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Foreword

We are presently observing a paradigm change in designing complex SoC
as it occurs roughly every twelve years due to the exponentially increasing
number of transistors on a chip. This design discontinuity, as all previous ones,
is characterized by a move to a higher level of abstraction. This is required
to cope with the rapidly increasing design costs. While the present paradigm
change shares the move to a higher level of abstraction with all previous ones,
there exists also a key difference. For the first time shrinking geometries do not
lead to a corresponding increase of performance. In a recent talk Lisa Su of IBM
pointed out that in 65nm technology only about 25% of performance increase
can be attributed to scaling geometries while the lion share is due to innovative
processor architecture [1]. We believe that this fact will revolutionize the entire
semiconductor industry.

What is the reason for the end of the traditional view of Moore’s law? It is
instructive to look at the major drivers of the semiconductor industry: wireless
communications and multimedia. Both areas are characterized by a rapidly
increasing demand of computational power in order to process the sophisticated
algorithms necessary to optimally utilize the precious resource bandwidth. The
computational power cannot be provided by traditional processor architectures
and shared bus type of interconnects. The simple reason for this fact is energy
efficiency: there exist orders of magnitude between the energy efficiency of an
algorithm implemented as a fixed functionality computational element and of
a software implementation on a processor.

We argue that future SoC for wireless and multimedia applications will be
implemented as heterogeneous multiprocessor systems (MP-SoC) in order to

bility (programmability). Such an optimum trade-off is ultimately necessary

MP-SoC will contain an increasing number of application specific processors

achieve an optimum in the trade-off between energy efficiency versus flexi-

to cope with the required flexibility of multi-standard, cognitive software
defined radio which promotes a software implementation. The heterogeneous

xi
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(ASIPs) combined with complex memory hierarchies and sophisticated on chip
communication networks.

The design of an MP-SoC is an extremely demanding task. Already in
2001 ITRS has pointed out that The main message in 2001 is this: Cost of
design is the greatest threat to continuation of the semiconductor roadmap .
In a nutshell, designing an MP-SoC comprises two major tasks. The first task
is to define a set of processing elements which perform the energy efficient
execution of the functional task. The second, and equally important, task is
concerned with the inter-task data exchanges which have to be mapped onto
an interconnect architecture. Both computation and communication have seen
significant advances in terms of functionality and architectural concepts. As a
result, also the mapping of an application onto a MP-SoC platform becomes
an increasingly demanding task. Only a joint consideration of architectural
options and application mapping bears the opportunity to achieve near optimal
quality of results.

In this book we have made an attempt to present a unified system level design
framework for the definition and programming of large scale, heterogeneous
MP-SoC platforms. This comprises the exploration of architectural choices for
computation and communication as well as for the HW/SW partitioning and
mapping of embedded applications. One focus area is the emerging topic of
Network-on-Chips, which are envisioned to become the communication back-
bone of next generation Multi-Processor platforms.

The huge literature on the subject is scattered in journals and conference
publications and thus not readily accessible to the engineer in industry. We
therefore first give a fairly broad introduction to classify the topic in terms of
application domains, architectural elements and system level design methods.
We hope by this to provide the reader with a reasonably efficient path towards
gaining an understanding of the subject. We have also made an attempt to cover
the state of the art research results by including the most recent publications.
We hope that this book will be useful to the engineer in industry who wants
to get an overview of the latest trends in SoC architectures and system-level
design methodologies. We also hope that this book will be useful to academia
actively engaged in research.

Heinrich Meyr and Rainer Leupers, February 2006

Foreword
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Preface

This book documents more than 5 years of research during my time as a
research assistant at the Institute for Integrated Signal Processing Systems (ISS)
at the Aachen University of Technology (RWTH Aachen).

The original motivation for this work dates back to the middle 1990ies.
It was driven by the attempt to define an holistic approach to the design of
algorithms, tools, and architectures for an Asynchronous Transfer Mode (ATM)
backbone packet switch. At that time, system level design methodologies were
still in their infancy, but the complexity to design this type of heterogeneous
Hardware/Software systems was already getting out of control.

When I joined the team in 1999, the early work on the ATM packet switch
had already created a wealth of experience on abstract C-based modeling of
complex architectures. Building on this know-how, we soon ported our research
results to the newly available SystemC library. The move to a standardized
modeling language enabled a number of further research cooperations with
different industrial partners. During these projects we have evolved our design
methodology and tools as well as broadened the application domain beyond the
original networking space. Even more importantly, we were able to validate
our approach in the context of real-life industrial design problems.

Looking back, the results presented in this book are by no means attributed

the following I would like to thank the many brilliant and open-minded people
from the ISS institute and our industrial research partners, with whom I had the
pleasure to work and who have made invaluable contributions to the content of
this book, be it through focus and advise or actual hands-on work.

At the outset I would like to thank Prof. Heinrich Meyr as the supervisor of
my research activities. Besides his ongoing personal interest in my work, he has
created an atmosphere of competition and support, which in combination with
a tight industrial interaction enables both relevant and state-of-the-art research

lopment of many small steps towards mastering the SoC complexity crisis. In
to some stroke of brilliance or the like of it, but rather the evolutionary deve-
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results. In the same way I like to thank Prof. Rainer Leupers and Prof. Gerd
Ascheid, who joined the ISS and gave me the same type of support. I am also
thankful to Prof. Perti Mähönen for the valuable feedback he gave me in his
role as the additional supervisor of my thesis.

The ground-work for the results described in this book was done by my
predecessors Dr. Guido Post and Dr. Andrea Kroll. Apart from providing an
excellent starting point, my special thanks is directed to Andrea, who supervised
my master thesis in 1998, afterwords recruited me to the ISS and was my mentor
during my first two years as a research assistant at the institute.

A major share of the effort to turn the concepts described in this book into
actual tangible results is attributed to the master students, who contributed with
their skills and their hard work. For their personal engagement I like to thank
(in alphabetical order) Malte Dörper, Torsten Kempf, Roland Nennen, Thomas
Philipp, Andreas Wieferink, and Olaf Zerres.

I personally consider the ongoing deployment of the tools and methodologies
in the context of industrial cooperations as the major advantage for validating the
relevance and applicability of any engineering research. During these projects I
received invaluable feedback and guidance from a large number of professionals
throughout the semiconductor and EDA industries. Among these I especially
like to thank Bernd Reinkemeier, Dr. Thorsten Grötker, and Dr. Martin Vaupel
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I was fortunate to be able to continue the work on this topic during my sub-
sequent life at CoWare Inc. Here the concepts and prototype tools described in
this book have been turned into a commercial product. The resulting Architects
View Framework is now available as an option of the CoWare Platform Archi-
tect product. I like to thank all the people in CoWare, who have contributed to
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Chapter 1

INTRODUCTION

Traditionally, embedded applications in the multimedia, wireless communi-
cations or networking domain have been implemented on Printed Circuit Boards
(PCBs). PCB systems are composed of discrete Integrated Circuits (ICs) like
General Purpose Processors, Digital Signal Processors, Application Specific
Integrated Circuits, memories, and further peripherals. The communication
between the discrete processing elements and memories is realized by shared
bus architectures.

The ongoing progress in silicon technology fosters the transition from board-
level integration towards System-on-Chip (SoC) implementations of embedded
applications. According to the International Technology Roadmap for Semi-
conductors [2], by the end of the decade SoCs will grow to 4 billion transistors
running at 10 GHz and operating below one volt. Already today multiple het-
erogeneous processing elements and memories can be integrated on a single
chip to increase performance and to reduce cost and improve energy efficiency
[3].

The growing potential for silicon integration is even outpaced by the amount
of functionality incorporated into embedded devices from all kinds of applica-
tion domains. This trend originates from the tremendous increase in features as
well as the multitude of co-existing standards. The resulting functional com-
plexity clearly promotes Software enabled solutions to achieve the required
flexibility and cope with the demanding time-to-market conditions. However,
the stringent energy efficiency constraints of mobile applications and cost sen-
sitive consumer devices prohibit the use of general purpose processors. Instead,

1



the tight cost and performance requirements of versatile embedded systems lead
to application specific heterogeneous multi-processor architectures [4, 5].

In this context, the classical vertical partitioning approach to HW/SW Co-
design, where the performance critical parts are implemented as dedicated HW
blocks and the rest is executed in SW, is no longer applicable [6]. Instead
HW/SW Co-design can be seen as a multi-dimensional horizontal mapping
problem of an application running on a heterogeneous multiprocessor platform.

During the mapping process, the system architect has to exploit application
inherent parallelism to achieve the required performance at reasonable cost.
For the computationally intensive portions of typical embedded applications
the extraction of Task Level Parallelism (TLP) is mostly straight forward: The
partitioning into a set of loosely coupled functional blocks can be naturally
derived from the algorithmic block diagram.

Still the spatial and temporal application-to-architecture mapping poses an
enormous challenge in the design of embedded systems. First, a set of pro-
cessing elements has to be provided for the efficient execution of the functional
tasks. Additionally, the inter-task data exchange has to be mapped to a commu-
nication architecture. Both processing and communication mapping are highly

architectural advances offer a huge design space with enormous potential for
optimization:

Communication Architectures. Today’s predominant shared bus paradigm
as inherited from the PCB era constitutes the major power and performance
bottleneck.

Dedicated on-chip networks enable the use of physically optimized transmis-
sion channels to address power, reliability and performance issues [8, 9].

Apart from resolving the physical issues, Network-on-Chip architectures also
address the functional aspects of on-chip communication. So far, the dynamic
priority based arbitration scheme of shared busses creates a mutual depen-
dency between all components connected to the bus. Due to this lack of traffic
management capabilities every change in the traffic requirements of the appli-
cation requires a re-design of the bus architecture. Instead, NoC architectures
take advantage of sophisticated networking algorithms to provide elaborated
traffic-management capabilities. By that, the ad-hoc communication mapping

interrelated and only a joint consideration of architectural choices in both

In response to this problem, the chip-wide communication is envi-
sioned to be handled by full-scale Network-on-Chip (NoC) architectures [7].

2 Integrated System-Level Modeling

areas bears the opportunity for near optimal quality of results. Especially recent
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is replaced with a disciplined allocation of the required communication services
and the on-chip network takes care to provide the required resources.

From the system architecture perspective, this separation of the offered com-
munication services from the architectural resources can be considered as a vir-
tualization of the actual communication architecture [10]. This virtualization
effectively decouples the mapping problem for communication and computa-
tion. The price to pay for the physical and functional benefits of NoC based
communication is a significant penalty in terms of chip area as well as transfer
latency.

Computational Architectures. Concerning the evolution of computational
resources, programmable processing elements achieve significant gains with
respect to performance and computational efficiency by tailoring instruction
set and micro architecture to the respective set of tasks [11]. Examples are
innovative architectures exploiting Instruction Level Parallelism (ILP) as well
as Data Level Parallelism (DLP) [12]. Despite the increased computational
performance, the effective performance is often constricted by the communica-
tion architecture, since memory accesses latency does not keep pace with the
processing power.

General purpose processors resolve the memory access bottleneck by using

of stream driven and packet based data processing. Instead, processor architec-
tures are equipped with hardware supported Multi-Threading (HW-MT) [13]
to perform task switches with virtually no performance overhead. By that,
the application inherent TLP is exploited with the purpose of hiding memory
latency, which effectively leads to a significant increase in the processor uti-
lization. This technique is already widely employed in the network processor
domain [14] but recently finds its way into advanced multimedia [15] and sig-
nal processing platforms [16]. In the light of the latency issue caused by NoC
architectures, the importance of memory hiding techniques is likely to increase
in the future.

Apart from the immediate benefit of increased utilization, HW-MT can be
considered as a lean operating system implemented in hardware to efficiently
share the processing resources among multiple concurrent tasks. In analogy
with full scale software operating systems (SW-OS), the HW-MT concept bears
the potential to bring a disciplined management of processing resources to the
data processing domain. From the perspective of the functional tasks, this
processing management again introduces a virtualization of the computational
resources. [17]

sophisticated cache and memory hierarchies. Unfortunately this approach is
often not applicable for embedded applications due to the poor memory locality



4

Taking the above considerations together, future SoCs can be considered
as NoC enabled multi-processor architectures. The on-chip communication
backbone connects a large number of heterogeneous processing clusters and
global storage elements. Individual processing clusters consist of one or few

Design Complexity. The key concept to cope with the resulting design com-
plexity is to achieve a virtualization of the architectural resources, such that
they can be allocated by the system architect in a deterministic way. As dis-
cussed above, this virtualization is provided by the novel NoC approach for the
communication part as well as by SW and HW operating systems for the con-
trol and data processing respectively. This divide-and-conquer oriented design
paradigm enables individual optimization of the architectural elements to take

efficiency and architectural efficiency is merely a penalty in terms of chip area,
which is generally considered to be of constantly decreasing importance.

In this context HW/SW Co-design of a given embedded application is defined
to a) architect a heterogeneous MP-SoC platform and b) allocate the architec-
tural resources for the execution of the application. Note, that architecture
virtualization resolves the mutual dependencies in the mapping process, but the
trade-offs in the design space still require a joint consideration of application
and architecture as well as communication and communication. For example
the latency of a more complex on-chip network can be compensated by either
introducing memory hierarchy or employing hardware multi-threaded proces-
sor kernels. Obviously, the resulting design space is virtually infinite and the
architecting and the mapping phase cannot be considered independently with-
out sacrificing quality of results.

address the multidimensional phase-coupled design space exploration chal-
lenge. The goal of this approach is to enable the mapping of the considered
application onto the anticipated MP-SoC architectures at a very early stage in
the design flow. The modeling framework is based on a sophisticated timing
model, which captures the impact on performance of both the computation as
well as the communication architecture in a unified and highly abstract way.
The achieved accuracy, modeling efficiency and simulation performance en-
ables the exploration of large design spaces, thus the system architect can take

instruction and data memories as well as local peripherals.
application specific programmable kernels together with tightly coupled

The focus of this book is the introduction of a system level design metho-
dology and corresponding tool supported modeling framework, which together

full advantage of recent developments in computer architecture and NoC ena-
bled communication. The price for these benefits with respect to both design

full advantage of the architectural innovations outlined above.

Integrated System-Level Modeling
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The remainder of this section provides a brief overview about the different
aspects discussed in this book. First a brief discussion of the abstraction levels
clarifies the relation of the proposed approach and the state of the art in System
Level Design. Then an intuitive introduction of the timing model is given, which
enables an abstract and yet accurate modeling of the anticipated architecture.
Later a short introduction illustrates the modular simulation framework for rapid
design space exploration of Network-on-Chip enabled heterogeneous MP-SoC
platforms.

Abstraction Level. Transaction-Level Modeling (TLM) as advocated by the
SystemC language [18] is generally considered as the emerging system level
design paradigm and is already incorporated into state-of-the-art Electronic
System Level (ESL) tools [19, 20]. TLM greatly improves modeling efficiency
and simulation speed by abstracting from the low-level communication details
of the Register Transfer Level (RTL), but is usually employed in a byte and
cycle accurate fashion.

For the conceptualization of large scale heterogeneous systems as addressed
in this book, cycle-level TLM is still too detailed to explore large design spaces.
Instead, the developed modeling framework is based on a packet-level TLM
paradigm. Here the considered data granularity is a set of functionally associ-
ated data items, which are combined into an Abstract Data Type (ADT). This
data representation is much closer to the initial application model, so the mod-
eling efficiency as well as the simulation speed are again significantly improved
compared to cycle-accurate TLM. The key aspect of this approach is that the
underlying timing model outlined below is sufficiently accurate to investigate
the performance impact of the anticipated MP-SoC architecture executing the
application.

Unified Timing Model. Inspired by the observation, that communication be-
comes the driving design paradigm for MP-SoC from application to architecture
mapping [21], the developed exploration framework is based on a sophisticated,
communication centric timing model, which can be coarsely separated into the
following aspects:

A generic synchronization interface defines a concise set of communication
primitives, which in principle follow the Open Core Open Core Protocol
(OCP) semantics [22] and are not biased towards any specific communica-
tion architecture. Additionally the primitives incorporate timing-annotation
to achieve reasonable timing accuracy at the highly abstract packet-level
TLM layer.
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The communication timing model captures the impact on performance of the
interconnection architecture. This communication timing model supports
the full spectrum of available and proposed communication architectures
ranging from today’s shared busses to the emerging NoC paradigm [23, 24].

The processing delay annotation virtually maps individual application tasks
to the intended processing engines [25]. The resulting impact on perfor-
mance is captured by calculating the timing of the external events, which
are exposed by the generic communication interface.

The concept of a Virtual Processing Unit (VPU) models the notion of shared
coarse-grain computational resources. This covers both software operating
systems as well as hardware multi-threading.

Exploration Framework. The unified timing model outlined above is imple-
mented by means of a versatile modeling framework for architecture exploration
and hardware/software partitioning. Apart from the modeling efficiency and
simulation speed inherent to the high abstraction level, a key aspect for efficient
design space exploration is a declarative specification mechanism. By that the
various aspects of the MP-SoC platform, like e.g. communication architecture,
processing elements and task mapping, are defined by a set of configuration
files. As part of the elaboration phase, the developed simulator evaluates the
configuration files and constructs the specified architecture. During the sim-
ulation run, the simulation framework provides an interactive Graphical User
Interface (GUI) based on the Message Sequence Chart (MSC) principle to sup-
port the interactive validation of the simulation model. The simulation results
like latency, delay and utilization of processing elements and communication
links are stored in a data base. This raw data is compiled into a set aggregated
histograms and performance graphs by means of statistical post-processing.
Based on these results, the system architect can detect bottlenecks or poor uti-
lization in the system and decide on further optimizations of the architecture
model.

1.1 Organization of the Book Chapters

for architectural exploration of large scale, heterogeneous MP-SoC platforms
as well as Hardware/Software partitioning of embedded applications. As this
topic is extensively addressed by academic research and by EDA companies,
first a broad introductory part classifies the topic area in terms of application
domains, architectural elements, and system level design methods.

At the outset, a brief overview of major application domains is given in chap-
ter 2 to highlight current and future application requirements. In a similar way,

The contribution of this work is a unified system level design framework

Integrated System-Level Modeling
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chapter 3 classifies current and emerging MP-SoC architecture components.
This comprises processing elements as well as communication architectures.
From the discussion of both application and architecture characteristics, the
requirements for the design of MP-SoC platforms are derived.

After a brief introduction of fundamentals in system level design like abstrac-
tion mechanisms and models of computation in chapter 4, the following chapter
5 surveys the state of the art in the area of system level design methodologies
and tooling. This chapter closes with a summarizing discussion of benefits and
shortcomings of the related work in academia and industry.

Subsequent to these introductory chapters, the main body of this book is
dedicated to the comprehensive description of the contribution. First an intu-
itive description of the developed MP-SoC framework and associated design
methodology is provided in chapter 6. This overview sets the stage for the
following chapters containing all the detailed information.

The theoretical foundation of the developed timing model is formulated in
chapter 7. After a brief introduction of the employed Tagged Signal Model
formalism [26], the timing model is introduced as a derivation of the well-
known Discrete Event (DE) Model of Computation (MoC). Afterwords the
diverse aspects of timing modeling with respect to communication, computation
and multi-threading are covered in detail.

The implementation of the timing model by means of a versatile system
level Design Space Exploration (DSE) environment for MP-SoC platforms is
described in chapter 8. Major components of this framework are the Network-
on-Chip framework for communication modeling and the generic Virtual Pro-
cessing Unit (VPU) to model multi-threaded processing elements. Additionally,
the various visualization mechanisms for functional validation and performance
analysis are highlighted.

The applicability of the design space exploration framework and tooling
introduced in book is demonstrated by a large scale case-study. The selected
IPv4 application with Quality-of-Service (QoS) support as well as key results
from the investigation of architectural alternatives are provided in chapter 9.

Finally, chapter 10 summarizes the major achievements of the work described
in this book and concludes with an outlook on future developments.



Chapter 2

EMBEDDED SOC APPLICATIONS

Traditionally, applications of embedded systems are classified into different
application domains, like networking, multimedia, and wireless communica-
tions. This chapter examines applications from different domains in order to
derive common properties and requirements with respect to their implementa-
tion on MP-SoC platforms. The networking application domain is treated with
the highest detail, since the case study elaborated in chapter 9 falls into this
category. Additionally, a basic knowledge of networking concepts is helpfull
for the understanding of on-chip micro networks.

2.1 Networking Domain

munication devices. Standardization societies such as IEEE, ITU, and ETSI

Additionally, the framework of the widely accepted ISO/OSI reference
model [27] has been useful in providing a common terminology, stacking of
communication services, and modularity of networking applications.

Concerning the variety of standards available for the respective ISO/OSI
layers, this application domain follows an hour-glass scheme: A small set
of networking layer standards in the middle of the ISO/OSI stack address a
multitude of higher layer application standards as well as lower physical/link
layer standards.

In principle, all different kinds of applications are characterized by their
respective Quality of Service (QoS) requirements, which are condensed into set
of service classes: Constant Bit Rate (CBR) traffic (e.g. telephony), Variable
Bit Rate (VBR) real-time traffic (e.g. multimedia streaming), and Available Bit
Rate (ABR) non-real-time traffic (file transfer).

The networking application domain covers all kinds of macroscopic com-

9

lity.
work out communication standards to achieve a high degree of interoperabi-
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Various efforts have been made to establish an integrated networking layer
standard supporting all different service classes: the Integrated Services Digital
Network (ISDN) was a first step into this direction. However ISDN is based
on circuit switched communication and thus very inefficient for the increasing
portion of bursty data traffic. The preceding Asynchronous Transfer Mode
(ATM) employs packet switching to increase the resource utilization for non-
CBR traffic. The dissemination of ATM has been hindered by the significant
protocol overhead, which originates from the sophisticated signalling stack and
flow-control mechanisms. This signallig is required to establish and maintain
the state information related to the virtual channels and virtual paths. Today’s
de facto networking layer standard is given by the rather simplistic Internet
Protocol (IP).

The variety of lower layer standards address specific physical networks: the
core network communication backbone is predominantly established by Syn-
chronous Optical Network (SONET) and Wave Division Multiplexing (WDM)
based optical transmission. In the access network domain, a multitude of stan-
dards is available for Local Area Network (LAN) switching (Ethernet, FDDI,

centrators).
Looking at the SoC implementation complexity, the physical and link layer

data rates of core network equipment are imposing demanding performance
requirements. However the low flexibility of these standards allows for a hard-
wired ASIC or even pure optical implementation. On the other side, higher
application layers are only present in the terminal devices, so the relatively low
to medium throughput requirements allow for a software implementation of the
flexible and control dominated functionality.

In terms of SoC implementation complexity, the networking layer function-
ality constitutes by far the most challenging layer of the ISO/OSI reference
model. Layer three multi-service access switches are considered as one of
the potential killer applications for MP-SoC platforms, since they combine the
physical wire speed throughput requirements with flexibility constraints im-
posed by the individual treatment of different service classes and application
characteristics [28]. Advanced features like support for security sensitive ap-
plications in Firewalls or Virtual Private Networks (VPNs) further increase the
processing requirements.

2.2 Multimedia Domain

of media data e.g. pictures, audio, video decoding, video pixel processing
and 2D/3D graphics. Similar to the networking domain, a variety of standards
enable the exchange of media data as well as device interoperablity. The advent

Token Ring), Wireless LAN (802.11a/b/g), and Wide Area Network (WAN)
edge termination (analog/cable/xDSL/ISDN modems, telephony, access con-

The multimedia application domain subsumes the processing of all kinds

Integrated System-Level Modeling
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of digital media processing has produced a multitude of standards, which realize
different optima with respect to transmission bandwidth efficiency, processing
requirements and quality. Table 2.1 summarizes computation, communication
and memory requirements of typical multimedia standards [29].

Table 2.1. Characterization of Multimedia Applications

application computation communication memory
in out local

audio 100 MOPS 32-640 kbps 5 Mbps 5 Mbps 50 kb
MPEG2 4 GOPS 10 Mbps 120 MBps 240 MBps 8 MB

pixel 100 GOPS 360 Mbps 360 MBps 360 MBps 4 MB

Advances in processing capabilities and multimedia algorithms together
with increased user expectations fuels a constant proliferation of new multime-
dia standards like digital audio decoding (AC3, OGG, MP3), video decoding
(MPEG2, MEPEG4, H.263, H.264, DivX, quicktime), and 3D graphic process-
ing (DirectX 9).

Apart from the multitude and dynamics of multimedia standards, a flexible
implementation platform is also mandatory to meet demanding cost constraints
of converging consumer electronics devices such as the Advanced Set-Top Box
(ASTB). Here the processing and communication fabrics have to be shared
among the multitude of supported multimedia applications to limit implemen-
tation cost.

2.3 Wireless Communications

gressive use of digital signal processing to maximize bandwidth efficiency.
Again, a multitude of standards exists, each marking a local optimum in the
multi dimensional parameter space spanned by implementation cost, mobility,
power dissipation, and performance bandwidth efficiency. The statistic in fig-
ure 2.1 shows the numbers of changes to the UMTS standard over time to again
emphasise the need for highly flexible embedded systems.

The multimedia and wireless communication domains are converging into a
new generation of Personal Digital Assistant (PDA) or SmartPhone devices. So
far PDAs run emaciated versions of typical desktop applications like organizer,
info manager, text processors, spread sheets, presentations, or www browser.
Recently, PDAs have started to support a huge variety of travel and fun related
applications with much higher processing requirements, like e.g. localization,
navigation, travel assistant, video camera, digital camera, picture editing, MP3

.

The wireless communication application domain is characterized by an ag-
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Figure 2.1. 3GPP Standard Changes

player, or games. Additionally, this kind of portable, multimedia enabled PDA
devices are obliged to support multiple communication standards, both cable
(USB, FireWire) and wireless (3G, WLAN).

2.4 Application Trends

with respect to SoC implementation can be summarized into the following set
of common trends:

New features and value added services, together with the heuristic loga-
rithmic law of usefulness [30], lead to exponentially increasing processing
performance and communication requirements.

The standards become more dynamic and sophisticated and are introduced
more rapidly. This calls for high flexibility of the SoC implementation to
meet the resulting time-in-market as well as time-in-market requirements.

For mobile applications as well as for cost sensitive consumer electronic
devices, energy efficiency becomes the prevailing cost factor.

Heterogeneous Multi-Processor SoC (MP-SoC) platforms are generally be-
lieved to meet the above mentioned conflicting performance, flexibility and
energy efficiency requirements of demanding embedded applications. The het-
erogeneity of future SoC implementations is driven by the heterogeneity of the

The above considerations of the different embedded application domains

Integrated System-Level Modeling
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embedded applications, where each part of the application has an inherent op-
timal implementation. Hence, in the course of an MP-SoC platform design the
partitioning of a specific application is a task of major importance.

2.5 First Order Application Partitioning

nated domain can be applied to every embedded application, no matter which
application domain is considered. This first order partitioning has major influ-
ence on both the target processing and communication elements as well as on
the appropriate design methodology. Figure 2.2 shows control- and data-plane
processing tasks for selected example applications.

Personal Information
Management (PIM),
office applications,
games,

UMTS/WLAN modemwireless PDA

configuration management,
user interaction

audio decoding,
video decoding,
3D graphic processing

Advanced
Set-Top Box

(ASTB)

policy applications,
network management,
signaling,
topology management

queuing,
scheduling,

routing,

classification,

en-/decryption

IP forwarding with
QoS

Control-Plane
Processing

Data-Plane
Processing

Application

Figure 2.2. Control-/Data-Plane Processing for Selected Example Applications

Control-Plane Processing
Control-plane processing is characterized by moderate performance require-
ments, but on the other hand comprises huge amounts of functionality calling
for maximum flexibility. Example control-plane processing tasks in the net-
working application domain are, e.g. policy applications, network management,
signaling, or topology management.

A first order partitioning into a control dominated domain and a data domi-
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The control plane functionality is usually developed using an architecture ag-
nostic, software centric Integrated Design Environment (IDE) and state-of-the-
art software engineering techniques like Object Oriented Programming (OOP)
using the Unified Modeling Language (UML) [31], C++ [32], or Java [33].
To increase the reuse of the control plane Software across multiple MP-SoC
platform generations, the Hardware dependant Software (HdS) portions are
wrapped into a stack of middleware, Real Time Operating System (RTOS), and
device driver layers [34, 35].

The huge amount of functionality and little inherent parallelism of control
plane processing tasks usually prohibits the explicit specification of Task Level
Parallelism (TLP). Thus, in order to gain performance the designer relys on fine
grain Instruction Level Parallelism (ILP) to be extracted by a VLIW compiler
or by a superscalar processor architecture.

Data-Plane Processing
Data-plane processing is characterized by computationally intensive data ma-
nipulations performed at high data rates, thus demanding high processing and
communication performance. Additionally, rapidly evolving standards in all
application domains impose increasing flexibility constraints. Example data-
plane processing tasks in the networking application domain are e.g. queuing,
scheduling, routing, classification, or en-/decription.

The performance requirements of networking, multimedia and wireless com-
munications applications can only be reached by aggressively exploiting the
abundant inherent parallelism available in the data-plane processing tasks:

The functionality can be straightforwardly partitioned into a set of loosely
coupled tasks with well predictable or even cyclo-stationary execution tim-
ing.

A well confined data set is associated with a single activation of an individual
task. Additionally, the data sets associated with successive activations of an
individual tasks are mostly independent.

These spatial and temporal properties with respect to second order task par-
titioning and data dependency can already be identified during the algorithm
development stage and lead to an identification of coarse grain TLP. This appli-
cation inherent TLP enables the concurrent and parallel execution on MP-SoC
platforms.

Integrated System-Level Modeling



Chapter 3

CLASSIFICATION OF PLATFORM ELEMENTS

Current SoC architectures still very much follow the System-on-a-Board-
that-happens-to-be-on-a-Chip paradigm [36]. That is to say, the processing of
embedded applications is implemented as a mix of dedicated hardwired logic
blocks and general purpose processors executing the embedded Software. The
on-chip communication is mostly based on shared bus architectures, which are
quite similar to the tristate buses known from the Printed Circuit Board (PCB)
world.

This kind of PCB inspired SoC architectures fail to deliver the performance,
energy efficiency and flexibility required by the demanding embedded applica-
tions discussed in the previous chapter. Instead, future SoC architectures will be
assembled from a huge variety of processing kernels and interconnect networks,
which are individually configured and specialized for the target application.

The first part of this chapter briefly introduces the most important architec-
tural metrics. Based on these metrics the main body of this chapter classifies
processing elements as well as on-chip communication architectures. Finally,
the discussion of embedded applications and SoC architectures is summarized
to derive the requirements for the next generation SoC design methodology.

3.1 Architecture Metrics

and evaluation of architectural elements.

Cost. The Cost of an embedded architecture is separated into the Non Recur-
rent Engineering (NRE) cost for the initial design and recurring chip fabrication
cost. The major NRE cost factor is caused by the design effort for HW and

15

This section introduces a set of macroscopic metrics for the classification
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SW development, but also comprises the fabrication of the initial mask set.
Typical NRE cost of an 90 nm technology SoC is the order of 10-100 Million
USD design effort and 1 Million USD per mask set. The fabrication cost for a
given technology node is determined by the silicon die area and the packaging,
which in turn is determined by the number of pins and the power dissipation
requirements.

Performance. The Performance of both computational and communication
architectures is further classified into latency and throughput. Latency denotes
the absolute time passing between the start and completion of a task, whereas
throughput in general refers to the number of accomplished tasks per time.
Communication throughput is therefore measured in transferred bits per second
(bps). On the other hand, throughput of programmable processing elements is
measured in Millions Instructions Per Second (MIPS). Despite the wide usage
of the MIPS metric, it is not always meaningful to characterize the expected
application performance for non-RISC processor architectures.

Power Dissipation. measured in Watt denotes the energy per time required
to operate an embedded system and is an architecture metric of growing im-
portance. First, the battery lifetime of mobile devices immediately depends
on the energy consumption. Second, the packaging cost depends on the heat
dissipation properties, which in turn depends on the power consumption. As
shown below, striving for low power and energy consumption constitutes the
key driver for architecture differentiation of embedded SoC platforms.

Computational Efficiency. is derived from performance and power con-
sumption. It characterizes the efficiency of a given architectural element with
a single value. Computational efficiency of programmable architectures is pre-

in the context of battery enabled applications — is alternatively measured in
energy consumption per task.

Flexibility. is related to the effort to change the functionality of a given archi-
tectural element. In contrast to the previous metrics, flexibility can be hardly
measured in an accurate way. Nonetheless, in the context of rapidly evolving
functionality and standards of embedded applications, architectural flexibility
is of major importance to achieve both decreasing time-to-market as well as
increasing time-in-market.

dominantly measured in MIPS/ Watt. Since the inaccuracy of the MIPS metric
propagates into the MIPS/Watt metric, computational efficiency — especially

Integrated System-Level Modeling
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3.2 Processing Elements

to execute a given portion of the application. The type of a PE has tradition-

Application Specific Integrated Circuit (ASIC) architectures are hardwired im-
plementations of a fixed application set providing highest possible performance
close to the inherent silicon capabilities. On the other hand, programmable PEs
are controlled by an instruction stream in a highly flexible way.

