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Preface

The book sets forth and builds upon the fundamentals of dynamics of the Earth 
as a self-gravitating body whose movement is based on its dynamic equilibrium 
state. The term “self-gravitating body” refers to the Earth capacity for self-genera-
tion of the gravitational energy that gives it planetary motion. The idea of applying 
this dynamic approach appeared after the classical dynamics of the planet’s motion 
based on hydrostatics had failed. It also followed an analysis of the geodetic satel-
lite orbits and discovery of the relationship between the mean (polar) moment of 
inertia and the gravitation potential of the planet. The dynamical equilibrium of a 
self-gravitating body, which generates energy by means of interaction of its mass 
particles, was applied as an alternative to hydrostatics. In order to derive the equa-
tions of a dynamical equilibrium state, the volumetric force and volumetric moment 
were introduced into Newtonian equations of motion. Here the hydrostatic equilib-
rium state appeared to be the particular case of a gravitating uniform body subjected 
to an outer force field. It was based on the theory that the basic mode of motion of a 
self-gravitating Earth is its interactive particle oscillations which represent the main 
part of the planet’s kinetic energy and appear as oscillations of the polar moment 
of inertia.

In the second part of the twentieth century, continuous study of space by artificial 
satellites opened a new page in space sciences. It was determined that the ultimate 
goal of this scientific program should be an answer of the Solar system’s origin. At 
the same time, in order to solve geodetic and geophysical problems, investigation 
of the near Earth cosmic space was initiated.

The first geodetic satellites for studying dynamic parameters of the planet were 
launched almost 50 years ago. They gathered vast amounts of data that signifi-
cantly improved our knowledge of the inner structure and dynamics of the Earth. 
They made it a real possibility to evaluate experimentally the correctness of basic 
physical ideas and hypotheses in geophysics, geodesy and geology, and to compare 
theoretical calculations with observations. Success in this direction was achieved in 
a short period of time.

On the basis of satellite orbit measurements, the zonal, sectorial and tesseral 
harmonics of gravitational moments in expansion of the gravitational potential by 
a spherical function, up to tens, twenties and higher degrees were calculated. The 
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calculations have resulted in an important discovery having far-reaching effects. 
The obtained results proved the long-held assumption of geophysicists that the 
Earth does not stay in hydrostatic equilibrium, which, in fact, is the basic principle 
of the theories of dynamics, figure and inner structure of the planet. The same con-
clusion was made about the Moon.

This conclusion means that the model used to determine hydrostatic equilibrium 
of the Earth, which was applied in order to interpret the outer and central force 
field, does not satisfy the observed dynamic effects of gravitational interaction of 
mass particles and should be revised. But the state of scientific knowledge of this 
phenomenon has been found to be not ready to cope with such a situation. The story 
of the condition of hydrostatic equilibrium of the planet begins with Newton’s con-
sideration, in his famous work “Philosophiae Naturalis Principia Mathematica”, of 
the Earth oblateness problem. The investigation based on hydrostatics was further 
developed by French astronomer and mathematician Clairaut. Later on the hypoth-
esis of hydrostatic equilibrium was extended to all celestial bodies including stars. 
The authority of Newton was always so high that any other theories for solution 
of the problem in dynamics and celestial body structure were never proposed. But 
in current times the problem has arisen of the cause of the discrepancy between 
theory and observation and a movement has appeared to take over this crisis in the 
study of fundamentals of the Earth sciences. A situation like this happened at the 
beginning of the twentieth century when the radioactive and roentgen radiation was 
discovered and the corpuscular-wave nature of light was proved. This was the start-
ing point for development of quantum mechanics. We seem now to have a similar 
situation with respect to planetary motion.

The conclusion about the absence of hydrostatic equilibrium of the Earth and the 
Moon was a reason to start our work with this interesting problem, the results of 
which are presented in this book. We found a still more serious discrepancy related 
to the Earth hydrostatic equilibrium, which is as follows. It is known that the planet’s 
potential energy is almost 300 times more than the kinetic one represented by the 
body’s rotation. This relation between the potential and kinetic energy contradicts 
the requirement of the virial theorem according to which the potential energy of a 
body in the outer uniform force field should be twice as much of the kinetic one.

Considering the Earth’s observed potential energy, its angular velocity should be 
about seventeen times as much as it is. However, the planet has remained for a long 
time in an equilibrium state. In fact, the Earth appears to have been deprived of its 
kinetic energy. Some of the other planets, such like Mars, Jupiter, Saturn, Uranus 
and Neptune, exhibit the same behavior. But for the Mercury, Venus, our Moon 
and the Sun, the equilibrium states of which are also accepted as hydrostatic, their 
potential energy exceeds their kinetic energy by 104 times. A logical explanation 
comes to mind that there is some hidden form of motion of the body’s interacting 
mass particles, together with their respective kinetic energy, which has not previ-
ously been taken into account. It is known that the hydrostatic equilibrium condition 
of a body existing in the outer force field satisfies a requirement of the Clausius 
virial theorem. The same requirement follows also from the Eulerian equations for 
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a liquid-filled uniform sphere. The virial theorem gives an averaged relationship 
between the potential and kinetic energies of a body. A periodic component of the 
energy change during the corresponding time interval is accepted as a constant val-
ue and eliminated from consideration. From this evidence it is not difficult to guess 
that the hidden form of motion and the source of needed kinetic energy of the Earth 
and the planets including the Moon and the Sun might be found in that eliminated 
periodic component. In the problem considered by Newton, that component was 
absent because of his concept of the central gravitational force field, the total sum 
of which is equal to zero.

Taking into account the relationship between the Earth’s gravitational moments 
and the gravitational potential observed by the satellites, we came back to deriva-
tion of the virial theorem in classical mechanics and obtained its generalized form 
of the relationship between the energy and the polar moment of inertia of a body. 
In doing so, we obtained the equation of dynamical equilibrium of a body in its 
own force field where the hydrostatic equilibrium is a particular case of a uniform 
body in its outer force field. The equation establishes a relationship between the 
potential and kinetic energies of a body by means of energy of oscillation of the 
polar moment of inertia in the form of the energy conservation law. An analytical 
expression of the derived new form of the virial theorem is based on Newton’s 
laws of motion and represents a differential equation of the second order, where 
the variable value is kinetic energy of the body’s oscillating polar moment of in-
ertia. In this case the earlier lost kinetic energy is found by taking into account the 
oscillating collision of the interacting mass particles, the integral effect of which 
is expressed through oscillation of the polar moment of inertia. That effect fits the 
relationship between the potential and kinetic energies in the classical virial theo-
rem. At the same time a novel physical conception about gravitation and elec-
tromagnetic interaction is discovered and mechanism of the energy generation 
becomes clear. The nature of the gravity forces as a derivative of the body’s inner 
energy appears to be discovered.

We initiated the study in dynamics of a self-gravitating body, based on dynam-
ic equilibrium, in the seventies. The results were published in a series of papers 
(Ferronsky et al., 1978–1996; Ferronsky, 2005, 2008, 2009; Ferronsky, 1983, 1984) 
and in the books “Jacobi Dynamics” (Ferronsky et al., 1987), and “Dynamics of the 
Earth” (Ferronsky and Ferronsky, 2007). Recently obtained results related to the 
problem of the Earth’s dynamics are presented in this work. We show here that 
the new effect, which creates dynamics of the Earth, is its own force field. Earlier, 
the sum of the inner forces and their moments being affected by the outer central 
force field were considered as equal to zero. We find that the mass forces of interac-
tion being volumetric ones created the inner force field which appears to be the field 
of power (energy) pressure. That field, according to its definition, cannot be equal to 
zero. The resultant of the field pressure appears to be a space envelope. The enve-
lope has a spherical shape for a sphere and an elliptic shape for an ellipsoid. It was 
found that dynamic effects of the body’s force field occur in oscillation and rotation 
of the shells according to Kepler’s laws. A body that has a uniform mass density 
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distribution realizes all its kinetic energy of motion in the form of so-called virial 
oscillations. It was assumed, earlier, that wave properties of this nature, like oscil-
lations for mass particles in mechanics of bodies, are unessential. We found that 
virial oscillations of a body initiated by the force field of its own interacting mass 
particles represent the main part of its kinetic energy. Theories based on hydrostat-
ics ignore that energy. But, as it was noted above, in this case the potential energy 
of the Earth and other celestial bodies by two or more orders exceeds their kinetic 
energy represented only in the form of axial rotation of the mass. Such an unusual 
effect has a simple physical explanation. Still in the beginning of the last century 
French physicist Louis de Broglie expressed an assumption, proved later on, that 
any micro-particle including electron, proton, atom and molecule, acquires particle-
wave properties. The relationship, discovered by the artificial satellites between 
changes of the Earth’s gravitational potential and the moment of inertia, shows that 
interaction of the planet’s masses takes place on their elementary particle levels. It 
means that the main form of motion of the interacting mass particles is their oscil-
lation. Continuous “trembling” of the planet’s gravitational field, detected by satel-
lites as the gravitational moments change, is another fact proving the de Broglie 
idea and extending it to the gravitational interaction of celestial body masses.

The dynamical approach to solution of the problem under consideration allowed 
the authors to expand the body’s potential energy on its normal, tangential and dis-
sipative components. The differential equations which determine the main body’s 
dynamical parameters, namely its oscillation and rotation, were written. A rigorous 
solution of the equations was considered on the basis for bodies with spherical and 
axial symmetry. The solutions of problems relating to rotation, oscillation, obliquity 
and oblateness of a body’s orbit and itself was considered on the basis of the general 
solution of dynamics of a self-gravitating body in its own force field. It was found 
that precession and wobbling of the Earth and irregularity of its rotation depends 
on effects of the polar and equatorial oblateness and the separate rotation of the 
planet’s, the Sun’s and the Moon’s shells. The outer force field of a body follows 
rotation of the resultant envelope of the shells, but with some delay because of the 
finite velocity of the energy propagation in the outer force field. Also the problems 
of inner structure of the Earth, the nature of the planet’s electromagnetic field and 
mechanism of the energy generation are considered. Methods for studying some 
practical tasks like orogenesis, earthquakes, volcanism and climate change are dis-
cussed. The theory we present is applicable not only to the planets and satellites, 
but also to the stars, where hydrostatic equilibrium is considered as an equation of 
state. Finally, the theory opens a way to understand the physics of gravitation as the 
internal power (energy) pressure which occurs at matter interaction on the level of 
molecules, atoms and nuclei.
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This chapter presents a short history of the birth and development of the dynamics 
of the Earth based on the assumption of an initial hydrostatic equilibrium state.

Dynamics is the branch of mechanics that deals with the problem of a body in 
motion and the forces applied to create that motion. Newton’s three laws created a 
theoretical basis for dynamics to solve two types of tasks that are inverse to each 
other. The first was to find the relevant forces by application of known laws of 
body motion. The second type of task was to find the law of body motion on the 
basis of those identified acting forces. Newton solved the problem of the first type. 
He searched for the force that moves the Earth and the planets around the Sun 
according to Kepler’s laws. Newton concluded that the planets and their satellites 
are moved along their orbits by interaction of centripetal (attractive) and inertial 
forces. His solution of the problem that led to the idea of “motion of bodies mutu-
ally attracting each other with centripetal forces” and other solved problems related 
to body motion, became the foundation for Newton’s formulation of these laws of 
motion, including the general law of gravitation.

Newton published results of his study in 1686 in his famous work “Philosophie 
Naturalis Principia Mathematica” in Latin. In the third part of the work, under the 
title “About the World System”, he presented a solution to the problem “Determine 
the ratio of the planet’s axis length to the length of its diameters”. This question 
about the Earth’s oblateness with respect to its axis of rotation appears to be the ba-
sis for study of the planet's figure. The figure was presented as a rotating-by-inertia 
spherical body with polar and equatorial channels filled with a uniform liquid in 
a hydrostatic equilibrium state. Later, the French mathematician and astronomer 
Clairaut substituted Newton’s idea of a uniform liquid in the channels of the rotating 
body with the concept of a liquid of fluctuating density along its radius. Even later, 
other researchers presumed the body’s liquid to be an elastic and viscous substance. 
But the conditions of its hydrostatic equilibrium and inertial rotation of the planet 
have remained up to now as fundamentals of its dynamics as well as of the other 
celestial bodies.

Let us briefly consider the main steps in the history of dynamics of the Earth and 
the story of appearance of the hydrostatic equilibrium idea.

V. I. Ferronsky, S. V. Ferronsky, Dynamics of the Earth, 
DOI 10.1007/978-90-481-8723-2_1, © Springer Science+Business Media B.V. 2010
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1.1  �Copernican Heliocentric World System

Nicolaus Copernicus (1473–1543), Polish astronomer and mathematician, the au-
thor of the heliocentric world system, was the first to come to the conclusion that 
the Earth moves around the Sun. For many centuries astronomers and sailors had 
unconditionally adopted the idea of the geocentric world system developed by the 
famous Greek astronomer Claudius Ptolemaios. In accordance with his concep-
tion, the Earth was the center of the system and all other observed celestial bodies 
rotated around that center. Copernicus started his work by study and improvement 
of the Ptolemaic system, presented in a 13-volume description entitled “The Great 
Mathematical Construction” with the Arabian name “Almagest” which enclosed 
the Hipparchos’ star catalog describing the location of 1 022 stars in an elliptic 
system of the sky’s coordinates. But very soon he discovered that the complicated 
cycles of motion of the observed planets and other celestial bodies, presented by 
Ptolemaios in the form of tables, can be described in a simpler way and in more 
logistic forms of motion around the Sun. In doing so, Copernicus came to under-
stand the true heliocentric law of motion of the Earth and the other planets. For 
practical use he compiled, like Ptolemaios, tables of the planets’ motion along the 
sky in circular orbits. The tables were very quickly popularized, first of all among 
navigators. Near the end of his life, in 1543, the Copernican heliocentric system 
was published in his work “About Revolution of the Sky Spheres”. In addition to 
his astronomic study, Copernicus prepared a set of logarithmic tables that are, in 
content, close to those used in the present day. In so doing he made a notable con-
tribution to trigonometry.

1.2  �Galilean Laws of Inertia and Free Fall

After Copernicus died, his study of motion of the Earth and celestial bodies was 
continued by the Italian astronomer, mathematician and mechanic Galileo Galilei 
(1564–1642). Still being a student at a medical university, he came to know Aristo-
teles’ physics and found it unconvincing. Galileo left medicine and started to study 
mechanics and geometry, in particular works of Euclid, Archimedes and Coperni-
cus. In 1589 he wrote “Dialogue on the Motion”, where he disproves the Aristote-
lian conception of the Earth’s motion. In that work he does not mention the name 
Copernicus but he became a convinced and faithful supporter of the Copernican 
system and used the ideas from it in his own writing. In 1592–1610 Galileo carried 
out studies on static and dynamic equilibrium in machines by applying for this pur-
pose the virtual displacement principle. At the same time he studied the free fall of 
kernels with different densities which, as legend says, were thrown from Pisa’s tow-
er. From that experience Galileo derived the laws of bodies in free fall, either on a 
sloping plain or thrown upward at an angle to the horizon, and also their application 
to isochronism of a pendulum’s oscillation. After construction of his first triple, and 
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later on 32 multiple, telescope, Galileo placed it on the San Marco tower and car-
ried out a long series of observations. He discovered here Venus’s phases of motion, 
rotation and spots of the Sun, mountains on the Moon, and the four satellites of Jupi-
ter. These discoveries gave rise to doubts from other naturalists. The findings were 
called an optical illusion, arguing that they contradicted the Aristotelian postulates. 
Despite the fact that Galileo was accepted into the Accademia dei Lincei, known as 
the Rome Academy of “The Lynx-eyes”, he was denounced by the Church for his 
defense of Copernican ideas, which were declared by the Jesuit Congregation to be 
heretical and his book was included in the list of prohibited readings. Despite this 
censure, in 1630 Galileo succeeded in publishing the book “Dialogue about the Two 
Main World Systems” where he defended Copernicus’ ideas. Soon however, sale of 
the book was forbidden by demand of the inquisition and the author was forced to 
publicly deny the Copernican theory and to make repentance. Shortly thereafter, in 
the protestant countries “The Dialogue” was published in Latin.

By his observations and works Galileo founded the basic principles of mechanics 
like the laws of inertia and free fall of bodies, the principle of relative motion, the 
law of mechanical energy conservation in pendulum motion and the law of motion 
summation. Whereas Archimedes formulated the fundamentals of statics, Galileo 
laid the basis of dynamics. The assumptions of “The Thinker” were: the world is 
unbounded, matter is perpetual, and the heavenly bodies are similar to the Earth.

1.3  �Kepler’s Laws of Planets’ Orbital Motion

Johannes Kepler (1571–1630), German astronomer and mathematician, became 
acquainted as a young man with the Copernican theory which predetermined his 
way of life. In 1600 Kepler moved to Prague in order to work with the well-known 
astronomer Tycho Brahe who for many years had maintained observation of the 
motion of the planets, in particular that of Mars. After the tragic death of Brahe in 
1601, Kepler obtained copious materials resulting from these observations and un-
dertook an extensive organization and evaluation. As early as 1604 he published a 
work that showed that illumination from a source decreases according to the inverse 
square law. In 1609 his work “New Astronomy” appeared, where Kepler published 
results of his evaluation of Brahe’s observation of the motion of Mars. The results 
were presented as his first and second laws. The first of them states that the orbit of 
the unperturbed planet’s motion is a curve of the second order, in one of the focuses 
of which the Sun is situated. It follows from the second law that the radius vector 
joining the unperturbed planet’s motion with the Sun sweeps out equal areas in 
equal times. In 1619 Kepler published a new work entitled “Harmony of the World”, 
where he describes his third law. In accordance with that law, in unperturbed elliptic 
motion of two planets, the ratio of the square of their periods of revolution to the 
cube of the semi-major axes is the same.

After discovery of the Copernican heliocentric system it was assumed that 
the planets move around the Sun along circular orbits. Kepler, being a convinced 
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follower of Copernicus, shared the idea. But after analysis of Brahe’s data he found 
that the observational points of the planets’ annual motion did not describe circles. 
The points inscribe the circle but do not form it. However, the results from process-
ing the data of the planets’ annual trajectories indicated that they do describe some 
form of spatial curves. In order to reduce the space coordinates of the planets’ mo-
tion to mean values and to obtain a plane elliptic figure, Kepler developed a specific 
method of averaging the observational points based on inscribing polygons into a 
circle and calculating with infinitesimals. Finally Kepler succeeded in finding a 
methodology of reducing the data which allows one to obtain an elliptic trajectory 
and to formulate the first two laws of the planets’ motion. In “New Astronomy” 
Kepler presented this method in the form of the following geometric solution of the 
problem which allows one to find elements of a planet’s orbit satisfying his first two 
laws of motion. Across point D on diameter AB of semicircle AOBM (Fig. 1.1) the 
straight line DM should be drawn in such a way that it divides the area in the given 
ratio. The problem was written in the following transcendental equation

� (1.1)

which is solved by the given values с and х, when ( |c| < 1). Here с is the figure’s ec-
centricity which at a value less than unit gives an ellipse and at zero gives a circle. 
The value х characterizes the scale of averaging taken as a ratio of the semicircle 
areas formed by the line DM.

Equation (1.1) represents projections of the reduced space coordinates of a body’s 
motion along its orbit on the plane. With the help of this equation astronomers could 
determine the body’s position on a point of the orbit at a given moment of time and 
solve the reverse problem of determination of the time moment of a body passing 
through a given point of the orbit. To come back from the projections of the trajec-
tory on the plane to space coordinates in the sky, three angles called the true, mean 
and eccentric anomalies are used (Fig. 1.2).

Figure 1.2 demonstrates the true anomaly expressed by angle V between the 
pericenter В of the orbit and the radius vector S of the body, in the direction of the 
body’s motion. In accordance with Kepler’s second law the angle V changes in time 
faster when the body moves in orbit to the pericenter В and its motion is slower in 
a direction away from the pericenter В.

The mean anomaly is determined by angle М, which lies between the direction to 
the pericenter and the radius vector of a fictitious point, but is assumed to be moving 
with constant velocity during which that point passes pericenter B and apocenter А 
simultaneously with the real body. Thus, while moving from point В to point А the 

y − c sin y = x,y − c sin y = x,

Fig. 1.1   Kepler’s problem

D OA B

M
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real body precedes the fictitious point, whereas moving from A to B the real body 
lags behind it.

The eccentric anomaly is expressed by angle Е with the point in the center of 
the orbit and situated between the direction to the pericenter and point P. That point 
lies on the circle drawn from the geometric center of the orbit and the perpendicular 
РQ, carried out on the diameter, passes through the point S. The point Р plays an 
auxiliary role to determine the mean М and true V anomalies by formulas

� (1.2)

� (1.3)

� (1.4)

where е is the eccentricity of the orbit; М0 is the mean anomaly at some initial mo-
ment of time to, which is accepted as an element; v is the mean value of the body’s 
orbit velocity of motion.

It is clear that the meaning of Kepler’s problem, represented by Eq. (1.2), is to 
inscribe into a circle an ellipse, which is the real averaged trajectory of the body’s 
motion on the orbit, by applying the mean velocity value of the motion v and the 
mean anomaly М0. Herewith, the inscribed ellipse must touch the circle only in two 
points of the body’s orbit, namely in the perihelion В and aphelion А.

Kepler’s first two laws and the equation represent the averaged space picture 
of a planet’s motion over a period of revolution around the Sun. They do not de-
scribe small variations of the motion parameters either within each period of revo-
lution or from one period to another. Those variations of the parameters’ motion 
are smoothed by the mean anomaly М, and the Kepler laws and the equation ex-
presses conditions of the hydrostatic equilibrium of the system. Kepler’s equation 
was solved by Newton in his two-body problem in order to find the force which 
sets the body in motion. Newton’s solution was done in the frame-work of Kepler’s 
formulation of the problem, i.e., for the condition of hydrostatic equilibrium of a 
planet’s motion. This remark is important for understanding the logic of his judg-
ment and geometric construction which Newton used for solution of the two-body 
problem and the problem of the Earth’s oblateness. As to the method of averaging of 

E− e sin E = M,E− e sin E = M,

M = M0 + ν(t − t0),M = M0 + ν(t − t0),
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Kepler’s space coordinates by means of infinitesimals, it served to be the ideologi-
cal base for development of the differential and integral calculus originally initiated 
by Newton and Leibniz simultaneously, but obviously not without the influence of 
Kepler’s and Huygens works.

1.4  �Huygens Laws of Clock Pendulum Motion

Christian Huygens (1629–1695), the Netherlands physicist, mathematician, me-
chanic and astronomer, was the founder of the wave theory of light and the theory 
of probability, the author of the first pendulum clock and investigator of the pendu-
lum laws of motion which synchronously follows the Earth’s motion. At 22 years 
of age he published his first work about determination of the arc length of the circle, 
ellipse and hyperbola. And three years later he wrote a work about the ratio of the 
circle’s length to its diameter, which was called π. Then there was the work “About 
calculation of the bones game”, where studies of cycloid, logarithmic and chain  
lines were undertaken and which became a part of the foundation of the theory of 
probability. Together with Hook he established the points of freezing and boiling 
of water. At the same time Huygens actively worked on increasing the luminosity 
of astronomical telescopes. In 1655, with his own instruments, he discovered the 
satellite Titan of Saturn, its own rings, the nebulae of the constellation Orion, and 
the poles of Jupiter and Mars. 

Astronomical observations always needed precise and easily calculated meas-
urements of time. In 1657 Huygens designed the first pendulum clock to be driven 
by a trigger mechanism of motion. In the next year he published a treatise “The 
Pendulum Clock”, where his description of the discovery and the study of the pen-
dulum clock motion was presented. It was known that the period of oscillation of 
a pendulum depends on the amplitude of the oscillation. In order to determine the 
precise motion of the clock, Huygens developed a construction, astonishing even 
for modern standards, schematically presented in Fig. 1.3.

Figure 1.3a shows, by dashed lines, barriers having a cycloid configuration, 
which bounds the swings of elastic filament of the suspended pendulum. The fila-
ment from a suspension point O up to some point А sags to both sides of the cycloid. 

Fig. 1.3   Scheme of the 
Huygens pendulum clock 
(а), evolvent and evolute (b): 
pendulum ( 1); filament of 
suspension ( 2); cycloid ( 3)
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Below point А the filament is held tight by the weight of the pendulum due to 
its motion to that point along the cycloid. The pendulum itself during that motion 
traces the cycloid (shown by dashes). In such a device the period of the pendulum 
oscillation does not depend on amplitude of the oscillation.

The described Huygens’ project was not realized because at that time a more suit-
able design to solve the problem of synchronizing the oscillations was found. The 
interest in Huygens’ technical idea has been lost and his name is mentioned only 
in differential geometry in connection with his introduction of the curves known as 
evolvent and evolute (Fig. 1.3b). In our time Huygens’ idea is used for design of 
geophysical devices like gravitational variometers and gravimeters for measure-
ment of the Earth’s gravitational field. Technical solutions for such devices were 
proposed at the end of the nineteenth century by Hungarian physicist Eötvös. How-
ever, Huygens’ study in pendulum motion contains much more fruitful, although 
not realized, ideas.

Recall, that the evolute is a curve which is formed from the locus of the cent-
ers of curvature of another plane curve (evolvent). The equation of this curve is a 
semi-cubic parabola. The evolvent is an unwound form of a curve perpendicular to 
a family of tangents to the evolute. The meaning of Huygens’ idea is the following. 
First, the relation between an evolute and an evolvent represents a relation between 
a function and its derivative or between a function and its integral. But these rela-
tions exist in the integrated form and are geometrically observable but not in a local 
form such as in mathematical analysis. Secondly, as it is seen from the drawn fam-
ily of such unwound curves with different fixed lengths of the pendulum filaments 
(Fig. 1.3b) in each point of the initial curve, the corresponding evolvent has a pe-
culiarity. And third, an important point for us, the marked peculiarity is always of 
the same type. It is a semi-cubic parabola like x2 =  y3 or х  =  у3/2. This is a universal 
law, being a consequence of the simple fact that in each task related to motion we 
always have some initial conditions inherited by the moving object. For example, 
in the case of the Huygens’ swinging pendulum its suspension filament winds away 
from the curve at some fixed point.

If one recalls the Kepler laws then it is possible to notice their important prop-
erties. The first two laws determine the trajectory of the same body. The third law 
relates to the family of trajectories traced by different planets of the same Solar 
System family. This law says that squares of periods of the revolving planets are 
proportional to cubes of their semi-major axes. It means that on the plane of time-
coordinates the above law is expressed by a semi-cubic parabola. And in turn, the 
above is evidence of the fact that if the motion is considered in the space of time, 
but not in the space of configurations, then the Kepler laws express a universal law 
of nature in the integral form. Here constancy of the light velocity plays the role of 
isochronism of the oscillations.

Huygens applied the design and study of pendulum motion to description of 
elastic wave propagation, including in anisotropic media (double refraction of light 
beams in crystals) which he considered in “The Treatise on the Light”. He dis-
covered here one more effect. Namely, the line of the peculiar points, which was 
discussed above, determines the edge of the region (this is a space edge according 
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to Huygens). The sphere has no such edge. It appears when the waves propagate 
inside the closing curve. Huygens considered a case with an ellipse (Fig. 1.4).

Here waves propagate with constant velocity to the inner hollow of an ellipse. At 
the beginning the curve is transferred equidistantly to the ellipse. After that a time 
comes when the peculiar points А, В, С, D appear. That is not a continuum but a lim-
ited number of points. If the considered region is not spatial as Huygens discussed, 
but it is a space–time region, then the phase transition phenomenon appears that is 
described by the van der Waals cubic equation.

Finally there is one more important element of analysis proposed by Huygens. 
In fact, he introduced into physics an integral approach to studying the behavior of 
a system. An example to explain his approach is a straight-rolling wheel. A point on 
its rim or on the spoke traces the curve, which gives a solution of the Kepler equa-
tion (Fig. 1.5).

Some of Huygen’s profound ideas are far from being realized. The laws of 
the pendulum motion of his clock, which in detail and synchronously follows the 
Earth’s motion, could be physically demonstrated by the appropriate technical im-
plementation not only for gravimetry but also for study of the planet’s dynamics. As 
to the theoretical conclusions, we used them in our previous works and reference 
will be made below in the book.

1.5  �Hooke’s Law of Elasticity

Robert Hooke (1635–1703), the great English naturalist, a member and the second 
Secretary of the London Royal society, scientist and inventor, is founder of the theo-
ry of elasticity. Together with Huygens he determined the constant points of boiling 

Fig. 1.4   Huygens’ peculiar 
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Fig. 1.5   Huygens’ solution 
of Kepler’s equation
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and freezing of water. In 1660 Hooke discovered the law of proportionality, within 
the elastic limit, between a strain and the stress producing it in the body. In fact, the 
elastic property of a uniform body, being under action of the outer forces, defines 
hydrostatic equilibrium of this body. Later on, in 1674 in his work “The attempt to 
study the Earth motion” Hooke proposed to develop the respective theory applying 
three assumptions; (1) all the celestial bodies have an attraction to the center; (2) all 
the bodies preserve their uniform motion in a straight line up to the moment when 
some other force will deflect them; (3) the force of attraction is the higher the closer 
is the body.

1.6  �Newton’s Model of Hydrostatic Equilibrium 
of a Uniform Earth

Isaac Newton (1643–1727), the genius intellectual, English mathematician and 
physicist, is the founder of classical mechanics and astronomy and the author of the 
gravitation law. His merits and contribution to development of the natural sciences 
is difficult to be overestimated. The top of Newton’s scientific work became the 
generalization of scientific results of Copernicus, Kepler, Galileo, Huygens, Borelli, 
Hooke, Galley and other predecessors and contemporaries, all of whose work was 
presented in his “Philosophiae Naturalis Principia Mathematica” and published 
in 1686. In that book a mathematical (geometric) approach was used for solution 
of the problems of celestial mechanics and dynamics of the Earth. Later on, an 
analytical basis for such a purpose was developed by Lagrange, Euler, d’Alembert, 
Hamilton, Jacobi, Cauchy, Bernoulli and other mathematicians in the seventeenth 
to nineteenth centuries.

Newton adopted the condition of the Earth’s hydrostatic equilibrium state to-
gether with the Keplerian laws of motion and his problem. That model of equilib-
rium comprises the basis for solution of the two-body problem and the problem of 
the Earth’s oblateness.

Newton opens his work with definitions of matter, momentum and innate, ap-
plied, centripetal force and with formulation of his three laws of motion. In Book 
I “The Motion of Bodies” the solution of the two-body problem is presented. In 
Book II “The Motion of Bodies (in resisting medium)” the hydrostatics theorems are 
discussed. And in Book III “The System of the World” the solution of the Earth’s 
oblateness problem is considered. Let us recall the original Newton’s formulations 
of the more important principles which we cite and discuss later on in the book. For 
that purpose we quote from the English translation of Newton’s Principia, made by 
Andrew Mott in 1729 (Newton, 1934).

Book I.  The Motion of Bodies

Definition I.  The quantity of matter is the measure of the same, arising from its 
density and bulk conjointly.
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Definition II.  The quantity of motion is the measure of the same, arising from the 
velocity and quantity of matter conjointly.

Definition III.  The vis insita, or innate force of matter, is a power of resisting, by 
which every body, as much as in it lies, continues in its present state, whether it be 
rest, or moving uniformly forwards in a right line.

Definition IV.  An impressed force is an action exerted upon a body, in order to 
change its state, either of rest, or of uniform motion in a right line.

Definition V.  A centripetal force is that by which bodies are drawn or impelled, or 
any way tend, towards a point as to a centre.

Of this sort is gravity, by which bodies tend to center of the earth; magnetism, 
by which iron tends to the load stone; and that force, whatever it is, by which the 
planets are continually drown aside from the rectilinear motion, which otherwise 
they would pursue, and made to revolve in curvilinear orbits. A stone, whiled about 
in a sling, endeavors to recede from the hand that turns it; and by that endeavor, dis-
tends the sling, and that with so much the greater velocity, and as soon as it is let go, 
flier away. That force which opposes itself to this endeavor, and by which the sling 
continually draws back the stone towards the hand, and retains in its orbit, because 
it is directed to the hand as the centre of the orbit, I call the centripetal force. And 
the same thing is to be understood of all bodies, revolved in any orbit. They all en-
deavor to recede from the centers of their orbits; and were it not for the opposition 
of a contrary force which restrains them to, and detains them in their orbits, which I 
therefore call centripetal, world fly off in right lines, with uniform motion…

The quantity of any centripetal force may be considered as of three kinds: abso-
lute, accelerative, and motive.

Definition VI.  The absolute quantity of a centripetal force is the measure of the 
same, proportional to the efficacy of the cause that propagates from the centre, 
through the spaces round about.

Definition VII.  The accelerating quantity of a centripetal force is the measure of 
the same, proportional to the velocity which is generates in a given time.

Definition VIII.  The motive quantity of a centripetal force is the measure of the 
same, proportional to the motion which is generates in a given time.

These quantities of forces, we may, for the sake of brevity, call by the names of 
motive, accelerative, and absolute forces; and for the sake of distinction, consider 
them with respect to the bodies that tend to the centre of forces towards which they 
tend; that is to say, I refer the motive force to the body as an endeavor and propen-
sity of the whole towards a centre, arising from the propensities of the several parts 
taking together; the accelerative force to the place of the body, as a certain power 
diffused from the centre to all places around to move the bodies that are in them; 
and the absolute force to the centre, as endued with some cause, without which those 
motive forces would not be propagated through the space round about; whether that 
cause be some central body (such as is the magnet in the centre of the magnetic 
force, or the earth in the centre of the gravity force), or anything else that does  
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not yet appears. For I here design only to give a mathematical notion of those 
forces, without considering their physical cause and seats…

I likewise call attractions and impulses, in the same sense, accelerative and mo-
tive; and use the words attraction, impulse, or propensity of any sort towards a cen-
tre, promiscuously, and indifferently, one for another; considering those forces not 
physically, but mathematically: wherefore the rider is not to imagine that by those 
words I anywhere take upon me to define the kind, or the manner of any action, the 
causes or the physical reason thereof, or that I attribute forces, in a true and physi-
cal sense, to certain centers (which are only mathematical points); when at any time 
I happen to speak as attracting, or as endued with attractive powers.

Law I.  Every body continues in its state of rest, or of uniform motion in a right line, 
unless it is compelled to change that state by forces impressed upon it.

Law II.  The change of motion is proportional to the motive force impressed; and is 
made in the direction of the right line in which that force is impressed.

Law III.  To every action there is always opposite and equal reaction: or, the mutual 
actions of two bodies upon each other are always equal, and directed to contrary 
parts.

Section XI.  Motion of Bodies Tending to each other with Centripetal Forces.
Before discussing the problem, essentially Newton notes that “…I approach to state 
a theory about the motion of bodies tending to each other with centripetal forces, 
although to express that physically it should be called more correct as pressure. 
But we are dealing now with mathematics and in order to be understandable for 
mathematicians let us leave aside physical discussion and apply the force as its 
usual name”.

Proposition LVII. Theorem X.  Two bodies attracting each other mutually similar 
figures about their common centre of gravity, and about other mutually.

For the distance of the bodies from their common centre of gravity are inversely 
as the bodies, and therefore in a given ratio to each other; and hence, by composi-
tion of ratios, in given ratio the whole distance between the bodies. Now these dis-
tances are carried round their common extremity with an uniform angular motion, 
because lying in the same right line they never change their inclination to each 
other. But right line that are in a given ratio to each other, and carried round their 
extremities with an uniform angular motion, describe upon planes, which either 
rest together with them, or are moved with any motion not angular, figures entirely 
similar round those extremities. Therefore the figures described by the revolution of 
those distance are similar.

Proposition LVIII. Theorem XI.  If two bodies attract each other with forces of 
any kind, and revolve about the common centre of gravity: I say, that, by the same 
forces, there may be described round either body unmoved a figure similar and 
equal to the figures which the bodies so moving describe round each other.

Let the bodies S and P (Fig. 1.6a) revolve about their common centre of gravity 
С proceeding from S to Т, and from Р to Q.
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From the given point s (Fig. 1.6b) let there be continually drown sp and sq equal 
and parallel to SP and TQ; and the curve pqv, which the point p described by point 
р at its revolution will be equal and similar to the curves which are describes in its 
revolution round the fixed point S, will be similar and equal to the curve which the 
bodies S and P describes about each other; and therefore, by Theor. XX, similar to 
the curves in curves SТ and РQV which the same bodies describe about their com-
mon centre of gravity С; and that because the proportions of the lines SС, СР, SР 
or sp, to each other given.

Case 1.  The common centre of gravity C (by Cor. IV of The Laws of Motion) is 
either at rest, or moves uniformly in a right line. Let us first suppose it at rest, and 
in s and p let there be placed two bodies, one immovable in s, the other movable in 
p, similar and equal to the bodies S and P. Then let the right lines PR and pr touch 
the curves PQ and pq in P and p, and produce CQ and sq to R and r. And because 
the figures CPRQ, sprq are similar, RQ will be to tq as CP to sp, and therefore in a 
given ratio. Hence if the force with which the body P is attracted towards the body S, 
and by consequence towards the intermediate centre C, were to the force with which 
the body p is attracted towards the centre s, in the same given ratio, these forces 
would in equal times attract the bodies from the tangents PR, rq; and therefore 
this last force (tending to s) would make the body p revolve in the curve pqv, which 
would become similar to the curve PQV, in which the first force oblique the body P 
to revolve; and their revolutions would be completed in the same times. But because 
those forces are not to each other in the ratio of CP to sp, but (by reason of the 
similarity and equality of the distance SP, sp) mutually equal, the bodies in equal 
times will be equally drawn from the tangents; and therefore that the body p may be 
attracted through the grater interval rq, there is required a grater time, which will 
vary as the square root of the intervals; because, by Lem. X, the space described at 
the beginning of the motion are as the square of the times. Suppose, then, the veloc-
ity of the body p to be to the velocity of the body P as the square root of the ratio of 
the distance sp to distance cp, so that the arcs pq, PQ, which are in a similar pro-
portion to each other, may be described in times that are as the square root to the 
distance; and the bodies P, p, always attracted by equal forces, will describe round 
the fixed centers C and s similar figures PQV, pqv, the latter of which pqv is similar 
and to be figure which the body P describes round the movable body S.

Case 2.  Suppose now that the common centre of gravity, together with the space in 
which the bodies are moved themselves proceeds uniformly in the right line; and (by 
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Cor. VI of The Laws of Motion) all the motions in this space will be performed in the 
same manner as before; and therefore the bodies will describe about each other the 
same figures as before, which will be therefore similar and equal to the figure pqv.

Corollary I.  Hence two bodies attracting each other with forces proportional to 
the square of their distance, describe (by Prop. X), both round their common cen-
tre of gravity and round each other, conic sections having their focus in the centre 
about which the figures are described; and conversely, if such figures are described, 
the centripetal forces are inversely proportional to the square of the distance.

