

Embedded Systems

Series Editors
Nikil D. Dutt, Department of Computer Science, Donald Bren School

of Information and Computer Sciences, University of California, Irvine,
Zot Code 3435, Irvine, CA 92697-3435, USA

Peter Marwedel, Informatik 12, TU Dortmund, Otto-Hahn-Str. 16,
44227 Dortmund, Germany

Grant Martin, Tensilica Inc., 3255-6 Scott Blvd., Santa Clara, CA 95054, USA

For other titles published in this series, go to
www.springer.com/series/8563

http://www.springer.com/series/8563

Peter Marwedel

Embedded
System Design

Embedded Systems Foundations
of Cyber-Physical Systems

2nd Edition

Dr. Peter Marwedel
TU Dortmund
Informatik 12
Otto-Hahn-Str. 16
44221 Dortmund
Germany
peter.marwedel@tu-dortmund.de

ISBN 978-94-007-0256-1 e-ISBN 978-94-007-0257-8
DOI 10.1007/978-94-007-0257-8
Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:peter.marwedel@tu-dortmund.de
http://www.springer.com
http://www.springer.com/mycopy

Contents

Preface xi

Acknowledgments xxi

1. INTRODUCTION 1
1.1 Application areas and examples 1
1.2 Common characteristics . 4
1.3 Challenges in Embedded System Design 10
1.4 Design Flows . 12
1.5 Structure of this book . 17
1.6 Assignments . 18

2. SPECIFICATIONS AND MODELING 21
2.1 Requirements . 21
2.2 Models of computation . 28
2.3 Early design phases . 35

2.3.1 Use cases . 35
2.3.2 (Message) Sequence Charts 36

2.4 Communicating finite state machines (CFSMs) 39
2.4.1 Timed automata . 40
2.4.2 StateCharts . 42
2.4.3 Synchronous languages 52
2.4.4 SDL: A case of message passing 54

2.5 Data flow . 61
2.5.1 Scope . 61
2.5.2 Kahn process networks 62
2.5.3 Synchronous data flow 64
2.5.4 Simulink . 66

2.6 Petri nets . 67

v

vi EMBEDDED SYSTEM DESIGN

2.6.1 Introduction . 67
2.6.2 Condition/event nets 70
2.6.3 Place/transition nets 71
2.6.4 Predicate/transition nets 76
2.6.5 Evaluation . 78

2.7 Discrete event based languages 78
2.7.1 VHDL . 80
2.7.2 SystemC . 96
2.7.3 Verilog and SystemVerilog 98
2.7.4 SpecC . 100

2.8 Von-Neumann languages . 101
2.8.1 CSP . 102
2.8.2 ADA . 102
2.8.3 Java . 105
2.8.4 Pearl and Chill . 106
2.8.5 Communication libraries 106

2.9 Levels of hardware modeling 107
2.10 Comparison of models of computation 109

2.10.1 Criteria . 109
2.10.2 UML . 113
2.10.3 Ptolemy II . 115

2.11 Assignments . 116

3. EMBEDDED SYSTEM HARDWARE 119
3.1 Introduction . 119
3.2 Input . 120

3.2.1 Sensors . 120
3.2.2 Discretization of time: Sample-and-hold circuits . . . 123
3.2.3 Discretization of values: A/D-converters 127

3.3 Processing Units . 132
3.3.1 Overview . 132
3.3.2 Application-Specific Circuits (ASICs) 135
3.3.3 Processors . 135
3.3.4 Reconfigurable Logic 152

3.4 Memories . 155
3.5 Communication . 157

3.5.1 Requirements . 158
3.5.2 Electrical robustness 159
3.5.3 Guaranteeing real-time behavior 160
3.5.4 Examples . 162

3.6 Output . 164
3.6.1 D/A-converters . 164

Contents vii

3.6.2 Sampling theorem 167
3.6.3 Actuators . 172

3.7 Secure hardware . 173
3.8 Assignments . 173

4. SYSTEM SOFTWARE 177
4.1 Embedded Operating Systems 178

4.1.1 General requirements 178
4.1.2 Real-time operating systems 182
4.1.3 Virtual machines . 186
4.1.4 Resource access protocols 186

4.2 ERIKA . 191
4.3 Hardware abstraction layers 195
4.4 Middleware . 195

4.4.1 OSEK/VDX COM 195
4.4.2 CORBA . 196
4.4.3 MPI . 197
4.4.4 POSIX Threads (Pthreads) 198
4.4.5 OpenMP . 198
4.4.6 UPnP, DPWS and JXTA 199

4.5 Real-time databases . 200
4.6 Assignments . 201

5. EVALUATION AND VALIDATION 203
5.1 Introduction . 203

5.1.1 Scope . 203
5.1.2 Multi-objective optimization 204
5.1.3 Relevant objectives 206

5.2 Performance evaluation . 207
5.2.1 Early phases . 207
5.2.2 WCET estimation 208
5.2.3 Real-time calculus 213

5.3 Energy and power models 217
5.4 Thermal models . 218
5.5 Risk- and dependability analysis 219
5.6 Simulation . 228
5.7 Rapid prototyping and emulation 229
5.8 Formal Verification . 231
5.9 Assignments . 233

6. APPLICATION MAPPING 235
6.1 Problem definition . 235
6.2 Scheduling in real-time systems 238

viii EMBEDDED SYSTEM DESIGN

6.2.1 Classification of scheduling algorithms 238
6.2.2 Aperiodic scheduling without precedence constraints . 242
6.2.3 Aperiodic scheduling with precedence constraints . . 248
6.2.4 Periodic scheduling without precedence constraints . 257
6.2.5 Periodic scheduling with precedence constraints . . . 262
6.2.6 Sporadic events . 263

6.3 Hardware/software partitioning 263
6.3.1 Introduction . 263
6.3.2 COOL . 264

6.4 Mapping to heterogeneous multi-processors 272
6.5 Assignments . 277

7. OPTIMIZATION 281
7.1 Task level concurrency management 281
7.2 High-level optimizations . 285

7.2.1 Floating-point to fixed-point conversion 285
7.2.2 Simple loop transformations 287
7.2.3 Loop tiling/blocking 289
7.2.4 Loop splitting . 291
7.2.5 Array folding . 293

7.3 Compilers for embedded systems 295
7.3.1 Introduction . 295
7.3.2 Energy-aware compilation 296
7.3.3 Memory-architecture aware compilation 297
7.3.4 Reconciling compilers and timing analysis 306
7.3.5 Compilation for digital signal processors 308
7.3.6 Compilation for multimedia processors 310
7.3.7 Compilation for VLIW processors 311
7.3.8 Compilation for network processors 312
7.3.9 Compiler generation, retargetable compilers and de-

sign space exploration 313
7.4 Power Management and Thermal Management 313

7.4.1 Dynamic voltage scaling (DVS) 313
7.4.2 Dynamic power management (DPM) 317

7.5 Assignments . 318

8. TEST 321
8.1 Scope . 321
8.2 Test procedures . 322

8.2.1 Test pattern generation for gate level models 322
8.2.2 Self-test programs 324

8.3 Evaluation of test pattern sets and system robustness 324
8.3.1 Fault coverage . 324

Contents ix

8.3.2 Fault simulation . 325
8.3.3 Fault injection . 326

8.4 Design for testability . 327
8.4.1 Motivation . 327
8.4.2 Scan design . 327
8.4.3 Signature analysis 329
8.4.4 Pseudo-random test pattern generation 330
8.4.5 The built-in logic block observer (BILBO) 331

8.5 Assignments . 332

Appendix A Integer linear programming 335

Appendix B Kirchhoff’s laws and operational amplifiers 337

References 343

About the Author 373

List of Figures 375

Index 383

Preface

Definitions and scope

Until the late 1980s, information processing was associated with large main-
frame computers and huge tape drives. During the 1990s, this shifted towards
information processing being associated with personal computers, PCs. The
trend towards miniaturization continues and the majority of information pro-
cessing devices will be small portable computers, many of which will be in-
tegrated into larger products. Their presence in these larger products, such as
telecommunication equipment, will be less obvious than for the PC. Usually,
technical products must be technologically advanced to attract customers’ in-
terest. Cars, cameras, TV sets, mobile phones, etc. can hardly be sold any
more in technologically advanced countries unless they come with built-in
computers. Hence and according to several forecasts (see, for example [Na-
tional Research Council, 2001]), the future of information and communication
technologies (ICT) is characterized by terms such as

1 ubiquitous computing [Weiser, 2003],

2 pervasive computing [Hansmann, 2001], [Burkhardt, 2001],

3 ambient intelligence [Koninklijke Philips Electronics N.V., 2003],
[Marzano and Aarts, 2003],

4 the disappearing computer [Weiser, 2003],

5 and the post-PC era.

The first term reflects the fact that computing (and communication) will be
everywhere. The expectation is that information will be available anytime,
anywhere. The predicted penetration of our day-to-day life with computing

xi

xii EMBEDDED SYSTEM DESIGN

devices led to the term “pervasive computing”. For ambient intelligence, there
is some emphasis on communication technology in future homes and smart
buildings. These three terms focus on only slightly different aspects of future
information technology. Ubiquitous computing focuses more on the long term
goal of providing information anytime, anywhere, whereas pervasive comput-
ing focuses more on practical aspects and the exploitation of already available
technology. The fourth term refers to the expectation that processors and soft-
ware will be used in much smaller systems and will in many cases even be
invisible. The term post-PC era denotes the fact that in the future, standard-
PCs will be less dominant hardware platforms.

Two basic technologies are needed for next-generation ICT systems:

embedded systems,

and communication technologies.

Fig. 0.1 shows a graphical representation of how ubiquitous computing is in-
fluenced by embedded systems and by communication technology.

Figure 0.1. Influence of embedded systems on ubiquitous computing (©European Commis-
sion)

For example, ubiquitous computing devices -like embedded systems- must
meet real-time and dependability requirements of embedded systems while us-
ing fundamental techniques of communication technology, such as networking.

A comprehensive coverage of communication technologies would require a
separate book. Therefore, this book does not cover communication technolo-
gies, except as a minor topic in few subsections. What are “embedded systems”
anyway? They can be defined as follows [Marwedel, 2003]:

Preface xiii

Definition: Embedded systems are information processing systems em-
bedded into enclosing products.

Examples include embedded systems in cars, trains, planes, and telecommu-
nication or fabrication equipment. Such systems come with a large number
of common characteristics, including real-time constraints, and dependability
as well as efficiency requirements. For such systems, the link to physics and
physical systems is rather important. This link is emphasized in the following
citation [Lee, 2006]:

“Embedded software is software integrated with physical processes. The tech-
nical problem is managing time and concurrency in computational systems”.

This citation could be used as a definition of the term “embedded software”
and could be extended into a definition of “embedded systems” by just replac-
ing “software” by “system”. However, the strong link to physics has recently
been stressed even more by the introduction of the term “cyber-physical sys-
tems” (CPS or “cy-phy” systems for short). Cy-phy systems can be defined as
follows:

Definition: “Cyber-Physical Systems (CPS) are integrations of computation
and physical processes” [Lee, 2007].

The new term emphasizes the link to physical quantities such as time, energy
and space. Emphasizing this link makes a lot of sense, since it is frequently
ignored in a world of applications running on PCs. For cy-phy systems, we
may be expecting models to include models of the physical environment as
well. In this sense, we may think of cy-phy systems to comprise embedded
systems (the information processing part) and the physical environment.
We will refer to the new term whenever we want to emphasize the link to
physics and the environment. In the future, links to chemistry and biology are
likely to be important as well.

This book provides an overview of key concepts for embedded systems as they
are needed for cyber-physical systems. The scope includes specification tech-
niques, hardware components, system software, application mapping, evalua-
tion and validation, as well as exemplary optimizations and test methods.

Importance of embedded and cyber-physical systems

Following the success of ICT for office and work flow applications, embedded
and cyber-physical systems are considered to be the most important applica-
tion area of ICT during the coming years. The number of processors in embed-
ded systems already exceeds the number of processors in PCs, and this trend
is expected to continue. According to forecasts, the size of embedded software
will also increase at a large rate. Another kind of Moore’s law was predicted:

xiv EMBEDDED SYSTEM DESIGN

For many products in the area of consumer electronics the amount of code is
doubling every two years [Vaandrager, 1998]. The increasing importance of
embedded systems is also reflected in a report of the National Research Coun-
cil in the United States [National Research Council, 2001]. According to the
introduction of this report, “Information technology (IT) is on the verge of an-
other revolution. ... networked systems of embedded computers ... have the
potential to change radically the way people interact with their environment
by linking together a range of devices and sensors that will allow information
to be collected, shared, and processed in unprecedented ways. ... The use
... throughout society could well dwarf previous milestones in the information
revolution.”

Statistics regarding the size of the embedded systems market can be found on
relevant web sites. Sites such as “IT facts” [IT Facts, 2010] demonstrate the
importance of the embedded system market. The size of the embedded system
market can be analyzed from a variety of perspectives. Many of the embedded
processors are 8-bit processors, but despite this, even the majority of all 32-
bit processors are integrated into embedded systems [Stiller, 2000]. Already
in 1996, it was estimated that the average American came into contact with 60
microprocessors per day [Camposano and Wolf, 1996]. Some high-end cars
contain more than 100 processors1. These numbers are much larger than what
is typically expected, since most people do not realize that they are using pro-
cessors. The importance of embedded systems was also stated by journalist
Margaret Ryan [Ryan, 1995]:

“... embedded chips form the backbone of the electronics driven world in which
we live. ... they are part of almost everything that runs on electricity”.

According to quite a number of forecasts, the embedded system market will be
much larger than the market for PC-like systems.

In the United States, the National Science Foundation is supporting research on
cyber-physical systems [National Science Foundation, 2010]. In Europe, the
Sixth and the Seventh Framework Programme [European Commission Cordis,
2010] support research and development of embedded systems. Also, the
ARTEMIS joint undertaking [ARTEMIS Joint Undertaking, 2010] was cre-
ated as a public/private partnership between government institutions and com-
panies in order to move research and development in embedded computing
ahead. This initiative demonstrates the huge interest of the European commer-
cial sector in this technology. Similar initiatives exist on other continents as
well.

1According to personal communication.

Preface xv

This importance of embedded/cyber-physical systems is so far not well re-
flected in many of the current curricula. This book is intended as an aid for
changing this situation. It provides the material for a first course on such sys-
tems. Therefore, it has been designed as a textbook. However, it provides
more references than typical textbooks and also helps to structure the area.
Hence, this book should also be useful for faculty members and engineers. For
students, the inclusion of a rich set of references facilitates access to relevant
sources of information.

Audience for this book

This book is intended for the following audience:

Computer science (CS), computer engineering (CE), and electrical engi-
neering (EE) students as well as students in other ICT-related areas who
would like to specialize in embedded/cyber-physical systems. The book
should be appropriate for third year students who do have a basic knowl-
edge of computer hardware and software. This means that the book primar-
ily targets senior undergraduate students. However, it can also be used at
the graduate level if embedded system design is not part of the undergrad-
uate program. This book is intended to pave the way for more advanced
topics that should be covered in follow-up courses. The book assumes a
basic knowledge of computer science. EE students may have to read some
additional material in order to fully understand the topics of this book. This
should be compensated by the fact that some material covered in this book
may already be known to EE students.

Engineers who have so far worked on systems hardware and who have to
move more towards software of embedded systems. This book should pro-
vide enough background to understand the relevant technical publications.

PhD students who would like to get a quick, broad overview of key concepts
in embedded system technology before focusing on a specific research area.

Professors designing a new curriculum for embedded systems.

Curriculum integration of embedded systems

Unfortunately, embedded systems are hardly covered in the latest edition of
the Computer Science Curriculum, as published by ACM and the IEEE Com-
puter Society [ACM/IEEE, 2008]. However, the growing number of applica-
tions results in the need for more education in this area. This education should
help to overcome the limitations of currently available design technologies for
embedded systems. For example, there is still a need for better specification

xvi EMBEDDED SYSTEM DESIGN

languages, models, tools generating implementations from specifications, tim-
ing verifiers, system software, real-time operating systems, low-power design
techniques, and design techniques for dependable systems. This book should
help teaching the essential issues and should be a stepping stone for starting
more research in the area.

Areas covered in this book

This book covers hardware as well as software aspects of embedded systems.
This is in-line with the ARTIST guidelines for curricula: “The development
of embedded systems cannot ignore the underlying hardware characteristics.
Timing, memory usage, power consumption, and physical failures are impor-
tant.” [Caspi et al., 2005].

The book focuses on the fundamental bases of software and hardware. Specific
products and tools are mentioned only if they have outstanding characteristics.
Again, this is in-line with the ARTIST guidelines: “It seems that fundamental
bases are really difficult to acquire during continuous training if they haven’t
been initially learned, and we must focus on them.” [Caspi et al., 2005]. As a
consequence, this book goes beyond teaching embedded system design by pro-
gramming micro-controllers. With this approach, we would like to make sure
that the material taught will not be outdated too soon. The concepts covered in
this book should be relevant for a number of years to come.

The proposed positioning of the current textbook in computer science and com-
puter engineering curricula is explained in a paper [Marwedel, 2005]. A key
goal of this book is to provide an overview of embedded system design and
to relate the most important topics in embedded system design to each other.
This way, we avoid a problem mentioned in the ARTIST guidelines: “The
lack of maturity of the domain results in a large variety of industrial practices,
often due to cultural habits. ... curricula ... concentrate on one technique
and do not present a sufficiently wide perspective. .. As a result, industry has
difficulty finding adequately trained engineers, fully aware of design choices”
[Caspi et al., 2005].

The book should also help to bridge the gap between practical experiences with
programming micro-controllers and more theoretical issues. Furthermore, it
should help to motivate students and teachers to look at more details. While
the book covers a number of topics in detail, others are covered only briefly.
These brief sections have been included in order to put a number of related
issues into perspective. Furthermore, this approach allows lecturers to have ap-
propriate links in the book for adding complementary material of their choice.
The book includes more references than textbooks would normally do. This
way, the book can also be used as a comprehensive tutorial, providing pointers

Preface xvii

for additional reading. Such references can also stimulate taking benefit of the
book during labs, projects, and independent studies as well as a starting point
for research.

Additional information related to the book can be obtained from the fol-
lowing web page:

http://ls12-www.cs.tu-dortmund.de/∼marwedel/es-book.

This page includes links to slides, simulation tools, error corrections, and other
related material. Readers who discover errors or who would like to make com-
ments on how to improve the book should send an e-mail to:

peter.marwedel at tu-dortmund.de

Assignments could also use the information in complementary books (e.g.
[Wolf, 2001], [Buttazzo, 2002], and [Gajski et al., 2009]).

Prerequisites

The book assumes a basic understanding in several areas:

electrical networks at the high-school level (e.g. Kirchhoff’s laws),

operational amplifiers (optional),

computer organization, for example at the level of the introductory book by
J.L. Hennessy and D.A. Patterson [Hennessy and Patterson, 2008],

fundamental digital circuits such as gates and registers,

computer programming (including foundations of software engineering),

fundamentals of operating systems,

fundamentals of computer networks,

finite state machines,

some first experience with programming micro-controllers,

fundamental mathematical concepts (such as tuples, integrals, and linear
equations), and welcome knowledge in statistics and Fourier series,

algorithms (graph algorithms and optimization algorithms such as branch
and bound),

http://ls12-www.cs.tu-dortmund.de/~marwedel/es-book

xviii EMBEDDED SYSTEM DESIGN

the concept of NP-completeness.

These prerequisites can be grouped into courses as shown in the top row in
fig. 0.2.

Figure 0.2. Positioning of the topics of this book

Recommended additional teaching

A course using this textbook should be complemented by an exciting lab, us-
ing, for example, small robots, such as Lego MindstormsTM or similar robots.
Another option is to let students gain some practical experience with finite state
machine tools.

The book should be complemented by follow-up courses providing a more
specialized knowledge in some of the following areas (see the bottom row in
fig. 0.2)2:

control systems,

digital signal processing,

machine vision,

real-time systems, real-time operating systems, and scheduling,

middleware,

application areas such as telecommunications, automotive, medical equip-
ment, and smart homes,

2The partitioning between undergraduate courses and graduate courses may differ between universities.

Preface xix

robotics,

sensors and actuators,

specification languages for embedded systems,

computer-aided design tools for application-specific hardware,

formal verification of hardware systems,

testing of hardware and software systems,

performance evaluation of computer systems,

low-power design techniques,

security and dependability of computer systems,

ubiquitous computing,

impact of embedded systems.

History of the book

The first edition of this book was published in 2003. The field of embedded
systems is moving fast and many new results have become available since then.
Also, there are areas for which the emphasis has shifted. In some cases, a more
detailed treatment of the topic became desirable. New developments have been
taken up when the first German edition of the book was published in 2007.
Therefore it became necessary to publish a major new English release, the
current second edition.

Names used in this book without any reference to copyrights or trademarks
may still be legally protected.

Please enjoy reading the book!

Dortmund (Germany), August 2010

Peter Marwedel

This book is dedicated
to my family members

Veronika, Malte,
Gesine, and Ronja.

Acknowledgments

My PhD students, in particular Lars Wehmeyer, did an excellent job in proof-
reading a preliminary version of this book. Also, the students attending my
courses provided valuable help. Corrections were contributed by David Hec,
Thomas Wiederkehr, Thorsten Wilmer and Henning Garus. In addition, the
following colleagues and students gave comments or hints which were incor-
porated into this book: R. Dömer, N. Dutt (UC Irvine), A. B. Kahng (UC San
Diego), W. Kluge, R. von Hanxleden (U. Kiel), P. Buchholz, M. Engel, H.
Krumm, O. Spinczyk (TU Dortmund), W. Müller, F. Rammig (U. Paderborn),
W. Rosenstiel (U. Tübingen), L. Thiele (ETH Zürich), and R. Wilhelm (Saar-
land University). Material from the following persons was used to prepare this
book: G. C. Buttazzo, D. Gajski, R. Gupta, J. P. Hayes, H. Kopetz, R. Leu-
pers, R. Niemann, W. Rosenstiel, H. Takada, L. Thiele, and R. Wilhelm. PhD
students of my group contributed to the assignments included in this book. Of
course, the author is responsible for all errors and mistakes.

I do acknowledge the support of the European Commission through projects
MORE, Artist2, ArtistDesign, Hipeac(2), PREDATOR, MNEMEE and MAD-
NESS, which provided an excellent context for writing the second edition of
this book.

The book has been produced using the LATEXtype setting system from the
TeXnicCenter user interface. I would like to thank the authors of this software
for their contribution to this work.

Acknowledgments also go to all those who have patiently accepted the author’s
additional workload during the writing of this book and his resulting reduced
availability for professional as well as personal partners.

Finally, it should be mentioned that the Springer company has supported the
publication of the book. Their support has been stimulating during the work
on this book.

xxi

Chapter 1

INTRODUCTION

1.1 Application areas and examples

Embedded and cy-phy systems are present in quite diverse areas. The follow-
ing list comprises key areas in which such systems are used:

Automotive electronics: Modern cars can be sold in technologically ad-
vanced countries only if they contain a significant amount of electronics.
These include air bag control systems, engine control systems, anti-braking
systems (ABS), electronic stability programs (ESP) and other safety fea-
tures, air-conditioning, GPS-systems, anti-theft protection, and many more.
Embedded systems can help to reduce the impact on the environment.

Avionics: A significant amount of the total value of airplanes is due to the
information processing equipment, including flight control systems, anti-
collision systems, pilot information systems, and others. Embedded sys-
tems can decrease emissions (such as carbon-dioxide) from airplanes. De-
pendability is of utmost importance.

Railways: For railways, the situation is similar to the one discussed for
cars and airplanes. Again, safety features contribute significantly to the
total value of trains, and dependability is extremely important.

Telecommunication: Mobile phones have been one of the fastest growing
markets in the recent years. For mobile phones, radio frequency (RF) de-
sign, digital signal processing and low power design are key aspects. Other
forms of telecommunication are also important.

Health sector: The importance of healthcare products is increasing, in par-
ticular in aging societies. There is a huge potential for improving the med-

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8 1, © Springer Science+Business Media B.V. 2011

1

http://dx.doi.org/10.1007/978-94-007-0257-8_1

2 EMBEDDED SYSTEM DESIGN

ical service by taking advantage of information processing within medical
equipment. There are very diverse techniques that can be applied in this
area.

Security: The interest in various kinds of security is also increasing. Em-
bedded systems can be used to improve security in many ways. This in-
cludes secure identification/authentication of people, for example with fin-
ger print sensors or face recognition systems.

The SMARTpen® [IMEC, 1997] is another example, providing authenti-
cation of payments (see fig. 1.1).

Figure 1.1. SMARTpen (Original version)

The SMARTpen is a pen-like instrument analyzing physical parameters
while its user is signing. Physical parameters include the tilt, force and
acceleration. These values are transmitted to a host PC and compared with
information available about the user. As a result, it can be checked if both
the image of the signature as well as the way it has been produced coincide
with the stored information. More recently, smart pens locally recording
written patterns became commercially available and these devices are not
necessarily used for authentications.

Consumer electronics: Video and audio equipment is a very important
sector of the electronics industry. The information processing integrated
into such equipment is steadily growing. New services and better qual-
ity are implemented using advanced digital signal processing techniques.
Many TV sets (in particular high-definition TV sets), multimedia phones,
and game consoles comprise powerful high-performance processors and
memory systems. They represent special cases of embedded systems.

Fabrication equipment: Fabrication equipment is a very traditional area in
which embedded/cyber-physical systems have been employed for decades.
Safety is very important for such systems, the energy consumption is less
important. As an example, fig. 1.2 (taken from Kopetz [Kopetz, 1997])
shows a container with an attached drain pipe. The pipe includes a valve
and a sensor. Using the readout from the sensor, a computer may have to
control the amount of liquid leaving the pipe.

Introduction 3

Figure 1.2. Controlling a valve

The valve is an example of an actuator (see definition on page 8).

Smart buildings: Information processing can be used to increase the com-
fort level in buildings, can reduce the energy consumption within build-
ings, and can improve safety and security. Subsystems which traditionally
were unrelated must be connected for this purpose. There is a trend to-
wards integrating air-conditioning, lighting, access control, accounting and
distribution of information into a single system. Tolerance levels of air
conditioning subsystems can be increased for empty rooms, and the light-
ing can be automatically reduced. Air condition noise can be reduced to
a level required for the actual operating conditions. Intelligent usage of
blinds can also optimize lighting and air-conditioning. Available rooms
can be displayed at appropriate places, simplifying ad-hoc meetings and
cleaning. Lists of non-empty rooms can be displayed at the entrance of the
building in emergency situations (provided the required power is still avail-
able). This way, energy can be saved on cooling, heating and lighting. Also
safety can be improved. Initially, such systems might mostly be present in
high-tech office buildings, but the trend toward energy-efficient buildings
also affects the design of private homes. One of the goals is to design so-
called zero-energy-buildings (buildings which produce as much energy as
they consume) [Northeast Sustainable Energy Association, 2010]. Such a
design would be one contribution towards a reduction of the global carbon-
dioxide footprint and global warming.

Logistics: There are several ways in which embedded/cyber-physical sys-
tem technology can be applied to logistics. Radio frequency identification
(RFID) technology provides easy identification of each and every object,
worldwide. Mobile communication allows unprecedented interaction. The
need of meeting real-time constraints and scheduling are linking embedded
systems and logistics. The same is true of energy minimization issues.

Robotics: Robotics is also a traditional area in which embedded/cyber-
physical systems have been used. Mechanical aspects are very impor-

4 EMBEDDED SYSTEM DESIGN

tant for robots. Most of the characteristics described above also apply to
robotics. Recently, some new kinds of robots, modeled after animals or
human beings, have been designed. Fig. 1.3 shows such a robot.

Figure 1.3. Robot “Johnnie” (courtesy H. Ulbrich, F. Pfeiffer, Lehrstuhl für Angewandte
Mechanik, TU München), ©TU München

Military applications: Information processing has been used in military
equipment for many years. In fact, some of the very first computers ana-
lyzed military radar signals.

This set of examples demonstrates the huge variety of embedded and cyber-
physical systems. Why does it make sense to consider all these types of em-
bedded systems in one book? It makes sense because information processing
in these systems has many common characteristics, despite being physically so
different.

1.2 Common characteristics

Common characteristics of these systems are the following:

Cyber-physical systems must be dependable.

Many cyber-physical systems are safety-critical and therefore must be de-
pendable. Nuclear power plants are examples of extremely safety-critical

Introduction 5

systems that are at least partially controlled by software. Dependability is,
however, also important in other systems, such as cars, trains, airplanes etc.
A key reason for being safety-critical is that these systems are directly con-
nected to the physical environment and have an immediate impact on the
environment.

Dependability encompasses the following aspects of a system:

1 Reliability: Reliability is the probability that a system will not fail1.

2 Maintainability: Maintainability is the probability that a failing sys-
tem can be repaired within a certain time-frame.

3 Availability: Availability is the probability that the system is available.
Both the reliability and the maintainability must be high in order to
achieve a high availability.

4 Safety: This term describes the property that a system will not cause
any harm.

5 Security: This term describes the property that confidential data re-
mains confidential and that authentic communication is guaranteed.

Designers may be tempted to focus just on the functionality of systems ini-
tially, assuming that dependability can be added once the design is working.
Typically, this approach does not work, since certain design decisions will
not allow achieving the required dependability in the aftermath. For ex-
ample, if the physical partitioning is done in the wrong way, redundancy
may be impossible. Therefore, “making the system dependable must not be
an after-thought”, it must be considered from the very beginning [Kopetz,
1997].

Even perfectly designed systems can fail if the assumptions about the work-
load and possible errors turn out to be wrong [Kopetz, 1997]. For example,
a system might fail if it is operated outside the initially assumed tempera-
ture range.

Embedded systems must be efficient. The following metrics can be used
for evaluating the efficiency of embedded systems:

1 Energy: Computational energy efficiency is a key characteristic of exe-
cution platform technologies. A comparison between technologies and
changes over time (corresponding to a certain fabrication technology)
can be seen from fig. 1.4 (approximating information provided by H.
De Man [Man, 2007] and based on information provided by Philips).

1A formal definition of this term is provided in Chapter 5 of this book.

6 EMBEDDED SYSTEM DESIGN

Figure 1.4. Energy efficiency as a function of time and technology (©Philips, Hugo de Man,
2007)

Obviously, the number of operations2 per Joule is increasing as tech-
nology advances to smaller and smaller feature sizes of integrated cir-
cuits. However, for any given technology, the number of operations
per Joule is largest for hardwired application specific integrated cir-
cuits (ASICs). For reconfigurable logic usually coming in the form of
field programmable gate arrays (FPGAs; see page 152), this value is
about one order of magnitude less. For programmable processors, it
is even lower. However, processors offer the largest amount of flex-
ibility, resulting from the flexibility of software. There is also some
flexibility for reconfigurable logic, but it is limited to the size of ap-
plications that can be mapped to such logic. For hardwired designs,
there is no flexibility. The trade-off between flexibility and efficiency
also applies to processors: For processors optimized for the applica-
tion domain, such as processors optimized for digital signal processing

2In this context, operations could be 32 bit additions.

Introduction 7

(DSP), power-efficiency values approach those of reconfigurable logic.
For general standard microprocessors, the values for this figure of merit
are the worst. This can be seen from fig. 1.4, comprising values for mi-
croprocessors such as x86-like processors (see “MPU” entries), RISC
processors and the cell processor designed by IBM and Sony.

As a rule of thumb, we can consider devices such as smart phones to be
limited to a power consumption3 of about two Watts and that about half
of this power is required for radio frequency (RF) transmissions, dis-
plays and audio amplifiers, leaving about 1 Watt for computations. This
limitation is caused both by the available battery technology and by the
need to keep devices at comfortable temperatures. Improving battery
technology would allow us to consume power over longer periods, but
the thermal limitation prevents us from going significantly beyond the
two Watts in the near future. Of course, a larger power consumption is
feasible for larger devices. Nevertheless, environmental concerns also
result in the need to keep the power consumption low.

Computational requirements are increasing at a rapid rate, especially
for multimedia applications. De Man and Philips estimated that ad-
vanced multimedia applications need about 10 to 100 billion operations
per second. Fig. 1.4 demonstrates that advanced hardware technologies
provide us with this number of operations per Joule (= Ws). This means
that the most power efficient platform technologies hardly provide the
efficiency which is needed. It also means that we really must use all
sources of efficiency improvements. Standard processors (entries for
MPU and RISC) are hopelessly inefficient.

This situation leads to forecasts (see, for example, the ITRS Roadmap
for Semiconductors [ITRS Organization, 2009]) predicting that availa-
bility of energy will be a key limitation for new mobile applications.
According to this road map, “... these trends imply that computation
performance, in some suitable metric, must be increased by one-to-two
orders of magnitude by 2020. This raises the question of the maxi-
mum attainable performance per joule and suggests a rapprochement
between information theory and thermodynamics”.

2 Run-time efficiency: Embedded systems should exploit the available
hardware architecture as much as possible. Inefficiencies, resulting
from a poor mapping of applications to platforms, should be avoided.
For example, compilers should not introduce overhead, since this would
lead to wasted energy and possibly higher than necessary clock rates.

3Strictly speaking, we are not really “consuming” power or the closely related energy. Rather, we are
converting electrical energy into thermal energy. However, electrical energy is really disappearing.

8 EMBEDDED SYSTEM DESIGN

3 Code size: Dynamically loading additional code to be executed on
embedded system devices is still an exception and limited to cases such
as smart phones and set-top boxes. It is likely to remain an exception,
due to limited connectivity and safety concerns. Therefore, the code
to be run on an embedded system typically has to be stored with the
system. Typically, there are no hard disks for this. Therefore, code-
size should be as small as possible for the intended application. This
is especially true for systems on a chip (SoCs), systems for which all
the information processing circuits are included on a single chip. If the
instruction memory is to be integrated onto this chip, it should be used
very efficiently. However, the importance of this design goal might
change, when larger memory densities (measured in bits per volume
unit) become available. Flash-based memories will potentially have a
large impact.

4 Weight: All portable systems must be lightweight. A low weight is
frequently an important argument for buying a particular system.

5 Cost: For high-volume embedded systems in mass markets, especially
in consumer electronics, competitiveness on the market is an extremely
crucial issue, and efficient use of hardware components and the soft-
ware development budget are required. A minimum amount of re-
sources should be used for implementing the required functionality. We
should be able to meet requirements using the least amount of hardware
resources and energy. In order to reduce the energy consumption, clock
frequencies and supply voltages should be as small as possible. Also,
only the necessary hardware components should be present. Compo-
nents which do not improve the worst case execution time (such as
many caches or memory management units) can frequently be omitted.

Frequently, embedded systems are connected to the physical environment
through sensors collecting information about that environment and actua-
tors controlling that environment.

Definition: Actuators are devices converting numerical values into physi-
cal effects.

This link to the physical environment also motivated the introduction of the
term “cyber-physical system”. Embedded system education focusing on
the programming of micro-controllers is frequently neglecting this link. In
this respect, the new term helps liberating embedded system design from
the programming of micro-controllers.

Many cyber-physical systems must meet real-time constraints. Not com-
pleting computations within a given time-frame can result in a serious loss
of the quality provided by the system (for example, if the audio or video

Introduction 9

quality is affected) or may cause harm to the user (for example, if cars,
trains or planes do not operate in the predicted way). Some time constraints
are called hard time constraints:

Definition: “A time-constraint is called hard if not meeting that con-
straint could result in a catastrophe” [Kopetz, 1997].

All other time constraints are called soft time constraints.

Many of today’s information processing systems are using techniques for
speeding-up information processing on the average. For example, caches
improve the average performance of a system. In other cases, reliable com-
munication is achieved by repeating certain transmissions. These cases in-
clude Ethernet protocols: they typically rely on resending messages when-
ever the original messages have been lost. On the average, such repetitions
result in a (hopefully only) small loss of performance, even though for a cer-
tain message the communication delay can be orders of magnitude larger
than the normal delay. In the context of real-time systems, arguments about
the average performance or delay cannot be accepted. “A guaranteed sys-
tem response has to be explained without statistical arguments” [Kopetz,
1997].

Typically, embedded systems are reactive systems. They can be defined as
follows:

Definition: “A reactive system is one that is in continual interaction with
its environment and executes at a pace determined by that environment”
[Bergé et al., 1995].

Reactive systems can be thought of as being in a certain state, waiting for
an input. For each input, they perform some computation and generate an
output and a new state. Therefore, automata are very good models of such
systems. Mathematical functions, which describe the problems solved by
most algorithms, would be an inappropriate model.

Many embedded systems are hybrid systems in the sense that they include
analog and digital parts. Analog parts use continuous signal values in con-
tinuous time, whereas digital parts use discrete signal values in discrete
time.

Most embedded systems do not use keyboards, mice and large computer
monitors for their user-interface. Instead, there is a dedicated user-inter-
face consisting of push-buttons, steering wheels, pedals etc. Because of
this, the user hardly recognizes that information processing is involved.
Due to this, the new era of computing has also been characterized by the
term disappearing computer.

These systems are frequently dedicated towards a certain application.

10 EMBEDDED SYSTEM DESIGN

For example, processors running control software in a car or a train will
always run that software, and there will be no attempt to run a computer
game or spreadsheet program on the same processor. There are mainly two
reasons for this:

1 Running additional programs would make those systems less depend-
able.

2 Running additional programs is only feasible if resources such as mem-
ory are unused. No unused resources should be present in an efficient
system.

However, the situation is slowly changing for systems such as smart phones.
Smart phones are becoming more PC-like and can hardly be called cyber-
physical systems. Also, the situation is becoming a bit more dynamic in the
automotive industry as well, as demonstrated by the AUTOSAR initiative
[AUTOSAR, 2010].

Embedded systems are under-represented in teaching and in public dis-
cussions. One of the problems in teaching embedded system design is the
comprehensive equipment which is needed to make the topic interesting
and practical. Also, real embedded systems are very complex and hence
difficult to teach.

Due to this set of common characteristics (except for the last one), it does make
sense to analyze common approaches for designing embedded systems, instead
of looking at the different application areas only in isolation.

Actually, not every embedded system will have all the above characteristics.
We can define the term “embedded system” also in the following way: Infor-
mation processing systems meeting most of the characteristics listed above
are called embedded systems. This definition includes some fuzziness. How-
ever, it seems to be neither necessary nor possible to remove this fuzziness.

1.3 Challenges in Embedded System Design

Embedded systems comprise a large amount of software. Nevertheless, em-
bedded system design is not just a special case of software design. Many addi-
tional design goals must be taken into account. For example:

1 Embedded systems really must be dependable. The level of dependability
goes far beyond the traditional level reached for PC-like systems. Examples
of serious cases of undependability include the following:

In one case, the voice control system at Los Angeles airport was lost
for more than 3 hours [Broesma, 2004]. The problem resulted from a

Introduction 11

server running an operating system. A counter in the operating system
kept track of the time since the last reboot. This counter was overflow-
ing after about 48 days. Therefore, the maintenance staff was instructed
to reboot the server every month. Once, the staff forgot to reboot and
this resulted in a system crash.

Many other cases of failing computer systems are reported to the risks
digest, forum on the risks to the public in computers and related Sys-
tems (see [Neumann, 2010] for the most recent edition).

2 Due to efficiency targets, software designs cannot be done independently of
the underlying hardware. Therefore, software and hardware must be taken
into account during the design steps. This, however, is difficult, since such
integrated approaches are typically not taught at educational institutes. The
cooperation between electrical engineering and computer science has not
yet reached the required level. A mapping of specifications to hardware
would provide the best energy efficiency. However, hardware implemen-
tations are very expensive and require long design times. Therefore, hard-
ware designs do not provide the flexibility to change designs as needed. We
need to find a good compromise between efficiency and flexibility.

3 Embedded systems must meet many non-functional requirements such as
real-time constraints, energy/power efficiency and dependability require-
ments. Many objectives must be taken into account during the design. Just
capturing non-functional requirements is already difficult.

4 The link to physics has additional implications. For example, we must
check if we will definitely meet real-time constraints. Managing time is
one of the largest challenges [Lee, 2006].

5 Real systems are profoundly concurrent. Managing concurrency is there-
fore another major challenge.

6 Real embedded systems are complex. Therefore, they comprise various
components and we are interested in compositional design. This means,
we would like to study the impact of combining components. For example,
we would like to know whether we could add a GPS system to the sources
of information in a car without overloading the communication bus.

7 Traditional sequential programming languages are not the best way to de-
scribe concurrent, timed systems.

The table in fig. 1.5 highlights some distinguishing features between the design
of PC-like systems and embedded systems during the mapping of applications
to hardware platforms.

12 EMBEDDED SYSTEM DESIGN

Embedded PC-like

Architectures Frequently heterogeneous Mostly homogeneous
very compact not compact (x86 etc)

x86 compatibility Less relevant Very relevant
Architecture fixed? Sometimes not Yes
Model of computa- C+multiple models (data flow, Mostly von Neumann
tion (MoCs) discrete events, ...) (C, C++, Java)
Optim. objectives Multiple (energy, size, ...) Average performance dominates
Real-time relevant Yes, very! Hardly
Applications Several concurrent apps. Mostly single application
Apps. known at Most, if not all Only some (e.g. WORD)
design time

Figure 1.5. Scope of mapping applications to PC-like and Embedded Systems hardware

Compatibility with traditional instruction sets employed for PCs is less impor-
tant for embedded systems, since it is typically possible to compile software
applications for architectures at hand. Sequential programming languages do
not match well with the need to describe concurrent real-time systems, and
other ways of modeling applications may be preferred. Several objectives
must be considered during the design of embedded/cyber-physical systems.
In addition to the average performance, the worst case execution time, energy
consumption, weight, reliability, operating temperatures, etc. may have to be
optimized. Meeting real-time constraints is very important for cyber-physical
systems, but hardly ever for PC-like systems. Meeting time constraints can be
verified at design time only, if all the applications are known at design time.
Also, it must be known, which applications should run concurrently. For exam-
ple, designers must ensure that a GPS-application, a phone call, and concurrent
data transfers can be executed at the same time without losing voice samples.
In contrast, there is no need to guarantee time constraints for multiple, concur-
rently running software media-players. For PC-like systems, such knowledge
is almost never available.

1.4 Design Flows

The design of embedded systems is a rather complex task, which has to be
broken down into a number of subtasks to be tractable. These subtasks must
be performed one after the other and some of them must be repeated.

The design information flow starts with ideas in people’s heads. These ideas
should incorporate knowledge about the application area. These ideas must be
captured in a design specification. In addition, standard hardware and system

Introduction 13

software components are typically available and should be reused whenever
possible (see fig. 1.6).

Figure 1.6. Simplified design flow

In this diagram (as well as in other similar diagrams in this book), we are
using boxes with rounded corners for stored information and rectangles
for transformations on data. In particular, information is stored in the de-
sign repository. The repository allows keeping track of design models. In
most cases, the repository should provide version management or “revision
control”, such as CVS [Cederqvist, 2006] or SVN [Collins-Sussman et al.,
2008]. A good design repository should also come with a design management
interface which would also keep track of the applicability of design tools and
sequences, all integrated into a comfortable graphical user interface (GUI).
The design repository and the GUI can be extended into an integrated devel-
opment environment (IDE), also called design framework (see, for exam-
ple [Liebisch and Jain, 1992]). An integrated development environment keeps
track of dependencies between tools and design information.

Using the repository, design decisions can be taken in an iterative fashion. At
each step, design model information must be retrieved. This information is
then considered.

During design iterations, applications are mapped to execution platforms and
new (partial) design information is generated. The generation comprises the
mapping of operations to concurrent tasks, the mapping of operations to either
hardware or software (called hardware/software partitioning), compilation, and
scheduling.

Designs should be evaluated with respect to various objectives including per-
formance, dependability, energy consumption, manufacturability etc. At the
current state of the art, none of the design steps can be guaranteed to be cor-
rect. Therefore, it is also necessary to validate the design. Validation consists

14 EMBEDDED SYSTEM DESIGN

of checking intermediate or final design descriptions against other descriptions.
Thus, each new design should be evaluated and validated.

Due to the importance of the efficiency of embedded systems, optimizations
are important. There is a large number of possible optimizations, includ-
ing high-level transformations (such as advanced loop transformations) and
energy-oriented optimizations.

Design iterations could also include test generation and an evaluation of the
testability. Testing needs to be included in the design iterations if testability
issues are already considered during the design steps. In fig. 1.6, test generation
has been included as optional step of design iterations (see dashed box). If
test generation is not included in the iterations, it must be performed after the
design has been completed.

At the end of each step, the repository should be updated.

Details of the flow between the repository, application mapping, evaluation,
validation, optimization, testability considerations and storage of design infor-
mation may vary. These actions may be interleaved in many different ways,
depending on the design methodology used.

This book presents embedded system design from a broad perspective, and it
is not tied towards particular design flows or tools. Therefore, we have not in-
dicated a particular list of design steps. For any particular design environment,
we can “unroll” the loop in fig. 1.6 and attach names to particular design steps.
For example, this leads to the particular case of the SpecC [Gajski et al., 2000]
design flow shown in fig. 1.7.

Figure 1.7. Design flow for SpecC tools (simplified)

Introduction 15

In this case, a particular set of design steps, such as architecture exploration,
communication synthesis and software and hardware compilation are included.
The precise meaning of these terms is not relevant in this book. In the case of
fig. 1.7, validation and evaluation are explicitly shown for each of the steps,
but are wrapped into one larger box.

A second instance of an unfolded fig. 1.6 is shown in fig. 1.8. It is the V-model
of design flows [V-Modell XT Authors, 2010], which has to be adhered to for
many German IT projects, especially in the government sector.

Figure 1.8. Design flow for the V-model (rotated standard view)

Fig. 1.8 very clearly shows the different steps that must be performed. The
steps correspond to certain phases during the software development process
(the precise meaning is again not relevant in the context of this book). Note
that taking design decisions, evaluating and validating designs is lumped into
a single box in this diagram. Application knowledge, system software and sys-
tem hardware are not explicitly shown. The V-model also includes a model
of the integration and testing phase (lower “wing”) of the diagram. This cor-
responds to an inclusion of testing in the loop of fig. 1.6. The shown model
corresponds to the V-model version “97”. The more recent V-model XT al-
lows a more general set of design steps. This change matches very well our
interpretation of design flows in fig. 1.6. Other iterative approaches include the
waterfall model and the spiral model. More information about software engi-
neering for embedded systems can be found in a book by J. Cooling [Cooling,
2003].

Our generic design flow model is also consistent with flow models used in
hardware design. For example, Gajski’s Y-chart [Gajski and Kuhn, 1983] (see
fig. 1.9) is a very popular model.

16 EMBEDDED SYSTEM DESIGN

Figure 1.9. Gajski’s Y-chart and design path (in bold)

Gajski considers design information in three dimensions: behavior, structure
and layout. The first dimension just reflects the behavior. A high-level model
would describe the overall behavior, while finer-grained models would de-
scribe the behavior of components. Models at the second dimension include
structural information, such as information about hardware components. High-
level descriptions in this dimension could correspond to processors, low-level
descriptions to transistors. The third dimension represents geometrical layout
information of chips. Design paths will typically start with a coarse-grained
behavioral description and finish with a fine-grained geometrical description.
Along this path, each step corresponds to one iteration of our generic design
flow model. In the example of fig. 1.9, an initial refinement is done in the
behavioral domain. The second design step maps the behavior to structural
elements, and so on. Finally, a detailed geometrical description of the chip
layout is obtained.

The previous three diagrams demonstrate that a number of design flows are
using the iterative flow of fig. 1.6. The nature of the iterations in fig. 1.6 can
be a source of discussions. Ideally, we would like to describe the properties of
our system and then let some smart tool do the rest. Automatic generation of
design details is called synthesis.

Definition: Synthesis is the process of generating the description of a system
in terms of related lower-level components from some high-level description
of the expected behavior [Marwedel, 1990].

Synthesis, if successful, avoids many manual design steps. The goal of us-
ing this paradigm for designing systems has been considered in the “describe-
and-synthesize” paradigm by Gajski [Gajski et al., 1994]. This paradigm is
in contrast to the traditional “specify-explore-refine” approach, also known as
“design-and-simulate” approach. This second term stresses the fact that man-
ual design typically has to be combined with simulation, for example for catch-
ing design errors. Simulation is more important than in automatic synthesis.

Introduction 17

1.5 Structure of this book

Consistent with the design information flow shown above, this book is struc-
tured as follows: Chapter 2 provides an overview of specification techniques,
languages and models. Key hardware components of embedded systems are
presented in Chapter 3. Chapter 4 deals with system software components,
particularly embedded operating systems. Chapter 5 contains the essentials of
embedded system design evaluation and verification. Mapping applications to
execution platforms is one of the key steps in the design process of embedded
systems. Standard techniques achieving such a mapping are listed in Chapter 6.
This Chapter also includes standard scheduling techniques. Due to the need for
generating efficient designs, many optimization techniques are needed. From
among the abundant set of available optimization techniques, several groups
are mentioned in Chapter 7. Chapter 8 contains a brief introduction to testing
mixed hardware/software systems. The appendix comprises a description of a
standard optimization technique and some prerequisites for understanding one
of the circuits in Chapter 3.

It may be necessary to design special purpose hardware or to optimize pro-
cessor architectures for a given application. However, hardware design is not
covered in this book. Coussy and Morawiec [Coussy and Morawiec, 2008]
provide an overview of recent high-level hardware synthesis techniques.

The content of this book is different from the content of most other books
on embedded systems design. Traditionally, the focus of many books on em-
bedded systems is on explaining the use of micro-controllers, including their
memory, I/O and interrupt structure. There are many such books [Ball, 1996],
[Heath, 2000], [Ball, 1998], [Barr, 1999], [Ganssle, 2000], [Barrett and Pack,
2005], [Ganssle, 2008], [Ganssle et al., 2008], and [Labrosse, 2000].

We believe that, due to the increasing complexity of embedded systems, this
focus has to be extended to include at least different specification paradigms,
fundamentals of hardware building blocks, the mapping of applications to exe-
cution platforms, as well as evaluation, validation and optimization techniques.
In the current book, we will be covering all these areas. The goal is to provide
students with an introduction to embedded systems, enabling students to put
the different areas into perspective.

For further details, we recommend a number of sources (some of which have
also been used in preparing this book):

There is a large number of sources of information on specification lan-
guages. These include earlier books by Young [Young, 1982], Burns and
Wellings [Burns and Wellings, 1990], Bergé [Bergé et al., 1995] and de
Micheli [De Micheli et al., 2002]. There is a huge amount of information on

18 EMBEDDED SYSTEM DESIGN

new languages such as SystemC [Müller et al., 2003], SpecC [Gajski et al.,
2000], and Java [Wellings, 2004], [Dibble, 2008], [Bruno and Bollella,
2009], [Java Community Process, 2002], [Anonymous, 2010b].

Approaches for designing and using real-time operating systems (RTOSes)
are presented in a book by Kopetz [Kopetz, 1997].

Real-time scheduling is covered comprehensively in the books by Buttazzo
[Buttazzo, 2002] and by Krishna and Shin [Krishna and Shin, 1997].

Other sources of information about embedded systems include books by
Laplante [Laplante, 1997], Vahid [Vahid, 2002], the ARTIST road map
[Bouyssounouse and Sifakis, 2005], the “Embedded Systems Handbook”
[Zurawski, 2006], and recent books by Gajski et al. [Gajski et al., 2009],
and Popovici et al. [Popovici et al., 2010].

Approaches for embedded system education are covered in the Workshops
on Embedded Systems Education (WESE); see [Jackson et al., 2009] for
results from the most recent workshop.

The website of the European network of excellence on embedded and real-
time systems [Artist Consortium, 2010] provides numerous links for the
area.

The web page of a special interest group of ACM [ACM SIGBED, 2010]
focuses on embedded systems.

Symposia dedicated towards embedded/cyber-physical systems include the
Embedded Systems Week (see www.esweek.org) and the Cyber-Physical
Systems Week (see www.cpsweek.org).

Robotics is an area that is closely linked to embedded and cyber-physical
systems. We recommend the book by Fu, Gonzalez and Lee [Fu et al.,
1987] for information on robotics.

1.6 Assignments

1 Please list possible definitions of the term “embedded system”!

2 How would you define the term “cyber-physical system”?

3 Use the sources available to you to demonstrate the importance of embed-
ded systems!

4 Compare the curriculum of your educational program with the description
of the curriculum in this introduction. Which prerequisites are missing in
your program? Which advanced courses are available?

http://www.esweek.org
http://www.cpsweek.org

Introduction 19

5 Please enumerate application areas of embedded systems and indicate up
to 5 examples of embedded systems!

6 Please enumerate up to six characteristics of embedded systems!

7 How do different hardware technologies differ with respect to their energy
efficiency?

8 Suppose that your mobile uses a lithium battery rated at 720 mAh. The
nominal voltage of the battery is 3.7 V. Assuming a constant power con-
sumption of 1 W, how long would it take to empty the battery? All sec-
ondary effects such as decreasing voltages should be ignored in this calcu-
lation.

9 The computational efficiency is sometimes also measured in terms of bil-
lions of operations per second per Watt. How is this different from the
figure of merit used in fig. 1.4?

10 Which real-time constraints are called “hard real-time constraints”?

11 How could you define the term “reactive system”?

Chapter 2

SPECIFICATIONS AND MODELING

2.1 Requirements

Consistent with the simplified design flow (see fig. 1.6), we will now describe
requirements and approaches for specifying and modeling embedded systems.

Specifications for embedded systems provide models of the system under de-
sign (SUD). Models can be defined as follows [Jantsch, 2004]:

Definition: “A model is a simplification of another entity, which can be a phys-
ical thing or another model. The model contains exactly those characteristics
and properties of the modeled entity that are relevant for a given task. A model
is minimal with respect to a task if it does not contain any other characteristics
than those relevant for the task”.

Models are described in languages. Languages should be capable of represent-
ing the following features1:

Hierarchy: Human beings are generally not capable of comprehending
systems containing many objects (states, components) having complex re-
lations with each other. The description of all real-life systems needs more
objects than human beings can understand. Hierarchy (in combination with
abstraction) is a key mechanism helping to solve this dilemma. Hierar-
chies can be introduced such that humans need to handle only a small num-
ber of objects at any time.

There are two kinds of hierarchies:

1Information from the books of Burns et al. [Burns and Wellings, 1990], Bergé et al. [Bergé et al., 1995]
and Gajski et al. [Gajski et al., 1994] is used in this list.

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8 2, © Springer Science+Business Media B.V. 2011

21

http://dx.doi.org/10.1007/978-94-007-0257-8_2

22 EMBEDDED SYSTEM DESIGN

– Behavioral hierarchies: Behavioral hierarchies are hierarchies con-
taining objects necessary to describe the system behavior. States, events
and output signals are examples of such objects.

– Structural hierarchies: Structural hierarchies describe how systems
are composed of physical components.
For example, embedded systems can be comprised of components such
as processors, memories, actuators and sensors. Processors, in turn,
include registers, multiplexers and adders. Multiplexers are composed
of gates.

Component-based design [Sifakis, 2008]: It must be “easy” to derive the
behavior of a system from the behavior of its components. If two com-
ponents are connected, the resulting new behavior should be predictable.
Example: suppose that we add another component (say, some GPS unit) to
a car. The impact of the additional processor on the overall behavior of the
system (including buses etc.) should be predictable.

Concurrency: Real-life systems are distributed, concurrent systems com-
posed of components. It is therefore necessary to be able to specify con-
currency conveniently. Unfortunately, human beings are not very good at
understanding concurrent systems and many problems with real systems
are actually a result of an incomplete understanding of possible behaviors
of concurrent systems.

Synchronization and communication: Components must be able to com-
municate and to synchronize. Without communication, components could
not cooperate and we would use each of them in isolation. It must also be
possible to agree on the use of resources. For example, it is necessary to
express mutual exclusion.

Timing-behavior: Many embedded systems are real-time systems. There-
fore, explicit timing requirements are one of the characteristics of embed-
ded systems. The need for explicit modeling of time is even more obvious
from the term “cyber-physical system”. Time is one of the key dimensions
of physics. Hence, timing requirements must be captured in the specifica-
tion of embedded/cyber-physical systems.

However, standard theories in computer science model time only in a very
abstract way. The O-notation is one of the examples. This notation just re-
flects growth rates of functions. It is frequently used to model run-times of
algorithms, but it fails to describe real execution times. In physics, quanti-
ties have units, but the O-notation does not even have units. So, it would not
distinguish between femtoseconds and centuries. A similar remark applies
to termination properties of algorithms. Standard theories are concerned

Specifications and Modeling 23

with proving that a certain algorithm eventually terminates. For real-time
systems, we need to show that an algorithm terminates in a given amount
of time.

The resulting problems are very clearly formulated in a statement made by
E. Lee: “The lack of timing in the core abstraction (of computer science) is
a flaw, from the perspective of embedded software” [Lee, 2005].

According to Burns and Wellings [Burns and Wellings, 1990], modeling
time must be possible in the following four contexts:

– Techniques for measuring elapsed time:
For many applications it is necessary to check, how much time has
elapsed since some computation was performed. Access to a timer
would provide a mechanism for this.

– Means for delaying of processes for a specified time:
Typically, real-time languages provide some delay construct. Unfortu-
nately, typical implementations of embedded systems in software do
not guarantee precise delays. Let us assume that task T should be
delayed by some amount δ2. Usually, this delay is implemented by
changing task T ’s state in the operating system from “ready” or “run”
to “suspended”. At the end of this time interval, T ’s state is changed
from “suspended” to “ready”. This does not mean that the task actually
executes. If some higher priority task is executing or if preemption is
not used, the delayed task will be delayed longer than δ.

– Possibility to specify timeouts:
There are many situations in which we must wait for a certain event to
occur. However, this event may actually not occur within a given time
interval and we would like to be notified about this. For example, we
might be waiting for a response from some network connection. We
would like to be notified if this response is not received within some
amount of time, say δ. This is the purpose of timeouts. Real-time
languages usually also provide some timeout construct. Implementa-
tions of timeouts frequently come with the same problems which we
mentioned for delays.

– Methods for specifying deadlines and schedules:
For many applications it is necessary to complete certain computations
in a limited amount of time. For example, if the sensors of some car
signal an accident, air-bags must be ignited within about ten millisec-
onds. In this context, we must guarantee that the software will decide

2In this book, we will not distinguish between threads, processes and tasks.

24 EMBEDDED SYSTEM DESIGN

whether or not to ignite the air-bags in that given amount of time. The
air-bags could harm passengers, if they go off too late. Unfortunately,
most languages do not allow to specify timing constraints. If they can
be specified at all, they must be specified in separate control files, pop-
up menus etc. But the situation is still bad even if we are able to specify
these constraints: many modern hardware platforms do not have a very
predictable timing behavior. Caches, stalled pipelines, speculative ex-
ecution, task preemption, interrupts, etc. may have an impact on the
execution time which is very difficult to predict. Accordingly, timing
analysis (verifying the timing constraints) is a very hard design task.

State-oriented behavior: It was already mentioned in Chapter 1 that au-
tomata provide a good mechanism for modeling reactive systems. There-
fore, the state-oriented behavior provided by automata should be easy to
describe. However, classical automata models are insufficient, since they
cannot model timing and since hierarchy is not supported.

Event-handling: Due to the reactive nature of embedded systems, mecha-
nisms for describing events must exist. Such events may be external events
(caused by the environment) or internal events (caused by components of
the SUD).

Exception-oriented behavior: In many practical systems exceptions do
occur. In order to design dependable systems, it must be possible to de-
scribe actions to handle exceptions easily. It is not acceptable that excep-
tions must be indicated for each and every state (such as in the case of
classical state diagrams). Example: In fig. 2.1, input k might correspond to
an exception.

Figure 2.1. State diagram with exception k

Specifying this exception at each state makes the diagram very complex.
The situation would get worse for larger state diagrams with many transi-
tions. Below, we will show how all the transitions can be replaced by a
single one.

Presence of programming elements: Popular programming languages
have proven to be a convenient means of expressing computations that have

Specifications and Modeling 25

to be performed. Hence, programming language elements should be avail-
able in the specification technique used. Classical state diagrams do not
meet this requirement.

Executability: Specifications are not automatically consistent with the
ideas in people’s heads. Executing the specification is a means of plausi-
bility checking. Specifications using programming languages have a clear
advantage in this context.

Support for the design of large systems: There is a trend towards large
and complex embedded software programs. Software technology has found
mechanisms for designing such large systems. For example, object-orien-
tation is one such mechanism. It should be available in the specification
methodology.

Domain-specific support: It would of course be nice if the same speci-
fication technique could be applied to all the different types of embedded
systems, since this would minimize the effort for developing specification
techniques and tool support. However, due to the wide range of application
domains, there is little hope that one language can be used to efficiently
represent specifications in all domains. For example, control-dominated,
data-dominated, centralized and distributed applications-domains can all
benefit from language features dedicated towards those domains.

Readability: Of course, specifications must be readable by human beings.
Otherwise, it would not be feasible to validate whether or not the specifi-
cation meets the real intent of the persons specifying the SUD. All design
documents should also be machine-readable into order to process them in a
computer. Therefore, specifications should be captured in languages which
are readable by humans and by computers.

Initially, such specifications could use a natural language such as English or
Japanese. Even this natural language description should be captured in a de-
sign document, so that the final implementation can be checked against the
original document. However, natural languages are not sufficient for later
design phases, since natural languages lack key requirements for specifi-
cation techniques: it is necessary to check specifications for completeness,
absence of contradictions and it should be possible to derive implementa-
tions from the specification in a systematic way. Natural languages do not
meet these requirements.

Portability and flexibility: Specifications should be independent of spe-
cific hardware platforms so that they can be easily used for a variety of
target platforms. Ideally, changing the hardware platform should have no

26 EMBEDDED SYSTEM DESIGN

impact on the specification. In practice, small changes may have to be tol-
erated.

Termination: It should be feasible to identify processes that will terminate
from the specification. This means that we would like to use specifications
for which the halting problem (the problem of figuring out whether or not a
certain algorithm will terminate; see, for example [Sipser, 2006]) is decid-
able.

Support for non-standard I/O-devices: Many embedded systems use
I/O-devices other than those typically found in a PC. It should be possi-
ble to describe inputs and outputs for those devices conveniently.

Non-functional properties: Actual SUDs must exhibit a number of non-
functional properties, such as fault-tolerance, size, extendibility, expected
lifetime, power consumption, weight, disposability, user friendliness, elec-
tromagnetic compatibility (EMC) etc. There is no hope that all these prop-
erties can be defined in a formal way.

Support for the design of dependable systems: Specification techniques
should provide support for designing dependable systems. For example,
specification languages should have unambiguous semantics, facilitate for-
mal verification and be capable of describing security and safety require-
ments.

No obstacles to the generation of efficient implementations: Since em-
bedded systems must be efficient, no obstacles prohibiting the generation
of efficient realizations should be present in the specification.

Appropriate model of computation (MoC): The von-Neumann model of
sequential execution combined with some communication technique is a
commonly used MoC. However, this model has a number of serious prob-
lems, in particular for embedded system applications. Problems include:

– Facilities for describing timing are lacking.

– Von-Neumann computing is implicitly based on accesses to globally
shared memory (such as in Java). It has to guarantee mutually exclusive
access to shared resources. Otherwise, multi-threaded applications al-
lowing pre-emptions at any time can lead to very unexpected program
behaviors3. Using primitives for ensuring mutually exclusive access
can, however, very easily lead to deadlocks. Possible deadlocks may
be difficult to detect and may remain undetected for many years.

3Examples are typically provided in courses on operating systems.

Specifications and Modeling 27

Lee [Lee, 2006] provided a very alarming example in this direction.
Lee studied implementations of a simple observer pattern in Java. For
this pattern, changes of values must be propagated from some producer
to a set of subscribed observers. This is a very frequent pattern in
embedded systems, but is difficult to implement correctly in a multi-
threaded von-Neumann environment with preemptions. Lee’s code is
a possible implementation of the observer pattern in Java for a multi-
threaded environment:

public synchronized void addListener(listener) {...}
public synchronized void setValue(newvalue) {
myvalue=newvalue;

for (int i=0; i<mylisteners.length; i++) {
myListeners[i].valueChanged(newvalue)

}
Method addListener subscribes new observers, method setValue propa-
gates new values to subscribed observers. In general, in a multithreaded
environment, threads can be pre-empted any time, resulting in an arbi-
trarily interleaved execution of these threads. Adding observers while
setValue is already active could result in complications, i.e. we would
not know if the new value had reached the new listener. Moreover, the
set of observers constitutes a global data structure of this class. There-
fore, these methods are synchronized in order to avoid changing the set
of observers while values are already partially propagated. This way,
only one of the two methods can be active at a given time. This mutual
exclusion is necessary to prevent unwanted interleavings of the exe-
cution of methods in a multithreaded environment. Why is this code
problematic? It is problematic since valueChanged could attempt to
get exclusive access to some resource (say, R). If that resource is allo-
cated to some other method (say, A), then this access is delayed until
A releases R. If A calls (possibly indirectly) addListener or setValue
before releasing R, then these methods will be in a deadlock: setValue
waits for R, releasing R requires A to proceed, A cannot proceed before
its call of setValue or addListener is serviced. Hence, we will have a
deadlock.
This example demonstrates the existence of deadlocks resulting from
using multiple threads which can be arbitrarily pre-empted and there-
fore require mutual exclusion for their access to critical resources. Lee
showed [Lee, 2006] that many of the proposed “solutions” of the prob-
lem are problematic themselves. So, even this very simple pattern is
difficult to implement correctly in a multi-threaded von-Neumann en-
vironment. This example shows that concurrency is really difficult to

28 EMBEDDED SYSTEM DESIGN

understand for humans and there may be the risk of oversights, even
after very rigorous code inspections.

Lee came to the drastic conclusion that “nontrivial software written
with threads, semaphores, and mutexes is incomprehensible to humans”
and that “threads as a concurrency model are a poor match for embed-
ded systems. ... they work well only ... where best-effort scheduling
policies are sufficient” [Lee, 2005].

The underlying reasons for deadlocks have been studied in detail in
the context of operating systems (see, for example, [Stallings, 2009]).
From this context, it is well-known that four conditions must hold at
run-time to get into a deadlock: mutual exclusion, no pre-emption of
resources, holding resources while waiting for more, and a cyclic de-
pendency between threads. Obviously, all four conditions are met in
the above example. The theory of operating systems provides no gen-
eral way out of this problem. Rare deadlocks may be acceptable for a
PC, but they are clearly unacceptable for a safety-critical system.

We would like to specify SUDs such that we do not have to care about
possible deadlocks. Therefore, it makes sense to study non-von-Neumann
MoCs avoiding this problem. We will study such MoCs from the next
section onwards. It will be shown that the observer pattern can be easily
implemented in other MoCs.

From the list of requirements, it is already obvious that there will not be any
single formal language capable of meeting all these requirements. Therefore,
in practice, we must live with compromises and possibly also with a mixture of
languages (each of which would be appropriate for describing a certain type of
problems). The choice of the language used for an actual design will depend
on the application domain and the environment in which the design has to be
performed. In the following, we will present a survey of languages that can
be used for actual designs. These languages will demonstrate the essential
features of the corresponding model of computation.

2.2 Models of computation

Models of computation (MoCs) describe the mechanism assumed for perform-
ing computations. In the general case, we must consider systems comprising
components. It is now common practice to strictly distinguish between the
computations performed in the components and communication. Accordingly,
MoCs define (see also [Lee, 1999], [Janka, 2002], [Jantsch, 2004], [Jantsch,
2006]):

Specifications and Modeling 29

Components and the organization of computations in such components:
Procedures, processes, functions, finite state machines are possible compo-
nents.

Communication protocols: These protocols describe methods for com-
munication between components. Asynchronous message passing and ren-
dez-vous based communication are examples of communication protocols.

Relations between components can be captured in graphs. In such graphs, we
will refer to the computations also as processes or tasks. Accordingly, rela-
tions between these will be captured by task graphs and process networks.
Nodes in the graph represent components performing computations. Com-
putations map input data streams to output data streams. Computations are
sometimes implemented in high-level programming languages. Typical com-
putations contain (possibly non-terminating) iterations. In each cycle of the
iteration, they consume data from their inputs, process the data received, and
generate data on their output streams. Edges represent relations between com-
ponents. We will now introduce these graphs at a more detailed level.

The most obvious relation between computations is their causal dependence:
Many computations can only be executed after other computations have termi-
nated. This dependence is typically captured in dependence graphs. Fig. 2.2
shows a dependence graph for a set of computations.

Figure 2.2. Dependence graph

Definition: A dependence graph is a directed graph G = (V,E), where V is
the set of vertices or nodes and E is the set of edges. E ⊆ V ×V imposes a
relation on V . If (v1,v2) ∈ E, then v1 is called an immediate predecessor of
v2 and v2 is called an immediate successor of v1. Suppose E∗ is the transitive
closure of E. If (v1,v2) ∈ E∗, then v1 is called a predecessor of v2 and v2 is
called a successor of v1.

Such dependence graphs form a special case of task graphs. Task graphs may
contain more information than modeled in fig. 2.2. For example, task graphs
may include the following extensions of dependence graphs:

1 Timing information: Tasks may have arrival times, deadlines, periods,
and execution times. In order to take these into account while scheduling

30 EMBEDDED SYSTEM DESIGN

computations, it may be useful to include this information in the graphs.
Adopting the notation used in the book by Liu [Liu, 2000], we include pos-
sible execution intervals in fig. 2.3. Computations T1 to T3 are assumed to
be independent. The first number in brackets is the arrival time, the second
the deadline (execution times are not explicitly shown). For example, T1 is
assumed to be available at time 0 and should be completed no later than at
time 7.

Figure 2.3. Graphs including timing information

Significantly more complex combinations of timing and dependence rela-
tions can exist.

2 Distinction between different types of relations between computations:
Precedence relations just model constraints for possible execution sequen-
ces. At a more detailed level, it may be useful to distinguish between con-
straints for scheduling and communication between computations. Com-
munication can again be described by edges, but additional information
may be available for each of the edges, such as the time of the communica-
tion and the amount of information exchanged. Precedence edges may be
kept as a separate type of edges, since there could be situations in which
computations must execute sequentially even though they do not exchange
information.

In fig. 2.2, input and output (I/O) is not explicitly described. Implicitly it
is assumed that computations without any predecessor in the graph might
be receiving input at some time. Also, they might generate output for the
successor and that this output could be available only after the computation
has terminated. It is often useful to describe input and output more explic-
itly. In order to do this, another kind of relation is required. Using the same
symbols as Thoen [Thoen and Catthoor, 2000], we use partially filled cir-
cles for denoting input and output. In fig. 2.4, partially filled circles identify
I/O edges.

3 Exclusive access to resources: Computations may be requesting exclusive
access to some resource, for example to some input/output device or some
communication area in memory. Information about necessary exclusive ac-
cess should be taken into account during scheduling. Exploiting this infor-
mation might, for example, be used to avoid the priority inversion problem
(see page 188). Information concerning exclusive access to resources can
be included in the graphs.

Specifications and Modeling 31

Figure 2.4. Graphs including I/O-nodes and edges

4 Periodic schedules: Many computations, especially in digital signal pro-
cessing, are periodic. This means that we must distinguish more carefully
between a task and its execution (the latter is frequently called a job [Liu,
2000]). Task graphs for such schedules are infinite. Fig. 2.5 shows a task
graph including jobs Jn−1 to Jn+1 of a periodic task.

Figure 2.5. Graph including jobs

5 Hierarchical graph nodes: The complexity of the computations denoted
by graph nodes may be quite different. On one hand, specified computa-
tions may be quite involved and contain thousands of lines of program code.
On the other hand, programs can be split into small pieces of code so that in
the extreme case, each of the nodes corresponds only to a single operation.
The level of complexity of graph nodes is also called their granularity.
Which granularity should be used? There is no universal answer to this. For
some purposes, the granularity should be as large as possible. For example,
if we consider each of the nodes as one process to be scheduled by a real-
time operating system (RTOS), it may be wise to work with large nodes in
order to minimize context-switches between different processes. For other
purposes, it may be better to work with nodes modeling just a single oper-
ation. For example, nodes must be mapped to hardware or to software. If a
certain operation (such as the frequently used Discrete Cosine Transform,
or DCT) can be mapped to special purpose hardware, then it should not be
buried in a complex node that contains many other operations. It should
rather be modeled as its own node. In order to avoid frequent changes of
the granularity, hierarchical graph nodes are very useful. For example, at
a high hierarchical level, the nodes may denote complex tasks, at a lower

32 EMBEDDED SYSTEM DESIGN

level basic blocks4 and at an even lower level individual arithmetic opera-
tions. Fig. 2.6 shows a hierarchical version of the dependence graph in fig.
2.2, using a rectangle to denote a hierarchical node.

Figure 2.6. Hierarchical task graph

As indicated above, MoCs can be classified according to the models of com-
munication (reflected by edges in the task graphs) and the model of computa-
tions within the components (reflected by the nodes in the task graph). In the
following, we will explain prominent examples of such models:

Models of communication:

We distinguish between two communication paradigms: shared memory
and message passing. Other communication paradigms exist (e.g. entan-
gled states in quantum mechanics [Bouwmeester et al., 2000]), but are not
considered in this book.

– Shared memory:
For shared memory, communication is carried out by accesses to the
same memory from all components.

Access to shared memory should be protected, unless access is totally
restricted to reads. If writes are involved, exclusive access to the mem-
ory must be guaranteed while components are accessing shared mem-
ories. Segments of program code, for which exclusive access must
be guaranteed, are called critical sections. Several mechanisms for
guaranteeing exclusive access to resources have been proposed. These
include semaphores, conditional critical regions and monitors. Refer
to books on operating systems (e.g. Stallings [Stallings, 2009]) for a
description of the different techniques. Shared memory-based commu-
nication can be very fast, but is difficult to implement in multiprocessor
systems if no common memory is physically available.

4Basic blocks are code blocks of maximum length not including any branch except possibly at their end and
not being branched into.

Specifications and Modeling 33

– Message passing: For message passing, messages are sent and re-
ceived. Message passing can be implemented easily even if no common
memory is available. However, message passing is generally slower
than shared memory based communication. For this kind of communi-
cation, we can distinguish between the following three techniques:

∗ asynchronous message passing, also called non-blocking com-
munication: In asynchronous message passing, components com-
municate by sending messages through channels which can buffer
the messages. The sender does not need to wait for the recipient
to be ready to receive the message. In real life, this corresponds to
sending a letter or an e-mail. A potential problem is the fact that
messages must be stored and that message buffers can overflow.
There are several variations of this scheme, including communi-
cating finite state machines (see page 54) and data flow models
(see page 61).

∗ synchronous message passing or blocking communication, ren-
dez-vous based communication: In synchronous message pass-
ing, available components communicate in atomic, instantaneous
actions called rendez-vous. The component reaching the point of
communication first has to wait until the partner has also reached
its point of communication. In real life, this corresponds to phys-
ical meetings or phone calls. There is no risk of overflows, but
the performance may suffer. Examples of languages following this
model of computation include CSP (see page 102) and ADA (see
page 102).

∗ extended rendez-vous, remote invocation: In this case, the sender
is allowed to continue only after an acknowledgment has been re-
ceived from the recipient. The recipient does not have to send
this acknowledgment immediately after receiving the message, but
can do some preliminary checking before actually sending the ac-
knowledgment.

Organization of computations within the components:

– Von-Neumann model: This model is based on the sequential execu-
tion of sequences of primitive computations.

– Discrete event model: In this model, there are events carrying a to-
tally ordered time stamp, indicating the time at which the event occurs.
Discrete event simulators typically contain a global event queue sorted
by time. Entries from this queue are processed according to this order.
The disadvantage is that this model relies on a global notion of event

34 EMBEDDED SYSTEM DESIGN

queues, making it difficult to map the semantic model onto parallel im-
plementations. Examples include VHDL (see page 80), SystemC (see
page 96), and Verilog (see page 98).

– Finite state machines (FSMs): This model is based on the notion of
a finite set of states, inputs, outputs, and transitions between states.
Several of these machines may need to communicate, forming so-called
communicating finite state machines (CFSMs).

– Differential equations: Differential equations are capable of modeling
analog circuits and physical systems. Hence, they can find applications
in cyber-physical system modeling.

Combined models: Actual languages are typically combining a certain
model of communication with an organization of computations within com-
ponents. For example, StateCharts (see page 42) combines finite state ma-
chines with shared memories. SDL (see page 54) combines finite state
machines with asynchronous message passing. ADA (see page 102) and
CSP (see page 102) combine von-Neumann execution with synchronous
message passing. Fig. 2.7 gives an overview of combined models which
we will consider in this chapter. This figure also includes examples of lan-
guages for most of the MoCs.

Communication/ Shared memory Message passing
Organization of compo-
nents

synchronous asynchronous

Undefined components Plain text or graphics, use cases
(Message) sequence charts

Communicating finite StateCharts SDL
state machines
(CFSMs)
Data flow (not useful) Kahn networks

SDF
Petri nets C/E nets, P/T nets, ...
Discrete event (DE) VHDL, Verilog (Only experimental systems)
model5 SystemC Distributed DE in Ptolemy
Von-Neumann C, C++, Java C, C++, Java, ... with libraries
model CSP, ADA

Figure 2.7. Overview of MoCs and languages considered

5The classification of VHDL, Verilog and SystemC is based on the implementation of these languages in
simulators. Message passing can be modeled in these languages “on top” of the simulation kernel.

Specifications and Modeling 35

Some MoCs have advantages in certain application areas, while others have
advantages in others. Choosing the “best” MoC for a certain application may
be difficult. Being able to mix MoCs (such as in the Ptolemy framework
[Davis et al., 2001]) can be a way out of this dilemma. Also, models may
be translated from one MoC into another one. Non-von-Neumann models are
frequently translated into von-Neumann models. The distinction between the
different models is blurring if the translation between them is easy.

Designs starting from non-von-Neumann models are frequently called model-
based designs. The key idea of model-based design is to have some abstract
model of the system under design (SUD). Properties of the system can then be
studied at the level of this model, without having to care about software code.
Software code is generated only after the behavior of the model has been stud-
ied in detail and this software is generated automatically. The term “model-
based design” is not precisely defined. It is usually associated with models of
control systems, comprising traditional control system elements such as inte-
grators, differentiators etc. However, this view seems to be too restricted, since
we could also start with abstract models of consumer systems.

In the following, we will present different MoCs, using existing languages as
examples for demonstrating their features. A related (but shorter) survey is
provided by Edwards [Edwards, 2006]. For a more comprehensive presenta-
tion see [Gomez and Fernandes, 2010].

2.3 Early design phases

The very first ideas about systems are frequently captured in a very informal
way, possibly on paper. Frequently, only descriptions of the SUD in a natu-
ral language such as English or Japanese exist in the early phases of design
projects. They are typically using a very informal style. These descriptions
should be captured in some machine-readable document. They should be en-
coded in the format of some word processor and stored by a tool managing
design documents. A good tool would allow links between the requirements, a
dependence analysis as well as version management.

DOORS® [IBM, 2010b] exemplifies such a tool.

2.3.1 Use cases

For many applications, it is beneficial to envision potential usages of the SUD.
Such usages are captured in use cases. Use cases describe possible applications
of the SUD. Different notations for use cases could be used.

Support for a systematic approach to early specification phases is the goal of
the so-called UML standardization effort [Object Management Group (OMG),

36 EMBEDDED SYSTEM DESIGN

2010b], [Fowler and Scott, 1998], [Haugen and Moller-Pedersen, 2006]. UML
stands for “Unified Modeling Language”. UML was designed by leading soft-
ware technology experts and is supported by commercial tools. UML primarily
aims at the support of the software design process. UML provides a standard-
ized form for use cases.

For use cases, there is neither a precisely specified model of the computations
nor is there a precisely specified model of the communication. It is frequently
argued that this is done intentionally in order to avoid caring about too many
details during the early design phases.

For example, fig. 2.8 shows some use cases for an answering machine6.

Figure 2.8. Use case example

Use cases identify different classes of users as well as the applications to be
supported by the SUD. In this way, it is possible to capture expectations at a
very high level.

2.3.2 (Message) Sequence Charts

At a slightly more detailed level, we might want to explicitly indicate the se-
quences of messages which must be exchanged between components in order
to implement some use of the SUD. Sequence charts (SCs) -earlier called
message sequence charts (MSCs)- provide a mechanism for this. Sequence
charts use one dimension (usually the vertical dimension) of a 2-dimensional
chart to denote sequences and the second dimension to reflect the different
communication components. SCs describe partial orders between message
transmissions. SCs display a possible behavior of a SUD.

6We assume that UML is covered in-depth in a software engineering course included in the curriculum.
Therefore, UML is only briefly discussed in this book.

Specifications and Modeling 37

SCs are also standardized in UML. UML 2.0 has extended SCs with elements
allowing a more detailed description than UML 1.0. Fig. 2.9 shows one of the
use cases of the answering machine as an example.

Figure 2.9. Answering machine in UML

Dashed lines are so-called “life-lines”. Messages are assumed to be ordered
according to their sequence along the life-line. We assume that, in this ex-
ample, all information is sent in the form of messages. Arrows used in this
diagram denote asynchronous messages. This means several messages can be
sent by a sender without waiting for the receipt to be confirmed. Boxes on top
of life-lines represent active control at the corresponding component. In the
example, the answering machine is waiting for the user to pick up the phone
within a certain amount of time. If he or she fails to do so, the machine signals
a pick-up itself and sends a welcome message to the caller. The caller is then
supposed to leave a voice-mail message. Alternative sequences (e.g. an early
termination of the call by the caller or the callee picking up the phone) are not
shown.

Complex control-dependent actions cannot be described by SCs. Other MoCs
must be used for this. Frequently, certain preconditions must be met for a SC
to apply. Such preconditions, a distinction between sequences which might
happen and those which must happen, as well as other extensions are available
in the so-called Live Sequence Charts [Damm and Harel, 2001].

38 EMBEDDED SYSTEM DESIGN

Time/distance diagrams (TDDs) are a commonly used variant of SCs. In
time/distance diagrams, the vertical dimension reflects real time, not just se-
quence. In some cases, the horizontal dimension also models the real distance
between the components.

TDDs provide the right means for visualizing schedules of trains or buses. Fig.
2.10 is an example.

Figure 2.10. Time/distance diagram

This example refers to trains between Amsterdam, Cologne, Brussels and Paris.
Trains can run from either Amsterdam or Cologne to Paris via Brussels. Aachen
is included as an intermediate stop between Cologne and Brussels. Vertical
segments correspond to times spent at stations. For one of the trains, there
is a timing overlap between the trains coming from Cologne and Amsterdam
at Brussels. There is a second train which travels between Paris and Cologne
which is not related to an Amsterdam train.

This example and other examples can be simulated with the levi simulation
software [Sirocic and Marwedel, 2007d]. A larger, more realistic example is
shown in fig. 2.11. This example [Huerlimann, 2003] describes simulated
Swiss railway traffic in the Lötschberg area. Slow and fast trains can be distin-
guished by their slope in the graph. This modeling technique is very frequently
used in practice.

