif-
ferent. But Table 6.6 shows that the relationship among NPRs and their boundaries,
in the regular isothermal and vertical (isopleth) sections, is similar. The difference
between the horizontal and vertical sections of the ternary phase diagrams is that
the case of Φ=4 and R1=0 only exists in the ternary vertical (isopleth) sections.

Through Table 6.7, all of the relationship among the NPRs and their boundaries,
for the two-dimensional sections of the quaternary systems, can be well explained.

The phase assemblages shown in the black lined square only exist in the quater-
nary vertical sections.

Tables 6.6 and 6.7 show that both the regularities of the relationship among
the NPRs and their boundaries, for the vertical and isopleth sections, are similar.
Since the influences of the parameters: p, T and xi, to the relationship among NPRs,
and their boundaries in the phase diagrams are essentially similar. Our deductions
therefore, are both an important and an interesting result.
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Chapter 7

The Application of the Boundary Theory

to Isobaric Phase Diagrams

7.1 Brief Review of the Application for the Boundary Theory

Through application of the boundary theory, Palatnik-Landau’s contact rule for
phase regions is deduced. Then, and in accord with the course of deduction of this
rule, its limitations in some of it application have been examined. Comparison of
the Palatnik-Landau’s contact rule with the boundary theory, has been discussed in
detail.

The relationship among the NPRs and their boundaries, for both simple and
complex phase diagrams, has been discussed. Rhines’ ten empirical rules for the
construction of complicated ternary phase diagrams, from corresponding phase dia-
gram units, have been explained. The boundary theory, dealing as it does with the
isothermal and isopleth sections of multicomponent systems, has been well worked
out.

In the practice of applying boundary theory, isothermal multi-component sections
may be constructed with the presently limited information.

7.2 The Analysis of the Fe-Cr-C Isopleth Section

The Fe-Cr-C ternary phase diagram is a very important tool in the research and
development of stainless steel compositions. Fig. 7.1 is an isopleth section of the
Fe-Cr-C system, located at the 0.2 mass% carbon content [Perkner, 1977].

What is the meaning of each of the boundary lines displayed in the figure? Can
the equilibrium compositions of the phases present be read from the boundary lines
in the diagram? The answers to these and other related questions may be obtained
with the application of the boundary theory.

There are boundary lines for three different types in the section.
1. The NPRs type with parameters: Φ = 2 and φC = 1
NPRs δ/(δ + α), γ/(α + γ) and γ/(γ + κ1) are all able to satisfy the conditions:

Φ = 2, φC = 1.
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Fig. 7.1 The Fe-Cr-C isopleth section [Perkner, 1977].

The characteristics of the boundary between these pairs of NPRs, in the corre-
sponding spatial phase diagram, are:

R1 = N − Φ + 1 = 4 − Φ = 4 − 2 = 2

R′
1 = R1 + φC − 1 = 2 + 1 − 1 = 2

And the dimensions of the boundaries and phase boundaries in the isopleth section,
are as follows:

(R1)i = R1 − 1 = 2 − 1 = 1, (R′
1)i = R′

1 − 1 = 2 − 1 = 1

(R1)i = (R′
1)i = 1

Thus, boundary lines of this type in the isopleth section are also phase boundary
lines. They consist not only of the system points, but also of the phase points. At
a given temperature, the equilibrium compositions of common phases (e.g. phases
δ and γ) may be read from these phase boundary lines.

2. The type of NPRs with parameters: Φ=3 and φC=2.
The NPRs (α + γ)/(α + γ + δ), (δ + α)/(δ + α + γ), (δ + α)/(δ + α + κ1),

(α+κ1)/(δ+κ1+α), (α+κ1)/(γ+κ1+α), (α+γ)/(α+γ+κ1) and (γ+κ1)/(α+γ+κ1)
satisfy the conditions of Φ=3 and φC=2, so the dimensions of the phase boundaries
and the boundaries in the corresponding spatial phase diagram, are as follows:

R1 = 4 − Φ = 4 − 3 = 1
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R′
1 = R1 + φC − 1 = 1 + 2 − 1 = 2

The dimensions of the corresponding boundaries and phase boundaries in the iso-
pleth are

(R1)i = R1 − 1 = 1 − 1 = 0

(R′
1)i = R′

1 − 1 = 2 − 1 = 1

The boundary lines therefore consist of system points only, and phase composi-
tions can not be read from these boundary lines.

3. The type of NPRs with conditions Φ=4 and φC=2.
The NPRs, (δ + α + γ)/(α + γ + κ1) and (δ + α + κ1)/(α + γ + κ1), satisfy the

conditions of Φ=4 and φC=2, the temperature being the eutectic temperature, and
an invariant phase transition being placed between the two NPRs. The dimensions
of the phase boundaries, and the boundaries in the corresponding spatial phase
diagram are

R1 = 4 − Φ = 0

R′
1 = R1 + φC = 2

Thus, the phase boundary in the spatial phase diagram consists of four such
invariant phase points, the boundary being a plane which is a triangle formed by
connecting three phase points (as vertexes of the triangle), one phase boundary point
in the center of the triangle. All of these four phase points are not shown in the
isopleth section, please refer Fig. 2.5 in subsection 2.6.1.

For this type of NPRs in the isopleth section:

(R1)i = R1 − 1 = −1

(R′
1)i = R′

1 − 1 = 2 − 1 = 1

(R′
1)i �= (R1)i

Since (R1)i = −1, the boundary lines in the isopleth section consist of system
points only. Also, R1=0, and the temperature is the eutectic temperature. There-
fore, these two boundary lines must lie on the same horizontal line. The NPRs
around the three boundary points on this line are the NPRs: (δ + α)/(α + γ + κ1),
(α + γ)/(δ + α + γ)/(α + γ + κ1), (δ + α + κ1)/(α + κ1)/(α + γ + κ1), all of these
NPRs satisfying the conditions of Φ=4, φC=1. Thence, the characteristics of the
three boundary points in the isopleth section are

R1 = 4 − Φ = 4 − 4 = 0

R′
1 = 0 + 1 = 1
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(R1)i = R1 − 1 = 0 − 1 = −1

(R′
1)i = R′

1 − 1 = 1 − 1 = 0

These particular points are only system points.
There is a point, p, in the section, the NPRs around this point being either two

NPRs (α+γ)/(γ +κ1) or four NPRs (α+γ)/γ/(γ +κ1)/(α+γ +κ1). Both of these
configurations satisfy the conditions: Φ=3, φC=1, thus, the characteristics of this
point are

R1 = 4 − Φ = 4 − 3 = 1

R′
1 = R1 + φC − 1 = 1 + 1 − 1 = 1

(R1)i = R1 − 1 = 0

(R′
1)i = R′

1 − 1 = 1 − 1 = 0

Therefore, this point is a common boundary point, it being a common phase
boundary point also. The phase composition of the common phase γ, may be read
directly from this point, p. The characteristics of the point p(Φ=3)and those of the
three points at the boundary line with Φ=4 are different.

7.3 The Application of the Boundary Theory to Phase Dia-

gram Calculation

7.3.1 The general principles are now discussed for the phase diagram
calculation with the aid of the boundary theory

According to the boundary theory, the calculation of phase diagrams is no other
than calculating the boundaries between NPRs. Thus, our way is different from
those “traditional” methods. From the viewpoint of boundary theory, the boundaries
lying between NPRs may be divided into two types: the phase boundary and the
boundary. If the dimensions of a given boundary between NPRs, R′

1, are equal
to the dimensions of the phase boundary R1, i.e. R1 = R′

1. The boundary lines
are also phase boundary lines. A boundary of this type is called the “boundary
of the first type”. If R′

1 > R1, this boundary is composed of system points only.
The boundary of this type is called the boundary of the second type. Determining
the characteristics of the boundary is beneficial for the calculation method design.
For a boundary of the first type – the phase boundary, it is only needs to set
the phase equilibrium equations of the relevant phase points of the system at a
given temperature, then, these equations are solved and the compositions of the
equilibrium phase points obtained. By calculating a series of phase points for the
system at a series of different temperatures, the corresponding phase boundary may
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then be obtained. For a boundary of the second type, the compositions of the phase
equilibrium points, at a given temperature, are the first to be calculated. Then, by
means of the mass balance equations, the compositions of the corresponding system
points are calculated, using the values of the equilibrium phase point compositions
of the system. By calculating the equilibrium phase points, and the corresponding
system points, under given conditions and at a series of temperatures, the calculated
boundary line is obtained. Through calculation of all the boundary lines and the
phase boundary lines, the full phase diagram, or its pre-selected section, may be
constructed. The principles of this calculation process are discussed in the next
section.

7.3.2 Direct calculation of isopleth sections of the Bi-Sn-Zn ternary sys-
tem

As an example of phase diagram calculation through the application of the
boundary theory, the calculation of isopleth sections, of the Bi-Sn-Zn system, is
now presented [Zhao et al., 1986].

According to the boundary theory, for this ternary system, those boundaries with
Φ=2 are phase boundaries, or boundaries of the first type. The equilibrium phase
points may be now calculated using a set of phase equilibrium equations, at a given
temperature. When Φ � 3, the boundaries are composed of system points only.
For these boundaries, the compositions of the relevant equilibrium phase points
must initially be calculated, the compositions of system points of the system are
then calculated, using the mass balance equations and the calculated values of the
compositions of equilibrium phase points.

7.3.2.1 The calculation of a regular section

Fig. 7.2 is an illustration of such an example.
For this system, since xZn = x1=0.05(x1 is the mole fraction of Zn of the system

present; the notation used below is similar),

x2 + x3 = 0.95

(1) From the Fig. 7.2, the NPRs L/(L+Sj) (j=1, 2, 3) around lines de, ef and fg
satisfy the conditions of Φ=2, φC=1, so the characteristics of these boundaries are

R1 = 2, R′
1 = 2

(R1)i = 1, (R′
1)i = 1
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Fig. 7.2 A regular isopleth section of the Bi-Sn-Zn system.

S1-pure Zn phase; S2-phase rich in Bi; S3-phase rich in Sn.

All of these lines are phase boundary lines – the phase boundary lines of the
common phase, L. In taking line de as an example, on this line, the system point
coincides with the phase point of phase L, thus the phase composition x1,L of phase
L satisfies the following equation:

x1,L = x1 = 0.05

On line de, phases L and S2 are coexisting in equilibrium, therefore, in accord
with general thermodynamic principles, the following equations may be written:

ai,L

ai,S2

= Ki, (i = 1, 2, 3) (7-1)

Where, ai,L and ai,S2 are activities, K, the coefficient of distribution, xi,j the mole
fraction of the i-th component in the j-th phase (i=1(Zn), 2(Bi), 3(Sn); j=1(L),
2(S2)). Owing to x1,L=0.05,

x3,L =1 − x2,L − 0.05
=0.95 − x2,L

Thus, the mole fractions of the three component liquid phase have only one inde-
pendent variable. For the solid solution S2,

x3,S2 = 1 − x1,S2 − x2,S2

Therefore, the independent composition variables of the two equilibrium phases on
the boundary line, de, are: x1,S2 , x2,S2 and x2,L only. According to the thermody-
namic principle, for a given temperature, x1,S2 , x2,S2 and x2,L may be calculated
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using the phase equilibrium equations (7-1), and thus, the compositions of the equi-
librium phase points are obtained. Through calculation of the equilibrium phase
points over a series of temperatures, line “de” may be obtained. Lines ef and fg may
be calculated in a similar fashion. Points e and f are the crossing points of the two
sets of liquid phase lines, (de, ef) and (ef, fg), respectively.

(2) The pairs of NPRs around the eight boundary lines; he, ek, kf, fi, il, ln, mj
and jp; satisfy the conditions of Φ=3 and φC=2. For these lines,

(R1)i = R1 − 1 = (N − Φ + 1) − 1 = 0

(R′
1)i = R′

1 − 1 = (R1 + φC − 1) − 1 = (1 + 2 − 1) − 1 = 1

(R′
1)i > (R1)i

i.e., they are boundary lines only. Consider line “he” between (L+S2)/(L+S1+S2)
as an example, the method of calculation for this line is now set out, as follows.

Initially, the relevant equilibrium phase points are calculated. There are three
phase: L, S1 and S2, coexisting in equilibrium, for which one may write the following
phase equilibrium equations:

ai,L

ai,S1

= Ki,S1 , (i = 1, 2, 3) (7-2)

ai,L

ai,S2

= Ki,S2 , (i = 1, 2, 3) (7-3)

Because the system points do not coincide with the phase points, the condition
of x1,L=0.05 does not hold; 3 components in the three coexisting phases have six in-
dependent equilibrium phase compositions. When the temperature is kept constant,
Ki,Sj

is also constant. By solution of the six independent equations, (7-2) and (7-3),
the compositions of a set of equilibrium phase points, at the given temperature, are
thus obtained.

When the system point occurs on line he, according to the level rule, all masses
of components in the system are distributed in the common phases, L and S2. By
writing a set of mass balance equations, with the compositions of the corresponding
equilibrium phase points, the composition of one system point on the line, he, at the
given temperature, may be calculated.

By a similar method, in calculating the equilibrium phase points and the corres-
ponding system points at a series of temperatures, the line, he, may be obtained.
Using a similar method, line ek and other boundary lines, may be calculated.

(3) The 3 points, j, k and l, are the crossing points for the three sets of boundary
lines: (jm, pj), (ek, kf) and (il, ln); with Φ=3, respectively.

Therefore, the isopleth section, as shown in Fig. 7.2, can be constructed, it is a
regular section.
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7.3.2.2 Calculation of an irregular isopleth section

Most boundary lines in the irregular isopleth section satisfy the conditions of:

(R1)i = R1 − 1

(R′
1)i = R′

1 − 1

They may be calculated in a similar manner, as set out above. Only a few “special
points” in the irregular section have the dimensions of their boundaries and phase
boundaries equal to the dimensions of those corresponding boundaries and phase
boundaries, as shown in the space phase diagram. For these irregular boundary
points, and according to the phase assemblages of their NPRs, one may thus analyze
and determine the characteristics of these special points. Subsequently, they may
be calculated with the aid of general thermodynamic principles.

Fig. 7.3 is a calculated, irregular isopleth section. This particular section just
crosses the ternary eutectic point. Thus, this point occurs in the form of a boundary
point, seen in Fig. 7.3, it being the only one boundary point lying between NPRs
L/(S1+S2+S3).

Fig. 7.3 An irregular isopleth section of the Bi-Sn-Zn system.

S1-pure Zn phase; S2-phase rich in Bi; S3-phase rich in Sn.

In summary, both the regular and irregular sections may be calculated, with the
aid of boundary theory and the use of general thermodynamic principles.
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7.3.2.3 Further discussions

The author and his students have calculated a series of isopleth sections with
constant xZn, the positions of these sections being shown in Fig. 7.4. By combining
these ternary sections, and the three experimental phase diagrams of the Bi-Sn, Sn-
Zn and Zn-Bi binary systems, we were able to construct a spatial Bi-Sn-Zn ternary
phase diagram, with the use of transparent materials and other materials. This
transparent, spatial phase diagram is a useful tool for the teaching of phase diagrams.

Fig. 7.4 The positions of the composition lines, with xZn=const.

Besides the isopleth sections with fixed xZn values, the following two types of
isopleth sections have been calculated:

(1) The isopleth section crosses a vertex (for example, point pure Sn), of the
Bi-Sn-Zn composition triangle and the line of xZn/xBi=const. on this triangle, see
Fig. 7.5.

Fig. 7.5 Three possible types of relation among the compositions of the ternary

system’s three components.

Fig. 7.6 is a calculated isopleth section with xZn/xBi=0.25.
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Fig. 7.6 The vertical section of the Bi-Sn-Zn system, with xZn/xBi=0.25.

(2) The vertical section, in which the compositions of the two components main-
tain linear relation, see Fig. 7.6.

Fig. 7.7 shows the calculated vertical section, in which the compositions of the
two components retain the following relation

xZn = 0.4 − 0.5xBi

Fig. 7.7 Ternary vertical section, with xZn = 0.4 − 0.5xBi.
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The three types of composition lines, as shown in Fig. 7.5, may be the basic
composition lines of the ternary composition triangle. All of the vertical sections
which cut across one of these composition lines, can be calculated with the aid of
the boundary theory well.

7.4 Application of the Boundary Theory to Phase Diagram

Assessment

Most of the “published” experimental phase diagrams are correct. However, a
few of the numerous published phase diagrams do conceal some errors within their
boundaries, e.g. between the NPRs where the invariant transition occurs and within
other boundaries, also. By applying the just described “The boundary theory” to
such examples, the errors are easy to reveal. Some examples of faulty phase diagrams
are now discussed.

7.4.1 In-Zr binary phase diagram

The In-Zr phase diagram, shown in Fig. 7.8 [Brandes, 1983], contains some errors.

Fig. 7.8 In-Zr phase diagram.

(1) At the pure Zr component end, the split in the point a and b is in error.
Since for pure Zr, N=1, Φ=2 (phases α and β are coexisting), so

R1 = N − Φ + 1 = 1 − 2 + 1 = 0

Thus, point a, b must be combined to a single point only.
(2) The boundaries of two pairs of NPRs (α + β)/(β + γ) and (β + γ)/(α + γ)

have some errors.
Since the different phases in both pairs of the NPRs are the phases, α, β and γ,

the characteristics of these two pairs of NPRs are the same; i.e. Φ=3, N=2, φC=1,
thus, the characteristics of the boundaries are
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R1 = N − Φ + 1 = 2 − 3 + 1 = 0

R′
1 = R1 + φC = 0 + 1 = 1

Therefore, lines cd and de must be combined to form one horizontal boundary
line only (since R1=0). But both of the lines, cd and de, in the figure, are not
horizontal, thus they are mistaken.

The correct phase diagram must be a peritectic phase diagram. Fig. 7.9 shows
the phase diagram, correct in principle; it is depicted by applying the boundary
theory.

Fig. 7.9 Sketch figure of the Zr-In phase system diagram, but correct “in principle”.

7.4.2 Phase diagrams of rare-earth metals

Owing to the similarity of the properties of the rare-earth metals, their separation
and purification are generally rather difficult, and the differences in the melting
points of some “pairs” of rare-earth metals are also small. Thus, the determination
of their alloy phase diagrams is not a precise exercise.

Er-Ho phase diagram, shown in Fig. 7.10 [Brandes, 1983], is not sufficiently
accurate.

According to the boundary theory and to Rhines’ empirical rules, “single phase
regions can only meet each other at single points.” Thus, two single phases, L
and HCP can not meet each other on a phase boundary line. Therefore, there must
exist one two-phase region (L+HCP) between them and exist one-dimensional phase
boundaries between NPRs L/(L+HCP) and (L+HCP)/HCP, respectively. These
pairs of NPRs satisfy the conditions of Φ=2, φC=1,

R1 = N − Φ + 1 = 2 − 2 + 1 = 1

R′
1 = R1 + φC − 1 = 1 + 1 − 1 = 1
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Fig. 7.10 Er-Ho phase diagram (N.B. The “width” of the two-phase region between

the dotted lines is “exaggerated”).

Therefore, their boundary lines and phase boundary lines are all single-dimensional
lines, as shown in the dotted lines in Fig. 7.10.