The rather poor performance of programmable PEs has ever fueled computer
architecture research towards parallelizing the execution of instructions. Early
efforts in parallel computer architectures are classified by Flynn [37] according
to the deployment of control- and data-level parallelism:

SISD, Single Instruction Single Data refers to the traditional von-Neumann
kind of computer architectures, which sequentially execute a single instruc-
tion stream on a single processing resource.

SIMD, Single Instruction Multiple Data vector processing machines per-
form a single instruction on multiple data items in parallel. SIMD process-
ing is still heavily used in state-of-the-art architectures for embedded DSP
and graphic applications to exploit inherent data-level parallelism (DLP).

MIMD, Multiple Instruction Multiple Data denotes the traditional homo-
geneous multi-processor type of architectures employed in scientific super-
computers like Cray T3E, or the NEC Earth Simulator.

MISD, Multiple Instruction Single Data is a rarely encountered class of
architectures, which exploit temporal ILP by setting pipeline stages and ex-

Complementary to this traditional classification, more recent performance en-
hancement strategies are discussed in the following sections.

3.2.1 Processing Element Trends

tecture features have been invented to incrementally improve the application
throughput of programmable architectures:

Superpipelining uses deep execution pipelines to increase the clock fre-
quency.

Superscalarity employs parallel functional units and complex dispatcher
architectures to dynamically extract Instruction Level Parallelism (ILP).

In general, a processing element (PE) provides the computational resource

ecutingseveral instructions simultaneously, e.g. vectorpipelining inCRAY-1.

Enabled by the constant progress in silicon technology, new computer archi-

ally been selected along a black-and-white performance/flexibility trade-off:
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Very Large Instruction Word (VLIW) architectures execute several stati-
cally scheduled instructions on parallel functional units, hence the effort for
ILP extraction is moved into the compiler.

Hardware Multi-Threading (HW-MT) architectures [38, 13] are able to
concurrently pursue two or more threads of control by providing separate
register resources for each thread context.

specific application domain by providing specialized functional units. DS
processor examples are Digital Signal Processors (DSPs) employed in mul-
timedia and wireless communications, or Network Processing Units (NPUs)
for networking applications.

The applicability of the above listed performance improvement techniques de-
pends on the considered set of target applications. Superpipelining and Super-
scalarity are heavily used in high performance General Purpose Processor (GPP)
architectures to increase single thread performance of arbitrary applications on
the vast expense of silicon area and power dissipation.

On the one hand, embedded applications are severely energy and cost con-
strained, but still have significant performance and flexibility requirements.
The most promising approach to jointly optimize flexibility and performance
is to exploit coarse-grain TLP instead of ILP [39] and map the loosely coupled
tasks to individually optimized PEs. This kind of embedded PEs mostly rely
on the more power aware performance optimization techniques, like VLIW,
multi-threading and a domain specific or even application specific instruction
set [11].

3.2.2 Parallel Multi Processing

embedded SoC architectures, because parallel execution of specialized PEs of-
fers a chance for improving application performance without sacrificing power
efficiency.

Homogeneous Multi-Processing. refers to the multiple instantiation of iden-
tical PEs and thus corresponds to a single chip implementation of the MIMD
principle. On the one hand side, homogeneous multi-processing of general
purpose embedded micro controllers is considered to achieve the performance
scaling required for control-plane processing portion of embedded applications
[40].

On the other hand, homogeneous multi-processing is also found for data-
plane processing in domain specific MP-SoC platforms, where the identical
instruction set of the PEs is tailored to a certain application domain.

The MIMD kind of control parallelism plays an increasing important role in

Integrated System-Level Modeling
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vidually tailored to a certain task or task set. This kind of dedicated optimization
is only applicable for the data-plane processing portion of the application, which
allows for a manual and static task allocation. The high degree of specialization
in heterogeneous multi-processing further optimizes computational efficiency
for a well defined set of target applications at the expense of generality.

3.2.3 Concurrent Multi Processing

putational resources, hence more than one task can be active at the same point
in time. On the other hand, concurrent execution denotes the interleaved pro-
cessing of several tasks on a single resource, such that at any time only one task
can be active.

Figure 3.1. Multi-Threaded Processing Element

The benefit of concurrent execution is depicted in figure 3.1, where two tasks
are mapped to a single processing element. Both tasks are divided into two
processing portions, which are separated by a communication request. After
∆tdelay the processing of the first portion is finished and the task is blocked for
∆tresponse until the request is accomplished. Instead of wasting the processor
resource during this period, the processor context is swapped to the second

Heterogeneous Multi-Processing. employs multiple PEs, which are indi-

Parallel execution described in the previous section requires multiple com-
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task by a scheduler. Hence the utilization of the processor is increased and the
request latency is hidden.

The task scheduler can be implemented either in Hardware or in Software.
Hardware Multi-Threaded (HW-MT) processor architectures provide dedicated
hardware support in terms of multiple register files to enable context swapping
within a single cycle. In contrast Software Operating Systems (SW-OS) ex-
plicitly save the register context of the preempted process and then load the
restored process. In this case, the associated context swap penalty ∆tswap is in
the order of tens or a few hundreds of clock cycles.

The choice between HW-MT and SW-OS is determined by the time scale
of ∆tdelay, ∆tresponse and the process swap penalty ∆tswap. Clearly, ∆tswap

has to be much smaller than ∆tresponse, otherwise the processor utilization
gain would disappear. This time scale is mostly determined by the type of
communication request, which in turn depends mostly on the application type:

Data-plane processing applications are usually not applicable for caches due
to the poor data locality. Here the major purpose of the task switch is to
hide memory access latency, which is in the order of tens or a few hundreds
of clock cycles. Therefore the swap penalty has to be very low, which can
only be achieved by Hardware supported multi-threading.

Control-plane processing applications are executed on general purpose pro-
cessors, which usually employ memory hierarchies to hide memory access
latencies. Here the major source for response latency are Inter Process
Communication (IPC) type of requests. IPC latency is considerably longer,
which permits the use of Software implemented operating systems.

Naturally, HW-MT implements only rudimentary process swapping func-
tionality whereas a SW-OS provides much more elaborated services, like e.g.
real-time aware scheduling, IPC, and memory management. Nevertheless, both
HW-MT and SW-OS have their distinctive application area to increase the uti-
lization of processing elements in view of significant response latencies.

Table 3.1 documents current processing element trends in various application
domains.

3.3 On-Chip Communication

For this discussion the same basic cost, performance, power, and flexibility

1 are of

1please refer to section 2.1 on page 9

This section classifies known and emerging communication architectures.

vice (QoS) metrics known from the networking application domain
metrics already introduced in section 3.1 apply. Additionally, Quality of Ser-

Integrated System-Level Modeling
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Table 3.1. Example Processor Architectures

Micro Controller

ARM popular RISC processor, trend towards moderate
superscalarity and deeper pipelining

[41]

MIPS popular RISC processor, trend towards co-
processor, user defined instructions, Application
Specific Extensions (ASE)

[42]

Digital Signal Processor SoC

Sandbridge SB3010 4 way homogeneous multi-processor, SIMD
vector DSP unit, 8 way HW-MT, RISC based
integer unit

[16, 43]

Network Processing Units

Intel IXP 2400 8 way homogeneous multi-processor, RISC-like
micro engines with 8 way HW-MT, XScale
micro-controller

[44]

Agere PayloadPlus heterogeneous multi-processor, 64 way HW-MT
Fast Packet Processor (FPP), VLIW Routing
Switch Processor (RSP)

[45]

AMCC nP3700 3 way homogeneous multi-processor, RISC-like
nPcores with 24 way HW-MT

[46]

increasing importance to manage complex on-chip traffic. In the face of the
rapidly growing number of processing elements, also the scalability of the com-
munication architecture gains growing attention.

3.3.1 Bus Architecture

Circuit Board (PCB) domain such as the VME (Versa Module Eurocard bus
[47]) and PCI (Peripheral Component Interconnect [48]). Due to the easy
programming model, high flexibility and abundant availability of Intellectual
Property (IP), this concept is clearly advantageous for today’s small and medium
scale embedded systems, where a small number of blocks exchange moderate
amounts of data.

Processor Characteristics Reference

.

The bus based on-chip communication paradigm is derived from the Printed
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Typical state-of-the-art bus systems as depicted in figure 3.2 implement a
master-slave communication scheme, where active initiators along with passive
target modules are hooked to a shared communication medium [49]. Typical
masters are processors, DMA controllers or autonomous ASIC blocks, whereas
typical slaves are memories, co-processors and other peripherals.

Bus

Master Master

Slave Slave

Arbiter Decoder

Memory
Map

Figure 3.2. Schematic Bus System

Further components of a bus system are arbitration and decoder units. The
bus arbiter grants the access to the communication medium to one of the com-
peting master modules. The decoder activates the target module based on the
actual address and the address map, which maps the target modules into the bus
address space.

The following sections enumerate typical bus features and discuss the merits
and shortcomings of bus based communication.

On-Chip Bus Characteristics

can be tailored to the considered application in order to reduce bus contention
and to meet the respective performance requirements [50]. Bandwidth is the
premier performance metric and denotes the maximum transfer capacity of the
bus. The available bandwidth is measured in bits per second and corresponds
to the number of parallel data wires divided by the bus clock period.

Pipelining is a well known technique to improve the communication through-
put. Like in processing elements, the clock frequency is limited by the critical
path. Hence, inserting an additional pipeline stage into the critical path allows
a higher clock frequency and thus yields a higher communication bandwidth.
Since the address decoder is usually integral part of the critical path, bus transac-
tions in high performance buses are executed in separate address and data stages.

Modern bus systems provide a huge variety of design parameters, which

Integrated System-Level Modeling
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Burst modes further improve communication throughput for the linear ac-
cess of subsequent addresses by a single master. In this case the address counter
is incremented automatically and the next data item is transferred with every
cycle without renewed arbitration.

Unidirectional data links distinguish on-chip buses from most on-board
buses [51]. The latter are based on tristate data wires to maximize the utiliza-
tion of expensive on-board wires.

Hierarchy refers to the fact, that common bus systems separate high per-
formance from low performance communication by providing two buses with
different speed characteristics.

Multilayer bus architectures provide dedicated point-to-point connections
between distinctive initiators and targets to eliminate bandwidth bottlenecks.
The required de-multiplexer at the initiator side is called input stages, the re-
spective target multiplexer is called output stage.

Crossbar bus architectures provide multiple parallel resources between ini-
tiators and targets to significantly improve the traffic throughput. The degree of
parallelism may vary from partial crossbar to full crossbar architectures, where
the latter provides an individual resource for each connected target.

Arbitration can be based on various algorithms, ranging from simple round
robin, via fixed, configurable or dynamic priority schemes to static or dynamic

Locking of a bus by a single master is a necessary feature to support read-
modify-write kind of semaphore operations. This feature is required by most
micro-controller architectures, which run operating systems.

Split transaction buses allow the master to issue multiple requests without
waiting for a response, i.e. request and response are separated [52].

Out-of-order execution further improves the bus throughput by reordering
the sequence of responses, depending on the availability of the slave compo-
nent. This feature requires advanced state-machines in the master modules to
cope with non-deterministic sequence of responses.

As demonstrated by the example bus architectures in table 3.2, available and
emerging bus systems more or less offer this comprehensive set of architectural

algorithms are known to further improve the quality of service.
Time Division Multiple Access (TDMA) schedulers. Even more advanced
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choices. This already highlights the current challenge for the system architect
to conceptualize an optimal communication architecture for a given application.

Table 3.2. On-Chip Bus Architectures

commercial

ARM AMBA popular hierarchical bus system:
multi-master Advanced High-performance Bus
(AHB) with central priority based arbiter,
pipelining, burst transfers, split transactions,

Bus (APB)

[53]

IBM CoreConnect hierarchical bus system similar to AMBA:
high performance Processor Local Bus (PLB),
multi-layer capabilities by means of PLB Cross-

Peripheral Bus (OPB)

[54, 55]

STBus configurable bus system, 3 hierarchy
levels (peripheral, basic, advanced), config-

[56, 57]

Sonics µNetwork Open Core Protocol (OCP) interface, guaranteed
bandwidth through Time-Division Multiple Ac-
cess (TDMA) and Round Robin (RR) arbitration
mechanisms

[22, 58]

academic

Lotterybus probabilistic arbitration scheme [59]

HIBI priority and time-slot based distributed arbitra-
tion

[60]

.

Bus Architecture Characteristics Reference

bus, internal buffers
separate request-response resources, crossbar

Integrated System-Level Modeling

multi-layer single master Advanced Peripheral

bar Switch (PCS) low performance On-Chip

urable arbitration scheme (priority
latency based, LRU), out-of-order execution,

based,

highly
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Drawbacks

Despite their current popularity, the shared bus communication paradigm
increasingly fails to cope with communication infrastructure requirements of
large scale MP-SoC platforms:

Physical Issues. Current bus architectures are implemented using a standard
cell based semi-custom implementation flow. Hence, the transmission wires
are not physically optimized, which in the current and coming semiconductor
technology nodes leads to timing closure issues and unreliable communica-
tion links. Examples of physical effects are crosstalk noise, electromagnetic
interference, and radiation-induced charge injection [61, 62, 7].

Synchronous Design. Most current bus architectures require, that all con-
nected modules are situated in a single clock domain. Due to the parasitic
capacities of long bus wires, strong driver transistors are necessary to achieve
timing closure. This in turn leads to the fact, that already today the on-chip com-
munication infrastructure is the major origin of power dissipation. Future SoC
designs will follow the Globally Asynchronous Locally Synchronous (GALS)
[63] paradigm, thus chip-wide wires will span multiple clock domains, which
disqualifies bus architectures as the future chip-level transport mechanism.

Traffic Management.
buses provide only rudimentary traffic management support. Since the com-
munication pattern highly depends on the spatial and temporal execution of the
application tasks, meeting the individual QoS requirements like throughput,
jitter, or ordering of the respective tasks is very challenging. This also causes
the poor scalability of bus-based communication infrastructures, since every
change in the traffic profile of one part of the application and every additional
component influences the other parts and requires renewed balancing of the bus
architectures.

Interoperability. Although simple standard peripherals, like DMA, IRC, or
memories are available for respective bus systems, it is a tedious and error-prone
task to adapt complex IP blocks to a specific bus architecture. So far efforts

been successful.

3.3.2 Network-on-Chip Architectures

communication concepts to cope with the limitations of shared bus architec-
tures. These efforts have recently been subsumed under the Networks on Chip

to create standard bus interfaces, like e.g. VSIA [52] or OCP-IP [22] have not

Researchers in academia and industry have conceived alternative on-chip

(NoC) design paradigm [7, 64]. The NoC paradigm aims to replace current

Due to the rather simple arbitration mechanisms, shared
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networks provide communication services according to the ISO/OSI reference
model [65, 66]. By that the manifold problems in on-chip communication like
signal integrity issues, link reliability, or Quality of Service (QoS) are separately
resolved on the respective OSI layer.

Figure 3.3. ISO/OSI Reference Model Services [67]

In the context of on-chip network, the four lower layers of the ISO/OSI
reference model are of interest:

The Physical Layer deals with the electrical aspects of the data transmission,
like e.g. signal voltages, clock recovery, and pulse shape. In the future, the
physical layer of on-chip networks may incorporate transmission technology
known from cable modems or even the wireless communication domain [68]
like synchronization, channel estimation, channel coding/decoding to cope
with unreliable transfer channels.

The Data Link layer provides a reliable data transfer over the physical
link. This may include error detection by means of block codes and error
correction mechanisms like Automatic Repeat Request (ARQ) or Forward
Error Correction (FEC).

The Network Layer implements the arbitration algorithms, buffering strate-
gies and flow-control mechanisms. By that the networking layer has domi-
nant impact on the performance and functional behavior of network. These
aspects are further elaborated in the remainder of this section.

Transport Layer protocols establish and maintain end-to-end connections.
Among other things, the transport layer manages rate-based flow control,

adhoc wiring of IP blocks with a disciplined approach, where full-scale on-chip

Integrated System-Level Modeling
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performs packet segmentation and reassembly, and ensures message order-
ing. This abstraction hides the topology of the network, and the implemen-
tation of the links that make up the network.

Many results from research on macroscopic computer networks can be em-
ployed to solve the on-chip communication issues. As depicted in table 3.3,
Network-on-Chip architectures impose a specific set of implementation con-
straints, which differ significantly from macroscopic computer networks [7].

Table 3.3. Network Comparison

Generality

ernet)
plication specific

Wires transmission wires,

Flow-Control sophisticated flow control simple back-pressure

Memories on-chip memory dominating
cost factor

The challenge in the development of Network-on-Chip architectures is to
combine the know-how from both the networking and VLSI domain. But also
the users of on-chip networks have to understand basic networking principles:
First the system architect has to specify design time parameters of the selected
NoC architecture like topology, buffer sizes, arbitration algorithm. Later the
platform programmer has to configure runtime parameters like priorities, rout-
ing tables, buffer management thresholds to take advantage of the capabilities.

The following paragraphs introduce transport and network layer principles,
which are important in the context of on-chip networks.

Transport Layer Services

which are independent of the implementation of the network [69]. This enables
the platform programmer to develop embedded software independently from the
interconnect architecture. This is a key ingredient in tackling the challenge of
decoupling the computation from communication [66],[70]. By that, interaction

Aspect Macroscopic Networks Networks on Chip

large, cheap off-chip

As depicted in figure 3.3, the transport layer is the first to provide services,

long
millions of bits on-the-fly

design time specialization, ap-

shortwires,< 10bitson-the-fly

general purpose, modular-
ity,standards(IP,ATM,Eth-

DRAMs for packet payload
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with the network becomes deterministic, rather than prognostic or reactive like
in today’s bus based communication architectures.

For complex multi-hop networks it is difficult to provide uniform Quality of
Service (QOS) guarantees like lower bandwidth bounds, or packet ordering for
the complete on-chip traffic. To combine high resource utilization with high
QoS requirements of certain traffic types, researchers in the field of computer
networks distinguish guaranteed services and best effort service classes [71].

Two basic service classes [8] are known from research on macroscopic com-
puter networks:

Guaranteed Services require resource reservation for worst-case scenarios.
This can be rather expensive since guaranteeing the throughput for a stream
of data implies reserving bandwidth for the peak throughput, even when its
average is much lower. As a consequence resources are often underutilized.

Best-effort Services do not reserve any resources, and hence provide no
guarantees. Best-effort services utilize resources well due to the fact that
they are typically designed for average-case scenarios instead of worst-case
scenarios. They are also easy to configure, as they require no resource reser-
vation. The main disadvantage here is the unpredictability of the effective
performance.

Network Layer Mechanisms

NoC. Router based network implementations can be classified according to the
following categories:

switching mode:
switching and packet switching.

– circuit switching: In a circuit-switched network connections are set up
by establishing a conceptual physical path from a source to a destination.
Links can be shared between two connections only at different points
in time, by using the time-division multiplexing (TDM) scheme.

– packet switching: In a packet-switched network the data is divided
into packets and every packet is composed of a header and the payload.
The header contains information that is used by the router to switch the
packet to the appropriate output port.

routing mode: applies only to packet-switched networks and defines the
way packets are transmitted and buffered between the network nodes. These
are [72]:

The ISO/OSI networking layer is implemented by the routing nodes of the

Two switching modes can be distinguished: circuit

Integrated System-Level Modeling
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– store-and-forward: Sn incoming packet is received and stored entirely
before it is forwarded to the next node.

– wormhole routing: An incoming packet is forwarded as soon as the
packet header is evaluated and the next router guarantees that the com-
plete packet will be accepted. In case the next hob is blocked, the packet
tail potentially blocks other resources.

– virtual cut-through: An incoming packet is forwarded as soon as the
next router guarantees, that the complete packet will be accepted. In
case the next hob is blocked, the packet tail is stored in a local buffer.

Queuing: Buffering strategies can be distinguished by the location of the
buffers inside the router. Input queuing and output queuing and variants of
them can be distinguished [73](see figure 3.4). In the following, N denotes
the number of bi-directional router ports.

Figure 3.4. Queuing Schemes

– input queuing: In input queuing a router has a single input queue for
every incoming link. Input Queuing suffers from the so-called head-of-
line blocking problem, i.e. the router utilization saturates at about 59%
[74], resulting in weak link utilization.

– output queuing: In output queuing there are N output queues for every
outgoing link resulting in N 2 queues. Although this approach yields
optimal performance, the costly N 2-fold storage and wiring effort pro-
hibits the implementation of output queuing for a large number of ports
.

– virtual output queuing: Virtual output queuing (VOQ) [74] combines
the advantages of input queuing and output queuing and avoids the head-
of-line blocking problem. In this technique each input port maintains a
separate queue for each output port. One key factor in achieving high
performance using VOQ switches is the scheduling algorithm.
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congestion control: Packet switched networks without mechanisms for
bandwidth reservation may run into resource contention and subsequent
buffer overflow. Several solutions prevent packets from entering until con-
tention is reduced:

– packet discarding: simply drops packets in case of buffer overflow.

– credit based flow control: packet loss is prevented in a deterministic
way by either signaling congestion via separate wires (back-pressure)
or the receiver regularly informs the sender about the available buffer
space (window).

– rate based flow control: the sender gradually adjusts the traffic gener-
ation rate in response to control flow messages from the receiver. Rate
based flow control has to be implemented by the transfer layer and
potentially suffers from instability due to long control loops.

In mature network research [71] a wide variety of principles and algorithms
are known to solve these issues. For the concrete NoC application space the
challenge lies in finding a balance between the services quality and their im-
plementation complexity and cost [67].

Depending on the intended application domain, recent proposals for NoC
architectures listed in table 3.4 differ significantly in terms of cost, performance,
QoS and ISO/OSI compliance. Except for the Philips AEthereal NoC, so far
only little details about the employment and implementation of networking
principles are published.

3.4 Summary

the stage for the discussion of appropriate system level design methodologies
in the following chapters.

Concerning the processing elements, the conflicting requirements for per-
formance, power efficiency and flexibility drive the diversification into highly
application specific solutions. Especially increasingly complex and dynamic
application standards foster a clear trend towards programmable processing ele-
ments. Computer architecture features like SIMD, VLIW, superpipelining, and

,
data-, and task-level parallelism.

On the other hand, the real challenge of system architecture design will shift
from computation to communication. Here, the high speed processor bus archi-
tectures for local communication will be complemented by full-scale on-chip
networks to handle the global traffic. Numerous competing communication ar-
chitectures, topologies and protocols are at disposal and more are proposed or
under development. Even after the decision on the type of communication IP,

This section summarizes architectural trends from the previous sections to set

hardware multi-threading are applied to exploit application inherent instruction-

Integrated System-Level Modeling
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Table 3.4. Network-on-Chip Architectures

Arteris homogeneous network based on scalable, pa-
rameterizable packet switches, multi-purpose
data packets, traffic management capabilities,
GALS approach, bridges to standard buses

[9]

Philips AEthereal packet switched network, wormhole-routing, in-
tegrated combination of guaranteed bandwidth
and best effort services

[8, 67]

NOC packet switched network, two-dimensional
Manhattan grid of 5x5 switches

[75]

PROPHID time-space-time division 3 stage circuit
switched network, static bandwidth allocation

[76]

SPIN packet switched network, fat tree topology,
wormhole routing, input queuing, credit-based
flow control

[77]

STNoC packet switched router with support and best-
effort and QoS traffic,

’

Spidergon’ topology
[78, 79]

the designer still has to investigate the design space spanned by a single com-
munication technology, like e.g. topology varieties, protocol options, priority
schemes, or hardware parameters like bitwidth, clock cycle, and queue length.

To overcome design complexity, the virtualization of architectural resources
enables

’

divide-and-conquer’ like temporal and spatial mapping of the applica-
tion tasks:

embedded control-plane processing tasks are executed in the user space the
Real Time Operating System (RTOS), so the individual processing resource
requirements are satisfied by the real-time task scheduler

embedded data-plane processing tasks are executed on HW multi-threaded
processing elements to automatically hide communication latencies and thus
increase the utilization of the computational resources.

global communication of control- and data-plane processing elements is
performed by elaborated on-chip networks, so the quality-of-service re-
quirements of all tasks can be individually configured.

Thus, virtualization of the MP-SoC communication and processing resources
is considered the most promising approach to enable the mapping of arbitrar-
ily complex applications to heterogeneous MP-SoC platforms [17]: However,

NoC architecture Characteristics Reference

.
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this divide-and-conquer approach enables the individual configuration of com-
munication and processing resource requirements for each of the application
tasks. On the other hand, virtualization of the shared resources foster global
optimization of performance and utilization.

Still the major burden is laid on system architects to first employ and take
advantage of high-volume asymmetric embedded processing elements as well
as conceptualize an advanced heterogeneous on-chip communication infras-
tructure. Second, the temporal and spatial mapping of the application to the
heterogeneous MP-SoC platforms of course has to meet the performance re-
quirements, but should also render a high and balanced utilization of the shared
communication and processing resources.

The subsequent chapter will discuss state-of-the-art methodologies and tools
addressing the emerging complexity crisis of MP-SoC design and application
mapping.

Integrated System-Level Modeling



Chapter 4

SYSTEM LEVEL DESIGN PRINCIPLES

The traditional design flow of integrated circuits is separated into an appli-
cation phase and a largely decoupled implementation phase. The transition
from application to implementation is performed by means of a specification
document written by the application team and system architecture specialist.

This ad-hoc and informal approach has always imposed a number of problems
during the subsequent implementation phase.

The ambiguity of the informal specification document leads to misinterpre-
tations and implementation errors.

The lack of reliable performance information before the implementation of-
ten causes an over- or under-provisioning of processing and communication
resources.

The quality of results mainly depends on the intuition and experience of the
system architect.

The manual creation of the verification environment requires significant
effort and again represents a potential source of inconstistencies with the
original design intend.

These disadvantages become overwhelming with the advent of the MP-SoC
area, where the system architecture is far beyond what can be specified on paper.
Attempts to bridge this gap applying tool automation have failed, either due to
the poor quality of results or due to the restrictive input specification formalism.

Today an intermediate design phase called Electronic System Level (ESL)
is emerging as the solution to the system complexity problem. In this phase the
application is jointly considered with the system architecture to find a feasible
and cost effective application to architecture mapping.

33
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The declared goal of ESL design is to increase the engineering productivity
and quality of results during the specification of the MP-SoC platform archi-
tecture and application mapping. Orthogonalization of concerns is generally
believed to be the key ingredient for conquering the complexity by separating
parts of the design process [34].

However, the exact contour of ESL Design is by far not mature and a lot of
different approaches exist in industry and academia. This chapter introduces
general concepts of platform based design, design phases, abstraction levels,
and models of computation. Together with the properties of future MP-SoC
platforms derived in chapter 3, these concepts provide the foundation for the
succeeding discussion of existing approaches to SLD.

4.1 The Platform Based Design Paradigm

is generally understood as a new design paradigm to cope with the complexity
and the economics of the emerging billion-transistor System-on-Chip era. Es-
pecially the huge NRE cost prohibits the development of low volume ICs for a
single application. In this context, the term Platform Based Design is currently
holding two different meanings.

The first definition is rather architecture centric and declares the goal of
PBD to greatly increase the flexibility by the employment of programmable or
reconfigurable processing elements:

architecture that can be rapidly extended, customized for a range of applications, and

electronics.

Another, more generalized understanding puts the design process itself into
focus and defines PBD as a meeting in the middle approach, where the space
of addressed applications meets the space of possible architectures in a unified
platform API1.

The general definition of a platform is an abstraction layer in the design flow that
facilitates a number of possible refinements into a subsequent abstraction layer in the
design flow. [80, 34, 81, 82]

By the first definition, a platform can be considered as a synonym term for an
MP-SoC implementation, whereas according to the latter definition, an MP-SoC
implementation is merely a platform instance.

Apart from this subtleness in terminology, the trend towards flexible MP-
SoC platforms has already been motivated in the previous chapter. Concerning
the platform design process discussed in this chapter it is generally agreed, that

1API: Application Programmers Interface

Compared to the traditional ASIC design era, Platform Based Design (PBD)
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We define platform-based design as the creation of a stable microprocessor-based

delivered to customers for quick deployment.  Source: Jean-Marc Chateau, ST Micro-
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in one way or the other heterogeneous MP-SoC platforms will be defined in a
successive refinement of abstraction levels.

4.2 Design Phases

and Paulin [83], the overall MP-SoC design process can be separated into mul-
tiple, almost orthogonal phases:

The functional phase is performed by application specialists and com-
pletely agnostic to architectural considerations. This phase includes the
embedded SW development of the control-plane portion of the application
as well as data-plane algorithm development. As discussed below, the latter
is carried out using highly application domain specific tools and method-
ologies.

The MP-SoC platform phase covers all designs tasks, which which have
to be performed under consideration of the full functional and architectural
complexity the MP-SoC platforms. This comprises for example the spec-
ification of the system-architecture, the mapping of the application onto
the MP-SoC platform, but also the development of the hardware dependant
Software layers.

The high-level IP creation phase deals with the design of processing
elements (RISC, DSP, MCU, ASIPs), on-chip interconnect technologies

HyperTransport, I2C, FireWire, QDR, etc.), as well as the creation of well
defined ASIC IP blocks (e.g. an MPEG4 video codec). This phase is not
completely orthogonal to the functional phase, since the design of applica-
tion specific processing elements and communication IP indeed depends on
the considered application.

Semiconductor technology and basic IP creation phase covers standard
cells, I/O, memories and the basic technology processes supporting them.
The trend here is for more heterogeneous technologies, combining embed-
ded DRAM, embedded Flash, mixed-signal BiCMOS, RF, and analog. This
phase is of less interest in the context of this book.

These tasks are not performed in a sequential top-down fashion. Especially
IP (both high and low level) is usually created independent from a particular
platform instance. Exceptions from this is the specialization of IP for a particular
application, like e.g. the development of an Application Specific Instruction-set
Processor (ASIP), or an Application Specific Bus Architecture.

Also, there is no one-to-one correspondence between design phase and ab-
straction level. Instead, the design phases cover several abstraction levels.

According to the multi-level SoC design approach proposed by Magarshak

(busses, NoC), domain specific standard I /O (PCI-variants, SPIx variants,



36

The topic of book is clearly related to the MP-SoC platform phase. Therefore
the different design tasks of this phase shall be investigated in more detail.

First of all there is a need to represent the results of the functional phase
as a well defined application model. In the course of this task the selected
algorithms are decomposed or assembled into a set of tasks and communication
channels. Also the missing functionality for the control and configuration of the
algorithms has to be added. The goal is to validate the functional correctness
and completeness of the application as well as to prepare the application for the
mapping onto the MP-SoC platform. The resulting application model is also
referred to as the Executable Specification of the system.

Susbsequently the system architecture needs to be defined. This task covers
not only the specification of the MP-SoC hardware, but also the mapping of
the application model onto this hardware. The output of this task has a domi-
nant impact on the resulting performance, efficiency and price of the complete
system. For this reason, the specification of the system should be carried out

com-
ponents needs to be defined. Questions to answer encompass the coarse grain
separation of the application tasks into hardware and software, the number of
processors, how different pieces of SW and algorithms will access main mem-
ory and which interconnect approach can deliver the required communication
bandwidth. The main body of this book proposes a methodical approach to the
design space exploration task.

Another design task within the MP-SoC desing phase is the embedded SW
development. Here the parts of the application model to be executed in SW are
refined to the final implementation. This covers for example the development
of firmware and low level SW that needs to run on the hardware platform. This
task is also related to the full MP-SoC plaform, because this kind of Hardware
dependant Software needs to developed in the context of the actual platform.

Finally there is Hardware-Software co-verification task. During this task the
hardware implementation code (RTL) is verified in the context of the platform.
Vice-versa this is also the task to validate the correct operation of SW in the
context of actual hardware.

All these tasks of the MP-SoC design phase will be referred to in the course
of the discussion of state-of-the-art tools and methodologies for System Level
Design in chapter 5. Especially the discussion of use-cases for Transaction
Level Model in section 5.2 is tighlty linked with this classification of the design
tasks.

4.3 Abstraction Mechanisms

of integrated circuits has always employed models on different levels of ab-
straction. A model serves as a unique, idealized description of the considered

In order to solve the problems of the different design phases, engineering
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system, and the degree of abstraction characterizes the type of model used in
the respective design phase. Goal of abstraction is to provide a description of
the system, which is simple enough and yet sufficiently accurate to enable the
necessary investigations, take design decisions and proceed to the next design
phase. Indeed, the design-flow of an embedded system can be considered as
a sequence of steps which successively reduce the degree of abstraction in the
system model.
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Figure 4.1. Modeling Attributes [84]

As depicted in figure 4.1, the modeling space can be classified into four
orthogonal model attributes [84]:

The Functionality refers to the modeling of the system behavior. On the
highest level of abstraction, the functionality is condensed to pure mathe-
matic expressions. Later the functionality is refined to operators, which in
turn are finally mapped to logic gates.

functionality time data component
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The Timing model captures the temporal properties of the system. Here the
degree of abstraction ranges from causality of events to physical timing of
transistors and wires.

The Data representation in the model can also effectively subjected to ab-
straction in order to hide implementation details. Higher level data resolu-
tion is reduced to tokens and Abstract Data Types (ADT), whereas lower
levels employ word or bit representations.