One of the key distinctions between the type of diagrams shown in figs. 2.9
and 2.11 is that fig. 2.9 does not include any reference to real time. UML
was initially not designed for real-time applications. UML 2.0 includes timing
diagrams as a special class of diagrams. Such diagrams enable referring to
physical time. Also, certain UML “profiles” (see page 114) allow additional
annotations to refer to time [Martin and Müller, 2005], [Müller, 2007].

TDDs are appropriate means for representing typical schedules. However, SCs
and TDDs fail to provide information about necessary synchronization. For
example, in the presented example of fig. 2.10 it is not known whether the tim-

Specifications and Modeling 39

Figure 2.11. Railway traffic displayed by a TDD (courtesy H. Brändli, IVT, ETH Zürich),
©ETH Zürich

ing overlap at Brussels happens coincidentally or whether some real synchro-
nization for connecting trains is required. Furthermore, permissible deviations
from the presented schedule (min/max timing behavior) can hardly be included
in these charts.

2.4 Communicating finite state machines
(CFSMs)

If we start to represent our SUD at a more detailed level, we need more precise
models. We mentioned at the beginning of this chapter that we need to describe
state-oriented behavior. State diagrams are a classical means of doing this.
Fig. 2.12 (the same as fig. 2.1) shows an example of a classical state diagram,
representing a finite state machine (FSM).

Figure 2.12. State diagram

40 EMBEDDED SYSTEM DESIGN

Circles denote states. We will consider FSMs for which only one of their
states is active. Such FSMs are called deterministic FSMs. Edges denote
state transitions. Edge labels represent events. Let us assume that a certain
state of the FSM is active, and that an event happens which corresponds to
one of the out-going edges for the active state. Then, the FSM will change its
state from the currently active state to the one indicated by the edge. FSMs
may be implicitly clocked. Such FSMs are called synchronous FSMs. For
synchronous FSMs, state changes will happen only at clock transitions. FSMs
may also generate output (not shown in fig. 2.12). For more information about
classical FSMs refer to, for example, Kohavi [Kohavi, 1987].

2.4.1 Timed automata

Classical FSMs do not provide information about time. In order to model
time, classical automata have been extended to also include timing informa-
tion. Timed automata are essentially automata extended with real-valued vari-
ables. “The variables model the logical clocks in the system, that are initialized
with zero when the system is started, and then increase synchronously with the
same rate. Clock constraints, i.e. guards on edges, are used to restrict the
behavior of the automaton. A transition represented by an edge can be taken
when the clocks’ values satisfy the guard labeled on the edge. Clocks may be
reset to zero when a transition is taken” [Bengtsson and Yi, 2004].

Fig. 2.13 shows an example.

Figure 2.13. Servicing an incoming line in an answering machine

The answering machine is usually in the initial state on the left. Whenever a
ring signal is received, clock x is reset to 0 and a transition into a waiting state
is made. If the called person lifts off the hand-set, talking can take place until
the hand-set is returned. Otherwise, a transition to state play text can take place
if time has reached a value of 4.

Specifications and Modeling 41

Once the transition took place, a recorded message is played and this phase is
terminated with a beep. Clock y ensures that this beep lasts at least one time
unit. After the beep, clock x is reset to 0 again and the answering machine is
ready for recording. If time has reached a value of 8 or if the caller remains
silent, the next beep is played. This second beep again lasts at least one time
unit. After the second beep, a transition is made into the final state. In this
example, transitions are either caused by inputs (such as lift-off) or by so-called
clock constraints.

Clock constraints describe transitions which can take place, but they do not
have to. In order to make sure that transitions actually take place, additional
location invariants can be defined. Location invariants x <= 5, x <= 9 and
y <= 2 are used in the example such that transitions will take place no later
than one time unit after the enabling condition became true. Using two clocks
is for demonstration purposes only; a single clock would be sufficient.

Formally speaking, timed automata can be defined as follows [Bengtsson and
Yi, 2004]:

Let C be a set of real-valued, non-negative variables representing clocks. Let
Σ be a finite alphabet of possible inputs.

Definition: A clock constraint is a conjunctive formula of atomic constraints
of the form x◦n or (x− y)◦n for x,y ∈C,◦ ∈ {≤,<,=,>,≥} and n ∈ IN.

Note that constants n used in the constraints must be integers, even though
clocks are real-valued. An extension to rational constants would be easy, since
they could be turned into integers with simple multiplications. Let B(C) be the
set of clock constraints.

Definition [Bengtsson and Yi, 2004]: A timed automaton is a tuple (S,s0,E, I)
where:

S is a finite set of states.

s0 is the initial state.

E ⊆ S×B(C)×Σ×2C ×S is the set of edges. B(C) models the conjunctive
condition which must hold and Σ models the input which is required for
a transition to be enabled. 2C reflects the set of clock variables which are
reset whenever the transition takes place.

I : S → B(C) is the set of invariants for each of the states. B(C) represents
the invariant which must hold for a particular state S. This invariant is
described as a conjunctive formula.

This first definition is usually extended to allow parallel compositions of timed
automata. Timed automata having a large number of clocks tend to be difficult

42 EMBEDDED SYSTEM DESIGN

to understand. More details about timed automata can be found, for example,
in papers by Dill et al. [Dill and Alur, 1994] and Bengtsson et al. [Bengtsson
and Yi, 2004].

Timed automata extend classical automata with timing information. However,
many of our requirements for specification techniques are not met by timed
automata. In particular, in their standard form, they do no provide hierarchy
and concurrency.

2.4.2 StateCharts: implicit shared memory
communication

The StateCharts language is presented here as a very prominent example of
a language based on automata and supporting hierarchical models as well as
concurrency. It does include a limited way of specifying timing.

The StateCharts language was introduced by David Harel [Harel, 1987] in
1987 and later described more precisely in [Drusinsky and Harel, 1989]. Ac-
cording to Harel, the name was chosen since it was “the only unused combina-
tion of flow or state with diagram or chart”.

2.4.2.1 Modeling of hierarchy

The StateCharts language describes extended FSMs. Due to this, they can be
used for modeling state-oriented behavior. The key extension is hierarchy.
Hierarchy is introduced by means of super-states.

Definitions:

States comprising other states are called super-states.

States included in super-states are called sub-states of the super-states.

Fig. 2.14 shows a StateCharts example. It is a hierarchical version of fig. 2.12.

Figure 2.14. Hierarchical state diagram

Specifications and Modeling 43

Super-state S includes states A,B,C,D and E. Suppose the FSM is in state
Z (we will also call Z to be an active state). Now, if input m is applied to
the FSM, then A and S will be the new active states. If the FSM is in S and
input k is applied, then Z will be the new active state, regardless of whether the
FSM is in sub-states A,B,C,D or E of S. In this example, all states contained
in S are non-hierarchical states. In general, sub-states of S could again be
super-states consisting of sub-states themselves. Also, whenever a sub-state
of some super-state is active, the super-state is active as well.

Definitions:

Each state which is not composed of other states is called a basic state.

For each basic state s, the super states containing s are called ancestor
states.

The FSM of fig. 2.14 can only be in one of the sub-states of super-state S at
any time. Super states of this type are called OR-super-states7.

In fig. 2.14, k might correspond to an exception for which state S has to be
left. The example already shows that the hierarchy introduced in StateCharts
enables a compact representation of exceptions.

StateCharts allows hierarchical descriptions of systems in which a system de-
scription comprises descriptions of subsystems which, in turn, may contain
descriptions of subsystems. The hierarchy of the entire system can be repre-
sented by a tree. The root of the tree corresponds to the system as a whole, and
all inner nodes correspond to hierarchical descriptions (in the case of State-
Charts called super-nodes). The leaves of the hierarchy are non-hierarchical
descriptions (in the case of StateCharts called basic states).

So far, we have used explicit, direct edges to basic states to indicate the next
state. The disadvantage of that approach is that the internal structure of super-
states cannot be hidden from the environment. However, in a true hierarchical
environment, we should be able to hide the internal structure so that it can
be described later or changed later without affecting the environment. This is
possible with other mechanisms for describing the next state.

The first additional mechanism is the default state mechanism. It can be used
in super-states to indicate the particular sub-states that will become active if
the super-states become active. In diagrams, default states are identified by
edges starting at small filled circles. Fig. 2.15 shows a state diagram using the

7More precisely, they should be called XOR-super-states, since the FSM is in either A,B,C,D or E. How-
ever, this name is not commonly used in the literature.

44 EMBEDDED SYSTEM DESIGN

default state mechanism. It is equivalent to the diagram in fig. 2.14. Note that
the filled circle does not constitute a state itself.

Figure 2.15. State diagram using the default state mechanism

Another mechanism for specifying next states is the history mechanism. With
this mechanism, it is possible to return to the last sub-state that was active
before a super-state was left. The history mechanism is symbolized by a circle
containing the letter H. In order to define the next state for the very initial
transition into a super-state, the history mechanism is frequently combined
with the default mechanism. Fig. 2.16 shows an example.

Figure 2.16. State diagram using the history and the default state mechanism

The behavior of the FSM is now somewhat different. If we input m while the
system is in Z, then the FSM will enter A if this is the very first time we enter S,
and otherwise it will enter the last state that we were in before leaving S. This
mechanism has many applications. For example, if k denotes an exception,
we could use input m to return to the state we were in before the exception.
States A,B,C,D and E could also call Z like a procedure. After completing
“procedure” Z, we would return to the calling state.

Fig. 2.16 can also be redrawn as shown in fig. 2.17. In this case, the symbols
for the default and the history mechanism are combined.

Specification techniques must also be able to describe concurrency conve-
niently. Towards this end, the StateCharts language provides a second class
of super-states, so called AND-states.

Specifications and Modeling 45

Figure 2.17. Combining the symbols for the history and the default state mechanism

Definition: Super-states S are called AND-super-states if the system contain-
ing S will be in all of the sub-states of S whenever it is in S.

An AND-super-state is included in the answering machine example shown in
fig. 2.18.

Figure 2.18. Answering machine

An answering machine normally performs two tasks concurrently: it is moni-
toring the line for incoming calls and the keys for user input. In fig. 2.18, the
corresponding states are called Lwait and Kwait. Incoming calls are processed
in state Lproc while the response to pressed keys is generated in state Kproc.
For the time being, we assume that the on/off switch (generating events key-off
and key-on) is decoded separately and pushing it does not result in entering
Kproc. If this switch is pushed, the line monitoring state as well as the key
monitoring state are left and re-entered only if the machine is switched on.
At that time, default states Lwait and Kwait are entered. While switched on,
the machine will always be in the line monitoring state as well as in the key
monitoring state.

46 EMBEDDED SYSTEM DESIGN

For AND-super-states, the sub-states entered as a result of some event can be
defined independently. There can be any combination of history, default and
explicit transitions. It is crucial to understand that all sub-states will always be
entered, even if there is just one explicit transition to one of the sub-states. Ac-
cordingly, transitions out of an AND-super-state will always result in leaving
all the sub-states.

For example, let us modify our answering machine such that the on/off switch,
like all other switches, is decoded in state Kproc (see fig. 2.19).

Figure 2.19. Answering machine with modified on/off switch processing

If pushing that key is detected in Kwait, transitions are assumed first into state
Kproc and then into the off state. The second transition results in leaving the
line-monitoring state as well. Switching the machine on again results in also
entering the line-monitoring state.

AND-super-states provide the key mechanism for describing concurrency in
StateCharts. Each sub-state can be considered a state machine by itself. These
machines are communicating with each other, forming communicating finite
state machines (CFSMs). This term has been used as the title of this section.

Summarizing, we can state the following: States in StateCharts diagrams
are either AND-states, OR-states or basic states.

2.4.2.2 Timers

Due to the requirement to model time in embedded systems, StateCharts also
provides timers. Timers are denoted by the symbol shown in fig. 2.20 (left).

Specifications and Modeling 47

Figure 2.20. Timer in StateCharts

After the system has been in the state containing the timer for the specified pe-
riod, a time-out will occur and the system will leave the specified state. Timers
can also be used hierarchically.

Timers can be employed, for example, at the next lower level of the hierarchy
of the answering machine in order to describe the behavior of state Lproc.
Fig. 2.21 shows a possible behavior for that state. The timing specification is
slightly different from the one in fig. 2.13.

Figure 2.21. Servicing the incoming line in Lproc

Due to the exception-like transition for hangups by the caller in fig. 2.18, state
Lproc is terminated whenever the caller hangs up. For hangups (returns) by
the callee, the design of state Lproc results in an inconvenience: If the callee
hangs up the phone first, the telephone will be dead (and quiet) until the caller
has also hung up the phone.

The StateCharts language includes a number of other language elements. For
a full description refer to Harel [Harel, 1987]. A more detailed description of
the semantics of StateCharts is described by Drusinsky and Harel [Drusinsky
and Harel, 1989].

2.4.2.3 Edge labels and StateMate semantics

Until now, we have not considered outputs generated by our extended FSMs.
Generated outputs can be specified using edge labels. The general form of an
edge label is “event[condition]/reaction”. All three label parts are optional.

48 EMBEDDED SYSTEM DESIGN

The reaction-part describes the reaction of the FSM to a state transition. Pos-
sible reactions include the generation of events and assignments to variables.
The condition-part implies a test of the values of variables or a test of the cur-
rent state of the system. The event-part refers to a test of current events. Events
can be generated either internally or externally. Internal events are generated as
a result of some transition and are described in reaction-parts. External events
are usually described in the model environment.

Examples:

on-key / on:=1 (Event-test and variable assignment),

[on=1] (Condition test for a variable value),

off-key [not in Lproc] / on:=0 (Event-test, condition test for a state, variable
assignment. The assignment is performed if the event has occurred and the
condition is true).

The semantics of edge labels can only be explained in the context of the se-
mantics of StateMate [Drusinsky and Harel, 1989], a commercial implementa-
tion of StateCharts. StateMate assumes a step-based execution of StateMate-
descriptions. Each step consists of three phases:

1 In the first phase, the impact of external changes on conditions and events
is evaluated. This includes the evaluation of functions which depend on
external events. This phase does not include any state changes. In our
simple examples, this phase is not actually needed.

2 The next phase is to calculate the set of transitions that should be made in
the current step. Variable assignments are evaluated, but the new values are
only assigned to temporary variables.

3 In the third phase, state transitions become effective and variables obtain
their new values.

The separation into phases 2 and 3 is especially important in order to guarantee
a reproducible behavior of StateMate models. Consider the StateMate model
of fig. 2.22.

In the second phase, new values for a and b are stored in temporary variables,
say a’ and b’. In the final phase, temporary variables are copied into the user-
defined variables:

phase 2: a’:=b; b’:=a;

phase 3: a:=a’; b:=b’

Specifications and Modeling 49

Figure 2.22. Mutually dependent assignments

As a result, the values of the two variables will be swapped each time an event
e happens. This behavior corresponds to that of two cross-coupled registers
(one for each variable) connected to the same clock (see fig. 2.23) and reflects
the operation of a synchronous (clocked) finite state machine including those
two registers8.

Figure 2.23. Cross-coupled D-type registers

Without the separation into phases, the same value would be assigned to both
variables. The result would depend on the sequence in which the assignments
were performed. The separation into (at least) two phases is quite typical for
languages that try to reflect the operation of synchronous hardware. We will
find the same separation in VHDL (see page 89). Due to the separation, the
results do not depend on the order in which parts of the model are executed
by the simulation. This property is extremely important. Otherwise, there
could be simulation runs generating different results, all of which would be
considered correct. This could be very confusing in all design procedures.
This is not what we expect from the simulation of a real circuit with a fixed
behavior.

There are different names for this property:

Kahn [Kahn, 1974] calls this property determinate.

8We adopt IEEE standard schematic symbols [IEEE, 1991] for gates and registers for all the schematics in
this book. The symbols in fig. 2.23 denote clocked D-type registers.

50 EMBEDDED SYSTEM DESIGN

In other papers, this property is called deterministic. However, this term is
employed with different meanings:

– This term is used to denote non-deterministic finite state machines,
FSMs which can be in several states at the same time [Hopcroft et al.,
2006].

– Languages may have non-deterministic operators. For these operators,
different behaviors are legal implementations.

– Many authors consider systems to be non-deterministic if their behav-
ior depends on some input not known before run-time.

– In the sense Kahn uses the term “determinate”.

In this book, we prefer to reduce possible confusion by following Kahn9. Note
that StateMate models can be determinate only if there are no other reasons
for an undefined behavior. For example, conflicts between transitions may be
allowed (see fig. 2.24).

Figure 2.24. Conflicting StateCharts transitions

Consider fig. 2.24 (a). If event A takes place while the system is in the left
state, we must figure out, which transition will take place. If these conflicts
would be resolved arbitrarily, then we would have a non-determinate behavior.
Typically, priorities are defined such that this type of a conflict is eliminated.
Now, consider fig. 2.24 (b). There will be a conflict for x=15. Such conflicts
are difficult to detect. Achieving a determinate behavior requires the absence
of conflicts that are resolved in an arbitrary manner.

Note that there may be cases in which we would like to describe non-determi-
nate behavior (e.g. if we have a choice to read from two inputs). In such a case,
we would typically like to explicitly indicate that this choice can be taken at
run-time (see the select statement of ADA on page 104).

Implementations of hierarchical state charts other than StateMate typically
do not exhibit determinate behavior. These implementations correspond to a

9In earlier versions of the book, we used the term “deterministic” together with an additional explanation.

Specifications and Modeling 51

software-oriented view onto hierarchical state charts. In such implementations,
choices are usually not explicitly described.

The three phases described on page 48 have to be repeatedly executed. Each
execution is called a step (see fig. 2.25).

Figure 2.25. Steps during the execution of a StateMate model

Steps are assumed to be executed each time events or variables have changed.
The set of all values of variables, together with the set of events generated
(and the current time) is defined as the status10 of a StateMate model. After
executing the third phase, a new status is obtained. The notion of steps allows
us to define the semantics of events more precisely. Events are generated, as
mentioned, either internally or externally. The visibility of events is limited
to the step following the one in which they are generated. Thus, events
behave like single bit values which are stored in permanently enabled registers
at one clock transition and have an effect on the values stored at the next clock
transition. They do not live forever.

Variables, in contrast, retain their values, until they are reassigned. According
to StateMate semantics, new values of variables are visible to all parts of the
model from the step following the step in which the assignment was made on-
wards. That means, StateMate semantics implies that new values of variables
are propagated to all parts of a model between two steps. StateMate implic-
itly assumes a broadcast mechanism for updates on variables. This means
that StateCharts or StateMate can be implemented easily for shared memory-
based platforms but are less appropriate for message passing and distributed
systems. These languages essentially assume shared memory-based commu-
nication, even though this is not explicitly stated. For distributed systems, it
will be very difficult to update all variables between two steps. Due to this
broadcast mechanism, StateMate is not an appropriate language for modeling
distributed systems.

10We would normally use the term “state” instead of “status”. However, the term “state” has a different
meaning in StateMate.

52 EMBEDDED SYSTEM DESIGN

2.4.2.4 Evaluation and extensions

StateCharts’ main application domain is that of local, control-dominated sys-
tems. The capability of nesting hierarchies at arbitrary levels, with a free choice
of AND- and OR-states, is a key advantage of StateCharts. Another advan-
tage is that the semantics of StateMate is defined at a sufficient level of detail
[Drusinsky and Harel, 1989]. Furthermore, there are quite a number of com-
mercial tools based on StateCharts. StateMate [IBM, 2010a] and StateFlow
[MathWorks, 2010] are examples of commercial tools based on StateCharts.
Many of them are capable of translating StateCharts into equivalent descrip-
tions in C or VHDL (see page 80). From VHDL, hardware can be generated
using synthesis tools. Therefore, StateCharts-based tools provide a complete
path from StateCharts-based specifications down to hardware. Generated C
programs can be compiled and executed. Hence, a path to software-based re-
alizations exists as well.

Unfortunately, the efficiency of the automatic translation is sometimes a con-
cern. For example, we could map sub-states of AND-states to UNIX-pro-
cesses. This would hardly lead to efficient implementations on small proces-
sors. The productivity gain from object-oriented programming is not avail-
able in StateCharts, since it is not object-oriented. Furthermore, the broadcast
mechanism makes it less appropriate for distributed systems. StateCharts do
not comprise program constructs for describing complex computation and can-
not describe hardware structures or non-functional behavior.

Commercial implementations of StateCharts typically provide some mecha-
nisms for removing the limitations of the model. For example, C code can
be used to represent program constructs and module charts of StateMate can
represent hardware structures.

StateCharts allows timeouts. There is no straightforward way of specifying
other timing requirements.

UML includes a variation of StateCharts and hence allows modeling state ma-
chines. In UML, these diagrams are called state diagrams in version 1 of
UML and state machine diagrams from version 2.0 onwards. Unfortunately,
the semantics of state machine diagrams in UML is different from StateMate:
the three simulation phases are not included.

2.4.3 Synchronous languages

2.4.3.1 Motivation

Describing complex SUDs in terms of state machine diagrams is difficult. Such
diagrams cannot express complex computations. Standard programming lan-
guages can express complex computations, but the sequence of executing sev-

Specifications and Modeling 53

eral threads may be unpredictable. In a multi-threaded environment with pre-
emptive scheduling there can be many different interleavings of the different
computations. Understanding all possible behaviors of such concurrent sys-
tems is difficult. A key reason for this is that, in general, many different exe-
cution orders are feasible, i.e. the execution order is not specified. The order
of execution may well affect the result. The resulting non-determinate be-
havior can have a number of negative consequences, such as, for example,
problems with verifying a certain design. For distributed systems with in-
dependent clocks, determinate behavior is difficult to achieve. However, for
non-distributed systems, we can try to avoid the problems of unnecessary non-
determinate semantics.

For synchronous languages, finite state machines and programming languages
are merged into one model. Synchronous languages can express complex com-
putations, but the underlying execution model is that of finite automata. They
describe concurrently operating automata. Determinate behavior is achieved
by the following key feature: “... when automata are composed in parallel,
a transition of the product is made of the “simultaneous” transitions of all of
them” [Halbwachs, 1998]. This means: we do not have to consider all the
different sequences of state changes of the automata that would be possible if
each of them had its own clock. Instead, we can assume the presence of a single
global clock. Each clock tick, all inputs are considered, new outputs and states
are calculated and then the transitions are made. This requires a fast broadcast
mechanism for all parts of the model. This idealistic view of concurrency has
the advantage of guaranteeing determinate behavior. This is a restriction if
compared to the general communicating finite state machines (CFSM) model,
in which each FSM can have its own clock. Synchronous languages reflect the
principles of operation in synchronous hardware and also the semantics found
in control languages such as IEC 60848 [IEC, 2002] and STEP 7 [Siemens,
2010]. See Potop-Butucaru et al. [Potop-Butucaru et al., 2006] for a survey on
synchronous languages.

2.4.3.2 Examples of synchronous languages: Esterel, Lustre
and SCADE

Guaranteeing a determinate behavior for all language features has been a de-
sign goal for the synchronous languages Esterel [Esterel Technologies Inc.,
2010], [Boussinot and de Simone, 1991] and Lustre [Halbwachs et al., 1991].

Esterel is a reactive language: when activated with an input event, Esterel mod-
els react by producing an output event. Esterel is a synchronous language: all
reactions are assumed to be completed in zero time and it is sufficient to ana-
lyze the behavior at discrete moments in time. This idealized model avoids all

54 EMBEDDED SYSTEM DESIGN

discussions about overlapping time ranges and about events that arrive while
the previous reaction has not been completed. Like other concurrent languages,
Esterel has a parallelism operator, written ||. Similar to StateCharts, communi-
cation is based on a broadcast mechanism. In contrast to StateCharts, however,
communication is instantaneous. Instantaneous in this context means “within
the same clock cycle”. This means that all signals generated in a particular
clock cycle are also seen by the others parts of the model in the same clock
cycle and these other parts, if sensitive to the generated signals, react in the
same clock cycle. Several rounds of evaluations may be required until a sta-
ble state is reached. The propagation of values during the same macroscopic
instant of time corresponds to the generation of a next status for the same
moment in time in StateMate, except that the broadcast is now instantaneous
and not delayed until the next round of evaluations like in StateMate. For
more and updated information about Esterel, refer to the Esterel home page
[Esterel Technologies Inc., 2010].

Esterel and Lustre use different syntactic techniques to denote CFSMs. Es-
terel appears as a kind of imperative language, whereas Lustre looks more
like a data flow language (see page 61 for a description of data flow). Sync-
Charts is a graphical version of Esterel. In all three cases, semantics are ex-
plained by the closely-related underlying CFSMs. The commercial graphical
language SCADE [Esterel Technologies, 2010] combines elements of all three
languages. SCADE is used for a number of safety-critical software compo-
nents, for example by Airbus.

Due to the three simulation phases in StateMate, StateMate has the key at-
tributes of synchronous languages and it is determinate if conflicts are re-
solved. According to Halbwachs, “StateMate is almost a synchronous lan-
guage and the only feature missing in StateMate is the instantaneous broad-
cast” [Halbwachs, 2008].

2.4.4 SDL: A case of message passing

2.4.4.1 Features of the language

StateCharts is not appropriate for modeling distributed communicating finite
state machines. For distributed systems, message passing is the better com-
munication paradigm. Therefore, we will now present a second example of a
language based on communicating finite state machines, an example based on
asynchronous message passing.

This language is called SDL (specification and description language). SDL
was designed for distributed applications. It dates back to the 1970s. Formal
semantics have been available since the 1980s. The language was standard-

Specifications and Modeling 55

ized by the ITU (International Telecommunication Union). The first standards
document is the Z.100 Recommendation published in 1980, with updates in
1984, 1988, 1992 (SDL-92), 1996 and 1999. Relevant versions of the standard
include SDL-88, SDL-92 and SDL-2000 [SDL Forum Society, 2010].

Many users prefer graphical specification languages while others prefer tex-
tual ones. SDL pleases both types of users since it provides textual as well
as graphical formats. Processes are the basic elements of SDL. Processes rep-
resent components modeled as extended finite state machines. Extensions in-
clude operations on data. Fig. 2.26 shows the graphical symbols used in the
graphical representation of SDL.

Figure 2.26. Symbols used in the graphical form of SDL

Figure 2.27. FSM to be described in SDL

As an example, we will consider how the state diagram in fig. 2.27 can be rep-
resented in SDL. Fig. 2.27 is the same as fig. 2.15, except that output has been
added, state Z has been deleted, and the effect of signal k has been changed.
Fig. 2.28 contains the corresponding graphical SDL representation.

Figure 2.28. SDL-representation of fig. 2.27

56 EMBEDDED SYSTEM DESIGN

Obviously, the representation in fig. 2.28 is equivalent to the state diagram of
fig. 2.27.

As an extension to FSMs, SDL processes can perform operations on data. Vari-
ables can be declared locally for processes. Their type can either be pre-defined
or defined in the SDL description itself. SDL supports abstract data types
(ADTs). The syntax for declarations and operations is similar to that in other
languages. Fig. 2.29 shows how declarations, assignments and decisions can
be represented in SDL.

Figure 2.29. Declarations, assignments and decisions in SDL

SDL also contains programming language elements such as procedures. Pro-
cedure calls can also be represented graphically. Object-oriented features be-
came available with version SDL-1992 of the language and were extended with
SDL-2000.

Extended FSMs are just the basic elements of SDL descriptions. In general,
SDL descriptions will consist of a set of interacting processes, or FSMs. Pro-
cesses can send signals to other processes. Semantics of interprocess com-
munication in SDL is based on asynchronous message passing and conceptu-
ally implemented through first-in first-out (FIFO)-queues associated with pro-
cesses. There is exactly one queue per process. Signals sent to a particular
process will be placed into the corresponding FIFO-queue (see fig. 2.30).

Figure 2.30. SDL interprocess communication

Specifications and Modeling 57

Each process is assumed to fetch the next available entry from the FIFO queue
and check whether it matches one of the inputs described for the current state.
If it does, the corresponding state transition takes place and output is generated.
The entry from the FIFO-queue is ignored if it does not match any of the listed
inputs (unless the so-called SAVE-mechanism is used). FIFO-queues are con-
ceptually thought of as being of infinite length. This means: in the description
of the semantics of SDL models, FIFO-overflow is never considered. In actual
systems, however, infinite FIFO-queues cannot be implemented. They must be
of finite length. This is one of the problems of SDL: in order to derive realiza-
tions from specifications, safe upper bounds on the length of the FIFO-queues
must be proven.

Process interaction diagrams can be used for visualizing which of the pro-
cesses are communicating with each other. Process interaction diagrams in-
clude channels used for sending and receiving signals. In the case of SDL, the
term “signal” denotes inputs and outputs of modeled automata.

Example: Fig. 2.31 shows a process interaction diagram B1 with channels Sw1
and Sw2. Brackets include the names of signals propagated along a certain
channel.

Figure 2.31. Process interaction diagram

There are three ways of indicating the recipient of signals:

1 Through process identifiers: by using identifiers of recipient processes in
the graphical output symbol (see fig. 2.32 (left)).

Figure 2.32. Describing signal recipients

The number of processes does not need to be fixed at compile time, since
processes can be generated dynamically at run-time. OFFSPRING repre-
sents identifiers of child processes generated dynamically by a process.

2 Explicitly: by indicating the channel name (see fig. 2.32 (right)). Sw1 is
the name of a channel.

58 EMBEDDED SYSTEM DESIGN

3 Implicitly: if signal names imply the channel names, those channels are
used. Example: for fig. 2.31, signal B will implicitly always be communi-
cated via channel Sw1.

No process can be defined within any other (processes cannot be nested). How-
ever, they can be grouped hierarchically into so-called blocks. Blocks at the
highest hierarchy level are called systems. Process interaction diagrams are
special cases of block diagrams. Process interaction diagrams are one level
above the leaves of the hierarchical description. B1 can be used within inter-
mediate level blocks (such as within B in fig. 2.33).

Figure 2.33. SDL block

At the highest level in the hierarchy, we have the system (see fig. 2.34). A
system will not have any channels at its boundary if the environment is also
modeled as a block.

Figure 2.34. SDL system

Fig. 2.35 shows the hierarchy modeled by block diagrams 2.31, 2.33 and 2.34.

Figure 2.35. SDL hierarchy

Process interaction diagrams are next to the leaves of the hierarchical descrip-
tion, while system descriptions represent their root. Some of the restrictions of

Specifications and Modeling 59

modeling hierarchy are removed in version SDL-2000 of the language. With
SDL-2000, the descriptive power of blocks and processes is harmonized and
replaced by a general agent concept.

In order to support the modeling of time, SDL includes timers. Timers can
be declared locally for processes. They can be set and reset using SET and
RESET primitives, respectively.

Fig. 2.36 shows the use of a timer T.

Figure 2.36. Using timer T

The diagram corresponds to that of fig. 2.28, with the exceptions that timer T
is set to the current time plus p during the transition from state D to E. For
the transition from E to A we now have a timeout of p time units. If these time
units have elapsed before signal f has arrived, a transition to state A is taken
without generating output signal v.

SDL can be used, for example, to describe protocol stacks found in computer
networks. Fig. 2.37 shows three processors connected through a router. Com-
munication between processors and the router is based on FIFOs.

Figure 2.37. Small computer network described in SDL

The processors as well as the router implement layered protocols (see fig.
2.38).

60 EMBEDDED SYSTEM DESIGN

Figure 2.38. Protocol stacks represented in SDL

Each layer describes communication at a more abstract level. The behavior of
each layer is typically modeled as a finite state machine. The detailed descrip-
tion of these FSMs depends on the network protocol and can be quite complex.
Typically, this behavior includes checking and handling of error conditions,
and sorting and forwarding of information packets.

Available tools for SDL include interfaces to UML (see page 113), and SCs
(see page 36). A comprehensive list of tools is available from the SDL forum
[SDL Forum Society, 2009].

Estelle [Budkowski and Dembinski, 1987] is another language which was de-
signed to describe communication protocols. Similar to SDL, Estelle assumes
communication via channels and FIFO-buffers. Attempts to unify Estelle and
SDL failed.

2.4.4.2 Evaluation of SDL

SDL is excellent for distributed applications and has been used, for example,
for specifying ISDN.

SDL is not necessarily determinate (the order, in which signals arriving at some
FIFO at the same time are processed, is not specified).

Reliable implementations require the knowledge of a upper bound on the length
of the FIFOs. This upper bound may be difficult to compute. The timer concept
is sufficient for soft deadlines, but not for hard ones.

Hierarchies are not supported in the same way as in StateCharts.

There is no full programming support (but recent revisions of the standard have
started to change this) and no description of non-functional properties.

It seems like the interest in SDL is decreasing, even though it is very useful as
a reference model.

Specifications and Modeling 61

2.5 Data flow

2.5.1 Scope

Data flow is a very “natural” way of describing real life applications. Data
flow models reflect the way in which data flows from component to component
[Edwards, 2001]. Each component transforms the data in one way or the other.
The following is a possible definition of data flow [Wikipedia, 2010]:

Definition: Data flow modeling “is the process of identifying, modeling and
documenting how data moves around an information system. Data flow mod-
eling examines processes (activities that transform data from one form to an-
other), data stores (the holding areas for data), external entities (what sends
data into a system or receives data from a system), data flows (routes by which
data can flow)”.

A data flow program is specified by a directed graph where the nodes (ver-
tices), called actors, represent computations and the arcs represent commu-
nication channels. The computation performed by each actor is assumed to
be functional, that is, based on the input values only. Each process in a data
flow graph is decomposed into a sequence of firings, which are atomic actions.
Each firing produces and consumes tokens.

For example, fig. 2.39 describes the flow of data in a video-on-demand system
[Ko and Koo, 1996].

Figure 2.39. Video-on-demand system

For unrestricted data flow, it is difficult to prove requested system properties.
Therefore, restricted models are commonly used.

62 EMBEDDED SYSTEM DESIGN

2.5.2 Kahn process networks

Kahn process networks (KPN) [Kahn, 1974] are a special case of data flow
models. Like other data flow models, KPNs consist of nodes and edges. Nodes
correspond to computations performed by some program or task. KPN graphs,
like all data flow graphs, show computations to be performed and their de-
pendence, but not the order in which the computations must be performed (in
contrast to specifications in von-Neumann languages such as C). Edges imply
communication via channels containing potentially infinite FIFOs. Computa-
tion times and communication times may vary, but communication is guaran-
teed to happen within a finite amount of time. Writes are non-blocking, since
the FIFOs are assumed to be as large as needed. Reads must specify a single
channel to be read from. A node cannot check whether data is available before
attempting a read. A process cannot wait for data on more than one port at
a time. Read operations block whenever an attempt is made to read from an
empty FIFO queue. Only a single process is allowed to read from a certain
queue and only a single process is allowed to write into a queue. So, if out-
put data has to be sent to more than a single process, duplication of data must
be done inside processes. There is no other way for communication between
processes except through FIFO-queues.

In the following example, p1 and p2 are incrementing and decrementing the
value received from the partner:

process p1(in int u, out int v){
int i;

i = 0;

for (;;) {
send(i,v); -- send i via channel v

i = wait(u); -- read i from channel u

i = i-1;

}}
process p2(in int v, out int u){
int i;

for (;;) {
i = wait(v);

i = i+1;

send(i,u);

}}

Specifications and Modeling 63

Fig. 2.40 shows a graphical representation of this KPN.

Figure 2.40. Graphical representation of KPN

Obviously, we do not really need the FIFOs in this example, since messages
cannot accumulate in the channels. This example and other examples can be
simulated with the levi simulation software [Sirocic and Marwedel, 2007b].

The restrictions are resulting in the key beauty of KPNs: the order in which
a node is reading data from its channels is fixed by the sequence of read op-
erations and does not depend on the order in which producers are transmitting
data over the channels. This means that the sequence of operations is inde-
pendent of the speed of the nodes producing data. For a given set of input
data, KPNs will always generate the same results, independently of the
speed of the nodes. This property is important, for example, for simulations:
it does not matter how fast we are simulating the KPN, the result will always
be the same. In particular, the result does not depend on using hardware ac-
celerators for some of the nodes and a distributed execution will give the same
result as a centralized one. This property has been called “determinate” and
we are following this use. SDL-like conflicts at FIFOs do not exist. Due to this
nice property, KPNs are frequently used as an internal representation within a
design flow.

Sometimes, KPNs are extended with a “merge”-operator (corresponding to
ADA’s select statement, see page 104). This operation allows for queuing
reads with a list of channels at the same time and waiting for channels to gen-
erate data. Such an operator introduces a non-determinate behavior: the order
of processing inputs is not specified if both inputs arrive at the same time. This
extension is useful in practice, but it destroys the key beauty of KPNs.

In general, Kahn processes require scheduling at run-time, since it is difficult
to predict their precise behavior over time. These problems result from the fact
that we do not make any assumptions regarding the speed of the channels and
the nodes. The question of whether or not finite-length FIFOs are sufficient
for an actual KPN model is undecidable in the general case. Nevertheless,
execution times are actually unknown during early design phases and therefore
this model is very adequate. Useful scheduling algorithms exist [Kienhuis

64 EMBEDDED SYSTEM DESIGN

et al., 2000]. For KPNs, the number of processes is fixed, i.e. it does not
change at run-time.

2.5.3 Synchronous data flow

Scheduling becomes significantly easier and questions regarding buffer sizes
can decidably be answered if we impose restrictions on the timing of nodes
and channels. Synchronous data flow (SDF) [Lee and Messerschmitt, 1987] is
such a model.

SDF can best be introduced by referring to its graphical notation. Fig. 2.41
(left) shows a synchronous data flow graph. The graph is a directed graph,
nodes A and B denote computations * and +. Inputs to SDF graphs are assumed
to consist of an infinite stream of samples. Nodes can start their computations
when their inputs are available. Edges must be used whenever there is a data
dependency between any two nodes.

Figure 2.41. Graphical representations of synchronous data flow

For each execution, the computation in a node is called a firing. For each fir-
ing, a number of tokens, representing data, is consumed and produced. In syn-
chronous data flow, the number of tokens produced or consumed in one firing
is constant. Constant edge labels denote the corresponding numbers of tokens.
These constants facilitate the modeling of multi-rate signal processing appli-
cations, applications for which certain signals are generated at frequencies that
are multiples of other frequencies. For example, in a TV set, some computa-
tions might be performed at a rate of 100 Hz while others are performed at a
rate of 50 Hz. In general, the number of tokens sent to an edge must be equal
to the number of tokens consumed. Let ns be the number of tokens produced
by some sender per firing, and let fs be the corresponding rate. Let nr be the
corresponding number of tokens consumed per firing at the receiver, and let fr

be the corresponding rate. Then, we must have

ns ∗ fs = nr ∗ fr (2.1)

Specifications and Modeling 65

This situation is also visualized in fig. 2.42. The FIFO is needed for buffering
if ns
= nr. In contrast to Kahn process networks, the size can be computed
easily.

Figure 2.42. Multi-rate SDF model

The term synchronous data flow reflects the fact that tokens are consumed
from the incoming arcs in a synchronous manner (all at the same instant in
time). The term asynchronous message passing reflects the fact that tokens
can be buffered using FIFOs. The property of producing and consuming a
constant number of tokens makes it possible to determine execution order and
memory requirements at compile time. Hence, complex run-time scheduling
of executions is avoided. SDF graphs may include delays, denoted by the
symbol D on an edge (see fig. 2.41 (right)). SDF graphs can be translated
into periodic schedules for mono- as well as for multi-processor systems (see
e.g. [Pino and Lee, 1995]). A legal schedule for the simple example of fig.
2.41 would consist of the sequence (A, B) (repeated forever). A sequence (A,
A, B) (A executed twice as many times as B) would be illegal, since it would
accumulate an infinite number of tokens on the implicit FIFO buffer between
A and B.

SDF is very useful, for example, in modeling multimedia systems. In this case,
each token would correspond to audio or video information, such as an audio
sample or a video frame. The observer pattern, mentioned as a problem for
modeling with von-Neumann languages on page 27, can be easily implemented
correctly in SDF (see fig. 2.43). There is no risk of deadlocks. However, SDF
does not allow adding new observers at run-time.

Figure 2.43. Observer pattern in SDF

SDF models are determinate, but they are not appropriate for modeling control
flow, such as branches etc. Several extensions and variations of SDF models
have been proposed (see, for example Stuijk [Stuijk, 2007]):

66 EMBEDDED SYSTEM DESIGN

For example, we can have modes corresponding to states of an associated
finite state machine. For each of the modes, a different SDF graph could be
relevant. Certain events could then cause transitions between these modes.

Homogeneous synchronous data flow (HSDF) graphs are a special case
of SDF graphs. For HSDF graphs, the number of tokens consumed and
produced per firing is always 1.

For cyclo-static data flow (CSDF), the number of tokens produced and con-
sumed per firing can vary over time, but has to be periodic.

Complex SUDs including control flow must be modeled using more general
computational graph structures.

2.5.4 Simulink

Computational graph structures are also frequently used in control engineer-
ing. For this domain, the Simulink toolbox of MATLAB [The MathWorks Inc.,
2010], [Tewari, 2001] is very popular. MATLAB is a modeling and simulation
tool based on mathematical models including, for example, partial differential
equations. Fig. 2.44 shows an example of a Simulink model [Marian and Ma,
2007].

Figure 2.44. Simulink model

The amplifier and the saturation component on the right demonstrate the inclu-
sion of analog modeling. In the general case, the “schematic” could contain
symbols denoting analog components such as integrators, differentiators. The
switch in the center indicates that Simulink also allows some control flow mod-
eling.

Specifications and Modeling 67

The graphical representation is intuitive and allows control engineers to focus
on the control function, without caring about the code necessary to implement
the function. The graphical symbols suggest that analog circuits are used as
traditional components in control designs. A key goal is to synthesize software
from such models. This approach is typically associated with the term model-
based design, but there is no precise definition for this term.

Semantics of Simulink models reflect the simulation on a digital computer and
the behavior may be similar to that of analog circuits, but possibly not quite the
same. What is actually the semantics of a Simulink model? Marian and Ma
[Marian and Ma, 2007] describe the semantics as follows: “Simulink uses an
idealized timing model for block (node) execution and communication. Both
happen infinitely fast at exact points in simulated time. Thereafter, simulated
time is advanced by exact time steps. All values on edges are constant in
between time steps. This means that we execute the model time step after
time step. For each step, we compute the function of the nodes (in zero time)
and propagate the new values to connected inputs. This explanation does not
specify the distance between time steps. Also, it does not immediately tell us
how to implement the system in software, since even slowly varying outputs
may be recomputed frequently.

This approach is appropriate for modeling physical systems such as cars or
trains at a high level and then simulating the behavior of these systems. Also,
digital signal processing systems can be conveniently modeled with MATLAB
and Simulink. In order to generate implementations, MATLAB/Simulink mod-
els first must be translated into a language supported by software or hardware
design systems, such as C or VHDL.

Components in Simulink models provide a special case of actors. We can
assume that actors are waiting for input and perform their operation once all
required inputs have arrived. SDF is another case of actor-based languages. In
actor-based languages, there is no need to pass control to these actors, like in
von-Neumann languages.

2.6 Petri nets

2.6.1 Introduction

Very comprehensive descriptions of control flow are feasible with computa-
tional graphs known as Petri nets. Actually, Petri nets model only control and
control dependencies. Modeling data as well requires extensions of Petri nets.
Petri nets focus on the modeling of causal dependencies.

In 1962, Carl Adam Petri published his method for modeling causal dependen-
cies, which became known as Petri nets [Petri, 1962]. Petri nets do not assume

68 EMBEDDED SYSTEM DESIGN

any global synchronization and are therefore especially suited for modeling
distributed systems.

Conditions, events and a flow relation are the key elements of Petri nets.
Conditions are either satisfied or not satisfied. Events can happen. The flow
relation describes the conditions that must be met before events can happen
and it also describes the conditions that become true if events happen.

Graphical notations for Petri nets typically use circles to denote conditions and
boxes to denote events. Arrows represent flow relations. Fig. 2.45 shows a first
example.

Figure 2.45. Single track railroad segment

This example describes mutual exclusion for trains at a railroad track that must
be used in both directions. A token is used to prevent collisions of trains going
into opposite directions. In the Petri net representation, that token is symbol-
ized by a condition in the center of the model. A partially filled circle (a circle
containing a second, filled circle) denotes the situation in which the condition
is met (this means: the track is available). When a train wants to go to the right
(also denoted by a partially filled circle in fig. 2.45), the two conditions that
are necessary for the event “train entering track from the left” are met. We call
these two conditions preconditions. If the preconditions of an event are met,
it can happen. As a result of that event happening, the token is no longer avail-
able and there is no train waiting to enter the track. Hence, the preconditions
are no longer met and the partially filled circles disappear (see fig. 2.46).

However, there is now a train going on that track from the left to the right and
thus the corresponding condition is met (see fig. 2.46). A condition which is
met after an event happened is called a postcondition. In general, an event
can happen only if all its preconditions are true (or met). If it happens, the
preconditions are no longer met and the postconditions become valid. Arrows
identify those conditions which are preconditions of an event and those that

Specifications and Modeling 69

Figure 2.46. Using resource “track”

are postconditions of an event. Continuing with our example, we see that a
train leaving the track will return the token to the condition at the center of the
model (see fig. 2.47).

Figure 2.47. Freeing resource “track”

If there are two trains competing for the single-track segment (see fig. 2.48),
only one of them can enter.

Figure 2.48. Conflict for resource “track”

70 EMBEDDED SYSTEM DESIGN

In such situations, the next transition to be fired is non-deterministically cho-
sen. Analyses of the net must consider all possible firing sequences. For Petri
nets, we are intentionally modeling non-determinism.

A key advantage of Petri nets is that they can be the basis for formal proofs
about system properties and that there are standardized ways of generating
such proofs. In order to enable such proofs, we need a more formal definition
of Petri nets. We will consider three classes of Petri nets: condition/event nets,
place/transitions nets, and predicate transition nets.

2.6.2 Condition/event nets

Condition/event nets are the first class of Petri nets that we will define more
formally.

Definition: N = (C,E,F) is called a net, iff the following holds:

1 C and E are disjoint sets.

2 F ⊆ (E ×C)∪ (C×E) is a binary relation, called flow relation.

The set C is called conditions and the set E is called events.

Definition: Let N be a net and let x ∈ (C∪E). Then,

1 •x := {y|yFx,y ∈ (C∪E)} is called the pre-set of x. If x denotes an event,
•x is also called the set of preconditions of x.

2 x• := {y|xFy,y ∈ (C∪E)} is called the post-set of x. If x denotes an event,
x• is also called the set of postconditions of x.

The terms preconditions and postconditions are preferred if these sets actually
denote conditions ∈C, that is, if x ∈ E.

Definition: Let (c,e) ∈C×E.

1 (c,e) is called a loop, if cFe∧ eFc.

2 N is called pure, if F does not contain any loops (see fig. 2.49, left).

Figure 2.49. Nets which are not pure (left) and not simple (center and right)

Specifications and Modeling 71

Definition: A net is called simple if no two transitions t1 and t2 have the same
set of pre- and postconditions (see fig. 2.49 (center and right)).

Simple nets with no isolated elements meeting some additional restrictions are
called condition/event nets. Condition/event nets are a special case of bipar-
tite graphs (graphs with two disjoint sets of nodes). We will not discuss those
additional restrictions in detail since we will consider more general classes of
nets in the following.

2.6.3 Place/transition nets

For condition/event nets, there is at most one token per condition. For many
applications, it is useful to remove this restriction and to allow more tokens
per conditions. Nets allowing more than one token per condition are called
place/transition nets. Places correspond to what we so far called conditions and
transitions correspond to what we so far called events. The number of tokens
per place is called a marking. Mathematically, a marking is a mapping from
the set of places to the set of natural numbers extended by a special symbol ω
denoting infinity.

Let IN0 denote the natural numbers including 0. Then, formally speaking,
place/transition nets can be defined as follows:

Definition: (P,T,F,K,W,M0) is called a place/transition net ⇐⇒

1 N = (P,T,F) is a net with places p ∈ P, transitions t ∈ T , and flow relation
F .

2 Mapping K : P → (IN0 ∪{ω})\{0} denotes the capacity of places (ω sym-
bolizes infinite capacity).

3 Mapping W : F → (IN0 \{0}) denotes the weight of graph edges.

4 Mapping M0 : P → IN0 ∪{ω} represents the initial marking of places.

Edge weights affect the number of tokens that are required before transitions
can happen and also identify the number of tokens that are generated if a cer-
tain transition takes place. Let M(p) denote a current marking of place p ∈ P
and let M′(p) denote a marking after some transition t ∈ T took place. The
weight of edges belonging to preconditions represents the number of tokens
that are removed from places in the pre-set. Accordingly, the weight of edges
belonging to the postconditions represents the number of tokens that are added
to the places in the post-set. Formally, marking M′ is computed as follows:

72 EMBEDDED SYSTEM DESIGN

M′(p) =

⎧
⎪⎪⎨

⎪⎪⎩

M(p)−W (p, t), if p ∈ •t \ t•

M(p)+W (t, p), if p ∈ t• \ •t
M(p)−W (p, t)+W (t, p), if p ∈ •t ∩ t•

M(p) otherwise

Fig. 2.50 shows an example of how transition t j affects the current marking.

Figure 2.50. Generation of a new marking

By default, unlabeled edges are considered to have a weight of 1 and unlabeled
places are considered to have unlimited capacity ω.

We now need to explain the two conditions that must be met before a transition
t ∈ T can take place:

for all places p in the pre-set, the number of tokens must at least be equal
to the weight of the edge from p to t and

for all places p in the post-set, the capacity must be large enough to accom-
modate the new tokens which t will generate.

Transitions meeting these two conditions are called M-activated. Formally,
this can be defined as follows:

Definition: Transition t ∈ T is said to be M-activated ⇐⇒

(∀p ∈ •t : M(p) ≥W (p, t))∧ (∀p′ ∈ t• : M(p′)+W (t, p′) ≤ K(p′))

Activated transitions can happen, but they do not need to. If several transi-
tions are activated, the sequence in which they happen is not deterministically
defined.

The impact of a firing transition t on the number of tokens can be represented
conveniently by a vector t associated with t. t is defined as follows:

t(p) =

⎧
⎪⎪⎨

⎪⎪⎩

−W (p, t), if p ∈ •t \ t•

+W (t, p), if p ∈ t• \ •t
−W (p, t)+W (t, p), if p ∈ •t ∩ t•

0 otherwise

Specifications and Modeling 73

The new number M′ of tokens, resulting from the firing of transition t, can be
computed for all places p as follows:

M′(p) = M(p)+ t(p)

Using “+” to denote vector addition, we can rewrite this equation as follows:

M′ = M + t

The set of all vectors t form an incidence matrix N. N contains vectors t as
columns.

N : P×T → ZZ; ∀t ∈ T : N(p, t) = t(p)

It is possible to formally prove system properties by using matrix N. For exam-
ple, we are able to compute sets of places, for which firing transitions will not
change the overall number of tokens [Reisig, 1985]. Such sets are called place
invariants. Let us initially consider a single transition t j in order to find such
invariants. Let us search for sets R ⊆ P of places such that the total number of
tokens does not change if t j fires. The following must hold for such sets:

∑
p∈R

t j(p) = 0 (2.2)

Fig. 2.51 shows a transition for which the total number of tokens does not
change if it fires.

Figure 2.51. Transition with a constant number of tokens

We are now introducing the characteristic vector cR of some set R of places:

cR(p) =
{

1 iff p ∈ R
0 iff p
∈ R

With this definition, we can rewrite equation 2.2 as:

74 EMBEDDED SYSTEM DESIGN

∑
p∈R

t j(p) = ∑
p∈P

t j(p)∗ cR(p) = t j · cR = 0 (2.3)

· denotes the scalar product. Now, we search for sets of places such that firings
of any transition will not change the total number of tokens. This means that
equation 2.3 must hold for all transitions t j:

t1 · cR = 0

t2 · cR = 0 (2.4)

...

tn · cR = 0

Equations 2.4 can be combined into the following equation by using the trans-
posed incidence matrix NT :

NT cR = 0 (2.5)

Equation 2.5 represents a system of linear, homogeneous equations. Matrix
N represents edge weights of our Petri nets. We are looking for solution vec-
tors cR for this system of equations. Solutions must be characteristic vectors.
Therefore, their components must be 1 or 0 (integer weights can be accepted
if we use weighted sums of tokens). This is more complex than solving sys-
tems of linear equations with real-valued solution vectors. Nevertheless, it is
possible to obtain information by solving equation 2.5. Using this proof tech-
nique, we can for example show that we are correctly implementing mutually
exclusive access to shared resources.

Let us now consider a larger example: We are again considering the synchro-
nization of trains. In particular, we are trying to model high-speed Thalys trains
traveling between Amsterdam, Cologne, Brussels and Paris. Segments of the
train run independently from Amsterdam and Cologne to Brussels. There, the
segments get connected and then they run to Paris. On the way back from
Paris, they get disconnected at Brussels again. We assume that Thalys trains
must synchronize with some other train at Paris. The corresponding Petri net
is shown in fig. 2.52.

Places 3 and 10 model trains waiting at Cologne and Amsterdam, respectively.
Transitions 2 and 9 model trains driving from these cities to Brussels. After
their arrival at Brussels, places 2 and 9 contain tokens. Transition 1 denotes
connecting the two trains. The cup symbolizes the driver of one of the trains,

Specifications and Modeling 75

Figure 2.52. Model of Thalys trains running between Amsterdam, Cologne, Brussels, and
Paris

who will have a break at Brussels while the other driver is continuing on to
Paris. Transition 5 models synchronization with other trains at the Gare du
Nord station of Paris. These other trains connect Gare du Nord with some other
station (we have used Gare de Lyon as an example, even though the situation
at Paris is somewhat more complex). Of course, Thalys trains do not use steam
engines; they are just easier to visualize than modern high speed trains. Fig.
2.53 shows matrix NT for this example.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

t1 1 -1 -1 1
t2 1 -1
t3 1 -1
t4 1 -1 1
t5 1 -1 -1 1
t6 -1 1
t7 1 -1
t8 1 -1
t9 1 -1
t10 1 -1 -1

Figure 2.53. NT for the Thalys example

76 EMBEDDED SYSTEM DESIGN

For example, row 2 indicates that firing t2 will increase the number of tokens
on p2 by 1 and decrease the number of tokens on p3 by 1. Using techniques
from linear algebra, we are able to show that the following four vectors are
solutions for this system of linear equations:

cR,1 = (1,1,1,1,1,1,0,0,0,0,0,0,0)

cR,2 = (1,0,0,0,1,1,0,0,1,1,1,0,0)

cR,3 = (0,0,0,0,0,0,0,0,1,1,0,0,1)

cR,4 = (0,0,0,0,0,0,1,1,0,0,0,1,0)

These vectors correspond to the places along the track for trains from Cologne,
to the places along the track for trains from Amsterdam, to the places along the
path for drivers of trains from Amsterdam, and to the places along the track
within Paris, respectively. Therefore, we are able to show that the number of
trains and drivers along these tracks is constant (something which we actually
expect). This example demonstrates that place invariants provide us with a
standardized technique for proving properties about systems.

2.6.4 Predicate/transition nets

Condition/event nets as well as place/transition nets can quickly become very
large for large examples. A reduction of the size of the nets is frequently
possible with predicate/transition nets. We will demonstrate this, using the so-
called “dining philosophers problem” as an example. The problem is based on
the assumption that a set of philosophers is dining at a round table. In front of
each philosopher, there is a plate containing spaghetti (see fig. 2.54).

Figure 2.54. The dining philosophers problem

Between each of the plates, there is just one fork. Each philosopher is either
eating or thinking. Eating philosophers need their two adjacent forks for that,
so they can only eat if their neighbors are not eating.

This situation can be modeled as a condition/event net, as shown in fig. 2.55.

Conditions t j correspond to the thinking states, conditions e j correspond to
the eating states, and conditions f j represent available forks. Considering the

Specifications and Modeling 77

Figure 2.55. Place/transition net model of the dining philosophers problem

small size of the problem, this net is already very large. The size of this net
can be reduced by using predicate/transition nets. Fig. 2.56 is a model of the
same problem as a predicate/transition net.

Figure 2.56. Predicate/transition net model of the dining philosophers problem

With predicate/transition nets, tokens have an identity and can be distinguished
from each other11. We use this in fig. 2.56 in order to distinguish between the
three different philosophers p1 to p3 and to identify fork f3. Furthermore,
edges can be labeled with variables and functions. In the example, we use
variables to represent the identity of philosophers and functions l(x) and r(x)
to denote the left and right forks of philosopher x, respectively. These two forks

11We could also think of adding a color to each of the tokens.

78 EMBEDDED SYSTEM DESIGN

are required as a precondition for transition u and returned as a postcondition
by transition v. Note that this model can be easily extended to the case of n > 3
philosophers. We just need to add more tokens. In contrast to the net in fig.
2.55, the structure of the net does not have to be changed.

2.6.5 Evaluation

The key advantage of Petri nets is their power for modeling causal depen-
dencies. Standard Petri nets have no notion of time and all decisions can be
taken locally, by just analyzing transitions and their pre- and postconditions.
Therefore, they can be used for modeling geographically distributed systems.
Furthermore, there is a strong theoretical foundation for Petri nets, simplifying
formal proofs of system properties. Petri nets are not necessarily determinate:
different firing sequences can lead to different results. The descriptive power
of Petri nets encompasses that of other MoCs, including finite state machines.

In certain contexts, their strength is also their weakness. If time is to be explic-
itly modeled, standard Petri nets cannot be used. Furthermore, standard Petri
nets have no notion of hierarchy and no programming language elements, let
alone object oriented features. In general, it is difficult to represent data.

There are extended versions of Petri nets avoiding the mentioned weaknesses.
However, there is no universal extended version of Petri nets meeting all re-
quirements mentioned at the beginning of this chapter. Nevertheless, due to
the increasing amount of distributed computing, Petri nets became more pop-
ular than they were initially.

UML includes extended Petri nets called activity diagrams. Extensions in-
clude symbols denoting decisions (just like in ordinary flow charts). The place-
ment of symbols is somewhat similar to SDL. Fig. 2.57 shows an example.

The example shows the procedure to be followed during a standardization pro-
cess. Forks and joins of control correspond to transitions in Petri nets and they
use the symbols (horizontal bars) that were initially used for Petri nets as well.
The diamond at the bottom shows the symbol used for decisions. Activities can
be organized into “swim-lanes” (areas between vertical dotted lines) such that
the different responsibilities and the documents exchanged can be visualized.
It is interesting to note how a technique like Petri nets was initially certainly
not a mainstream technique. Decades after its invention, it has become a fre-
quently applied technique due to its inclusion in UML.

2.7 Discrete event based languages

The discrete event-based model of computation is based on the idea of sim-
ulating the generation of events and the processing of events over time. In

Specifications and Modeling 79

Figure 2.57. Activity diagram [Kobryn, 2001]

this model, we are using a queue of future events. These events are sorted
by the time at which they should be processed. Semantics is defined by re-
moving the events concerning the current time from the queue, performing the
corresponding actions, possibly entering new events into the queue. Time is
advanced whenever no action exists, which should be performed at the current
time.

Hardware description languages (HDLs) are designed to model hardware. They
are typically based on the discrete event model. We will use HDLs as a promi-
nent example of discrete event modeling. The focus will be on the hardware
description language VHDL, and we will briefly cover other HDLs as well.

80 EMBEDDED SYSTEM DESIGN

A key distinction between common software languages and hardware descrip-
tion languages is the need to model time in HDLs. Another distinction comes
from the requirement to describe concurrency among different hardware com-
ponents.

2.7.1 VHDL

2.7.1.1 Introduction

VHDL is a prominent example of HDLs. VHDL uses processes for modeling
concurrency. Each process models one component of the potentially concur-
rent hardware. For simple hardware components, a single process may be
sufficient. More complex components may need several processes for model-
ing their operations. Processes communicate through signals. Signals roughly
correspond to physical connections (wires).

The origin of VHDL can be traced back to the 1980s. At that time, most design
systems used graphical HDLs. The most common building block was the gate.
However, in addition to using graphical HDLs, we can also use textual HDLs.
The strength of textual languages is that they can easily represent complex
computations including variables, loops, function parameters and recursion.
Accordingly, when digital systems became more complex in the 1980s, textual
HDLs almost completely replaced graphical HDLs. Textual HDLs were ini-
tially a research topic at universities. See Mermet et al. [Mermet et al., 1998]
for a survey of languages designed in Europe at that time. MIMOLA was one
of these languages and the author of this book contributed to its design and
applications [Marwedel and Schenk, 1993], [Marwedel, 2008b]. Textual lan-
guages became popular when VHDL and its competitor Verilog (see page 98)
were introduced.

VHDL was designed in the context of the VHSIC program of the Department
of Defense (DoD) in the US. VHSIC stands for very high speed integrated cir-
cuits12. Initially, the design of VHDL (VHSIC hardware description language)
was done by three companies: IBM, Intermetrics and Texas Instruments. A
first version of VHDL was published in 1984. Later, VHDL became an IEEE
standard, called IEEE 1076. The first IEEE version was standardized in 1987;
updates were designed in 1992, in 1997, in 2002 and in 2006 [Lewis et al.,
2007]. VHDL-AMS allows modeling analog and mixed-signal systems by in-
cluding differential equations in the language. The design of VHDL used ADA
(see page 102) as the starting point, since both languages were designed for the
DoD. Since ADA is based on PASCAL, VHDL has some of the syntactical fla-

12The design of the Internet was also part of the VHSIC program.

Specifications and Modeling 81

vor of PASCAL. However, the syntax of VHDL is much more complex and it
is necessary not to get distracted by the syntax. In the current book, we will just
focus on some concepts of VHDL which are useful also in other languages. A
full description of VHDL is beyond the scope of this book. The standard is
available from IEEE (see, for example, [IEEE, 2002]).

2.7.1.2 Entities and architectures

VHDL, like all other HDLs, includes the necessary support for modeling con-
current operation of hardware components. Hardware components are mod-
eled by so-called design entities or VHDL entities. Entities contain processes
used to model concurrency. According to the VHDL grammar, design entities
are composed of two types of ingredients: an entity declaration and one (or
several) architectures (see fig. 2.58).

Figure 2.58. An entity consists of an entity declaration and architectures

For each entity, the most recently analyzed architecture will be used by default.
Using other architectures can be specified. Architectures may contain several
processes.

We will discuss a full adder as an example. Full adders have three input ports
and two output ports (see fig. 2.59).

Figure 2.59. Full-adder and its interface signals

An entity declaration corresponding to fig. 2.59 is the following:

entity full adder is -- entity declaration

port (a, b, carry in: in Bit; -- input ports

sum, carry out: out Bit); -- output ports

end full adder;

Two hyphens (--) are starting comments. They extend until the the end of
the line. Architectures consist of architecture headers and architectural bodies.

82 EMBEDDED SYSTEM DESIGN

We can distinguish between different styles of bodies, in particular between
structural and behavioral bodies. We will show how the two are different using
the full adder as an example. Behavioral bodies include just enough informa-
tion to compute output signals from input signals and the local state (if any),
including the timing behavior of the outputs. The following is an example of
this (<= denotes assignments to signals):

architecture behavior of full adder is -- architecture

begin

sum <= (a xor b) xor carry in after 10 ns;

carry out <= (a and b) or (a and carry in) or

(b and carry in) after 10 ns;

end behavior;

VHDL-based simulators are capable of displaying output signal waveforms
resulting from stimuli applied to the inputs of the full adder described above.

In contrast, structural bodies describe the way entities are composed of simpler
entities. For example, the full adder can be modeled as an entity consisting of
three components (see fig. 2.60). These components are called i1 to i3 and are
of type half adder or or gate.

Figure 2.60. Schematic describing structural body of the full adder

In the 1987 version of VHDL, these components must be declared in a so-
called component declaration. This declaration is very similar to (and it serves
the same purpose) as forward declarations in other languages. This declaration
provides the necessary information about the component even if the full de-
scription of that component is not yet stored in the VHDL database (this may
happen in the case of so-called top-down designs). From the 1992 version of
VHDL onwards, such declarations are not required if the relevant components
are already stored in the component database.

Connections between local component and entity ports are described in port
maps. The following VHDL code represents the structural body shown in fig.
2.60:

Specifications and Modeling 83

architecture structure of full adder is -- architecture head

component half adder

port (in1, in2: in Bit; carry: out Bit; sum: out Bit);

end component;

component or gate

port (in1, in2: in Bit; o: out Bit);

end component;

signal x, y, z: Bit; -- local signals

begin -- port map section

i1: half adder -- introduction of half adder i1

port map (a, b, x, y); -- connections between ports

i2: half adder port map (y, carry in, z, sum);

i3: or gate port map (x, z, carry out);

end structure;

2.7.1.3 VHDL processes and assignments

VHDL treats components described above as processes. The syntax used
above is just a shorthand for processes. The general syntax for processes is
as follows:

label : -- optional

process

declarations -- optional

begin

statements-- optional

end process ;

Assignments are special cases of statements. In VHDL, there are two kinds of
assignments:

Variable assignments: The syntax of variable assignments is

variable := expression

Whenever control reaches such an assignment, the expression is computed
and assigned to the variable. Such assignments behave like assignments in
common programming languages.

84 EMBEDDED SYSTEM DESIGN

Signal assignments: Signals and signal assignments are introduced in an
attempt to model electrical signals in real hardware systems. Signals asso-
ciate values with instances in time. In VHDL, such a mapping from time to
values is represented by waveforms. Waveforms are computed from signal
assignments. The syntax of signal assignments is

signal <= expression;

signal <= transport expression after delay;

signal <= expression after delay;

signal <= reject time inertial expression after delay;

Whenever control reaches such an assignment, the expression is computed
and used to extend predicted future values of the waveform. In order to
compute future values, simulators are assumed to include a queue of
events to happen later than the current simulated time. This queue is
sorted by the time, at which future events (e.g. updates of signals) should
happen. Executing a signal assignment results in the creation of entries in
this queue. Each entry contains a time for executing the event, the affected
signal and the value to be assigned. For signal assignments not containing
any after clause (first syntactical form), the entry will contain the current
simulation time as the time at which this assignment has to be performed.
In this case, the change will take place after an infinitesimally small amount
of time, called δ-delay (see below). This allows us to update signals without
changing macroscopic time.

For signal assignments containing a transport prefix (second syntactical
form), the update of the signal will be delayed by the specified amount.
This form of the assignment is following the so-called transport delay
model. This model is based on the behavior of simple wires: wires are (as a
first order of approximation) delaying signals. Even short pulses propagate
along wires. The transport delay model can be used for logic circuits, even
though its main application is to model wires. Suppose that we model a
simple or-gate using a transport delay signal assignment:

c <= transport a or b after 10 ns;

Such a model would propagate even short pulses (see fig. 2.61).

Transport delay signal assignments will delete all entries in the queue cor-
responding to the time of the computed update or later times (if we first
execute an assignment with a rather large delay and then execute an assign-
ment with a smaller delay, then the entry resulting from the first assignment
will be deleted).

For signal assignments containing an after clause, but no transport clause,
inertial delay is assumed. The inertial delay model reflects the fact that

Specifications and Modeling 85

Figure 2.61. Gate modeled with transport delay

real circuits come with some “inertia”. This means that short spikes will
be suppressed. For the third syntactical form of the signal assignment, all
signals changes which are shorter than the specified delay are suppressed.
For the fourth form, all signal changes which are shorter than the indicated
amount are removed from the predicted waveform. Suppose that we model
a simple or-gate using inertial delay:

c <= a or b after 10 ns;

For such a model, short spikes would be suppressed (see fig. 2.62).

Figure 2.62. Gate modeled with inertial delay

The implementation of inertial delay relies on the removal of entries in the
predicted waveform. The subtle rules for removals are not repeated here.

In addition to assignments, processes may contain wait statements. Such state-
ments can be used to suspend a process. There are the following kinds of wait
statements:

wait on signal list; suspend until one of the signals in the list changes;

wait until condition; suspend until condition is met, e.g. a = ’1’;

86 EMBEDDED SYSTEM DESIGN

wait for duration; suspend for a specified period of time;

wait; suspend indefinitely.

As an alternative to explicit wait statements, a list of signals can be added to
the process header. In that case, the process is activated whenever one of the
signals in that list changes its value. Example: The following model of an and-
gate will execute its body once and will restart from the beginning every time
one of the inputs changes its value:

process(x, y) begin

prod <= x and y ;

end process;

This model is equivalent to

process begin

prod <= x and y ;

wait on x,y;

end process;

2.7.1.4 The VHDL simulation cycle

According to the original standards document [IEEE, 1997], the execution of a
VHDL model is described as follows: “The execution of a model consists of an
initialization phase followed by the repetitive execution of process statements
in the description of that model. Each such repetition is said to be a simulation
cycle. In each cycle, the values of all signals in the description are computed.
If as a result of this computation an event occurs on a given signal, process
statements that are sensitive to that signal will resume and will be executed as
part of the simulation cycle.”

The initialization phase takes signal initializations into account and executes
each process once. It is described in the standards as follows13:

“At the beginning of initialization, the current time, Tc is assumed to be 0 ns.
The initialization phase consists of the following steps:14

The driving value and the effective value of each explicitly declared signal
are computed, and the current value of the signal is set to the effective

13We leave out the discussion of implicitly declared signals and so-called postponed processes introduced
in the 1997 version of VHDL.
14In order not to get lost in the amount of details provided by the standard, some of its sections (indicated
by “...”) are omitted in the citation.

Specifications and Modeling 87

value. This value is assumed to have been the value of the signal for an
infinite length of time prior to the start of the simulation. ...

Each ... process in the model is executed until it suspends. ...

The time of the next simulation cycle (which in this case is the first simula-
tion cycle), Tn is calculated according to the rules of step e of the simulation
cycle, below.”

Each simulation cycle starts with setting the current time to the next time at
which changes must be considered. This time Tn was either computed during
the initialization or during the last execution of the simulation cycle. Simu-
lation terminates when the current time reaches its maximum, T IME ′HIGH.
According to the original document, the simulation cycle is described as fol-
lows: “A simulation cycle consists of the following steps:

a) The current time, Tc is set equal to Tn. Simulation is complete when Tn =
T IME ′HIGH and there are no active drivers or process resumptions at Tn.

b) Each active explicit signal in the model is updated. (Events may occur as a
result.)” ...

In the cycle preceding the current cycle, new future values for some of the
signals have been computed. If Tc corresponds to the time at which these
values become valid, they are now assigned. New values of signals are
never immediately assigned while executing a simulation cycle: they are
not assigned before the next simulation cycle, at the earliest. Signals that
change their value generate so-called events which, in-turn, may enable the
execution of processes that are sensitive to that signal.

c) “For each process P, if P is currently sensitive to a signal S and if an event
has occurred on S in this simulation cycle, then P resumes.

d) Each ... process that has resumed in the current simulation cycle is executed
until it suspends.

e) The time of the next simulation cycle, Tn is determined by setting it to the
earliest of

1 TIME’HIGH (This is the end of simulation time).

2 The next time at which a driver becomes active (this is the next instance
in time, at which a driver specifies a new value), or

3 The next time at which a process resumes (this time is determined by
wait for statements).

If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.”

88 EMBEDDED SYSTEM DESIGN

Figure 2.63. VHDL simulation cycles

The iterative nature of simulation cycles is shown in fig. 2.63.

Delta (δ) simulation cycles have been the source of many discussions. Their
purpose is to introduce a infinitesimally small delay even in cases in which the
user did not specify any. As an example, we will show the effect of these cycles
using a flip-flop as an example. Fig. 2.64 shows the schematic of the flip-flop.

Figure 2.64. RS-Flipflop

The flip-flop is modeled in VHDL as follows:

entity RS Flipflop is

port (R: in BIT; -- reset

S: in BIT; -- set

Q: inout BIT; -- output

nQ: inout BIT;); -- Q-bar

end RS Flipflop;

architecture one of RS Flipflop is

begin

process: (R,S,Q,nQ)

begin

Q <= R nor nQ; nQ <= S nor Q;

end process;

end one;

Specifications and Modeling 89

Ports Q and nQ must be of mode inout since they are also read internally, which
would not be possible if they were of mode out. Fig. 2.65 shows the simulation
times at which signals are updated for this model. During each cycle, updates
are propagated through one of the gates. Simulation terminates after three δ
cycles. The last cycle does not change anything, since Q is already ’0’.

< 0ns 0ns 0ns+δ 0ns+2∗δ 0ns+3∗δ
R 0 1 1 1 1
S 0 0 0 0 0
Q 1 1 0 0 0

nQ 0 0 0 1 1

Figure 2.65. δ cycles for RS-flip-flop

δ cycles correspond to an infinitesimally small unit of time, which will always
exist in reality. δ cycles ensure that simulation respects causality.

The results do not depend on the order in which parts of the model are exe-
cuted by the simulation. This feature is enabled by the separation between the
computation of new values for signals and their actual assignment. In a model
containing the lines

a <= b;

b <= a;

signals a and b will always be swapped. If the assignments were performed
immediately, the result would depend on the order in which we execute the as-
signments (see also page 48). VHDL models are therefore determinate. This
is what we expect from the simulation of a real circuit with a fixed behavior.

There can be arbitrarily many δ cycles before the current time Tc is advanced.
This possibility of infinite loops can be confusing. One of the options of avoid-
ing this possibility would be to disallow zero delays, which we used in our
model of the flip-flop.

The propagation of values using signals also allows an easy implementation
of the observer pattern (see page 27). In contrast to SDF, the number of ob-
servers can vary, depending on the number of processes waiting for changes
on a signal.

What is the communication model behind VHDL? The description of the se-
mantics of VHDL relies heavily on a single, centralized queue of future events,
storing values of all signals in the future. The purpose of this queue is not to
implement asynchronous message passing. Rather, this queue is supposed to
be accessed by the simulation kernel, one entry at a time, in a non-distributed
fashion. Attempts to perform distributed VHDL simulations are typically suf-

90 EMBEDDED SYSTEM DESIGN

fering from a poor performance. All modeled components can access values
of signals and variables which are in their scope without any message-based
communication. Therefore, we tend towards associating VHDL with a shared
memory based implementation of the communication. However, FIFO-based
message passing could be implemented in VHDL on top of the VHDL simula-
tor as well.

2.7.1.5 Multi-valued logic and IEEE 1164

In this book, we are restricting ourselves to embedded systems implemented
with binary logic. Nevertheless, it may be advisable or necessary to use more
than two values for modeling such systems. For example, our systems might
contain electrical signals of different strengths and it may be necessary to com-
pute the strength and the logic level resulting from a connection of two or more
sources of electrical signals. In the following, we will therefore distinguish be-
tween the level and the strength of a signal. While the former is an abstraction
of the signal voltage, the latter is an abstraction of the impedance (resistance) of
the voltage source. We will be using discrete sets of signal values representing
the signal level and the strength. Using discrete sets of strengths avoids the
problems of having to solve Kirchhoff’s equations and enables us to avoid
analog models used in electrical engineering. We will also model unknown
electrical signals by special signal values.

In practice, electronic design systems use a variety of value sets. Some sys-
tems allow only two, while others allow 9 or 46. The overall goal of developing
discrete value sets is to avoid the problems of solving network equations (e.g.
Kirchoff’s laws) and still model existing systems with sufficient precision. In
the following, we will present a systematic technique for building up value
sets and for relating these to each other. We will use the strength of electrical
signals as the key parameter for distinguishing between various value sets. A
systematic way of building up value sets, called CSA-theory, was presented by
Hayes [Hayes, 1982]. CSA stands for “connector, switch, attenuator”. These
three elements are key elements of this theory. We will later show how the stan-
dard value set used for most cases of VHDL-based modeling can be derived as
a special case.

1 signal strength (Two logic values)

In the simplest case, we will start with just two logic values, called ’0’ and ’1’.
These two values are considered to be of the same strength. This means: if two
wires connect values ’0’ and ’1’, we will not know anything about the resulting
signal level.

Specifications and Modeling 91

A single signal strength may be sufficient if no two wires carrying values ’0’
and ’1’ are connected and no signals of different strength meet at a particular
node of electronic circuits.

2 signal strengths (Three and four logic values)

In many circuits, there may be instances in which a certain electrical signal is
not actively driven by any output. This may be the case, when a certain wire is
not connected to ground, the supply voltage or any circuit node.

For example, systems may contain open-collector outputs (see fig. 2.66, left).
If the “pull-down” transistor PD is non-conducting, the output is effectively
disconnected. For the tristate outputs (see fig. 2.66, right), an enable signal of
’0’ will generate a ’0’ at the outputs of the and-gates (denoted by &), and will
make both transistors non-conducting. As a result, output A will be discon-
nected15. Hence, using appropriate input signals, such outputs can be effec-
tively disconnected from a wire.

Figure 2.66. Outputs that can be effectively disconnected from a wire

Obviously, the signal strength of disconnected outputs is the smallest strength
that we can think of. In particular, the signal strength of Z is smaller than that
of ’0’ and ’1’. Furthermore, the signal level of such an output is unknown. This
combination of signal strength and signal value is represented by a logic value
called ’Z’. If a signal of value ’Z’ is connected to another signal, that other signal
will always dominate. For example, if two tristate outputs are connected to the
same bus and if one output contributes a value of ’Z’, the resulting value on the
bus will always be the value contributed by the second output (see fig. 2.67).

In VHDL, each output is associated with a so-called signal driver. Computing
the value resulting from the contributions of multiple drivers to the same sig-

15In practice, pull-up transistors may be depletion transistors and the tri-state outputs may be inverting.

92 EMBEDDED SYSTEM DESIGN

Figure 2.67. Right output dominates bus

nal is called resolution and resulting values are computed by functions called
resolution functions.

In most cases, three-valued logic sets {’0’,’1’,’Z’} are extended by a fourth value
called ’X’. ’X’ represents an unknown signal level of the same strength as ’0’ or
’1’. More precisely, we are using ’X’ to represent unknown values of signals
that can be either ’0’ or ’1’ or some voltage representing neither ’0’ nor ’1’16.

The resolution that is required if multiple drivers get connected can be com-
puted very easily, if we make use of a partial order among the four signal values
’0’, ’1’, ’Z’, and ’X’. The partial order is depicted in the Hasse diagram in fig.
2.68.

Figure 2.68. Partial order for value set {’0’, ’1’, ’Z’, ’X’}

Edges in this figure reflect the domination of signal values. Edges define a
relation >. If a > b, then a dominates b. ’0’ and ’1’ dominate ’Z’. ’X’ dominates
all other signal values. Based on the relation >, we define a relation ≥. a ≥ b
holds iff a > b or a = b.

We define an operation sup on two signals, which returns the supremum of
the two signal values. The supremum c of the two values a and b is the weak-
est value for which c ≥ a and c ≥ b holds. For example, sup (’Z’, ’0’)=’0’,
sup(’Z’,’1’)=’1’ etc. The interesting observation is that resolution functions
should compute the sup function according to the above definition. The
supremum corresponds to the connect element of the CSA theory.

16There are other interpretations of ’X’, but the one presented above is the most useful one in our context.

Specifications and Modeling 93

3 signal strengths (Seven signal values)

In many circuits, two signal strengths are not sufficient. A common case that
requires more values is the use of depletion transistors (see fig. 2.69).

Figure 2.69. Output using depletion transistor

The effect of the depletion transistor is similar to that of a resistor providing a
low conductance path to the supply voltage VDD. The depletion transistor as
well as the “pull-down transistor” PD act as drivers for node A of the circuit
and the signal value at node A can be computed using resolution. The pull-
down transistor provides a driver value of ’0’ or ’Z’, depending upon the input
to PD. The depletion transistor provides a signal value, which is weaker than ’0’
and ’1’. Its signal level corresponds to the signal level of ’1’. We represent the
value contributed by the depletion transistor by ’H’, and we call it a “weak logic
one”. Similarity, there can be weak logic zeros, represented by ’L’. The value
resulting from the possible connection between ’H’ and ’L’ is called a “weak
logic undefined”, denoted as ’W’. As a result, we have three signal strengths
and seven logic values {’0’, ’1’, ’L’, ’H’, ’W’, ’X’, ’Z’}. Resolution can again be
based on a partial order among these seven values. The corresponding partial
order is shown in fig. 2.70.

Figure 2.70. Partial order for value set {’0’, ’1’, ’L’, ’H’, ’W’, ’X’, ’Z’}

94 EMBEDDED SYSTEM DESIGN

This order also defines an operation sup returning the weakest value at least as
strong as the two arguments. For example, sup(’H’,’0’) = ’0’, sup(’H’,’Z’) = ’H’,
sup(’H’,’L’) = ’W’.

’0’ and ’L’ represent the same signal levels, but a different strength. The same
holds for the pairs ’1’ and ’H’. Devices increasing the signal strength are called
amplifiers, devices reducing the signal strength are called attenuators.

Ten signal values (4 signal strengths)

In some cases, three signal strengths are not sufficient. For example, there
are circuits using charges stored on wires. Such wires are charged to levels
corresponding to ’0’ or ’1’ during some phases of the operation of the electronic
circuit. This stored charge can control the (high impedance) inputs of some
transistors. However, if these wires get connected to even the weakest signal
source (except ’Z’), they lose their charge and the signal value from that source
dominates.

For example, in fig. 2.71, we are driving a bus from a specialized output.

Figure 2.71. Pre-charging a bus

The bus has a high capacitive load C. While function f is still ’0’, we set φ to
’1’, charging capacitor C. Then we set φ to ’0’. If the real value of function f
becomes known and it turns out to be ’1’, we discharge the bus. The key reason
for using pre-charging is that charging a bus using an output such as the one
shown in fig. 2.69 is a slow process, since the resistance of depletion transistors
is large. Discharging through regular pull-down transistors PD is a much faster
process.

In order to model such cases, we need signal values which are weaker than ’H’
and ’L’, but stronger than ’Z’. We call such values “very weak signal values”
and denote them by ’h’ and ’l’. The corresponding very weak unknown value is
denoted by ’w’. As a result, we obtain ten signal values {’0’, ’1’, ’L’, ’H’, ’l’, ’h’,
’X’, ’W’, ’w’, ’Z’}. Using the signal strength, we can again define a partial order
among these values (see fig. 2.72).

Specifications and Modeling 95

Figure 2.72. Partial order for value set {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’, ’h’, ’l’, ’w’}

Five signal strengths

So far, we have ignored power supply signals. These are stronger than the
strongest signals we have considered so far. Signal value sets taking power
supply signals into account have resulted in the definition of 46-valued value
sets [Coelho, 1989]. However, such models are not very popular.

IEEE 1164

In VHDL, there is no predefined number of signal values, except for some
basic support for two-valued logic. Instead, the used value sets can be defined
in VHDL itself and different VHDL models can use different value sets.

However, portability of models would suffer in a very severe manner if this
capability of VHDL was applied in this way. In order to simplify exchanging
VHDL models, a standard value set was defined and standardized by the IEEE.
This standard is called IEEE 1164 and is employed in many system models.
IEEE 1164 has nine values: {’0’, ’1’, ’L’, ’H’, ’X’, ’W’, ’Z’, ’U’, ’-’}. The first seven
values correspond to the seven signal values described above. ’U’ denotes an
uninitialized value. It is used by simulators for signals that have not been
explicitly initialized.

’-’ denotes the input don’t care. This value needs some explanation. Fre-
quently, hardware description languages are used for describing Boolean func-
tions. The VHDL select statement is a very convenient means for doing that.
The select statement corresponds to switch and case statements found in
other languages and its meaning is different from the select statement in ADA
(see page 104).