Corollary II.  And two bodies, whose focuses are inversely proportional to the 
square of their distance, describe (by Prop. XI, XII, XIII), both round their common 
centre of gravity, and round each other, conic sections having their focus in the centre 
about which the figures are described. And conversely, if such figures are described, 
the centripetal forces are inversely proportional to the square of distance.

Corollary III.  Any two bodies revolving round their common centre of gravity 
describe areas proportional to the time, by radii drown both to the centre and to 
each other.

Book II.  The Motion of Bodies (in Resisting Medium)

Proposition XIX. Theorem XIV.  All the parts of an homogeneous and uniform 
fluid in any unmoved vessel, and compressed on every side (setting aside the con-
sideration of condensation, gravity, and all the centripetal forces), will be equally 
pressed on every side, and remain in their places without any motion arising from 
that pressure.

Case 1.  Let a fluid be included in the spherical vessel ABC, and uniformly com-
pressed on every side: I say, that no part of it will be moved by that pressure For it 
and part, other as D, be moved, all such parts at the same distance from the centre 
on very side must necessarily be moved at the same time by a like motion; because 
the pressure of them all in similar and equal; and all other motion is excluded that 
does not come all of them nearer to the centre, contrary to the supposition…

Proposition XXII. Theorem XVII.  Let the density of any fluid be proportional to 
the compression, and its parts be attracted downwards by a gravitation inversely 
proportional to the square of the distances from the centre: I say, that if the distance 
be taken in harmonic progression, the densities of the fluid at those distances will 
be in a geometrical progression.

Book III.  System of the World (in Mathematical Treatment)

Proposition II. Theorem II.  That the forces by which the primary planets are con-
tinually drawn off from rectilinear motions, and retained in their orbits, tend to the 
sun; and are inversely as the squares of the distances of the places of those planets 
from the sun’s centre.

Proposition VII. Theorem VII.  That there is a power of gravity pertaining to all 
bodies, proportional to the several quantities of matter which they contain.
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Proposition VIII. Theorem VIII.  In two spheres gravitating each towards the 
other, if the matter in places an all sides round about and equidistant from the cent-
ers in similar, the weight of either sphere towards the other will be inversely as the 
square of the distance between their centers.

Proposition IX. Theorem IX.  That the force of gravity, considered downwards 
from the surface of the planets, decreases nearly in the proportion of the distances 
from the centre of the planets.

If the matter of the planet were of an uniform density, this proportion would be 
accurate true. The error, therefore, can be no greater than what may arise from the 
inequality of the distance.

Proposition X. Theorem X.  That the motions of the planets in the heavens may 
subsist an exceedingly long time.

Hypothesis I.  That the centre of the system of the world is immovable.

Proposition XI. Theorem XI.  That the common centre of gravity of the earth, the 
sun, and all the planets, is immovable.

Proposition XII. Theorem XII.  That the sun is agitated by a continual motion, but 
never recedes far from the common centre of gravity of all the planets.

Based on the above proofs, Newton considers other versions related to the 
two-body problem which have became basic principles for celestial and classic 
mechanics.

In Book III, Proposition XIX Newton considers the problem of the Earth’s ob-
lateness as follows:

Proposition XIX. Theorem XIX.  To find the proportion of the axis of a planet to 
the diameters perpendicular thereto.

Our countryman, Mr. Norwood, measuring a distance of 905751 feet of Lon-
don measure between London and York, in 1635, and observing the difference of 
latitudes to be 2°28′, determined the measure of one degree to be 367196 feet of 
London measure, that is, 57060 Paris toises. M.Picard, measuring an arc of one de-
gree, and 22′55′′ of the median between Amiens and Malvoisine, found an arc of one 
degree to be 57060 Paris toises. M.Cassini, the father, measured the distance upon 
the meridian from the town Collioure in Roussillon to the observatory of Paris; and 
his son added the distance from the Observatory to the Citadelo of Dunkirk. The 
whole distance was 4861561/2 toises and the difference of the latitudes of Collioure 
and Dunkirk was 8 degrees, and 31′115/6′′. Hence an arc of one degree appears to 
be 57061 Paris toises. And from these measures arc conclude that the circumference 
of the earth is 123249600, and its semidiameter 19615800 Paris feet, upon the sup-
position that the earth is of a spherical figure.

Taking advantage of measurements existing at that time, Newton calculated the 
ratio of the total gravitation force over the Paris latitude to the centrifugal force 
over the equator and found that the ratio is equal to 289:1. After that he imagines 
the Earth in the form of an ellipse of rotation with axis PQ and the channel ACQqca 
(Fig. 1.7).
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If the channel is filled with water, then its weight in the branch АСса will be re-
lated to the water weight in the branch QСсq as 289:288 because of the centrifugal 
force which decreases the water weight in the last branch by the unit. He found by 
calculation that if the Earth has a uniform mass of matter and has no motion, and 
the ratio of its axis PQ to the diameter АВ is as 100:101, then the gravity force of 
the Earth at the point Q relates to the gravity force at the same point of the sphere 
with radius СQ or СР as 126:125. By the same argument the gravity at point А of a 
spheroid drawn by revolution around axis АВ relates to the gravity in the same point 
of the sphere drawn from center С with radius АС as 125:126. However, since there 
is one more perpendicular diameter, then this relation should be 126:1251/2. Having 
multiplied the above ratios, Newton found that the gravity force at point Q relates 
to the gravity force at point А as 501:500. Because of daily rotation the liquid in the 
branches should be in equilibrium at a ratio of 505:501. So, the centrifugal force 
should be equal to 4/505 of the weight. In reality the centrifugal force composes 
1/289. Thus, the excess in water height under the action of the centrifugal force in 
the branch Асса is equal to 1/289 of the height in branch QСсq.

After calculation by hydrostatic equilibrium in the channels, Newton obtained 
that the ratio of the Earth’s equatorial diameter to the polar diameter is 230:229, 
i.e., its oblateness is equal to (230 – 229)/230 = 1/230. This result, demonstrating 
that the Earth’s equatorial area is higher than the polar region, was used by Newton 
for explanation of the observed slower swinging of pendulum clocks on the equator 
than on the higher latitudes.

At the end of Book III, after discussion of the Moon’s motion, the tidal effects 
and the comets’ motion, Newton concludes as follows.

Hitherto we have explained the phenomena of the heavens and our sea by the 
power of gravity, but have not yet assigned the cause of this power. This is certain, 
that it must proceed from a cause that penetrates to very centers of the sun, and 
planets, without suffering the least diminution of its force, that operates not accord-
ing to the quantity of the surfaces of the particles upon which it acts (as mechanical 
causes used to do), but according to the quantity of the solid matter which they 
contain, and propagates its virtue on all sides to immense distances, decreasing 
always as the inverse square of the distances. Gravitation towards the sun is made 
up out of the gravitations towards the several particles of which the body of the 
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sun is composed; and in receding from the sun decreases accurately as the inverse 
square of the distance as far as the orbit of Saturn, as evidently appears from the 
quiescence of the aphelion of the planets; nay even to the remotest aphelion of the 
comets, if those 4 aphelions are also quiescent.

But hitherto I have not been able to discover the cause of those properties of 
gravity from phenomena, and I frame no hypotheses; for whatever is not deduced 
from the phenomena is to be called an hypothesis; and hypotheses, whether meta-
physical or physical, whether of occult qualities or mechanical, have no place in 
experimental philosophy. In this philosophy particular propositions are inferred 
from the phenomena, and afterwards rendered general by induction Thus it was that 
the impenetrability, the mobility, and the impulsive force of bodies, and the laws of 
motion and of gravitation, were discovered. And to us it is enough that gravity does 
really exist, and act according to the laws which we have explained, and abundantly 
serves to account for all the motions of the celestial bodies, and of our sea.

And now we might add something concerning a certain most subtle spirit which 
pervades and lies in all gross bodies; by the force and action of which spirit the 
particles of bodies attract one another at near distances, and cohere, if contiguous; 
and electric bodies operate to greater distances, as well repelling as attracting 
the neighboring corpuscles; and light is emitted, reflected, refracted, inflected, and 
heats bodies; and all sensation is excited, and the members of animal bodies move 
at the command of the solid filaments of the nerves, from the outward organs of 
sense to the brain, and from brain into the muscles. But these are things that cannot 
be explained in few wards, nor are we furnished with that sufficiency of experiments 
which is required to an accurate determination and demonstration of the laws by 
which this electric and elastic spirit operates.

Lagrange referred to Newton’s work as “the greatest creation of a human intel-
lect”. It was published in England in Latin in 1686, 1713 and 1725 in his life-time 
and many times later on. We reiterate that the passages above are from the transla-
tion by Andrew Mott in 1729 that was printed in 1934.

As it follows from Newton’s definition of the centripetal innate forces, his un-
derstanding of their meaning and action in nature is very wide. The innate force of 
matter is the power of resistance. It can develop as the force of a body’s resistance 
due to which it remains at rest or moves with constant velocity. It can develop as a 
body’s resistance (reactive) force to an outer effect and as a pressure when the body 
faces an obstacle. In modern mechanics this force is understood synonymously as 
the force of inertia. The resistance force or force of reaction has found its place in 
the theory of elasticity, and the pressure force is used in hydrodynamics and aero-
dynamics.

The main meaning of the centripetal force which was introduced by Newton 
is that each body is attracted to a certain center. He demonstrates this ability of 
bodies and objects on the Earth to attract to its geometric center by action of the 
gravity force. Newton distinguishes three kinds of manifestation of the centripetal 
force, namely absolute, accelerating and moving. The absolute value of this force 
is a measure of the source power of its action from the center to outer space. The 
body’s attraction to the center and emission of the attraction from the center is 
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demonstrated by Newton in Book III “The System of the World”, where in Theorem 
II he notes that gravity forces from the planets are directed to the Sun. In Theorem 
IХ he says that attraction of the planets themselves goes from their surfaces to the 
centers. According to Newton’s idea the planet’s surface is an area of formation of 
absolute value of the centripetal force from where it emits that force upward and 
downward.

The accelerating value of the centripetal force by Newton’s definition, is a meas-
ure proportional to velocity which it develops over a long time. The moving value 
of the centripetal force is a measure which is proportional to the moment, i.e., to the 
mass and velocity.

After such a wide spectrum of functions which Newton attributes to the centrip-
etal force, it becomes clear why he was unable to understand its physical meaning 
and acknowledged: “But hitherto I have not been able to discover the cause of those 
properties of gravity from phenomena, and I frame no hypotheses; for whatever is 
not deduced from the phenomena is to be called an hypotheses; and hypotheses, 
whether metaphysical or physical, have no place in experimental philosophy. In 
this philosophy particular propositions are inferred from the phenomena, and af-
terwards rendered general by induction. Thus it was that the impenetrability, the 
mobility, and the impulsive force of bodies, and the laws of motion and gravitation, 
were discovered. And to us it is enough that gravity does really exist, and act ac-
cording to the laws which we have explained, and abundantly serves to account for 
all the motions of the celestial bodies, and of our sea”.

It is worth noting that mathematicians to whom Newton expounded the theory, 
because of complications in their analytical operations with these forces, introduced 
the force function to celestial mechanics and analytical dynamics, i.e., energy with 
its ability to develop pressure. In doing so they practically generalized the physical 
meaning of the force effects. As to the centripetal forces, later on in Sect. 2.2 of 
Chap. 2 we shall show that volumetric forces of mass particle interaction in reality 
generate Newton’s physical pressure. which in formulation of practical problems is 
expressed by the energy. Once more note that Newton, as he said himself, instead of 
using the correct physical meaning of the concept “pressure” gave preference to the 
concept “attraction” as being more understandable to mathematicians.

Newton’s problem about the mutual attraction of two bodies, which depict simi-
lar trajectories around their common center of gravity and around each other, is 
based on the geometric solution of Kepler’s problem formulated in his first two 
laws. Newton’s solution is founded on his conception of the centripetal and in-
nate forces under which the bodies depict similar trajectories around their common 
center of gravity and around each other. In celestial mechanics, developed on the 
basis of Newton’s attraction law, the two-body problem is reduced to an analytical 
problem of one body, the motion of which takes place in the central field of the com-
mon mass. Both Newton’s geometric theorem and the analytical solution of celestial 
mechanics are based on the hydrostatic equilibrium state of a body motion due to 
Kepler’s laws. Newton well understood this and expressed it in his hydrostatics 
laws. But in both cases the two-body problem was solved correctly in the frame-
work of its formulation. The only difference is that by Kepler the planet motion 
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occurs under the action of the Sun’s forces whereas Newton shows that this motion 
results from the mutual attraction of both the Sun and the planet.

In Section V of Book II “Density and Compression of Fluids: Hydrostatics” 
Newton formulates the hydrostatics laws and on their basis in Book III “The System 
of the World” he considers the problem of the Earth’s oblateness by applying real 
values of the measured distances between a number of points in Europe. Applying 
the found measurements and hydrostatic approach he calculated the Earth’s oblate-
ness as being equal to 1/230, where in his consideration the centrifugal force plays 
the main contraction effect expanding the body along the equator. In fact the task 
is related to the creation of an ellipsoid of rotation from a sphere by action of the 
centrifugal force. Here Newton applied his idea that the attraction of the planet itself 
goes from the surface to its center. In this case the total sum of the centripetal forces 
and the moments are equal to zero and rotation of the Earth should be inertial. It 
means that the planet’s angular velocity has a constant value.

Inertial rotation of the Earth is accepted a priori. There is no physical evidence 
or other form of justification for this phenomenon. There are also no ideas relative 
to the mode of a planet’s rotation, namely, whether it rotates as a rigid body or 
there is a differential rotation of separate shells. In modern courses of mechanics 
there is only analytical proof that in the case when the body exists in the outer 
field of central forces, then the sum of its inner forces and torques is equal to zero. 
Thus, it follows that the Earth’s rotation should have the mode of a rigid body and 
the velocity of rotation in time should be constant.

The proof of the conclusion, that if a body occurs in the field of the central forces 
then the sum of the inner forces and torques is equal to zero, and the moment of 
momentum has a constant value, is directly related to the Earth’s dynamics. Let us 
see it in a modern presentation (Кittel et al., 1965).

Write the expression of the moment of momentum L for a mass point m, the lo-
cation of which is determined by a radius vector r relative to an arbitrarily selected 
fixed point in the inertial system of coordinates

� (1.5)

where р is the moment; v is the velocity.
After differentiation of (1.5) with respect to time, one obtains

� (1.6)

Since vectorial product

� (1.7)

then taking into account Newton’s second law for the inertial reference system, we 
have

L ≡ r × p ≡ r × mv,L ≡ r × p ≡ r × mv,

dL
dt
=

d

dt
(r × p) =

dr
dt
× p+ r ×

dp
dt

.
dL
dt
=

d

dt
(r × p) =

dr
dt
× p+ r ×

dp
dt

.

dr
dt
× p = v ×mv = 0,

dr
dt
× p = v ×mv = 0,

r ×
dp
dt
= r × F = N,r ×

dp
dt
= r × F = N,
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from which

� (1.8)

where N is the torque.
For the central force F = r̂f (r), which acts on the mass point located in the cen-

tral force field, the torque is equal to

� (1.9)

Consequently, for the central forces the torque is equal to zero and the moment of 
momentum L appears to be constant.

In the case when the mass point presents a body composed of n material particles, 
then moment of momentum L of that system will depend on location of the origin of 
the reference system. If the reduced vector of the mass center of the system relative 
to the origin is Rc, then the equation for the moment of momentum L is written as

� (1.10)

where Lc is the moment of momentum relative to the system’s center of the masses; 
P =


mn × vn  is the total moment of the system. Here the term Rc × P expresses 
the moment of momentum of the mass center and depends on the origin, and the 
term Lc, on the contrary does not depend on the reference system.

The total torque of the system, which appears as a result of interaction between 
all the particles, is equal to

and the sum of the inner forces is

� (1.11)

here and further the summing is being done at condition i ≠ j.
The torque of the inner forces is

� (1.12)

Since

� (1.13)

N =
dL
dt

,N =
dL
dt

,

N = r × F = r × r̂f (r) = 0.N = r × F = r × r̂f (r) = 0.
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then the torque of inner forces can be presented in the form

� (1.14)

Because the Newton forces Fj i = −Fi j, then

� (1.15)

Taking into account that central forces Fi j are parallel to ri − rj, then

from where the torque of the inner forces is equal to zero.

� (1.16)

Assuming that the inner forces Fin = 0, then from (1.9), (1.10) and (1.16) one finds 
that

� (1.17)

� (1.18)

Here Lc is also the moment of momentum relative to the mass center, and R × P is 
the moment of momentum of the mass center relative to an arbitrarily taken origin.

For practice it is often convenient to select the geometric center of the mass as 
an origin. In this case the derivative from the moment of momentum relative to the 
mass center is the torque of the outer forces, i.e.,

� (1.19)

It is seen from the above classical consideration that in the model of two interacting 
mass points reduced to a common mass center, which Newton used for solution of 
Kepler’s problem relating to the planets’ motion around the Sun, the inner forces 
and torques, being in the central force field, are really equal to zero. The torque, 
which is a derivative with respect to time from the moment of momentum of the 
body’s material particles, is determined here by the resultant of the outer forces and 
the planets’ orbits in the central force field that exists in the same plane. This con-
clusion follows from Kepler’s laws of the planets’ motion.

Passing to the problem of the Earth’s dynamics, Newton had no choice for the 
formulation of new conditions. The main conditions were determined already in 
the two-body problem where the planet appeared in the central force field of the re-
duced masses. The only difference here is that the mass point has a finite dimension. 

Nin =
1

2



i



j

�
ri × Fij + rj × Fji


.Nin =

1

2



i



j

�
ri × Fij + rj × Fji


.

Nin =
1

2



i



j

�
ri − rj


× Fij.Nin =

1

2



i



j

�
ri − rj


× Fij.

�
ri − rj


× Fij = 0,

�
ri − rj


× Fij = 0,

Nin = 0.Nin = 0.

d

dt
L = Nex

d

dt
L = Nex

L = Lc + R × P.L = Lc + R × P.

d

dt
Lc = Nex.

d

dt
Lc = Nex.

1 Introduction



21

The condition of zero equality of the inner forces and torques of the rotating planet 
should mean that the motion could result from the forces among which the known 
were only the Galilean inertial forces. Such a choice followed from the inertial 
condition of two-body motion which he had already applied. The second part of the 
problem related to reduction of the two bodies to their common center of masses 
and to the central force that appeared accordingly as predetermining the choice of 
the equation of state. Being in the outer uniform central force field, it became the 
hydrostatic equilibrium of the body state. The physical conception and mathemati-
cal expression of hydrostatic equilibrium of an object based on Archimedes’ laws 
(third century BP) and the Pascal law (1663) were well known in that time. This is 
the story of the sphere model with equatorial and polar channels filled in by a uni-
form liquid mass in the state of hydrostatic equilibrium at inertial rotation.

In Newton’s time the dynamics of the Earth in its direct sense has been not 
founded as it is absent up to now. The planet, rotating as an inertial body and de-
prived of its own inner forces and torques, appeared to be a dead-alive creature. But 
up to now, the hydrostatic equilibrium condition, proposed by Newton, is the only 
theoretical concept of the planet’s dynamics because it is based on the two-body 
problem solution which satisfies Kepler’s laws and in practice plays the role of 
Hooke’s law of elasticity.

In spite of the discrepancies noted above, the problem of determining the Earth’s 
oblateness was the first step towards the formulation and solution of the very com-
plicated task of determining the planet’s shape, an effort on which theoretical and 
experimental study continues up to the present time. As to the value of polar oblate-
ness of the Earth, it appears to be much higher than believed before. More recent 
observations and measurements show that the relative flattening has a smaller value 
and Newton’s solution needs to have further development.

1.7  �Clairaut’s Model of Hydrostatic Equilibrium  
of a Non-uniform Earth

Aleksi Klod Clairaut (1713–1765), a French mathematician and astronomer, con-
tinued work on Newton’s solution of the problem of the Earth’s shape based on hy-
drostatics (Clairaut, 1947). The degree measurements in the equatorial and northern 
regions made in the eighteenth century by French astronomers proved Newton’s 
conclusion about the Earth’s oblateness, which at that time was regarded with skep-
ticism. But the measured value of the relative flattening appeared to be different. 
In the equatorial zone it was equal to 1/314, and in the northern region to 1/214 
(Grushinsky, 1976). Clairaut himself took part in the expeditions and found that 
Newton’s results are not correct. It was also known to him that the Earth is not a 
uniform body. Because of that he focused on taking into account consideration of 
this effect. Clairaut’s model was represented by an inertial rotating body filled with 
liquid of a fluctuating density. In its structure such a model was closer to the real 
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Earth having a shell structure. But the hydrostatic equilibrium condition and inertial 
rotation was remained to be as previous the physical basis for the problem solution. 
Clairaut introduced a number of assumptions in the formulation of the problem. 
In particular, since the velocity of inertial rotation and the value of the oblateness 
are small, then the boundary areas of the shells and their equilibrium were taken as 
ellipsoidal figures with a common axis of rotation. Clairaut’s solution comprised 
obtaining a differential equation for the shell-structured ellipsoid of rotation relative 
to geometric flattening of its main section. Such an equation was found in the form 
(Меlchior, 1972)

� (1.20)

where e = ( b − a)/a is the geometric flattening; a and b are the main axes; ρ is the 
density.

The difficulty in solving the above equation was due to the absence of a density 
radial distribution law for the Earth. Later on, by application of seismic data, re-
searchers succeeded in obtaining a picture of the planet’s shell structure. But quan-
titative interpretation of the seismic observations relative to the density appeared 
to be possible again, based on the same idea of hydrostatic equilibrium of the body 
masses. In spite of that, as a result of analysis of Clairaut’s equation, a number of 
dynamic criteria for a rotating Earth were obtained. In particular, the relationship 
between the centrifugal and the gravity forces on the equator was found, the ratio 
between the moments of inertia of the polar and equatorial axes (dynamical oblate-
ness) was obtained and also the dependence of the gravity force on the latitude of 
the surface area was derived. That relationship is as follows:

� (1.21)

where φ is the latitude of the observation point; ge is the acceleration of the grav-
ity force: β = 5/2q − e; q = ω2a/ge is the ratio of the centrifugal force to the gravity 
force on the equator; ω is the angular velocity of the Earth’s rotation; e is the geo-
metric oblateness of the planet; а is the semi-major axis.

The solutions obtained by Clairaut and further developed by other authors be-
came a theoretical foundation for practical application in search of the planet’s 
shape, for interpretation of seismic observations relative to the structure and den-
sity distribution of the Earth and also for analysis of the observed natural dynamic 
processes.

Later on, the quantitative values of the geometric and dynamic oblateness of the 
Earth, and the Moon, different in values, were obtained by Clairaut’s equation and 
with the use of satellite data. This fact underlies the conclusion that the Earth and 
the Moon do not stay in hydrostatic equilibrium.
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1.8  �Euler’s Model of the Rigid Earth Rotation

Leonhard Euler (1707–1783), a prominent Swiss mathematician, mechanic and 
physicist, possessed a great capacity for work, fruitful creativity and extreme ac-
curacy and strictness in problem solution. There are about 850 titles in the list of 
his publications and their collection comprises 72 volumes. Half of them were 
prepared in Russia. He was twice invited to work in the St-Petersburg Academy 
of Sciences where he spent more than 30 years. The spectrum of Euler’s scientific 
interests was very wide. In addition to mathematics and physics they included 
theory of elasticity, theory of machines, ballistics, optics, shipbuilding, theory 
of music and even the insurance business. But 3/5 of the works were devoted to 
mathematical problems.

In mechanics Euler developed a complete theory of motion of the rigid (non-
deformable) body. His dynamic and kinematics equations became the main math-
ematical instrument in solution of rigid body problems. These equations, with use 
of the known law of a body rotation, enable determination of the acting forces and 
torques. And vice versa, by the applied outer forces one may find the laws of motion 
(rotation, precession, nutation) of a body.

On the basis of Newton’s equations of motion for rotational motion of a rigid 
body, whose axes of coordinates x, y, z in the rotating reference system are matched 
with the main axes connected with the body, Euler’s dynamical equations have the 
form:

� (1.22)

where Ix, Iy, Iz are the moments of inertia of the body relative to the main axes; ωx, 
ωy, ωz, are the components of the instantaneous angular velocities on the axes; Nx, 
Ny, Nz, are the main torques of the acting forces relative to the same axes: ω̇x, ω̇y, ω̇z  
are the derivatives with respect to time from the angular velocities.

The Euler kinematics equations are written as follows:

�

(1.23)

The Eulerian angles φ, ψ and θ determine the position of a rigid body which has a 
fixed point relative to the fixed rectangular axes of coordinates. At hard linkage of 
the axes with the body and specification of the line of crossed planes of correspond-
ing angles, they fix the rotation angle, the angle of precession and the angle of nuta-
tion of the rotation axis.

Ixω̇x + (Iz − Iy)ωyωz = Nx,

Iyω̇y + (Ix − Iz)ωxωz = Ny,

Izω̇z + (Iy − Ix)ωxωy = Nz,

Ixω̇x + (Iz − Iy)ωyωz = Nx,

Iyω̇y + (Ix − Iz)ωxωz = Ny,

Izω̇z + (Iy − Ix)ωxωy = Nz,

ωx = ψ̇ sin θ sinϕ + θ̇ cos ϕ,

ωy = ψ̇ sin θ cos ϕ − θ̇ sinϕ,

ωz = ϕ̇ + ψ̇ cos θ.

ωx = ψ̇ sin θ sinϕ + θ̇ cos ϕ,

ωy = ψ̇ sin θ cos ϕ − θ̇ sinϕ,

ωz = ϕ̇ + ψ̇ cos θ.
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For a uniform sphere, such as the Earth is, according to Newton, Ix = Iy = Iz. Then 
the Eulerian equations of motion (1.22) acquire the form

� (1.24)

At free (inertial by Newton) rotation of a uniform Earth, which is not effected by the 
torque, Nx = Ny  = Nz = 0. In that case it follows from (1.24) that the components of 
the instantaneous velocities of their axes become constant and the angular velocity 
ω = const. Thus, angular velocity of a body at non-perturbed rotation is equal to a 
constant value.

Newton found that the Earth is flattened relative to the polar axis by centrifugal 
inertial force and Clairaut has agreed with that. Then from the symmetry of the body 
having the form of an ellipsoid of rotation, it is found that Nx = Ny ≠ Nz and only 
ωz = const. From this in the case of absence of the outer torque, equation (1.22) is 
reduced to

� (1.25)

� (1.26)

where Ω is the angular velocity of free rotation which at Ix = Iy is equal to

� (1.27)

After transformation of equations (1.25)–(1.26) one obtains their solution in the 
form of ordinary equations of the harmonic oscillation

� (1.28)

� (1.29)

where А is the constant value representing the amplitude of oscillation.
Thus, the component ωz of the angular velocity along the body’s axis of rotation 

is a constant value and the component perpendicular to the axis rotates with angular 
velocity Ω. So the whole body, while rotating by inertia relative to the geometric axis 
with angular velocity ωz, in accordance with (1.27) is wobbling with the frequency Ω. 
The oscillations described by equations (1.28) and (1.29) are observed in reality and 
are called nutation of the rotating axis or a variation of latitude. The numerical value 
of the ratio of inertia moments (1.28) for the Earth is known and equal to

and the value of the angular velocity (free precession) is

I ω̇x = N x,

I ω̇y = N y,

I ω̇z = N z.

I ω̇x = N x,

I ω̇y = N y,

I ω̇z = N z.

ω̇x +ωy = 0,ω̇x +ωy = 0,

ω̇y −ωx = 0,ω̇y −ωx = 0,

 =
Iz − Ix

Ix
ωz. =

Iz − Ix

Ix
ωz.

ωx = Acost,ωx = Acost,

ωz = Asint,ωz = Asint,

(Ix − Iz)/Ix = 0.0032732(Ix − Iz)/Ix = 0.0032732

 = ωz/305.5. = ωz/305.5.
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For the known value ωz = 7.29 × 10−5 s−1 the period of Euler’s free precession is 
equal to 305 days or about 10 months. But analysis of results of the long series of 
observation done by the American researcher Chandler has shown that, together 
with the annual component of the forced nutation, there is one more component 
having a period of about 420 days which was called free wobbling of the rotation 
axis. This component differs substantially from Euler’s free precession. The nature 
of the latter has not been understood up to now.

Euler developed also a complete theory of motion of a perfect liquid in hydrome-
chanics, where differential equations in his variables become the basis for solution 
of hydrodynamic problems. Euler’s hydrodynamic equations for a perfect liquid in 
the rectangular Cartesian reference system x, y, z based on Newton’s equations of 
motion have the form

� (1.30)

where u, v, ω are the components of the velocity of liquid particles; p is the liquid 
pressure; ρ is the density; X, Y, Z are the components of the volumetric forces.

Solution of the hydrodynamic problems is reduced to determination of the compo-
nents of velocities u, v, ω, the pressure and the density as a function of the coordinates 
with known values of X, Y, Z and the given boundary conditions. For that purpose in 
addition to equations (1.30) the equation of continuity is written in the form

� (1.31)

If the density of liquid depends only on pressure, then the extra equation of state 
will be presented by the relation ρ = f(p), and for the incompressible liquid it is 
ρ = const.

Because the Earth is a system with continuous distribution of its masses, we will 
use the Eulerian hydrodynamic equations repeatedly.

1.9  �Jacobi’s n Body Problem

Carl Jacobi (1804–1851) was an eminent German mathematician who was called 
the Euler of the nineteenth century. He is one of the authors of elliptic functions the-
ory, the author of a number of discoveries in the theory of numbers, in the calculus 
of variations, in integral calculus and the theory of differential equations, in the 
study of a class of orthogonal polynomials.
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In 1842–1843, when Jacobi was a professor at Königsberg. University, he de-
livered a special series of lectures on dynamics. The lectures were devoted to the 
dynamics of a system of n mass points, the motion of which depends only on mutual 
distance between them and is independent of velocities. In this connection, by de-
riving the law of conservation of energy, where the force function is a homogeneous 
function of space co-ordinates, Jacobi gave an unusual form and a new content to 
this law. In transforming the equations of motion, he introduced an expression for 
the system’s center of mass. Then, following Lagrange, he separated the motion of 
the center of mass from the relative motion of the mass points. Making the center of 
mass coincident with the origin of the co-ordinate system, he obtained the following 
equation (Jacobi, 1884):

where mi is the mass point i; ri =


x2
i + y2

i + z2
i  is the distance between the points 

and the center of mass; k is the degree of homogeneity of the force function; U is 
the system’s potential energy; and E is its total energy.

When k = −1, which corresponds to the interaction of mass points according to 
Newton’s law, and writing

Jacobi obtained

where Ф is the Jacobi function (the polar moment of inertia).
This is Jacobi’s generalized (non-averaged) virial equation. In the Russian scien-

tific literature it is known as the Lagrange–Jacobi equation since Jacobi derived it 
by applying Lagrange’s method of separation of the motion of the mass center from 
the relative motion of mass points.

On the right-hand side of the virial equation there is a classical expression of 
the virial theorem, i.e., the relation between potential and kinetic energy. In the 
case of constancy of its left-hand side, when motion of the system happens with 
a constant velocity, the equation acquires conditions of hydrostatic equilibrium 
of a system in the outer force field. The left-hand side of the equation, i.e., the 
second derivative with respect to the Jacobi function, expresses oscillation of the 
polar moment of inertia of the system, which, in fact, is kinetic energy of the in-
ner volumetric torques of the interacting mass points moving in accordance with 
Kepler’s laws.

Jacobi did not pay attention to the physics of his equation, which expresses ki-
netic energy of the interacting volumetric particles in the form of their oscillation. 
He used the equation for a quantitative analysis of stability of the Solar System and 
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noted that the system’s potential and kinetic energies should always oscillate within 
certain limits. In the contemporary literature of celestial mechanics and analytical 
dynamics, Jacobi’s virial equation is used for the same purposes (Whittaker, 1937; 
Duboshin, 1975). Since this equation contains two independent variables, it found 
no other practical applications. As was earlier mentioned, it will be shown in this 
work that there is a functional relationship between the potential (kinetic) energy 
and the polar moment of inertia. On that basis the rigorous solution of the equation 
will be found and applied to study the Earth’s dynamics.

1.10  �The Clausius Virial Theorem

Rudolf Clausius (1822–1888), a German physicist, is one of the founders of ther-
modynamics and the molecular kinetic theory of heat. Simultaneously with W. 
Thomson (Lord Kelvin) he formulated the second law of thermodynamics in the 
following form: “Heat can not be transferred by any continuous, self-sustaining 
process from a cold to a hotter body” without some changes, which should com-
pensate that transfer. Clausius introduced the conception of entropy to thermody-
namics.

In 1870, based on studies of the process and mechanism of Carnot’s thermal 
machine work, Clausius proved the virial theorem, according to which for a closed 
system the mean kinetic energy of a perfect gas’s particle motion is equal to half of 
their potential energy. The virial relation between the potential and kinetic energy 
was found to be a universal condition of the hydrostatic equilibrium for describing 
dynamics of the natural systems in all branches of physics and mechanics.

The Clausius virial theorem is a conceptual basis for our work with physical 
clarification of some effects related to celestial bodies. Its derivation for different 
models of natural systems is presented in Sect. 2.5 of Chap. 2.

1.11  �De Broglie’s Wave Theory

Louis-Victor de Broglie (1892–1987), a famous French Nobel Prize physicist, is 
one of the founders of quantum mechanics. In his doctor’s thesis, Researches on 
Quantum Theory, de Broglie extended the wave-particle duality theory of light on 
matter. This hypothesis was based on the works of Albert Einstein and Max Planck. 
Three years later on, in 1927 his idea was fully confirmed by Davisson and Germer 
who discovered electron diffraction by crystals. Thus, de Broglie’s theory became 
the basis for developing present day wave mechanics for matter on an atomic scale. 
The particles of greater mass, which are the subject of classical mechanics, have 
mainly corpuscular properties. And the idea to create a unified field theory, which 
was a dream of Albert Einstein, has not yet been realized.

1.11 De Broglie’s Wave Theory
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1.12  �Other Approaches to Dynamics of the Planet Based 
on Hydrostatics

The model of the Earth proposed by Newton and developed by Clairaut was in the 
form of a spheroid, rotating by inertia, and filled with a non-uniform liquid, the 
mass of which resides in hydrostatic equilibrium in the outer force field. This model 
became generally accepted, commonly used and in principal has not changed up to 
now. Its purpose was to solve the problem of the planet’s shape, i.e., the form of the 
planet’s surface, and this goal was reached in first approximation. Moreover, the 
equation obtained by Clairaut of surface changes in acceleration of the gravity force 
as a function of the Earth latitude opened the way to experimental study of oblate-
ness of the spheroid of rotation by means of measuring the outer gravity force field. 
Later on, in 1840, Stokes solved the direct and reverse task concerning the surface 
gravity force for a rotating body and, above its level, applying the known param-
eters, namely, the mass, radius and angular velocity. The above parameters uniquely 
determined the gravity force at surface level, which is taken as the quiet ocean’s 
surface, and in all of outer space. By that task the relation between the Earth’s shape 
and the gravity force was determined. In the middle of the last century M. Moloden-
sky proposed the idea to consider the real surface of the Earth as a reduced surface 
and solved the corresponding boundary problem. The doctrine of the spheroidal 
figure of the Earth has found common understanding and researchers, having armed 
themselves with theoretical knowledge, started to refine the dimensions and other 
details of the ellipsoid of rotation and to derive the corresponding corrections.

The Earth’s dynamics were always of interest not only to researchers of its shape. 
Fundamentals of all the Earth, planetary and the Solar System sciences are defined 
first of all by the laws of motion of the Earth itself, where the confidence limit of the 
laws can be checked by observation. Moreover, all sense of human life is connected 
with this planet. As far as the techniques and instruments for observation were de-
veloped, geodesists, astronomers and geophysicists have noticed that in the planet’s 
inertial rotation some irregularities and deviations relative to the accepted standard 
parameters and hydrostatic conditions have appeared. Those irregularities or, as 
they are often called, inaccuracies, the number of which is said to be more than ten, 
finally were incorporated into two problems, namely, variation of the angular veloc-
ity in the daily, monthly, annually and secular time scale, and variation in the motion 
of poles in the same time scales. Just after the problems became evident and did not 
find resolution in the frame-work of the accepted physical and theoretical concep-
tions of celestial mechanics the latter lost interest in the problems of Earth’s dynam-
ics. In this connection the well-known German theoreticians in dynamics, Klein and 
Sommerfeld, stated that the Earth’s mechanics appear to be more complicated than 
celestial mechanics and represents “some confused labyrinths of geophysics” (Klein 
and Sommerfeld, 1903). The geophysicists themselves started to solve their own 
problems. They had no other way except to search for the causes of the observed 
inaccuracies. In order to study irregular velocity of the Earth’s rotation and the pole 
motion, numerous projects of observation and regular monitoring were organized 
by the planetary network. As it was always in such cases, the cause of the observed 
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effects was sought in the effects of perturbations coming from the Moon and the 
Sun, and also in the influence of dynamical effects of their own shells, such as the 
atmosphere, the oceans and the liquid core, existence of which is justified by many 
researchers. In some works the absence of hydrostatic equilibrium in distribution 
of the masses and strength in the planet’s body is named as the reason of irregular 
velocity of the Earth’s rotation.

Many publications were devoted to analysis of the observed inaccuracies in the 
Earth’s rotation together with explanation of their possible causes, based on ex-
perimental data and theoretical solutions. The most popular review work in the 
twentieth century was the book of the known English geophysicist Harold Jeffreys 
“The Earth: Its Origin, History and Physical Constitution”. The first publication 
of the book happened in 1922 and later four more editions appeared, including the 
last one in 1970. Jeffreys was a great expert and direct participant in development 
of the most important geophysical activities. The originality of his methodological 
approach to describing the material lies in that, after formulation and theoretical 
consideration of the problem, he writes a chapter devoted to the experimental data 
and facts on the theme of the comparison with analytical solutions and discussion.

Remaining with Newton’s and Clairaut’s models, Jeffreys considers the planet 
as an elastic body and describes the equation of the force equilibrium from the 
hydrostatic pressure, which appears from the outer uniform central force field, and 
exhibits strength at a given point in the form

� (1.32)

where ρ is the density; fi is the acceleration component; pik = pki is the stress com-
ponent from the hydrostatic pressure; Хi is the gravity force on the unit mass from 
the outer force field.