The Component granularity describes the finest resolution of the sub-
blocks, which are hierarchically composed to the complete system model.
First the component resolution is restricted to coarse-grain building blocks,
finally the complete embedded system is composed of fine-grain silicon
transistors.

A further attribute would be communication, however modeling of the com-
munication heavily affects the construction and execution of the model itself
and is therefore discussed separately in the next section. Additionally, the
abstraction of the communication can hardly be subjected to a linear scale,
especially at higher abstraction levels the communication modeling bifurcates
into numerous, domain specific Models of Computation.

Note that the refinement of abstraction levels is not necessarily performed
in lock-step, neither for all of the modeling attributes nor for all of the system
components. Instead, it is common practice to manage design complexity

a certain attribute or a certain building block. For
example, the timing information of an abstract functional model can be refined
independently from the other attributes in order to reason about the architectural
impact. For verification purposes a hybrid model can be created, where the
attributes of an individual component are refined to the synthesizable level
while the remaining systems is kept on higher level of abstraction.

4.4 Models of Computation

a well defined execution semantic coordinating the activation of the individual
blocks. In that a Model of Computation (MoC) is composed of two parts:

the abstracted communication mechanism.

The host language provides the language elements for the specification of
the system models.

The disciplined creation of a system model requires a modeling language and

Integrated System-Level Modeling
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The coordination language describes basic execution semantics with res-
pect to properties like parallelism, synchronism, reactivity and provides
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Signal Model as a formal framework to compare different MoCs 2 and provide
a classification of popular MoCs [85]:

Timed Models of Computation. are characterized by the total temporal or-
dering of all occurring communication events. The most prominent example is
the discrete event simulation MoC, which defines the execution semantics for
HDL simulators.

Further examples of timed MoCs are synchronous languages like Esterel
[86], Lustre [87], or Signal [88], where the events of all communication signals
are constrained to occur at identical time stamps [89]. Thanks to their sound
mathematical foundation, synchronous languages have gained adoption for the

Untimed Models of Computation. are characterized by the fact, that com-
munication events are only partially ordered. However, various untimed MoCs
are popular for the specification of both data and control dominated applications:

Data-Flow MoCs are heavily employed for algorithmic modeling and anal-
ysis of signal processing applications. The basic Kahn Process Network
(KPN) [90] as well as a multitude of derived data-flow models like Syn-
chronous Data Flow (SDF) [91], Integer-controlled Data Flow (IDF) [92]
or hybrid models like the Process Coordination Calculus (PCC) [93] have

ysis capabilities.

Communicating Sequential Processes (CSP) [94] and Calculus for Commu-
nicating Systems (CCS) [95] are prominent untimed MoCs which are based
on sequential processes that communicate using a rendezvous communica-
tion mechanism. Of course the events involved in the rendezvous are totally
ordered and synchronous, however all other events are only partially ordered.
For example the formal execution semantics of the standardized Specifica-
tion and Description Language (SDL) [96] are defined using a CSP algebra
based network of communicating processes [97]. SDL is widely used for
the specification of communication protocols.

The definition of a proper MoC has long been considered to be the silver
bullet for system level design and by that for the solving of the design produc-
tivity crisis: initially, the complete system functionality is to be created using the
ideal MoC, which provides highest modeling efficiency, simulation speed, and

2Please refer to section 7.1 on page 79 for a more elaborated introduction of the Tagged Signal Model

been developed to optimize simulation speed, expressiveness, and /or anal-

“

”

Edwards and Sangiovanni-Vincentelli have conceived a widely adopted Tagged

specification, analysis and code-generation of reactive control-dominated
applications.
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smooth IP reuse. Next, the initial specification would be automatically verified
using formal verification technology and metrics like determinism, causality,
dead-lock absence, consistency, completeness, and fairness. The golden system
specification would then provide the foundation for an automated path to design
space exploration to take functional and architectural design decisions. Finally,
system level synthesis would be applied to the partitioned system specification
providing an automated path to implementation.

As further discussed in chapter 5, research on Models of Computation so
far has failed to achieve any of the high aimed targets to support the MP-SoC
platform phase. These efforts have produced a multitude of different vertical
MoCs, which each address the abstract modeling of the data-plane processing
for a particular application domain during the functional design phase. Within
one vertical MoC the design methodology and tooling is well defined. However,
the only well adapted horizontal MoC is the discrete-event model, which is
employed for Hardware simulation.

4.5 Object versus Actor Oriented Design

control- and data-plane processing, respectively. According to the multi-level
SoC design classification in section 4.2, this specification phase is entirely
situated in the functional phase.

Object Oriented Programming (OOP) is a powerful abstraction mechanism,
where data and functionality is partitioned and encapsulated inside classes.
OOP based languages like UML, C++, or Java are widely adopted in engineering
of arbitrary SW and are rapidly gaining importance for the specification of
embedded control-plane processing. OOP components interact primarily by
sequentially transferring control through method calls. This sequential nature of
OOP hinders the intuitive specification, analysis and refinement of the inherent
parallel data-plane processing tasks.

For this purpose the actor-oriented abstraction scheme has been conceived
[98], where parallel objects interact by sending and receiving messages. Within
an actor-oriented design environment, the designer can focus on the specifica-
tion and analysis of the algorithmic behavior of the individual tasks whereas
the communication and synchronization aspects are handled by the underlying
parallel Model of Computation [99].

Examples for actor-oriented design languages are the Ptolemy library [100],
the Metropolis metamodel [101], SpecC [102] and SystemC 2.0 [18]. As a
similarity, all of those share the notion of concurrent processes communicating
through communication channels. Additionally, actor-based design languages
achieve high modularity in communication modeling by using the Interface
Method Call (IMC) principle [103], [104]. This is essential to support the
complete variety of different MoCs.

This section briefly introduces the two major specification styles used for

Integrated System-Level Modeling
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Figure 4.2. Interface Method Call Principle

As shown in figure 4.2, the IMC mechanism is realized by a set of language
elements for modules, ports, interfaces and channels. Processes modeling the
behavior are wrapped into modules and access communication services through
ports. The available methods are declared in the interface specification and
implemented by the channel. Thus the access methods in an interface reflect the
specialized properties of the communication style implemented by an particular
channel.

In this way actor-oriented design languages offers a generic Model of Com-
putation, which in case of SystemC is based on an event driven simulation
kernel [18]. Channels serve as containers for communication and synchroniza-
tion. The user can extend the generic MoC by creating his own methodology
specific channel library [105].

Summary. The design style for initial specification differs significantly for
control- and data-plane processing portions of the application: Object Oriented
Programming is widely employed to cope with the huge functional complexity
of control-plane processing. Instead, the algorithmic complexity of data-plane
processing is resolved by the actor-oriented programming style, which preserves
the inherent task-level parallelism. The following section introduces modeling
styles for the MP-SoC platform phase.

4.6 System Level Design Requirements

Integrated Circuits before the implementation phase. In summary, a set of ab-
straction mechanisms with respect to the functionality, timing, data, component
and especially communication has to be available to focus the designer on the
respective design task.

In the context of a complete IC design flow, the MP-SoC platform design
phase is all about defining a feasible and cost effective platform architecture
as well as finding a spatial and temporal mapping of the application. As the
particular challenge of System Level Design, the architecture definition and
application mapping have to be considered jointly by taking the full functional
and architectural complexity into account. In case of a fixed target platform,

So far this chapter has introduced basic aspects for the design of complex
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SLD is reduced to the application mapping task, which as a synonym term is
also called the partitioning of the application.

Until today, no commonly accepted approach to System Level Design has
been established, which addresses the above stated challenge in a satisfactory
and comprehensive way. However, the following methodical aspects have been
identified to cope with requirements of System Level Design:

Orthogonalization of concerns with respect to all modeling attributes [34]
generally enables a divide-and-conquer approach to System Level Design.

In particular, Separation of interfaces and behavior according to the in-
terface based design paradigm motivated by Rowson [70] fosters successive
communication and structural refinement as well as IP reuse.

the high complexity of SoC designs.

lelism, and determinism to express the impact of the platform architecture.

Incorporation of software specific concepts like Object Oriented Program-
ming, Operating System (OS) encapsulation, Inter Process Communication
(IPC), process concurrency, as well as the creation, mutual preemption,
and termination of processes to enable smooth integration of the embedded
Software part.

on the highest possible level of abstraction, that the correct system is being
developed and all performance and cost requirements are met (validation).
Later, the validated specification should be reused as a golden reference
model for the subsequent refinement, IP integration and implementation
steps (verification).

Seamless transition between design phases and abstraction levels from
system to gates to avoid long iteration cycles caused by gaps in the design
flow.

Apart from these basic requirements, currently even the right design paradigm to
cope with the emerging MP-SoC complexity crisis is yet to be agreed on [106].
Competing SLD paradigms and languages put different additional requirements
like e.g.
intuitive user interaction into focus.

unified platform API smooth IP integration, tool automation, and/or
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High modeling efficiency and simulation speed is mandatory to handle
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RELATED WORK

This chapter introduces existing languages, design paradigms and tool en-
vironments for the MP-SoC platform design phase. The discussion is based
on the methodology requirements stated in the previous section as well as the
capability of the approach to cope with current and emerging architecture trends
as summarized in section 3.4.

The multitude of related work in the area of System Level Design cannot be
exhaustively covered in this book. Instead, the focus is on the identification of
relevant concepts and a brief introduction of prominent representatives from the
respective direction. Please refer to [107] for a more comprehensive overview.

At first, elementary techniques and early approaches to HW/SW Co-Design
are introduced. The second part is reserved for an in-depth discussion of Sys-
temC based Transaction Level Modeling (TLM), which has become a widely
accepted and well supported abstraction layer above RTL. Afterwords, the sub-
ject turns to ongoing research projects addressing the emerging complexity
crisis in MP-SoC design.

5.1 Traditional HW/SW Co-Design

scribe the transition from board-level to chip-level integration of programmable
microprocessors and ASICs [6].

Over the last decade, HW/SW Co-design has been focused on the develop-
ment of elementary technologies like the definition of system level specification
languages, HW/SW co-simulation and system synthesis algorithms.

The following sections review the results of these research efforts, which are
of importance in the context of this book. A more complete survey is given in
[6] and [85].
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The term HW/SW Co-design has been introduced in the early 1990s to de-
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5.1.1 HW/SW Co-simulation

dient for HW/SW Co-design. In a very general approach, the Ptolomy Co-
simulation framework has been developed to investigate the mixing of different
Models of Computation [100].

For the practical purpose of HW/SW interface verification prior to silicon
fabrication, first HW/SW Co-simulation prototypes linked Hardware Descrip-
tion Language (HDL) simulators to an ISS executing the Software part [108].
Soon, HDL/ISS Co-simulation environments like Seamless CVE [109] became
commercially available and are still widely employed. However, this HDL/ISS
approach is severely limited by the slow simulation speed of the HDL simulator,
especially in case of large systems with several ISSes and significant hardware
portions [110].

To extend the use model of HW/SW Co-simulation towards performance
simulation and development of Hardware dependent Software (HdS) [111], the
concept of flexible hardware abstraction levels has been developed [112], where
accuracy can be traded against simulation speed. Maximum simulation speed
can be achieved by using compiled ISS technology [113] together with highly
abstract functional SystemC models of the hardware part [114].

5.1.2 System Synthesis

automation known from RTL synthesis, i.e. a formalized system specification
is automatically partitioned and synthesized to the optimal target architecture.

Early attempts in this direction were Vulcan from Standford [115, 116],
COSYMA from TU Braunschweig [117], and LYCOS from TU Denmark [118].
These projects are focused on the automated partitioning of a homogeneous, C-
like input specification into dedicated hardware and software running on a single
microprocessor. Subsequent projects like Cosmos from TIMA Laboratories
[119], and SpecSyn from UC Irvine [120], extended the target architecture
towards multiprocessor platforms.

However, automated HW/SW partitioning and System Synthesis have never
gained industrial relevance. For one reason, the partitioning decision metric is
restricted to worst case execution time, whereas other important metrics like
average performance, cost, and power dissipation are not taken into account.
Additionally, even the worst case execution time proved to be hard to estimate in
the general case of parallel, data dependent, and interleaved software execution.

In a matter of fact, HW/SW partitioning and automated synthesis is still not
recognized as a dominant issue, since the performance critical data-plane pro-
cessing parts of the application are developed in a block oriented way. Instead,
system architects are interested in the impact on performance of a specific target

Early on, HW/SW Co-simulation has been recognized as a necessary ingre-

The original goal of HW/SW Co-design was to reach the same degree of tool
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architecture. To partly automate this mapping, Communication Synthesis and
HW/SW Interface Synthesis emerged as new branches of HW/SW Co-design.

5.1.3 Communication Analysis and Synthesis

as the achievable speed of conventional HDL based architecture simulation is
not sufficient for design space exploration of complex communication archi-
tectures. This has triggered the development of techniques for the analysis of
communication requirements and synthesis of the communication architecture.

Several academic prototypes for static communication analysis and synthesis
have been developed [121–123] or Communication Synthesis became the focus
of general HW/SW Co-design frameworks [124, 125]. However, Communica-
tion Synthesis faces problems similar to general System Synthesis: communi-
cation time estimation is based on the restrictive assumption, that processing
and communication are statically scheduled. Additionally, quality of results is
afflicted by either overly optimistic [123, 125] or worst-case [122] communi-
cation contention scenarios.

In a hybrid approach to communication analysis, Lahiri et al. combined the
accuracy of simulation and the speed of static estimation [126]. In a first step,
this approach creates an event graph from an initial HW/SW Co-simulation run.
Based on this accurate traffic profile, the subsequent performance estimator can
effectively analyze the impact of bus parameters like e.g. width, priorities,
protocol overhead. This approach achieves sufficiently accurate results for
fast design space exploration and supports various bus features like bridged
segments [127] or TDMA arbitration [128].

In general Communication Analysis and Synthesis techniques need further
advancement to cope with emerging Network-on-Chip architectures. First
steps into this direction are currently undertaken. A straight forward attempt
is to instantiate the NoC library elements (routers, network interfaces, links)
from a high-level view of the SoC floorplan [129]. The selection of the actual
library elements can be supported in different ways: In a application-centric
approach, the network topology can be generated from a communication graph
of the application [130]. As an alternative architecture-centric approach, the
communication architecture can be refined from an abstract channel view via a
network topology view towards a micro-architecture view [131].

So far the analysis of Network on Chip architectures is performed using hand-
crafted simulation models, which are mostly based on SystemC [132, 133, 129].
The absence of standardized APIs, abstraction levels and modeling frameworks
beyond the plain SystemC language so far hinders the creation of interoperable
IP models for NoC architectures. Some of the current projects working on
a unified modeling environment for the exploration of NoC architectures are
discussed in section 5.3.3 below.

As already discussed in section 5.1.1, the required modeling effort as well
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5.1.4 Interface Synthesis

on the partitioning and architecture mapping but the realization of these deci-
sions are supported by automating the tedious task of generating the required
Software driver functions as well as the Hardware glue-logic.

CoWare commercialized the Interface Synthesis technology developed at
IMEC [134]. The proprietary CoWareC input specification is based on the se-
quential Remote Procedure Call (RPC) communication paradigm, where func-
tional tasks communicate through blocking master-slave channels. Based on
the CoWareC system model and the user defined mapping, the hardware and
software communication interfaces are generated automatically. The mapping
decisions are verified using the accompanying Co-simulation framework with
support for ISS, HDL and CoWareC integration [135]. With this Napkin-to-

cently the technology has been ported to the SystemC based CoWare Platform
Architect product line [19].

5.2 SystemC based Transaction Level Modeling

ification as well as the application mapping. Therefore, abstraction concepts
on this level have to support the joint consideration of application and architec-
ture. On the other hand, the high level of detail inherent to Register Transfer
Level (RTL) implementation models prohibits the investigation and optimiza-
tion across heterogeneous communication and processing elements.

Significant research has been spent on the definition of the appropriate Sys-
tem Level Design language. Today SystemC is generally considered as the
standard language for all kinds of SLD tasks.

5.2.1 History of SystemC

Hardware Description Language [136]. For this reason it naturally provides
all hardware specific concepts e.g., time, parallelism, and hierarchy. In 1999
the Open SystemC Initiative (OSCI) [137] has been founded by a consortium
of EDA tool companies, semiconductor houses and IP providers to establish
SystemC as an industry standard.

[103]. The incorporated Interface Method Call (IMC) principle enables a clean
separation of interfaces and behavior as well as orthogonalization of further
modeling attributes. Additionally, all kinds of methodology and application
domain specific Models of Computation (MoC) can be implemented on top of
the generic event-driven SystemC simulator [18]. By that SystemC 2.0 enables

As the basic idea of HW/SW Interface Synthesis, the designer itself decides

to-Chip (N2C) framework CoWare became the dominant ESL tool provider. Re-

The MP-SoC platform phase is concerned with the system architecture spec-

SystemC has initially been conceived to replace VHDL and Verilog as a

With version 2.0 SystemC has been tho-
roughly revised to become a fully elaborated actor oriented design language
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a smooth transition from functional phase to the MP-SoC platform phase, e.g.
hybrid simulation of an architecture model in the context of an algorithmic
Data-Flow model [138].

Since SystemC is a native C++ library, it inherently supports Object Oriented
Programming. However further software concepts like dynamic process cre-
ation and termination as well as user defined process scheduling is not supported
until the availability of release 3.0 [139].

Recently the final version 2.1 of the language has become an official IEEE
standard [140]. OSCI continues to foster the SystemC ecosystem of tools and
IP, as well as to incubate the development of additional libraries and method-
ologies. Examples for these incubation activities are the working groups for the
development of SystemC Verification (SCV) library [141], for the develop-
ment of the Transaction Level Modeling (TLM) kit [142], and for the definition
of the synthesizable subset of SystemC. Potentially these developments are
incorporated into the SystemC language itself.

5.2.2 History of Transaction Level Modeling (TLM)

terface of RTL models is replaced by a set of interface methods. In theory, this
IMC based communication mechanism is provided by all actor-oriented spec-
ification languages. However, only SystemC is gaining industrial acceptance
and commercial tool support for TLM based system architecture modeling and
can henceforth be considered as the driver language for the further development
and deployment of the TLM paradigm.

The TLM Standard

Early work on SystemC based TLM has demonstrated the potential in terms of
increased simulation speed and modeling efficiency [18]. As the result of this
success the TLM working group has been established to work on a standard
interface for SystemC based TLM. The resulting TLM 1.0 API provides a
concise set of interfaces with well defined semantics [142].

The basic TLM API consist of a bidirectional transport and a set of unidirec-
tional put and get interfaces. The bidirectional transport has blocking synchro-
nization, i.e. implementation of the interface is allowed to call wait(.). The
unidirectional interfaces are available in a blocking and a non-blocking version.

These interfaces can be seen a foundation layer for the creation of more ad-
vanced TLM interfaces, which serve a specific methodology or model a specific
communication protocol. Please refer to appendix A for an introduction of the
TLM 1.0 API.

The characteristic property of TLM is that the pin-level communication in-
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The TLM Abstraction Levels

Apart from the definition of the foundation API, the OSCI TLM working
group has also worked on the definition of a common set of abstraction levels
[143, 144]. Although this work is not finished, this paragraph gives an overview
of the current proposals.

The two cycle-level TLM layers Bus Accurate (BA) as well as Cycle
Callable (CC) are generally agreed on and are already well supported by
state-of-the-art ESL tools [19, 20] and IP models [145]. These levels are
particularly suitable to create a cycle-accurate prototype of the system architec-
ture, where the (usually cycle-accurate) Instruction Set Simulators (ISS) of the
programmable architectures are connected to cycle- and bit-accurate models
of memories, communication resources and peripherals [146]. In comparison
with RTL, the simulation speed of cycle-level TLM is improved by two orders
of magnitude without sacrificing timing accuracy. BA and CC abstraction lev-
els are distinguished by the fact, that BA captures a transaction within a single
method call, whereas CC models provide separate methods for every phase of
a transaction.

The Programmers View (PV) abstraction levels address early integration of
(usually instruction accurate) ISSes for SW development purposes. PV provides
a bit and address-map accurate view of the MP-SoC architecture context for the
programmable processing elements. PV is based on the bidirectional blocking
transport API of the OSCI standard, i.e. represent a purely sequential Remote
Procedure Call (RPC) modeling paradigm similar to the CoWareC language
[134]. Like this the PV calls from an ISS to a peripheral component do not return
before the peripheral component has executed the triggered functionality. This
simple synchronization scheme minimizes the interaction with the SystemC
kernel and therefore yields high simulation speed.

The PV abstraction level is well defined and already widely used throughout
the industry to enable an early start of the SW development on the SoC tar-
get platform [147]. There is however currently no commonly agreed concept
adding timing annotations. The Programmers View with Timing (PVT) is
still under discussion in the TLM working group.

Communicating Processes (CP) and Communicating Processes with Tim-
ing (CPT) have been discussed as suitable abstraction levels for the generic ar-
chitectural modeling and application mapping of parallel data-plane processing
tasks. However, CP and CPT are currently even further away from standard-
ization than PVT. Instead, the aspect of generic architectural modeling has
been picked up and standardized by the System Level Design working group
of OCPIP.

Integrated System-Level Modeling
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5.2.3 The OCPIP Channel Library

like VSIA [148] have not been widely adopted. The Open Core Protocol In-
ternational Partnership (OCP-IP) [22] is getting a lot of traction throughout the
industry. OCPIP provides a high configurable SoC protocol and their System
Level Design working group has worked from the early days on Transaction
Level Modeling [149].

Figure 5.1. TLM Abstraction Levels as defined by OCPIP

An overview of the abstraction level as defined by OCPIP is depicted in
figure 5.1 [149, 150].

The lowest level is called Transaction Layer 1 (TL1) and provides a fully
cycle accurate model of the OCP protocol. This level is fully aligned with
the CC abstraction level from OSCI.

abstraction of the OCP protocol. The API is still pretty rich and contains
a large number of OCP specific features like e.g. thread-busy, handshake-
timing, or sideband signals. The timing is not cycle accurate, but can be
annotated to a near-cycle accurate level (see section 4.7 of [151]).

The Transaction Layer 3 represents the highest abstraction level of the OCP
standard and can be considered as the protocol agnostic subset of TL2. The
TL3 API is limited to a concise set of primitives, which are essential to model
timing approximate on-chip communication. The TL3 channel supports a
dual-parameter timing model (please refer to section 6.2.1).

The early implementation of the TL3 API was based on the generic channel,
which is no longer supported by OCP-IP. The latest OCP-IP TLM package
(v2.1.2,[151]) does include the revised TL3 API, which is now implemented in
top of the OSCI TLM API (please refer to appendix B for more information).

Early attempts to unify communication interfaces at the architectural level

Thenext higher level is calledTL2andrepresents basicallyacycle-approximate
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5.2.4 TLM Summary

HW/SW and TLM/RTL co-verification are successfully deployed throughout
the industry [152]. However, both use-cases solve only parts of the challenges
during the MP-SoC design phase. Especially the architecture definition and
task partitioning is not adequately addressed:

PV platforms simulate very fast and are well suited for SW development.
Unfortunately they do not contain sufficient timing information for architec-
tural investigations. The blocking semantics of the underlying bidirectional
transport API hinders the smooth annotation of further timing information.

Cycle accurate models of the SoC platform are too detailed and too slow for
architecture definition and task partitioning. First, the effort to create such a
cycle-accurate model of the complete platform is way too high to allow for the
investigation of a large number of architecture and application mapping alter-
natives. Second the reachable simulation speed in the order of 100k cycles per
second is not sufficient for the analysis of large design parameter choices.

As a result, the exploration of broad design spaces is still a cumbersome
process in cycle-level TLM based design flows: cycle-level TLM communica-
tion models have architecture specific interfaces. Thus, every time the designer
is inclined to explore a new communication architecture he has to change the
interface of the connected functional models.

For this reason the Design Space Exploration framework described in this
book deploys a generic synchronization interface, which provides the same
primitives as the newly standardized OCP TL3 API. Obviously, the TL3 API
presents the best fit for this purpose. It is compliant with the OSCI TLM
standard. Additionally, it is of reasonable complexity, and yet offers sufficient
expressiveness to meet the accuracy requirements for design space exploration.

By deploying SystemC based Transaction Level Modeling the framework
is nicely integrated into the flourishing ESL ecosystem. Like this the work
presented in this book is interoperable with the PV and cycle-accurate modeling
methodologies and can benefit from the commercial tool support, available IP
models, and established ESL design methodologies [153].

5.3 Current Research on MP-SoC Design Methodologies

HW/SW Co-simulation and Interface Synthesis, which are widely employed
and well supported by mature commercial tools. As a further success, SystemC

PV TLM platforms for early SW development as well as cycle-level TLM for

HW/SW Co-design research has brought forth several core technologies like

Integrated System-Level Modeling
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is considered as the emerging standard language for System Level Design and
the cycle-level Transaction Level Modeling paradigm has become an accepted
and well supported abstraction layer above RTL.

The rather utopian System Synthesis scheme is replaced with more prag-
matic approaches, which keep the designer in the optimization loop. Current
directions can be coarsely separated into a IP centric bottom-up Component
Based Design paradigm, the Network-on-Chip driven Communication Based
Design and the top-down exploration and refinement environment.

5.3.1 Component Based Design

cessing elements and communication templates are available IP blocks. Hence,
the design flow of MP-SoC platforms can be seen as bottom-up composition of
parameterizable IP library elements.

A prominent representative of this paradigm is the ROSES design framework

and parameterizable communication templates, and employs protocol synthesis
technology for automatic generation of the required hardware wrappers [157,
158].

In opposition to traditional HW/SW Interface Synthesis, the Software drivers
are not synthesized. Instead, the IP library also contains a stack of SW abstrac-
tion levels encapsulating OS and hardware driver services [159], which are
consistent with the on-chip communication templates [160]. By that, the em-
bedded SW is developed on top of a set of well defined Service Access Points
(SAP) [161], which are completely independent from the hardware context.

plane processing, where the processing elements are limited to a small selection
of general purpose micro-controllers. On the other hand, the performance loss
due to the SW abstraction stack, wrapper generation and generic communi-
cation templates is prohibitive for data-plane processing. Additionally, the a
posteriori ISS/HDL based performance simulation is way too slow for MP-SoC
design space exploration.

In a complementary data-plane centric Component Based Design approach,
Philips Research has developed the Eclipse architecture template and corre-
sponding design flow for multimedia processing [76, 162, 15]. The design
flow is assumed to start with an initial algorithmic exploration using the Kahn
Process Network (KPN) formalism. The architecture template is furnished to
preserve the KPN Task Level Parallelism and communication semantics:

The high performance signal processing tasks are mapped to application
specific processing elements to execute.

Component Based Design [154] is founded on the assumption, that the pro-

from Jerrahya et al. [155, 15.6]. This work is founded on a library of processors

Undoubted, this approach speeds up the development of the embedded control-
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The KPN FIFO channels are mapped to either dedicated HW FIFOs [76] or
memory regions [162].

The Kahn process coordination is implemented by synchronization shells,
which guard the execution of the processing elements.

The Eclipse architecture template improves the utilization of the Processing
Elements by extending the synchronization shell with hardware support for
task interleaving [15]. By that, the PEs can efficiently switch to another task in
case the current task is stalled due to memory contention.

Recently the KPN formalism has been generalized to a Task Transaction
Level (TTL) interface. This API provides more flexibility in terms of block-
ing and non-blocking semantics and is therefore applicable to wider range of
control-oriented applications [163, 164]. This approach is still very much fo-
cused on the signal-processing and multi-media domains. This might change
in the future, as a recent experiment has demonstrated the feasibility to map the
TTL API on top of a general purpose RTOS [165].

Despite the effectiveness of this kind of domain specific frameworks, the
tight formalism of the input specification and the restricted flexibility of the
architecture template limit the eligibility beyond the considered application
domain.

5.3.2 Communication Based Design

platform design as a composition of reusable IP blocks. Different from Com-
ponent Based Design, it omits the consideration of processing elements and
is exclusively focused on the the conceptualization and implementation of the
communication architecture. By that, Communication Based Design can be
seen as the corresponding design paradigm to match emerging NoC architec-
tures.

Inspired by earlier work on communication analysis, the EDA centric ap-
proach aims at the automated selection and configuration of the communication
infrastructure from a comprehensive IP library. Along these lines, the recent
work from UC Berkeley proposes constraint-driven communication synthesis
[166, 167]. Driven by a constraint graph, the communication requirements are
analyzed and an optimal communication architecture is selected and configured.

The NetChip project from Stanford university and Bologna university consti-
tutes an other prominent EDA centric approach to communication based design
[168]. This approach is also based on a library of scalable network components
called xpipes [129], which are automatically instantiated and configured by an
exploration tool named SUNMAP [130].

The Communication Based Design paradigm [66] also envisions MP-SoC
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On the other hand, the architecture centric approach [169] assumes, that
the NoC capabilities can handle arbitrary traffic conditions. By that the MP-
SoC platform design is upfront bound to a fixed communication infrastructure,
which merely needs to be configured to meet the communication requirements
of the considered application.

However, both approaches presume a perfectly known communication pat-
tern, where the application tasks are already partitioned and mapped to the
respective processing elements. Thus, Communication Based Design can be
considered as backend of a preceding design space exploration and application
mapping phase.

5.3.3 Design Space Exploration (DSE) Environment

to system architecture and application mapping on the basis of an abstract
performance model. For this purpose, the embedded application needs to be
modeled together with the MP-SoC architecture at a high level of abstraction.
Prior to the discussion of related work in this area, a brief introduction of
common DSE principles is given. A thorough introduction of the topic including
a survey of related work can be found in [170].

In concordance with the general Orthogonalization of Concerns requirement,
the y-chart scheme [171, 172] emphasizes the separation of architecture and
application models. Here the application models are associated with the tar-
get architecture in an explicit mapping step. The results of the performance
simulation guide the system architect in taking optimal design decisions. By
keeping the architecture models separated from the application, various ar-
chitectural alternatives can be rapidly explored without touching the already
validated functional application models. Additionally, both models are highly
reusable across multiple design projects.

As another basic principle of design space exploration, the abstraction pyra-
mid [173] emphasizes the interdependence of model abstraction, evaluation cost
in terms of modeling effort and simulation speed as well as impact of design
decisions. Hence, the initial DSE model has to be sufficiently abstract to allow
for broad investigation of design alternatives. Later on, the model is succes-
sively refined towards lower abstraction levels and increased accuracy to verify
early design decisions.

Apart from these common DSE principles, the various research projects
discussed in the following paragraphs differ significantly in terms of application
domain, abstraction levels and refinement mechanisms.

SPADE As an early attempt in creating a DSE framework for the signal
processing application, the SPADE (System-level Performance Analysis and
Design-space Exploration) project [174] first conceived the y-chart scheme and
the abstraction pyramid as basic principles for interactive design space explo-

The goal of this approach is to take early design decisions with respect
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ration. Typical for signal processing applications, the functional models are
created according to the Kahn Process Network (KPN) formalism. For this
purpose, SPADE provides the KPN communication primitives by means of a
programming interface called YAPI [175]. After the KPN based algorithmic
exploration is finished, the application model is bound to an architecture model
by means of trace-driven co-simulation [176]. The mapping of the functional
Kahn processes to processing elements and the Kahn FIFO channels to commu-
nication resources reveals the resulting performance through system simulation
[173].

ARTEMIS The work of SPADE is continued by the ARTEMIS (Archi-
tectures and Methods for Embedded Media Systems) project [177], which is
further divided into two branches. The Sesame project [178] improves simula-
tion accuracy by refining the coarse-grain KPN application traces to fine-grain
architecture models using Integer-controlled Data-Flow (IDF) based communi-
cation refinement technique [179]. Additionally, the risk of deadlock situations
when mapping unbound Kahn FIFO channels to limited communication re-
sources is removed by the introduction of an additional synchronization layer.
More recently, this approach has been extended to automated DSE based on
genetic optimization algorithms [180].

The Archer project branch takes a complementary approach to improve the
mapping accuracy. Here the YAPI application model is first translated into a
symbolic Control-Data-Flow-Graph (CDFG), which is closer to the final imple-
mentation [181]. Although the simulation falls behind trace-driven simulation,
the accuracy is sufficiently high to investigate the benefits of Instruction Level
Parallelism provided by the target architecture [182].

Due to the Kahn specification formalism, the Artemis project is still limited
to dataflow applications.

The Performance Network Approach from Thiele et al. provides a more
formalized mechanism for Design Space Exploration [183]. Here the applica-
tion workload is represented as a set of abstract arrival curves and the system
resources are represented as service curves. Like this the expected performance
of the embedded system can be computed rather than simulated. Despite the
very high abstraction level, this approach has been successfully applied to a
real-life example from the networking application domain [184]

POLIS As another important pioneer of DSE, the POLIS approach par-
ticularly addressed the design and verification of control dominated reactive
Systems [172]. The input specification is based on Co-design Finite State
Machines (CFSM), which thanks to their formal semantics enable automated
synthesis and verification. Especially for software design, the CFSM specifi-
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cation effort hinders general acceptance and limits the applicability to control
dominated systems.