Example: Suppose that we would like to represent the Boolean function

f (a,b,c) = ab+bc

96 EMBEDDED SYSTEM DESIGN

Furthermore, suppose that f should be undefined for the case of a = b = c =’0’.
A very convenient way of specifying this function would be the following:

f <= select a & b & c -- & denotes concatenation

’1’ when "10-" -- corresponds to first term

’1’ when "-11" -- corresponds to second term

’X’ when "000"

This way, functions given above could be easily translated into VHDL. Unfor-
tunately, the select statement denotes something completely different. Since
IEEE 1164 is just one of a large number of possible value sets, it does not
include any knowledge about the “meaning” of ’-’. Whenever VHDL tools
evaluate select statements such as the one above, they check if the selecting
expression (a & b & c in the case above) is equal to the values in the when
clauses. In particular, they check if e.g. a & b & c is equal to "10-". In this
context, ’-’ behaves like any other value: VHDL systems check if c has a value
of ’-’. Since ’-’ is never assigned to any of the variables, these tests will never
be true. Therefore, ’-’ is of limited benefit. The non-availability of convenient
input don’t care values is the price that one has to pay for the flexibility of
defining value sets in VHDL itself17.

The nice property of the general discussion on pages 90 to 95 is the following:
it allows us to immediately draw conclusions about the modeling power of
IEEE 1164. The IEEE standard is based on the 7-valued value set described
on page 93 and, therefore, is capable of modeling circuits containing depletion
transistors. It is, however, not capable of modeling charge storage18.

2.7.2 SystemC

Due to the trend of implementing more and more functionality in software,
a growing number of embedded systems includes a mixture of hardware and
software. Most of the embedded system software is specified in C. For exam-
ple, embedded systems implement standards such as MPEG 1/2/4 or decoders
for mobile phone standards such as GSM or UMTS. The standards are fre-
quently available in the form of “reference implementations”, consisting of
C programs not optimized for speed but providing the required functional-
ity. The disadvantage of design methodologies based on VHDL or Verilog is
the fact that these standards must be rewritten in order to generate hardware.

17This problem was corrected in VHDL 2006 [Lewis et al., 2007].
18As an exception, if the capability of modeling depletion transistors or pull-up resistors is not needed, one
could interpret weak values as stored charges. This is, however, not very practical since pull-up resistors
are found in most actual systems.

Specifications and Modeling 97

Furthermore, simulating hardware and software together requires interfacing
software and hardware simulators. Typically, this involves a loss of simulation
efficiency and inconsistent user interfaces. Also, designers must learn several
languages.

Therefore, there has been a search for techniques for representing hardware
structures in software languages. Some fundamental problems must be solved
before hardware can be modeled with software languages:

Concurrency, as it is found in hardware, has to be modeled in software.

There has to be a representation of simulated time.

Multiple-valued logic and resolution as described earlier must be sup-
ported.

The determinate behavior of almost all useful hardware circuits must be
guaranteed.

SystemCT M [SystemC, 2010], [Open SystemC Initiative, 2005] is a C++ class
library designed to solve these problems. With SystemC, specifications can be
written in C or C++, making appropriate references to the class libraries.

SystemC comprises a notion of processes executed concurrently. Simulation
semantics are similar to VHDL, including the presence of delta cycles. The
execution of these processes is controlled via sensitivity lists and calls to wait
primitives. The sensitivity list concept includes dynamic sensitivity lists.

SystemC includes a model of time. Earlier SystemC 1.0 used floating point
numbers to denote time. In the current standard, an integer model of time is
preferred. SystemC also supports physical units such as picoseconds, nanosec-
onds, microseconds etc.

SystemC data types include all common hardware types: four-valued logic (’0’,
’1’, ’X’ and ’Z’) and bitvectors of different lengths are supported. Writing digital
signal processing applications is simplified due to the availability of fixed-point
data types.

Determinate behavior (see page 49) is not guaranteed in general, unless a cer-
tain modeling style is used. Using a command line option, the simulator can
be directed to run processes in different orders. This way, the user can check
if the simulation results depend on the sequence in which the processes are
executed. However, for models of realistic complexity, only the presence of
non-determinate behavior can be shown, not its absence.

Reusing hardware components in different contexts is simplified by the sepa-
ration of computation and communication. SystemC provides channels, ports

98 EMBEDDED SYSTEM DESIGN

and interfaces as abstract components for communication. The introduction of
these mechanisms facilitate so-called transaction-level modeling, as defined by
Grötker et al. [Grötker et al., 2002]:

Definition: “Transaction-level modeling (TLM) is a high-level approach to
modeling digital systems where details of communication among modules are
separated from the details of the implementation of functional units or of the
communication architecture. Communication mechanisms such as buses or FI-
FOs are modeled as channels, and are presented to modules using SystemC in-
terface classes. Transaction requests take place by calling interface functions
of these channel models, which encapsulate low-level details of the information
exchange. At the transaction level, the emphasis is more on the functionality
of the data transfers - what data are transferred to and from what locations -
and less on their actual implementation, that is, on the actual protocol used
for data transfer. This approach makes it easier for the system-level designer
to experiment, for example, with different bus architectures (all supporting a
common abstract interface) without having to recode models that interact with
any of the buses, provided these models interact with the bus through the com-
mon interface.”

SystemC has the potential for replacing existing VHDL-based design flows.
Hardware synthesis starting from SystemC has become available [Herrera et al.,
2003a], [Herrera et al., 2003b]. There are also commercial offerings. Method-
ology and applications for SystemC-based design are described in a book on
that topic [Müller et al., 2003]. SystemC has been standardized as IEEE stan-
dard 1666-2005 [Open SystemC Initiative, 2005].

2.7.3 Verilog and SystemVerilog

Verilog is another hardware description language. Initially it was a propri-
etary language, but it was later standardized as IEEE standard 1364, with ver-
sions called IEEE standard 1364-1995 (Verilog version 1.0) and IEEE standard
1364-2001 (Verilog 2.0). Some features of Verilog are quite similar to VHDL.
Just like in VHDL, designs are described as a set of connected design entities,
and design entities can be described behaviorally. Also, processes are used
to model concurrency of hardware components. Just like in VHDL, bitvec-
tors and time units are supported. There are, however, some areas in which
Verilog is less flexible and focuses more on comfortable built-in features. For
example, standard Verilog does not include the flexible mechanisms for defin-
ing enumerated types such as the ones defined in the IEEE 1164 standard.
However, support for four-valued logic is built into the Verilog language, and
the standard IEEE 1364 also provides multiple valued logic with 8 different
signal strengths. Multiple-valued logic is more tightly integrated into Verilog

Specifications and Modeling 99

than into VHDL. The Verilog logic system also provides more features for
transistor-level descriptions. However, VHDL is more flexible. For example,
VHDL allows hardware entities to be instantiated in loops. This can be used to
generate a structural description for, e.g. n-bit adders without having to specify
n adders and their interconnections manually.

Verilog has a similar number of users as VHDL. While VHDL is more popular
in Europe, Verilog is more popular in the US.

Verilog versions 3.0 and 3.1 are also known as SystemVerilog. They include
numerous extensions to Verilog 2.0. These extensions include [Accellera Inc.,
2003], [Sutherland, 2003]:

additional language elements for modeling behavior,

C data types such as int and type definition facilities such as typedef and
struct,

definition of interfaces of hardware components as separate entities,

standardized mechanism for calling C/C++ functions and, to some extent,
to call built-in Verilog functions from C,

significantly enhanced features for describing an environment (called test-
bench) for the hardware circuit under design (called CUD), and for using
the testbench to validate the CUD by simulation,

classes known from object-oriented programming for use within testben-
ches,

dynamic process creation,

standardized interprocess communication and synchronization, including
semaphores,

automatic memory allocation and deallocation,

language features that provide a standardized interface to formal verifica-
tion (see page 203).

Due to the capability of interfacing with C and C++, interfacing to SystemC
models is also possible. Improved facilities for simulation- as well as for for-
mal verification-based design validation and the possible interfacing to Sys-
temC will potentially create a very good acceptance. Recently, Verilog and
SystemVerilog have been merged into one standard, IEEE 1800-2009 [IEEE,
2009].

100 EMBEDDED SYSTEM DESIGN

2.7.4 SpecC

The SpecC language [Gajski et al., 2000] is based on the clear separation be-
tween communication and computation that should be used for modeling em-
bedded systems. This separation paves the way for re-using components in
different contexts and enables plug-and-play for system components. SpecC
models systems as hierarchical networks of behaviors communicating through
channels. SpecC descriptions consist of behaviors, channels and interfaces.
Behaviors include ports, locally instantiated components, private variables and
functions and a public main function. Channels encapsulate communication.
They include variables and functions, which are used for the definition of a
communication protocol. Interfaces are linking behaviors and channels to-
gether. They declare the communication protocols which are defined in a chan-
nel.

SpecC can model hierarchies with nested behaviors. Fig. 2.73 [Gajski et al.,
2000] shows a component B including sub-components b1 and b2.

Figure 2.73. Structural hierarchy of SpecC example

The sub-components are communicating through integer c1 and through chan-
nel c2. The structural hierarchy includes b1 and b2 as the leaves. b1 and b2 are
executed concurrently, denoted by the keyword par in SpecC. This structural
hierarchy is described in the following SpecC model.

interface L {void Write(int x); };

interface R {int Read(void); };

channel C implements L,R

{int Data; bool Valid;

void Write(int x) {Data=x; Valid=true;}
int Read (void)

{while (!Valid) waitfor (10); return (Data);} }

Specifications and Modeling 101

behavior B1(in int p1, L p2, in int p3)

{void main (void) {/* ...*/ p2.Write(p1);} };

behavior B2 (out int p1, R p2, out int p3)

{void main(void) {/*...*/ p3=p2.Read(); } };

behavior B(in int p1, out int p2)

{int c1; C c2; B1 b1(p1, c2, c1); B2 b2(c1, c2, p2);

void main (void)

{par {b1.main(); b2.main();}}
};

Note that the interface protocol implemented in channel C, consisting of meth-
ods for read and write operations, can be changed without changing behaviors
B1 and B2. For example, communication can be bit-serial or parallel and the
choice does not affect the models of B1 and B2. This is a necessary feature for
IP-reuse.

In order to simplify designs containing software and hardware components, the
syntax of SpecC is based on C and C++. In fact, SpecC models are translated
into C++ for simulation.

At the specification level, SpecC can model any kind of communication and
typically uses message passing. The implementation of simulators is neverthe-
less typically based on a non-distributed system. The communication model of
SpecC has inspired communication in SystemC 2.0.

2.8 Von-Neumann languages

The sequential execution of von-Neumann languages is their common char-
acteristic. Also, such languages allow an almost unrestricted access to global
variables. Model-based design using CFSMs and computational graphs is very
appropriate for embedded system design. Nevertheless, the use of standard
von-Neumann languages is still widespread. Therefore, we cannot ignore these
languages.

However, the distinction between KPNs and properly restricted von-Neumann
languages is blurring. For KPNs, we do also have sequential execution of the
code for each of the nodes. We are still keeping the distinction between KPN
and von-Neumann languages since for KPNs, the emphasis of modeling is on
the communication and details of the execution within the nodes are irrelevant.
For the first two languages covered in this section, communication is built into
the languages. For the remaining languages, focus is on the computations and
communication can be replaced by selecting different libraries.

102 EMBEDDED SYSTEM DESIGN

2.8.1 CSP

CSP (communicating sequential processes) [Hoare, 1985] is one of the first
languages comprising mechanisms for interprocess communication. Commu-
nication is based on channels.

Example:

process A process B

.....

var a .. var b ...

a := 3; ...

c!a; -- output to channel c c?b; -- input from channel c

end; end;

Both processes will wait for the other process to arrive at the input or out-
put statement. This is a case of rendez-vous-based, blocking or synchronous
message passing.

CSP is determinate, since it relies on the commitment to wait for input from a
particular channel, like in Kahn process networks.

CSP has laid the foundation for the OCCAM language that was proposed as
a programming language of the transputer [Thiébaut, 1995]. The focus on
communication channels has been picked up again in the design of the XS1
processor [XMOS Ltd., 2010].

2.8.2 ADA

During the 1980s, the Department of Defense (DoD) in the United States re-
alized that the dependability and maintainability of the software in its military
equipment could soon become a major source of problems, unless some strict
policy was enforced. It was decided that all software should be written in the
same real-time language. Requirements for such a language were formulated.

No existing language met the requirements and, consequently, the design of
a new one was started. The language which was finally accepted was based
on PASCAL. It was called ADA (after Ada Lovelace, who can be considered
being the first (female) programmer). ADA’95 [Kempe, 1995], [Burns and
Wellings, 2001] is an object-oriented extension of the original standard.

One of the interesting features of ADA is the ability to have nested declarations
of processes (called tasks in ADA). Tasks are started whenever control passes
into the scope in which they are declared.

The following is an example (according to Burns et al. [Burns and Wellings,
1990]):

Specifications and Modeling 103

procedure example1 is

task a;

task b;

task body a is

-- local declarations for a

begin

-- statements for a

end a;

task body b is

-- local declarations for b

begin

-- statements for b

end b;

begin

-- Tasks a and b will start before the 1st statement of example1

-- statements for example1

end;

The communication concept of ADA is another key concept. It is based on the
rendez-vous paradigm. Whenever two tasks want to exchange information,
the task reaching the “meeting point” first has to wait until its partner has also
reached a corresponding point of control. Syntactically, procedures are used
for describing communication. Procedures which can be called from other
tasks must be identified by the keyword entry.

Example [Burns and Wellings, 1990]:

task screen out is

entry call (val : character; x, y : integer);

end screen out;

Task screen out includes a procedure named call which can be called from
other processes. Some other task can call this procedure by prefixing it with
the name of the task:

screen out.call(’Z’,10,20);

The calling task has to wait until the called task has reached a point of control,
at which it accepts calls from other tasks. This point of control is indicated by
the keyword accept:

104 EMBEDDED SYSTEM DESIGN

task body screen out is

...

begin

...

accept call (val : character; x, y : integer) do

...

end call;

...

end screen out;

Obviously, task screen out may be waiting for several calls at the same time.
The ADA select-statement provides this capability.

Example:

task screen output is

entry call ch(val:character; x, y: integer);

entry call int(z, x, y: integer);

end screen out;

task body screen output is

...

select

accept call ch ... do...

end call ch;

or

accept call int ... do ..

end call int;

end select;

...

In this case, task screen out will be waiting until either call ch or call int are
called.

Due to the presence of the select-statement, ADA is not determinate. ADA
has been the preferred language for military equipment produced in the West-
ern hemisphere for some time. Recently produced information about ADA is
available from a web sites (see, for example [Kempe Software Capital Enter-
prises (KSCE), 2010]).

Specifications and Modeling 105

2.8.3 Java

For Java, communication can be selected by choosing between different li-
braries. Computation is strictly sequential.

Java was designed as a platform-independent language. It can be executed
on any machine for which an interpreter of the internal byte-code represen-
tation of Java-programs is available. This byte-code representation is a very
compact representation, which requires less memory space than a standard bi-
nary machine code representation. Obviously, this is a potential advantage in
system-on-a-chip applications, where memory space is limited.

Also, Java was designed as a safe language. Many potentially dangerous fea-
tures of C or C++ (like pointer arithmetic) are not available in Java. Hence,
Java meets the safety requirements for specification languages for embedded
systems. Java supports exception handling, simplifying recovery in case of
run-time errors. There is no danger of memory leakages due to missing mem-
ory deallocation, since Java provides automatic garbage collection. This fea-
ture avoids potential problems in applications that must run for months or even
years without ever being restarted. Java also meets the requirement to support
concurrency since it includes threads (light-weight processes).

In addition, Java applications can be implemented quite fast, since Java sup-
ports object orientation and since Java development systems come with pow-
erful libraries.

However, standard Java is not really designed for real-time and embedded sys-
tems. A number of characteristics which would make it a real-time and em-
bedded programming language are missing:

The size of Java run-time libraries has to be added to the size of the ap-
plication itself. These run-time libraries can be quite large. Consequently,
only really large applications benefit from the compact representation of
the application itself.

For many embedded applications, direct control over I/O devices is neces-
sary (see page 26). For safety reasons, no direct control over I/O devices is
available in standard Java.

Automatic garbage collection requires some computing time. In standard
Java, the instance in time at which automatic garbage collection is started
cannot be predicted. Hence, the worst case execution time is very difficult
to predict. Only extremely conservative estimates can be made.

Java does not specify the order in which threads are executed if several
threads are ready to run. As a result, worst-case execution time estimates
must be even more conservative.

106 EMBEDDED SYSTEM DESIGN

Java programs are typically less efficient than C programs. Hence, Java is
less recommended for resource constrained systems.

Proposals for solving the problems were made by Nilsen [Nilsen, 1998]. Pro-
posals include hardware-supported garbage-collection, replacement of the run-
time scheduler and tagging of some of the memory segments.

Currently (in 2010) relevant Java programming environments include the Java
Enterprise Edition (J2EE), the Java Standard Edition (J2SE), the Java Micro
Edition (J2ME), and CardJava [Sun, 2010]. CardJava is a stripped-down ver-
sion of Java with emphasis on security for SmartCard applications. J2ME
is the relevant Java environment for all other types of embedded systems.
Two library profiles have been defined for J2ME: CDC and CLDC. CLDC
is used for mobile phones, using the so-called MIDP 1.0/2.0 as its standard
for the application programming interface (API). CDC is used, for example,
for TV sets and powerful mobile phones. Currently relevant sources for Java
real-time programming include book by Wellings [Wellings, 2004], Dibble
[Dibble, 2008] and Bruno [Bruno and Bollella, 2009] as well as web sites
[Java Community Process, 2002] and [Anonymous, 2010b].

2.8.4 Pearl and Chill

Pearl [Deutsches Institut für Normung, 1997] was designed for industrial con-
trol applications. It does include a large repertoire of language elements for
controlling processes and referring to time. It requires an underlying real-
time operating system. Pearl has been very popular in Europe and a large
number of industrial control projects has been implemented in Pearl. Pearl
supports semaphores which can be used to protect communication based on
shared buffers.

Chill [Winkler, 2002] was designed for telephone exchange stations. It was
standardized by the CCITT and used in telecommunication equipment. Chill
is a kind of extended PASCAL.

2.8.5 Communication libraries

Standard von-Neumann languages do not come with built-in communication
primitives. However, communication can be provided by libraries. There is a
trend towards supporting communication within some local system as well as
communication over longer distances. The use of internet protocols is becom-
ing more popular. Libraries will be described in more detail in the section on
system software (see page 195).

Specifications and Modeling 107

2.9 Levels of hardware modeling

In practice, designers start design cycles at various levels of abstraction. In
some cases, these are high levels describing the overall behavior of the system
to be designed. In other cases, the design process starts with the specification
of electrical circuits at lower levels of abstraction. For each of the levels, a
variety of languages exists, and some languages cover various levels. In the
following, we will describe a set of possible levels. Some lower end levels
are presented here for context reasons. Specifications should not start at those
levels. The following is a list of frequently used names and attributes of levels:

System level models: The term system level is not clearly defined. It is
used here to denote the entire embedded system and the system into which
information processing is embedded (“the product”), and possibly also the
environment (the physical input to the system, reflecting e.g. the roads,
weather conditions etc.). Obviously, such models include mechanical as
well as information processing aspects and it may be difficult to find ap-
propriate simulators. Possible solutions include VHDL-AMS (the analog
extension to VHDL), SystemC or MATLAB. MATLAB and VHDL-AMS
support modeling partial differential equations, which is a key requirement
for modeling mechanical systems. It is a challenge to model information
processing parts of the system in such a way that the simulation model
can also be used for the synthesis of the embedded system. If this is not
possible, error-prone manual translations between different models may be
needed.

Algorithmic level: At this level, we are simulating the algorithms that we
intend to use within the embedded system. For example, we might be sim-
ulating MPEG video encoding algorithms in order to evaluate the resulting
video quality. For such simulations, no reference is made to processors or
instruction sets.

Data types may still allow a higher precision than the final implementation.
For example, MPEG standards use double precision floating point numbers.
The final embedded system will hardly include such data types. If data
types have been selected such that every bit corresponds to exactly one bit
in the final implementation, the model is said to be bit-true. Translating
non-bit-true into bit-true models should be done with tool support (see page
286).

Models at this level may consist of single processes or of sets of cooperating
processes.

Instruction set level: In this case, algorithms have already been compiled
for the instruction set of the processor(s) to be used. Simulations at this

108 EMBEDDED SYSTEM DESIGN

level allow counting the executed number of instructions. There are several
variations of the instruction set level:

– In a coarse-grained model, only the effect of the instructions is sim-
ulated and their timing is not considered. The information available
in assembly reference manuals (instruction set architecture (ISA)) is
sufficient for defining such models.

– Transaction level modeling: In transaction level modeling (see also
page 98), transactions, such as bus reads and writes, and communica-
tion between different components is modeled. Transaction level mod-
eling includes less details than cycle-true modeling (see below), en-
abling significantly superior simulation speeds [Clouard et al., 2003].

– In a more fine-grained model, we might have cycle-true instruction
set simulation. In this case, the exact number of clock cycles required
to run an application can be computed. Defining cycle-true models re-
quires a detailed knowledge about processor hardware in order to cor-
rectly model, for example, pipeline stalls, resource hazards and mem-
ory wait cycles.

Register-transfer level (RTL): At this level, we model all the components
at the register-transfer level, including arithmetic/logic units (ALUs), regis-
ters, memories, muxes and decoders. Models at this level are always cycle-
true. Automatic synthesis from such models is not a major challenge.

Gate-level models: In this case, models contain gates as the basic compo-
nents. Gate-level models provide accurate information about signal tran-
sition probabilities and can therefore also be used for power estimations.
Also delay calculations can be more precise than for the RTL. However,
typically no information about the length of wires and hence no informa-
tion about capacitances is available. Hence, delay and power consumption
calculations are still estimates.

The term “gate-level model” is sometimes also employed in situations in
which gates are only used to denote Boolean functions. Gates in such a
model do not necessarily represent physical gates; we are only considering
the behavior of the gates, not the fact that they also represent physical com-
ponents. More precisely, such models should be called “Boolean function
models”19, but this term is not frequently used.

Switch-level models: Switch level models use switches (transistors) as
their basic components. Switch level models use digital values models

19These models could be represented with binary decision diagrams (BDDs) [Wegener, 2000].

Specifications and Modeling 109

(refer to page 90 for a description of possible value sets). In contrast to
gate-level models, switch level models are capable of reflecting bidirec-
tional transfer of information.

Circuit-level models: Circuit theory and its components (current and volt-
age sources, resistors, capacitances, inductances, and frequently possible
macro-models of semiconductors) form the basis of simulations at this
level. Simulations involve partial differential equations. These equations
are linear if and only if the behavior of semiconductors is linearized (ap-
proximated). The most frequently used simulator at this level is SPICE
[Vladimirescu, 1987] and its variants.

Layout models: Layout models reflect the actual circuit layout. Such mod-
els include geometric information. Layout models cannot be simulated
directly, since the geometric information does not directly provide infor-
mation about the behavior. Behavior can be deduced by correlating the
layout model with a behavioral description at a higher level or by extract-
ing circuits from the layout, using knowledge about the representation of
circuit components at the layout level. In a typical design flow, the length of
wires and the corresponding capacitances are extracted from the layout and
back-annotated to descriptions at higher levels. This way, more precision
can be gained for delay and power estimations.

Process and device models: At even lower levels, we can model fabri-
cation processes. Using information from such models, we can compute
parameters (gains, capacitances etc) for devices (transistors).

2.10 Comparison of models of computation

2.10.1 Criteria

Models of computation can be compared according to several criteria. For
example, Stuijk [Stuijk, 2007] compares MoCs according to the following cri-
teria:

Expressiveness and succinctness indicate, which systems can be modeled
and how compact they are.

Analyzability relates to the availability of scheduling algorithms and the
need for run-time support.

The implementation efficiency is influenced by the required scheduling
policy and the code size.

Fig. 2.74 classifies data flow models according to these criteria.

110 EMBEDDED SYSTEM DESIGN

Figure 2.74. Comparison between data flow models

This figure reflects the fact that Kahn process networks are expressive: they
are Turing-complete, meaning that any problem which can be computed on a
Turing machine can also be computed in a KPN. Turing machines are used
as the standard model of universal computers [Herken, 1995]. However, ter-
mination properties and upper bounds on buffer sizes of KPNs are difficult to
analyze. SDF graphs, on the other hand, are not Turing-complete. The un-
derlying reason is that they cannot model control flow. However, deadlock
properties and upper bounds on buffer sizes of SDF graphs are easier to ana-
lyze. Homogeneous SDF (HSDF) graphs (graphs for which all rates are equal
to one) are even less expressive, but also easier to analyze.

We could compare MoCs also with respect to the type of processes supported:

The number of processes can be either static or dynamic. A static number
of processes simplifies the implementation and is sufficient if each process
models a piece of hardware and if we do not consider “hot-plugging” (dy-
namically changing the hardware architecture). Otherwise, dynamic pro-
cess creation (and termination) should be supported.

Processes can either be statically nested or all declared at the same level.
For example, StateCharts allows nested process declarations while SDL
(see page 54) does not. Nesting provides encapsulation of concerns.

Different techniques for process creation exist. Process creation can result
from an elaboration of the process declaration in the source code, through
the fork and join mechanism (supported for example in Unix), and also
through explicit process creation calls.

The expressiveness of different data flow oriented models of computation is
also shown in fig. 2.75 [Basten, 2008]. MoCs not discussed in this book are
indicated by dashed lines.

Specifications and Modeling 111

Figure 2.75. Expressiveness of data flow models

None of the MoCs and languages presented so far meets all the requirements
for specification languages for embedded systems. Fig. 2.76 presents an over-
view over some of the key properties of some of the languages.

Behavioral Structural Programming Exceptions Dynamic
Hierarchy Hierarchy Language Supported Process

Language Elements Creation
StateCharts + - - + -
VHDL + + + - -
SpecCharts + - + + -
SDL +- +- +- - +
Petri nets - - - - +
Java + - + + +
SpecC + + + + +
SystemC + + + + +
ADA + - + + +

Figure 2.76. Language comparison

Interestingly, SpecC and SystemC meet all listed requirements. However,
some other requirements (like a precise specification of deadlines, etc.) is not
included. It is not very likely that a single MoC or language will ever meet all
requirements, since some of the requirements are essentially conflicting. A lan-
guage supporting hard real-time requirements well may be inconvenient to use
for less strict real-time requirements. A language appropriate for distributed
control-dominated applications may be poor for local data-flow dominated ap-
plications. Hence, we can expect that we will have to live with compromises
and possibly with mixed models.

Which compromises are actually used in practice? In practice, assembly lan-
guage programming was very common in the early years of embedded systems

112 EMBEDDED SYSTEM DESIGN

programming. Programs were small enough to handle the complexity of prob-
lems in assembly languages. The next step is the use of C or derivatives of C.
Due to the ever increasing complexity of embedded system software (see page
xiv), higher level languages are to follow the introduction of C. Object oriented
languages and SDL are languages which provide the next level of abstraction.
Also, languages like UML are required to capture specifications at an early
design stage. In practice, these languages can be used like shown in fig. 2.77.

Figure 2.77. Using various languages in combination

According to fig. 2.77, languages like SDL or StateCharts can be translated
into C. These C descriptions are then compiled. Starting with SDL or State-
Charts also opens the way to implementing the functionality in hardware, if
translators from these languages to VHDL are provided. Both C and VHDL
will certainly survive as intermediate languages for many years. Java does not
need intermediate steps but does also benefit from good translation concepts to
assembly languages. In a similar way, translations between various graphs are
feasible. For example, SDF graphs can be translated into a subclass of Petri
nets [Stuijk, 2007]. Also, they correspond to a subclass of the computation
graph model proposed by Karp and Miller [Karp and Miller, 1966]. Linking
the various models of computation is facilitated by formal techniques [Chen
et al., 2007].

Several languages for embedded system design are covered in a book edited
by M. Radetzki [Radetzki, 2009]. Popovici et al. [Popovici et al., 2010] use a
combination of Simulink and SystemC.

Specifications and Modeling 113

2.10.2 UML

UMLT M is a language including diagrams reflecting several MoCs. Fig. 2.78
classifies the UML diagrams mentioned so far with respect to our table of
MoCs.

Communication/ Shared memory Message passing
Components synchronous asynchronous

Undefined components Use cases
Sequence charts, timing diagrams

Finite state machines State diagrams - -
Data flow (not useful) Data flow diagrams
Petri nets (not useful) Activity charts
Distributed event model - -
Von-Neumann model - -

Figure 2.78. Models of computation available in UML

This figure shows how UML covers several models of computation, with a
focus on early design phases. Semantics of communication is typically impre-
cisely defined. Therefore, our classification cannot be precise in this respect.
In addition to the diagrams already mentioned, the following diagrams can be
modeled:

Deployment diagrams: These diagrams are important for embedded sys-
tems: they describe the “execution architecture” of systems (hardware or
software nodes).

Package diagrams: Package diagrams represent the partitioning of soft-
ware into software packages. They are similar to module charts in State-
Mate.

Class diagrams: These diagrams describe inheritance relations of object
classes.

Communication diagrams (called Collaboration diagrams in UML 1.x):
These graphs represent classes, relations between classes, and messages
that are exchanged between them.

Component diagrams: They represent the components used in applica-
tions or systems.

Object diagrams, interaction overview diagrams, composite structure
diagrams: This list consists of three types of diagrams which are less fre-
quently used. Some of them may actually be special cases of other types of
diagrams.

114 EMBEDDED SYSTEM DESIGN

Available tools provide some consistency checking between the different dia-
gram types. Complete checking, however, seems to be impossible. One reason
for this is that the semantics of UML initially was left undefined. It has been
argued that this was done intentionally, since one does not like to bother about
the precise semantics during the early phases of the design. As a consequence,
precise, executable specifications can only be obtained if UML is combined
with some other, executable language. Available design tools have combined
UML with SDL [IBM, 2009] and C++. There are, however, also some first
attempts to define the semantics of UML.

Version 1.4 of UML was not designed for embedded systems. Therefore, it
lacks a number of features required for modeling embedded systems (see page
21). In particular, the following features are missing [McLaughlin and Moore,
1998]:

the partitioning of software into tasks and processes cannot be modeled,

timing behavior cannot be described at all,

the presence of essential hardware components cannot be described.

Due to the increasing amount of software in embedded systems, UML is gain-
ing importance for embedded systems as well. Hence, several proposals for
UML extensions to support real-time applications have been made [McLaugh-
lin and Moore, 1998], [Douglass, 2000]. These extensions have been consid-
ered during the design of UML 2.0. UML 2.0 includes 13 diagram types (up
from nine in UML 1.4) [Ambler, 2003]. Special profiles are taking the require-
ments of real-time systems into account [Martin and Müller, 2005], [Müller,
2007]. Profiles include class diagrams with constraints, icons, diagram sym-
bols, and some (partial) semantics. There are UML profiles for [Müller, 2007]:

Schedulability, Performance, and Time Specification (SPT) [Object Man-
agement Group (OMG), 2005b],

Testing [Object Management Group (OMG), 2010a],

Quality of Service (QoS) and Fault Tolerance [Object Management Group
(OMG), 2010a],

a Systems Modeling Language called SysML [Object Management Group
(OMG), 2008],

Modeling and Analysis of Real-Time Embedded Systems (MARTE), [Ob-
ject Management Group (OMG), 2009]

UML and SystemC interoperability [Riccobene et al., 2005],

Specifications and Modeling 115

The SPRINT profile for reuse of intellectual property (IP) [Sprint Consor-
tium, 2008].

Using such profiles, we can -for example- attach timing information to se-
quence charts. However, profiles may be incompatible. Also, UML has been
designed for modeling and frequently leaves too many semantical issues open
to allow automatic synthesis of implementations [Müller, 2007].

2.10.3 Ptolemy II

The Ptolemy project [Davis et al., 2001] focuses on modeling, simulation, and
design of heterogeneous systems. Emphasis is on embedded systems that mix
different technologies and, accordingly, also MoCs. For example, analog and
digital electronics, hardware and software, and electrical and mechanical de-
vices can be described. Ptolemy supports different types of applications, in-
cluding signal processing, control applications, sequential decision making,
and user interfaces. Special attention is paid to the generation of embedded
software. The idea is to generate this software from the MoC which is most
appropriate for a certain application. Version 2 of Ptolemy (Ptolemy II) sup-
ports the following MoCs and corresponding domains (see also page 33):

1 Communicating sequential processes (CSP)

2 Continuous time (CT): This model is appropriate for mechanical systems
and analog circuits. It is supported through a set of extensible differential
equation solvers.

3 Discrete event model (DE): this is the model used by many simulators, e.g.
VHDL simulators.

4 Distributed discrete events (DDE). Discrete event systems are difficult to
simulate in parallel, due to the inherent centralized queue of future events.
Attempts to distribute this data structure have not been very successful so
far. Therefore, this special (experimental) domain is introduced. Semantics
can be defined such that distributed simulation becomes more efficient than
in the DE model.

5 Finite state machines (FSM)

6 Process networks (PN), using Kahn process networks (see page 62).

7 Synchronous dataflow (SDF)

8 Synchronous/reactive (SR) MoC: This model uses discrete time, but signals
do not need to have a value at every clock tick. Esterel (see page 53) is a
language following this style of modeling.

116 EMBEDDED SYSTEM DESIGN

This list clearly shows the focus on different models of computation in the
Ptolemy project.

2.11 Assignments

1 Prepare a list of up to 6 requirements for specification languages for em-
bedded systems!

2 Simulate trains between Paris, Brussels, Amsterdam and Cologne, using
the levi simulation software [Sirocic and Marwedel, 2007d]! Modify the
examples included with the software such that two independent tracks exist
between any two stations and demonstrate an (arbitrary) schedule involving
10 trains!

3 Suppose the StateCharts in fig. 2.79 model is given.

Figure 2.79. StateCharts example

Also, suppose that we have the following sequence of input events: b c f h
g h e a b c. In the diagram in fig. 2.80, mark all the states the StateCharts
model will be in after a particular input has been applied! Note that H
denotes the history mechanism.

4 Are StateCharts determinate models if we follow the StateMate semantics?
Please explain your answer!

5 Which three types of Petri nets did we discuss in this book?

6 One of the types of Petri nets allows several non-distinguishable tokens per
place. Which components are used in a mathematical model of such nets?
Hint: N=(P,)

7 How does a compact model of the dining philosopher’s problem look like?

8 CSA theory leads to 2, 3 and 4 logic strengths, corresponding to 4, 7 and 10
logic values. How many strengths and values are we using in IEEE 1164?

Specifications and Modeling 117

M N P Q R S T X Y Z
(Reset) v
b
c
f
h
g
h
e
a
b
c

Figure 2.80. States of the StateCharts example

Please show the partial order among the values of IEEE 1164 in a diagram!
Which of the values of IEEE 1164 are not included in the partial order and
what is the meaning of these values?

9 Which of the following circuits can be modeled with IEEE 1164: comple-
mentary CMOS outputs, outputs with a depletion transistor, open collector
outputs, tristate outputs, pre-charging on buses (if depletion transistors are
used as well)?

10 Suppose that a bus as shown in fig. 2.81 is given. Rectangles containing an
&-sign denote AND-gates.

Figure 2.81. Bus driven by tri-state outputs

Which of the IEEE 1164 values will be on the bus if both enable inputs are
set to ’0’ (ena1 = ena2 = ’0’)? Which of the IEEE 1164 values will be on
the bus if ena1 = ’0’, ena2 = ’1’ and f 2 = ’1’?

11 Simulate a Kahn process network computing Fibonacci numbers, using the
levi simulation software [Sirocic and Marwedel, 2007b].

118 EMBEDDED SYSTEM DESIGN

12 Which of the following languages are using asynchronous message passing
communication: StateCharts, SDL, VHDL, CSP, Petri nets?

13 Which of the following languages use a broadcast mechanism for updating
variables: StateCharts, SDL, Petri nets?

14 Which of the following diagram types are supported by UML: Sequence
charts, record charts, Y-charts, use cases, activity diagrams, circuit dia-
grams?

Chapter 3

EMBEDDED SYSTEM HARDWARE

3.1 Introduction

It is one of the characteristics of embedded and cyber-physical systems that
both hardware and software must be taken into account. The reuse of available
hard- and software components is at the heart of the platform-based design
methodology (see also page 236). Consistent with the need to consider avail-
able hardware components and with the design information flow shown in fig.
3.1, we are now going to describe some of the essentials of embedded system
hardware.

Figure 3.1. Simplified design flow

Hardware for embedded systems is much less standardized than hardware for
personal computers. Due to the huge variety of embedded system hardware,
it is impossible to provide a comprehensive overview of all types of hardware
components. Nevertheless, we will try to provide a survey of some of the
essential components which can be found in most systems.

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8 3, © Springer Science+Business Media B.V. 2011

119

http://dx.doi.org/10.1007/978-94-007-0257-8_3

120 EMBEDDED SYSTEM DESIGN

In many of the cyber-physical systems, especially in control systems, hardware
is used in a loop (see fig. 3.2).

Figure 3.2. Hardware in the loop

In this loop, information about the physical environment is made available
through sensors. Typically, sensors generate continuous sequences of ana-
log values. In this book, we will restrict ourselves to information processing
where digital computers process discrete sequences of values. Appropriate
conversions are performed by two kinds of circuits: sample-and-hold-circuits
and analog-to-digital (A/D) converters. After such conversion, information can
be processed digitally. Generated results can be displayed and also be used to
control the physical environment through actuators. Since most actuators are
analog actuators, conversion from digital to analog signals is also needed.

This model is obviously appropriate for control applications. For other ap-
plications, it can be employed as a first order approximation. In the following,
we will describe essential hardware components of cyber-physical systems fol-
lowing the loop structure of fig. 3.2.

3.2 Input

3.2.1 Sensors

We start with a brief discussion of sensors. Sensors can be designed for vir-
tually every physical quantity. There are sensors for weight, velocity, acceler-
ation, electrical current, voltage, temperature, etc. A wide variety of physical
effects can be exploited in the construction of sensors [Elsevier B.V., 2010a].
Examples include the law of induction (generation of voltages in an electric
field), and photoelectric effects. There are also sensors for chemical substances
[Elsevier B.V., 2010b].

Recent years have seen the design of a huge range of sensors, and much of
the progress in designing smart systems can be attributed to modern sensor
technology. It is impossible to cover this subset of cyber-physical hardware
technology comprehensively and we can only give characteristic examples:

Embedded System Hardware 121

Acceleration sensors: Fig. 3.3 shows a small sensor manufactured using
microsystem technology. The sensor contains a small mass in its center.
When accelerated, the mass will be displaced from its standard position,
thereby changing the resistance of the tiny wires connected to the mass.

Figure 3.3. Acceleration sensor (courtesy S. Bütgenbach, IMT, TU Braunschweig), ©TU
Braunschweig, Germany

Rain sensors: In order to remove distraction from drivers, some cars con-
tain rain sensors. Using these, the speed of the wipers can be automatically
adjusted to the amount of rain.

Image sensors: There are essentially two kinds of image sensors: charge-
coupled devices (CCDs) and CMOS sensors. In both cases, arrays of light
sensors are used. The architecture of CMOS sensor arrays is similar to that
of standard memories: individual pixels can be randomly addressed and
read out. CMOS sensors use standard CMOS technology for integrated
circuits [Dierickx, 2000]. Due to this, sensors and logic circuits can be
integrated on the same chip. This allows some preprocessing to be done
already on the sensor chip, leading to so-called smart sensors. CMOS sen-
sors require only a single standard supply voltage and interfacing in general
is easy. Therefore, CMOS-based sensors can be cheap.

In contrast, CCD technology is optimized for optical applications. In CCD
technology, charges must be transferred from one pixel to the next until
they can finally be read out at an array boundary. This sequential charge
transfer also gave CCDs their name. For CCD sensors, interfacing is more
complex.

Selecting the most appropriate image sensor is not so obvious. The image
quality of CMOS sensors has been significantly improved over the recent
years. Therefore, achieving a good image quality is feasible with CCD and
with CMOS sensors. However, CMOS sensors are in general less power
efficient than CCD sensors. Hence, if a very small power consumption is a
target, CCD sensors are preferred. If minimum cost is an issue, CMOS sen-

122 EMBEDDED SYSTEM DESIGN

sors are preferred. Also, CMOS sensors are preferred if smart sensors are
to be designed. Due to their smaller power consumption, compact cameras
with live view displays typically use CMOS sensors [Belbachir, 2010]. For
other cameras, the situation is less clear.

Biometric sensors: Demands for higher security standards as well as the
need to protect mobile and removable equipment have led to an increased
interest in authentication. Due to the limitations of password based se-
curity (e.g. stolen and lost passwords), smartcards, biometric sensors and
biomedical authentication receive significant attention. Biometric authenti-
cation tries to identify whether or not a certain person is actually the person
she or he claims to be. Methods for biometric authentication include iris
scans, finger print sensors and face recognition. Finger print sensors are
typically fabricated using the same CMOS technology [Weste et al., 2000]
which is used for manufacturing integrated circuits. Possible applications
include notebooks which grant access only if the user’s finger print is rec-
ognized [IBM, 2002]. CCD and CMOS image sensors described above are
used for face recognition. False accepts as well as false rejects are an in-
herent problem of biometric authentication. In contrast to password based
authentication, exact matches are not possible.

Artificial eyes: Artificial eye projects have received significant attention.
While some projects attempt to actually affect the eye, others try to provide
vision in an indirect way.

For example, the Dobelle Institute experimented with a setup in which a
little camera was attached to glasses. This camera was connected to a com-
puter translating these patterns into electrical pulses. These pulses were
then sent directly to the brain, using a direct contact through an electrode.
The resolution was in the order of 128 by 128 pixels, enabling blind persons
to drive a car in controlled areas [The Dobelle Institute, 2003].

More recently, the translation of images into audio has been preferred. Ob-
viously, it is less invasive.

Radio frequency identification (RFID): RFID technology is based on the
response of a tag to radio frequency signals [Hunt et al., 2007]. The tag
consists of an integrated circuit and an antenna. The tag provides its identi-
fication to RFID readers. The maximum distance between tags and read-
ers depends on the type of the tag. The technology can be applied wherever
objects, animals or people should be identified.

Other sensors: Other common sensors include: pressure sensors, proxim-
ity sensors, engine control sensors, Hall effect sensors, and many more.

Embedded System Hardware 123

Sensors are generating signals. Mathematically, the following definition ap-
plies:

Definition: A signal σ is a mapping from the time domain DT to a value
domain DV :

σ : DT → DV

Signals may be defined over a continuous or a discrete time domain as well as
over a continuous or a discrete value domain.

3.2.2 Discretization of time:
Sample-and-hold circuits

All known digital computers work in a discrete time domain DT . This means
that they can process discrete sequences or streams of values. Hence, incom-
ing signals over the continuous time domain must be converted to signals over
the discrete time domain. This is the purpose of sample-and-hold circuits.
Fig. 3.4 (left) shows a simple sample-and-hold circuit.

Figure 3.4. Sample-and-hold-circuit

In essence, the circuit consists of a clocked transistor and a capacitor. The
transistor operates like a switch. Each time the switch is closed by the clock
signal, the capacitor is charged so that its voltage h(t) is practically the same
as the incoming voltage e(t). After opening the switch again, this voltage will
remain essentially unchanged until the switch is closed again. Each of the
values stored on the capacitor can be considered as an element of a discrete
sequence of values h(t), generated from a continuous function e(t) (see fig.
3.4, right). If we sample e(t) at times {ts}, then h(t) will be defined only at
those times.

An ideal sample-and-hold circuit would be able to change the voltage at the
capacitor in an arbitrarily short amount of time. This way, the input voltage at a
particular instance in time could be transfered to the capacitor and each element
in the discrete sequence would correspond to the input voltage at a particular
point in time. In practice, however, the transistor has to be kept closed for a

124 EMBEDDED SYSTEM DESIGN

short time window in order to really charge or discharge the capacitor. The
voltage stored on the capacitor will then correspond to a voltage reflecting that
short time window.

An interesting question is this one: would we be able to reconstruct the original
signal e(t) from the sampled signal h(t)? At this time, we revert to the fact that
arbitrary signals can be approximated by summing (possibly phase-shifted)
sine functions of different frequencies (Fourier approximation)1. For example,
fig. 3.5 and fig. 3.6 demonstrate how even a square wave can be approximated
by sine waves of increasing frequencies.

Figure 3.5. Approximation of a square wave by sine waves for K=1 (left) and K=3 (right)

Figure 3.6. Approximation of a square wave by sine waves for K=7 (left) and K=11 (right)

These graphs display a graphical representation of equation 3.1 [Oppenheim
et al., 2009], where p is the period:

e′K(t) =
K

∑
k=1,3,5,7,9,...

(
4

πk
sin(

2πkt
p

)) (3.1)

1The presentation in this book is based on the assumption that a full presentation of the theory of Fourier
approximations cannot be included in a course on embedded systems. Therefore, only the impact of this
theory is demonstrated by using examples. Students would benefit from knowing the theory behind these
examples.

Embedded System Hardware 125

A data processing transformation Tr is said to be linear, if for signals e1(t)
and e2(t) we have:

Tr(e1 + e2) = Tr(e1)+Tr(e2) (3.2)

In the following, we restrict ourselves to linear systems. Then, in order to
answer the question raised above, we study the effect of sampling on each of
the sine waves independently.

Suppose that our input signal corresponds to either of the two functions e3 or
e4:

e3(t) = sin(
2πt
8

)+0.5sin(
2πt
4

) (3.3)

e4(t) = sin(
2πt
8

)+0.5sin(
2πt
4

)+0.5sin(
2πt
1

) (3.4)

The sine waves used in these functions have periods of p = 8,4, and 1, respec-
tively (this can be seen easily by comparing these sine waves with those used
in eq. 3.1). A graphical representation of these functions is shown in fig. 3.7.

Figure 3.7. Visualization of functions e3(t) (solid) and e4(t) (dotted)

Suppose that we will be sampling these signals at integer times. It then so
happens that both signals have the same value whenever they are sampled.
Obviously, it is not possible to distinguish between e3(t) and e4(t) if we sample
at these instances in time as shown and if only the sampled signal is available.

126 EMBEDDED SYSTEM DESIGN

In general, sampled signals will not allow us to distinguish between some slow
signal e3(t) and some other faster varying signal e4(t) if e3(t) and e4(t) are
identical each time we are sampling the signals. The fact that two or more
unsampled signals can have the same sampled representation is called aliasing.
We are not sampling e4(t) frequently enough to notice, for example, that it
has slope changes between integer times. So, from this counterexample we
can conclude that reconstruction of the original unsampled signal is not
feasible unless we have additional knowledge about the frequencies or the
waveforms present in the input signal.

How frequently do we have to sample signals to be able to distinguish between
different sine waves?

Let us assume that we are sampling the input signal at constant time intervals,
such that ps is the sampling period2:

∀s : ps = ts+1 − ts (3.5)

Let

fs =
1
ps

(3.6)

be the sampling rate or sampling frequency.

According to the theory of sampling [Oppenheim et al., 2009], aliasing is
avoided if we restrict the frequencies of the incoming signal to less than
half of the sampling frequency fs:

ps <
pN

2
where pN is the period of the “fastest” sine wave, or (3.7)

fs > 2 fN where fN is the frequency of the “fastest” sine wave (3.8)

Definition: fN is called the Nyquist frequency, fs is the sampling rate.

The condition in equation 3.8 is called sampling criterion, and sometimes the
Nyquist sampling criterion.

Therefore, reconstruction of input signals e(t) from discrete samples h(t) can
be successful only if we make sure that higher frequency components such

2In order to be consistent with the notation in scheduling theory, we denote the period by ps instead of by
Ts. The latter notation is frequently used in digital signal processing.

Embedded System Hardware 127

as the one in e4(t) are removed. This is the purpose of anti-aliasing filters.
Anti-aliasing filters are placed in front of the sample-and-hold circuit (see fig.
3.8).

Figure 3.8. Anti-aliasing placed in front of the sample-and-hold circuit

Fig. 3.9 demonstrates the ratio between the amplitudes of the output and the
input waves as a function of the frequency for this filter.

Figure 3.9. Ideal and realizable anti-aliasing filters (low-pass filters)

Ideally, such a filter would remove all frequencies at and above half the sam-
pling frequency and keep all other components unchanged. This way, it would
convert signal e4(t) into signal e3(t). In practice, such ideal filters do not exist.
Realizable filters will already start attenuating frequencies smaller than fs/2
and will still not eliminate all frequencies larger than fs/2 (see fig. 3.9). Atten-
uated high frequency components will exist even after filtering. For frequen-
cies smaller than fs/2, there may also be some “overshooting”, i.e. frequencies
for which there is some amplification of the input signal. The design of good
anti-aliasing filters is an art by itself.

3.2.3 Discretization of values: A/D-converters

Since we are restricting ourselves to digital computers, we must also replace
signals that map time to a continuous value domain DV by signals that map
time to a discrete value domain D′

V . This conversion from analog to digital
values is done by analog-to-digital (A/D) converters. There is a large range of
A/D converters with varying speed/precision characteristics. In this book, we
will present two extreme cases:

128 EMBEDDED SYSTEM DESIGN

Flash A/D converter: This type of A/D converters uses a large number of
comparators. Each comparator has two inputs, denoted as + and -. If the
voltage at input + exceeds that at input -, the output corresponds to a logical
’1’ and it corresponds to a logical ’0’ otherwise3.

In the A/D-converter, all - inputs are connected to a voltage divider. If
input voltage h(t) exceeds 3

4Vre f , the comparator at the top of fig. 3.10 (a)
will generate a ’1’. The encoder at the output of the comparators will try
to identify the most significant ’1’ and will encode this case as the largest
output value. The case h(t) > Vre f should normally be avoided since Vre f

is typically close to the supply voltage of the circuit and input voltages
exceeding the supply voltage can lead to electrical problems. In our case,
input voltages larger than Vre f generate the largest digital value as long as
the converter does not fail due to the high input voltage.

Figure 3.10. (a) Flash A/D converter (b) w as a function of h

Now if input voltage h(t) is less than 3
4Vre f , but still larger than 2

4Vre f , the
comparator at the top of fig. 3.10 will generate a ’0’, while the next compara-
tor will still signal a ’1’. The encoder will encode this as the second-largest
value.

Similar arguments hold for cases 1
4Vre f < h(t) < 2

4Vre f , and 0 < h(t) <
1
4Vre f , which will be encoded as the third-largest and the smallest value,
respectively. Fig. 3.10 (b) shows the relation between input voltages and
generated digital values.

The outputs of the comparators encode numbers in a special way: if a cer-
tain comparator output is equal to ’1’, then all the less significant outputs

3In practice, the case of equal voltages is not relevant, as the actual behavior for very small differences
between the voltages at the two inputs depends on many factors (like temperatures, manufacturing processes
etc.) anyway.

Embedded System Hardware 129

are all equal to ’1’. The encoder transforms this representation of numbers
into the usual representation of natural numbers. The encoder is actually
a so-called “priority encoder”, encoding the most significant input number
carrying a ’1’ in binary 4.

The circuit can convert positive analog input voltages into digital values.
Converting both positive and negative voltages and generating two’s com-
plement numbers requires some extensions.

A/D-converters are characterized by their resolution. This term has sev-
eral different but related meanings [Analog Devices Inc. Eng., 2004]. The
resolution (measured in bits) is the number of bits produced by an A/D-
converter. For example, A/D-converters with a resolution of 16 bits are
needed for many audio applications. However, the resolution is also mea-
sured in volts, and in this case it denotes the difference between two input
voltages causing the output to be incremented by 1:

Q =
VFSR

n

Where:

VFSR : is the difference between the largest and the smallest voltage,
Q : is the resolution in volts per step, and
n : is the number of voltage intervals (not the number of bits).

Example: For the A/D-converter of fig. 3.10, the resolution is 2 bits or 1
4Vre f

volts, if we assume Vre f as the largest voltage.

The key advantage of the flash A/D-converter is its speed. It does not need
any clock. The delay between the input and the output is very small and
the circuit can be used easily, for example, for high-speed video applica-
tions. The disadvantage is its hardware complexity: we need n− 1 com-
parators in order to distinguish between n values. Imagine using this circuit
in generating digital audio signals for CD recorders. We would need 216−1
comparators! High-resolution A/D-converters must be built in a different
way.

Successive approximation: Distinguishing between a large number of dig-
ital values is possible with A/D converters using successive approximation.
The circuit is shown in fig. 3.11.

4Such encoders are also useful for finding the most significant ’1’ in the mantissa of floating point numbers.

130 EMBEDDED SYSTEM DESIGN

Figure 3.11. Circuit using successive approximation

The key idea of this circuit is to use binary search. Initially, the most sig-
nificant output bit of the successive approximation register is set to ’1’, all
other bits are set to ’0’. This digital value is then converted to an analog
value, corresponding to 0.5× the maximum input voltage5. If h(t) exceeds
the generated analog value, the most significant bit is kept at ’1’, otherwise
it is reset to ’0’.

This process is repeated with the next bit. It will remain set to ’1’ if the
input value is either within the second or the fourth quarter of the input
value range. The same procedure is repeated for all the other bits. Fig. 3.12
shows an example.

Figure 3.12. Steps used during successive approximation

In fig. 3.12, initially the most significant bit is set to ’1’. This value is kept,
since the resulting V− is less than h(t). Then, the second-most significant
bit is set to ’1’. It is reset to ’0’, since the resulting V− is exceeding h(t).
Next, the third-most significant bit is tried, and so on. Obviously, h(t) must
be constant during the conversion. This requirement is met if we employ

5Fortunately, the conversion from digital to analog values (D/A-conversion) can be implemented very effi-
ciently and can be very fast (see page 164).

Embedded System Hardware 131

a sample-and-hold circuit as shown above. The resulting digital signal is
called w(t).

The key advantage of the successive approximation technique is its hard-
ware efficiency. In order to distinguish between n digital values, we need
log2(n) bits in the successive approximation register and the D/A converter.
The disadvantage is its speed, since it needs O(log2(n)) steps. These con-
verters can therefore be used for high-resolution applications, where mod-
erate speeds are required. Examples include audio applications.

Fig. 3.13 highlights the behavior an A/D-converter when the input signal is that
of equation 3.3. Only the behavior for a positive input signal is shown.

Figure 3.13. h(t) (dashed), step function w(t) (dash-dotted), w(t)−h(t) (solid)

The figure includes the voltage corresponding to the digital value, the origi-
nal voltage, and the difference between the two. Obviously, the converter is
“truncating” the digital representation of the analog signal to the number of
available bits (i.e. the digital value is always less than or equal to the analog
value). This is a consequence of the way in which we are doing comparisons.
“Rounding” converters would need an internal correction by “half a bit”.

Effectively, the digital signal encodes values corresponding to the sum of the
original analog values and the difference w(t)− h(t). This means, it appears
as if the difference between the two signals had been added to the original
signal. This difference is a signal called quantization noise:

quantization noise(t) = w(t)−h(t) (3.9)

132 EMBEDDED SYSTEM DESIGN

|quantization noise(t)| < Q (3.10)

Obviously, it is possible to decrease quantization noise by increasing the res-
olution (in bits) of the A/D-converters. The impact of quantization noise is
frequently captured in the definition of the signal-to-noise ratio (SNR). The
SNR is measured in decibels (tens of a Bel, named after Alexander G. Bell):

SNR (in decibels) = 10 · log
power of the “useful” signal
power of the noise signal

(3.11)

= 20 · log
voltage of the “useful” signal
voltage of the noise signal

(3.12)

In this case, we have used the fact that, for any given impedance R, the power
of a signal is equal to the square of the voltage. Decibels are no physical units,
since the signal-to-noise ratio is dimension-less.

For any signal h(t), the power of the quantization noise is equal to α ·Q, where
α ≤ 1 depends on the waveform of h(t). If h(t) can always be represented
exactly by a digital value, α = 0. If h(t) is always “just a little” below the next
value that can be represented, α may be close to 1.

For example (for α ∼ 1), the SNR of 16-bit CD audio is in the order of:

20 · log(216) = 96 decibels(dB)

For high-quality 24-bit CDs we would obtain an SNR of about 144 dB. Values
of α < 1 and imperfections of A/D-converters may change these numbers a bit.

There are several other types of A/D-converters. They differ by their speed
and their precision [O’Neill, 2006]. Techniques for automatically selecting the
most appropriate converter exist [Vogels and Gielen, 2003].

3.3 Processing Units

3.3.1 Overview

Currently available embedded systems require electrical energy to operate.
The amount of electrical energy used is frequently called “consumed energy”.
Strictly speaking, this term is not correct, since this electrical energy is con-
verted to other forms of energy, typically thermal energy. For embedded sys-
tems, energy availability is a deciding factor. This was already observed in a
Dutch road mapping effort: “Power is considered as the most important con-
straint in embedded systems” [Eggermont, 2002]. The importance of power

Embedded System Hardware 133

and energy efficiency was initially recognized for embedded systems. The fo-
cus on these objectives was later taken up for general purpose computing as
well and led to initiatives such as the green computing initiative. For infor-
mation processing in embedded systems, we will consider ASICs (application-
specific integrated circuits) using hardwired multiplexed designs, reconfig-
urable logic, and programmable processors. These three technologies are quite
different as far as their energy efficiency is concerned. Fig. 3.14 repeats the
information already provided on page 6.

Figure 3.14. Hardware efficiency (©De Man and Philips)

Fig. 3.14 reflects the efficiency/flexibility conflict of currently available hard-
ware technologies: if we want to aim at very power- and energy-efficient de-
signs, we should use ASICs instead of flexible designs based on processors or
re-programmable logic. If we go for excellent flexibility, we cannot be power-
efficient.

The energy E for a certain application is closely related to the power P required
per operation, since

E =
Z

Pdt (3.13)

134 EMBEDDED SYSTEM DESIGN

Let us assume that we start with some design having a power consumption of
P0(t), leading to an energy consumption of

E0 =
Z t0

0
P0(t)dt

after t0 units of execution time. Suppose that a modified design finishing com-
putations already at time t1 comes with a power consumption of P1(t) and an
energy consumption of

E1 =
Z t1

0
P1(t)dt

If P1(t) is not too much larger than P0(t), then a reduction of the execution
time also reduces the energy consumption. However, in general this is not
necessarily always true. The situation is also shown in fig. 3.15: E1 may be
smaller than E0, but E1 can also be larger than E0.

Figure 3.15. Comparison of energies E0 and E1

Minimization of power and energy consumption are both important. Power
consumption has an effect on the size of the power supply, the design of the
voltage regulators, the dimensioning of the interconnect, and short term cool-
ing. Minimizing the energy consumption is required especially for mobile
applications, since battery technology is only slowly improving [ITRS Organi-
zation, 2009], and since the cost of energy may be quite high. Also, a reduced
energy consumption decreases cooling requirements and improves the reliabil-
ity (since the lifetime of electronic circuits decreases for high temperatures).

We will consider ASICs first.

Embedded System Hardware 135

3.3.2 Application-Specific Circuits (ASICs)

For high-performance applications and for large markets, application-specific
integrated circuits (ASICs) can be designed. However, the cost of designing
and manufacturing such chips is quite high. For example, the cost of the mask
set which is used for transferring geometrical patterns onto the chip can amount
to about 105-106 Euros or dollars. In fact, the cost for mask sets has grown ex-
ponentially over the recent years. Also, this approach suffers from long design
times and the lack of flexibility: correcting design errors typically requires a
new mask set and a new fabrication run. Therefore, ASICs are appropriate
only if either maximum energy efficiency is needed and if the market accepts
the costs or if a large number of such systems can be sold. Consequently, the
design of ASICs is not covered in this book.

3.3.3 Processors

The key advantage of processors is their flexibility. With processors, the overall
behavior of embedded systems can be changed by just changing the software
running on those processors. Changes of the behavior may be required in order
to correct design errors, to update the system to a new or changed standard or
in order to add features to the previous system. Because of this, processors
have become very popular.

Embedded processors must be efficient and they do not need to be instruction
set compatible with commonly used personal computers (PCs). Therefore,
their architectures may be different from those processors found in PCs. Effi-
ciency has a number of different aspects (see page 5):

Energy-efficiency: Architectures must be optimized for their energy-effi-
ciency and we must make sure that we are not losing efficiency in the soft-
ware generation process. For example, compilers generating 50% overhead
in terms of the number of cycles will take us further away from the effi-
ciency of ASICs, possibly by even more than 50%, if the supply voltage
and the clock frequency must be increased in order to meet timing dead-
lines.

There is a large amount of techniques available that can make processors
energy efficient and energy efficiency should be considered at various levels
of abstraction, from the design of the instruction set down to the design of
the chip manufacturing process [Burd and Brodersen, 2003]. Gated clock-
ing is an example of such a technique. With gated clocking, parts of the pro-
cessor are disconnected from the clock during idle periods. For example, no
clock is applied to direct memory access (DMA) hardware or bus bridges if
they are not needed. Also, there are attempts, to get rid of the clock for ma-

136 EMBEDDED SYSTEM DESIGN

jor parts of the processor altogether. There are two contrasting approaches:
globally synchronous, locally asynchronous processors and globally asyn-
chronous, locally synchronous processors (GALS) [Iyer and Marculescu,
2002]. Further information about low power design techniques is available
in a book by E. Macii [Macii, 2004] and in the PATMOS proceedings (see
[Monteiro and van Leuken, 2010] for a recent issue).

Two techniques can be applied at a rather high level of abstraction:

– Dynamic power management (DPM): With this approach, processors
have several power saving states in addition to the standard operating
state. Each power saving state has a different power consumption and
a different time for transitions into the operating state. Fig. 3.16 shows
the three states for the StrongArm SA 1100 processor.

Figure 3.16. Dynamic power management states of the StrongArm Processor SA 1100
[Benini et al., 2000]

The processor is fully operational in the run state. In the idle state,
it is just monitoring the interrupt inputs. In the sleep state, on-chip
activity is shutdown, the processor is reset and the chip’s power supply
is shut-off [Wolf, 2001]. A separate I/O-power supply provides power
to power manager hardware. The processor can be restarted by the
power manager hardware by a preprogrammed wake-up event. Note
the large difference in the power consumption between the sleep state
and the other states, and note also the large delay for transitions from
the sleep to the run state.

– Dynamic voltage scaling (DVS): This approach exploits the fact that
the energy consumption of CMOS processors increases quadratically
with the supply voltage Vdd . The power consumption P of CMOS cir-
cuits is given by [Chandrakasan et al., 1992]:

P = α CL V 2
dd f (3.14)

where α is the switching activity, CL is the load capacitance, Vdd

is the supply voltage and f is the clock frequency. The delay of

Embedded System Hardware 137

CMOS circuits can be approximated as [Chandrakasan et al., 1992],
[Chandrakasan et al., 1995]:

τ = k ·CL ·
Vdd

(Vdd −Vt)2 (3.15)

where k is a constant, and Vt is the threshold voltage. Vt has an impact
on the transistor input voltage required to switch the transistor on. For
example, for a maximum supply voltage of Vdd,max=3.3 volts, Vt may be
in the order of 0.8 volts. Consequently, the maximum clock frequency
is a function of the supply voltage. However, decreasing the supply
voltage reduces the power quadratically, while the run-time of algo-
rithms is only linearly increased (ignoring the effects of the memory
system). This can be exploited in a technique called dynamic voltage
scaling (DVS). For example, the CrusoeT M processor by Transmeta
[Klaiber, 2000] provided 32 voltage levels between 1.1 and 1.6 volts,
and the clock could be varied between 200 MHz and 700 MHz in in-
crements of 33 MHz. Transitions from one voltage/frequency pair to
the next took about 20 ms. Design issues for DVS-capable processors
are described in a paper by Burd and Brodersen [Burd and Brodersen,
2000]. According to the same paper, potential power savings will exist
even for future technologies with a decreased maximum Vdd , since the
threshold voltages will also be decreased (unfortunately, this will lead
to increased leakage currents, increasing the standby power consump-
tion). In 2004, six different speed/voltage pairs were provided with the
Intel® SpeedStepT M technology for the Pentium® M [Intel, 2004].

Code-size efficiency: Minimizing the code size is very important for em-
bedded systems, since hard disk drives are typically not available and since
the capacity of memory is typically also very limited6. This is even more
pronounced for systems on a chip (SoCs). For SoCs, the memory and pro-
cessors are implemented on the same chip. In this particular case, memory
is called embedded memory. Embedded memory may be more expensive
to fabricate than separate memory chips, since the fabrication processes for
memories and processors must be compatible. Nevertheless, a large per-
centage of the total chip area may be consumed by the memory. There are
several techniques for improving the code-size efficiency:

– CISC machines: Standard RISC processors have been designed for
speed, not for code-size efficiency. Earlier Complex Instruction Set

6The availability of large flash memories makes memory size constraints less tight.

138 EMBEDDED SYSTEM DESIGN

Processors (CISC machines) were actually designed for code-size ef-
ficiency, since they had to be connected to slow memories. Caches
were not frequently used. Therefore, “old-fashioned” CISC proces-
sors are finding applications in embedded systems. ColdFire proces-
sors [Freescale semiconductor, 2005], which are based on the Motorola
68000 family of CISC processors are an example.

– Compression techniques: In order to reduce the amount of silicon
needed for storing instructions as well as in order to reduce the en-
ergy needed for fetching these instructions, instructions are frequently
stored in the memory in compressed form. This reduces both the area
as well as the energy necessary for fetching instructions. Due to the
reduced bandwidth requirements, fetching can also be faster. A (hope-
fully small and fast) decoder is placed between the processor and the
(instruction) memory in order to generate the original instructions on
the fly (see fig. 3.17, right)7. Instead of using a potentially large mem-
ory of uncompressed instructions, we are storing the instructions in a
compressed format.

Figure 3.17. Decompression of compressed instructions

The goals of compression can be summarized as follows:

∗ We would like to save ROM and RAM areas, since these may be
more expensive than the processors themselves.

∗ We would like to use some encoding technique for instructions and
possibly also for data with the following properties:

· There should be little or no run-time penalty for these tech-
niques.

7We continue denoting multiplexers, arithmetic units and memories by shape symbols, due to their
widespread use in technical documentation. For memories, we adopt shape symbols including an explicit
address decoder (included in the shape symbols for the ROMs on the right). These decoders identify the
address input.

Embedded System Hardware 139

· Decoding should work from a limited context (it is, for exam-
ple, impossible to read the entire program to find the destina-
tion of a branch instruction).

· Word-sizes of the memory, of instructions and addresses must
be taken into account.

· Branch instructions branching to arbitrary destination addresses
must be supported.

· Fast encoding is only required if writable data is encoded. Oth-
erwise, fast decoding is sufficient.

There are several variations of this scheme:

∗ For some processors, there is a second instruction set. This sec-
ond instruction set has a narrower instruction format. An example
of this is the ARM processor family. The ARM instruction set is a
32 bit instruction set. The ARM instruction set includes predicated
execution. This means an instruction is executed if and only if a
certain condition is met (see page 148). This condition is encoded
in the first four bits of the instruction format. Most ARM pro-
cessors also provide a second instruction set, with 16 bit wide in-
structions, called THUMB instructions. THUMB instructions are
shorter, since they do not support predication, use shorter and less
register fields and use shorter immediate fields (see fig. 3.18).

Figure 3.18. Re-encoding THUMB into ARM instructions

THUMB instructions are dynamically converted into ARM instruc-
tions while programs are decoded. THUMB instructions can use
only half the registers in arithmetic instructions. Therefore, register-
fields of THUMB instructions are concatenated with a ’0’-bit8. In
the THUMB instruction set, source and destination registers are
identical and the length of constants that can be used, is reduced
by 4 bits. During decoding, pipelining is used to keep the run-time
penalty low.

8Using VHDL-notation (see page 80), concatenation is denoted by an &-sign and constants are enclosed in
quotes in fig. 3.18.

140 EMBEDDED SYSTEM DESIGN

Similar techniques also exist for other processors. The disadvan-
tage of this approach is that the tools (compilers, assemblers, de-
buggers etc.) must be extended to support a second instruction set.
Therefore, this approach can be quite expensive in terms of soft-
ware development cost.

∗ A second approach is the use of dictionaries. With this approach,
each instruction pattern is stored only once. For each value of the
program counter, a look-up table then provides a pointer to the cor-
responding instruction in the instruction table, the dictionary (see
fig. 3.19).

Figure 3.19. Dictionary approach for instruction compression

This approach relies on the idea that only very few different instruc-
tion patterns are used. Therefore, only few entries are required for
the instruction table. Correspondingly, the bit width of the pointers
can be quite small. Many variations of this scheme exist. Some are
called two-level control store [Dasgupta, 1979], nanoprogramming
[Stritter and Gunter, 1979], or procedure ex-lining [Vahid, 1995].

Beszedes [Beszedes, 2003] and Latendresse [Latendresse, 2004] pro-
vide overviews of known compression techniques.

Run-time efficiency: In order to meet time constraints without having to
use high clock frequencies, architectures can be customized to certain ap-
plication domains, such as digital signal processing (DSP). One can even go
one step further and design application-specific instruction set processors
(ASIPs). As an example of domain-specific processors, we will consider
processors for DSP. In digital signal processing, digital filtering is a very
frequent operation. Let us assume that we are extending the processing
pipeline of fig. 3.4 by such filtering. Naming conventions for the involved
signals are shown in fig. 3.20.

Equation 3.16 describes a digital filter generating an output signal x(t) from
an input signal w(t). Both signals are defined over the (usually unbounded)

Embedded System Hardware 141

Figure 3.20. Naming conventions for signals

domain {ts} of sampling instances. For brevity, we write xs instead of x(ts)
and ws instead of w(ts):

xs =
n−1

∑
k=0

ws−k ∗ak (3.16)

A certain output element xs corresponds to a weighted average over the last
n signal elements of w and can be computed iteratively, adding one product
at a time. Processors for DSP are designed such that each iteration can
be encoded as a single instruction. Let us consider an example. Fig. 3.21
shows the internal architecture of an ADSP 2100 DSP processor.

Figure 3.21. Internal architecture of the ADSP 2100 processor

The processor has two memories, called D and P. A special address gen-
erating unit (AGU) can be used to provide the pointers for accessing these
memories. There are separate units for additions and multiplications, each

142 EMBEDDED SYSTEM DESIGN

with their own argument registers AX, AY, AF, MX, MY and MF. The mul-
tiplier is connected to a second adder in order to compute the series of
multiplications and additions quickly.

For this processor, one iteration is essentially performed in a single cycle.
For this purpose, the two memories are allocated to hold the two arrays w
and a and address registers are allocated such that relevant pointers can be
easily updated in the AGU. Partial sums are stored in MR. The pipelined
computation involves registers A1, A2, MX, and MY.

-- outer loop over sampling times ts

{ MR:=0; A1:=1; A2:=s-1; MX:=w[s]; MY:=a[0];

for (k=0; k <= (n−1); k++)

{MR:=MR + MX * MY; MX:=w[A2]; MY:=a[A1];

A1++; A2--; }
x[s]:=MR;}

The outer loop corresponds to the progressing time. A single instruction
encodes the inner loop body, comprising the following operations:

– reading of two arguments from argument registers MX and MY, multi-
plying them and adding the product to register MR storing partial sums,

– fetching the next elements of arrays a and w from memories P and D
and storing them in argument registers MX and MY,

– updating pointers to the next arguments, stored in address registers A1
and A2,

– testing for the end of the loop.

This way, each iteration of the inner loop requires just a single instruction.
In order to achieve this, several operations are performed in parallel. For
given computational requirements, this (limited) form of parallelism leads
to relatively low clock frequencies. Furthermore, the registers in this ar-
chitecture perform different functions. They are said to be heterogeneous.
Heterogeneous register files are a common characteristic for DSP proces-
sors. In order to avoid extra cycles for testing for the end of the loop,
zero-overhead loop instructions are frequently provided in DSP proces-
sors. With such instructions, a single or a small number of instructions can
be executed a fixed number of times. Processors not optimized for DSP
would probably need several instructions per iteration and would therefore
require a higher clock frequency, if available.

The approach in its presented form would require arrays w and x of unlim-
ited size if {ts} is unbounded. The size of these arrays can be constrained

Embedded System Hardware 143

since we need to access only the n most recent values. Reuse of space in
these arrays is possible with modulo addressing (see below).

3.3.3.1 Digital Signal Processing (DSP)

In addition to allowing single instruction realizations of loop bodies for filter-
ing, DSP processors provide a number of other application-domain oriented
features:

Specialized addressing modes: In the filter application described above,
only the last n elements of w need to be available. Ring buffers can be
used for that. These can be implemented easily with modulo addressing. In
modulo addressing, addresses can be incremented and decremented until
the first or last element of the buffer is reached. Additional increments or
decrements will result in addresses pointing to the other end of the buffer.

Separate address generation units: Address generation units (AGUs) are
typically directly connected to the address input of the data memory (see
fig. 3.22).

Figure 3.22. AGU using special address registers

Addresses which are available in address registers can be used in register-
indirect addressing modes. This saves machine instructions, cycles and
energy. In order to increase the usefulness of address registers, instruc-
tion sets typically contain auto-increment and -decrement options for most
instructions using address registers.

Saturating arithmetic: Saturating arithmetic changes the way overflows
and underflows are handled. In standard binary arithmetic, wrap-around is
used for the values returned after an overflow or underflow. Fig. 3.23 shows
an example in which two unsigned four-bit numbers are added. A carry is

144 EMBEDDED SYSTEM DESIGN

generated which cannot be returned in any of the standard registers. The
result register will contain a pattern of all zeros. No result could be further
away from the true result than this one.

0111
+ 1001
Standard wrap-around arithmetic 10000
saturating arithmetic 1111

Figure 3.23. Wrap-around vs. saturating arithmetic for unsigned integers

In saturating arithmetic, we try to return a result which is as close as possi-
ble to the true result. For saturating arithmetic, the largest value is returned
in the case of an overflow and the smallest value is returned in the case of
an underflow. This approach makes sense especially for video and audio
applications: the user will hardly recognize the difference between the true
result value and the largest value that can be represented. Also, it would be
useless to raise exceptions if overflows occur, since it is difficult to handle
exceptions in real-time. Note that we need to know whether we are dealing
with signed or unsigned add instructions in order to return the right value.

Fixed-point arithmetic: Floating-point hardware increases the cost and
power-consumption of processors. Consequently, it has been estimated
that 80 % of the DSP processors do not include floating-point hardware
[Aamodt and Chow, 2000]. However, in addition to supporting integers,
many such processors do support fixed-point numbers. Fixed-point data
types can be specified by a 3-tuple (wl, iwl,sign), where wl is the total
word-length, iwl is the integer word-length (the number of bits left of the
binary point), and sign s ∈ {s,u} denotes whether we are dealing with un-
signed or signed numbers. See also fig. 3.24. Furthermore, there may be
different rounding modes (e.g. truncation) and overflow modes (e.g. satu-
rating and wrap-around arithmetic).

Figure 3.24. Parameters of a fixed-point number system

Embedded System Hardware 145

For fixed-point numbers, the position of the binary point is maintained after
multiplications (some low order bits are truncated or rounded). For fixed-
point processors, this operation is supported by hardware.

Real-time capability: Some of the features of modern processors used in
PCs are designed to improve the average execution time of programs. In
many cases, it is difficult if not impossible to formally verify that they im-
prove the worst case execution time. In such cases, it may be better not to
implement these features. For example, it is difficult (though not impossi-
ble [Absint, 2002]) to guarantee a certain speedup resulting from the use of
caches. Therefore, many embedded processors do not have caches. Also,
virtual addressing and demand paging are normally not found in embed-
ded systems. Techniques for computing worst case execution times will be
presented in section 5.2.2.

Multiple memory banks or memories: The usefulness of multiple mem-
ory banks was demonstrated in the ADSP 2100 example: the two memories
D and P allow fetching both arguments at the same time. Several DSP pro-
cessors come with two memory banks.

Heterogeneous register files: Heterogeneous register files were already
mentioned for the filter application.

Multiply/accumulate instructions: These instructions perform multipli-
cations followed by additions. They were also already used in the filter
application.

3.3.3.2 Multimedia processors/instruction sets

Registers and arithmetic units of many modern architectures are at least 64 bits
wide. Therefore, two 32 bit data types (“double words”), four 16 bit data types
(“words”) or eight 8 bit data types (“bytes”) can be packed into a single register
(see fig. 3.25).

Figure 3.25. Using 64 bit registers for packed words

Arithmetic units can be designed such that they suppress carry bits at double
word, word or byte boundaries. Multimedia instruction sets exploit this fact by
supporting operations on packed data types. Such instructions are sometimes
called single-instruction, multiple-data (SIMD) instructions, since a single in-
struction encodes operations on several data elements. With bytes packed into

146 EMBEDDED SYSTEM DESIGN

64-bit registers, speed-ups of up to about eight over non-packed data types
are possible. Data types are typically stored in packed form in memory. Un-
packing and packing are avoided if arithmetic operations on packed data types
are used. Furthermore, multimedia instructions can usually be combined with
saturating arithmetic and therefore provide a more efficient form of overflow
handling than standard instructions. Hence, the overall speed-up achieved with
multimedia instructions can be significantly larger than the factor of eight en-
abled by operations on packed data types. Due to the advantages of operations
on packed data types, new instructions have been added to several proces-
sors. For example, so-called streaming SIMD extensions (SSE) have been
added to Intel’s family of Pentium®-compatible processors [Intel, 2008]. New
instructions have also been called short vector instructions. Currently (in
2010), Intel® Advanced Vector Extensions (AVX) are being introduced [In-
tel, 2010a].

3.3.3.3 Very long instruction word (VLIW) processors

Computational demands for embedded systems are increasing, especially when
multimedia applications, advanced coding techniques or cryptography are in-
volved. Performance improvement techniques used in high-performance mi-
croprocessors are not appropriate for embedded systems: driven by the need
for instruction set compatibility, processors found, for example, in PCs spend
a huge amount of resources and energy on automatically finding parallelism in
application programs. Still, their performance is frequently not sufficient. For
embedded systems, we can exploit the fact that instruction set compatibility
with PCs is not required. Therefore, we can use instructions which explicitly
identify operations to be performed in parallel. This is possible with explicit
parallelism instruction set computers (EPICs). With EPICs, detection of
parallelism is moved from the processor to the compiler. This avoids spend-
ing silicon and energy on the detection of parallelism at runtime. As a special
case, we consider very long instruction word (VLIW) processors. For VLIW
processors, several operations or instructions are encoded in a long instruction
word (sometimes called instruction packet) and are assumed to be executed
in parallel. Each operation/instruction is encoded in a separate field of the in-
struction packet. Each field controls certain hardware units. Four such fields
are used in fig. 3.26, each one controlling one of the hardware units.

For VLIW architectures, the compiler has to generate instruction packets. This
requires that the compiler is aware of the available hardware units and to sched-
ule their use.

Instruction fields must be present, regardless of whether or not the correspond-
ing functional unit is actually used in a certain instruction cycle. As a result,

Embedded System Hardware 147

Figure 3.26. VLIW architecture (example)

the code density of VLIW architectures may be low, if insufficient parallelism
is detected to keep all functional units busy. The problem can be avoided if
more flexibility is added. For example, the Texas Instruments TMS 320C6xx
family of processors implements a variable instruction packet size of up to 256
bits. In each instruction field, one bit is reserved to indicate whether or not the
operation encoded in the next field is still assumed to be executed in parallel
(see fig. 3.27). No instruction bits are wasted for unused functional units.

Figure 3.27. Instruction packets for TMS 320C6xx

Due to its variable length instruction packets, TMS 320C6xx processors do
not quite correspond to the classical model of VLIW processors. Due to their
explicit description of parallelism, they are EPIC processors, though.

Partitioned Register Files

Implementing register files for VLIW and EPIC processors is far from triv-
ial. Due to the large number of operations that can be performed in parallel,
a large number of register accesses has to be provided in parallel. Therefore,
a large number of ports is required. However, the delay, size and energy con-
sumption of register files increases with their number of ports. Hence, register
files with very large numbers of ports are inefficient. As a consequence, many
VLIW/EPIC architectures use partitioned register files. Functional units are
then only connected to a subset of the register files. As an example, fig. 3.28
shows the internal structure of the TMS 320C6xx processors. These processors

148 EMBEDDED SYSTEM DESIGN

have two register files and each of them is connected to half of the functional
units. During each clock cycle, only a single path from one register file to the
functional units connected to the other register file is available.

Figure 3.28. Partitioned register files for TMS 320C6xx

Alternative partitionings are considered by Lapinskii et al. [Lapinskii et al.,
2001].

Many DSP processors are actually VLIW processors. As an example, we are
considering the M3-DSP processor [Fettweis et al., 1998]. The M3-DSP pro-
cessor is a VLIW processor containing (up to) 16 parallel data paths. These
data paths are connected to a group memory, providing the necessary argu-
ments in parallel (see fig. 3.29).

Figure 3.29. M3-DSP (simplified)

Predicated Execution

A potential problem of VLIW and EPIC architectures is their possibly large
delay penalty: This delay penalty might originate from branch instructions

Embedded System Hardware 149

found in some instruction packets. Instruction packets normally must pass
through pipelines. Each stage of these pipelines implements only part of the
operations to be performed by the instructions executed. The fact that branch
instructions exist cannot be detected in the first stage of the pipeline. When the
execution of the branch instruction is finally completed, additional instructions
have already entered the pipeline (see fig. 3.30).

Figure 3.30. Branch instruction and delay slots

There are essentially two ways to deal with these additional instructions:

1 They are executed as if no branch had been present. This case is called de-
layed branch. Instruction packet slots that are still executed after a branch
are called branch delay slots. These branch delay slots can be filled with
instructions which would be executed before the branch if there were no de-
lay slots. However, it is normally difficult to fill all delay slots with useful
instructions and some must be filled with no-operation instructions (NOPs).
The term branch delay penalty denotes the loss of performance resulting
from these NOPs.

2 The pipeline is stalled until instructions from the branch target address have
been fetched. There are no branch delay slots in this case. In this organiza-
tion the branch delay penalty is caused by the stall.

Branch delay penalties can be significant. For example, the TMS 320C6xx
family of processors has up to 40 delay slots. Therefore, efficiency can be im-
proved by avoiding branches, if possible. In order to avoid branches originating
from if-statements, predicated instructions have been introduced. For each
predicated instruction, there is a predicate. This predicate is encoded in a few
bits and evaluated at run-time. If the result is true, the instruction is executed.
Otherwise, it is effectively turned into a NOP. Predication can also be found in
RISC machines such as the ARM processor. Example: ARM instructions, as
introduced on page 139, include a four-bit field. These four bits encode vari-
ous expressions involving the condition code registers. Values stored in these

150 EMBEDDED SYSTEM DESIGN

registers are checked at run-time. They determine whether or not a certain
instruction has an effect.

Predication can be used to implement small if-statements efficiently: the con-
dition is stored in one of the condition registers and if-statement-bodies are
implemented as predicated instructions which depend on this condition. This
way, if-statement bodies can be evaluated in parallel with other operations and
no delay penalty is incurred.