By applying a similar method of deduction, the Dy-Er phase diagram, shown
in Fig. 7.11 [Brandes, 1983], and the Dy-Ho phase diagram, shown in Fig. 7.12
[Brandes, 1983], are again not precise enough. These two phase diagrams are similar
to each other in form. For both of the two phase diagrams, there must exist one
two-phase region, between the three pairs of two NPRs of single phases L and BCC,
L and HCP, BCC and HCP, respectively. These two-phase regions are (L+BCC),
(L+HCP) and (BCC+HCP). Further, all of the different phases existing in two pairs
of NPRs, (L+HCP)/(L+BCC) and (L+HCP)/(BCC+HCP), are the same phases:
L, BCC and HCP, so Φ=3, φC=1, and there is an invariant phase transition between
two NPRs,

R1 = N − Φ + 1 = 2 − 3 + 1 = 0

R′
1 = R1 + φC = 0 + 1 = 1

There has to occur only one isothermal boundary line, composed of system points,
between these two pairs of NPRs. According to this deduction, we may depict in
an exaggerated fashion, the phase diagram of the Dy-Er system, as in Fig. 7.13.
Based on thermodynamic principles, Muyu Zhao has calculated the phase diagrams
for the Ho-Er and Dy-Er systems twenty years ago. The unpublished calculation
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results show that the phase diagram of the Ho-Er system is really quite similar to
the dotted lines shown in Fig. 7.10, while the phase diagram for the Dy-Er system
is similar to that shown in Fig. 7.13. G. J. Shiflet et al. [Shiflet et al., 1979] have
made a similar calculation, obtaining a figure for the Dy-Er phase diagram, its form
is also similar to that shown in Fig. 7.13.

Fig. 7.11 Dy-Er phase diagram.

Fig. 7.12 Dy-Ho phase diagram.
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Fig. 7.13 The Dy-Er “exaggerated” phase diagram

(It is correct in principle).

Other authors have found several other published phase diagrams with similar
errors. According to our experience, these errors usually occur in the NPRs with
invariant phase transitions (R1=0). These errors are easily corrected with the aid
of the boundary theory.

7.5 Application of the Boundary Theory to Phase Diagram

Determination

(1) In the “determination” of phase diagrams, when the experimental data are
insufficient, the boundary theory is both useful to aid connecting experimental points
to generate boundary lines and to construct the “sketch” of the phase diagram. Or
it may be utilized to “sample” the samples to being assayed.

When experimental results can generate false appearances, the application of the
boundary theory may act to both check and then correct the results.

In all of the cases mentioned above, the use of the above mentioned technique(s)
may improve the efficiency of the experimental work and to shorten the experimental
duration.

(2) According to the boundary theory, the present authors have designed an
experimental scheme to determine a quaternary isothermal section, with fixed com-
positions for one component. The expected experimental results will yield the fol-
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lowing information from the “determined” isothermal section: i.e. the phases, the
phase regions, the phase assemblage for each phase region, the boundary lines and
the boundary points between the NPRs, and their precise positions within the de-
termined horizontal section.

We chose a general quaternary A-B-C-D alloy system to study.
The experimental procedures are as follows:
(a) At first, the composition of component D of the A-B-C-D quaternary system

is fixed, then sufficient (for example 28) well-distributed samples, within the A-B-C
composition triangle (D%=const.), as shown in Fig. 7.14, are chosen.

Fig. 7.14 The distribution figure for the different samples.

(b) Determine only the phase assemblage of each sample by the X-ray diffraction
method or another powerful technique, determining only the phases (not including
their compositions) present in each sample.

(c) Construct a “sketch” of the isothermal quaternary section with the aid of the
boundary theory.

The method of constructing the sketch of this section is similar to the method
discussed in section 5.3 and section 5.4 of Chapter 5. It is therefore omitted here.

When depicting the sketch, other thermodynamic principles must be obeyed. For
example, the solubility of metastable phases in a solid solution must be higher than
the solubility of stable phases in the same solid solution.

Consider a binary, eutectic phase diagram, shown in Fig. 7.15, as an example.
In Fig. 7.15, the boundary line “ce”, would be extended into the two-phase region

(S1+L).
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Fig. 7.15 The correct binary phase diagram.

Surely, the phase rule must be the first to be obeyed.
(d) Assuming that we have obtained the “sketch” of this section, only the phase

regions, and the phase assemblages of each phase region, are already known; the
exact position of the boundary lines and boundary points still have to be determined.

(e) Assuming the partial section near the corner A, as shown in Fig. 7.16(a),
while the experimental point to be determined for plotting the boundary line, mn,
are shown in Fig. 7.16(b).

The method for the determination of the exact boundary line position between
the two NPRs, by X-ray diffraction, is a well-known technique. It is therefore omitted
here.

At first, we determine the exact position of the boundary line, mn, between
α/(α + β) (see Fig. 7.16(b)). Other boundary lines may be determined in a similar
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Fig. 7.16

(a) The partial section near corner A; (b) The sketch of the experimental procedure

fashion.
When the exact positions of all boundary lines are determined, then the whole

of the isothermal quaternary section can be said to have been obtained.
The distinguishing feature of our method lies in the procedures (a), (b) and (c).

7.6 The Application of the Boundary Theory to Phase Dia-

gram Education

Since phase diagrams consist of phase regions and their boundaries, the boundary
theory discusses the relationship among the NPRs and their boundaries. It will be
of some benefit to students to understand the full “meaning” of phase diagrams,
especially the more complicated phase diagrams.

There are presently three universities in China teaching “the boundary theory” in
their courses, concerning the production and utilization of phase diagrams. Students
are known to be interested in the content of the boundary theory. Having acquired
basic knowledge of the boundary theory, further study of these complicated ternary
and multi-component systems, will be both a pleasant inquiry and task for students
to perform.

The authors of this present document consider that the teaching of “the boundary
theory” is both a very useful adjunct to those courses concerning phase diagrams
and to their ongoing utilization.
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Summary of Part Two

The recognition of the difference of the “phase boundary” and the “boundary”
in the phase diagrams, leads to the Theorem of the Corresponding Relationship
(TCR), between the total number of all the different phases in neighboring phase
regions and the dimensions of the phase boundary in phase diagrams. For p-T -xi

phase diagrams in the general case

R1 = (N − Z − r) − Φ + 2

We demonstrated that TCR is an independent theorem. TCR and its corol-
laries revealed the regularities in phase regions, which govern and determine the
fundamental structure and the outlook of phase diagrams.

Based on TCR, the relationship between the dimensions of the phase boundary
and the dimensions of the boundary are derived. This is the “boundary theory”,
the very core of this present monograph, which explains well the different types of
phase transitions within phase diagram. Thence, the rule of how the phase regions
compose a phase diagram has been expounded.

R′
1 = R1 + φC or R′

1 = R1 + φC − 1

The comparison of the boundary theory and P-L’S contact rule of phase regions
is given in details. It successfully shows the merits of the boundary theory and the
shortcoming of the contact rule.

With the aid of the “boundary theory”, we are able to analyze the complicated
phase diagrams. We give the phase regions’ structure and the boundary properties in
tabulated form for the unary, binary, · · · , quinary phase diagrams, both isothermal
and isopleth sections included. This “analyzing” function can easily be used to
discriminate the “faulty” phase diagrams, resulted from the difficulty in experimental
measurements.

An interesting application of the boundary theory is to “sketch” phase diagram
with limited data. Previously, there is only Gupta’s method available for such pur-
pose. Since boundary method can “sketch”, or predict the structure of unknown
phase diagram also. And a unique determination technique was thus developed. An
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example of determination of isopleth sections of the A-B-C-D (quarternary) system
was presented in the text.

The “boundary theory” is generally valid for different types of phase diagram.
It conforms to and/or embraces those well-established theories in phase diagram
science, for example, Rhines’ “ten rules”, Palatnik-Landau’s “contact rule”, the
“cross rule” etc. However, the “boundary theory” is more “powerful” in application,
exempted many prerequisites, which some theories had to rely on. This is because
the “boundary theory” is based on a deeper grasp of the nature of phase diagram,
thus, it reflects properly the features and characters of various phase diagrams.

Limited by the volume, we didn’t show much examples of the application of the
boundary theory in p-T diagrams (may also see Section 9.3) and multiply molar axes
phase diagrams, which is important in geology science and alloy engineering. The
principle and method of boundary theory surely can do more in these fields.
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Chapter 8

The Boundary Theory for p-T -xi

Multicomponent Phase Diagrams

8.1 Introduction

The multicomponent phase equilibrium, in which p-T -xi are independent vari-
ables, is one of the key problems studied in geology, high-pressure physics and high-
pressure chemistry. The equilibrium, as applied to geology, are usually presented
in p-T phase diagrams, with invariant composition parameters or temperature-
composition phase diagrams, set at different given pressures. We now discuss the
p-T -xi multicomponent phase diagrams in this text; such analyses may be more com-
prehensive, and if so, then they are useful for the researches in geology and applied
high-pressure physics. When compared with “isobaric” phase diagrams, there is one
additional parameter to be considered. Even for the p-T -x binary phase diagrams,
they must be depicted into three-dimensional space, therefore, the problem becomes
much more complicated.

The study of the boundary theory of p-T -xi multicomponent phase diagrams
may apply the boundary theory of isobaric phase diagrams, as its basis. The train
of thought, method of study and the technical terms employed are the same as
those used in the boundary theory of isobaric phase diagrams. And the theorem
of corresponding relationship (TCR), for p-T -xi multi-component phase diagrams,
has already been deduced, see eq. (2-7). In this chapter, we discuss directly the
corollaries of this theorem, the relationship among the dimensions of the boundary,
R′

1 and the dimensions of the phase boundary, R1.
The influence of pressure on phase transitions is much less than the corresponding

temperature influence. For phase diagrams, with phase transitions between solid and
liquid or between solids only, the pressure must be as high as several GPa, then,
the difference between the phase diagram at high pressure and that at an ordinary
pressure may well be manifest. The experimental equipment required for phase
transition research at such high pressures is expensive and very complicated. Thus,
such research is rare, and the resulting number of phase diagrams produced at high
pressures is very much less than the number of phase diagrams generated at ordinary
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pressures. There is either little or no systematic work for discussions concerning the
relationship among NPRs and their boundaries, as displayed in high pressure and
multicomponent phase diagrams. Therefore, the discussion contained within this
Chapter is of a quite important note.

At the outset, let us present some basic concepts for p-T -xi multicomponent
phase diagrams, e.g. if the number of components is N , then the dimensions of
such phase diagrams are (N − 1) + 2 = (N + 1). The dimensions of the defined
phase regions still equal the dimensions of these phase diagrams. So, for these phase
regions, the temperature and the pressure may vary independently, i.e. f � 2. If
one of these two parameters is kept constant, then the phase regions exist only over
the isothermal or isobaric sections, its dimensions being equal to (N + 1) − 1 = N .
For those phase regions in which T and p are independent variables, then f � 2,
φ = N + 2 − f , φ � N , or N � φ � 1.

For p-T -xi multicomponent phase diagrams, the equation φC = φ1 + φ2 −Φ still
holds.

8.2 The Theorem of Corresponding Relationship for p-T -xi

Multicomponent Phase Diagrams and Its Corollaries

8.2.1 The theorem of corresponding relationship

The Theorem of Corresponding Relationship (TCR) between the dimensions of
the phase boundary, R1, and the total number of different phases existing within all
of the NPRs, Φ, is

R1 = N − Φ + 2 (8-1)

Usually Z = r=0. This formula was proved earlier in Chapter 2.

8.2.2 The corollaries of TCR

The corollaries were derived from the TCR for p-T -xi multicomponent phase
diagrams, with N � 2 and Z = r = 0, by Muyu Zhao [Zhao, 1983]. They are as
follows:

(1) The variation range of Φ. By TCR, Φ = N +2−R1, and R1 � 0, N +2 � Φ.
On the other hand, there are at least two phases in any two NPRs, i.e., Φ � 2,

(N + 2) � Φ � 2 (8-2)

(2) The variation range of R1. For Φ � 2, by TCR, R1 = N + 2 − Φ, N � R1.
And by definition, R1 � 0, so

N � R1 � 0 (8-3)
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(3) All of the single-phase regions contact one another only along the curved line
of a common phase boundary of a single dimension.

The proof is as follows. If there are two single-phase regions contacting each
other with certain, common phase boundary, every common phase point on the
phase boundary has

x1i = x1j , x2i = x2j , · · · , xNi = xNj (8-4)

xNj denotes the mole fraction of the N -th component in the j-th phase, and the
other items are defined similarly. In any phase, there exists such a condition that
the sum of the mole fractions of each component is equal to 1, so eq.(8-4) offers only
(N − 1) independent constraining conditions, i.e. Z = N − 1, Φ = 2, then

R1 = N − (N − 1) + 2 − 2 = 1

i.e., all the single-phase regions can be in contact with each other only along the
curved phase boundary lines of one dimension, in the particular phase diagram
mentioned above.

(4) In the phase diagram mentioned above, there is a common phase boundary,
with dimensions R1 � 2 between two NPRs, then

(Φ − 1) � φC � 1 (8-5)

Firstly, prove that φC � 1 by application of the reduction to absurdity concept.
In the phase diagram mentioned above, if both NPRs do not have a common

phase, i.e., φC = 0, but there is a common phase boundary, with dimensions R1 �
2 between the NPRs, then, there must be two phases, each of which belongs to
either of the two NPRs, contacting on the common phase boundary with dimension
R1 � 2. According to the 3rd Corollary in this chapter, all single-phase regions
can be in contact with each other, but only along curved, phase boundary lines,
of one dimension. It is impossible for them to be in contact with each other on
the common phase boundary, with the dimension, R1 � 2, in the phase diagrams
mentioned above. Therefore, the above case is false and R1 � 2, φC � 1 is true.
Secondly, if φC = Φ, then both NPRs are identical, the result is meaningless. By
combining these two cases, the formula (8-5) is obtained.

(5) In the phase diagram mentioned above, if R1=1

(Φ − 2) � φC � 0 (8-6)

For R1=1, Φ = N +2−1 = N +1, the maximum phase number in any phase region
φmax � N = Φ − 1 and φC � (φmax − 1) � (Φ − 2). Secondly, under the conditions
in question, the maximum for φ1 in the first phase region is (Φ − 1), the minimum
of φ2 is 1 in the second NPR, and the sum of them is equal to Φ, so the minimum
of φC may be zero, i.e. φC � 0 and the relation (8-6) is thus established.
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(6) When R1=0, and there is an invariant phase transition between the two
NPRs, then

(Φ − 4) � φC � 0 (8-7)

For R1 = 0, Φ = N + 2 and Φ > N , by the phase rule, φmax � N . In this case,
the maximum phase number in both NPRs may be N , and the two NPRs may not
be identical. For φC = φ1 + φ2 − Φ, one has

(φC)max = 2N − Φ = 2(Φ − 2) − Φ = Φ − 4

i.e., Φ − 4 � φC

Since R1=0, Φ = N + 2. If the maximum of φ1 in the first phase region is N ,
the minimum of φ2 in the second NPR is 2. The sum of them is equal to Φ, so the
minimum of φC may be zero, φC � 0. On the basis of these aspects, the relation
(8-7) is obtained.

8.3 The Relationship between R′
1 and R1 in p-T -xi Multi-

component Phase Diagrams [Zhao, 1985]

In p-T -xi multicomponent phase diagrams, with r = Z=0 and N � 2, there are
three cases for the relationship between R′

1 and R1.
1. When the two NPRs with phase boundary of R1 � 2, then φC � 1 and when

the system existing on the boundary, the components of the system are distributed
over the common phases only. The following equation holds:

R′
1 = R1 + φC − 1 (8-8)

2. In the process of temperature or pressure change, there is a phase transition
between the two NPRs with R1 = 1 or 0; and the system exists on the boundary
with Φ = (φmax + 1) or (φmax+2) coexisting phases, the components of the system
are distributed over the common phases and one or two non-common phases, then
there exists φC � 0 and

R′
1 = R1 + φC (R1 = 1) (8-9)

or
R′

1 = R1 + φC + 1 (R1 = 0) (8-10)

3. When R1=1 or 0, but there is no univariant or an invariant region comprising
Φ = (φmax+1) or (φmax+2) co-existing phases between the two NPRs, the compo-
nents of the system are distributed over the common phases only. Then, φC � 1 and
transference from one NPR to another may occur, only when the composition of the
system varies. This is not a really “true” phase transition, and nor is it important.
In this case, the following equation
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R′
1 = R1 + φC − 1 (8-8)

still holds.
These formulae can be proved, respectively, as follow
1. When the two NPRs with R1 � 2, then φC � 1 and when the system existing

on the boundary, the components of the system are distributed in the common
phases, only.

R′
1 = R1 + φC − 1 (8-8)

At first, let us discuss this equation in a comprehensive way.
In the T -xi phase diagram for different pressures, in the case of R1 � 1 and

φC � 1, a phase transition occurs in the system and makes the system transfer from
a phase region to another. According to the lever rule (for binary phase diagrams),
the center-of-gravity rule (for ternary phase diagrams) and the “extended” center-of-
gravity rule for multicomponent phase diagrams [Palatnik and Landau, 1964], the
system existing on the boundary has such characteristics that the components of
the system are almost completely distributed over the common phases of the two
NPRs, the amounts of the phases belonging to one, or the other phase regions only,
are infinitesimal. As shown in Fig. 8.1, no matter whether the system transfers
from L→ (L+S1) or (L+S1) →L, when the system is located on the boundary line,
aE, according to the lever rule, all components of the system are distributed over
the common phase, L. The amount of the phase belonging only to either one phase
region (in this case, it is S1) is infinitesimal. Any T -xi phase diagram obviously has
the same characteristics at different pressures. The locus of a series of T -xi multi-

Fig. 8.1 A binary phase diagram at given pressure.

L: Liquid phase; S1, S2: two solid phases.
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component, phase diagrams at different pressures, constructs a p-T -xi multicompo-
nent phase diagrams. So, in p-T -xi multi-component phase diagrams, in the case of
the phase transition with R1 � 2 and φC � 1, the system located on the boundary
has the same characteristic, i.e., all components of the system are distributed over
the common phases, and the amounts of the phases belonging only to either single
phase region, are infinitesimal.

In fact, the lever rule, the center-of-gravity rule and the extended center-of-
gravity rule, are all valid for p-T -xi multicomponent phase diagrams, so, the above
conclusion may be drawn directly from them. We have explained this point more in-
directly through the isobaric phase diagram simply because it is easier to understand
it that way.

Let us prove eq. (8-8) theoretically, as follows.
At a given values of T and p, φC common phases of both NPRs have φC common

phase points which form φC concentration vectors of N dimensions {xij}, (i =
1, 2, · · · , N ; j = 1, 2, · · · , φC). It has been proved (fourth corollary in this chapter)
that, if R1 � 2, φC � (Φ − 1). Since Φ = N + 2 − R1, and R1 � 2, Φ � N ,
(Φ−1) � (N−1), so φC � (N−1). These concentration vectors of the common phase
points are linearly independent except that they are related to one another through
the phase equilibrium conditions. So, these φC common phase points comprise a
hyperplane of (φC − 1) dimensions. Since all of the components of the system
located on the boundary are distributed over the common phases, then it may be
written as:

xi1m1 + xi2m2 + · · · + xijmj + · · · + xiφC
mφC

= xiMi (i = 1, 2, · · · , N) (8-11)

m1 + m2 + · · · + mj + · · · + mφC
= M (8-12)

Let
yj = mj/M (j = 1, 2, · · · , φC) (8-13)

then

xi1y1 + xi2y2 + · · · + xijyj + · · · + (xiφC
yφC

) = xi (i = 1, 2, · · · , N) (8-14)

Where M , Mi and mj denotes the mole number of the mass in the system, the mole
number of the i−th component in the system and the mole number of the j−th
phase in the system, respectively.

φC∑
j=1

yj = 1 (8-15)

1 � yj � 0, (j = 1, 2, · · · , φC) (8-16)
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Eqs.(8-14)∼(8-16), imply that under a given condition for T and p, the system
points located on the boundary {xi} (i = 1, 2 · · · , N) must lie on the hyperplane
of (φC − 1) dimensions, which, in turn, is composed of φC common phase points
{xij} (i = 1, 2, · · · , N ; j = 1, 2, · · · , φC), thus filling the whole hyperplane, and not
exceeding it.