VCC In an early attempt to commercialize tooling for MP-SoC integration
and application mapping, Cadence Design Systems developed Virtual Com-
ponent Co-design (VCC) [185]. Despite incorporation of several innovative
concepts like abstract architecture modeling [186] and virtual instruction set
simulation [187]. However, neither SystemC (as a common SLD language) nor
cycle-level TLM (as an established modeling paradigm above RTL) were avail-
able at that time. Altogether, the proprietary modeling language and method-
ology, the lack of IP support packages, the missing path to implementation as
well as the complex user interaction hindered the acceptance of VCC beyond
experimental evaluation projects [188, 189].

Metropolis The research work of POLIS is continued in the Metropolis
project [101], which still emphasizes the value of formal semantics. The input
specification is no longer restricted to CFSMs, instead the Metropolis frame-
work is based on an actor-oriented design language called generic meta-model
[190]. In comparison to less formalized actor-oriented design languages like
SystemC and SpecC, the Metropolis meta-model comprises additional formal
elements for the specification of functional, temporal and cost properties. As a
major advantage, this enables the compositional verification of arbitrary design
properties [191]. Additionally, the flexible meta-model enables the definition
of a software friendly MoC for the actor oriented specification of performance
relevant software portions [192].

Altogether, the Metropolis framework can be considered as competitive ap-
proach to the less formalized SystemC language. In principle, the development
of methodology specific communication libraries like the work described in this
book can be implemented on top of either SystemC or Metropolis. On the one
hand side, the flexibility of SystemC is clearly advantageous for Object Orient
Software Programming and the creation of fast and cycle accurate TLM plat-
form models. On the other hand, the evolution of system level verification will
decide, whether informal SystemC enhanced with formalized assertions will
prevail over formal specification languages like the Metropolis meta-model.

SpecC [102] is a System Level Design language quite similar to SystemC 2.0
[104]. As a major difference to the native C++ library approach of SystemC,
SpecC is a subset of the ANSI C language augmented with a set of keywords
for architecture modeling. The resulting benefit is a more concise and formal-
ized modeling style with clear defined semantics for execution [193] and tool
supported refinement transformations [194]. On the other hand, this strength is
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paid with a lack of flexility, which is necessary to tailor modeling and tooling
for individual requirements.

Recently, increased support for Software specific concepts like RTOS model-
ing has been supported [195, 196], but the lack of Object Oriented Programming
concepts still hinders smooth integration of Software development flows.

The Modeling Environment for Software and Hardware (MESH) project is
concerned with modeling of heterogeneous MP-SoC platforms above the cycle-

phase as the sequencing of logical events generated by functional processes

describe the event sequencing as an interleaved scheduling of the functional
processes onto physical processing and communication resources [198]. By
that, MESH inherently supports the high-level performance investigation of
multi-threaded processing and communication resources [199]. In fact, sched-
ulers are considered as the central modeling element to capture the dynamic
and data-dependent nature of MP-SoC platform mapping [200].

Although the MESH project shares basic concepts with the work described
in this book, the realization in terms of design methodology and tooling seems
to be in a rather early stage. The modeling is based on proprietary language
and simulator, so the MESH investigation is not integrated into any existing de-
sign flow [201]. So far, the focus is on modeling of multi-threaded processing
elements and no results on modeling complex Network-on-Chip based commu-
nication architectures has been reported. Recently this work has been focused
on defining benchmarks for MP-SoC platforms [202].

MultiFlex is a research project at ST Microelectronics investigating Sys-
temC based tooling and design methodology for heterogeneous multi-processor
platforms [28]. Similar to commercially available SystemC based SLD frame-
works, the platform modeling aspect is focused on cycle level TLM, where the
embedded software is already executed on the target ISS. The StepNP plat-
form modeling framework is particularly focused on networking applications
[203] in that it supports the integration of application specific and hardware
multi-threaded processing elements as well as Network-on-Chip based com-
munication architectures.

programming models by applying Symmetrical Multi-Processing (SMP) and
client-server type of distributed component object models to the embedded sys-
tems domain [204, 205]. The corresponding support in the MultiFlex toolset
enables the efficient implementation of applications using these programming
models on multi-processor platforms.

level ISS /TLM abstraction layer [197]. MESH perceives the MP-SoC mapping

into physical events. The concept of Frequency Interleaving is introduced to

Recently the MultiFlex project has focused on the definition of multi-processor
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Although StepNP has conceived a mechanism to explore the task mapping
of multi-threaded processing element at the ISS level, the investigation of the
spacial and temporal task mapping requires significant effort for setting up
software implementation related details like e.g. RTOS configuration, memory
map, interrupt handling etc.

The On-Chip Communication Network (OCCN) is another project in ST,
which develops a SystemC based framework for modeling, simulation and de-
sign space exploration of complex communication architectures [206, 207].
OCCN advocates a protocol refinement methodology, which follows the lay-
ered ISO/OSI model [208]. Published documentation and code examples focus
on the investigation of higher layer communication protocol aspects, like e.g.
packetization (including header parsing, packet classification, lookup, data en-
coding, and compression), packet admission control, or congestion avoidance.

open source modeling framework that will enable system-on-chip (SoC) design-
ers to exploit SystemC modeling techniques easily and efficiently early in the
design cycle [209]. The emphasis of the project is on model interoperability and
the results have been submitted to the Open Source SystemC Initiative Working
Group on Transaction Level Modeling (OSCI TLMWG). GreenBus provides a
SystemC 2.1 style port-to-port bound bus fabric which could be configurable
(using SPIRIT compliant XML) to represent any bus (at a Programmers View,
cycle-accurate, and a cycle-count approximate level of abstraction). It comes
complete with a native ability to have user APIs such that a user can choose
their interface independent of the bus fabric itself.

MPArm is an open research project coordinated by University Bologna
[210]. Similar to the STepNP platform modeling framework of MultiFlex,
the MPArm platform ingrates different processor and interconnect IP at the
cycle-accurate level as well as Software stacks to investigate architectural al-
ternatives in Multi-Processor platforms.

The ARTS abstract system-level modeling framework from TU Denmark
also advocates the proposition of this book, in that resource sharing of process-
ing elements and interconnect nodes must be jointly investigated to explore the
complete design space [211]. The ARTS framework from Madsen et al. takes
a Software-centric view onto the SoC platform [212] and models architectural
elements at the level of arbitrated resources [213, 214].

The basic concept of an C++ based reactive process network exchanging
Abstract Data Types has been investigated by Post et al. [215, 216] in the
context of the GRACE++ project. Significant effort has been spent on the

GreenBus is   the project name for a collection of work aimed at providing an
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development of techniques for efficient object oriented application modeling
and seamless co-verification of RTL implementation models. The resulting
GRACE++ methodology and simulator library distinctively supports the mod-
eling and verification of complex telecom applications. This approach has been
successfully applied to the design and verification of an ATM switch system
[217].

The work described in this book is founded on the early work on GRACE++
and still profits from the OOP modeling techniques and RTL co-verification
flow. On the other hand, the GRACE++ coordination library has been ported
to SystemC and fundamentally revised to be applicable to arbitrary application
domains. Additionally, the scope of covered architecture models has been ex-
tended from pure hardware blocks using point-to-point communication towards
arbitrary processing elements and the full scope of on-chip communication ar-
chitectures.

5.4 Summary

observe a huge variety of proposed solutions. Different approaches emphasize
different aspects as IP re-use, formal verification, or design space exploration.
However, there is currently no comprehensive disciplined approach address-
ing the full design complexity of emerging Network-on-Chip enabled Multi-
Threaded/Multi-Processor SoC platforms.

Cycle-level TLM has matured as virtual prototyping technology above RTL,
but is not sufficiently abstract to achieve sufficient modeling efficiency and
simulation speed. So far, there is no established approach at hand to capture
and evaluate in an efficient way all aspects of heterogeneous MP-SoC platforms
and application mapping.

Before a certain degree of maturation in SLD modeling above cycle-level
TLM is reached, the Design Space Exploration environment is the most promis-
ing approach to drive the evolution of a common MP-SoC design methodology.
The evolution of cycle-level TLM and RTL shows, that in order to achieve broad
support in terms of tooling and IP availability, first the right level of abstraction
for the addressed design problem has to be identified. Second, a concise mod-
eling style has to be defined, which takes full advantage of the abstraction level
to achieve high simulation speed and modeling efficiency. Last, techniques for
simulation acceleration and further tool automation of the established modeling
style needs to be developed.

To summarize the current directions in MP-SoC platform design, one can

Integrated System-Level Modeling



Chapter 6

METHODOLOGY OVERVIEW

The discussion now turns to the Design Space Exploration (DSE) environ-
ment, which has been developed in the course of the studies described in this
book. Ultimate goal is to meet the System Level Design requirements as speci-
fied in section 4.6 and to cope with the full architectural complexity of emerging
MP-SoC architectures as exposed in chapter 3.

Figure 6.1. Virtual Architecture Mapping

59
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As depicted in figure 6.1, the MP-SoC Framework follows the y-chart prin-
ciple described before, where a set of functional application models is merged
with a set of architecture models in a dedicated mapping step. In reference to the
flexible and highly abstracted mapping mechanism, the developed embodiment

Dis-
tinctively, Virtual Architecture Mapping comprises the following fundamental
elements:

A well defined abstraction level above cycle-level TLM for efficient mod-
eling of embedded applications.

A set of generic, parameterizable architecture models, which capture the no-
tion of shared and resource limited architectural fabrics for communication
and computation.

A rigorous definition of a timing model, that embodies the performance of
a selected application-architecture-mapping.

An MP-SoC simulation framework featuring a declarative mapping mecha-
nism to minimize turn-around times during the iterative architecture explo-
ration cycle.

A comprehensive set of analysis tools for functional and performance vali-
dation.

Note, that the timing model is independent from both the functional model as
well as the architecture model and is not specified before the mapping step.

The rest of this chapter introduces design methodology and tool related as-
pects of MP-SoC design space exploration. The definition of the timing model
and the in-depth description of the simulation framework are deferred to the
following chapters.

6.1 Application Modeling

exploration, the considered application has to be modeled in a well-defined
way. As depicted in figure 6.2, the functionality has to be partitioned into a set
of coarse-grain reactive SystemC processes. Additionally, the communication
between processes has to adhere to an unified synchronization interface as well
as to the packet-level TLM abstraction layer.

The individual aspects are now described in more detail.

6.1.1 Reactive Process Network

as a SystemC based Reactive Process Network (RPN). The formal definition

of the y-chart principle is called Virtual Architecture Mapping (VAM).

As a necessary requirement for employment of the VAM based design space

As the fundamental modeling principle, the application has to be captured
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SystemC

process #1

SystemC

process #3

SystemC

process #2

abstract

data type

class InterfaceParser

: public sc_module

{

adt_in <IPPacket> i_ppl3;

adt_out <IPPacket> o_ip_memory;

adt_out <Descriptor> o_route_lookup;

}

class FunctionParser

: public InterfaceParser

{

void activate() {

IPPacket ip_pkt = i_ppl3->read();

o_ip_memory->write(ip_pkt);

// ... further processing

}

}

class IPPacket

{

int tos;

int ttl;

long src_addr;

long dest_addr;

// ... more member

}

Figure 6.2. ADT Data Exchange

of the underlaying MoC is given in section 7.2, but intuitively this approach
provides the following benefits:

The actor-oriented paradigm naturally fits into every data-plane centric ap-
plication development flow. Preserving the inherent task level parallelism,
the block oriented algorithm specification can be converted into a function-
ally equivalent reactive process network.

Since SystemC is a native C++ library, this approach also enables smooth
integration of control-plane centric application parts. In particular, OOP
based sequential functionality is wrapped into a reactive SystemC process.
As demonstrated during numerous experiments, this effort remains reason-
able thanks to the course granularity of the process network [215, 218, 219].

The moderate number of coarse-grain reactive SystemC processes mini-
mizes the number of process activations during the simulation. Compared to
cycle-driven process activation, this greatly improves the simulation speed.

So to speak, a coarse-grain reactive process network represents a good compro-
mise between the RPC-like sequential communication mechanism for control-
plane processing and all the domain specific MoCs for data-plane processing.
By that, the expressiveness of RPNs covers the complete range of embedded
applications.
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6.1.2 Packet-Level TLM

exchanged between the processes is represented on an apposite high level of
abstraction. The considered data granularity are sets of functionally associated
data items, which are combined to Abstract Data Types (ADTs). In that the
data accuracy corresponds to the TL3 API from OCPIP (please refer to figure
5.1). As explained in section 5.2.4 this property discriminates the approach
described in this book from the established cycle-level TLM paradigm.

Compared to the word accurate representation of cycle-level TLM, this high
level of abstraction offers a set of valuable benefits:

The grouping of functionally associated data fields greatly improves mod-
eling efficiency, since the required data is sent and acquired with a single
interface method call. Instead, cycle-level TLM models require an FSM to
stream in and out data sets on a cycle-by-cycle basis.

Abstract Data Types are not biased towards any implementation of the data
representation in terms of bit-width for particular ADT fields or the overall
arrangement of the frame layout.

The coarse granularity of communication further reduces the number of
events during the simulation of the reactive process network. This immedi-
ately leads to increased simulation speed.

In analogy with traditional network design environments like e.g. Opnet
[220], the emerging Network-on-Chip era advocates the investigation of the
on-chip communication infrastructure at the packet level.

Additionally, ADT based communication intuitively supports modeling of both
abstract SW-SW communication principles like message passing as well as
more HW oriented memory mapped communication.

In combination with the communication mechanism and the corresponding
timing model, the packet-level TLM paradigm introduces a well defined level of
abstraction into the design flow, which enables efficient functional specification
and architecture exploration of complex MP-SoC platforms.

6.1.3 Generic Synchronization Interface
1

of a synchronization interface is the specification of the set of methods. These
methods have to be implemented in the connected channel and represent the
communication services available to the process. The careful definition of a

1Please refer to section 4.5 on page 40

Equivalent to the coarse granularity of the reactive process network, the data

According to the IMC based communication scheme , the elementary task
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First, a versatile y-chart based design space exploration environment calls for
the capability to arbitrarily mix and match application and architecture models.
Hence, the offered synchronization services have to be completely orthogonal
from any architectural component for communication and computation. For ex-
ample, the designer can decide to change the communication architecture from
point-to-point towards a bus centric architecture modifying neither the synchro-
nization interface nor any of the participating functional modules. Advanced
communication services as offered by NoC architectures [8] are of course not
covered. Instead, these services require a communication protocol on top of
the basic synchronization interface.

Second, the timing annotation mechanism is integral part of the mapping
step and therefore incorporated into the synchronization interface. In adher-
ence to the orthogonalization of concerns paradigm [34] the functional models
are not obscured with performance related timing annotation. On the other
hand, accuracy is a special challenge for timing annotations in a packet-level
TLM environment. The synchronization interface has been furnished to capture
the observable events at the begin and the end of a packet transfer. This enables
the creation of near cycle accurate communication models despite the coarse
granularity of the data transfer [23].

Third, an protocol agnostic synchronization interface fulfills the interface
based design principle [70], in that refined communication and processing mod-
els can be integrated into the abstract context by the use of adapters. This en-
ables successive refinement and component-wise verification of refined models
against their abstract specification model.

As a specific property of packet-level data modeling, the communication is
not performed at a single point in time, but spread over a certain period. De-
pending on the requirements of the user models, either the start, the end or
both start and end time of a transaction might be of interest. For this reason,
the packet-level synchronization interface offers both the start-of-transfer and
end-of-transfer event.

To summarize this overview of application modeling, the complete applica-
tion is captured as a set of coarse grain SoC building blocks. These functional
blocks are represented as reactive processes, which communicate by exchang-
ing Abstract Data Types via a generic synchronization interface. An application

architecture mapping based design space exploration.
unified synchronization interface is of threefold importance for the virtual
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model according to this representation is prepared for VAM based design space
exploration.

6.2 Architecture Modeling

ferent architectural alternatives with respect to the performance requirements.
The developed VAM technology provides a set of generic architecture models,
which are compliant to the generic synchronization interface. By that, VAM
enables a transparent mapping of a given application to the anticipated architec-
ture, i.e. the reactive processes can be mapped to any architecture configuration
without further modification .

The architecture models fall into three categories, that handle different as-
pects of architectural elements:

Processing Delay Annotation captures the fact, that the execution of a
functional processes occupies a physical processing element for a certain
amount of time.

The Virtual Processing Unit models sharedprocessing elements, which
support the multi-threaded execution of more than one functional process.
This covers the impact on performance of both Software Operating Systems
(SW-OS) as well as Hardware Multi-Threading (HW-MT).

The NoC Framework captures the impact on performance of limited com-
munication resources. It has been conceived to cover all kinds existing and
emerging types of communication architectures like point-to-point connec-
tions, shared busses and highly complex Network-on-Chip infrastructures.

The following sections elaborate in more detail on the different architecture
models.

6.2.1 Processing Delay

from the functional process, hence the previously validated functional system
behavior is preserved. The methodology for processing delay annotation is
based on the following observation: For performance profiling purposes, the
basic timing characteristics of any single threaded processing element can be
expressed by the temporal relationship of consuming, processing and producing
tokens. This relationship is completely independent from the functionality
itself, it only reflects different execution units. The performance impact of
different block implementations is explored by annotating a delay time that is
calculated from different timing models [25].

Ultimate goal of the MP-SoC platform design phase is the evaluation of dif-

The annotation of processing delays is conceived to be completely orthogonal
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Figure 6.3. Processing Delay

a) Single Resource Processing Elements are blocked for a certain amount
of time during the processing of an incoming event. Thus the next event
can only be consumed after the previous one is finished. An important
example of single resource PEs are programmable architectures, which are
busy until the current task is finished. The impact on performance of any
single resource PE is completely described with a single delay parameter
∆tdelay.

b) Pipelined Processing Elements are able to consume new incoming
events before the previous one is finished. This case covers the temporal
properties of HW units, which employ multiple pipeline stages to improve
the processing throughput. Besides the processing delay ∆tdelay, the perfor-
mance modeling of multi resource PEs requires a second timing parameter
∆tinit, which specifies the minimum time interval between two consecutive
event arrivals.

Both timing parameters can be either static or dynamic: Static delays corre-
spond to deterministic execution times, e.g. pipelined architectures are able to
consume and produce a token every cycle but introduce a static latency. This
latency depends on the number of anticipated pipeline stages: the performance
of a HW block with 5 pipeline stages and a clock period of 5ns is modeled as
∆tdelay = 25ns and ∆tinit = 5ns.

In case of dynamic timing parameters the processing time depends on the
actual data and the inner state of the block. For example in the case of a cache
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module the processing delay of a cache read depends on whether the requested
data set is in the cache or has to be fetched from the main memory.

Modeling of dynamic timing requires the calculation of the actual delay pa-
rameters during simulation runtime. For this purpose, the original functional
model has to be supplemented with a corresponding timing calculation algo-
rithm.

In summary, the developed processing delay annotation technique captures
the performance impact of any single threaded processing unit. Sophisticated
computer architecture features of the target execution unit like superscalarity,
superpipelining, VLIW schemes boil down to two characteristic timing param-
eters. In essence, these parameters describe the temporal relationship between
external events of the functional process.

Performance modeling of multi-threaded processing elements is beyond the
scope of this technique. In this case the relationship between several functional
processes or between several instances of the same functional process has to be
taken into account.

6.2.2 Virtual Processing Unit

cessing elements, the architecture model library comprises a generic Virtual
Processing Unit (VPU). The VPU has been designed to cover both Hardware
Multi-Threaded (HW-MT) processing elements as well as the core functionality
of Software Operating Systems (SW-OS).

The major purpose of the generic VPU is to model the impact on performance
caused by the concurrent execution of more than one functional process on a
single processing element. In an example depicted in the upper part of figure
6.4, two processes with their individual delay annotations are mapped to a single
VPU instance. The bottom of figure 6.4 shows the resulting timing in response
to an assumed scenario.

First process 1 is activated by the start p1 event, executes the first portion
of its functionality and after 10 time units generates the request p1 event. In
the meantime, the activation event start p2 occurs, but process 2 cannot start
execution before the first process is finished and swapped out. In the given
scenario, the communication request from process 1 returns before process 2
has finished the first portion of its functionality. Since process 1 is configured to
have a higher priority, process 2 is preempted and not resumed before process
1 has completed its functionality.

Besides modeling the timing of concurrent process execution, the generic
VPU provides capabilities for automatic address resolution. This feature is
indispensable for transparent process mapping to arbitrary VPU configurations.
Without VPU, each communication link within the reactive process network is

In order to extend the modeling capabilities towards multi-threaded pro-
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Figure 6.4. VPU Timing Calculation

unambiguously defined by the binding of the initiator output port and the target
input port to a point-to-point channel. After the VPU mapping is carried out,
interacting processes may be mapped to either the same or to different VPU
instances. Additionally, more than one instance of a process may exist. The
automatic address resolution mechanism locates the corresponding instance of
the target process to preserve the original process connectivity.

6.2.3 NoC Framework

enables the systematic design space exploration of complex on-chip commu-
nication networks. The key idea of the NoC framework is to simplify the

generic interface: The communication architecture is hidden behind the
already introduced generic synchronization interface. This attains the com-

As the third aspect of MP-SoC architecture modeling, the NoC framework

logy. This is archived by the following two concepts:
time-consuming process of changing communication architecture and topo-
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plete orthogonalization of the synchronization services employed by the
functional processes from the communication architecture. Consequently,
the communication architecture can change from point-to-point towards a
bus centric architecture, without modification of neither the functional pro-
cesses nor the interface.

descriptive instantiation: All topology aspects and all parameter options
of the communication architecture are specified through configuration files
that are elaborated during the initialization phase of the simulation. Thus
the whole instantiation and binding of the communication architecture is
automatically done by the NoC framework. By that, no recompilation is
needed to iterate over different communication alternatives, which dramat-
ically speeds up design space exploration.

Figure 6.5 illustrates the transparent mapping of the inter module commu-
nication onto two alternative bus architectures. Thanks to the generic synchro-
nization interface and the descriptive instantiation mechanism, the transition
from one bus topology to another is performed only by a modification of the
parameter settings in the configuration files.
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Figure 6.5. Transparent Communication Mapping

As a major differentiator against related work on communication perfor-

emerging Network-on-Chip architectures, which are generally believed to pro-
vide the global on-chip communication infrastructure of future multi-processor

to-point and shared bus architectures. Instead, the NoC framework also addresses
mance modeling, the NoC framework covers not only contemporary point-
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platforms. By that, the proposed MP-SoC simulation framework and explo-
ration methodology is designed to cope with emerging architecture trends.

6.3 Envisioned Design Flow

duced, this section presents the envisioned flow for the development of emerging
NoC enabled MP-SoC platforms.

6.3.1 Design Flow Overview

figure 6.6, the overall flow is derived from the discussion on elementary design
phases in section 4.2 as well as from the discussion on TLM abstraction levels
in section 6.1.2.

system application design

MP - SoC platform design 

high - level IP block design 

block implementation

algorithm model

ISS + bus platform

reactive process network

abstract architecture

micro
architecture

domain

algorithm
domain

cycle - level 
TLM

packet - level 
TLM

virtual architecture
mapping

SystemC

Figure 6.6. Design Flow Overview

The algorithm domain directly corresponds to the functional design phase,
which deals with development of Hardware independent Software and ap-
plication specific algorithms.

Packet-level TLM is the abstraction level for the methodology described in
the course of this book. The following sections provide more details on the

Now that the principles of Virtual Architecture Mapping have been intro-

In the first place, an overview of the complete flow is given. As depicted in
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individual design tasks. In essence, this level addresses the architectural
exploration and application mapping of complex MP-SoC platforms.

Cycle-level TLM by itself comprises several abstraction levels, which cover
instruction and cycle accurate processor models as well as bus accurate and
cycle callable platform models [146]. As already elaborated in section 5.2,
the state-of-the-art methodology and tooling for early MP-SoC platform
integration are based on this abstraction level. The major design problems
addressed on this level are ISS integration, development of hardware depen-
dent embedded software, 100% cycle accurate performance profiling, and
co-simulation with implementation models for verfication purposes.

The micro architecture domain covers the traditional Hardware implemen-
tation and verification flow. A Register Transfer Level (RTL) synthesizable
Hardware Description Language (HDL) description of the desired function-
ality embodies the entry point to this domain.

Additionally, figure 6.6 shows that apart from the algorithm domain, there is
no one-to-one correspondence between design phase and abstraction level. As
a result of recent progress in EDA tooling, design phases like MP-SoC platform
design and high-level IP block design cover several abstraction levels.

LISA based processor development environment [221] and CoWare Bus-
Compiler represent examples for this phenomenon. The obvious benefit of this
approach is to raise the abstraction level for high-level IP block design from
highly detailed RTL representation to a cycle-level specification based on an
concise and much more efficient Architecture Description Language (ADL).
After the architecture exploration phase of the respective IP block is finished,
the corresponding RTL code is generated automatically. This approach proves
to yield convincing quality of results [222], since the scope of the respective
IP creation framework is strongly limited to a particular class of IP blocks, like
e.g. processors or buses.

Taking the methodology described in this book into account, the MP-SoC
platform design phase covers both state-of-the-art cycle-level TLM as well
as packet-level TLM. As mentioned above, the goal is to raise the abstraction
level for initial architecture exploration before committing to a feasible platform
configuration and spending significant effort for the creation of a cycle-level
platform prototype.

Thanks to SystemC as a common specification language for both cycle-level
TLM as well as packet-level TLM, the abstraction levels in MP-SoC design
phase are inter-operable. This enables the designer to mix and match abstraction
levels, solve individual design problems at the best suited level and successively
proceed to the refined representation.

Integrated System-Level Modeling



Methodology Overview 71

6.3.2 MP-SoC Platform Design Flow

phase. As depicted in figure 6.7, the discussion is focused on the design tasks
performed at the packet-level TLM abstraction layer and separately treats the
refinement steps of computation, functional, and communication aspects. The
dashed arrows in the figure denote precedence relation between design steps,
e.g. functionality must be refined to memory mapped communication before
the insertion of memory models is possible.

Figure 6.7. MP-SoC Design Flow

Functional Refinement. As already explained in section 6.1, the starting
point of any architectural investigation is a reactive processes network of the
considered application. Initially, the inside of the processes is either newly

This section now elaborates in more detail on the MP-SoC platform design
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created, imported from a preceding application design phase, or can be just
a non-functional workload model. During the functional refinement flow, the
process network is successively developed to enable refined architecture map-
ping.

Explicit communication is the ultimate precondition for architectural in-
vestigation. Recall, that the VAM methodology is based on the temporal
sequencing of events, which occur during the simulation of the reactive pro-
cesses. Consequently, only the externally visible events of every reactive
process are taken into account during architecture mapping. This first re-
finement step might also comprise the splitting of functional processes to
expose previously internal events.

Explicit storage of shared data is required for the mapping of reactive pro-
cesses to multi-threaded VPU models. Without this separation of functional-
ity and data storage, multiple instantiation of processes leads to inconsistent
data.

Eventually, the peer-to-peer communication needs to be replaced with mem-
ory mapped communication to enable the incorporation of memories and
other peripherals.

In case the impact on performance of the operating system shall be subject
to early investigation, the reactive processes must be extended to explicitly
invoke RTOS services, like e.g. task control, semaphore operations, memory
management, or timer configuration. These services are implemented on
top if the generic synchronization interface by service specific abstract data
types.

Further functional refinement is not meaningful at the packet-level TLM
layer. Instead, the next step is the transition to the subsequent abstraction level.
For the portion of the process network mapped to a Software implementation,
this requires a Software development environment for the target processor ar-
chitecture. The functional process has to be compiled to the object format,
which is then executed on an Instruction Set Simulator (ISS). At the same time,
the abstract communication has to be replaced with corresponding implemen-
tation by means of predefined driver libraries like in component based design
[154] or by means of interface synthesis [134].

Computation Refinement. This refers to the refinement steps during the
virtual architecture mapping of reactive processes to the anticipated processing
elements. The individual steps are explained in sections 6.2.1 and 6.2.2 in more
detail.
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The delay annotation models the time, which is required for the execution
of the considered functionality on a physical processing element.

Virtual Processing Units extend the modeling capabilities towards user de-
process scheduling. By that, VPU models are essential for early

consideration of multi-threaded processing elements like Hardware multi-
threading or Software operating systems.

The incorporation of memories and peripherals allows the early investi-
gation of Caches, Memory Management Units (MMUs), Direct Memory
Access (DMA), Interrupt Controllers (IRCs) etc. Depending on the con-
sidered application, these components have a major impact on performance
and cost [218].

In case of data-plane centric applications, the timing annotation mechanism
for the investigation of the anticipated computation delay proves to be very
powerful in terms of accuracy and modeling efficiency [215, 218, 219, 223]. On
the other hand, delay estimations in the context of highly dynamic control-plane
applications is likely to yield rather vague results. In case accurate performance
numbers are required, the control-plane processing portion of the application
has to be profiled on the target ISS.

Communication Refinement. The NoC framework enables the systematic
design space exploration of arbitrarily complex on-chip communication net-
works. During the simulation, the evaluation modules connected to the com-

communication infrastructure according to the following successive refinement
steps:

During the initial throughput measurement, the overall on-chip traffic is
functionally captured by means of an unconstrained point-to-point commu-
nication. The resulting communication profile identifies interacting partners
and rough throughput requirements.

The coarse network partitioning is dedicated to the identification of the
optimum combination of network types. The system architect maps the
point-to-point communication to an appropriate set of network types by
configuring the NoC framework using the generic communication models.

By iterative parameter calibration, the selected communication architec-
ture is fine-tuned to the traffic requirements. Parameters refer to e.g. the
bandwidth of a bus system or the queue-length of a crossbar architecture.

Of course the network partitioning has superior impact on the final quality of
results. Here the unified approach enables a rapid exploration of totally different

munication models collect statistical information like resource utilization,
latency, and throughput. Based on these metrics, the system architect designs the

fined
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network architectures by simply replacing the communication models. By that
the system architect can optimize the communication architecture in iterative
exploration cycles.

6.3.3 Mixed Level Co-Simulation

from packet-level to lower abstraction levels like cycle-level TLM or RTL is
performed successively in a block by block manner. For verification purposes,
the refined blocks are individually included into the abstract system context.
This Mixed Level Co-Simulation is enabled by a generalized adapter concept,
which brides the different abstraction levels with respect to data, timing and
communication [215, 114, 25].

Figure 6.8. Mixed Level Co-Simulation

The concept of the mixed-level co-simulation adapter is depicted in figure

to the respective fields in the corresponding bit-accurate data representation.
The resulting bit-stream is then transfered to the protocol layer, where it is cut
into slices according to the respective data width and forwarded to the protocol
layer. Here the protocol specific TLM interface methods are called to stream
the data words into the consumer.

A similar adapter channel implements the reverse direction to feed the out-
put an cycle-level producer into the packet-level consumer. Here the ADT is
reconstructed from the output bit-stream provided by the protocol engine. Note
that this concept is also capable to bridge packet-level and RT-level SystemC
[25]. Together with commercially available SystemC-HDL Co-simulation en-
vironments, this enables the functional co-verification of VHDL or Verilog
implementation against the packet-level reference model [216, 217].

In accordance with the interface based design paradigm [70], the transition

6.8, where a packet-level Producer is connected to a cycle-level Consumer
module. In the first step, the bit-mapping layer in the adapter maps the ADT
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Refinement of Processing Elements

At some point in the computation refinement process the achievable accuracy of
Virtual Architecture Mapping is no longer sufficient to take further design and
partitioning decisions. Especially in case of highly run-time dynamic control
plane processing tasks the coarse grain annotation of SW execution time yields
imprecise performance estimations. Despite continued research effort in this
area, SW execution time analysis is still considered as an unsolved problem in
HW/SW Co-design [6].

As soon as accurate information about the Software performance is required,
the Software execution time has to measured instead of estimated. So far, system
integration of cycle accuracy processor simulators is not performed until a cycle
level TLM system model is available [146]. The mixed-level adapter allows
the early integration of cycle accuracy processor simulators into the packet-
level MP-SoC framework [114, 224]. By that the Software execution time can
already be accurately measured during the architecture exploration phase.

6.4 MP-SoC Simulation Framework

is supported by a tool environment for simulation, debugging and analysis.
Together these tools enable a systematic and fast design space exploration of
complex on-chip communication networks. In this context, design space com-
prises both the analysis of architectural alternatives as well as the investigation
of application to architecture mappings.

The overall work-flow of the MP-SoC Environment is depicted in 6.9: As a
prerequisite, the considered application is represented as a functional SystemC
process network. This functional model is mapped to the anticipated target ar-
chitecture in order to create a performance model of the resulting system archi-
tecture. The mapping is performed virtually by instantiation and configuration
of generic performance models, including the annotation of the respectively
timing characteristics. By that the methodology enables a very fast exploration
of totally different design alternatives. Because the process of timing annotation
is completely orthogonal to the functionality, previously validated functional
application models remain unaltered throughout the exploration phase.