The Crusoe processor is a (commercially finally unsuccessful) example of an
EPIC processor designed for PCs [Klaiber, 2000]. Efforts for making EPIC
instruction sets available in the PC sector resulted in Intel’s IA-64 instruction
set [Intel, 2010b] and its implementation in the Itanium® processor. Due to
legacy problems, the main application is in the server market. Many MPSoCs
(see page 151) are based on VLIW and EPIC processors.

3.3.3.4 Micro-controllers

A large number of the processors in embedded systems are in fact micro-
controllers. Micro-controllers are typically not very complex and can be used
easily. Due to their relevance for designing control systems, we introduce one
of the most frequently used processors: the Intel 8051. This processor has the
following characteristics:

8 bit CPU, optimized for control applications,

large set of operations on Boolean data types,

program address space of 64 k bytes,

separate data address space of 64 k bytes,

4 k bytes of program memory on chip, 128 bytes of data memory on chip,

32 I/O lines, each of which can be addressed individually,

2 counters on the chip,

universal asynchronous receiver/transmitter for serial lines available on the
chip,

clock generation on the chip,

many variations commercially available.

All these characteristics are quite typical for micro-controllers.

Embedded System Hardware 151

3.3.3.5 Multiprocessor systems-on-a-chip (MPSoCs)

Further increase of clock rates of processors has recently come to a stand-
still. The large energy consumption of processors using multi-gigahertz clock
speeds is a key reason for this. In order to still improve the overall perfor-
mance, several processors must be employed. This led to the design of chips
comprising multiple processors as well as additional components such as pe-
ripheral devices and memories. Systems implemented in that way are called
MPSoCs (MultiProcessor System-on-a-Chip). For general purpose computing
and PCs, multi-processor systems are typically homogeneous (all processors
are of the same type). The term multi-core system is usually associated with
such systems. For embedded systems, energy efficiency has top priority. En-
ergy efficiency is typically obtained with highly specialized processors. For
example, there may be specialized processors for mobile communication or
image processing. Fig. 3.31 contains a simplified version of the floor-plan of
the SH-MobileG1 chip [Hattori, 2007].

Figure 3.31. Floor-plan of the SH-MobileG1 chip

The chip demonstrates the fact, that highly specialized processors are being
used: there are special processors for MPEG- and JPEG-encoding, for GSM-
and 3G mobile communication etc. In order to save energy, unused areas are
typically powered-down. Using such multi-processor-based systems from ap-
plications written in a sequential language is a challenge, which will be ad-
dressed in Chapter 6. Mapping techniques for such processors are important,
since examples demonstrate that a power efficiency close to that of ASICs can
be achieved. For example, for IMEC’s ADRES processor, an efficiency of
55× 109 operations per Watt (about 50% of the power efficiency of ASICs)
has been predicted [Man, 2007], [IMEC, 2010].

152 EMBEDDED SYSTEM DESIGN

3.3.4 Reconfigurable Logic

In many cases, full-custom hardware chips (ASICs) are too expensive and
software-based solutions are too slow or too energy consuming. Reconfig-
urable logic provides a solution if algorithms can be efficiently implemented
in custom hardware. It can be almost as fast as special-purpose hardware, but in
contrast to special-purpose hardware, the performed function can be changed
by using configuration data. Due to these properties, reconfigurable logic finds
applications in the following areas:

Fast prototyping: modern ASICs can be very complex and the design
effort can be large and takes a long time. It is therefore frequently desirable
to generate a prototype, which can be used for experimenting with a system
which behaves “almost” like the final system. The prototype can be more
costly and larger than the final system. Also, its power consumption can
be larger than the final system, some timing constraints can be relaxed, and
only the essential functions need to be available. Such a system can then be
used for checking the fundamental behavior of the future system.

Low volume applications: If the expected market volume is too small
to justify the development of special-purpose ASICs, reconfigurable logic
can be the right hardware technology for applications, for which software
would be too slow or too inefficient.

Real-time systems: The timing of FPGA-based designs is typically known
very precisely. Therefore, FPGAs can be used to implement timing-predic-
table systems.

Reconfigurable hardware frequently includes random access memory (RAM)
to store configurations during normal operation of the hardware. Such RAM
is normally volatile (the information is stored only while power is applied).
Therefore, the configuration data must be copied into the configuration RAM at
power-up. Persistent storage technology such as read-only memories (ROMs)
and Flash memories will then provide the configuration data.

Field programmable gate arrays (FPGAs) are the most common form of re-
configurable hardware. As the name indicates, such devices are programmable
“in the field” (after fabrication). Furthermore, they consist of arrays of pro-
cessing elements. As an example, fig. 3.32 shows the array structure of Xilinx
Virtex-II arrays [Xilinx, 2007].

The more recent Virtex-5 arrays contain up to 240 × 108 configurable logic
blocks (CLBs) [Xilinx, 2009]. These can be connected using a programmable
interconnect structure. Arrays also contain up to 1200 user input/output con-
nections. In addition, there are up to 1056 DSP blocks comprising 25 × 18

Embedded System Hardware 153

Figure 3.32. Floor-plan of Virtex-II FPGAs

bit multipliers and 16416 kbits of RAM (Block RAM). Each CLB consists of 2
so-called slices (see fig. 3.33).

Figure 3.33. Virtex-5 CLB

Each slice contains four memories. Each memory can be used as a look-up
table (LUT) for implementing a single 6-input logic function or two 5-input
logic functions. All 264 respectively all 232 Boolean functions of 6 or 5 inputs
can be implemented! With the help of multiplexers, several of these memo-
ries can also be combined. Memories can also serve as ordinary RAM or as
shift registers (SRLs). Each slice also includes four output registers and some
special logic for fast additions (see fig. 3.34) [Xilinx, 2009].

Configuration data determines the setting of multiplexers in the slices, the
clocking of registers and RAM, the content of RAM components and the con-

154 EMBEDDED SYSTEM DESIGN

Figure 3.34. Virtex-5 Slice (simplified)

nections between CLBs. Typically, this configuration data is generated from
a high-level description of the functionality of the hardware, for example in
VHDL. Ideally, the same description could also be used for generating ASICs
automatically. In practice, some interaction is required.

Integration of reconfigurable computing with processors and software is sim-
plified if processors are available in the FPGAs. There may be either hard cores
or soft cores. For hard cores, the layout contains a special area implementing
a core in a dense way. This area cannot be used for anything but the hard core.
Soft cores are available as synthesizable models which are mapped to standard
CLBs. Soft cores are more flexible, but less efficient than hard cores.

For example, the Virtex-5 FXT product line from Xilinx contains up to 2
Power-PC processors as hard cores.

Soft cores can be implemented on any FPGA chip. The MicroBlaze processor
[Xilinx, 2008] is an example of such cores.

Embedded System Hardware 155

3.4 Memories

Data, programs, and FPGA configurations must be stored in some kind of
memory. This must be done in an efficient way. Efficient means run-time,
code-size and energy-efficient. Code-size efficiency requires a good compiler
and can be improved with code compression (see page 138). Memory hier-
archies can be exploited in order to achieve a good run-time and energy effi-
ciency. The underlying reason is that large memories require more energy per
access and are also slower than small memories.

Fig. 3.35 shows the cycle time and the power as a function of the size of mem-
ories used as register files [Rixner et al., 2000].

Figure 3.35. Cycle time and power as a function of the register file size

Power and delay for caches can be computed with CACTI [Wilton and Jouppi,
1996]. Generated values include the power and the delay for the data RAM.
These values can be used to predict power and delay for general RAM mem-
ories. Fig. 3.36 shows the results for a larger range of sizes [Banakar et al.,
2002].

Figure 3.36. Power and delay of RAM memory as predicted by CACTI

156 EMBEDDED SYSTEM DESIGN

It has been observed that the difference in speeds between processors and mem-
ories is expected to increase (see fig. 3.37).

Figure 3.37. Increasing gap between processor and memory speeds

While the speed of memories is increasing by only a factor of about 1.07 per
year, overall processor performance has increased by a factor of 1.5 to 2 per
year [Machanik, 2002]. This means that the gap between processor perfor-
mance and memory speeds is becoming larger. However, increasing processor
performance further requires the use of multi-core systems.

Therefore, it is important to use smaller and faster memories that act as buffers
between the main memory and the processor. In contrast to PC-like systems,
the architecture of these small memories must guarantee a predictable real-
time performance. A combination of small memories containing frequently
used data and instructions and a larger memory containing the remaining data
and instructions is generally also more energy efficient than a single, large
memory. Memory partitioning has been considered, for example, by A. Macii
[Macii et al., 2002].

Caches were initially introduced in order to provide good run-time efficiency.
In the context of fig. 3.35 (right) however, it is obvious that caches poten-
tially also improve the energy-efficiency of a memory system. Accesses to
caches are accesses to small memories and therefore may require less en-
ergy per access than large memories. However, for caches it is required that
the hardware checks whether or not the cache has a valid copy of the in-
formation associated with a certain address. This check involves compar-
ing the tag fields of caches, containing a subset of the relevant address bits
[Hennessy and Patterson, 2002]. Reading these tags requires additional en-
ergy. Also, the predictability of the real-time performance of caches is fre-
quently low.

Alternatively, small memories can be mapped into the address space (see fig.
3.38).

Embedded System Hardware 157

Figure 3.38. Memory map with scratch-pad included

Such memories are called scratch pad memories (SPMs). Frequently used
variables and instructions should be allocated to that address space and no
checking needs to be done in hardware. As a result, the energy per access is
reduced. Fig. 3.39 shows a comparison between the energy required per access
to the scratch-pad (SPM) and the energy required per access to the cache.

Figure 3.39. Energy consumption per scratch pad and cache access

For a two-way set associative cache, the two values differ by a factor of about
three. The values in this example were computed using the energy consump-
tion for RAM arrays as estimated by the CACTI cache estimation tool [Wilton
and Jouppi, 1996].

SPMs can improve the memory access times very predictably, if the compiler
is in charge of keeping frequently used variables in the SPM (see page 297).

3.5 Communication

Information must be available before it can be processed in an embedded sys-
tem. Information can be communicated through various channels. Channels
are abstract entities characterized by the essential properties of communica-
tion, like maximum information transfer capacity and noise parameters. The

158 EMBEDDED SYSTEM DESIGN

probability of communication errors can be computed using communication
theory techniques. The physical entities enabling communication are called
communication media. Important media classes include: wireless media (ra-
dio frequency media, infrared), optical media (fibers), and wires.

There is a huge variety of communication requirements between the various
classes of embedded systems. In general, connecting the different embedded
hardware components is far from trivial. Some common requirements can be
identified.

3.5.1 Requirements

The following list contains some of the requirements that must be met:

Real-time behavior: This requirement has far-reaching consequences on
the design of the communication system. Several low-cost solutions such
as standard Ethernet fail to meet this requirement.

Efficiency: Connecting different hardware components can be quite ex-
pensive. For example, point to point connections in large buildings are
almost impossible. Also, it has been found that separate wires between
control units and external devices in cars significantly add to the cost and
the weight of the car. With separate wires, it is also very difficult to add
new components. The need of providing cost efficient designs also affects
the way in which power is made available to external devices. There is
frequently the need to use a central power supply in order to reduce the
cost.

Appropriate bandwidth and communication delay: Bandwidth require-
ments of embedded systems may vary. It is important to provide sufficient
bandwidth without making the communication system too expensive.

Support for event-driven communication: Polling-based systems pro-
vide a very predictable real-time behavior. However, their communication
delay may be too large and there should be mechanisms for fast, event-
oriented communication. For example, emergency situations should be
communicated immediately and should not remain unnoticed until some
central controller polls for messages.

Robustness: Cyber-physical systems may be used at extreme temperatures,
close to major sources of electromagnetic radiation etc. Car engines, for ex-
ample, can be exposed to temperatures less than -20 and up to +180 degrees
Celsius (-4 to 356 degrees Fahrenheit). Voltage levels and clock frequencies
could be affected due to this large variation in temperatures. Still, reliable
communication must be maintained.

Embedded System Hardware 159

Fault tolerance: Despite all the efforts for robustness, faults may occur.
Cyber-physical systems should be operational even after faults, if at all
feasible. Restarts, like the ones found in personal computers, cannot be
accepted. This means that retries may be required after attempts to com-
municate failed. A conflict exists with the first requirement: If we allow
retries, then it is difficult to meet strict real-time requirements.

Maintainability, diagnosability: Obviously, it should be possible to repair
embedded systems within reasonable time frames.

Privacy: Ensuring privacy of confidential information may require the use
of encryption.

These communication requirements are a direct consequence of the general
characteristics of embedded/cyber-physical systems mentioned in Chapter 1.
Due to the conflicts between some of the requirements, compromises must be
made. For example, there may be different communication modes: one high-
bandwidth mode guaranteeing real-time behavior but no fault tolerance (this
mode is appropriate for multimedia streams) and a second fault-tolerant, low-
bandwidth mode for short messages that must not be dropped.

3.5.2 Electrical robustness

There are some basic techniques for electrical robustness. Digital communi-
cation within chips is normally using so-called single-ended signaling. For
single-ended signaling, signals are propagated on a single wire (see fig. 3.40).

Figure 3.40. Single-ended signaling

Such signals are represented by voltages with respect to a common ground
(less frequently by currents). A single ground wire is sufficient for a number
of single-ended signals. Single ended signaling is very much susceptible to
external noise. If external noise (originating from, for example, motors being
switched on) affects the voltage, messages can easily be corrupted. Also, it
is difficult to establish high-quality common ground signals between a large
number of communicating systems, due to the resistance (and inductance) on
the ground wires. This is different for differential signaling. For differential
signaling, each signal needs two wires (see fig. 3.41).

160 EMBEDDED SYSTEM DESIGN

Figure 3.41. Differential signaling

Using differential signaling, binary values are encoded as follows: If the volt-
age on the first wire with respect to the second is positive, then this is decoded
as ’1’, otherwise values are decoded as ’0’. The two wires will typically be
twisted to form so-called twisted pairs. There will be local ground signals,
but a non-zero voltage between the local ground signals does not hurt. Advan-
tages of differential signaling include:

Noise is added to the two wires in essentially the same way. The comparator
therefore removes almost all the noise.

The logic value depends just on the polarity of the voltage between the
two wires. The magnitude of the voltage can be affected by reflections or
because of the resistance of the wires; this has no effect on the decoded
value.

Signals do not generate any currents on the ground wires. Hence, the qual-
ity of the ground wires becomes less important.

No common ground wire is required. Hence, there is no need to establish a
high quality ground wiring between a large number of communicating part-
ners (this is one of the reasons for using differential signaling for Ethernet).

As a consequence of the properties mentioned so far, differential signaling
allows a larger throughput than single-ended signaling.

However, differential signaling requires two wires for every signal and it also
requires negative voltages (unless it is based on complementary logic signals
using voltages for single-ended signals).

Differential signaling is used, for example, in standard Ethernet-based net-
works.

3.5.3 Guaranteeing real-time behavior

For internal communication, computers may be using dedicated point-to-point
communication or shared buses. Point-to-point communication can have a

Embedded System Hardware 161

good real-time behavior, but requires many connections and there may be con-
gestion at the receivers. Wiring is easier with common, shared buses. Typ-
ically, such buses use priority-based arbitration if several access requests to
the communication media exists (see, for example, [Hennessy and Patterson,
2002]). Priority-based arbitration comes with poor timing predictability, since
conflicts are difficult to anticipate at design time. Priority-based schemes can
even lead to “starvation” (low-priority communication can be completely
blocked by higher priority communication). In order to get around this prob-
lem, time division multiple access (TDMA) can be used. In a TDMA-scheme,
each partner is assigned a fixed time slot. The partner is allowed to transmit
during that particular time slot. Typically, communication time is divided into
frames. Each frame starts with some time slot for frame synchronization, and
possibly some gap to allow the sender to turn off (see fig. 3.42, [Koopman and
Upender, 1995]).

Figure 3.42. TDMA-based communication

This gap is followed by a number of slices, each of which serves for commu-
nicating messages. Each slice also contains some gap and guard time to take
clock speed variations of the partners into account. Slices are assigned to com-
munication partners. Variations of this scheme exist. For example, truncation
of unused slices or the assignment of partners to several slides are feasible.
TDMA reduces the maximum amount of data available per frame and partner,
but guarantees a certain bandwidth for all partners. Starvation can be avoided.
The ARM AMBA-bus [ARM Ltd., 2009a] includes TDMA-based bus alloca-
tion.

Communication between computers is frequently based on Ethernet standards.
For 10 Mbit/s and 100 Mbit/s versions of Ethernet, there can be collisions be-
tween various communication partners. This means: several partners are trying
to communicate at about the same time and the signals on the wires are cor-
rupted. Whenever this occurs, the partners must stop communications, wait

162 EMBEDDED SYSTEM DESIGN

for some time, and then retry. The waiting time is chosen at random, so that it
is not very likely that the next attempt to communicate results in another col-
lision. This method is called carrier-sense multiple access/collision detect
(CSMA/CD). For CSMA/CD, communication time can get huge, since con-
flicts can repeat a large number of times, even though this is not very likely.
Hence, CSMA/CD cannot be used when real-time constraints must be met.

This problem can be solved with CSMA/CA (carrier-sense multiple access/
collision avoidance). As the name indicates, collisions are completely avoided,
rather than just detected. For CSMA/CA, priorities are assigned to all part-
ners. Communication media are allocated to communication partners during
arbitration phases, which follow communication phases. During arbitration
phases, partners wanting to communicate indicate this on the media. Partners
finding such indications of higher priority must immediately remove their in-
dication.

Provided that there is an upper bound on the time between arbitration phases,
CSMA/CA guarantees a predictable real-time behavior for the partner having
the highest priority. For other partners, real-time behavior can be guaranteed if
the higher priority partners do not continuously request access to the media.

Note that high-speed versions of Ethernet (≥ 1 Gbit/s) also avoid collisions.
TDMA-schemes are also used for wireless communication. For example, mo-
bile phone standards like GSM use TDMA for accesses to the communication
medium.

3.5.4 Examples

Sensor/actuator buses: Sensor/actuator buses provide communication be-
tween simple devices such as switches or lamps and the processing equip-
ment. There may be many such devices and the cost of the wiring needs
special attention for such buses.

Field buses: Field buses are similar to sensor/actuator buses. In general,
they are supposed to support larger data rates than sensor/actuator buses.
Examples of field buses include the following:

– Controller Area Network (CAN): This bus was developed in 1981 by
Bosch and Intel for connecting controllers and peripherals. It is popular
in the automotive industry, since it allows the replacement of a large
amount of wires by a single bus. Due to the size of the automotive
market, CAN components are relatively cheap and are therefore also
used in other areas such as smart homes and fabrication equipment.
CAN has the following properties:

∗ differential signaling with twisted pairs,

Embedded System Hardware 163

∗ arbitration using CSMA/CA,
∗ throughput between 10kbit/s and 1 Mbit/s,
∗ low and high-priority signals,
∗ maximum latency of 134 µs for high priority signals,
∗ coding of signals similar to that of serial (RS-232) lines of PCs,

with modifications for differential signaling.

CSMA/CA-based arbitration does not prevent starvation. This is an
inherent problem of the CAN protocol.

– The Time-Triggered-Protocol (TTP) [Kopetz and Grunsteidl, 1994]
for fault-tolerant safety systems like airbags in cars.

– FlexRayT M [FlexRay Consortium, 2002] is a TDMA protocol which
has been developed by the FlexRay consortium (BMW, DaimlerChrys-
ler, General Motors, Ford, Bosch, Motorola and Philips Semiconduc-
tors). FlexRay is a combination of a variant of the TTP and the byte-
flight [Byteflight Consortium, 2003] protocol.
FlexRay includes a static as well as a dynamic arbitration phase. The
static phase uses a TDMA-like arbitration scheme. It can be used for
real-time communication and starvation can be avoided. The dynamic
phase provides a good bandwidth for non-real-time communication.
Communicating partners can be connected to up to two buses for fault-
tolerance reasons. Bus guardians may protect partners against partners
flooding the bus with redundant messages, so-called babbling idiots.
Partners may be using their own local clock periods. Periods com-
mon to all partners are defined as multiples of such local clock periods.
Time slots allocated to partners for communication are based on these
common periods.
The levi simulation allows simulating the protocol in a lab environment
[Sirocic and Marwedel, 2007a].

– LIN (Local Interconnect Network) is a low-cost communication stan-
dard for connecting sensors and actuators in the automotive domain
[LIN Administration, 2010].

– MAP: MAP is a bus designed for car factories.

– EIB: The European Installation Bus (EIB) is a bus designed for smart
homes.

Wired multimedia communication: For wired multimedia communica-
tion, larger data rates are required. Example: MOST (Media Oriented
Systems Transport) is a communication standard for multimedia and info-
tainment equipment in the automotive domain [MOST Cooperation, 2010].
Standards like IEEE 1394 (FireWire) may be used for the same purpose.

164 EMBEDDED SYSTEM DESIGN

Wireless communication: This kind of communication is becoming more
popular. Currently (2010), 7 Mbit/s are widely available with HSPA (High
Speed Packet Access). Even higher rates (based, for example, on the long-
term evolution (LTE) technology) are on the horizon.

Bluetooth is a standard for connecting devices such as mobile phones and
their headsets.

The wireless version of Ethernet is standardized as IEEE standard 802.11.
It is being used in local area networks (LANs).

DECT is a standard used for wireless phones in Europe.

3.6 Output

Output devices of embedded/cyber-physical systems include:

Displays: Display technology is an area which is extremely important. Ac-
cordingly, a large amount of information [Society for Display Technology,
2003] exists on this technology. Major research and development efforts
lead to new display technology such as organic displays [Gelsen, 2003].
Organic displays are emitting light and can be fabricated with very high
densities. In contrast to LCD displays, they do not need back-light and
polarizing filters. Major changes are therefore expected in these markets.

Electro-mechanical devices: these influence the environment through mo-
tors and other electro-mechanical equipment.

Analog as well as digital output devices are used. In the case of analog out-
put devices, the digital information must first be converted by digital-to-analog
(D/A)-converters. These converters can be found on the path from analog in-
puts of embedded systems to their outputs. Fig. 3.43 shows the naming con-
vention of signals along the path which we use. Purpose and function of the
boxes will be explained in this section.

Figure 3.43. Naming convention for signals between analog inputs and outputs

3.6.1 D/A-converters

D/A-converters are not very complex. Fig. 3.44 shows the schematic of a sim-
ple so-called weighted-resistor D/A converter.

Embedded System Hardware 165

Figure 3.44. D/A-converter

The key idea of the converter is to first generate a current which is proportional
to the value represented by a digital signal x. Such a current can hardly be used
by a following system. Therefore, this current is converted into a proportional
voltage y. This conversion is done with an operational amplifier (depicted by
a triangle in fig. 3.44). Essential characteristics of operational amplifiers are
described in Appendix B of this book.

How do we compute the output voltage y? Let us first consider the loop indi-
cated by the dashed line in fig. 3.44. The current through any resistor is zero,
if the corresponding element of digital signal x is ’0’. If it is ’1’, the current cor-
responds to the weight of that bit, since resistor values are chosen accordingly.
We can apply Kirchhoff’s Loop Rule (see Appendix B) to the loop turned on
by the least significant bit x0 of x. We have

x0 · I0 ·8 ·R+V−−Vre f = 0 (3.17)

V− is approximately 0 (see Appendix B). Therefore, we have

I0 = x0 ∗
Vre f

8∗R
(3.18)

Corresponding equations hold for the currents I1 to I3 through the other resis-
tors. We can now apply Kirchhoff’s Node Rule (see Appendix B) to the circuit
node connecting all resistors. At this node, the outgoing current must be equal
to the sum of the incoming currents. Therefore, we have

I = I3 + I2 + I1 + I0 (3.19)

I = x3 ∗
Vre f

R
+ x2 ∗

Vre f

2∗R
+ x1 ∗

Vre f

4∗R
+ x0 ∗

Vre f

8∗R

166 EMBEDDED SYSTEM DESIGN

=
Vre f

R
∗

3

∑
i=0

xi ∗2i−3 (3.20)

Now, we can apply Kirchhoff’s Loop Rule to the loop comprising R1, y and
V−. Since V− is approximately 0, we have:

y+R1 ∗ I′ = 0. (3.21)

Next, we can apply Kirchhoff’s Node Rule to the node connecting I, I′ and the
inverting signal input of the operational amplifier. The current into this input
is practically zero, and currents I and I′ are equal: I = I′. Hence, we have:

y+R1 ∗ I = 0 (3.22)

From equations 3.20 and 3.22 we obtain:

y = −Vre f ∗
R1

R
∗

3

∑
i=0

xi ∗2i−3 = −Vre f ∗
R1

8∗R
∗nat(x) (3.23)

nat denotes the natural number represented by digital signal x. Obviously, y
is proportional to the value represented by x. Positive output voltages and bit-
vectors representing two’s complement numbers require minor extensions.

From a DSP point of view, y(t) is a function over a discrete time domain:
it provides us with a sequence of voltage levels. In our running example,
it is defined only over integer times. From a practical point of view, this is
inconvenient, since we would typically observe the output of the circuit of fig.
3.44 continuously. Therefore, D/A-converters are frequently extended by a
“zero-order hold” functionality. This means that the converter will keep the
previous value until the next value is converted. Actually, the D/A-converter
of fig. 3.44 will do exactly this if we do not change the settings of the switches
until the next discrete time instant. Hence, the output of the converter is a step
function y′(t) corresponding to the sequence y(t)9. y′(t) is a function over the
continuous time domain.

As an example, let us consider the output resulting from the conversion of the
signal of equation 3.3, assuming a resolution of 8 steps per polarity. For this
case, fig. 3.45 shows y′(t) instead of y(t), since y′(t) is a bit easier to visualize.

9In practice, due to rise and fall times being > 0, transitions from one step to the next will not be ideal, but
take some time.

Embedded System Hardware 167

Figure 3.45. Step function y′(t) generated from signal e3(t) (eq. 3.3) sampled at integer times

D/A-converters enable a conversion from time- and value-discrete signals to
signals in the continuous time and value domain. However, neither y(t) nor
y′(t) reflect the values of the input signal in-between the sampling instances.

3.6.2 Sampling theorem

Suppose that the processors used in the hardware loop forward values from
A/D-converters unchanged to the D/A-converters. We could also think of stor-
ing values x(t) on a CD and aiming at generating an excellent analog audio
signal. Would it be possible to reconstruct the original analog voltage e(t) (see
fig. 3.8, fig. 3.20, and fig. 3.43) at the outputs of the D/A-converters?

It is obvious that reconstruction is not possible if we have aliasing of the type
described in the section on sampling10. So, we assume that the sampling rate
is larger than twice the highest frequency of the decomposition of the input
signal into sine waves (sampling criterion, see equation 3.8). Does meeting
this criterion allow us to reconstruct the original signal? Let us have a closer
look!

Feeding D/A-converters with a discrete sequence of digital values will result
in a sequence of analog values being generated. Values of the input signal
in-between the sampling instances are not generated by D/A-converters. The
simple zero-order hold functionality (if present) would generate only step func-
tions. This seems to indicate that reconstruction of e(t) would require an in-
finitely large sampling rate, such that all intermediate values can be generated.

10Reconstruction may be possible, if additional information about the signal is available, i.e. if we restrict
ourselves to certain signal types.

168 EMBEDDED SYSTEM DESIGN

However, there could be some kind of smart interpolation computing values
in-between the sampling instances from the values at sampling instances. And
indeed, sampling theory [Oppenheim et al., 2009] tells us that a correspond-
ing time-continuous signal z(t) can be constructed from the sequence y(t) of
analog values.

Let {ts},s = ...,−1,0,1,2, ... be the times at which we sample our input signal.
Let us assume a constant sampling rate of fs = 1

ps
(∀s : ps = ts+1 − ts). Then,

sampling theory tells us that we can approximate e(t) from y(t) as follows:

z(t) =
∞

∑
s=−∞

y(ts)sin π
ps

(t − ts)
π
ps

(t − ts)
(3.24)

This equation is known as the Shannon-Whittaker interpolation. y(ts) is the
contribution of signal y at sampling instance ts. The influence of this contribu-
tion decreases the further t is away from ts. The decrease follows a weighting
factor, also known as the sinc function:

sinc(t − ts) =
sin(π

ps
(t − ts))

π
ps

(t − ts)
(3.25)

which decreases non-monotonically as a function of |t − ts|. This weighting
factor is used to compute values in-between the sampling instances. Fig. 3.46
shows the weighting factor for the case ps = 1.

Figure 3.46. Visualization of eq. 3.25 used for interpolation

Embedded System Hardware 169

Using the sinc function, we can compute the terms of the sum in eq. 3.24.
Fig. 3.47 and fig. 3.48 show the resulting terms if e(t) = e3(t) and processing
performs the identify function (x(t) = w(t)).

Figure 3.47. y′(t) (solid line) and the first three terms of eq. 3.24

Figure 3.48. y′(t) (solid line) and the last three non-zero terms of eq. 3.24

At each of the sampling instances ts (integer times in our case), z(ts) is com-
puted just from the corresponding value y(ts), since the sinc function is zero in
this case for all other sampled values. In between the sampling instances, all of
the adjacent discrete values contribute to the resulting value of z(t). Fig. 3.49
shows the resulting z(t) if e(t) = e3(t) and processing performs the identify
function (x(t) = w(t)).

170 EMBEDDED SYSTEM DESIGN

Figure 3.49. e3(t) (solid), z(t) (dotted), y′(t) (dashed)

The figure includes signals e3(t) (solid line), z(t) (dotted line), and y′(t) (dashed
line). z(t) is based on summing up the contributions of all sampling instances
shown in the diagrams 3.47 and 3.48. e3(t) and z(t) are very similar.

How close could we get to the original input signal by implementing equation
3.24? Sampling theory tells us (see, for example, [Oppenheim et al., 2009]),
that equation 3.24 computes an exact approximation, if the sampling crite-
rion (equation 3.8) is met. Therefore, let us see how we can implement equa-
tion 3.24.

How do we compute equation 3.24 in an electronic system? We cannot com-
pute this equation in the discrete time domain using a digital signal processor
for this, since this computation has to generate a time-continuous signal. Com-
puting such a complex equation with analog circuits seems to be difficult at
first sight.

Fortunately, the required computation is a so-called folding operation between
signal y(t) and the sinc-function. According to the classical theory of Fourier
transforms, a folding operation in the time domain is equivalent to a multipli-
cation with frequency-dependent filter function in the frequency domain. This
filter function is the Fourier transform of the corresponding function in the time
domain. Therefore, equation 3.24 can be computed with some appropriate fil-
ter. Fig. 3.50 shows the corresponding placement of the filter.

The remaining question is: which frequency-dependent filter function is the
Fourier transform of the sinc-function? Computing the Fourier transform of
the sinc-function yields a low-pass filter function [Oppenheim et al., 2009].
So, “all” we must do to compute equation 3.24 is to pass signal y(t) through

Embedded System Hardware 171

Figure 3.50. Converting signals e(t) from the analog time and value domain to the digital
domain and back

a low-pass filter, filtering frequencies as shown for the “ideal filter” in fig.
3.51. Note that the representation of function y(t) as a sum of sine waves
would require very high frequency components, making such a filtering non-
redundant, even though we have already assumed an anti-aliasing filter to be
present at the input.

Figure 3.51. Low-pass filter: ideal (dashed) and realistic (solid)

There is still one problem, though: ideal low-pass filters do not exist. There-
fore, we must live with compromises and design filters approximating the low
pass filter characteristics. Actually, we must live with several imperfections
preventing a precise reconstruction of the input signals:

Ideal low pass filters cannot be designed. Therefore, we must use approxi-
mations of such filters. Designing good compromises is an art (performed
extensively, for example, for audio equipment).

For the same reason, we cannot completely remove input frequencies be-
yond the Nyquist frequency.

The impact of value quantization is visible in fig. 3.49. Due to value quan-
tization, e3(t) is sometimes different from z(t). Quantization noise, as in-
troduced by A/D-converters, cannot be removed during output generation.
Signal w(t) from the output of the A/D-converter will remain distorted by
the quantization noise. However, this effect does not affect the signal h(t)
from the output of sample-and-hold circuits.

Equation 3.24 is based on an infinite sum, involving also values at future
instances in time. In practice, we can delay signals by some finite amount

172 EMBEDDED SYSTEM DESIGN

to know a finite number of “future” samples. Infinite delays are impossible.
In fig. 3.49, we did not consider contributions of sampling instances outside
the diagram.

The functionality provided by low-pass filters demonstrates the power of ana-
log circuits: there would be no way of implementing the behavior of analog
filters in the digital domain, due to the inherent restriction to discretized time
and values.

Many authors have contributed to sampling theory. Therefore, many names can
be associated with the sampling theorem. Contributors include Shannon, Whit-
taker, Kotelnikov, Nyquist, Küpfmüller, and others. Therefore, the fact that the
original signal can be reconstructed should simply be called the sampling the-
orem, since there is no way of attaching all names of relevant contributors to
the theorem.

3.6.3 Actuators

There is a huge amount of actuators [Elsevier B.V., 2010a]. Actuators range
from huge ones that are able to move tons of weight to tiny ones with dimen-
sions in the µm area, like the one shown in fig. 3.52.

Figure 3.52. Microsystem technology based actuator motor (partial view; courtesy E. Ober-
meier, MAT, TU Berlin), ©TU Berlin

It is impossible to provide a complete overview. As an example, we mention
only a special kind of actuators which will become more important in the fu-
ture: microsystem technology enables the fabrication of tiny actuators, which
can be put into the human body, for example.

Using such tiny actuators, the amount of drugs fed into the body can be adapted
to the actual need. This allows a much better medication than needle-based

Embedded System Hardware 173

injections. Fig. 3.52 shows a tiny motor manufactured with microsystem tech-
nology. The dimensions are in the µm range. The rotating center is controlled
by electrostatic forces.

3.7 Secure hardware

The general requirements for embedded systems can often include security
(see page 5). If security is a major concern, special secure hardware may need
to be developed. Security may need to be guaranteed for communication and
for storage [Krhovjak and Matyas, 2006]. Also, security might demand special
equipment for the generation of cryptographic keys. Special hardware security
modules have been designed. One of the goals for such modules is to resist
side-channel attacks such as measurement of the supply current or electromag-
netic radiation. Such modules include special mechanisms for physical pro-
tection (shielding, or sensors to detect tampering with the modules). Special
processors may support encryption and decryption. In addition to the physi-
cal security, we need logical security, typically using cryptographic methods.
Smart cards are a special case of secure hardware that must run using a very
small amount of energy. In general, it is necessary to distinguish between dif-
ferent levels of security and levels of knowledge of “adversaries”. A full pre-
sentation of the techniques for designing secure hardware is beyond the scope
of this book. Interested readers are referred to Gebotys [Gebotys, 2010] and
workshop proceedings [Clavier and Gaj, 2009].

3.8 Assignments

1 It is suggested that locally available small robots are used to demonstrate
hardware in the loop, corresponding to fig. 3.2. The robots should includes
sensors and actuators. Robots should run a program implementing a control
loop. For example, an optical sensor could be used to let a robot follow a
black line on the ground. The details of this assignment depend on the
availability of robots.

2 Why is it so important to optimize embedded systems? Compare differ-
ent technologies for processing information in an embedded system with
respect to their efficiency!

3 Assume that we have an input signal x consisting of the sum of sine waves
of 1.75 kHz and 2 kHz. We are sampling x at a rate of 3 kHz. Will we be
able to reconstruct the original signal after discretization of time? Please
explain your result!

4 Discretization of values is based on A/D-converters. Develop the schematic
of a flash-based A/D-converter for positive and negative input voltages!

174 EMBEDDED SYSTEM DESIGN

The output should be encoded as 3-bit two’s complement numbers, allow-
ing to distinguish between 8 different voltage intervals.

5 Compare the complexity of flashed-based and successive approximation-
based A/D-converters. Assume that you would like to distinguish between
n different voltage intervals. Enter the complexity into the table of fig. 3.53,
using the O-notation.

Flash-based converter Successive approximation converter
Time complexity
Space complexity

Figure 3.53. Complexity of A/D-converters

6 Suppose that we are working with a successive approximation-based 4-bit
A/D-converter. The input voltage range extends from Vmin =1 V (="0000")
to Vmax =4.75 V (="1111"). Which steps are used to convert voltages of
2.25 V, 3.75 V, and 1.8 V? Draw a diagram similar to fig. 3.12 which depicts
the successive approximation to these voltages!

7 Extend the flash-based A/D converter such that it can be used for negative
voltages as well!

8 Suppose a sine wave is used as an input signal to the converter designed in
assignment 4. Depict the quantization noise signal for this case!

9 Create a list of features of DSP-processors!

10 Which components do FPGA comprise? Which of these are used to imple-
ment Boolean function? How are FPGAs configured? Are FPGAs energy-
efficient? Which kind of applications are FPGAs good for?

11 In the context of memories, we are sometimes saying “small is beautiful”.
What could be the reason for this?

12 Develop the following FlexRayT M cluster: The cluster consists of the 5
nodes A, B, C, D and E. All nodes should be connected via two channels.
The cluster uses a bus topology. The nodes A, B and C are executing a
safety critical task and therefore their bus requests should be guaranteed at
the time of 20 macroticks. The following is expected from you:

Download the levi FlexRay simulator [Sirocic and Marwedel, 2007a].
Unpack the .zip file and install!

Start the training module by executing the file leviFRP.jar.

Design the described FlexRay cluster within the training module.

Embedded System Hardware 175

Configure the communication cycle such that the nodes A, B and C have
a guaranteed bus access within a maximal delay of 20 macroticks. The
nodes D and E should use only the dynamic segment.

Configure the node bus requests. The node A sends a message every
cycle. The nodes B and C send a message every second cycle. The
node D sends a message of the length of 2 minislots every cycle and the
node E sends every second cycle a message of the length of 2 minislots.

Start the visualization and check if the bus requests of the nodes A, B
and C are guaranteed.

Swap the positions of nodes D and E in the dynamic segment. What is
the resulting behavior?

13 Develop the schematic of a 3-bit D/A-converter! The conversion should be
done for a 3-bit vector x encoding positive numbers. Prove that the output
voltage is proportional to the value represented by the input vector x. How
would you modify the circuit if x represented two’s complement numbers?

14 The circuit shown in fig. B.4 in Appendix B is an amplifier, amplifying
input voltage V1:

Vout = gclosed ·V1

Compute the gain gclosed for the circuit of fig. B.4 as a function of R and
R1!

Chapter 4

SYSTEM SOFTWARE

Not all components of embedded systems need to be designed from scratch.
Instead, there are standard components that can be reused. These compo-
nents comprise knowledge from earlier design efforts and constitute intellec-
tual property (IP). IP reuse is one key technique in coping with the increasing
complexity of designs. The term “IP reuse” frequently denotes the reuse of
hardware. However, reusing hardware is not enough. Sangiovanni-Vincentelli
pointed out, that software components need to be reused as well. Therefore,
the platform-based design methodology advocated by Sangiovanni-Vincentelli
[Sangiovanni-Vincentelli, 2002] (see page 236) comprises the reuse of hard-
ware and software IP.

Standard software components that can be reused include system software
components such as embedded operating systems (OS) and middleware. The
last term denotes software that provides an intermediate layer between the OS
and application software. We include libraries for communication as a special
case of middleware. Such libraries extend the basic communication facilities
provided by operating systems. Also, we consider real-time databases (see
Section 4.5) to be a second class of middleware. Calls to standard software
components may already need to be included in the specification. Therefore,
information about the application programming interface (API) of these stan-
dard components may already be needed for completing executable specifica-
tions of the SUD.

Consistent with the design information flow, we will describe embedded oper-
ating systems, and middleware in this chapter (see also fig. 4.1).

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8 4, © Springer Science+Business Media B.V. 2011

177

http://dx.doi.org/10.1007/978-94-007-0257-8_4

178 EMBEDDED SYSTEM DESIGN

Figure 4.1. Simplified design information flow

4.1 Embedded Operating Systems

4.1.1 General requirements

Except for very simple systems, scheduling, task switching, and I/O require the
support of an operating system suited for embedded applications. Task switch
(or task “dispatch”) algorithms multiplex processors such that each task seems
to have its own processor.

For systems with virtual memory, we can distinguish between different ad-
dress spaces, and between processes and threads. Each process has its own
address space, whereas several threads may share an address space. Con-
text switches which change the address space require more time than those
which do not. Threads sharing an address space will typically communicate
via shared memory. Operating systems must provide communication and syn-
chronization methods for threads and processes. More information about the
just touched standard topics in system software can be found in textbooks on
operating systems, such as the book by Tanenbaum [Tanenbaum, 2001]1.

The following are essential features of embedded operating systems:

Due to the large variety of embedded systems, there is also a large variety of
requirements for the functionality of embedded OSs. Due to efficiency re-
quirements, it is not possible to work with OSs which provide the union of
all functionalities. For most applications, the OS must be small. Hence, we
need operating systems which can be flexibly tailored towards the appli-
cation at hand. Configurability is therefore one of the main characteristics
of embedded OSs. There are various techniques of implementing config-
urability, including2:

1Students who have not attended a course on operating systems may have to browse through one of these
textbooks before proceeding any further.
2This list is sorted by the position of the technique in the development process or tool chain.

System Software 179

– Object-orientation, used for a derivation of proper subclasses: for ex-
ample, we could have a general scheduler class. From this class we
could derive schedulers having particular features. However, object-
oriented approaches typically come with an additional overhead. For
example, dynamic binding of methods does create run-time overhead.
Such overhead may be unacceptable for performance-critical system
software.

– Aspect-oriented programming [Lohmann et al., 2009]: with this ap-
proach, orthogonal aspects of software can be described independently
and then can be added automatically to all relevant parts of the program
code. For example, some code for profiling can be described in a single
module. It can then be automatically added to or dropped from all rel-
evant parts of the source code. The CIAO family of operating systems
has been designed in this way [Lohmann et al., 2006].

– Conditional compilation: In this case, we are using some macro pre-
processor and we are taking advantage of #if and #ifdef preprocessor
commands.

– Advanced compile-time evaluation: configurations could be performed
by defining constant values of variables before compiling the OS. The
compiler could then propagate the knowledge of these values as much
as possible. Advanced compiler optimizations may also be useful in
this context. For example, if a particular function parameter is always
constant, this parameter can be dropped from the parameter list. Partial
evaluation [Jones, 1996] provides a framework for such compiler opti-
mizations. In a sophisticated form, dynamic data might be replaced by
static data [Atienza et al., 2007]. A survey of operating system special-
ization was published by McNamee et al. [McNamee et al., 2001].

– Linker-based removal of unused functions: At link-time, there may be
more information about used and unused functions than during earlier
phases. For example, the linker can figure out, which library functions
are used. Unused library functions can be accordingly dropped and
specializations can take place [Chanet et al., 2007].

These techniques are frequently combined with a rule-based selection of
files to be included in the operating system. Tailoring the OS can be made
easy through a graphical user interface hiding the techniques employed for
achieving this configurability. For example, VxWorks [Wind River, 2010a]
from Wind River is configured via a graphical user interface.

Verification is a potential problem of systems with a large number of de-
rived tailored OSs. Each and every derived OS must be tested thoroughly.
Takada mentions this as a potential problem for eCos (an open source RTOS

180 EMBEDDED SYSTEM DESIGN

from Red Hat [Massa, 2002]), comprising 100 to 200 configuration points
[Takada, 2001]. Software product line engineering [Pohl et al., 2005] can
contribute towards solving this problem.

There is a large variety of peripheral devices employed in embedded sys-
tems. Many embedded systems do not have a hard disk, a keyboard, a
screen or a mouse. There is effectively no device that needs to be sup-
ported by all variants of the OS, except maybe the system timer. Fre-
quently, applications are designed to handle particular devices. In such
cases, devices are not shared between applications and hence there is no
need to manage the devices by the OS. Due to the large variety of devices,
it would also be difficult to provide all required device drivers together with
the OS. Hence, it makes sense to decouple OS and drivers by using special
tasks instead of integrating their drivers into the kernel of the OS. Due to
the limited speed of many embedded devices, there is also no need for an
integration into the OS in order to meet performance requirements. This
may lead to a different stack of software layers. For PCs, some drivers,
such as disk drivers, network drivers, or audio drivers are implicitly as-
sumed to be present. They are implemented at a very low level of the stack.
The application software and middleware are implemented on top of the
application programming interface, which is standard for all applications.
For an embedded OS, device drivers are implemented on top of the kernel.
Applications and middleware may be implemented on top of appropriate
drivers, not on top of a standardized API of the OS (see fig. 4.2).

Figure 4.2. Device drivers implemented on top of (a) or below (b) OS kernel

VxWorks can again serve as an example here. Fig. 4.3 shows a fraction of
the Wind River® Industrial Automation platform [Wind River, 2010a].

Protection mechanisms are not always necessary, since embedded sys-
tems are frequently designed for a single purpose (they are not supposed to
support so-called “multiprogramming”). Therefore, untested programs are
hardly ever loaded. After the software has been tested, it could be assumed
to be reliable. This also applies to input/output. In contrast to desktop
applications, there is no desire to implement I/O instructions as privileged

System Software 181

Figure 4.3. Software stack for Wind River® Industrial Automation Platform

instructions and tasks can be allowed to do their own I/O. This matches
nicely with the previous item and reduces the overhead of I/O operations.

Example: Let switch correspond to the (memory-mapped) I/O address of
some switch which needs to be checked by some program. We can simply
use a

load register,switch

instruction to query the switch. There is no need to go through an OS
service call, which would create a lot of overhead for saving and restoring
the task context (registers etc.).

However, there is a trend towards more dynamic embedded systems. Also,
safety and security requirements might make protection necessary. Special
memory protection units (MPUs) have been proposed for this (see Fiorin
[Fiorin et al., 2007] for an example).

Interrupts can be connected to any process. Using OS service calls, we
can request the OS to start or stop tasks if certain interrupts happen. We
could even store the start address of a task in the interrupt vector address
table, but this technique is very dangerous, since the OS would be unaware
of the task actually running. Also composability may suffer from this: if
a specific task is directly connected to some interrupt, then it may be dif-
ficult to add another task which also needs to be started by some event.
Application-specific device drivers (if used) might also establish links be-
tween interrupts and processes.

Many embedded systems are real-time (RT) systems and, hence, the OS
used in these systems must be a real-time operating system (RTOS).

Additional information about embedded operating systems can be found in a
book chapter written by Bertolotti [Bertolotti, 2006]. This chapter comprises

182 EMBEDDED SYSTEM DESIGN

information about the architecture of embedded operating systems, the POSIX
standard, open-source real-time operating systems and virtualization.

4.1.2 Real-time operating systems

Definition: (A) “real-time operating system is an operating system that sup-
ports the construction of real-time systems” [Takada, 2001].

What does it take to make an OS an RTOS? There are four key requirements3:

The timing behavior of the OS must be predictable. For each service
of the OS, an upper bound on the execution time must be guaranteed. In
practice, there are various levels of predictability. For example, there may
be sets of OS service calls for which an upper bound is known and for
which there is not a significant variation of the execution time. Calls like
“get me the time of the day” may fall into this class. For other calls, there
may be a huge variation. Calls like “get me 4MB of free memory” may
fall into this second class. In particular, the scheduling policy of any RTOS
must be deterministic.

There may also be times during which interrupts must be disabled to avoid
interferences between components of the OS. Less importantly, they can
also be disabled to avoid interferences between tasks. The periods during
which interrupts are disabled must be quite short in order to avoid unpre-
dictable delays in the processing of critical events.

For RTOSs implementing file-systems on hard disks, it may be necessary to
implement contiguous files (files stored in contiguous disk areas) to avoid
unpredictable disk head movements.

The OS must manage the scheduling of tasks. Scheduling can be defined
as mapping from sets of tasks to intervals of execution time, including the
mapping to start times as a special case. Also, the OS possibly has to be
aware of task deadlines so that the OS can apply appropriate scheduling
techniques (there are, however, cases in which scheduling is done com-
pletely off-line and the OS only needs to provide services to start tasks at
specific times or priority levels). Scheduling algorithms will be discussed
in detail in Chapter 6.

Some systems require the OS to manage time. This management is
mandatory if internal processing is linked to an absolute time in the physi-
cal environment. Physical time is described by real numbers. In computers,

3This section includes information from Hiroaki Takada’s tutorial [Takada, 2001].

System Software 183

discrete time standards are typically used instead. The precise requirements
may vary:

1 In some systems, synchronization with global time standards is neces-
sary. In this case, global clock synchronization is performed. Two
standards are available for this:

– Universal Time Coordinated (UTC): UTC is defined by astronom-
ical standards. Due to variations regarding the movement of the
Earth, this standard has to be adjusted from time to time. Several
seconds have been added during the transition from one year to the
next. The adjustments can be problematic, since incorrectly imple-
mented software could get the impression that the next year starts
twice during the same night.

– International atomic time (in French: temps atomic internationale,
or TAI). This standard is free of any artificial artifacts.

Some connection to the environment is used to obtain accurate time
information. External synchronization is typically based on wireless
communication standards such as the global positioning system (GPS)
[National Space-Based Positioning, Navigation, and Timing Coordina-
tion Office, 2010] or mobile networks.

2 If embedded systems are used in a network, it is frequently sufficient
to synchronize time information within the network. Local clock syn-
chronization can be used for this. In this case, connected embedded
systems try to agree on a consistent view of the current time.

3 There may be cases in which provision for precise local delays is all
that is needed.

For several applications, precise time services with a high resolution must
be provided. They are required for example in order to distinguish between
original and subsequent errors. For example, they can help to identify the
power plant(s) that are responsible for blackouts (see [Novosel, 2009]). The
precision of time services depends on how they are supported by a partic-
ular execution platform. They are very imprecise (with precisions in the
millisecond range) if they are implemented through tasks at the applica-
tion level and very precise (with precisions in the microsecond range) if
they are supported by communication hardware. More information about
time services and clock synchronization is contained in the book by Kopetz
[Kopetz, 1997].

The OS must be fast. An operating system meeting all the requirements
mentioned so far would be useless, if it were very slow. Therefore, the OS
must obviously be fast.

184 EMBEDDED SYSTEM DESIGN

Each RTOS includes a so-called real-time OS kernel. This kernel manages the
resources which are found in every real-time system, including the processor,
the memory and the system timer. Major functions in the kernel include the
task management, inter-task synchronization and communication, time man-
agement and memory management.

While some RTOSs are designed for general embedded applications, others
focus on a specific area. For example, OSEK/VDX-compatible operating sys-
tems focus on automotive control. Operating systems for a selected area can
provide a dedicated service for that particular area and can be more compact
than operating systems for several application areas.

Similarly, while some RTOSs provide a standard API, others come with their
own, proprietary API. For example, some RTOSs are compliant with the stan-
dardized POSIX RT-extension [Harbour, 1993] for UNIX, with the OSEK/VDX
standard, or with the ITRON specification developed in Japan. Many RT-kernel
type of OSs have their own API. ITRON, mentioned in this context, is a mature
RTOS which employs link-time configuration.

Available RTOSs can further be classified into the following three categories
[Gupta, 2002]:

Fast proprietary kernels: According to Gupta, “for complex systems,
these kernels are inadequate, because they are designed to be fast, rather
than to be predictable in every respect”. Examples include QNX, PDOS,
VCOS, VTRX32, VxWorks.

Real-time extensions to standard OSs: In order to take advantage of com-
fortable main stream operating systems, hybrid systems have been devel-
oped. For such systems, there is an RT-kernel running all RT-tasks. The
standard operating system is then executed as one of these tasks (see fig.
4.4).

Figure 4.4. Hybrid OSs

This approach has some advantages: the system can be equipped with a
standard OS API, can have graphical user interfaces (GUIs), file-systems
etc. and enhancements to standard OSs become quickly available in the
embedded world as well. Also, problems with the standard OS and its non-
RT tasks do not negatively affect the RT-tasks. The standard OS can even

System Software 185

crash and this would not affect the RT-tasks. On the down side, and this
is already visible from fig. 4.4, there may be problems with device drivers,
since the standard OS will have its own device drivers. In order to avoid
interference between the drivers for RT-tasks and those for the other tasks,
it may be necessary to partition devices into those handled by RT-tasks and
those handled by the standard OS. Also, RT-tasks cannot use the services of
the standard OS. So all the nice features like file-system access and GUIs
are normally not available to those tasks, even though some attempts may
be made to bridge the gap between the two types of tasks without losing
the RT-capability. RT-Linux is an example of such hybrid OSs.

According to Gupta [Gupta, 2002], trying to use a version of a standard
OS is “not the correct approach because too many basic and inappropri-
ate underlying assumptions still exist such as optimizing for the average
case (rather than the worst case), ... ignoring most if not all semantic
information, and independent CPU scheduling and resource allocation”.
Indeed, dependences between tasks are not very frequent for most applica-
tions of standard operating systems and are therefore frequently ignored by
such systems. This situation is different for embedded systems, since de-
pendences between tasks are quite common and they should be taken into
account. Unfortunately, this is not always done if extensions to standard op-
erating systems are used. Furthermore, resource allocation and scheduling
are rarely combined for standard operating systems. However, integrated
resource allocation and scheduling algorithms are required in order to guar-
antee meeting timing constraints.

There is a number of research systems which aim at avoiding the above
limitations. These include Melody [Wedde and Lind, 1998], and (accord-
ing to Gupta [Gupta, 2002]) MARS, Spring, MARUTI, Arts, Hartos, and
DARK.

Takada [Takada, 2001] mentions low overhead memory protection, temporal
protection of computing resources (targeting at preventing tasks from comput-
ing for longer periods of time than initially planned), RTOSs for on-chip mul-
tiprocessors (especially for heterogeneous multiprocessors and multi-threaded
processors) and support for continuous media and quality of service control as
research issues.

Due to the potential growth in the embedded system market, vendors of stan-
dard OSs are actively trying to sell variations of their products (like Windows
Embedded [Microsoft Inc., 2003]) and obtain market shares from traditional
vendors such as Wind River Systems [Wind River, 2010b].

186 EMBEDDED SYSTEM DESIGN

4.1.3 Virtual machines

In certain environments, it may be useful to emulate several processors on a
single real processor. This is possible with virtual machines executed on the
bare hardware. On top of such a virtual machine, several operating systems
can be executed. Obviously, this allows several operating systems to be run on
a single processor. For embedded systems, this approach has to be used with
care since the temporal behavior of such an approach may be more problem-
atic and timing predictability may be lost. Nevertheless, there may be cases in
which this approach is useful. For example, there may be the need to integrate
several legacy applications using different operating systems on a single hard-
ware processor. A full coverage of virtual machines is beyond the scope of this
book. Interested readers should refer to books by Smith et al. [Smith and Nair,
2005] and Craig [Craig, 2006]. PikeOS is an example of a virtualization con-
cept dedicated toward embedded systems [SYSGO AG, 2010]. PikeOS allows
the system’s resources (e.g. memory, I/O devices, CPU-time) to be divided
into separate subsets. PikeOS comes with a small micro-kernel. Several oper-
ating systems, application programming interfaces (APIs) and run-time envi-
ronments (RTEs) can be implemented on top of this kernel (see fig. 4.5).

Figure 4.5. PikeOS virtualization (©SYSGO)

4.1.4 Resource access protocols

4.1.4.1 Priority inversion

There are cases in which tasks must be granted exclusive access to resources
such as global shared variables or devices in order to avoid non-deterministic or
otherwise unwanted program behavior. Such exclusive access is very important
for embedded systems, e.g. for implementing shared memory-based communi-
cation or exclusive access to some special hardware device. Program sections
during which such exclusive access is required are called critical sections.
Critical sections should be short. Operating systems typically provide prim-
itives for requesting and releasing exclusive access to resources, also called
mutex primitives. Tasks not being granted exclusive access must wait until

System Software 187

the resource is released. Accordingly, the release operation has to check for
waiting tasks and resume the task of highest priority.

In this book, we will call the request operation P(S) and the release operation
V(S), where S corresponds to the particular resource requested. P(S) and V(S)
are so-called semaphore operations. Semaphores allow up to n (with n being
a parameter) threads or processes to use a particular resource protected by S
concurrently. S is a data structure maintaining a count on how many resources
are still available. P(S) checks the count and blocks the caller if all resources
are in use. Otherwise, the count is modified and the caller is allowed to con-
tinue. V(S) increments the number of available resources and makes sure that a
blocked caller (if it exists) is unblocked. The names P(S) and V(S) are derived
from the Dutch language. We will use these operations only in the form of
binary semaphores with n = 1, i.e. we will allow only a single caller to use the
resource.

For embedded systems, dependencies between tasks is a rule, rather than an
exception. Also, the effective task priority of real-time applications is more
important than for non-real applications. Mutually exclusive access can lead
to priority inversion, an effect which changes the effective priority of tasks.
Priority inversion exists on non-embedded systems as well. However, due to
the reasons just listed, the priority inversion problem can be considered a more
serious problem in embedded systems.

A first case of the consequences resulting from the combination of “mutual
exclusion” with “no pre-emption” can be seen in fig. 4.6.

Figure 4.6. Blocking of a task by a lower priority task

Bold upward pointing arrows indicate the times at which tasks become exe-
cutable, or “ready”. At time t0, task T2 enters a critical section after requesting
exclusive access to some resource via an operation P. At time t1, task T1 be-
comes ready and preempts T2. At time t2, T1 fails getting exclusive access to
the resource in use by T2 and becomes blocked. Task T2 resumes and after

188 EMBEDDED SYSTEM DESIGN

some time releases the resource. The release operation checks for pending
tasks of higher priority and preempts T2. During the time T1 has been blocked,
a lower priority task has effectively blocked a higher priority task. The ne-
cessity of providing exclusive access to some resources is the main reason for
this effect. Fortunately, in the particular case of figure 4.6, the duration of the
blocking cannot exceed the length of the critical section of T2. This situation
is problematic, but difficult to avoid.

In more general cases, the situation can be even worse. This can be seen, for
example, from fig. 4.7.

Figure 4.7. Priority inversion with potentially large delay

We assume that tasks T1,T2 and T3 are given. T1 has the highest priority, T2

has a medium priority and T3 has the lowest priority. Furthermore, we assume
that T1 and T3 require exclusive use of some resource via operation P(S). Now,
let T3 be in its critical section when it its preempted by T2. When T1 preempts
T2 and tries to use the same resource that T3 is having exclusive access of, it
blocks and lets T2 continue. As long as T2 is continuing, T3 cannot release the
resource. Hence, T2 is effectively blocking T1 even though the priority of T1 is
higher than that of T2. In this example, the blocking of T1 continues as long as
T2 executes. T1 is blocked by a task of lower priority, which is not in its critical
section. This effect is called priority inversion4. In fact, priority inversion
happens even though T2 is unrelated to T1 and T3. The duration of the priority
inversion situation is not bounded by the length of any critical section. This
example and other examples can be simulated with the levi simulation software
[Sirocic and Marwedel, 2007c].

One of the most prominent cases of priority inversion happened in the Mars
Pathfinder, where an exclusive use of a shared memory area led to priority
inversion on Mars [Jones, 1997].

4Some authors do already consider the case of fig. 4.6 as a case of priority inversion. This was also done in
earlier versions of this book.

System Software 189

4.1.4.2 Priority inheritance

One way of dealing with priority inversion is to use the priority inheritance
protocol. This protocol is a standard protocol available in many real-time op-
erating systems. It works as follows:

Tasks are scheduled according to their active priorities. Tasks with the same
priorities are scheduled on a first-come, first-served basis.

When a task T1 executes P(S) and exclusive access is already granted to
some other task T2, then T1 will become blocked. If the priority of T2 is
lower than that of T1, T2 inherits the priority of T1. Hence, T2 resumes exe-
cution. In general, every task inherits the highest priority of tasks blocked
by it.

When a task T2 executes V(S), its priority is decreased to the highest priority
of the tasks blocked by it. If no other task is blocked by T2, its priority is
reset to the original value. Furthermore, the highest priority task so far
blocked on S is resumed.

Priority inheritance is transitive: if Tx blocks Ty and Ty blocks Tz, then Tx

inherits the priority of Tz.

This way, high priority tasks being blocked by low priority tasks propagate
their priority to the low priority tasks such that the low priority tasks can release
semaphores as soon as possible.

In the example of fig. 4.7, T3 would inherit the priority of T1 when T1 executes
P(S). This would avoid the problem mentioned since T2 could not preempt T3

(see fig. 4.8).

Figure 4.8. Priority inheritance for the example of fig. 4.7

Fig. 4.9 shows an example of nested critical sections [Buttazzo, 2002].

190 EMBEDDED SYSTEM DESIGN

Figure 4.9. Nested critical sections

Note that the priority of task T3 is not reset to its original value at time t0.
Instead, its priority is decreased to the lowest priority of the tasks blocked by
it, in this case the priority π1 of T1.

Transitiveness of priority inheritance is shown in fig. 4.10 [Buttazzo, 2002].

Figure 4.10. Transitiveness of priority inheritance

At time t0, T1 is blocked by T2 which in turn is blocked by T3. Therefore, T3

inherits the priority π1 of T1.

Priority inheritance is also used by ADA: during a rendez-vous, the priority of
both tasks is set to their maximum.

Priority inheritance also solved the Mars Pathfinder problem: the VxWorks
operating system used in the pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be set to “on”. When the
software was shipped, it was set to “off”. The problem on Mars was corrected

System Software 191

by using the debugging facilities of VxWorks to change the flag to “on”, while
the Pathfinder was already on Mars [Jones, 1997]. Priority inheritance can be
simulated with the levi simulation software [Sirocic and Marwedel, 2007c].

While priority inheritance solves some problems, it does not solve others.
There may be a large number of tasks having a high priority and there may
even be deadlocks. The priority ceiling protocol [Sha et al., 1990] can be
used instead, but requires processes to be known at design time.

4.2 ERIKA

Several embedded systems (such as automotive systems and home appliances)
require the entire application to be hosted on small micro-controllers5. For
that reason, the operating system services provided by the firmware on such
systems must be limited to a minimal set of features allowing multi-threaded
execution of periodic and aperiodic tasks, with support for shared resources to
avoid the priority inversion phenomenon.

Such requirements have been formalized in the 1990s by the OSEK/VDX Con-
sortium [OSEK Group, 2010], which defined the minimal services of a multi-
threaded real-time operating system allowing implementations of 1-10 kilo-
bytes code footprint on 8-bit micro-controllers. The OSEK/VDX API has been
recently extended by the AUTOSAR Consortium [AUTOSAR, 2010] which
provided enhancements to support time protection, scheduling tables for time
triggered systems, and memory protection to protect the execution of differ-
ent applications hosted on the same micro-controller. This section briefly de-
scribes the main features and requirements of such systems, considering as a
reference implementation the open-source ERIKA Enterprise real-time kernel
[Evidence, 2010].

The first feature that distinguishes an OSEK kernel from other operating sys-
tems is that all kernel objects are statically defined at compile time. In par-
ticular, most of these systems do not support dynamic memory allocation,
and dynamic creation of tasks. To help the user in configuring the system,
the OSEK/VDX standard provides a configuration language, named OIL, to
specify the objects that must be instantiated in the application. When the ap-
plication is compiled, the OIL Compiler generates the operating system data
structures, allocating the exact amount of memory needed. This approach al-
lows allocating only the data really needed by the application, to be put in
flash memory (which is less expensive than RAM memory on most micro-
controllers).

5This section was contributed by G. Buttazzo and P. Gai (Pisa).

192 EMBEDDED SYSTEM DESIGN

The second feature distinguishing an OSEK/VDX system is the support for
Stack Sharing. The reason for providing stack sharing is that RAM memory is
very expensive on small micro-controllers. The possibility of implementing a
stack sharing system is related to how the task code is written.

In traditional real-time systems, the typical implementation of a periodic task
is structured according to the following scheme:

task(x) {
int local;

initialization();

for (;;) {
do instance();

end instance();

}}

Such a scheme is characterized by a forever loop containing an instance of the
periodic task that terminates with a blocking primitive (end instance()), which
has the effect of blocking the task until the next activation. When following
such a programming scheme (called extended task in OSEK/VDX), the task is
always present in the stack, even during waiting times. In this case, the stack
cannot be shared and a separate stack space must be allocated for each task.

The OSEK/VDX standard also provides support for basic tasks, which are spe-
cial tasks that are implemented in a way more similar to functions, according
to the following scheme:

int local;

Task x() {
do instance();

}
System initialization() {
initialization();

...}

With respect to extended tasks, in basic tasks, the persistent state that must be
maintained between different instances is not stored in the stack, but in global
variables. Also, the initialization part is moved to system initialization, be-
cause tasks are not dynamically created, but they exist since the beginning.
Finally, no synchronization primitive is needed to block the task until its next
period, because the task is activated every time a new instance starts. Also, the
task cannot call any blocking primitive, therefore it can either be preempted

System Software 193

by higher priority tasks or execute until completion. In this way, the task be-
haves like a function, which allocates a frame on the stack, runs, and then
cleans the frame. For this reason, the task does not occupy stack space be-
tween two executions, allowing the stack to be shared among all tasks in the
system. ERIKA Enterprise supports stack sharing, allowing all basic tasks in
the system to share a single stack, so reducing the overall RAM memory used
for this purpose.

Concerning task management, OSEK/VDX kernels provide support for Fixed
Priority Scheduling with Immediate Priority Ceiling to avoid the Priority Inver-
sion problem. The usage of Immediate Priority Ceiling is supported through
the specification of the resource usage of each task in the OIL configuration
file. The OIL Compiler computes the resource ceiling of each task based on
the resource usage declared by each task in the OIL file.

OSEK/VDX systems also support Non Preemptive Scheduling and Preemption
Thresholds to limit the overall stack usage. The main idea is that limiting
the preemption between tasks reduces the number of tasks allocated on the
system stack at the same time, further reducing the overall amount of required
RAM. Note that reducing preemptions may degrade the schedulability of the
tasks set, hence the degree of preemption must be a traded off with the system
schedulability and the overall RAM memory used in the system.

Another requirement for operating systems designed for small micro-control-
lers is scalability, which means supporting reduced versions of the API for
smaller footprint implementations. In mass production systems, in fact, the
footprint significantly impacts on the overall cost. In this context, scalabil-
ity is provided through the concept of Conformance Classes, which define
specific subsets of the operating system API. Conformance Classes are also
accompanied by an upgrade path between them, with the final objective of
supporting partial implementation of the standard with reduced footprint. The
conformance classes supported by the OSEK/VDX standard (and by ERIKA
Enterprise) are:

BCC1: This is the smallest Conformance class, supporting a minimum of
8 tasks with different priority and 1 shared resource.

BCC2: Compared to BCC1, this conformance class adds the possibility to
have more than one task at the same priority. Each task can have pending
activations, that is, the operating system records the number of instances
that have been activated but not yet executed.

ECC1: Compared to BCC1, this conformance class adds the possibility to
have Extended tasks that can wait for an event to appear.

194 EMBEDDED SYSTEM DESIGN

ECC2: This Conformance class adds both multiple activations and Ex-
tended tasks.

ERIKA Enterprise further extends these conformance classes by providing the
following two conformance classes:

EDF: This conformance class does not use a fixed priority scheduler but an
Earliest Deadline First (EDF) Scheduler (see section 6.2.2.3) optimized for
the implementation on small micro-controllers.

FRSH: This conformance class extends the EDF scheduler class by pro-
viding a resource reservation scheduler based on the IRIS scheduling algo-
rithm [Marzario et al., 2004].

Anther interesting feature of OSEK/VDX systems is that the system provides
an API for controlling interrupts. This is a major difference when compared to
POSIX-like systems, where the interrupts are exclusive domain of the operat-
ing system and are not exported to the operating system API. The rationale for
this is that on small micro-controllers users often want to directly control inter-
rupt priorities, hence it is important to provide a standard way to deal with in-
terrupt disabling/enabling. Moreover, the OSEK/VDX standard specifies two
types of Interrupt Service Routines (ISR):

Category 1: simpler and faster, does not implement a call to the scheduler
at the end of the ISR;

Category 2: this ISR can call some primitives that change the scheduling
behavior. The end of the ISR is a rescheduling point. ISR1 has always a
higher priority of ISR2.

An important feature of OSEK/VDX kernels is the possibility to fine tune the
footprint by removing error checking code from the production versions, as
well as to define hooks that will be called by the system when specific events
occur. These features allow for a fine tuning of the application footprint that
will be larger (and safer) when debugging and smaller in production when most
bugs will be found and removed from the code.

To support a better debugging experience, the OSEK/VDX standard defines a
textual language, named ORTI, which describes where the various objects of
the operating system are allocated. The ORTI file is typically generated by the
OIL compiler and is used by debuggers to print detailed information about op-
erating system objects defined in the system (for example, the debugger could
print the list of the tasks in an application with their current status).

System Software 195

All the features defined by the OSEK/VDX standard have been implemented
in the open-source ERIKA Enterprise kernel [Evidence, 2010], for a set of em-
bedded micro-controllers, with a final footprint ranging between 1 and 5 kilo-
bytes of object code. ERIKA Enterprise also implements additional features,
like the EDF scheduler, providing an open and free of charge operating system
that can be used to learn, test and implement real applications for industrial
and educational purposes.

4.3 Hardware abstraction layers

Hardware abstraction layers (HALs) provide a means for accessing hardware
through a hardware-independent application programming interface (API). For
example, we could come up with a hardware-independent technique for access-
ing timers, irrespective of the addresses to which timers are mapped. Hardware
abstraction layers are used mostly between the hardware and operating system
layers. They provide software intellectual property (IP), but they are neither
part of operating systems nor can they be classified as middleware. A survey
over work in this area is provided by Ecker, Müller and Dömer [Ecker et al.,
2009].

4.4 Middleware

Communication libraries provide a means for adding communication function-
ality to languages lacking this feature. They add communication functionality
on top of the basic functionality provided by operating systems. Due to being
added on top of the OS, they can be independent of the OS (and obviously
also of the underlying processor hardware). As a result, we will obtain net-
worked embedded systems. There is a trend towards supporting communica-
tion within some local system as well as communication over longer distances.
The use of Internet protocols is becoming more popular.

4.4.1 OSEK/VDX COM

OSEK/VDX® COM is a special communication standard for the OSEK au-
tomotive operating systems [OSEK Group, 2004]6. OSEK COM provides an
“Interaction Layer” as an application programming interface (API) through
which internal communication (communication within one ECU) and external
communication (communication with other ECUs) can be performed. OSEK
COM specifies just the functionality of the Interaction layer. Conforming im-
plementations must be developed separately.

6OSEK is a trademark of Continental Automotive GmbH.

196 EMBEDDED SYSTEM DESIGN

The Interaction layer communicates with other ECUs via a “Network Layer”
and a “Data Link” layer. Some requirements for these layers are specified by
OSEK COM, but these layers themselves are not part of OSEK COM. This
way, communication can be implemented on top of different network proto-
cols.

OSEK COM is an example of communication middleware dedicated toward
embedded systems. In addition to middleware dedicated toward embedded
systems, many communication standards developed for non-embedded appli-
cations can be adopted for embedded systems as well.

4.4.2 CORBA

CORBA® (Common Object Request Broker Architecture) [Object Manage-
ment Group (OMG), 2003] is one example of such adopted standards. CORBA
facilitates the access to remote services. With CORBA, remote objects can
be accessed through standardized interfaces. Clients are communicating with
local stubs, imitating the access to the remote objects. These clients send in-
formation about the object to be accessed as well as parameters (if any) to the
Object Request Broker (ORB, see fig. 4.11). The ORB then determines the
location of the object to be accessed and sends information via a standardized
protocol, e.g. the IIOP protocol, to where the object is located. This informa-
tion is then forwarded to the object via a skeleton and the information requested
from the object (if any) is returned using the ORB again.

Figure 4.11. Access to remote objects using CORBA

Standard CORBA does not provide the predictability required for real-time
applications. Therefore, a separate real-time CORBA (RT-CORBA) standard
has been defined [Object Management Group (OMG), 2005a]. A very essen-
tial feature of RT-CORBA is to provide end-to-end predictability of timeliness
in a fixed priority system. This involves respecting thread priorities between
client and server for resolving resource contention, and bounding the latencies
of operation invocations. One particular problem of real-time systems is that
thread priorities might not be respected when threads obtain mutually exclu-
sive access to resources. The priority inversion problem (see page 186) has
to be addressed in RT-CORBA. RT-CORBA includes provisions for bounding
the time during which such priority inversion can happen. RT-CORBA also
includes facilities for thread priority management. This priority is independent

System Software 197

of the priorities of the underlying operating system, even though it is compati-
ble with the real-time extensions of the POSIX standard for operating systems
[Harbour, 1993]. The thread priority of clients can be propagated to the server
side. Priority management is also available for primitives providing mutually
exclusive access to resources. The priority inheritance protocol just described
must be available in implementations of RT-CORBA. Pools of pre-existing
threads avoid the overhead of thread creation and thread-construction.

4.4.3 MPI

As an alternative to CORBA, the message passing interface (MPI) can be used
for communication between different processors. MPI is a very frequently
used library, initially designed for high-performance computing. It is based on
message passing and allows a choice between synchronous and asynchronous
message passing. For example, synchronous message passing is possible with
the MPI Send library function [MHPCC, 2010]:

MPI Send(buffer,count,type,dest,tag,comm) where:

buffer: is the address of data to be sent,

count: is the number of data elements to be sent,

type: is the data type of data to be sent (e.g. MPI CHAR, MPI SHORT,
MPI INT),

dest: is the process id of the target process,

tag: is a message id (for sorting incoming messages),

comm: is the communication context (set of processes for which destina-
tion field is valid) and

function result: indicates success.

The following is an asynchronous library function:

MPI Isend(buffer,count,type,dest,tag,comm,request) where

buffer, count, type, dest, tag, comm: are same as above, and

the system issues a unique “request number”. The programmer uses this
system assigned “handle” later (in a WAIT type routine) to determine com-
pletion of the non-blocking operation.

For MPI, the partitioning of computations among various processors must be
done explicitly and the same is true for the communication and the distribution

198 EMBEDDED SYSTEM DESIGN

of data. Synchronization is implied by communication, but explicit synchro-
nization is also possible. As a result, much of the management code is explicit
and causes a major amount of work for the programmer. Also, it does not
scale well when the number of processors is significantly changed [Verachtert,
2008].

In order to apply the MPI-style of communication to real-time systems, a real-
time version of MPI, called MPI/RT has been defined [MPI/RT forum, 2001].
MPI-RT does not cover some of the issues covered in RT-CORBA, such as
thread creation and termination. MPI/RT is conceived as a potential layer be-
tween the operating system and standard (non real-time) MPI.

MPI is available on a variety of platforms and also considered for multiple
processors on a chip. However, it is based on the assumption that memory
accesses are faster than communication operations. Also, MPI is mainly tar-
geting at homogeneous multi-processors. These assumptions are not true for
multiple processors on a chip.

4.4.4 POSIX Threads (Pthreads)

The POSIX thread (Pthread) library is an application programming interface
(API) to threads at the operating system level [Barney, 2010]. Pthreads are
consistent with the IEEE POSIX 1003.1c operating system standard. A set of
threads can be run in the same address space. Therefore, communication can
be based on shared memory communication. This avoids the memory copy
operations typically required for MPI. The library is therefore appropriate for
programming multi-core processors sharing the same address space. The li-
brary includes a standard API with mechanisms for mutual exclusion. Pthreads
use completely explicit synchronization [Verachtert, 2008]. The exact seman-
tics depends on the memory consistency model used. Synchronization is hard
to program correctly. The library can be employed as a back-end for other
programming models.

4.4.5 OpenMP

For OpenMP, parallelism is mostly explicit, whereas computation partition-
ing, communication, synchronization etc. are implicit. Parallelism is expressed
with pragmas: for example, loops can be preceded by pragmas indicating that
they should be parallelized. The following program demonstrates a small par-
allel loop [OpenMP Architecture Review Board, 2008]:

void a1(int n, float *a, float *b)

{int i;

System Software 199

#pragma omp parallel for

for (i=1; i<n; i++) /* i is private by default */

b[i] = (a[i] + a[i-1]) / 2.0;

}

This means that (among the approaches just introduced) OpenMP requires the
least amount of effort for parallelization for the user. However, this also means
that the user cannot control partitioning [Verachtert, 2008]. OpenMP is tar-
geted towards shared memory hardware. There are first applications for MP-
SoCs (see, for example [Marongiu and Benini, 2009]).

4.4.6 UPnP, DPWS and JXTA

Universal Plug-and-Play (UPnP) is an extension of the plug-and-play concept
of PCs towards devices connected within a network. Connecting network print-
ers, storage space and switches in homes and offices easily can be seen as the
key target [UPnP Forum, 2010]. Due to security concerns, only data is ex-
changed. Code cannot be transfered.

Devices Profile for Web Services (DPWS) aims at being more general than
UPnP. “The Devices Profile for Web Services (DPWS) defines a minimal set of
implementation constraints to enable secure Web Service messaging, discov-
ery, description, and eventing on resource-constrained devices” [ws4d, 2010].
DPWS specifies services for discovering devices connected to a network, for
exchanging information about available services, and for publishing and sub-
scribing to events.

In addition to libraries designed for high-performance computing (HPC), sev-
eral comprehensive network communication libraries can be used. These are
typically designed for a loose coupling over Internet-based communication
protocols. JXTAT M [JXTA Community, 2010] is an open source peer-to-peer
protocol specification. It defines a protocol by a set of XML messages that
allow any device connected to a network peer to exchange messages and col-
laborate independently of the network topology. JXTA creates a virtual overlay
network, allowing a peer to interact with other peers even when some of the
peers and resources are behind firewalls. The name is derived from the word
“juxtapose”.

CORBA, MPI, Pthreads, OpenMP, UPnP, DPWS and JXTA are special cases
of communication middleware (software to be used at a layer between the op-
erating system and applications). Initially, they were essentially designed for
communication between desktop computers. However, there are attempts to
leverage the knowledge and techniques also for embedded systems. For mo-
bile devices like smart phones, this approach may be appropriate. For “hard

200 EMBEDDED SYSTEM DESIGN

real-time systems”, their overhead, their real-time capabilities and their ser-
vices may be inappropriate.

4.5 Real-time databases

Data bases provide a convenient and structured way of storing and accessing
information. Accordingly, databases provide an API for writing and reading
information. A sequence of read and write operations is called a transaction.
Transactions may have to be aborted for a variety of reasons: there could be
hardware problems, deadlocks, problems with concurrency control etc. A fre-
quent requirement is that transactions do not affect the state of the database
unless they have been executed to their very end. Hence, changes caused by
transactions are normally not considered to be final until they have been com-
mitted. Most transactions are required to be atomic. This means that the end
result (the new state of the database) generated by some transaction must be
the same as if the transaction has been fully completed or not at all. Also, the
database state resulting from a transaction must be consistent. Consistency
requirements include, for example, that the values from read requests belong-
ing to the same transaction are consistent (do not describe a state which never
existed in the environment modeled by the database). Furthermore, to some
other user of the database, no intermediate state resulting from a partial exe-
cution of a transaction must be visible (the transactions must be performed as
if they were executed in isolation). Finally, the results of transactions should
be persistent. This property is also called durability of the transactions. To-
gether, the four properties printed in bold are known as ACID properties (see
the book by Krishna and Shin [Krishna and Shin, 1997], Chapter 5).

For some databases, there are soft real-time constraints. For example, time-
constraints for airline reservation systems are soft. In contrast, there may also
be hard constraints. For example, automatic recognition of pedestrians in auto-
mobile applications and target recognition in military applications must meet
hard real-time constraints. The above requirements make it very difficult to
guarantee hard real-time constraints. For example, transactions may be aborted
various times before they are finally committed. For all databases relying on
demand paging and on hard disks, the access times to disks are hardly pre-
dictable. Possible solutions include main memory databases and predictable
use of flash memory. Embedded databases are sometimes small enough to
make this approach feasible. In other cases, it may be possible to relax the
ACID requirements. For further information, see the book by Krishna and
Shin.

System Software 201

4.6 Assignments
1 Which requirements must be met for a real-time operating system? How

do they differ from the requirements of a standard OS?

2 How many seconds have been added at New Year’s Eve to compensate for
the differences between UTC and TAI since 1958? You may search the
Internet for an answer to this question.

3 Which features of a standard OS like Windows or Linux could be missing
in an RTOS?

4 Find processors for which memory protection units are available! How are
memory protection units different from the more frequently used memory
management units (MMUs)? You may search the Internet for an answer to
this question.

5 Describe classes of embedded systems for which protection should defi-
nitely be provided! Describe classes of systems, for which we would pos-
sibly not need protection!

6 Provide an example demonstrating priority inversion for a system compris-
ing three tasks!

7 Download the levi learning module leviRTS from the levi web site [Sirocic
and Marwedel, 2007c]. Model a task set as described in figure 4.12.

Task Priority Arrival Run time Printer Comm line
tP,P tV,P tP,C tV,C

T1 1 (high) 3 4 1 4 - -
T2 2 10 3 - - 1 2
T3 3 5 6 - - 4 6
T4 4 (low) 0 7 2 5 - -

Figure 4.12. Task set requesting exclusive use of resources

tP,P and tP,C are the times relative to the start times, at which a task requests
exclusive use of the printer or the communication line, respectively (called
ΔtP in levi). tV,P and tV,C are the times relative to the start times at which
these resources are released. Use priority-based, preemptive scheduling!
Which problem occurs? How can it be solved?

8 Which impact does the priority inversion problem have on the design of
network middleware?

9 How could flash memory have an influence on the design of real-time
databases?

Chapter 5

EVALUATION AND VALIDATION

5.1 Introduction

5.1.1 Scope

Specification, hardware platforms and system software provide us with the
basic ingredients which we need for designing embedded systems. During
the design process, we must validate and evaluate designs rather frequently.
Therefore, we will describe validation and evaluation before we talk about
design steps. Validation and evaluation, even though different from each other,
are very much linked.

Definition: Validation is the process of checking whether or not a certain
(possibly partial) design is appropriate for its purpose, meets all constraints
and will perform as expected.

Definition: Validation with mathematical rigor is called (formal) verification.

Validation is important for any design procedure, and hardly any system would
work as expected, had it not been validated during the design process. Vali-
dation is extremely important for safety-critical embedded systems. In theory,
we could try to design verified tools which always generate correct implemen-
tations from the specification. In practice, this verification of tools does not
work, except in very simple cases. As a consequence, each and every design
has to be validated. In order to minimize the number of times that we must
validate a design, we could try to validate it at the very end of the design pro-
cess. Unfortunately, this approach normally does not work either, due to the
large differences between the level of abstraction used for the specification and
that used for the implementation. Therefore, validation is required at various

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8 5, © Springer Science+Business Media B.V. 2011

203

http://dx.doi.org/10.1007/978-94-007-0257-8_5

204 EMBEDDED SYSTEM DESIGN

phases during the design procedure (see fig. 5.1). Validation and design should
be intertwined and not be considered as two completely independent activities.

Figure 5.1. Context of the current Chapter

It would be nice to have a single validation technique applicable to all vali-
dation problems. In practice, none of the available techniques solves all the
problems, and a mix of techniques has to be applied. In this Chapter, starting
in Section 5.6, we will provide a brief overview of key techniques which are
available. This material will be preceded by an overview of evaluation tech-
niques.