With variations applied to the conditions, equilibrium phase points of the com-
mon phases, i.e. the vertices of the hyperplane, may move around on the space of R1

dimensions (since the dimensions of the phase boundary is R1); so the hyperplane
of (φC − 1) dimensions, on which the system points lie, may move around in this
space of R1 dimensions. Therefore, the system points, existing on the boundary,
may move around the space of (R1 + φC − 1) dimensions as a whole, i.e.,

R′
1 = R1 + φC − 1 (8-8)

2. When phase transition occurs, from one NPR to another NPR, with R1=1
or 0, there is either a univariant, or an invariant, phase transition between the two
NPRs. The components of the system are distributed over the common phases,
and one or two additional non-common phases, being Φ phases in total. During
variations of T and/or p, the components of the system may be distributed over
these Φ phases in varying proportions.

(1) When R1=1 and there is a univariant region containing Φ = (φmax + 1)
coexisting phases during the univariant phase transition, caused by the variation of
T or p, then:

R′
1 = R1 + φC (8-9)

(2) During the variation process for both T and p, under special conditions:
R1=0, and an invariant region of Φ = (φmax + 2) phases exists between the two
NPRs:

R′
1 = R1 + φC + 1 (8-10)

Both types of phase transitions, from the first phase region to the second, have
such characteristics: when the system reaches this univariant or invariant region
and the phase transition has not yet occurred or just starts to occur, all components
of the system are completely distributed over the phases of the first phase region
f1, f2, · · · , fφ1 . All of these phases may be of definite amounts. As the phase transi-
tion proceeds, phases belonging only to the second phase region form and grow, while
phases belonging only to the first region decline and diminish. During the process
of phase transition, the Φ = (φmax + 1) or (φmax + 2) phases contained in the two
NPRs may co-exist, and their separate amounts may vary over a wide range. When
this phase transition ends, all components of the system are completely distributed
over the phases of the second phase region f1′ , f2′ , · · · , fφ2 .
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When components of the system are entirely distributed over the phases of the
first phase region, then the following relation among the total compositions of the
system, {xi}, and the phase compositions of the phases in the first phase region,
{xij}(where i = 1, 2, · · · , N ; j = 1, 2, · · · , φ1) holds:

xi1m1+xi2m2+· · ·+xijmj+· · ·+xiφ1mφ1 =xi

φ1∑
j=1

mj (i=1, 2, · · · , N ;N equations)

(8-6)
When the components of the system are completely distributed over the phases of

the second phase region, there are other active relation among the total compositions
of the system, {xi} and the phase compositions of the phases in the second phase
region, {xij}:

xi1′m1′ + xi2′m2′ + · · · + xij′mj′ + · · · + xiφ2mφ2 = xi

φ2∑
j=1

mj (8-17)

(i = 1, 2, · · · , N ;N equations)

m1, m2, · · · , mφ1 and m1′ , m2′ , · · · , mφ2 are the mole numbers of the phases of the
first and second phase regions, respectively.

If R1=1, the system becomes invariant at a given pressure (or temperature). If
R1=0, the system itself is in invariant. In both cases of invariant equilibrium, the
phase compositions are fixed, so {xij} and {xij′} are known values. Since there
are φC common phases between both NPRs, the common concentration vectors in
both {xij} and {xij′} are the same. However, when these same common phases
exist in different phase regions, their mole numbers may be different, so that all
parameters m1, m2, · · · , mφ1 ;m1′ , m2′ , · · · , mφ2 may be considered as independent
variables, except that there also exists:

φ1∑
j=1

mj =
φ2∑

j′=1

mj′(= M) (1 equation) (8-18)

Consider Eqs. (8-16)∼(8-18) as independent equations, then

N∑
i=1

xi = 1

is not an independent equation. The unknowns in Eqs. (8-16)∼(8-18) are N un-
knowns of xi (i = 1, 2, · · · , N), φ1 unknowns of mj(j = 1, 2, · · · , φ1) and φ2 un-
knowns of mj′(j′ = 1, 2, · · · , φ2). The total number of independent unknowns is

N + φ1 + φ2 = N + Φ + φC (8-19)
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since Φ = φ1 + φ2 − φC . The number of independent equations is (2N + 1), so the
dimensions of solutions of eqs. (8-16)∼(8-18) are:

N + Φ + φC − (2N + 1) = (Φ − N − 1) + φC (8-20)

For the first case, i.e. R1 = 1, according to the theorem of corresponding rela-
tionship;

Φ = N − R1 + 2 = N − 1 + 2 = N + 1 (8-21)

If the temperature or pressure is fixed, then the phase points of the system are
also fixed. Substituting eq. (8-21) into eq. (8-20), the dimensions of system points
R′

1 = φC . This is explained as follows. Though the unknowns, in eqs. (8-16)∼
(8-18) have xi, mj and mj′ , the parameters presented in the phase diagram are xi

(i = 1, 2, · · · , N). So, the φC unknown quantities in the solutions from xi (i =
1, 2, · · · , N) are chosen. We may fix M arbitrarily as one mole, and then all other
unknowns may be solved from eqs. (8-16)∼ (8-18), i.e., relative amounts of all phases
may be determined. Furthermore, φC � (N − 1), so these φC unknowns may be
surely chosen from xi (i = 1, 2, · · · , N). This is the reason why we consider the
dimensions of system points, R′

1 = φC .
R′

1 = φC , that is to say, under the above mentioned conditions, if the phase
points are fixed, then the system points may be distributed over the hyperplane of
φC dimensions. This hyperplane is constructed in such a way: φC common phases
have φC common phase points; besides, when φC = 0, there is one common system
point between the two NPRs (proof of this point will be set out below). These φC

common phase points, and one common system point, comprise (φC + 1) common
points. In taking these (φC + 1) common points as vertices and connecting them,
a hyperplane of φC dimensions is formed. System points are distributed over this
hyperplane. When the temperature or pressure varies, these φC common phase
points and one common system point, may move around the space of dimension
R1 (one in this case), and so does the hyperplane of φC dimensions formed by
them. Therefore, dimensions of the hyperspace, over which the system points are
distributed, are

R′
1 = R1 + φC (8-9)

For the second case, R1=0, according to the theorem of the corresponding rela-
tionship: Φ = N + 2−R1 = N + 2; substituting it into eq.(8-20), the dimensions of
the solutions of the system points is

(Φ − N − 1) + φC = (N + 2 − N − 1) + φC = φC + 1

That is to say, when R1=0, the phase points are fixed, and the system points may be
distributed over the hyperplane of (φC +1) dimensions. This hyperplane is formed in



166 Chapter 8 The Boundary Theory for p-T -xi Multicomponent Phase Diagrams

such a way: φC common phases have φC common phase points; and when φC = 0,
there is a boundary line of one dimension which is formed by two system points
(two non-common phase points) (its proof will be given below). The two ends of
the boundary line – two common system points (two non-common phase points)
plus φC common phase points equal (φC + 2) common points. It has been proved
that if R1=0, (φC)max = Φ − 4 = N − 2 (see subsection 8.2.2 (6th corollary in this
chapter)), (φC + 2) � N . These (φC + 2) common points are linearly independent
in the concentration space of N dimensions and form a hyperplane of (φC + 1)
dimensions. The system points are distributed over it, so R′

1 = φC + 1. And R1=0,
for the sake of the consistency in form with eq. (8-9), this may be rewritten as

R′
1 = R1 + φC + 1 (8-10)

Now, we return to the problem: R1=1 or 0, there is a univariant or invariant
phase transition between two NPRs and there exists a univariant or an invariant
region, with Φ=(φmax+1) or (φmax+2) coexisting phases between two NPRs. When
φC = 0, there is a sole common system point (non-common phase point) or a
boundary line of one dimension between the two NPRs, respectively. According
to eqs. (8-16)∼(8-18), and similar deductions, when R1=1, if the temperature or
pressure is fixed and φC=0, the solution of the system point is zero-dimensional,
i.e. there is only a sole common system point (non-common phase point). When
R1=0 and φC =0, the solution of the system points is one-dimensional, i.e. there is
a common boundary line of one dimension.

3. When R1=1 or 0, but there is no univariant or invariant phase transition
between the two NPRs and there is no univariant or invariant region, with Φ=
(φmax+1) or (φmax+2) coexisting phases between the two NPRs, i.e. the two NPRs
are located on the same side of this univariant or invariant region. In this case, the
system changes from first NPR to second only when the total composition of the
system varies, i.e., it is not a phase transition. In this case, φC � 1 [Zhao, 1983] and

R′
1 = R1 + φC − 1 (8-8)

The relationship between R′
1 and R1 is similar to that for R1 � 2 and φC � 1.

If the system changes from the first NPR to the second, while the system lies just
on the boundary, the amounts of the phases belonging only to either one of the
NPR are infinitesimal, and all components of the system are distributed over the
common phases (for example, in Fig. 8.1, the system changes from (S1+L) → (L+S2);
when the system is located at point E, all of the system mass is distributed over
the common phase, L). φC common phases have φC common phase points, and
they form a hyperplane of (φC − 1) dimensions. The argument is similar to the
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previous one, the system points must be distributed over this hyperplane. When
the conditions vary, φC common phase points may move around the space of R1

dimensions (R1 = 1 or 0), so, the total dimensions of the hyperspace over which the
system points are distributed are:

R′
1 = (R1 + φC − 1)

i.e., eq. (8-8) is also obtained. All of the equations, (8-8)∼(8-10), have thus been
proven.

8.4 The Relationship among NPRs and Their Boundaries for

the p-T -x Binary Phase Diagrams.

8.4.1 A simple case

A simple case is the system with two components, these being completely miscible
in the liquid state and partially miscible in the solid state. Let L, S1 and S2 refer the
liquid phase and two solid phases respectively. If r = Z=0, R1 = N +2−Φ = 4−Φ,
Φ = 4 − R1. The relationship between NPRs and their boundaries for this phase
diagram is shown in Table 8.1.

Table 8.1 Relationship among R1, Φ and φC of a simple binary p-T -x phase

diagram

R1(2� R1 � 1) 2 1 0

Φ(3�Φ � 2) 2 3 For there are

only 3 phases,

the case in

which Φ=4,

R1=0 does not

exist.

φmax 2 2

φC 1 1� φC � 0

R′
1 R′

1 = R1 + φC − 1 R′
1 = R1 + φC

Phase

assemblages

in two NPRs

i, j=1,2

i �= j

φC=0

L/(L+Si) L/(S1+S2)

Si/(S1+S2) (L+Si)/Sj

φC=1

(L+Si)/(S1+S2) (L+Si)/(S1+S2)

8.4.2 Complex p-T -x binary phase diagrams

In a complex p-T -x binary phase diagram, the total number of different phases
at different temperatures and pressures may be more than N + 2 (N + 2=4) in a
binary system. Under certain T and p conditions, a region, Φ = N+2, R1=0, is an
invariant region. The complicated p-T -x binary phase diagram consists of (N + 2)
phases in one group, with one invariant region. Surrounding the invariant region are
the corresponding uni- and bi-variant regions, comprising some phases of the (N +2)
ones. The relation for one typical phase diagram unit, is shown in Table 8.2.
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Table 8.2 Relationship among Φ, R1, φC , φmax and R′
1 of a p-T -x, binary phase

diagram, with r = Z = 0, R1 = 4 − Φ

[Suppose that there are four phases (f1, f2, f3 and f4)]

R1(2� R1 � 0) 2 1 0

Φ(4 � Φ � 2) 2 3 4

φmax 2 2 2

φC 1 1� φC � 0 0

R′
1 R′

1 = R1 + φC − 1 R′
1 = R1 + φC R′

1 = R1 + φC + 1

Phase assemblages

in two NPRs

i, j, k, m = 1, 2, 3, 4

i �= j �= k �= m

φC = 1

R′
1=2

fi/(fi+fj)

φC = 0

R′
1=1

fi/(fj + fk)

φC = 0

R′
1 = 1

(fi + fj)/(fk + fm)φC=1

R′
1=2

(fi + fj)/(fj + fk)

Note: Here the case in which fi/fj , Φ = 2, φC = 0, Z = 1 and R1 = 1, scarcely exists. It is

similar to the ternary phase diagram.

It is interesting to note that, when R1=0, Φ=4. Two, three-dimensional, two-
phase regions (fi + fj)/(fk + fm) meet each other only at a straight boundary line
(R′

1=1), four invariant equilibrium phase points (I, J, K, M) are being distributed
on this line. The following figure illustrates the form of one of the “probable” cases.
The author is hopeful that some researcher will, one day, verify this conclusion
experimentally in a suitable system.

Fig. 8.2 Probable scheme of invariant reaction of a p-T -x binary phase diagram.

8.5 Relationship among NPRs and their Boundaries for the

p-T -xi Ternary Phase Diagram

8.5.1 A simple case

A simple case of the system with three components, they are completely miscible
in the liquid and partially miscible in the solid state. Let L, S1, S2 and S3 denote
the liquid phase and three solid phases respectively. If r = Z=0, R1 = N + 2−Φ =
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5 − Φ,Φ = 5 − R1. The relationship among NPRs, and their boundaries for this
phase diagram, is shown in Table 8.3.

Table 8.3 Relation among R1, Φ and φC for a simple ternary p-T -xi

phase diagram

R1(3� R1 � 1) 3 2 1

Φ(4� Φ � 2) 2 3 4

φmax 2 3 3

φC 1 2� φC � 1 2�φC � 0

R′
1 R1 + φC − 1 R1 + φC − 1 = φC + 1 R1 + φC = φC + 1

Phase

assemblages

in two NPRs

i, j, k=1, 2, 3

i �= j �= k

L/(L+Si)

Si/(Si+Sj)

(L+Si)/Si

φC =1, R′
1=2

L/(L+Si+Sj)

(L+Si)/(L+Sj)

(L+Si)/(Si+Sj)

Si/(S1+S2+S3)

(Si+Sj)/(Sj+Sk)

φC = 0, R′
1=1

L/(S1+S2+S3)

(L+Si)/(Sj+Sk)

(L+Si+Sj)/Sk

φC =1, R′
1=2

(L+Si)/(S1+S2+S3)

φC = 2, R′
1 = 3

(L+Si)/(L+Si+Sj)

(Si+Sj)/(S1+S2+S3)

(L+Si+Sj)/(Si+Sj)

(L+Si)/(L+Sj+Sk)

φC = 2, R′
1=3

(L+Si+Sj)/(S1+S2+S3)

(L+Si+Sj)/(L+Sj+Sk)

Note: There are only four phases, the case in which Φ = 5, R1 = 0 cannot occur.

8.5.2 Complicated p-T -xi ternary phase diagrams

In a complicated, p-T -xi ternary phase diagram, under certain T and p condi-
tions, a region develops, that is a ternary invariant region, in which Φ = N + 2 = 5,
R1 = 0. Surrounding this invariant region are the corresponding uni-, bi- and tri-
variant regions, comprising some of the five phases. The relationship among NPRs
and their boundaries, within a ternary p-T -xi phase diagram, are presented in Table
8.4. (See next page)

8.5.3 Some remarks

The isobaric phase diagram is a section of p-T -xi phase diagram only with
p=const. Thus, in the isobaric ternary phase diagram, there is no case for the
column 5 (R1=0) in Table 8.4, since the pressure chosen is an arbitrary choice. The
relationship among NPRs and their boundaries in the isobaric ternary phase dia-
gram, with Φ=2, 3 and 4, are shown in the columns 2, 3, and 4, in Table 8.4, but
the numbers of R1 and R′

1 of them are one less than that shown in this table.
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Table 8.4 Relationship among R1, Φ, φC and R1
′ of a typical p-T -xi phase diagram

(r = Z = 0, R1 = 5 − Φ. There are five phases, f1, f2, f3, f4, f5 in this phase diagram)

R1(3� R1 � 0) 3 2 1 0

Φ(5� Φ � 2) 2 3 4 5

φmax 2 3 3 3

φC 1 (Φ-1)�φC � 1 (Φ-2)�φC � 0 (Φ-4)�φC � 0

R′
1 3 φC+1 φC+11) φC+11)

Phase

assemblages

in two NPRs

i, j, k, m, n=

1, 2, 3, 4, 5

i �= j �= k �= m �= n

fi/ (fi + fj)

φC=1

R′
1=2

fi/

(fi + fj + fk)

(fi + fj)/

(fj + fk)

φC=0

R′
1=1

fi/(fj + fk + fm)

(fi + fj)/

(fk + fm)

φC=0

R′
1=1

(fi + fj)/

(fk + fm + fn)

φC=2

R′
1=3

(fi + fj)/

(fi + fj + fk)

φC=1

R′
1=2

(fi + fj)/

(fj + fk + fm)

φC=1

R′
1=2

(fi + fj + fk)/

(fk + fm + fn)

φC=2

R′
1=3

(fi + fj + fk)/

(fj + fk + fm)

1) Note: Without discussion of the cases; R′
1=1, or R′

1=0 and there is no univariant or invariant

phase transition between two NPRs, and there does not exist (N + 1) or (N + 2) phases between

two NPRs. In these cases, R′
1 = R1 + φC − 1 still holds. Since they are not otherwise important,

these cases have not been shown in the table.

8.6 The Application of Boundary Theory for Quaternary p-

T -xi Phase Diagrams

No experimental, quaternary p-T -xi phase diagram has yet been created, so a
simple table has been arranged to show the basic characteristics of the relationship
among the NPRs and their boundaries, in the quaternary p-T -xi phase diagram, see
Table 8.5.

Table 8.5 Relationship among R1, Φ, φC and R′
1 of the quaternary p-T -xi phase

diagram

Φ(6� Φ � 2) 2 3 4 5 6

R1(4� R1 � 0) 4 3 2 1 0

φmax 2 3 4 4 4

φC φC=1

(Φ − 1) �
φC � 1

2� φC � 1

(Φ − 1) �
φC � 1

3 � φC � 1

(Φ − 2) �
φC � 0

3� φC � 0

(Φ − 4) �
φC � 0

2� φC � 0
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Continued

Φ(6� Φ � 2) 2 3 4 5 6

R′
1

R1 + φC

−1 = 4

R1 + φC − 1

= φC + 2

R1 + φC − 1

= φC + 1
R1 + φ

1)
C

= φC + 1

R1 + φC + 11)

= φC + 1

Note: In this table, the condition of R1=1 or R1=0 and there is no univariant or invariant

phase transition between two neither NPRs, nor does there exist (N +1) or (N +2) phases over the

boundaries. In those cases, R′
1 = R1 + φC − 1 still holds, the transference from one phase region

to another phase region only occurs when the composition of the system changes, those cases are

not important.

According to Table 8.5, the phase assemblages of NPRs of the quaternary p-T -xi

phase diagram may be deduced, but the cases are much more complicated. So the
discussion of them is omitted here.