In order to further accelerate the design space exploration cycle, the com-
plete architecture specification is represented as a set of configuration files in
eXtended Markup Language (XML) format:

configuration of the timing model

number of available processors and number of supported concurrent threads
per processor

mapping of the application task to processors and threads

The Virtual Architecture Mapping based system level design methodology
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instantiation, parameterization and interconnection of the communication
nodes

instantiation and address mapping of the memory architecture

Before the simulation starts the architecture specification is extracted from
the configuration files and bound to the application model. During the sim-
ulation, evaluation modules connected to the architecture models collect and
aggregate statistical information like resource utilization, latency, and through-
put. On completion of the simulation, this statistical information is visualized
by means of histogram and communication graph views. Based on these data,
the system architect may modify the MP-SoC architecture and/or the application
mapping until the requirements are met.

Application Model

meet
requirements

Configuration files

MPSoC Mapping

yes

no

Exploration
Framework

evaluation
0.2

0.90.40.5

Figure 6.9. Iterative Exploration Flow

ification of configuration files. In case of very complex applications, the sim-
totally different communication and processing architectures by means of mod-

This declarative specification mechanism enables a rapid exploration of
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ulation driven approach can be complemented with statistical post-processing
techniques like regression analysis to reduce the overall design space.

The ultimate result of the design space exploration is the detailed specifica-
tion of the MP-SoC platform architecture as well as the application partitioning.

A more detailed description of the tools and models in the MP-SoC Sim-
ulation Framework is given in chapter 8 after the definition of the underlying
timing model.



Chapter 7

UNIFIED TIMING MODEL

This chapter provides a formal definition of the timing model, which consti-
tutes the underlying technology of the Virtual Architecture Mapping method-
ology. This timing model enables the joint consideration of functionality and
architecture by successively annotating the timing characteristics of the antic-
ipated architecture to the application model. In essence, the timing model de-
scribes the mapping of the un-timed functional events in the application model
to the timed physical events in the anticipated architecture.

The description of the denotational semantics of the timing model relies on
the notation proposed by the Tagged Signal Model (TSM) framework [26],
which provides a widely accepted formalism to reason about the characteristics
of Models of Computation [225]. The basic denotational TSM specification
is supplemented with the operational semantics of the timing model to create
the link to the corresponding simulation environment, which is described in the
following chapter.

The first part of this chapter briefly recalls the major constructs of the Tagged
Signal Model framework, which are then related to the context of event-driven
SystemC simulation semantics at the TLM level. Afterwords, the individual
aspects of the timing model are introduced, covering step by step the initial
functional application model, as well as the delay annotation caused by pro-
cessing elements, virtual processing units, and communication resources. This
chapter closes with the specification of the performance metrics, which can be
derived from the timing model.

7.1 Tagged Signal Model Introduction

framework [26] to introduce the employed notation. Additionally, major prop-
erties of the well-known event-driven simulation Model of Computation are

79

This section first recalls basic definitions from the Tagged Signal Model



80

replicated to serve as a foundation for the subsequent discussion of the timing
model.

7.1.1 Elementary Definitions

as a denotational framework (a

’

meta model’) within which certain properties
of models of computation can be compared [26]. The TSM precisely defines
general terms like e.g. process, signal, and event, which are present in any MoC.
Based on these terms, general MoC properties like determinism, causality and
synchronization can be derived and compared.

The fundamental entity in the TSM is an event, i.e. a value/tag pair. Tags
are often used to denote temporal behavior and sets of events are aggregated
into a signal. Processes are relations on signals, expressed as sets of n-tuples
of signals. A particular model of computation is distinguished by the order it
imposes on tags and the character of processes in the model.

Given a set of values V and a set of tags T , an event e is a member of T ×V ,
i.e. an event has a tag and a value. A signal s is a set of events, which can be
viewed as a subset of T × V , or as a member of the power-set s ∈ ℘(T × V).
A functional signal is a (possibly partial) function from T to V .

The set of all signals is denoted S. A tuple of n signals is denoted s, and
the set of all such tuples is denoted Sn. The position of a signal in a tuple is
denoted by an index and uniquely identifies an individual signal.

In this context, a process P is described as a set of N signals, i.e. P ⊆ Sn.
A particular s ∈ Sn corresponds to the behavior of a process if s ∈ P . The
composition of processes is defined as the cross product of the set of behaviors.
In case there is no interaction between the processes, the composition is simply
a superposition of both behaviors as depicted in the left part of figure 7.1. On
the other hand, one or more signals of different processes may be identical. In
this case, each pair of identical signals constitutes a connection C between the
processes. The connection C ⊂ Sn itself is defined to be a process, where
two or more signals of the n-tuple are constrained to be identical. Thus, Cj,k

defines a connection in s ∈ Sn, such that sj = sk holds.
The signals of a process can be further distinguished into a set of NI input

signals I and a set of NO output signals O. This separation into inputs and
outputs can be described with a mapping π. Let I = (i1, . . . , im) be an ordered
set of indices in the range 1 ≤ i ≤ n, and define a projection π(s) of s =
(s1, . . . , sn) ⊆ Sn onto Sm with m ≤ n by πI(s) = (si1 , . . . , sim). By that,
the ordered set of indexes I defines the signals that are part of the projection
and the order in which they appear in the resulting tuple. In order to describe
the generation of events on the outputs of a process depending on its inputs, an
ordered set of indices I for the NI input signals and an ordered set of indices
O for the NO input signals is given.

The original motivation behind the Tagged Signal Model (TSM) is to serve
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Figure 7.1. Composition of Processes

In the example depicted on the left side of figure 7.1, the input index set
is I = (1, 2, 4) and the output index set is O = (3, 5, 6). By that, the input
signals are constrained to be I = πI(s) = (s1, s2, s4) and the output signals
are O = πO(s) = (s3, s5, s6).

A process is determinate if for any input it has exactly one behavior or exactly
no behaviors, otherwise it is nondeterminate. A process in Sn that is functional
with respect to (I, O) is obviously determinate if I and O together contain all
the indexes in 1 ≤ i ≤ n.

A process is functional with respect to (I, O) if for every s ∈ P and s′ ∈ P
where πI(s) = πI(s′), it follows that πO(s) = πO(s′). For such a process,
there is a single-valued mapping f : SNI �→ SNO , such that for all s ∈ P ,
πO(s) = f(πI(s)). A process is total if f is defined over all SNO , otherwise it
is partial.

If all processes are functional with inputs on the left and outputs on the right,
then obviously the composition processes are also functional and thus preserves
determinacy. A much more complicated situation involves feedback. Whether
determinacy is preserved in the presence of feedback loops depends on the tag
system and more details about the process.

7.1.2 Tag Systems

ordering relation among the tags is responsible for synchronization, causality,
and determinism. In timed MoCs, the tags are totally ordered and can be
naturally interpreted to mark the time in a physical system. By that, signals
can be interpreted as a temporal sequence of events. On the other hand, tags

The tag system employed in the Model of Computation together with the
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in un-timed MoCs used during the specification of the system are often only
partially ordered to prevent the specification from over-constraining towards a
certain physical implementation.

In the following, the discussion concentrates on the discrete-event MoC,
which is the underlying simulation paradigm in circuit design and commu-
nication network modeling and which is also implemented by the SystemC
simulator. For any process P and the corresponding set of signals s ∈ P , T (s)
denotes the set of tags appearing in any signal s. A discrete-event model of
computation has a timed tag system, i.e. the tags are totally ordered. Addition-
ally, T (s) is required to be order isomorphic to a subset of the integers [26].
Intuitively, this says that the time stamps that appear in any behavior can be
enumerated in chronological order.

Causality is a key concept in the design of discrete-event simulators. The
problems center around how to deal with synchronous events (those with iden-
tical tags) and how to deal with feedback loops. Lee defines a suitable metric
to describe the temporal relation of discrete signals:

d(s, s′) = sup{ 1
st

: s(t) �= s′(t), t ∈ T (s) ∩ T (s′)} :=
1
sτ

According to this definition, τ corresponds to the the smallest tag where the
two signals s and s′ differ. In case s and s′ are identical, τ is infinite and
d(s, s′) = 0.

A sequence of events on a signal is called Cauchy sequence in case the
sequence of events converges towards a limit within the metric space, i.e. there
exists for any ε > 0 a natural number n0(ε) such that d(s(tn), s(tm)) < ε for
all n, m ≥ n0(ε). A metric space is complete if every Cauchy sequence of
points in the metric space that converges does so to a limit that is also in the
metric space.

Based on this metric, Lee classifies three different forms of causality.

Definition 7.1 (Causality) A function f : Sm �→ Sn is causal if for all
input signals s, s′ ∈ Sm

d(f(s), f(s′)) ≤ d(s, s′)

Intuitively, two possible outputs differ no earlier than the inputs that produced
them.

Definition 7.2 (Strict Causality) A function f : Sm �→ Sn is strictly
causal if for all input signals s, s′ ∈ Sm

d(f(s), f(s′)) < d(s, s′)

Integrated System-Level Modeling
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Definition 7.3 (Delta Causality) A function f : Sm �→ Sn is delta
causal if there exists a positive real number 0 ≤ δ < 1 such that for all input
signals s, s′ ∈ Sm

d(f(s), f(s′)) < δd(s, s′)

Intuitively, this means that there is a strictly positive number, before any output
of a process can be produced in reaction to an input event. The latter inequality
is recognizable as the condition satisfied by a contraction mapping.

For a complete metric space, the Banach fixed-point theorem [226] states,
that if f : Sn �→ Sn is a contraction mapping, then there is exactly one s ∈ Sn

such that s = f(s).

feedback loops: if the process is functional and delta causal, then the feedback
loop has exactly one behavior (i.e. it is determinate). Additionally, it defines
a constructive way to find the fixed point by means of an iterative evaluation
algorithm, which is indeed implemented in discrete-event simulators.

7.1.3 SystemC Simulation Tag System

kernel [140] implements the following iterative simulation cycle, which corre-
sponds to the iterative nature of the Banach fixed-point theorem. The reader
may refer to Mueller et al. [228] for the operational semantics of the SystemC
language elements.

1 Evaluate Phase From the set of processes that are ready to run, select a
process and resume its execution. The order in which processes are selected
for execution from the set of processes that are ready to run is unspecified.
The execution of a process may generate new events, which are pending
until the update phase. Pending events are reported to the SystemC kernel
by calling the request update() function.

2 Repeat Step 1 for any other processes that are ready to run.

3 Update Phase All pending events generated during the previous evaluate
phase are updated and eventually become active events. Event activation is
reported to the SystemC kernel by calling the notify() function.

4 If there are newly activated events, determine which processes are ready to
run and go to step 1.

5 If there are no more events, the simulation is finished.

Similar to the VHDL simulation paradigm [227], the SystemC simulation

lity and determinism during the composition of processes in the presence of
The Banach fixed-point theorem provides the means to reason about causa-
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6 Else, advance the current simulation time to the time of the earliest pending
timed event.

7 Determine which processes become ready to run due to the events that have
pending notifications at the current time. Go to step 1.

The simulation time does not advance before step 6, hence the alternating
evaluate and update phases are executed at a fixed point in global simulation
time. By that steps 1 – 4 represent the iterative contraction mapping, which
determines the final status of the processes at any point in time. Conceptually,
this evaluate-update synchronization mechanism implements a two dimensional
tag system T = N+ × N+, where N+ denotes the set of all positive natural
numbers. By that, each event e ∈ T ×V carries a time tag t = (t1, t2), which is
composed of an absolute simulation time t1 and a delta delay t2. The ordering
relation between tags t 
 t

′
is defined if t1 < t

′
1 or if t1 = t

′
1 and t2 < t

′
2.

Note, that the delta time is not exposed to the user, but is merely maintained in
the SystemC simulation kernel.

Unfortunately, the N+ × N+ does not guarantee delta-causality, since there
can be an infinite number of tags between two tags. Therefore the user is respon-
sible to prevent from creating feedback-loops, which would result in infinite
execution of simulation steps 1–4. At least the delta delays in the SystemC
simulator are sufficient to ensure determinacy, but not enough to ensure that a
feedback system has a behavior at all.

7.1.4 Cycle-Level Tag Systems

tunity to employ different synchronization schemes on top of the discrete-event
SystemC simulation kernel to ensure deterministic behavior. As one popular
example the two-phase synchronization scheme has been conceived for efficient
modeling and simulation of bus centric SoCs [18]. It is based on the assump-
tion, that all master processes and the bus are synchronized to a single clock.
The master processes generate communication requests to the bus during the
activation of the positive edge of the clock. These requests are gathered by the

Effectively, this two-phase synchronization scheme reduces the MoC to a one
dimensional tag system T = N+. On the one hand side, this restricts the usable
language constructs and requires a clocked register within any feedback loop in
the system. On the other hand, this enables to replace the general event-driven
simulation kernel with a much more simulation speed efficient methodology
specific cycle-driven kernel.

In the context of cycle-level Transaction Level Modeling, there is an oppor-

the requests.
bus, which is then activated at the negative edge of the clock to arbitrate

Integrated System-Level Modeling
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As an important restriction, this two-phase synchronization scheme can only
cope with a single arbitration node between the masters and the slaves. In case of
more complex bus-matrix architectures, one negative clock edge is not enough
to process multiple bus nodes like input-stages, output-stages and the central
bus. In this case, a combinatorial processing of all bus requests is required to
determine the final state of the bus.

7.1.5 Network Simulators

is OPNET [220] , which serves as an design environment for telecommunication
networks. OPNET is based on a real-valued tag system and provides three
hierarchical modeling levels: the macroscopic network level, the local node
level and the internal process level. Synchronous events are only supported
at the network and node level, whereas events at the process level are inserted
into a single FIFO event queue. Events with identical tags result in subsequent
activations of the target process. By that, the state transitions in the process
depend on the non-deterministic sequence in the FIFO queue.

The implicit non-determinism significantly hinders modeling of synchronous
events at the process level, which is essential for the modeling of synchronous
circuits. For this reason, traditional network simulators are not suitable for the
evaluation of Network-on-Chip architectures, which are tightly integrated into
a synchronous hardware context. Therefore, the NoC modeling environment
described in this book is implemented on top of the SystemC simulation kernel.

TSM Summary

provides a very general framework for reasoning about the properties of Models
of Computation. So far, this chapter has recalled basic definitions and major
results to understand the event-driven SystemC simulation kernel with respect
to synchronization, causality and determinism.

In the following, the discussion turns to the timing model underlying the
system-level design of heterogeneous HW/SW multiprocessing systems.

7.2 Reactive Process Network
1

terms of a Reactive Processes Network, which constitutes the starting point for
subsequent architecture mapping. The notation as well as the properties of an

1Please refer to section 6.1 on page 60 for an intuitive introduction on application modeling

A commercial discrete-event simulator in the networking application domain

The Tagged Signal Model developed by E.A. Lee and A. Sangiovanni-Vincentelli

This section formally defines the construction of the application model in
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event-driven simulation are adopted from the Tagged Signal Model formalism.
Additionally, the operational semantics for the manipulation of event tags are
specified in a C-like pseudo syntax.

After a brief definition of common data structures, this section deals with
the definition of a Functional Process, which models the behavior of the user
application. The latter part introduces the Reactive Channels and describes the
construction of the Reactive Process Network as a set of Functional Processes,
which communicate via a set of Reactive Channels.

Common Data Structures
The Reactive Channel as well as the later defined timing manipulation nodes
employ two elementary data structures, which are defined in the following
together with the available access methods. First the FIFO Queue stores data
in First-In-First-Out order.

Definition 7.4 (First-In-First-Out Queue) A FIFO Queue UFIFO
is a set arbitrary data items ui ∈ U and the following access methods:

enqueue() appends a new data item at the end of the list.

dequeue() returns the head-of-list data item and removes it from the list.

length() returns the number of data items in the list.

Apart from the well-known FIFO Queue, the Delay Queue is a specific data
structure for the purpose of projecting events into the future. Events in the
Delay Queue are sorted according to the chronological order of the event tags.
Each tag corresponds to the deadline at which the dequeue operation removes
the respective event from the queue. This concept is inspired by the priority
queue solution for the Pending Event Set (PES) problem [229, 230] in discrete
event simulations [231].

Definition 7.5 (Delay Queue) A Delay Queue UDQ is a set of events
ei ∈ T × V , which are sorted according to their tags. The event tags are
increasing from head to tail, i.e. later deadlines are inserted at the end of the
queue. A delay queue provides the following access methods:

insert() sorts a new event into the Delay Queue according to the chronological order of the
event tags.

readFirst() returns the head-of-list event without removing it from the list.

dequeue() returns the head-of-list event and removes it from the list.

isEmpty() returns true in case the Delay Queue is empty. Otherwise it returns false.

These two data structures are employed in the subsequent definitions of the
timing model.

Functional Process
The Functional Process models the sequential behavior of a certain component
and by that represents the atomic entity in a parallel process network. The

Integrated System-Level Modeling
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Functional Process is constructed from a Communicating Extended Finite State
Machine (CEFSM) modeling a sequential portion of the user application, and
the external interface according to the elementary definitions in section 7.1.1.

Figure 7.2. Functional Process with CEFSM

As depicted in the center of figure 7.2, the user view of a Functional Pro-
cess is described as a reactive Communicating Extended Finite State Machine
(CEFSM). The CEFSM is activated on the arrival of a new input symbol and
responds with a state transition and eventually the generation of one or more
output symbols.

A CEFSM is a 6-tuple (Z, z0, I, f,O,U) with

a finite, non-empty set of explicit states Z
a starting state z0 ∈ Z
a set of input symbols I
a set of output symbols O
a state transition function f , where

f : Z∗ × I �→ Z∗ ×O

a set of variables U = (u1, . . .), which represent the implicit state

Definition 7.6 (Communicating Extended Finite State Machine)
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Z∗ denotes the global state Z∗ = Z ×W(u1)× . . ., where W(ui) denotes the
possible values of variable ui ∈ U .

In the context of this book, the explicit state Z is represented by the actual
process sensitivity, i.e. the subset of input signals triggering the next CEFSM
activation. In the example depicted in figure 7.2, state A is represented by
the sensitivity to input signals sI1, sI2, sI3 and state B is represented by the
sensitivity to input signal sI4.

The state transition function f is further structured into a number of basic
blocks:

Definition 7.7 (CEFSM Basic Block) A CEFSM basic block denotes
the processing and communication associated with a state transition, which is

by a unique start event, the execution of a basic block is not dependent on any
external event.

Since SystemC is used as the host language, the implicit state information
is represented by means of C++ member variables. According to the packet
level modeling paradigm, a single CEFSM captures the behavior of coarse-
grain functional blocks, thus I and O represent Abstract Data Types and U
and f can be of arbitrary complexity, like e.g. a C++ class hierarchy. This
coarse granularity is the key to high simulation speed and modeling efficiency,
but — in contrast to more fine grain FSM based specification languages like
e.g. Esterel — a packet level CEFSM is hardly applicable for RTL synthesis or
formal analysis.

Now a Functional Process is defined as a composition of the external interface
and a CEFSM representing the behavior.

Definition 7.8 (Functional Process) Given a set of n = NI + NO
signals Sn. A Functional Process PFP ∈ Sn is a process given by the 3-tuple
PFP = (SFP,I ,S FP,O, CEFSMFP ) with

a set of NI input signals SFP,I = (si1 , . . . , siNI
)

a set of NO output signals SFP,O = (so1 , . . . , soNO
)

a Communicating Extended Finite State Machine CEFSMFP according to definition 7.6
modeling the behavior of the Functional Process.

In the context of packet level TLM system modeling, the values carried by
the input and output events of any process are constrained to be Abstract Data
Types, i.e. v ∈ VADT .

So far, a Functional Process produces the events on the output signals at ex-
actly the same point in time as the corresponding input event. Thus, a Functional
Process is not strictly causal according definition 7.2.

Integrated System-Level Modeling
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Reactive Channel
The Reactive Channel is the crucial element to achieve strict causality and
determinism for the construction of networks of functional processes. For this
purpose, the Reactive Channel exactly follows the discrete-event simulation
MoC explained in section 7.1.3. Hence, the properties with respect to causality
and determinism of the resulting Reactive Processes Network are inherited from
the two dimensional tag system T = N+ × N+.

The implementation of the Reactive Channel is similar to the sc signal
channels of the SystemC library, which are used for RTL modeling: The Re-
active Channel provides variables to store projected and current values. This
separation of the current and the projected value is required for the delta-cycle
based event synchronization 2:

During an activation of the Functional Process in the evaluate phase of the
simulation cycle, the Functional Process produces new output events. These
events are stored in the projected value of the Reactive Channel. During the
subsequent update phase, the projected value is propagated to the current value.
In the next evaluation phase the consumer process is activated and can read this
current value.

For the sake of modeling efficiency at higher abstraction levels, the Reactive
Channel differs in two aspects from the VHDL like sc signal channel. First, a
Reactive Channel also activates the consumer process in case the same Abstract
Data Type is written again. Instead, writing the same bit to a hardware signal
does not change the logic level and hence does not cause a process activation.

Second, a producing Functional Process may generate more than one output
event during a single activation. In this case, the Reactive Channel temporarily
stores the values in an internal FIFO queue. Later the values are forwarded to
the output signal during the subsequent delta cycles of the SystemC simulation.
Of course hardware signals cannot store any values, so in case of thesc signal
channel multiple events generated during a single process activation overwrite
each other and only the last value is forwarded to the consumer process.

Definition 7.9 (Reactive Channel) Given a set of 2 signalsS2. A Re-
active ChannelPRC ∈ Sn

RC = (sRC,I , sRC

with
one input signal sRC,I ,

one output signal sRC,O ,

a set of state variables URC,projected ⊆ VADT , which store projected values in First-In-
First-Out order according to definition 7.4,

a state variable uRC,current ∈ VADT , which stores the current value,

2Please refer also to section 7.1.3 on page 83

URC,projected, uRC,current, fR

is a process given by the 5-tupleP ,

O,
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a state transition function fRC,activate, which is executed on the arrival of incoming events
and appends the value vI of the respective input event eI to the projected value list:

fRC,activate{
URC,projected.enqueue(vI );
request update();

}
a state transition function fRC,update, which is executed during the update phase of the
SystemC simulation kernel. It assigns the projected value to the current value and creates
an event eO on the output signal:

fRC,update{
ucurrent = Uprojected.dequeue();
eO .notify();
if (Uprojected.length() > 0) { request update(); }

}

As long as the input signal is functional, each event on the input signal eI =
(t,vI) = ((tI1, tI2 I O = (tO, vO) =
((tI1, tI2 + 1), vI), i.e. events are delayed by one delta cycle of the SystemC
simulation kernel. Non-functional input events are delayed by more than one
delta cycle. By that, the composition of a Reactive Process and a set of Reactive
Channels connected to each of the outports establishes a functional and strictly
causal Reactive Process.

A network of Functional Processes connected via Reactive Channels is not
yet sufficient to create a functional model of any embedded functional model.
The concept of an intrinsic activation condition is necessary to model stimuli
generators as well as self activating functional blocks, like e.g. an arbitration
unit.

In this context, the notion of intrinsic activation can be represented by a
self-loop Reactive Delay Channel, where ∆tij captures the time between self-
activating events ei and ej .

Definition 7.10 (Reactive Delay Channel) Given a set of 2 func-
tional signals S2. A Delay Activation Channel PRDC ∈ S2 is a functional
process given by a 4-tuple PRDC = (sI , sO,DRDC , fRDC,activate)

one input signal sI ,

one output signal sO ,

a set of delays DRDC = {∆tdelay,i}, ∆tdelay,i ∈ N+

a state transition function fRDC,activate, which is executed on the arrival of incoming events
and notifies the output event with respect to the specified delay.

fRDC,activate{
eO .notify(∆tdelay);

}

Effectively, for each event on the input signal eI = (tI , vI) = ((tI1, tI2), vI)
the Reactive Delay Channel PRDC produces one event on output signal eO =

), v )produces one event on the output signale

(tO, vO) = ((tI1 + ∆ti, 0), vI), i.e. events ei are delayed by the period ∆ti.

Integrated System-Level Modeling
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Now all required components are defined to construct an application model
in terms of a Reactive Process Network.

As depicted in the example in figure 7.3, the Reactive Process Network
is constructed by connecting the input signals of the Reactive Channels to
the output signals of the Functional Processes and vice versa. The notion of
absolute time is only introduced by the self-loop Reactive Delay Connections,
which realize intrinsic delayed activation. This kind of delayed self-activations
are required to model e.g. workload generators in a test-bench, or TDMA
arbitration modules.

Definition 7.11 (Reactive Process Network) A Reactive Process
Network is a 6-tuple NRPN = (P̄FP , P̄RC , P̄RDC ,MI ,MO,MA), where

P̄FP is a set of Functional Processes PFP according to definition 7.8

P̄RC is a set of Reactive Channels PRC according to definition 7.9

P̄RDC is a set of Reactive Delay Channels PRDC according to definition 7.10

MI is a bijective mapping, that assigns each input signal s ∈ SFP,I of each Functional
Process PFP ∈ P̄FP to the output signal sRC,O of one Reactive Channel PRC ∈ P̄RC ,

MO is a bijective mapping, that assigns each output signal s ∈ SFP,O of each Functional
Process PFP ∈ P̄FP to the input signal sRC,I of one Reactive Connection PRC ∈ P̄RC

MD is a bijective mapping, that assigns the input/output signal pair of a Functional Process
PFP ∈ P̄FP to one output/input signal pair of a Reactive Delay Connection PRDC ∈
P̄RDC

Figure 7.3. Reactive Process Network
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The causal and deterministic behavior of the Reactive Processes Network
in the presence of zero-delay feedback loops is ensured by the Reactive Chan-
nels. These are implemented on top of the like request/update synchronization
scheme, which is provided by the SystemC simulator. Hence, the simulation
semantics are similar to any HDL simulator and therefore intuitive for any user
familiar with hardware modeling experience. Still the user is responsible to
prevent from creating infinite feedback loops in the application model3.

The major purpose of the Reactive Process Network is to specify the pro-
cessing and communication requirements of the application. After this initial
specification, the Reactive Process Network generates the functional events of
the application, which have to be mapped to the physical events of the antici-
pated architecture during the subsequent Virtual Architecture Mapping phase.

7.3 Architecture Model

abstract architecture model. In essence, this mapping is performed by inserting
timing manipulation nodes into the initial Reactive Process Network. These
timing manipulation nodes capture the impact on performance of the anticipated
target architecture executing the application. The timing manipulation nodes
are closely related to the aspects of Virtual Architecture Mapping, which are
introduced in section 6.2: specialized nodes handle processing delay annotation,
virtual processing units, and communication architectures. The remainder of
this section formally defines the semantics of each of the timing manipulation
nodes.

7.3.1 Processing Delay Annotation

threaded processing element can be characterized with two timing parameters:
First, the processing delay ∆td describes the time between the arrival event and
the event(s) produced in reaction to this arrival. Second, the initiation interval
∆ti describes the minimum time between two consecutive arrival events.

As illustrated by the examples in figure 7.4, initiation intervals and processing
delays are annotated to the externally visible events of the CEFSM representing
the behavior of the Functional Process. More precisely, the timing has to be
annotated with respect to the activating event of a CEFSM basic block4.

According to this rule, the examples a) – c) in figure 7.4 represent legal tim-
ing annotations. In contrast, the state transition of example d) is not conform

3Please refer to section 7.1.3 on page 83
4according to definition 7.7 on page 88

Starting from the application model, this section describes the creation of an

Recalling the discussion in section 6.2.1, the execution of a task on a single
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Figure 7.4. CEFSM Timing Annotation Examples

with the definition of a CEFSM building block, since the response represents
an intermediate input event, which requires the insertion of an additional state
between the request and the response event. Hence also the timing annotations
are illegal: Both ∆t1 and ∆t2 try to define a temporal relation between events
from different basic blocks. Intuitively, ∆t1 and ∆t2 are no proper timing an-
notations, because the time between the request and response events depends
on the system context. Example c) resolves this the erroneous annotation by
inserting an explicit state.

As depicted in the example in figure 7.5, an existing Reactive Process Net-
work is augmented with timing annotations by inserting Initiator Nodes at the
output signals and Target Nodes at the input signals of the Functional Processes
respectively. The delay caused by the Initiator Nodes already ensures causal
and deterministic behavior, so the Reactive Channels are no longer necessary.

Initiator Node. An Initiator Node is connected to each of the output signals
of a Functional Process and implements the annotation of a processing delay.
Similar to the Reactive Channel, the Initiator Node internally maintains a list of
all projected events, where all of the output events generated by the Functional
Process are temporarily stored. As a major difference, the events are not stored
in a FIFO Queue, but sorted into a Delay Queue in chronological order of the
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Figure 7.5. Reactive Process Network with Timing Annotation Nodes

projected tags. The latter is calculated by adding the respective delay annotation
to the current tag.

Definition 7.12 (Initiator Node) Given a set of 2 functional signals
S2. An Initiator Node PIN ∈ S2 is a functional process given by the 6-tuple
PIN = (sIN,I , sIN,O,UIN, projected,DIN , fIN,activate, fIN,update, ) with

one input signal sIN,I ,

one output signal sIN,O ,

a Delay Queue UIN,projected ⊆ T × VADT

projected events according to the chronological order of the event tags,

a set of delays DIN = {∆tIN,delay,i}, ∆tIN,delay,i ∈ N+,

one state transition function fIN,activate, which is executed on the arrival of incoming
IN,activate

projected events and eventually schedules the activation of the fIN,update function.

fIN,activate{
// activated on the arrival of new events eI = (tI , vI) = ( (tI1, tI2), vI)
enew = ( (tI1 + ∆tIN,delay, 0), vI);
UIN,projected.insert(enew);
if ( UIN,projected.length() == 1 ) { schedule update function(enew.t); }

}

one state transition function fIN,update

the tag of the first event in the Delay Queue. fIN,update

forwards it to the output signal, and resumes at the tag of the new head of list event.

fIN,update{
eO = UIN,projected.getFirst();
if ( UIN,projected.length() > 0 ) {

events. f first calculates the new tag, inserts the respective event into the list of

according to definition 7.5, which stores

, which is executed when the simulation time reaches
removes the first event from the list,
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ehead = UIN,projected.readFirst();
schedule update function(ehead.t);

}
}

Target Node. The Target Node is connected to an input signal of a Functional
Process and implements the annotation of an initiation interval. In essence, the
Target Node guards the activation of the process against the arrival of incoming
events depending on the current state of the processing element. In case the
processing resource is free, the event is immediately forwarded to the attached
Functional Process and the node internal state changes to busy. On the other
hand, in case the resource is already busy at the arrival of a new event, the
incoming event is delayed until the resource is free.

Definition 7.13 (Target Node) Given a set of 2 functional signals S2.
A Target Node PTN ∈ S2 is a functional process given by the 7-tuple PTN =
(sTN,I , sTN,O,UTN,pending, uTN,busy,DTN , fTN,activate, fTN,update)

one input signal sTN,I ,

one output signal sTN,O ,

a FIFO Queue UTN,pending ⊆ T ×VADT

events in First-In-First-Out order,

a boolean state variable uTN,busy , which is initialized with false,

a set of initiation intervals DTN = {∆tTN,init,i}, ∆tTN,init,i ∈ N+

a state transition function fTN,activate, which is executed on the arrival of incoming events,
and appends the value of the incoming event to the FIFO Queue. In case the processing
element is currently not busy, the fTN,update function is called immediately.

fTN,activate{
UTN,pending .enqueue(eI );
if (uTN,busy == false) { schedule update function(); } }

one state transition function fTN,update, which is executed when the current initiation in-
terval is ended. fTN,update

signal, calculates the next initiation interval and resumes until the next initiation interval is
ended.

fTN,update{
if (UTN,pending .length() == 0) {

uTN,busy = false;
}
else {

eO = UTN,pending .getFirst();
tinit = tnow + ∆tTN,init,i

uTN,busy = true;
schedule update function(tinit);

}
}

according to definition 7.4 which stores pending

removes the first event from the list, forwards it to the output
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Figure 7.6 depicts an example composition of a single timing annotated
Functional Process together with the internal structure of the timing annotation
nodes. Looking from the viewpoint of the outer signals sTN,I and sIN,O,
the timing behavior of the composition corresponds to the execution of the
Functional Process on a physical processing element.

Figure 7.6. Functional Process with Timing Annotation Nodes

The timing annotated Reactive Process Network already captures SoC ar-
chitectures, which exclusively employ single threaded processing elements and
point to point connections. This expressiveness is usually sufficient for model-
ing the data-plane processing of high performance applications like backbone
packet switches [215] or 3D graphic processors [218].

So far, it is not possible to modele the performance of shared processing
elements, which cuncurrently execute multiple processes: the timing annotation
nodes are restricted to the timing characteristics of a single Functional Process.
Instead, interleaved task execution on multi-threaded Virtual Processing Units
requires a joint consideration of all processes mapped to a single VPU.

7.3.2 Virtual Processing Unit Timing Model

execution of functional processes on a Virtual Processing Unit (VPU). VPUs are
a generalized representation of multi-threaded processing elements, and cap-
ture the notion of both hardware multi-threading (HW-MT) as well as software
operating systems (SW-OS). In the considered context of abstract performance
modeling, the difference between both implementation choices is merely ex-
pressed by the delay penalty of a task swap5.