Additionally the equation of continuity (like the continuity equation in hydro-
dynamics) is written as the condition of equality of velocity of the mass inflow and 
outflow from an elementary volume in the form

� (1.33)

where vi is the velocity component in the direction of xi.
Further, applying the laws of elasticity theory, he expresses elastic properties of 

the matter by the Lamé coefficients and writes the basic equations of the strength 
state of the body, which links the strengths and the deformations in the point as

� (1.34)

where ui is the displacement component; λ and μ are the Lamé coefficients; Δ is the 
component of the relative displacement; ∇ is the Laplacian operator.
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One may see that Jeffreys reduced Newton’s effects of gravitation to the effects 
of Hooke’s elasticity. The author introduces a number of supplementary physical 
ideas related to the properties of the Earth’s matter, assuming that it is not perfectly 
elastic. With development of stresses the matter reaches its limit of resistance and 
passes to the stage of plastic flow with a final effect of a break in the matter’s con-
tinuity. This break leads to a sharp local change in the strength state, which, in turn, 
leads to appearance of elastic waves in the planet’s body, causing earthquakes. For 
this case equation (1.34) after the same corresponding transformations is converted 
into the form of plane longitudinal and transversal waves, which propagate in all 
directions from the break place. Such is the physical basis of earthquakes which 
was a starting point of development of seismology as a branch of geophysics study-
ing propagation of elastic longitudinal and transversal waves in the Earth’s body. 
By means of seismic study, mainly by strong earthquakes and based on differences 
in velocity of propagation of the longitudinal and transversal waves through the 
shells having different elastic properties, the shell-structured body of the planet was 
identified.

Jeffreys has analyzed the status of study in the theory of the shapes of Earth and 
the Moon following Newton’s basic concepts. Namely, the planet has an inner and 
outer gravitational force field. The gravitational pressure is formed on the planet’s 
surface and affects both the outer space and the planet’s center. The Earth’s shape is 
presented as an ellipsoid of rotation which is perturbed from the side by inaccura-
cies in the density distribution, as well as from the side of the Moon’s perturbations. 
The problem is to find the axes of the ellipsoid under action of both perturbations 
which occur because of a difference in the gravity field for the real Earth and the 
spherical body. It is accepted that the oceans’ level is close to a spherical surface 
with deviation by a value of the first order of magnitude, and geometric oblateness 
of the ellipsoid is close to the value of e ≈ 1/297. But the value squares of deviation 
cannot always be ignored because the value e2 differs substantially from the value e.  
The observed data cannot be compared with theoretical solutions because the for-
mulas depending on the latitudes give precise expressions neither for the radius 
vector from the Earth center to the sea level nor for the value of the gravity force. 
The problem of the planet’s mass density distribution finds its resolution from the 
condition of the hydrostatic pressure at a known velocity of rotation. The value of 
oblateness of the outer spheroid can be found from the observed value of the pre-
cession constant with a higher accuracy than one can find from the theory of the 
outer force field. A weak side of such an approach is the condition of the hydrostatic 
stresses, which however are very small in comparison with the pressure at the center 
of the Earth. The author also notes that deviation of the outer planet’s gravitational 
field from spherical symmetry doesn’t satisfy the condition of the inner hydrostatic 
stresses. Analysis of that discrepancy makes it possible to assess errors in the inner 
strengths related to the hydrostatics. Because of the Earth’s ellipticity, the attraction 
of the Sun and the Moon creates a force couple applied to the center, which forces 
the instantaneous axis of rotation to depict a cone around the pole of the ecliptic and 
to cause the precession phenomenon. The same effect initiates an analogous action 
on the Moon’s orbit.
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These are the main physical fundamentals that Jeffreys used for an analysis and 
theoretical consideration of the planet’s shape problem and for determination of its 
oblateness and of its semi-major axis size. The author has found that the precession 
constant Н = 0.003 272 93 ± 0.000 000 75 and the oblateness 1/e = 297.299 ± 0.071. 
He assumes that the above figures could be accepted as a result which gives the hy-
drostatic theory. But in conclusion he says that the theory is not correct. If it is cor-
rect then the solid Earth would be a bench mark of the planet’s surface covered by 
oceans. There are some other data confirming that conclusion. But this is the only 
and the most precise method for determining the spheroid flattening which needs 
non-hydrostatic corrections to be found. An analogous conclusion was made by the 
author relative to the Moon’s oblateness, where the observed and calculated values 
have much more contrast.

The other review works on the irregularity of rotation and the pole motion of 
the Earth are the monographs of Munk and MacDonald (1960), Melchior (1972), 
Sabadini and Vermeersten (2004). The authors analyze there the state of the art and 
geophysical causes leading to the observed incorrectness in the planet’s rotation and 
wobbling of the poles. They draw attention of readers to the practical significance 
of the two main effects and designate about ten causes of their initiation. Among 
them are seasonal variations of the air masses, moving of the continents, melting and 
growing of the glaciers, elastic properties of the planet, convective motion in the liq-
uid core. The authors stressed that solution of any part of the above geophysical task 
should satisfy the dynamical equations of motion of the rotating body and the equa-
tions, which determine a relationship between the stresses and deformations inside 
the body. Theoretical formulation and solution of a task should be considered on the 
hydrostatic basis, where the forces, inducing stresses and deformations are formed 
by the outer uniform force field and the deformations occur in accordance with the 
theory of elasticity for the elastic body model, and in the frame-work of rheology 
laws for the elastic and viscous body model. The perturbation effects used are the 
wind forcing, the ocean currents and convective flows in the core and in the shells.

The causes of axis rotation wobbling and pole motion are considered in detail. 
The authors find that the problem of precession and nutation of the axis of rotation 
has been discussed for many years and does not generate any extra questions. The 
cause of the phenomena is explained by the Moon and the Sun perturbation of the 
Earth which has an equatorial swelling and obliquity of the axis to the ecliptic.  
The Euler equations for the rigid body form a theoretical basis for the problem’s 
solution. In this case the free nutation of the rigid Earth according to Euler is equal 
to 10 months.

1.13  �The Observation Results

The effects of the Earth’s oblateness and the related problems of irregularity in the 
rotation and the planet’s pole motion and also the continuous changes in the grav-
ity and electromagnetic field have a direct relation to solution of a wide range of 
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scientific and practical problems in Earth dynamics, geophysics, geology, geodesy, 
oceanography, physics of the atmosphere, hydrology, and climatology. In order to 
understand the physical meaning and regularities of these phenomena, regular ob-
servations are carried out. Newton’s first attempts to find the quantitative value 
of the Earth’s oblateness were based on degree measurements done by Norwood, 
Pikar, Kassini. As mentioned above, by his calculation of the Paris latitude the ob-
lateness value appears to be 1/230. Very soon some analogous measurements were 
taken in the equatorial zone in Peru and in the northern zone in Lapland. Clairaut, 
Mopertui, Buge, and other known astronomers also took part in these works. They 
confirmed the fact of the Earth’s oblateness as calculated by Newton. The degree 
of the arc in the northern latitudes appeared to be maximal and the oblateness was 
equal to 1/214. In the equatorial zone the arc length was minimal and the oblateness 
was equal to 1/314. So the Earth’s pole axis from these measurements was found to 
be shorter than the equatorial approximately by 20 km.

As of the end of the first part of the twentieth century, more than twenty large de-
gree measurements were done from which the values of the oblateness and dimen-
sion of the semi-major axis were found. The data of the measurements are presented 
in Table 1.1, and in Table 1.2 the parameters of the triaxial ellipsoid are shown 
(Grushinsky, 1976).

It is worth noting that in geodesy, a practical application of the triaxial ellipsoid 
has not been found, because it needs more complicated theoretical calculations and 
more reliable experimental data. In the theory this important fact is ignored because 
it is not inscribed in the hydrostatic theory of the body.

Table 1.1   Parameters of the Earth’s oblateness by degree measurement data
Author Year а, m e еe λ
D’Alembert 1800 6 375 553 1/334.00
Valbe 1819 376 895 1/302.78
Everest 1830 377 276 1/300.81
Eri 1830 376 542 1/299.33
Bessel 1841 377 397 1/299.15
Tenner 1844 377 096 1/302.5
Shubert 1861 378 547 1/283.0
Clark 1866 378 206 1/294.98
Clark 1880 378 249 1/293.47
Zhdanov 1893 377 717 1/299.7
Helmert 1906 378 200 1/298.3
Heiford 1909 378 388 1/297.0
Heiford 1909 378 246 1/298.8 1/38 000 38°Е
Krasovsky 1936 378 210 1/298.6 1/30 000 10°Е
Krasovsky 1940 378 245 1/298.3
International 1967 378 160 1/298.247

Here е is the oblateness of the polar axis; а is the semi-major axis; еe is the equatorial oblateness; 
λ is the longitude of the maximal equatorial radius
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In addition to the local degree measurements, which allow determination of the 
Earth’s geometric oblateness, more precise integral data can be obtained by obser-
vation of the precession and nutation of the planet’s axis of rotation. It is assumed 
that the oblateness depends on deflection of the body’s mass density distribution 
from spherical symmetry and is initiated by a force couple that appears to be an 
interaction of the Earth with the Moon and the Sun. The precession of the Earth’s 
axis is proportional to the ratio of the spheroid’s moments of inertia relative to the 
body’s axis of rotation in the form of the dynamical oblateness ε:

At the same time the retrograde motion of the Moon’s nodes (points of the ecliptic 
intersection by the Moon’s orbit) is proportional to the second spherical harmonics 
coefficient J2 of the Earth’s outer gravitational potential in the form

It is difficult to obtain a rigorous value of geometric oblateness from its dynamic 
expression because we do not know the radial density distribution. Moreover, the 
Moon’s mass is known up to a fraction of a percent but it is inconvenient to calculate 
analytically the joint action of the Moon and the Sun on the precession. In spite of that, 
some researchers succeeded in making such calculations, assuming that the Earth’s 
density is increasing proportionally to the depth. Their data are the following:

After appearance of the Earth’s artificial satellites and some special geodetic sat-
ellites, the situation with observation procedures has in principle changed. The 
satellites made it possible to determine directly, by measuring of the even zonal 
moments, the coefficient Jn in expansion of the Earth’s gravitational potential by  

ε =
C − A

C
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C − A

C
.
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.J 2 =
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.

by Newcomb ε = 1/305.32 = 0.0032753; e = 1/297.6;
by de Sitter ε = 1/304.94 = 0.0032794; e = 1/297.6;
by Bullard ε = 1/305.59 = 0.00327236; e = 1/297.34;
by Jeffreys ε = 1/305.54 = 0.00327293; e = 1/297.3.

by Newcomb ε = 1/305.32 = 0.0032753; e = 1/297.6;
by de Sitter ε = 1/304.94 = 0.0032794; e = 1/297.6;
by Bullard ε = 1/305.59 = 0.00327236; e = 1/297.34;
by Jeffreys ε = 1/305.54 = 0.00327293; e = 1/297.3.

1.13 The Observation Results

Аuthor Year а1 − а2, m λ
Helmert 1915 230 ± 51 17°W
Berrot 1916 150 ± 58 10°W
Heyskanen 1924 345 ± 38 18°Е
Heyskanen 1929 165 ± 57 38°Е
Hirvonen 1933 139 ± 16 19°W
Krasovsky 1936 213 10°Е
Isotov 1948 213 15°Е
Here а1 and а2 are the semi-major and semi-minor axes of the 
equatorial ellipsoid

Table 1.2   Parameters of the 
Earth’s equatorial ellipsoid
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spherical functions. In this case at hydrostatic equilibrium the odd and all the tesseral 
moments should be equal to zero. It was assumed before the satellite era that the 
correction coefficients of a higher degree of J2 will decrease and the main expecta-
tions to improve the calculation results were focused on the coefficient J4. But it has 
appeared that all the gravitational moments of higher degrees are the values propor-
tional to the square of oblateness, i.e., ~(1/300)2 (Zharkov, 1978).

On the basis of calculated harmonics, the coefficients of the expanded gravita-
tional potential of the Earth published by the Smithsonian Astrophysical observa-
tory and the Goddard cosmic center of the USA, the fundamental parameters of the 
gravitational field and the shape of the so-called “Standard Earth” were determined. 
Among them are the coefficient of the second zonal harmonic J2 = 0.001 082 7, 
equatorial radius of the Earth’s ellipsoid ае = 6 378 160 m, angular velocity of the 
Earth’s rotation ωз = 7.292 × 10−5 rad/s, equatorial acceleration of the gravity force 
γе = 978 031.8 mgl, and oblateness 1/е = 1/298.25 (Grushinsky, 1976; Меlchior, 
1972). At the same time, if the Earth stays in hydrostatic equilibrium, then, apply-
ing the solutions of Clairaut and his followers, the planet’s geometric oblateness 
should be equal to e′ = 1/299.25. On the basis of that contradiction Меlchior (1972) 
concluded, that the Earth does not stay in hydrostatic equilibrium. It represents ei-
ther a simple equilibrium of the rigid body, or there is equilibrium of a liquid and not 
static but dynamic with an extra hydrostatic pressure. Coming to interpretation of 
the density distribution inside the Earth by means of the Wiliamson–Adams equa-
tion, Меlchior (1972) adds, that in order to eliminate there the hydrostatic equilib-
rium, one needs a supplementary equation. Since such an equation is absent, we are 
obliged to accept the previous conditions of hydrostatics.

The situation with absence of hydrostatic equilibrium of the Moon is much more 
striking. The polar oblateness ер of the body is (Grushinsky, 1976)

and the equatorial oblateness ее is

where а, в and с are the equatorial and polar semi-axes; r0 is the body’s mean radius.
It was found by observation of the Moon libration, that

The calculation of the ratio of theoretical values of the dynamic oblateness ed = ep/ 
ee = 0.25 substantially differs from observation, which is 0.5 ≤ ed ≤ 0.75. At the same 
time the difference of the semi-axes is a1 − a3 = 1.03 km  and a2 − a3 = 0.83 km,  
where a1 and a2 are the Moon’s equatorial semi-axes.

After the works of Clairaut, Stokes and Molodensky, on the basis of which the 
relationship between the gravity force change at sea level and on the real Earth 
surface with an angular velocity of rotation was established, one more problem 

ep =
b− c

r0
= 0.94× 10−5,ep =

b− c

r0
= 0.94× 10−5,

ee =
a− c

r0
= 0.375× 10−4,ee =
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r0
= 0.375× 10−4,

ep = 4× 10−4 and ee = 6.3× 10−4.ep = 4× 10−4 and ee = 6.3× 10−4.
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arose. During measurements of the gravity force at any point of the Earth’s surface, 
two effects are revealed. The first is an anomaly of the gravity force, and the second 
is a declination of the plumb line from the normal at a given point.

Analysis of the gravity force anomalies and the geoid heights (a conventional 
surface of a quiet ocean) based on the existent schematic maps compiled from the 
calculated coefficients of expansion of the Earth’s gravity potential and ground 
level gravimetric measurements, allows derivation of some specific features related 
to the parameter forming the planet. As Grushinsky (1976) notes, elevation of the 
geoid over the ellipsoid of rotation with the observed oblateness reaches 50–70 m 
only in particular points of the planet, namely, in the Bay of Biscay, North Atlan-
tic, near the Indonesian Archipelago. In the case of a triaxial ellipsoid the equato-
rial axis is passed near those regions with some asymmetry. The maximum of the 
geoid heights in the western part is shifted towards the northern latitudes, and the 
maximum in the eastern part remains in the equatorial zone. The western end of 
the major radius reaches the latitudes of 0–10° to the west of Greenwich and the 
western end falls on the latitudes of about 30–40° to the west of a meridian of 180°. 
This also indicates asymmetry in distribution of the gravity forces and the forming 
masses. And the main feature is that the tendency to asymmetry of the northern 
and the southern hemispheres as a whole is observed. The region of the geoid’s 
northern pole rises above the ellipsoid up to 20 m, and the Antarctic region is situ-
ated lower by the same value. The asymmetry in planetary scale is traced from the 
north-west of Greenland to the south-east through Africa to Antarctica with positive 
anomalies, and from Scandinavia to Australia through the Indian Ocean with nega-
tive anomalies up to 50 mgl. Positive anomalies up to 30 mgl are fixed within the 
belt from Panama to Fiery Land and to the peninsula Grechem in Antarctica. The 
negative anomalies are located on both sides, which extend from the Aleut bank to 
the south-east of the Pacific Ocean and from Labrador to the south of the Atlantic. 
The structure of the positive and negative anomalies is such that their nature can be 
interpreted as an effect of spiral curling of the northern hemisphere relative to the 
southern one.

As to the plumb line declination, this effect is considered only in geodesy from 
the point of view of practical application in the corresponding geodetic problems. 
Physical aspects of the problem are not touched.

In Russia the problem of the Earth’s oblateness is studied and the correspond-
ing measurements were carried out by М.V. Lomonosov, F.P. Litke (1826–1829, 
е = 1/288), I.F. Parrot and V.Ya. Struve (1829, е = 1/279.3 and е = 1/279.3), А.N. 
Savich (1865–1868, е = 1/296), F.А. Sludsky (1862–1863, е = 1/292.7 and for the 
triaxial ellipsoid е = 1/297.1), А.А. Ivanov (1898–1903, е = 1/297.2). Measure-
ments of the gravity force and declination of the plumb line in the Russian regions 
were done by О.V. Struve, I.I. Steblitsky and P.P. Kulberg (1876), B.Ya. Shveitser 
(1853–1861), P.К. Shternberg and F.А. Bredichin (1831–1904, 1916–1917), А.А. 
Мichailov, А.I. Каsansky, F.N. Кrasovsky (1930–1936), М.S. Моlodensky, V.F. 
Еremeev, М.I. Yurkina (1953–1960).

The problem of the Earth’s rotation was discussed at the NATO workshop 
(Сazenave, 1986). It was stated that both aspects of the problem still remain 
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unsolved. The problems are variations in the day’s duration and the observed 
Chandler’s wobbling of the pole with a period of 14 months in comparison with 
10 months, given by the Euler rigid body model. Chandler’s results are based on 
an analysis of 200 year observational data of motion of the Earth’s axis of rotation, 
done in the USA in the 1930s. He found that there is an effect of free wobbling of 
the planet’s axis with a period of about 420 days. Since that time the discovered ef-
fect remains the main obstacle in explanation of the nature and theoretical justifica-
tion of the pole’s motion.

Summing up the above short excursion into the problem’s history we found 
the situation as follows. The majority of researchers dealing with dynamics of the 
Earth and its shape came to the unanimous conclusion that the theories based on 
hydrostatics do not give satisfactory results in comparison with observations. For 
instance, Jeffreys straightforwardly says that the theories are incorrect. Munk and 
Macdonald more delicately note that a dozen of the observed effects can be cited 
which do not satisfy the hydrostatic model. It means that dynamics of the Earth as a 
theory is absent. The above state of the art and the conclusion motivated the authors 
to search for a novel physical basis for dynamics of the Earth. The first steps in this 
direction are presented in the next chapters.
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It was shown in the previous short review of development of the theoretical basis 
for the Earth’s shape and dynamics that the roots of hydrostatic fundamentals for 
solution of the problem date back to the distant past and are related to the names 
of founders of modern science. But even at that early time, these pioneers well 
understood that applicability of hydrostatic equilibrium to a body’s dynamic prob-
lems is restricted by certain boundary conditions. Thus, Newton in his “Principia” 
(see Sect. 1.5 of Book III), while considering the conditions of attraction in the 
planets writes: “The attraction being spread from the sphere surface downwards is 
approximately proportional to distance of the center. Be the planet’s matter uniform 
in density, then this proportion would have exact value. It follows from here that the 
error is caused by non-uniformity in density”. At that time the thoughts of scientists 
were engaged with how to solve principle problems of a body’s orbital motion. The 
main problems being considered as solved, the goals of farther studies changed to 
different aspects. In our time, however, when the details of motion of the planets are 
of renewed interest and new tools of investigation abound, the formulation and the 
methods of solution needed to be developed farther.

2.1  �Hydrostatic Equilibrium Conditions

We recall briefly the conditions of the Earth’s hydrostatic equilibrium. By defini-
tion, hydrostatics is a branch of hydromechanics, which studies the equilibrium of 
a liquid and a gas and the effects of a stationary liquid on immersed bodies relative 
to the chosen reference system. For a liquid equilibrated relative to a rigid body, 
when its velocity of motion is equal to zero and the field of densities is steady, the 
equation of state follows from the Eulerian and Navier-Stokes equations in the form 
(Sedov, 1970)

� (2.1)

where p is the pressure; ρ is the density; F is the mass force.

grad p = ρF ,grad p = ρF ,
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In the Cartesian system of reference eq. (2.1) is written as

� (2.2)

If the outer mass forces are absent, i.e., Fx = Fy = Fz = 0, then

In this case, in accordance with Pascal’s law, the pressure at all liquid points will 
be the same.

For a uniform incompressible liquid, when ρ = const, its equilibrium can be only 
in the potential field of the outer forces. For the general case of an incompressible 
liquid and potential field of the outer forces from (2.1) one has

� (2.3)

where U is the forces’ potential.
It follows from eq. (2.3), that for an equilibrated liquid in a potential force field, 

its density and pressure appear to be a function only of the potential U.
For a gravity force field, when only these forces act on the steady-state liquid, 

one has

Here the surfaces of constant pressure and density appear as horizontal planes. Then 
eq. (2.3) is written in the form

� (2.4)

It means that with elevation the pressure falls and with depth it grows. From here 
it follows that

� (2.5)

where g is the acceleration of the gravity force.
If a spherical vessel is filled with incompressible liquid and rotates around its ver-

tical axis with constant angular velocity ω, then for determination of the equilibrated 
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free surface of the liquid in eq. (2.2) the centrifugal inertial forces should be intro-
duced in the form

� (2.6)

From here, for the rotating body with radius r2 = x2 + y2, one finds

� (2.7)

For the points on the free surface r = 0, z = z0 one has p = p0. Then

� (2.8)

� (2.9)

The equation of the liquid free surface, where p = р0, has a paraboloidal shape

� (2.10)

These facts determine the principal physical conditions and equations of hydro-
static equilibrium of a liquid. They remain a basis for modern dynamics and the 
theory of the Earth’s shape. The attempt to harmonize these conditions with the 
planet’s motion conditions has failed, which was proved by observation. It will be 
shown below in Sects. 2.4–2.6 of this chapter, that the main obstacle for such har-
monization is rejection of the planet’s inner force field without which the hydro-
statics is unable to provide equilibrium between the body’s interacting forces as 
Newton’s third law requires. The Earth is a self-gravitating body. Its matter moves 
in its own force field which is generated by mass particle interaction. The mass 
density distribution, rotation and oscillation of the bodies’ shells result from the 
inner force field. And the orbital motion of the planet is controlled by interaction 
of the outer force fields of the planet and the Sun in accordance with Newton’s 
theory.

Let us look for more specific effects determining the absence of the Earth’s hy-
drostatic equilibrium and more realistic conditions of its equilibrium based on the 
results of the Earth’s satellite orbit motion.
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2.2  �Relationship Between Moment of Inertia and 
Gravitational Force Field According to Satellite Data

Let us come back to the fact of absence of the Earth’s hydrostatic equilibrium found 
by the satellite data. The initial factual material for the problem study is presented 
by the observed orbit elements of the geodetic satellites which move on perturbed 
Kepler’s orbits. The satellite motion is fixed by means of observational stations 
located within zones of a visual height range of 1 000–2 500 km, which is optimal 
for the planet’s gravity field study. It was found, that the satellite’s perturbed motion 
at such a close distance from the Earth’s surface is connected with the non-uniform 
distribution of mass density, the consequences of which are the non-spherical shape 
in the figure and the corresponding non-uniform distribution of the outer gravity 
field around the planet. These non-uniformities cause corresponding changes in 
trajectories of the satellite’s motion, which are fixed by tracking stations. Thus, 
distribution of the Earth’s mass density determines an adequate equipotential trajec-
tory in the planet’s gravity field, which follows the satellite. The main goal of the 
geodetic satellites launched under different angles relative to the equatorial plane 
is in measurement of all deviations in the trajectory from the unperturbed Kepler’s 
orbit.

The satellite orbits data for solving the Earth’s oblateness problem are inter-
preted on the basis of the known (in celestial mechanics) theory of expansion of the 
gravity potential of a body, the structure and the shape of which do not much differ 
from the uniform sphere. The expression of the expansion, by spherical functions, 
recommended by the International Union of Astronomy, is the following equation 
(Grushinsky, 1976):

�

(2.11)

where r, ϕ  and λ are the heliocentric polar co-ordinates of an observation point; G 
is the gravity constant; M and Re are the mass and the mean equatorial radius of the 
Earth; Pn is the Legendre polynomial of n order; Pnm(sin φ) is the associated spheri-
cal functions; Jn, Cnm, Snm are the dimensionless constants characterizing the Earth’s 
shape and gravity field.

The first terms of eq. (2.11) determine the zero approximation of Newton’s po-
tential for a uniform sphere. The constants Jn, Cnm, Snm represent the dimensionless 
gravitational moments, which are determined through analyzing the satellite orbits. 
The values Jn express the zonal moments, and Cnm and Snm are the tesseral moments. 
In the case of hydrostatic equilibrium of the Earth as a body of rotation, in the ex-
pression of the gravitational potential (2.11) only the even n-zonal moments Jn are 
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rapidly decreased with growth, and the odd zonal and all tesseral moments turn into 
zero, i.e.

� (2.12)

where θ is the angle of the polar distance from the Earth’s pole.
Here the constant J2 represents the zonal gravitational moment, which character-

izes the axial planet’s oblateness and makes the main contribution to correction of 
the unperturbed potential. That constant determines the dimensionless coefficient of 
the moment of inertia relative to the polar axis and equal to

� (2.13)

where C and A are the Earth’s moments of inertia with respect to the polar and equa-
torial axes accordingly, and Re is the equatorial radius.

For expansion by spherical functions of the Earth’s gravity forces potential, the 
rotation of which is taken to be under action of the outer inertial forces, but not of 
its own force field, the centrifugal force potential is introduced into Eq. (2.12). Then 
for the hydrostatic condition with the even zonal moments Jn one has

�

(2.14)

where W is the potential of the body of rotation; ω2r2 is the centrifugal potential. 
The first two terms and the term of the centrifugal force in Eq. (2.14) express the 
normal potential of the gravity force

� (2.15)

The potential (2.15) corresponds to the spheroid’s surface which within oblateness 
coincides with the ellipsoid of rotation. Rewriting term P2( cos θ) in this equation 
through the sinus of the heliocentric latitude and the angular velocity – through the 
geodynamic parameter q, one can find the relationship of the Earth’s oblateness ε 
with the dynamic constant J2. Then the equation of the dynamic oblateness ε is ob-
tained in the form (Grushinsky, 1976; Melchior, 1972)

� (2.16)
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where the geodynamic parameter q is the ratio of the centrifugal force to the gravity 
force at the equator

� (2.17)

Geodynamic parameter J2, found by satellite observation in addition to the oblate-
ness calculation, is used for determination of a mean value of the Earth’s moment 
of inertia. For this purpose the constant of the planet’s free precession is also used, 
which represents one more observed parameter expressing the ratio of the moments 
of inertia in the form:

� (2.18)

This is the theoretical base for interpretation of the satellite observations. But its 
practical application gave very contradictory results (Grushinsky, 1976; Melchior, 
1972; Zharkov, 1978). In particular, the zonal gravitation moment calculated by 
means of observation was found to be J2 = 0.0010827, from where the polar oblate-
ness ε = 1/298.25 appeared to be short of the expected value and equal to 1/297.3. 
The all zonal moments Jn, starting from J3, which relate to the secular perturbation 
of the orbit, were close to constant value and equal, by an order of magnitude, to 
the square of the oblateness i.e., ~(1/300)2 and slowly decreasing with an increase 
of n. The tesseral moments Cnm and Snm appeared to be not equal to zero, expressing 
the short-term nutational perturbations of the orbit. In the case of hydrostatic equi-
librium of the Earth at the found value of J2, the polar oblateness ε should be equal 
to 1/299.25. On this basis the conclusion was made that the Earth does not stay in 
hydrostatic equilibrium. The planet’s deviation from the hydrostatic equilibrium ev-
idenced that there is a swelling in the planet’s equatorial region with an amplitude of 
about 70 m. It means that the Earth body is forced by normal and tangential forces 
which develop corresponding stresses and deformations. Finally, by the measured 
tesseral and sectorial harmonics, it was directly confirmed that the Earth has an 
asymmetric shape with reference to the axis of rotation and to the equatorial plane.

Because the Earth does not stay in hydrostatic equilibrium, then the above de-
scribed initial physical fundamentals for interpretation of the satellite observations 
should be recognized as incorrect and the related physical concepts cannot explain 
the real picture of the planet’s dynamics.

The question is raised of how to interpret the obtained actual data and where the 
truth should be sought. First of all we should verify correctness of the oblateness 
interpretation and the conclusion about the Earth’s equatorial swelling. It is known 
from observation that the Earth is a triaxial body (see Table 1.2). Theoretical ap-
plication of the triaxial Earth model was not considered because it contradicts the 
hydrostatic equilibrium hypothesis. But after it was found that the hydrostatic equi-
librium is absent, the alternative with the triaxial Earth should be considered first.

Let us analyze Eq. (2.16). It is known from the observation data, that the constant 
of the centrifugal oblateness q is equal to

q =
ω2R

GM/R2
.q =

ω2R

GM/R2
.

H =
C − A

C
.H =

C − A

C
.
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� (2.19)

Determine a difference between the centrifugal oblateness constant q and the polar 
oblateness ε′ found by the satellite orbits, assuming that the desired value has a re-
lationship with the perturbation caused by the equatorial ellipsoid

�
(2.20)

where a, b and c are the semi-axes of the triaxial Earth.
The differences between the major and minor equatorial semi-axes can be found 

from Eq. (2.20). If the major semi-axis is taken in accordance with recommendation 
of the International Union of Geodesy and Geophysics as a = 6 378 160 m, then the 
minor equatorial semi-axis b can be equal to:

There is a reason now to assume, that the value of equatorial oblateness ε′ = 1/9 720 
is a component in all the zonal gravitation moments Jn, related to the secular per-
turbations of the satellite orbits including J2. They are perturbed both by the polar 
and the equatorial oblateness of the Earth. This effect ought to be expected because 
it was known long ago from observation that the Earth is a triaxial body. If our con-
clusion is true, then there is no ground for discussion about the equatorial swelling. 
And also the problem of the hydrostatic equilibrium is closed automatically because 
in this case the Earth is not a figure of rotation; and the nature of the observing fact 
of rotation of the Earth should be looked for rather in the action of its own inner 
force field but not in the effects of the inertial forces. As to the nature of the Earth’s 
oblateness, then for its explanation later on the effects of perturbation arising during 
separation of the Earth’s shells by mass density differentiation and separation of the 
Earth itself from the Protosun will be considered. In particular, the effect of heredity 
in creation of the body’s oblateness is evidenced by the ratio of kinetic energy of the 
Sun and the Moon expressed through the ratio of square frequencies of oscillation ε˝ 
of their polar moments of inertia (see Sects. 6.5 and 6.10 in Chap. 6), which is close 
to the planet’s equatorial oblateness:

where ωс = 10−4 s−1 and ωл = 0.965 76 × 10−2 s−1 are the frequencies of oscillation 
of the Sun’s and the Moon’s polar moment of inertia correspondingly.
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By observation the Moon is also a triaxial body. In addition, the retrograde mo-
tion of the nodes of the Earth, the Moon and the artificial satellites is registered 
and is explained by rotation of the bodies’ orbits. Later on it will be shown, that the 
above remarkable phenomenon is explained by rotation of the body’s inner masses 
together with their gravity fields, the periods of which are equal to the periods of 
the precession of their oblique axes. The observed body rotation is valid only for the 
upper shells, which were separated during mass density differentiation in their own 
force fields and stay in that field in a suspended state of equilibrium.

The most prominent effect, which was discovered by investigation of the geo-
detic satellite orbits, is the fact of a physical relationship between the Earth’s mean 
(polar) moment of inertia and the outer gravity field. That fact without exaggera-
tion can be called a fundamental contribution to understanding the nature of the 
planet’s self-gravity. The planet’s moment of inertia is an integral characteristic 
of the mass density distribution. Calculation of the gravitational moments based 
on measurement of elements of the satellite orbits is the main content of satellite 
geodesy and geophysics. Short-periodic perturbations of the gravity field fixed at 
revolution of a satellite around the Earth, the period of which is small compared to 
the planet’s period, provides evidence about oscillation of the moment of inertia 
or, to be more correct, about oscillating motion of the interacting mass particles. 
It will be shown, that oscillating motion of the interacting particles forms the main 
part of a body’s kinetic energy and the moment of inertia itself is the periodically 
changing value.

Oscillation of the Earth’s moment of inertia and also the gravitational field is 
fixed not only during the study by artificial satellites. Both parameters have also 
been registered by surface seismic investigations. Consider briefly the main points 
of those observations.

2.3  �Oscillation of the Moment of Inertia and the Inner 
Gravitational Field Observed During Earthquakes

The study of the Earth’s eigenoscillation started with Poisson’s work on oscillation 
of an elastic sphere, which was considered in the framework of the theory of elastic-
ity. In the beginning of the twentieth century Poisson’s solution was generalized by 
Love in the framework of the problem solution of a gravitating uniform sphere of 
the Earth’s mass and size. The calculated values of periods of oscillation were found 
to be within the limit of some minutes to one hour.

In the middle of the twentieth century, during the powerful earthquakes in 1952 
and 1960 in Chile and Kamchatka, an American team of geophysicists headed by 
Beneoff, using advanced seismographs and gravimeters, reliably succeeded in re-
cording an entire series of oscillations with periods from 8.4 m up to 57 m. Those 
oscillations in the form of seismograms have represented the dynamical effects of 
the interior of the planet as an elastic body, and the gravimetric records have shown 
the “tremor” of the inner gravitational field (Zharkov, 1978). In fact, the effect of 
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the simultaneous action of the potential and kinetic energy in the Earth’s interior 
was fixed by the above experiments.

About one thousand harmonics of different frequencies were derived by expan-
sion of the line spectrum of the Earth’s oscillation. These harmonics appear to be 
integral characteristics of the density, elastic properties and effects of the gravity 
field, i.e. of the potential and kinetic energy of separate volumetric parts of the non-
uniform planet. As a result two general modes of the Earth’s oscillations were found 
by the above spectral analysis, namely, spherical with a vector of radial direction 
and torsion with a vector perpendicular to the radius.

From the point of view of the existing conception about the planet’s hydrostatic 
equilibrium, the nature of the observed oscillations was considered to be a property 
of the gravitating non-uniform (regarding density) body in which the pulsed load of 
the earthquake excites elementary integral effects in the form of elastic gravity quanta 
(Zharkov, 1978). Considering the observed dynamical effects of earthquakes, geo-
physicists came close to a conclusion about the nature of the oscillating processes in 
the Earth’s interior. But the conclusion itself still has not been expressed because it 
continues to relate to the position of the planet’s hydrostatic equilibrium.

Now we move to one of the main problems related to the Earth’s equilibrium or, 
more correctly, to the absence of the Earth’s equilibrium if it is considered on the 
basis of hydrostatics.

2.4  �Imbalance Between the Earth’s Potential 
and Kinetic Energies

We discovered the most likely serious cause, for which even formulation of the 
problem of the Earth’s dynamics based on the hydrostatic equilibrium is incorrect. 
The point is that the ratio of kinetic to potential energy of the planet is equal to 
~1/300, i.e. the same as its oblateness. Such a ratio does not satisfy the fundamental 
condition of the virial theorem, the equation of which expresses the hydrostatic 
equilibrium condition. According to that condition the considered energies’ ratio 
should be equal to 1/2. Taking into account that kinetic energy of the Earth is pre-
sented by the planet’s inertial rotation, then assuming it to be a rigid body rotating 
with the observed angular velocity ωr = 7.29 × 10−5 s−1, the mass M = 6 × 1024 kg, 
and the radius R = 6.37 × 106 m, the energy is equal to:

The potential energy of the Earth at the same parameters is

Te = 0.6MR2 ωr
2 = 0.6× 6× 1024 × (6.37× 106)2 × (7.29× 10−5)2

= 7.76× 1029J = 7.76× 1036 erg.

Te = 0.6MR2 ωr
2 = 0.6× 6× 1024 × (6.37× 106)2 × (7.29× 10−5)2

= 7.76× 1029J = 7.76× 1036 erg.

Ue = 0.6× GM 2/R = 0.6× 6.67× 10−11 × (6× 1024)2/6.37× 106

= 2.26× 1032J = 2.26× 1039erg.

Ue = 0.6× GM 2/R = 0.6× 6.67× 10−11 × (6× 1024)2/6.37× 106

= 2.26× 1032J = 2.26× 1039erg.

2.4 Imbalance Between the Earth’s Potential and Kinetic Energies
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The ratio of the kinetic and potential energy comprises

One can see that the ratio is close to the planet’s oblateness. It does not satisfy the 
virial theorem and does not correspond to any condition of equilibrium of a really 
existing natural system because, in accordance with the third Newton’s law, equal-
ity between the acting and the reacting forces should be satisfied. The other planets, 
the Sun and the Moon, the hydrostatic equilibrium for which is also accepted as a 
fundamental condition, stay in an analogous situation. Since the Earth in reality 
exists in equilibrium and its orbital motion strictly satisfies the ratio of the ener-
gies, then the question arises where the kinetic energy of the planet’s own motion 
has disappeared. Otherwise the virial theorem for the Earth is not valid. Moreover, 
if one takes into account that the energy of inertial rotation does not belong to the 
body, then the Earth and other celestial bodies equilibrium problem appears to be 
out of discussion.

Thus, we came to the problem of the Earth equilibrium from two positions. From 
one side, the planet by observation does not stay in hydrostatic equilibrium, and 
from the other side, it does not stay in general mechanical equilibrium because there 
is no reaction forces to counteract to the acting potential forces. The answer to both 
questions is given below while deriving an equation of the dynamical equilibrium 
of the planet by means of generalization of the classical virial theorem.

2.5  �Equation of Dynamical Equilibrium

The main methodological question arises in which the state of equilibrium of the 
Earth exists. The answer to the question results from the generalized virial theorem 
for a self-gravitating body, i.e. the body which itself generates the energy for mo-
tion by interaction of the constituent particles having innate moments. The guiding 
effect which we use here is the motion observed by an artificial satellite that is the 
functional relationship between changes in the gravity field of the Earth and its 
mean (polar) moment of inertia. The deep physical meaning of this relationship is 
as follows. The planet’s mean (polar) moment of inertia is an integral (volumetric) 
parameter, which does not represent location of the interacting mass particles, but 
expresses changes in their motion under the constrained energy. The virial theorem 
of Clausius for a perfect gaseous cloud or a uniform body is presented in its aver-
aged form. In order to generalize the theorem for a non-uniform body we intro-
duce there the volumetric moments of interacting particles, taking into account their 
volumetric nature. Moreover, the interacting mass particles of a continuous medium 
generate volumetric forces (pressure or capacity of energy) and volumetric momen-
tums, which, in fact, generate the motion in the form of oscillation and rotation of 
masses. The oscillating form of motion of the Earth and other celestial bodies is the 
dominating part of their kinetic energy which up to now has not been taken into ac-
count. We wish to fill in this gap in dynamics of celestial bodies.