Definition: Evaluation is the process of computing quantitative information of
some key characteristics (or “objectives”) of a certain (possibly partial) design.

5.1.2 Multi-objective optimization

Design evaluations will, in general, lead to a characterization of the design by
several criteria, such as average and worst case execution time, energy con-
sumption, code size, dependability and safety. Merging all these criteria into
a single objective function (e.g. by using a weighted average) is usually not
advisable, as this would hide some of the essential characteristics of designs.
Rather, it is advisable to return to the designer a set of designs among which
the designer can then select an appropriate design. Such a set should, however,
only contain “reasonable” designs. Finding such sets of designs is the purpose
of multi-objective optimization techniques.

In order to perform multi-objective optimization, we do consider an m-dimen-
sional space X of possible solutions of the optimization problem. These dimen-
sions could, for example, reflect the number of processors, the sizes of mem-
ory, types and number of buses. For this space X , we define an n-dimensional
function

f (x) = (f1(x), . . . , fn(x)) where x ∈ X

Evaluation and Validation 205

which evaluates designs with respect to several criteria or objectives (e.g. cost
and performance). Let F be the n-dimensional space of values of these objec-
tives (the so-called objective space). Suppose that, for each of the objectives,
some total order < and the corresponding ≤-order are defined. In the follow-
ing, we assume that the goal is to minimize our objectives.

Definition: Vector u = (u1, ...,un) ∈ F dominates vector v = (v1, ...,vn) ∈ F
iff u is “better” than v with respect to at least one objective and not worse than
v with respect to all other objectives:

∀i ∈ {1, ...n} : ui ≤ vi ∧ (5.1)

∃i ∈ {1, ..,n} : ui < vi (5.2)

Definition: Vector u ∈ F is called indifferent with respect to vector v ∈ F iff
neither u dominates v nor v dominates v.

Definition: A design x ∈ X is called Pareto-optimal with respect to X iff there
is no design y ∈ X such that u = f (x) is dominated by v = f (y).

The previous definition defines Pareto-optimality in the solution space. The
next definition serves the same purpose in the objective space.

Definition: Let S ⊆ F be a subset of vectors in the objective space. v ∈ F is
called a non-dominated solution with respect to S iff v is not dominated by
any element ∈ S. v is called Pareto-optimal iff v is non-dominated with respect
to all solutions F .

Fig. 5.2 highlights the different areas in the objective space, relative to design
point (1).

Figure 5.2. (a) Pareto point (b) Pareto front

206 EMBEDDED SYSTEM DESIGN

The upper right area corresponds to designs that would be dominated by design
(1), since they would be “worse” with respect to both objectives. Designs in
the lower left rectangle (if they would exist) would dominate design (1), since
the would be “better” with respect to both objectives. Designs in the upper left
and the lower right area are indifferent: they are “better” with respect to one
objective and “worse” with respect to the other. Fig. 5.2 (right) shows a set of
Pareto points, i.e., the so-called Pareto front.

Design space exploration (DSE) based on Pareto points is the process of find-
ing and returning a set of Pareto-optimal solutions to the designer, enabling the
designer to select the most appropriate implementation.

5.1.3 Relevant objectives

For PC-like systems, the expected average performance plays a dominating
role during the design of new systems. For embedded and cyber-physical sys-
tems, multiple objectives need to be considered. The following list explains if
and where this objective is discussed in this book:

1 Average performance: An analysis of this objective is frequently based
on simulations. Section 5.6 briefly presents some issues in simulations. An
abundant amount of additional information on the simulation of systems (in
particular of heterogeneous, cyber-physical systems) is available. Due to
the large number of physical effects, it is impossible to provide a complete
list of references.

2 Worst case performance/real-time behavior: Details of the aiT timing
analysis tool will be presented in section 5.2.2.

3 Energy/power consumption: A brief overview of techniques for evaluat-
ing this objective will be presented in section 5.3.

4 Temperatures/thermal behavior: A brief introduction to this topic will
be presented in section 5.4.

5 Reliability: An introduction to the theory of reliability can be found in
section 5.5.

6 Electromagnetic compatibility: This objective will not be considered in
this book.

7 Numeric precision: A minor loss in numerical precision can be tolerated in
several applications. Accepting such a loss can improve the design in terms
of other objectives. As an example, we will discuss the transformation from
floating point to fixed point arithmetic in section 7.2.1. Several similar other
cases exist.

Evaluation and Validation 207

8 Testability: Costs for testing systems can be very large, sometimes larger
even than production costs. Hence, testability should be considered as well,
preferably already during the design. Testability will be discussed in Chap-
ter 8.

9 Cost: Cost in terms of silicon area or real money will not be considered in
this book.

10 Weight, robustness, usability, extendibility, security, safety, environ-
mental friendliness: These objectives will also not be considered.

There may be even more objectives than the ones listed above. The next section
presents several approaches for performance evaluation, with a focus on the
worst case performance.

5.2 Performance evaluation

Performance evaluation aims at predicting the performance of systems. This
is a major challenge (especially for cyber-physical systems) since we might
need worst case information, rather than just average case information. Such
information is necessary in order to guarantee real-time constraints.

5.2.1 Early phases

Two different classes of techniques have been proposed for obtaining perfor-
mance information already during early design phases:

Estimated cost and performance values: Quite a number of estimators
have been developed for this purpose. Examples include the work by Jha
and Dutt [Jha and Dutt, 1993] for hardware, Jain et al. [Jain et al., 2001],
and Franke [Franke, 2008] for software. Generating sufficiently precise
estimates requires considerable efforts.

Accurate cost and performance values: We can also use the real software
code (in the form of some binary) on a close-to-real hardware platform.
This is only possible if interfaces to “software synthesis tools” (compilers)
and hardware synthesis tools exist. This method can be more precise than
the previous one, but may be significantly (and sometimes prohibitively)
more time consuming.

In order to obtain sufficiently precise information, communication needs to be
considered as well. Unfortunately, it is typically difficult to compute commu-
nication cost already during early design phases.

208 EMBEDDED SYSTEM DESIGN

5.2.2 WCET estimation

Formal performance evaluation techniques have been proposed by many re-
searchers. For embedded systems, the work of Thiele et al., Henia and Ernst
et al., and Wilhelm et al. is particularly relevant (see, for example, [Thiele,
2006b], [Henia et al., 2005], and [Wilhelm, 2006]). These techniques require
some knowledge of architectures. They are less appropriate for very early de-
sign phases, but some of them can still be used without knowing all the details
about target architectures. These approaches model real, physical time.

Scheduling of tasks requires some knowledge about the duration of task ex-
ecutions, especially if meeting time constraints has to be guaranteed, as is in
real-time (RT) systems. The worst case execution time (WCET) is the ba-
sis for most scheduling algorithms. Some definitions related to the WCET are
shown in fig. 5.3.

Figure 5.3. WCET-related terms

The worst case execution time is the largest execution time of a program for any
input and any initial execution state. Unfortunately, the WCET is extremely
difficult to compute. In general, it is undecidable whether or not the WCET
is finite. This is obvious from the fact that it is undecidable whether or not
a program terminates. Hence, the WCET can only be computed for certain
programs/tasks. For example, for programs without recursion, without while
loops and with loops having statically known iteration counts, the WCET can
be computed. But even with such restrictions, it is usually practically impos-
sible to compute the WCET. The effect of modern processor architectures’
pipelines with their different kinds of hazards and memory hierarchies with
limited predictability of hit rates is difficult to precisely predict at design time.
Computing the WCET for systems containing caches, pipelines, interrupts and
virtual memory is an even greater challenge. As a result, we must be happy if
we are able to compute good upper bounds on the WCET.

Such upper bounds are usually called estimated worst case execution times,
or WCETEST . Such bounds should have at least two properties:

Evaluation and Validation 209

1 The bounds should be safe (WCETEST ≥ WCET).

2 The bounds should be tight (WCETEST -WCET � WCET)

Note that the term “estimated” does not mean that the resulting times are un-
safe.

Sometimes, architectural features which reduce the average execution time but
cannot guarantee to reduce the WCET are completely omitted from the real-
time designs (see page 145). Computing tight upper bounds on the execu-
tion time may still be difficult. The architectural features described above also
present problems for the computation of WCETEST .

Accordingly, the best-case execution time (BCET) and the corresponding es-
timate BCETEST are defined in an analogous manner. The BCETEST is a safe
and tight lower bound on the execution time.

Computing tight bounds from a program written in a high-level language such
as C without any knowledge of the generated assembly code and the underlying
architectural platform is impossible. Therefore, a safe analysis must start from
real machine code. Any other approach would lead to unsafe results.

In the following, we will study WCET estimation more closely. The presenta-
tion is based on the description of the tool aiT by R. Wilhelm [Wilhelm, 2006].
The architecture of aiT is shown in fig. 5.4.

Figure 5.4. Architecture of the aiT timing analysis tool

210 EMBEDDED SYSTEM DESIGN

Consistent with our remark about the problems with high-level code, aiT starts
from an executable object file comprising the code to be analyzed. From this
code, a control-flow graph (CFG) is extracted. Next, loop transformations are
applied. These include transformations between loops and recursive function
calls as well as virtual loop unrolling. This unrolling is called “virtual” since
it is performed internally, without actually modifying the code to be executed.
Results are represented in the CRL (control flow representation language) for-
mat. The next phase employs different static analyses. Static analyses read the
AIP-file comprising designer’s annotations. These annotations contain infor-
mation which is difficult or impossible to extract automatically from the pro-
gram (for example, bounds of complex loops). Static analyses include value-,
cache-, and pipeline analyses.

A value analysis computes enclosing intervals for possible values in registers
and local variables. The resulting information can be used for control-flow
analysis and for data-cache analysis. Frequently, values such as addresses are
precisely known (especially for “clean” code) and this helps in predicting ac-
cesses to memories.

The next step is cache and pipeline analysis. In the following, we will present
a few details about the cache analysis.

Suppose that we are using an n-way set associative cache (see fig. 5.5)1.

Figure 5.5. Set associative cache (for n=4)

We consider that part (row) of the cache corresponding to a certain index
(shown in bold in fig. 5.5). We assume that eviction from that part of the cache

1We assume that students are familiar with concepts of caches.

Evaluation and Validation 211

is controlled by the least recently used (LRU) strategy. This means that among
all references for a particular index, the last n referenced memory blocks are
stored in that part of the cache. We assume that the necessary LRU man-
agement hardware is available for each index and that each index is handled
independently of other indexes. Under this assumption, all evictions for a par-
ticular index are completely independent of decisions for other indexes. This
independence is extremely important, since it allows us to consider each of the
indexes independently.

Let us now consider a partial cache and a particular index. Suppose that we
have information about potential entries for each of the cache ways (columns).
Furthermore, consider control flow joins. What do we know about the con-
tent of the partial cache after the join? We must distinguish between may- and
must-information and the corresponding analysis. Must-analysis reveals the
entries which must be in the cache. This information is useful for comput-
ing the WCET. May-analysis identifies the entries which may be in the cache.
This information is typically used to conclude that certain information will
definitely not be in the cache. This knowledge is then exploited during the
computation of the BCET. As an example of must- and may-analysis, we con-
sider must information at control flow joins. Fig. 5.6 shows the corresponding
situation. Entries on the left are assumed to be younger than the ones on the
right.

Figure 5.6. Must-analysis at program joins for LRU-caches

In fig. 5.6, memory object c is assumed to be the youngest object for one path
to the join and a assumed to be the youngest object for the other path to the
join. The age of the other entries is defined accordingly. What do we know
about the “worst” case after the join? A certain entry is guaranteed to be in the
cache only if it is guaranteed to be in the cache for both paths. This means that
the intersection of the memory objects defines the result of the must-analysis
after the join. As a worst case, we must assume the maximum of the ages
along the two paths. Fig. 5.6 shows the result. Obviously, this analysis has to
use sets of entries for each of the cache ways.

Let us now consider may-analysis for control flow joins. Fig. 5.7 depicts the
situation.

212 EMBEDDED SYSTEM DESIGN

Figure 5.7. May-analysis at program joins for LRU-caches

Some object being in the cache on either of the two paths to the join may be in
the cache after the join. This means that the set of objects which may be in the
cache after the join consists of the union of the objects that were in the cache
before the join. As a best case, we use the minimum of the ages before the
join. Fig. 5.7 shows the result.

For any reference to a memory block b, the accessed memory block moves to
the youngest position, and all the other memory blocks age by 1.

Static analyses also comprise pipeline analysis. Pipeline analysis has to com-
pute safe bounds on the number of cycles required in order to execute machine
code in the machine pipeline. Details of pipeline analysis are explained by R.
Wilhelm [Wilhelm, 2006] and S. Thesing [Thesing, 2004].

The overall result of static analyses consists of bounds on the execution times
for each of the basic blocks of a program. Results are written to the PER-file
shown in fig. 5.4.

aiT’s next phase uses these bounds in order to derive worst case execution times
for the entire program. This step is based on an ILP model (see page 335). In
this model, the overall execution time is used as the objective function. The
overall execution time is calculated as the sum over the execution-time esti-
mates of basic blocks multiplied by their execution frequencies. The execution
time of basic blocks is defined as the WCET of a single execution of the block
(as computed during static analysis) multiplied by the the worst case execu-
tion count of that block. Only some of the execution counts of blocks can be
determined automatically. Therefore, building the ILP model relies on addi-
tional designer-provided information, e.g. about loop bounds. This informa-
tion is read in from the external AIP-file. Constraints model relations between
blocks. This technique for modeling execution time is called implicit path
enumeration, since the problem of enumerating the potentially large number
of execution paths is avoided. The ILP problem defined in this way can be
solved with some standard ILP solver maximizing the objective function. The
generated maximum yields a safe upper bound on the overall execution time.
aiT also provides a visualization of the results in the form of annotated control
flow graphs. These graphs can be analyzed by the designer in order to optimize
the system under design.

Evaluation and Validation 213

5.2.3 Real-time calculus

Thiele’s real-time calculus (RTC) is based on the description of the rate of
incoming events2. This description also includes fluctuations of this rate. To-
wards this end, the timing characteristics of a sequence (or stream) of events
are represented by a tuple of arrival curves:

α u(Δ),α l(Δ) ∈ IR ≥ 0,Δ ∈ IR ≥ 0

These curves represent the maximal resp. the minimal number of events arriv-
ing within a time interval of length Δ. There are at most α u(Δ) and at least
α l(Δ) events arriving within the time interval (t, t + Δ) for all t ≥ 0. Fig.
5.8 shows the number of possibly arriving events for some possible models of
arriving events.

Figure 5.8. Arrival curves: periodic stream (left), periodic stream with jitter J (right)

For example, in the case of periodic event streams with period p, there is a
maximum of a single event happening in time interval (0, p)3. Similarly, there
is an upper bound of two events within time interval (p,2p). Now, let us
consider the lower bound for time interval (0, p). There is possibly not a single
event in this interval. Hence, the bound is zero. For time interval (p,2p), there
has to be at least one event. Therefore, the bound is one. So, for Δ = 0.5p, there
will be at least zero and at most one incoming event (see fig. 5.8 (left)). In the
case of periodic event streams with jitter J, these curves are shifted by this
amount (see fig. 5.8 (right)). The upper bound is shifted to the left, the lower
bound is shifted to the right. The jitter is assumed not to be accumulating. We

2Our presentation of the real-time calculus is based on Thiele’s presentation in the book edited by Zu-
rawski [Thiele, 2006b]. Resulting considerations at the system level have been called modular performance
analysis (MPA).
3We leave out the subtle discussion of dis-continuities at Δ = n∗ p.

214 EMBEDDED SYSTEM DESIGN

are using bars on top of symbols (like α) for all entities referring to incoming
events.

Available computational and communication service capacity can be described
by service functions:

β u(Δ),β l(Δ) ∈ IR ≥ 0,Δ ∈ IR ≥ 0

These functions allow us to model situations in which the available service
capacity is fluctuating. Fig. 5.9 shows the communication capacity of some
time division multiple access (TDMA) bus (see page 161). Allocation is done
periodically with a period of p. Bus arbitration allocates this bus during a time
window s time units long. During this window, the bus achieves a band width
of b.

Figure 5.9. Service functions for a TDMA bus

The upper bound is obtained if the bus is allocated exactly at the time we are
starting our observation. The transfered amount is then increasing linearly.
The lower bound is obtained if the bus was just deallocated when we started
our observation of length Δ. Then we must wait p− s time units until the bus
gets allocated again.

Separate methods are required to determine α and β for streams of (“external”)
events arriving at the system to be modeled. Their computation is not part of
RTC. In contrast, bounds for events generated within the system are derived by
the calculus (see below).

Up till now, there is no information about the workload required by each of
the incoming events. This workload is represented by additional functions
γ u(e),γ l(e)∈ IR ≥ 0 for each sequence e of incoming events. This information
can be derived from bounds on the execution time of code required for each
of the events. Fig. 5.10 shows an example of such functions. This example is
based on the assumption that between three and four time units are required
for processing a single event.

Accordingly, the workload for a single event varies between three and four time
units, the work load for two events varies between six and eight time units, etc.

Evaluation and Validation 215

Figure 5.10. Work load characterization

The dashed lines are not part of the function, since it is defined only for an
integer number of events. The work load resulting from an incoming stream of
events can now be easily computed. Upper and lower bounds are characterized
by the functions

α u(Δ) = γ u(α u(Δ)) and (5.3)

α l(Δ) = γ l(α l(Δ)) (5.4)

There should be enough computational or communication capacity to handle
this work load. The number of events which can be processed with the avail-
able computational capacity can be computed as

β u(Δ) = (γ l)−1(β u(Δ)) and (5.5)

β l(Δ) = (γ u)−1(β l(Δ)) (5.6)

Equations 5.5 and 5.6 use the inverse of functions γ u and γ l to convert bounds
on the available capacity (measured in real time units) into bounds measured
in terms of the number of events that can be processed.

Based on this information, it is possible to derive the properties of outgoing
streams of events from incoming streams of events. Suppose the incoming
stream is characterized by bounds [α l,α u]. We can then compute character-
istics of the outgoing streams such as the corresponding bounds [α l′ ,α u′] of
the outgoing stream of events and the remaining service capacity, available for
other tasks. This remaining capacity is derived by transforming service curves
[β l ,β u] into service curves [β l′ ,β u′] (see fig. 5.11). This remaining service
capacity can be employed for lower priority tasks to be executed on the same
processor.

216 EMBEDDED SYSTEM DESIGN

Figure 5.11. Transformation of event stream and service capacities by real-time components

According to Thiele et al., outgoing streams and remaining service capacities
are bounded by the following functions [Thiele, 2006b]:

α u′ = [(α u⊗β u)�β l]∧β u (5.7)

α l′ = [(α l�β u)⊗β l]∧β l (5.8)

β u′ = (β u −α l)�0 (5.9)

β l′ = (β l −α u)⊗0 (5.10)

Operators used in these equations are defined as follows:

(f⊗g)(t) = inf 0≤u≤t{ f (t −u)+g(u)} (5.11)

(f⊗g)(t) = sup0≤u≤t{ f (t −u)+g(u)} (5.12)

(f�g)(t) = supu≥0{ f (t +u)−g(u)} (5.13)

(f�g)(t) = inf u≥0{ f (t +u)−g(u)} (5.14)

∧ denotes the minimum operator.

In essence, these equations characterize outgoing streams and capacities. These
equations have been adopted from communications theory. Proofs regard-
ing these equations are provided by Network Calculus [Le Boudec and Thiran,
2001]. The easiest way of using these equations is to download a Matlab tool-
box [Wandeler and Thiele, 2006].

The same theory also allows to compute the delay caused by the real-time
components as well as the size of the buffer required to temporarily store in-

Evaluation and Validation 217

coming/outgoing events. This way, performance and other characteristics of
the system can be computed from information about the components.

A second performance analysis method has been proposed by Henia, Ernst
et al. In this so-called SymTA/S approach [Henia et al., 2005], the different
curves in Thiele’s approach are replaced by standard models of event streams
such as periodic event streams, periodic event streams with jitter and periodic
streams with bursts. SymTA/S explicitly supports the combination and integra-
tion of different kinds of analysis techniques known from real-time research.

5.3 Energy and power models

Energy models and power models are essential for evaluating the correspond-
ing objectives. The two models are closely related, as can be seen from equa-
tion 3.13. Such models are needed for optimizations aiming at a reduction
of power and energy consumptions. They are also required for optimizations
trying to reduce operating temperatures.

One of the first power models was proposed by Tiwari [Tiwari et al., 1994].
It is based on measurements on a real system. Measured values are then
associated with executed instructions. The model includes so-called base
costs and inter-instruction costs. Base costs of an instruction correspond
to the energy consumed per instruction execution if an infinite sequence of
instances of that instruction is executed. Inter-instruction costs model the
additional energy consumed by the processor if instructions change. This
additional energy is required, for example, due to switching functional units
on and off. This power model focuses on the consumption in the processor
and does not consider the power consumed in the memory or in other parts
of the system.

Another power model was proposed by Simunic et al. [Simunic et al.,
1999]. That model is based on data sheets. The advantage of this approach
is that the contribution of all components of an embedded system to the
energy consumption can be computed. However, the information in data
sheets about average values may be less precise than the information about
maximal or minimal values.

A third model has been proposed by Rusell and Jacome [Rusell and Ja-
come, 1998]. This model is based on precise measurements of two fixed
configurations.

Still another model was proposed by Lee [Lee et al., 2001]. This model
includes a detailed analysis of the effects of the pipeline. It does not include
multicycle operations and pipeline stalls.

218 EMBEDDED SYSTEM DESIGN

The energy model by Steinke et al. [Steinke et al., 2001] is based on precise
measurements using real hardware. The consumption of the processor as
well as that of the memory are included. This model has been integrated
into the energy-aware compiler encc from TU Dortmund.

The energy consumption of caches can be computed with CACTI [Wilton
and Jouppi, 1996].

The Wattch power estimation tool [Brooks et al., 2000] estimates the power
consumption of microprocessor systems at the architectural level, without
requiring detailed information at the circuit or layout level.

Several commercial tools provide power estimation.

Power estimation is used in power management algorithms (see page 313).

These examples lead to the following general conclusion: for some real, ex-
isting hardware, precise power models can be generated with a limited effort.
However, during design space exploration, such hardware is typically not avail-
able and the resulting power models may be imprecise4.

5.4 Thermal models

The quest for higher performances of embedded systems has increased the
chances of components becoming hot during their operation. Temperatures of
the various components of embedded systems can have a serious impact on
their usability. In the worst case, overheated components can cause damages
to other systems. For example, they may cause fire hazards. Overheated com-
ponents can also cause the embedded systems themselves to fail. However,
hot components might also have other consequences, even in the absence of
immediate failures. For example, the useful system life might be shortened,
sometimes by rather large factors.

The thermal behavior of embedded systems is closely linked to the transforma-
tion of electrical energy into heat. Therefore, thermal models are usually linked
to energy models. Thermal models are based on the laws of physics. Thermal
conductance is the key quantity considered in thermal modeling. The thermal
conductance of a certain material reflects the amount of heat transfered through
a plate (made from that material) of area A and thickness L when the temper-
atures at the opposite sides differ by one Kelvin. The reciprocal of thermal
conductance is called thermal resistance. For stacked plates in close contact,
the effective overall thermal resistance is the sum of the individual resistances.

4Deviations of about 50% are sometimes mentioned in discussions.

Evaluation and Validation 219

This means, thermal resistances add up like electrical resistances in an elec-
trical network. This correspondence also extends to masses storing heat: such
masses correspond to capacitors of electrical networks. As a result, thermal
modeling typically uses equivalent electrical models and employs well-known
techniques for solving electrical network equations (see, for example, Chen et
al. [Chen et al., 2010]).

Tools for thermal modeling include HotSpot [Skadron et al., 2009], a tool which
can be integrated with power simulators such as Wattch (see page 218). Both
tools can be interfaced to the SimpleScalar functional simulator [Simple Scalar
LLC, 2004]. Validation of thermal models requires precise temperature mea-
surements [Mesa-Martinez et al., 2010].

5.5 Risk- and dependability analysis

Embedded and cyber-physical systems (like other products) can cause damages
to properties and lives. It is not possible to reduce the risk of damages to zero.
The best that we can do is to make the probability of damages small, hopefully
orders of magnitude smaller than other risks. This task is expected to become
more difficult in the future, since decreasing feature sizes of semiconductors
will be resulting in a reduced reliability of semiconductor devices [ITRS
Organization, 2009]. Transient as well as permanent faults are expected to
become more frequent. Shrinking feature sizes will also cause an increased
variability among device parameters. Therefore, dependability analysis and
fault tolerant designs are becoming extremely important [Mukherjee, 2008],
[Garg and Khatri, 2009] . Faults within semiconductors might lead to fail-
ures of the system. The terms faults, failures and the related terms error and
service were defined by Laprie et al. [Laprie, 1992], [Avižienis et al., 2004].

Definitions:

“The service delivered by a system (in its role as a provider) is its behavior
as it is perceived by its user(s); ... The delivered service is a sequence of the
provider’s external states. ... Correct service is delivered when the service
implements the system function”.

“A service failure, often abbreviated here to failure, is an event that occurs
when the delivered service of a system deviates from the correct service. ...
A service failure is a transition from correct service to incorrect service”.

An error exists if one of the system’s states is incorrect and may lead to its
subsequent service failure.

“The adjudged or hypothesized cause of an error is called a fault. Faults
can be internal or external of a system.”

220 EMBEDDED SYSTEM DESIGN

Some faults will not cause a system failure.

As an example, we might consider a transient fault flipping a bit in memory.
After this bit flip, the memory cell will be in error. A failure will occur if the
system service is affected by this error.

In line with these definitions, we will talk about failure rates when we consider
systems that do not provide the expected system function. We will talk about
faults whenever we consider the underlying reasons that might cause failures.
There is a large number of possible reasons for faults, some of them resulting
from reduced feature sizes of semiconductors. Errors will not be considered
in the remaining part of this book.

For many applications, a rate of a catastrophe has to be less than 10−9 per hour
[Kopetz, 1997], corresponding to one case per 100,000 systems operating for
10,000 hours. Reaching this level of dependability is only feasible if design
evaluation also comprises the analysis of the reliability, the expected life-time
and related objectives. Such an analysis is usually based on the probability of
failures.

More precisely, we consider the probability densities of failures. Let x be the
time until the first failure. x is a random variable. Let f (x) be the probability
density of this random variable.

As an example, we are frequently using the exponential probability density
f (x) = λe−λx. For this density function, failures are becoming less and less
likely over time (after some time, it is likely that the system is not working any
more and a system which is not working cannot fail). This density function is
frequently used since it has nice mathematical properties and since the actual
time dependency of the failure rate is often unknown. In the absence of knowl-
edge about the latter, a constant rate is assumed, leading to the exponential
density function. The exponential distribution will possibly be inexact, but it
is assumed that it does typically provide at least a first rough approximation of
the real system. Fig. 5.12 (left) shows this density function.

Figure 5.12. Density function and probability distribution for exponential distributions

Evaluation and Validation 221

The probability distribution is frequently more interesting than the density.
This distribution represents the probability of a system not working at time
t. It can be obtained by integrating the density function until time t.

F(t) = Pr(x ≤ t) (5.15)

F(t) =
Z t

0
f (x)dx (5.16)

For example, for the exponential distribution we obtain:

F(t) =
Z t

0
λe−λxdx = −[e−λx]t0 = 1− e−λt (5.17)

Fig. 5.12 (right) contains the corresponding function. As time advances, this
probability approaches 1. This means that, as time progresses, it becomes
likely that the system will have failed.

Definition: The reliability R(t) of a system is the probability of the time until
the first failure being larger than t:

R(t) = Pr(x > t), t ≥ 0 (5.18)

R(t) =
Z ∞

t
f (x)dx (5.19)

F(t)+R(t) =
Z t

0
f (x)dx+

Z ∞

t
f (x)dx = 1 (5.20)

R(t) = 1−F(t) (5.21)

f (x) = −dR(t)
dt

(5.22)

For the exponential distribution, we have R(t) = e−λt (see fig. 5.13).

Figure 5.13. Reliability for exponential distributions

The probability for the system to be functional after time t = 1/λ is about 37%.

222 EMBEDDED SYSTEM DESIGN

Definition: The failure rate λ(t) is the probability of a system failing between
time t and time t +Δt.

λ(t) = lim
Δt→0

Pr(t < x ≤ t +Δt|x > t)
Δt

(5.23)

Pr(t < x ≤ t +Δt|x > t) is the conditional probability for the system failing
within this time interval provided that it was working at time t. For conditional
probabilities, there is the general equation Pr(A|B) = Pr(AB)/Pr(B), where
Pr(AB) is the probability of A and B happening. Pr(AB) is equal to F(t +
Δt)−F(t) in our case. Pr(B) is the probability of the system working at time
t, which is R(t) in our notation. Therefore, equation 5.23 leads to:

λ(t) = lim
Δt→0

F(t +Δt)−F(t)
ΔtR(t)

=
f (t)
R(t)

(5.24)

For example, for the exponential distribution we obtain5:

λ(t) =
f (t)
R(t)

=
λe−λt

e−λt
= λ (5.25)

Failure rates are frequently measured as multiples (or fractions) of 1 FIT, where
“FIT” stands for Failure unIT and is also known as Failures In Time. 1 FIT
corresponds to 1 failure per 109 hours.

However, failure rates of real systems are usually not constant. For many sys-
tems, we have a “bath tub”-like behavior (see fig. 5.14).

Figure 5.14. Bath tub-like failure rates

5This result motivates denoting the failure rate and the constant of the exponential distribution with the
same symbol.

Evaluation and Validation 223

For this behavior, we are starting with an initially larger failure rate. This
higher rate is a result of an imperfect production process or “infant mortality”.
The rate during the normal operating life is then essentially constant. At the
end of the useful product life, the rate is then increasing again, due to wear-out.

Definition: The Mean Time To Failure (MTTF) is the average time until the
next failure, provided that the system was initially working. This average can
be computed as the expected value of random variable x:

MTTF = E{x} =
Z ∞

0
x f (x)dx (5.26)

For example, for the exponential distribution we obtain:

MTTF =
Z ∞

0
xλe−λxdx (5.27)

This integral can be computed using the product rule (
R

uv′ = uv−
R

u′v where
in our case we have u = x and v′ = λe−λx). Therefore, equation 5.27 leads to
the following equation:

MTTF = −[xe−λx]∞0 +
Z ∞

0
e−λxdx (5.28)

= −1
λ
[e−λx]∞0 = −1

λ
[0−1] =

1
λ

(5.29)

This means that, for the exponential distribution, the expected time until the
next failure is the reciprocal value of the failure rate.

Definition: The Mean Time To Repair (MTTR) is the average time to repair
a system, provided that the system is initially not working. This time is the
expected value of the random variable denoting the time to repair.

Definition: The Mean Time Between Failures (MTBF) is the average time
between two failures.

MTBF is the sum of MTTF and MTTR:

MTBF = MTTF+MTTR (5.30)

Figure 5.15 shows a simplistic view of this equation: it is not reflecting the fact
that we are dealing with probabilistic events and actual MTBF, MTTF, and
MTTR values may vary randomly.

224 EMBEDDED SYSTEM DESIGN

Figure 5.15. Illustration of MTTF, MTTR and MTBF

For many systems, repairs are not considered. Also, if they are considered, the
MTTR should be much smaller than the MTTF. Therefore, the terms MTBF
and MTTF are frequently mixed up. For example, the life-time of a hard disk
may be quoted as a certain MTBF, even though it will never be repaired. Quot-
ing this number as the MTTF would be more correct. Still, the MTTF provides
only very rough information about dependability, especially if there are large
variations in the failure rates over time.

Definition: The availability is the probability of a system being in an opera-
tional state.

The availability varies over time (just consider the bath tub curve!). Therefore,
we can model availability by a time-dependent function A(t). However, we are
frequently only considering the availability A for large time intervals. Hence,
we define

A = lim
t→∞

A(t) =
MTTF
MTBF

(5.31)

For example, assume that we have a system which is repeatedly available for
999 days and then needs one day for repair. Such a system would have an
availability of A = 0.999.

Allowed failure rates can be in the order of 1 FIT. This may be several orders
of magnitude less than the failure rates of chips. This means that systems
must be more reliable than their components! Obviously, the required level of
reliability makes fault tolerance techniques a must!

Obtaining actual failure rates is difficult. Fig. 5.16 shows one of the few pub-
lished results [TriQuint Semiconductor Inc., 2010].

This figure contains failure rates for different Gallium-Arsenide (GaAs) de-
vices with the hottest transistor operating at a temperature of 150 C. This
example is used here to demonstrate that there exist devices for which the
assumptions of constant failure rates or a bath tub-like behavior are oversim-

Evaluation and Validation 225

Figure 5.16. Failure rates of TriQuint Gallium-Arsenide devices (courtesy of TriQuint, Inc.,
Hillsboro), ©TriQuint

plifying. As a result, citing a single MTTF number may be misleading. The
actual distribution of failures over time should be used instead. In the par-
ticular case of this example, failure rates are less than 100 FIT for the first
20 years (175,300 hrs) of product life time, despite the high temperature. FIT
numbers are actually very much temperature dependent and temperatures up to
275 C and known temperature dependences have been used at Triquint to com-
pute failure rates for periods larger than the time available for testing. Triquint
claims that their GaAs devices are more reliable than average silicon devices.
Reports on FIT testing are also available for Xilinx FPGAs (see, for example,
[Xilinx, 2009]).

It is frequently not possible to experimentally verify failure rates of complete
systems. Requested failure rates are too small and failures may be unaccept-
able. We cannot fly 105 airplanes 104 hours each in an attempt to check if
we reach a failure rate of less than 10−9! The only way out of this dilemma
is to use a combination of checking failure rates of components and formally
deriving from this guarantees for a reliable operation of the system. Design-
and user-generated failures also must be taken into account. It is state of the
art to use decision diagrams to compute the reliability of a system from that of
its components [Israr and Huss, 2008].

Damages are resulting from hazards (chances for a failure). For each possible
damage caused by a failure, there is a severity (the cost) and a probability. Risk
can be defined as the product of the two. Information concerning the damages
resulting from component failures can be derived with at least two techniques
[Dunn, 2002], [Press, 2003]:

226 EMBEDDED SYSTEM DESIGN

Fault tree Analysis (FTA): FTA is a top-down method of analyzing risks.
The analysis starts with a possible damage and then tries to come up with
possible scenarios that lead to that damage. FTA is based on modeling a
Boolean function reflecting the operational state of the system (operational
or not operational). FTA typically includes symbols for AND- and OR-
gates, representing conditions for possible damages. OR-gates are used if
a single event could result in a hazard. AND-gates are used when several
events or conditions are required for that hazard to exist. Fig. 5.17 shows an
example6. FTA is based on a structural model of the system, i.e. it reflects
the partitioning of the system into components.

Figure 5.17. Fault tree

The simple AND- and OR-gates cannot model all situations. For exam-
ple, their modeling power is exceeded if shared resources of some limited
amount (like energy or storage locations) exist. Markov models [Bremaud,
1999] may have to be used to cover such cases. Markov models are based
the notion of states, rather than on the structure of the system.

Failure mode and effect analysis (FMEA): FMEA starts at the compo-
nents and tries to estimate their reliability. Using this information, the re-
liability of the system is computed from the reliability of its parts (corre-
sponding to a bottom-up analysis). The first step is to create a table contain-
ing components, possible failures, probability of failures and consequences
on the system behavior. Risks for the system as a whole are then computed
from the table. Figure 5.18 shows an example.

Tools supporting both approaches are available. Both approaches may be used
in “safety cases”. In such cases, an independent authority has to be convinced

6Consistent with the ANSI/IEEE standard 91, we use the symbols &, =1 and ≥1 to denote and-, xor-, and
or-gates, respectively.

Evaluation and Validation 227

Component Failure Consequences Probability Critical?
...
Processor metal migration no service 10−7 /h yes
...

Figure 5.18. FMEA table

that certain technical equipment is indeed safe. One of the commonly re-
quested properties of technical systems is that no single failing component
should potentially cause a catastrophe.

Safety requirements cannot come in as an afterthought, but must be considered
right from the beginning. The design of safe and dependable systems is a topic
by its own. This book can only provide a few hints into this direction.

According to Kopetz [Kopetz, 2003], the following must be taken into account:
For safety-critical systems, the system as a whole must be more dependable
than any of its parts. Allowed failures may be in the order of 1 failure per 109

hours of operation. This may be in the order of 1000 times less than the failure
rates of chips. Obviously, fault-tolerance mechanisms must be used. Due to the
low acceptable failure rate, systems are not 100% testable. Instead, safety must
be shown by a combination of testing and reasoning. Abstraction must be used
to make the system explainable using a hierarchical set of behavioral models.
Design faults and human faults must be taken into account. In order to address
these challenges, Kopetz proposed the following twelve design principles:

1 Safety considerations may have to be used as the important part of the
specification, driving the entire design process.

2 Precise specifications of design hypotheses must be made right at the be-
ginning. These include expected failures and their probability.

3 Fault containment regions (FCRs) must be considered. Faults in one FCR
should not affect other FCRs.

4 A consistent notion of time and state must be established. Otherwise, it will
be impossible to differentiate between original and follow-up errors.

5 Well-defined interfaces must hide the internals of components.

6 It must be ensured that components fail independently.

7 Components should consider themselves to be correct unless two or more
other components pretend the contrary to be true (principle of self-confi-
dence).

228 EMBEDDED SYSTEM DESIGN

8 Fault tolerance mechanisms must be designed such that they do not create
any additional difficulty in explaining the behavior of the system. Fault
tolerance mechanisms should be decoupled from the regular function.

9 The system must be designed for diagnosis. For example, it has to be pos-
sible to identify existing (but masked) errors.

10 The man-machine interface must be intuitive and forgiving. Safety should
be maintained despite mistakes made by humans.

11 Every anomaly should be recorded. These anomalies may be unobservable
at the regular interface level. This recording should involve internal effects,
since otherwise they may be masked by fault-tolerance mechanisms.

12 Provide a never-give up strategy. Embedded systems may have to provide
uninterrupted service. The generation of pop-up windows or going off line
is unacceptable.

For further information about dependability and safety issues, consult books
[Laprie, 1992], [Neumann, 1995], [Leveson, 1995], [Storey, 1996], [Geffroy
and Motet, 2002] on those areas.

There is an abundant amount of recent publications on the impact of reliability
issues on system design. Examples include publications by Huang [Huang and
Xu, 2010], Zhuo [Zhuo et al., 2010], and Pan [Pan et al., 2010].

5.6 Simulation

Simulation is a very common technique for evaluating and validating de-
signs. Simulation consists of executing a design model on appropriate com-
puting hardware, typically on general purpose digital computers. Obviously,
this requires models to be executable. All the executable models and languages
introduced in Chapter 2 can be used in simulations, and they can be used at
various levels as described starting at page 107. The level at which designs
are simulated is always a compromise between simulation speed and accuracy.
The faster the simulation, the less accuracy is available.

So far, we have used the term behavior in the sense of the functional behavior
of systems (their input/output behavior). There are also simulations of some
non-functional behaviors of designs, including the thermal behavior and the
electro-magnetic compatibility (EMC) with other electronic equipment. Due
to the integration with physics, there is a large range of physical effects which
may have to be included in the simulation model. As a result, it is impossible
to cover all relevant approaches for simulating cyber-physical systems in this
book. Law [Law, 2006] provides an overview of approaches and topics in
simulations on digital systems.

Evaluation and Validation 229

For cyber-physical systems, simulations have serious limitations:

Simulations are typically a lot slower than the actual design. Hence, if we
interface the simulator with the actual environment, we can have quite a
number of violations of timing constraints.

Simulations in the physical environment may even be dangerous (who
would want to drive a car with unstable control software?).

For many applications, there may be huge amounts of data and it may be
impossible to simulate enough data in the available time. Multimedia appli-
cations are notoriously known for this. For example, simulating the com-
pression of some video stream takes an enormous amount of time.

Most actual systems are too complex to allow simulating all possible cases
(inputs). Hence, simulations can help us to find errors in our designs. They
cannot guarantee absence of errors, since simulations cannot exhaustively
be done for all possible combinations of inputs and internal states.

Due to these limitations, there is an increased emphasis on validation by formal
verification (see page 231). Nevertheless, sophisticated simulation techniques
continue to play a key role for validation (see, for example, Braun et al. [Braun
et al., 2010]).

5.7 Rapid prototyping and emulation

Simulations are based on models, which are approximations of real systems. In
general, there will be some difference between the real system and the model.
We can reduce the gap by implementing some parts of our SUD more precisely
than in a simulator (for example, in a real, physical component).

Definition: Adopting a definition phrased by McGregor [McGregor, 2002],
we define emulation as the process of executing a model of the SUD where
at least one component is not represented by simulation on some kind of host
computer.

According to McGregor, “Bridging the credibility gap is not the only reason for
a growing interest in emulation—the above definition of an emulation model
remains valid when turned around— an emulation model is one where part
of the real system is replaced by a model. Using emulation models to test
control systems under realistic conditions, by replacing the ... (real system) ...
with a model, is proving to be of considerable interest to those responsible for
commissioning, or the installation and start-up of automated systems of many
kinds.”

230 EMBEDDED SYSTEM DESIGN

In order to improve credibility further, we can continue replacing simulated
components by real components. These components do not have to be the final
components. They can be approximations of the real system itself, but should
exceed the precision of simulations.

Note that it is now common to discuss the “emulation” of one computer on
another computer by means of software. There is a lack of a precise definition
of the use of the term in this context. However, it can be considered consistent
with our definition, since the emulated computer is not just simulated. Rather,
a speed faster than simulation speed is expected.

Definition: Fast prototyping is the process of executing a model of the SUD
where no component is represented by simulation on some kind of host com-
puter. Rather, all components are represented by realistic components. Some
of these components should not yet be the finally used components (otherwise,
this would be the real system).

There are many cases in which the designs should be tried out in realistic en-
vironments before final versions are manufactured. Control systems in cars
are an excellent example for this. Such systems should be used by drivers
in different environments before mass production is started. Accordingly, the
automotive industry designs prototypes. These prototypes should essentially
behave like the final systems, but they may be larger, more power consuming
and have other properties which test drivers can accept. The term “prototype”
can be associated with the entire system, comprising electrical and mechanical
components. However, the distinction between rapid prototyping and emula-
tion is also blurring. Rapid prototyping is by itself a wide area which cannot
be comprehensively covered in this book.

Prototypes and emulators can be built, for example, using FPGAs. Racks con-
taining FPGAs can be stored in the trunk while test drivers exercise the car.
This approach is not limited to the automotive industry. There are several other
cases in which prototypes are built from FPGAs. Commercially available em-
ulators consist of a large number of FPGAs. They come with the required
mapping tools which map specifications to these emulators. Using these emu-
lators, experiments with systems which behave “almost” like the final systems
can be run. However, catching errors by prototyping and emulation is already
a problem for non-distributed systems. For distributed systems, the situation is
even more difficult (see, for example, Tsai [Tsai and Yang, 1995]).

Evaluation and Validation 231

5.8 Formal Verification

Formal verification7 is concerned with formally proving a system correct, us-
ing the language of mathematics. First of all, a formal model is required to
make formal verification applicable. This step can hardly be automated and
may require some effort. Once the model is available, we can try to prove
certain properties.

Formal verification techniques can be classified by the type of logic employed:

Propositional logic: In this case, models consist of Boolean functions.
Tools are called Boolean checkers, tautology checkers or equivalence
checkers. They can be used to verify that two representations of Boolean
functions (or sets of Boolean functions) are equivalent. Since propositional
logic is decidable, it is also decidable whether or not the two representa-
tions are equivalent (there will be no cases of doubt). For example, one
representation might correspond to gates of an actual circuit and the other
to its specification. Proving the equivalence then proves the effect of all
design transformations (for example, optimizations for power or delay) to
be correct. Boolean checkers can cope with designs which are too large to
allow simulation-based exhaustive validation. The key reason for the power
of Boolean checkers is the use of Binary Decision Diagrams (BDDs) [We-
gener, 2000]. The complexity of equivalence checks of Boolean functions
represented with BDDs is linear in the number of BDD-nodes. In contrast,
the equivalence check for functions represented by sums of products is NP-
hard. BDD-based equivalence checkers have therefore replaced simulators
for this application and handle circuits with millions of transistors.

First order logic (FOL): FOL includes ∃ and ∀ operators. Typically, in-
tegers are also allowed. Some automation for verifying FOL models is
feasible. However, since FOL is undecidable, there may be cases of doubt.
Popular techniques include the Hoare calculus.

Higher order logic (HOL): Higher order is based on lambda-calculus and
allows functions to be manipulated like other objects [University of Cam-
bridge, 2010]. For higher order logic, proofs can hardly ever be automated
and typically must be done manually with some proof-support.

Propositional logic can be used to verify stateless logic networks, but cannot
directly model finite state machines. For short input sequences, it may be suf-
ficient to cut the feed-back loop in FSMs and to effectively deal with several

7This text on formal verification is based on a guest lecture given by Tiziana Margaria-Steffen at TU Dort-
mund.

232 EMBEDDED SYSTEM DESIGN

copies of these FSMs, each copy representing the effect of one input pattern.
However, this method does not work for longer input sequences. Such se-
quences can be handled with model checking.

For model checking, we have two inputs to the verification tool:

1 the model to be verified, and

2 properties to be verified.

States can be quantified with ∃ and ∀; numbers cannot. Verification tools can
prove or disprove the properties. In the latter case, they can provide a counter-
example. Model checking is easier to automate than FOL. It has been imple-
mented for the first time in 1987, using BDDs. It was possible to locate several
errors in the specification of the future bus protocol [Clarke et al., 2005].

As a next step, there have been attempts to integrate model checking and higher
order logic. In this integrated model, HOL is used only where it is absolutely
necessary.

Clarke’s EMC-system [Clarke and et al., 2003] (see fig. 5.19) is an example of
this approach.

Figure 5.19. Clarke’s EMC system

This system accepts properties to be described as CTL formulas. CTL-formulas
include two parts:

a path quantifier (this part specifies paths in the state transition diagram),
and

a state quantifier (this part specifies states).

Example: M,s |= AGg means: In the transition graph M, property g holds
for all paths (denoted by A) starting at state s and all states (denoted by G).
Extensions are needed in order to also cover real-time behavior and numbers.

Evaluation and Validation 233

This technique could be used, for example, to prove properties of the railway
model of fig. 2.52 (see page 75). It should be possible to convert the Petri
net into a state chart and then confirm that the number of trains commuting
between Cologne and Paris is indeed constant, confirming our discussion of
Petri net place invariants on page 73.

5.9 Assignments

1 Let us consider an example demonstrating the concept of Pareto-optimality.
In this example, we study the results generated by task concurrency man-
agement (TCM) tools designed at the IMEC research center (Interuniversi-
tair Micro-Electronica Centrum). TCM tools aim at establishing efficient
mappings from applications to processors. Different multi-processor sys-
tems are evaluated and represented as sets of Pareto-optimal designs. Wong
et al. [Wong et al., 2001] describe different options for the design of an
MPEG-4-player. The authors assume that a combination of StrongARM-
Processors and specialized accelerators should be used. Four designs meet
the timing constraint of 30 ms (see figure 5.20).

Processor combination 1 2 3 4
Number of high speed processors 6 5 4 3
Number of low speed processors 0 3 5 7
Total number of processors 6 8 9 10

Figure 5.20. Processor configurations

These different designs are shown in fig. 5.21.

Figure 5.21. Pareto points for multi processor systems 2 und 3

234 EMBEDDED SYSTEM DESIGN

For combinations 1 and 4, the authors report that only one mapping of
tasks to processors meets the timing constraints. For combinations 2 and
3, different time budgets lead to different task to processor mappings and
different energy consumptions.

Which area in the objective space is dominated by at least one design of
configuration 3? Is there any design belonging to configuration 2 which is
not dominated by at least one design of configuration 3? Which area in the
objective space dominates at least one design of configuration 3?

2 Which conditions must be met by computations of WCETEST ?

3 Let’s consider cache states at a control flow join! Fig. 5.22 shows abstract
cache states before the join.

Figure 5.22. Abstract cache states

Now let us look at abstract cache states after the join. Which state would a
must-analysis derive? Which state would a may-analysis derive?

4 Consider an incoming “bursty” event stream. The stream is periodic with a
period of p. At the beginning of each period, two events arrive with a sep-
aration of d time units. Develop arrival curves for this stream! Resulting
graphs should display times from 0 up to 3∗p.

5 Suppose that you are working with a processor having a maximum perfor-
mance of b.

(a) How do the service curves look like if the performance can deteriorate
to b′, due to cache conflicts?

(b) How do the service curves change if some timer is interrupting the
executed program every 100 ms and if servicing the interrupt takes 10
ms? Assume that there are no cache conflicts.

(c) How do the service curves look like if you consider cache conflicts like
in (a) and interrupts like in (b)?

Resulting graphs should display times from 0 up to 300 ms.

Chapter 6

APPLICATION MAPPING

6.1 Problem definition

Once the specification has been completed, design activities can start. This
is consistent with the simplified design information flow (see fig. 6.1). Map-
ping applications to execution platforms is really a key activity. Therefore we
underline the importance of this book chapter.

Figure 6.1. Simplified design flow

For embedded systems, we are frequently expecting that the system works with
a certain combination of applications. For example, for a mobile phone, we
expect being able to make a phone call while the Bluetooth stack is transmitting
the audio signals to a head set and while we are looking up information in
our “personal information manager” (PIM). At the same time, there may be a
concurrent file transfer or even a video connection. We must make sure that
these applications can be used together and that we are keeping the deadlines
(no lost audio samples!). This is feasible through an analysis of the use cases.

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8 6, © Springer Science+Business Media B.V. 2011

235

http://dx.doi.org/10.1007/978-94-007-0257-8_6

236 EMBEDDED SYSTEM DESIGN

It is a characteristic of embedded and cyber-physical systems that both hard-
ware and software must be considered during their design. Therefore, this type
of design is also called hardware/software codesign. The overall goal is to
find the right combination of hardware and software resulting in the most effi-
cient product meeting the specification. Therefore, embedded systems cannot
be designed by a synthesis process taking only the behavioral specification into
account. Rather, available components must be accounted for. There are also
other reasons for this constraint: in order to cope with the increasing com-
plexity of embedded systems and their stringent time-to-market requirements,
reuse is essentially unavoidable. This led to the term platform-based design:

“A platform is a family of architectures satisfying a set of constraints imposed
to allow the reuse of hardware and software components. However, a hard-
ware platform is not enough. Quick, reliable, derivative design requires using
a platform application programming interface (API) to extend the platform to-
ward application software. In general, a platform is an abstraction layer that
covers many possible refinements to a lower level. Platform-based design is a
meet-in-the-middle approach: In the top-down design flow, designers map an
instance of the upper platform to an instance of the lower, and propagate de-
sign constraints” [Sangiovanni-Vincentelli, 2002]. The mapping is an iterative
process in which performance evaluation tools guide the next assignment.

In this book, we focus on embedded system design based on available execu-
tion platforms. This reflects the fact that many modern systems are being built
on top of some existing platform. Techniques other that the ones described
in this book must be used in cases where the execution platform needs to be
designed as well. Due to our focus, the mapping of applications to execution
platforms can be seen as the main design problem.

In the general case, mapping will be performed onto multiprocessor systems.
We can distinguish between two different classes of multiprocessor systems:

Homogeneous multiprocessor systems: In this case, all the processors in
the system provide the same functionality. This is the case for the multi-
or many-core architectures considered in PC-like systems. Code compati-
bility between the different processors is the key advantage here: it can be
exploited during run-time scheduling of tasks (including load balancing)
and is also an advantage for fault-tolerant designs. We can just reallocate
processors at run-time, if a processor fails. Also, the design of the processor
platform and development tools is easier, if all processors are of the same
type.

Heterogeneous multiprocessor systems: In this case, processors are of
different types. The improved efficiency of this approach is the key reason
for accepting not to have all the advantages of homogeneous multiprocessor

Application mapping 237

systems. Heterogeneous processors are the most efficient programmable
platforms.

Even for platform-based design, there may be a number of design options.
We might be able to select between different variants of a platform, where
each variant might have a different number of processors, different speeds of
processors or a different communication architecture. Moreover, there may be
different applicable scheduling policies. Appropriate options must be selected.

This leads us to the following definition of our mapping problem [Thiele,
2006a]:

Given:

a set of applications,

use cases describing how the applications will be used,

a set of possible candidate architectures:

– (possibly heterogeneous) processors,

– (possibly heterogeneous) communication architectures, and

– possible scheduling policies.

Find:

a mapping of applications to processors,

appropriate scheduling techniques (if not fixed), and

a target architecture (if not fixed).

Objectives:

Keeping deadlines and/or maximizing performance, as well as

minimizing cost, energy consumption, and possibly other objectives.

The exploration of possible architectural options is called design space ex-
ploration (DSE). The case of a completely fixed platform architecture can be
considered as a special case.

Designing an AUTOSAR-based automotive system can be seen as an example:
In AUTOSAR [AUTOSAR, 2010], we have a number of homogeneous execu-
tion units (called ECUs) and a number of software components. The question

238 EMBEDDED SYSTEM DESIGN

is: how do we map these software components to the ECUs such all real-time
constraints are met? We would like to use the minimum number of ECUs.

The application mapping problem is a very difficult one and currently only
approximations for an automated mapping are available. In the following, we
will present building blocks for such a mapping:

standard scheduling techniques,

hardware/software partitioning, and

advanced techniques for mapping sets of applications onto multi-processor
systems.

We will start with standard scheduling techniques which can be used in various
contexts.

6.2 Scheduling in real-time systems

As indicated above, scheduling is one of the key issues in implementing em-
bedded systems. Scheduling algorithms may be required a number of times
during the design of such systems. Very rough calculations may already be
required while fixing the specification. Later, more detailed predictions of ex-
ecution times may be required. After compilation, even more detailed knowl-
edge exists about the execution times and accordingly, more precise schedules
can be made. Finally, it may be necessary to decide at run-time which task is
to be executed next. In contrast, in time-triggered systems, RTOS scheduling
may be limited to simple table look-ups for tasks to be executed. Scheduling
is similar to performance evaluation in that it cannot be constrained to a single
design step.

Scheduling defines start times for each task and therefore defines a mapping τ
from nodes of a task graph G = (V,E) to time domain Dt :

τ : V → Dt (6.1)

6.2.1 Classification of scheduling algorithms

Scheduling algorithms can be classified according to various criteria. Fig. 6.2
shows a possible classification of algorithms (similar schemes are described in
books on the topic [Balarin et al., 1998], [Kwok and Ahmad, 1999], [Stankovic
et al., 1998], [Liu, 2000], [Buttazzo, 2002]).

The following is a list of criteria, the first four of which are linked to fig. 6.2.

Application mapping 239

Figure 6.2. Classes of scheduling algorithms

Soft and hard deadlines: Scheduling for soft deadlines is frequently based
on extensions to standard operating systems. For example, providing task
and operating system call priorities may be sufficient for systems with soft
deadlines. We will not discuss these systems further in this book. More
work and a detailed analysis are required for hard deadline systems. For
these, we can consider periodic and aperiodic systems.

Scheduling for periodic and aperiodic tasks: In the following, we will
distinguish between periodic and aperiodic tasks.

Definition: Tasks which must be executed once every p units of time are
called periodic tasks, and p is called their period. Each execution of a
periodic task is called a job.

Definition: Tasks which are not periodic are called aperiodic.

Definition: Aperiodic tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation between the times at
which they request the processor.

This minimum separation is important, since tasks sets without such a sep-
aration can possibly not be scheduled. There may be not enough time to
execute tasks if tasks become executable at arbitrarily short time intervals.

Preemptive and non-preemptive scheduling: Non-preemptive schedulers
are based on the assumption that tasks are executed until they are done. As a
result the response time for external events1 may be quite long if some tasks
have a large execution time. Preemptive schedulers must be used if some
tasks have long execution times or if the response time for external events

1This is the time from the occurrence of an external event until the completion of the reaction required for
the event.

240 EMBEDDED SYSTEM DESIGN

is required to be short. However, preemption can result in unpredictable
execution times of the preempted tasks. Therefore, restricting preemptions
may be required in order to guarantee meeting the deadline of hard real-
time tasks.

Static and dynamic scheduling: Dynamic schedulers take decisions at
run-time. They are quite flexible, but generate overhead at run-time. Also,
they are usually not aware of global contexts such as resource requirements
or dependences between tasks. For embedded systems, such global con-
texts are typically available at design time and they should be exploited.

Static schedulers take their decisions at design time. They are based on
planning the start times of tasks and generate tables of start times forwarded
to a simple dispatcher. The dispatcher does not take any decisions, but
is just in charge of starting tasks at the times indicated in the table. The
dispatcher can be controlled by a timer, causing the dispatcher to analyze
the table. Systems which are totally controlled by a timer are said to be
entirely time triggered (TT systems). Such systems are explained in detail
in the book by Kopetz [Kopetz, 1997]:

“In an entirely time-triggered system, the temporal control structure of all
tasks is established a priori by off-line support-tools. This temporal con-
trol structure is encoded in a Task-Descriptor List (TDL) that contains
the cyclic schedule for all activities of the node2 (Figure 6.3). This sched-
ule considers the required precedence and mutual exclusion relationships
among the tasks such that an explicit coordination of the tasks by the oper-
ating system at run time is not necessary.” Figure 6.3 includes scheduled
task start, task stop and send message (send) activities.

Figure 6.3. Task descriptor list in a time-triggered system

2This term refers to a processor in this case.

Application mapping 241

“The dispatcher is activated by the synchronized clock tick. It looks at the
TDL, and then performs the action that has been planned for this instant
....”

The main advantage of static scheduling is that it can be easily checked if
timing constraints are met:

“For satisfying timing constraints in hard real-time systems, predictabil-
ity of the system behavior is the most important concern; pre-run-time
scheduling is often the only practical means of providing predictability in a
complex system” [Xu and Parnas, 1993].

The main disadvantage is that the response to sporadic events may be quite
poor.

Independent and dependent tasks:

It is possible to distinguish between tasks without any inter-task communi-
cation and other tasks. For embedded systems, dependencies between tasks
are the rule rather than an exception.

Mono- and multi-processor scheduling: Simple scheduling algorithms
handle the case of single processors, whereas more complex algorithms also
handle systems comprising multiple processors. For the latter, we can dis-
tinguish between algorithms for homogeneous multi-processor systems and
algorithms for heterogeneous multi-processor systems. The latter are able
to handle target-specific execution times and can also be applied to mixed
hardware/software systems, in which some tasks are mapped to hardware.

Centralized and distributed scheduling: Multiprocessor scheduling al-
gorithms can either be executed locally on one processor or can be dis-
tributed among a set of processors.

Type and complexity of schedulability test: In practice, it is very impor-
tant to know whether or not a schedule exists for a given set of tasks and
constraints.

A set of tasks is said to be schedulable under a given set of constraints,
if a schedule exists for that set of tasks and constraints. For many ap-
plications, schedulability tests are important. Tests which always return
precise results (called exact tests) are NP-hard in many situations [Garey
and Johnson, 1979]. Therefore, sufficient and necessary tests are used in-
stead. For sufficient tests, sufficient conditions for guaranteeing a schedule
are checked. There is a (hopefully small) probability of indicating that
scheduling cannot be guaranteed even if a schedule exists. Necessary tests
are based on checking necessary conditions. They can be used to show that
no schedule exists. However, there may be cases in which necessary tests
are passed and the schedule still does not exist.

242 EMBEDDED SYSTEM DESIGN

Cost functions: Different algorithms aim at minimizing different func-
tions. Maximum lateness is a frequently used cost function.

Definition: Maximum lateness is defined as the difference between the
completion time and the deadline, maximized over all tasks. Maximum
lateness is negative if all tasks complete before their deadline.

6.2.2 Aperiodic scheduling without precedence
constraints

6.2.2.1 Definitions

Let {Ti} be a set of tasks. Let (see fig. 6.4)

ci be the execution time of Ti,

di be the deadline interval, that is, the time between Ti becoming available
and the time until which Ti has to finish execution.

li be the laxity or slack, defined as

li = di − ci (6.2)

Again, upward pointing arrows denote the time at which tasks becomes
available. Downward pointing arrows represent deadlines.

Figure 6.4. Definition of the laxity of a task

If li = 0, then Ti has to be started immediately after it becomes executable.

Let us first consider3 the case of uni-processor systems for which all tasks
arrive at the same time. If all tasks arrive at the same time, preemption is
obviously useless.

3We are using some of the material from the book by Buttazzo [Buttazzo, 2002] for this section. Refer to
this book for additional references.

Application mapping 243

6.2.2.2 Earliest Due Date (EDD)-Algorithm

A very simple scheduling algorithm for this case was found by Jackson in 1955
[Jackson, 1955]. The algorithm is based on Jackson’s rule:

Given a set of n independent tasks, any algorithm that executes the tasks in
order of nondecreasing deadlines is optimal with respect to minimizing the
maximum lateness.

The algorithm following this rule is called Earliest Due Date (EDD). If the
deadlines are known in advance, EDD can be implemented as a static schedul-
ing algorithm. EDD requires all tasks to be sorted by their deadlines. Hence,
its complexity is O(n log(n)).

Proof of the optimality of EDD:

Let τ be a schedule generated by any algorithm A. Suppose A does not lead to
the same result as EDD. Then, there are tasks Ta and Tb such that the execution
of Tb precedes the execution of Ta in τ, even though the deadline of Ta is earlier
than that of Tb (da < db). Now, let us consider a schedule τ′. τ′ is generated
from τ by swapping the execution orders of Ta and Tb (see fig. 6.5).

Figure 6.5. Schedules τ and τ′

Lmax(a,b) = fa − da is the maximum lateness of Ta and Tb in schedule τ. For
schedule τ′, L′

max(a,b) = max(L′
a,L

′
b) is the maximum lateness among tasks Ta

and Tb. L′
a is the maximum lateness of task Ta in schedule τ′. L′

b is defined
accordingly. There are two possible cases:

1 L′
a > L′

b: In this case, we have

L′
max(a,b) = f ′a −da

Ta terminates earlier in the new schedule. Therefore, we have

L′
max(a,b) = f ′a −da < fa −da.

The right side of this inequality is the maximum lateness in schedule τ.
Hence, the following holds:

L′
max(a,b) < Lmax(a,b)

2 L′
a ≤ L′

b:

244 EMBEDDED SYSTEM DESIGN

In this case, we have:

L′
max(a,b) = f ′b −db = fa −db (see fig. 6.5).

The deadline of Ta is earlier than the one of Tb. This leads to

L′
max(a,b) < fa −da

Again, we have

L′
max(a,b) < Lmax(a,b)

As a result, any schedule (which is not an EDD-schedule) can be turned into
an EDD-schedule by a finite number of swaps. Maximum lateness can only
decrease during these swaps. Therefore, EDD is optimal among all scheduling
algorithms.

6.2.2.3 Earliest Deadline First (EDF)-Algorithm

Let us consider the case of different arrival times for uni-processor systems
next. Under this scenario, preemption can potentially reduce maximum late-
ness.

The Earliest Deadline First (EDF) algorithm is optimal with respect to min-
imizing the maximum lateness. It is based on the following theorem [Horn,
1974]:

Given a set of n independent tasks with arbitrary arrival times, any algorithm
that at any instant executes the task with the earliest absolute deadline among
all the ready tasks is optimal with respect to minimizing the maximum lateness.

EDF requires that, each time a new ready task arrives, it is inserted into a queue
of ready tasks, sorted by their deadlines. Hence, EDF is a dynamic scheduling
algorithm. If a newly arrived task is inserted at the head of the queue, the
currently executing task is preempted. If sorted lists are used for the queue,
the complexity of EDF is O(n2). Bucket arrays could be used for reducing the
execution time.

Fig. 6.6 shows a schedule derived with the EDF algorithm. Vertical arrows
indicate the arrival of tasks.

At time 4, task T2 has an earlier deadline. Therefore it preempts T1. At time 5,
task T3 arrives. Due to its later deadline it does not preempt T2.

Proof of the optimality of EDF:

Let τ be a schedule generated by some algorithm A, where A is different from
EDF. Let τEDF be a schedule generated by EDF. Now, we partition time into
disjoint intervals of length 1. Each interval comprises times within the range [t,
t+1). Let τ(t) be the task which -according to schedule τ- is executed during the
interval [t, t+1). Let E(t) be the task which at time t has the earliest deadline

Application mapping 245

Figure 6.6. EDF schedule

among all tasks. Let tE(t) be the time (≥ t) at which task E(t) is starting its
execution in schedule τ.

τ is not an EDF-schedule. Therefore, there must be a time t at which we are
not executing the task having the earliest deadline. For t, we have τ(t)
= E(t)
(see fig. 6.7). Deadlines are represented by downward pointing arrows.

Figure 6.7. Schedule τ

The basic idea of the proof is to show that swapping τ(t) and E(t) (see fig. 6.8)
cannot increase maximum lateness.

Let D be the latest deadline. Then, we can generate τEDF from τ by at most D
swaps of the following algorithm:

for (t=0 to D-1) {
if (τ(t)
= E(t)) {

τ(tE) = τ(t);
τ(t) = E(t); }}

246 EMBEDDED SYSTEM DESIGN

Figure 6.8. Schedule after swapping tasks τ(t) and E(t)

Using the same arguments as for Jackson’s Rule we can show that swapping
does not increase maximum lateness. Therefore, any non-EDF schedule can be
turned into an EDF-schedule with increasing maximum lateness. This proves
that EDF is optimal among all possible scheduling algorithms. We can show
that swapping will keep all deadlines, provided they were kept in schedule τ.
First of all, we consider task E(t). It will be executed earlier than in the old
schedule and, hence, it will meet the deadline in the new schedule if it did so
in the old schedule. Next, we consider task τ(t). τ(t) has a deadline larger than
E(t). Hence, τ(t) will meet the deadline in the new schedule if E(t) met the
deadline in the old schedule.

6.2.2.4 Least Laxity (LL) algorithm

Least Laxity (LL), Least Slack Time First (LST), and Minimum Laxity First
(MLF) are three names for another scheduling strategy [Liu, 2000]. According
to LL scheduling, task priorities are a monotonically decreasing function of
the laxity (see equation 6.2; the less laxity, the higher the priority). The laxity
is dynamically changing and needs to be dynamically recomputed. Negative
laxities provide an early warning for deadlines to be missed. LL scheduling
is also preemptive. Preemptions are not restricted to times at which new tasks
become available.

Fig. 6.9 shows an example of an LL schedule, together with the computations
of the laxity.

At time 4, task T1 is preempted, as before. At time 5, T2 is now also preempted,
due to the lower laxity of task T3.

It can be shown (this is left as an exercise in [Liu, 2000]) that LL is also an
optimal scheduling policy for mono-processor systems in this sense that it will
find a schedule if one exists. Due to its dynamic priorities, it cannot be used
with a standard OS providing only fixed priorities. Furthermore, LL schedul-
ing -in contrast to EDF scheduling- requires the knowledge of the execution

Application mapping 247

Figure 6.9. Least laxity schedule

time. Its use is therefore restricted to special situations where its properties are
attractive.

6.2.2.5 Scheduling without preemption

If preemption is not allowed, optimal schedules may must leave the processor
idle at certain times in order to finish tasks with early deadlines arriving late.

Proof: Let us assume that an optimal non-preemptive scheduler (not having
knowledge about the future) never leaves the processor idle. This scheduler
must schedule the example of fig. 6.10 optimally (it must find a schedule if one
exists).

Figure 6.10. Scheduler needs to leave processor idle

For the example of fig. 6.10 we assume we are given two tasks. Let T1 be
a periodic process with an execution time of 2, a period of 4 and a deadline
interval of 4. Let T2 be a task occasionally becoming available at times 4∗n+1
and having an execution time and a deadline interval of 1. Let us assume that

248 EMBEDDED SYSTEM DESIGN

the concurrent execution of T1 and T2 is not possible (for example, since we are
using a single processor). Under the above assumptions our scheduler has to
start the execution of task T1 at time 0, since it is supposed not to leave any idle
time. Since the scheduler is non-preemptive, it cannot start T2 when it becomes
available at time 1. Hence, T2 misses its deadline. If the scheduler had left the
processor idle (as shown in fig. 6.10 at time 4), a legal schedule would have
been found. Hence, the scheduler is not optimal. This is a contradiction to the
assumptions that optimal schedulers not leaving the processor idle at certain
times exist. q.e.d.

We conclude: In order to avoid missed deadlines the scheduler needs knowl-
edge about the future. If no knowledge about the arrival times is available a
priori, then no online algorithm can decide whether or not to keep the pro-
cessor idle. It has been shown that EDF is still optimal among all scheduling
algorithms not keeping the processor idle at certain times. If arrival times
are known a priori, the scheduling problem becomes NP-hard in general and
branch and bound techniques are typically used for generating schedules.

6.2.3 Aperiodic scheduling with precedence
constraints

6.2.3.1 Latest Deadline First (LDF) algorithm

We start with a task graph reflecting tasks dependences (see fig. 6.11). Task T3

can be executed only after tasks T1 and T2 have completed and sent messages
to T3.

Figure 6.11. Precedence graph and schedule

This figure also shows a legal schedule. For static scheduling, this schedule
can be stored in a table, indicating to the dispatcher the times at which tasks
must be started and at which messages must be exchanged.

An optimal algorithm for minimizing the maximum lateness for the case of
simultaneous arrival times was presented by Lawler [Lawler, 1973]. The al-
gorithm is called Latest Deadline First (LDF). LDF reads the task graph and

Application mapping 249

inserts tasks with no successors into a queue. It then repeats this process,
putting tasks whose successors have all been selected into the queue. At run-
time, the tasks are executed in an order opposite to the order in which tasks
have been entered into the queue. LDF is non-preemptive and is optimal for
mono-processors.

The case of asynchronous arrival times can be handled with a modified EDF
algorithm. The key idea is to transform the problem from a given set of de-
pendent tasks into a set of independent tasks with different timing parameters
[Chetto et al., 1990]. This algorithm is again optimal for uni-processor sys-
tems.

If preemption is not allowed, the heuristic algorithm developed by Stankovic
and Ramamritham [Stankovic and Ramamritham, 1991] can be used.

6.2.3.2 As-soon-as-possible (ASAP) scheduling

A number of scheduling algorithms have been developed in other communi-
ties. For example, as-soon-as-possible (ASAP), as-late-as-possible (ALAP),
list (LS), and force-directed scheduling (FDS) are very popular in the high-
level synthesis (HLS) community (see [Coussy and Morawiec, 2008] for re-
cent HLS results). ASAP and ALAP scheduling do not consider any resource
or time constraints. LS considers resource constraints while FDS considers a
global time constraint.

We will demonstrate the first three of these using a simple expression as an
example. Consider a 3 × 3 matrix (see fig. 6.12).

a b c
A = d e f

g h i

Figure 6.12. 3 × 3 matrix

The determinant det(A) of this matrix can be computed as

det(A) = a∗ (e∗ i− f ∗h)+b∗ (f ∗g−d ∗ i)+ c∗ (d ∗h− e∗g)

The computation can be represented as a data flow graph (see fig. 6.13). We
assume that each arithmetic computation represents a simple “task”.

We assume that all matrix values are available immediately (for example, they
might be stored in registers).

250 EMBEDDED SYSTEM DESIGN

Figure 6.13. Computation of the determinant of A

ASAP, as used in HLS, considers a mapping of tasks to integer start times4

> 0. Therefore, scheduling provides a mapping:

τ : V → IN (6.3)

where G = (V,E) is the data flow graph.

For ASAP scheduling, all tasks are started as early as possible. The algorithm
works as follows:

for (t=1; all tasks are scheduled; t++) {
s={all tasks for which all inputs are available};

set start time of all tasks in s to t;

}

For the sake of simplicity, we assume that all additions and subtractions of
our example have an execution time of 1, whereas multiplications have an
execution time of 2. Fig. 6.14 shows the resulting scheduled data flow graph
for our example of fig. 6.13.

During the first iteration of the ASAP algorithm, all tasks not depending on
other computations are set to start at time 1. During the second round, inputs

4Each integer is assumed to correspond to one clock cycle of some synchronous automaton.

Application mapping 251

Figure 6.14. ASAP schedule for the example of fig. 6.13

from multiplications are not yet available. During the third round, subtractions
are scheduled to start at time 3. This process continues until the final addition
is scheduled to start at time 7.

ASAP scheduling can also be applied to real life: it means that all tasks are
started as early as possible, without any consideration of resource constraints.

6.2.3.3 As-late-as-possible (ALAP) scheduling

As-late-as-possible is the second simple scheduling algorithm. For ALAP
scheduling, all tasks are started as late as possible. The algorithm works as
follows:

for (t=0; all tasks are scheduled; t- -) {
s={all tasks on which no unscheduled task depends};

set start time of all tasks in s to t - their execution time + 1;

}
Add the total number of time steps needed to all start times.

The algorithm starts with tasks on which no other task depends. These tasks
are assumed to finish at time 0. Their start time is then computed from their
execution time. The loop then iterates backwards over time steps. Whenever
we reach a time step, at which a task should finish the latest, its start time
is computed and the task is scheduled. After finishing the loop, all times are

252 EMBEDDED SYSTEM DESIGN

shifted towards positive times such that the first task starts at time 1. We could
also consider ALAP scheduling as a case of ASAP scheduling starting at the
“other” end of the graph.

Fig. 6.15 shows the resulting scheduled data flow graph for our example of fig.
6.13.

Figure 6.15. ALAP schedule for the example of fig. 6.13

For the ALAP schedule, the four “tasks” at the right start one time unit later.

6.2.3.4 List scheduling (LS) scheduling

List scheduling is a resource-constrained scheduling technique. We assume
that we have a set M of resource types. List scheduling assumes that each task
can be executed only on a particular resource type. List scheduling respects
upper bounds Bm on the number of resources for each type m ∈ M.

List scheduling requires the availability of some priority function reflecting
the urgency of scheduling a particular “task” v ∈V,G = (V,E). The following
urgency metrics are in use [Teich, 1997]:

Number of successor nodes: this is the number of nodes below the current
node v in the tree.

Path length: the path length for a node v ∈V is defined as the length of the
path from starting v to finishing the entire graph G. In fig. 6.16, this infor-
mation has been added. Path length is typically weighted by the execution
time associated with the nodes, assuming that this information is known.

Application mapping 253

Figure 6.16. Path lengths for the example of fig. 6.13

Mobility: mobility is defined as the difference between the start times for
the ASAP and ALAP schedule. Fig. 6.17 shows the mobility for our exam-
ple. Obviously, scheduling is urgent for all but four nodes. This means that
all other nodes will have the same priority and that mobility provides only
rough information about the order in which we should schedule tasks.

Figure 6.17. Mobility for the example of fig. 6.13

254 EMBEDDED SYSTEM DESIGN

List scheduling requires the knowledge of the graph G = (V,E) to be sched-
uled, a mapping from each node of the graph to the corresponding resource
type m ∈ M, an upper bound Bm for each m, a priority function u reflecting the
urgency of the nodes v ∈ V , and the execution time of each node v ∈ V . List
scheduling then tries to fit nodes of maximum priority into each of the time
steps such that the resource constraints are not violated [Teich, 1997]:

for (t=0; all tasks are scheduled; t++) { //loop over time steps

for (m ∈ M) { //loop over resource types

Ct,m = set of tasks of type m still executing at time t;

At,m = set of tasks of type m ready to start execution at time t;

Compute set St ⊆ Ai,m of maximum priority such that

|St |+ |Ct,m| ≤ Bm.

Set start times of all v ∈ St to t: τ(v) = t;

} }

Fig. 6.18 shows the result of list scheduling as applied to our example in fig.
6.13.

Figure 6.18. Result of list scheduling for the example of fig. 6.13

Application mapping 255

In fig. 6.13 we assume a resource constraint of B∗ = 3 for multiplications and
multipliers and of B+,− = 2 for all other “tasks”. Due to the resource con-
straint, three multiplications are starting at time 3 instead of at time 1. The
resource constraint for other operations does not have any impact. Remember
that multiplications need two time steps.

6.2.3.5 Force-directed scheduling

For force-directed scheduling (FDS) [Paulin and Knight, 1987], we assume
that a time constraint is given and that we would like to find a schedule keep-
ing that resource constraint while minimizing the demand for resources. FDS
considers each resource type separately.

FDS starts with a “probability” P(v, t) reflecting the likelihood that a certain
operation v is scheduled at a certain time step t. This “probability” is equal to
1 divided by the size of R(v), where “range” R(v) is the set of time steps at
which this operation could be started:

P(v, t) =
{ 1

|R(v)| if t ∈ R(v)
0 otherwise

R(v) is the interval between the time step allocated by ASAP scheduling and
the time step allocated by ALAP scheduling. From this “probability”, we com-
pute a so-called “distribution” reflecting the total resource pressure for a cer-
tain resource m at control step t. This “distribution” is simply the sum of the
probabilities over all operations requiring resource type m:

D(t) = ∑
v∈V

P(v, t)

Fig. 6.19 shows distributions for our running example.

For example, for a time constraint of 8, the three multiplications on the right
(which are not on the critical path) have a probability of 0.5 for the two time
steps for which they are feasible. The distribution D(1) is 5, due to the four
multiplications on the critical path and the two multiplications having a proba-
bility of 0.5.

Next, FDS defines “forces” such that operations (or tasks) are moved away
from time steps of high resource pressure to time steps with a lower resource
pressure. In our example, multiplications which are not on the critical path are
shifted towards later start times. However, for a total time constraint of 8, this
does not lower the number of multipliers needed, since multiplies are assumed
to last 2 time steps. For a time constraint of 9, we would reduce the number of

256 EMBEDDED SYSTEM DESIGN

Figure 6.19. Distributions for the example of fig. 6.13

multipliers if compared to the multipliers needed for ASAP scheduling. Details
about FDS can be found in [Paulin and Knight, 1987] and follow-up papers.

FDS has a number of restrictions. For example, FDS is still based on the simple
resource model where each task can be mapped only to a single resource type.

At this time, some general remarks regarding the applicability of scheduling
techniques from high-level synthesis (HLS) to task scheduling are appropriate.
HLS techniques

are designed to take dependencies between “tasks” into account,

are designed for “multi-processor” scheduling,

are usually based on simplified resource (processor) models (i.e. require a
one-to-one mapping between “tasks” and “processors”),

typically use heuristics not guaranteeing optimality,

are typically fast,

almost never exploit global information about periodicity etc. and

techniques more advanced than ASAP, ALAP and LS include techniques
for handling control (loops etc).

Application mapping 257

6.2.4 Periodic scheduling without precedence
constraints

6.2.4.1 Notation

Next, we will consider the case of periodic tasks. For periodic scheduling,
objectives relevant for aperiodic scheduling are less useful. For example, min-
imization of the total length of the schedule is not an issue if we are talking
about an infinite repetition of jobs. The best that we can do is to design an
algorithm which will always find a schedule if one exists. This motivates the
definition of optimality for periodic schedules.

Definition: For periodic scheduling, a scheduler is defined to be optimal iff it
will find a schedule if one exists.

Let {Ti} be a set of tasks. Each execution of some task Ti is called a job. The
execution time for each job corresponding to one task is assumed to be the
same. Let (see fig. 6.20)

pi be the period of task Ti,

ci be the execution time of Ti,

di be the deadline interval, that is, the time between a job of Ti becoming
available and the time after which the same job Ti has to finish execution.

li be the laxity or slack, defined as

li = di − ci (6.4)

Figure 6.20. Notation used for time intervals

If li = 0, then Ti has to be started immediately after it becomes executable.

Let µ denote the utilization for a set of n processes, that is, the accumulated
execution times of these processes divided by their period:

µ =
n

∑
i=1

ci

pi
(6.5)

258 EMBEDDED SYSTEM DESIGN

Let us assume that the execution times are equal for a number of m proces-
sors. Obviously, equation 6.6 represents a necessary condition for a schedule
to exist:

µ ≤ m (6.6)

Initially, we will restrict ourselves to a description of the case in which tasks
are independent.

6.2.4.2 Rate monotonic scheduling

Rate monotonic (RM) scheduling [Liu and Layland, 1973] is probably the most
well-known scheduling algorithm for independent periodic processes. Rate
monotonic scheduling is based on the following assumptions (“RM assump-
tions”):

1 All tasks that have hard deadlines are periodic.

2 All tasks are independent.

3 di = pi, for all tasks.

4 ci is constant and is known for all tasks.

5 The time required for context switching is negligible.

6 For a single processor and for n tasks, the following equation holds for the
accumulated utilization µ:

µ =
n

∑
i=1

ci

pi
≤ n(21/n −1) (6.7)

Fig. 6.21 shows the right hand side of equation 6.7.

The right hand side is about 0.7 for large n:

lim
n→∞

n∗ (21/n −1) = loge(2) = ln(2) (=∼ 0.7) (6.8)

Then, according to the policy for rate monotonic scheduling, the priority of
tasks is a monotonically decreasing function of their period. In other words,
tasks with a short period will get a high priority and tasks with a long period

Application mapping 259

Figure 6.21. Right hand side of equation 6.7

will be assigned a low priority. RM scheduling is a preemptive scheduling
policy with fixed priorities.

Fig. 6.22 shows an example of a schedule generated with RM scheduling. Task
T2 is preempted several times.

Figure 6.22. Example of a schedule generated with RM scheduling

Double-headed arrows indicate the arrival time of a job as well as the deadline
of the previous job. Tasks 1 to 3 have a period of 2, 6 and 6, respectively.
Execution times are, 0.5, 2, and 1.75. Task 1 has the shortest period and,
hence, the highest rate and priority. Each time task 1 becomes available, its
jobs preempt the currently active task. Task 2 has the same period as task 3,
and neither of them preempts the other.

Equation 6.7 requires that some of the computing power of the processor is
not used in order to make sure that all requests are honored in time. What
is the reason for this bound on the utilization? The key reason is that RM
scheduling, due to its static priorities, will possibly preempt a task which is
close to its deadline in favor of some higher priority task with a much later
deadline. The task having a lower priority can then miss its deadline.

Fig. 6.23 shows a case for which not enough idle time is available to guarantee
schedulability for RM scheduling. One task has a period of 5, and an execution

260 EMBEDDED SYSTEM DESIGN

time of 3, whereas the second task has a period of 8, and an execution time of 3.

Figure 6.23. RM schedule does not meet deadline at time 8

For this particular case we have µ = 3
5 + 3

8 = 39
40 , which is 0.975. 2 ∗ (2

1
2 − 1)

is about 0.828. Hence, schedulability is not guaranteed for RM scheduling
and, in fact, the deadline is missed at time 8. We assume that the missing
computations are not scheduled in the next period.

Such missed deadlines cannot happen if the utilization of the processor is very
low and, obviously, they can happen when the utilization is high, as in fig. 6.23.
If the condition of equation 6.7 is met, the utilization is guaranteed to be low
enough to prevent problems like that of fig. 6.23. Equation 6.7 is a sufficient
condition. This means: we might still find a schedule if the condition is not
met. Other sufficient conditions exist [Bini et al., 2001].

RM scheduling has the following important advantages:

It is possible to prove that rate monotonic scheduling is optimal for mono-
processor systems.