8.7 The Reliability of the Boundary Theory of Multicompo-

nent p-T -xi Phase Diagrams

For isobaric phase diagrams, there exist many experimental phase diagrams ver-
ifying the validity of the boundary theory. The verification shows that the boundary
theory of isobaric phase diagrams is correct. But the circumstance of multicom-
ponent p-T -xi phase diagrams is different, due to the experimental difficulty, the
experimental multicomponent p-T -xi phase diagrams are rare. The correctness of
the boundary theory of multicomponent p-T -xi phase diagrams relies on the cor-
rectness of the initial premises and on rigorous logical deduction. Between year
1987 to 1993, Muyu Zhao et al. deduced out a thermodynamic method to calculate
multicomponent p-T -xi phase diagrams with the aid of the boundary theory [Zhao
et al., 1987], while his students and research colleagues calculated and determined
the Cd-Sn-Zn [Song et al., 1992, 1993] and Cd-Pb-Sn [Zhou et al., 1988, 1990, 1992]
high-pressure phase diagrams. These calculated phase diagrams “tally” well with
the experimentally determined ones. These results have, at least, partially verified
the boundary theory for the p-T -xi multicomponent phase diagrams.
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Chapter 9

The Calculation of Unary High-Pressure

Phase Diagrams and the Boundary

Theory of p-T Phase Diagrams of

Multicomponent Systems

9.1 Introduction

The determination of high-pressure phase diagrams, especially those of the mul-
ticomponent phase diagram type, is generally quite difficult. Up until now, most
experimentally determined phase diagrams at high-pressure are unary in type. The
number of published, high-pressure phase diagrams covering binary alloy systems
has been rather small. COMPOUND AND ALLOY UNDER HIGH PRESSURE:
A HANDBOOK [Tonkov, 1998] has presented information on about 890 binary sys-
tems, along with some data on the behavior of 1153 “pseudo” binary and ternary
systems, “revealed” up to 1995. This book is the most complete reference work
concerning the behavior and related data on alloys exposed to high pressures up
till now. Besides the alloy systems, there are also many experimental results now
available on the high-pressure, phase equilibrium of other multicomponent systems,
mostly on the oxide systems as studied in geology etc.

Theoretical calculations offer a useful supplementary means for the study of the
phase diagrams of materials at very high pressures. The use of this technique has
the potential to yield more information about phase equilibrium, at high pressures
within a shorter period, than many more complicated experiments could provide.

As is now well known, much work has been performed on the “calculation of
phase diagrams” at atmospheric pressure. Many calculation methods have been
established, resulting in the reporting of many excellent calculated findings (Ref.
CALPHAD). Based of these calculation methods, as used for phase diagrams at
around atmospheric pressure, “volumetric terms” can be introduced and used to
calculate the high-pressure phase diagrams. However, various problems may be
encountered in this application. One of the main troubles is the “scarceness” or
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indeed, the total lack of thermodynamic date at elevated pressures, especially for
multicomponent systems. If, however, some acceptable assumptions are made for the
approximate calculation of high pressure thermodynamic parameters, in addition to
applying some available high pressure and other parameters at atmospheric pressure,
calculation work for high-pressure phase diagrams can be performed and useful phase
diagrams obtained.

In this chapter, the application of the boundary theory to p-T multicomponent
phase diagram is also discussed.

9.2 Calculation of Unary p-T Diagrams

The boundary theory of unary system has been discussed in section 3.2. Now
the calculation of unary p-T diagrams is discussed.

The principles, for the thermodynamic calculation of unary p-T phase diagrams,
are rather simple. From thermodynamic principle

dG = −SdT + V dp (9-1)

G, S and V are the Gibbs free energy, entropy and volume of a closed system,
respectively. When one mole of an element or compound changes from the solid
state to the liquid state, one has the relationship

dΔG = −ΔSdT + ΔV dp (9-2)

While the system remains in a state of equilibrium at constant temperature and
pressure, it follows that

ΔG = 0 (9-3)
dp

dT
=

ΔS

ΔV
=

ΔH

TΔV
(9-4)

ΔG, ΔH, ΔS and ΔV are the changes in the molar Gibbs free energy, enthalpy,
entropy and volume, for the phase transition from a solid state to the liquid state
at equilibrium, respectively.

For each phase, for example the liquid phase, when the temperature of this phase,
T0, changes to T , at constant pressure p0, one has

dHL = CpLdT (9-5)

ΔHL = HL(T, p0) − HL(T0, p0) =
∫ T

T0

CpLdT (9-6)

Similarly, when the pressure changes at constant T , by thermodynamic principles,
one has

d(HL) =
(

∂HL

∂p

)
T

dp (9-7)
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and
d(HL) = TdSL + VLdp (9-8)(

∂HL

∂p

)
T

= T

(
∂SL

∂p

)
T

+ VL (9-9)

By Maxwell’s relation, (
∂SL

∂p

)
T

= −
(

∂VL

∂T

)
p

(9-10)

Therefore, ΔH(p, T ) in eq. (9-4) may be expressed as(
∂HL

∂p

)
T

= − T

(
∂VL

∂T

)
p

+ VL

= − TαLVL + VL = VL(1 − αLT ) (9-11)

ΔH =
∫ p

p0

VL(1 − αLT )dp (9-12)

αL is the thermal expansion coefficients of the liquid. Thus, it follows that

HL(p, T ) = HL(p0, T0) +
∫ T

T0

CpLdT +
∫ p

p0

VL(1 − αLT )dp (9-13)

Similarly, for the solid phase, one has

HS(p, T ) = HS(p0, T0) +
∫ T

T0

CpSdT +
∫ p

p0

VS(1 − αST )dp (9-14)

Therefore:

ΔH(p, T ) =HL(p, T ) − HS(p, T )

= [HL(p0, T0) − HS(p0, T0)] +
∫ T

T0

ΔCpdT

+
∫ p

p0

[VL(1 − αLT ) − VS(1 − αST )]dp

=ΔH0(p0, T0) +
∫ T

T0

ΔCpdT +
∫ p

p0

[VL(1 − αLT ) − VS(1 − αST )]dp

(9-15)
ΔCp = CpL − CpS

CpL = aL + bLT + cLT−2 + dLT 2 (9-16)

CpS = aS + bST + cST−2 + dST 2 (9-16′)

The volume change, ΔV in eq. (9-4) may be expressed as

ΔV (p, T ) = VL(p, T ) − VS(p, T ) (9-17)
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While
VL(T, p) = VL(T0, p0) exp[αL(T − T0) − βL(p − p0)] (9-18)

VS(T, p) = VS(T0, p0) exp[αS(T − T0) − βS(p − p0)] (9-19)

where αL and αS are the thermal expansion coefficients of the liquid and the solid
phases, respectively, and may be assumed to be approximately independent of pres-
sure; while βL and βS are the compressibility of the liquid and the solid phases,
respectively. These parameters may also be assumed to be approximately indepen-
dent of temperature.

Since the thermodynamic parameters of elements and compounds, at the melting
temperature and at normal pressure, are easier to obtain, T0 is usually chosen as Tm

(the melting point at the normal pressure), p0 is chosen as the normal pressure.
Thus, the terms, ΔH and ΔV in eq. (9-4), have been expressed, and the values

of dp/dT may be calculated.
In some cases, not all of the desired thermodynamic parameters are obtainable,

thus one has to make an assumption:
1. α and β may be assumed to be constant.
2. or CpL , CpS be assumed to be constant.
3. ΔH and ΔV in eq. (9-4) may also be assumed to be constant. In this case,

the results obtained are not very accurate.
For solid-solid transitions, α → β, etc, at high temperatures and pressures, if the

structural parameters and the number of atoms packed in the unit cell for each phase
are known, then the molar volumes Vα, Vβ and ΔV may be calculated. However,
the value of ΔH is usually not known. Then, one has to use some other methods
to estimate ΔH, based on the microscopic viewpoint, for example, the molecular
dynamics method, the Monte Carlo method, and the “first principles” method etc.

9.3 The Boundary Theory of p-T Phase Diagrams of Mul-

ticomponent Systems without Composition Variable

For p-T phase diagrams of a multicomponent equilibrium system, there is no
way to present any variation of composition. The phase rule is the convenient tool
to investigate the diagram, and now the boundary theory is also available for such
assessment.

As mentioned in earlier section 2.4, the difference between the application of the
phase rule and the boundary theory is that the phase rule considers the number of
equilibrium phases (φ) in the system and the degrees of freedom of the system (f);
while the boundary theory underlines the total number of different phases in NPRs
(Φ) and the dimensions of phase boundaries between NPRs (R1). The conclusions
should be the same.
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Let us discuss the following p-T phase diagram in Fig. 9.1. Using the phase rule,
on the boundary line, we have

N=4 (CaCO3-calcite, CaSiO3-wollastonite, SiO2-quartz, CO2)
φ=4 (CaCO3, CO2, CaSiO3, SiO2)
r =1 (CaCO3+SiO2=CaSiO3+CO2)
Z=0
Then, the phase rule tells that the boundary has the freedom of 1.

f = (N − r − Z) − φ + 2 = (4 − 1 − 0) − 4 + 2 = 1

Fig. 9.1 p-T diagram for reaction CaCO3+SiO2=CaSiO3+CO2 [Brownlow, 1979].

With the boundary theory:
N=4 (CaCO3-calcite, CaSiO3-wollastonite, SiO2-quartz, CO2)
Φ=4 (CaCO3, CO2, CaSiO3, SiO2)
r = 1 (CaCO3+SiO2===CaSiO3+CO2)
Z=0

then
R1 = (N − r − Z) − Φ + 2 = (4 − 1 − 0) − 4 + 2 = 1 (2-5′)

So the dimension of the phase boundary between NPRs (CaCO3+SiO2)/(CaSiO3+
CO2) is one, and we underline this boundary is also a phase boundary line.

That is to say: the boundary theory can treat p-T phase diagrams of multi
component system without composition variable. It is a very important conclusion.
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Chapter 10

Calculation of Binary High-Pressure

Phase Diagrams

10.1 Principles for the Calculation of Binary Phase Diagrams

at Elevated Pressures

The basic principle utilized for the calculation of phase diagrams at high pressures is:
when a closed system is at equilibrium at the prescribed temperature and pressure,
its total Gibbs free energy reaches the minimum value, i.e.

G = Gmin (10-1)

According to the above principle, the equilibrium criteria can be deduced in
terms of intensive properties: when a closed system reaches an equilibrium state, at
given T and p values, the chemical potentials of any component, i, in all the phases
are equal to one another

μij = μi (i = 1, 2, · · · , N ; j = 1, 2, · · · , φ) (10-2)

So, there are two ways available to calculate the high-pressure phase diagram.
When the system is rather simple, and there are no intermediate phases or com-
pounds in the system, it is then convenient to use the method of equalization of
chemical potentials. If the system is more complicated, one has to use the method
of Gibbs free energy minimization of the system. In general, it is difficult to ob-
tain thermochemical data for intermediate phases or compounds at high pressures,
thereby inhibiting the calculation of complicated phase diagrams at high pressures.
Therefore the method of equalization of chemical potentials exclusively will be dis-
cussed.

Usually, the T -x binary phase diagrams are calculated for different pressure
regimes. It is more convenient to calculate the boundaries of a phase region. We
take a eutectic system as the example (Fig. 10.1). For the equilibrium phase regions
(L+Sj)(j = 1, 2), φ = 2, Rl = 1; the phase boundary lines are ac and aE, or bE and
bd.
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Fig. 10.1 A binary phase diagram at a given high pressure.

According to the phase equilibrium principle, at constant temperature and pres-
sure, the chemical potentials for each component in the equilibrium phases are equal
to one another. Therefore, when liquid phase L and solid solution phase Sj coexist
in equilibrium, one has

μiL(T, p, xiL) = μiSj (T, p, xiSj ) (10-3)

μiL, μiSj
are the chemical potentials of the i-th component in phase L and Sj , re-

spectively.
If the pure solid or liquid state of the i-th component is selected as the standard

state, the chemical potential or the partial molar Gibbs free energy of the i-th
component in the liquid or solid solution phase, μiSj (T, p, xiSj ) or μiL(T, p, xiL), can
be expressed as

μiL(T, p, xiL) =μ0
iL(T, p0) + RT lnxiLγiL(T, p0, xiL) +

∫ p

p0

V̄iL(T, p, xiL)dp

(i = 1, 2) (10-4)

μiSj
(T, p, xiSj

) =μ0
iS(T, p0) + RT lnxiSj

γiSj
(T, p0, xiSj

) +
∫ p

p0

V̄iSj
(T, p, xiSj

)dp

(i = 1, 2) (10-5)

where x1, and γi are the mole fraction and activity coefficient of the i-th component,
respectively; L denotes the liquid phase; and Sj(j = 1, 2) the solid solution phase
j: V̄iL and V̄iSj

are the partial molar volumes of the i-th component in phase L
and phase Sj at a given temperature and pressure respectively; μ0

iL, μ0
iS are the

standard molar Gibbs free energy of the pure i-th component in phase L and phase
S, respectively; p0 and p are the atmospheric pressure and high pressure, respectively,
and R is the gas constant.
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Inserting eqs. (10-4) and (10-5) into eq. (10-3), it gives rise to

xiLγiL(T, p0, xiL)
xiSj

γiSj
(T, p0, xiSj

)
= exp

(
−μ0

i,L − μ0
i,Sj

RT

)

× exp
{
− 1

RT

∫ p

p0

[V̄iL(T, p, xiL) − V̄iSj
(T, p, xiSj

)]dp

}

=Ki = KTi(T, p0) × V Tpi(T, p, xiL, xiSj
) (i = 1, 2) (10-6)

where

KTi(T, p0) = exp
(
−μ0

iL − μ0
iS

RT

)
(10-7)

V Tpi(T, p, xiL, xiSj
)

= exp
{
− 1

RT

∫ p

p0

[V̄iL(T, p, xiL) − V̄iSj (T, p, xiSj )]dp

}
(10-8)

Ki is divided into two parts: KTi(T, p0) is the distribution coefficient between the
liquid and solid states at temperature, T , and the atmospheric pressure, p0 = 0.1
MPa, while V Tpi reflects the effect of pressure change on the phase equilibrium at
temperature T .

By solving eq.(10-6), we obtain the compositions of the coexisting equilibrium
phases at a given temperature and pressure.

By calculating a series of phase compositions at different temperatures and at
a “given” high pressure, the phase diagram of an alloy system at the “given” high
pressure can be constructed.

10.2 Calculation of the Standard Molar Gibbs Free Energy

for the Pure Components

According to eq. (10-7)

KTi(T, p0) = exp
(
−μ0

iL − μ0
iS

RT

)
μ0

iL − μ0
iS =Δμ0

i(S→L) = ΔH0
i(S→L) − TΔS0

i(S→L)

=ΔH0
im(S→L) +

∫ T

Tm

ΔCpi
dT − T

[
ΔS0

im(S→L) +
∫ T

Tm

ΔCpi

T
dT

]
(10-9)

Where Δμ0
i(S→L) is the standard molar Gibbs free energy change for the i-th compo-

nent, from pure solid to liquid phase; ΔH0
im(S→L) and ΔS0

im(S→L) are the standard
molar enthalpy change and the standard molar entropy change of melting for the
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i-th component; Tm(K) is the melting point of the i-th component, at p0 = 0.1MPa,
ΔCpi

= CpiL − CpiS

Assume that

ΔCpi
= Δai − ΔbiT (10-10)

And, in substituting eq. (10-10) into eq. (10-9), we obtain

Δμ0
i(S→L) =

(
ΔH0

im(S→L) − ΔaiTim − 1
2
ΔbiT

2
im

)

+

(
Δai + ΔbiTim−

ΔH0
im(S→L)

Tim
+Δai lnTim

)
T− 1

2
ΔbiT

2−ΔaiT lnT

Let

Δμ0
i(S→L) = A′

i + B′
iT + C ′

iT
2 + D′

iT lnT (10-11)

Then

KTi(T, p0) = exp
[
− A′

i

RT
− B′

iT

RT
− C ′

iT
2

RT
− D′

iT lnT

RT

]

= exp
(

Ai + BiT +
Ci

T
+ Di lnT

)
(10-12)

Ai = −B′
i

R
, Bi = −C ′

i

R

Where

Ci = −A′
i

R
, Di = −D′

i

R

From known values of the thermodynamic quantities; Tm,ΔHm,ΔSm and ΔCp

[Húltgren et al, 1973; Barin et al, 1977; Brandes, 1983] for the pure components, the
KTi(T, p0) can then be calculated.

10.3 Calculation of Activity Coefficients γi(T, p0, xi) of the

i-th Component in the Equilibrium Phases

10.3.1 The activity coefficient γi(T, p0, xi) of the i-th component in the
liquid phase

The excess molar Gibbs free energy GE
L , or the excess molar enthalpy HE

L and
excess molar entropy SE

L of binary liquid alloys, at a given temperature Ti and at
atmospheric pressure, may be found for a series of compositions in the literatures
[Kubaschewski et al., 1956; Hultgren et al., 1973; Kubaschewski et al., 1979]. From
the discrete values of the excess molar quantities (for example, GE), the analytical
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expression, GE = f(χ2), at temperature T1 and at atmospheric pressure may be
regressed through an equation of the form:

GE =
∑

n

anxn
2 (10-13)

where αn are adjustable parameters, n = 0, 1, 2, · · ·
From thermodynamic principles

GE = HE − T1S
E (10-14)

If HE and SE are given, then GE may be obtained. The excess partial molar
quantities can be derived from the corresponding excess molar quantities:

μE
1 = GE − x2

∂GE

∂x2

μE
2 = GE + (1 − x2)

∂GE

∂x2
(10-15)

hE
1 = HE − x2

∂HE

∂x2

hE
2 = HE + (1 − x2)

∂HE

∂x2

where μE
i and hE

i (i = 1, 2) are the excess, partial molar free enthalpy and the excess
partial molar enthalpy for the i-th component in the liquid alloy, respectively, and
their analytical expressions at temperature T1 can be obtained from eq.(10-15).

In order to derive the corresponding expressions at any temperature T , the Gibbs-
Helmholtz equation has to be used:

∂

(
GE

T

)
∂T

= −HE

T 2
(10-16)

Assuming HE is independent of temperature, we get

GE(T )
T

− GE(T1)
T1

= HE

(
1
T

− 1
T1

)
(10-17)

Similarly
μE

i (T )
T

− μE
i (T1)
T1

= hE
i

(
1
T

− 1
T1

)
(10-18)

μE
i (T ) =

T

T1
μE

i (T1) + hE
i

(
1 − T

T1

)
(10-19)
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Since μE
i is a function of temperature and composition, and

γiL = exp
(

μE
i

RT

)
(10-20)

γiL is a function of T and compositions, and usually one can write it in the from of
γiL(T, p0, xiL).

γiL(T, p0, xiL) = exp
{

1
R

[
1
T1

μE
iL(T1) +

(
1
T

− 1
T1

)
hE

iL

]}
, (i = 1, 2) (10-21)

If the values of excess molar quantities for the liquid solutions are not known, but
the activity coefficients, γiSj

, for the solid solutions are known, the activity coefficient
γiL of the i-th component in the liquid solution can be generated by regression, with
the known, experimental binary phase diagram of this system.

10.3.2 Activity coefficient γiS(T, p0, xiS) of the i-th component in the
solid phase

If the excess molar quantities of the binary solid alloys are known, for a se-
ries of compositions at a given temperature T1 and atmospheric pressure, then
γiS(T, p0, xiS) can be treated in a similar way as for γiL(T, p0, xiL), and therefore its
treatment is omitted here.

If the solubility of the solute, j, in the solid solutions is small, then the regular
solution model can be applied:

RT ln γiSj
(T, p0) = αijx

2
Sj

, (i = 1, 2; j = 1, 2) (10-22)

The activity coefficient, γiSj
, is generated by regression of the interaction para-

meter, αij , with the known, experimental binary phase diagram and the known
values of μE

iL or γiL, for the equilibrium liquid solution.

10.4 Partial Molar Volumes

From eq. (10-4) to (10-6), it is clear that the volume term plays an important
role in describing the effect of pressure on the partial molar Gibbs free energy and
phase equilibrium at high pressure. It is a key problem needed to be solved in the
calculation of high pressure phase diagrams.