Te/Ue = 7.76× 1029/2.26× 1032 = 1/292.Te/Ue = 7.76× 1029/2.26× 1032 = 1/292.
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The virial theorem is the analytical expression of the hydrostatic equilibrium 
condition and follows from Newton’s and Euler’s equations of motion. Let us recall 
its derivation in accordance with classical mechanics (Goldstein, 1980).

Consider a system of mass points, the location of which is determined by the 
radius vector ri and the force Fi including the constraints. Then equations of motion 
of the mass points through their moments pi can be written in the form

� (2.21)

The value of the moment of momentum is

where the summation is done for all masses of the system. The derivative with re-
spect to time from that value is

� (2.22)

The first term in the right-hand side of (2.22) is reduced to the form

where T is the kinetic energy of particle motion under action of the forces Fi. The 
second term in Eq. (2.22) is

Now Eq. (2.22) can be written as

� (2.23)

The mean values in (2.23) within the time interval τ are found by their integration 
from 0 to t and division by τ:

or

�
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For the system in which the co-ordinates of mass point motion are repeated through 
the period τ, the right-hand side of Eq. (2.24) after its averaging is equal to zero. If the  
period is too large, then the right-hand side becomes a very small quantity. Then, the 
expression (2.24) in the averaged form gives the relation

� (2.25)

or in mechanics it is written in the form

Equation (2.25) is known as the virial theorem, and its left-hand side is called the 
virial of Clausius (German virial is from the Latin vires which means forces). The 
virial theorem is a fundamental relation between the potential and kinetic energy and 
is valid for a wide range of natural systems, the motion of which is provided by action 
of different physical interactions of their constituent particles. Clausius proved the 
theorem in 1870 when he solved the problem of work of the Carnot thermal machine, 
where the final effect of the water vapor pressure (the potential energy) was connect-
ed with the kinetic energy of the piston motion. The water vapor was considered as a 
perfect gas. And the mechanism of the potential energy (the pressure) generation at 
the coal burning in the firebox was not considered and was not taken into account.

The starting point in the above-presented derivation of the virial theorem in me-
chanics is the moment of the mass point system, the nature of which is not consid-
ered either in mechanics or by Clausius. By Newton’s definition the moment “is the 
measure of that determined proportionally to the velocity and the mass”. The nature 
of the moment by his definition is “the innate of the matter”. By his understanding 
that force is an inertial force, i.e. the motion of a mass continues with a constant 
velocity.

The observed (by satellites) relationship between the potential and the kinetic 
energy of the gravitation field and the Earth’s moment of inertia provides evidence 
that the kinetic energy of the interacting mass particle motion, which is expressed as 
a volumetric effect of the planet’s moment of inertia, is not taken into account. The 
evidence of that was given in the previous section in the quantitative calculation of 
a ratio between the kinetic and potential energies, equal to ~1/300.

In order to remove that contradiction, the kinetic energy of motion of the inter-
acting particles should be taken into account in the derived virial theorem. Because 
any mass has volume the moment p should be written in volumetric form:

� (2.26)
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� (2.27)

where Ip is the polar moment of inertia of the system (for the sphere it is equal to 
3/2 of the axial moment).

The derivative from that value with respect to time is

� (2.28)

The first term in the right-hand part of (2.28) remains without change

� (2.29)

The second term represents the potential energy of the system

� (2.30)

Equation (2.28) is written now in the form

� (2.31)

Expression (2.31) represents a generalized equation of the virial theorem for a mass 
point system interacting by Newton’s law. Here in the left-hand side of (2.31) the 
previously ignored inner kinetic energy of interaction of the mass particles appears. 
Solution of Eq. (2.31) gives a variation of the polar moment of inertia within the 
period τ. For a conservative system averaging expression (2.28) by integration from 
0 to t within time interval τ gives

� (2.32)

Eq. (2.32) at Ïp = 0  gives İp = E = const.,  where E is the total system’s energy. It 
means that the interacting mass particles of the system move with constant velocity. 
In the case of a dissipative system, equation (2.32) is not equal to zero and the inter-
acting mass particles move with acceleration. Now the ratio between the potential 
and kinetic energy has a value in strict accordance with equation (2.31). Kinetic 
energy of the interacting mass particles in the form of oscillation of the polar mo-
ment of inertia in that equation is taken into account. And now in the frame of the 
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ṙi · pi +


i
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law of energy conservation the ratio of the potential to kinetic energy of a celestial 
body has a correct value.

Expression (2.31) appears to be an equation of dynamical equilibrium of the 
self-gravitating Earth and the Sun inside and between the bodies. The hydrostatic 
equilibrium presents here as a particular case and takes also into account the kinetic 
energy of the continuous motion of the interacting particles which generate energy 
due to their inner potential. The integral effect of the moving particles is fixed by 
the satellite orbits in the form of changing zonal, sectorial and tesseral gravitational 
moments. We used the resulting energy of the initial moment (2.26) for derivation 
of the generalized virial theorem. The initial moments form the inner, or “innate” by 
Newton’s definition, energy of the body which has an inherited origin. The nature 
of Newton’s centripetal forces and the mechanism of their energy generation will be 
discussed in some detail in Chap. 8.

Thus, we obtained a differential equation of the second order (2.31), which de-
scribes the Earth’s dynamics and its dynamical equilibrium.

The virial equation (2.31) was obtained by Jacobi already one and a half century 
ago from Newton’s equations of motion in the form (Jacobi, 1884)

� (2.33)

where Ф is the Jacobi function (the polar moment of inertia).
At that time Jacobi was not able to consider the physical meaning of the equa-

tion. For that reason he assumed that as there are two independent variables Ф and 
U in the equation, then it can not be resolved. We succeeded to find an empirical 
relationship between the two variables and at first obtained an approximate, and 
later on rigorous, solution of the equation (Ferronsky et al., 1978, 1987; Ferronsky, 
2005). The relationship is proved now by means of the satellite observation.

We can explain now the cause of the discrepancy between the geometric (static) 
and dynamic oblateness of the Earth. The reason is as follows. The planet’s mo-
ments of inertia with respect to the main axes and their integral form of the polar 
moment of inertia do not stay in time as constant values. The polar moment of 
inertia of a self-gravitating body has a functional relation with the potential energy, 
the generation of which results by interaction of the mass particles in a regime of 
periodic oscillations. The hydrostatic equilibrium of a body does not express the 
picture of the dynamic processes from which, as it follows from the averaged virial 
theorem, the energy of the oscillating effects was lost from consideration. Because 
of that it was not possible to understand the nature of the energy. The main part of 
the body’s kinetic energy of the body’s oscillation was also lost. As to the rotational 
motion of the body’s shells, it appears only in the case of the non-uniform radial dis-
tribution of the mass density. The contribution of rotation to the total body’s kinetic 
energy comprises a very small part.

The cause of the accepted incorrect ratio between the Earth’s potential and ki-
netic energy is the following. Clairaut’s equation (1.20), derived for the planet’s 
hydrostatic equilibrium state and applied to determine the geometric oblateness, 
because of the above reason, has no functional relationship between the force func-
tion and the moment of inertia. Therefore for the Earth’s dynamical problem the 

̈ = U + 2T ,̈ = U + 2T ,
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equation gives only the first approximation. In formulation of the Earth oblateness 
problem, Clairaut accepted Newton’s model of action of the centripetal forces from 
the surface of the planet to its geometric center. In such a physical conception the 
total effect of the inner force field becomes equal to zero. Below in Sect. 2.6 it will 
be shown, that the force field of the continuous body’s interacting masses represents 
volumetric pressure, but not a vector force field. That is why the accepted postulate 
relating to the planet’s inertial rotation appears to be physically incorrect.

The question was raised about how it happened, that geodynamic problems and 
first of all the problem of stability of the Earth’s motion up to now were solved with-
out knowing the planet’s kinetic energy. The probable explanation of that seems to 
lie in the history of the development of science. In Kepler’s problem and in Newton’s 
two-body problem solution the transition from the averaged parameters of motion to 
real conditions is implemented through the mean and the eccentric anomalies, which 
by geometric procedures indirectly take into account the above energy of motion. In 
the Earth’s shape problem this procedure of Kepler is not applied. Therefore, the so-
called “inaccuracies” in the Earth’s motion appear to be the regular dynamic effects 
of a self-gravitating body, and the hydrostatic model in the problem is irrelevant. 
The hydrostatic model was accepted by Newton for the other problem, where just 
this model allowed discovery and formulation of the general laws of the planets’ 
motion around the Sun. Newton’s centripetal forces in principle satisfy Kepler’s 
condition when the distance between bodies is much more than their size accepted 
as mass points. Such a model gives a first approximation in the problem solution.

Kepler’s laws express the real picture of the planets and satellites motion around 
their parent bodies in averaged parameters. All the deviations of those averaged 
values related to the outer perturbations are not considered as it was done in the 
Clausius’ virial theorem for a perfect gas.

Newton solved the two-body problem, which had been already formulated by 
Kepler. The solution was based on the heliocentric world system of Copernicus, on 
the Galilean laws of inertia and free fall in the outer force field and on Kepler’s laws 
of the planet’s motion in the central force field considered as a geometric plane task. 
The goal of Newton’s problem was to find the force in which the planet’s motion 
resulted. His centripetal attraction and the inertial forces in the two-body problem 
satisfy Kepler’s laws.

As it was mentioned, Newton understood the physical meaning of his centripetal 
or attractive forces as a pressure, which is accepted now like a force field. But by his 
opinion, for mathematical solutions the force is a more convenient instrument. And 
in the two-body problem the force-pressure is acting from the center (of a point) to 
outer space.

It is worth discussing briefly Newton’s preference given to the force but not to 
the pressure. In mechanics the term “mass point” is understood as a geometric point 
of space, which has no dimension but possesses a finite mass. In physics a small 
amount of mass is called by the term “particle”, which has a finite value of size and 
mass. But very often physicists use models of particles, which have neither size 
nor mass. A body model like mass point has been known since ancient times. It is 
simple and convenient for mathematical operations. The point is an irreplaceable 
geometric symbol of a reference point. The physical point, which defines inert mass 
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of a volumetric body, is also suitable for operations. But the interacting and physi-
cally active mass point creates a problem. For instance, in the field theory the point 
value is taken to denote the charge, the meaning of which is no better understood 
than is the gravity force. But it is considered often there, that the point model for 
mathematical presentation of charges is not suitable because operations with it lead 
to zero and infinite values. Then for resolution of the situation the concept of charge 
density is introduced. The charge is presented as an integral of density for the desig-
nated volume and in this way the solution of the problem is resolved.

The point model in the two-body problem allowed reduction of it to the one-
body problem and for a spherical body of uniform density to write the main seven 
integrals of motion. In the case when a body has a finite size, then not the forces 
but the pressure becomes an effect of the body particle interaction. The interacting 
body’s mass particles form a volumetric gravitational field of pressure, the strength 
of which is proportional to the density of each elementary volume of the mass. In 
the case of a uniform body, the gravitational pressure should be also uniform within 
the whole volume. The outer gravitational pressure of the uniform body should be 
also uniform at the given radius. The non-uniform body has a non-uniform gravita-
tional pressure of both inner and outer field, which has been observed in studying 
the real Earth field. Interaction of mass particles results appears in their collision, 
which leads to oscillation of the whole body system. In general if the mass density 
is higher, then the frequency of body oscillation is also higher.

It was known from the theory of elasticity, that in order to calculate the stress 
and the deformation of a beam from a continuous load, the latter can be replaced 
by the equivalent lumped force. In that case the found solution will be approximate 
because the beam’s stress and deformation will be different. The question is what 
degree of approximation of the solution and what kind of error is expected. Volu-
metric forces are not summed up by means of the parallelogram rule. Volumetric 
forces by their nature can not be reduced for application either to a point, or to a 
resultant vector value. Their action is directed to the 4π space and they form inner 
and outer force fields. The force field by its action is proportional to action of the 
energy. This is because the force is the derivative of the energy.

The centrifugal and Coriolis forces are also proved to be inertial forces as a con-
sequence of inertial rotation of the body. And the Archimedes force has not found its 
physical explanation, but it became an observational fact of hydrostatic equilibrium 
of a body mass immersed in a liquid.

Such is the short story of appearance and development of the hydrostatic equi-
librium of the Earth in an outer uniform gravity field. The force of gravity of a body 
mass is an integral value. In this connection Newton’s postulate about the gravity 
center as a geometric point should be considered as a model for presentation of two 
interacting bodies, when their mutual distance is much more of the body size. It 
is shown in the next section, that the reduced physical, but not geometrical, grav-
ity center of a volumetric body is represented by an envelope of the figure, which 
draws an averaged value of radial density distribution of the body.

Because of the above discussion, the theorem of classical mechanics cited in 
Sect. 1.5 stating that if a body is found in the central force field, then the sum of 
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their inner forces and torques are equal to zero, from the mathematical point of view 
is correct in the frame of the given initial conditions. As in the case of the derived 
virial theorem, the moment of momentum L in expression (1.5) can be presented 
by the first derivative from the polar moment of inertia. And then the torque equal 
to zero in the central field will be presented by oscillation of the polar moment of 
inertia not equal to zero.

The problem of dynamics of the Earth as a self-gravitating body, including its 
shape problem, in its formulation and solution needs a higher degree of approxima-
tion. Generalized virial theorem (2.31) satisfies the condition of the Earth’s dy-
namical equilibrium state and creates a physical and theoretical basis for farther 
development of theory. It follows from the theorem that the hydrostatic equilibrium 
state there is the particular case of dynamics. Solution of the problem of the Earth’s 
dynamics based on the equation of dynamical equilibrium appears to be the next 
natural and logistic step from the hydrostatic equilibrium model to a more perfect 
method without loss of the previous preference.

Below we consider the problem of “decentralization” of its own force field for a 
self-gravitating body.

2.6  �Reduction of Inner Gravitation Field to the Resultant 
Envelope of Pressure

Consider the Earth as a self-gravitating sphere with uniform and one-dimensional 
interacting media. The motion of the Earth proceeds both in its own and in the 
Sun’s force fields. It is known from theoretical mechanics that any motion of a body 
can be represented by a translation motion of its mass center, rotation around that 
center and motion of the body mass related to its changes in shape and structure 
(Duboshin, 1975). In the two-body problem the last two effects are neglected due 
to their smallness.

In order to study the Earth’s motion in its own force field the translational (or-
bital) motion relative to the fixed point (the Sun) should be separated from the 
two other components of motion. After that one can consider the rotation around 
the geometric center of the Earth’s masses under action of its own force field and 
changes in the shape and structure (oscillation). Such separation is required only 
for the moment of inertia, which depends on what frame of reference is selected. 
The force function depends on a distance between the interacting masses and does 
not depend on selection of a frame of reference (Duboshin, 1975). The moment of 
inertia of the Earth relative to the solar reference frame should be split into two 
parts. The first is the moment of the body mass center relative to the same frame 
of reference and the second is moment of inertia of the planet’s mass relative to its 
own mass center.

So, set up the absolute Cartesian coordinates Oc with the origin at the center 
of the Sun and transfer it to the system Oxyz with the origin at the geometrical center 
of the Earth’s mass (Fig. 2.1).
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Then, the moment of inertia of the Earth in the solar frame of reference is

� (2.34)

where mi is the Earth mass of particles; Ri is its distance from the origin in the same 
frame.

The Lagrange method is applied to separate the moment of inertia (2.34). The 
method is based on his algebraic identity

� (2.35)

where ai and bi are some chosen values; n is any positive number.
Jacobi in his “Vorlesungen über Dynamik” was the first who performed the 

mathematical transformation for separation of the moment of inertia of n interact-
ing mass points into two algebraic sums (Jacobi, 1884; Duboshin, 1975; Ferronsky 
et al., 1987). It was shown that if we write (Fig. 2.1)

�
(2.36)

where A, B, C are the coordinates of the mass center in the solar frame of reference.
Then, using identity (2.35), one has
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Fig. 2.1   Body motion in its 
own force field
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Since

then

Now, the moment of inertia (2.34) acquires the form

� (2.37)

where

� (2.38)

� (2.39)

M is the Earth’s mass; Rm and rm are the radii of inertia of the Earth in the Sun’s and 
the Earth’s frame of reference.

Thus, we have separated the moment of inertia of the Earth, rotating around the 
Sun in the inertial frame of reference, into two algebraic terms. The first one (2.38) 
is the Earth’s moment of inertia in the solar reference system Oс. The second 
term (2.39) presents the moment of inertia of the Earth in its own frame of reference 
Oxyz. The Earth mass here is distributed over the spherical surface with the reduced 
radius of inertia rm. In literature the geometrical center of mass O in the Earth refer-
ence system is erroneously identified with the center of inertia and center of gravity 
of the planet.

For farther consideration of the problem of the Earth’s dynamics we accept the 
polar frame of reference with its origin at center O. Then expression (2.39) for the 
Earth’s polar moment of inertia Ip acquires the form

� (2.40)

Now the reduced radius of inertia rm, which traces out a spherical surface, is

� (2.41)

Here M =


mi  is the Earth’s mass relative to its own frame of reference.
Taking into account the spherical symmetry of the uniform and one-dimen-

sional Earth, we consider the sphere as a concentric spherical shell with mass 
dm( r) = 4r2( r)dr. Then the expression (2.41) in the polar reference system can 
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be rewritten in the form

� (2.42)

or

� (2.43)

from where

where ( r) is the law of radial density distribution; R is the radius of the sphere; 2 is 
the dimensionless coefficient of the reduced spheroid (ellipsoid) of inertia 2MR2.

The value of 2 depends on the density distribution ( r) and is changed within 
the limits of 1 ≥ 2 > 0. Earlier (Ferronsky et al., 1987) it was defined as a structural 
form-factor of the polar moment of inertia.

Analogously, the reduced radius of gravity rg, expressed as a ratio of the potential 
energy of interaction of the spherical shells with density ( r) to the potential energy 
of interaction of the body mass is distributed over the shell with radius R. The po-
tential energy of the sphere is written as

from where

�
(2.44)

The form-factor 2 of the inner force field, which controls its reduced radius, can 
be written as

�
(2.45)
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The value of 2 depends on the density distribution ( r) and is changed within 
the limits of 1 ≥ 2 > 0. Earlier (Ferronsky et al., 1987) it was defined as a structural 
form-factor of the force function.

Numerical values of the dimensionless form-factors 2 and 2 for a number of den-
sity distribution laws ( r), obtained by integration of the numerators in Eqs. (2.43) 
and (2.44) for the polar moment of inertia and the force function, are presented in 
Table 2.1 (Ferronsky et al., 1987). Note, that the values of the polar Ip and axial Ia 
moments of inertia of a one-dimensional sphere are related as Ip = 3/2Ia.

It follows from Table 2.1 that for a uniform sphere with ( r) = const its reduced 
radius of inertia coincides with the radius of gravity. Here both dimensionless struc-
tural coefficients 2 and 2 are equal to 3/5, and the moments of gravitational and 
inertial forces are equilibrated and because of that the rotation of the mass is absent
(Fig. 2.2a).

Table 2.1   Numerical values of form-factors α2 and β2 for radial distribution of mass density and 
for polytropic models
Distribution law Index of polytrope 2 β2

⊥ 2

Radial distribution of mass density
( r) = 0 0.6 0.4 0.6
( r) = 0(1 − r/R) 0.74 0.27 0.4
( r) = 0(1 − r2/R2) 0.71 0.29 0.42
( r) = 0 exp(1 − kr/R) 0.16k 8/k2 12/k2

( r) = 0 exp(1 − kr2/R2) 
(k/2π ) 1/k 1.5/k

( r) = 0(1 − r/R) 0.5 0.67 1.0

Politrope models
0 0.6 0.4 0.6
1 0.75 0.26 0.38
1.5 0.87 0.20 0.30
2 1.0 0.15 0.23
3 1.5 0.08 0.12
3.5 2.0 0.045 0.07

2.6 Reduction of Inner Gravitation Field to the Resultant Envelope of Pressure

Fig. 2.2   Radius of inertia and radius of gravity for a uniform (а) and a non-uniform sphere with 
density increased to the center (b) and from the center (c)
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Thus

� (2.46)

from where
� (2.47)

For a non-uniform sphere at ( r) ≠ const from Eqs. (2.43)–(2.45) one has

� (2.48)

It follows from inequality (2.48) and Table 2.1 that in comparison with the uniform 
sphere, the reduced radius of inertia of the non-uniform body decreases and the 
reduced gravity radius increases (Fig. 2.2b). Because of rm ≠ rg and rm < 0.77R < rg 
the torque appears as a result of an imbalance between gravitational and inertial 
volumetric forces of the shells. Then from Eq. (2.48) it follows that

� (2.49)

where subscripts o and t relate to the uniform and non-uniform sphere.
In accordance with (2.48) and (2.49) rotation of shells of a one-dimensional body 

should be hinged-like and asynchronous. In the case of increasing mass density to-
wards the body surface, then the signs in (2.48) and (2.49) are reversed (Fig. 2.2c). 
This remark is important because the direction of rotation of a self-gravitating body 
is a function of its mass density distribution.

The main conclusion from the above consideration is that the inner force field of 
a self-gravitating body is reduced to a closed envelope (spheroid, ellipsoid or more 
complicated curve) of gravitational pressure, but not to a resulting force passing 
through the geometric center of the masses. In the case of a uniform body the enve-
lopes have a spherical shape and both gravitational and inertial radii coincide. For 
a non-uniform body the radius of inertia does not coincide with the radius of grav-
ity, the reduced envelope is closed but has non-spherical (ellipsoidal or any other) 
shape. Analytical solutions done below justify the above.

So, we accept the force pressure as an effect of mass interaction which is the 
property producing work in the form of motion. In other words, the pressure of inter-
acting masses appears to be the force function or the flux of the potential energy.

Now we pass to derivation of the equation of dynamical equilibrium (Jacobi 
virial equation) for the well-known physical models of natural systems where it is 
correct for description of those systems. The only restriction here is the requirement 
of uniformity of the potential energy function of the system relative to the frame 
of reference. But that requirement appears to be not always obligatory. A specific 
physical model which is used for description of the system’s dynamic in classi-
cal mechanics, hydrodynamics, statistic mechanics, quantum mechanics, theory of 
relativity in that case will not be an important factor.
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3.1  �The Generalized Virial Theorem As the Equation of 
Dynamic Equilibrium of the Earth’s Oscillating Motion

We have defined the classical virial theorem for a system moving in the outer uni-
form force field, which determines the relationship between mean values of the 
potential and kinetic energy within a certain period of time to be the averaged virial 
theorem. Conversely, the virial theorem for a system moving in its own force field 
and establishing a relationship between the potential and kinetic energy of the oscil-
lating polar moment of inertia, is defined as the generalized (non-averaged) virial 
theorem or the equation of dynamical equilibrium of a system.

We come to the conclusion that a physical basis of hydrostatic equilibrium does 
not satisfy the demands of geophysics and geodesy in obtaining geodynamic pa-
rameters of a planet’s motion. As it was shown in the previous chapter, hydrostatic 
equilibrium, expressed by the averaged virial theorem, does not take into account 
kinetic energy of the interacting mass particles of a self-gravitating Earth and does 
not provide fundamentals for study of its dynamics. A dynamic equilibrium state 
based on the generalized virial theorem is however ensured by study of the follow-
ing physical and dynamical planetary problems:

•	 Earth’s shell oscillation and rotation;
•	 Interpretation of satellite data with respect to the Earth’s precession, nutation and 

pole wobbling, non-tidal variation in the planet’s angular velocity, geopotential, 
sea level changes etc.;

•	 The Sun and the Moon perturbation effects based on analysis of the dynamical 
equilibrium of the interacting outer force fields of the Earth, the Sun and the 
Moon;

•	 Relationship between the gravitational and electromagnetic interaction of the 
mass particles and the nature of the gravity forces;

•	 Other dynamical effects arising from action of the inner force field, which earlier 
was not taken into account.
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The theory presented in this book is based on solution of the equation of dynami-
cal equilibrium. The Earth by its structure presents a system that includes gaseous, 
liquid and solid shells. The planet’s body itself is represented by a solid crust and 
hypothetically viscous-elastic shells of the mantle and the core, whose matter and 
phase state are still not fully understood. Because of that, in this chapter we present 
a derivation of the equation of dynamical equilibrium for possible physical models 
of the Earth’s shells. In particular, derivation of the equation of dynamical equilib-
rium from the equations of Newton, Euler, Hamilton, Einstein and also from the 
equations of quantum mechanics is presented. In this part of the work we justify 
physical applicability of the above fundamental equation for study of the dynam-
ics and structure of the Earth’s shells. The main idea of derivation by introduction 
of volumetric forces and moments into the transformed equations, as was done in 
Eqs. (2.27) and (2.28), is to show that the effect of matter interaction in nature is 
unique, namely, the motion by energy.

3.1.1  �The Averaged Virial Theorem

Derivation of the theorem and a general approach to derive the equation of dynami-
cal equilibrium was discussed in Sect. 2.5 of the previous chapter. Here we present 
only some supplementary comments.

Rewrite the averaged equation of virial theorem (2.25)

� (3.1)

That equation was used first of all in the kinetic theory of gases for derivation of an 
equation of state for perfect gases in the outer force field of the Earth. we assume 
that the a specific perfect gas is found in a vessel of volume V and consists of N 
uniform particles (atoms or molecules). The mean kinetic energy of a particle of that 
gas at temperature T0 is equal to 3kТ0/2, where k is Boltzmann’s constant. Then the 
virial theorem (3.1) is written in the form

� (3.2)

In this case the effect of interaction of gas atoms and molecules among themselves 
is negligibly small and all the gas energy is realized by its interaction with the ves-
sel’s wall. The gas pressure p inside the vessel appears only because of the walls, 
elastic reaction of which plays the role of inertial forces. The pressure is expressed 
through the energy of the motion by molecules and atoms in the vessel, and expres-
sion (3.2) is written as the Clapeyron–Mendeleev equation of state for a perfect gas 
in the form

−


i

Fi · ri = 2T .

−
1

2



i

Fi · ri =
3

2
NkT0.
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or

� (3.3)

Equation (3.3) is the generalized expression of the laws of Boyle and Mariotte, 
Gay-Lussac and Avogadro and represents the averaged virial theorem. Its left-hand 
side represents the potential energy of interaction of the gas particles and the right-
hand side is the kinetic energy of the gas pressure on the walls. In astrophysics this 
equation is used as the equation of hydrostatic equilibrium state of a star, which is 
accepted as a gas and plasma system, where the gas pressure is equilibrated by the 
gravity forces of the attracted masses. In this case the gravity forces play the role 
of the vessel’s walls or the outer force field, where the kinetic energy of motion of 
the interacting particles is not taken into account. Later on it will be shown, that for 
the natural gaseous and plasma self-gravitating systems only the generalized virial 
equation (2.31) can be used as the equation of state.

For celestial bodies including the Earth, other planets and satellites, whose mass 
particles interact by the reverse square law and the forces of interaction are charac-
terized by the potential U( r) as the uniform function of co-ordinates, the averaged 
virial theorem (3.1) is reduced to a relation between the potential and kinetic energy 
in the form (Goldstein, 1980)

� (3.4)

For a particle moving in the central force field expression (3.4) is

�
(3.5)

If U is the force function of rn, then

Or, taking into account Euler’s theorem about uniform functions and Newton’s law 
of interaction, when n  =  −2, one has

� (3.6)

Relationship (3.6) is valid only for a system that is found in the outer uniform force 
field. As it follows from (3.1), relation (3.6) expresses only mean values of the po-
tential and kinetic energy per the period τ without effect of the inner kinetic energy 
of the interacting particles.

3

2
pV =

3

2
NkT0,

3

2
pV =

3

2
NkT0,

pV = NkT0.pV = NkT0.

T =
1

2



i

∇U · ri.

T =
1

2

∂U

dr
r.

T =
n+ 1

2
U .

T = −
1

2
U .
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For a uniform sphere in an outer uniform force field ρF  at inner isotropic pres-
sure p, relation (3.6) represents the condition of hydrostatic equilibrium written by 
means of Euler’s equation in the form

Here the left-hand side of the equation is the potential energy and the right-hand 
side represents the kinetic energy of the sphere in the frame-work of the averaged 
virial theorem.

3.1.2  �The Generalized Virial Theorem

As it was shown earlier, the Earth is accepted to be an inert body deprived of kinetic 
energy and therefore remains without physical basis to study its dynamics. The 
cause of this was the unsolved problem of the nature and mechanism of energy gen-
eration by interacting masses of a self-gravitating body. It was shown in Sect. 2.6 of 
the previous chapter, that the interacting volumetric mass particles of a body create 
a volumetric field of pressure, which is reduced to a resultant envelope representing 
the inner force field. Kinetic effects of the force field are expressed by the general-
ized virial theorem or equation of dynamical equilibrium (2.31), which in fact is a 
fundamental basis for study of the planet’s dynamics under action of the inner field 
of pressure.

Karl Jacobi derived equation (2.31) in 1884 while considering the problem of 
interaction of n mass points by Newton’s law and obtained it in the form of a gen-
eralized virial equation:

� (3.7)

where Ф is the Jacobi function of a system (polar moment of inertia); U and Т are 
its potential and kinetic energy.

In the Russian literature this equation is called the equation of Lagrange–Jaco-
bi, because for its derivation Jacobi used Lagrange’s method and his identity 
(Duboshin, 1975). We will refer to it as the equation of dynamical equilibrium 
or Jacobi’s virial equation. Full-length derivation of the equation from the clas-
sical equations of motion, which creates a theoretical basis for our dynamics, is 
done below. Note that the physical meaning of the derivations below consists in 
transformation of vector forces and moments of the classical equations into their 
volumetric scalar values. As a result, we unify in dynamics the existing natural 
system models and resolve the most complicated problem of the reference system 
transformation.

∂p

∂r
= ρFr.

̈ = U + 2T
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3.2  �Derivation of Jacobi’s Virial Equation  
from Newtonian Equations of Motion

Throughout this section the term ‘system’ is defined as an ensemble of material 
mass points mi( i = 1, 2, 3,…, n) which interact by Newton’s law of universal at-
traction. This physical model of a natural system forms the basis for a number of 
branches of physics, such as classical mechanics, celestial mechanics, and stellar 
dynamics.

We shall not present the traditional introduction in which the main postulates 
are formulated; we shall simply state the problem (see, for example, Landau and 
Lifshitz, 1973a). We start by writing the equations of motion of the system in some 
absolute Cartesian co-ordinates ξ, η, ζ. In accordance with the conditions imposed, 
the mass point mi is not affected by any force from the other n − 1 points except that 
of gravitational attraction. The projections of this force on the axes of the selected 
co-ordinates ξ, η, ζ can be written (Fig. 3.1):

� (3.8)

i = Gmi



1≤j≤n,i =j

mj(ξj − ξi)

3
ij

,

Hi = Gmi



1≤j≤n,i =j

mj(ηj − ηi)

3
ij

,

Zi = Gmi



1≤j≤n,i =j

mj(ζj − ζi)

3
ij

,

Fig. 3.1   Absolute Cartesian 
co-ordinate system Oξ η ζ
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where G is the gravitational constant and

is the reciprocal distance between points i and j of the system.
It is easy to check that the forces affect the i-th material point of the system and 

are determined by the scalar function U, which is called the potential energy func-
tion of the system, and is given by

� (3.9)

Now Eqs. (3.8) can be rewritten in the form

Then Newton’s equations of motion for the i-th point of the system take the form

� (3.10)

or

� (3.11)

where dots over co-ordinate symbols mean derivatives with respect to time.
The motion of a system is described by Eqs. (3.10) and (3.11) and is completely 

determined by the initial data. In classical mechanics, the values of projections ξi0, 
ηi0, ζi0 and velocities ξ̇i0, η̇i0, ζ̇i0 at the initial moment of time t = t0 may be known 
from the initial data.

ji =


(ξj − ξi)
2(ηj − ηi)

2 + (ζj − ζi)
2

U = −G


1≤i< j≤n

mimj

ij
.

i = −
∂U

∂ξi
,

Hi = −
∂U

∂ηi
,

Zi = −
∂U

∂ζi
.

mi ξ̈i = i,

miη̈i = Hi,

mi ζ̈i = Zi.

mi ξ̈i = −
∂U

∂ξi
,

miη̈i = −
∂U

∂ηi
,

mi ζ̈i = −
∂U

∂ζi
,
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The study of motion of a system of n material points affected by self-forces of at-
traction forms the essence of the classical many-body problem. In the general case, 
ten classical integrals of motion are known for such a system, and they are obtained 
directly from the equations of motion.

Summing all the equations (3.10) for each co-ordinate separately, it is easy to be 
convinced of the correctness of the expressions:

From those equations it follows that

�
(3.12)

Equations (3.12), appearing as a sequence of equations of motion, can be succes-
sively integrated twice. As a result, the first six integrals of motion are obtained:

� (3.13)

where а1, а2, а3, b1, b2, b3 are integration constants.
These integrals are called integrals of motion of the center of mass. The integra-

tion constants а1, а2, а3, b1, b2, b3 can be determined from the initial data by substi-
tuting their values at the initial moment of time for the values of all the co-ordinates 
and velocities.



1≤i≤n

i = 0,



1≤i≤n

Hi = 0,



1≤i≤n

Zi = 0.



1≤i≤n

mi ξ̈i = 0,



1≤i≤n

miη̈i = 0,



1≤i≤n

mi ζ̈i = 0.



1≤i≤n

mi ξ̇i = a1,



1≤i≤n

miη̇i = a2,



1≤i≤n

mi ζ̇i = a3,



1≤i≤n

mi
�
ξi − ξ̇it


= b1,



1≤i≤n

mi(ηi − η̇it) = b2,



1≤i≤n

mi
�
ζi − ζ̇it


= b3,
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Let us obtain one more group of first integrals. To do this, the second of Eqs. (3.10) 
can be multiplied by −ζi, and the third by ηi. Then all expressions obtained should be 
added and summed over the index i. In the same way, the first of Eqs. (3.10) should 
be multiplied by ζi, and the third by −ξi added and summed over index I. Finally, 
the second of Eqs. (3.10) should be multiplied by ξi, and the first by −ηi added and 
summed over index i. It is easy to show directly that the right-hand sides of the 
expressions obtained are equal to zero:

Consequently their left-hand sides are also equal to zero:

�
(3.14)

Integrating Eqs. (3.14) over time, three more first integrals can be obtained:

� (3.15)

The integrals (3.15) are called area integrals or integrals of moments of momentum. 
Three integration constants с1, с2, с3 are also determined from the initial data by 
changing over from the values of all the co-ordinates and velocities to their values 
at the initial moment of time.

The last of the classical integrals can be obtained by multiplying the three 
Eqs. (3.11) by ξ̇i, η̇i  and ζ̇i  respectively, and adding and summing all the expres-
sions obtained. As a result, the following equation is obtained:

� (3.16)



1≤i≤n

(Ziηi − Hiζi) = 0,



1≤i≤n

(iζi − Ziξi) = 0,



1≤i≤n

(Hiξi −iηi) = 0.



1≤i≤n

mi
�
ζ̈iηi − η̈iζi


= 0,



1≤i≤n

mi
�
ξ̈iζi − ζ̈iξi


= 0,



1≤i≤n

mi
�
η̈iξi − ξ̈iηi


= 0.



1≤i≤n

mi
�
ζ̇iηi − η̇iζi


= c1,



1≤i≤n

mi
�
ξ̇iζi − ζ̇iξi


= c2,



1≤i≤n

mi
�
η̇iξi − ξ̇iηi


= c3.



1≤i≤n

mi
�
ξ̈i ξ̇i + η̈iη̇i + ζ̈i ζ̇i


= −



1≤i≤n


∂U

∂ξi
ξ̇i +

∂U

∂ηi
η̇i +

∂U

∂ζi
ζ̇i


.
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It is not difficult to see that the right-hand side of Eq. (3.16) is the complete dif-
ferential over time of the potential energy function U of the system as a whole. The 
left-hand side of the same equation is also the complete differential of some func-
tion Т called the kinetic energy function of the system, and equal to

� (3.17)

Equation (3.16) can then be written finally in the form

from which, after integration, one finds that

� (3.18)

where Е is the integration constant, determined from the initial conditions.
Equation (3.18) is called the integral of motion or the integral of living (kinetic) 

forces.
To derive the equation of dynamic equilibrium, or Jacobi’s virial equation, each 

of the equations (3.11) should be multiplied by ξi, ηi and ζi respectively; then, after 
summing all the expressions, one can obtain

� (3.19)

We can take farther advantage of the obvious identities:

from the Eulerian theorem concerning the homogenous functions. For the interaction 
of the system points, according to Newton’s law of universal attraction, the degree of 
homogeneity of the potential energy function of the system is equal to −1, and hence

Substituting the above expressions into the right- and left-hand side of Eq. (3.19), 
one obtains

T =
1

2



1≤i≤n

mi
�
ξ̇ 2

i + η̇2
i + ζ̇ 2

i


.

d

dt
(T ) = −

d

dt
(U ),

E = T+ U,



1≤i≤n

mi
�
ξi ξ̈i + ηiη̈i + ζi ζ̈i


= −



1≤i≤n


ξi
∂U

∂ξi
+ ηi

∂U

∂ηi
+ ζi

∂U

∂ζi


.

miξi ξ̈i =
1

2

d2

dt2

�
miξ

2
i


− mi ξ̇

2
i ,

miηiη̈i =
1

2

d2

dt2

�
miη

2
i


− miη̇

2
i ,

miζi ζ̈i =
1

2

d2

dt2

�
miζ

2
i


− mi ζ̇

2
i

−


1≤i≤n


ξi
∂U

∂ξi
+ ηi

∂U

∂ηi
+ ζi

∂U

∂ζi


= U .

d2

dt2


1

2



1≤i≤n

mi
�
ξ 2

i + η2
i + ζ 2

i



− 2



1≤i≤n

1

2
mi

�
ξ̇ 2

i + η̇2
i + ζ̇ 2

i


= U .
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For a system of material points we now introduce the Jacobi function expressed 
through the moment of inertia of the system and presented in the form

Then taking into account (3.8), the previous equation can be rewritten in a very 
simple form as follows:

� (3.20)

This is the equation of dynamic equilibrium or Jacobi’s virial equation describing 
both the dynamics of a system and its dynamic equilibrium using integral (volumet-
ric) characteristics Ф and U or T.

Let us derive now another form of Jacobi’s virial equation where the translation-
al moment of the center of mass of the system is separated and all the characteristics 
depend only on the relative distance between the mass points of the system. For this 
purpose the Lagrangian identity can be used:

� (3.21)

where ai and bi may acquire any values and n is any positive number.
Let us now put ai =

√
mi,  and bi equal to 

√
miξi,

√
miηi  and 

√
miζi  respec-

tively. Then three identities can be obtained from (3.21):

In summing up one finds

Using now Eqs. (3.13), the last equality can be rewritten in the form

 =
1

2



1≤i≤n

mi
�
ξ 2

i + η2
i + ζ 2

i


.

̈ = 2E− U.