RM scheduling is based on static priorities. This opens opportunities for
using RM scheduling in an operating system providing fixed priorities,
such as Windows NT (see Ramamritham [Ramamritham et al., 1998],
[Ramamritham, 2002]).

If the above six RM-assumptions (see page 258) are met, all deadlines will
be met (see Buttazzo [Buttazzo, 2002]).

RM scheduling is also the basis for a number of formal proofs of schedulability.

The idle time or spare capacity of the processor is not always required. It is
possible to show that RM scheduling is also optimal, iff instead of equation
(6.7) we have

µ ≤ 1 (6.9)

Application mapping 261

provided that the period of all tasks is a multiple of the period of the task having
the next higher priority. This requirement is met, for example, if tasks in a TV
set must be executed at rates of 25, 50 and 100 Hertz.

Equations 6.7 or 6.9 provide easy means to check conditions for schedulability.

Designing examples and proofs is facilitated if the most problematic situations
for RM scheduling are known.

Definition: Time t is called critical time instant for task Tj if the response
time of this task is maximized if the task becomes available at this time.

Lemma: For each task Tj, the response time is maximized if Tj becomes avail-
able at the same time as all tasks having a higher priority.

Proof: Let T = {T1, ...,Tn} be a set of periodical tasks for which we have:
∀i : pi ≤ pi+1. The response time of Tn will be increased by tasks of a higher
priority . Consider task Tn and some task Ti of a higher priority (see fig. 6.24).

Figure 6.24. Delaying task Tn by some Ti of higher priority

The number of preemptions is potentially increasing if the time interval be-
tween the availability of Tn and Ti is reduced (see fig. 6.25). For example, the
delay is 2ci for fig. 6.24 and 3ci for fig. 6.25.

Figure 6.25. Increasing delay of task Tn

The number of preemptions and hence also the response time will be maxi-
mized if both tasks become available at the same time.

Arguments concerning Tn and Ti can be repeated for all pairs of tasks. As
a result, Tn becomes available at its critical instant in time if it is released
concurrently with all other tasks of higher priority. q.e.d.

262 EMBEDDED SYSTEM DESIGN

Therefore, the proof of optimality of RM scheduling needs to consider only
the case in which tasks are released concurrently with all other tasks of higher
priority.

6.2.4.3 Earliest deadline first scheduling

EDF can also be applied to periodic task sets. Toward this end, we may con-
sider a hyper period.

Definition: Hyper periods are defined as the least common multiple (lcm) of
the periods of the individual tasks.

For example, the hyper period for the example of fig. 6.23 is 40. Obviously,
it is sufficient to solve the scheduling problem for a single hyper period. This
schedule can then be repeated for the other hyper periods. It follows from the
optimality of EDF for non-periodic schedules that EDF is also optimal for a
single hyper period and therefore also for the entire scheduling problem. No
additional constraints must be met to guarantee optimality. This implies that
EDF is optimal also for the case of µ = 1. Accordingly, no deadline is missed
if the example of fig. 6.23 is scheduled with EDF (see fig. 6.26). At time 5, the
behavior is different from that of RM scheduling: due to the earlier deadline
of T2, it is not preempted.

Figure 6.26. EDF generated schedule for the example of 6.23

Since EDF uses dynamic priorities, it cannot be used with an operating system
providing only fixed priorities. However, it has been shown that operating
systems can be extended to simulate an EDF policy at the application level
[Diederichs et al., 2008].

EDF can be easily extended to handle the case when deadlines are different
from the periods.

6.2.5 Periodic scheduling with precedence
constraints

Scheduling dependent tasks is more difficult than scheduling independent tasks.
The problem of deciding whether or not a schedule exists for a given set of de-

Application mapping 263

pendent tasks and a given deadline is NP-complete [Garey and Johnson, 1979].
In order to reduce the scheduling effort, different strategies are used:

adding additional resources such that scheduling becomes easier, and

partitioning of scheduling into static and dynamic parts. With this ap-
proach, as many decisions as possible are taken at design time and only
a minimum of decisions is left for run-time.

Obviously, we can also try to exploit HLS-based techniques for periodic pro-
cesses as well.

6.2.6 Sporadic events

We could connect sporadic events to interrupts and execute them immediately
if their interrupt priority is the highest in the system. However, quite unpre-
dictable timing behavior would result for all the other tasks. Therefore, special
sporadic task servers are used which execute at regular intervals and check
for ready sporadic tasks. This way, sporadic tasks are essentially turned into
periodic tasks, thereby improving the predictability of the whole system.

6.3 Hardware/software partitioning

6.3.1 Introduction

According to the general problem description on page 237, application map-
ping techniques must support the mapping to heterogeneous processors. Stan-
dard scheduling techniques do not support such a mapping very well. It is
supported, however, by hardware/software partitioning techniques. Therefore,
we will present an example of such a technique in this section.

By hardware/software partitioning we mean the mapping of task graph nodes
to either hardware or software. Applying hardware/software partitioning, we
will be able to decide which parts must be implemented in hardware and which
in software. A standard procedure for embedding hardware/software partition-
ing into the overall design flow is shown in fig. 6.27. We start from a common
representation of the specification, e.g. in the form of task graphs and informa-
tion about the platform.

For each of the nodes of the task graphs, we need information concerning the
effort required and the benefits received from choosing a certain implemen-
tation of these nodes. For example, execution times must be predicted (see
page 207). It is very hard to predict times required for communication. Nev-
ertheless, two tasks requiring a very high communication bandwidth should
preferably be mapped to the same components. Iterative approaches are used

264 EMBEDDED SYSTEM DESIGN

Figure 6.27. General view of hardware/software partitioning

in many cases. An initial solution to the partitioning problem is generated,
analyzed and then improved.

Some approaches for partitioning are restricted to mapping task graph nodes
either to special purpose hardware or to software running on a single processor.
Such partitioning can be performed with bipartitioning algorithms for graphs
[Kuchcinski, 2002].

More elaborate partitioning algorithms are capable of mapping graph nodes
to multi-processor systems and hardware. In the following, we will describe
how this can be done using a standard optimization technique from operations
research, integer linear programming (see Appendix A). Our presentation is
based on a simplified version of the optimization proposed for the codesign
tool COOL [Niemann, 1998].

6.3.2 COOL

For COOL, the input consists of three parts:

Target technology: This part of the input to COOL comprises information
about the available hardware platform components. COOL supports mul-
tiprocessor systems, but requires that all processors are of the same type,
since it does not include automatic or manual processor selection. The
type of the processors used (as well as information about the correspond-
ing compiler) must be included in this part of the input to COOL. As far
as the application-specific hardware is concerned, the information must be
sufficient for starting automatic hardware synthesis with all required pa-
rameters. In particular, information about the technology library must be
given.

Application mapping 265

Design constraints: The second part of the input comprises design con-
straints such as the required throughput, latency, maximum memory size,
or maximum area for application-specific hardware.

Behavior: The third part of the input describes the required overall behav-
ior. Hierarchical task graphs are used for this. We can think of, e.g. using
the hierarchical task graph of fig. 2.6.

COOL uses two kinds of edges: communication edges and timing edges.
Communication edges may contain information about the amount of infor-
mation to be exchanged. Timing edges provide timing constraints. COOL
requires the behavior of each of the leaf nodes5 of the graph hierarchy to be
known. COOL expects this behavior to be specified in VHDL6.

For partitioning, COOL uses the following steps:

1 Translation of the behavior into an internal graph model.

2 Translation of the behavior of each node from VHDL into C.

3 Compilation of all C programs for the selected target processor type,
computation of the resulting program size, estimation of the resulting ex-
ecution time. If simulations are used for the latter, simulation input data
must be available.

4 Synthesis of hardware components: For each leaf node, application-
specific hardware is synthesized. Since quite a number of hardware com-
ponents may have to be synthesized, hardware synthesis should not be too
slow. It was found that commercial synthesis tools focusing on gate level
synthesis were too slow to be useful for COOL. However, high-level syn-
thesis (HLS) tools working at the register-transfer-level (using adders, reg-
isters, and multiplexer as components, rather than gates) provided sufficient
synthesis speed. Also, such tools could provide sufficiently precise values
for delay times and required silicon area. In the actual implementation,
the OSCAR high-level synthesis tool [Landwehr and Marwedel, 1997] was
used.

5 Flattening the hierarchy: The next step is to extract a flat task graph
from the hierarchical flow graph. Since no merging or splitting of nodes
is performed, the granularity used by the designer is maintained. Cost
and performance information gained from compilation and from hardware

5See page 43 for a definition of this term.
6In retrospect, we now know that C should have been used for this, as this choice would have made the
partitioning for many standards described in C easier.

266 EMBEDDED SYSTEM DESIGN

synthesis are added to the nodes. This is actually one of the key ideas of
COOL: the information required for hardware/software partitioning is
precomputed and it is computed with good precision. This information
forms the basis for generating cost-minimized designs meeting the design
constraints.

6 Generating and solving a mathematical model of the optimization prob-
lem: COOL uses integer linear programming (ILP) to solve the optimiza-
tion problem. A commercial ILP solver is used to find values for deci-
sion variables minimizing the cost. The solution is optimal with respect
to the cost function derived from the available information. However, this
cost includes only a coarse approximation of the communication time. The
communication time between any two nodes of the task graph depends on
the mapping of those nodes to processors and hardware. If both nodes are
mapped to the same processor, communication will be local and thus quite
fast. If the nodes are mapped to different hardware components, commu-
nication will be non-local and may be slower. Modeling communication
costs for all possible mappings of task graph nodes would make the model
very complex and is therefore replaced by iterative improvements of the
initial solution. More details on this step will be presented below.

7 Iterative improvements: In order to work with good estimates of the com-
munication time, adjacent nodes mapped to the same hardware component
are now merged. This merging is shown in fig. 6.28.

Figure 6.28. Merging of task nodes mapped to the same hardware component

We assume that tasks T1, T2 and T5 are mapped to hardware components
H1 and H2, whereas T3 and T4 are mapped to processor P1. Accordingly,
communication between T3 and T4 is local communication. Therefore, we
merge T3 and T4, and assume that the communication between the two tasks
does not require a communication channel. Communication time can be
now estimated with improved precision. The resulting graph is then used

Application mapping 267

as new input for mathematical optimization. The previous and the current
step are repeated until no more graph nodes are merged.

8 Interface synthesis: After partitioning, the glue logic required for inter-
facing processors, application-specific hardware and memories is created.

Next, we will describe how partitioning can be modeled using a 0/1-ILP model
(see Appendix A, page 335). The following index sets will be used in the
description of the ILP model:

Index set V denotes task graph nodes. Each v ∈V corresponds to one task
graph node.

Index set L denotes task graph node types. Each l ∈ L corresponds to one
task graph node type. For example, there may be nodes describing square
root, Discrete Cosine Transform (DCT) or Discrete Fast Fourier Transform
(DFT) computations. Each of them is counted as one type.

Index set M denotes hardware component types. Each m ∈ M corresponds
to one hardware component type. For example, there may be special hard-
ware components for the DCT or the DFT. There is one index value for the
DCT hardware component and one for the DFT hardware component.

For each of the hardware components, there may be multiple copies, or
“instances”. Each instance is identified by an index j ∈ J.

Index set KP denotes processors. Each k ∈ KP identifies one of the proces-
sors (all of which are of the same type).

The following decision variables are required by the model:

Xv,m: this variable will be 1, if node v is mapped to hardware component
type m ∈ M and 0 otherwise.

Yv,k: this variable will be 1, if node v is mapped to processor k ∈ KP and 0
otherwise.

NYl,k: this variable will be 1, if at least one node of type l is mapped to
processor k ∈ KP and 0 otherwise.

Type is a mapping V → L from task graph nodes to their corresponding
types.

In our particular case, the cost function accumulates the total cost of all hard-
ware units:

268 EMBEDDED SYSTEM DESIGN

C = processor costs + memory costs + cost of application specific hardware

We would obviously minimize the total cost if no processors, memory and
application specific hardware were included in the “design”. Due to the con-
straints, this is not a legal solution. We can now present a brief description of
some of the constraints of the ILP model:

Operation assignment constraints: These constraints guarantee that each
operation is implemented either in hardware or in software. The corre-
sponding constraints can be formulated as follows:

∀v ∈V : ∑
m∈M

Xv,m + ∑
k∈KP

Yv,k = 1 (6.10)

In plain text, this means the following: for all task graph nodes v, the fol-
lowing must hold: v is implemented either in hardware (setting one of the
Xv,m variables to 1, for some m) or it is implemented in software (setting
one of the Yv,k variables to 1, for some k).

All variables are assumed to be non-negative integer numbers:

Xv,m ∈ IN0, (6.11)

Yv,k ∈ IN0 (6.12)

Additional constraints ensure that decision variables Xv,m and Yv,k have 1 as
an upper bound and, hence, are in fact 0/1-valued variables:

∀v ∈V : ∀m ∈ M : Xv,m ≤ 1 (6.13)

∀v ∈V : ∀k ∈ KP : Yv,k ≤ 1 (6.14)

If the functionality of a certain node of type l is mapped to some proces-
sor k, then this processors’ instruction memory must include a copy of the
software for this function:

∀l ∈ L,∀v : Type(v) = cl,∀k ∈ KP : NYl,k ≥ Yv,k (6.15)

In plain text, this means: for all types l of task graph nodes and for all nodes
v of this type, the following must hold: if v is mapped to some processor k

Application mapping 269

(indicated by Yv,k being 1), then the software corresponding to functionality
l must be provided by processor k, and the corresponding software must
exist on that processor (indicated by NYl,k being 1).

Additional constraints ensure that decision variables NYl,k are also 0/1-
valued variables:

∀l ∈ L : ∀k ∈ KP : NYl,k ≤ 1 (6.16)

Resource constraints: The next set of constraints ensures that “not too
many” nodes are mapped to the same hardware component at the same
time. We assume that, for every clock cycle, at most one operation can
be performed per hardware component. Unfortunately, this means that the
partitioning algorithm also has to generate a partial schedule for executing
task graph nodes. Scheduling by itself is already an NP-complete problem
for most of the relevant problem instances.

Precedence constraints: These constraints ensure that the schedule for
executing operations is consistent with the precedence constraints in the
task graph.

Design constraints: These constraints put a limit on the cost of certain
hardware components, such as memories, processors or area of application-
specific hardware.

Timing constraints: Timing constraints, if present in the input to COOL,
are converted into ILP constraints.

Some additional, but less important constraints are not included in this list.

Example: In the following, we will show how these constraints can be gener-
ated for the task graph in fig. 6.29 (the same as the one in fig. 2.6).

Figure 6.29. Task graph

Suppose that we have a hardware component library containing three compo-
nents types H1, H2 and H3 with costs of 20, 25 and 30 cost units, respectively.
Furthermore, suppose that we can also use a processor P of cost 5. In addition,

270 EMBEDDED SYSTEM DESIGN

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

Figure 6.30. Execution times of tasks T1 to T5 on components

we assume that the table in fig. 6.30 describes the execution times of our tasks
on these components.

Tasks T1 to T5 can only be executed on the processor or on one application-
specific hardware unit. Obviously, processors are assumed to be cheap but
slow in executing tasks T1, T2, and T5.

The following operation assignment constraints must be generated, assuming
that a maximum of one processor (P1) is to be used:

X1,1 +Y1,1 = 1 (Task 1 either mapped to H1 or to P1)
X2,2 +Y2,1 = 1 (Task 2 either mapped to H2 or to P1)
X3,3 +Y3,1 = 1 (Task 3 either mapped to H3 or to P1)
X4,3 +Y4,1 = 1 (Task 4 either mapped to H3 or to P1)
X5,1 +Y5,1 = 1 (Task 5 either mapped to H1 or to P1)

Furthermore, assume that the types of tasks T1 to T5 are l = 1,2,3,3 and 1,
respectively. Then, the following additional resource constraints are required:

(6.17)NY1,1 ≥ Y1,1

NY2,1 ≥ Y2,1

NY3,1 ≥ Y3,1

NY3,1 ≥ Y4,1

NY1,1 ≥ Y5,1 (6.18)

Equation 6.17 means: if task 1 is mapped to the processor, then the function
l = 1 must be implemented on that processor. The same function must also be
implemented on the processor if task 5 is mapped to the processor (eq. 6.18).

We have not included timing constraints. However, it is obvious that the pro-
cessor is slow in executing some of the tasks and that application-specific hard-
ware is required for timing constraints below 100 time units.

Application mapping 271

The cost function is:

C = 20∗#(H1)+25∗#(H2)+30∗#(H3)+5∗#(P)

where #() denotes the number of instances of hardware components. This num-
ber can be computed from the variables introduced so far if the schedule is also
taken into account. For a timing constraint of 100 time units, the minimum cost
design comprises components H1, H2 and P. This means that tasks T3 and T4

are implemented in software and all others in hardware.

In general, due to the complexity of the combined partitioning and scheduling
problem, only small problem instances of the combined problem can be solved
in acceptable run-times. Therefore, the problem is heuristically split into the
scheduling and the partitioning problem: an initial partitioning is based on
estimated execution times and the final scheduling is done after partitioning. If
it turns out that the schedule was too optimistic, the whole process has to be
repeated with tighter timing constraints. Experiments for small examples have
shown that the cost for heuristic solutions is only 1 or 2 % larger than the cost
of optimal results.

Automatic partitioning can be used for analyzing the design space. In the fol-
lowing, we will present results for an audio lab, including mixer, fader, echo,
equalizer and balance units. This example uses earlier target technologies in
order to demonstrate the effect of partitioning. The target hardware consists
of a (slow) SPARC processor, external memory, and application-specific hard-
ware to be designed from an (outdated) 1µ ASIC library. The total allowable
delay is set to 22675 ns, corresponding to a sample rate of 44.1 kHz, as used
in CDs. Fig. 6.31 shows different design points which can be generated by
changing the delay constraint.

The unit λ refers to a technology-dependent length unit. It is essentially one
half of the closest distance between the centers of two metal wires on the chip
(also called half-pitch [ITRS Organization, 2009]). The design point at the
left corresponds to a solution implemented completely in hardware, the design
point at the right to a software solution. Other design points use a mixture of
hardware and software. The one corresponding to an area of 78.4 λ2 is the
cheapest meeting the deadline.

Obviously, technology has advanced to allow a 100% software-based audio
lab design nowadays. Nevertheless, this example demonstrates the underlying
design methodology which can also be used for more demanding applications,
especially in the high-speed multimedia domain, such as MPEG-4.

272 EMBEDDED SYSTEM DESIGN

Figure 6.31. Design space for audio lab

6.4 Mapping to heterogeneous multi-processors

Currently (in 2010), mapping to heterogeneous multi-processors still is a re-
search topic. Overviews of the state of art in this area are provided by the
Workshops on Mapping of Applications to MPSoCs, organized by the Artist-
Design European Network of Excellence. The following information is based
on the first [Marwedel, 2008a] and the second [Marwedel, 2009a] workshop in
this series as well as on a summary of the first workshop [Marwedel, 2009b].
The different approaches for this mapping can be classified by two criteria:
mapping tools may either assume a fixed execution platform or may design
such a platform during the mapping and they may or may not include auto-
matic parallelization of the source codes. Fig. 6.32 contains a classification of
some of the available mapping tools by these two criteria.

The DOL tools from ETH Zürich [Thiele, L. et al., 2009] incorporate

Automatic selection of computation templates: Processor types can be
completely heterogeneous. Standard processors, micro-controllers, DSP
processors, FPGAs etc. are all possible options.

Automatic selection of communication techniques: Various interconnec-
tion schemes like central buses, hierarchical buses, rings etc. are feasible.

Application mapping 273

Architecture fixed/ Fixed Architecture Architecture to be
Auto parallelizing designed
Starting from a given
model

HOPES, mapping to CELL
proc., Q. Xu, T. Simunic

COOL, DOL, SystemCo-
designer

Auto-parallelizing Mnemee, O’Boyle and
Franke

Daedalus

MAPS

Figure 6.32. Classification of mapping tools and authors’ work

Automatic selection of scheduling and arbitration: DOL design space
exploration tools automatically choose between rate monotonic scheduling,
EDF, TDMA- and priority-based schemes.

The input to DOL consists of a set of tasks together with use cases. The output
describes the execution platform, the mapping of tasks to processors together
with task schedules. This output is expected to meet constraints (like memory
size and timing constraints) and to minimize objectives (like size, energy etc).
Applications are represented by so-called problem graphs. Fig. 6.33 shows a
simple DOL-problem graph. This graph models communication explicitly.

Figure 6.33. DOL problem graph

In addition, possible execution platforms are represented by so-called archi-
tecture graphs. Fig. 6.34 shows a simple hardware platform together with its
architecture graph. Again, communication is modeled explicitly.

Figure 6.34. DOL architecture graph

274 EMBEDDED SYSTEM DESIGN

The problem graph and the architecture graph are connected in the specifica-
tion graph. Fig. 6.35 shows a DOL specification graph.

Figure 6.35. DOL specification graph

Such a specification graph consists of the problem graph and the architecture
graph. Edges between the two subgraphs represent feasible implementations.
In total, implementations are represented by a triple:

An allocation α: α is a subset of the architecture graph, representing hard-
ware components allocated (selected) for a particular design.

A binding β: a selected subset of the edges between specification and ar-
chitecture identifies a relation between the two. Selected edges are called
bindings.

A schedule τ: τ assigns start times to each node v in the problem graph.

Example: Fig. 6.36 shows how the specification of fig. 6.35 can be turned into
an implementation.

In DOL, implementations are generated with evolutionary algorithms [Bäck
and Schwefel, 1993], [Bäck et al., 1997], [Coello et al., 2007]. With such al-
gorithms, solutions are represented as strings in chromosomes of “individu-
als”. Using evolutionary algorithms, new sets of solutions can be derived from
existing sets of solutions. The derivation is based on evolutionary operators
such as mutation, selection and recombination. The selection of new sets of
solutions is based on fitness values. Evolutionary algorithms are capable of
solving complex optimization problems not tackable by other types of algo-
rithms. Finding appropriate ways of encoding solutions in chromosomes is not
easy. On one hand, the decoding should not require too much run-time. On
the other hand, we must deal with the situation after the evolutionary transfor-

Application mapping 275

Figure 6.36. DOL implementation

mations. These transformations could generate infeasible solutions, except for
some carefully designed encodings.

In DOL, chromosomes encode allocations and bindings. In order to evaluate
the fitness of a certain solution, allocations and bindings must be decoded from
the individuals (see fig. 6.37).

Figure 6.37. Decoding of solutions from chromosomes of individuals

In DOL, schedules are not encoded in the chromosomes. Rather, they are de-
rived from the allocation and binding. This way overloading evolutionary al-
gorithms with scheduling decisions is avoided. Once the schedule has been
computed, the fitness of solutions can be evaluated.

The overall architecture of DOL is shown in fig. 6.38.

Initially, the task graph, use cases and available resources are defined. This
can be done with a specialized editor called MOSES. This initial information
is evaluated in the evaluation framework EXPO. Performance values computed
by EXPO are then sent to SPEA2, an evolutionary algorithm-based optimiza-

276 EMBEDDED SYSTEM DESIGN

Figure 6.38. DOL tool

tion framework. SPEA2 selects good candidate architectures. These are sent
back to EXPO for an evaluation. Evaluation results are then communicated
again to SPEA2 for another round of evolutionary optimizations. This kind
of ping-pong game between EXPO and SPEA2 continues until good solutions
have been found. The selection of solutions is based on the principle of Pareto-
optimality. A set of Pareto-optimal designs is returned to the designer, who can
then analyze the trade-off between the different objectives. Fig. 6.39 shows the
resulting visualization of the Pareto-front.

The functionality of the SystemCodesigner [Keinert et al., 2009] is somewhat
similar to that of DOL. However, it differs in the way specifications are de-
scribed (they can be represented in SystemC) and in the way, the optimizations
are performed. The mapping of applications is modeled as an ILP model. A
first solution is generated using an ILP optimizer. This solution is then im-
proved by switching to evolutionary algorithms7.

Daedalus [Nikolov et al., 2008] incorporates automatic parallelization. For
this purpose, sequential applications are mapped to Kahn process networks.
Design space exploration is then performed using Kahn process networks as
an intermediate representation.

Other approaches start from a given task graph and map to a fixed architec-
ture. For example, Ruggiero maps applications to cell processors [Ruggiero
and Benini, 2008]. The HOPES-system is able to map to various proces-
sors [Ha, 2007], using models of computation supported by the Ptolemy tools.
Some tools take additional objectives into account. For example, Xu considers
the optimization of the dependable lifetime of the resulting system [Xu et al.,
2009]. Simunic incorporates thermal analysis into her work and tries to avoid
too hot spots on the MPSoC [Simunic-Rosing et al., 2007]. Further work in-
cludes that of Popovici et al. [Popovici et al., 2010]. This work uses several
levels of modeling, employing Simulink and SystemC as languages.

7A more recent version uses a satisfiability (SAT) solver for the same purpose.

Application mapping 277

Figure 6.39. Pareto front of solutions for a design problem, ©ETHZ

Auto-parallelizing approaches for fixed architectures include the Mnemee tool
set [Mnemee project, 2010] and work at the University of Edinburgh [Franke
and O’Boyle, 2005]. MAPS tools [Ceng et al., 2008] combine automatic par-
allelization with a limited DSE.

6.5 Assignments

1 Suppose that we have a set of 4 tasks. Arrival times Ai, deadlines di and
execution times ci are as follows:

T1: A1=10, d1=18, c1=4

T2: A2=0, d2=28, c2=12

T3: A3=6, d3=17, c3=3

T4: A4=3, d4=13, c4=6

278 EMBEDDED SYSTEM DESIGN

Generate a graphical representation of schedules for this task set, using Ear-
liest Deadline First (EDF) and Least Laxity (LL) scheduling algorithms!
For LL scheduling, indicate laxities for all tasks at all context switch times.
Will any task miss its deadline?

2 Suppose that we have a task set of six tasks T1 to T6. Their execution times
and their deadlines are as follows:

T1: d1=15, c1=3

T2: d2=13, c2=5

T3: d3=14, c3=4

T4: d4=16, c4=2

T5: d3=20, c3=4

T6: d4=22, c4=3

Task dependencies are as shown in fig. 6.40. Tasks T1 and T2 are available
immediately.

Figure 6.40. Task dependencies

Generate a graphical representation of schedules for this task set, using the
Latest Deadline First (LDF) algorithm!

3 Suppose that we have a system comprising two tasks. Task 1 has a pe-
riod of 5 and and execution time of 2. The second task has a period of
7 and an execution time of 4. Let the deadlines be equal to the periods.
Assume that we are using Rate Monotonic Scheduling (RMS). Could any
of the two tasks miss its deadline, due to a too high processor utilization?
Compute this utilization and compare it to a bound which would guarantee
schedulability! Generate a graphical representation of the resulting sched-
ule! Suppose that tasks will always run to their completion, even if they
missed their deadline.

Application mapping 279

4 Consider the same task set as in the previous assignment. Use Earliest
Deadline First (EDF) for scheduling. Can any of the tasks miss its dead-
line? If not, why not? Generate a graphical representation of the resulting
schedule! Suppose that tasks will always run to their completion.

5 Consider a set of tasks. Let V = {v} be the index set for tasks. Let L = {l}
be the set of task types and let Type : V → L be a mapping from tasks to
their types. Assume that M = {m} and KP = {k} denote the set of hard-
ware component types and processors, respectively. Describe the following
elements of the hardware/software partitioning model used by COOL:

(a) Which decision variables are required?

(b) Which variables model whether or not tasks of type l are mapped to
processor k?

(c) What does the objective function look like?

(d) Which equations are required to ensure that each task will be imple-
mented in either hardware or in software?

(e) Which equations are required to ensure that tasks are mapped to a cer-
tain processor only if the software for the type of task is available on
that processor?

Chapter 7

OPTIMIZATION

In order to make embedded systems as efficient as required, many optimiza-
tions have been developed. Only a small subset of those can be mentioned
in this book. In this chapter, we will present a selected set of such optimiza-
tions. As indicated in our design flow, these optimizations complement the
tools mapping applications to the final systems, as described in Chapter 6 and
as shown in fig. 7.1.

Figure 7.1. Context of the current Chapter

7.1 Task level concurrency management

As mentioned on page 31, the task graphs’ granularity is one of their most
important properties. Even for hierarchical task graphs, it may be useful to
change the granularity of the nodes. The partitioning of specifications into
tasks or processes does not necessarily aim at the maximum implementation
efficiency. Rather, during the specification phase, a clear separation of con-
cerns and a clean software model are more important than caring about the im-

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8 7, © Springer Science+Business Media B.V. 2011

281

http://dx.doi.org/10.1007/978-94-007-0257-8_7

282 EMBEDDED SYSTEM DESIGN

plementation too much. For example, a clear separation of concerns includes
a clear separation of the implementation of abstract data types from their use.
Also, we might be using several tasks in a pipelined fashion in our specifica-
tion, where merging some of them might reduce context switching overhead.
Hence, there will not necessarily be a one-to-one correspondence between the
tasks in the specification and those in the implementation. This means that a
regrouping of tasks may be advisable. Such a regrouping is indeed feasible by
merging and splitting of tasks.

Merging of task graphs can be performed whenever some task Ti is the im-
mediate predecessor of some other task Tj and if Tj does not have any other
immediate predecessor (see fig. 7.2 with Ti = T3 and Tj = T4). This trans-
formation can lead to a reduced overhead of context-switches if the node is
implemented in software, and it can lead to a larger potential for optimizations
in general.

Figure 7.2. Merging of tasks

On the other hand, splitting of tasks may be advantageous for the following
reasons:

Tasks may be holding resources (like large amounts of memory) while they
are waiting for some input. In order to maximize the use of these resources, it
may be best to constrain the use of these resources to the time intervals during
which these resources are actually needed. In fig. 7.3, we are assuming that
task T2 requires some input somewhere in its code.

Figure 7.3. Splitting of tasks

In the initial version, the execution of task T2 can only start if this input is
available. We can split the node into T ∗

2 and T ∗∗
2 such that the input is only

required for the execution of T ∗∗
2 . Now, T ∗

2 can start earlier, resulting in more

Optimization 283

scheduling freedom. This improved scheduling freedom might improve re-
source utilization and could even enable meeting some deadline. It may also
have an impact on the memory required for data storage, since T ∗

2 could re-
lease some of its memory before terminating and this memory could be used
by other tasks while T ∗∗

2 is waiting for input.

One might argue that the tasks should release resources like large amounts
of memory anyway before waiting for input. However, the readability of the
original specification could suffer from caring about implementation issues in
an early design phase.

Quite complex transformations of the specifications can be performed with
a Petri net-based technique described by Cortadella et al. [Cortadella et al.,
2000]. Their technique starts with a specification consisting of a set of tasks
described in a language called FlowC. FlowC extends C with process headers
and intertask communication specified in the form of READ- and WRITE-
function calls. Fig. 7.4 shows an input specification using FlowC.

Figure 7.4. System specification

The example uses input ports IN and COEF, as well as output port OUT. Point-
to-point interprocess communication between processes is realized through a
uni-directional buffered channel DATA. Task GetData reads data from the en-
vironment and sends it to channel DATA. Each time N samples have been sent,
their average value is also sent via the same channel. Task Filter reads N values
from the channel (and ignores them) and then reads the average value, multi-
plies the average value by c (c can be read in from port COEF) and writes the
result to port OUT. The third parameter in READ and WRITE calls is the num-

284 EMBEDDED SYSTEM DESIGN

ber of items to be read or written. READ calls are blocking, WRITE calls are
blocking if the number of items in the channel exceeds a predefined threshold.
The SELECT statement has the same semantics as the statement with the same
name in ADA (see page 104): execution of this task is suspended until input
arrives from one of the ports. This example meets all criteria for splitting tasks
that were mentioned in the context of fig. 7.3. Both tasks will be waiting for
input while occupying resources. Efficiency could be improved by restructur-
ing these tasks. However, the simple splitting of fig. 7.3 is not sufficient. The
technique proposed by Cortadella et al. is a more comprehensive one. Using
their technique, FlowC-programs are first translated into (extended) Petri nets.
Petri nets for each of the tasks are then merged into a single Petri net. Using
results from Petri net theory, new tasks are then generated. Fig. 7.5 shows a
possible new task structure.

Figure 7.5. Generated software tasks

In this new task structure, there is one task which performs all initializations:
In addition, there is one task for each of the input ports. An efficient imple-
mentation would raise interrupts each time new input is received for a port.
There should be a unique interrupt per port. The tasks could then be started
directly by those interrupts, and there would be no need to invoke the operating
system for that. Communication can be implemented as a single shared global
variable (assuming a shared address space for all tasks). The overall operating
system overhead would be quite small, if required at all.

The code for task Tin shown in fig. 7.5 is the one that is generated by the Petri
net-based inter-task optimization of the task structure. It should be further
optimized by intra-task optimizations, since the test performed for the first if-

Optimization 285

statement is always false (j is equal to i-1 in this case, and i and j are reset to 0
whenever i becomes equal to N). For the third if-statement, the test is always
true, since this point of control is only reached if i is equal to N and i is equal to
j whenever label L0 is reached. Also, the number of variables can be reduced.
The following is an optimized version Tin:

Tin () {
READ (IN, sample, 1);

sum += sample; i++;

DATA = sample; d = DATA;

L0: if (i < N) return;

DATA = sum/N; d = DATA;

d = d*c; WRITE(OUT,d,1);

sum = 0; i = 0;

return;

}

The optimized version of Tin could be generated by a very clever compiler.
Unfortunately, hardly any of today’s compilers will perform this optimization.
Nevertheless, the example shows the type of transformations required for gen-
erating “good” task structures. For more details about the task generation, refer
to Cortadella et al. [Cortadella et al., 2000].

Optimizations similar to the one just presented are described in the book by
Thoen [Thoen and Catthoor, 2000] and in a publication by Meijer et al. [Meijer
et al., 2010].

7.2 High-level optimizations

There are many high-level optimizations which can potentially improve the
efficiency of embedded software.

7.2.1 Floating-point to fixed-point conversion

Floating-point to fixed-point conversion is a commonly used technique. This
conversion is motivated by the fact that many signal processing standards (such
as MPEG-2 or MPEG-4) are specified in the form of C-programs using floating-
point data types. It is left to the designer to find an efficient implementation of
these standards.

For many signal processing applications, it is possible to replace floating-point
numbers with fixed-point numbers (see page 144). The benefits may be signif-

286 EMBEDDED SYSTEM DESIGN

icant. For example, a reduction of the cycle count by 75% and of the energy
consumption by 76% has been reported for an MPEG-2 video compression al-
gorithm [Hüls, 2002]. However, some loss of precision is normally incurred.
More precisely, there is a trade-off between the cost of the implementation and
the quality of the algorithm (evaluated e.g. in terms of the signal-to-noise ratio
(SNR), see page 132). For small word-lengths, the quality may be seriously
affected. Consequently, floating-point data types may be replaced by fixed-
point data types, but the quality loss has to be analyzed. This replacement was
initially performed manually. However, it is a very tedious and error-prone
process.

Therefore, researchers have tried to support this replacement with tools. One of
such tools is FRIDGE (fixed-point programming design environment) [Willems
et al., 1997], [Keding et al., 1998]. FRIDGE tools have been made available
commercially as part of the Synopsys CoCentric tool suite [Synopsys, 2010].

In FRIDGE, the design process starts with an algorithm described in C, includ-
ing floating-point numbers. This algorithm is then converted to an algorithm
described in fixed-C. Fixed-C extends C by two fixed-point data types, using
the type definition features of C++. Fixed-C is a subset of C++ and provides
two data types fixed and Fixed. Fixed-point data types can be declared very
much like other variables. The following declaration declares a scalar vari-
able, a pointer, and an array to be fixed-point data types.

fixed a,*b,c[8]

Providing parameters of fixed-point data types can (but does not have to) be
delayed until assignment time:

a=fixed(5,4,s,wt,*b)

This assignment sets the word-length parameter of a to 5 bits, the fractional
word-length to 4 bits, sign to present (s), overflow handling to wrap-around
(w), and the rounding mode to truncation (t). The parameters for variables that
are read in an assignment are determined by the assignment(s) to those vari-
ables. The data type Fixed is similar to fixed, except that a consistency check
between parameters used in the declaration and those used in the assignment
is performed. For every assignment to a variable, parameters (including the
word-length) can be different. This parameter information can be added to the
original C-program before the application is simulated. Simulation provides
value ranges for all assignments. Based on that information, FRIDGE adds
parameter information to all assignments. FRIDGE also infers parameter in-
formation from the context. For example, the maximum value of additions is
considered to be the sum of the arguments. Added parameter information can
be either based on simulations or on worst case considerations. Being based
on simulations, FRIDGE does not necessarily assume the worst case values that

Optimization 287

would result from a formal analysis. The resulting C++-program is simulated
again to check for the quality loss. The Synopsys version of FRIDGE uses
SystemC fixed-point data types to express generated data type information.
Accordingly, SystemC can be used for simulating fixed-point data types.

An analysis of the trade-offs between the additional noise introduced and the
word-length needed was proposed by Shi and Brodersen [Shi and Brodersen,
2003] and also by Menard et al. [Menard and Sentieys, 2002].

7.2.2 Simple loop transformations

There is a number of loop transformations that can be applied to specifications.
The following is a list of standard loop transformations:

Loop permutation: Consider a two-dimensional array. According to the
C standard [Kernighan and Ritchie, 1988], two-dimensional arrays are laid
out in memory as shown in fig. 7.6. Adjacent index values of the second
index are mapped to a contiguous block of locations in memory. This lay-
out is called row-major order [Muchnick, 1997]. Note that the layout for
arrays is different for FORTRAN: Adjacent values of the first index are
mapped to a contiguous block of locations in memory (column major or-
der). Publications describing optimizations for FORTRAN can therefore
be confusing.

Figure 7.6. Memory layout for two-dimensional array p[j][k] in C

For row-major layout, it is usually beneficial to organize loops such that
the last index corresponds to the innermost loop. A corresponding loop
permutation is shown in the following example:

288 EMBEDDED SYSTEM DESIGN

for (k=0; k<=m; k++) for (j=0; j<=n; j++)

for (j=0; j<=n; j++) ⇒ for (k=0; k<=m; k++)

p[j][k] = ... p[j][k] = ...

Such permutations may have a positive effect on the reuse of array elements
in the cache, since the next iteration of the loop body will access an adja-
cent location in memory. Caches are normally organized such that adjacent
locations can be accessed significantly faster than locations that are further
away from the previously accessed location.

Loop fusion, loop fission: There may be cases in which two separate loops
can be merged, and there may be cases in which a single loop is split into
two. The following is an example:

for (j=0; j<=n; j++) for (j=0; j<=n; j++)

p[j]= ... ; {p[j]= ... ;

for (j=0; j<=n; j++) ⇔ p[j]= p[j] + ...}
p[j]= p[j] + ...

The left version may be advantageous if the target processor provides a
zero-overhead loop instruction which can only be used for small loops.
The right version might lead to an improved cache behavior (due to the
improved locality of references to array p), and also increases the potential
for parallel computations within the loop body. As with many other trans-
formations, it is difficult to know which of the transformations leads to the
best code.

Loop unrolling: Loop unrolling is a standard transformation creating sev-
eral instances of the loop body. The following is an example in which the
loop is being unrolled once:

for (j=0; j<=n; j++) for (j=0; j<=n; j+=2)

p[j]= ... ; ⇒ {p[j]= ... ;

p[j+1]= ...}

The number of copies of the loop is called the unrolling factor. Unrolling
factors larger than two are possible. Unrolling reduces the loop overhead
(less branches per execution of the original loop body) and therefore typ-
ically improves the speed. As an extreme case, loops can be completely
unrolled, removing control overhead and branches altogether. Unrolling
typically enables a number of following transformations and may there-
fore be beneficial even in cases where just unrolling the program does not

Optimization 289

give any advantages. However, unrolling increases code size. Unrolling is
normally restricted to loops with a constant number of iterations.

7.2.3 Loop tiling/blocking

It can be observed that the speed of memories is increasing at a slower rate
than that of processors. Since small memories are faster than large memories
(see page 155), the use of memory hierarchies may be beneficial. Possible
“small” memories include caches and scratch-pad memories. A significant
reuse factor for the information in those memories is required. Otherwise the
memory hierarchy cannot be efficiently exploited.

Reuse effects can be demonstrated by an analysis of the following example.
Let us consider matrix multiplication for arrays of size N × N [Lam et al.,
1991]:

for (i=1; i<=N; i++)

for(k=1; k<=N; k++){
r=X[i,k]; /* to be allocated to a register*/

for (j=1; j<=N; j++)

Z[i,j] += r* Y[k,j]

}

Let us consider access patterns for this code. The same element X[i,k] is used
by all iterations of the innermost loop. Compilers will typically be capable of
allocating this element to a register and reuse it for every execution of the in-
nermost loop. We assume that array elements are allocated in row major order
(as it is standard for C). This means that array elements with adjacent row (right
most) index values are stored in adjacent memory locations. Accordingly, ad-
jacent locations of Z and Y are fetched during the iterations of the innermost
loop. This property is beneficial if the memory system uses prefetching (when-
ever a word is loaded into the cache, loading of the next word is started as well).
Fig. 7.7 shows access patterns for this code.

For one iteration of the innermost loop, the black areas of arrays Z and Y are
accessed (and loaded into the cache). Whether or not the same information is
still in the cache for the next iteration of the middle or outermost loops depends
on the size of the cache. In the worst case (if N is large or the cache is small),
the information has to be reloaded for every execution of the innermost loop
and cache elements are not reused. The total number of memory references
may be as large as 2 N3 (for references to Z), N3 (for references to Y), and N2

(for references to X).

290 EMBEDDED SYSTEM DESIGN

Figure 7.7. Access pattern for unblocked matrix multiplication

Research on scientific computing led to the design of blocked or tiled algo-
rithms [Xue, 2000], which improve the locality of references. The following
is a tiled version of the above algorithm:

for (kk=1; kk<= N; kk+=B)

for (jj=1; jj<= N; jj+=B)

for (i=1; i<= N; i++)

for (k=kk; k<= min(kk+B-1,N); k++){
r=X[i][k]; /* to be allocated to a register*/

for (j=jj; j<= min(jj+B-1, N); j++)

Z[i][j] += r* Y[k][j]

}

Fig. 7.8 shows the corresponding access pattern.

Figure 7.8. Access pattern for tiled/blocked matrix multiplication

The innermost loop is now restricted so that it accesses less array elements
(those shown in black). Like above, references to X are replaced by references
to r. If a proper blocking factor is selected, elements of Z and Y are still in
the cache when the next iteration of the innermost loop starts. The blocking

Optimization 291

factor B can be chosen such that the elements of the innermost loops fit into
the cache. In particular, it can be chosen such that a B × B sub-matrix of Y
fits into the cache. This corresponds to a reuse factor of B for Y, since the
elements in the sub-matrix are accessed B times for each iteration of i. Also,
a block of B row elements of Z should fit into the cache. These will then be
reused during the iterations of k, resulting in a reuse factor of B for Z as well.
This reduces the overall number of memory references to at most 2 N3/B (for
references to Z) and N2 (for references to X). In practice, the reuse factor may
be less than B. Optimizing the reuse factor has been an area of comprehensive
research. Initial research focused on the performance improvements that can
be obtained by tiling. Performance improvements for matrix multiplication by
a factor between 3 and 4.3 was reported by Lam [Lam et al., 1991]. Possible
improvements are expected to increase with the increasing gap between pro-
cessor and memory speeds. Tiling can also reduce the energy consumption of
memory systems [Chung et al., 2001].

7.2.4 Loop splitting

Next, we discuss loop splitting as another optimization that can be applied
before compiling the program. Potentially, this optimization could also be
added to compilers.

Many image processing algorithms perform some kind of filtering. This fil-
tering consists of considering the information about a certain pixel as well as
that of some of its neighbors. Corresponding computations are typically quite
regular. However, if the considered pixel is close to the boundary of the image,
not all neighboring pixels exist and the computations must be modified. In a
straightforward description of the filtering algorithm, these modifications may
result in tests being performed in the innermost loop of the algorithm. A more
efficient version of the algorithm can be generated by splitting the loops such
that one loop body handles the regular cases and a second loop body handles
the exceptions. Figure 7.9 is a graphical representation of this transformation.

Figure 7.9. Splitting image processing into regular and special cases

Performing this loop splitting manually is a very difficult and error-prone pro-
cedure. Falk et al. have published an algorithm [Falk and Marwedel, 2003] to
perform a procedure which also works for larger dimensions automatically. It
is based on a sophisticated analysis of accesses to array elements in loops. Op-

292 EMBEDDED SYSTEM DESIGN

timized solutions are generated using genetic algorithms. The following code
shows a loop nest from the MPEG-4 standard performing motion estimation:

for (z=0; z<20; z++)

for (x=0; x<36; x++) {x1=4*x;

for (y=0; y<49; y++) {y1=4*y;

for (k=0; k<9; k++) {x2=x1+k-4;

for (l=0; l<9;) {y2=y1+l-4;

for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;

for (j=0; j<4;j++) {y3=y1+j; y4=y2+j;

if (x3<0 ‖ 35<x3‖y3<0‖48<y3)

then block 1; else else block 1;

if (x4<0‖ 35<x4‖y4<0‖48<y4)

then block 2; else else block 2;

}}}}}}

Using Falk’s algorithm, this loop nest is transformed into the following one:

for (z=0; z<20; z++)

for (x=0; x<36; x++) {x1=4*x;

for (y=0; y<49; y++)

if (x>=10‖y>=14)

for (; y<49; y++)

for (k=0; k<9; k++)

for (l=0; l<9;l++)

for (i=0; i<4; i++)

for (j=0; j<4;j++) {
then block 1; then block 2}

else {y1=4*y;

for (k=0; k<9; k++) {x2=x1+k-4;

for (l=0; l<9;) {y2=y1+l-4;

for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;

for (j=0; j<4;j++) {y3=y1+j; y4=y2+j;

if (0 ‖ 35<x3 ‖0‖ 48<y3)

then block 1; else else block 1;

Optimization 293

if (x4<0‖ 35<x4‖y4<0‖48<y4)

then block 2; else else block 2;

}}}}}}

Instead of complicated tests in the innermost loop, we now have a splitting
if-statement after the third for-loop statement. All regular cases are handled
in the then-part of this statement. The else-part handles the relatively small
number of remaining cases.

Fig. 7.10 shows the number of cycles that can be saved by loop nest splitting
for various applications and target processors.

Figure 7.10. Results for loop splitting

For the motion estimation algorithm, cycle counts can be reduced by up to
about 75 % (to 25 % of the original value). Obviously, substantial savings are
possible. This potential should certainly not be ignored.

7.2.5 Array folding

Some embedded applications, especially in the multimedia domain, include
large arrays. Since memory space in embedded systems is limited, options
for reducing the storage requirements of arrays should be explored. Fig. 7.11
represents the addresses used by five arrays as a function of time. At any par-
ticular time only a subset of array elements is needed. The maximum number
of elements needed is called the address reference window [De Greef et al.,
1997b]. In fig. 7.11, this maximum is indicated by a double-headed arrow.

294 EMBEDDED SYSTEM DESIGN

Figure 7.11. Reference patterns for arrays

A classical memory allocation for arrays is shown in fig. 7.12 (left). Each array
is allocated the maximum of the space it requires during the entire execution
time (if we consider global arrays).

Figure 7.12. Unfolded (left), inter-array folded (center), and intra-array folded (right) arrays

One of the possible improvements, inter-array folding, is shown in fig. 7.12
(center). Arrays which are not needed at overlapping time intervals can share
the same memory space. A second improvement, intra-array folding [De Greef
et al., 1997a], is shown in fig. 7.12 (right). It takes advantage of the limited sets
of components needed within an array. Storage can be saved at the expense
of more complex address computations. The two kinds of foldings can also be
combined.

Other forms of high-level transformations have been analyzed by Chung, Be-
nini and De Micheli [Chung et al., 2001], [Tan et al., 2003]. There are many
additional contributions in this domain in the compiler community.

In particular, function inlining replaces function calls by the code of the called
function. This transformation improves the speed of the code, but results in an
increase in the code size. Increased code sizes may be a problem in SoC tech-
nologies. Traditional inlining techniques rely on the user identifying functions

Optimization 295

to be inlined. This is a problem in systems on a chip, since the size of the in-
struction memory is very critical for such systems. Hence, it is important to be
able to constrain the size of the instruction memory and to let design tools find
out automatically which of the functions should be inlined for a certain size of
the memory. Known approaches for this include techniques by Teich [Teich
et al., 1999], Leupers et al. [Leupers and Marwedel, 1999], Palkovic [Palkovic
et al., 2002], and Lokuciejewski [Lokuciejewski et al., 2009]. These tech-
niques can be either integrated into a compiler or can be applied as a source-
to-source transformation before using any compiler.

7.3 Compilers for embedded systems

7.3.1 Introduction

Obviously, optimizations and compilers are available for the processors used
in PCs and compiler generation for commonly used 32-bit processors is well
understood. For embedded systems, standard compilers are also used in many
cases, since they are typically cheap or even freely available.

However, there are several reasons for designing special optimizations and
compilers for embedded systems:

Processor architectures in embedded systems exhibit special features (see
page 135). These features should be exploited by compilers in order to
generate efficient code. Compilation techniques might also have to support
compression techniques described on pages 138 to 140.

A high efficiency of the code is more important than a high compilation
speed.

Compilers could potentially help to meet and prove real-time constraints.
First of all, it would be nice if compilers contained explicit timing models.
These could be used for optimizations which really improve the timing be-
havior. For example, it may be beneficial to freeze certain cache lines in
order to prevent frequently executed code from being evicted and reloaded
several times.

Compilers may help to reduce the energy consumption of embedded sys-
tems. Compilers performing energy optimizations should be available.

For embedded systems, there is a larger variety of instruction sets. Hence,
there are more processors for which compilers should be available. Some-
times there is even the request to support the optimization of instruction sets
with retargetable compilers. For such compilers, the instruction set can be
specified as an input to a compiler generation system. Such systems can

296 EMBEDDED SYSTEM DESIGN

be used for experimentally modifying instruction sets and then observing
the resulting changes for the generated machine code. This is one partic-
ular case of design space exploration and is supported, for example, by
Tensilica tools [Tensilica Inc., 2010].

Some first approaches for retargetable compilers are described in the first book
on this topic [Marwedel and Goossens, 1995]. Optimizations can be found in
books by Leupers et al. [Leupers, 1997], [Leupers, 2000a]. In this section, we
will present examples of compilation techniques for embedded processors.

7.3.2 Energy-aware compilation

Many embedded systems are mobile systems which must run on batteries.
While computational demands on mobile systems are increasing, battery tech-
nology is expected to improve only slowly [ITRS Organization, 2009]. Hence,
the availability of energy is a serious bottleneck for new applications.

Saving energy can be done at various levels, including the fabrication process
technology, the device technology, circuit design, the operating system and
the application algorithms. Adequate translation from algorithms to machine
code can also help. High-level optimization techniques such as those presented
on pages 285 to 295 can also help to reduce the energy consumption. In this
section, we will look at compiler optimizations which can reduce the energy
consumption (frequently called low power optimizations). Energy models are
very essential ingredients of all energy optimizations. Energy models were
presented in Chapter 5. Using models like those, the following compiler opti-
mizations have been used for reducing the energy consumption:

Energy-aware scheduling: the order of instructions can be changed as
long as the meaning of the program does not change. The order can be
changed such that the number of transitions on the instruction bus is min-
imized. This optimization can be performed on the output generated by a
compiler and therefore does not require any change to the compiler.

Energy-aware instruction selection: typically, there are different instruc-
tion sequences for implementing the same source code. In a standard com-
piler, the number of instructions or the number of cycles is used as a crite-
rion (cost function) for selecting a good sequence. This criterion can be re-
placed by the energy consumed by that sequence. Steinke and others found
that energy-aware instruction selection reduces the energy consumption by
some percent [Steinke, 2003].

Optimization 297

Replacing the cost function is also possible for other standard compiler
optimizations, such as register pipelining, loop invariant code motion etc.
Possible improvements are also in the order of a few percent.

Exploitation of the memory hierarchy: As already explained on page
155, smaller memories provide faster access and consume less energy per
access. Therefore, a significant amount of energy can be saved if memory
hierarchies are exploited. Of all the compiler optimizations analyzed by
Steinke [Steinke et al., 2002b], [Steinke et al., 2002a], the energy savings
enabled by memory hierarchies are the largest. It is therefore beneficial to
use small scratch-pad memories (SPMs) in addition to large background
memories. All accesses to the corresponding address range will then re-
quire less energy and are faster than accesses to the larger memory. The
compiler should be responsible for allocating variables and instructions to
the scratch pad. This approach does, however, require that frequently ac-
cessed variables and code sequences are identified and mapped to that ad-
dress range.

7.3.3 Memory-architecture aware compilation

7.3.3.1 Compilation techniques for scratch-pads

The advantages of using scratch-pad memories (SPMs) have been very clearly
demonstrated [Banakar et al., 2002]. Therefore, the exploitation of scratch-pad
memories (SPMs) is the most prominent case of memory hierarchy exploita-
tion. Available compilers are usually capable of mapping memory objects to
certain address ranges in the memory. Towards this end, the source code typ-
ically has to be annotated. For example, memory segments can be introduced
in the source code by using pragmas like

pragma arm section rwdata = "foo", rodata = "bar"

Variables declared after this pragma would be mapped to read-write segment
"foo" and constants would be mapped to read-only segment "bar". Linker
commands can then map these segments to particular address ranges, includ-
ing those belonging to the SPM. This is the approach taken in compilers for
ARM processors [ARM Ltd., 2009b]. This is not a very comfortable approach
and it would be nice if compilers could perform such a mapping automati-
cally for frequently accessed objects. Therefore, optimization algorithms have
been designed. A survey has been presented at the HiPEAC summer school
[Marwedel, 2007]. Available SPM optimizations can be classified into two
categories:

298 EMBEDDED SYSTEM DESIGN

Non-overlaying (or “static”) memory allocation strategies: For these strate-
gies, memory objects will stay in the SPM while the corresponding appli-
cation is executed.

Overlaying (or “dynamic”) memory allocation strategies: For these strate-
gies, memory objects are moved in and out of the SPM at run-time. This
is a kind of “compiler-controlled paging”, except the migration of objects
happens between the SPM and some slower memory and does not involve
any disks.

7.3.3.2 Non-overlaying allocation

For non-overlaying allocation, we can start by considering the allocation of
functions and global variables to the SPM. For this purpose, each function and
each global variable can be modeled as a memory object. Let

S be the size of the SPM,

s fi and svi be the sizes of function i and variable i, respectively,

g be the energy consumption saved per access to the SPM (that is, the dif-
ference between the energy required per access to the slow main memory
and the one required per access to the SPM),

n fi and nvi be the number of accesses to function i and variable i, respec-
tively,

x fi and xvi be defined as

x fi =
{

1 if function i is mapped to the SPM
0 otherwise

(7.1)

xvi =
{

1 if variable i is mapped to the SPM
0 otherwise

(7.2)

Then, the goal is to maximize the gain

G = g

(

∑
i

n fi · x fi +∑
i

nvi · xvi

)

(7.3)

while respecting the size constraint

Optimization 299

∑
i

s fi · x fi +∑
i

svi · xvi ≤ S (7.4)

The problem is known as a knapsack problem. Standard knapsack algorithms
can be used for selecting the objects to be allocated to the SPM. However,
equations 7.3 and 7.4 also have the form of an integer linear programming
(ILP) problem (see Appendix A) and ILP-solvers can be used as well. g is a
constant factor in the objective function and is not needed for the solution of
the ILP problem. The corresponding optimization can be implemented as a
pre-pass optimization (see fig. 7.13).

Figure 7.13. Pre-pass optimization

The optimization impacts addresses of functions and global variables. Compil-
ers typically allow a manual specification of these addresses in the source code.
Hence, no change to the compiler itself is required. The advantage of such a
pre-pass optimization is that it can be used with compilers for many different
target processors. There is no need to modify a large number of target-specific
compilers.

This model can be extended into various directions:

Allocation of basic blocks: The approach just described only allows the
allocation of entire functions or variables to the SPM. As a result, a ma-
jor fraction of the SPM may remain empty if functions and variables are
large. Therefore, we try to reduce the granularity of the objects which are
allocated to the SPM. The natural choice is to consider basic blocks as
memory objects. In addition, we do also consider sets of adjacent basic
blocks, where adjacency is defined as being placed next to each other in
the instruction address space by the compiler. We call such sets of adjacent
blocks multi-blocks. Fig. 7.14 shows the three multi-blocks M12, M23 and
M123 for basic blocks BB1, BB2 and BB3.

The ILP model can be extended accordingly:

Let

300 EMBEDDED SYSTEM DESIGN

Figure 7.14. Basic blocks and multi-blocks

– sbi and smi be the sizes of basic blocks i and multi-blocks i, respec-
tively,

– nbi and nmi be the number of accesses to basic block i and multi-blocks
i, respectively,

– xbi and xmi be defined as

xbi =
{

1 if basic block i is mapped to the SPM
0 otherwise

(7.5)

xmi =
{

1 if multi-block i is mapped to the SPM
0 otherwise

(7.6)

Then, the goal is to maximize the gain

G = g

(

∑
i

n fi · x fi +∑
i

nbi · xbi +∑
i

nmi · xmi +∑
i

nvi · xvi

)

(7.7)

while respecting the constraints

∑
i

s fi · x fi +∑
i

sbi · xbi +∑
i

smi · xmi +∑
i

svi · xvi ≤ S (7.8)

∀ basic blocks i : xbi + x f f ct(i) + ∑
i′∈multiblock(i)

xmi′ ≤ 1 (7.9)

where f ct(i) is the function containing basic block i
and multiblock(i) is the set of multi-blocks containing basic block i

The second constraint ensures that a basic block is mapped to the SPM only
once, instead of potentially being mapped as a member of the enclosing
function and a member of a multi-block.

Optimization 301

Experiments using this model were performed by Steinke et al. [Steinke
et al., 2002b]. For some benchmark applications, energy reductions of up
to about 80% were found, even though the size of the SPM was just a small
fraction of the total code size of the application. Results for the bubble sort
program are shown in fig. 7.15.

Figure 7.15. Energy reduction by compiler-based mapping to scratch-pad for bubble sort

Obviously, larger SPMs lead to a reduced energy consumption in the main
memory. The energy required in the processor is also reduced, since less
wait cycles are required. Supply voltages have been assumed to be constant.

Partitioned memories [Wehmeyer and Marwedel, 2006]: Small memories
are faster and require less energy per access. Therefore, it makes sense to
partition memories into several smaller memories. The ILP model can be
extended easily to also model several memories. We do not distinguish be-
tween the various types of memory objects (functions, basic blocks, vari-
ables etc.), in this case. An index i represents any memory object. Let

– S j be the size of the memory j,

– si be the size of object i (as before),

– e j be the energy consumption per access to memory j,

– ni the number of accesses to object i (as before),

– xi, j be defined as

xi, j =
{

1 if object i is mapped to memory j
0 otherwise

(7.10)

302 EMBEDDED SYSTEM DESIGN

Instead of maximizing the energy saving, we are now minimizing the over-
all energy consumption. Hence, the goal is now to minimize

C = ∑
j

e j ∑
i

xi, j ·ni (7.11)

while respecting the constraints

∀ j : ∑
i

si · xi, j ≤ S j (7.12)

∀i : ∑
j

xi, j = 1 (7.13)

Partitioned memories are advantageous especially for varying memory re-
quirements. Storage locations accessed frequently are called the working
set of an application. Applications with a small working set could use a
very small fast memory, whereas applications requiring a larger working
set could be allocated to a somewhat larger memory. Therefore, a key ad-
vantage of partitioned memories is their ability to adapt to the size of the
current working set.

Furthermore, unused memories can be shut down to save additional en-
ergy. However, we are considering only the “dynamic” energy consump-
tion caused by accesses to the memory. In addition, there may be some
energy consumption even if the memory is idle. This consumption is not
considered here. Therefore, savings from shutting down memories are not
reflected in equations 7.11 and 7.12.

Link/load-time allocation of memory [Nguyen et al., 2005]: Optimizing
code at compile time for a certain SPM size has a disadvantage: the code
might perform badly if we run it on different variants of some processor, if
these variants have differently sized SPMs. We would like to avoid requir-
ing different executable files for the different variants of the processor. As
a result, we are interested in executables which are independent of the SPM
size. This is feasible, if we perform the optimization at link-time. The pro-
posed approach computes the ratio of the number of accesses divided by
the size of a variable at compile-time and stores this value together with
other information about variables in the executable. At load time, the OS
is queried for the size of the SPM. Then, the code is patched such that as
many profitable variables as possible are allocated to the SPM.

Allocation of the stack: In order to really reduce the energy consumption,
all frequently accessed memory objects must be allocated to some small

Optimization 303

memory. The stack must be included in this consideration. Otherwise, stack
accesses will limit the overall improvements that are feasible. There are at
least two approaches for this: Steinke [Steinke et al., 2002b] computed the
worst case stack size using a stack size analyzer. Stacks which are small
enough can then be allocated to the SPM. Avissar et al. [Avissar et al.,
2002] proposed to partition the stack into frequently and less frequently
accessed elements. Infrequently accessed elements will stay in the slower
main memory, while frequently accessed variables will be allocated to the
SPM. This scheme requires two stack pointers, one for each memory. In
order to prevent the overhead of updating two pointers for each function
call, splitting of the stack is avoided for “short” functions.

Allocation of the heap [Dominguez et al., 2005]: Remarks regarding fre-
quent accesses to the stack also apply to the heap. Heap elements which
are frequently accessed should also be allocated to efficient memory layers.
We could use a heap size analyzer in order to compute bounds on the heap
size. Small, frequently accessed heaps can be allocated to the SPM entirely.
However, heaps are frequently too large for this approach. Dominguez et
al. propose a second approach. In their approach, programs are partitioned
into regions.Regions are delimited by so-called program points. The se-
lection of program points is crucial for this approach. Program points can
be defined as [Udayakumaran et al., 2006]: “(i) the start and end of each
procedure; (ii) just before and just after each loop (even inner loops of
nested loops); (iii) the start and end of each if statement’s then part and
else part, as well as the start and end of the entire if statement; and (iv) the
start and end of each case in all switch statements in the program, as well
as the start and end of the entire switch statement”.

In [Dominguez et al., 2005], some space is kept available in the SPM and
each time a code region is entered, heap elements to be moved in and out
of the SPM are copied as needed. The copying is done such that pointers to
heap elements will always remain valid.

Consideration of the impact on timing predictability [Wehmeyer and Mar-
wedel, 2006]: Most of the SPM allocation algorithms allocate memory such
that we know at compile time, whether a memory access will be to a fast
or to a slow memory. Therefore, it is possible to predict the speed of mem-
ory accesses more precisely than for caches. As a result, the worst case
execution times of SPM-based systems are typically better that those of
cache-based systems.

304 EMBEDDED SYSTEM DESIGN

7.3.3.3 Overlaying allocation

Large applications may have multiple hot spots (multiple areas of code con-
taining compute-intensive loops). Non-overlaying approaches fail to provide
the best possible results in this context. For such applications, the SPM should
be exploited for each of the hot spots. This requires an automatic migration
between the layers in the memory hierarchy. There are several approaches for
overlaying allocation:

Tiling of large arrays [Kandemir et al., 2001], [Chen et al., 2006]: SPMs
can be problematic when large arrays are used, which do not completely fit
into the SPM. Algorithms presented so far will not allow subsets of arrays
to be copied into the SPM. This has been changed with Kandemir’s pro-
posal to combine tiling with SPM allocation. His technique allows copying
slices of arrays into the SPM. In [Kandemir et al., 2001], tiling was uncon-
ditionally applied. In [Chen et al., 2006], the authors propose to suppress
tiling for irregular array accesses for which tiling would be inefficient.

Multiple hierarchy levels [Brockmeyer et al., 2003]: The speed difference
between large and small memories is increasing. Therefore, it makes sense
to introduce multiple memory hierarchy levels. The MHLA (memory hier-
archy layer assignment) tool of IMEC tries to find an appropriate allocation
of variables to the different memory layers. MHLA automatically selects
subsets of arrays which can be copied to faster memory layers before loops
are entered. A new version of this tool is currently being designed in the
Mnemee project [Mnemee project, 2010].

Region-based memory object migration [Udayakumaran et al., 2006]:
This approach is also based on regions (see page 303) and program points.
For each program point, it is considered which variables should be moved
out of the SPM and which variables should be moved into the SPM (code
is modeled as a kind of variable).

Verma’s approach [Verma and Marwedel, 2004] is similar to the one by
Udayakumaran. However, the selection of the memory objects to be copied
is based on a global ILP model, instead of a more local, heuristic optimiza-
tion.

7.3.3.4 Multiple threads/processes

The above approaches are still limited to handling a single process or thread.
For multiple threads, moving objects into and out of the SPM at context switch
time has to be considered. Verma [Verma et al., 2005] proposed three different
approaches:

Optimization 305

1 For the first approach, only a single process owns space in the SPM at
any given time. At each context switch, the information of the preempted
process in the occupied space is saved and the information for the process
to be executed is restored. This approach is called the saving/restoring
approach. This approach does not work well with large SPMs, since the
copying would consume a significant amount of time and energy.

2 For the second approach, the space in the SPM is partitioned into areas for
the various processes. The size of the partitions is determined in a special
optimization. The SPM is filled during initialization. No further compiler-
controlled copying is required. Therefore, this approach is called the non-
saving approach. This approach makes sense only for SPMs large enough
to contain areas for several processes.

3 The third approach is a hybrid approach: The SPM is split into an area
jointly used by processes and a second area, in which processes obtain some
exclusively allocated space. The size of the two areas is determined in an
optimization.

Verma’s approaches require a fixed set of processes to be known at compile
time. The next step is to allow processes to enter and to leave the system.
Pyka et al. [Pyka et al., 2007] describe run-time SPM allocation performed by
an SPM memory manager (SPMM) to be integrated into the operating sys-
tem. Pyka’s approach allows space for pre-compiled libraries to be allocated
in the SPM, in contrast to earlier algorithms. Unfortunately, Pyka’s algorithm
requires an additional level of indirection. Despite the overhead of this addi-
tional level of indirection, a reduction of the energy consumption by 25 % to
35 % with respect to a four-way set associative cache has been obtained.

This additional level of indirection can be avoided if a memory management
unit (MMU) is available. Egger et al. [Egger et al., 2006] developed a tech-
nique exploiting MMUs: At compile time, sections of code are classified as
either benefiting or not benefiting from an allocation to the SPM. The code
benefiting is stored in a certain area in the virtual address space. Initially, this
area is not mapped to physical memory. Therefore a page fault occurs when
the code is accessed for the very first time. Page fault handling then invokes the
SPMM and the SPMM allocates (and deallocates) space in the SPM, always
updating the virtual-to-real addresses translation tables as needed.

In general, exploitation of SPM requires tool support, but leads to efficient de-
signs. Caches can be taken advantage of without such support. Future systems
might contain mixtures of caches and SPMs.

306 EMBEDDED SYSTEM DESIGN

7.3.4 Reconciling compilers and timing analysis

Almost all compilers which are available today do not include a timing model.
Therefore, the development of real-time software typically has to follow an it-
erative approach: software is compiled by a compiler which is unaware of any
timing information. The resulting code is then analyzed using a timing ana-
lyzer such as aiT [Absint, 2010]. If the timing constraints are not met, some of
the inputs to the compiler run must be changed and the procedure has to be re-
peated. We call this “trial-and-error”-based development of real-time soft-
ware. This approach suffers from several problems. First of all, the number
of required design iterations is initially unknown. Furthermore, the compiler
used in this approach is “optimizing”, but a precise evaluation of objectives
apart from the code size is impossible. Hence, compiler writers can only hope
that their “optimizations” have a positive impact of the quality of the code in
terms of relevant objectives. Due to the complex timing behavior of modern
processors, this hope is hardly supported by evidence. Finally, the “trial-and-
error”-based development of real-time software requires the designer to find
appropriate modifications of the input to the compiler such that the real-time
constraints will eventually be met.

This “trial-and-error”-based approach can be avoided, if timing analysis is in-
tegrated into the compiler. The is the aim of the development of the worst case
execution time aware compiler WCC at TU Dortmund. Developing a com-
pletely new timing analyzer independent of the existing ones would be a waste
of efforts. Therefore, WCC is based on the integration of the timing analyzer
aiT into an experimental compiler for the TriCore architecture. Fig. 7.16 shows
the resulting overall structure.

Figure 7.16. Worst case execution time aware compiler WCC

Optimization 307

WCC uses the ICD-C compiler infrastructure [ICD Staff, 2010] to read and
parse C source code. The source is then converted into a “high-level inter-
mediate representation” (HL-IR). The HL-IR is an abstract representation of
the source code. Various optimizations can be applied to the HL-IR. The op-
timized HL-IR is passed to the code selector. The code selector maps source
code operations to machine instructions. WCC so far focuses on the support of
the Infineon TriCore architecture. TriCore instructions are represented in the
low-level intermediate representation LLIR. In oder to estimate the WCETEST ,
the LLIR is converted into the CRL2 representation used by aiT (using the
converter LLIR2CRL). aiT is then able to generate WCETEST for the given
machine code. This information is converted back into the LLIR representa-
tion (using the converter CRL2LLIR). WCC uses this information to consider
WCETEST as the objective function during optimizations. This can be done in
a straightforward manner for optimizations at the LLIR-level. However, many
optimizations are performed at the HL-IR-level. WCETEST -directed optimiza-
tions at this level require using back-annotation from the LLIR-level to the
HR-IR-Level. ICD-C includes this back-annotation.

WCC has been used to study the impact of optimizing for a reduced WCETEST

in the compiler. The numerous results include a study of the impact of em-
ploying this objective for register allocation [Falk, 2009]. Results indicate a
dramatic impact, as can be seen from fig. 7.17.

Figure 7.17. Reduction of WCETEST by WCET-aware register allocation

WCETEST can be reduced down to 68.8% of the original WCETEST on the
average by just using WCET-aware register allocation in WCC. The largest re-
duction yields a WCETEST of only 24.1% of the original WCETEST . The com-
bined effect of several such optimizations has been analyzed by Lokuciejewski
et al. [Lokuciejewski and Marwedel, 2010]. For the considered benchmarks,
Lokuciejewski found a reduction of down to 57.1% of the original WCETEST .

308 EMBEDDED SYSTEM DESIGN

7.3.5 Compilation for digital signal processors

Features of DSP processors are described on page 143. Compilers should ex-
ploit these in order to optimize code with respect to the objectives mentioned
in Chapter 5. Techniques for this can be demonstrated using address genera-
tion units as examples. The possibility of generating addresses “for free” has
an important impact on how variables should be laid out in memory. Fig. 7.18
shows an example.

Figure 7.18. Comparison of memory layouts

We assume that in some basic block, variables a to d are accessed in the se-
quence (b,d,a,c,d,c). Accessing these variables with register-indirect address-
ing requires, first of all, loading the address of b into an address register (see
fig. 7.18, left). The instruction referring to variable b is not shown in fig. 7.18,
since the current focus is on address generation. Therefore, the generation of
the address for the access to the next variable (d) is considered next. Assuming
that there is just a single address register A, A has to be updated to point to
variable d. This requires adding 2 to the register. Again, we ignore the instruc-
tion loading the variable, and we immediately consider the access to a. For
this, we must subtract 3, and for the next access we must add 2. Assuming that
the auto-increment and -decrement range is restricted to ± 1, only the last two
accesses shown in fig. 7.18 can be implemented with these operations. In total,
4 instructions for calculating addresses are needed.

In contrast, for the layout in fig. 7.18 (right), 4 address calculations are auto-
increment and -decrement operations which will be executed in parallel with
some operation in the main data path. Only 2 cycles are needed for address
calculations with an offset larger than 1. Again, the instructions actually using
the variables are not shown.

How do we generate such clever memory layouts? Algorithms doing this typ-
ically start from an access graph (see fig. 7.19).

Such access graphs have one node for each of the variables and have an edge
for every pair of variables for which there are adjacent accesses. The weight
of such edges corresponds to the number of adjacent accesses to the variables
connected by that edge.

Optimization 309

Figure 7.19. Memory allocation for access sequence (b, d, a, c, d, c) for a single address
register A

Variables connected by an edge of a high weight should preferably be allocated
to adjacent memory locations. The number of address calculations saved in this
way is equal to the weight of the corresponding edge. For example, if c and d
are allocated to adjacent locations, then the last two accesses in the sequence
can be implemented with auto-increment and -decrement operations.

The overall goal of memory allocation is to find a linear order of variables
in memory maximizing the use of auto-increment and -decrement operations.
This corresponds to finding a linear path of maximum weight in the variable
access graph. Unfortunately, the maximum weighted path problem in graphs
is NP-complete. Hence, it is common to use heuristics for generating such
paths [Liao et al., 1995b], [Sudarsanam et al., 1997]. Most of them are based
on Kruskal’s spanning tree heuristic. This is Liao’s algorithm:

1 Sort edges of access graph G = (V,E) according to their weight.

2 Construct a new graph G′ = (V ′,E ′), starting with G′ = G and E ′ = 0.

3 Select an edge e of G of highest weight; If this edge does not cause a cycle
in G′ and does not cause any node in G′ to have a degree > 2 then add this
node to E ′ otherwise discard e.

4 Goto 3 as long as not all edges from G have been selected and as long as
G′ has less than (|V |−1) edges.

Implicitly, all nodes are assumed to be connected by an edge of weight 0.
This ensures that the algorithm continues even if parts of the graph become
disconnected. The order of the variables in memory corresponds to the order
of the variables along the generated linear path.

An application of this algorithm to the example of fig. 7.19 is shown in fig.
7.20.

Edge (c,d), due to its weight, is the first edge added to the empty graph G′.
Among all edges of weight 1, the sequence is arbitrary. Suppose (a,c) is added

310 EMBEDDED SYSTEM DESIGN

Figure 7.20. Sequence of steps in Liao’s algorithm

next (see fig. 7.20 (center)). (a,d) may be the next edge considered. Its inclu-
sion in G′ would cause a cycle and it is discarded. Finally, (b,d) is added. The
algorithm stops with 3 edges added to a graph of 4 nodes.

The algorithm just sketched only covers a simple case. A tie-break heuristic
for edges of equal weight was published by Leupers and Marwedel [Leupers
and Marwedel, 1996]. Extensions of the basic algorithm cover more complex
situations, such as:

n > 1 address registers [Leupers and Marwedel, 1996],

also using modify registers present in the AGU [Leupers and Marwedel,
1996], [Leupers and David, 1998],

extension to arrays [Basu et al., 1999],

larger auto-increment and -decrement ranges [Sudarsanam et al., 1997].

Memory allocation, as described above, improves both the code-size and the
run-time of the generated code. Other proposed optimization algorithms ex-
ploit further architectural features of DSP processors, such as:

multiple memory banks [Sudarsanam and Malik, 1995],

heterogeneous register files [Araujo and Malik, 1995],

modulo addressing [Quilleré and Rajopadhye, 2000],

instruction level parallelism [Leupers and Marwedel, 1995],

multiple operation modes [Liao et al., 1995a].

Other optimization techniques are described by Leupers [Leupers, 2000a].

7.3.6 Compilation for multimedia processors

In order to fully support packed data types as described on page 145, com-
pilers must be able to automatically convert operations in loops to operations

Optimization 311

on packed data types. Taking advantage of this potential is necessary for gen-
erating efficient software. A very challenging task is to use this feature in
compilers. Compiler algorithms exploiting operations on packed data types
are extensions of vectorizing algorithms originally developed for supercom-
puters. Some algorithms for multimedia and SIMD short vector extensions
have been described [Fisher and Dietz, 1998], [Fisher and Dietz, 1999], [Leu-
pers, 2000b], [Krall, 2000], [Larsen and Amarasinghe, 2000].

Automatic parallelization of loops for the M3-DSP (see page 148) requires
the use of vectorization techniques, which achieve significant speedups (com-
pared to the case of sequential operations, see fig. 7.21) [Lorenz et al., 2002],
[Lorenz et al., 2004]. For application dot product 2, the size of the vectors was
too small to lead to a speedup and no vectorization should be performed. The
number of cycles can be reduced by 94 % for benchmark example if vectoriza-
tion is combined with an exploitation of zero-overhead-loop instructions.

Figure 7.21. Reduction of the cycle count by vectorization for the M3-DSP

Due to the increased number of processors with SIMD extensions, compi-
lation for SIMD instructions has received significant attention [Ren et al.,
2006], [Nuzman et al., 2006]. In particular, compilation for the CELL pro-
cessor has revived interest in such compilation techniques (see, for example,
Eichenberger et al. [Eichenberger et al., 2005]). Furthermore, compiler writ-
ers addressed implications of the availability of short vector instructions on
Pentium®-compatible processors [Gerber et al., 2005]. It is not possible to
provide a full overview of this dynamic research area.

7.3.7 Compilation for VLIW processors

VLIW architectures (see page 146) require special compiler optimizations:

312 EMBEDDED SYSTEM DESIGN

A key optimization required for TMS 320C6xx compilers is to allocate,
at compile time, the functional unit that should execute a certain opera-
tion. Due to the two data paths (see fig. 3.28), this implies a partition-
ing of the operations into two sets [Jacome and de Veciana, 1999], [Jacome
et al., 2000], [Leupers, 2000c] and also includes an allocation to one of the
register files.

VLIW processors frequently have branch delay slots. For VLIW proces-
sors, the branch delay penalty is significantly larger than for other proces-
sors, because each of the branch delay slots could hold a full instruction
packet, not just a single instruction. For example, for the TMS 320C6xx,
the branch delay penalty is 5 × 8 = 40 instructions. In order to avoid this
large penalty, most VLIW processors support predicated execution for a
large number of condition code registers. Predicated execution can be em-
ployed to efficiently implement small if-statements. For large if-statements,
however, conditional branches are more efficient, since these allow mutual
exclusion of then- and else-branches to be exploited in hardware alloca-
tion. The precise trade-off between the two methods for implementing
if-statements can be found with proper optimization techniques [Mahlke
et al., 1992], [August et al., 1997], [Leupers, 1999].

Due to the large branch delay penalty, inlining (see page 294) is another
optimization that is very useful for VLIW processors.

Significant effort has been invested into the design of compilers for the
Intel IA-64 EPIC architecture (see [Dulong et al., 2001] as an example).
Due to the peculiarities of the architecture, special optimization techniques
are required.

The Trimaran compiler infrastructure [Trimaran, 2010] is a platform for
research on compilation techniques for instruction level parallelism and
VLIW as well as EPIC architectures.

7.3.8 Compilation for network processors

Network processors are a new type of processors. They are optimized for high-
speed Internet applications. Their instruction sets comprise numerous instruc-
tions for accessing and processing bit fields in streams of information. Typi-
cally, they are programmed in assembly languages, since their throughput is of
utmost importance. Nevertheless, network protocols are becoming more and
more complex and designing compilers for such processors supports the design
of network components. The necessary bit-level details have been analyzed by
Falk, Wagner et al. [Falk et al., 2006].

Optimization 313

7.3.9 Compiler generation, retargetable compilers
and design space exploration

When the first compilers were designed, compiler design was a totally manual
process. In the meantime, some of the steps involved in generating a compiler
have been automated or supported by tools. For example, lex and yacc and
more recent versions of these tools (see [Johnson, 2010]) provide a standard
means for parsing the source code. Generating machine instructions is another
step which is now supported by tools. For example, tree pattern matchers
such as olive [Tjiang, 1993] can be used for this task. Despite the use of such
tools, compiler design is typically not a fully automated process.

However, there have been many attempts to design retargetable compilers. We
distinguish between different kinds of retargetability:

Developer retargetability: In this case, compiler specialists are responsi-
ble for retargeting compilers to new instruction sets.

User retargetability: In this case, users are responsible for retargeting the
compiler. This approach is much more challenging.

More information about retargetable compilers and their use for design space
exploration can be found in a book by Leupers and Marwedel [Leupers and
Marwedel, 2001]. Commercial products include those that are available from
Tensilica Inc. [Tensilica Inc., 2010].

7.4 Power Management and Thermal
Management

7.4.1 Dynamic voltage scaling (DVS)

Some embedded processors support dynamic power management (see page
136) and dynamic voltage scaling (see page 136). An additional optimization
step can be used to exploit these features. Typically, such an optimization step
follows code generation by the compiler. Optimizations in this step require
a global view of all tasks of the system, including their dependencies, slack
times etc.

The potential of dynamic voltage scheduling is demonstrated by the following
example [Ishihara and Yasuura, 1998]. We assume that we have a processor
which runs at three different voltages, 2.5 V, 4.0 V, and 5.0 V. Assuming an
energy consumption of 40 nJ per cycle at 5.0 V, equation 3.14 can be used to
compute the energy consumption at the other voltages (see table 7.22, where
25 nJ is a rounded value).

314 EMBEDDED SYSTEM DESIGN

Vdd [V] 5.0 4.0 2.5
Energy per cycle [nJ] 40 25 10
fmax [MHz] 50 40 25
cycle time [ns] 20 25 40

Figure 7.22. Characteristics of processor with DVS

Furthermore, we assume that our task needs to execute 109 cycles within 25
seconds. There are several ways of doing this, as can be seen from figures 7.23
to 7.25. Using the maximum voltage (case a), see fig. 7.23), it is possible to
shut down the processor during the slack time of 5 seconds (we assume the
power consumption to be zero during this time).

Figure 7.23. Possible voltage schedule

Another option (case b)) is to initially run the processor at full speed and then
reduce the voltage when the remaining cycles can be completed at the lowest
voltage (see fig. 7.24).

Figure 7.24. Second voltage schedule

Finally, we can run the processor at a clock rate just large enough to complete
the cycles within the available time (case c), see fig. 7.25).

The corresponding energy consumptions can be calculated as

Ea = 109 ×40 ·10−9 = 40 [J] (7.14)

Eb = 750 ·106 ×40 ·10−9 +250 ·106 ×10 ·10−9 = 32.5 [J] (7.15)

Optimization 315

Figure 7.25. Third voltage schedule

Ec = 109 ×25 ·10−9 = 25 [J] (7.16)

A minimum energy consumption is achieved for the ideal supply voltage of
4 Volts. In the following, we use the term variable voltage processor only
for processors that allow any supply voltage up to a certain maximum. It is
expensive to support truly variable voltages, and therefore, actual processors
support only a few fixed voltages.

The observations made for the above example can be generalized into the fol-
lowing statements. The proofs of these statements are given in the paper by
Ishihara and Yasuura.

If a variable voltage processor completes a task before the deadline, the
energy consumption can be reduced1.

If a processor uses a single supply voltage Vs and completes a task T just
at its deadline, then Vs is the unique supply voltage which minimizes the
energy consumption of T .

If a processor can only use a number of discrete voltage levels, then a voltage
schedule using the two voltages which are the two immediate neighbors of the
ideal voltage Videal can be chosen. These two voltages lead to the minimum en-
ergy consumption except if the need to use an integer number of cycles results
in a small deviation from the minimum2.

The statements can be used for allocating voltages to tasks. Next, we will
consider the allocation of voltages to a set of tasks. We will use the following
notation:

1This formulation makes an implicit assumption in lemma 1 of the paper by Ishihara and Yasuura explicit.
2This need is not considered in the original paper.