5Please refer to section 3.2.3 on page 19

This section extends the timing model towards the modeling of interleaved

Integrated System-Level Modeling
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In conformity with the timing annotation nodes defined in the previous sec-
tion, the processing delay characteristics of an individual Functional Process
are still specified using delay and initiation interval annotations. Now the VPU
timing model provides means to express the timing dependencies caused by
task-level resource sharing of processing elements.

Figure 7.7. Timing Annotated Process Network with PFP,1 and PFP,3 mapped to a VPU

Similar to the Target and Initiator Nodes, the VPU Node a) guards the activa-
tion of the associated Functional Processes against the arrival of new events and
b) delays the produced events. In contrast to the individual timing annotation
nodes, the VPU Node controls all input and output signals of all Functional
Processes mapped to the considered VPU. As depicted in the example in figure
7.7, the individual Target and Initiator Nodes of the Functional ProcessesPFP,1

and PFP,3 are removed. Instead the input and output signals of the processes
mapped to a VPU are directly connected to the VPU Node PV PU .

In addition to the initiation intervals and processing delays of the individual
Functional Processes, the VPU node also takes the delay penalty of a task
swapping ∆tV PU,swap and task preemption ∆tV PU,preemption into account.
The latter captures the fact, that a high priority process might replace a low
priority process. In this case the initiation interval of the replacing process has
to be added to the processing delay of the replaced process6

As a first step from the idealized point-to-point communication of the Re-
active Process Network towards physical communication resources, the VPU

6Please refer to the example in section 6.2.2 on page 66
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Node distinguishes between a functional interface and an communication inter-
face. The functional VPU interface is complementary to the associated Func-
tional Processes such that every signal of a functional VPU interface sV PU,F is
connected one-to-one to a signal of a Functional Process. On the other hand,
the communication interface corresponds to the physical ports of the modeled
processing element. The signals of the communication VPU interface sV PU,C

are connected to the external system context.

Definition 7.14 (VPU Node) Given a set of n = NCI +NCO +NFI +
NFO+ functional signals Sn. A VPU Node PV PU ∈ Sn is a process given by
the 8-tuplePV PU = (SV PU,I , SV PU,O, EV PU, Internal, UV PU, pending, U

,UV PU , DV PU,swap, fV PU )
a set of NI = NCI + NFI input signals SV PU,I = SV PU,CI ∪SV PU,FI , where SV PU,CI

denotes a set of input signals connected to the on-chip communication network andSV PU,FI

denotes a set of input signals connected to the associated functional process.

a set of NO = NCO + NFO output signals SV PU,O = SV PU,CO ∪ SV PU,FO , where
SV PU,CO denotes a set of output signals connected to the on-chip communication network
andSV PU,FO denotes a set of output signals connected to the associated functional process.

a set of two internal events EV PU,Internal = { eup update, edown update}
a FIFO Queue UV PU,pending

communication input signals SV PU,CI ,

a Delay Queue UV PU,projected

at the functional input signals SV PU,F

additional delays due to task preemption and swapping,

a set of internal variables UV PU = { ubusy, uprio, ∆tswap}, where

– a state variable ubusy , which is initialized with false

– a variable uprio retains the priority of the active process

a set of swapping delays Dswap = {∆tswap,i}, ∆tswap,i ∈ N+

a set of state transition functions fV PU :

– fV PU,up activate sensitive to events on the signals SV PU,CI connected to the commu-
nication network

– fV PU,up update sensitive to the internal event eup update

– fV PU,down activate sensitive to the events on the signals SV PU,FI connected to the
associated functional process

– fV PU,down update sensitive to the internal event edown update

The internal structure of the VPU Node is depicted in figure 7.8. The oper-
ational semantics of the VPU functions are individually defined and explained
in the following paragraphs. Recall that according to the packet-level TLM
paradigm all values are represented as Abstract Data Types (ADTs). In the con-
text of the VPU mapping, each ADT provides a number of predefined members
to store the priority, delay and state of the actual event. The tag and the value
fields of the event are accessible by the point operator, i.e. ei.v.prio denotes
the priority field of event ei.

V PU,

projected

according to definition 7.4, which stores event arriving at the

according to definition 7.5, which delays events arriving
to account for annotated delays as well as the for
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Figure 7.8. VPU Node

Up-Stream Event Processing

The

’

up-stream’ path refers to the processing of events, which arrive at the com-
munication input signalsSCI and are forwarded to the functional output signals.
Similar to the Target Node, new events are first inserted into the UV PU,pending

queue of pending events by the fV PU,up activate function. In consideration of
the current VPU state, the events are forwarded to the target Functional Process
by the fV PU,up update function.

The fV PU,up activate function always inserts the arriving events into the FIFO
queue UV PU,pending. In case of preemption or idle state, this method addition-
ally activates fV PU,up update to update the internal state of the VPU Node.

fV PU,up activate{
UV PU,pending.insert(eV PU,AI);

if((uprio < eV PU,AI .v.prio) ‖ (!ubusy)))

{eup update.notify(); }
}

The function fV PU,up update handles the tag manipulation of both pending
events for activation of the mapped functional processes as well as outgoing
events generated by the processes.

0 fup update{
1 remove finished processes(UV PU,pending);

2 if(UV PU,pending.notEmpty()){
3 if(etmp = schedule process(UV PU,pending)){
4 if(etmp.v.state == init){
5 eV PU,FO = etmp;
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6 eV PU,FO.notify(∆tswap);

7 etmp.v.state = busy;

8 etmp.t = tnow + ∆tinit + ∆tswap;

9 uinit = true;

10 }
11 if(!ubusy){
12 ubusy = true;

13 uprio = etmp.v.prio;

14 }
15 else{
16 if((uprio < etmp.v.prio) ‖ (uinit)){
17 // preemption

18 for((all events inUV PU,pending )&&(ubusy == true))

19 event.t += ∆tinit + ∆tswap;

20 for(all events inUV PU,projected)

21 event.t += ∆tinit + ∆tswap;

22 uprio = etmp.v.prio;

23 uinit = false;

24 }
25 else{ // resume functional process

26 for((all events inUV PU,pending )&& (ubusy == true))

27 event.t += ∆tswap;

28 for(all events inUV PU,projected)

29 event.t += ∆tswap;

30 ∆tinit = etmp.t − tnow;

31 uprio = etmp.v.prio;

32 }
33 } // end if(!ubusy)

34 eup update.notify(∆tinit + ∆tswap);

35 }
36 }
37 else{
38 ubusy = false; uprio = −1;

39 } // end if(UV PU,pending.notEmpty())

40 }

On every execution of fV PU,up update with a non-empty priority queue, the
VPU checks whether a new functional process needs to be scheduled from the
set of pending events in the pending queue UV PU,pending (line 3). In case an
event has been scheduled for the first time (condition in line 4 is true), the
delayed activation of the functional task takes the penalty for task swapping
into account (line 6).

Integrated System-Level Modeling



Unified Timing Model 101

The functional process is activated and the VPU performs the required timing
manipulation of the events. The value ∆tinit denotes the individual initiation
interval according to definition 7.13 of the activated process. At the same time
the new events generated during the process activation are inserted into the
delay queue UV PU,projected. These events remain inside this queue until their
tag is due. As depicted in figure 7.8, sending of the projected events is handled
by the functions fV PU,down update and fV PU,down activate.

Task preemption occurs when the current task has a lower priority than the
selected task. In this case all generated events in the delay queueUV PU,projected

and tags of already activated processes in the pending queue UV PU,pending have
to be increased (lines 18 – 21). The preemption time is calculated from the
initiation interval ∆tinit of the displacing processes and the required swapping
time ∆tswap.

The tag incrementation of already generated events in case of task resuming
is performed in lines 26 – 29. Finally the next activation of fV PU,up update

occurs after the current task is finished, i.e. after the initiation time of the active
process ∆tinit and the swapping penalty ∆tswap (line 34). If no events are
pending in the priority queue, the VPU switches to idle state and waits for the
arrival of new events (line 38).

Down-Stream Event Processing

The

’

down-stream’ path forwards events from the functional input signals to
the architectural output signals. Before these events are delayed by the Initiator
Nodes to satisfy the processing delay of the respective functional process. Now
this task is performed by the VPU Node to account for further delays in case of
take task swapping and preemption. The individual delay annotation ∆tdelay of
the event arriving at the functional input signals SFI is accessible as a specific
field of the event value eV PU,FI .v.delay.

After insertion of new events into the delay queue UV PU,projected by the
fV PU,down activate function, the events are further delayed in case of preemption
(lines 21/22 and 28/29 of fV PU,up activate). Naturally the activate and update
function in the down-stream closely resemble their counterpart in the Initiator
Node definition 7.12.

fV PU,down activate{
// activated on new events eI = eV PU,FI

enew = eV PU,FI ;
enew.t = tnow + eV PU,FI .v.delay;
UV PU,projected.insert(enew);
ehead = UV PU,projected.readFirst();

}

function and forwarded to the communication output signals. In case of VPU
pdateuOnexpirationof theirfinaldeadline, eventsaredequeuedby thefVPU,down



102

internal communication, events are immediately inserted into the UV PU,pending

list.

fV PU,down update{
// activated when simulation time reaches head of list tag
eV PU,CO = UV PU,projected.getFirst();
ehead = UV PU,projected.readFirst();
if ( UIN,projected.length() > 0 ) { schedule update function(ehead.t); }

}

Note, that elegance of the VPU timing scheme is founded on the principle,
that events are always projected into the future and do not become effective
before the correct point in time. By that, the Functional Processes are always
activated at the correct point in time and based on the correct input data. The
correctness is ensured by definition 7.7 of CEFSM building blocks, which
enforces independence from external events during the execution of a basic
block. In other words, preemption influences neither the behavior nor the
individual timing of any process activation. By that, the VPU timing scheme
averts the need for complex and expensive roll-back mechanisms.

7.3.3 Communication Timing Model

idealized point-to-point communication. This section extends the timing model
with Communication Nodes, which capture the impact on performance of phys-
ical on-chip communication architectures.

In essence, the total delay ∆tCN any type of communication architecture
imposes on the transactions can be divided into three components: First, the
pending time∆tCN,pending is the time spent for waiting until the communication
resource is available. ∆tCN,pending depends on the number and bandwidth
of existing resources as well as on the current amount of events competing
for the resources. Second, ∆tCN,next arbitrate denotes the duration until the
calculation of the grant for the next transaction starts. Last, ∆tCN,transfer is
the time spent for the transfer of the data, which is entirely determined by the
size of the data and the bandwidth of the resource.

As depicted in figure 7.9, the internal structure of a Communication Node
somewhat resembles a merged Target and Initiator Node. Indeed, the transfer
delay ∆tCN,transfer corresponds to the processing delay parameter ∆tIN,delay

and ∆tCN,next arbitrate corresponds to the initiation interval ∆tTN,init. As a
major difference, the Communication Nodes issues two output events for every
incoming event, since the beginning as well as the end of a transfer may be of
importance for the consuming process.

The close analogy of the Communication Node and the Target/Initiator Nodes
is of course little surprising: On this high level of abstraction, the impact on

Until now, the modeling of the communication architecture is restricted to
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Figure 7.9. Communication Node

performance of a communication node is not different from a processing ele-
ment. The definition of a dedicated Communication Node is justified by the
observation, that the impact of a certain type of communication architecture is
captured by a specific arbitration function.

As discussed later in chapter 8, this factorization enables the creation of a
unified framework, which can be efficiently parameterized to model any kind
of communication architecture [24]. Despite the simplicity of the basic model,
the implementation of the arbitration function fCN,arbitrate and the calculation
of the actual timing parameters ∆tCN,next arbitrate,i and ∆tCN,transfer,i can
become very demanding for complex real-world communication architectures.

According to the discussion in section 6.1.3, both start-of-transfer (sot) event
and end-of-transfer (eot) event are important in the context of packet-level data
modeling. Hence both events are generated by the fCN,update function. The
actual type of event is marked in the current value v = e.v ∈ VADT as a
dedicated field v.event type of the Abstract Data Type. Additionally, in general
more than one consumer process can be connected to the output signals of the
Communication Node. The target process is identified by an additional field
v.target of the ADT.

Definition 7.15 (Communication Node) Given a set of n = NI +NO
functional signalsSn. A Communication NodePCN ∈ Sn is a process given by
the 9-tuple. PCN = (SCN,I ,SCN,O,UCN,pending ,UCN,projected,UCN,transfer,
uCN,arbiter busy , DCN,next arbitrate, DCN,transfer, f̄CN )

a set of input signals SCN,I ,

a set of output signal SCN,O ,

a FIFO queue UCN,pending ⊆ T ×VADT according to definition 7.4, which stores pending
events in First-In-First-Out order,
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a Delay Queue UCN,projected ⊆ T × VADT according to definition 7.5, which stores
projected events according to the chronological order of the event tags,

a Delay Queue UCN,transfer ⊆ T × VADT according to definition 7.5, which stores
projected events according to the chronological order of the event tags,

a boolean state variable uCN,arbiter busy , which is initialized with false,

a set of arbitration delaysDCN,next arbitrate = {∆tCN,next arbitrate,i},
∆tCN,next arbitrate,i ∈ N+,

a set of transfer delays DCN,transfer = {∆tCN,transfer,i}, ∆tCN,transfer,i ∈ N+,

a set of state transition functions f̄CN = (fCN,activate, fCN,arbitrate, fCN,transfer,

fCN,update).fCN,activate is defined according to fTN,activate in definition 7.13:

fCN,activate{
// activated on arrival of new event eI on one of the input signals SCN,I

UCN,projected.enqueue(eI );
if (uCN,arbiter busy == false) { schedule arbitrate function(); }

}

fCN,transfer issues start-of-transfer (sot) events7, calculates end-of-transfer (eot) event
tags and inserts events into the transfer queue

fCN,transfer{
// activated when simulation time reaches head of list tag
while (UCN,projected.readFirst().t == tnow) {

etmp = UCN,projected.getFirst();
etmp.v.event type = sot;
eO[etmp.v.target] = etmp; // notify sot event
etmp.t = tnow + ∆ttransfer // calculate eot tag
UCN,transfer .insert(etmp);

} // end while
}

fCN,update issues end-of-transfer (eot) events8:

fCN,update{
// activated when simulation time reaches head of list tag
while (UCN,transfer .readFirst().t == tnow) {

etmp = UCN,projected.getFirst();
etmp.v.event type = eot;
eO[etmp.v.target] = etmp; // notify eot event

} // end while
}

As defined below, fCN,arbitrate calculates the timing parameters and is there-
fore specific for the type of the communication architecture.

7multiple events can be issued simultaneously in case of parallel communication resources
8multiple events can be issued simultaneously in case of parallel communication resources
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In the following the respective specialization of the arbitration function for
point-to-point link, bus and crossbar communication is defined together with
the calculation of timing parameters. In the examples, the size of the current
value v = e.v ∈ VADT is accessible as a dedicated field v.size of the Abstract
Data Type. Note, that the following selection of timing calculation functions
is by far not exhaustive and merely captures the basic types of communication
architectures, but the modular structure enables efficient creation and modifi-
cation of further communication nodes.

Link Node

The point-to-point Link Node models transactions between a single source and
a single destination module over an exclusive connection. Because of the FIFO
semantics of the pending queue UCN,pending , this Link Node effectively corre-
sponds to a FIFO channel. The available bandwidth of the FIFO connection is
configured by means of a bit width and a clock period parameter.

Definition 7.16 (Link Node) A Link Node PLink is a specialization of
the Communication Node according to definition 7.15 with NI = NO = 1.

fLink,arbitrate{
// activated when new event arrived or next arbitrate interval is ended
if (UCN,pending .length() == 0) {

uCN,arbiter busy = false;
}
else {

etmp = UCN,pending .getFirst();
∆tCN,transfer = �etmp.v.size/bitwidth� ∗ clock period;
etmp = ( (tnow, 0), vtmp);
UCN,projected.insert(etmp);
tnext arbitrate = tnow + ∆tCN,transfer

uCN,arbiter busy = true;
schedule arbitrate function(tnext arbitrate);

}
}

Bus Node

The Bus Node models data exchange over a shared bus medium. This node can
be further specialized towards priority or TDMA like bus arbitration schemes
by different implementations of the select() algorithm, which determines the
grant from the list of pending requests. The priority based bus arbiter simply
selects the request with highest priority, whereas the TDMA arbiter is based on
a static allocation table.

Similar to the Link Node, the Bus Node is configured by means of a bit width
and a clock period parameter to determine the duration of the transaction. Ad-
ditionally, the calculation of the next grant may be inflicted with an arbitration
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penalty ∆tarbitration. The example below models a pipelined bus architecture
i.e. the arbitration is performed in parallel with the ongoing transfer to hide the
arbitration delay.

Definition 7.17 (Bus Node) A Bus Node PBus is a specialization of the
Communication Node according to definition 7.15.

fBus,arbitrate{
// activated when new event arrived or next arbitrate interval is ended
if (UCN,pending .length() == 0) {

uCN,arbiter busy = false;
}
else {

etmp = UCN,pending .select();
∆tCN,transfer = �etmp.v.size/bitwidth� ∗ clock period;
tstart of transfer = tnow + ∆tCN,arbitrate

etmp = ( (tstart of transfer, 0), vtmp);
UCN,projected.insert(etmp);
tnext arbitrate = tnow + ∆tCN,transfer − ∆tCN,arbitrate

uCN,arbiter busy = true;
schedule arbitrate function(tnext arbitrate);

}
}

Crossbar Node

The Crossbar Node models on-chip network architectures, which are able to
perform more than one transaction at the same time. Similar to the Bus Node,
the Crossbar Node can be specialized to different arbitration algorithms like e.g.
static, weighted and un-weighted arbitration by implementing of the select()
method accordingly. The Crossbar Node maintains an internal NO × P data
structure Ufifo, which queues requests per destination module and per priority
in a FIFO queue according to definition 7.4. For every arbitration interval, the
select() algorithm generates a NO ×P grant matrix G from the head-of-line
NO × P snapshot matrix S of the queues. Since the packet size is assumed to
be fixed, ∆tCN,transfer in this case is a constant parameter.

Definition 7.18 (Crossbar Node) A Crossbar NodePCrossbar is a spe-
cialization of the Communication Node according to definition 7.15.

fCrossbar,arbitrate{
// activated when new event arrived or next arbitrate interval is ended
if (UCN,pending .length() == 0) {

uCN,arbiter busy = false;
}
else {

while (UCN,pending .length() > 0) {
etmp = UCN,pending .dequeue();
Ufifo[etmp.v.target][etmp.v.prio].enqueue(etmp);
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}
tstart of transfer = tnow + ∆tCN,arbitrate

S = generate hol snapshot(Ufifo);
G = select(S);
for (i = 0; i < NO; i + +) {

for (j = 0; j < P ; j + +); {
if (G[i][j] == true) {

etmp = Ufifo[i][j].dequeue();
etmp = ( (tstart of transfer, 0), vtmp);
UCN,projected.insert(etmp);

} // end if
} // end for j

} // end for i
tnext arbitrate = tnow + ∆tCN,transfer − ∆tCN,arbitrate

uCN,arbiter busy = true;
schedule arbitrate function(tnext arbitrate);

}
}

7.3.4 Architecture Process Network

in terms of an Architecture Process Network as depicted in figure 7.10.

Figure 7.10. Architecture Process Network

An Architecture Process Network is successively constructed from a Reactive
Process Network according to definition 7.11 by inserting Initiator and Target
Nodes for the mapping onto single-threaded processing elements, inserting
VPU Nodes onto multi-threaded processing elements, and inserting Network

Now all necessary ingredients are available to construct an architecture model
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Nodes to model the communication architecture. Intuitively, the insertion of
the timing annotation nodes hooks the functional events to the architectural
resources.

AP
¯
FP , P̄A,P̄PC PE,I,MPE,O,MCN,I,

MCN,O ,where

P̄FP is set of Functional Processes according to definition 7.8.

P̄A is set of Architecture Nodes PA ∈ {PTN ,PIN ,PV PU ,PCN},

MPE,I is a bijective mapping, that assigns the input signals s ∈ SFP,I of each Functional
Process PFP ∈ P̄FP either to the output signal sTN,O of a Target Node PTN or to one
functional output signal s ∈ SV PU,FO of a VPU Node PV PU

MPE,O is a bijective mapping, that assigns the output signals s ∈ SFP,O of each Functional
Process PFP ∈ P̄FP either to the input signal sIN,I of an Initiator Node PIN or to one
functional input signal s ∈ SV PU,FI of a VPU Node PV PU

MCN,I is a bijective mapping, that assigns the input signals s ∈ PCN,I of each Commmu-
nication Node PCN ∈ P̄A either to the output signal sIN,O of an Initiator Node PIN or to
one communication output signal s ∈ SV PU,CO of a VPU Node PV PU

MCN,O is a bijective mapping, that assigns the output signals s ∈ PCN,O of each Comm-
munication Node PCN ∈ P̄A either to the input signal sTN,O of an Target Node PTN or
to one communication input signal s ∈ SV PU,CI of a VPU Node PV PU

7.4 Performance Metrics

evaluate the quality of the modeled application-to-architecture mapping. Be-
sides meeting the system level performance requirements, the quality of a map-
ping decision is also manifested in a well balanced distribution of the processing
and communication workload imposed on the architectural components. The
system architect has to avoid bottlenecks to sustain application performance
requirements. On the other hand, poor utilization has a needless negative im-
pact on the cost. This section defines the principal performance and utilization
metrics, which can be derived from the timing model.

Naturally, the values of the metrics have to be statistically aggregated during
the execution of the simulation, otherwise the amount of data would prevent
from any interpretation of the results.

Definition 7.20 (Statistic Aggregation) The statistic aggregation
M̃ of a Metric M with N Values M = {m1, . . . , mN} is a 4-tuple M̃ =
(Mmin, Mmax, Mavg, hM ) with

the minimum value Mmin = minmi∈M(mi),

the maximum value Mmax = maxmi∈M(mi),

the average value Mavg =

∑
mi∈M mi

N
,

= (P
)

M

The major purpose of the Virtual Architecture Mapping methodology is to
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the frequency distribution fM : (Mmin, . . . , Mmax) �→ N+ with hM (mj) = ‖{mi ∈
M | mi = mj}‖

annotation nodes, the VPU node and the communication nodes respectively.
Additionally, a number of aggregated system level metrics are collected across
multiple timing nodes. In all definitions ttotal denotes the total simulation time
and N denotes the total number of events on the considered signal.

7.4.1 Timing Annotation Metrics

timing parameters ∆̃tdelay and ∆̃tinit provide insight to the performance of the
considered Functional Process and the required timing budget. Recalling that
the initiation interval represents the busy periods of a processing element, the
utilization can be derived from the accumulated busy periods:

UPE of a single-threaded processing element denotes the ratio of the summa-
rized initiation intervals and the total simulation time:

UPE =
∑N

n=1 ∆tinit,n

ttotal

In addition to the above performance and utilization metrics, the Target Node
enables the detection of bottlenecks. In case the capacity of the anticipated pro-
cessing element is not sufficient, arriving events are not consumed and therefore
stored in the FIFO queue. Hence, the number of pending events nPE,pending(t1)
waiting in the FIFO queue at a certain point in time t1 reflects the current load
situation.

Definition 7.22 (Processing Element Pending Queue Length)
The Pending Queue Length nPE,pending(t1) denotes the number of projected
events at time t = t1:

npending(t1) = UTN,projected.length()

Correlated to the number of pending events, the consideration of the pending
time of events is a significant metric for the identification of bottlenecks.

Definition 7.23 (Processing Element Pending Time) The pend-
ing time of an event e denotes the difference between the tags of the event
arrival eTN,I .t at the input signal sTN,I and the tag of the respective event at
the output signal:

∆tPE,pending(e) = eTN,O.t − eTN,I .t

The following subsections define the metrics, which are derived from the

Already the statistic aggregation of the atomic Initiator and Target Node

Definition 7.21 (Processing Element Utilization) The utilization
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Obviously, high average values in the statistic aggregation(s) ñPE,pending

and/or ∆̃tPE,pending indicate a permanent bottleneck situation. In consequence,
the system architect might either tighten the processing budged allocated for
consuming process or relax the budget of the associated producing process(es).

7.4.2 Virtual Processing Unit Metrics

previous section, the following VPU metrics enable the investigation of shared
processing resources. Again, the utilization and the bottleneck situation are of
major interest for the system architect to evaluate the considered application-
to-platform mapping.

the ratio of the sum of all process busy times and the overall simulation time:

UV PU =
P∑

p=1

UPE,p =
∑P

p=1

∑Np

n=1 ∆tinit,n

ttotal

where P denotes the number of processes mapped to the VPU and Np denotes
the number of activations of process p.

In analogy with definition 7.23, the VPU pending time constitutes a signifi-
cant metric for a bottleneck situation in the shared processing element.

eV PU,CI .t at the communication input signal sV PU,CI and the tag of the re-
spective event at the functional output signal sV PU,FO:

∆tV PU,pending(e) = eV PU,CI .t − eV PU,FO.t

In order to identify the optimal scheduling algorithm and priority scheme
for a considered processing element, the impact of preemption needs to be
investigated.

lay ∆tV PU,preemption denotes the difference between the original and the ef-
fective due time of an event arriving at a functional input signal sV PU,FI :

∆tV PU,preemption = eV PU,CO.t − (eV PU,FI .t + eV PU,FI .v.delay)

In order to efficiently evaluate the scheduling algorithm, the individual preemp-
tion delays are aggregated for activating events of a specific task or for all tasks
of a specific VPU.

In addition to the individual timing annotation metrics introduced in the

Definition 7.24 (VPU Utilization) The VPU utilizationUVPU denotes

VPU, pending

Integrated System-Level Modeling

Definition7.25 (VPUPending Time) TheVPUPendingTime∆t
of an event e denotes the difference between the tags of the event arrival

Definition 7.26 (VPU Preemption Delay) The VPU Preemption De-
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7.4.3 Communication Architecture Metrics

measured in terms of throughput and latency.

Definition 7.27 (Throughput) The maximum throughput TCN,max is
statically determined by the configuration of the communication resource:

TCN,max =
bitwidth

clock period

This upper bound is hardly reached in real systems. Instead the system
architecture is often designed to keep the utilization of the communication
resources significantly below 100% to minimize contention. Otherwise the real-
time behavior of the application cannot be guaranteed. As discussed before,
this over-design can only be avoided by quality of service capabilities in the
communication nodes.

Definition 7.28 (Communication Latency) The communication la-
tency lCN of a single transaction corresponds to the delay between starting and
completion events:

lCN = eCN,O.t−eCN,I .t = ∆tCN,pending+∆tCN,arbitrate+∆tCN,transfer

where in analogy to definition 7.23 ∆tCN,pending denotes the time the request
resides in the pending queue UCN,pending .

The individual latency values can be aggregated with respect to different
parameters depending on the current subject of investigation:

Node Latency Ln denotes the aggregated latency values of all transactions
on a single communication node:
Ln = l̃CN,n , with lCN,n = {lCN |node = n}

Quality of Service Ln,p denotes the aggregated latency for transactions with
a specific priority value:
Ln,p = l̃t,n,p , with lt,n,p = {lCN |node = n ∧ prio = p}

The comparison of Quality of Service related latencyLn,p metrics highlights
the ability of a specific node to separate different service classes. This is of
particular interest in the context of more complex on-chip networks.

7.4.4 Application Metrics

requirements of the application. For this purpose, the system architect usu-
ally monitors a concise set of system level performance metrics to evaluate the

The performance of any type of communication architecture is primarily

The primary goal of system level design is to meet the overall performance
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quality of the platform architecture and application mapping. This system level
metrics can be considered as either a selection or a composition of the archi-
tecture level performance metrics defined in the previous sections.

time unit at the system boundaries. For example the throughput of the Inter-
net Protocol packet processor is measured in terms of number of forwarded IP
packets.

ture level latencies, which taken together define a path of the application events
through the system architecture. In analogy to the transistor level world, the
critical path determines the end-to-end application latency.

7.5 Summary

model for architecture exploration and task partitioning of arbitrarily complex
multi-processor platforms.

tended Finite State Machines, which capture the coarse-grain functionality, the
timing characteristics and the task level parallelism of the application. The ap-
plication level events exposed by the timing annotated CEFSMs are refined to
architecture level events by a set of timing manipulation nodes for processing
delay annotation, multi-threaded processing elements and on-chip communi-
cation.

the application tasks, this timing model enables the rapid exploration of the
anticipated architecture in the context of the given application.

The Application Throughput usually corresponds to the number of events per

The Application Latency corresponds to the concatenation of a set of architec-

As a major contribution of this book, this section defines a unified timing

Integrated System-Level Modeling

Since the mapping onto the timing manipulation nodes is transparent for

Application tasks are represented in terms of timed Communicating Ex-



Chapter 8

MP-SOC SIMULATION FRAMEWORK

After the introduction of the major concepts and the formal derivation of the
underlying timing model in the previous chapters, the discussion now turns to
the tool related aspects of MP-SoC platform modeling and exploration. The
following sections individually treat on-chip communication modeling, virtual
processing units and associated visualization tools.

8.1 The Generic Synchronization Protocol
As already motivated in section 6.1.3, a major feature of the NoC framework

is the orthogonalization of the communication services and the communication
architecture. By that all user modules communicate through the use of a uni-
fied protocol, which is agnostic of any architectural aspects. In particular, the
protocol is independent of

the interface specification, e.g. a specific bus protocol,

the interconnection scheme, i.e. the protocol is not biased towards point-to-
point, bus, or router based communication nodes,

the topology of the communication network.

The term synchronization interface indicates, that the protocol provides
merely the basic transport mechanism by means of essential communication
primitives for sending and receiving data. Advanced protocol features and
network interfaces have to be implemented by higher protocol layers. Here
the synchronization interfaces serves as a tunnel for control information, that
is exchanged between the user modules and the communication network. In
this case, the generality of the interface is of course lost and the design space
exploration is limited to a specific communication architecture.

113
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putRequest(ADT)

request event

request_compl eventtransf_compl event
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getRequestCompl(ADT)
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Figure 8.1. Generic Synchronization Interface

The synchronization protocol follows the Open Core Protocol (OCP) [22]
However, the

existing OCP interfaces at the TL1 and TL2 abstraction are too OCP protocol
specific and the timing and data representation is too detailed for the purpose of
generic architectural modeling [149, 232]. In fact the concepts of the generic
synchronization interface as outlined below have been incorporated into the
newly defined OCP TL3 API. Please refer to appendix B on page 163 for an
overview of the new TL3 API.

The generic synchronization interface used in the MP-SoC framework is tai-
lored to the packet-level modeling requirements and features timing annotation
[233].

As depicted in figure 8.1, the generic synchronization interface offers a con-
fined set of communication methods (full line arrows) and events (dashed ar-

semantics, which isolate the interconnect from the interface.

Integrated System-Level Modeling
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rows). Modules issuing requests are called initiators and those receiving re-
quests are called targets. Transactions are initiated and received by calling
these methods and being sensitive to the provided events. The sequence of
method calls and event notifications is depicted in the message sequence chart
in figure 8.1.

putRequest() method This method inserts requests into the NoC frame-
work and launches the transaction process.

request event This event occurs when the NoC Channel starts
delivering the packet to the destination target, i.e.
the point in time when the first data word arrives
at the target.

putRequest() method This method retrieves the complete packet from
the channel.

request complete event This target side event occurs at the end of a packet
transmission, i.e. the point in time when the last
data word arrives at the target.

transf complete event This initiator side event occurs at the end of a
packet transmission, i.e. the point in time when
the last bit arrives at the target.

putAcknowledge() method This method initiates an acknowledge that is

acknowledge event This event indicates that the target has send

Split Transaction Scheme

So far the generic synchronization protocol provides only a unidirectional trans-
portation mechanism. However, transactions like memory reads require a bidi-

actions are carried via two independent and symmetric request and response
channels. During the response phase, the communicating partners switch roles:
the target becomes the initiator and the initiator becomes the target.

an acknowledge.

handling is an optional feature.
passed back to the initiator. Acknowledge

request phase and a response phase. Following the OCP specification, split trans-
rectional information exchange, i.e. the transaction is split in two phases, a
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Figure 8.2. NoC Request - Response Path

As depicted in figure 8.2, the NoC communication channel is fundamentally
split into independent request and response handling, which makes it adaptable
to various split and non-split protocols [232].

Event Chronology

Although the cycle-level handshaking is not seen at the abstraction level of the
synchronization interface, the packet-level events can be associated with certain
phases in a transaction over a cycle accurate interface. As highlighted in figure
8.3, this relation is the key to the creation of near cycle accurate communication
models at the packet abstraction level.

The developer of a packet-level communication model has to match the
abstract methods and events with the corresponding transfer1 in the specific
communication interface. In case the considered target architecture naturally
adheres to a packet-level interface specification, this approach allows the cre-
ation of 100% accurate simulation models. Examples are the STbus architecture
and on-chip network interfaces. On the other hand, the rich feature set of pro-
cessor core specific bus architectures like AMBA AHB or CoreConnect limits
the accuracy of packet-level models.

During the simulation, the described events and method calls of figure 8.1 are

to this points in the signal trace of figure 8.3.

A This indicates the point in time
when a new request is inserted into the network and the initiator module
starts to pass the data to the network. Note that this is not necessarily
the time when the transfer starts.