1≤i≤n

a2
i




1≤i≤n

b2
i


=



1≤i≤n

aibi

2

+
1

2



1≤i≤n



1≤j≤n

(aibj − biaj)
2,




1≤i≤n

mi




1≤i≤n

miξ
2
i


=



1≤i≤n

miξi

2

+
1

2



1≤i≤n



1≤j≤n

mimj(ξj − ξi)2,




1≤i≤n

mi




1≤i≤n

miη
2
i


=



1≤i≤n

miηi

2

+
1

2



1≤i≤n



1≤j≤n

mimj(ηj − ηi)2,




1≤i≤n

mi




1≤i≤n

miζ
2
i


=



1≤i≤n

miζi

2

+
1

2



1≤i≤n



1≤j≤n

mimj(ζj − ζi)2.

2m =



1≤i≤n

miξi

2

+



1≤i≤n

miηi

2

+



1≤i≤n

miζi

2

+
1

2



1≤i≤n



1≤j≤n

mimj
2
ij.
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� (3.22)

where

is the total mass of the system.
Let us put

The value Ф0 does not depend on the choice of the co-ordinate system and coincides 
with the value of the Jacobi function in the barycentric co-ordinate system. Moreo-
ver, from Eq. (3.22) it follows that

Excluding the value Ф from Jacobi’s equation (3.20) with the help of the last equal-
ity, the same equation can be obtained in the barycentric co-ordinate system:

� (3.23)
where Е0 = Т0 + U0 is the total energy of the system in the barycentric co-ordinate 
system equal to

We can now show that the value of Е0 does not depend on the choice of the co-
ordinate system. For this purpose we can again use the Lagrangian identity (3.21). 
In this case ai =

√
mi ,  and bi =

√
mi ξ̇i ,

√
miη̇i  and 

√
mi ζ̇i . Then the following 

three identities can be justified:

2m =
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

1≤i≤n



1≤j≤n

mimj
2
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2,
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
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1
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
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1≤j≤n

mimj
2
ij.
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3

m
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
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mi ξ̇
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=



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2

+
1

2


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
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mimj
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2
,




1≤i≤n
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

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miη̇
2
i


=




1≤i≤n

miη̇i

2

+
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2


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2
,
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After summing and using (3.13) one obtains

or

�

(3.24)

Here the second term on the right-hand side of Eq. (3.24) coincides with the expres-
sion for the kinetic energy T0 of a system.

Substituting (3.24) into an expression for Е0, one obtains

�
(3.25)

Thus, the total energy of the system Е0 depends only on the distance between the 
points of the system and on the velocity changes of these distances. But Jacobi’s 
equation (3.23) appears to be invariant with respect to the choice of the co-ordinate 
system.

We can show now that the requirement of homogeneity of the potential energy 
function for deriving Jacobi’s virial equation is not always obligatory. For this pur-
pose we consider two examples.

3.3  �Derivation of a Generalized Jacobi’s Virial Equation 
for Dissipative Systems

Let us derive Jacobi’s virial equation for a non-conservative system. We consider 
a system of n material points, the motion of which is determined by the force of 
their mutual gravitation interaction and the friction force. It is well known that the 
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
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3
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1

2m


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
1
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
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�
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�
ζ̇i − ζ̇j

2




.
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�
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friction force always appears in the course of evolution of any natural system. It is 
also known that there is no universal law describing the friction force (Bogolubov 
and Mitropolsky, 1974). The only general statement is that the friction force acts in 
the direction opposite to the vector of velocity of a considered mass point.

Consider as an example the simplest law of Newtonian friction when its force is 
proportional to the velocity of motion of the mass:

� (3.26)

where ξ̇i , η̇i , ζ̇i are the components of the radius-vector of the velocity of the i-th 
mass point in the barycentric co-ordinate system; k is a constant independent of i; 
k > 0.

Sometimes the friction force is independent of the velocity of the mass point. 
There are also some other laws describing the friction force.

We derive the equation of dynamical equilibrium for a system of n material 
points using the equations of motion (3.11) and taking into account the friction 
force expressed by Eqs. (3.26):

� (3.27)

where the value of the system’s potential energy is determined by Eq. (3.9).
Multiplying each of Eqs. (3.27) by ξi, ηi and ζi, respectively, and summing through 

all i, one obtains

�
(3.28)

Transforming the right- and left-hand sides of Eq. (3.28) in the same way as in de-
riving Eq. (3.20), one obtains

or

� (3.29)

Let us show that the total energy Е of the system is a monotonically decreasing 
function of time. For this purpose we multiply each of the equations (3.27) by the 

f = −kmi ξ̇i,

Hf = −kmiη̇i,

Zf = −kmi ζ̇i,

mi ξ̈i = −
∂U

∂ξi
− kmi ξ̇i,

miη̈i = −
∂U

∂ηi
− kmiη̇i,

mi ζ̈i = −
∂U

∂ζi
− kmi ζ̇i,



1≤i≤n

mi
�
ξi ξ̈i + ηiη̈i + ζi ζ̈i


=−



1≤i≤n


∂U

∂ξi
ξi +

∂U

∂ηi
ηi +

∂U

∂ζi
ζi



−


1≤i≤n

kmi
�
ξi ξ̇i + ηiη̇i + ζi ζ̇i


.

̈− 2T = U − k̇

̈ = 2E − U − k̇.
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vectors ξ̇i, η̇i, ζ̇i respectively, and sum over all from 1 to n, which results in

The last expression can be rewritten in the form

or

� (3.30)

Since the kinetic energy T of the system is always greater than zero, dE ≤ 0, i.e. the 
total energy of a gravitating system is a monotonically decreasing function of time. 
Thus the expression for the total energy Е( t) of the system can be written as

where q( t) is a monotonically increasing function of time.
Finally, the equation of dynamical equilibrium for a non-conservative system 

takes the form

� (3.31)

The second example where the requirement of homogeneity of the potential energy 
function for deriving Jacobi’s virial equation is not obligatory is as follows. We 
derive Jacobi’s virial equation for a system whose mass points interact mutually 
in accordance with Newton’s law and move without friction in a spherical homog-
enous cloud whose density ρ0 is constant in time. Let, also, the geometric center of 
the cloud coincide with the center of mass of the considered system. The equations 
of motion for such a system can be written in the form:

� (3.32)

where i = 1, 2,…, n.
It is obvious that the above system of equations possesses the ten first integrals 

of motion and that Jacobi’s virial equation, written in the form



1≤i≤n

mi
�
ξ̈i ξ̇i + η̈iη̇i + ζ̈i ζ̇i


=−



1≤i≤n


∂U

∂ξi
ξ̇i +

∂U

∂ηi
η̇i +

∂U

∂ζi
ζ̇i



− k


1≤i≤n

mi
�
ξ̇ 2

i + η̇2
i + ζ̇ 2

i


.

d

dt
(T ) = −

d

dt
(U )− 2kT

dE = −2kTdt.

E(t) = E0 − 2k

t

t0

T (t)dt = E0[1+ q(t)],

̈ = 2E0[1+ q(t)]− U − k̇.

mi
d2ξi

dt2
= −

4

3
πGρ0miξi −

∂U

∂ξi
,

mi
d2ηi

dt2
= −

4

3
πGρ0miηi −

∂U

∂ηi
,

mi
d2ζi

dt2
= −

4

3
πGρ0miζi −

∂U

∂ζi
,
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� (3.33)

is valid for it.
The equation in the form (3.33) was first obtained by Duboshin et al. (1971). 

Equations (3.31) and (3.33) can be written in a more general form:

� (3.34)

where  X
�
t,, ̇


 is a given function of time t, the Jacobi function Ф and first de-

rivative ̇ . Moreover, we can call Eq. (3.34) a generalized equation of dynamical 
equilibrium.

The examples considered above justify the statement that for conditions of ho-
mogeneity of the potential energy function, required for the derivation of Jacobi’s 
virial equation, is not always necessary. This condition is required for description of 
dynamics of conservative systems but not for dissipative systems or for systems in 
which motion is restricted by some other conditions.

3.4  �Derivation of Jacobi’s Virial Equation  
from Eulerian Equations

We now derive Jacobi’s virial equation by transforming of the hydrodynamic or con-
tinuum model of a physical system. As is well known, the hydrodynamic approach 
to solving problems of dynamics is based on the system of differential equations of 
motion supplement, in the simplest case, by the equations of state and continuity, 
and by the appropriate assumptions concerning boundary conditions and perturba-
tions affecting the system.

In this section, we understand by the term ‘system’ some given mass М of ideal 
gas localized in space by a finite volume V and restricted by a closed surface S. Let 
the gas in the system move by the forces of mutual gravitational interaction and of 
baric gradient. In addition, we accept the pressure within the volume to be isotropic 
and equal to zero on the surface S bordering the volume V. Then for a system in 
some Cartesian inertial co-ordinate system ξ, η, ζ, the Eulerian equations can be 
written in the form

� (3.35)

d2

dt2
= 2E − U −

8

3
πGρ0.

̈ = 2E − U + X
�
t,, ̇


,

ρ
∂u

∂t
+ ρu

∂

∂ξ
u+ ρν

∂

∂η
u+ ρw

∂

∂ζ
u = −

∂p

∂ξ
+ ρ

∂UG

∂ξ
,

ρ
∂ν

∂t
+ ρu

∂

∂ξ
ν + ρν

∂

∂η
ν + ρw

∂

∂ζ
ν = −

∂p

∂η
+ ρ

∂UG

∂η
,

ρ
∂w

∂t
+ ρu

∂

∂ξ
w + ρν

∂

∂η
w + ρw

∂

∂ζ
w = −

∂p

∂ζ
+ ρ

∂UG

∂ζ
,
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where ρ( ξ, η, ζ, t) is the gas density; u, ν, w are components of the velocity vector ν
( ξ, η, ζ, t) in a given point of space; p( ξ, η, ζ, t) is the gas pressure; UG is Newton’s 
potential in a given point of space.

The value UG is given by

� (3.36)

where G is the gravity constant;  =

(x − ξ)2 + (y − η)2 + (z − ζ )2  is the dis-

tance between system points.
The potential energy of the gravitational interaction of material points of the 

system is linked to the Newtonian potential (3.36) by the relation

To supplement the system of equations of motion we write the equation of continu-
ity:

� (3.37)

and the equation of state

� (3.38)

assuming at the same time that the processes occurring in the system are barotropic.
Let us obtain the ten classical integrals for the system whose motion is described 

by Eqs. (3.35).
We derive the integrals of the motion of the center of mass by integrating each of 

the equations (3.35) with respect to all the volume filled by the system. Integrating 
the first equation, we obtain

�

(3.39)

The second term in the right-hand side of Eq. (3.39) disappears because of the sym-
metry of the integral expression with respect to х and ξ. In accordance with the 
Gauss–Ostrogradsky theorem the first term in the right-hand side of Eq. (3.39) terns 
to zero. In fact

UG = G


(V )

ρ (x, y, z, t)


dxdydz,

U = −
1

2



(V )

UGρ(ξ , η, ζ , t) dξdηdζ.

∂p

∂t
+

∂

∂ξ
(ρu)+

∂

∂η
(ρν)+

∂

∂ζ
(ρw) = 0

p = f (ρ)



(V )

ρ
du

dt
dξdηdζ +



(V )

ρ


u

du

dξ
+ ν

du

dη
+ w

du

dζ


dξdηdζ = −



(V )

dp

dξ
dξdηdζ

+ G


(V )

ρ(ξ , η, ζ , t)






(V )

ρ(x, y, z, t)
x − ξ

3
dxdydz



dξdηdζ.
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�
(3.40)

as pressure p on the border of the considered system is equal to zero owing to the 
absence of outer effects.

Bearing in mind the possibility of passing to a Lagrangian co-ordinate system, 
and taking into account the law of the conservation of mass dm = ρdV = ρ0dV0 = dm0, 
we get

where V0 and ρ0 are the volume and the density in the initial moment of time t0.
Finally, Eq. (3.39) can be rewritten as

� (3.41)

Integrating (3.41) with respect to time and writing analogous expressions for two 
other equations of the system (3.35), we obtain the first three integrals of motion:

� (3.42)

Equations (3.42) represent the law of conservation of the system moments. Integra-
tion constants а1, а2, а3 can be obtained from the initial conditions.

We consider the first equation of the system (3.42) using again the law of conser-
vation of mass. Then it is obvious that

�

(3.43)

Analogous expressions can be written for the two other equations (3.42). Integrat-
ing them with respect to time, we obtain integrals of motion of the center of mass 



(V )
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of the system in the form

� (3.44)

We now derive three integrals of the moment of momentum of motion. For this 
purpose we multiply the second of Eqs. (3.35) by −ζ, the third by η, and then sum 
and integrate the resulting expressions with respect to volume V occupied by the 
system. We obtain

�
(3.45)

Analogously, multiplying the first of Eqs. (3.35) by ζ, the third by −ξ, then summing 
and integrating with respect to volume V, we obtain

�
(3.46)

Multiplying the second of Eqs. (3.35) by ξ, the first by −η, and summing and inte-
grating as above, the third equality can be written

�
(3.47)

We write the second integral in the right-hand side of Eq. (3.45) in the form
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The integral is equal to zero owing to the asymmetry expressed by the integral 
expressions with respect to z, ζ and y, η. Because the pressure at the border of the 
domain S is equal to zero, the first term in the right-hand side of Eq. (3.45) is also 
equal to zero. Actually,

Taking into account the law of mass conservation, the left-hand side of Eq. (3.45) in 
the Lagrange co-ordinate system can be rewritten as

�
(3.48)

Integrating this equation with respect to time, the first of the three integrals is ob-
tained:

The other two integrals can be obtained analogously. Thus the system of integrals of 
the moment of momentum has the form

� (3.49)

To derive the tenth integral of motion representing the law of energy conservation, 
we multiply each of the system of equations (3.35) by u, ν, and w accordingly, and 
then sum and integrate the equality obtained with respect to the system volume

�
(3.50)
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Applying the law of mass conservation for an elementary volume, it can easily be 
seen that the left-hand side of Eq. (3.50) expresses the change of the velocity of 
kinetic energy of the system:

The first integral in the right-hand side of Eq. (3.50) can be transferred into

and gives the change of velocity of the internal energy of the system.
The second integral in the right-hand side of the same equation expresses the 

velocity of the potential energy change:

Finally, the law of energy conservation can be written in the form

� (3.51)

where W is the internal energy of the system.
We now derive Jacobi’s virial equation for a system described by Eqs. (3.35)–

(3.38). For this purpose we multiply each of Eqs. (3.35) by ξ, η and ζ respectively, 
summing and integrating the resulting expressions with respect to the volume of 
the system:

�

(3.52)

Using the obtained identities considered in the previous section, we have



(V )

ρ


du

dt
u+

dν

dt
ν +

dw

dt
w


dV =

d

dt




1

2



(V )

(u2 + ν + w2)dV



 =
d

dt
(T ).

−


(V )


∂p

∂ξ
u+

∂p

∂η
ν +

dp

dζ
w


dV = 3

d

dt



(V )

pdV



(V )

ρ (ξ , η, ζ , t) dξξdηd


∂UG

∂ξ

dξ

dt
+−

∂UG

∂η

dη

dt
+

∂UG

∂ζ

dζ

dt



=
d

dt



−
1

2



(V )

ρ(ξ , η, ζ , t) dξξdηdUG



 = −
d

dt
(U ) .

T + U +W = E = const



(V )

ρ


du

dt
ξ +

dν

dt
η +

dw

dt
ζ


dV = −



(V )


∂p

∂ξ
ξ +

∂p

∂η
η +

dp

dζ
ζ


dV

+


(V )

ρ


∂UG

∂ξ
ξ +−

∂UG

∂η
η +

∂UG

∂ζ
ζ


dV .

3 Fundamentals of the Theory of Dynamic Equilibrium



79

Taking into account the law of conservation of mass for elementary volume, we 
transform the left-hand side of Eq. (3.52) as follows:

�

(3.53)
where

is the Jacobi function and

is the kinetic energy of the system.
We now transform the first integral in the right-hand side of Eq. (3.52). Using 

the Gauss–Ostrogradsky theorem and the equality with zero pressure at the border 
of the system, we can write

�
(3.54)

The obtained equation expresses the doubled internal energy of the system.
The second integral in the right-hand side of Eq. (3.52) is equal to the potential 

energy of the gravitational interaction of mass particles within the system

� (3.55)
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Substituting Eqs. (3.53), (3.54) and (3.55) into (3.52), Jacobi’s virial equation is 
obtained in the form

� (3.56)

Taking into account the law of conservation of energy (3.51), we rewrite Eq. (3.56) 
in a form which will be used farther:

� (3.57)

where Е = Т + U + W is the total energy of the system.

3.5  �Derivation of Jacobi’s Virial Equation  
from Hamiltonian Equations

Let the system of material points be described by Hamiltonian equations of motion. 
Let also the considered system consist of n material points with masses mi. Its gen-
eralized co-ordinates and moments are qi and pi = mi( dqi/dt). Hamiltonian equations 
for such a system can be written as

� (3.58)

where H( p, q) is the Hamiltonian; i = 1, 2,…, n.
Using values qi and pi, we can construct the moment of momentum

Now the Jacobi function may be introduced

� (3.59)

Differentiating Eq. (3.59) with respect to time, Jacobi’s virial equation is obtained 
in the form

� (3.60)

̈− 2T = 3


(V )

pdV + U .

̈ = 2E − U ,

ṗi = −
∂H

dqi
,

q̇i =
∂H

dpi
,

n

i=1

piqi =
n

i=1

miqiq̇i =
d

dt


n

i=1

miq2
i

2


.

n

i=1

piqi = ̇.

̈ =
n

i=1

ṗiqi +
n

i=1

piq̇i.
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Substituting expressions for ṗi  and q̇i  taken from the Hamiltonian equations (3.58) 
into the right-hand side of (3.60), we obtain Jacobi’s virial equation written in Ham-
iltonian form:

� (3.61)

The Hamiltonian of the system of material points interacting according to the law of 
the inverse squares of distance is a homogeneous function in terms of moments pi 
with a degree of homogeneity of the function equal to 2, and in terms of co-ordinates  
qi with a degree of homogeneity equal to −1. It follows from this

and hence

Taking these relationships into account, Eq. (3.61) acquires the usual form of Jaco-
bi’s virial equation (3.57) for the system of mass points interacting according to the 
law of inverse squares of distance.

Equation (3.61) is more general then Eq. (3.57). The use of generalized co- 
ordinates and moments as independent variables permits us to obtain the solution 
of Jacobi’s virial equation, taking into account gravitational and electromagnetic 
perturbations as well as quantum effects, both in the framework of classical physics 
and in terms of the Hamiltonian written in an operator form. In the general case, 
Eq. (3.61) can be reduced to (3.57) as the potential energy of interaction of the sys-
tem’s points is a homogenous function of its co-ordinates.

3.6  �Derivation of Jacobi’s Virial Equation  
in Quantum Mechanics

It is known (Landau and Lifshitz, 1963) that in quantum mechanics some physical 
value L by definition takes the linear Hermitian operator L̂. Any physical state of 
the system take the normalized wave function ψ. The physical value of L can take 
the only eigenvalues of the operator L̂ . The mathematical expectation L̂  of the 
value L at state ψ is determined by the diagonal matrix element

� (3.62)

̈ =
n

i=1


−
∂H

∂qi
qi +

∂H

∂pi
pi


.

H (p, q) = T (p)+ U (q)

n

i=1

pi
∂H

∂pi
= 2T .

n

i=1

qi
∂H

∂qi
= −U .

L = <ψ |L̂|ψ >.
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The matrix element of the operators of the Cartesian co-ordinates x̂i and the Carte-
sian components of the conjugated moments p̂k calculated within wave functions f 
and g of the system satisfy Hamilton’s equations of classical mechanics:

� (3.63)

� (3.64)

where Ĥ  is the operator which corresponds to the classical Hamiltonian.
Operators p̂i and x̂k  satisfy the commutation relations

� (3.65)

where ћ is Planck’s constant; δik is the Kronecker’s symbol; δik = 1 at i = k and 
δik = 0 at i ≠ k.

Operator components of momentum p̂i for the functions whose arguments are 
Cartesian co-ordinates x̂i have the form

� (3.66)

and reverse vector

The derivative taken from the operator with respect to time does not depend explic-
itly on time; it is defined by the relation

� (3.67)

where Ĥ  is the Hamiltonian operator that can be obtained from the Hamiltonian of 
classical mechanics in accordance with the correspondence principle.

We have already noted that in the classical many-body problem the translational 
motion of the center of mass can be separated from the relative motion of the mass 
points if only the inertial forces affect the system. We can show that in quantum 
mechanics the same separation is possible.

The Hamiltonian operator of a system of n particles which is not affected by 
external forces in co-ordinates is

d

dt
< f |p̂i|g> = −< f


∂Ĥ

dx̂i

 g>,

d

dt
< f |x̂i|g> = −< f


∂Ĥ

∂ p̂i

 g>,


p̂i, x̂k


= ih̄δik ,


p̂i, p̂k


= 0,


x̂i, x̂k


= 0,

p̂i = ih̄
∂

∂xi

p̂ = −ih̄∇.

L̂ = −
i

h̄
[L̂, Ĥ ],
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�
(3.68)

Let us replace in (3.68) the three n co-ordinates xi, yi, zi by co-ordinates X, Y, Z of 
the center of mass and by co-ordinates ξλ, ηλ, ζλ,  which determine the position of 
a particle λ ( λ = 1, 2,…, n − 1) relative to particle n. We obtain

�
(3.69)

where λ = 1, 2,…, n − 1.
Analogously the corresponding relations for Y, Z, ηλ, ζλ are obtained.
It is easy to obtain from (3.69) the following operator relations:

where summing on the Greek index is provided from 1 до n − 1. It is seen that all 
the combined derivatives ∂2/∂X ∂ξλ were mutually reduced and do not enter into the 
final expression. This allows the Hamiltonian to be separated into two parts:

Ĥ = −
h̄2

2

n

i=1

∇2
i

mi
+

1

2

n

i=1

n

i=1

Uik (xi − xk , yi − yk , zi − zk).

X =
1

M

n

i=1

mixi,

M =
n

i=1

mi,

ξλ = xλ − xn,

d

dxp
=

mp

M

∂

∂X
+

∂

∂ξp
, p = 1, 2, . . . , n− 1,

∂

∂Xn
=

mn

M

∂

∂X
−

n−1

λ=1

∂

∂ξλ
,

n−1

λ=1

1

∂xi

∂2

∂x2
i

=
n−1

λ=1

1

mλ


m2
λ

M 2

∂2

∂X 2
+ 2

mλ

M

∂2

∂X ∂ξλ
+

∂2

∂ξ 2
λ



+
1

mn



 m2
n

M 2

∂2

∂X 2
− 2

mn

M

n−1

λ=1

∂2

∂X ∂ξλ
+

n−1

µ=1

n−1

λ=1

∂2

∂ξµ∂ξλ





=
1

mn

∂2

∂X 2
+




n−1

λ=1

1

mλ

∂2

∂ξ 2
λ

+
1

mn

n−1

µ=1

n−1

λ=1

∂2

∂ξµ∂ξλ



,

H = H0 + Hr
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where, in the right-hand side, the first term

describes the motion of the center of mass, and the second term

� (3.70)

describes the relative motion of the particles.
The potential energy in (3.70), which is

�
(3.71)

also certainly does not depend on the co-ordinates of the center of mass.
Now the Schrödinger’s equation

� (3.72)

permits the separation of variables.
Assuming ψ = (X , Y , Z) and (ξλ, ηλ, ζλ,), we obtain

� (3.73)

� (3.74)

� (3.75)

The solution of Eq. (3.73) has the form of a plane wave:

� (3.76)

where R is a vector with co-ordinates X, Y, Z.
The result obtained is in full accordance with the classical law of the conser-

vation of motion of the center of mass. This means that the center of mass of the 
system moves like a material point with mass m and momentum h̄k. The mode of 
relative motion of the particles is determined by Eq. (3.74), which does not depend 
on the motion of the center of mass.

The existence in the right-hand side of Eq. (3.70) of the third term restricts fur-
ther factorization of the function u (ξλ, ηλ, ζλ).  Only in the two-body problem, 

H0 =
h̄2

2M


∂2

∂X 2
+

∂2

∂y2
+

∂2

∂Z2



Hr = −
h̄2

2




n−1

λ=1

1

mλ

∇2
λ +

1

mn

n−1

µ=1

n−1

λ=1

∇λ∇µ



+ U

U =
1

2

n−1

µ=1

n−1

λ=1

Uλµ

�
ξλ − ξµ, ηλ − ηµ, ζλ − ζµ


+

n−1

λ−1

Uλµ (ξλ, ηλ, ζλ),

(H0 + Hr)ψ = Eψ

−
h̄2

2V
∇2 = E0,

Hru = Eru,

E0 + Er = E.

 = eik̄R,

E0 =
h̄2k2

2M
,
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where n = 2 and at λ = μ = 1, a part of the Hamiltonian connected with the relative 
motion simplified and takes the form

� (3.77)

It seems that choosing the corresponding system of co-ordinates can lead us to an 
approach for separating the motion of the center of mass to the many-body prob-
lem.

Introducing into Eq. (3.77) the reduced mass m*, which is determined as in clas-
sical mechanics by the relation

� (3.78)

and omitting indices in the notation for relative co-ordinates and potential energy 
U12, we come to

� (3.79)

This is Schrödinger’s equation for the equivalent one-particle problem.
Considering the hydrogen atom in the framework of the one-particle problem, 

it is assumed that the nucleus is in ground state. In accordance with Eq. (3.79), the 
normalized mass of the nucleus and electron m* should be introduced. No changes 
which account for the effect of the nucleus on the relative motion should be intro-
duced. Because of the nucleus, mass m is much heavier than electron mass m∗

e ; 
instead of Eq. (3.78) we can use its approximation

Comparing, for example, the frequency of the red line Hα(n = 3− n = 2)  in the 
spectrum of a hydrogen atom:

with the frequency of the corresponding line in the spectrum of a deuterium atom:

and taking into account that mD ≈ 2mH, for the difference of frequencies, we obtain

Hr = −
h̄2

2


1

m1
∇2

1 +
1

m2
∇2

2


+ U12 (ξ1, η1, ζ1).

1

m1
+

1

m2
=

1

m∗ ,

−
h̄2

2m∗
∇2u+ U (ξ , η, ζ ) u = Eru.

m∗ = m


1−
m

M


.

ω(Hα) =
5

36

m∗
H e4

2h̄2h

ω(Dα) =
5

36

m∗
De4

2h̄2h
,

ω(Dα)− ω(Hα) =
m∗D − m∗H

m∗H
ω(Hα) ≈

m

2MH
ω(Hα).
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This difference is not difficult to observe experimentally. At wavelength 6563 Å it is 
equal to 4.12 сm−1. Heavy hydrogen was discovered in 1932 by Urey, Brickwedde 
and Murphy, who observed a weak satellite Dα in the line Hα of the spectrum of 
natural hydrogen. This proves the practical significance of even the first integrals 
of motion.

We now show that the virial theorem is valid for any quantum mechanical system 
of particles retained by Coulomb (outer) forces:

We prove this by means of scale transformation of the co-ordinates keeping un-
changed normalization of wave functions of a system.

The wave function of a many-particle system with masses mi and electron charge 
ei satisfies the Schrödinger’s equation:

� (3.80)

and the normalization condition

� (3.81)

The mean values of the kinetic and potential energies of a system at stage ψ are 
determined by the expressions

� (3.82)

� (3.83)

The scale transformation

� (3.84)

keeps in force the condition (3.81) and means that the wave function

� (3.85)

is replaced by the function

� (3.86)

2T + U = 0.

−
h̄2

2

n−1

i=1

1

mi
∇2

i ψ +
1

2

n−1

i=1

n−1

k=1

eiek

rik
ψ = Eψ


dτ1 . . .


ψ∗ψdτn = 1.

T = −
h̄2

2

n−1

i=1

1

mi


dτ1 . . . .


ψ∗∇2

i ψdτn,

U =
1

2

n−1

i=1

n−1

i=1

eiek


dτ1 . . .


dτn

ψ∗ψ

rik
dτn.

r̄
i = λr̄i,

ψ(r̄i, . . . , r̄n)

ψλ = λ3n/2ψ(λr̄i, . . . , λr̄n).
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Substituting (3.86) into Eqs. (3.83) and (3.82) and passing to new variables of inte-
gration (3.84), and taking into account that

instead of the true value of the energy, E = T + U, we obtain

� (3.87)

Equation (3.87) should have a minimum value in the case when the function which 
is the solution of the Schrödinger’s equation is taken from the family of functions 
(3.86), i.e. when λ = 1. So, at λ = 1 the expression

should turn into zero, and thus

which is what we want to prove.
We now derive Jacobi’s virial equation for a particle in the inner force field with 

the potential U( q) and fulfilling the condition

� (3.88)

using the quantum mechanical principle of correspondence. We shall also show that 
in quantum mechanics Jacobi’s virial equation has the same form and contents as 
in classical mechanics, the only difference being that its terms are corresponding 
operators.

In the simplest case the Hamiltonian of a particle is written

�
(3.89)

and its Jacobi function is

� (3.90)

It is clear that the following relations are valid:

∇2
i = λ2∇2

i ,
1

rik
= λ

1

r
ik

,

E (λ) = λ2T + λU .

∂E (λ)

∂λ
= 2λ2T + U

2T + U = 0,

−q∇U (q) = U

Ĥ = −
h̄2

2m
∇2 + Û ,

̂ =
1

2
mq̂2.

∇̂ = mq̂,

∇2̂ = m.
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Following the definition of the derivative with respect to time from the operator of 
the Jacobi function of a particle (3.67), we can write

where, after corresponding simplification, quantum mechanical Poisson brackets 
can be reduced to the form

� (3.91)

The second derivative with respect to time from the operator of the Jacobi function 
is:

� (3.92)

Substituting the corresponding value of [̂, Ĥ ] and Ĥ  from (3.91) and (3.89) into 
the right-hand side of (3.92), we obtain

� (3.93)

After simple transformation, the right-hand side of (3.93) will be

� (3.94)

where, in writing this expression in the right-hand side, we used condition (3.88).
Add and subtract the operator Û  from the right-hand side of Eq. (3.94) and, fol-

lowing the definition of the Hamiltonian of the system (3.89), we obtain the quan-
tum mechanical Jacobi virial equation (equation of dynamical equilibrium of the 
system), which has the form

� (3.95)

From Eq. (3.95), by averaging with respect to time, we obtain the quantum mechan-
ical analogue of the classical virial theorem (equation of hydrostatic equilibrium 
of the system). In accordance with this theorem the following relation is kept for a 
particle performing finite motion in space

� (3.96)

Analogously, one can derive Jacobi’s virial equation and the classical virial theorem 
for a many-particle system, the interaction potential for which depends on distance 

˙̂
 = −

1

h̄
[̂, Ĥ ],

[̂, Ĥ ] =
h̄2

2m


∇2̂+ 2(∇̂)∇


=

h̄2

2m

�
m+ 2mq̂∇


.

¨̂
 = −

1

h̄2


[̂, Ĥ ], Ĥ


.

¨̂
 = −

h̄2

2m

1

h̄2


�
m+ 2mq̂∇


,


−

h̄2

2m
∇2 + Û


.

¨̂
−

1

2m


2h̄2∇2 + 2mq̂(∇Û )


= −

2h̄2

2m
∇2 + Û ,

¨̂
 = 2Ĥ − Û .

2Ĥ = Û .
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between any particle pair and is a homogeneous function of the co-ordinates. In 
particular, Jacobi’s virial equation for Coulomb interactions will have the form of 
Eq. (3.95).

3.7  �General Covariant Form of Jacobi’s Virial Equation

Jacobi’s initial equation

which was derived in the framework of Newtonian mechanics and is correct for 
the system of material points interacting according to Newton and Coulomb laws, 
includes two scalar functions Ф and U relates to each other by a differential rela-
tion. We draw attention to the fact that neither function, in its structure, depends 
explicitly on the motion of the particles constituting the body. The Jacobi function 
Ф is defined by integrating the integrand ρ( r)r2 over the volume (where ρ( r) is the 
mass density and r is the radius vector of the material point) and is independent in 
explicit form of the particle velocities. The potential energy U also represents the 
integral of m( r)dm( r)/r over the volume (where m( r) is the mass of the sphere’s shell 
of radius r; dm( r) is the shell’s mass) independent of the motion of the particles for 
the same reason.

Let us derive Jacobi’s equation from Einstein’s equation written in the form

� (3.97)

where ΔG and T are the Einstein tensor and energy-momentum tensor accordingly.
In fact, since the covariant divergence of Einstein’s tensor is equal to zero, we 

consider the covariant divergence of the energy-momentum tensor T only of sub-
stance and fields (not gravitational). Moreover, the ordinary divergence of the sum 
of the tensor T and pseudotensor t of the energy-momentum of the gravitational 
field can be substituted for the covariant divergence of the tensor T. This ordinary 
divergence leads to the existence of the considered quantities.

Let us define the sum of the tensor T and pseudotensor t through Tij and derive 
Jacobi’s equation in this notation.

The equation for ordinary divergence of the sum Tij = ( Т + t)ij can be written

� (3.98)

� (3.99)

We multiply Eq. (3.99) by xj and integrate over the whole space (assuming the ex-
istence of a synchronous co-ordinate system). Integrating by parts, neglecting the 
surface integrals (they vanish at infinity), and transforming to symmetrical form 

̈ = 2E − U ,

G = 2πT ,

T0k ,k − T 00,0 = 0,

Tjk ,k − T j0,0 = 0.
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with respect to indices, we obtain

� (3.100)

where i, j are spatial indices.
Similarly, multiplying (3.100) by xi xj and integrating over the whole space, it 

follows that

� (3.101)

From (3.100) and (3.101) we finally get

� (3.102)

It is worth recalling that Т00 also includes the gravitational defect of the mass due to 
the pseudotensor t by definition.

The integral 

T00xixjdV  represents the generalization of the Jacobi function 

 = 1
2


ρr2dV  introduced earlier, if we take the spur (also commonly known as the 

trace) of Eq. (3.102). Let us clarify this operation.
In Eq. (3.102) the spur is taken by the spatial co-ordinates. It is therefore neces-

sary either to represent the total zero spur by four indices, as happens in the case 
of a transverse electromagnetic field, or to represent the relationship between the 
reduced spur with three indices and the total spur, as happens in the case of the en-
ergy-momentum tensor of matter.

Special care should be taken while representing the spur of the pseudotensor of 
the energy-momentum t. Consider the post-Newtonian approximation. In this ap-
proximation, assuming the value of 2u to be − g00 − 1, the components of the pseu-
dotensor t are written in the form

so that

The spur in the left-hand side of Eq. (3.102) can therefore be reduced to the energy 
of the Coulomb field, the total energy of the transverse electromagnetic field and 


TijdV =

1

2

 �
T i0xj + T j0xidV


= 0,


T00xixjdV



,0
= −

 �
Ti0xj + Tj0xidV .


TijdV =

1

2


T 00xixj



,0,0
.

t00 = −
7

8π
u,j,i,

tij = −
1

4π


u,j,i −

1

2
δiju,k u,k


,

Spt = t00 + Sp
�
tij = −

1

π
u,iu,j =

1

7
t00,

Sp
�
tij =

6

7
t00.
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the gravitational energy (when it can be separated, i.e. post-Newtonian approxima-
tion).

Finally, it follows in this case that the scalar form of Jacobi’s equation holds:

� (3.103)

where m is the mass, accounting for the baryon defect of the mass and the total 
energy of the electromagnetic radiation. We do not take into account the radiation 
of the gravitational waves.

The result obtained by Tolman for the spherical mass distribution (Тоlman, 1969) 
is of interest:

� (3.104)

where r is the radius and ε̂ is the energy density.
The integral (3.104) acquires a form which is also valid in the case of flat space–

time. This result can be explained as follows. The curvature of space–time is exactly 
compensated by the mass defect. This probably explains the fact that Jacobi’s virial 
equation, derived from Newton’s equations of motion which are valid in the case of 
non-relativistic approximation for a weak gravitational field, becomes more univer-
sal than the equations from which it was derived.

We shall not study the general tensor of Jacobi’s virial equation, since in the 
framework of the assumed symmetry for the considered problems we are interested 
only in the scalar form of the equation as applied to electromagnetic interactions. As 
follows from the above remarks, in this case Jacobi’s equation remains unchanged 
and the energy of the free electromagnetic field is accounted for in the term defining 
the total energy of the system. Total energy enters into Jacobi’s equation without the 
electromagnetic energy irradiated up to the considered moment of time. Moreover, 
for the initial moment of time we take the moment of system formation. This irradi-
ated energy appears also to be responsible for the growth of the gravitational mass 
defect in the system, as was mentioned above.

3.8  �Relativistic Analogue of Jacobi’s Virial Equation

Let us derive Jacobi’s virial equation for asymptotically flat space–time. We write 
the expression of a 4-moment of momentum of a particle:

� (3.105)

where  pi = mcui  is the 4-momentum of the particle; с is the velocity of light; 
ui = dxi/ds is the 4-velocity; xi is the 4-co-ordinate of the particle; s is the interval of 
events, and i is the running index with values 0, 1, 2, 3.

,0,0 = mc2,

m = 4π

ε̂r2dr,

pixi,
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In asymptotically flat space–time we write

� (3.106)

Since

where γ = 1/


1− (v2/c2),  аnd r is the radius of mass particle.
Then we continue transformation of the Eq. (3.106):

and finally

� (3.107)

where ̈ = d2

dt2


mr2

2


 is the Jacobi function.

On the other hand, we have

� (3.108)

Using the identity uiui ≡ 1 and the geodetic equation

where

are the Christoffel’s symbols, and the equation (3.108) will be rewritten as

� (3.109)

The metric tensor gik for a weak stationary gravitational field is

� (3.110)

where in our notation ηik is the Lorentz tensor with signature (+, −, −, −).
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For the Schwarzschild metric tensor ξik we write

�
(3.111)

Here rg = 2GV/c2 is the Schwarzschild gravitational radius of the mass m′.
Now we can rewrite the second term in the right-hand side of Eq. (3.109), using 

(3.110) and (3.111)

�

(3.112)
But u1 << u0 = γ and x1 = r.

We therefore obtain for Eq. (3.112)

�
(3.113)

Finally, we see that

� (3.114)

where U is the potential energy of the mass in the gravitational field of the mass m′.
Identification of the expression ( d/ds)( pixi) obtained from Eqs. (3.107) and 
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which gives

or

�
(3.116)

where Т is the kinetic energy of the particle m and Е = U + T is its total energy.
Equations (3.116) are known as classical Jacobi’s virial equations, and the ex-

pression (3.109) represents its relativistic analogue for asymptotically flat space–
time.