316 EMBEDDED SYSTEM DESIGN

N : the number of tasks

ECj : the number of executed cycles of task j

L : the number of voltages of the target processor

Vi : the ith voltage, with 1 ≤ i ≤ L

Fi : the clock frequency for supply voltage Vi

D : the global deadline at which all tasks must have been completed

SCj : the average switching capacitance during the execution of task j
(SCi comprises the actual capacitance CL and the switching activ-
ity α (see eq. 3.14 on page 136))

The voltage scaling problem can then be formulated as an integer linear pro-
gramming (ILP) problem (see page 335). Towards this end, we introduce vari-
ables Xi, j denoting the number of cycles executed at a particular voltage:

Xi, j : the number of clock cycles task j is executed at voltage Vi

Simplifying assumptions of the ILP-model include the following:

There is one target processor that can be operated at a limited number of
discrete voltages.

The time for voltage and frequency switches is negligible.

The worst case number of cycles for each task are known.

Using these assumptions, the ILP-problem can be formulated as follows:

Minimize

E =
N

∑
j=1

L

∑
i=1

SCj ·Xi, j ·V 2
i (7.17)

subject to

∀ j :
L

∑
i=1

Xi, j = ECj (7.18)

and

N

∑
j=1

L

∑
i=1

Xi, j

Fi
≤ D (7.19)

The goal is to find the number Xi, j of cycles that each task j is executed at a
certain voltage Vi . According to the statements made above, no task will ever

Optimization 317

need more than two voltages. Using this model, Ishihara and Yasuura show
that efficiency is typically improved if tasks have a larger number of voltages
to choose from. If large amounts of slack time are available, many voltage
levels help to find close to optimal voltage levels. However, four voltage levels
do already give good results quite frequently.

There are many cases in which tasks actually run faster than predicted by their
worst case execution times. This cannot be exploited by the above algorithm.
This limitation can be removed by using checkpoints at which actual and worst
case execution times are compared, and then to use this information to po-
tentially scale down the voltage [Azevedo et al., 2002]. Also, voltage scaling
in multi-rate task graphs was proposed [Schmitz et al., 2002]. DVS can be
combined with other optimizations such as body biasing [Martin et al., 2002].
Body biasing is a technique for reducing leakage currents.

7.4.2 Dynamic power management (DPM)

In order to reduce the energy consumption, we can also take advantage of
power saving states, as introduced on page 136. The essential question for ex-
ploiting DPM is: when should we go to a power-saving state? Straight-forward
approaches just use a simple timer to transition into a power-saving state. More
sophisticated approaches model the idle times by stochastic processes and use
these to predict the use of subsystems with more accuracy. Models based on
exponential distributions have been shown to be inaccurate. Sufficiently accu-
rate models include those based on renewal theory [Simunic et al., 2000].

A comprehensive discussion of power management was published (see, for
example, [Benini and De Micheli, 1998], [Lu et al., 2000]). There are also ad-
vanced algorithms which integrate DVS and DPM into a single optimization
approach for saving energy [Simunic et al., 2001].

Allocating voltages and computing transition times for DPM may be two of
the last steps of optimizing embedded software.

Power management is also linked to thermal management. Thermal manage-
ment relies on temperature information being available at run-time. This infor-
mation is then used to control the generation of additional heat, and possibly
has an impact on cooling mechanisms as well. Controlling fans can be con-
sidered as a very simple case of thermal management. Also, systems may be
shutting down completely, if temperatures are exceeding maximum thresholds.
More advanced systems may be reducing the clock frequencies and voltages.
For multiprocessor systems, tasks may be automatically migrated between var-
ious processors. In all of these cases, the objective “temperature” is evaluated
at run-time and used to have an impact at run-time. Avoiding overheating is

318 EMBEDDED SYSTEM DESIGN

the goal of the work reported by Merkel et al. [Merkel and Bellosa, 2005] and
by Donald et al. [Donald and Martonosi, 2006].

7.5 Assignments

1 Consider the following program:

1 #include <stdio.h>

2 #define DATALEN 15

3 #define FILTERTAPS 5

4 double x[DATALEN] = { 128.0, 130.0, 180.0, 140.0, 120.0,

5 110.0, 107.0, 103.5, 102.0, 90.0,

6 84.0, 70.0, 30.0, 77.3, 95.7 };

7 const double h[FILTERTAPS]={0.125,-0.25,0.5,-0.25,0.125};

8 double y[DATALEN]; // result;

9 int main(void)

10 {int i,n;

11 for(i=0;i<DATALEN;++i)

12 {y[i]=0;

13 for(n=0;n<FILTERTAPS;++n)

14 if ((i-n)>=0) y[i]+=h[n]*x[i-n];

15 }
16 for(i=0;i<DATALEN;++i) printf("%.2f ",y[i]);

17 return 0;

18 }
Perform at least the following optimizations:

Removal of the if in the innermost loop (line 14)

Loop unrolling (line 13)

Constant propagation

Floating-point to fixed-point conversion

Avoidance of all accesses to arrays

Please provide the optimized version of the program after each of the trans-
formations and do also check for consistent results!

2 Suppose that variables {a, b, c, d, e, f} are accessed in the sequence

Optimization 319

(c a e d f a d a d e c b f d e d f b a d a).

Also, assume that our processor has the following characteristics:

There is a single address register AR.

All accesses to the memory must be via AR.

Post-increment and post-decrement by 1 can be encoded in all load-
and store-instructions.

All other changes of AR need an extra instruction and an extra cycle.

Using Liao’s algorithm, compute a variable order minimizing the total num-
ber of explicit address calculations! Include a graphical representation of
the effect of each of the steps of the algorithm.

Create an assembly language program generating the indicated sequence of
variable references. All references are assumed to be reading (not writing)
the memory. Use the following assembly instructions (semantics indicated
on the right):

ld r,(AR); register[r]:= memory[AR]

ld r,(AR)++; register[r]:= memory[AR]; AR++;

ld r,(AR)- -; register[r]:= memory[AR]; AR- -;

li AR,constant; AR:=constant;

addi AR,constant; AR:=AR+constant; //constant can be negative

3 Suppose that your computer is equipped with a main memory and a scratch
pad memory. Sizes and the required energy per access are shown in the
table in fig. 7.26.

Memory Size in bytes Energy per access
Scratch pad 4096 (4k) 1.3 nJ
Main memory 262,144 (256 k) 31 nJ

Figure 7.26. Memory characteristics

Also, let us assume that we are accessing variables as shown in the table in
fig. 7.27.

Which of those variables should be allocated to the scratch pad memory,
provided that we use a static, non-overlaying allocation of variables? Use
integer the linear problem (ILP) model to select the variables. Your re-
sult should include the ILP model as well as the results. You may use the
lp solve program [Anonymous, 2010a] to solve your ILP problem.

320 EMBEDDED SYSTEM DESIGN

Variable Size in bytes Number of accesses
a 1024 16
b 2048 1024
c 512 2048
d 256 512
e 128 256
f 1024 512
g 512 64
h 256 512

Figure 7.27. Variable characteristics

4 Loop unrolling is one of the potentially useful optimizations. Please name
two potential benefits and two potential problems!

Chapter 8

TEST

8.1 Scope

The purpose of testing is to make sure that a manufactured embedded system
behaves as intended. Testing can be done during or after the fabrication (fab-
rication testing) and also after the system has been delivered to the customer
(field testing). Testing of embedded systems needs special attention for several
reasons:

Embedded/cyber-physical systems integrated into a physical environment
may be safety-critical. Therefore, their malfunctioning can be much more
dangerous than, say, the malfunctioning of office equipment. As a result,
expectations for the product quality are higher than for non-safety critical
systems.

Testing of timing-critical systems has to validate the correct timing behav-
ior. This means that just testing the functional behavior is not sufficient.

Testing embedded/cyber-physical systems in their real environment may be
dangerous. For example, testing control software in a nuclear power plant
can be a source of serious, far-reaching problems.

Preparations for testing should be done no later than at the end of the design
phase. Preferably, necessary support for testing should even be considered
earlier, intertwined with the design process and using testability as one of the
objectives for evaluating designs. In order not to overload Chapter 5, we have
moved all aspects of testing into this separate Chapter. The presentation cor-
responds to considering testing only at the very end of the design flow (see
fig. 8.1), even though an earlier consideration during an actual design would

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8 8, © Springer Science+Business Media B.V. 2011

321

http://dx.doi.org/10.1007/978-94-007-0257-8_8

322 EMBEDDED SYSTEM DESIGN

be advisable. However, an early consideration is not always common practice,
and, therefore, fig. 8.1 might also correspond to an actual design flow.

Figure 8.1. Design flow with testing at its very end

In testing, we are typically denoting the system under design (SUD) as the de-
vice under test (DUT). To the DUT, we are applying a set of specially selected
input patterns, so-called test patterns to the input of the system, observe its
behavior and compare this behavior with the expected behavior. Test patterns
are normally applied to the real, already manufactured system. The main pur-
pose of testing is to identify systems that have not been correctly manufactured
(manufacturing test) and to identify systems that fail later (field test).

Testing includes a number of different actions:

1 test pattern generation,

2 test pattern application,

3 response observation, and

4 result comparison.

8.2 Test procedures

8.2.1 Test pattern generation for gate level
models

In test pattern generation, we try to identify a set of test patterns which distin-
guishes a correctly working from an incorrectly working system. Test pattern
generation is usually based on fault models. Such fault models are models of
possible faults. Test pattern generation tries to generate tests for all faults that
are possible according to a certain fault model.

The stuck-at-fault model is a frequently used fault model. It is based on the
assumption, that any internal wire of an electronic circuit is either permanently

Test 323

connected to ’0’ or ’1’. It has been observed that many faults actually behave as
if some wire was permanently connected that way.

As an example, consider the circuit shown in fig. 8.21.

Figure 8.2. Test pattern at the gate level

Suppose that we would like to check if there is a stuck-at-1 fault for signal f .
Toward this end, we try to set f to ’0’ by setting a = b =’0’. As a result, f
should be ’1’ if there is this fault, and otherwise it should be ’0’. In order to
observe this difference, we must propagate it to the output signal i. For this to
happen, we must set e to ’1’ and to set either c or d to ’1’. h and i will be ’1’
if there is no fault and ’0’ otherwise. The test pattern comprises all values of
inputs a to e. The D-algorithm can be used to generate this test pattern [Lala,
1985].

Many techniques for test pattern generation are based on the stuck-at-fault
model. However, CMOS technologies require more comprehensive fault mod-
els. In CMOS technologies, faults can turn combinatorial devices into devices
having internal states. This problem can occur, if wires are broken (this case
is known as stuck-at-open fault). As a result of this, gates of transistors can
become disconnected. Such transistors will be conducting or non-conducting,
depending on the charge stored on the gate before the wire was broken. In this
way, the gate “remembers” the input signal due to stored charges. Furthermore,
there may be transient faults and delay faults (faults changing the delay of a
circuit). Delay faults may be the result of cross-talk between adjacent wires.
Fault models exist which take such hardware faults into account [Krstić and
Cheng, 1998].

While good fault models exist for hardware testing, the same is not true for
software testing.

1Please remember: consistent with standard ANSI/IEEE 91, the symbols ≥1 and & denote or-, and and-
gates, respectively.

324 EMBEDDED SYSTEM DESIGN

8.2.2 Self-test programs

One of the key problems of testing modern integrated circuits is their limited
number of pins, making it more and more difficult to access internal compo-
nents. Also, it is getting very difficult to test these circuits at full speed, since
testers must be at least as fast as the circuits themselves. The fact that many
embedded systems are based on processors provides a way out of this dilemma:
processors are capable of running test programs or diagnostics. Such diagnos-
tics have been used to test main frame machines for decades. Fig. 8.3 shows
some components that might be contained in some processor.

Figure 8.3. Segment from processor hardware

In order to test for stuck-at-faults at the input of the ALU, we can execute a
small test program:

store pattern of all ’1’s in the register file;

perform xor between constant "0000...00" and register,

test if result contains ’0’ bit,

if yes, report error;

otherwise start test for next fault

Similar small programs can be generated for other faults. Unfortunately, the
process of generating diagnostics for main frames has mostly been a manual
one. Some researchers have proposed to generate diagnostics automatically
[Brahme and Abraham, 1984], [Krüger, 1986], [Bieker and Marwedel, 1995],
[Krstic and Dey, 2002], [Kranitis et al., 2003], [Bernardi et al., 2005].

8.3 Evaluation of test pattern sets and system
robustness

8.3.1 Fault coverage

The quality of test pattern sets can be evaluated using fault coverage as a
metric. Fault coverage is the percentage of potential faults that can be found
for a given test pattern set:

Test 325

Coverage =
Number of detectable faults for a given test pattern set

Number of faults possible due to the fault model

In practice, achieving a good product quality requires fault coverages in the
area of at least 98 to 99 %. The requirements may be higher for particular
systems. Also, special fault models may be necessary for certain hardware
components (e.g. for batteries).

In addition to achieving a high coverage, we must also achieve a high correct-
ness coverage. This means that a fault-free system must be recognized as such.
Otherwise, it would be possible to achieve a 100% coverage by classifying all
systems as faulty.

In order to increase the number of options that exist for system validation, it
has been proposed to use test methods already during the design phase. For
example, test pattern sets can be applied to software models of systems in
order to check if two software models behave in the same way. More time-
consuming formal methods need to be applied only to those cases in which the
system passed this test-based equivalence check.

8.3.2 Fault simulation

It is currently not feasible (and it will probably not be feasible) to completely
predict the behavior of systems in the presence of faults or to analytically com-
pute the coverage. Therefore, the behavior of systems in the presence of faults
is frequently simulated. This type of simulation is called fault simulation.
In fault simulation, system models are modified to reflect the behavior of the
system in the presence of a certain fault.

The goals of fault simulation include:

to know the effect of a fault of the components at the system level. Faults
are called redundant if they do not affect the observable behavior of the
system, and

to know whether or not mechanisms for improving fault tolerance actually
help.

Fault simulation requires the simulation of the system for all faults feasible
for the fault model and also for a possibly large number of different input pat-
terns. Accordingly, fault simulation is an extremely time-consuming process.
Different techniques have been proposed to speed up fault simulation.

One such technique applies to fault simulation at the gate level. In this case,
internal signals are single bit signals. This fact enables the mapping of a signal

326 EMBEDDED SYSTEM DESIGN

to a single bit of some machine word of a simulating host machine. AND-
and OR-machine instructions can then be used to simulate Boolean networks.
However, only a single bit would be used per machine word. Efficiency is im-
proved with parallel fault simulation. In parallel fault simulation, n different
test patterns are simulated at the same time, if n is the machine word size. The
values of each of the n test patterns are mapped to a different bit position in the
machine word. Executing the same set of AND- and OR-instructions will then
simulate the behavior of the Boolean network for n test patterns instead of for
just one.

8.3.3 Fault injection

Fault simulation may be too time-consuming for real systems. If actual systems
are available, fault injection can be used instead. In fault injection, real existing
systems are modified and the overall effect on the system behavior is checked.
Fault injection does not rely on fault models (even though they can be used).
Hence, fault injection has the potential of generating faults that would not have
been predicted by a fault model.

We can distinguish between two types of fault injection:

local faults within the system, and

faults in the environment (behaviors which do not correspond to the specifi-
cation). For example, we can check how the system behaves if it is operated
outside the specified temperature or radiation ranges.

Several methods can be used for fault injection:

fault injection at the hardware level: Examples include pin-manipulation,
electromagnetic and nuclear radiation, and

fault injection at the software level: Examples include toggling some mem-
ory bits.

The quality of fault injection depends on the “probe effect”: probing might
have an impact on the behavior of the system. This impact should be as small
as possible and essentially be negligible.

According to experiments reported by Kopetz [Kopetz, 1997], software-based
fault injection was essentially as effective as hardware-based fault injection.
Nuclear radiation was a noticeable exception in that it generated errors which
were not generated with other methods.

Test 327

8.4 Design for testability

8.4.1 Motivation

Ideas for test pattern generation for Boolean circuits have been presented in
section 8.2.1. For circuits implementing state machines (automata), test pat-
tern generation is more difficult. Verifying whether or not two finite state ma-
chines are equivalent may require complex input sequences [Kohavi, 1987].
For example, consider the state chart of fig. 2.27, shown again in fig. 8.4 for
convenience:

Figure 8.4. Finite state machine to be tested

Suppose that we would like to test the transition from state C to state D. This
requires us to get into state C first, by applying an appropriate sequence of
input patterns. Next, we must generate input event i and check, if output y is
generated. Also, we need to check if we reached state D. This procedure is
rather complicated, takes a lot of time and is susceptible to interference with
other errors2.

This example demonstrates: If testing comes in only as an afterthought, it may
be very difficult to test a system. In order to simplify tests, special hardware can
be added such that testing becomes easier. The process of designing for better
testability is called design for testability, or DfT. Special purpose hardware
for testing finite state machines is a prominent example of this.

8.4.2 Scan design

Reaching certain states and observing states resulting from the application of
input patterns is very much simplified with scan design. In scan design, all
flip-flops storing states are connected to form serial shift registers (see fig. 8.5).

The circuit contains three D-type flip-flops DFF and one multiplexer at each of
the flip-flop inputs. Using the control input of the multiplexers (shown at the
bottom of the multiplexer inputs), we can either connect the flip-flops to the

2The overall test of this FSM is simplified by the fact that this FSM contains a linear chain of transitions
(c.f. to the assignments of this chapter).

328 EMBEDDED SYSTEM DESIGN

Figure 8.5. Scan path design

network generating the next state from the current state and the current input
or we can connect flip-flops to form a serial chain. Setting the multiplexers
to scan mode, we can load state bit after state bit into the scan chain (one bit
at every clock tick). This way, we can load any state into the three flip-flops
serially. In a second phase, we can apply an input pattern to the FSM while the
multiplexers are set to normal mode. After the next clock tick, the FSM will
be in a new state. This new state can be serially shifted out in the third and
final phase, using the serial mode again (one bit per clock tick). The net effect
is that we do not need to worry about how to get into certain states and how
to observe whether or not the Boolean function δ for computing the next state
has been correctly implemented while we are generating tests for the FSM.
Effectively, the fact that we are dealing with state-based systems has an impact
only on the two (simple) shift phases, and test pattern generation for (stateless)
Boolean networks can be used for checking for correct outputs. This means
that it is sufficient to use test pattern generation methods for Boolean functions
(stateless networks) instead of caring about complex input sequences etc.

Scan design is a technique which works well for single chips. For board-level
integration it is necessary to have some technique for connecting scan chains
of several chips. JTAG is a standard which does exactly this. The standard
defines registers at the boundaries of all chips and a number of test pins and
control commands such that all chips can be connected in scan chains. JTAG
is also known as boundary scan [Parker, 1992].

Test 329

8.4.3 Signature analysis

In order to also avoid shifting out the response of the device under test (DUT),
responses can be compacted. A setup like the one shown in fig. 8.6 can be
used.

Figure 8.6. Testing a device under test (DUT)

Generated test patterns are used as inputs (or so-called stimuli) to the DUT. The
response of the DUT is then compacted to form a signature, which character-
izes the response. This response is later compared to the expected response.
The expected response can be computed by simulation.

The compaction is typically performed with linear feedback shift registers (LF-
SRs), shift registers with an XOR-feedback. Fig. 8.7 shows a 4-bit LFSR (left)
and the associated state diagram (right) [Lala, 1985].

Figure 8.7. Linear feedback shift register for response compaction

Dashed lines denote an input of ’1’, uninterrupted lines denote an input of ’0’.
The selected feedback yields all possible signatures.

During testing, the response of the system tested is sent to the input of the
LFSR. The LFSR will then generate a signature reflecting the response. Due
to storing the signature instead of the full response, several response patterns
can be mapped to the same signature. What is the probability of obtaining a
correct signature from an incorrect response?

In general, an n-bit signature generator can generate 2n signatures. For an
m-bit response of the DUT, the best that we can do is to evenly map 2(m−n)

330 EMBEDDED SYSTEM DESIGN

responses to the same signature. Suppose that we expect a certain signature to
be generated for the correct response of the system. Then, 2(m−n)−1 incorrect
responses would also map to the same signature. There is a total of 2m −
1 incorrect responses if responses are m-bit long. Hence, the probability of
an incorrect response to map to the correct signature (provided patterns map
evenly to signatures) is

P = Pr

(
other patterns mapping to the same signature

total number of other patterns

)

(8.1)

=
2(m−n)−1

2m −1
(8.2)

≈ 1
2n for m � n (8.3)

This means that the probability of generating correct signatures from an incor-
rect test response is very small if the shift register is long.

8.4.4 Pseudo-random test pattern generation

For chips with a large number of flip-flops, it can take quite some time to shift-
in the test patterns. In order to speed up the process of generating patterns on
the chip, it has been proposed to also integrate hardware for generating test
patterns on the chip.

For example, pseudo-random patterns (also generated by LFSRs) can be used
as test patterns. For example, we can modify the circuit of fig. 8.7 as shown in
fig. 8.8.

Figure 8.8. Linear feedback shift register for test pattern generation

The circuit generates all possible test patterns, except the pattern consisting
of all zeros. The pattern consisting of all zeros has to be avoided, since the

Test 331

generator would get stuck once it arrives at this pattern. The generated patterns
are typically exercising systems to be tested much better than simple counters.

8.4.5 The built-in logic block observer (BILBO)

The built-in logic block observer (BILBO) [Könemann et al., 1979] has been
proposed as a circuit combining test pattern generation, test response com-
paction and serial scan capabilities. A BILBO with three D-type flip-flops is
shown in fig. 8.9.

Figure 8.9. BILBO

Modes of BILBO registers are shown in table 8.10. The 3-bit register shown
in fig. 8.9 can be in scan path, reset, linear-feedback shift register (LFSR) and
normal mode. In LFSR mode, it can be used for either generating pseudo-
random patterns or for compacting responses from inputs (Z0 to Z2). In this
case, compaction is based on parallel inputs instead of the sequential inputs
we have considered so far. Purpose and behavior of compaction from parallel
inputs is similar to that for serial inputs.

c1 c2 Di

’0’ ’0’ ’0’ ⊕Qi−1 = Qi−1 scan path mode
’0’ ’1’ ’0’ ⊕’1’ = ’0’ reset
’1’ ’0’ Zi ⊕Qi−1 LFSR mode
’1’ ’1’ Zi ⊕ ’1’ = Zi normal mode

Figure 8.10. Modes of BILBO registers

Typically, BILBOs are used in pairs (see fig. 8.11).

One BILBO generates pseudo-random test patterns, feeding some Boolean net-
work with these patterns. The response of the Boolean network is then com-
pressed by a second BILBO connected to the output of the network. At the end

332 EMBEDDED SYSTEM DESIGN

Figure 8.11. Cross-coupled BILBOs

of the test sequence, the compacted response is serially shifted out and com-
pared with the expected response. The expected response can be computed by
simulation.

During a second phase, the roles of the two BILBOs can be swapped. During
this phase, the connection shown as a dashed line in fig. 8.11 is used. In normal
mode, BILBOs can be used as state registers.

DfT hardware is of great help during the prototyping and debugging of hard-
ware. It is also useful to have DfT hardware in the final product, since hardware
fabrication never has a zero defect rate. Testing fabricated hardware signifi-
cantly contributes to the overall cost of a product and mechanisms that reduce
this cost are highly appreciated by all companies.

8.5 Assignments

1 Consider the circuit shown in fig. 8.2. Generate a test pattern for a stuck-
at-0 fault at signal h!

2 Which state diagram corresponds to the LFSR shown in fig. 8.12?

Figure 8.12. LFSR

3 Specify test patterns and expected responses for the FSM shown in fig.
8.4. These patterns must be specified as a sequence of pairs (test pattern,

Test 333

expected response). Events shown in fig. 8.4 can be used as test patterns.
We assume that the FSM will be in the default state after power-on. Provide
a complete test for all transitions! Note that the special chain-like structure
of the FSM simplifies testing.

Appendix A
Integer linear programming

Integer linear programming (ILP) is a mathematical optimization technique
applicable to a large number of optimization problems.

ILP models provide a general approach for modeling optimization problems.
ILP models consist of two parts: a cost function and a set of constraints. Both
parts involve references to a set X = {xi} of integer-valued variables. Cost
functions must be linear functions of those variables. So, they must be of the
general form

C = ∑
i

aixi, with ai ∈ IR,xi ∈ IN0 (A.1)

The set J of constraints must also consist of linear functions of integer-valued
variables. They must be of the form

∀ j ∈ J : ∑
i

bi, jxi ≥ c j with bi, j,c j ∈ IR (A.2)

Def.: The integer linear programming (ILP-) problem is the problem of
minimizing the cost function of eq. (A.1) subject to the constraints given in
eq. A.2. If all variables are constrained to being either 0 or 1, the correspond-
ing model is called a 0/1-integer linear programming model. In this case,
variables are also denoted as (binary) decision variables.

Note that ≥ can be replaced by ≤ in equation (A.2) if constants bi, j are mod-
ified accordingly. Also, the case of negative variables xi (that is, allowing xi

to have any integer value) can be transformed into the case of non-negative

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

335

http://dx.doi.org/10.1007/978-94-007-0257-8

336 EMBEDDED SYSTEM DESIGN

variables shown above by multiplying constants by -1. Applications requiring
maximizing some gain function C′ can be changed into the above form by
setting C = −C′.

For example, assuming that x1, x2 and x3 must be integers, the following set of
equations represent a 0/1-IP model:

C = 5x1 +6x2 +4x3 (A.3)

x1 + x2 + x3 ≥ 2 (A.4)

x1 ≤ 1 (A.5)

x2 ≤ 1 (A.6)

x3 ≤ 1 (A.7)

Due to the constraints, all variables are either 0 or 1. There are four possible
solutions. These are listed in fig. A.1. The solution with a cost of 9 is optimal.

x1 x2 x3 C
0 1 1 10
1 0 1 9
1 1 0 11
1 1 1 15

Figure A.1. Possible solutions of the presented ILP-problem

ILP is a variant of linear programming (LP). For linear programming, variables
can take any real values. ILP and LP models can be solved optimally using
mathematical programming techniques. Unfortunately, ILP is NP-complete
(but LP is not) and ILP execution times may become very large.

Nevertheless, ILP models are useful for modeling optimization problems as
long as the model sizes are not extremely large. Modeling optimization prob-
lems as integer linear programming problems makes sense despite the com-
plexity of the problem: many problems can be solved in acceptable execution
times and if they cannot, ILP models provide a good starting point for heuris-
tics. Execution times depend on the number of variables and on the number
and structure of the constraints. Good ILP solvers (like lp solve [Anonymous,
2010a] or CPLEX) can solve well-structured problems containing a few thou-
sand variables in acceptable computation times (e.g. minutes). For more in-
formation on ILP and LP, refer to books on the topic (e.g. to Wolsey [Wolsey,
1998]).

Appendix B
Kirchhoff’s laws and operational amplifiers

Our presentation of D/A-converters on page 164 assumes some basic knowl-
edge about operational amplifiers. This knowledge is frequently lacking among
computer science students and therefore the necessary fundamentals are pre-
sented in this appendix. These fundamentals require an understanding of Kirch-
hoff’s laws, of which students will also be reminded in this appendix.

Kirchhoff’s laws

Kirchoff’s laws provide a means for analyzing electrical circuits. The first rule
is Kirchhoff’s Current Law, also called Kirchhoff’s Junction Rule, or Kirch-
hoff’s First Law. The rule applies to junctions such as the one shown in fig.
B.1.

Figure B.1. Junction in an electrical circuit

Kirchhoff’s Current Law: At any point in an electrical circuit, the sum of
currents flowing towards that point is equal to the sum of currents flowing
away from that point [Jewett and Serway, 2007]. Formally, for any node in a
circuit we have:

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

337

http://dx.doi.org/10.1007/978-94-007-0257-8

338 EMBEDDED SYSTEM DESIGN

∑
k

ik = 0 (B.1)

If Kirchhoff’s law is used in the form of equation B.1, currents denoted by ar-
rows pointing away from the node must be counted as negative, and this count-
ing is independent of the direction into which electrons are actually flowing.
Example: for the currents of fig. B.1, we have

i1 + i2 − i3 + i4 = 0 (B.2)

i1 + i2 + i4 = i3 (B.3)

This invariance exists due to the conservation of electrical charge. Without
this rule, the total electrical charge would not remain constant, and the voltage
would increase.

Kirchhoff’s second rule applies to loops in a circuit. It is known as Kirchhof’s
Voltage Law, Kirchhoff’s Loop Rule or Kirchhoff’s Second Law. Fig. B.4
shows an example.

Figure B.2. Loop in an electrical circuit

Kirchhoff’s Voltage Law: The sum of the potential differences (voltages)
across all elements around any closed circuit must be zero [Jewett and Serway,
2007]. Formally, for any loop in a circuit we have:

∑
k

Vk = 0 (B.4)

If we traverse voltages against the arrow direction, we have to count them as
negative. Example: for the schematic of fig. B.2, we have

V1 −V2 −V3 +V4 = 0 (B.5)

Appendix B: Kirchhoff’s laws and operational amplifiers 339

The underlying reason for this invariance is the conservation of energy. With-
out this rule, we could accelerate charge in the loop and the charge would
accumulate energy without any energy consumption elsewhere.

In general, it is not relevant into which direction electrons are actually flowing
and which of two terminals is actually positive with respect to some other
terminal. Arrows can be selected in an arbitrary way. We just have to make sure
that we respect the direction of the arrows when we apply Kirchhoff’s laws. If
arrows for voltages and currents across components are pointing in opposite
directions, the equation for that component has to take that into account. For
example, Ohm’s law for resistor R3 in fig. B.2 reads as follows, due to the
opposite directions of voltage and current arrows:

I3 = −V3
R3

(B.6)

Of course, we will typically try to define the direction of voltages and currents
such that we avoid having too many minus signs.

Operational amplifiers

In electronics, there is frequently the need to amplify some signal x(t) in order
to obtain some amplified signal y(t) = a ·x(t), with a > 1. a is called the gain.
Designing different circuits for each and every gain would be a laborious task.
Therefore, designers are frequently using a general amplifier which can be
easily configured to have the required gain. Such a general amplifier is called
operational amplifier, or op-amp for short. Op-amps are designed for a very
large maximum gain. The required actual gain can be adjusted with a proper
selection of a few hardware components in the circuit surrounding the op-amp.

More precisely, an operational amplifier is a component having two signal in-
puts and one signal output. In addition, there are at least two power supply
inputs (see fig. B.3).

Figure B.3. Operational amplifier

340 EMBEDDED SYSTEM DESIGN

Op-amps amplify the difference between the voltages at the two signal inputs
with respect to ground by a gain g:

Vout = g · (V+−V−) (B.7)

g is called the open loop gain and is typically very large (104 < g < 106).
For an ideal op-amp, g would approach infinity. Furthermore, op-amps usually
come with a very high input impedance (> 1MΩ). Hence, we can frequently
ignore signal input currents. For an ideal op-amp, the input impedance would
be infinity and input currents would be zero.

Op-amps have been commercially available for decades, both as separate in-
tegrated circuits and within other circuits. They differ by their speed, their
voltage ranges, their current drive capability, and other characteristics. The ac-
tual gain of the circuit is selected with external resistors. Fig. B.4 shows how
this can be done.

Figure B.4. Operational amplifier with feed back

Any small voltage between the two signal inputs is amplified by a large fac-
tor. Via resistor R1, the resulting output voltage is feed back. Feed back is to
the inverting input and therefore, any positive voltage V− results in a negative
voltage Vout and vice versa. This means that the feed back will work against
the input voltage, and it does so very strongly, due to the large amplification.
Therefore, the feed back will reduce the voltage at the input pin. The question
is: by how much? We can use Kirchhoff’s rules to find the resulting voltage
V− (see fig. B.5).

Due to the characteristics of op-amps, we have

Vout = −g ·V− (B.8)

Due to Kirchhoff’s law for the loop shown by a dashed line in fig. B.5, we have

Appendix B: Kirchhoff’s laws and operational amplifiers 341

Figure B.5. Op-amp with feed back (loop highlighted)

I ·R1 +Vout −V− = 0 (B.9)

Note that we include a minus sign for V− since we are traversing a segment of
the loop against the direction of the arrow. From equations B.8 and B.9, we get

I ·R1 +(−g) ·V−−V− = 0 (B.10)

(1+g) ·V− = I ·R1 (B.11)

V− =
I ·R1

1+g
(B.12)

V−,ideal = lim
g→∞

I ·R1

1+g
(B.13)

= 0 (B.14)

This means that, for an ideal op-amp, V− is 0. Due to this, the inverting signal
input is called virtual ground. Nevertheless, this input cannot be connected to
ground, since this would change the currents.

Computing the actual gain of the circuit in fig. B.4 is left as an exercise for
Chapter 3.

References

[Aamodt and Chow, 2000] Aamodt, T. and Chow, P. (2000). Embedded ISA support for en-
hanced floating-point to fixed-point ANSI C compilation. 3rd ACM Intern. Conf. on Compil-
ers, Architectures and Synthesis for Embedded Systems (CASES), pages 128–137.

[Absint, 2002] Absint (2002). Absint: WCET analyses. http://www.absint.de/wcet.htm.

[Absint, 2010] Absint (2010). aiT worst-case execution time analyzers. http://www.absint.de/
ait.

[Accellera Inc., 2003] Accellera Inc. (2003). SystemVerilog 3.1 - Accellera’s extensions to
Verilog®. http://www.eda.org/sv/SystemVerilog 3.1 final.pdf.

[ACM SIGBED, 2010] ACM SIGBED (2010). Home page. http://www.sigbed.org.

[ACM/IEEE, 2008] ACM/IEEE (Dec. 2008). Computer science curriculum 2008: An in-
terim revision of CS 2001. Association for Computing Machinery, IEEE Computer Society,
http://www.acm.org/education/curricula/ComputerScience2008.pdf .

[Ambler, 2003] Ambler, S. (2003). The diagrams of UML 2.0. http://www.agilemodeling.com/
essays/umlDiagrams.htm.

[Analog Devices Inc. Eng., 2004] Analog Devices Inc. Eng. (2004). Data Conversion Hand-
book (Analog Devices). Newnes.

[Anonymous, 2010a] Anonymous (2010a). Introduction to lp solve 5.5.0.14. http://lpsolve.
sourceforge.net.

[Anonymous, 2010b] Anonymous (2010b). RTJS home page. http://www.rtsj.org.

[Araujo and Malik, 1995] Araujo, G. and Malik, S. (1995). Optimal code generation for em-
bedded memory non-homogenous register architectures. 8th Int. Symp. on System Synthesis
(ISSS), pages 36–41.

[ARM Ltd., 2009a] ARM Ltd. (2009a). AMBA 2 specification. http://www.arm.com/products/
solutions/AMBA Spec.html.

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

343

http://www.absint.de/wcet.htm
http://www.absint.de/ait
http://www.absint.de/ait
http://www.eda.org/sv/SystemVerilog_3.1_final.pdf
http://www.sigbed.org
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.agilemodeling.com/essays/umlDiagrams.htm
http://www.agilemodeling.com/essays/umlDiagrams.htm
http://lpsolve.sourceforge.net
http://lpsolve.sourceforge.net
http://www.rtsj.org
http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/products/solutions/AMBA_Spec.html
http://dx.doi.org/10.1007/978-94-007-0257-8

344 EMBEDDED SYSTEM DESIGN

[ARM Ltd., 2009b] ARM Ltd. (2009b). Realview compilation tools compiler reference guide.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.swdev/index.html.

[ARTEMIS Joint Undertaking, 2010] ARTEMIS Joint Undertaking (2010). Home page.
https://www.artemis-ju.eu/organisation.

[Artist Consortium, 2010] Artist Consortium (2010). Home page. http://www.artist-
embedded.org.

[Atienza et al., 2007] Atienza, D., Baloukas, C., Papadopoulos, L., Poucet, C., Mamagkakis, S.,
Hidalgo, J. I., Catthoor, F., Soudris, D., and Lanchares, J. (2007). Optimization of dynamic
data structures in multimedia embedded systems using evolutionary computation. In 10th
Int. Workshop on Software & Compilers for Embedded Systems (SCOPES), pages 31–40.

[August et al., 1997] August, D. I., Hwu, W. W., and Mahlke, S. (1997). A framework for
balancing control flow and predication. Ann. Workshop on Microprogramming and Microar-
chitecture (MICRO), pages 92–103.

[AUTOSAR, 2010] AUTOSAR (2010). Automotive open system architecture. http://www.
autosar.org.

[Avissar et al., 2002] Avissar, O., Barua, R., and Stewart, D. (2002). An optimal memory al-
location scheme for scratch-pad-based embedded systems. Transactions on Embedded Com-
puting Systems.

[Avižienis et al., 2004] Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004).
Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11–33.

[Azevedo et al., 2002] Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum,
A., and Nicolau, A. (2002). Profile-based dynamic voltage scheduling using program check-
points. Design, Automation and Test in Europe (DATE), pages 168–175.

[Bäck et al., 1997] Bäck, T., Fogel, D., and Michalewicz, Z. (1997). Handbook of Evolutionary
Computation. Oxford Univ. Press.

[Bäck and Schwefel, 1993] Bäck, T. and Schwefel, H.-P. (1993). An overview of evolutionary
algorithms for parameter optimization. Evolutionary computation, pages 1–23.

[Balarin et al., 1998] Balarin, F., Lavagno, L., Murthy, P., and Sangiovanni-Vincentelli, A.
(1998). Scheduling for embedded real-time systems. IEEE Design & Test of Computers,
pages 71–82.

[Ball, 1996] Ball, S. R. (1996). Embedded Microprocessor Systems - Real world designs.
Newnes.

[Ball, 1998] Ball, S. R. (1998). Debugging Embedded Microprocessor Systems. Newnes.

[Banakar et al., 2002] Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., and Marwedel,
P. (2002). Scratchpad memory: a design alternative for cache on-chip memory in embedded
systems. 10th Intern. Symp. on Hardware/software Codesign (CODES), pages 73–78.

[Barney, 2010] Barney, B. (2010). POSIX threads programming. https://computing.llnl.gov/
tutorials/pthreads.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.swdev/index.html
https://www.artemis-ju.eu/organisation
http://www.artist-embedded.org
http://www.artist-embedded.org
http://www.autosar.org
http://www.autosar.org
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads

References 345

[Barr, 1999] Barr, M. (1999). Programming Embedded Systems. O’Reilly.

[Barrett and Pack, 2005] Barrett, S. and Pack, D. (2005). Embedded Systems - Design and
Applications with the 68HC12 and HCS12. Prentice Hall.

[Basten, 2008] Basten, T. (2008). Opening remarks, 2nd Artist workshop on models of
computation and communication. Eindhoven, http://www.es.ele.tue.nl/˜tbasten/mocc2008/
presentations/mocc.pdf.

[Basu et al., 1999] Basu, A., Leupers, R., and Marwedel, P. (1999). Array index allocation
under register constraints in dsp programs. Int. Conf. on VLSI Design, pages 330–335.

[Belbachir, 2010] Belbachir, A. N., editor (2010). Smart cameras. Springer.

[Bengtsson and Yi, 2004] Bengtsson, J. and Yi, W. (2004). Timed automata: Semantics, al-
gorithms and tools. In: J. Desel, W. Reisig and G. Rozenberg (eds.): ACPN 2003, Springer
LNCS, 3098:87–124.

[Benini et al., 2000] Benini, L., Bogliolo, A., and De Micheli, G. (2000). A survey of design
techniques for system-level dynamic power management. IEEE Trans. Very Large Scale In-
tegr. Syst., 8(3):299–316.

[Benini and De Micheli, 1998] Benini, L. and De Micheli, G. (1998). Dynamic Power Man-
agement – Design Techniques and CAD Tools. Kluwer Academic Publishers.

[Bergé et al., 1995] Bergé, J.-M., Levia, O., and Rouillard, J. (1995). High-Level System Mod-
eling. Kluwer Academic Publishers.

[Bernardi et al., 2005] Bernardi, P., Rebaudengo, M., and Reorda, S. (2005). Using infrastruc-
ture IPs to support SW-based self-test of processor cores. Workshop on Fibres and Optical
Passive Components, pages 22–27.

[Bertolotti, 2006] Bertolotti, I. C. (2006). Real-time embedded operating systems: Standards
and perspectives. In: R. Zurawski (ed.): Embedded Systems Handbook, CRC Press.

[Beszedes, 2003] Beszedes, A. (2003). Survey of code size reduction methods. ACM Comput-
ing Surveys, pages 223–267.

[Bieker and Marwedel, 1995] Bieker, U. and Marwedel, P. (1995). Retargetable self-test pro-
gram generation using constraint logic programming. 32nd annual Design Automation Con-
ference (DAC), pages 605–611.

[Bini et al., 2001] Bini, E., Buttazzo, G., and Buttazzo, G. (2001). A hyperbolic bound for
the rate monotonic algorithm. 13th Euromicro Conference on Real-Time Systems (ECRTS),
pages 59–73.

[Boussinot and de Simone, 1991] Boussinot, F. and de Simone, R. (1991). The Esterel language.
Proc. of the IEEE, Vol. 79, No. 9, pages 1293–1304.

[Bouwmeester et al., 2000] Bouwmeester, D., Ekert, A. and Zeilinger, A. (eds.) (2000). The
Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quan-
tum Computation. Springer.

http://www.es.ele.tue.nl/~tbasten/mocc2008/presentations/mocc.pdf
http://www.es.ele.tue.nl/~tbasten/mocc2008/presentations/mocc.pdf

346 EMBEDDED SYSTEM DESIGN

[Bouyssounouse and Sifakis, 2005] Bouyssounouse, B. and Sifakis, J., editors (2005). Embed-
ded Systems Design, The ARTIST Roadmap for Research and Development. Lecture Notes
in Computer Science, Vol. 3436, Springer.

[Brahme and Abraham, 1984] Brahme, D. and Abraham, J. A. (1984). Functional testing of
microprocessors. IEEE Trans. on Computers, pages 475–485.

[Braun et al., 2010] Braun, A., Bringmann, O., Lettnin, D., and Rosenstiel, W. (2010).
Simulation-based verification of the MOST netinterface specification revision 3.0. Design,
Automation and Test in Europe (DATE).

[Bremaud, 1999] Bremaud, P. (1999). Markov Chains. Springer Verlag.

[Brockmeyer et al., 2003] Brockmeyer, E., Miranda, M., and Catthoor, F. (2003). Layer assign-
ment techniques for low energy in multi-layered memory organisations. Design, Automation
and Test in Europe (DATE), pages 1070–1075.

[Broesma, 2004] Broesma, M. (Sep. 2004). Microsoft server crash nearly causes 800-plane
pile-up. Techworld, http://www.techworld.com/opsys/news/index.cfm?newsid=2275.

[Brooks et al., 2000] Brooks, D., Tiwari, V., and Martonosi, M. (2000). Wattch: a framework
for architectural-level power analysis and optimizations. 27th Int. Symp. on Computer Archi-
tecture (ISCA), pages 83–94.

[Bruno and Bollella, 2009] Bruno, E. and Bollella, G. (2009). Real-Time Java Programming:
With Java RTS. Prentice Hall.

[Budkowski and Dembinski, 1987] Budkowski, S. and Dembinski, P. (1987). An introduction
to Estelle: A specification language for distributed systems. Computer Networks and ISDN
Systems, 14(1):3 – 23.

[Burd and Brodersen, 2000] Burd, T. and Brodersen, R. (2000). Design issues for dynamic
voltage scaling. Int. Symp. on Low Power Electronics and Design (ISLPED), pages 9–14.

[Burd and Brodersen, 2003] Burd, T. and Brodersen, R. W. (2003). Energy efficient micropro-
cessor design. Kluwer Academic Publishers.

[Burkhardt, 2001] Burkhardt, J. (2001). Pervasive Computing. Addison-Wesley.

[Burns and Wellings, 1990] Burns, A. and Wellings, A. (1990). Real-Time Systems and Their
Programming Languages. Addison-Wesley.

[Burns and Wellings, 2001] Burns, A. and Wellings, A. (2001). Real-Time Systems and Pro-
gramming Languages (Third Edition). Addison Wesley.

[Buttazzo, 2002] Buttazzo, G. (2002). Hard Real-time computing systems. Kluwer Academic
Publishers, 4th printing.

[Byteflight Consortium, 2003] Byteflight Consortium (2003). Home page. http://www.
byteflight.com.

[Camposano and Wolf, 1996] Camposano, R. and Wolf, W. (1996). Message from the editors-
in-chief. Design Automation for Embedded Systems.

http://www.techworld.com/opsys/news/index.cfm?newsid=2275
http://www.byteflight.com
http://www.byteflight.com

References 347

[Caspi et al., 2005] Caspi, P., Sangiovanni-Vincentelli, A., Almeida, L., and et al. (2005).
Guidelines for a graduate curriculum on embedded software and systems. ACM Transactions
on Embedded Computing Systems (TECS), pages 587–611.

[Cederqvist, 2006] Cederqvist, P. (2006). The CVS manual - version management with CVS.
Network Theory Ltd.

[Ceng et al., 2008] Ceng, J., Castrillón, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid,
G., Meyr, H., Isshiki, T., and Kunieda, H. (2008). MAPS: an integrated framework for MP-
SoC application parallelization. In 45th annual Design Automation Conference (DAC), pages
754–759.

[Chandrakasan et al., 1992] Chandrakasan, A. P., Sheng, S., and Brodersen, R. W. (1992).
Low-power CMOS digital design. IEEE Journal of Solid-State Circuits, 27(4):119–123.

[Chandrakasan et al., 1995] Chandrakasan, A. P., Sheng, S., and Brodersen, R. W. (1995). Low
power CMOS digital design. Kluwer Academic Publishers.

[Chanet et al., 2007] Chanet, D., Sutter, B. D., Bus, B. D., Put, L. V., and Bosschere, K.
D. (2007). Automated reduction of the memory footprint of the linux kernel. ACM Trans.
Embed. Comput. Syst., 6(4):23.

[Chen et al., 2006] Chen, G., Ozturk, O., Kandemir, M., and Karakoy, M. (2006). Dynamic
scratch-pad memory management for irregular array access patterns. Design, Automation
and Test in Europe (DATE), pages 931–936.

[Chen et al., 2007] Chen, K., Sztipanovits, J., and Neema, S. (2007). Compositional spec-
ification of behavioral semantics. Design, Automation and Test in Europe (DATE), pages
906–911.

[Chen et al., 2010] Chen, X., Dick, R., and Shang, L. (2010). Properties of and improvements to
time-domain dynamic thermal analysis algorithms. Design, Automation and Test in Europe
(DATE).

[Chetto et al., 1990] Chetto, H., Silly, M., and Bouchentouf, T. (1990). Dynamic scheduling of
real-time tasks under precedence constraints. Journal of Real-Time Systems, 2.

[Chung et al., 2001] Chung, E.-Y., Benini, L., and De Micheli, G. (2001). Source code trans-
formation based on software cost analysis. Int. Symp. on System Synthesis (ISSS), pages
153–158.

[Clarke and et al., 2003] Clarke, E. and et al. (2003). Model checking@CMU. http://www-2.cs.
cmu.edu/˜modelcheck/index.html.

[Clarke et al., 2005] Clarke, E. M., Grumberg, O., Hiraishi, H., Jha, S., Long, D. E., McMil-
lan, K. L., and Ness, L. A. (2005). Verification of the futurebus+ cache coherence protocol.
Formal Methods in System Design, 6(2):217–232.

[Clavier and Gaj, 2009] Clavier, C. and Gaj, K. (2009). Int. workshop on cryptographic hard-
ware and embedded systems (CHES).

[Clouard et al., 2003] Clouard, A., Jain, K., Ghenassia, F., Maillet-Contoz, L., and Strassen,
J. (2003). Using transactional models in SoC design flow. In: [Müller et al., 2003], pages
29–64.

http://www-2.cs.cmu.edu/~modelcheck/index.html
http://www-2.cs.cmu.edu/~modelcheck/index.html

348 EMBEDDED SYSTEM DESIGN

[Coelho, 1989] Coelho, D. R. (1989). The VHDL handbook. Kluwer Academic Publishers.

[Coello et al., 2007] Coello, C. A. C., Lamont, G. B., and Veldhuizen, D. A. v. (2007). Evolu-
tionary Algorithms for Solving Multi-Objective Problems. Springer.

[Collins-Sussman et al., 2008] Collins-Sussman, B., Fitzpatrick, B., and Pilato, C. (2008).
Version control with subversion – for subversion 1.5. http://svnbook.red-bean.com/en/1.5/
svn-book.pdf.

[Cooling, 2003] Cooling, J. (2003). Software Engineering for Real-Time Systems. Addison
Wesley.

[Cortadella et al., 2000] Cortadella, J., Kondratyev, A., Lavagno, L., Massot, M., Moral, S.,
Passerone, C., Watanabe, Y., and Sangiovanni-Vincentelli, A. (2000). Task generation and
compile-time scheduling for mixed data-control embedded software. 37th Design Automa-
tion Conference (DAC), pages 489–494.

[Coussy and Morawiec, 2008] Coussy, P. and Morawiec, A. (2008). High-Level Synthesis.
Springer.

[Craig, 2006] Craig, I. D. (2006). Virtual Machines. Springer.

[Damm and Harel, 2001] Damm, W. and Harel, D. (2001). LSCs: Breathing life into message
sequence charts. Formal Methods in System Design.

[Dasgupta, 1979] Dasgupta, S. (1979). The organization of microprogram stores. ACM Com-
puting Surveys, Vol. 11, pages 39–65.

[Davis et al., 2001] Davis, J., Hylands, C., Janneck, J., Lee, E. A., Liu, J., Liu, X.,
Neuendorffer, S., Sachs, S., Stewart, M., Vissers, K., Whitaker, P., and Xiong, Y.
(2001). Overview of the Ptolemy project. Technical Memorandum UCB/ERL M01/11;
http://ptolemy.eecs.berkeley.edu.

[De Greef et al., 1997a] De Greef, E., Catthoor, F., and Man, H. (1997a). Memory size reduction
through storage order optimization for embedded parallel multimedia applications. Proc.
Workshop on Parallel Processing and Multimedia, pages 84–98.

[De Greef et al., 1997b] De Greef, E., Catthoor, F., and Man, H. D. (1997b). Array placement
for storage size reduction in embedded multimedia systems. IEEE Int. Conf. on Application-
Specific Systems, Architectures and Processors (ASAP), pages 66–75.

[De Micheli et al., 2002] De Micheli, G., Ernst, R., and Wolf, W. (2002). Readings in Hard-
ware/Software Co-Design. Academic Press.

[Deutsches Institut für Normung, 1997] Deutsches Institut für Normung (1997). DIN 66253,
Programmiersprache PEARL, Teil 2 PEARL 90. Beuth-Verlag; English version available
through http://www.din.de.

[Dibble, 2008] Dibble, P. C. (2008). Real-Time Java Platform Programming: Second Edition.
BookSurge Publishing.

[Diederichs et al., 2008] Diederichs, C., Margull, U., Slomka, F., and Wirrer, G. (2008). An
application-based EDF scheduler for OSEK/VDX. Design, Automation and Test in Europe
(DATE), pages 1045–1050.

http://svnbook.red-bean.com/en/1.5/svn-book.pdf
http://svnbook.red-bean.com/en/1.5/svn-book.pdf
http://ptolemy.eecs.berkeley.edu
http://www.din.de

References 349

[Dierickx, 2000] Dierickx, B. (2000). CMOS image sensors - concepts, Photonics West 2000
short course. http://www.cypress.com/?rID=14527.

[Dill and Alur, 1994] Dill, D. and Alur, R. (1994). A theory of timed automata. Theoretical
Computer Science, pages 183–235.

[Dominguez et al., 2005] Dominguez, A., Udayakumaran, S., and Barua, R. (2005). Heap data
allocation to scratch-pad memory in embedded systems. Journal of Embedded Computing,
1(4):521–540.

[Donald and Martonosi, 2006] Donald, J. and Martonosi, M. (2006). Techniques for multicore
thermal management: Classification and new exploration. SIGARCH Comput. Archit. News,
34(2):78–88.

[Douglass, 2000] Douglass, B. P. (2000). Real-Time UML, 2nd edition. Addison Wesley.

[Drusinsky and Harel, 1989] Drusinsky, D. and Harel, D. (1989). Using statecharts for hardware
description and synthesis. IEEE Trans. on Computer Design, pages 798–807.

[Dulong et al., 2001] Dulong, C., Shrivastav, P., and Refah, A. (2001). The making of a com-
piler for the Intel® ItaniumT M processor. Intel Technology Journal Q3, http://download.
intel.com/technology/itj/q32001/pdf/art 4.pdf.

[Dunn, 2002] Dunn, W. (2002). Practical Design of Safety-Critical Computer Systems. Relia-
bility Press.

[Ecker et al., 2009] Ecker, W., Müller, W., and Dömer, R. (2009). Hardware-dependent software
- Principles and practice. Springer.

[Edwards, 2001] Edwards, S. (2001). Dataflow languages. http://www.cs.columbia.edu/
˜sedwards/classes/2001/w4995-02/presentations/dataflow.ppt.

[Edwards, 2006] Edwards, S. (2006). Languages for embedded systems. In: R. Zurawski (ed.):
Embedded Systems Handbook, CRC Press.

[Egger et al., 2006] Egger, B., Lee, J., and Shin, H. (2006). Scratchpad memory management
for portable systems with a memory management unit. 9rd ACM Intern. Conf. on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), pages 321–330.

[Eggermont, 2002] Eggermont, L. (2002). Embedded systems roadmap. STW, http://www.stw.
nl/NR/rdonlyres/3E59AA43-68B1-4E83-BA95-20376EB00560/0/ESRversion1.pdf.

[Eichenberger et al., 2005] Eichenberger, A. E., O’Brien, K., O’Brien, Kevin, Wu, P. , Chen,
T., Oden, P. H., Prener, D. A., Shepherd, J. C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao,
P., and Gschwind, M. (2005). Optimizing compiler for a CELL processor. Proceedings of
the 14th International Conference on Parallel Architectures and Compilation Techniques
(PACT’05), pages 161–172.

[Elsevier B.V., 2010a] Elsevier B.V. (2010a). Sensors and actuators A: Physical. An Interna-
tional Journal.

[Elsevier B.V., 2010b] Elsevier B.V. (2010b). Sensors and actuators B: Chemical. An Interna-
tional Journal.

http://www.cypress.com/?rID=14527
http://download.intel.com/technology/itj/q32001/pdf/art_4.pdf
http://download.intel.com/technology/itj/q32001/pdf/art_4.pdf
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://www.stw.nl/NR/rdonlyres/3E59AA43-68B1-4E83-BA95-20376EB00560/0/ESRversion1.pdf
http://www.stw.nl/NR/rdonlyres/3E59AA43-68B1-4E83-BA95-20376EB00560/0/ESRversion1.pdf

350 EMBEDDED SYSTEM DESIGN

[Esterel Technologies, 2010] Esterel Technologies (2010). Scade suiteT M - the standard
for the development of safety-critical embedded software in aerospace & defense, rail
transportation, energy and heavy equipment industries. http://www.esterel-technologies.com/
products/scade-suite.

[Esterel Technologies Inc., 2010] Esterel Technologies Inc. (2010). Homepage. http://www.
esterel-technologies.com.

[European Commission Cordis, 2010] European Commission Cordis (2010). Seventh Frame-
work Programme (FP7). http://cordis.europa.eu/fp7.

[Evidence, 2010] Evidence (2010). Erika enterprise. http://erika.tuxfamily.org.

[Falk, 2009] Falk, H. (2009). WCET-aware register allocation based on graph coloring. Pro-
ceedings of the 46th Design Automation Conference (DAC), pages 726–731.

[Falk and Marwedel, 2003] Falk, H. and Marwedel, P. (2003). Control flow driven splitting of
loop nests at the source code level. Design, Automation and Test in Europe (DATE), pages
410–415.

[Falk et al., 2006] Falk, H., Wagner, J., and Schaefer, A. (2006). Use of a Bit-true Data Flow
Analysis for Processor-Specific Source Code Optimization. In 4th IEEE Workshop on Em-
bedded Systems for Real-Time Multimedia (ESTIMedia), pages 133–138, Seoul/Korea.

[Fettweis et al., 1998] Fettweis, G., Weiss, M., Drescher, W., Walther, U., Engel, F., Kobayashi,
S., and Richter, T. (1998). Breaking new grounds over 3000 MMAC/s: a broadband mobile
multimedia modem DSP. Intern. Conf. on Signal Processing Application & Technology (IC-
SPA), available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9340.

[Fiorin et al., 2007] Fiorin, L., Palermo, G., Lukovic, S., and Silvano, C. (2007). A data pro-
tection unit for NoC-based architectures. In 5th IEEE/ACM Int. Conf. on Hardware/software
Codesign and System Synthesis (CODES+ISSS), pages 167–172.

[Fisher and Dietz, 1998] Fisher, R. and Dietz, H. G. (1998). Compiling for SIMD within a
single register. Annual Workshop on Lang. & Compilers for Parallel Computing (LCPC),
pages 290–304.

[Fisher and Dietz, 1999] Fisher, R. J. and Dietz, H. G. (1999). The Scc compiler: SWARing
at MMX and 3DNow! Annual Workshop on Lang. & Compilers for Parallel Computing
(LCPC), pages 399–414.

[FlexRay Consortium, 2002] FlexRay Consortium (2002). Flexray® requirement specification.
version 2.01. http://www.flexray.de.

[Fowler and Scott, 1998] Fowler, M. and Scott, K. (1998). UML Distilled - Applying the Stan-
dard Object Modeling Language. Addison-Wesley.

[Franke, 2008] Franke, B. (2008). Fast cycle-approximate instruction set simulation. In 10th
Int. Workshop on Software & Compilers for Embedded Systems (SCOPES), pages 69–78.

[Franke and O’Boyle, 2005] Franke, B. and O’Boyle, M. F. (2005). A complete compiler
approach to auto-parallelizing C programs for multi-DSP systems. IEEE Transactions on
Parallel and Distributed Systems, 16:234–245.

http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com
http://www.esterel-technologies.com
http://cordis.europa.eu/fp7
http://erika.tuxfamily.org
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9340
http://www.flexray.de

References 351

[Freescale semiconductor, 2005] Freescale semiconductor (2005). ColdFire® family program-
mer’s reference manual. http://www.freescale.com/files/dsp/doc/ref manual/CFPRM.pdf.

[Fu et al., 1987] Fu, K., Gonzalez, R., and Lee, C. (1987). Robotics. McGraw-Hill.

[Gajski and Kuhn, 1983] Gajski, D. and Kuhn, R. (1983). New VLSI tools. IEEE Computer,
pages 11–14.

[Gajski et al., 1994] Gajski, D., Vahid, F., Narayan, S., and Gong, J. (1994). Specification and
Design of Embedded Systems. Prentice Hall.

[Gajski et al., 2000] Gajski, D., Zhu, J., Dömer, R., Gerstlauer, A., and Zhao, S. (2000). SpecC:
Specification Language Methodology. Kluwer Academic Publishers.

[Gajski et al., 2009] Gajski, D. D., Abdi, S., Gerstlauer, A., and Schirner, G. (2009). Embedded
System Design. Springer, Heidelberg.

[Ganssle, 2008] Ganssle, J., editor (2008). Embedded Systems (World Class Designs). Newnes.

[Ganssle, 2000] Ganssle, J. G. (2000). The Art of Designing Embedded Systems. Newnes.

[Ganssle et al., 2008] Ganssle, J. G., Noergaard, T., Eady, F., Edwards, L., Katz, D. J., Gentile,
R., Arnold, K., Hyder, K., and Perrin, B. (2008). Embedded Hardware - Know it all. Newnes.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractabil-
ity. Bell Labaratories, Murray Hill, New Jersey.

[Garg and Khatri, 2009] Garg, R. and Khatri, S. (2009). Analysis and Design of Resilient VLSI
Circuits. Springer.

[Gebotys, 2010] Gebotys, C. (2010). Security in Embedded Devices. Springer.

[Geffroy and Motet, 2002] Geffroy, J.-C. and Motet, G. (2002). Design of Dependable comput-
ing Systems. Kluwer Academic Publishers.

[Gelsen, 2003] Gelsen, O. (2003). Organic displays enter consumer electronics. Opto & Laser
Europe, June; availabe at http://optics.org/cws/article/articles/17598.

[Gerber et al., 2005] Gerber, R., Bik, A. J. C., Smith, K., and Tian, X. (2005). The Software
Optimization Cookbook Second Edition. High Performance Recipes for IA 32 Platforms.
Intel Press.

[Gomez and Fernandes, 2010] Gomez, L. and Fernandes, J. (2010). Behavioral Modeling for
Embedded Systems and Technologies. IGI Global.

[Grötker et al., 2002] Grötker, T., Liao, S., and Martin, G. (2002). System design with SystemC.
Springer.

[Gupta, 2002] Gupta, R. (2002). Tasks and task management. Course ICS 212, Winter
2002, UC Irvine, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8704&rep=
rep1&type=pdf.

[Ha, 2007] Ha, S. (2007). Model-based programming environment of embedded software for
mpsoc. Asia and South Pacific Design Automation Conference (ASP-DAC), pages 330–335.

http://www.freescale.com/files/dsp/doc/ref_manual/CFPRM.pdf
http://optics.org/cws/article/articles/17598
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8704&rep=rep1&type=pdf

352 EMBEDDED SYSTEM DESIGN

[Halbwachs, 1998] Halbwachs, N. (1998). Synchronous programming of reactive systems, a
tutorial and commented bibliography. Tenth International Conference on Computer-Aided
Verification, CAV’98, LNCS 1427, Springer Verlag; see also: http://www.springerlink.com/
content/5127074271136j71/fulltext.pdf.

[Halbwachs, 2008] Halbwachs, N. (2008). Personal communication. South American Artist
School on Embedded Systems, Florianopolis.

[Halbwachs et al., 1991] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991). The
synchronous dataflow language LUSTRE. Proc. of the IEEE Trans. on Software Engineering,
79:1305–1320.

[Hansmann, 2001] Hansmann, U. (2001). Pervasive Computing. Springer Verlag.

[Harbour, 1993] Harbour, M. G. (1993). RT-POSIX: An overview. http://www.ctr.unican.es/
publications/mgh-1993a.pdf.

[Harel, 1987] Harel, D. (1987). StateCharts: A visual formalism for complex systems. Science
of Computer Programming, pages 231–274.

[Hattori, 2007] Hattori, T. (2007). MPSoC approaches for low-power embedded SoC’s. Int.
Forum on. Application Specific Multi Processor SoC, http://www.mpsoc-forum.org/2007/
slides/Hattori.pdf.

[Haugen and Moller-Pedersen, 2006] Haugen, O. and Moller-Pedersen, B. (2006). Introduction
to UML and the modeling of embedded systems. In: R. Zurawski (ed.): Embedded Systems
Handbook, CRC Press.

[Hayes, 1982] Hayes, J. (1982). A unified switching theory with applications to VLSI design.
Proceedings of the IEEE, Vol. 70, pages 1140–1151.

[Heath, 2000] Heath, S. (2000). Embedded System Design. Newnes.

[Henia et al., 2005] Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., and Ernst, R.
(2005). System level performance analysis - the SymTA/S approach. IEEE Computers and
Digital Techniques, pages 148–166.

[Hennessy and Patterson, 2002] Hennessy, J. L. and Patterson, D. A. (2002). Computer Archi-
tecture – A Quantitative Approach. Morgan Kaufmann Publishers Inc.

[Hennessy and Patterson, 2008] Hennessy, J. L. and Patterson, D. A. (2008). Computer Orga-
nization – The Hardware/Software Interface. Morgan Kaufmann Publishers Inc.

[Herken, 1995] Herken, R. (1995). The Universal Turing Machine: A half-century survey.
Springer.

[Herrera et al., 2003a] Herrera, F., Fernández, V., Sánchez, P., and Villar, E. (2003a). Embed-
ded software generation from SystemC for platform based design. In: [Müller et al., 2003],
pages 247–272.

[Herrera et al., 2003b] Herrera, F., Posadas, H., Sánchez, P., and Villar, E. (2003b). Sys-
temic embedded software generation from SystemC. Design, Automation and Test in Europe
(DATE), pages 10142–10149.

http://www.springerlink.com/content/5127074271136j71/fulltext.pdf
http://www.springerlink.com/content/5127074271136j71/fulltext.pdf
http://www.ctr.unican.es/publications/mgh-1993a.pdf
http://www.ctr.unican.es/publications/mgh-1993a.pdf
http://www.mpsoc-forum.org/2007/slides/Hattori.pdf
http://www.mpsoc-forum.org/2007/slides/Hattori.pdf

References 353

[Hoare, 1985] Hoare, C. (1985). Communicating Sequential Processes. Prentice Hall Interna-
tional Series in Computer Science.

[Hopcroft et al., 2006] Hopcroft, J., Motwani, R., and Ullman, J. D. (2006). Introduction to
Automata Theory, Languages, and Computation. Addison Wesley.

[Horn, 1974] Horn, W. (1974). Some simple scheduling algorithms. Naval Research Logistics
Quarterly, Vol. 21, pages 177–185.

[Huang and Xu, 2010] Huang, L. and Xu, Q. (2010). AgeSim: A simulation framework for
evaluating the lifetime reliability of processor-based SoCs. Design, Automation and Test in
Europe (DATE).

[Huerlimann, 2003] Huerlimann, D. (2003). Opentrack home page. http://www.opentrack.ch.

[Hüls, 2002] Hüls, T. (2002). Optimizing the energy consumption of an MPEG application (in
German). Master thesis, CS Dept., Univ. Dortmund, http://ls12-www.cs.uni-dortmund.de/
publications/theses.

[Hunt et al., 2007] Hunt, V. D., Puglia, A., and Puglia, M. (2007). RFID: a guide to radio
frequency identification. Wiley.

[IBM, 2002] IBM (2002). Security: User authentication. http://www.pc.ibm.com/us/security/
userauth.html.

[IBM, 2009] IBM (2009). What’s new in Rational Rhapsody 7.5.1. http://www.ibm.com/
developerworks/rational/library/09/whatsnewinrationalrhapsody-7-5-1.

[IBM, 2010a] IBM (2010a). IBM Rational StateMate. http://www.ibm.com/developerworks/
rational/products/statemate/.

[IBM, 2010b] IBM (2010b). Rational DOORS. http://www-01.ibm.com/software/awdtools/
doors/.

[ICD Staff, 2010] ICD Staff (2010). ICD-C compiler framework. http://www.icd.de/es/icd-c.

[IEC, 2002] IEC (2002). IEC 60848 – GRAFCET specification language for sequential function
charts. http://webstore.iec.ch/preview/info iec60848{ed2.0}b.pdf.

[IEEE, 1991] IEEE (1991). IEEE graphic symbols for logic functions std 91a-1991.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=27895.

[IEEE, 1997] IEEE (1997). IEEE Standard VHDL Language Reference Manual (1076-1997).
IEEE.

[IEEE, 2002] IEEE (2002). IEEE Standard VHDL Language Reference Manual (1076-2002).
IEEE.

[IEEE, 2009] IEEE (2009). IEEE Standard for SystemVerilog- unified hardware design, speci-
fication, and verification language. http://www.ieee.org.

[IMEC, 1997] IMEC (1997). LIC-SMARTpen identifies signer. IMEC Newsletter, http://
www2.imec.be/content/user/File/Newsletters/newsletter 18.pdf.

http://www.opentrack.ch
http://ls12-www.cs.uni-dortmund.de/publications/theses
http://ls12-www.cs.uni-dortmund.de/publications/theses
http://www.pc.ibm.com/us/security/userauth.html
http://www.pc.ibm.com/us/security/userauth.html
http://www.ibm.com/developerworks/rational/library/09/whatsnewinrationalrhapsody-7-5-1
http://www.ibm.com/developerworks/rational/library/09/whatsnewinrationalrhapsody-7-5-1
http://www.ibm.com/developerworks/rational/products/statemate/
http://www.ibm.com/developerworks/rational/products/statemate/
http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/doors/
http://www.icd.de/es/icd-c
http://webstore.iec.ch/preview/info_iec60848{ed2.0}b.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=27895
http://www.ieee.org
http://www2.imec.be/content/user/File/Newsletters/newsletter_18.pdf
http://www2.imec.be/content/user/File/Newsletters/newsletter_18.pdf

354 EMBEDDED SYSTEM DESIGN

[IMEC, 2010] IMEC (2010). ADRES multimedia processor & 3mf multimedia platform.
http://www2.imec.be/content/user/File/ADRES 3MF.pdf.

[Intel, 2004] Intel (2004). Enhanced Intel® SpeedStep® Technology for the Intel®
Pentium® M Processor - White paper. ftp://download.intel.com/design/network/papers/
30117401.pdf.

[Intel, 2008] Intel (2008). Motion estimation with Intel® streaming SIMD exten-
sions 4 (Intel® SSE4). http://software.intel.com/en-us/articles/motion-estimation-with-intel-
streaming-simd-extensions-4-intel-sse4.

[Intel, 2010a] Intel (2010a). Intel® AVX. http://software.intel.com/en-us/avx.

[Intel, 2010b] Intel (2010b). Intel Itanium processor family. http://www.intel.com/itcenter/
products/itanium.

[Ishihara and Yasuura, 1998] Ishihara, T. and Yasuura, H. (1998). Voltage scheduling problem
for dynamically variable voltage processors. Intern. Symp. on Low Power Electronics and
Design (ISLPED), pages 197–202.

[Israr and Huss, 2008] Israr, A. and Huss, S. (2008). Specification and design considerations
for reliable embedded systems. Design, Automation and Test in Europe (DATE), pages 1111–
1116.

[IT Facts, 2010] IT Facts (2010). Home page. http://www.itfacts.biz.

[ITRS Organization, 2009] ITRS Organization (2009). International technology roadmap for
semiconductors (ITRS). http://public.itrs.net.

[Iyer and Marculescu, 2002] Iyer, A. and Marculescu, D. (2002). Power and performance
evaluation of globally asynchronous locally synchronous processors. Int. Symp. on Computer
Architecture (ISCA), pages 158–168.

[Jackson, 1955] Jackson, J. (1955). Scheduling a production line to minimize maximum tardi-
ness. Management Science Research Project 43, University of California, Los Angeles.

[Jackson et al., 2009] Jackson, J., Marwedel, P., and Ricks, K. (2009). Workshop on embedded
system education. http://www.artist-embedded.org/artist/WESE-09.html.

[Jacome et al., 2000] Jacome, M., de Veciana, G., and Lapinskii, V. (2000). Exploring per-
formance tradeoffs for clustered VLIW ASIPs. IEEE Int. Conf. on Computer-Aided Design
(ICCAD), pages 504–510.

[Jacome and de Veciana, 1999] Jacome, M. F. and de Veciana, G. (1999). Lower bound on
latency for VLIW ASIP datapaths. IEEE Int. Conf. on Computer-Aided Design (ICCAD),
pages 261–269.

[Jain et al., 2001] Jain, M., Balakrishnan, M., and Kumar, A. (2001). ASIP design methodolo-
gies: Survey and issues. 14th Int. Conf. on VLSI Design, pages 76–81.

[Janka, 2002] Janka, R. (2002). Specification and Design Methodology for Real-Time Embed-
ded Systems. Kluwer Academic Publishers.

[Jantsch, 2004] Jantsch, A. (2004). Modeling Embedded Systems and SoC’s: Concurrency and
Time in Models of Computation. Morgan Kaufmann.

http://www2.imec.be/content/user/File/ADRES_3MF.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf
http://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4
http://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4
http://software.intel.com/en-us/avx
http://www.intel.com/itcenter/products/itanium
http://www.intel.com/itcenter/products/itanium
http://www.itfacts.biz
http://public.itrs.net
http://www.artist-embedded.org/artist/WESE-09.html

References 355

[Jantsch, 2006] Jantsch, A. (2006). Models of embedded computation. In: R. Zurawski (ed.):
Embedded Systems Handbook, CRC Press.

[Java Community Process, 2002] Java Community Process (2002). JSR-1 – real-time specifi-
cation for Java. http://www.jcp.org/en/jsr/detail?id=1.

[Jewett and Serway, 2007] Jewett, J. W. and Serway, R. A. (2007). Physics for scientists and
engineers with modern physics. Thomson Higher Education.

[Jha and Dutt, 1993] Jha, P. and Dutt, N. (1993). Rapid estimation for parameterized compo-
nents in high-level synthesis. IEEE Transactions on VLSI Systems, pages 296–303.

[Johnson, 2010] Johnson, S. C. (2010). The Lex & Yacc Page. http://dinosaur.compilertools.
net.

[Jones, 1997] Jones, M. (1997). What really happened on Mars Rover Pathfinder. In: P.G.
Neumann (ed.): comp.risks, The Risks Digest, Vol. 19, Issue 49; available at http://research.
microsoft.com/en-us/um/people/mbj/mars pathfinder/Mars Pathfinder.html.

[Jones, 1996] Jones, N. D. (1996). An introduction to partial evaluation. ACM Comput. Surv.,
28(3):480–503.

[JXTA Community, 2010] JXTA Community (2010). Home page. https://jxta.dev.java.net.

[Kahn, 1974] Kahn, G. (1974). The semantics of a simple language for parallel programming.
Proc. of the Int. Federation for Information Processing (IFIP), pages 471–475.

[Kandemir et al., 2001] Kandemir, M., Ramanujam, J., Irwin, M. J., Vijaykrishnan, N., Kadayif,
I., and Parikh, A. (2001). Dynamic management of scratch-pad memory space. 38th annual
Design Automation Conference (DAC), pages 690–695.

[Karp and Miller, 1966] Karp, R. M. and Miller, R. E. (1966). Properties of a model for parallel
computations: Determinancy, termination, queueing. SIAM Journal of Applied Mathematics,
14:1390–1411.

[Keding et al., 1998] Keding, H., Willems, M., Coors, M., and Meyr, H. (1998). FRIDGE:
A fixed-point design and simulation environment. Design, Automation and Test in Europe
(DATE), pages 429–435.

[Keinert et al., 2009] Keinert, J., Streubühr, M., Schlichter, T., Falk, J., Gladigau, J., Haubelt,
C., Teich, J., and Meredith, M. (2009). SystemCodesigner - an automatic ESL synthesis
approach by design space exploration and behavioral synthesis for streaming applications.
ACM Transactions on Design Automation of Electronic Systems, 14:1–23.

[Kempe, 1995] Kempe, M. (1995). Ada 95 reference manual, ISO/IEC standard 8652:1995.
(HTML-version), http://www.adahome.com/rm95/.

[Kempe Software Capital Enterprises (KSCE), 2010] Kempe Software Capital Enterprises
(KSCE) (2010). Ada home: The web site for Ada. http://www.adahome.com.

[Kernighan and Ritchie, 1988] Kernighan, B. W. and Ritchie, D. M. (1988). The C Program-
ming Language. Prentice Hall.

http://www.jcp.org/en/jsr/detail?id=1
http://dinosaur.compilertools.net
http://dinosaur.compilertools.net
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/Mars_Pathfinder.html
https://jxta.dev.java.net
http://www.adahome.com/rm95/
http://www.adahome.com

356 EMBEDDED SYSTEM DESIGN

[Kienhuis et al., 2000] Kienhuis, B., Rijjpkema, E., and Deprettere, E. (2000). Compaan:
Deriving process networks from Matlab for embedded signal processing architectures. Proc.
8th Int. Workshop on Hardware/Software Codesign (CODES), pages 29–40.

[Klaiber, 2000] Klaiber, A. (2000). The technology behind CrusoeT M processors.
http://web.archive.org/web/20010602205826/www.transmeta.com/crusoe/download/pdf/
crusoetechwp.pdf.

[Könemann et al., 1979] Könemann, B., Mucha, J., and Zwiehoff, G. (1979). Built-in logic
block observer. IEEE Int. Test Conf., pages 261–266.

[Ko and Koo, 1996] Ko, M. and Koo, I. (1996). An overview of interactive video on demand
system. www.ece.ubc.ca/˜irenek/techpaps/vod/vod.html.

[Kobryn, 2001] Kobryn, C. (2001). UML 2001: A standardization Odyssey. Communica-
tions of the ACM (CACM), available at http://www.omg.org/attachments/pdf/UML 2001
CACM Oct99 p29-Kobryn.pdf, pages 29–36.

[Kohavi, 1987] Kohavi, Z. (1987). Switching and Finite Automata Theory. Tata McGraw-Hill
Publishing Company, New Delhi, 9th reprint.

[Koninklijke Philips Electronics N.V., 2003] Koninklijke Philips Electronics N.V. (2003). Am-
bient intelligence. http://www.research.philips.com/technologies/projects/ambintel.html.

[Koopman and Upender, 1995] Koopman, P. J. and Upender, B. P. (1995). Time division mul-
tiple access without a bus master. United Technologies Research Center, UTRC Technical
Report RR-9500470, http://www.ece.cmu.edu/˜koopman/jtdma/jtdma.html.

[Kopetz, 1997] Kopetz, H. (1997). Real-Time Systems – Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers.

[Kopetz, 2003] Kopetz, H. (2003). Architecture of safety-critical distributed real-time systems.
Invited Talk; Design, Automation and Test in Europe (DATE).

[Kopetz and Grunsteidl, 1994] Kopetz, H. and Grunsteidl, G. (1994). TTP –a protocol for
fault-tolerant real-time systems. IEEE Computer, 27:14–23.

[Krall, 2000] Krall, A. (2000). Compilation techniques for multimedia extensions. Interna-
tional Journal of Parallel Programming, 28:347–361.

[Kranitis et al., 2003] Kranitis, N., Paschalis, A., Gizopoulos, D., and Zorian, Y. (2003).
Instruction-based self-testing of processor cores. Journal of Electronic Testing, 19:103–112.

[Krhovjak and Matyas, 2006] Krhovjak, J. and Matyas, V. (2006). Secure hardware - pv018.
http://www.fi.muni.cz/˜xkrhovj/lectures/2006 PV018 Secure Hardware slides.pdf.

[Krishna and Shin, 1997] Krishna, C. and Shin, K. G. (1997). Real-Time Systems. McGraw-
Hill, Computer Science Series.

[Krstić and Cheng, 1998] Krstić, A. and Cheng, K. (1998). Delay fault testing of VLSI circuits.
Kluwer Academic Publishers.

[Krstic and Dey, 2002] Krstic, A. and Dey, S. (2002). Embedded software-based self-test for
programmable core-based designs. IEEE Design & Test, pages 18–27.

http://web.archive.org/web/20010602205826/www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf
http://web.archive.org/web/20010602205826/www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf
http://www.ece.ubc.ca/~irenek/techpaps/vod/vod.html
http://www.omg.org/attachments/pdf/UML_2001_CACM_Oct99_p29-Kobryn.pdf
http://www.omg.org/attachments/pdf/UML_2001_CACM_Oct99_p29-Kobryn.pdf
http://www.research.philips.com/technologies/projects/ambintel.html
http://www.ece.cmu.edu/~koopman/jtdma/jtdma.html
http://www.fi.muni.cz/~xkrhovj/lectures/2006_PV018_Secure_Hardware_slides.pdf

References 357

[Krüger, 1986] Krüger, G. (1986). Automatic generation of self-test programs: A new feature
of the MIMOLA design system. 23rd annual Design Automation Conference (DAC), pages
378–384.

[Kuchcinski, 2002] Kuchcinski, K. (2002). System partitioning (course notes). http://www.cs.
lth.se/home/Krzysztof Kuchcinski/DES/Lectures/Lecture7.pdf.

[Kwok and Ahmad, 1999] Kwok, Y.-K. and Ahmad, I. (1999). Static scheduling algorithms for
allocation directed task graphs to multiprocessors. ACM Computing Surveys, 31:406–471.

[Labrosse, 2000] Labrosse, J. (2000). Embedded Systems Building Blocks - Complete and
Ready-to-use Modules in C. Elsevier.

[Lala, 1985] Lala, P. (1985). Fault tolerant and Fault Testable Hardware Design. Prentice Hall.

[Lam et al., 1991] Lam, M. S., Rothberg, E. E., and Wolf, M. E. (1991). The cache performance
and optimizations of blocked algorithms. Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 63–74.

[Landwehr and Marwedel, 1997] Landwehr, B. and Marwedel, P. (1997). A new optimization
technique for improving resource exploitation and critical path minimization. 10th Int. Symp.
on System Synthesis (ISSS), pages 65–72.

[Lapinskii et al., 2001] Lapinskii, V., Jacome, M. F., and de Veciana, G. (2001). Application-
specific clustered VLIW datapaths: Early exploration on a parameterized design space. Tech-
nical Report UT-CERC-TR-MFJ/GDV-01-1, Computer Engineering Research Center, Uni-
versity of Texas at Austin.

[Laplante, 1997] Laplante, P. (1997). Real-Time Systems: Design and Analysis - An Engineer’s
Handbook. IEEE Press.

[Laprie, 1992] Laprie, J. C., editor (1992). Dependability: basic concepts and terminology in
English, French, German, Italian and Japanese. IFIP WG 10.4, Dependable Computing and
Fault Tolerance, In: volume 5 of Dependable computing and fault tolerant systems, Springer
Verlag.

[Larsen and Amarasinghe, 2000] Larsen, S. and Amarasinghe, S. (2000). Exploiting superword
parallelism with multimedia instructions sets. Programming Language Design and Imple-
mentation (PLDI), pages 145–156.

[Latendresse, 2004] Latendresse, M. (2004). The code compression bibliography. http://www.
iro.umontreal.ca/˜latendre/compactBib.

[Law, 2006] Law, A. M. (2006). Simulation Modeling & Analysis. McGraw-Hill.

[Lawler, 1973] Lawler, E. L. (1973). Optimal sequencing of a single machine subject to prece-
dence constraints. Managements Science, Vol. 19, pages 544–546.

[Le Boudec and Thiran, 2001] Le Boudec, J. and Thiran, P. (2001). Network Calculus. Springer,
LNCS # 2050.

[Lee, 1999] Lee, E. A. (1999). Embedded software – an agenda for research. Technical report,
UCB ERL Memorandum M99/63.

http://www.cs.lth.se/home/Krzysztof_Kuchcinski/DES/Lectures/Lecture7.pdf
http://www.cs.lth.se/home/Krzysztof_Kuchcinski/DES/Lectures/Lecture7.pdf
http://www.iro.umontreal.ca/~latendre/compactBib
http://www.iro.umontreal.ca/~latendre/compactBib

358 EMBEDDED SYSTEM DESIGN

[Lee, 2006] Lee, E. A. (2006). The future of embedded software. ARTEMIS Conference,
Graz, http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware Lee
Graz.ppt.

[Lee, 2007] Lee, E. A. (2007). Computing foundations and practice for cyber-physical systems:
A preliminary report. Technical Report UCB/EECS-2007-72, EECS Department, University
of California, Berkeley.

[Lee, 2005] Lee, E. A. (July, 2005). Absolutely positively on time. IEEE Computer.

[Lee and Messerschmitt, 1987] Lee, E. A. and Messerschmitt, D. (1987). Synchronous data
flow. Proc. of the IEEE, vol. 75, pages 1235–1245.