1transfer: specific phase in a transaction

mapped to discrete simulation time. The markers A, B, C, D and E correspond

The putRequest() method is called.

Integrated System-Level Modeling
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Figure 8.3. Wavetrace visualization of Event Chronology

B The transfer starts when the communication resource is available and
the target is ready to accept a new request. When the first word of

tified. The target module can already retrieve the token although the
transfer process has not completed. This feature allows the modeling
of wormhole and cut-through routing strategies2.

C At this point in time the last word has been transfered to the target

D The target module has finished some computation tasks and sends an
acknowledge back to the initiator.

E The acknowledge event arrives at the initiator after the time that has

knowledges does not claim resources.

A fully non-ambiguous mapping between wavetrace visualization and packet
level event model is not possible. The events in figure 8.1 indicate that the data

2Please refer to section 3.3.2.0 on page 28

module. This causes the notification of both the request compl event

the packet arrives at the target module the request event event is no-

at the target side as well as the transf compl event at the initiator side.

been afflicted to the putAcknowledge() call in D. The transfer of ac-
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can be retrieved by the activated model. The whole data token is either fetched

sampling method. The data is available and valid until the next token overwrites
the old one.

Feedback Control

Accurate modeling of the initiator behavior eventually requires to react to events
that occur during an ongoing transaction, like for example grant or complete
transfers. As depicted in figure 8.4 the NoC framework supports the following
different feedback schemes:

Figure 8.4. NoC Feedback Loops

posted request the initiator does not care about communication status mes-
sages. There is no feedback loop.

automatic complete the feedback is automatically generated by the NoC
framework. In this case the initiator module is sensitive to the trans-
fer complete event.

user dependent acknowledge the target module is responsible for acknowl-
edging the initiator. This can be done immediately after the request has
arrived or after some processing time. Furthermore it is possible to activate
target processing at the begin or the end of the request token.

The flexible selection of the feedback scheme allows the user to trade higher
modeling efficiency and simulation speed against higher accuracy.

through the getRequest( )pre-sampling method or getRequestCompl( )post-

Integrated System-Level Modeling



MP-SoC Simulation Framework 119

By following the Open Core Protocol semantics the generic synchronization
protocol fully complies to the Interface Design principle [70], which advocates
the separation of the behavior and communication. This architecture agnostic
modeling of the application enables the transparent mapping of the application
tasks to architectural elements. The following sections separately introduce the
modeling framework for the task mapping to shared processing elements and
communication fabrics respectively.

8.2 Generic VPU Model

the notion of shared processing elements like Hardware multi-threading and
Software Operating Systems. In that the VPU serves as a task scheduling
layer situated between the functional tasks and the communication architecture.
In essence the generic VPU model implements the operational semantics of
the VPU timing model as derived in section 7.3.2 of the previous chapter.
This section gives an overview of the Software architecture, which enables the
flexible specification of the task mapping and a modular integration of user
defined task scheduling algorithms.

Figure 8.5. VPU Framework Overview

The overall structure of the VPU framework is depicted in figure 8.5. The
right hand side shows a number of application tasks, whose functional ports are
connected to the generic synchronization interface of a VPU instance. These
tasks share a single processing element and a number of architectural ports. The

As outlined in section 6.2.2, the concept of a Virtual Processing Unit captures
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architectural ports are depicted on the left hand side and determine the available
bandwidth of the processing elements to the communication network.

The internal structure of the VPU is derived from the VPU Node according
to definition 7.14. Here the up-stream queuing component stores incoming
events and controls the activation of the application tasks. This comprises the
UV PU,pending queue and the associated handling functions fV PU,up activate and
fV PU,up update.

As a separate module of the up-stream processing functionality the VPU con-
process(UV PU,pending)

method. This modularization enables the smooth integration of user defined
task scheduling algorithm.

The VPU component for down-stream queuing realizes the delay an-
notations of the functional tasks as well as additional delay increments in
case of task preemption. Again, this functionality corresponds exactly to the
UV PU,projected queue and the related handling functions fV PU,down activate and
fV PU,down update.

The local address resolution unit represents a separate block of the VPU,
which is not related to the timing model. As outlined in section 6.2.2, this block
determines the location of the correct destination address of the transactions
initiated by the application tasks. This address resolution is implemented as a
hierarchical procedure. First the local address resolution unit checks whether
the target task is located on the local VPU. In this case, the transaction is
immediately inserted into the up-stream processing unit. Otherwise the global
address resolution unit needs to be consulted.

8.3 NoC Framework

ture to enable a rapid partitioning and dimensioning of the on-chip network. In
analogy with the previous section, the NoC framework depicted in figure 8.6 es-
sentially implements the timing manipulation nodes related to communication
timing defined in section 7.3.3.

The central module of the NoC simulation framework is represented by the
NoC Channel, which captures the generic part of the communication function-
ality. This comprises e.g. the implementation of the synchronization protocol,
the general transaction handling, and keeping track of the user module status.

The communication architecture specific information is encapsulated into a
set of network engines. Following the definitions in section 7.3.3, the NoC
framework offers three generic engines:

The Point-to-Point engine represents an exclusive resource between a sin-
gle initiator and a single target.

This section deals with the unified modeling of the communication architec-

Integrated System-Level Modeling
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Figure 8.6. NoC Framework Overview

The Bus engine models a shared resource between multiple initiators and
targets modules.

The Crossbar engine embodies router like parallel communication re-
sources with a centralized arbitration scheme.

Additionally, a Hierarchical engine enables the composition of basic en-
gines to complex network topologies.

8.3.1 Point-to-Point Engine

between source and destination module over exclusive link connections. This
engine is configurable by the following performance parameters:

The bitwidth represents the bitwidth of the communication resource.

The clock-interval denotes the clock period of the link.

According to definition 7.27, both parameters together characterize the through-
put of the link. Due to the pending queue UCN,pending in the communication
node, the point-to-point engine exhibits the semantics of a FIFO buffer. As
shown in figure 8.7, incoming requests are buffered in the FIFO queue as long
as the resource is occupied.

8.3.2 Bus Engine

to the Point-to-Point Engine, the bus engine maintains a queue UCN,pending to

According to definition 7.16, the point-to-point engine models transactions

The bus engine models data exchange over a shared bus medium. Similar
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Figure 8.7. Point-to-point Engine

store pending requests. As depicted in figure 8.8, pending requests are queued
until the bus resource is granted by the arbitration process.

Figure 8.8. Bus Engine

Bus Engines can contain multiple Bus Resources to model the effect of
crossbar bus architectures like the STbus [56]. In this case pending requests are
dispatched to the appropriate resource. This extension to the bus model with
multiple shared resources is visualized in figure 8.9.

Figure 8.9. Bus Engine with multiple Resources

In order to achieve the accuracy required to take architectural decisions,
the bus engine has to be adjustable towards specific bus architectures. As
discussed in section 3.3 many different arbitration schemes exist in bus based
communication. For this reason the bus engine is designed in a modular way
according to the static UML class diagram shown in figure 8.10.

This modularity enables the designer to extend the generic bus engine towards
a specific arbitration scheme like for example time division multiple access
(TDMA) based bus arbitration. The following units can be extended:

Calculation Unit: This unit calculates the occupation time, that is needed
to transfer a token over the exclusive communication

Integrated System-Level Modeling
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resource.
of the communication architecture, the bus resource
is parameterizable with respect to bitwidth and clock-
interval:

The bitwidth denotes the bitwidth of the bus re-
source

The clock-interval denotes the clock period of the
bus resource

According to definition 7.17, the base version calcu-
lates the transfer time according to the simple formula
∆tCN,transfer = �packetsize

bitwidth 
 ∗ clock − interval.
Advanced timing calculation units could support pre-
emption of the communication resource, which occurs
when burst transactions are intercepted from higher pri-
oritized initiators.

Arbitration Unit: The arbitration unit implements one of the following
arbitration algorithms.

ority.

variable priority: The priority is determined by
the priority field in the packet header.

Figure 8.10. Structure of Bus-Engine

To explore basic throughput requirements

fixed priority: Each initiator port has a fixed pri-
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least recently used (LRU): The arbiter maintains
a history of granted initiators. The RLU arbiter
selects the request, which originates from the ini-
tiator with the oldest history entry.

latency based: Requests are granted on the ba-
sis of preconfigured bandwidth requirements of the
initiators.

arbitration cycles: number of cycles required to
perform the arbitration.

lected arbitration algorithm
Thanks to the modular object-oriented structure, the bus engine can be easily

enhanced with further arbitration and timing calculation mechanisms by over-
loading the API of the respective unit. This minimizes the modeling effort for
the integration of novel bus architectures into the NoC framework.

8.3.3 Crossbar Engine

than one transaction at the same time. Since crossbar networks differ signifi-
cantly, it is by far not possible to capture all possible incarnations with a single
node. The Crossbar Node elaborated below models Virtual Output Queued
(VOQ) [74] architectures like e.g. [8] for equal-size data packets with a non-
blocking, buffer-less NI × NO crossbar matrix. Additionally, the Crossbar
Node supports modeling of weighted arbitration algorithms with P different
priorities to improve the Quality of Service capabilities of the on-chip network.
According to the VOQ principle, incoming packets are stored separately per
output and per priority before they pass through the crossbar matrix. This
technique prevents from head-of-line blocking in case of asymmetric traffic or
partially blocked outputs and hence improves overall throughput and fairness
3.

Arbiter Algorithm The ingress port controllers inform the arbiter about
the states of their VOQs. According to this information, it calculates an
I/O-configuration using one of several specialized algorithms to achieve as
many simultaneous packet transmissions as possible under certain criteria.
The following algorithms are implemented:

3Please refer to the introduction of queuing mechanisms on page 28

meters:
This unit is configurable by the following set of para-

The crossbar engine models full-scale on-chip networks, that perform more

Integrated System-Level Modeling
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Figure 8.11. Crossbar Engine Overview

– TDMA Allocation: static allocation [234], for each time slot a fixed,
contention-less matrix configuration is adjusted.

– PIM: Parallel Iterative Matching (PIM) is a simple iterative matching
algorithm [235], based on random selection of ports.

– iSlip: The often employed iSLIP algorithm is a starvation-free algo-
rithm invented by McKeown [236].

– iLQF: The iterative longest queue first (iLQF) algorithm has additional
capabilities to handle weights.

– PSLIP: Parallel version of the iSLIP algorithm [237].

– SIMP: Successive Incremental Matching over multiple Ports (SIMP)
[238] calculates the matching in one iteration.

Weight Generation Algorithm The status of the VOQ is used by the Arbiter
to decide on the arbitration. Different algorithms can be used to calculate
the current status value:

– Prio: The weight corresponds to the static priority of the respective
VOQ.

– OCF: According to the Oldest Cell First algorithm, the weight depends
on the time tag of the head-of-line packet.

– LQF: The Longest Queue First algorithm calculates the weight as func-
tion of the VOQ length.
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packet size: determines the size of the segmented internal data packets,

number of traffic classes: corresponds to the number of priorities, which
are stored in separate VOQs,

port clock period: determines the maximum input bandwidth of the cross-
bar engine,

arbiter clock period: determines the delay of the arbitration algorithm.

8.3.4 Hierarchic Engine

engines and algorithms outline above, instead the designer has the full expres-
siveness of C++ and SystemC to extend the engine library. In particular complex
network topologies can be composed from elementary engines by recursively
instantiating the NoC Channel inside hierarchical engines. These elementary
network engines are linked together by the channel inside the hierarchic engine.
Elementary engines are the above mentioned point-to-point engine, the bus en-
gine, the cross-connect engine and all additional user defined implementations.

Internal Composition

An example of a complex meshed network is shown in figure 8.12. The modules
Module1 to Module3 are connected by crossbar engines. Module4 and Mod-
ule5 are peripheral components with lower throughput requirements, which are
linked to a local bus.

Figure 8.12. Hierarchic Engine Example – Platform View

Further parameter options of the crossbar engine are:

The implementation of network engines is of course not restricted to the

Integrated System-Level Modeling
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The following description outlines the NoC framework structure that cor-
responds to this interconnect example. The additional components implement
required functionality, like routing and segmentation and are transparent to the
user. As depicted in figure 8.13, this functionality is performed by Network In-
terface and Network Link components, which are inserted at the network edges
and between communication nodes.

Figure 8.13. Hierarchic Engine Example—Inserted Components

Network Interface (NI) components are added at the edge of the network.
Each module access will pass through the NI compo-
nent assigned to its port. The NI performs two major
tasks:

Routing: As further elaborated in the subsequent
section, in multi-hop networks the target address
needs to be translated to hop specific address ports.

Segmentation and Reassembly: Packets can be
segmented in small flits (flow control units) which
are sent through the inner network and are auto-
matically reassembled at the destination.
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Nework Link (NL) components are added between two inner network
nodes. Thus they connect one node to another and are
responsible for forwarding packets between network
engines. Therefore they can perform the following
tasks:

Routing: identical functionality as in the NI.

Buffering and delaying: Network links buffer in-
coming packets in order to decouple two network
nodes and avoid congestion in the next communi-
cation node.

Note that all these additional components inside the border of figure 8.13 are
contained inside the hierarchic engine. The component composition is shown
in figure 8.14. The internal NoC Channel is responsible for network internal
traffic. Each external module port has an internal edge representation. These

Figure 8.14. Hierarchic Engine Example – NoC Framework View

edge and bridge modules act as autonomous target/ initiator modules.

Integrated System-Level Modeling
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Source Routing

In general the process of determining and describing the path to forward packets
from a source to a destination module is called routing. The routing is fairly
simple in topologies with only a single node. When it comes to interconnects
with multi-hop topologies each network node has to determine the next network
point to which a packet should be forwarded. In network research several
procedures like e.g. Label Switching [239] are known which differ significantly
in implementation complexity and speed. These issues are not in this scope,
because only the pure path finding functionality in the simulation model is
required. The solution implemented for the NoC framework is called source
routing, which simulates efficiently and is easy to configure.

For this purpose each packet contains a list of network node identifiers,

Declarative Instantiation

The topology as well as all parameter options of the communication architecture
are configured through a set of eXtensible Markup Language (XML) [240] files.
Before the actual start of the simulation, these configuration files are parsed and
the architectural information is elaborated into an Internal Representation (IR).
Based on the information in this IR, all communication nodes and processing
elements are instantiated, configured and connected.

In this way, the whole instantiation and binding of the communication archi-
tecture is automatically done by the framework. The designer does not need to
change the code to evaluate for example a bus instead of a point-to-point link.
Only the parameters in the configure file need to be changed. As no recom-
pilation is needed to iterate over different communication alternatives, which
dramatically speeds up design space iteration.

8.3.5 NoC Framework Case Studies

has been applied to real-life bus architectures to evaluate trade-off with respect
to modeling efficiency, simulation speed and accuracy. The investigations of the
AMBA bus [23, 224] as well as the STBus [241] both demonstrate the fidelity
of the outlined approach: A moderate modeling effort of 2-3 weeks is necessary
for the creation and verification of a bus specific network engine. Compared to
the fully cycle accurate reference model of the respective bus architecture, the

“ ”

The concept of unified communication modeling using the NoC Framework

              which specifies the full path through the network topology. The routing
    procedure of each network node matches the identifier of the next node and

forwards the packet to its respective output port.
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NoC framework achieves an accuracy of 95% in case of the AMBA bus and
even 100% for the STBus 4.

Simulation Speed Comparison

single AMBA bus node with two initiators and two slaves running on a 2.0 GHz
linux PC. The simulation speed is plotted over the idle time between successive
transactions, which denotes a metric for the utilization of the bus. The different
curves highlight the impact of the burst size for the NoC Framework (NoC) as
well as for the cycle accurate TLM model (TLM). Naturally the simulation speed
of the event-driven NoC Framework is highly dependent on the utilization of the
on-chip network as well as the granularity of the communication events, whereas
the cycle-driven TLM model is basically not affected by these parameters.

4averaged timing derivation for the considered test cases

Integrated System-Level Modeling

Figure 8.15.

Figure 8.15 shows the results of a simulation speed experiment based on a
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8.4 Tool Support

the MP-SoC framework. Due to the immense functional and architectural com-
plexity of MP-SoC platforms, intuitive visualization of the simulation results is
of superior importance for the usability of the complete modeling environment.

8.4.1 Trace Views

as well as the application to architecture mapping. Since verification of mas-
sively parallel applications is not well supported by conventional debugging
mechanisms, the MP-SoC framework provides a set of trace views, which vi-
sualize the system level activity over time.

MSC Instrumentalization

The MP-SoC framework is equipped with a methodology specific graphical
debugger, which visualizes the SystemC simulation according to the Message
Sequence Chart (MSC) principle [25].

MSC is a tracing language standardized by the ITU-T [242] for the specifi-
cation of the communication protocols. An MSC shows the behavior of system
components and their environment by means of exchanging messages. This ap-
proach is usually employed by design environments based on the Specification
and Description Language (SDL) [96], like e.g the TAU SDL suite [243].

provides a very intuitive visualization of the events in a coarse-grain SystemC
process network. The SystemC modules are displayed by vertical lines, which at
the top are labelled with the module name. Communication events are displayed
as horizontal arrows between the lines of the initiator and target processes. The
arrows are labelled with signal name, the bracketed time instance and the ADT
type name. The debugger provides a set of advanced filter mechanisms to
systematically reduce the displayed data exchange to the currently interesting
communication events [244].

VPU Trace Views

Each VPU instance collects information about the activation of the different
tasks in a value change dump (VCD) trace file. Since this file format is com-
monly used, the dump file can be viewed by different public available tools

below displayes an example of a task activation trace over time.

This section provides an overview of the visualization tools, which are part of

First the user has to verify the functional correctness of the application model

As depicted in figure 8.16, the MSC debugger of the MP-SoC framework

like the GTK electronic waveform viewer [245]. The screenshot in figure 8.17
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Message Sequence Chart Debugger

VPU Trace View

8.4.2 Statistic Evaluation

of the aniticipated architecture is of major importance to drive the design space
exploration process. For this purpose a hierarchy of statistical performance
views allows the rapid identification of bottlenecks as well as poor resource
utilization.

After the functional correctness of the system is achieved, the performance

Integrated System-Level Modeling
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Section 7.4 defines the various types of performance metrics, which can be
derived from the Virtual Architecture Mapping technique. This statistical data is
collected automatically through instrumentation of the architecture models, so
the focus of this section is on the explanation and interpretation of the generated
statistic views. The discussion is separated into the communication and the
processing element related performance analysis.

Communication Views
As already formally defined in section 7.4.3, the following metrics allow for a
comprehensive analysis of the specified communication architecture:

The engine pending time arises due to resource contention.

The engine transfer time denotes the time needed for the token transfer.
Naturally the communication resource is occupied during this period.

The target pending time arises if the target is not ready.

The total time denotes the whole transfer time from the initiator to the
target.

In a postprocessing step of the simulation run, these performance metrics are
prepared in various levels of detail to enable a hierarchical analysis refinement.

Histogram Views

The histogram is a bar chart representation of the frequency distribution ac-
cording to definition 7.20, where the height of every bar represents number
of observed events. The generated histograms are visualized with the public
available gnuplot [246] tool.

time, engine duration time, and total time are plotted for two ports.

about module specific communication behavior. These are distributions of
packets properties that are sent by the specific module port. These properties
are:

activation interval: delta time between two outgoing packets

destination Id: destination port id of the packets

packet length: packet length in bit of the packets

request type: request type 1 is read request; request type 2 is write request

A set of example histograms is shown in figure 8.18, where engine pending

As depicted in figure 8.19, the NoC framework also aggregates information
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Histogram View

Communication Graph Views

The postprocessing procedure also creates a set of graphs that reflect the spatial
organization of the specified communication architecture. The graph nodes
represent modules and communication resources and the edges denote commu-
nication paths. These communication paths can be labeled with different values

Integrated System-Level Modeling
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Module related Communciation Metrics

like e.g minimum, maximum, average, variance and trials, which are extracted
from the histogram distributions. Two different type of graphs are generated:

The point-to-point graph visualizes pure connectivity related information
and hides all communciation resources. Only the processing elements are

Figure 8.19.
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The network graph maps the connectivity related information to a network
centric view, which shows the interconnect nodes, but hides node-internal

The resource centric graph provides an additional level of detail by show-
ing the internal resources of each node in the network (see the left hand side

The utilities that are used for plotting the graphs are contained in the graphviz
toolsuite [247] and are publicly available. As shown in the example graphs of

identification of bottlenecks.

Graph Views - resource view (left) and network view (right)

Together the graph views and the histogram views enable a hierarchical per-
formance analysis. The communication graphs enable an assessment of the
complete communication architecture. For example the resource centric graph
with annotated pending time immediately reveals the communication bottle-
necks in the system. Based on this information, the histogram view provides
the detailed distribution of the respective parameter on a single connection.
This hierarchical analysis refinement is essential to cope with the huge amount
of simuation results and by that enable a rapid analysis of the specified com-
munication architecture.

Processing Element Views
Similar to the communication related performance visualization, the MP-SoC
framework generates a set of analysis views related to the processing elements.

Integrated System-Level Modeling

displayed and the communication between them, see the right hand side of
figure. 8.20.

resources (see the right hand side of figure 8.20).

of figure 8.20).

figure 8.20, the groups of edge weights are coded in different colors to ease the

Figure 8.20.
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Delay Annotation Views

As mentioned in section 7.4.1 the analysis of the atomic timing annotation
parameters provide insight to the performance of the considered functional
process and the required timing budget. Recall, that

the processing time aggregation ∆̃tdelay of the Initiator Node represents
the time that is required by the initiator module to process an incoming event
and generate a new request,

the initiation interval aggregation ∆̃tinit of the Target Node represents
the interval unitl a process is ready to accept the next incoming event.

interval for two ports are presented.
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VPU Evaluation Views

For a detailed analysis of contention in multi-threaded processing elements the
number of waiting packets and the waiting time in the VPU pending queue

An example histogram is shown in figure 8.21, where processing and iteration

Figure 8.21.
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and VPU projected queue is collected. Thus performance bottlenecks due to
unsufficient or excessive instantiation of task.
Again all the collected statistics are aggregated into performance graphs to ease
the evaluation of complex distributed systems.
plot of the VPU internal communication.

VPU Evaluation View

Sensitivity Analysis
Usually the results of a single simulation run are not very meaningful to drive
decisions in the design space exploration process. Instead the system architect
needs to compare the results from multiple simulation runs to evaluate the
impact of a specific design parameter.

This kind of sensitivity analysis is supported by the MP-SoC framework by
a configuration environment, where the user specifies the sweeping of design
parameters as well as the analysis metrics. From this meta-configuration the
configuration environment spawns a batch of simulations to iterate all design
parameter settings. Finally, the specified analysis metrics from the individual
simulation runs are aggregated into a single view. The sensitivity analysis view
plots the analysis metrics over the design parameter variations. The example

certain bus node on the application latency.
Sensitivity analysis is an established mathematical discipline and therefore

well applicable for further automization [248]. Especially the effort for the
initial identification of significant design parameters given a set of relevant
analysis metrics can be reduced by an automated screening process.

Integrated System-Level Modeling

Figure 8.22 shows a example

Figure 8.22.

depicted in figure 8.23 reveals the impact of the design parameter bitwidth of a
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Sensitivity Analysis

8.5 Summary

Chip enabled multi-processor platform.
Based on the timing model defined in section 7.3 and the bus agnostic syn-

chronization protocol defined in section 8.1, the major benefit of the outlined
approach is the ability to capture the impact of the anticipated architecture on
the system performance in a unified way. By providing an extendible set of
configurable library elements for processing elements and network modules,
the MP-SoC framework enables the rapid exploration and coherent comparison
of architectural alternatives.

Special emphasis is put on the associated visualization tools, which support
intuitive debugging and analysis of most complex MP-SoC platforms.

This section describes a modular exploration framework for Network-on-

Figure 8.23.



Chapter 9

CASE STUDY

The acid test for any research on system level design has always been the
incorporation into actual design practice. To prevent from incompatibility with
real design problems, the MP-SoC framework is by no means a

’

one-shot’
development. Instead the Virtual Architecture Mapping technology has evolved
over multiple industrial design projects in the context of an ATM packet switch
[215], a 3D graphics processor [218], and an IP forwarding engine [25] as well
as multiple modeling experiments of complex bus architectures [23, 224, 241].

This chapter presents the results from a recent case study, where the MP-SoC
framework is employed in the design space exploration and task partitioning of
a complex networking application. The selected IPv4 forwarding application is
an ideal candidate for the implementation on multi-processor platforms, since
it provides abundant data level and task level parallelism. A commercially
available network processor unit from Intel serves as a reference platform for
the architectural investigations.

After a brief introduction of the selected application and the reference ar-
chitecture, the discussion is focused on the investigation of architectural alter-
natives to highlight the potential for optimization by using an efficient design
space exploration environment.

9.1 IPv4 Forwarding with QoS Support

protocol for macroscopic computer networks. It represents a typical application
from the networking domain as characterized in section 2.1.

The IPv4 DiffServ application depicted in figure 9.1 can be coarsely divided
into two major parts: The IPv4 forwarding core application comprises packet
parsing, route lookup, and packet fragmentation. The remaining functional

The Internet Protocol version 4 is the widely used layer 3 communication
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blocks are part of the differentiated services mechanism [249], which enhance
IPv4 with basic support for Quality of Service (QoS).

Figure 9.1. IPv4 Differentiated Services Application

The individual functional blocks are briefly introduced in the following para-
graphs Delay Annotation

PosRX. This unit receives incoming Packet-Over-Sonet (POS) frames from
the physical interface, extracts the IP packet and performs an RFC 1812 [250]
compliant 5- or 7-tuple check to validate the header. Afterwords a Packet
Descriptor (PD) is generated, which contains the relevant header information
from the IP packet. The IP payload is stored in a large DRAM and the all
further functional blocks operate on the packet descriptor, which is stored in
fast SRAMs.

Route Lookup. The route lookup (RLU) unit determines the next hop address
using a longest match table search algorithm.

Classifier. The classifier unit determines the Quality of Service (QoS) class
of the actual packet. Together with the RLU this block requires the main com-
putational effort and most of the memory accesses of the DiffServ application.

Meter. The meter verifies that the IP packet flows adhere to the negotiated
Service Level Agreement (SLA), which specifies QoS related parameters like
guaranteed bandwidth, burstiness, and maximum delay. The implemented Sin-
gle Rate Meter [251] algorithm marks the packet with green, yellow or red,
depending on whether the IP flow satisfies, exceeds or violates the SLA.

Integrated System-Level Modeling
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Dropper. Depending on the color and current queue fill status, this unit drops
packets according to the Weighted Random Early Detection (WRED) algorithm
[252] to avoid throughput degradation due to congestion.

Queue-Manager/Buffer. All incoming packets are queued according to their
individual traffic class. Dequeuing and forwarding to the CSIX unit is only
initiated by the scheduler.

Scheduler. This module decides on the allocation of the available bandwidth
to the queued packets. By that the scheduler has a major impact on DiffServ
platform in terms of throughput and QoS. Scheduler algorithms differ signifi-
cantly with respect to fairness, efficiency, worst-case behavior, QoS guarantees,
utilization, and computational effort [253]. To enable a coherent comparison of
all these parameters during the design space exploration phase, the following
parameterizable algorithms are implemented in the scheduler model:

Fair Queuing (FQ)

Priority Queuing (PQ)

Weighted Fair Queuing (WFQ)

Weighted Round Robin Queuing (WRR)

Deficit Weighted Round Robin Queuing (WRR)

Please refer to Gries [254] for an in-depth discussion of the individual
scheduling algorithms.

CSIX TX. This unit fetches the IP packets from the DRAM memory, seg-
ments them into CSIX or SPI-4 compliant frames [255] and transmits the data
to the outgoing transmit buffer.

According to the MP-SoC design flow introduced in section 6.3.2, first a
functional SystemC model of the IPv4 DiffServ application is created. The
application tasks are represented as reactive processes and all inter-task com-
munication is performed via the generic synchronization interface.

The validation of completeness and functional correctness is performed by
means of a reactive process network according to definition 7.11. This repre-
sentation does not yet impose any assumptions on the architectural realization,
but serves as the starting point for the subsequent Virtual Architecture Mapping.

9.2 Intel IXP2400 Reference NPU
The IXP2400 network processor is a member of Intel’s second-generation

network processor family [256] and represents a true Multi-Processor SoC plat-
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form. The IXP2400 employs eight fully programmable and hardware multi-
threaded processing elements connected by an heterogeneous communication
network.

IXP2400 Overview
The block diagram of the IXP2400 network processor architecture depicted in
figure 9.2 shows the following units:

The Intel XScale micro controller unit performs control-plane processing
and resource management.

The eight Micro Engines (MEs) are specialized for data-plane processing
of networking tasks. Each micro-engine features eight concurrent hardware
threads to hide memory access latencies.

The SRAM Controller provides two independent QDRII1 compliant chan-
nels with a peak bandwidth of 12.8 Gbit/sec each to access the on-chip
scratch memory as well as the off-chip SRAM

The DRAM Controller provides channel with a peak bandwidth of 19.2
Gbit/sec to the off-chip DRAM

The heterogeneous On-Chip Network comprises three global buses to
hook the micro-engines and the XScale core to the memory resources. Ad-
ditionally adjacent micro-engines are connected by next-neighbor registers
for rapid passing of data and state informations.

Figure 9.2. Intel IXP2400 Network Processor Block Diagram

The IXP2400 provides sufficient performance and flexibility to execute a
wide variety of high performance applications such as multi-service switches,

1QDR: Quad Data Rate
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DSLAMs (DSL access multiplexers), CMTS (cable modem termination sys-
tem) equipment, 2.5G and 3G wireless infrastructure and Layer 4-7 switches
including content-based load balancers, and firewalls.

IPv4 Mapping to IXP2400
The goal of the subsequent design space exploration experiments is to eval-
uate custom MP-SoC platforms for the IPv4 DiffServ application against the
IXP2400 reference architecture. To achieve a fair comparison between archi-
tectural alternatives, the performance characterization of the functional IPv4
forwarding tasks are taken from the original Intel documentation [14]. The in-
dividual timing annotations and communication requirements are listed in table
9.1.

Table 9.1. Characterization of the IPv4 DiffServ Application Tasks

compute cycles SRAM DRAM total
(∆tinit) accesses accesses cycles

Parser 70 3 2 945
RLU 160 10 1 1660
Meter 80 2 0 330

Dropper 80 2 0 330
Buffer > 10 4 0 500

Scheduler 100 0 0 100
Segmentation/CSIX 80 3 1 705

In the same way, the mapping of the tasks to the processing elements of the
IXP2400 depicted in figure 9.3 is aligned to the Intel reference implementation
[14]. The initial allocation of IXP2400 Hardware threads to the application tasks
results from matching the individual computation and communication charac-
teristics of the individual tasks to the available resources under consideration
of the top-level application requirements:

Figure 9.3. Reference Mapping of IPv4 DiffServ Application to IXP2400 Platform

.
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Today’s IPv4 router typically support an OC-48 data rate, which corresponds

performed within this budget, which corresponds to 88 cycles on the 600MHz
micro-engine. Naturally this can only by achieved by exploiting the task
level parallelism and hiding the memory access latency using Hardware Multi-
Threading [14].

Using the unified timing modeling defined in chapter 7, the functional appli-
cation model has been mapped to a virtual architecture model of the IXP2400
architecture. This comprises the annotation of the processing requirements as
listed in table 9.1 to the reactive process models of the application tasks. Ad-
ditionally, the NoC framework is used to instantiate the bus and point-to-point
communication resources of the IXP2400 on-chip network. The generic VPU
is used to simulate the behavior of the eight micro-engines, where each VPU
emulates eight concurrent Hardware threads.

Before the simulation results are presented, the following section discusses
architectural alternatives for the on-chip communication network.

9.3 Custom IPv4 Platform

shared bus architecture of the IXP2400 platform. The motivation behind these
experiments is that future MP-SoCs will employ on-chip networks to address
physical and functional shortcomings of the shared bus paradigm. Investigated
network architectures are a global crossbar resource, a 2-dimensional Mesh (2D-
MESH), an Octagon-Grid and an application specific micro-network, which
exploits the locality of the IPv4 DiffServ application.

Global Crossbar
The first step to overcome bandwidth limitations is to replace the global bus
resources with a central crossbar architecture depicted in figure 9.4.

Using the NoC framework, the architecture model is easily adjusted to the
new architecture by exchanging the bus resources with one cross connect engine.
As described in chapter 8.3.3, this engine models a full-scale packet switch with
global arbitration, local scheduling and Virtual Output Queuing (VOQ).

Two-Dimensional Mesh
The 2D-Mesh represents a topology for on-chip networks, which is often pro-
posed in NoC related literature [257]. This structure is a two dimensional grid
in shape of a chessboard, where adjacent network nodes are connected via net-

This section discusses alternative communication architectures to replace the

Integrated System-Level Modeling

protocol overhead) is 147ns. All the processing and communication has to be

to 2.5 Gbit per second. The resulting inter-arrival time between two back-
to-back minimum sized POS packets (40 byte + 6 byte Point-to-Point(PPP)
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work links. Figure 9.5 shows the micro-engines, memories and I/O components
of the IXP2400 platform hooked to the Mesh communication architecture.