3.9  �Universality of Jacobi’s Virial Equation for 
Description of the Dynamics of Natural Systems

It follows from this derivation of Jacobi’s virial equation that it appears to be a uni-
versal mathematical expression for consideration of the dynamics of celestial bod-
ies described by equations of motion for a wide range of existing physical models. 
The derived equation represents not only formal mathematical transformation of 
the initial equations of motion. Physical quintessence of mathematical transforma-
tion of the equations of motion involves change of the vector forces and moment 
of momentums by the volumetric forces or pressure and the oscillation of the in-
teracted mass particles (inner energy) expressed through the energy of oscillation 
of the polar moment of inertia of a body. Here the potential (kinetic) energy and 
the polar moment of inertia of a body have a functional relationship and within the 
period of oscillation are inversely changed by the same law. Moreover, as it was 
demonstrated in Sect. 2 of Chap. 2. and will be shown in Chap. 6, the virial oscilla-
tions of a body represent the main part of the body’s kinetic energy, which is lost in 
the hydrostatic equilibrium model. The change of the vector forces and moment of 
momentums by the force pressure and the oscillation of the interacting mass parti-
cles disclose the physical meaning of the gravitation and mechanism of generation 
of the gravitational and electromagnetic energy and their common nature, which is 
considered in Chap. 6. The most important advantage given by Jacobi’s virial equa-
tion, is its independence from the choice of the co-ordinate system, transformation 
of which, as a rule, creates many mathematical difficulties.

By averaging for a uniform system the generalized virial equation ̈ = 2E − U ,  
when the first derivative over the polar moment of inertia Ф acquires constant val-
ue, it becomes the classical virial theorem 2Е = U, or −U = 2Т, which expresses the 
condition of the hydrostatic equilibrium being in the outer force field and without 
kinetic energy of oscillations of the interacting particles.

The starting point for derivation of the virial theorem is the particle momentum. 
By Newton’s definition this value “is a certain measure determined proportionally 

̈ = U + 2T ,

̈ = 2E − U ,
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to the velocity and the mass”. This value is defined or it is found experimentally. All 
the other force parameters are obtained by transformation of the initial momentum 
and those actions are explained by physical interaction of the mass particles, which 
are the carrier of the momentum. In fact, we recognize the momentum to be “in-
nate”, according to Newton’s terminology, value, i.e. the hereditary value. Under 
the “innate” value Newton understood “both the resistance and the pressure of the 
mass” and finally the effect acquires its status of the inertial force. But the essence 
does not change, because the momentum appears together with the mass. Thus, the 
circle of the philosophical speculations is locked by the momentum, i.e. by the mass 
and its oscillation. All other attributes of the motion are formed by mathematical 
transformations.

One more mainly physical problem that was solved in derivation in this chapter 
of Jacobi’s virial equation by mathematical transformations is an understanding of 
the nature and dynamical effects of the gravitational interaction of mass particles 
for a continuous body. Contrary to the interaction of two bodies presented by mass 
points, when a dynamical effect is developed in the orbital motion by vector force 
and angular momentum, the dynamical effect of the interacting mass particles of 
the continuous body is developed in the form of volumetric pressure and volumetric 
oscillation. The integral effect of the mass interaction is expressed by oscillation 
of the polar moment of inertia. In the next chapter we consider solution of Jacobi’s 
virial equation.

3.9 Universality of Jacobi’s Virial Equation for Description of the Dynamics
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In Chap. 3 we derived Jacobi’s virial equation of dynamical equilibrium in the 
framework of various physical models which are used for describing the dynam-
ics of natural systems. We showed that, instead of the traditional description of a 
system in co-ordinates and velocities, the problem of dynamics can be studied from 
the position of an external observer. In this case the system as a whole is described 
by a compact and elegant equation and is characterized by integral (volumetric) pa-
rameters. Such a description of the integral equation does not depend on the choice 
of the frame of reference. The external observer can estimate by observations only 
some moments of distribution of mass density, i.e. total mass and energy of a sys-
tem, which are its integral characteristics. Moreover, in order to solve the problem 
of a body’s motion in the framework of its dynamical equilibrium, we invoked the 
relationship between its force function and the polar moment of inertia, which is 
the source motion. This relationship reveals the nature of the gravitational energy. 
We also succeeded in reanimating the lost kinetic energy and obtaining both an 
equation of dynamics and an equation of dynamical equilibrium in the form of the 
oscillating motion during each period of time and within the whole duration of the 
system’s evolution.

The problem is now to find the general solution of Jacobi’s virial equation rela-
tive to oscillation and rotation of a body and to apply the solution to study of the 
Earth’s dynamics. This application is not restricted only by the Earth’s dynamics. 
The results are also valid for studying the Sun, the Moon and other celestial bod-
ies.

In this chapter we show that Jacobi’s virial equation provides, first of all, a solu-
tion for the models of natural systems, which have explicit solutions in the frame-
work of the classical many-body problem. We shall give parallel solutions for both 
the classical and dynamical approaches, and in doing so we shall show that, with the 
dynamical approach, the solution acquires a new physical meaning. We shall also 
consider a general case of the solution of Jacobi’s virial equation for conservative 
and dissipative systems.

V. I. Ferronsky, S. V. Ferronsky, Dynamics of the Earth, 
DOI 10.1007/978-90-481-8723-2_4, © Springer Science+Business Media B.V. 2010

Chapter 4
Solution of Jacobi’s Virial Equation  
for Conservative Systems
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4.1  �Solution of Jacobi’s Virial Equation  
in Classical Mechanics

The many-body problem is known to be the key problem in classical mechanics and 
especially in celestial mechanics. A particular example of this is the unperturbed 
problem of Keplerian motion, when the system consists of only two material points 
interacting by Newtonian law. The explicit solution of the problem of unperturbed 
Keplerian motion permits the many-body problem to be solved with some approxi-
mation by varying arbitrary constants. In this case the problem of dynamics, for 
example that of the Solar System, is transferred into the solution of the problem of 
dynamics of nine pairs of bodies in each of which one body is always the Sun and 
the second is each of the nine planets forming the system. Considering each planet-
sun sub-system, the influence of the other eight planets of the system is taken into 
account by introducing the perturbation function. By the virial approach we can 
obtain for the Sun one characteristic period of circulation with respect to the center 
of mass of the system which will not coincide with any period of the planets. The 
dynamical approach evidences that the planet’s orbital motion is performed by the 
central body, i.e. by the Sun, by the energy of its outer force field or by the field of 
the pressure. Each planet interacts with the solar force field by the energy of its own 
outer force field. The planet’s orbit is the certain curve of its equilibrium motion 
which results from the two interacting fields of pressure. The planet’s own oscilla-
tion and rotation perform by action of the inner fields of pressure.

Following these brief physical comments on the dynamical equilibrium motion 
of a planet, we now present two methods of solving the Keplerian problem: the 
classical and the integral.

4.1.1  �The Classical Approach

The traditional way of solving the unperturbed Keplerian problem is excellently de-
scribed in the university courses for celestial mechanics found in (Duboshin, 1978). 
Here we present only the principle ideas. The method consists in transforming the 
two-body problem described by the system of equations (3.10) into the one-body 
problem using six integrals of motion of the center of mass (3.13). The system of 
equations obtained is sixth order and expresses the change of barycentric co-ordi-
nates of one point with respect to the center of mass of the system as a whole. Let 
us write it in the form

� (4.1)

ẍ = −
µx

r3
,

ÿ = −
µy

r3
,

z̈ = −
µz

r3
,
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where μ is the constant depending on the number of the point and for which the 
second point is equal to

We then pass on from that Cartesian system of co-ordinates OXYZ to orbital ξ η ζ, 
using first integrals of the system of equations (4.1). Those are three integrals of 
the area,

� (4.2)

the energy integral,

� (4.3)

and the Laplacian integrals,

� (4.4)

As these seven integrals are not independent, we conclude that they cannot form a 
general solution of the system (4.1). In fact there are two relations for these inte-
grals:

showing that only five of them are independent. But the last integral needed can be  
found by simple quadrature. Using these integrals we can pass on to the system of 
orbital co-ordinates Оξηζ using the transformation relations (see Fig. 4.1):

� (4.5)

µ =
Gm3

1

(m1 + m2)
2 .

yż − zẏ = c1,
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−
µy

r
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The equation of the curve along which the point moves in accordance with (4.1) has 
the simplest form in the system of initial co-ordinates. The equation is

� (4.6)

Finally, introducing the polar orbital co-ordinates r and v, which are related to the 
rectangular orbital co-ordinates ξ and η by the expressions (see Fig. 4.2)

and using the integral of areas

ζ = 0,

µr = C2 − f ξ.

ξ = r cosv and η = r sinv,

r2v = C,

Fig. 4.1   Transition from 
Cartesian co-ordinate system 
OXYZ to orbital Оξηζ
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we come to the equation

� (4.7)

The solution of Eq. (4.7) gives the change of function v with respect to time. Repeti-
tion of the transformation in the reverse order leads to solution of the problem. In 
doing this, we obtain the expression for the change of co-ordinates of the material 
point with respect to the initial data 10, 10, 10, 20, 20, 20, ξ̇ 10, η̇10, ζ̇10, ξ̇20,  η̇20, 
ζ̇20. It is remarkable that if the total energy (4.3) has negative value, then the solution 
of Eq. (4.7) leads to the Keplerian equation

� (4.8)

where the function v is related to the variable Е′ by the expression

and

Because energy by definition is the property to do work (motion) and can be only 
a positive value, then the physical meaning of negative total energy which de-
fines the elliptic orbit of a body moving in the central field of the two-body prob-
lem should be revealed. In the presented solution of the two-body problem, the 
left-hand side of the energy integral (4.3) expresses the kinetic energy and the 
right-hand side means the potential energy of the mass interaction. The integral 
of energy (4.3) as a whole, in the co-ordinates and in the velocities, represents the 
averaged virial theorem, where the potential energy has formally a negative value. 
Here the physical meaning of the total energy determination consists in compari-
son of magnitude of the potential and kinetic energy. A negative value of the total 
energy means that the potential energy exceeds the kinetic one by that value. As it 
follows from analysis of the inner force field of a self-gravitating body presented 
in Chap. 2, the potential energy exceeds the kinetic one only in the case of non-
uniform distribution of the mass density and cannot be less than it. In the case of 
equality of both energies the total potential energy is realized into oscillating mo-
tion. The excited part of the potential energy is used for rotation of the masses and 
for the dissipation. The last case is discussed in Chap. 6.
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4.1.2  �The Dynamic (Virial) Approach

Let us consider the solution of the problem of unperturbed motion of two material 
points on the basis of Jacobi’s virial equation which in accordance with Eq. (3.23) 
is written in the form

where Е0 = Т0 + U = const is the total energy of the system in a barycentric co-ordi-
nate system;

The Jacobi function Ф0 is expressed by (3.22):

and the potential energy U in accordance with (3.9) is

It is easy to see that between the Jacobi function Ф0 and the potential energy U ex-
ists the relationship

� (4.9)

where μ is the generalized mass of the two bodies; m is the total mass of the system; 
В is a constant value.

The relationship (4.9) is remarkable because it is independent of the initial data, 
i.e. of its co-ordinates and velocities. Being an integral characteristic of the system 
and dependent only on the total mass and the generalized mass of the two points, the 
relationship permits Jacobi’s virial equation to be transformed to an equation with 
one variable as follows:

� (4.10)

We consider the solution of Eq. (4.10) for the case when total energy Е0 has negative 
value. Introducing А = −2Е0 > 0, equation (4.10) can be rewritten:

� (4.11)
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2
.
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̈0 = 2E0 +
B
√
0
.

̈0 = −A+
B
√
0
.
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We apply the method of change of variable for solution of Eq. (4.11) and show that 
partial solution of two linear equations (Ferronsky et al., 1984b):

�
(4.12)

� (4.13)

which include only two integration constants, is also the solution of Eq. (4.11).
We now introduce the independent variable λ into Eqs. (4.12) and (4.13), where 

primes denote differentiation with respect to λ. Note that time here is not an inde-
pendent variable. This allows us to search for the solution of two linear equations 
instead of solving one non-linear equation. The solution of Eqs. (4.12) and (4.13) 
can be written in the form

� (4.14)

� (4.15)

Let us prove that the partial solution (4.14) and (4.15) differential equations (4.12) 
and (4.13) is the solution of Eq. (4.10) that is sought. For this purpose we express 
the first and second derivatives of the function 

√
0  with respect to λ through cor-

responding derivatives with respect to time using Eq. (4.15). It follows from (4.15) 
that

� (4.16)
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√
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� (4.17)
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and taking into account (4.17), we can write

The second derivative can be written analogously:

� (4.18)

Putting Eq. (4.18) into (4.12), we obtain

Dividing the above expression by 
√
0 /A , we can finally write

This shows that the partial solution of the two linear differential equations (4.12) 
and (4.13) appears to be the solution of the non-linear equation (4.11).

4.2  �Solution of the n-Body Problem in the Framework 
of a Conservative System

After solving Jacobi’s virial equation for the unperturbed two-body problem, we 
come to dynamics of a system of n material particles where n → ∞.

Let us assume that an external observer studying the dynamics of a system of 
n particles in the framework of classical mechanics has the following information. 
He has the mass of the system, its total and potential energy and can determine the 
Jacobi function and its first derivative with respect to time in any arbitrary moment. 
Then he can use Jacobi’s virial equation (4.9) and, making only the assumption 
needed for its solution that |U |

√
0 = B = const,  may predict the dynamics of the 

system, i.e. the dynamics of its integral characteristics at any moment of time.
If the total energy Е0 of the system has negative value, the external observer can 

immediately write the solution of the problem of the Jacobi function change with 
respect to time in the form of (4.14) and (4.15):
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where А = −2Е0; ε and ψ are constants depending on the initial values of the Jacobi 
function 0 and its first derivative ̇0 at the moment of time t0.

Let us obtain the values of constants ε and ψ, in explicit form expressed through 
the values 0 and ̇0 at the initial moment of time t0. For convenience we introduce 
a new independent variable φ, connected to λ by the relationship λ − ψ = φ. Then 
Eqs. (4.14) and (4.15) can be rewritten:

� (4.19)

� (4.20)

Using Eq. (4.19) we write the expression for φ:

� (4.21)

and taking into account the equality

substituting Eq. (4.21) into the expression

The last equation can be rewritten finally in the form

� (4.22)

Equation (4.22) allows us to determine the first constant of integration ε as a func-
tion of the initial data 0  and ̇0  at t = t0. Solving equation (4.22) with respect to 
ε after simple algebraic transformation, we obtain

� (4.23)

The second constant of integration ψ can be expressed through the initial data after 
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Eq. (4.21). Defining

we obtain

�

(4.24)

The physical meaning of the integration constants ε, τ, and the parameter 
Tv = 8πB/(2A)3/2  can be understood after the definitions

and rewriting Eqs. (4.19) and (4.20) in the form

� (4.25)

� (4.26)

where M = n(t − τ).
The value 

√
0  draws an ellipse during the period of time Тv  = 8πB/(2A)3/2 (see 

Fig. 4.3). The ellipse is characterized by a semi-major axis а equal to В/А and by the 
eccentricity ε which is defined by expression (4.23). In the case considered, where 
E0 < 0, the value ε is changed in time from 0 to 1. The value τ characterizes the mo-
ment of time when the ellipse passes the pericenter.

t −
4B

(2A)3/2
ψ = τ ,

−τ =





4B

(2A)3/2



arccos
1− A

B

√
0

ε

−ε

1−


1− A
B

√
0

ε

2


− t





|t=t0 = const.

Tv =
8πB

(2A)3/2
,

n =
2π

Tv
=

(2A)3/2

4B
,

a =
B

A


0 = a (1− ε cosϕ),

M = ϕ − ε sinϕ,

Fig. 4.3   Changes of the 
Jacobi function over time

α

0

0 τ τ τ +2T

t
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Let us obtain explicit expressions with respect to time for the functions 
√
0 , 

 and ̇0 . For this purpose we write Eq. (4.24) in the form of a Lagrangian:

� (4.27)

It is known (Duboshin, 1978) that by application of Lagrangian formulas we can 
write in the form of a series the expressions for the root of the Lagrange equation 
(4.27) and for the arbitrary function f which is dependent φ:

�
(4.28)

�

(4.29)

Using Eq. (4.29), we write expressions for cos φ, cos2 φ and sin φ in the form of a 
Lagrangian series of parameter ε power:

�

(4.30)

�

(4.31)

�

(4.32)

F(ϕ) = ϕ − ε sinϕ −M = 0.

ϕ =
∞

k=0

εk−1

k!
dk−1

dM k−1


sin k M


= M + ε sinM +

ε2

1 · 2
d

dM


sin 2 M


+ · · · ,

f (ϕ) =
∞

k=0

εk−1

k!
dk−1

dM k−1


f (M )sin k M


= f (M )+ εf (M )sinM

+
ε2

1 · 2
d

dM


f (M )sin 2 M


+ · · · .

cosϕ =
∞

k=0

εk−1

k

dk−1

dM k−1
[(−1)sinM sin k M ] = cosM + ε(−1)sinM sin (M )

+
ε2

1 · 2
d

dM
[(−1)sin (M )sin 2 M ]+ · · · = cosM −

ε

2
+

ε

2
cos2M

−
3

4
ε3 cosM +

3

8
ε2 cos3M + · · · .

cos 2ϕ =
∞

k=0

εk−1

k!
dk−1

dM k−1
[(−2)sinM cosM sin k M ] = cos 2 M

+ ε(−2)sinM cosM sinM +
ε2

1 · 2
d

dM
[(−2)sinM cosM sin 2 M ]+ · · ·

= cos 2 M − 2ε sin 2 M cosM +
ε2

2
(−2)(3sin 2 M cos 2 M − sin 4 M )+ · · ·

sinϕ =
∞

k=0

εk−1

k!
dk−1

dM k−1
[cosM sinM ] = sinM + ε cosM sinM

+
ε2

1 · 2
d

dM
[cosM sin 2 M ]+ · · · = sinM + ε cosM sinM

+
ε2

1 · 2
[2sinM cos 2 M − sin 3 M ]+ · · · .
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We write the expressions for 
√
0,0, ̇0  using Eqs. (4.25) and (4.26) in the 

form

� (4.33)

� (4.34)

� (4.35)

Substituting into (4.33) to (4.35) the expressions for cos φ, cos2 φ and sin φ in the 
form of the Lagrangian series (4.30) to (4.32) we obtain

�

(4.36)

�

(4.37)

�

(4.38)

The series of equations (4.36) to (4.38) obtained are put in order of increased power 
of parameter ε and are absolutely convergent at any value of М in the case when the 
parameter ε satisfies the condition

� (4.39)

where ε  is the Laplace limit.
In some cases it is convenient to expand the values 

√
0,0, ̇0 in the form of 

a Fourier series, using conventional methods (see, for example, Duboshin, 1978). 
Figure 4.4 demonstrates the changes of 

√
0  in time at ε = 1.


0 = a(1− ε cosϕ),

0 = a2 �
1− 2ε cosϕ + ε2 cos 2ϕ


,

̇0 =


2

A
εBsinϕ.


0 =

B

A


1+

ε2

2
+

−ε +

3

8
ε3


cosM −

ε2

2
cos2M −

3

8
ε3 cos3M + · · ·


,

0 =
B2

A2


1+

3

2
ε2 +


−2ε +

ε3

4


cosM −

ε2

2
cos2M −

ε3

4
cos3M + · · ·


,

̇0 =


2

A
εB


sinM +

1

2
ε sin2M +

ε2

2
sinM

�
2cos 2M − sin 2M


+ · · ·


.

ε < ε = 0.6627 . . . ,

Fig. 4.4   Changes of the 
value 

√
0  in time at ε = 1

0

0
τ+T τ+2T

t
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It is also possible to consider the case solution of Jacobi’s virial equation for 
Е0 = 0 and Е0 > 0. The reader can find here without difficulty a full analogy of these 
results as well as the solution of the two-body problem.

4.3  �Solution of Jacobi’s Virial Equation 
in Hydrodynamics

Let us consider the solution of the problem of the dynamics of a homogeneous 
isotropic gravitating sphere in the framework of traditional hydrodynamics and the 
virial approach we have developed.

4.3.1  �The Hydrodynamic Approach

The sphere is assumed to have radius R0 and be filled by an ideal gas with ρ0. We 
assume that at the initial time the field of velocities which has the only component 
is described by equation

� (4.40)

where u is the radial component of the velocity of the sphere’s matter at the distance r 
from the center of mass; H is independent of the quantity r and equal to H0 at time t0.

We also assume that the motion of the matter of the sphere goes on only under 
action of the forces of mutual gravitational interaction between the sphere parti-
cles. In this case the influence of the pressure gradient is not taken into account, 
assuming that the matter of the sphere is sufficiently diffused. Then the symmetric 
spherical shells will move only under forces of gravitational attraction and will not 
coincide. In this case the mass of the matter of any sphere shell will keep its constant 
value and the condition (4.40) will be satisfied at any moment of time, and constant 
Н should be dependent on time.

Under those conditions the Eulerian system of equations (3.35) can be written 
in the form

� (4.41)

where ρ( t) is the density of the matter of the sphere at the moment of time t; u is the 
radial component of the velocity of matter at distance r from the sphere’s center; UG 
is the Newtonian potential for the considered point of the sphere.

The expression for the Newtonian potential UG (3.36) can be written as follows:

� (4.42)

u = H0r,

ρ
∂u

∂t
+ ρ(u)u = ρ

∂U G

∂r
,

UG = G
4

3
πρr2,
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and the continuity equation will be

� (4.43)

Within the framework of the traditional approach, the problem is to define the 
sphere radius R and the value of the constant Н at any moment of time, if the radius 
R0, density ρ0 and the value of the constant Н0 at the initial moment of time t0 are 
given. If we know the values Н( t) and R( t), we can then obtain the field of velocities 
of the matter within the sphere which is defined by Eq. (4.40), and also the density 
ρ of matter at any moment of time, using the relationship

Hence the formulated problem is reduced to identification of the law of motion of a 
particle which is on the surface of the sphere and within the field of attraction of the 
entire sphere mass m = 4/3πρ0R0

3.
The equation of motion for a particle on the surface of the sphere, which follows 

from Eq. (4.41) after transforming the Eulerian co-ordinates into a Lagrangian, has 
the form

� (4.44)

It is necessary to determine the law of change of R( t), resolving Eq. (4.44) at the 
initial data:

� (4.45)

We reduce the order of Eq. (4.44). To do so we multiply it by dR/dt:

and integrate with respect to time:

After integration we obtain

∂ρ

∂t
+ ρ

∂U

∂r
= 0.

4

3
πR3

0ρ0 =
4

3
πR3ρ = m.

d2R

dt2
= −G

m

R2
.

R(t0) = R0,

dR

dt


t=t0

= H0R0.

dR

dt

d2R

dt2
= −

dR

dt

Gm

R2

t

t0

1

2

d

dt

�
Ṙ
2 =

t

t0

d

dt


Gm

R


dt.

1

2
Ṙ2 −

1

2
Ṙ2

0 =
Gm

R
−

Gm

R0
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or

� (4.46)

where the constant k is determined as

�
(4.47)

Here the quantity Ω = ρ0/ρcr, where ρcr = 3H0
2/8πG.

Note that Eq. (4.46) obtained after reduction of the order of the initial equation 
(4.44) is in its substance the energy conservation law. Equation (4.46) permits the 
variables to be divided and can be rewritten in the form

� (4.48)

The plus sign before the root is chosen assuming that the sphere at the initial time 
is expanding, i.e., Н0 > 0.

The differential equation (4.46) has three different solutions at k = 0, k > 0 and 
k < 0 depending on the sign of the constant k, which is in its turn defined by the 
value of the parameter Ω at the initial moment of time. First we consider the case 
when k = 0 which relates, by analogy with the Keplerian problem, to the parabolic 
model at k = 0. Equation (4.46) is easily integrated and for the expression case, i.e., 
Ṙ > 0, we obtain

from which it follows that

or

� (4.49)

1

2
Ṙ2 =

Gm

R
+ k ,

k =
1

2
Ṙ2

0 −
Gm

R0
=

1

2
H 2

0 R2
0 − G

4π

3
ρ0

R3
0

R0

=
1

2
H 2

0 R2
0


1−

8π

3

Gρ0

H 2
0


=

1

2
H 2

0 R2
0 [1−] = const

R

R0

dR


2Gm
R + 2k

=
t

t0

dt.

Ṙ2 =
2Gm

R
,

Ṙ =
(2Gm)1/2

R1/2
,

R1/2dR = (2Gm)1/2dt

2

3
R3/2 = (2Gm)1/2 t + const.
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We choose as initial counting time t  = 0, the moment when R = 0. In this case the 
integration constant disappears:

� (4.50)

The density of the matter changes in accordance with the law

� (4.51)

and the quantity Н( t), as a consequence of (4.50), has the form

� (4.52)

For the case when k > 0, which corresponds to so-called hyperbolic motion, the 
solution of Eq. (4.46) can be written in parametric form (Zeldovich and Novikov, 
1967)

� (4.53)

where the constants of integration in (4.53) have been chosen so that t = 0, η = 0 at 
R = 0.

Finally we consider the case when k < 0, which corresponds to elliptic motion. At 
k < 0 the expansion of the sphere cannot continue for unlimited time and the expan-
sion phase should be changed by attraction of the sphere.

The explicit solution of Eq. (4.46) at k < 0 can be written in parametric form 
(Zeldovich and Novikov, 1967)

� (4.54)

The maximum radius of the sphere is determined from Eq. (4.46) on the condition 
dR/dt = 0 and equals

� (4.55)

The time needed for expansion of the sphere from R0 = 0 at t0 = 0 to Rmax is

R =


9

2
Gm

1/3

t2/3.

ρ(t) =
m

4
3πR3

=
1

6πGt2
,

H (t) =
Ṙ

R
=

2

3

1

t
.

R =
Gm

2k
(chη − 1),

t =
Gm

(2k)3/2
(shη − η),

R =
Gm

2|k|
(1− chη),

t =
Gm

(2|k|)3/2
(η − shη).

Rmax =
Gm

|E|
.
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� (4.56)

So the sphere should make periodic pulsations with period Тр equal to

� (4.57)

The considered solution has important cosmologic applications.

4.3.2  �The Virial Approach

We shall limit ourselves by formal consideration of the same problem in the frame-
work of the condition of the dynamical equilibrium of a self-gravitating body based 
on the solution of Jacobi’s virial equation, which we discussed earlier.

As shown in Chap. 3, Jacobi’s virial equation (3.57), derived from Eulerian 
equations (3.35), is valid for the considered gravitating sphere. It was written in 
the form

� (4.58)

where Ф is the Jacobi function for a homogeneous isotropic sphere and is defined 
by

� (4.59)

The potential gravitational energy of the matter of the sphere is expressed as

� (4.60)

The total energy of the sphere Е will be equal to the sum of the potential U and 
kinetic Т energies.

The kinetic energy Т is expressed as

�

(4.61)

tmax =
πGm

(2|k|)3/2 .

Tp =
2πGm

(2|k|)3/2 .

̈ = 2E − U ,

 =
1

2

R

0

4πr2ρr2dr =
2πρR5

5
=

3

10
mR2.

U = −4πG

R

0

rρ(r)m(r)dr = −
16π2

15
Gρ2R2 = −

3

5
G

m2

R
.

T =
1

2

R

0

4πu2ρr2dr =
1

2

R

0

4πH 2r2ρr2dr =
4πρH 2R5

10
=

3

10
mH 2R2.
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For a homogeneous isotropic gravitating sphere, the constancy of the relation-
ship between the Jacobi function (4.59) and the potential energy (4.60) can be 
written:

� (4.62)

where В has constant value because of the conservation law of mass m of the con-
sidered sphere.

The total energy Е of the sphere also has a constant value:

� (4.63)

Then, if the total energy of the sphere has a negative value, Jacobi’s virial equation 
can be written in the form:

� (4.64)

Let us consider the conditions under which the total energy of the system will have 
a negative value. For this purpose we write it explicitly:

�
(4.65)

It is clear from Eq. (4.65) that the total energy Е has a negative value, when ρ > ρc, 
where ρc = 3Н 2/8πG.

The general solution of Eq. (4.64) has the form of Eqs. (4.14) and (4.15):

� (4.66)

� (4.67)

where ε and ψ are constants dependent on the initial values of the Jacobi function 
Ф0 and its first derivative ̇0 at the moment of time t0. The constants ε and ψ are 
determined by Eqs. (4.23) and (4.24) accordingly.

If we express all the constants in Eq. (4.23):

� (4.68)

through mass m of the system, it is not difficult to see that

|U |
√
 = B =

3

5
G

m2

R


3

10
mR2 =

1
√

2


3

5

3/2

Gm3/2,

E = T + U =
A

2
.

̈ = −A+
B
√

.

E = T + U = −
16

15
π2Gρ2R5 +

2πρH 2R5

5
=

2

5
πρH 2R5


1−

8πGρ

3H 2


.


0 =

B

A
[1− ε cos (λ− ψ)],

t =
4B

(2A)3/2
[λ− ε sin (λ− ψ)],

ε =


1−
A

2B2


−̇0 + 4B


0 − 2A0

t=t0 = const.

−̇2
0 + 4B


0 − 2A0 = 0.
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Then the constant ε will be equal to zero. Hence the solutions (4.28) and (4.29) coin-
cide with the solution (4.54), which was obtained in the framework of the traditional 
hydrodynamic approach. In this case the period of eigenpulsations of the Jacobi 
function (the polar moment of inertia) of the sphere Т = 8πR/(2A)3/2 will be equal to 
the period of change of its radius Тр = 2πGm/(2|k|)3/2 obtained from Eq. (4.54).

4.4  �The Hydrogen Atom as a Quantum Mechanical 
Analogue of the Two-Body Problem

Let us consider the problem concerning the energy spectrum of the hydrogen atom, 
which is a unique example of the complete conformity of the analytical solution 
with experimental results. The problem consists of a study of all the forms of mo-
tion using the postulates of quantum mechanics and based on the solution of Jacobi’s 
virial equation.

The classical Hamiltonian in the two-body problem is written as

� (4.69)

where

which after separation of the center of mass can be transformed into the form

� (4.70)

where r = |r̄1 − r̄2|  is the distance between two particles and

We obtain the Hamiltonian operator for the quantum mechanical two-body problem 
through changing the pulses and radii by the corresponding operators with the com-
munication relations

H =
p̄2

1

2m1
+

p̄2
2

2m2
+ U (|r̄1 − r̄2|),

p̄1 =
∂H

∂ ̇r1

= m1 ˙̄r1,

p̄2 =
∂H

∂ ̇r2

= m2 ˙̄r2,

H =
P̄2

2M
+

p̄2

2m
+ U (r),

P̄ = M ˙̄R; p̄ = m ˙̄r; M = m1 + m2;

R̄ =
m1r̄1 + m2r̄2

m1 + m2
; m =

m1m2

m1 + m2
.


p̂i, p̂k


= −ih̄δik ,


p̂i, r̂k


= −ih̄δik .
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Then

The wave function u(r̄1, r̄2) = ϕ(R̄)(r̄) , which satisfies the Schrödinger equation

describes the motion of the inertia center (the free motion of the particle of mass 
mc is described by the function and the motion of the particle of mass m in the U( r) 
is described by the wave function (r̄) ). Subsequently we consider only the wave 
function of the motion of particle m.

The Schrödinger equation

written here for the stationary state in a central symmetrical field in spherical co-
ordinates, has the form

�
(4.71)

Using the Laplacian operator ̂ 2:

we obtain

The operators ̂ 2 and ̂z(̂z = −i∂/∂ϕ) commute with the Hamiltonian Ĥ (r) and 
therefore there are common eigenfunctions of the operators Ĥ ,  ̂ 2  и ̂z . We con-
sider only such solutions of Schrödinger equations. This condition determines the 
dependence of the function Ψ on the angles

where the quantity Yk (,ϕ)  is determined by the expression

Ĥ = −
h̄2

2M
R −

h̄2

2m
r + Û (r).

Ĥu = εu,

 +
2m

h̄2


E − U (r)


 = 0

1

r2

∂

∂r


r2 ∂

∂r


+

1

r2


1

sin

∂

∂


sin

∂

∂


+

1

sin 2 

∂2

∂ϕ2



+
2m

h̄2


E − U (r)


 = 0.

̂ 2 =


1

sin

∂

∂


sin

∂

∂


+

1

sin 2 

∂2

∂ϕ2


,

h̄2

2m


−

1

r2

∂

∂r


r2 ∂

∂r


+
̂ 2

r2



+ U (r) = E.

(r,,ϕ) = R(r)Yk (,ϕ),

4 Solution of Jacobi’s Virial Equation for Conservative Systems



117

and Pk
 (cos) is the associated Legendre polynomial, which is

Since

we obtain for the radial part of the wave function R( r)

� (4.72)

Equation (4.72) does not contain the value z = m, i.e. at the given  the energy 
level Е corresponds to 2+ 1 states differing by the value z.

The operator

is equivalent to the expression

and thus it is convenient to make the change of variables, assuming that

So that Eq. (4.43) can be rewritten in the form

� (4.73)

We now consider the demand following from the boundary conditions and related 
to the behavior of the wave function X( r). At r → 0 and the potentials satisfying the 
condition

� (4.74)

Yk (,ϕ) =
1
√

2π
eikϕ(−1)k i


(2+ 1)(− k)!

2(+ k)!
Pk
 (cos),

Pk
 (cos) =

1

2!
sin k

dr+

d cosr+ (cos2− 1).

̂2Yk = (+ 1)Yk ,

1

r2

∂

∂r


r2 dR

dr


−

(+ 1)

r2
R+

2m

h̄2 [E − U (r)]R = 0.

1

r2

∂

∂r


r2 d

dr



1

r

d2

dr2
(rR)

X (r) = rR(r).

d2X

dr2
−

(+ 1)

r2
X +

2m

h̄2 [E − U (r)]X = 0.

lim
r→0;

U (r)r2 = 0,
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only the first two terms play an important role in Eq. (4.73). X( r) ~ rv and we ob-
tain

This equation has roots v1 = + 1 and v2 = −.
The requirement of normalization of the wave function is incompatible with the 

values v = − at  = 0 because the normalization integral

will be divergent for the discrete spectrum, and the condition

does not hold for the continuous spectrum.
At  = 0 the boundary conditions are determined by the demand for the finite-

ness of the mean value of the kinetic energy which is satisfied only at v = 1. So, 
when the condition (4.74) is satisfied, then the wave function of a particle is every
where finite and at any 

Let us consider the energy spectrum and the wave function of the bounded states of 
a system of two charges. The bounded states exist only in the case of the attracted 
particles. Such a system defines the properties of the hydrogen atom and hydrogen-
like ions.

The equation for the radial wave function is

� (4.75)

where α = Ze2 is constant, characterizing the potential; е is the electron charge; Z is 
the whole number equal to the nucleus charge in the charge units.

The constants e2, m and ħ allow us to construct the value with the dimension of 
length

known as the Bohr radius, and the time

v(v − 1) = (+ 1).

∞

0

|X 2
r (r)dr|


(λ, ξ )(λ, X )dλ = δ(X − ξ )

X (0) = 0.

d2R

dt2
+

2

r

dR

dr
−
(+ 1)

r2
R+

2m

h̄2


E +

α

r


R = 0,

a0 =
h̄2

me2
= 0.529× 10−8cm

t0 =
h̄3

me4
= 0.242× 10−11sec.
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These quantities define the typical space and time scale for describing a system, and 
it is therefore convenient to use these units as the basic system of atomic units.

Equation (4.75) in atomic units (at Z = 1) takes the form

� (4.76)

At Е < 0 the motion is finite and the energy spectrum is discrete. We need the solu-
tions (4.76) quadratically integrable with r2. Let us introduce the specification

Equation (4.76) can be written as

� (4.77)

We find the asymptotic forms of the radial function R( r). At ρ → ∞ and omitting the 
terms ~ρ−1 and ~ρ−2 in (4.77), we obtain

Therefore at high values of ρ, R ∝ e±ρ/2. The normalization demand is satisfied only 
by R(ρ) ∝ e−ρ/2. The asymptotic forms at r → 0 have already been determined.

Substituting

Eq. (4.77) is reduced to the form

� (4.78)

To solve this equation in the limit of ρ = 0, we substitute ω( ρ) in the form of a power 
series

�
(4.79)

where λ = 2+ 2  and −v = −n+ + 1.

d2R
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+
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n
.

d2R
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+
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
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−

1

4
−
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ρ2


R = 0.

d2R

dρ2
=

R

4
.

R(ρ) = ρe−ρ/2ω(ρ),

ρ
d2ω

dρ2
+ (2+ 2− ρ)

dω

dρ
+ (n− − 1) ω = 0.

ω(ρ) = 1+ (0− v)

(0+ λ)
ρ + (0− v) (1− v)

(0+ λ) (1+ λ)

ρ2
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(0+ λ) (1+ λ) (2+ λ)

ρ3

3!
+ · · · ,
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At ρ → ∞, the function ω( ρ) should increase, but not faster than the limiting 
power ρ. Then ω( ρ) has to be a polynomial of v power. So, −n+ + 1 = −k ,  and 
n = + 1+ k(k = 0, 1, 2, . . . ) at a given value of . Hence, using the definition for 
n, we can find the expression for the energy spectrum

� (4.80)

The number n is called the principal quantum number. In general units it has the 
form

� (4.81)

This formula was obtained by Bohr in 1913 on the basis of the old quantum theory, 
by Pauli in 1926 from matrix mechanics, and by Schrödinger in 1926 by solving the 
differential equations.

Let us solve the problem of the spectrum of the hydrogen atom using the equa-
tion of dynamical equilibrium of the system. In Chap. 3 we obtained Jacobi’s virial 
equation for a quantum mechanical system of particles whose interaction is defined 
by the potential being a homogeneous function of the co-ordinates. This equation 
in the operator form is

� (4.82)

where ̂ is the operator of the Jacobi function, which, for the hydrogen atom, is 
written

� (4.83)

The Hamiltonian operator is
� (4.84)

and the operator of the function of the potential energy for the hydrogen atom is
� (4.85)

We solve the problem with respect to the eigenvalues of Eq. (4.82), using the main 
idea of quantum mechanics. For this we use the Schrödinger equation

and rewrite equation (4.82) in the form

� (4.86)

En = −
1

2n2
.

E = −Z2 me4

2h̄2n2
.

¨̂
 = 2Ĥ − Û ,

̂ =
1

2
mr̂ 2,

Ĥ = −
h̄2

2m
r + Û

Û = −
e2

r
.

Ĥ = E

ˆ̈ = 2E − Û.
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This equation includes two (unknown in the general case) operator functions ̂  and 
Û. In the case of the interaction, the potential is determined by the relation (4.85), 
and we can use a combination of the operators ̂ and Û in the form

� (4.87)

We now transform (4.86) into the form which was considered in classical mechan-
ics:

� (4.88)

Equation (4.88) is a consequence of Eq. (4.86) when the Schrödinger equation and 
the relationship (4.87) are satisfied. Its solution for the bounded state, i.e. when total 
energy Е is determined in parametric form, can be written

� (4.89)

�
(4.90)

where the parameter М is defined by the relation

� (4.91)

where ε and τ are integration constants and where 

Moreover, the solution can be written in the form of Fourier and Lagrange series. 
Thus, the expression (4.37) describes the expansion of the operator ̂ into a La-
grange series including the accuracy of ε3, and has the form

�

(4.92)
Using the general expression for the mean values of the observed quantities in quan-
tum mechanics
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and taking into account that the mean value of the Jacobi function of the hydrogen 
atom should be different from zero, we find that our system has multiple eigenfre-
quencies vn = nv0 with respect to the basic v0 which corresponds to the period

�
(4.93)

In accordance with the expression

� (4.94)

each of these frequencies corresponds to the energy level Еn of the hydrogen atom. 
We substitute the expression (4.93) for Tv into Eq. (4.94) and resolve it in relation 
to Еn:

� (4.95)

The expression obtained by Bohr follows from (4.95):

� (4.96)

This equation solves the problem.