10.4.1 Partial molar volume of the i-th component in the liquid phase,
V̄iL(T, p, xiL)

V̄iL(T, p, xiL) is expressed as

V̄iL(T, p, xiL) = V̄ 0
iL(T, p) + V̄ E

iL (T, p, xiL) (i = 1, 2) (10-23)
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In eq. (10-23),

V 0
iL(T, p) = V 0

iL(Tm, p0) exp[αiL(T − Tm) − βiL(p − p0)] (10-24)

The terms, V 0
iL(T, p) and V̄ E

iL (T, p, xiL), represent the standard molar volume and
excess partial molar volume of the i-th component in the liquid phase under the given
conditions, respectively. If the thermal expansion coefficient αiL, the compressibility
βiL and the standard molar volume V 0

iL(Tm, p0) of i-th component in the liquid state
at the melting point Tm and the atmospheric pressure p0(=0.1MPa) are known,
V 0

iL(T, p) can be derived from eq.(10-24).
Using the discrete values of the molar volumes VL(T, p0, xiL) the ratio of the

molar volume changes of the liquid binary solutions at atmospheric pressure p0 and
a given temperature T0 can be defined:

ΔVL(T0, p0, xiL) =
VL(T0, p0, xiL) −

∑
xiLV 0

iL(T0, p0)∑
xiLV 0

iL(T0, p0)
(i = 1, 2) (10-25)

Because the values of ΔVL are usually not known over different temperature and
pressure ranges, one has to assume that ΔVL is a function of composition only and is
independent of both temperature and pressure. Since there are molar volume terms
in the denominator and numerator, the effects of temperature and pressure may be
self canceling to some extent, therefore, the assumption may be a reasonable one.
The excess molar volume of the liquid binary solution, at high temperatures/high
pressures, may be derived:

V E
L (T, p, xiL) = ΔVL(T0, p0, xiL)

∑
i

xiLV 0
iL(T, p) (i = 1, 2) (10-26)

From eq. (10-26), it is clear that V E
L (T, p, xiL) is still a function of temperature,

pressure and composition.
Using the known discrete values of ΔVL(T0, p0, xiL), and by regression, one can

obtain the polynomial expression or ΔVL

ΔVL(T0, p0, xiL) =
∑
K

dKxK
iL (10-27)

where K is a positive integer, and dK is the coefficient of the polynomial. So,

V E
L (T, p, xiL)=

(∑
K

dKxK
iL

)
×

{∑
xiLV 0

iL(Tm, p0) exp[αiL(T − Tm)−βiL(p−p0)]
}

(10-28)
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For the binary system, the partial molar volume of the i-th component can be
derived from

V̄ E
iL (T, p, xiL) = V E

L + (1 − xiL)
∂V E

L

∂xiL
, (i = 1, 2) (10-29)

By inserting eq. (10-29) into eq. (10-23), one obtains the partial molar volume,
V̄iL(T, p, xiL), of the i-th component in the liquid phase.

10.4.2 Partial molar volume of the i-th component in the solid phase
V̄iS(T, p, xiSj

)

For the ideal condition, the lattice constant of the solid solution of the substi-
tutional type, and of those components with similar crystal structures, obeys the
Vegard’s rule, i.e.

a = a1x1 + a2x2 (10-30)

where, a and a1, a2 are the lattice constants of the solid solution and the two pure
components respectively. Even for the system that does not obey Vegard’s rule,
the lattice constant aSj

(T0, p0, xiSj
), of terminal solid solutions of the binary alloy

systems at atmospheric pressure and a given temperature, is approximately a linear
function of the composition. Let Ka(T0, p0) represent the slope of the straight line;
and assume that the slope Ka is independent of temperature and pressure, and then
it follows that

aSj
[T, p, (1 − xiSj

)] = a0
iS[1 + Ka(T0, p0)(1 − xiSj

)] (10-31)

a0
iS is the solvent lattice constant for the solid solution, Sj . If the solid solution has

a cubic structure, then the molar volume of the solid solution may be determined

VSj
[T, p, (1 − xiSj

)] = V 0
iS(T, p)[1 + Ka(T0, p0)(1 − xiSj

)]3 (10-32)

where

V 0
iS(T, p) = V 0

iS(Tm, p0) exp[αiS(T − Tm) − βiS(p − p0)] (i = 1, 2)

V 0
iS(T, p) is the standard molar volume of the solvent component in the solid state

at T and p, V 0
iS(Tm, p0) is the standard molar volume of the i-th component in

the solid state, at the melting point Tm and at atmospheric pressure. αiS, βiS are,
respectively, the thermal expansion coefficient and the compressibility of the i-th
component in the solid state.

For a solid solution with the tetragonal structure, there are two lattice constants,
a and c, so

αSj
[T, p, (1 − xiSj

)] =a0
iS[1 + Ka(T0, p0)(1 − xiSj

)] (10-33)
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cSj [T, p, (1 − xiSj )] =c0
iS[1 + Kc(T0, p0)(1 − xiSj )] (10-34)

VSj
[T, p, (1 − xiSj

)] =V 0
iS(T, p)[1 + Ka(T0, p0)(1 − xiSj

)]2

× [1 + Kc(T0, p0)(1 − xiSj )] (10-35)

For a solid solution with another structure, VSj
must be treated in another way.

From the molar volume, the partial molar volume of the i-th component in the
solid solution can be derived.

V̄iSj
= VSj

+ (1 − xiSj
)
∂VSj

∂xiSj

(i = 1, 2) (10-36)

10.5 Some Remarks on the Values of α and β

10.5.1 The coefficient of thermal expansion, αij

The coefficient of thermal expansion αij of the pure i-th component, existing in
a given phase j, changes very little over a narrow temperature interval, thus it may
be considered to be approximately constant. Its values, for different temperature
intervals, may be found in the literature [Brandes, 1983].

The coefficients of thermal volume expansion, for some metals near their melting
points, are listed in Table 10.1.

Table 10.1 Coefficients of thermal volume expansion for pure metals

Metal TL/K 104αL/K−1 TS/K 104αS/K−1

Cd 594 1.5 500 1.152

Pb 600 1.2 600 1.032

Sn 505 1.0 500 0.825

10.5.2 Compressibility coefficients of pure components, βij

βij is considered to be constant in a narrow temperature interval, however, it
must be considered as a function of temperature when the temperature change is
large.

The values set out in Table 10.2 can be found in the literatures [Blair, 1978;
Clark, 1966].

Table 10.2 Volume compressibility coefficients for pure components of the liquid

and solid states

Metal TL/K 106βiL/bar−1 TS/K 106βiS/bar−1

Cd 594 3.11 300 2.048

Pb 600 3.359 300 2.415

Sn 505 2.664 300 1.909

When calculating phase equilibrium near the melting point, the values of com-
pressibility coefficients near the melting point have to be used, too. It is therefore
better to obtain the value of βiS at the melting temperature.
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Above the Debye temperature, there is one approximate relationship between
the coefficient of thermal expansion and the compressibility coefficient, at the same
temperature [Akimoto et al., 1982], for the metal:

α(T )
β(T )

= Const. (10-37)

Since the Debye temperatures for Cd, Pb and Sn are all below 260K; according to
the values found in the literature [Gray, 1963, 1972; Clark, 1966], and which are now
listed in Table 10.3, and, by applying eq.(10-37), the compressibility coefficients for
the pure solid metals near their melting temperatures, are obtained. The calculated
compressibility coefficients are also listed in Table 10.3. From Tables 10.2 and 10.3,
all of the compressibility coefficients for the pure liquid and solid metals, at or near
the normal melting temperatures, are obtained (see Tables 10.2 and 10.3).

Table 10.3 Coefficients of pure solid metals at various temperatures

Metal T/K 106αS/K−1 106βS/bar−1

(Literature)
T/K 106αS/K−1 106βS/bar−1

(Calculated)

Cd 300 31.5 2.048 500 38.4 2.497

Pb 300 28.8 2.415 600 34.4 2.890

Sn 300 22.2 1.909 500 27.5 2.365

10.6 Example-Calculation of the Cd-Pb Phase Diagram at

High Pressure [Zhou et al., 1990]

10.6.1 The treatment of thermodynamic quantities

10.6.1.1 The treatment of Δμ0
i(S→L) and KTi

Since
xiLγiL(T, p0, xiL)

xiSj
xiSj

(T, p0, xiSj
)

= Ki (i = 1, 2; j = 1, 2) (10-6)

Ki =KTi × KTpi = exp

(
−μ0

iL(T, p0) − μ0
iSj

(T, p0)

RT

)

× exp
{
− 1

RT

∫ p

p0

[V̄iL(T, p, xiL) − V̄iSj (T, p, xiSj )]dp

}

Δμ0
i,(S→L) =ΔH0

im(S→L)+
∫ T

Tm

ΔCpi(S→L)dT +T

[
ΔS0

im(S→L)+
∫ T

Tim

ΔCp(S→L)

T
dT

]

(10-9)
ΔCpi(S→L) = Δai + ΔbiT (10-10)

By substituting all the known thermodynamic quantities into eq.(10-28), we ob-
tain
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KTCd = exp
(
−4.4537 − 7.3119 × 10−4T − 473.974

T
+ 0.8902 lnT

)

KTPb = exp
(
−5.5429 − 7.0961 × 10−4T − 235.928

T
+ 0.9944 lnT

)

Table 10.4 Thermodynamic quantities of the pure components

Metal Tm/K ΔH0
m/J·mol−1 ΔS0

m/J·mol−1·K−1 ΔCp/J·mol−1·K−1

Cd 594.18 6192.32 10.4265 7.4015 − 12.1587 × 10−3T

Pb 600.6 4799.05 7.9914 8.2676 − 11.799 × 10−3T

Sn 505.06 7029.12 13.916 13.09510 − 27.36 × 10−3T

Hultgren et al., 1977; Barin et al., 1977; Brandes, 1983.

10.6.1.2 The activity coefficients of the components, γij(T, p0, xij)

1. The activity coefficients of components in the liquid phase, γiL(T, p0, xiL)
Z. Moser et al. [Moser et al., 1975] obtained the expressions for the excess partial,

free enthalpies and the excess partial enthalpies of the components at 760K for the
Cd-Pb-Sn ternary system. From their expressions, it is now easy to derive the
corresponding expressions for the Cd-Pb binary system (x2 = xPb).

μE
Cd(760K) =17826.8x2

2L − 30152.0x3
2L + 33555.7x4

2L − 13705.1x5
2L (J · mol−1)

μE
Pd(760K) =10509.8 − 35653.52x2L + 63054.6x2

2L − 74892.8x3
2L

+ 50687.1x4
2L − 13705.1x4

2L (J · mol−1)

hE
Cd(760K) =24904.4x2

2L − 29926.9x3
2L + 15499.2x4

2L (J · mol−1)

hE
Pd(760K) =15107.2 − 49808.8x2L + 69794.6x2

2L

− 50592.1x3
2L + 15499.2x4

2L (J · mol−1)

From above equations, the following equation is obtained

RT ln γi,l =
T

760
μE

i(760) +
(

1 − T

760

)
hE

i

Thus, we can now obtain the expressions for all of γiL(T, p0, xiL), for the com-
ponents, Cd and Pb, in the liquid metals solution.

2. The activity coefficients of the components in the solid phases, γiSj

Based on thermodynamic principles, if all of the thermodynamic quantities of
the pure components, and the binary phase diagram, are known, the γiSj

or the
interaction parameters for the terminal solid solutions, can now be derived from the
known value of γiL for the liquid solution.
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For the Pb-rich, terminal solid solution, and since the solid solution region is
very “narrow”, the regular solution model may be used to represent the excess
molar Gibbs free energy for this solid solution:

GE
12 = α12x1x2 (10-38)

By means of the regression, we obtain

α12 = αCd−Pb = 14100J · mol−1

Since Pb does not dissolve appreciably in liquid Cd, the Cd-rich terminal solution
may be considered to act as pure Cd.

10.6.1.3 The volume terms

1. The molar volumes for the liquid solutions
We now list the values of the thermodynamic parameters for Cd and Pb, in both

the pure solid and liquid states [Brandes, 1983; Gorden, 1968; Marcus, 1977].

Table 10.5 Molar volumes of the pure metals

Metal Tm/K V 0
L (Tm, p0)/cm3·mol−1 V 0

S (Tm, p0)/cm3·mol−1

Cd(1) 594 14.02 13.4

Pb(2) 601 19.55 18.9

From the reported discrete values of ΔVL for Cd-Pb liquid alloys at 350◦C (T0),
and atmospheric pressure p0, the expression for ΔVL(T0) is thus obtained

ΔVL(T0) =0.03586x2L − 0.04939x2
2L + 0.01854x3

2L

− 0.006619x4
2L + 0.001932x5

2L − 0.0003148x6
2L

V E
L (T, p, xiL) = ΔVL(T0, p0, xiL)

∑
xiLV 0

iL(T, p)

V 0
iL(T, p) = V 0

iL(Tm, p0) exp[αiL(T − Tm) − βiL(p − p0)]

From known values of V 0
iL(Tm, p0), αL and βL(αL, βL as listed in Tables 10.1

and 10.2), and the expression for ΔVL(T0), the expression for V E
L (T, p, xiL) may be

obtained.
Through the equations

V̄ E
iL = V E

L + (1 − xiL)
∂V E

L

∂xiL
(i = 1, 2) (10-39)

V̄iL(T, p, xiL) = V 0
iL(T, p) + V̄ E

iL (T, p, xiL) (10-40)

V̄ E
iL may be calculated.



190 Chapter 10 Calculation of Binary High-Pressure Phase Diagrams

2. Partial molar volume of the i-th component in the solid phase, V̄iSj (T, p, xiSj )
According to the experimental values for the Cd-Pb system [Pearson, 1967], the

lattice constant for the Pb-rich solid solution, S2, is

aS2(T, p, x1S2) = a0
PbS(T, p)(1 − 0.0049726x1S2)

Since the solid solution is of the cubic structure type

VS2(T, p, x1S2) = V 0
PbS(T, p)(1 − 0.49726x1S2)

3 (10-41)

V 0
PbS(T, p) = V 0

PbS(Tm, p0) exp[αPbS(T − Tm) − βPbS(p − p0)]

The values of αS and βS for Pb are listed in Tables 10.1 and 10.2, and therefore,
VS2 can be obtained. V̄iS2 , can then be calculated by

V̄iS2 = VS2 + (1 − xiS2)
∂VS2

∂xiS2

(i = 1, 2) (10-42)

The solid phase S1 is pure Cd,

VS1 = V 0
CdS(T, p) = V 0

CdS(Tm, p0) exp[αCdS(T − Tm) − βCdS(p − p0)] (10-43)

So
V̄1S1 = V 0

CdS(T, p) (10-44)

All of the thermodynamic parameters have thus been determined, so, the equi-
librium values for xiL and xiSj (i = 1, 2; j = 1, 2) at a series of temperatures and
for a given high pressure, can be calculated, and thence the Cd-Pb phase diagram,
adjusted to a given high pressure, is thereby obtained.

10.6.2 Calculated results and discussions

10.6.2.1 The effect of pressure on eutectic events

At atmospheric pressure, the Cd-Pb binary alloy system is a simple eutectic
system [Massalski et al., 1990], the eutectic point being located at 72 at% Pb and
248◦C. Over the pressure range, 0 to 4GPa, this binary system remains as a simple
eutectic one. [Clark et al., 1987]

The dependence of the eutectic temperature on pressure is shown in Fig.10.2.
The dashed line is that measured by Clark [Clark et al., 1980], while the solid line is
that calculated by us [Zhou et al., 1988]. These results are in reasonable conformity
with each other. As shown in Fig. 10.2, the eutectic temperature for this system
rises “monotonously” with increasing pressure. This calculated result was verified
by experiments. For Cd-Sn system at high pressures, there is similar phenomenon.
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Fig. 10.2 The dependence of eutectic temperature on pressure for Cd-Pb system. Dashed line is

from Clark [Clark et al., 1980]. Solid line is our calculated result [Zhou et al., 1988].

From Fig. 10.3, it may be seen that the actual eutectic composition shifts to
decreasingly lower concentrations of lead, with the increasing pressure. This result
is in agreement with the “revised” experimental results, presented by Clark et al.
[Clark et al., 1987]. Their original result(s) [Clark et al., 1980] that the eutectic
composition remains constant, may not be correct.

Fig. 10.3 Calculated pressure dependence of the eutectic composition for the Cd-Pb system

[Zhou et al., 1990].

10.6.2.2 Comparison of the calculated and experimental phase diagrams

Clark et al. determined the Cd-Pb binary phase diagrams under high pressure
conditions [Clark et al., 1980], and later, they calculated the theoretical phase dia-
gram by the thermodynamic method. Based on the calculated results, the authors
proposed experimental reinvestigation of the system, subsequently revising their own
original published data.
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Fig. 10.4 Phase diagrams of the Cd-Pb system up to 4 Gpa.

The “revised” experimental and calculated results by Clark et al. agreed better
with each other after revision. But, in Clark’s calculations, it was assumed that the
volume changes in the Cd and Pb at the melting point were independent of both
pressure and temperature. This assumption is not considered to be acceptable.

The Cd-Pb system at high pressure has been recalculated with the use of rea-
sonable assumptions by us, the revised results being shown by the solid lines in Fig
10.5.

Fig. 10.5 The calculated effect of pressure on the liquidus temperatures in the Cd-Pb system, by

Clark et al. [Clark et al., 1987] and ours [Zhou et al., 1990].
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The original experiments by Clark et al. [Clark et al., 1980] showed that the eu-
tectic composition did not shift with pressure. The revised experiments [Clark, 1987]
and Clark’s recalculations [Clark, 1987] found this shift, i.e. the eutectic composition
moves to a higher cadmium concentration.

Our calculated eutectic positions are 73.2 at% Pb, 249.3◦C under atmospheric
pressure, and 59.4 at%Pb, 399.7◦C at 4GPa. These values now agree well with the
revised experimental values of 72 at% Pb at normal pressure, and 60 at% Pb at 4
GPa [Clark, 1987], but they differ greatly from the original measured value of 72
at% Pb at 4 GPa [Clark, 1980].

Moreover, our calculated results indicate a pressure-induced change in the shape
of the liquidus curve for the Cd-Pb system. Fig. 10.5 shows this variation graphically.
The calculated variation in the liquidus shape could be useful for predicting and
testing the experimental phase diagram.

(1) For the Cd-Pb system, the phase diagram at normal pressure and those at
various higher pressures, are similar in form, all of them are of the simple eutectic
type. Only the eutectic composition and the eutectic temperature change with the
pressure to some extent, the liquidus curve shape also varies with the pressure.

(2) E. Yu. Tonkov [Tonkov, 1998] pointed out that there is strong correlation be-
tween the isobaric temperature-composition phase diagram at normal pressure, and
those pitched at various higher pressures, thus, the isobaric phase diagram provides
useful input information to the study of materials synthesis at high pressures.

Overall, our experimental results support the viewpoint advocated by Tonkov.

Fig. 10.6 Calculated p-x phase diagram of Cd-Pb system at 641.8K.
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10.6.2.3 p-x phase diagram of the Cd-Pb system at a given temperature

We have also calculated a series of p-x phase diagrams of the Cd-Pb system at
various temperatures. A typical result is shown in Fig. 10.6 [Zhou et al., 1990]. It
is, at the very least, an interesting phase diagram.
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Chapter 11

The Calculation of High-Pressure Ternary

Phase Diagrams

11.1 The Characteristics of the Boundaries of the High-Press-

ure Ternary Phase Diagrams, and the Basic Equations

for Their Calculation

The calculation of high-pressure, ternary phase diagrams is a more complicated
process than that required for binary systems. Many investigators, especially ge-
ologists, have tried to calculate these phase diagrams theoretically. In geology, the
calculated results on high-pressure phase equilibrium of multicomponent systems,
usually of oxide systems are expressed, in most cases, in p-T and T -xi diagrams.
In our studies, we have tried to calculate the high-pressure, multicomponent phase
diagrams for alloy systems. Additionally, the principles of our calculation method
can be applied to other systems.

In order to calculate the boundaries of ternary phase diagrams at high pressures,
the characteristics of boundaries between the NPRs of these phase diagrams will
initially be discussed.