Using the NoC Framework, this kind of complex topologies are realized using
the hierarchic engine described in section 8.3.4. In case of regular topologies
like the 2 dimensional mesh and the octagon, the creation of the NoC Framework
configuration files for the instantiation of the communication resources can be
largely automated using topology generators [223, 129].

Octagon Network
The Octagon structure represents an on-chip backbone network based on a
hypercube topology, which specifically addresses the high throughput require-
ments of network processors [78]. Compared to the 2D-Mesh grid, the increased
connectivity between the distributed nodes reduces the average communication
latency, since each node can reach every other node with a maximum of two
hops. Figure 9.6 shows the IXP modules connected to the Octagon network
structure.

Local Crossbar
In contrast to the general on-chip networks in the previous sections, the local
crossbar topology is tailored to the traffic requirements of the IPv4 forwarding
application.

A closer investigation of the memory access profile of the functional tasks
listed in table 9.1 reveals, that only the PosRX and CSIX blocks are accessing
the DRAM memory. On the other hand side, the RLU/CLASSIFIER, Meter,
Dropper and Buffer blocks are accessing heavily the SRAM/SCRATCH mem-
ories, but never the DRAM. Therefore the processing elements executing the
PosRX and CSIX functionality should be close to the DRAM. Accordingly,
RLU/CLASSIFIER, Meter, Dropper, and the Buffer should be close to the

Figure 9.4. Global Crossbar Architecture
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Figure 9.5. Two-Dimensional Mesh Architecture

Figure 9.6. Octagon Architecture

SRAM/SCRATCH blocks close together. These considerations are reflected in
the application specific network architecture depicted in figure 9.7.

Integrated System-Level Modeling
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Figure 9.7. Local Crossbar Architecture

9.4 Simulation Results

architectural trade-offs and highlight the potential for optimization. Special
emphasis is put on the correlation of application and architecture related as-
pects as well as the correlation between the communication network and the
processing elements. A detailed discussion of the architectural alternatives is
beyond the scope of this book 2.

Simulation Scenario
The stimulation of the architecture model is of crucial importance to obtain
meaningful simulation results. In this case the input stimuli for the IP for-
warding processor are generated by a set of statistical traffic sources [258]. In
analogy with [254], these traffic generators are parameterized to create a typical
IP traffic scenario.

Table 9.2 shows the different traffic classes, the content type, the proportional
contribution to the total traffic, the data rate, and the average size of the IP
packets. The decreasing traffic classes reflect the decreasing Quality of Service
requirements of the different packet flows.

Performance Impact of the Communication Network
A highly condensed extract of the simulation results is presented in table 9.3.
The first two columns of the table define the given system with its communi-
cation architecture and the number of concurrent Hardware threads per micro-

2please refer to [223] for an in-depth presentation and analysis of the simulation results

The goal of the following design space exploration experiments is to reveal

engine. The next column contains the number of parallel communication
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Table 9.2. Traffic classes

traffic class traffic type percentage of data rate packet size
traffic load in Gbps in bytes

9 CBR voice 9.3 0.2018 128.0
8 Video P-frame 11.2 0.2452 238.2
7 Video I-frame 5.2 0.1128 896.6
6 Signaling 8.1 0.1758 320.0
5 HTTP Request 4.2 0.0911 159.8
4 HTTP download 37.1 0.8051 1480.1
3 FTP download 10.0 0.2170 1497.5
2 Transaction 5.6 0.1215 276.2
1 Flooding 9.3 0.2018 40.6

bandwidth per communication resource, which is required to meet the appli-
cation level performance requirements. For example in case of 8 Hardware
threads, the Octagon network requires a bandwidth of 12.8 Gbps to sustain the
OC-48 IP traffic throughput.

Table 9.3. Simulation Results

line communication threads per parallel required bandwidth
architecture processing element resources in Gbit/s

0 ixp2400 8 2 / 1 / 7 12.8 / 19.2 / 32
1 crossbar 8 8 12.8
2 octagon 8 16 12.8
3 custom 8 10 12.8
4 crossbar 16 8 3.2
5 Octagon 16 16 6.4
6 custom 16 10 3.2

Line 0 of table 9.3 reflects the simulation results of the Intel IXP2400 ref-
erence architecture, consisting out of 8 micro-engines each implementing 8
threads for computation. As presented in section 9.2, the communication archi-
tecture comprises two bus resources connected to the SRAM, one bus resource
for the DRAM, and 7 next-neighbor connections. Stimulated with the IP traffic

resources in the communication network. The last column denotes the available

.

.
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measured performance of the IXP2400 platform defines the reference point for
the comparison with the following platform configurations.

Line 1 of table 9.3 presents the global crossbar system. After replacing all
communication resources of the reference architecture with one global crossbar

to meet the application performance of the reference platform.
Lines 2 and 3 of table 9.3 summarize the measurements obtained from the

distributed communication topologies. In total the Octagon based network
contains 16 parallel communication resources, which require a bandwidth of
12.8Gbit/s to meet the reference performance. As illustrated in figure 9.7, the
custom network contains two crossbars connected via a bridge. This configura-
tion requires the same bandwidth per resource as the octagon and global crossbar
platforms to meet the performance of the reference architecture, however the
number of parallel resources is below the octagon topology.

Performance Impact of Hardware Multi-Threading
So far only the effect of different communication architectures has been eval-
uated. Using the generic VPU, also the number of concurrent threads per
processing element can be easily modified. The second part of table 9.3 is
dedicated to the combined evaluation of computation and communication ar-
chitectures. The results in line 4 to 6 present the above introduced systems with
an additional change of the VPU configuration. The threads of each micro-
engine have been doubled from 8 to 16 threads each to explore the impact of
changes in both parts of the designs.

Duplicating the number of threads per micro-engine in the global crossbar
system (line 4) improves the systems performance significantly. The required
bandwidth to achieve the performance of the reference architectures can be
decreased to 3.2Gbit/s, which is equal to a 75% decrease in required bandwidth.

Similarly the octagon system (line 5) improves by duplicating the number
of threads per micro-engine. Contrary to the crossbar system the improvement
turns out to be slightly less significant, due to the higher latency on the more
distributed communication architecture.

Finally the custom system in line 6 achieves a high performance together
with a distributed architecture. The required bandwidth per parallel resource is
3.2Gbit/s to achieve a performance equal to the reference architecture from Intel.

These results demonstrate the advantage of a framework for the joint in-
vestigation of the processing elements and the communication architecutre.

Gbit /s. Together with the resulting IP latency of approximately 14000ns, the

switch, the system requires a bandwidth of 12.8Gbit/s per switchable resource

scenario from table 9.2 this system achieves a throughput of approximately 2.14
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impact on the quality of results in terms of chip size, energy efficiency and
performance.

Increasing the threads per processing element greatly relieves the constraints
on the interconnect architecture. These type of trade-offs can have a significant

Integrated System-Level Modeling
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SUMMARY

For the foreseeable future, embedded application domains like wireless com-
munications, multimedia and networking will continue to push the development
of integrated circuits to it’s economic and technological limits.

Economically, the development of state-of-the art integrated circuits is a sig-
nificant endeavor. The mask fabrication cost accounts for about one million
US dollar and the development cost can be more than one order of magnitude
higher. Additionally, the short life-cycles of today’s embedded products im-
poses a huge pressure on the time-to-market and time-in-market to secure the
return of investment.

From the technical point of view, the algorithmic complexity of next gen-
eration embedded applications even out-paces the advances in semiconductor
technology. Apart from these demanding performance requirements, rapidly
evolving and differentiating standards call for a new level of flexibility to pro-
liferate the time-in-market of integrated circuits. On top of this, the increase in
performance and flexibility has to be delivered without impacting the energy
consumption, as battery capacity remains fairly constant.

Looking at the architectural implementation for these kind of demanding
embedded applications, the functional complexity clearly promotes Software
enabled solutions to achieve the required flexibility and to cope with the de-
manding time-to-market conditions. However, the stringent power dissipation
constraints of mobile applications and cost sensitive consumer devices prohibit
the use of general purpose processors. Instead, the tight cost and performance
requirements of versatile embedded systems lead to application specific hetero-
geneous Multi-Processor SoC architectures [259].

Heterogeneity applies to all architectural elements of the MP-SoC platform.
The processing elements have to be individually tailored to the respective appli-
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cation task to meet performance, flexibility, and energy efficiency constraints
[11]. Similar considerations lead to an application specific partitioning of the
communication and memory organization into a clustered platform architec-
ture. Here each processing element accesses its local cache and scratch-pad
memories via short high-speed bus architectures. On the other hand, global
memory access and data exchange is handled by dedicated on-chip networks
[7].

Problem Statement

lead to a design complexity crisis, as state-of-the-art EDA tooling and method-
ologies are not shaped to address the development of heterogeneous MP-SoC
platforms. Today there is a gap in the design flow between the architecture
agnostic algorithmic development and the block-level implementation domain.

The only available kind of System-Level Design tools addressing this gap
are based on cycle-accurate Transaction-Level Modeling, which is still way too
detailed to cope with the architectural design complexity of next generation
MP-SoC platforms. The major obstacle for efficient design-space exploration
on this level are the target architecture specific interfaces of the communication
and processing models. This requires a significant modeling effort to change for
example the communication from a shared bus to an on-chip network. Similarly,
every time the processing element changes the application has to be ported to the
new target architecture. Apart from the modeling effort the limited simulation
speed hinders the large-scale exploration of design parameter options.

Contribution

vironment has been developed, which enables the joint consideration of appli-
cation and architectures above cycle accuracy. The higher level of abstraction
allows the efficient definition of complex clustered MP-SoC architectures as
well as the spatial and temporal mapping of the application.

The entry point for the developed design methodology is a coarse-grain com-
municating process network representing the application. This representation
preserves the application inherent task level parallelism and exhibits the inter
process communication. The communication is based on an architecture in-
dependent synchronization interface based on the Open Core Protocol (OCP)
semantics.

The key contribution of this book is the Virtual Architecture Mapping mech-
anism, which enables the transparent mapping of the application model to the
anticipated MP-SoC architecture. The idea behind this mechanism is to map the
un-timed application space events onto timed architecture space events. These

The outlined evolution of embedded applications and architectures will soon

In the course of this book, a design methodology and corresponding tool en-
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architecture space events reflect the execution of the application tasks on the
processing and communication resources available in the anticipated MP-SoC
platform.

The event mapping problem has been separated and solved in three cate-
gories.

The OCP synchronization protocol has been extended with a concise set
of primitives for timing annotation, which reflect the individual processing
resource requirements of a single application task. These concepts have
recently been incorporated into the new OCP TL3 standard API [150] (see
appendix C).

A generic Virtual Processing Unit models the concurrent execution of mul-
tiple application tasks on a shared processing element. The VPU captures
the impact on performance of both Software Operating Systems as well as
Hardware Multi-Threading. This enables the rapid exploration of spatial
and temporal application mappings to multi-processor platforms.

The Network-on-Chip framework provides a generic mechanism to integrate
arbitrarily complex communication architecture models. Based on three
configurable communication nodes for exclusive point-to-point resources,
shared buses and complex cross-connects, the on-chip communication can
be easily changed from a global bus scheme to a clustered network with
complex topologies and multiple hierarchy levels. The NoC framework is
now commercially available as an option of the CoWare Platform Architect
(see appendix C).

To identify the system bottlenecks and to perform trade-off decisions, the
system architect needs to be equipped with meaningful evaluation data. The
developed framework automatically creates a database with aggregated simula-
tion statistics. To cope with the huge amount of analysis information, two hier-
archical level of statistical views are generated: A set of communication graphs
provides a system level view of a specific analysis metric like e.g. through-
put, latency or contention. For detailed analysis the generated resource level
histograms reveal in more detail the distribution of the respective metric. For
verification issues the framework supports system-level tracing by means of
interactive Message Sequence Chart (MSC) representations as well as Value
Change Dump (VCD) files.

Case Studies

work and evaluation tools has been demonstrated by a number of complex de-
sign project in the context of networking and graphic processing applications.

The effectiveness of the developed design methodology, modeling frame-



156

In particular the modeling of several real-world communication architecture
like AMBA AHB, STbus and Philips AEthreal has validated the high accuracy
achievable with abstract Transaction Level Modeling.

The capabilities of the complete framework have been proven in a case study,
where the Intel IXP2400 networking platform is employed in the context of
an IP forwarding application with Quality of Service support. This complex
MP-SoC platform comprises 8 multi-threaded processors, each implementing
8 concurrent threads, as well as further peripheral modules.

During this case study several communication architectures and VPU config-
urations have been defined, simulated and quantitatively compared against the
IXP2400 reference architecture. This experiments have validated the successive
refinement methodology for the optimization of the communication architec-
tures. Additionally, the results reveal the system-level trade-offs between the
communication architecture and multi-threaded processing elements.

Recently the technology has been transferred to CoWare Inc, where the
concepts described in this book have been productized and incorporated into
the CoWare Platform Architect product line (see appendix C).

Outlook

tectures, the concepts developed in the course of this book and the implemented
MP-SoC modeling framework can only serve as starting point for further in-
vestigations. The following sections list a number of opportunities for future
research and development activities.

Tool Related Improvements

System efficiency metrics are always a relation on performance and cost related
functions like power and area. Future versions of the MP-SoC framework could
also take an estimation of power and area into account. These values can be
elaborated on basis of the known topology and of the data that is collected
during the simulation.

Further Applications and Case Studies

Further case-studies like e.g. modeling of the Sonics MicroNetwork, the
Artheris NoC, or the new ARM AXI bus architecture, would increase the con-
fidence into the new methodology and extend the library of IP models.

A very useful application of the developed NoC framework would be the’

NoCStone’ benchmark suite. As a first step,
the communication characteristics for a set of target applications have to be

Given the evolving complexity of embedded applications and MP-SoC archi-

creation of a comprehensive

Integrated System-Level Modeling
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extracted as an input specification for workload generation. Together with a
library on on-chip communication architectures, the NoC framework can gen-
erate a matrix of benchmark results, which reveals the applicability of a com-
munication architecture for a certain application domain. However, significant
expert knowledge is required to consider the right parameter settings for both
the workload generators as well as the architecture models.

Extended Software Flow

SystemC 2.1 enables a Software centric modeling style by supporting dynamic
task creation and completion. Currently the MP-SoC framework is clearly
focused on an architecture exploration use model. In principle the concept of
Virtual Architecture Mapping can be integrated into an embedded Software
development flow to enable early consideration of task level parallelism and
HW/SW partitioning.

For this purpose, the VPU has to be extended with RTOS modeling capa-

eterizable components need to be established containing, e.g. cache, memory
management unit, interrupt controller, and direct memory access.

Verification Aspects

Besides the systematic refinement flow, the value of the proposed MP-SoC
design space exploration framework also reaches into the verification of sub-
sequent implementation steps. The information contained in the architecture
specification files serves as a predictor for the verification flow [260] to verify
the functional correctness of error-prone implementation models as well as to
review the estimated timing properties.

In that the approach takes the synchronous design principle, which enabled
the RTL based modeling, to the next level: transistor-level timing is neglected
during the specification at the register transfer level. After the physical design,
the clock synchronization points enable the verification of the assumed timing
budgets and physical gate- and wire-delays.

In close analogy, the packet-level events serve as synchronization points,
which can be recovered at the cycle-accurate implementation level. By that,
the timing annotations in the MPSoC framework can be automatically translated
into assertions.

synchronization primitives. Apart from this, a library of Software related param-
bilities like task control as well as Software specific communication and



Appendix A
The OSCI TLM Standard

In March 2005 the OSCI Transaction Level Modeling (TLM) working group has released
version 1.0 of the TLM Kit. This chapter gives a brief overview about the essential aspects of
the TLM standard. Please refer to [142, 233] for a more detailed introduction.

The Transaction Level Modeling standard is built as a set of interfaces that define the basic
semantics for the communication between models. These basic TLM primitives provide with
the fundamental communication and synchronization constructs that can be used to create TLM
models. Although these interfaces can be used in their primitive form, it is generally expected

or design task. The protocol layer can provide with a set of convenience functions that create a
much easier to use TLM API. The Programmers View and Architects View API are exemplary
representatives of this protocol layer.

Figure A.1. TLM Communication Layers

that they will need to be complemented with a protocol-layer. As depicted in figure A.1 this
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intermediate layer will target the basic interfaces to a specific on-chip communication protocol
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The value of the TLM 1.0 standard is in the definition of the basic semantics and terminol-
ogy. This in principle fosters interoperability between TLM models, because user-level TLM
protocols built on-top of the TLM standard can be mapped to a well-defined low-level interface.
This eases the creation of transactors between different user-protocols. The TLM working group
is currently working on improving the interoperability by driving the standardization up to the
user protocol layer.

The basic TLM API consist of bidirectional and unidirectional interfaces each with different
possible synchronization mechanisms. Note that in the context of SystemC the terms blocking
and non-blocking have a particular meaning. A blocking interface implies that this interface
has to be called from within an SC THREAD, as such the implementation of the interface is
allowed to contain wait(.) statements. In contrast a non-blocking interface cannot contain a
wait(.) statement since it is allowed to call such an interface from within an SC METHOD
which is not capable of performing the context switch that is required to implement the wait(.)
call.

nication and synchronization mechanism. It uses a REQ data type for the information an initiator
provides in the communication and a RSP data type for the information it receives from the target.
The synchronization is such that the initiator expects the response packet to be available when
the interface call returns. Therefore interface communication never fails and all communicated
information is available with every call.

template<typename REQ, typename RSP>
class tlm_transport_if : public virtual sc_interface {
public:
virtual RSP transport(const REQ&) = 0;

};

Figure A.2. Bidirectional Blocking TLM Interface

Thetransport interface corresponds to the simple Remote-Procedure-Call (RPC) paradigm:
The caller invokes a method, which is implemented in the callee and only returns after the method
is executed. This simple mechanism is well suited for SW oriented modeling, because it avoids
any synchronization overhead. This makes the coding style very straight forward and yields high
simulation speed. The transport interface is therefore the foundation for the Programmers
View use case for TLM. However, the bidirectional blocking semantics limit the capabilities for
accurate architectural modeling. This is addressed by the uni-directional interfaces.

essentially correspond to the write and read interfaces of the sc fifo. The synchronization of
the blocking interface requires the interface method never to fail. That is to say, the implemen-
tation of these methods block the caller until they can return successfully. A reason for blocking
would be the attempt to get without the availability of any data.

In principle the uni-directional blocking interface allows the modeling of protocols with
pipelining of requests and responses. However, this API is still too limited to model cycle accu-
rate TLM protocols.

The Bi-directional Interface depicted in figure A.2 provides with the most simple commu-

The Uni-Directional Blocking Interface is depicted in figure A.3. The put and getmethods

Integrated System-Level Modeling
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template < typename T >
class tlm_blocking_get_if : public virtual sc_interface {
public:
virtual T get( tlm_tag<T> *t = 0 ) = 0;
virtual void get( T &t ) { t = get(); }

};

template < typename T >
class tlm_blocking_put_if : public virtual sc_interface {
public:
virtual void put( const T &t ) = 0;

};

Figure A.3. Unidirectional blocking TLM interface

and nb getmethods execute always immediately and therefore return a boolean value to indicate
success or failure. The additional nb can put and nb can get methods indicate that data to get
or space to put is available. To avoid constant polling, the non-blocking interfaces also provide

template < typename T >
class tlm_nonblocking_get_if : public virtual sc_interface {
public:
virtual bool nb_get( T &t ) = 0;
virtual const sc_event &ok_to_get( tlm_tag<T> *t = 0 ) const = 0;
virtual bool nb_can_get( tlm_tag<T> *t = 0 ) const = 0;

};

template < typename T >
class tlm_nonblocking_put_if : public virtual sc_interface {
public:
virtual bool nb_put( const T &t ) = 0;
virtual const sc_event &ok_to_put( tlm_tag<T> *t = 0 ) const = 0;
virtual bool nb_can_put( tlm_tag<T> *t = 0 ) const = 0;

};

Figure A.4. Unidirectional non-blocking TLM interface

This API is usually sufficiently expressive to model arbitrary user-level TLM protocols [233,
150].

an event which is notified whenever data or space becomes newly availability.

The non-blocking interfaces depicted in figure A.4 are slightly more complex. The nb put



Appendix B
The OCPIP TL3 Channel

The concepts of the generic synchronization interface outlined in sections 6.1.3 and 8.1 have
been incorporated into the newly defined OCP TL3 API. The complete documentation of this
API can be found in [150]. This appendix gives an update on the changes between the generic
synchronization interface and the OCP TL3 API.

The OCP TL3 Interface
The goal of the TL3 API is to enable unified modeling of arbitrary applications and architecture
platforms at an abstraction level above cycle accuracy. In that the scope of the TL3 API is clearly
beyond modeling of systems, which deploy OCP as the actual bus protocol.

In essence the TL3 API combines two aspects:
First, the set of communication primitives represents the generic subset of the OCP protocol.

This boils down to a simple dual-way handshaking, where the producer initiates a transaction,
which then has to be accepted by the consumer. A transaction, which is sent out but not yet
accepted is considered to be in progress.

Second, the API provides support for timing annotation to promote the dual-parameter timing
model1. The additional advantage is that the usual code for modeling timing is factored into the
channel implementation.

The master interface is separated into a request and a response part, which are depicted in
figures B.1 and B.2 respectively. The master request interface represents the producer side of
the request channel, whereas the master response interface represents the consumer side of the
response channel.

1
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Please refer to section 6.2.1 for an introduction and section 7.3.1 for a formal definition
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template <typename REQ>
class OCP_TL3_MasterRequestIF : virtual public sc_interface
{
public:

virtual bool sendRequest(const REQ& req) = 0;
virtual bool sendRequest(const REQ& req, const sc_time& time) = 0;
virtual bool sendRequest(const REQ& req, const int cycles) = 0;
virtual bool sendRequestBlocking(const REQ& req) = 0;

virtual bool requestInProgress(void) const = 0;

virtual const sc_event& RequestStartEvent(void) const = 0;
virtual const sc_event& RequestEndEvent(void) const = 0;

};

Figure B.1. OCP TL3 Master Request Interface

The producer interface in figure B.1 comprises one basic and three derived methods for
initiating a transaction. Two of the derived methods provide timing annotation to delay the
actual sending of the request for a certain amount of time. The third derived method provides a
blocking interface, which is more convenient in case SC THREADs are used. Whether or not the
request channel is currently available can be checked using the requestInProgress method.

end of a request transaction respectively.

template <typename RESP>
class OCP_TL3_MasterResponseIF : virtual public sc_interface
{
public:

virtual bool getResponse(RESP& resp) = 0;
virtual bool getResponseBlocking(RESP& resp) = 0;

virtual bool acceptResponse(void) = 0;
virtual bool acceptResponse(const sc_time& time) = 0;
virtual bool acceptResponse(const int cycles) = 0;

virtual bool responseInProgress(void) const = 0;

virtual const sc_event& ResponseStartEvent(void) const = 0;
virtual const sc_event& ResponseEndEvent(void) const = 0;

};

Figure B.2. OCP TL3 Master Response Interface

retrieve the current request. The accept method to signal the completion of the current transac-
tion is available in un-timed and timed variants. The two events and the responseInProgress
method have the same semantics as in the producer interface.

Note that the request and response channels are completely symmetric. It is therefore suf-
ficient to discuss the master side of the API definition. The slave request interface represents
the consumer side of the request channel and is completely analogous to the master response
interface. In the same way the slave response interface resembles the master request interface.

Additionally the producer interface provides two events, which are notifi ed at the start and

Integrated System-Level Modeling

The consumer interface in figure B.2 comprises a blocking and a non-blocking method to
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The OCP TL3 Channel
The OCP TL3 implementation is realized as a user-level protocol layer on top of the OSCI TLM
API to demonstrate the compliance with the TLM standard (see appendix A). As depicted in

unidirectional OSCI TLM standard.

Figure B.3. Mapping the TL3 API onto the OSCI TLM standard

From the outside perspective, the TLM based OCP channel looks just like any other OCP
channel, i.e. it implements a master and a slave interface. Inside the OCP TLM channel the

The master- and slave- protocol entities are completely separated, i.e. they communicate only
via two OSCI TLM FIFOs. In that the mapping of the OCP TL3 API onto the TLM API is 100%
complete. Each of the TLM FIFOs is of size 1, which corresponds to the current transaction in
the OCP channel.

The timing annotation features of the TL3 API require additional functionality. The timed
sendRequest (and sendResponse) methods are implemented using a delay queue as specified in

of time. The timed requestAccept (and responseAccept) methods are simply implemented
by means of delayed event notification.

figure B.3, all the functions and events in the OCP TL3 API are mapped to the non-blocking

interfaces are implemented by two separate modules, the master-protocol and the slave-protocol.

definition 7.5 on page 86. These queues delay the sending of transactions by the specified amount



Appendix C
The Architects View Framework

In 2004, the MP-SoC simulation framework technology has been transferred from the ISS
institute to CoWare Inc. From then on the technology has been productized and incorporated
into the CoWare Platform Architect product line. This appendix gives a brief overview of the
resulting Architects View Framework (AVF) and highlights the relation between the product
features and the concepts described in this book.

Overview
AVF is now a commercially modeling environment for architectural exploration of highly com-
plex Multi-Processor SoC platforms. It supports the standardized OCP TLM communication
interfaces at the TL2 and TL3 abstraction levels. These protocol agnostic APIs enable a unified
representation of communication architectures, which in turn leads to a highly flexible architec-
ture exploration process. The TL2 and TL3 APIs provide support for timing annotation according
to the timing model introduced section 6.2.1 and formally defined in section 7.3.1.

level models created for other use-case like SW development and verification can be reused for
architectural exploration. This is achieved by means of bus-transactors, which serve as a perfor-
mance overlay model to refine the timing information of behavioral platform models to the level
required for architectural exploration [153, 150].

Debugging
The value of the Message Sequence Chart (MSC) view for system-level debugging of complex
TLM models has been demonstrated by the graphical debugger prototype described in section

As depicted in figure C.1, MSC debugging is now incorporated into the Eclipse based
Integrated Development environment.

Figure C.1. Message Sequence Chart based TLM Debugging in the CoWare SystemC IDE

TheAVF modelingmethodology is consistent withCoWare’s overall TLM strategy. Transaction-
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Dynamic Configuration
One of the key features in the Architects View Framework (AVF) is the support for declarative
platform composition (please refer to page 129).

Figure C.2. Platform Assembly and Configuration in CoWare Platform Creator

a regular platform in the graphical Platform Creator tool. Usually the platform is then exported
as a static SystemC netlist. The new AV export feature exports the platform as a dynamic netlist.

from the exploration cycle.

AVF Bus Library
Apart from the tool enhancements, the actual models of the interconnect architecture are an
important aspect of the Architects View Framework. The AVF Bus Library is a collection

aspects.

the configuration parameters of the generic bus node.

Modeling Interconnect Nodes
One goal of the Architects View Framework is to provide the user with a modeling environment
for the creation of interconnect models. For this purpose the AVF bus library is organized in

As depicted in figure C.2, and AVF platform can be assembled, connected, and configured like

The Platform Creator tool generates a generic simulation model and a xml confi guration file
containing the platform specific information. For any change in the platform architecture only
the xml file needs to be re-exported. This cuts the lengthy re-compilation of the simulation model

communication. The configurability refers to functional aspects as well as to performance related

several layers as depicted in figure C.4.

of the communication nodes is formally defined in section 7.3.3. Figure C.3 depicts a subset of

Integrated System-Level Modeling

of highly configurable generic communication nodes for point-to-point, bus, and router based

The configurability of the functionality like routing, queuing, and arbitration is similar to the
configurability in nodes of the NoC Framework as described in section 8.3. The timing model
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Figure C.3. Configuration Parameters of the AVF Generic Bus

The highest layer is represented by the ready-to-use AVF bus library of configurable inter-
connect models.
represent a particular interconnect architecture (see section 8.3.5).

models in the AVF bus library, the user can deploy the AVF Interconnect Modeling Objects to
create a more customized model with reasonable effort. These modeling objects resemble the

model queuing, arbitration, and timed communication resources.

nect architecture to the desired degree of accuracy, the user can fall back to the AVF-Scheduler

delay queue mechanism to ease the modeling of timing and pipelining.

In any case, the interconnect models composed inside the AVF Modeling Framework are
automatically instrumented with analysis and debug hooks (e.g. Message Sequence Chart). Ad-
ditionally, the underlying AVF Scheduler minimizes the interaction with the SystemC scheduler
to optimize the simulation speed.

By tuning the confi guration parameters the generic interconnect models can

components of the communication timing model as defi ned in section 7.3.3, like e.g. objects to

In case the structure of the interconnect architecture differs signifi cantly from the generic

API. This level corresponds to the basic elements for modeling timed process networks as defined
in the first paragraph of section 7.2. In particular the AVF-Scheduler API provides an efficient

In case the Interconnect Modeling Objects are still not flexible enough to model the intercon-
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Figure C.4. AVF Interconnect Modeling Layers
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Hemani. A Network on a Chip Architecture and Design Methodology. In Proc. IEEE
Computer Society Annual Symposium on VLSI, April 2002.

[76] J.A.J. Leijten, J.L. Van Meerbergen, A.H. Timmer, J.A.G. Jess. Prophid: A Platform-
Based Design Method. Design Automation of Embedded Systems, 6(1):5–37, 2000.

[77] P. Guerrier, A. Greiner. A Generic Architecture for On-Chip Packet-Switched Inter-
connections. In Proc. Int. Conf. on Design, Automation and Test in Europe (DATE),
2000.

[78]
Network Processors. In Proc. of the Design Automation Conference (DAC), 2001.

[79] STNoC: Building a New System-on-Chip Paradigm. White Paper, Dec 2005.

[80] A. Ferrari and A. Sangiovanni-Vincentelli. System design: Traditional concepts and new
paradigms. In Proc. IEEE Int. Conference on Computer Design (ICCD), pages 2–13,
1999.

[81] A Sangiovanni-Vincentelli. Defining platform-based design. EEDesign, Feb 2002.

[82] L.P. Carloni, F. De Bernardinis, C. Pinello, A.L. Sangiovanni-Vincentelli, M. Sgroi.
Platform-Based Design for Embedded Systems, chapter 22. CRC Press, 2006. ISBN
0-8493-2824-1.

References

F. Karim, A. Nguyen, S. Dey, R. Rao. On-Chip Communication Architecture for OC-768

M.



182

[83] P. Magarshack, P. Paulin. System-on-chip Beyond the Nanometer Wall. In Proc. of the
Design Automation Conference (DAC), 2003.

[84] A. Jantsch, S. Kumar, A. Hemani. The Rugby model: A conceptual frame for the study
of modelling, analysis and synthesis concepts of electronic systems. In Proc. Int. Conf.
on Design, Automation and Test in Europe (DATE), 1999.

[85] S.A. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design of embed-
ded systems: Formal Models, Validation, and Synthesis. Proc. of the IEEE, 85(3):366–
390, March 1997.

[86] G. Berry. The Foundations of Esterel. In R. Milner, G. Plotkin, C. Stirling, M. Tofte,
editor, Proof, Language and Interaction: Essays in Honour. MIT Press, 1998.

[87] Nicolas Halbwachs. Synchronous Prgramming of Reactive Systems. Kluwer Academic
Publishers, 1993.

[88] A. Benveniste, G. Berry. The Synchronous Approach to Reactive and Real-Time Sys-
tems. Proc. of the IEEE, 79(9), Sept. 1991.

[89] F. Boussinot and R. de Simone. The esterel language. Proceedings of the IEEE,
79(9):1293–1304, September 1991.

[90] Gilles Kahn. The Semantics of a Simple Language for Parallel Programming. In
Information Processing 74. North-Holland Publishing Company, 1974.

[91] E.A. Lee, D.G. Messerschmitt. Synchronous data flow. Proc. of the IEEE, September
1987.

[92] J.T. Buck. Scheduling dynamic Dataflow Graphs with Bounded Memory using the Token
Flow Model. PhD thesis, EECS UC Berkeley, 1993.

[93] T. Grötker, R. Schoenen, and H. Meyr. PCC: A Modeling Technique for Mixed Con-
trol/Data FLow Systems. Proceedings of the European Design and Test Conference,
1997.

[94] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

[95] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

[96] Telecommunication Standardization Sector of ITU. Specification and description lan-
guage (sdl). ITU–T Recommendation Z.100, International Telecommunication Union,
March 1993.

[97] Telecommunication Standardization Sector of ITU. Annex f.3 to recommendation z.100:
Sdl formal definition, dynamic semantics. ITU–T Recommendation Z.100, International
Telecommunication Union, November 1988.

[98] C. Hewitt. Viewing control structures as patterns of passing messages. Technical report,
1977.

[99] E. Lee, S. Neuendorffer, M. Wirthlin. Actor-oriented Design of Embedded Hardware
and Software Systems, June 2003.

References



183

[100] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt. Ptolemy: A Framework for Sim-
ulating and Prototyping Heterogeneous Systems. Int. Journal of Computer Simulation,
4:155–182, April 1994.

[101]
Metropolis: An Integrated Electronic System Design Environment. IEEE Computer,
36(4):45–52, April 2003.
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