4.5  �Solution of a Virial Equation in the Theory 
of Relativity (Static Approach)

We consider now the solution of Jacobi’s virial equation in the framework of the 
theory of relativity, showing its equivalence to Schwarzschild’s solution.

Let us write down the known expression for the radius of curvature of space-time 
as a function of mass density:

� (4.97)

where R is the curvature radius; ρ is the mass density; G is the gravitational constant 
and c is the velocity of light.

Equation (4.97) can also be rewritten in the form

� (4.98)
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If the product ρR2 in Eq. (4.98) is the Jacobi function (Ф = ρR2 is the density of the 
Jacobi function) then, from Т (4.98):

� (4.99)

and it follows that the Jacobi function is a fundamental constant for the Universe. 
(In general relativity, the spatial distance does not remain invariant. Therefore, in-
stead of this the Gaussian curvature is used, which has the dimension of the universe 
distance and is the invariant or, more precisely, the covariant.)

The constancy of the Jacobi function in this case reflects the smoothness of the 
description of motion in general relativity. The oscillations relative to this smooth 
motion described by Jacobi’s equation are the gravitational waves and horizons, in 
particular the collapse and all types of singularity up to the process of condensation 
of matter in galaxies, stars etc.

Now we can show that Schwarzschild’s solution in general relativity is equiva-
lent to the solution of Jacobi’s equation when ̈ = 0. Let us write the expression for 
the energy-momentum tensor

� (4.100)

In the corresponding co-ordinate system, we obtain

� (4.101)

where ρ = ρ(r) and p = p(r).
The independent field equations are written

� (4.102)

The expression for the metric is written in the form

� (4.103)

where

is the spatial element.
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In this case the expression for the volume occupied by the system is written

� (4.104)

It can be easily verified that the right-hand side of Eq. (4.104) coincides with solu-
tion (4.14) and (4.15) of the equation of virial oscillations (4.11) at ̈ = 0,  i.e.,

�

(4.105)

In fact, Eq. (4.105) is satisfied for

i.e.,

At ̈ = 0, the parameter of virial oscillations,

so the last condition is satisfied.
Schwarzschild’s solution is rigorous and unique for Einstein’s equation for a 

static model of a system with spherical symmetry.
Since this solution coincides with the solution of virial oscillations at the same 

conditions, the solutions (4.14) and (4.15) of Eq. (4.11), obtained in this chapter, 
should be considered rigorous. Thus we can conclude that the constancy of the 
product U

√
 in the framework of the static system model is proven. In Chap. 6 

we will come back to this condition and will obtain another proof of the same very 
important relationship which is applied for study of the Earth’s dynamics.
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In the previous chapter we have considered a number of cases of explicitly solved 
problems in mechanics and physics for the dynamics of an n-body system and have 
shown that all those classical problems have also explicit solution in the framework 
of the virial approach. But in the latter case, the solutions acquire a new physical 
meaning because the dynamics of a system is considered with respect to new pa-
rameters, i.e. its Jacobi function (polar moment of inertia) and potential (kinetic) 
energy. In fact, the solution of the problem in terms of co-ordinates and velocities 
specifies the changes in location of a system or its constituents in space. The so-
lution, with respect to the Jacobi function and the potential energy, identifies the 
evolutionary processes of the structure or redistribution of the mass density of the 
system. Moreover, the main difference of the two approaches is that the classi-
cal problem considers motion of a body in the outer central force field. The virial 
approach considers motion of a body both in the outer and in its own force field 
applying, instead of linear forces and moments, the volumetric forces (pressure) and 
moments (oscillations).

It appears from the cases considered that the existence of the relationship be-
tween the potential energy of a system and its Jacobi function written in the form

�
(5.1)

is the necessary condition for the resolution of Jacobi’s equation.
This is the only case when the scalar equation

is transferred into a non-linear differential equation with one variable in the form

� (5.2)

U
√
 = B = const.

̈ = 2E − U

̈ = 2E +
B
√

.
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It was shown in Chap. 4 that if the total energy of a system Е0 = −А/2 < 0, then the 
general solution for Eq. (5.2) can be written as

� (5.3)

where ε and ψ are integration constants, the values of which are determined from 
initial data using Eqs. (4.23) and (4.24).

Equation (5.2) was called the equation of virial oscillation because its solution 
discovers a new physical effect – periodical non-linear change of the Jacobi func-
tion and hence the potential energy of a system around their mean values deter-
mined by the virial theorem. Thus, in addition to the static effects determined by 
the hydrostatic equilibrium, in the study of dynamics of a system the effects, deter-
mined by a condition of dynamical equilibrium expressed by the Jacobi function, 
are introduced.

The equation of virial oscillations (5.2) reflects physics of motion of the interact-
ing mass particles of a body or masses of bodies themselves by the inverse square 
law. Its application opens the way to study the nature and the mechanism of gen-
eration of the body’s energy, which performs its motion, and to search the law of 
change for the system’s configuration, i.e. a mutual change location of particles or 
the law of redistribution of the mass density for the system’s matter during its oscil-
lations. This problem was considered earlier in our work (Ferronsky et al., 1987). 
We continue its study in the next chapter.

As described in Chap. 4, cases of solution of Eq. (5.2) relate to unperturbed con-
servative systems. But in reality, in nature all systems are affected by internal and 
external perturbations which, from a physical point of view, are developed in the 
form of dissipation or absorption of energy. In this connection, as shown in Chap. 3 
in the right-hand side of the equation of virial oscillations (5.2), an additional term 
appears which is proportional to the Jacobi function Ф (indicating the presence of 
gravitational background or the existence of interaction between the system parti-
cles in accordance with Hook’s law) and its first derivative ̇ depending on time t 
(indicating the existence of energy dissipation). All these and other possible cases 
can be formally described by a generalized equation of virial oscillations (3.34):

� (5.4)

where X
�
t,, ̇


 is the perturbation function, the value of which is small in com-

parison with the term B/
√
 = const.

In this chapter we consider general as well as some specific approaches to the 
solution of Eq. (5.4) in the framework of different physical models of a system.
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5.1  �Analytical Solution of a Generalized Equation  
of Virial Oscillations

The equation of perturbed virial oscillations is generalized in the form

� (5.5)

where А  =  −2Е; В is constant; X
�
t,, ̇


 is the perturbation function which we 

assume is given and dependent in general cases on time t, the Jacobi function Ф and 
its first derivative ̇.

We consider two ways for analytical construction of the solution of Eq. (5.5). In 
addition, let the function X

�
t,, ̇


 in Eq. (5.5) depend on some small parameter е 

in relation to which the function can be expanded into absolutely convergent power 
series of the form

� (5.6)

Let the series be convergent in some time interval t absolute for all values of е 
which are satisfied to condition |e| < ē. Then Eq. (5.5) can be rewritten in the form

� (5.7)

We look for the solution of Eq. (5.7) also in the form of the power series of param-
eter е. For this purpose we write the function Ф( t) in the form of a power series, the 
coefficients of which are unknown:

� (5.8)

Putting (5.8) into (5.7), the task can be reduced to the determination of such func-
tions Ф( k)( t) which identically satisfy Eq. (5.7). In this case, the coefficient Ф(0)( t) 
becomes the solution of the unperturbed oscillation equation (5.2), which can be 
obtained from (5.7) by putting е  =  0.

One can consider the series (5.8) as a Taylor series expansion in order to deter-
mine all the other coefficients Ф( k)( t), i.e.,

� (5.9)
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Accepting the series (5.8) for introduction into Eq. (5.7), it becomes identical with 
respect to the parameter е. Thus we have justified the differentiation of the identity 
with respect to the parameter е several times assuming that the identity remains 
after repeated differentiation.

We next obtain

� (5.10)

where dX( k)/de is the total derivative of the function X( k) with respect to parameter 
е, expressed by

Now let е = 0 in (5.10). Then by taking into account (5.8) and (5.9), we obtain

� (5.11)

where

are known functions of time, since the solution of the equation in the zero approxi-
mation (unperturbed oscillation equation (5.3)) is known.

Carrying out differentiation of Eq. (5.7) with respect to parameter е for the sec-
ond, third and so on ( k − 1) times, and assuming after each differentiation that е = 0, 
we will step by step obtain equations determining second, third and so on approxi-
mations. It is possible to show that in each succeeding approximation the equation 
will have the same form and the same coefficient p1 as in Eq. (5.11). If so, the equa-
tion determining the functions Ф( k) and ̇(k) has the form

� (5.12)

where the function Хk depends on Ф(0), ̇(0),…, (k−1), ̇(k−1) , which were deter-
mined earlier and are the functions of t and unknown functions Ф(0) and ̇(0).

It is known that there is no general way of obtaining a solution for any linear dif-
ferential equation with variable coefficients, but in our case we can use the follow-
ing theorem of Poincaré (Duboshin, 1975). Let the general solution of the unper-
turbed virial oscillation equation be determined by the function Ф(0)  =  f( t, C1, C2), 
where C1 and C2 are, for instance, arbitrary constants ε and Ψ in the solution (5.3) 
of equation (5.2). Then, Poincaré’s theorem confirms that the function determined 
by the equalities
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satisfies the linear homogeneous differential equation reduced by omission of the 
right-hand side of Eq. (5.12).

Thus, the general solution of the linear homogeneous equation

has the form

� (5.13)

and the general solution of Eq. (5.12) can be obtained by the method of variation 
of arbitrary constants, i.e. assuming that C(k)

2  are functions of time. Then, using the 
key idea of the method of variation of arbitrary constants, we obtain a system of 
two equations:

� (5.14)

Solving this system with respect to Ċ(k)
1  and Ċ(k)

2  and integrating the expression 
obtained, we write the general solution of Eq. (5.12) as follows:

where

Thus, we can determine any coefficient of the series (5.8), reducing Eq. (5.7) into an 
identity, and therefore write the general solution of Eq. (5.5) in the form
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Let us consider the second way of approximate integration of the perturbed virial 
equation (5.5), based on Picard’s method (Duboshin, 1975). It is convenient to ap-
ply this method of integrating the equations which was obtained using the Lagrange 
method of variation of arbitrary constants.

We assume that the first integrals (4.23) and (4.24)

� (5.16)

� (5.17)

of the unperturbed virial oscillation equation (5.2) are also the first integrals of 
the perturbed oscillation equation (5.5). But constants ε and τ are now unknown 
functions of time. Let us derive differential equations which are satisfied by these 
functions, using the first integrals (5.16) and (5.17). For convenience, we replace 
the integration constant ε by С, using the expression

Now we rewrite Eq. (5.16) in the form

� (5.18)

Then using the main idea of the Lagrange method, after variation of the first inte-
grals (5.17) and (5.18) and replacement of ̈  by

we write

� (5.19)

� (5.20)

ε =


1−
A

2B2


−φ̇0 + 4B


φ0 − 2Aφ0


,

−τ =





4B

(2A)3/2



arccos
1− A

B

√
φ0

ε
− ε

1−


1− A
B

√
φ0

ε

2


− t






ε =


1−
AC

2B2
.

C = −̇2
0 + 4B


0 − 2A0.


−A+

B
√

+ X

�
t,, ̇



Ċ = −2̇X
�
t,, ̇


,

τ̇ = (, C)Ċ = −2̇X
�
t,, ̇


(, C),
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where

We now express Ф and ̇ in explicit form through С, τ and t, using, for example, the 
Lagrangian series (4.37) and (4.38)

�

(5.21)

�

(5.22)

Thus, taking into account Eqs. (5.21) and (5.22) for the functions Ф and ̇, Eqs. 
(5.19) and (5.20) can be rewritten as

� (5.23)

To solve the system of differential equations (5.23), we use Picard’s successive ap-
proximation method, obtained in the k-th approximation expressions for C( k) and τ( k) 
in the form

� (5.24)
 

�
(5.25)

where C(0) and τ(0) are the values of arbitrary constants C and τ at initial time t0, and 
k = 1, 2,….

(, C) =−
4B

(2A)3/2

d

dC



arccos
1− A

B

√



1− AC

2B2

−


1−
AC

2B2

1−




1− A

B

√



1− AC

2B2





2


.

(t) =
B2

A2


1+

3

2
ε2 +


−2ε +

ε3

4


cosM −

ε2

2
cos2M −

ε3

4
cos3M + · · ·


,

̇(t) =


2

A
εB


sinM +

1

2
εsin2M +

ε2

2
sinM

�
2cos2M − sin2M


+ · · ·


.

dC

dt
= F1(t, C, τ),

dτ

dt
= F2(t, C, τ).

C(k) = C(0) +
t

t0

F1
�
t, C(k−1), τ (k−1)


dt,

τ (k) = τ (0) +
t

t0

F2
�
t, C(k−1), τ (k−1)


dt,
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Then, in the limit of k → ∞, we obtain the solution of the system (5.23):

� (5.26)

Consider now two possible cases of the perturbation function behavior. First, as-
sume that the perturbation function Х does not depend explicitly on time. Then, 
since it is possible to expand functions Ф and ̇ into a Fourier series in terms of 
sine and cosine of argument М, the right-hand sides of the system (5.23) can also be 
expanded into a Fourier series in terms of sine and cosine of M.

Finally we obtain

� (5.27)

� (5.28)

where A0, Ak, Bk, a0, ak, bk are the corresponding coefficients of the Fourier series 
which are

C = lim
k→∞

C(k),

τ = lim
k→∞

τ (k).

dC

dt
=


A0 +
∞

k=1

(Ak coskM + Bk sinkM )


,

dτ

dt
=


a0 +
∞

k=1

(ak coskM + bk sinkM )


,

A0 =
2

π

2π

0

F1(M , C) dM,

Ak =
2

π

2π

0

F1(M , C) coskMdM,

Bk =
2

π

2π

0

F1(M , C) sinkMdM,

a0 =
2

π

2π

0

F2(M , C) dM,

ak =
2

π

2π

0

F2(M , C) coskMdM,

bk =
2

π

2π

0

F2(M , C) sinkMdM.
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Following Picard’s method, in order to solve Eqs. (5.27) and (5.28) in the first ap-
proximation, we introduce into the right-hand side of the equations the values of 
arbitrary constants C and τ corresponding to the initial time t0. Then we obtain

�
(5.29)

�

(5.30)

Thus, when the function Х does not depend explicitly on time t, solutions (5.29) 
and (5.30) of Eq. (5.5) have three analytically different parts. The first is a constant 
term, depending on the initial values of the arbitrary constants. It is usually called 
the constant term of perturbation of the first order. The second part is a function 
monotonically increasing in time. It is called the secular term of a perturbation of 
the first order. The third part consists of an infinite set of trigonometric terms. All of 
them are periodic functions of М and consequently of time t. This is called periodic 
perturbation.

Similarly, we can obtain solutions in the second, third etc., orders. Here we limit 
our consideration only within the first order of perturbation theory. In practice, few 
terms of the periodic perturbation can be taken into account and the solution ob-
tained becomes effective only for a short period of time.

When the perturbation function Х is a periodic function of some argument М′,

the right-hand side of the system of Eqs. (5.23) are periodic functions of the two 
independent arguments М and М′. Therefore, they can be expanded into a double 
Fourier series in terms of sine and cosine of the linear combination of arguments М 
and М′. Then in the first approximation of perturbation theory we obtain the follow-
ing system of equations:

�

(5.31)

�

(5.32)

C(1)(t) = C(0) + A(0)
0 (t − t0)+

∞

k=1

1

kn


A(0)
k [sinkM − sinkM0]+ B(0)

k [coskM − coskM0]


τ (1)(t) = τ (0) + a(0)
0 (t − t0)+

∞

k=1

1

kn


a(0)
k [sinkM − sinkM0]+ b(0)

k [coskM − coskM0]


M  = n
�
t − τ 


,

dC(1)

dt
= A(0)

00 +
∞

k ,k=−∞


A(0)

k ,k  cos
�
kM + k M + B(0)

k ,k  sin
�
kM + k M ,

dτ (1)

dt
= a(0)

00 +
∞

k ,k=−∞


a(0)

k ,k  cos
�
kM + k M + b(0)

k ,k  sin
�
kM + k M .

5.1 Analytical Solution of a Generalized Equation of Virial Oscillations



134

Integrating equations (5.31) and (5.32) with respect to time, we obtain a solution of 
the system:

�

(5.33)

�

(5.34)

Equations (5.33) and (5.34) have the same analytical structure as (5.29) and (5.30). 
At the same time, in this case, the periodic part of the perturbation can be divided 
into two groups, depending on the value of the divisor kn + k′n′. If the values of k 
and k′ are such that the divisor is sufficiently large, then period Tk,k′  =  2π/( kn + k′n′) 
of the corresponding inequality will be rather small. Such inequalities are called 
short-periodic. Their amplitudes are also rather small, and they can play a role only 
within short periods of time.

If the values of k and k′ are such that the divisor kn + k′n′ is sufficiently small but 
unequal to zero, then the period of the corresponding inequality will become large. 
The amplitude of such terms could also be large and play a role within large periods 
of time. Such terms form series of long-periodic inequalities. In the case of such k 
and k′, when kn + k′n′ = 0, the corresponding terms are independent of t and change 
the value of the secular term in the solutions (5.33) and (5.34).

5.2  �Solution of the Virial Equation for a Dissipative System

In Chap. 3 we derived Jacobi’s virial equation for a non-conservative system in the 
form

� (5.35)

At k  <<  1, t  >>  t0, |U|
√
  =  В  =  const, 2E0  =  −A0, and when the magnitude of the 

term k̇ is sufficiently small, Eq. (5.35) can be rewritten in a parametric form

� (5.36)

where q(t) is a monotonically increasing function of time due to dissipation of en-
ergy during ‘smooth’ evolution of a system within a time interval t ∈ [0, τ ] .

C(1)(t) = C(0) + A(0)
00 (t − t0)+

∞

k ,k=−∞

1

kn+ k n


A(0)

k ,k 

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�
kM + k M 

− cos
�
kM0 + k M 

0


+ B(0)

k ,k 

sin

�
kM + k M − sin

�
kM0 + k M 

0



τ (1)(t) =τ (0) + a(0)
00 (t − t0)+

∞

k ,k=−∞

1

kn+ k n


a(0)

k ,k 
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�
kM + k M 
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�
kM0 + k M 

0


+ b(0)

k ,k 

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�
kM + k M − sin

�
kM0 + k M 

0



̈ = 2E0

1+ q(t)


− U − k̇.

̈ = −A0

1+ q(t)


+

B
√
φ

,
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Using the theorem of continuous solution depending on the parameter, we write 
the solution of Eq. (5.36) as follows:

�

(5.37)

 

�

(5.38)

where

Equations of discriminant curves which bound oscillations of the Jacobi function Ф 
by analogy with the case of the conservative system can be written as

� (5.39)

� (5.40)

It is obvious that the solution of Jacobi’s virial equation for a non-conservative sys-
tem is quasi-periodic with period

� (5.41)
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√
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
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and an amplitude of Jacobi function oscillations

� (5.42)

As q( t) is a monotonically and continuously increasing parameter confined in time, 
the period and the amplitude of the oscillations will gradually decrease and tend to 
zero in the time limit.

In Fig. 5.1a the integral curves (5.37) and (5.38) and the discriminant curves 
(5.39) and (5.40) are shown in a general case when 0  <  C  <  2B2/A0. At the point Ob, 
the integral and discriminant curves tend to coincide and the value of the amplitude 
of the Jacobi function (polar moment of inertia) oscillations of the system goes to 
zero.

When С = 0 (Fig. 5.1b) the discriminant line (5.39) coincides with the axis of 
abscissae, Ф2 = 0. In the accepted case of constancy of the system mass, the point 
Ob, where the integral and discriminant curves coincide, will be reached in the time 
limit t → ∞.

Where 2В2/A0 → C and С < 0, the solutions (5.37), (5.38) and (5.39), (4.40) could 
be complex so the processes considered are not physical.

We note that, by analogy with the case for a conservative system, considered in 
Chap. 4, we can show here that the asymptotic relations (4.30)–(4.32) for the solu-
tions (5.37) and (5.38) of Jacobi’s equation (5.36) in the points of contact of the 
discriminant line Ф2 = 0, are justified. In the points of contact for the integral curves 
(5.37) and (5.38) and the discriminant curves (5.39) and (5.40) for which Ф1 and Ф2 
are not equal to zero, the following asymptotic relations are also justified:

� (5.43)

� (5.44)
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
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√
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
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�
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Fig. 5.1   Virial oscillations 
of the Jacobi function in time 
for a non-conservative sys-
tem (a) and for the general 
(Wintner’s) case (b)
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where t′ is time of a tangency point for the corresponding integral curve of the dis-
criminant lines Ф1,2 when Ф1,2 ≠ 0.

5.3  �Solution of the Virial Equation for a System  
with Friction

Let us consider the solution of Jacobi’s virial equation for conservative systems, 
but let the relationship between its potential energy and the Jacobi function be as 
follows:

� (5.45)

In this case, the equation of virial oscillations (5.2) can be written

� (5.46)

The term −k̇/
√
  in (5.46) plays the role of perturbation function, reflecting the 

effect of internal friction of the matter while the system is oscillating.
In principle, Eq. (5.46) can be solved using the above perturbation theory meth-

ods. However, we can show that a particular solution exists for the system of two 
differential equations of the second order, which satisfies Eq. (5.46). These differ-
ential equations are as follows:

� (5.47)

� (5.48)

In Eqs. (5.47) and (5.48) we introduced a new variable λ, so the primes at Ф and 
t mean differentiation with respect to λ. Note also that time t here is not an inde-
pendent variable. This allows us to transfer the non-linear equation into two linear 
equations. The partial solution of Eqs. (5.47) and (5.48) containing two integration 
constants is

� (5.49)

�
(5.50)
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where ε and ψ are arbitrary constants and

To show that Eqs. (5.49) and (5.50) of the two linear differential equations (5.47) 
and (5.48) are also general solutions of (5.46), let us do as follows.

Differentiating (5.50) with respect to λ, we obtain

� (5.51)

We write the derivative from function 
√
 with respect to λ using Eq. (5.51) in the 

form

� (5.52)

Then the second derivative from 
√
  with respect to λ can be obtained analo-

gously

� (5.53)

Substituting Eqs. (5.52) and (5.53) for 
√



 and 
√



 into Eq. (5.47), we 
obtain

� (5.54)

Dividing Eq. (5.54) by 
√
/A we have

which is in fact our Eq. (5.46). This means that Eqs. (5.49) and (5.50) are the gen-
eral solution of Eq. (5.46).

Note that Eq. (5.50) differs in general from Kepler’s equation both by the ex-
ponential factor before the sine function and by the constant term in the right-hand 
side of Eq. (5.50). In addition, it follows from Eq. (5.49) that the period of virial 
oscillations of the Jacobi function depends on the parameter k. Therefore, when λ
changes its value by 2π/
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/4A


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√
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(we neglect the changes of the amplitude of virial oscillations due to existence of 
the exponential factor) assuming that
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It follows from Eq. (5.50) that time t changes by the relationship of

T = 8πB/(2A)3/2
�

4A− 2k2

/4A  defining the period of the damping virial

 oscillations. Therefore, from solutions (5.49) and (5.50) of Eq. (5.46) it follows that 
if during the evolution of the system the value U

√
 varies only slightly around the 

constant, this leads to damping of the virial oscillations of the integral characteris-
tics of the system around their averaged virial theorem value.

In conclusion we have to note that derivation of the equation of dynamical equi-
librium and its solution for conservative and dissipative systems shows that dynam-
ics of celestial bodies in their own force field puts forward a wide class of geo-
physical, astrophysical and geodetic problems which can be solved by the methods 
of celestial mechanics introducing the new physical concepts we have introduced 
(Giordano and Plastino, 1999).

k
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We have presented the physical and theoretical fundamentals of the virial theory of 
dynamical equilibrium for study of the unperturbed and perturbed motion of a self-
gravitating body. As it was noted, the condition of dynamical (oscillating) equilib-
rium of the body, which is determined by a functional relationship between the polar 
moment of inertia and the potential (kinetic) energy of any natural conservative and 
dissipative system in the form of the generalized virial theorem or Jacobi’s virial 
equation, serve as the bases of the presented theory. It was shown in Chap. 3 that 
the outstanding property of Jacobi’s virial equation is its ability to be both the equa-
tion of dynamical equilibrium and equation of motion simultaneously. Moreover, 
it is valid for all the known models of the dynamics of natural systems. The secret 
of universality of the equation is in its ability to describe the motion of a material 
system as a whole in its fundamental integral characteristics which are the energy 
and polar moment of inertia. It was shown in Chap. 2 that the functional relation-
ship between the potential energy and the polar moment of inertia was revealed by 
means of analyzing the orbits of the artificial satellites. The potential energy, which 
is generated by interaction of the mass particles, is the force function of the body, 
i.e. the active component of its motion. The potential energy creates the inner and 
outer force field of the body. The kinetic energy is the reactive (inertial) constituent 
of the force field and is developed in the form of motion of the body’s mass particles 
and its shells. In the equations of motion written, for instance, for continuous media 
in coordinates and velocities under the mass force ρF one understands the gravity 
force induced by the outer force field. As a result, formulation and solution of any 
geophysical problems including dynamics of the body and change in its form and 
structure appears to be physically incorrect. As to the problem of the orbital motion 
of the body in the central force field, then the dynamical effects of the interacting 
bodies are ignored because of their smallness.

Now we would like to apply the obtained results of the general solution of 
Jacobi’s virial equation presented in Chaps. 3, 4 and 5 to study the Earth’s dynam-
ics and to obtain some quantitative data concerning the concrete elements of its 
non-perturbed and perturbed motion. As in celestial mechanics, by non-perturbed 
motion of the Earth we understand its motion under action of its own force field 
generated by interaction of its own masses. The perturbation motion of the planet 
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is considered to be the effects developed by the outer force fields of the Sun and 
the Moon. The perturbations from other planets are not considered because of their 
indirect effect. The study of dynamics of the Earth in its own force field starts first 
of all from investigation of its basic forms, namely, the oscillation and rotation of 
the shells, which are developed by interaction of its own masses. That part of the 
energy which is emitted from the body’s surface forms the outer force field of the 
planet. Its pressure through interaction with the pressure of the outer force field of 
the Sun provides dynamical equilibrium of the body in space and guaranties its or-
bital motion. The integral effect of the differential rotation of the shells determines 
changes in the slope of the Earth’s axis rotation. Herein, the observed rotation of the 
planet as a rigid body in reality relates only to its upper shell. The other shells rotate 
more slowly. The effect of perturbation of the upper shell and the integral effect of 
rotation of all other shells result in rotation of the outer planet’s force field which 
operates the motion of the Moon and artificial satellites along their orbits.

In order to find a quantitative solution of the task it is necessary to have data 
about the mass, radius, moment of inertia and radial density distribution of the 
planet’s mass. We have sufficiently reliable data about the mass and radius of 
the Earth. The reliable mean value of the moment of inertia has also now been 
obtained by satellites. The radial density distribution data appear to be unreliable. 
This is because the existing methodology of interpretation of seismic data by the 
Williamson-Adams equation is based on the planet’s hydrostatic equilibrium and 
needs to be reconsidered. That is why we shall search for such a law of density 
distribution which would satisfy the experimentally found moment of inertia and 
the condition of the density – differentiated masses on the shell that have been 
observed.

We start the study of dynamics of the Earth from its own oscillations. After 
that we move to determine some properties of the interacting masses which have 
not been earlier considered and which are needed. Among them are the structure 
of the potential and kinetic energy, the nature of the Archimedes and Coriolis 
forces and the electromagnetic component of the body’s potential energy. They 
are the basis for consideration of the Earth’s dynamical effects. Finally, we turn 
to the solution of the problem of the planet’s shells rotation and other aspects of 
its dynamics.

6.1  �The Problem of the Earth’s Eigenoscillations

In order to demonstrate application of the new theory to study of the Earth’s dy-
namics, we consider both traditional differential and proposed integral (dynamical) 
approaches. We show that, within the framework of the solution of the problem in 
terms of volumetric forces and moments, the eigenoscillations of the Earth is the 
natural integral effect of the interacting particles of the system.

6 The Nature of Oscillation and Rotation of the Earth
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6.1.1  �The Differential Approach

We consider first the problem of radial oscillations of a gravitating elastic sphere 
within the framework of the traditional hydrostatic equilibrium approach that has 
been used to study the Earth’s eigenoscillations.

The Euler equation of motion of a deformable body in the presence of the mass 
forces of the outer uniform force field is written in the form (Landau and Lifshitz, 
1954)

� (6.1)

where ρFi is the i-th component of the mass force; ui is the i-th component of the 
displacement vector; σik is the stress vector; ρ is the mass density of the sphere.

We write the vector components of the mass force in the spherical system of 
co-ordinates as:

where m( r) is the Earth’s mass within the sphere with radius r.
Because of radial deformation of the sphere only the radial component of the 

displacement vector differs from zero, i.e.

For isotropic media and for small deformations the stress tensor σik and the deforma-
tion tensor uik have the linear relationship, according to Hooke’s law:

� (6.2)

where k is the displacement modulus; μ is the shear modulus; λ = k − 2/3μ is the 
Lamé constant; σik = 0 at i ≠ k and σik = 1 at i = k.

∂σ ik

∂xk
+ ρFi = ρ

∂2u

∂t2
,

ρF0 = 0,

ρFλ = 0,

ρFr = −Gρ
m (r)

r2
,

ur = 0,

uθ = 0,

∂2u

∂r2
=

∂2r

∂t2
.

σik = kuikδik + 2µ


uik −
1

3
δik uik


= λuik + 2µuik ,
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In the case of radial deformations, the components of the deformation tensor are 
equal to

� (6.3)

The components of the stress tensor are:

� (6.4)

The general equation (6.1) of motion now takes the form

� (6.5)

Putting Eq. (6.4) into (6.5), we obtain an equation describing the radial displace-
ment of matter in the sphere:

� (6.6)

Equation (6.6) is used to study the problem of the radial oscillations of the Earth 
in the traditional differential (linear) approach. This equation is solved at boundary 
conditions of uniform radial displacement of matter or at uniform pressure over a 
spherical surface enveloping the body.

The normal stress at the sphere’s surface which is formed by the outer layer of 
the body with radius r is

� (6.7)

Where   is the stress tensor, the components of which are

� (6.8)
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Here only tr = σrr ≠ 0, but tensor Tr is the purely normal stress, which is

� (6.9)

Let us consider a uniform sphere with λ = const and μ = const. Then

� (6.10)

where θ = urr + uθθ + uφφ is the dilation of the body.
The general solution of Eq. (6.10) is

� (6.11)

Constants А and В can be defined from the following boundary conditions: at the 
centre of the Earth ( r = 0) the displacement ur = 0 and the value В = 0; on the sur-
face of the sphere with radius r = a and Tr = − p.

Then

� (6.12)

from which it follows that

Now the general solution (6.11) takes the form

� (6.13)

Substituting the solution (6.13) into (6.4), we obtain the expression for the compo-
nents of the stress tensor:

� (6.14)

It is seen from (6.14) that the value of the stress components is reduced to the con-
stant hydrostatic pressure of the body matter.

To solve the problem of the eigenoscillations of a uniform spherical body, we 
assume

� (6.15)

where ω is the eigenoscillation frequency of the sphere.
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Substituting (6.15) into Eq. (6.6), we obtain

� (6.16)

We introduce the new variable х:

� (6.17)

Then Eq. (6.16) can be rewritten as

or

Considering that

we obtain

� (6.18)

Equation (6.18) is known as the Riccati equation. Its solution is

� (6.19)

The arbitrary integration constants А and В can be found from the boundary con-
ditions. In the centre of the Earth ( r = 0, x = 0) we have U( r) = 0. Hence, В = 0. 
Moreover, the outer surface of the body should be in equilibrium. This means that 
the surface pressure should be equal to zero:
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or

� (6.20)

Differentiating this, we obtain

� (6.21)

After dividing (6.21) by 4μ sin x, we obtain

The value х at the outer surface is equal to аh. Finally, we obtain the equation for 
determining the eigenoscillation values of the body:

� (6.22)

6.1.2  �The Dynamic Approach

Now we consider the problem of the eigenoscillations of the Earth as a uniform 
body on the basis of its dynamical equilibrium, i.e. under an action of its own in-
ternal force field or within the framework of the integral (dynamic) approach. For 
this purpose we use Eq. (6.5) assuming that the internal pressure in the body is 
isotropic, i.e.

Then we have from (6.5)

� (6.23)

Now let us derive Jacobi’s virial equation from Eq. (6.23) for the spherical sym-
metric model of the Earth. For this purpose we multiply the right-hand sides of 
Eq. (6.23) by 4πr3dr and integrate it with respect to dr from 0 to R:

� (6.24)
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The left-hand side of Eq. (6.24) gives

�

(6.25)

where Ф is the Jacobi function of the Earth, and Т is the kinetic energy of the dis-
placements of the matter.

The first term in the right-hand side of (6.24) is equal to

� (6.26)

where ρо and ρs are the mass densities in the centre and on the surface of the Earth 
respectively.

Taking into account that, within the framework of the model of an elastic me-
dium, the system reaches its mechanical equilibrium faster than its thermal equilib-
rium, we assume that the entropy of the system is equal to the constant value, and 
therefore we write

� (6.27)

where cs is the velocity of sound in elastic media and c2
s = v2

p − 4/3v2
g ;

vp =

(k + 4/3µ)/ρ  is the velocity of the longitudinal waves in an elastic medium;

vg =
√
µ/ρ  is the velocity of the transverse waves in the elastic medium.

Finally, Eq. (6.26) can be rewritten in the form

� (6.28)

If the velocity of sound does not depend on the radius of the body, then (6.28) is

�

(6.29)

where ρ(R) = 0, ρ(0) = ∞.
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In the general case when the velocity of sound depends on the radius, the expres-
sion for the energy of elastic deformations can be written by the expression for the 
velocity of sound as a mean value through the mass body, i.e.

� (6.30)

where

� (6.31)

The phenomenological parameter сs takes into account the different aggregative 
states of the substance of a body, i.e. gaseous, liquid, solid, and plasma (Ferronsky 
et al., 1981a).

The second term in the right-hand side of Eq. (6.24) is the potential energy of 
the sphere:

� (6.32)

Finally, Eq. (6.24) can be rewritten in the form of the Jacobi virial equation:

� (6.33)

where E = T + 3/2Mc̄2
s + U  is the total energy of the Earth.

One may see now that Equation (6.33) represents the generalized virial equation 
(2.31) obtained from Euler’s equation of motion for a deformable body (6.1) by 
means of transformation of the kinetic energy of the mass interaction (6.25) through 
the polar moment of inertia (the Jacobi function Ф). The polar moment of inertia 
in (6.33) has a functional relation with the potential energy (6.32). Here the polar 
moment of inertia physically represents the body’s structure and shows its changes 
with a change in the potential energy.

Averaging Jacobi’s virial equation (6.33) with respect to a sufficiently long pe-
riod of time gives the classical averaged virial theorem of the body and expresses 
the condition of its hydrostatic equilibrium in the outer force field:

or

� (6.34)
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Equation (6.34) follows also from the condition of hydrostatic equilibrium of the 
sphere matter when the left-hand side of the equation of motion (6.23) is equal to 
zero:

In accordance with (6.30), the left-hand side of this equation represents a double 
value of the total body’s energy, the matter of which stays in hydrostatic equilibrium 
in the outer uniform force field. The right-hand side of the equation determines the 
potential energy of the matter interaction.

It follows from Eq. (6.34) that the velocity of sound in the elastic media deter-
mines not only the potential energy of the mass interaction, but also the velocity of 
propagation of the potential energy flux in the media. This relationship between the 
potential energy and the sound velocity is used now in seismic studies for determi-
nation of mass density. We also will apply it for interpretation of the radial density 
distribution.

To obtain the equation of virial oscillations from (6.33), we accept the following 
assumptions. We assume that the total energy E has a constant value and the rela-
tionship between the Jacobi function Ф and the gravitational potential energy U is 
held in the form

� (6.35)

It follows from Eqs. (2.31) and (2.32) and Table 2.1 of Chap. 2 that, for a density-
uniform sphere, the expression (6.35) is strictly sustained. Then, for the uniform 
Earth Eq. (6.33) with the help of (6.35) can be written in the form of a non-linear 
differential equation of the second order with respect to the variable Ф:

� (6.36)

Where А = −2E = |U|.
Expression (6.36) is the equation of virial oscillations of the uniform Earth. As 

it is shown in Chap. 4, the solution of Eq. (6.36) represents the periodic change of 
polar moment of inertia, i.e. oscillation of the interacting mass particles, and syn-
chronously with this change of the potential (kinetic) energy. The solution of (6.36) 
is described by Eqs. (4.14) and (4.15) and we rewrite them in the same form:

� (6.37)

� (6.38)
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Here ε and ψ are the integration constants depending on the initial conditions of the 
Jacobi function Ф0 and its first derivative at the first moment of time t0.

Eqs. (6.37) and (6.38) and the integration constants after corresponding generali-
zation were obtained in Chap. 4 in the explicit form:

� (6.39)

� (6.40)

� (6.41)

� (6.42)

Where Mc = n( t − τ); Tv is the period of the virial oscillations; ω is the frequency of 
oscillations; ρ is the mass density of the body.

The physical meaning of Equations (6.39)–(6.42) is expressed by Kepler’s mo-
tion laws, in particular, Eq. (6.39) describes the first and second laws, and Eq. (6.40) 
describes its third law. But now, due to the functional relationship between the po-
tential energy and the Jacobi function (polar moment of inertia), the Kepler laws 
express dynamic but not static equilibrium of the planet. In fact, the Jacobi function √
0, which represents the polar moment of inertia, traces a second-order curve 

with period of oscillations Tv and frequency ω. The curve of the uniform body is 
the circle having the greatest semi-axis а and the eccentricity ε. The expression 
(6.42) represents the Kepler equation (1.1). Eqs. (6.39)–(6.42) as a whole describe 
an oscillating motion of the Earth in accordance with Kepler’s laws. But their sig-
nificance grows owing to the involved volumetric polar moment of inertia and its 
relationship with the potential energy of the body determining its dynamical effects. 
Figure 4.3 demonstrates the graphic picture of this effect and Eqs. (4.36)–(4.38) 
show the effect in the explicit form as the Lagrange series:

�

(6.43)

�

(6.44)

Note that because the polar moment of inertia of the body has a functional relation-
ship with the potential energy, Eqs. (6.43)–(6.44) and Fig. 4.3 express also the effect 
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of a change of the potential energy in time. This fact is important for understanding 
of the nature and mechanism of the mass particle interaction, the result of which is 
generation of the potential energy. Later on we will return to this problem.