11.1.1 The characteristics of the boundaries between NPRs of high-
pressure ternary phase diagrams

In the high-pressure ternary phase diagram, the number of components, N = 3,
p =const, so the dimensions of the phase diagram R = N + 1 = 4, and thus it is
a spatial phase diagram of four dimensions. In order to represent it within a two-
dimensional plane, two of the variables have to become fixed. Usually, the pressure is
initially fixed, and then the vertical section at a fixed composition of one component
or, the horizontal section at a given temperature, can be depicted.

Since the pressure and the mole fraction of one component, or its pressure and
temperature, are kept constant, the dimensions of the phase boundaries and the
boundaries of the sections, (R1)s and (R′

1)s are two dimensions less than the di-
mensions of the phase boundaries, and the boundaries for the (N + 1) dimensional
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spatial phase diagram, R1 an R′
1.

(R1)s = R1 − 2 = (N − Φ + 2) − 2 = N − Φ = 3 − Φ (11-1)

(R′
1)s = R′

1 − 2 (11-1′)

If all of the phase boundaries and the boundaries in the sections satisfy the above
two equations, these sections are titled “regular”, otherwise, they are “irregular”.
For ternary systems at high pressures, there is one type of irregular phase boundaries
or boundaries, which satisfy

(R1)s = R1 − 1, (R′
1)s = R′

1 − 1

and have to be dealt with separately. However, most phase boundaries and the
boundaries of the irregular sections still satisfy eq. (11-1) and eq. (11-1′).

The characteristics of the boundaries for regular sections will now be discussed.

11.1.1.1 If (R1)s = (R′
1)s, this boundary is not only a boundary consisting of system

points, it also acts as a phase boundary.

This kind of boundary will be known as the boundary of the first type, for exam-
ple, lines fg, hi, bd, be, aj, ak, cl, cm in the isothermal section (Fig.11.1), and lines
ab, bc in the vertical section (Fig.11.2). In both of these cases, the characteristics of
the neighboring phase regions (NPRs) around these boundaries are Φ = 2, φC = 1,
and

(R1)s = R1 − 2 = (N − Φ + 2) − 2 = (3 − 2 + 2) − 2 = 1 (11-2)

(R′
1)s = R′

1 − 2 = (R1 + φC − 1) − 2 = (3 + 1 − 1) − 2 = 1 (11-2′)

These lines are both the boundaries and the phase boundaries of the NPRs, and
consist of sets of equilibrium phase points.

Fig. 11.1 A typical isothermal section at a given pressure.
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Fig. 11.2 A typical vertical section at a given composition.

11.1.1.2 If (R1)s �= (R′
1)s then these boundaries are boundaries only and are not

phase boundaries.

These boundaries consist of sets of system points only and may be called the
boundary of the second type; for example, lines ab, bc, and ca in Fig.11.1 and lines
jf, fd, dg, gb, bh, he, ei and ik in Fig.11.2. In these cases, Φ = 3, φC = 2 and

(R1)s = R1 − 2 = (N − Φ + 2) − 2 = (3 − 3 + 2) − 2 = 0 (11-3)

(R′
1)s = R′

1 − 2 = (R1 + φC − 1) − 2 = (2 + 2 − 1) − 2 = 1 (11-3′)

For lines ab, bc and ca, in Fig. 11.1, they are the tie-lines for the phase points.
For lines jf, fd etc, in Fig.11.2 these will be discussed later.

For line fghi in Fig.11.2, Φ = 4, φC = 2, and

(R1)s = R1 − 2 = (N − Φ + 2) − 2 = −1 (11-4)

(R′
1)s = R′

1 − 2 = (R1 + φC) − 2 = 1 (11-4′)

Therefore, lines fg, gh and hi act only as boundaries and they consist of sets of
system points only.

11.1.2 The basic equations for the calculation of different kinds of bound-
aries

11.1.2.1 The calculation of phase boundaries (or the boundaries of the first type)

In the vertical section of a ternary phase diagram at a given elevated pressure
p, only the boundary with Φ = 2 belongs to the boundary of the first type. For
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example, lines ab and bc in Fig.11.2 are phase boundaries of the common phase L,
of the two NPRs L/L+Sj (j = 2, 3). Let us first calculate the line ab (L/L+S2).
For a given temperature T and pressure p, when L and S2 exist in equilibrium with
each other, this gives rise to

μi,L(T, p, xi,L) = μi,S2(T, p, xi,S2) (i = 1, 2, 3) (11-5)

μi,L(T, p, xi,L) is written as follows:

μi,L(T, p, xi,L) =μ0
i,L(T, p0) + RT lnxi,Lγi,L(T, p0, xi,L)

+
∫ p

p0

V̄i,L(T, p0, xi,L)dp (11-6)

and similarly

μi,S2(T, p, xi,S2) =μ0
i,S(T, p0) + RT lnxi,S2γi,S2(T, p0, xi,S2)

+
∫ p

p0

V̄i,S2(T, p0, xi,S2)dp (11-7)

Where μ0
i,L and μ0

i,S denote the standard chemical potentials of the i-th component
in the pure liquid phase, L, and the pure solid phase, S, at T and p0, respectively,
γi,L(T, p0, xi,L) and γi,S2(T, p0, xi,S2) represent the activity coefficients of the i-th
component in the liquid phase, L, and the solid phase, S2, under the given conditions,
respectively.

From eqs. (11-5). (11-6) and (11-7), we obtain

RT ln
xi,Lγi,L(T, p0, xi,L)

xi,S2γi,S2(T, p0, xi,S2)

=μ0
i,S − μ0

i,L +
∫ p

p0

[V̄i,S2(T, p, xi,S2) − V̄i,L(T, p, xi,L)]dp

xi,Lγi,L(T, p0, xi,L)
xi,S2γi,S2(T, p0, xi,S2)

= Ki = exp

(
−μ0

i,L − μ0
i,S

RT

)

× exp
{

1
RT

∫ p

p0

[V̄i,S2(T, p, xi,S2)−V̄i,L(T, p, xi,L)]dp

}
(11-8)

Let

KTi(T, p0) = exp
(
−μ0

i,L − μ0
i,S

RT

)
(11-9)

V Tpi(T, p, xi,L, xi,S2) = exp
{

1
RT

∫ p

p0

[V̄i,S2(T, p, xi,S2) − V̄i,L(T, p, xi,L)]dp

}
(11-10)

KTi(T, p0) × V Tpi(T, p, xi,L, xi,S2) = Ki (11-11)
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Ki is not a constant, it is a function of T, p and compositions, R is the gas constant.
Since the phase points coincide with the system points on line ab, i.e. x1,L =
x1 = x0, x2,L = 1 − x3,L − x0, only the mole fraction of one component in the
liquid phase is an independent variable. In the solid solution phase, S2, there exists
x1,S2 = 1−x2,S2−x3,S2 , therefore, for equilibrium between phases L and S2, there are
only three independent variables, selected as x3,L, x2,S2 and x3,S2 . Thus, one solves
the three equations in eq. (11-8), the phase point compositions of the equilibrium
phases (L and S2) at given temperatures and pressures, are worked out. Following
the calculation of a series of such phase point compositions at a series of temperatures
and the same pressure, the phase boundary line, ab, may be depicted. The phase
boundary line be is calculated in a similar fashion.

11.1.2.2 The calculation of the boundaries only (or the boundaries of the second
type)

In Fig. 11.2, lines jf, fd, dg, gb, bh, he, ei and ik belong to the second type of
boundaries. As an example, the line dg, between NPRs (L+S2) and (L+S1+S2)
is considered. On the boundary between NPRs (L+S2)/(L+S1+S2), there are two
common phases L and S2. When L, S1 and S2 phases coexist in equilibrium, one
has

xi,Lγi,L(T, p0, xi,L)
xi,Sj

γi,Sj
(T, p0, xi,Sj

)
= Ki (i = 1, 2, 3; j = 1, 2) (11-12)

Since the phase points do not coincide with the system points in these cases, x1L

is a variable. We take, for example, x1,L, x2,L, x1,S1 , x2,S1 , x1,S2 and x2,S2 as the
independent variables. One solves the six equations in eq. (11-12), phase equilibrium
compositions, xi,L and xi,Sj can be calculated.

According to the law of the centre of gravity, all of the components distribute
almost completely over the common phases (L, S2), when the system exists on the
boundary line, dg. By the mass conservation law, the following equations will hold:

xLx1,L + (1 − xL)x1,S2 = x1 = x0 (11-13)

xLx3,L + (1 − xL)x3,S2 = x3 (11-14)

x2 = 1 − x0 − x3 (11-15)

xL =
NL

N
(11-16)

xL is the molar fraction of the liquid phase L, in the system, NL and N are the mole
number of liquid phase L, and the total mole number of the system, respectively.
(1 − xL) is the molar fraction of the solid phase, S2, in the system. The phase
compositions, xi,L, xi,S2 , are calculated via eqs. (11-12), xi is the system point
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compositions, and can be calculated by eqs. (11-13), (11-14) and (11-15). After
a series of system points at different temperatures are calculated, the boundary
line, dg, can be calculated. The other lines jf, fd, gb, bh, he, ei and ik may all be
calculated in a similar fashion. The points, f, g, h and i may be determined by the
intersection of the boundary lines.

Thus, all points and lines, as shown in Fig. 11.2, can be calculated, and the whole
T -xi vertical section at a given pressure is depicted.

The p-xi vertical section of a ternary system at a given temperature can be
calculated in a similar way.

For the horizontal section shown in Fig. 11.1, the calculation is easier, since lines
mc, cl, be, bd. gf, hi, ak and aj are phase boundary lines or the boundary lines of the
first type. By calculating the boundaries of two-phase regions, these lines may be
depicted. Points a, b and c are determined by the intersection of the corresponding
phase lines.

In fact, for an N (more than three) component system, with the molar fractions
of the (N − 2) components maintained constant, the T -xi vertical section at a given
pressure, or the p-xi vertical section at a given temperature, can be calculated,
while maintaining the molar fractions of (N−3) components constant, the horizontal
sections, at a given temperature and pressure, can be depicted. In calculating a series
of T -xi phase diagrams at various pressures, or a series of p-xi phase diagrams at
different temperatures, the p-T -xi spatial phase diagram can thence be constructed.

11.2 The Treatment of Thermodynamic Parameters for Ter-

nary Systems at High Pressure

From eq. (11-8) in section 11.1, it can be seen that the calculation of high-pressure
phase diagrams for ternary systems requires the following thermodynamic parame-
ters: μ0

i,L, μ0
i,S, γi,j and V̄i,j(j = L,S2). Previously, in Chapter 10, the treatment

for these parameters of binary systems has been discussed. μ0
i,S(T, p0), μ0

i,L(T, p0)
can be calculated from the thermodynamic parameters for the pure substance, this
has been fully discussed in Chapter 10 and is therefore omitted here. γi,j , V̄i,j are
related to the ternary systems, we will discuss them in this section.

Much less data is known of the thermodynamic properties for ternary systems
than that for binary systems. Thus, it is a difficult job to assemble the thermo-
dynamic properties data for the ternary systems. To obtain the data, one usually
applies one of the following two methods.

1. If there are discrete values for the thermodynamic properties of a given ternary
system, one can regress them through an analytical equation or an equation based
on some physical model.
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2. One can evaluate the thermodynamic quantities for the ternary system from
those of the corresponding binary systems. The second method is applied more
frequently, it is therefore now described in more detail.

The thermodynamic properties for the ternary system are evaluated by multi-
plying those for the corresponding binary systems by some weighting factors and
then making a summation of them. There are two types of methods available for
choosing the weighting factors.

(1) Symmetrical methods: when the three components of the ternary system are
similar in all characteristics, all of the thermodynamic properties of the three binary
systems are multiplied by the weighting factors of the same form. These methods
include:

a) Kohler’s method [Kohler, 1960]

GE
m =

∑
(x1 + x2)GE

12

(
x1

x1 + x2
,

x2

x1 + x2

)

and
b) Colinet’s method [Colinet, 1967]

GE
m =

∑ [ x2

2
1 − x1

GE
12(x1, 1 − x1) +

x1

2
1 − x2

GE
12(1 − x2, x2)

]

c) Muggianu’s method [Muggianu, 1975]

GE
m =

∑ x1x2

ω12ω21
GE

12(ω12, ω21)

ω12 =
1 + x1 − x2

2

ω21 =
1 + x2 − x1

2

ω12 + ω21 = 1

the summation is the summing up of the values for the three binary systems, GE
m

is the excess molar thermodynamic property for the ternary system, GE
12, GE

23, and
GE

31 are those for the three binary systems.
(2) Asymmetrical methods: if the weighting factors of the different binary sys-

tems are different, these methods are called asymmetrical. For example, if the
ternary system’s second and third components have similar characteristics, but the
first is different, this system is described as asymmetrical and can thus be treated
by different asymmetrical methods, for example:



11.2 The Treatment of Thermodynamic Parameters for Ternary Systems at High 203

a) Toop’s method [Toop, 1965]

GE
m =

x2

1 − x1
GE

12(x1, 1 − x1) +
x3

1 − x1
GE

13(x1, 1 − x1)

+ (x2 + x3)2GE
23

(
x2

x2 + x3
,

x3

x2 + x3

)

or
b) Hillert’s method [Hillert, 1980]

GE
m =

x2

1 − x1
GE

12(x1, 1 − x1) +
x3

1 − x1
GE

13(x1, 1 − x1) +
x2x3

ω23ω32
GE

23(ω23, ω32)

ω23 =
1 + x2 − x3

2

ω32 =
1 + x3 − x2

2
ω23 + ω32 = 1

2 and 3 represent two similar components and 1 represents the other component.
K.C. Chou worked out a new general model for predicting thermodynamic prop-

erties of a multicomponent system from binaries [Chou, 1997]. That model is more
complicated and therefore it is not mentioned further here.

Since
μE

i,j(T, p0, xi,j) = RT ln γi,j(T, p0, xi,j)

μi,j(T, p0, xi,j) = μ0
i (T, p0) + RT lnxi,jγi,j(T, p0, xi,j)

The treatment of γi,j(T, p0, xi,j) and μE
i,j(T, p0, xi,j) for the ternary system are

the same as the treatment for the phase diagram at atmospheric pressure. There
are a lot of works dealing with this problem, and therefore we will discuss only the
treatment in the example (see subsection 11.4).

We have discussed the molar volume, the excess molar volume, the partial molar
volume and partial excess molar volume for binary systems. If the values of the
excess molar volumes of the three binary systems are known and no compound
is formed in the ternary systems, the value of the excess molar volume V E

m for a
ternary system may be evaluated from those for binary systems. If the system is an
asymmetric one, Hillert’s asymmetric method may be used, i.e.

V E
m =

x2

1 − x1
V E

12(x1, 1 − x1) +
x3

1 − x1
V E

13(x1, 1 − x1) +
x2x3

ω23ω32
V E

23(ω23, ω32)

ω23 =
1 + x2 − x3

2

ω32 =
1 + x3 − x2

2
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ω23 + ω32 = 1

V E
12 , V E

13 and V E
23 are the excess molar volumes for the three binary systems, V E

m is
the excess molar volume for the ternary system.

Since

V̄ E
i = V E

m +
∂V E

m

∂xi
−

3∑
j=1

xj
∂V E

m

∂xj
, (i = 1, 2, 3)

V̄i = V 0
i + V̄ E

i , (i = 1, 2, 3) (11-17)

Partial molar volume of the i-th component (i = 1, 2, 3) in the ternary system
V̄i(T, p0, χi) can be evaluated from the values of V E

ij for the three binary systems.

11.3 Verification of the Estimation Method for the Excess

Molar Volume by Experiment

Molar volumes play an important role in the calculation of multicomponent phase
diagrams at high pressures. There is few experimental data for the molar volumes
of ternary alloy solution phases, so we have to estimate the values of molar volumes
for ternary phases from the data for binary phases. The validity of this estimation
method has to be tested experimentally. Thus, we have determined the molar vol-
umes of ternary solid phases and investigated systematically the variations of the
molar volumes of these phases with composition. The lead-based α-phase solid so-
lutions in the Pb-Sn-Cd and Pb-Sn-Bi ternary systems are taken as examples [Liu
et al., 1990].

Homogeneous, single-phase alloy samples were prepared from accurately weighed
amounts of metals of 99.999wt% purity. The lattice parameters of the samples were
determined by X-ray diffraction. The crystal structure of the lead-based α-phase
solid solution is of the f.c.c. type, so the molar volume, Vx is

Vx =
N0

N
vx =

N0

N
a3

x (11-18)

where the unit cell volume is vx = a3
x, the number of atoms per unit cell N is 4 for

the f.c.c. structure and Avgadro’s number N0 = 6.023 × 1023mol−1, αx(cm) and
Vx (cm3) are the lattice parameter and molar volume of the solid solution phase,
respectively.

Vx = V 0 + V E
x =

∑
xiV

0
i + V E

x , (i = 1, 2, 3) (11-19)

V E
x = Vx −

∑
xiV

0
i (11-20)

Vx is an experimental value determined by x-ray diffraction, V E
x is obtained through

eq. (11-20).
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The excess molar volume, V E
h of the Pb-Sn-Cd or Pb-Sn-Bi solid solution phase,

is calculated from the V E
i,j for the binary solution phases of Pb-Sn, Pb-Bi, Pb-Cd,

Sn-Cd, or Sn-Bi binary systems by the Hillert’s asymmetric method. The values of
V E

x (experimental) and V E
h (calculated by Hillert’s method) are compared in Tables

11.1 and 11.2.

Table 11.1 The compositions, molar volumes and excess molar volumes of the

Pb-Sn-Cd system (T = 20.0◦C)

xPb xSn Vx/cm3 · mol−1 V E
x /cm3 · mol−1 V E

h /cm3 · mol−1

0.9910 0.0000 18.2387 0.0209

0.9890 0.0000 18.2276 0.0255

0.9500 0.0460 18.1657 0.0176 0.0181

0.9600 0.0360 18.1854 0.0168 0.0165

0.9700 0.0260 18.1970 0.0155 0.0150

0.9800 0.0160 18.2127 0.0136 0.0134

0.9900 0.0060 18.2305 0.0111 0.0119

0.9500 0.0410 18.1607 0.0299 0.0308

0.9600 0.0310 18.1701 0.0296 0.0293

0.9800 0.0110 18.2134 0.0253 0.0262

0.9900 0.0010 18.2208 0.0213 0.0248

0.9400 0.0510 18.1411 0.0289 0.0323

0.9300 0.0607 18.1130 0.0273 0.0346

0.9600 0.0267 18.1781 0.0400 0.0403

0.9800 0.0133 18.2202 0.0200 0.0203

Table 11.2 Compositions, molar volumes and excess molar volumes of the Pb-Sn-Bi

system (R = 20.0◦C)

xPb xSn Vx/cm3 · mol−1 V E
x /cm3 · mol−1 V E

h /cm3 · mol−1

0.9500 0.0250 18.2352 –0.0399 –0.0389

0.9000 0.0333 18.2766 –0.1127 –0.1085

0.8500 0.0188 18.3803 –0.2305 –0.2218

0.9000 0.0125 18.3372 –0.1545 –0.1484

0.9500 0.0063 18.3033 –0.0805 –0.0744

0.9300 0.0175 18.2861 –0.0912 –0.0874

0.9500 0.0438 18.1733 –0.0039 –0.0036

0.9750 0.0125 18.2425 –0.0212 –0.0195

0.9500 0.0450 18.1866 –0.0017 –0.0013

0.9500 0.0350 18.2225 –0.0201 –0.0200

0.9500 0.0250 18.2451 –0.0399 –0.0389

0.9500 0.0150 18.2806 –0.0610 –0.0578

0.9850 0.0075 18.2565 –0.0131 –0.0117

0.9650 0.0175 18.2495 –0.0288 –0.0273

0.9400 0.0300 18.2456 –0.0473 –0.0465

0.9300 0.0350 18.2513 –0.0548 –0.0542

0.9650 0.0044 18.2882 –0.0575 –0.0521

0.9200 0.0400 18.2344 –0.0627 –0.0618

0.9200 0.0100 18.3311 –0.1252 –0.1188

0.8800 0.0150 18.3659 –0.1842 –0.1778

0.9000 0.0063 18.3639 –0.1673 –0.1604
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From Tables 11.1 and 11.2, a comparison between V E
x and V E

h indicates that
the differences between them occur only in the 3rd and 4th decimal places for most
samples. This means that the calculated values V E

h are quite consistent with the
experimental data V E

x . Thus, our method for the estimation of excess molar volumes
for ternary systems is reliable.