[Lee et al., 2001] Lee, S., Ermedahl, A., and Min, S. (2001). An accurate instruction-level
energy consumption model for embedded ROSC processors. ACM SIGPLAN Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 1–10.

[Leupers, 1997] Leupers, R. (1997). Retargetable Code Generation for Digital Signal Proces-
sors. Kluwer Academic Publishers.

[Leupers, 1999] Leupers, R. (1999). Exploiting conditional instructions in code generation for
embedded VLIW processors. Design, Automation and Test in Europe (DATE), pages 23–27.

[Leupers, 2000a] Leupers, R. (2000a). Code Optimization Techniques for Embedded Proces-
sors - Methods, Algorithms, and Tools. Kluwer Academic Publishers.

[Leupers, 2000b] Leupers, R. (2000b). Code selection for media processors with SIMD instruc-
tions. Design, Automation and Test in Europe (DATE), pages 4–8.

[Leupers, 2000c] Leupers, R. (2000c). Instruction scheduling for clustered VLIW DSPs. Int.
Conf. on Parallel Architectures and Compilation Techniques (PACT), pages 291–300.

[Leupers and David, 1998] Leupers, R. and David, F. (1998). A uniform optimization technique
for offset assignment problems. Int. Symp. on System Synthesis (ISSS), pages 3–8.

[Leupers and Marwedel, 1995] Leupers, R. and Marwedel, P. (1995). Time-constrained code
compaction for DSPs. Int. Symp. on System Synthesis (ISSS), pages 54–59.

[Leupers and Marwedel, 1996] Leupers, R. and Marwedel, P. (1996). Algorithms for address
assignment in DSP code generation. IEEE Int. Conf. on Computer-Aided Design (ICCAD),
pages 109–112.

[Leupers and Marwedel, 1999] Leupers, R. and Marwedel, P. (1999). Function inlining under
code size constraints for embedded processors. IEEE Int. Conf. on Computer-Aided Design
(ICCAD), pages 253–256.

[Leupers and Marwedel, 2001] Leupers, R. and Marwedel, P. (2001). Retargetable Compiler
Technology for Embedded Systems – Tools and Applications. Kluwer Academic Publishers.

[Leveson, 1995] Leveson, N. (1995). Safeware, System Safety and Computers. Addison Wesley.

[Lewis et al., 2007] Lewis, J., Rashba, E., and Brophy, D. (2007). VHDL-2006-D3.0 Tutorial.
Tutorial at Design, Automation, and Test in Europe (DATE), http://www.accellera.org/apps/
group public/download.php/934/date vhdl tutorial.pdf.

http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt
http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt
http://www.accellera.org/apps/group_public/download.php/934/date_vhdl_tutorial.pdf
http://www.accellera.org/apps/group_public/download.php/934/date_vhdl_tutorial.pdf

References 359

[Liao et al., 1995a] Liao, S., Devadas, S., Keutzer, K., and Tijang, S. (1995a). Code optimiza-
tion techniques for embedded DSP microprocessors. 32nd Design Automation Conference
(DAC), pages 599–604.

[Liao et al., 1995b] Liao, S., Devadas, S., Keutzer, K., Tijang, S., and Wang, A. (1995b). Stor-
age assignment to decrease code size. Programming Language Design and Implementation
(PLDI), pages 186–195.

[Liebisch and Jain, 1992] Liebisch, D. C. and Jain, A. (1992). Jessi common framework design
management: the means to configuration and execution of the design process. In Conf. on
European Design Automation (EURO-DAC), pages 552–557. IEEE Computer Society Press.

[LIN Administration, 2010] LIN Administration (2010). Home page. http://www.lin-subbus.
org/.

[Liu and Layland, 1973] Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multi-
programming in a hard real-time environment. Journal of the Association for Computing
Machinery (JACM), pages 40–61.

[Liu, 2000] Liu, J. W. (2000). Real-Time Systems. Prentice Hall.

[Lohmann et al., 2009] Lohmann, D., Hofer, W., Schröder-Preikschat, W., and Spinczyk, O.
(2009). CiAO: An aspect-oriented operating-system family for resource-constrained embed-
ded systems. In USENIX Annual Technical Conference.

[Lohmann et al., 2006] Lohmann, D., Scheler, F., Schröder-Preikschat, W., and Spinczyk,
O. (2006). PURE Embedded Operating Systems - CiAO. Proc. International Workshop on
Operating System Platforms for Embedded Real-Time Applications, (OSPERT).

[Lokuciejewski et al., 2009] Lokuciejewski, P., Gedikli, F., Marwedel, P., and Morik, K. (2009).
Automatic WCET Reduction by Machine Learning Based Heuristics for Function Inlining.
In 3rd Workshop on Statistical and Machine Learning Approaches to Architectures and Com-
pilation (SMART), pages 1–15.

[Lokuciejewski and Marwedel, 2010] Lokuciejewski, P. and Marwedel, P. (2010). WCET-aware
Source Code and Assembly Level Optimization Techniques for Real-Time Systems. Springer.

[Lorenz et al., 2004] Lorenz, M., Marwedel, P., Dräger, T., Fettweis, G., and Leupers, R.
(2004). Compiler based exploration of DSP energy savings by SIMD operations. In ASP-
DAC ’04: Proceedings of the 2004 Asia and South Pacific Design Automation Conference,
pages 838–841, Piscataway, NJ, USA. IEEE Press.

[Lorenz et al., 2002] Lorenz, M., Wehmeyer, L., Draeger, T., and Leupers, R. (2002). Energy
aware compilation for DSPs with SIMD instructions. LCTES/SCOPES, pages 94–101.

[Lu et al., 2000] Lu, Y.-H., Chung, E.-Y., Šimunic, T., Benini, L., and De Micheli, G. (2000).
Quantitative comparison of power management algorithms. In Design, Automation and Test
in Europe (DATE), pages 20–26.

[Machanik, 2002] Machanik, P. (2002). Approaches to addressing the memory wall. Technical
Report, November, Univ. Brisbane.

[Macii et al., 2002] Macii, A., Benini, L., and Poncino, M. (2002). Memory Design Techniques
for Low Energy Embedded Systems. Kluwer Academic Publishers.

http://www.lin-subbus.org/
http://www.lin-subbus.org/

360 EMBEDDED SYSTEM DESIGN

[Macii, 2004] Macii, E., editor (2004). Ultra low-power electronics and design. Springer.

[Mahlke et al., 1992] Mahlke, S. A., Lin, D. C., Chen, W. Y., Hank, R. E., and Bringmann, R.
A. (1992). Effective compiler support for predicated execution using the hyperblock. 25th
annual Int. Symp. on Microarchitecture (MICRO), pages 45–54.

[Man, 2007] Man, H. D. (2007). From the heaven of software to the hell of nanoscale physics:
an industry in transition. . .Keynote, HiPEAC ACACES Summer School, L’Aquila.

[Marian and Ma, 2007] Marian, N. and Ma, Y. (2007). Translation of Simulink mod-
els to component-based software models. 8th Int. Workshop on Research and Education
in Mechatronics REM, http://seg.mci.sdu.dk/publications/Translation%20of%20Simulink%
20Models%20to%20Component-based%20Software%20Models.pdf, pages 262–267.

[Marongiu and Benini, 2009] Marongiu, A. and Benini, L. (2009). Efficient OpenMP support
and extensions for MPSoCs with explicitly managed memory hierarchy. Design, Automation
and Test in Europe (DATE), pages 809–814.

[Martin and Müller, 2005] Martin, G. and Müller, W., editors (2005). UMLT M for SoC Design.
Springer.

[Martin et al., 2002] Martin, S. M., Flautner, K., Mudge, T., and Blaauw, D. (2002). Com-
bined dynamic voltage scaling and adaptive body biasing for lower power microprocessors
under dynamic workloads. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, pages 721–725, New York, NY, USA. ACM.

[Marwedel, 1990] Marwedel, P. (1990). A software system for the synthesis of computer struc-
tures and the generation of microcode (in German). habilitation thesis, Universität Kiel,
1985, Reprint: Report Nr.356, CS Dept., TU Dortmund.

[Marwedel, 2003] Marwedel, P. (2003). Embedded System Design. Kluwer Academic Publish-
ers.

[Marwedel, 2005] Marwedel, P. (2005). Towards laying common grounds for embedded system
design education. ACM SIGBED Review, pages 25–28.

[Marwedel, 2007] Marwedel, P. (2007). Memory-architecture aware compilation. Tuto-
rial, HiPEAC ACACES Summer School, L’Aquila, http://ls12-www.cs.tu-dortmund.de/
publications/papers/2007-marwedel-acaces.zip.

[Marwedel, 2008a] Marwedel, P. (2008a). 1st workshop on mapping of applications to MP-
SoCs. http://www.artist-embedded.org/artist/-map2mpsoc-2008-.html.

[Marwedel, 2008b] Marwedel, P. (2008b). MIMOLA - a fully synthesizable language. in: Prab-
hat Mishra, Nikil Dutt (Ed.): Processor Description Languages - Applications and Method-
ologies, Morgan Kaufmann, pages 35–63.

[Marwedel, 2009a] Marwedel, P. (2009a). 2nd workshop on mapping of applications to MP-
SoCs. http://www.artist-embedded.org/artist/-map2mpsoc-2009-.html.

[Marwedel, 2009b] Marwedel, P. (2009b). Mapping of applications to MPSoCs. IP-Embedded
Systems Conference, Grenoble, http://ls12-www.cs.tu-dortmund.de/publications/papers/
2009-ip-esc-marwedel.pdf.

http://seg.mci.sdu.dk/publications/Translation%20of%20Simulink%20Models%20to%20Component-based%20Software%20Models.pdf
http://seg.mci.sdu.dk/publications/Translation%20of%20Simulink%20Models%20to%20Component-based%20Software%20Models.pdf
http://ls12-www.cs.tu-dortmund.de/publications/papers/2007-marwedel-acaces.zip
http://ls12-www.cs.tu-dortmund.de/publications/papers/2007-marwedel-acaces.zip
http://www.artist-embedded.org/artist/-map2mpsoc-2008-.html
http://www.artist-embedded.org/artist/-map2mpsoc-2009-.html
http://ls12-www.cs.tu-dortmund.de/publications/papers/2009-ip-esc-marwedel.pdf
http://ls12-www.cs.tu-dortmund.de/publications/papers/2009-ip-esc-marwedel.pdf

References 361

[Marwedel and Goossens, 1995] Marwedel, P. and Goossens, G., editors (1995). Code Gener-
ation for Embedded Processors. Kluwer Academic Publishers.

[Marwedel and Schenk, 1993] Marwedel, P. and Schenk, W. (1993). Cooperation of synthesis,
retargetable code generation and test generation in the MSS. European Design and Test Conf.
(EDAC-EUROASIC), pages 63–69.

[Marzano and Aarts, 2003] Marzano, S. and Aarts, E. (2003). The New Everyday. 010 Publish-
ers.

[Marzario et al., 2004] Marzario, L., Lipari, G., Balbastre, P., and Crespo, A. (2004). IRIS: a
new reclaiming algorithm for server-based real-time systems. Real-Time Application Sympo-
sium (RTAS 04).

[Massa, 2002] Massa, A. J. (2002). Embedded Software Development with eCos. Prentice Hall.

[MathWorks, 2010] MathWorks, T. (2010). Stateflow 7.3. http://www.mathworks.com/
products/stateflow.

[McGregor, 2002] McGregor, I. (2002). The relationship between simulation and emulation.
Winter Simulation Conference, pages 1683–1688.

[McLaughlin and Moore, 1998] McLaughlin, M. and Moore, A. (1998). Real-Time Extensions
to UML. http://www.ddj.com/184410749.

[McNamee et al., 2001] McNamee, D., Walpole, J., Pu, C., Cowan, C., Krasic, C., Goel, A.,
Wagle, P., Consel, C., Muller, G., and Marlet, R. (2001). Specialization tools and techniques
for systematic optimization of system software. ACM Trans. Comput. Syst., 19(2):217–251.

[Meijer et al., 2010] Meijer, S., Nikolov, H., and Stefanov, T. (2010). Throughput modeling to
evaluate process merging transformations in polyhedral process networks. Design, Automa-
tion and Test in Europe (DATE).

[Menard and Sentieys, 2002] Menard, D. and Sentieys, O. (2002). Automatic evaluation of the
accuracy of fixed-point algorithms. Design, Automation and Test in Europe (DATE), pages
529–535.

[Merkel and Bellosa, 2005] Merkel, A. and Bellosa, F. (2005). Event-driven thermal manage-
ment in SMP systems. Proceedings of the Second Workshop on Temperature-Aware Com-
puter Systems (TACS’05).

[Mermet et al., 1998] Mermet, J., Marwedel, P., Ramming, F. J., Newton, C., Borrione, D., and
Lefaou, C. (1998). Three decades of hardware description languages in Europe. Journal of
Electrical Engineering and Information Science, 3:106pp.

[Mesa-Martinez et al., 2010] Mesa-Martinez, F. J., Ardestani, E. K., and Renau, J. (2010).
Characterizing processor thermal behavior. In ASPLOS ’10: Proceedings of the fifteenth edi-
tion of ASPLOS on Architectural support for programming languages and operating systems,
pages 193–204, New York, NY, USA. ACM.

[MHPCC, 2010] MHPCC, M. (2010). SP parallel programming workshop - message passing
interface (MPI). http://www.mhpcc.edu/training/workshop/mpi/MAIN.html.

[Microsoft Inc., 2003] Microsoft Inc. (2003). Windows® embedded home. http://www.
microsoft.com/windowsembedded.

http://www.mathworks.com/products/stateflow
http://www.mathworks.com/products/stateflow
http://www.ddj.com/184410749
http://www.mhpcc.edu/training/workshop/mpi/MAIN.html
http://www.microsoft.com/windowsembedded
http://www.microsoft.com/windowsembedded

362 EMBEDDED SYSTEM DESIGN

[Mnemee project, 2010] Mnemee project (2010). Memory maNagEMEnt technology for adap-
tive and efficient design of Embedded systems. http://www.mnemee.org.

[Monteiro and van Leuken, 2010] Monteiro, J. and van Leuken, R., editors (2010). Integrated
circuit and system design: power and timing modeling, optimization and simulation : 19th
international workshop, PATMOS 2009. Springer LNCS 5953.

[MOST Cooperation, 2010] MOST Cooperation (2010). Home page. http://www.
mostcooperation.com/home.

[MPI/RT forum, 2001] MPI/RT forum (2001). Document for the real-time message passing
interface (MPI/RT-1.1). http://www.mpirt.org/drafts/mpirt-report-18dec01.pdf.

[Muchnick, 1997] Muchnick, S. S. (1997). Advanced compiler design and implementation.
Morgan Kaufmann Publishers, Inc.

[Mukherjee, 2008] Mukherjee, S. (2008). Architecture Design for Soft Errors. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

[Müller, 2007] Müller, W. (2007). UMLT M for SoC and embedded systems design. DATE 2007
Friday Workshop, http://www.c-lab.de/uml-soc/uml-date07/date07-uml-workshop.pdf.

[Müller et al., 2003] Müller, W., Rosenstiel, W., and Ruf, J. (2003). SystemC – Methodologies
and Applications. Kluwer Academic Publications.

[National Research Council, 2001] National Research Council (2001). Embedded, Everywhere.
National Academies Press.

[National Science Foundation, 2010] National Science Foundation (2010). Cyber-Physical Sys-
tems (CPS). http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm.

[National Space-Based Positioning, Navigation, and Timing Coordination Office, 2010] Na-
tional Space-Based Positioning, Navigation, and Timing Coordination Office (2010). Global
positioning system. http://www.gps.gov.

[Neumann, 1995] Neumann, P. G. (1995). Computer Related Risks. Addison Wesley.

[Neumann, 2010] Neumann, P. G., editor (2010). The risks digest, forum on the risks to the
public in computers and related Systems. http://catless.ncl.ac.uk/risks.

[Nguyen et al., 2005] Nguyen, N., Dominguez, A., and Barua, R. (2005). Memory allocation for
embedded systems with a compile-time-unknown scratch-pad size. Int. Conf. on Compilers,
architectures and synthesis for embedded systems (CASES), pages 115–125.

[Niemann, 1998] Niemann, R. (1998). Hardware/Software Co-Design for Data-Flow Domi-
nated Embedded Systems. Kluwer Academic Publishers.

[Nikolov et al., 2008] Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A., Polstra, S., Bose,
R., Zissulescu, C., and Deprettere, E. (2008). Daedalus: toward composable multimedia
MP-SoC design. In 45th annual Design Automation Conference (DAC), pages 574–579.

[Nilsen, 1998] Nilsen, K. (1998). Adding real-time capabilities to Java. Commun. ACM,
41(6):49–56.

http://www.mnemee.org
http://www.mostcooperation.com/home
http://www.mostcooperation.com/home
http://www.mpirt.org/drafts/mpirt-report-18dec01.pdf
http://www.c-lab.de/uml-soc/uml-date07/date07-uml-workshop.pdf
http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
http://www.gps.gov
http://catless.ncl.ac.uk/risks

References 363

[Northeast Sustainable Energy Association, 2010] Northeast Sustainable Energy Association
(2010). Zero-energy building award. http://zeroenergybuilding.org.

[Novosel, 2009] Novosel, D. (2009). Timing the power grid. http://www.pserc.wisc.edu/
documents/general information/presentations/smartr grid executive forum/.

[Nuzman et al., 2006] Nuzman, D., Rosen, I., and Zaks, A. (2006). Auto-vectorization of inter-
leaved data for SIMD. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation, pages 132–143, New York, NY, USA.
ACM.

[Object Management Group (OMG), 2003] Object Management Group (OMG) (2003).
CORBA® basics. http://www.omg.org/gettingstarted/corbafaq.htm.

[Object Management Group (OMG), 2005a] Object Management Group (OMG) (2005a).
Real-time CORBA specification, version 1.2, jan. 2005. http://www.omg.org/cgi-bin/doc?
formal/05-01-04.ps.

[Object Management Group (OMG), 2005b] Object Management Group (OMG) (2005b).
UMLT M profile for schedulability, performance, and time specification, version 1.1. http://
www.omg.org/cgi-bin/doc?formal/05-01-02.pdf.

[Object Management Group (OMG), 2008] Object Management Group (OMG) (2008).
OMG systems modeling language (OMG SysMLT M). http://www.omg.org/spec/SysML/1.1/
changebar/PDF.

[Object Management Group (OMG), 2009] Object Management Group (OMG) (2009). A
UMLT M profile for MARTE: Modeling and analysis of real-time embedded systems - 1.0.
http://www.omg.org/spec/MARTE/1.0/PDF.

[Object Management Group (OMG), 2010a] Object Management Group (OMG) (2010a). Cat-
alog of UMLT M profile specifications. http://www.omg.org/technology/documents/profile
catalog.htm.

[Object Management Group (OMG), 2010b] Object Management Group (OMG) (2010b). Uni-
fied modeling language (tm) resource page. http://www.uml.org.

[O’Neill, 2006] O’Neill, A. (2006). Analog to digital types. IEEE tv (for members only),
http://www.ieee.org/portal/ieeetv/viewer.html?progId=81045.

[Open SystemC Initiative, 2005] Open SystemC Initiative (2005). IEEE 1666 LRM.
http://www.systemc.org/downloads/lrm.

[OpenMP Architecture Review Board, 2008] OpenMP Architecture Review Board (2008).
OpenMP application program interface. http://www.openmp.org/mp-documents/spec30.
pdf.

[Oppenheim et al., 2009] Oppenheim, A. V., Schafer, R., and Buck, J. R. (2009). Digital Signal
Processing. Pearson Higher Education.

[OSEK Group, 2004] OSEK Group (2004). OSEK/VDX - communication (version 3.0.3).
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf.

[OSEK Group, 2010] OSEK Group (2010). Home page. http://www.osek-vdx.org.

http://zeroenergybuilding.org
http://www.pserc.wisc.edu/documents/general_information/presentations/smartr_grid_executive_forum/
http://www.pserc.wisc.edu/documents/general_information/presentations/smartr_grid_executive_forum/
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/cgi-bin/doc?formal/05-01-04.ps
http://www.omg.org/cgi-bin/doc?formal/05-01-04.ps
http://www.omg.org/cgi-bin/doc?formal/05-01-02.pdf
http://www.omg.org/cgi-bin/doc?formal/05-01-02.pdf
http://www.omg.org/spec/SysML/1.1/changebar/PDF
http://www.omg.org/spec/SysML/1.1/changebar/PDF
http://www.omg.org/spec/MARTE/1.0/PDF
http://www.omg.org/technology/documents/profile_catalog.htm
http://www.omg.org/technology/documents/profile_catalog.htm
http://www.uml.org
http://www.ieee.org/portal/ieeetv/viewer.html?progId=81045
http://www.systemc.org/downloads/lrm
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf
http://www.osek-vdx.org

364 EMBEDDED SYSTEM DESIGN

[Palkovic et al., 2002] Palkovic, M., Miranda, M., and Catthoor, F. (2002). Systematic power-
performance trade-off in MPEG-4 by means of selective function inlining steered by address
optimisation opportunities. Design, Automation and Test in Europe (DATE), pages 1072–
1079.

[Pan et al., 2010] Pan, S., Hu, Y., and Li, X. (2010). IVF: Characterizing the vulnerability
of microprocessor structures to intermittent faults. Design, Automation and Test in Europe
(DATE).

[Parker, 1992] Parker, K. P. (1992). The Boundary Scan Handbook. Kluwer Academic Press.

[Paulin and Knight, 1987] Paulin, P. and Knight, J. (1987). Force-directed scheduling in auto-
matic data path synthesis. 24th annual Design Automation Conference (DAC).

[Petri, 1962] Petri, C. A. (1962). Kommunikation mit Automaten. Schriften des Rheinisch-
Westfälischen Institutes für instrumentelle Mathematik an der Universität Bonn.

[Pino and Lee, 1995] Pino, J. L. and Lee, E. A. (1995). Hierarchical static scheduling of
dataflow graphs onto multiple processors. IEEE Int. Conf. on Acoustics, Speech, and Sig-
nal Processing, pages 2643–2646.

[Pohl et al., 2005] Pohl, K., Böckle, G., and van der Linden, F. (2005). Software Product Line
Engineering. Springer, ISBN-10: 3540289011.

[Popovici et al., 2010] Popovici, K., Rousseau, F., Jerraya, A. A., and Wolf, M. (2010). Em-
bedded Software Design and Programming of Multiprocessor System-on-Chip. Springer.

[Potop-Butucaru et al., 2006] Potop-Butucaru, D., de Simone, R., and Talpin, J.-P. (2006).
The synchronous hypothesis and synchronous languages. In: R. Zurawski (ed.): Embedded
Systems Handbook, CRC Press.

[Press, 2003] Press, D. (2003). Guidelines for Failure Mode and Effects Analysis for Automo-
tive, Aerospace and General Manufacturing Industries. CRC Press.

[Pyka et al., 2007] Pyka, R., Faßbach, C., Verma, M., Falk, H., and Marwedel, P. (2007).
Operating system integrated energy aware scratchpad allocation strategies for multi-process
applications. Int. Workshop on Software & Compilers for Embedded Systems (SCOPES),
pages 41–50.

[Quilleré and Rajopadhye, 2000] Quilleré, F. and Rajopadhye, S. (2000). Optimizing memory
usage in the polyhedral model. ACM Transactions on Programming Languages and Systems,
22:773–815.

[Radetzki, 2009] Radetzki, M., editor (2009). Languages for Embedded Systems and their
Applications. Springer.

[Ramamritham, 2002] Ramamritham, K. (2002). System support for real-time embedded sys-
tems. In: Tutorial 1, 39th Design Automation Conference (DAC).

[Ramamritham et al., 1998] Ramamritham, K., Shen, C., Gonzalez, O., Sen, S., and Shirgurkar,
S. B. (1998). Using Windows NT for real-time applications: Experimental observations and
recommendations. IEEE Real-Time Technology and Applications Symposium (RTAS), pages
102–111.

References 365

[Reisig, 1985] Reisig, W. (1985). Petri nets. Springer Verlag.

[Ren et al., 2006] Ren, G., Wu, P., and Padua, D. (2006). Optimizing data permutations for
SIMD devices. ACM SIGPLAN Notices, 41(6):118–131.

[Riccobene et al., 2005] Riccobene, E., Scandurra, P., Rosti, A., and Bocchio, S. (2005). A
UMLT M 2.0 profile for SystemC: toward high-level SoC design. In 5th ACM Int. Conf. on
Embedded Software (EMSOFT), pages 138–141.

[Rixner et al., 2000] Rixner, S., Dally, W. J., Khailany, B. J., Mattson, P. J., and Kapasi,
U. J. (2000). Register organization for media processing. 6th High-Performance Computer
Architecture (HPCA-6), pages 375–386.

[Ruggiero and Benini, 2008] Ruggiero, M. and Benini, L. (2008). Mapping task graphs to
the CELL BE processor. http://www.artist-embedded.org/docs/Events/2008/Map2MPSoC/
Map2mpsoc-08-ruggiero.pdf.

[Russell and Jacome, 1998] Russell, T. and Jacome, M. F. (1998). Software power estimation
and optimization for high performance, 32-bit embedded processors. Int. Conf. on Computer
Design (ICCD), pages 328–333.

[Ryan, 1995] Ryan, M. (1995). Market focus – insight into markets that are making the news
in EE Times. EE Times (was available at http://eetimes.com/columns/mfocus95/mfocus11.
html).

[Sangiovanni-Vincentelli, 2002] Sangiovanni-Vincentelli, A. (2002). The context for platform-
based design. IEEE Design & Test of Computers, page 120.

[Schmitz et al., 2002] Schmitz, M., Al-Hashimi, B., and Eles, P. (2002). Energy-efficient map-
ping and scheduling for DVS enabled distributed embedded systems. Design, Automation
and Test in Europe (DATE), pages 514–521.

[SDL Forum Society, 2009] SDL Forum Society (2009). List of commercial tools. http://
www.sdl-forum.org/Tools/Commercial.htm.

[SDL Forum Society, 2010] SDL Forum Society (2010). Home page. http://www.sdl-forum.
org.

[Sha et al., 1990] Sha, L., Rajkumar, R., and Lehoczky, J. (1990). Priority inheritance protocols:
An approach to real-time synchronisation. IEEE Trans. on Computers, pages 1175–1185.

[Shi and Brodersen, 2003] Shi, C. and Brodersen, R. (2003). An automated floating-point
to fixed-point conversion methodology. Int. Conf. on Audio Speed and Signal Processing
(ICASSP), pages 529–532.

[Siemens, 2010] Siemens (2010). Simatic step 7 programming software. http://www.
automation.siemens.com/simatic/industriesoftware/html 76/products/step7.htm.

[Sifakis, 2008] Sifakis, J. (2008). A notion of expressiveness for component-based design.
Workshop on Foundations and Applications of Component-based Design, ES-Week,
http://www.artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-
WFCD-ArtistDesign-Oct192008.pdf.

[Simple Scalar LLC, 2004] Simple Scalar LLC (2004). Home page. http://www.simplescalar.
com.

http://www.artist-embedded.org/docs/Events/2008/Map2MPSoC/Map2mpsoc-08-ruggiero.pdf
http://www.artist-embedded.org/docs/Events/2008/Map2MPSoC/Map2mpsoc-08-ruggiero.pdf
http://eetimes.com/columns/mfocus95/mfocus11.html
http://eetimes.com/columns/mfocus95/mfocus11.html
http://www.sdl-forum.org/Tools/Commercial.htm
http://www.sdl-forum.org/Tools/Commercial.htm
http://www.sdl-forum.org
http://www.sdl-forum.org
http://www.automation.siemens.com/simatic/industriesoftware/html_76/products/step7.htm
http://www.automation.siemens.com/simatic/industriesoftware/html_76/products/step7.htm
http://www.artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-WFCD-ArtistDesign-Oct192008.pdf
http://www.artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-WFCD-ArtistDesign-Oct192008.pdf
http://www.simplescalar.com
http://www.simplescalar.com

366 EMBEDDED SYSTEM DESIGN

[Simunic et al., 2000] Simunic, T., Benini, L., Acquaviva, A., Glynn, P., and De Micheli, G.
(2000). Energy efficient design of portable wireless devices. Intern. Symp. on Low Power
Electronics and Design (ISLPED), pages 49–54.

[Simunic et al., 2001] Simunic, T., Benini, L., Acquaviva, A., Glynn, P., and De Micheli,
G. (2001). Dynamic voltage scaling and power management for portable systems. Design
Automation Conference (DAC), pages 524–529.

[Simunic et al., 1999] Simunic, T., Benini, L., and De Micheli, G. (1999). Cycle-accurate
simulation of energy consumption in embedded systems. Design Automation Conference
(DAC), pages 876–872.

[Simunic-Rosing et al., 2007] Simunic-Rosing, T., Coskun, A. K., and Whisnant, K. (2007).
Temperature aware task scheduling in MPSoCs. Design, Automation and Test in Europe
(DATE), pages 1659–1664.

[Sipser, 2006] Sipser, M. (2006). Introduction to the Theory of Computation. Thomson Course
Technology, Parts One and Two.

[Sirocic and Marwedel, 2007a] Sirocic, B. and Marwedel, P. (2007a). Levi Flexray®
simulation software. http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/
leviFRP.zip.

[Sirocic and Marwedel, 2007b] Sirocic, B. and Marwedel, P. (2007b). Levi KPN simulation
software. http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviKPN.
zip.

[Sirocic and Marwedel, 2007c] Sirocic, B. and Marwedel, P. (2007c). Levi RTS simulation
software. http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviRTS.
zip.

[Sirocic and Marwedel, 2007d] Sirocic, B. and Marwedel, P. (2007d). Levi TDD simulation
software. http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviTDD.
zip.

[Skadron et al., 2009] Skadron, K., Stan, M. R., Ribando, R. J., Gurumurthi, S., Huang, W.,
Sankaranarayanan, K., Tarjan, D., Burr, J., Ghosh, S., Velusamy, S., and Link, G. (2009).
Hotspot 5.0. http://lava.cs.virginia.edu/HotSpot/index.htm.

[Smith and Nair, 2005] Smith, J. J. and Nair, R. (2005). Virtual Machines: Versatile Platforms
For Systems And Processes. Morgan Kaufmann Publishers.

[Society for Display Technology, 2003] Society for Display Technology (2003). Home page.
http://www.sid.org.

[Sprint Consortium, 2008] Sprint Consortium (2008). Open SoC design platform for reuse and
integration of IPs. http://www.sprint-project.net.

[Stallings, 2009] Stallings, W. (2009). Operating Systems: Internals and Design Principles.
Prentice Hall.

[Stankovic and Ramamritham, 1991] Stankovic, J. and Ramamritham, K. (1991). The Spring
kernel: a new paradigm for real-time systems. IEEE Software, 8:62–72.

http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviFRP.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviFRP.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviKPN.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviKPN.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviRTS.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviRTS.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviTDD.zip
http://ls12-www.cs.tu-dortmund.de/teaching/download/levi/download/leviTDD.zip
http://lava.cs.virginia.edu/HotSpot/index.htm
http://www.sid.org
http://www.sprint-project.net

References 367

[Stankovic et al., 1998] Stankovic, J., Spuri, M., Ramamritham, K., and Buttazzo, G. (1998).
Deadline Scheduling for Real-Time Systems, EDF and related algorithms. Kluwer Academic
Publishers.

[Steinke, 2003] Steinke, S. (2003). Analysis of the potential for saving energy in embed-
ded systems through energy-aware compilation (in German). PhD thesis, TU Dortmund,
http://hdl.handle.net/2003/2769.

[Steinke et al., 2002a] Steinke, S., Grunwald, N., Wehmeyer, L., Banakar, R., Balakrishnan, M.,
and Marwedel, P. (2002a). Reducing energy consumption by dynamic copying of instructions
onto onchip memory. Int. Symp. on System Synthesis (ISSS), pages 213–218.

[Steinke et al., 2001] Steinke, S., Knauer, M., Wehmeyer, L., and Marwedel, P. (2001). An
accurate and fine grain instruction-level energy model supporting software optimizations.
Int. Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS).

[Steinke et al., 2002b] Steinke, S., Wehmeyer, L., Lee, B.-S., and Marwedel, P. (2002b). As-
signing program and data objects to scratchpad for energy reduction. Design, Automation
and Test in Europe (DATE), pages 409–417.

[Stiller, 2000] Stiller, A. (2000). New processors (in German). c’t, 22:52.

[Storey, 1996] Storey, N. (1996). Safety-critical Computer Systems. Addison Wesley.

[Stritter and Gunter, 1979] Stritter, E. and Gunter, T. (1979). Microprocessor architecture for a
changing world: The Motorola 68000. IEEE Computer, 12:43–52.

[Stuijk, 2007] Stuijk, S. (2007). Predictable Mapping of Streaming Applications on Multipro-
cessors. Dissertation, TU Eindhoven.

[Sudarsanam et al., 1997] Sudarsanam, A., Liao, S., and Devadas, S. (1997). Analysis and
evaluation of address arithmetic capabilities in custom DSP architectures. Design Automa-
tion Conference (DAC), pages 287–292.

[Sudarsanam and Malik, 1995] Sudarsanam, A. and Malik, S. (1995). Memory bank and reg-
ister allocation in software synthesis for ASIPs. Intern. Conf. on Computer-Aided Design
(ICCAD), pages 388–392.

[Sun, 2010] Sun (2010). Java technology concept map. http://java.sun.com/new2java/
javamap/Java Technology Concept Map.pdf.

[Sutherland, 2003] Sutherland, S. (2003). An overview of SystemVerilog 3.1. EEdesign, May,
available at http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=
16501063.

[Synopsys, 2010] Synopsys (2010). System studio. http://www.synopsys.com/apps/docs/
pdfs/ip/system studio ds.pdf.

[SYSGO AG, 2010] SYSGO AG (2010). PikeOS RTOS and Virtualization Concept. http://
www.sysgo.com.

[SystemC, 2010] SystemC (2010). Home page. http://www.SystemC.org.

http://hdl.handle.net/2003/2769
http://java.sun.com/new2java/javamap/Java_Technology_Concept_Map.pdf
http://java.sun.com/new2java/javamap/Java_Technology_Concept_Map.pdf
http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=16501063
http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=16501063
http://www.synopsys.com/apps/docs/pdfs/ip/system_studio_ds.pdf
http://www.synopsys.com/apps/docs/pdfs/ip/system_studio_ds.pdf
http://www.sysgo.com
http://www.sysgo.com
http://www.SystemC.org

368 EMBEDDED SYSTEM DESIGN

[Takada, 2001] Takada, H. (2001). Real-time operating system for embedded systems. In: M.
Imai and N. Yoshida (eds.): Tutorial 2 – Software Development Methods for Embedded
Systems, Asia South-Pacific Design Automation Conference (ASP-DAC).

[Tan et al., 2003] Tan, T. K., Raghunathan, A., and Jha, N. K. (2003). Software architectural
transformations: A new approach to low energy embedded software. Design, Automation
and Test in Europe (DATE), pages 11046–11051.

[Tanenbaum, 2001] Tanenbaum, A. (2001). Modern Operating Systems. Prentice Hall.

[Teich, 1997] Teich, J. (1997). Digitale Hardware/Software-Systeme. Springer.

[Teich et al., 1999] Teich, J., Zitzler, E., and Bhattacharyya, S. (1999). 3D exploration of
software schedules for DSP algorithms. 7th Int. Symp. on Hardware/Software Codesign
(CODES), pages 168–172.

[Tensilica Inc., 2010] Tensilica Inc. (2010). Home page. http://www.tensilica.com.

[Tewari, 2001] Tewari, A. (2001). Modern Control Design with MATLAB and SIMULINK. John
Wiley and Sons Ltd.

[The Dobelle Institute, 2003] The Dobelle Institute (2003). Home page. http://www.dobelle.
com (no longer accessible).

[The MathWorks Inc., 2010] The MathWorks Inc. (2010). Simulink - simulation and model-
based design. http://www.mathworks.com/products/simulink.

[Thesing, 2004] Thesing, S. (2004). Safe and Precise WCET Determination by Abstract Inter-
pretation of Pipeline Models. Pirrot Verlag.

[Thiébaut, 1995] Thiébaut, D. (1995). Parallel programming in C for the transputer. http://
cs.smith.edu/˜thiebaut/transputer/descript.html.

[Thiele, 2006a] Thiele, L. (2006a). Design space exploration of embedded systems. Artist
Spring School on Embedded Systems, Xi-an, http://www.artist-embedded.org/docs/Events/
2006/ChinaSchool/4 DesignSpaceExploration.pdf.

[Thiele, 2006b] Thiele, L. (2006b). Performance analysis of distributed embedded systems. In:
R. Zurawski (Hrg.): Embedded Systems Handbook, CRC Press, 2006.

[Thiele, L. et al., 2009] Thiele, L. et al. (2009). SHAPES @ TIK. http://www.tik.ee.ethz.ch/˜
shapes/dol.html.

[Thoen and Catthoor, 2000] Thoen, F. and Catthoor, F. (2000). Modelling, Verification and
Exploration of Task-Level Concurrency in Real-Time Embedded Systems. Kluwer Academic
Publishers.

[Tiwari et al., 1994] Tiwari, V., Malik, S., and Wolfe, A. (1994). Power analysis of embedded
software: A first step towards software power minimization. IEEE Trans. On VLSI Systems,
pages 437–445.

[Tjiang, 1993] Tjiang, W.-K. (1993). An olive twig. Technical Report, Synopsys.

[Trimaran, 2010] Trimaran (2010). An infrastructure for research in backend compilation and
architecture exploration. http://www.trimaran.org.

http://www.tensilica.com
http://www.dobelle.com
http://www.dobelle.com
http://www.mathworks.com/products/simulink
http://cs.smith.edu/~thiebaut/transputer/descript.html
http://cs.smith.edu/~thiebaut/transputer/descript.html
http://www.artist-embedded.org/docs/Events/2006/ChinaSchool/4_DesignSpaceExploration.pdf
http://www.artist-embedded.org/docs/Events/2006/ChinaSchool/4_DesignSpaceExploration.pdf
http://www.tik.ee.ethz.ch/~shapes/dol.html
http://www.tik.ee.ethz.ch/~shapes/dol.html
http://www.trimaran.org

References 369

[TriQuint Semiconductor Inc., 2010] TriQuint Semiconductor Inc. (2010). FAQ 11: What
is the MTBF for gallium arsenide devices? http://www.triquint.com/company/quality/faqs/
faq 11.cfm.

[Tsai and Yang, 1995] Tsai, J. and Yang, S. J. H. (1995). Monitoring and Debugging of Dis-
tributed Real-Time Systems. IEEE Computer Society Press.

[Udayakumaran et al., 2006] Udayakumaran, S., Dominguez, A., and Barua, R. (2006). Dy-
namic allocation for scratch-pad memory using compile-time decisions. ACM Transactions
in Embedded Computing Systems, V:472–511.

[University of Cambridge, 2010] University of Cambridge (2010). HOL4. http://hol.
sourceforge.net.

[UPnP Forum, 2010] UPnP Forum (2010). UPnP T M resources. http://www.upnp.org/
resources/default.asp.

[V-Modell XT Authors, 2010] V-Modell XT Authors (2010). V-Modell XT Gesamt 1.3.
http://v-modell.iabg.de/dmdocuments/V-Modell-XT-Gesamt-Englisch-V1.3.pdf.

[Vaandrager, 1998] Vaandrager, F. (1998). Lectures on embedded systems. in Rozenberg, Vaan-
drager (eds), LNCS, Vol. 1494.

[Vahid, 1995] Vahid, F. (1995). Procedure exlining. Int. Symp. on System Synthesis (ISSS),
pages 84–89.

[Vahid, 2002] Vahid, F. (2002). Embedded System Design. John Wiley& Sons.

[Verachtert, 2008] Verachtert, W. (2008). Introduction to parallelism. Tutorial at Design, Au-
tomation, and Test in Europe (DATE).

[Verma and Marwedel, 2004] Verma, M. and Marwedel, P. (2004). Dynamic overlay of scratch-
pad memory for energy minimization. 8th IEEE/ACM Int. Conf. on Hardware/software
Codesign and System Synthesis (CODES+ISSS), pages 104–109.

[Verma et al., 2005] Verma, M., Petzold, K., Wehmeyer, L., Falk, H., and Marwedel, P. (2005).
Scratchpad sharing strategies for multiprocess embedded systems: A first approach. In IEEE
3rd Workshop on Embedded System for Real-Time Multimedia (ESTIMedia), pages 115–
120.

[Vladimirescu, 1987] Vladimirescu, A. (1987). SPICE user’s guide. Northwest Laboratory for
Integrated Systems, Seattle.

[Vogels and Gielen, 2003] Vogels, M. and Gielen, G. (2003). Figure of merit based selection of
A/D converters. Design, Automation and Test in Europe (DATE), pages 1190–1191.

[Wandeler and Thiele, 2006] Wandeler, E. and Thiele, L. (2006). Real-Time Calculus (RTC)
Toolbox.

[Wedde and Lind, 1998] Wedde, H. and Lind, J. (1998). Integration of task scheduling and file
services in the safety-critical system MELODY. EUROMICRO ’98 Workshop on Real-Time
Systems, IEEE Computer Society Press, pages 18–25.

[Wegener, 2000] Wegener, I. (2000). Branching programs and binary decision diagrams –
Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications.

http://www.triquint.com/company/quality/faqs/faq_11.cfm
http://www.triquint.com/company/quality/faqs/faq_11.cfm
http://hol.sourceforge.net
http://hol.sourceforge.net
http://www.upnp.org/resources/default.asp
http://www.upnp.org/resources/default.asp
http://v-modell.iabg.de/dmdocuments/V-Modell-XT-Gesamt-Englisch-V1.3.pdf

370 EMBEDDED SYSTEM DESIGN

[Wehmeyer and Marwedel, 2006] Wehmeyer, L. and Marwedel, P. (2006). Fast, Efficient and
Predictable Memory Accesses. Springer.

[Weiser, 2003] Weiser, M. (2003). Ubiquitous computing. http://www.ubiq.com/hypertext/
weiser/UbiHome.html.

[Wellings, 2004] Wellings, A. (2004). Concurrent and Real-Time Programming in Java. Wiley.

[Weste et al., 2000] Weste, N. H. H., Eshraghian, K., Michael, S., Michael, J. S., and Smith, J.
S. (2000). Principles of CMOS VLSI Design: A Systems Perspective. Addision-Wesley.

[Wikipedia, 2010] Wikipedia (2010). Structured systems analysis and design method. http://
en.wikipedia.org/wiki/Structured Systems Analysis and Design Methodology.

[Wilhelm, 2006] Wilhelm, R. (2006). Determining bounds on execution times. In: R. Zurawski
(Ed.): Embedded Systems Handbook, CRC Press, 2006.

[Willems et al., 1997] Willems, M., Bürsgens, V., Keding, H., Grötker, T., and Meyr, H. (1997).
System level fixed-point design based on an interpolative approach. Design Automation Con-
ference (DAC), pages 293–298.

[Wilton and Jouppi, 1996] Wilton, S. and Jouppi, N. (1996). CACTI: An enhanced access and
cycle time model. Int. Journal on Solid State Circuits, 31(5):677–688.

[Wind River, 2010a] Wind River (2010a). VxWorks. http://www.windriver.com/products/
vxworks.

[Wind River, 2010b] Wind River (2010b). Web pages. http://www.windriver.com.

[Winkler, 2002] Winkler, J. (2002). The CHILL homepage. http://psc.informatik.uni-jena.de/
languages/chill/chill.htm.

[Wolf, 2001] Wolf, W. (2001). Computers as Components. Morgan Kaufmann Publishers.

[Wolsey, 1998] Wolsey, L. (1998). Integer Programming. Jon Wiley & Sons.

[Wong et al., 2001] Wong, C., Marchal, P., Yang, P., Prayati, A., Catthoor, F., Lauwereins,
R., Verkest, D., and Man, H. D. (2001). Task concurrency management methodology to
schedule the MPEG4 IM1 player on a highly parallel processor platform. 9th Int. Symp. on
Hardware/Software Codesign (CODES), pages 170–177.

[ws4d, 2010] ws4d (2010). Web services for devices. http://www.ws4d.org.

[Xilinx, 2008] Xilinx (2008). MicroBlaze processor reference guide. http://www.xilinx.com/
support/documentation/sw manuals/mb ref guide.pdf.

[Xilinx, 2009] Xilinx (2009). Device reliability report - second quarter 2009. http://www.
xilinx.com/support/documentation/user guides/ug116.pdf.

[Xilinx, 2009] Xilinx (May, 2009). Virtex-5 user guide, v 4.7. http://www.xilinx.com/support/
documentation/user guides/ug190.pdf.

[Xilinx, 2007] Xilinx (Nov., 2007). Virtex-II Platform User Guide, V 2.2. http://www.xilinx.
com/support/documentation/user guides/ug002.pdf.

http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://www.ubiq.com/hypertext/weiser/UbiHome.html
http://en.wikipedia.org/wiki/Structured_Systems_Analysis_and_Design_Methodology
http://en.wikipedia.org/wiki/Structured_Systems_Analysis_and_Design_Methodology
http://www.windriver.com/products/vxworks
http://www.windriver.com/products/vxworks
http://www.windriver.com
http://psc.informatik.uni-jena.de/languages/chill/chill.htm
http://psc.informatik.uni-jena.de/languages/chill/chill.htm
http://www.ws4d.org
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug002.pdf
http://www.xilinx.com/support/documentation/user_guides/ug002.pdf

References 371

[XMOS Ltd., 2010] XMOS Ltd. (2010). Home page. http://www.xmos.com/.

[Xu and Parnas, 1993] Xu, J. and Parnas, D. L. (1993). On satisfying timing constraints in hard
real-time systems. IEEE Transactions on Software Engineering, 19:70–84.

[Xu et al., 2009] Xu, Q., Huang, L., and Yuan, F. (2009). Lifetime reliability-aware task alloca-
tion and scheduling for MPSoC platforms. Design, Automation and Test in Europe (DATE),
pages 51–56.

[Xue, 2000] Xue, J. (2000). Loop tiling for parallelism. Kluwer Academic Publishers.

[Young, 1982] Young, S. (1982). Real Time Languages – design and development. Ellis Hor-
wood.

[Zhuo et al., 2010] Zhuo, C., Sylvester, D., and Blaauw, D. (2010). Process variation and
temperature-aware reliability management. Design, Automation and Test in Europe (DATE).

[Zurawski, 2006] Zurawski, R., editor (2006). Embedded Systems Handbook. CRC Press.

http://www.xmos.com/

About the Author

Peter Marwedel

Peter Marwedel was born in Hamburg, Germany. He received his
PhD in Physics from the University of Kiel, Germany, in 1974.
From 1974 to 1989, he was a faculty member of the Institute for
Computer Science and Applied Mathematics at the same Univer-
sity. He has been a professor at TU Dortmund, Germany, since
1989. He holds a chair for embedded systems at the Computer
Science Department and is also chairing ICD e.V., a local com-
pany specializing in technology transfer. Dr. Marwedel was a
visiting professor of the University of Paderborn in 1985/1986
and of the University of California at Irvine in 1995. He served
as Dean of the Computer Science Department from 1992 to 1995.
Dr. Marwedel has been active in making the DATE conference
successful and in initiating the SCOPES and the Map2MPSoCs

series of workshops. He started to work on high-level synthesis in 1975 (in the context of
the MIMOLA project) and focused on the synthesis of very long instruction word (VLIW)
machines. Later, he added compilation for embedded processors (with emphasis on retar-
getability) to his scope. His projects also include synthesis of self-test programs for proces-
sors. Work on multimedia-based training led to the design of the levi multimedia units (see
http://ls12-www.cs.tu-dortmund.de/teaching/download/index.html). He is a cluster leader for
ArtistDesign, a European Network of Excellence on Embedded and Real-Time Systems. He
is also leading projects on efficient compilation for embedded systems. The focus is on the
exploitation of the memory architecture and timing predictability. He won the teaching award
of his university in 2003.

Dr. Marwedel is an IEEE Fellow, a DATE Fellow, a senior member of ACM, and a member of
Gesellschaft für Informatik (GI).

He is married and has two daughters and a son. His hobbies include model railways and pho-
tography.

E-mail: peter.marwedel@tu-dortmund.de

Web-site: http://ls12-www.cs.tu-dortmund.de/˜marwedel

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

373

http://ls12-www.cs.tu-dortmund.de/teaching/download/index.html
mailto:peter.marwedel@tu-dortmund.de
http://ls12-www.cs.tu-dortmund.de/~marwedel
http://dx.doi.org/10.1007/978-94-007-0257-8

List of Figures

0.1 Influence of embedded systems on ubiquitous computing (©European Com-
mission) . xii

0.2 Positioning of the topics of this book . xviii
1.1 SMARTpen (Original version) . 2
1.2 Controlling a valve . 3
1.3 Robot “Johnnie” (courtesy H. Ulbrich, F. Pfeiffer, Lehrstuhl für Angewandte

Mechanik, TU München), ©TU München 4
1.4 Energy efficiency as a function of time and technology (©Philips, Hugo de

Man, 2007) . 6
1.5 Scope of mapping applications to PC-like and Embedded Systems hardware . 12
1.6 Simplified design flow . 13
1.7 Design flow for SpecC tools (simplified) . 14
1.8 Design flow for the V-model (rotated standard view) 15
1.9 Gajski’s Y-chart and design path (in bold) 16
2.1 State diagram with exception k . 24
2.2 Dependence graph . 29
2.3 Graphs including timing information . 30
2.4 Graphs including I/O-nodes and edges . 31
2.5 Graph including jobs . 31
2.6 Hierarchical task graph . 32
2.7 Overview of MoCs and languages considered 34
2.8 Use case example . 36
2.9 Answering machine in UML . 37
2.10 Time/distance diagram . 38
2.11 Railway traffic displayed by a TDD (courtesy H. Brändli, IVT, ETH Zürich),

©ETH Zürich . 39
2.12 State diagram . 39
2.13 Servicing an incoming line in an answering machine 40
2.14 Hierarchical state diagram . 42

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

375

http://dx.doi.org/10.1007/978-94-007-0257-8

376 EMBEDDED SYSTEM DESIGN

2.15 State diagram using the default state mechanism 44
2.16 State diagram using the history and the default state mechanism 44
2.17 Combining the symbols for the history and the default state mechanism . . . 45
2.18 Answering machine . 45
2.19 Answering machine with modified on/off switch processing 46
2.20 Timer in StateCharts . 47
2.21 Servicing the incoming line in Lproc . 47
2.22 Mutually dependent assignments . 49
2.23 Cross-coupled D-type registers . 49
2.24 Conflicting StateCharts transitions . 50
2.25 Steps during the execution of a StateMate model 51
2.26 Symbols used in the graphical form of SDL 55
2.27 FSM to be described in SDL . 55
2.28 SDL-representation of fig. 2.27 . 55
2.29 Declarations, assignments and decisions in SDL 56
2.30 SDL interprocess communication . 56
2.31 Process interaction diagram . 57
2.32 Describing signal recipients . 57
2.33 SDL block . 58
2.34 SDL system . 58
2.35 SDL hierarchy . 58
2.36 Using timer T . 59
2.37 Small computer network described in SDL 59
2.38 Protocol stacks represented in SDL . 60
2.39 Video-on-demand system . 61
2.40 Graphical representation of KPN . 63
2.41 Graphical representations of synchronous data flow 64
2.42 Multi-rate SDF model . 65
2.43 Observer pattern in SDF . 65
2.44 Simulink model . 66
2.45 Single track railroad segment . 68
2.46 Using resource “track” . 69
2.47 Freeing resource “track” . 69
2.48 Conflict for resource “track” . 69
2.49 Nets which are not pure (left) and not simple (center and right) 70
2.50 Generation of a new marking . 72
2.51 Transition with a constant number of tokens 73
2.52 Model of Thalys trains running between Amsterdam, Cologne, Brussels, and

Paris . 75
2.53 NT for the Thalys example . 75
2.54 The dining philosophers problem . 76
2.55 Place/transition net model of the dining philosophers problem 77
2.56 Predicate/transition net model of the dining philosophers problem 77
2.57 Activity diagram [Kobryn, 2001] . 79
2.58 An entity consists of an entity declaration and architectures 81
2.59 Full-adder and its interface signals . 81
2.60 Schematic describing structural body of the full adder 82
2.61 Gate modeled with transport delay . 85

List of Figures 377

2.62 Gate modeled with inertial delay . 85
2.63 VHDL simulation cycles . 88
2.64 RS-Flipflop . 88
2.65 δ cycles for RS-flip-flop . 89
2.66 Outputs that can be effectively disconnected from a wire 91
2.67 Right output dominates bus . 92
2.68 Partial order for value set {’0’, ’1’, ’Z’, ’X’} 92
2.69 Output using depletion transistor . 93
2.70 Partial order for value set {’0’, ’1’, ’L’, ’H’, ’W’, ’X’, ’Z’} 93
2.71 Pre-charging a bus . 94
2.72 Partial order for value set {’0’, ’1’, ’Z’, ’X’, ’H’, ’L’, ’W’, ’h’, ’l’, ’w’} 95
2.73 Structural hierarchy of SpecC example . 100
2.74 Comparison between data flow models . 110
2.75 Expressiveness of data flow models . 111
2.76 Language comparison . 111
2.77 Using various languages in combination . 112
2.78 Models of computation available in UML 113
2.79 StateCharts example . 116
2.80 States of the StateCharts example . 117
2.81 Bus driven by tri-state outputs . 117
3.1 Simplified design flow . 119
3.2 Hardware in the loop . 120
3.3 Acceleration sensor (courtesy S. Bütgenbach, IMT, TU Braunschweig), ©TU

Braunschweig, Germany . 121
3.4 Sample-and-hold-circuit . 123
3.5 Approximation of a square wave by sine waves for K=1 (left) and K=3 (right) 124
3.6 Approximation of a square wave by sine waves for K=7 (left) and K=11 (right) 124
3.7 Visualization of functions e3(t) (solid) and e4(t) (dotted) 125
3.8 Anti-aliasing placed in front of the sample-and-hold circuit 127
3.9 Ideal and realizable anti-aliasing filters (low-pass filters) 127
3.10 (a) Flash A/D converter (b) w as a function of h 128
3.11 Circuit using successive approximation . 130
3.12 Steps used during successive approximation 130
3.13 h(t) (dashed), step function w(t) (dash-dotted), w(t)−h(t) (solid) 131
3.14 Hardware efficiency (©De Man and Philips) 133
3.15 Comparison of energies E0 and E1 . 134
3.16 Dynamic power management states of the StrongArm Processor SA 1100

[Benini et al., 2000] . 136
3.17 Decompression of compressed instructions 138
3.18 Re-encoding THUMB into ARM instructions 139
3.19 Dictionary approach for instruction compression 140
3.20 Naming conventions for signals . 141
3.21 Internal architecture of the ADSP 2100 processor 141
3.22 AGU using special address registers . 143
3.23 Wrap-around vs. saturating arithmetic for unsigned integers 144
3.24 Parameters of a fixed-point number system 144
3.25 Using 64 bit registers for packed words . 145

378 EMBEDDED SYSTEM DESIGN

3.26 VLIW architecture (example) . 147
3.27 Instruction packets for TMS 320C6xx . 147
3.28 Partitioned register files for TMS 320C6xx 148
3.29 M3-DSP (simplified) . 148
3.30 Branch instruction and delay slots . 149
3.31 Floor-plan of the SH-MobileG1 chip . 151
3.32 Floor-plan of Virtex-II FPGAs . 153
3.33 Virtex-5 CLB . 153
3.34 Virtex-5 Slice (simplified) . 154
3.35 Cycle time and power as a function of the register file size 155
3.36 Power and delay of RAM memory as predicted by CACTI 155
3.37 Increasing gap between processor and memory speeds 156
3.38 Memory map with scratch-pad included . 157
3.39 Energy consumption per scratch pad and cache access 157
3.40 Single-ended signaling . 159
3.41 Differential signaling . 160
3.42 TDMA-based communication . 161
3.43 Naming convention for signals between analog inputs and outputs 164
3.44 D/A-converter . 165
3.45 Step function y′(t) generated from signal e3(t) (eq. 3.3) sampled at integer

times . 167
3.46 Visualization of eq. 3.25 used for interpolation 168
3.47 y′(t) (solid line) and the first three terms of eq. 3.24 169
3.48 y′(t) (solid line) and the last three non-zero terms of eq. 3.24 169
3.49 e3(t) (solid), z(t) (dotted), y′(t) (dashed) . 170
3.50 Converting signals e(t) from the analog time and value domain to the digital

domain and back . 171
3.51 Low-pass filter: ideal (dashed) and realistic (solid) 171
3.52 Microsystem technology based actuator motor (partial view; courtesy E. Ober-

meier, MAT, TU Berlin), ©TU Berlin . 172
3.53 Complexity of A/D-converters . 174
4.1 Simplified design information flow . 178
4.2 Device drivers implemented on top of (a) or below (b) OS kernel 180
4.3 Software stack for Wind River® Industrial Automation Platform 181
4.4 Hybrid OSs . 184
4.5 PikeOS virtualization (©SYSGO) . 186
4.6 Blocking of a task by a lower priority task 187
4.7 Priority inversion with potentially large delay 188
4.8 Priority inheritance for the example of fig. 4.7 189
4.9 Nested critical sections . 190
4.10 Transitiveness of priority inheritance . 190
4.11 Access to remote objects using CORBA . 196
4.12 Task set requesting exclusive use of resources 201
5.1 Context of the current Chapter . 204
5.2 (a) Pareto point (b) Pareto front . 205
5.3 WCET-related terms . 208
5.4 Architecture of the aiT timing analysis tool 209
5.5 Set associative cache (for n=4) . 210
5.6 Must-analysis at program joins for LRU-caches 211

List of Figures 379

5.7 May-analysis at program joins for LRU-caches 212
5.8 Arrival curves: periodic stream (left), periodic stream with jitter J (right) . . 213
5.9 Service functions for a TDMA bus . 214
5.10 Work load characterization . 215
5.11 Transformation of event stream and service capacities by real-time components 216
5.12 Density function and probability distribution for exponential distributions . . 220
5.13 Reliability for exponential distributions . 221
5.14 Bath tub-like failure rates . 222
5.15 Illustration of MTTF, MTTR and MTBF . 224
5.16 Failure rates of TriQuint Gallium-Arsenide devices (courtesy of TriQuint,

Inc., Hillsboro), ©TriQuint . 225
5.17 Fault tree . 226
5.18 FMEA table . 227
5.19 Clarke’s EMC system . 232
5.20 Processor configurations . 233
5.21 Pareto points for multi processor systems 2 und 3 233
5.22 Abstract cache states . 234
6.1 Simplified design flow . 235
6.2 Classes of scheduling algorithms . 239
6.3 Task descriptor list in a time-triggered system 240
6.4 Definition of the laxity of a task . 242
6.5 Schedules τ and τ′ . 243
6.6 EDF schedule . 245
6.7 Schedule τ . 245
6.8 Schedule after swapping tasks τ(t) and E(t) 246
6.9 Least laxity schedule . 247
6.10 Scheduler needs to leave processor idle . 247
6.11 Precedence graph and schedule . 248
6.12 3 × 3 matrix . 249
6.13 Computation of the determinant of A . 250
6.14 ASAP schedule for the example of fig. 6.13 251
6.15 ALAP schedule for the example of fig. 6.13 252
6.16 Path lengths for the example of fig. 6.13 . 253
6.17 Mobility for the example of fig. 6.13 . 253
6.18 Result of list scheduling for the example of fig. 6.13 254
6.19 Distributions for the example of fig. 6.13 . 256
6.20 Notation used for time intervals . 257
6.21 Right hand side of equation 6.7 . 259
6.22 Example of a schedule generated with RM scheduling 259
6.23 RM schedule does not meet deadline at time 8 260
6.24 Delaying task Tn by some Ti of higher priority 261
6.25 Increasing delay of task Tn . 261
6.26 EDF generated schedule for the example of 6.23 262
6.27 General view of hardware/software partitioning 264
6.28 Merging of task nodes mapped to the same hardware component 266
6.29 Task graph . 269
6.30 Execution times of tasks T1 to T5 on components 270
6.31 Design space for audio lab . 272

380 EMBEDDED SYSTEM DESIGN

6.32 Classification of mapping tools and authors’ work 273
6.33 DOL problem graph . 273
6.34 DOL architecture graph . 273
6.35 DOL specification graph . 274
6.36 DOL implementation . 275
6.37 Decoding of solutions from chromosomes of individuals 275
6.38 DOL tool . 276
6.39 Pareto front of solutions for a design problem, ©ETHZ 277
6.40 Task dependencies . 278
7.1 Context of the current Chapter . 281
7.2 Merging of tasks . 282
7.3 Splitting of tasks . 282
7.4 System specification . 283
7.5 Generated software tasks . 284
7.6 Memory layout for two-dimensional array p[j][k] in C 287
7.7 Access pattern for unblocked matrix multiplication 290
7.8 Access pattern for tiled/blocked matrix multiplication 290
7.9 Splitting image processing into regular and special cases 291
7.10 Results for loop splitting . 293
7.11 Reference patterns for arrays . 294
7.12 Unfolded (left), inter-array folded (center), and intra-array folded (right) ar-

rays . 294
7.13 Pre-pass optimization . 299
7.14 Basic blocks and multi-blocks . 300
7.15 Energy reduction by compiler-based mapping to scratch-pad for bubble sort . 301
7.16 Worst case execution time aware compiler WCC 306
7.17 Reduction of WCETEST by WCET-aware register allocation 307
7.18 Comparison of memory layouts . 308
7.19 Memory allocation for access sequence (b, d, a, c, d, c) for a single address

register A . 309
7.20 Sequence of steps in Liao’s algorithm . 310
7.21 Reduction of the cycle count by vectorization for the M3-DSP 311
7.22 Characteristics of processor with DVS . 314
7.23 Possible voltage schedule . 314
7.24 Second voltage schedule . 314
7.25 Third voltage schedule . 315
7.26 Memory characteristics . 319
7.27 Variable characteristics . 320
8.1 Design flow with testing at its very end . 322
8.2 Test pattern at the gate level . 323
8.3 Segment from processor hardware . 324
8.4 Finite state machine to be tested . 327
8.5 Scan path design . 328
8.6 Testing a device under test (DUT) . 329
8.7 Linear feedback shift register for response compaction 329
8.8 Linear feedback shift register for test pattern generation 330
8.9 BILBO . 331
8.10 Modes of BILBO registers . 331

List of Figures 381

8.11 Cross-coupled BILBOs . 332
8.12 LFSR . 332
A.1 Possible solutions of the presented ILP-problem 336
B.1 Junction in an electrical circuit . 337
B.2 Loop in an electrical circuit . 338
B.3 Operational amplifier . 339
B.4 Operational amplifier with feed back . 340
B.5 Op-amp with feed back (loop highlighted) 341

Index

A/D-converter, 127, 129, 131, 132
abstraction, 21
abstraction levels, 107
ACID-property, 200
actor, 61
actuator, 8, 162, 163, 172
ADA, 33, 34, 50, 63, 80, 95, 102, 104, 111, 190
address generation unit, 143, 310
address register, 309
addressing mode, 143
ALAP, 251
aliasing, 126
AMBA-bus, 161
analyzability, 109
answering machine, 36, 40
anti-aliasing, 127
API, 106, 177, 180, 184, 195, 198, 200, 236
application area, 1, 10, 13, 19
application domains, 25
application mapping, xiii, 235, 238, 263
application-specific circuit (ASIC), 133, 135
arithmetic

fixed-point ∼, 144, 285
floating-point ∼, 285
saturating ∼, 143, 144

ARM, 139, 150, 161
arrival curves, 213
artificial eye, 122
ARTIST guidelines, xvi
ASAP, 249
ASIC, 6, 133, 135, 152
assignment

signal ∼, 84
audience, xv
automata, 24, 40, 42, 53, 57
AUTOSAR, 10, 237
availability, 5, 224

babbling idiot, 163
basic block, 32, 299, 308
bath tub, 223
BCET, 209, 214
behavior

determinate ∼, 48, 53, 97
deterministic ∼, 40, 50
non-functional ∼, 26
real-time ∼, 160

BILBO, 331
Binary Decision Diagram (BDD), 108, 231, 232
binding, 274
Bluetooth, 164
body biasing, 317
boundary scan, 328
branch delay penalty, 149, 312
broadcast, 51, 53, 54
building

smart ∼, xii, 3
built-in logic block observer, 331
bus guardian, 163

cache, 138, 145, 156, 157, 208, 210, 287–289,
291, 295, 303, 305

CACTI, 155, 157
CAN, 162
CardJava, 106
causal dependence, 29
CFSM, 34
channel, 33, 57
charge-coupled devices (CCD), 121
Chill, 106
CISC, 137
clock synchronization, 183
code size, 8, 301, 310
ColdFire, 137
common characteristics, 4

P. Marwedel, Embedded System Design, Embedded Systems,
DOI 10.1007/978-94-007-0257-8, © Springer Science+Business Media B.V. 2011

383

http://dx.doi.org/10.1007/978-94-007-0257-8

384 EMBEDDED SYSTEM DESIGN

communication, 22, 29, 32, 33, 106, 157
non-blocking ∼, 33

compiler, 285, 291, 295, 297
energy-aware ∼, 296
for digital signal processor, 308
retargetable ∼, 295, 313

component-based design, 22
composability, 181
compression, 138

dictionary-based ∼, 140
computer

disappearing ∼, xi, 9
computing

pervasive ∼, xi
concurrency, 22, 28
condition/event net, 70
configurability, 178
configuration

link-time ∼, 184
context switch, 178, 282
contiguous files, 182
controller area network, 162
COOL, 263, 264, 279
CORBA, 196
cost, 8, 267

estimated ∼, 207
function for scheduling, 242
function of integer linear programming,

271
model for energy, 217
model of COOL, 265
model of integer programming, 335
of ASICs, 135
of communication, 158
of damages, 225
of energy, 134
of floating point arithmetic, 144
of second instruction set, 140
of testing, 332
of wiring, 162

coverage, 324
critical section, 32, 186
critical time instant∼, 261
CSA-theory, 90
CSDF, 66
CSMA/CA, 162
CSMA/CD, 162
CSP, 102, 115
CTL, 232
curriculum, xv
cyber-physical system, xiii, xiv, 1, 4, 5, 8, 10,

22, 34, 119, 120, 158, 159, 164,
206, 207, 219, 228, 229

D/A-converter, 130, 164
damage, 225
data flow, 61

cyclo-static ∼, 66
homogeneous synchronous ∼, 66
synchronous ∼, 64, 115

DCT, 267
deadline, 23, 182, 239, 243, 244, 258, 260, 262
deadline interval, 242, 257
deadlock, 27, 191
decibels, 132
DECT, 164
delay, 23

inertial ∼, 84
transport ∼, 84

delta cycle, 87–89, 97
dependability, 4, 26, 219, 227
dependence graph, 29
depletion transistor, 93
design flow, 12, 15, 119, 204, 235
design for testability, 327
design framework, 13
design space exploration, 206, 237
determinate, 49, 65, 89, 102, 104
deterministic, 40, 50, 182

non-∼, 70, 72
device under test, 322
DfT, 327
diagnosability, 159
diagram

activity, 78
deployment ∼, 113
Hasse ∼, 92
sequence, 37
time/distance ∼, 38
use case ∼, 35

diagrams
of UML, 114

dictionary, 140
differential signaling, 159
dining philosophers problem, 76, 77
discrete event, 33, 34, 78, 115
dispatcher, 241
display, 164
DOL, 272, 275
DPWS, 199
DSE, 206, 237, 277
DSP, 140, 142, 143
DUT, 322, 329
dynamic power management (DPM), 317
dynamic voltage scaling (DVS), 136, 137, 313,

314

Earliest Deadline First, 244, 262, 273, 278
Earliest Due Date, 243
early design phases, 35
eCos, 179
ECU, 237
EDD, 243
EDF, 244, 262, 273, 278
efficiency, 5, 26, 158

Index 385

code size ∼, 8
code-size ∼, 137
energy ∼, 5, 135, 156
run-time ∼, 7, 140

electro-magnetic compatibility (EMC), 228
embedded system(s)

hardware, 119
market of ∼, xiv

embedded systems, xii
emulation, 229
energy, 5, 12, 132–136, 138, 143, 146, 147, 151,

152, 155–157, 173, 204, 217, 218,
226, 234, 237, 273, 286, 291, 295,
296, 317

energy efficiency, 133
energy model, 217, 296
EPIC, 146
error, 219
Estelle, 60
Esterel, 53, 115
European installation bus (EIB), 163
evaluation, 203, 204
event, 24, 68, 70, 87
evolutionary algorithm, 274, 276
exception, 24, 43, 44, 105
executability, 25
expressiveness, 109, 110

failure, 219
failure mode and effect analysis (FMEA), 226
failure rate, 222
Failure unIT (FIT), 222
fault, 219

coverage, 324
injection, 326
model, 323
simulation, 325
stuck-at ∼, 332
tolerance, 159
tree, 226
tree analysis (FTA), 226

field programmable gate arrays, 152, 272
FIFO, 57, 59, 60, 62, 65

in SDL, 56
finite state machine, 46
finite state machine (FSM), 29, 34, 39, 42, 44,

55, 56, 115, 231
FIT, 222
flash A/D converter, 128
FlexRayT M , 163, 174
follow-up courses, xviii
formal verification, 231
Fourier approximations, 124
FPGA, 6, 152, 230, 272

gain, 339
garbage collection, 105
gated clocking, 135

GPS, 183
granularity, 31
green computing, 133
GSM, 162

hardware
secure ∼, 173

hardware abstraction layer, 195
hardware description language, 80
hardware in the loop, 120
hardware/software codesign, 236
hardware/software partitioning, 263
hazard, 225
healthcare, 1
hierarchy, 21, 31

in SDL, 58
in StateCharts, 42
leaf, 43, 58, 265

history mechanism, 44
HLS, 249, 250, 256, 263, 265
HOPES, 276
HSDF, 66, 110
HSPA, 164
hyper period, 262

ICT, xi
IEEE 91, 49
IEEE 802.11, 164
IEEE 1076, 80
IEEE 1164, 90, 117
IEEE 1364, 98
IEEE 1394, 163
IEEE 1666, 98
IEEE 1800-2009, 99
ILP, 212, 266–269, 276, 299, 304, 316, 319, 335
implicit path enumeration, 212
inlining, 312
input, 24, 26, 30, 43, 53, 57, 64, 81, 102
instruction level parallelism, 310
instruction set architecture (ISA), 108
instruction set level, 107
integer linear programming, 316, 335
integrated development environment, 13
intellectual property, 177
interrupt, 181, 182
ITRON, 184
ITRS, 7, 219, 271, 296

Java, 27, 105, 106
job, 239, 257
JTAG, 328

Kahn process network, 62, 65, 102, 110, 115,
276

Kirchhoff’s laws, 165, 166, 337–339
knapsack problem, 299
KPN, 62, 65, 102, 110, 115, 276

386 EMBEDDED SYSTEM DESIGN

lab, xviii
language, 21

actor-based ∼, 67
synchronous ∼, 52

laxity, 242, 257
LDF, 248
levi simulation, 38, 63, 116, 163, 188, 191, 201
LFSR, 329, 332
LIN (Local Interconnect Network), 163
linear feedback shift register, 329
linear transformation, 125
locality, 290
location invariants, 41
logic

first-order ∼, 231
higher order ∼, 231
multi-valued ∼, 90
propositional ∼, 231
reconfigurable ∼, 152

long-term evolution (LTE), 164
loop

blocking, 289
fission, 288
fusion, 288
permutation, 287
splitting, 291
tiling, 289
unrolling, 288

lp solve, 336
LST, 246
Lustre, 53

M-activated, 72
machine

virtual, 186
maintainability, 5, 159, 223
MAP, 163
MAPS, 277
marking, 71
MATLAB, 107
maximum lateness, 242
may-analysis, 234
memory, 155

bank, 145
hierarchy, 297
layout, 308

memory protection unit, 181
merge operator, 63
message passing

asynchronous ∼, 33
message passing, 29, 32–34, 54, 65, 90, 101

asynchronous ∼, 33
synchronous ∼, 102

message sequence charts (MSC), 36
micro-controller, 17, 150
middleware, 177, 195, 199
MIMOLA, 80

Mnemee, 277
mobility, 253
model, 21

discrete event ∼, 33, 78
layout level ∼, 109
of computation, 26, 28
switch-level ∼, 108

model of computation, 34, 109
model-based design, 35, 67, 101
modes, 66
modular performance analysis, 213
module chart, 52
MOST (Media Oriented Systems Transport),

163
MPI, 197
MPI/RT, 198
MPSoC, 151, 272, 276
MSC, 36
MTBF, 223
MTTF, 223
MTTR, 223
multi-core, 151
multi-objective optimization techniques, 204
multiply/accumulate instruction, 145
Multiprocessor system-on-a-chip, 151
must-analysis, 234
mutex primitives, 186
mutual exclusion, 30, 68

nanoprogramming, 140
net

simple ∼, 71
NP-hard, 231, 241, 248
Nyquist frequency, 126

object orientation, 25
observer, 65, 89
Occam, 102
op-amp, 166, 339
open collector circuit, 91
OpenMP, 198
operating system

driver, 180
embedded ∼, 178
kernel, 184
real-time ∼, 181, 182

operational amplifier, 166, 339
optimization, 264, 266, 267, 291, 295, 296, 310,

312, 313, 317, 335, 336
high-level ∼, 285

OSEK, 184, 191, 195

Pareto front, 206
Pareto-optimality, 205, 233, 276
path length, 252
Pearl, 106
period, 239, 247, 257–259, 261, 262, 278
periodic schedule, 31, 242

Index 387

pervasive computing, xii
Petri net, 67, 78, 283
place invariant, 73
place/transition net, 71
platform-based design, 119, 177
portability, 25
POSIX Threads, 198
post-PC era, xii
post-set, 70
postcondition, 70
power, 133, 296
power model, 217
pre-charging, 94
pre-set, 70
precondition, 70
predecessor, 29
predicate/transition net, 76
predicated execution, 148, 312
predictability, 182, 196, 208, 241, 263
prefetching, 289
prerequisites, xvii
priority ceiling protocol, 191
priority encoder, 129
priority inheritance, 189, 197
priority inversion, 186
privacy, 159
procedure ex-lining, 140
process, 178
processing units, 132
processor, 135, 295

cell ∼, 6, 7, 276
digital signal ∼, 143
multimedia ∼, 145, 310
network ∼, 312
very long instruction word ∼, 146, 311
VLIW ∼, 311

program
self-test ∼, 324

protection, 180
Pthreads, 198
Ptolemy, 34, 115, 276

quantization noise, 131

rapid prototyping, 229
readability, 25
real-time, 105

behavior, 158
capability, 145
constraint, 8
CORBA, 196
data bases, 177
databases, 200
hard ∼ constraint, 9
kernel, 184
POSIX, 197

real-time calculus, 213

real-time operating system (RTOS), 18, 179,
181, 182, 184, 185, 284

register file, 145, 147, 310
register-transfer level, 108
reliability, 5, 220, 221, 224–226
rendez-vous, 33, 103
requirement

non-functional ∼, 11
requirements, 21
resolution, 129
resolution function, 92
resource allocation, 185
robotics, 3, 18
robustness, 158, 159
row major order, 287, 289
RT-Linux, 185
RTOS, 31, 181, 182

safety, 5, 181, 227
safety case, 226
sample-and-hold circuit, 123
sampling, 125, 126
sampling criterion, 126, 167
sampling rate, 126
sampling theorem, 167
SAT, 276
satisfiability, 276
Scade, 53
scan design, 327
scan path, 328
schedulability tests, 241
scheduling, 182, 238

aperiodic ∼, 242
as-late-as-possible ∼, 251
as-soon-as-possible ∼, 249
dynamic ∼, 240
earliest deadline first ∼, 262
force-directed ∼, 255
instruction ∼, 296
latest deadline first ∼, 248
least laxity ∼, 246
list ∼, 252
non-preemptive ∼, 239
optimal ∼, 257
periodic ∼, 257
rate monotonic ∼, 258, 273, 278
without preemption, 247

scratch pad memory (SPM), 157, 301
SDF, 64, 112, 115

homogeneous ∼, 110
SDL, 54, 58, 60, 112
secure hardware, 173
security, 5, 181
select-statement, 95, 104
semantics

SDL ∼, 56
StateMate ∼, 47
VHDL ∼, 86

388 EMBEDDED SYSTEM DESIGN

sensor, 8, 120
acceleration ∼, 121
bio-metrical ∼, 122
image ∼, 121

service, 219
shape symbol

for memories, 138
shared memory, 32
short vector instructions, 146
signal, 123
signal-to-noise ratio (SNR), 132, 286
signaling

differential ∼, 160
single-ended ∼, 159

signature analysis, 329
SIMD-instructions, 145
simulation, 228

bit-true ∼, 107
cycle-true ∼, 108

Simulink, 66, 276
sine wave, 124
slack, 242, 257
slides, xvii
SNR, 132
SoC, 8, 105, 137
SpecC, 14, 100
specification languages, 21
SPM, 297–305
sporadic event, 263
sporadic task server, 263
SSE, 146
state, 24

ancestor ∼, 43
AND-∼, 44
AND-super ∼, 45
basic ∼, 43
default ∼, 43
diagram, 24, 40
OR-super ∼, 43
super ∼, 42, 43

StateCharts, 42, 116
StateMate, 47
statement

select ∼, 50
stuck-at-fault, 323
successive approximation, 129
successor, 29
SUD, 21
SymTA/S, 217
synchronization, 22
synthesis, 16
system

dedicated ∼, 9
embedded ∼, 10
hybrid ∼, 9
reactive ∼, 9, 115
time triggered ∼, 240

system level, 107
system on a chip (SoC), 8, 105, 137, 294
SystemC, 96, 107, 276
SystemCodesigner, 276
SystemVerilog, 99

TAI, 183, 201
task, 104

aperiodic ∼, 239
concurrency management, 281
periodic ∼, 239, 257
sporadic ∼, 239, 241

task graph, 29, 269
node splitting, 282

TDD, 38
TDMA, 161, 162, 273
termination, 26
test, 321
test pattern, 322
test pattern generation, 322

pseudo-random ∼, 330
testability, 327
thermal conductance, 218
thermal management, 317
thermal model, 218
thermal resistance, 218
thread, 28, 178
THUMB, 139
time, 23, 29, 86, 97, 106
time division multiple access, 161
time services, 183
timed automata, 41
timeout, 23
timer, 46, 59

in SDL, 59
timing analysis, 24, 209
timing behavior, 22
timing information, 29
TLM, 98
TPG, 322
transaction-level modeling, 98, 108
TTP, 163
two-level control store, 140

ubiquitous computing, xi
UML, 36, 38, 52, 60, 78, 112–114
UML profile, 114
unified modeling language, 113
Universal Plug-and-Play, 199
UPnP, 199
use case, 35, 237
user-interface, 9
UTC, 183, 201

V-model, 15
validation, 203
variable voltage processor, 315
Verilog, 98

Index 389

VHDL, 49, 80, 86, 88, 265
architecture, 81
entity, 81
port map, 82
signal driver, 91

VHDL-AMS, 107
virtual ground, 341
VLIW, 146, 311
von-Neumann languages, 101
von-Neumann model, 33
VxWorks, 179, 184

Wattch, 218
WCC, 306, 307
WCET, 208–212, 214
weight, 8
Wind River Systems, 185
Windows Embedded, 185
Worst Case Execution Time (WCET), 208

Y-chart, 15

zero-energy-building, 3
zero-overhead loop instruction, 142, 288, 311

	Contents
	Preface
	Acknowledgments
	 Introduction
	Application areas and examples
	Common characteristics
	Challenges in Embedded System Design
	Design Flows
	Structure of this book
	Assignments

	 Specifications and Modeling
	Requirements
	Models of computation
	Early design phases
	Use cases
	(Message) Sequence Charts

	Communicating finite state machines (CFSMs)
	Timed automata
	StateCharts: implicit shared memory communication
	Synchronous languages
	SDL: A case of message passing

	Data flow
	Scope
	Kahn process networks
	Synchronous data flow
	Simulink

	Petri nets
	Introduction
	Condition/event nets
	Place/transition nets
	Predicate/transition nets
	Evaluation

	Discrete event based languages
	VHDL
	SystemC
	Verilog and SystemVerilog
	SpecC

	Von-Neumann languages
	CSP
	ADA
	Java
	Pearl and Chill
	Communication libraries

	Levels of hardware modeling
	Comparison of models of computation
	Criteria
	UML
	Ptolemy II

	Assignments

	 Embedded System Hardware
	Introduction
	Input
	Sensors
	Discretization of time: Sample-and-hold circuits
	Discretization of values: A/D-converters

	Processing Units
	Overview
	Application-Specific Circuits (ASICs)
	Processors
	Reconfigurable Logic

	Memories
	Communication
	Requirements
	Electrical robustness
	Guaranteeing real-time behavior
	Examples

	Output
	D/A-converters
	Sampling theorem
	Actuators

	Secure hardware
	Assignments

	 System Software
	Embedded Operating Systems
	General requirements
	Real-time operating systems
	Virtual machines
	Resource access protocols

	ERIKA
	Hardware abstraction layers
	Middleware
	OSEK/VDX COM
	CORBA
	MPI
	POSIX Threads (Pthreads)
	OpenMP
	UPnP, DPWS and JXTA

	Real-time databases
	Assignments

	 Evaluation and Validation
	Introduction
	Scope
	Multi-objective optimization
	Relevant objectives

	Performance evaluation
	Early phases
	WCET estimation
	Real-time calculus

	Energy and power models
	Thermal models
	Risk- and dependability analysis
	Simulation
	Rapid prototyping and emulation
	Formal Verification
	Assignments

	 Application mapping
	Problem definition
	Scheduling in real-time systems
	Classification of scheduling algorithms
	Aperiodic scheduling without precedence constraints
	Aperiodic scheduling with precedence constraints
	Periodic scheduling without precedence constraints
	Periodic scheduling with precedence constraints
	Sporadic events

	Hardware/software partitioning
	Introduction
	COOL

	Mapping to heterogeneous multi-processors
	Assignments

	 Optimization
	Task level concurrency management
	High-level optimizations
	Floating-point to fixed-point conversion
	Simple loop transformations
	Loop tiling/blocking
	Loop splitting
	Array folding

	Compilers for embedded systems
	Introduction
	Energy-aware compilation
	Memory-architecture aware compilation
	Reconciling compilers and timing analysis
	Compilation for digital signal processors
	Compilation for multimedia processors
	Compilation for VLIW processors
	Compilation for network processors
	Compiler generation, retargetable compilers and design space exploration

	Power Management and Thermal Management
	Dynamic voltage scaling (DVS)
	Dynamic power management (DPM)

	Assignments

	 Test
	Scope
	Test procedures
	Test pattern generation for gate level models
	Self-test programs

	Evaluation of test pattern sets and system robustness
	Fault coverage
	Fault simulation
	Fault injection

	Design for testability
	Motivation
	Scan design
	Signature analysis
	Pseudo-random test pattern generation
	The built-in logic block observer (BILBO)

	Assignments

	Integer linear programming
	Kirchhoff's laws and operational amplifiers
	References
	About the Author
	List of Figures
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