11.4 The Calculation of High-Pressure Phase Diagrams of

Cd-Pb-Sn and Cd-Sn-Zn Systems

Here, only the calculation of the Cd-Pb-Sn system is discussed in detail.
The basic equations for L/(L+S2) phase equilibrium of the ternary system at

high pressure are

xi,Lγi,L(T, p0, xi,L)
xi,S2γi,S2(T, p0, xi,S2)

= exp

(
−μ0

i,L − μ0
i,S

RT

)
× exp

{
1

RT

∫ p

p0

[V̄i,S2(T, p, xi,S2) − V̄i,L(T, p, xi,L)]dp

}

=KTi(T, p0) × V Tpi(T, p, xi,L, xi,S2) = Ki (i = 1, 2, 3)

11.4.1 Calculation of KT i(T, p0) = exp

(
−μ0

i,L − μ0
i,S

RT

)

The following equations have been discussed in Chapter 10.

μ0
i,L − μ0

i,S =ΔH0
i,m(S→L) +

∫ T

Tm

ΔCp,i(S→L)dT

+ T

[
ΔS0

i,m(S→L) +
∫ T

Tm

ΔCp,i(S→L)

T
dT

]
(11-21)

ΔCp,i(S→L) = Δai + ΔbiT (11-22)

KTi = exp

(
−μ0

i,L − μ0
i,S

RT

)
= exp

(
A + BT +

C

T
+ D lnT

)

From the known values (these values are the values at the melting point) of the
thermodynamic properties (Tm, ΔHm, ΔSm) [Hultgren et al., 1973] and ΔCp [Barin,
1977; Brandes, 1983] of the pure elements: Cd, Pb and Sn (see Table 11.3) we obtain

Table 11.3 Thermodynamic data of pure elements

element Tm/K ΔHm/J · mol−1 ΔSm/J · mol−1 · K−1 ΔCp/J · mol−1 · K−1

Cd 594.18 6192.32 10.4265 7.4015-12.1587×10−3T

Pb 600.6 4799.05 7.9914 8.2676-11.799×10−3T

Sn 505.06 7029.12 13.916 13.09510-27.36×10−3T
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the coefficients A, B, C and D, in the expressions of the functions, KTi(T, p0), see
Table 11.4.

Table 11.4 Coefficients of the expression of KTi

element A B C D

Cd –4.4537 –7.3119×10−4 –473.974 0.8902

Pb –5.5429 –7.0961×10−4 –235.928 0.9944

Sn –8.0436 –1.6453×10−3 –469.603 1.5751

11.4.2 The activity coefficients γi,j(T, p0, xi,j) of the i-th component in
the equilibrium phases

11.4.2.1 The activity coefficient γi,j(T, p0, xi,j) (i=1, 2, 3) of the i-th component
in the liquid phase

The expressions of the excess partial molar Gibbs free energy, μE
i and the partial

molar enthalpy of mixing, Δhi at 760K for the Cd-Pb-Sn ternary system, were
calculated from the experimental emf data by Z. Moser et al. [Moser et al., 1975].
Let xi,L be the molar fraction of the i-th component in the liquid phase [i=1(Cd),

2(Pb), 3(Sn)], y = 1− xi,L and t =
x3,L

x2,L + x3,L
. The unit of gE

i and Δh is J·mol−1.

μE
Cd(760K) =(17826.8 − 20562.7t + 10678.4t2 − 2293.7t3)y2

+ (−30152.0 + 25586.0t − 902.5t2)y3

+ (33555.7 − 27908.1t)y4 + (13705.1 + 11864.2t)y5

μE
Pb(760K) =5305.3t1.9 + (−35653.5 + 20562.7t − 2293.7t3)(y − 1)

+ (63054.6 − 46148.7t + 11129.9t2 − 2293.7t3)(y2 − 1)

+ (−74892.8 + 53494.1t − 902.5t2)(y3 − 1)

+ (50687.1 − 39772.3t)(y4 − 1) + (−13705.1 + 11864.2t)(y5 − 1)

μE
Sn(760K) =5305.3(t1.9 − 2.111t0.9 + 1.111)

+ (−15090.9 − 794.1t + 6881.0t2 − 2293.7t3)(y − 1)

+ (50261.6 − 45246.2t + 11129.9t2 − 2293.7t3)(y2 − 1)

+ (−66590.1 + 53494.1t − 902.5t2)(y3 − 1)

+ (47721.0 − 39772.3t)(y4 − 1) + (13705.1 + 11864.2t)(y5 − 1)

ΔhCd =(24904.4 − 33680.4t + 18159.8t2)y2

+ (−29926.9 + 56108.3t − 22755.5t2)y3

+ (15499.2 − 37143.0t + 14275.0t2)y4

ΔhPb =5305.3t1.9 + (−49808.8 + 33680.4t)(y − 1)
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+ (69796.6 − 89788.6t + 29537.4t2)(y2 − 1)

+ (−55092.1 + 93251.3t − 32272.0t2)(y3 − 1)

+ (15499.2 − 37143.0t + 14275.0t2)(y4 − 1)

ΔhSn =5305.3(t1.9 − 2.111t0.9 + 1.111)

+ (−16128.5 − 2639.3t)(y − 1)

+ (41740.4 − 67033.1t + 29537.4t2)(y2 − 1)

+ (−38210.8 + 83734.4t − 32272.0t2)(y3 − 1)

+ (15499.2 − 37143.0t + 14275.0t2)(y4 − 1)

Applying the Gibbs-Helmholtz equation and assuming that Δhi is independent
of temperature T , we obtain:

RT ln γiL(T, p0, xiL) =
T

760
μE

iL(760K) +
(

1 − T

760

)
Δhi

11.4.2.2 The activity coefficient γi,Sj of the i-th component in solid phase Sj

Since the values of γi,L[i = 1(Cd), 2(Pb), 3(Sn)] have been calculated, the interac-
tion parameters of binary solid phases can be regressed from the data of experimental
phase diagrams of Cd-Pb, Cd-Sn binary systems and the thermodynamic properties
of the three pure components.

For the Pb-rich solid solution in the Cd-Pb system, the Sn-rich solid solution
in the Cd-Sn system and the Sn-rich solid solution in the Pb-Sn system, since the
solubility of the solute in the solid phase are small, the regular solution model can
be used to represent the excess molar Gibbs free energy.

GE
AB = αABxA,Sj

xB,Sj

Where αAB is the interaction parameter for the A-B binary solid solution Sj .
For the Pb-rich solid solution in the Pb-Sn system, and since the solubility of Sn

in the solid solution is large, the sub-regular solution model is applied:

GE
Pb−Sn = xPb,S2xSn,S2 [q0 + q1(xPb,S2 − xSn,S2) + q2(xPb,S2 − xSn,S2)

2]

q1, q2 and q0 are the adjustable coefficients.
Since the solubility of Pb and Sn in the Cd solid solution is very small, the

Cd-rich solid phases are considered as composed of pure solid Cd.
By regression, the interaction parameters for the binary solid phases are as fol-

lows: for the Sn-rich solid solution,

αSn−Cd = 11500 J·mol−1



11.4 The Calculation of High-Pressure Phase Diagrams of Cd-Pb-Sn and 209

αSn−Pb = 14000 J·mol−1

For the Pb-rich solid solution,

αPb−Cd =14100 J · mol−1

αPb−Sn =8981.96 − 5150.76(xPb,S2 − xSn,S2)

+ 2601.6(xPb,S2 − xSn,S2)
2 J · mol−1

By applying Hillert’s asymmetric method (see eq. (11-13)) and using the follow-
ing equations for ternary systems:

μE
i = GE +

∂GE

∂xi
−

3∑
k=1

xk
∂GE

∂xk
(11-23)

μE
i = RT ln γiSj (11-24)

The activity coefficient of the i-th component in the Cd-Pb-Sn ternary system is
gotten.

For the Pb-rich solid solution S2:

γCd,S2 = exp{(RT )−1[αPb−Cdx2
Pb,S2

+ αSn−Cdx2
Sn,S2

+ (αPb−Cd + αSn−Cd − αPb−Sn)xPb,S2xSn,S2

+ xPb,S2xSn,S2(xSn,S2 − xPb,S2)Q]}
γPb,S2 = exp{(RT )−1[αPb−Cdx2

Cd,S2
+ αPb−Snx2

Sn,S2

+ (αpb−Cd + αPb−Sn − αSn−Cd)xCd,S2xSn,S2

+ xPb,S2xSn,S2(xSn,S2 − xPb,S2 + 1)Q]}
γSn,S2 = exp{(RT )−1[αSn−Cdx2

Cd,S2
+ αPb−Snx2

Pb,S2

+ (αSn−Cd + αPb−Sn − αPb−Cd)xCd,S2xPb,S2

+ xPb,S2xSn,S2(xSn,S2 − xPb,S2 − 1)Q]}

Q =
∂αPb−Sn

∂xPb,S2

.

While for the Sn-rich solid solution S3:

γCd,S3 = exp{(RT )−1[αPb−Cdx2
Pb,S3

+ αSn−Cdx2
Sn,S3

+ (αPb−Cd + αSn−Cd − αPb−Sn)xPb,S3xSn,S3 ]}
γPb,S3 = exp{(RT )−1[αPb−Cdx2

Cd,S3
+ αPb−Snx2

Sn,S3

+ (αPb−Cd + αPb−Sn − αSn−Cd)xCd,S3xSn,S3 ]}
γSn,S3 = exp{(RT )−1[αSn−Cdx2

Cd,S3
+ αPb−Snx2

Pb,S3

+ (αSn−Cd + αPb−Sn − αPb−Cd)xCd,S3xPb,S3 ]}
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11.4.3 The partial molar volumes for the Cd-Pb-Sn ternary systems

11.4.3.1 The partial molar volume of the i-th component in the liquid phase for the
ternary system

In the preceding Chapter 10, the partial molar volumes for binary liquid phases
have been discussed.

V̄iL(T, p, xi,L) = V 0
iL(T, p) + V̄ E

iL (T, p, xiL) (11-25)

V 0
iL(T, p) = V 0

iL(Tm, p0) exp[αiL(T − Tm) − βiL(p − p0)] (11-26)

Assume (see subsection 10.6.1):

ΔVT (T, p, xiL) =ΔVT (T0, p0, xiL)

=

VL(T0, p0, xi,L) −
∑

i

xiLV 0
iL(T0, p0)

∑
i

xiLV 0
iL(T0, p0)

=
∑

j

djx
j
i (i = 1, 2) (11-27)

Then

V E
L (T, p, xi,L) =ΔVT (T0, p0, xi,L)

∑
i

xi,LV 0
i,L(T, p)

=
(∑

j

djx
j
iL

){∑
i

xi,LV 0
iL(Tm, p0) exp[αiL(T−Tm)−βiL(p−p0)]

}

(i = 1, 2) (11-28)

All of the symbols have been mentioned. The values of atomic mass, Mi [Hultgren,
1973], the density Di,L(Tm, p0) [Brandes, 1983] or molar volume V 0

i,L(Tm, p0) [Gor-
don, 1968; Marcus, 1977] of the i-th pure liquid metal at atmospheric pressure, p0

and melting point, Tm are listed in Table 11.5.

Table 11.5 Molar volume of the pure liquid metal

Metal M/g·mol−1 Tm/K DL(Tm, p0)/g · cm−3 V 0
L (Tm, p0)/cm3 · mol−1

Cd(1) 112.40 594 8.02 14.02

Pb(2) 207.19 601 10.68 19.55

Sn(3) 118.69 505 7.00 16.95

The values of αiL and βiL for liquid metals Cd, Pb and Sn have been mentioned
in subsection 10.6 of Chapter 10.
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From the experimental values of molar volumes of Cd-Pb liquid alloys at atmo-
spheric pressure p0, and 350◦C [Crawley, 1973] and the discrete values of ΔVT for
Cd-Sn liquid alloys at atmospheric pressure and 575K [Kubaschewski et al., 1956],
the coefficient dj in eq.(11-27) may be regressed, and these are listed in Table 11.6.

Table 11.6 Coefficient dj in eq. (11-27)

dj Cd-Pb(x) Cd(x)-Sn

d1 0.03586 0.14529

d2 –0.04939 –0.35859

d3 0.01854 –0.31347

d4 –0.006619 3.27272

d5 0.001932 –6.57769

d6 –0.0003148 5.61795

d7 –1.78621

According to the reference [Kubaschewski et al., 1956], the value of ΔVT for
Pb-Sn system is very small. So, V E

L for this system can be neglected.
After the expressions of V E

i,j for the three binary systems are obtained, the excess
molar volume for the Cd-Pb-Sn system, V E

m , can be derived by Hillert’s method:

V E
m =

x2

1 − x1
V E

12(x1, 1−x1)+
x3

1 − x1
V E

13(x1, 1−x1)+
x2x3

ω23ω32
V E

23(ω23, ω32) (11-29)

ω23 =
1 + x2 − x3

2

ω32 =
1 + x3 − x2

2

V E
m , the excess molar volume for the Cd-Pb-Sn ternary system: V E

12 , V E
13 and V E

23

represent the excess molar volumes for the Cd-Pb, Cd-Sn and Pb-Sn binary systems
respectively.

The partial excess molar volume V̄ E
i for the i-th component in the Cd-Pb-Sn

system may be deduced by means of:

V̄ E
i = V E

m +
∂V E

m

∂xi
−

3∑
j=1

xj
∂V E

m

∂xj
(11-30)

Eqs.(11-29) and (11-30) are valid for both the liquid and solid ternary phases of the
Cd-Pb-Sn system.

Substituting eqs.(11-26) and (11-30) into eq. (11-25), the expression V̄iL(T, p, xiL)
for the partial molar volume of the i-th component in the ternary liquid phase is
obtained.
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11.4.3.2 The partial molar volume V̄iS(T, p, xiS) of the i-th component in the solid
phase for the ternary system.

Because of the lack of data on the molar volumes of solid phases in the Cd-Pb-Sn
system, these data were evaluated from those data for the binary system.

The Pb-rich solid solutions of the Pb-Cd and Pb-Sn systems are of the f.c.c.
structure; their molar volumes (cm3) are represented as:

VPb−Cd,S2(T, p, xCd,S2) = V 0
Pb,S(T, p)(1 − 0.049726xCd,S2)

3

VPb−Sn,S2(T, p, xSn,S2) = V 0
Pb,S(T, p)(1 − 0.0288xSn,S2)

3

The structures of Sn-rich, solid solutions of Sn-Cd and Sn-Pb systems are of
tetragonal, the molar volumes (cm3) are:

VSn−Cd,S3(T, p, xCd,S3) = V 0
Sn,S(T, p)(1 − 0.0378xCd,S3)

2.(1 − 0.0221xCd,S3)

VSn−Pb,S3(T, p, xCd,S3) = V 0
Sn,S(T, p)(1 + 0.0732xPb,S3)

2.(1 + 0.0643xPb,S3)

V 0
iS(T, p) = V 0

iS(Tm, p0) exp[αi,S(T − Tm) − βi,S(p − p0)] (i = 1, 2, 3)

The values of αiS and βiS [i=1(Cd), 2(Pb), 3(Sn)] have been discussed in sub-
section 10.6 of Chapter 10. The values V 0

iS(Tm, p0) [Gordon, 1968] are listed in
Table 11.7.

Table 11.7 Molar volume of pure solid metals at their normal melting temperatures

Metal Cd Pb Sn

V 0
S (Tm, p0)/cm3 · mol−1 13.4 18.9 16.5

From the above quantities or expressions, the V E
ij (T, p)(i, j = 1, 2, 3; i �= j) for the

binary solid solutions can be calculated; V E(T, p) for the ternary solid solutions Sj

(j = 2, 3; S1 is pure Cadmium) is calculated, using Hillert’s equation (11-29), while
V̄ E

i,Sj
(T, p, xiSj

) is obtained with eq.(11-30). Substituting the obtained expressions
into

V̄iSj
(T, p, xiSj

) = V 0
iS(T, p) + V̄ E

iSj
(T, p, xiSj

)

the expression for the partial molar volume V̄iSj
is obtained.

Now, all values or expressions of the thermodynamic properties in eq. (11-8)
have been calculated. By means of the principles presented in subsection 11.1, we
can now calculate both the boundaries of the first and second types. Therefore, the
high-pressure vertical and horizontal sections of the high-pressurephase diagrams of
the Cd-Pb-Sn system can be obtained.

The vertical sections of the ternary system at high pressure are also similar to
those at atmospheric pressure in the form, which has been mentioned in section 10.6
of Chapter 10.
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Fig. 11.3 Vertical sections of the Cd-Pb-Sn system at p = 1.0 GPa.

In comparing the vertical sections of the ternary system at the same composition,
it can be seen that the increase of pressure results in an increase of the melting tem-
peratures of the solid alloys, and in the ternary eutectic temperature of the system.
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Fig. 11.4 Vertical sections of Cd-Pb-Sn system xCd = 0.15, at different pressures.

Since for the multicomponent system,
dT

dp
=

ΔV̄

ΔS̄

ΔV̄ and ΔS̄ are the change in molar volume and the molar entropy of the alloy,
from the solid state to the liquid state at equilibrium, respectively. For most alloys,

ΔV̄ > 0 and ΔS̄ > 0, so
dT

dp
> 0.

From Fig.11.5 (a)∼(e), it may be seen that temperature increases, the phase
region L becomes larger. These phenomena are similar to the phase diagrams at
atmospheric pressure.



11.4 The Calculation of High-Pressure Phase Diagrams of Cd-Pb-Sn and 215



216 Chapter 11 The Calculation of High-Pressure Ternary Phase Diagrams

Fig. 11.5 Horizontal sections of the Cd-Pb-Sn system at p = 1.0GPa at different temperatures.

It may be seen that, at the same temperature, the liquid phase region is smaller
at higher pressure than that at lower pressures.

The influences of variations in the parameters T , p and xi, made to the high-
pressure phase diagrams in detail, have been discussed. The authors think that it
constitutes a useful contribution to the science of high pressure phase diagrams.
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Fig. 11.6 Horizontal sections of the Cd-Pb-Sn system at T = 510K and different pressures.

These p-xi phase diagrams are interesting, but less useful.
A series of vertical sections and horizontal sections for the Cd-Sn-Zn system at

high pressures have also been calculated (Zhao et al., 1987; Xiao et al., 1989; Song
et al., 1991).

All of the conclusions drawn from the research of high-pressure phase diagrams
of the Cd-Pb-Sn system are similar to those of the Cd-Sn-Zn system. While it is
important, the Cd-Sn-Zn system research “in detail” is not discussed here.



218 Chapter 11 The Calculation of High-Pressure Ternary Phase Diagrams

Fig. 11.7(a-c) p-xSn vertical sections of the Cd-Pb-Sn system at T = 444.9K

with different xCd.
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Fig. 11.8 The liquid projection for Cd-Pb-Sn system at p = 1.0 GPa.

11.5 Verification of Calculated High-Pressure Ternary Phase

Diagrams through Experimental Determination

Since, several approximate assumptions have been proposed during the calcula-
tion procedure, the validity of the calculated high-pressure ternary phase diagrams
needs to be verified. For this reason, the vertical sections of the Cd-Pb-Sn and
Cd-Sn-Zn ternary systems have been determined by improved high-pressure DTA
(HPDTA) [Zhou et al., 1990; Song et al., 1992].

Metals (Cd, Pb, Sn and Zn) of high purity (99.999 wt.%) were used. The ho-
mogeneous alloy samples were prepared with care. The results of chemical analysis
of some alloys, with random sampling, agreed well with the nominal compositions.
HPDTA was performed in a piston-cylinder high-pressure apparatus. The pressure
medium was pyrophyllite. In our experiment, the sample capsule, which was made
of a thin NiSi sheet, was used as one arm of a point thermocouple in contact with the
alloy sample. This sample assembly method improved the sensitivity of the deter-
mination. Phase transitions were detected by HPDTA with φ = 0.3mm NiCr-NiSi
thermocouples.

All experiments performed revealed that the experimentally determined and the
calculated results coincided well with each other. The comparisons of the calculated
and determined results for the Cd-Pb-Sn system are shown in the following figures
[Zhou, 1990]. Due to the lack of thermodynamic data, line 1 in the figures has not
been calculated.
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Fig. 11.9 Vertical sections at different pressures.

Fig. 11.10 Vertical sections of another composition of the system at different pressures.

Another example is the comparison of the calculated and experimentally deter-
mined high-pressure phase diagram for the Cd-Sn-Zn system. The calculated and
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the experimentally determined liquidus data also agree well with each other [Song
et al., 1992; Song et al., 1993].

Fig. 11.11 High-pressure vertical section of the Cd-Sn-Zn system at xCd = 0.2, p = 1.0GPa.

All other calculated high-pressure phase diagrams of the Cd-Pb-Sn and Cd-Sn-Zn
systems have been compared with the experimentally determined phase diagrams,
the results are also satisfactory. But they are not presented here for saving of space.

11.6 The Comparison between the Methods of Experimental

Determination and Thermodynamic Calculation of High

Pressure Phase Diagrams [Song et al., 1993]

By comparison with the experimental determination, the thermodynamic calcu-
lation is easier. However, there are some “troubles” associated with it. The main
ones are as follows.

(1) The lack of thermodynamic data.
It is well known that much thermodynamic data is needed in the support of the

thermodynamics calculations for a high-pressure, multicomponent phase diagram.
The data related to high pressure conditions are difficult to obtain. It may be
that it is not so difficult to get all of the data for some individual components, but
it is very difficult to get all of this data for all of the components in the chosen,
multicomponent system.
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(2) Not all of the thermodynamic data obtained for these studies are accu-
rate enough, especially that data used in the calculation of high pressure, multi-
component phase diagrams. Some of the data can only be obtained from one refer-
ence, i.e.comparison data cannot be found for use in the particular study.

(3) Calculation results have to be checked by experiment.

Though the phase diagram under extreme conditions can be constructed by ther-
modynamic calculation; when there are no experimental data for cross-checking, then
the calculated results should be accepted with caution, even if they may be correct.

The experimental determination is the basic method to construct the high-
pressure, multicomponent phase diagram. The HPDAT method and other meth-
ods have been used for this purpose but experimental determination of these phase
diagrams is still not extensively performed because many problems tend to be en-
countered. They are as follows.

(1) The complexity of the experimental equipment is the major difficulty. For
the HPDTA, a large pressure generator, a set of the DTA apparatus and many
consumable materials are needed.

(2) The experimental workload is also very large. If HPDTA experiments for
a ternary, high-pressure phase diagram, are designed as for DTA experiments at
atmospheric pressure, then at least 100 samples and five pressure conditions are
needed. Taking into consideration the low measurement success rate and the nec-
essary repeat tests, the workload will be greatly increased. Furthermore, the high
pressure condensed phase has to be characterized by an in situ diffraction method
with X-ray or synchrotron radiation and these techniques are not readily accessible
to most researchers.

(3) The accuracy of the measured data is not as good as is desired, since there are
many factors that influence the accuracy of the data. For the Cd-Sn-Zn system with
a low melting point, a high pressure phase diagram, determined experimentally with
the aid of HPDTA, are accurate to within ±4K only. This error range corresponds
to about 0.3 GPa in the Cd-Sn-Zn system, when converted to a pressure difference,
and it thus approximates the designed pressure interval in the experiment. Thus, if
the designed pressure interval is made smaller, the temperature change, produced
by a pressure change in the experiment, is masked by the measurement errors and
this makes the reliability level of the measurement lower.

To sum up these considerations, there are some definite advantages and lim-
itations to the study of high-pressure phase diagrams, either by thermodynamic
calculations or by experimental determination only. Our quoted work on Cd-Pb-Sn
and Cd-Sn-Zn high-pressure phase diagram shows that there is good coincidence be-
tween the calculated and the experimentally determined results. This finding means
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that our calculation method is generally satisfactory and that the calculated results
are reliable. Thus, we consider that it is an effective way to combine the thermo-
dynamic calculation and experimental determination methods for the construction
of high pressure multicomponent phase diagrams, i.e. by calculating the data theo-
retically at first and then verifying the calculation results by experimental methods.
This kind of direct experimental measurement verification is estimated to be re-
quired for about one-fifth of the total workload for determining the phase diagrams
without the aid of theoretical calculations. For the calculation of high-pressure,
multicomponent phase diagrams, many thermodynamic properties, especially those
related to the pressure effects have to be determined and collected. Finally, we
can say that the proposed experimental methodology is a straightforward way to
promote the development of research on high pressure, multicomponent phase dia-
grams, by combining the theoretical calculation component(s) with the method of
direct experimental measurement.
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Summary of Part Three

Having worked out a systematic boundary theory of multi-component p−T −xi

phase diagrams, we reached the key to high-pressure phase diagrams. Indeed, the
high-pressure phase diagrams are similar, in many respects, to the phase diagrams
at normal pressures. This has been concluded by E.Yu. Tonkov [Tonkov, 1998], and
the phase diagrams at normal pressure are generally used as a good starting-point
to study the material properties and synthesis under high pressures.

Based on the principle of the boundary theory, we have developed the theoretical
method to calculate the high-pressure phase diagram. A lot of binary and ternary
alloy high-pressure phase diagrams have been calculated and determined, and the
calculated diagrams tally with the experimental ones.

For Cd-Pb, Cd-Sn binary solid-liquid phase diagrams, our calculated and experi-
mental results show that the eutectic temperatures for these systems rise monotonou-
sly with increasing pressures. For Cd-Pb system, with the increasing pressures, the
%Cd of eutectic compositions is increasing, as the melting point of Cd at normal
pressure is higher than those of Pb. Our calculated results of Cd-Pb high-pressure
phase diagrams indicate a pressure-induced change in the shape of liquidus curves.

For most of the binary phase diagrams, the eutectic temperature will rise with
increasing pressure. This has been well observed by many authors, and is also well
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recorded in our experiments. Our calculations also predict a “pressure-induced”
change in the shape of liquidus curve. If these interesting phenomena should be
universal, they could be helpful for the geological research and the materials synthesis
work.

Our preliminary work in high-pressure phase diagram calculation is very promis-
ing. Combining the theoretical calculation and experimental measurement tech-
niques, will definitely promote the progress in the high-pressure phase diagrams’
research.
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C number of the independent components
C heat capacity
K the coefficient of distribution
M total molar number of the entire system
M number of elements in the system
Mi the mole number of i-th component in the system
N number of components in the system
NPRs neighboring phase regions
PR phase region
R dimensions of the isobaric phase diagram
R1 dimensions of the phase boundary
R′

1 dimensions of the boundary
(R1)i dimensions of the phase boundary in an isopleth section
(R′

1)i dimensions of the boundary in an isopleth section
S entropy of the system
T temperature
TCR theorem of corresponding relationship
U internal energy of the system
V volume of the system
V E

m excess molar volume
V̄ E

i partial excess molar volume
V̄iL(T, p, xiL) partial molar volume
Z number of other independent constraining conditions in the system
a activity
mj mole number of the j-th phase of the system
mij mole number of i-th component in the j-th phase
p pressure
pj pressure of the j-th phase of the system
r number of independent equilibrium chemical conditions
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r∗ number of independent chemical reactions inhibited by some restrictions
sj entropy of the j-th phase of the system
tj temperature of the j-th phase of the system
uj internal energy of the j-th phase of the system
vj volume of the j-th phase of the system
xi mole fraction of i-th component of the system
xij mole fraction of i-th component in the j-th phase
Φ total number of all different phases in NPRs
α the thermal expansion coefficient
α, β, γ · · · the symbols used to identify different phases
β the compressibility
γ activity coefficient
γi,Sj

activity coefficient of i-th component in the Sj-th solid phase
μ chemical potential
μi,j chemical potential of i-th component in the j-th phase
μ0

i,L chemical potential of pure i-th component in the liquid state
μ0

i,S chemical potential of pure i-th component in the solid state
μE

i excess partial molar Gibbs free energy
φ number of phases existing in the system
φ1 number of phases in 1st NPR
φ2 number of phases in 2nd NPR
φC number of common phases existing in NPRs
φmax the maximum number of phases existing in any phase regions
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Annex

A quiet life of “pursuing the truth”

– Introduction of Josiah Willard Gibbs

MUYU ZHAO, LIANGZHI XIAO, XIAOBAO FAN

Josiah Willard Gibbs was born on February 11th 1839 at New Haven, Connecti-
cut. He died at the age of 64 years, in the same city, on April 28th, 1903.

The ancestor of the long established Gibbs’ family, he emigrated from England
to Boston in 1658. This move led to the establishment of a distinguished and learned
family, continuing over a long period. J.W, Gibbs’ mother was a daughter of a Yale
graduate in literature. Among her ancestors were at least two graduates from the
Yale College; one of them became the first Dean of the then, New Jersey College.
On his fathers’ side of the family, there were 5 generations of ancestors who had
graduated from Harvard University, and his father who graduated from Yale. From
1824 to 1861, Gibbs’ father was the professor of “Sacred Literature” at the Yale
College. He was renowned to his contemporaries for his wide and deep knowledge
acquisition. He had published many books. His modest life style, and the rigorous
mode in which he “approached” his work, had greatly influenced the formation of
Gibbs’ personality in his early growth and development years.

Gibbs was the fourth child, and the only boy born, into his family. He ma-
triculated at Yale College in 1854, winning prizes in both Latin and Mathematics.
Graduating in 1858, he continued his studies there and was awarded the Ph.D. de-
gree of Yale in 1863. After that, he was appointed to the post of tutor in Yale
College. During his three years of tutorial sessions, he taught Latin during the first
two years, and natural philosophy (Physics) in the third year. In return, he received
the love and esteem of his students. He finished his sessions as tutor, and then he
went aboard, together with his three elder sisters. They were in Paris from the
winter of 1866 to the beginning of 1867, he then moved to Berlin in the same year,
where he attended the Magnus et al classes. In 1868, he went to another German
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city, Heidelberg. Gibbs returned to New Haven in 1869. Two years later, he was
appointed as Yale’s Professor of Mathematical Physics. He held this position until
his death in April, 1903. At that time, he “passed away”,due to the consequence of
5 days of serious illness.

Gibbs’ lifetime contribution to the sciences is enormous, particularly within the
fields of thermodynamics and statistical mechanics. In 1873, when he was already 34
years old, he published his first paper on the topic of the geometric representation of
thermodynamic properties of a fluid. In the same year, there was another paper on a
method of geometrical representation of the thermodynamic properties of substances
by means of surfaces. He became fully engaged in the study of thermodynamics
over the following several years. The vintage Gibbs paper, On the Equilibrium
of Heterogeneous Substances was published in 1876 and further 1878, separately.
This work is now deemed to be an event of the “first importance” in the history
of chemistry, and one that laid the solid foundation for the subject of chemical
thermodynamics. Suppose that Gibbs had not had any other publications to his
name and endeavors, then this paper alone would have been preeminent enough to
render him a position among the ranks of the greatest scientists that rise from time
to time in the history of the science. Le Chatelier himself, commented that Gibbs,
through his own greatness, had founded a new Department of Chemical Science
which was then rapidly becoming comparable in importance to that Institution,
created by Lavoisier. Le Chatelier also had translated the first part of On the
Equilibrium of Heterogeneous Substances and published this version, in Paris, in
1899. Even earlier, Ostwald had translated the three papers above into German
and had them published in Leipzig. Ostwald appreciated Gibbs’ work very highly in
saying that Gibbs had given 100 years to the advance of Physical Chemistry, from
the initial form to substantial content.

Gibbs’ work also received special attention in the Netherlands. Van der Waals
was among the first persons who first applied Gibbs’ theory. He also introduced
Gibbs’ work to his personal student, Roozeboom. The later scientist carried out
much research work on the phase rule, and enthusiastically introduced Gibbs’ theory,
particularly the phase rule, to all interested persons.

Another important lasting contribution of Gibbs’ work was his contributions in
the area of Statistical Mechanics. In 1902, one year before his death, he published
his famous treatise Elementary Principles in Statistical Mechanics, in which he de-
veloped the Boltzmann’s and Maxwell’s theories into the theory of “ensembles”, thus
putting the subject of statistical mechanics on a firm foundation.

Gibbs also generated many publications in vector analysis that constitutes the
basis of this branch of mathematics. Moreover, he was also involved in studies of
astronomy, the electromagnetic theory of light, Fourier’s series, etc.

With the elapse of time, the influence of Gibbs’ work on the development of
science has become more and more significant.
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The many contributions of Gibbs had been well recognized before his death. In
1881, American Academy of Arts and Sciences in Boston awarded him the Rum-
ford Medal. In 1901, Gibbs was awarded the Copley Medal of the Royal Society
of the United Kingdom, illustrating the worldwide recognition of his work among
contemporary theoreticians. He was also the member, or the communications mem-
ber, of The National Academy of Sciences, American Academy of Arts and Sciences,
American Physical Society, The Royal Society in London, The Russian Academy of
Sciences, Royal Netherlands Academy of Sciences, French Institute, Göttingen Royal
Society, Bavarian Academy of Sciences and Humanities, and the Physical Society
of London. He also held Honorary Degrees from four prestigious Institutes such as
Princeton University.

However, all of these acts of recognition were, to an extent, a type of superficial
acknowledgement. The real value of many of Gibbs’ works, including his opus On the
Equilibrium of Heterogeneous Substances, had not been generally known for a number
of years. This delay was due largely to the fact that its complex mathematical
expressions and the rigorous deductive process, make it somewhat difficult reading
for many, especially for the “experimental chemists”, who were then, at least, “poor
in mathematics”, such that even the simple parts of Gibbs’ papers appeared to be
too esoteric for them. Not a great many colleagues could fully understand Gibbs’
theory. This is why many important conclusions, expounded in Gibbs’ paper, have
been re-discovered by other renowned scholars, in later years. For example, the
Gibbs-Helmholtz equation in 1882, Gibbs-Duhem equation in 1886, and the osmotic
pressure rule by Van’t Hoff in 1887, to just name a few.

In Germany, though there was Ostwald’s translation, it did not produce a “big
echo”. For a long time, it was Nernst’s work that governed the direction of chemistry
in Germany.

The same situation existed in the United States, nobody in New Haven, and
their peers elsewhere in the US, really understood Gibbs. One of his colleagues at
Yale admitted that in the Connecticut Academy there is no one who understands
Gibbs’ thermodynamics, he said, “We acknowledge and recognize Gibbs’ contribu-
tion, completely in the blind.” At that particular time, it was Lewis’ theory that
prevailed in the States.

This may be the reason why Gibbs didn’t receive much salary in his first 10 years
of the professorship career at Yale. It was 1920, some 17 years after his death, that
he was, for the first time, nominated as a candidate for the Hall of Fame of Great
Americans, in New York. However, he received only 9 votes from the eligible 100
voting persons. After another 30 years had passed, Gibbs’ bust was finally placed
in this hall in 1950. Even today, with the exception of those engaged in natural
sciences, many educated Americans are still unfamiliar with this name. It prompts
“deep thought” that we could find today, thousands of papers on Gibbs’ theories
and applications in “Chemical Abstracts”, but we find very few mentions of his
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biography. This is because of his tranquil characteristics and his quiet life. He made
no effort to attract followers, nor to endeavor to communicate to a wider audience.

All of his life was that of a quiet and simple character. Once, in his childhood,
he became infected with scarlet fever. This significantly impaired his long term
health, he was always somewhat weak in much of his life. Thanks to his careful self-
attention and to the adoption of a regulated life style, his weakness did not influence
his researches. He did not have much involvement in social activities, because of his
poor health and of his retiring nature. He appeared to be a stranger, even in his
home town. Except for the three years in Europe, he lived nearly all of his time in
New Haven, in his surviving sister’s household, that was the shared inherence from
their father.

Gibbs was of noble morality and feeling. His modesty, shown in his scientific
research, was sincere, and without any pretence. He never doubted the rightness of
his theory, never under-estimated its importance, but he never flaunted his work. He
trusted that any other researcher would arrive at the same conclusion if they could
pay attention to the same subject. He belongs to those rare persons who pursue no
applause from their contemporaries but only the “truth of science”. He contented
himself by solving those problems that “haunted” his brain. He began thinking of
the next problem immediately after solving the previous one. He did not care if
others could or could not understand what he had done. In his papers, he rarely
cited others references to explain his own points.

There is an anecdote in one of his biographies. In his early paper on the repre-
sentation of the thermodynamic properties of substances, by means of their surfaces,
there is one section about the three-phase equilibrium of water, where he provided
only dull and dry concepts, without making any effort to crash the “fence of under-
standing” of his readers. The famous physician, Maxwell, had, by chance, read this
paper somewhere and much appreciated the importance of it. Maxwell spent much
time using his own hands to prepare a plaster cast model illustrating the thermody-
namic surface of water (i.e.the three-dimensional, phase diagram of water) and sent
it to Gibbs. It was a pity that Maxwell died too early, at only 48 years of age, in
1879. He had not made any particular comments on Gibbs’ work; otherwise the fate
of Gibbs’s theory may well have been drastically different. The model, as presented
by Maxwell, helped very much in the explanation of Gibbs’ points. However, Gibbs
never mentioned its originality in class. One student once asked where is the model
from? Gibbs answered, with his unique modesty, “from a friend”. The student ac-
tually knew well the real story but still pushed for the answer to, “and who is the
friend?” “A friend in England”, was Gibbs’ insipid answer.

Gibbs was very serious and earnest in his teachings. Bearing in mind the impor-
tance of his scientific research; he never ignored any trivial matters in school. He
was always warm towards his students, helped them in all possible ways with his
precious time and vigor. Compared with other colleagues, he was more compulsive
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to lead students going to the field of natural philosophy. His lectures were carefully
prepared, as were his treatise, only that he put in more proper and concise examples.
All those who attended his seminars, were deeply impressed.

Gibbs was both genial and kindly in his intercourse with his fellow-men. A pious
Christian gentleman, his mind was so tranquil and calm that he was always immune
to fidgety and agony. His noble and simple characteristics were comparable with his
brilliant achievements in science.

Gibbs was highly gifted, his mind being so sharp and insightful, especially his
feelings on the subject of physics science. In terms of the scope of his studies in
natural philosophy, there are not many who are able to surpass Gibbs.

The peculiar style of his life and work made, both him and his publications,
unknown for a long time. He worked hard for all of his life, but did not get much
by way of material benefits. Nevertheless, it is just because of his low profile, his
thought process became so profound and rigorous, that he made abundant time and
vigor to solve, one after another, the many challenges in the sciences. He left us with
an enormous spiritual fortune, adding incomparable values to the science. Because
of this, Gibbs became one of the few of our greatest giants in science, and continues
to be admired all around the world, today.

(End)
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