Quantitative values of the parameters of the Earth’s virial oscillations are con-
sidered together with solution of the problem of oscillation and rotation of the non-
uniform planet. In order to do this the potential and kinetic energies of a non-uniform 
body need to be to expanded and some other effects of its non-uniform structure 
have to be understood. It was noted in Sect. 2.5 that the non-uniformities play an 
important role in dynamical processes of the planet. Let us start consideration of the 
effect of the non-uniformities with separation of the potential and kinetic energies.

6.2  �Separation of Potential and Kinetic Energies  
of the Non-uniform Earth

In fact, the Earth is not a uniform body. It has a shell structure and the shells them-
selves are also non-uniform elements of the body. It was shown in Sect. 2.2 that 
according to the artificial satellite data all the measured gravitational moments in-
cluding tesseral ones have significant values. In geophysics this fact is interpreted 
as a deviation of the Earth from the hydrostatic equilibrium and attendance of the 
tangential forces which are continuously developed inside the body. From the point 
of view of the planet’s dynamical equilibrium, the fact of the measured zonal and 
tesseral gravitational moments is a direct evidence of permanent development of 
the normal and tangential volumetric forces which are the components of the inner 
gravitational force field. In order to identify the above effects the inner force field 
of the Earth should be accordingly separated.

The expressions (2.46)–(2.49) in Chap. 2 indicate that the force function and 
the polar moment of a non-uniform self-gravitating sphere can be expanded with 
respect to their components related to the uniform mean density mass and its non-
uniformities. In accordance with the superposition principle these components are 
responsible for the normal and tangential dynamical effects of a non-uniform body. 
Such a separation of the potential energy and polar moment of inertia through their 
dimensionless form-factors 2 and 2 was done by Garcia Lambas et al. (1985) with 
our interpretation (Ferronsky et al., 1996). Taking into account that the observed 
satellite irregularities are caused by the non-uniform distribution of the mass den-
sity, an auxiliary function relative to the radial density distribution was introduced 
for the separation:

� (6.45)

where s = r/R is the ratio of the running radius to the radius of the sphere R; o is 
the mean density of the sphere of radius r; r is the radial density; x is the running 

ψ(s) =
s

0

(ρr − ρ0)

ρ0
x2dx,
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coordinate; the value ( r − o) satisfies  and the function 
Ψ(1) = 0.

The function Ψ(s) expresses a radial change in the mass density of the non-
uniform sphere relative to its mean value at the distance r/R. Now we can write 
expressions for the force function and the moment of inertia by using the structural 
form-factors 2 and 2 which were found in Sect. 2.6:

� (6.46)

� (6.47)

By (6.45) we can do the corresponding change of variables in (6.46) and (6.47). As 
a result, the expressions for the potential energy U and polar moment of inertia I are 
found in the form of their components composed of their uniform and non-uniform 
constituents (Garcia Lambas et al., 1985; Ferronsky et al., 1996):

� (6.48)

� (6.49)

It is known that the moment of inertia multiplied by the square of the frequency  of 
the oscillation-rotational motion of the mass is the kinetic energy of the body. Then 
Eq. (6.49) can be rewritten

� (6.50)

Let us clarify the physical meaning of the terms in expressions (6.48) and (6.50) of 
the potential and kinetic energy.

As it follows from (2.46) and Table 2.1, the first terms in (6.48) and (6.50), 
numerically equal to 3/5, represent α2

0  and β2
0  being the structural coefficients of 

the uniform sphere with radius r, the density of which is equal to its mean value. 
The ratio of the potential and kinetic energies of such a sphere corresponds to the 
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condition of the body’s dynamical equilibrium when its kinetic energy is realized in 
the form of oscillations.

The second terms of the expressions can be rewritten in the form

� (6.51)

� (6.52)

One can see that there are written here the additive parts of the potential and kinetic 
energies of the interacting masses of the non-uniformities of each sphere shell with 
the uniform sphere having a radius r of the sphere shell. Note that the structural co-
efficient 2 of the kinetic energy is twice as high as the potential energy and has the 
minus sign. It is known from physics that interaction of mass particles, uniform and 
non-uniform with respect to density, is accompanied by their elastic and inelastic 
scattering of energy and appearance of a tangential component in their trajectories 
of motion. In this particular case the second terms in Eqs. (6.48) and (6.50) express 
the tangential (torque) component of the potential and kinetic energy of the body. 
Moreover, the rotational component of the kinetic energy is twice as much as the 
potential one.

The third term of Eq. (6.48) can be rewritten as

� (6.53)

Here, there is another additive part of the potential energy of the interacting non-
uniformities. It is the non-equilibrated part of the potential energy which does not 
have an appropriate part of the reactive kinetic energy and represents a dissipa-
tive component. Dissipative energy represents the electromagnetic energy which is 
emitted by the body and it determines the body’s evolutionary effects. This energy 
forms the electromagnetic field of the body (see Chap. 8).

Thus, by expansion of the expression of the potential energy and the polar mo-
ment of inertia we obtained the components of both forms of energy which are re-
sponsible for oscillation and rotation of the non-uniform body. Applying the above 
results we can write separate conditions of the dynamical equilibrium for each form 
of the motion and separate virial equations of the dynamical equilibrium of their 
motion.

3

1

0

ψxdx ≡ 3

1

0


ψ

x


x2dx,

−6

1

0

ψxdx ≡ −6

1

0


ψ

x


x2dx.

9

2

1

0


ψ

x

2

dx ≡
9

2

1

0


ψ

x2

2

x2dx.

6 The Nature of Oscillation and Rotation of the Earth



155

6.3  �Conditions of Dynamical Equilibrium of Oscillation 
and Rotation of the Earth

Equations (6.48) and (6.50) can be written in the form

� (6.54)

� (6.55)

where α2
0 = β2

0 and 2α2
t = β2

t  and the subscripts o, t,  define the radial, tangential, 
and dissipative components of the considered values.

Because the potential and kinetic energies of the uniform body are equal 
(α2

0 = β2
0 = 3/5) then from (6.48) and (6.50) one has

� (6.56)

� (6.57)

In order to express dynamical equilibrium between the potential and kinetic ener-
gies of the non-uniform interacting masses we can write, from (6.48) and (6.50),

� (6.58)

� (6.59)

where E0, Et, U0, K0, Ut, Kt are the total, potential and kinetic energies of oscillation 
and rotation accordingly. Note, that the energy is always a positive value.

Eqs. (6.56)–(6.59) present an expression for uniform and non-uniform compo-
nents of an oscillating system which serves as the conditions of their dynamical 
equilibrium. Evidently, the potential energy U of interaction between the non- 
uniformities, being irradiated from the body’s outer shell, is irretrievably lost and 
provides a mechanism of the body’s evolution.

In accordance with classical mechanics, for the above-considered non-uniform 
gravitating body, being a dissipative system, the torque N is not equal to zero, the 
angular momentum L of the sphere is not a conservative parameter, and its energy 
is continuously spent during the motion, i.e.

A system physically cannot be conservative if friction or other dissipation forces 
are present, because F × ds due to friction is always positive and an integral cannot 
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vanish (Goldstein, 1980), i.e.:

6.4  �Equations of Oscillation and Rotation of the Earth 
and Their Solution

After we have found that the resultant of the body’s gravitational field is not equal to 
zero and the system’s dynamical equilibrium is maintained by the virial relationship 
between the potential and kinetic energies, the equations of a self-gravitating body 
motion can be written.

Earlier (Ferronsky et al., 1987) we used the obtained virial equation (6.33) for 
describing and studying the motion of both uniform and non-uniform self-gravitat-
ing spheres. Jacobi (1884) derived it from Newton’s equations of motion of n mass 
points and reduced the n-body problem to the particular case of the one-body task 
with two independent variables, namely, the force function U and the polar moment 
of inertia Ф, in the form

� (6.60)

Eq. (6.60) represents the energy conservation law and describes the system in scalar 
U and Ф volumetric characteristics. In Chap. 3 it was shown that Eq. (6.60) is also 
derived from Euler’s equations for a continuous medium, and from the equations of 
Hamilton, Einstein, and quantum mechanics. Its time-averaged form gives the Clausius 
virial theorem. It was earlier mentioned that Clausius was deducing the theorem for 
application in thermodynamics and, in particular, as applied to assessing and designing 
of Carnot’s machines. As the machines operate in the Earth’s outer force field, Clausius 
introduced the coefficient 1/2 to the term of “living force” or kinetic energy, i.e.

As Jacobi has noted, the meaning of the introduced coefficient was to take into 
account only the kinetic energy generated by the machine, but not by the Earth’s 
gravitational force. That was demonstrated by the work of a steam hammer for driv-
ing piles. The machine raises the hammer, but it falls down under the action of the 
force of the Earth’s gravity. That is why the coefficient 1/2 of the kinetic energy of 
a uniform self-gravitating body in Eqs. (6.48)–(6.50) has disappeared. In its own 
force field the body moves due to release of its own energy.

Earlier by means of relation U
√
  ≈ const, an approximate solution of Eq. (6.60) 

for a non-uniform body was obtained (Ferronsky et al., 1987). Now, after expansion 
of the force function and polar moment of inertia, at U = 0 and taking into account 
the conditions of the dynamical equilibrium ((6.57) and (6.59)), Eq. (6.60) can be 
written separately for the radial and tangential components in the form


F × ds > 0.

̈ = 2E − U .
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1
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miv
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� (6.61)

� (6.62)

Taking into account the functional relationship between the potential energy and the 
polar moment of inertia

and taking into account that the structural coefficients α2
0 = β2

0 and 2αt = β2
t ,  both 

Eqs. (6.61) and (6.62) are reduced to an equation with one variable and have a rigor-
ous solution:

� (6.63)

where An and Bn are the constant values and subscript n defines the non-uniform 
body.

The general solution of Eq. (6.62) is (4.14) and (4.15):

� (6.64)

�
(6.65)

where  and ϕ are, as previously, the integration constants depending on the initial values 
of Jacobi’s function Φn and its first derivative ̇n at the time moment t0 (the time here is an 
independent variable); Tv is the period of virial oscillations; ω is the oscillation frequen-
cy;  is the auxiliary independent variable; An = A0 − 1/2E0> 0; Bn = B0 = U0

√
0  

for radial oscillations; A = At = −1/3Et > 0; B = Bt = Ut
√
t  for rotation of the 

body.
The expressions for the Jacobi function and its first derivative in an explicit form 

can be obtained after transforming them into the Lagrange series:

�

(6.66)
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Radial frequency of oscillation or and angular velocity of rotation tr of the shells 
of radius r can be rewritten from (6.40) as

� (6.67)

� (6.68)

where U0r and Utr are the radial and tangential components of the force function 
(potential energy); J0r and Jtr = 2/3J0r are the polar and axial moment of inertia;
ρ0r = 1

Vr



Vr

ρ(r)dVr; ρ(r)  is the law of radial density distribution; 0r is the mean

density value of the sphere with a radius r; Vr is the sphere volume with a radius r; 
2tr =  β2

tr;  ker is the dimensionless coefficient of the energy dissipation or tidal fric-
tion of the shells equal to the shell’s oblateness.

The relations (6.64)–(6.65) represent Kepler’s laws of body rotation in dynam-
ical equilibrium. In the case of uniform mass density distribution the frequency 
(6.57) of oscillation of the sphere’s shells with radius r is or = o = const. It means 
that here all the shells are oscillating with the same frequency. Thus, it appears that 
only non-uniform bodies are rotating systems.

Rotation of each body’s shell depends on the effect of the potential energy scat-
tering at the interaction of masses of different density. As a result, a tangential com-
ponent of energy appears which is defined by the coefficient ker. In geodynamics the 
coefficient is known as the geodynamical parameter. Its value is equal to the ratio 
of the radial oscillation frequency and the angular velocity of a shell and can be 
obtained from Eqs. (6.67)–(6.68), i.e.

� (6.69)

It was found that in the general case of a three-axial ( a, b, c) ellipsoid with the ellip-
soidal law of density distribution, the dimensionless coefficient ke ∈  [0.1] is equal 
to (Ferronsky et al., 1987)

where ϕ = arcsin


a2−c2

a2 , f =

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a2−c2 ,  and F(ϕ, f) is an incomplete elliptic inte-
gral of the first degree in the normal Legendre form.

Thus, in addition to the earlier obtained solution of the Earth’s radial oscilla-
tions (Ferronsky et al., 1987), now we have a solution of its rotation. It is seen from 
expression (6.67) that the shell oscillations do not depend on the phase state of the 
body’s mass and are determined by its density.
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It follows from Eqs. (6.67) and (6.68) that in order to obtain the frequency of 
oscillation and angular velocity of rotation of the non-uniform Earth, the law of 
radial density distribution should be revealed. This problem will be considered later 
on. But before that the problem of the nature of the Earth’s shells separation with 
respect to their density needs to be solved.

6.5  �Application of Roche’s Tidal Approach for Separation 
of the Earth’s Shells

It is well known that the Earth has a quasi-spherical shell structure. This phenom-
enon has been confirmed by recording and interpretation of seismic longitudinal 
and transversal wave propagation during earthquakes. In order to understand the 
physics and mechanism of the Earth’s mass differentiation with respect to its den-
sity, we apply Roche’s tidal dynamics.

Newton’s theorem of gravitational interaction between a material point and a 
spherical layer states that the layer does not affect a point located inside the layer. 
On the contrary, the outside-located material point is affected by the spherical layer. 
Roche’s tidal dynamics is based on the above theorem. His approach is as follows 
(Ferronsky et al., 1996).

There are two bodies of masses M and m interacting in accordance with New-
ton’s law (Fig. 6.1a).

Let M >> m and R >> r, where r is the radius of the body m, and R is the distance 
between the bodies M and m. Assuming that the mass of the body M is uniformly 
distributed within a sphere of radius R, we can write the accelerations of the points 
A and B of the body m as

The relative tidal acceleration of the points A and B is

�

(6.70)
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Fig. 6.1   The tidal gravitatio-
nal stability of a sphere (a) 
and the sphere layer (b)
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Here ρM = M/ 4
3πR3 and ρm = m/ 4

3πr3  are the mean density distributions for the 
spheres of radius R and r. Roche’s criterion states that the body with mass m is sta-
ble against the tidal force disruption of the body M if the mean density of the body 
m is at least twice as high as that of the body M in the sphere with radius R. Roche 
considered the problem of the interaction between two spherical bodies without any 
interest in their creation history and in how the forces appeared. From the point of 
view of the origin of celestial bodies and of the interpretation of dynamical effects, 
we are interested in the tidal stability of separate envelopes of the same body. For 
this purpose we can apply Roche’s tidal dynamics to study the stability of a non-
uniform spherical envelope.

Let us assess the tidal stability of a spherical layer of radius R and thickness 
r = RB − RA  (Fig. 1.2b). The layer of mass m and mean density m = m/4 R2

Ar 
is affected at point A by the tidal force of the sphere of radius RA. The mass of the 
sphere is M and its mean density ρM = M/ 4

3πR3
A.  The tidal force in point B is gen-

erated by the sphere of radius R + r and mass M + m. Then the accelerations of the 
points A and B are

The relative tidal acceleration of the points A and B is

�
(6.71)

Eqs. (6.70)–(6.71) give the possibility to understand the nature of the Earth’s shell 
separation including some other dynamical effects.

6.6  �Physical Meaning of Archimedes and Coriolis Forces 
and Separation of the Earth’s Shells

The Archimedes principle states: The apparent loss in weight of a body totally or 
partially immersed in a liquid is equal to the weight of the liquid displaced. We saw 
in the previous section that the principle is described by Eqs. (6.70) and (6.71) and 
the forces that sink down or push out the body or the shell are of a gravitational 
nature. In fact, in the case of n = M the body immersed in a liquid (or in any other 
medium) is kept in place due to equilibrium between the forces of the body’s weight 
and the forces of the liquid reaction. In the case of n > M or n < M the body is 
sinking or floating up depending on the resultant of the above forces. Thus, the 
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Archimedes forces seem to have a gravity nature and are the radial component of 
the Earth’s inner force field.

It is assumed that the Coriolis forces appeared as an effect of the body motion in 
the rotational system of co-ordinates relative to the inertial reference system. In this 
case rotation of the body is accepted as the inertial motion and the Coriolis forces 
appear to be the inertial ones. It follows from the solution of Equation (6.62) that 
the Coriolis’ forces appear to be the tangential component of the Earth’s inner force 
field, and the planet rotation is caused by the moment of those forces that are rela-
tive to the three-dimensional centre of inertia which also does not coincide with the 
three-dimensional gravity centre.

In accordance with Eq. (6.71) of the tidal acceleration of an outer non-uniform 
spherical layer at М ≠ m, the mechanism of the gravitational density differentia-
tion of masses is revealed. If М < m, then the shell immerses (is attracted) up to 
the level where М = m. At М > m the shell floats up to the level where М = m 
and at М > 2/3m the shell becomes a self-gravitating one. Thus, in the case when 
the density increases towards the sphere’s center, which is the Earth’s case, then 
each overlying stratum appears to be in a suspended state due to repulsion by the 
Archimedes forces which, in fact, are a radial component of the gravitational inter-
action forces.

The effect of the gravitational differentiation of masses explains the nature of 
creation of the Earth’s crust and also the ocean, geotectonic, orogenic and seismic 
processes, including earthquakes. All these phenomena appear to be a consequence 
of the continuous gravitational differentiation in density of the planet’s masses. We 
assume that this effect was one of the dominate forces during creation of the Earth 
and the Solar system as a whole. For instance, the mean value of the Moon’s den-
sity is less than 2/3 of the Earth’s, i.e. М < 2/3m. If one assumes that this relation 
was maintained during the Moon’s formation, then, in accordance with Eq. (6.71), 
this body separated at the earliest stage of the Earth’s mass differentiation. Crea-
tion of the body from the separated shell should occur by means of the cyclonic 
eddy mechanism, which was proposed in due time by Descartes and which was un-
justly rejected. If we take into account existence of the tangential forces in the non- 
uniform mass, then the above mechanism seems to be realistic.

6.7  �Self-similarity Principle and the Radial Component 
of a Non-uniform Sphere

It follows from Eq. (6.71) that in the case of the uniform density distribution 
( m = М), all spherical layers of the gravitating sphere move to the centre with 
accelerations and velocities which are proportional to the distance from the centre. 
It means that such a sphere contracts without loss of its uniformity. This property 
of self-similarity of a dynamical system without any discrete scale is unique for a 
uniform body (Ferronsky et al., 1996).

6.7 Self-similarity Principle and the Radial Component of a Non-uniform Sphere
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A continuous system with a uniform density distribution is also ideal from the 
point of view of Roche’s criterion of stability with respect to the tidal effect. That is 
why there is a deep physical meaning in separation of the first term of potential en-
ergy in expression (6.48). A uniform sphere is always similar in its structure in spite 
of the fact that it is a continuously contracting system. Here, we do not consider the 
Coulomb forces effect. For this case we have considered the specific proton and 
electron branches of the evolution of the body (see Sect. 8.5).

Note that in Newton’s interpretation the potential energy has a non-additive cat-
egory. It cannot be localized even in the simplest case of the interaction between 
two mass points. In our case of a gravitating sphere as a continuous body, for the in-
terpretation of the additive component of the potential energy we can apply Hooke’s 
concept. Namely, according to Hooke there is a linear relationship between the force 
and the caused displacement. Therefore the displacement is in square dependence 
on the potential energy. Hooke’s energy belongs to the additive parameters. In the 
considered case of a gravitating sphere, the Newton force acting on each spherical 
layer is proportional to its distance from the centre. Thus, here from the physical 
point of view, the interpretations of Newton and Hooke are identical.

At the same time in the two approaches there is a principal difference even in the 
case of uniform distribution of the body density. According to Hooke the cause of 
displacement, relative to the system, is the action of the outer force. And if the total 
energy is equal to the potential energy, then equilibrium of the body is achieved. 
The potential energy plays here the role of elastic energy. The same uniform sphere 
with Newton’s forces will be contracted. All the body’s elementary shells will 
move without change of uniformity in the density distribution. But the first terms 
of Eqs. (6.48) and (6.50) show that the tidal effects of a uniform body restrict mo-
tion of the interacting shells towards the centre. In accordance with Newton’s third 
law and the d’Alembert principle the attraction forces, under the action of which 
the shells move, should have equally and oppositely direct forces of Hooke’s elastic 
counteraction. In the framework of the elastic gravitational interaction of shells, 
the dynamical equilibrium of a uniform sphere is achieved in the form of its elastic 
oscillations with equality between the potential and kinetic energy. The uniform 
sphere is dynamically stable relative to the tidal forces in all of its shells during 
the time of the system contraction. Because the potential and kinetic energies of a 
sphere are equal, then its total energy in the framework of the averaged virial theo-
rem within one period of oscillation is accepted formally as equal to zero. Equality 
of the potential and kinetic energy of each shell means the equality of the centripetal 
(gravitational) and centrifugal (elastic constraint) accelerations. This guarantees the 
system remaining in dynamical equilibrium. On the contrary, all the spherical shells 
will be contracted towards the gravity centre which, in the case of the sphere, co-
incides with the inertia centre but does not coincide with the geometric centre of 
the masses (see Fig. 2.2). Because the gravitational forces are acting continuously, 
the elastic constraint forces of the body’s shells are reacting also continuously. The 
physical meaning of the self-gravitation of a continuous body consists in the per-
manent work which applies the energy of the interacted shell masses on one side 
and the energy of the elastic reaction of the same masses in the form of oscillating 
motion on the other side. At dynamical equilibrium the body’s equality of potential 
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and kinetic energy means that the shell motion should be restricted by the elastic 
oscillation amplitude of the system. Such an oscillation is similar to the standing 
wave which appears without transfer of energy into outer space. In this case the ra-
dial forces of the shell’s elastic interactions along the outer boundary sphere should 
have a dynamical equilibrium with the forces of the outer gravitational field. This is 
the condition of the system to be held in the outer force field of the mother’s body. 
Because of this, while studying the dynamics of a conservative system, its rejected 
outer force field should be replaced by the corresponding equilibrated forces as they 
do, for instance, in Hooke’s theory of elasticity.

Thus, from the point of view of dynamical equilibrium the first terms in 
Eqs. (6.48) and (6.50) represent the energy which provides the field of the radial 
forces in a non-uniform sphere. Here, the potential energy of the uniform compo-
nent plays the role of the active force function, and the kinetic energy is the function 
of the elastic constraint forces.

6.8  �Charges-like Motion of Non-uniformities and 
Tangential Component of the Force Function

Let us now discuss the tidal motion of non-uniformities due to their interactions with 
the uniform body. The potential and kinetic energies of these interactions are given 
by the second terms in Eqs. (6.48) and (6.50). In accordance with (6.71), the non-
uniformity motion looks like the motion of electrical charges interacting on the back-
ground of a uniform sphere contraction. Spherical layers with densities exceeding 
those of the uniform body (positive anomalies) come together and move to the centre 
in elliptic trajectories. The layers with deficit of the density (negative anomalies) 
come together, but move from the centre on the parabolic path. Similar anomalies 
come together, but those with the opposite sign are dispersed with forces proportional 
to the layer radius. In general, the system tends to reach a uniform and equilibrium 
state by means of redistribution of its density up to the uniform limit. Both motions 
happen not relative to the empty space, but relative to the oscillating motion of the 
uniform sphere with a mean density. Separate consideration of motion of the uniform 
and non-uniform components of a heterogeneous sphere is justified by the superposi-
tion principle of the forces action which we keep here in mind. The considered mo-
tion of the non-uniformities looks like the motion of the positive and negative charges 
interacting on the background of the field of the uniformly dense sphere (Ferronsky 
et al., 1996). One can see here that in the case of gravitational interaction of mass 
particles of a continuous body, their motion is the consequence not only of mutual 
attraction, but also mutual repulsion by the same law 1/r2. In fact, in the case of a real 
natural non-uniform body it appears that the Newton and Coulomb laws are identical 
in details. Later on, while considering the Earth’s by-density differentiated masses, 
the same picture of motion of the positive and negative anomalies will be seen.

If the sphere shells, in turn, include density non-uniformities, then by means of 
Roche’s dynamics it is possible to show that the picture of the non-uniformity mo-
tion does not differ from that considered above.

6.8 Charges-like Motion of Non-uniformities and Tangential Component
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In physics the process of interaction of particles with different masses without 
redistribution of their moments is called elastic scattering. The interaction process 
resulting in redistribution of their moments and change in the inner state or structure 
is called inelastic scattering. In classical mechanics while solving the problems of 
motion of the uniform conservative systems (like motion of the material point in the 
central field or motion of the rigid body), the effects of the energy scattering do not 
appear. In the problem of dynamics of the self-gravitating body, where interaction 
of the shells with different masses and densities are considered, the elastic and ine-
lastic scattering of the energy becomes an evident fact following from consideration 
of the physical meaning of the expansion of the energy expressions in the form of 
(6.48) and (6.50). In particular, their second terms represent the potential and kinetic 
energies of gravitational interaction of masses having a non-uniform density with 
the uniform mass and express the effect of elastic scattering of density-different 
shells. Both terms differ only in the numeric coefficient and sign. The difference in 
the numerical coefficient evidences that the potential energy here is equal to half of 
the kinetic one ( Ut = 1/2Kt). This part of the active and reactive force function char-
acterizes the degree of the non-coincidence of the volumetric centre of inertia and 
that of the gravity centre of the system expressed by Eqs. (2.48)–(2.49). This effect 
is realized in the form of the angular momentum relative to the inertia centre.

Thus, we find that inelastic interaction of the non-uniformities with the uniform 
component of the system generates the tangential force field which is responsible 
for the system rotation. In other words, in the scalar force field of the by-density uni-
form body the vector component appears. In such a case, we can say that, by anal-
ogy with an electromagnetic field, in the gravitational scalar potential field of the 
non-uniform sphere U( R, t) the vector potential A( R, t) appears for which U = rotA 
and the field U( R, t) will be solenoidal. In this field the conditions for vortex motion 
of the masses are born, where div A = 0. This vector field, which in electrodynamics 
is called solenoidal, can be represented by the sum of the potential and vector fields. 
The fields, in addition to the energy, acquire moments and have a discrete-wave 
structure. In our case the source of the wave effects appears to be the interaction 
between the elementary shells of the masses by means of which we can construct a 
continuous body with a high symmetry of forms and properties. The source of the 
discrete effects can be represented by the interacting structural components of the 
shells, namely, atoms, molecules and their aggregates. We shall continue discussion 
about the nature of the gravitational and electromagnetic energy in Chap. 8.

6.9  �Radial Distribution of Mass Density and the Earth’s 
Inner Force Field

The existent idea about the radial mass density distribution of the planet is based 
on interpretation of transmission velocity of the longitudinal and transverse seis-
mic waves. Figure 6.2 presents the classic curve of transmission velocities of the 

6 The Nature of Oscillation and Rotation of the Earth



165

longitudinal and transverse seismic waves in the Earth plotted after generalization 
of numerous experimental data (Jeffreys, 1970; Melchior, 1972; Zharkov, 1978). 
The curves of the radial density and hydrostatic pressure distribution based on in-
terpretation of the velocities of the longitudinal and transverse seismic waves are 
also shown.

The picture of the transmission velocities of the seismic waves was obtained by 
observations and therefore is realistic and correct. But interpretation of the obtained 
data was based on the idea of hydrostatic equilibrium of the Earth. It leads to incred-
ibly high pressures in the core and high values of the mass density.

In accordance with Bullen’s approach for interpretation of the seismic data, 
the density distribution is characterized by the following values (Bullen, 1974;  
Melchior, 1972; Zharkov, 1978). The density of the crust rocks is 2.7–2.8 g/cm3 and 
increases towards the centre by a certain curve up to ~13.0 g/сm3 with jumps at the 
Mohorovici discontinuity, between the upper and lower mantle, and on the border 
of the outer core. Within the inner core the values of the transverse seismic waves 
are equal to zero. Despite the jump of the longitudinal seismic wave velocity at the 
outer core border dropping down, Bullen accepted that the density increases toward 
the center. It was done after his unsuccessful attempt to approximate the seismic 
data of the parabolic curve which gives a decrease of density in the core. Such a 
tendency is not consistent with the idea of iron core content. Bullen certainly had 
no idea that the radius of inertia and radius of gravity of the body do not coincide 
with its geometric centre of mass and, therefore, the maximum value of density is 
not located there. In accordance with our concept of the equilibrium condition of the 
planet and its dynamical parameters, the approach to interpretation of the seismic 
data related to the radial density and radial pressure distribution should be done on 
a new basis.

Now, when we accept the concept of dynamical equilibrium of the Earth and refuse 
its hydrostatic version, the basic idea to search for a solution of the problem seems 

Fig. 6.2   The curves of 
transmission velocities of 
the longitudinal ( 1) and 
transverse ( 2) seismic waves, 
density ( 3), and hydrostatic 
pressure ( 4) in the Earth
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to be the found relationship between the polar moment of inertia and the potential 
(kinetic) energy. The value of the structural form-factor of the Earth’s mean axial 
moment of inertia β2

⊥ = J⊥/MR2 = 0.3315  found by artificial satellites (Zharkov, 
1978) should be taken as a starting point. The mean polar moment of inertia of the 
assumed spherical non-uniform planet is equal to β2 = (3/2)β2

⊥ = 0.49725. We 
accept this value for development of the methodology.

Let us take as a basis the found mechanism of the shell separation with respect to 
the mass density which was presented in Sects. 6.5–6.8. The conditions and mecha-
nism of the shell separation into radial and tangential components of the inner force 
field (by the Archimedes and Coriolis forces) represent continually acting effects 
and create physics for the Earth’s structure formation. These effects explain the 
jumps between the shells observed by seismic data density. We take also into ac-
count the effect, expressed by Eq. (6.30), according to which the velocity of the 
sound recorded by the transmission velocity of the longitudinal and transverse seis-
mic waves quantitatively characterize the energy of the elastic deformation of the 
media and velocity of its transmission there.

Applying the conception of Sect. 6.8, we accept that the non-uniformities of the 
spherical shells come together and, after their density becomes lower than that of 
the mean density of the inner sphere, move from the center by the parabolic law 
because they interact according to the law 1/r2. So, we can find a probable law of 
the radial density distribution in the form

� (6.72)

where х = r/R is the ratio of the running and the final radius of the planet; 0 is the 
body’s mean density; a, b, с are the numerical coefficients.

The numerical coefficients were selected for different densities for the upper 
shell and in such a way that the planet’s total mass M would be constant, i.e.

Here the term (3/5)a+ (3/4)b+ c = 1  in the right-hand side of the expression 
allows us to calculate and plot the distribution density curves in a dimensionless 
form.

We have selected three most typical parabolas (6.73) which satisfy the condition 
of equality of their moment of inertia, found by artificial satellite data, namely, the 
axial moment of inertia J⊥ = β2

⊥ MR2 = 0.3315 MR2  or the polar moment of iner
tia J = β2 MR2 = 0.4973 MR2. In addition, the first relation in (6.73) represents the 
straight line for which the surface mass density and that in the centre correspond to 
the present-day version and to the form-factor β2

⊥.  The fifth straight line represents 

ρ(r) = ρ0(ax2 + bx + c),
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the uniform spherical planet. The curve equations with selected numerical coeffi-
cients a, b, and с are as follows: 

�

(6.73)

Figure 6.3 shows all the curves of (6.73). They intersect the straight line 5 of the 
mean density in the common point which corresponds to the value r/R = 0.61475.

Using Eqs. (6.73) and the found (by observations) form-factor β2
⊥ = 0.3315,  

the main dynamical parameters were calculated for all four curves. The calculations 
were done by the known formulae of the attraction theory (Duboshin, 1975) and 
taking into account the relations of (6.48) and (6.50) obtained in Sect. 6.2. These 
calculations are presented below for equation (4), as an example.

The potential energy of the non-uniform sphere with the density distribution law 
ρ( r) is found from the equation:

� (6.74)U = 4πG

R

0

rρ(r)m(r)dr,

Fig. 6.3   Parabolic curves 
of radial density distribution 
calculated by Eq. (6.73)
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, ρs = 1.03224 g/cm3;

(5) ρ(r) = ρ0 = const.
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where

Then

The form-factor of the potential energy is α2 = r2
g/R2 = 0.660143, and the reduced 

radius of gravity is rg =
√

0.660143R2 = 0.8124918R.

In accordance with Eq. (6.48), the potential energy of the non-uniform sphere is 
expanded into the components

� (6.75)

The potential energy of the uniform sphere is equal to

� (6.76)

The form-factors of the potential and kinetic energy are equal to α2
0 = 0.6 and β2

0 = 0.6 
accordingly.

In accordance with the second term of the right–hand side of Eq. (6.48), the tan-
gential component of the non-uniform sphere is written as

� (6.77)
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The coefficient ½ in (6.77) is taken as the ratio of the second terms of the right–hand 
side of Eqs. (6.48) and (6.50), as in this particular case the tangential component of 
the potential energy is determined through the tangential component of the kinetic 
energy and is equal to half its value. Then

The form-factors of the tangential components of the potential and kinetic energy 
are equal to α2

t = 0.051357 and β2
t = 2× 0.051357 = 0.102714  accordingly.

In accordance with the third term in the right–hand side of Eq. (6.48), the dis-
sipative component of the potential energy of the non-uniform sphere is

� (6.78)

where

Then

�

(6.79)

So, the value of the form-factor of the dissipative component is α2
y  = 0.008 786.
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The radial distribution of the potential energy for interaction of a test mass point 
with the non-uniform sphere is

�

(6.80)

At r/R = 0, then α2
v ( r) = 1.6445; and at r/R = 1 then αν

2( r) = 1.
The radial distribution of the interaction force of the test mass point with the 

non-uniform sphere is

�

(6.81)

At r/R = 0 then α2
v ( r) = 0; and at r/R = 1 then α2

v ( r) = 1.
Table 6.1 demonstrates the results of the calculated dynamical parameters for all 

the density curves (6.73) and Fig. 6.4 shows the curves of radial distribution of the 
potential energy and gravity force for the test mass point.

We wish to evaluate all four curves of mass density distribution in order to rec-
ognize which one is closer to the real Earth. In this case we keep in mind that the 
observed density jumps can be obtained for any curve by approximation of its con-
tinuous section with the mean value for each shell.

Figure 6.3 shows that the radial density values are substantially different for each 
curve. It refers, first of all, to the surface and centre of the body. At the same time 
Table 6.1 demonstrates the complete identity of the dynamical parameters of all 
the non-uniform spheres. It means that a fixed value of the polar moment of inertia 
permits us to have a multiplicity of curves of the radial density distribution with 
identical dynamical parameters of the body. The found property of the non-uniform 
self-gravitating sphere proves the rigor of the discovered functional relationship 
between the potential (kinetic) energy and the polar moment of inertia of the sphere. 
This property, in turn, is explained by the energy conservation law of a body during 
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its motion and evolution in the form of the dynamical equilibrium equation or gen-
eralized virial theorem.

If we accept the conditions of the mass density separation presented in Sects. 6.5–
6.8, then the range of curves of the density distribution gives a principal picture of 
its evolutionary redistribution and can be applied for reconstruction of the Earth’s 
history. It follows from Eq. (6.71) that the density value of each overlying shell of 

Fig. 6.4   The curves of the radial distribution of the potential energy (a) and gravity force (b) for 
the mass point test done by Eqs. (6.74) and (6.81)
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Equation 
N°

1 2 3 4

s, g/cm3 2.76 2.08 1.65 1.03224
c, g/cm3 13.8 10.455 6.315 1.6284
max, 

g/cm3/
km

13.8/0 10.455/0 8.26/2096 8.57/3122

2
⊥ 0.3315 0.3315 0.3315 0.3315238

2 0.49725 0.49725 0.49725 0.49725858
2

t 0.10275 0.10275 0.102752 0.102714
2 0.660737 0.660737 0.660737 0.660143
2

t 0.051371 0.051371 0.0513714 0.0513571
2

 0.009366 0.009366 0.009366 0.0087859
rg, km 5178.6 5178.7 5178.6 5176.4
rm, km 4492.6 4492.6 4492.6 4492.7
Here ρs, ρc, ρmax are the density on the sphere’s surface, in the cen-
tre, and maximal accordingly; β2

⊥, β2, β2
t are the form-factors of 

the axial, polar, and tangential components of the radius of inertia 
accordingly; 2, 2

t, 2
γ are the form-factors of the radial, tangen-

tial, and dissipative components of the force function accordingly; 
rg, rm are the radiuses of the gravity and inertia.

Table 6.1   Physical and dyna-
mical parameters of the earth 
for the density distribution 
presented by equation (6.73)
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the created Earth should be higher than the mean density of the inner mass. Other-
wise, such a shell cannot be retained and should be dispersed by the tidal forces. It 
follows from this that the planet’s formation process should be strictly operated by 
the dynamical laws of motion in the form of the virial oscillations and accompa-
nied by differentiation of the non-uniform shells. The model of a cyclonic vortex 
which was proposed by Descartes is the most acceptable from the point of view 
of the considered ideas of planets’ and satellites’ creation from a common nebula. 
This problem needs a separate consideration. We only note here that from the pre-
sented curves of radial density distribution the parabola (4) more closely reflects 
the present-day planet’s evolution as fixed by observations. In this case location of 
the Earth’s reduced inertia radius falls on the lower mantle and the reduced gravity 
radius—on the upper mantle. The density maximum falls also on the lower mantle. 
Its value is found by ordinary means, namely, by taking the derivative from the den-
sity distribution law as equated to zero. From here max = 8.57 g/сm3 is found to be 
at a distance of r = 3122 km. It means that the density maximum comes close to the 
border of the outer core where, as seismic observations show, the main density jump 
occurs. Curve (4) corrects the values of the radial density distribution in the mantle 
and changes its earlier interpretation in the outer and inner core. Because of zero 
values of the transverse velocities the matter of the inner core has a uniform density 
structure and, from the point of view of the equilibrium state, seems to be in a gase-
ous state at a pressure of 1–2 atmospheres. Taking into account the location of the 
maximum density value, there is a reason to assume that the outer core matter stays 
in the liquid or supercritical gaseous stage. In any case, the density and pressure of 
the inner and outer core are much lower and should have values corresponding to 
the seismic wave velocities. On the basis of the equation of mass density differen-
tiation (6.71) we interpret the density jumps observed (by seismic data) near the 
Mohorovičich-Gutenberg and at the outer core borders as the borders of the shell’s 
dynamical equilibrium. A shell which is found over that border appears in a sus-
pended state due to action of the radial component of the gravitational pressure de-
veloped by the denser underlying shell. While the thickness of the suspended shell 
is growing it acquires its own equilibrium pressure (iceberg effect). The extremely 
high pressures in the Earth’s interior, which follow from the hydrostatic equilibrium 
conditions, are impossible in its own force field.

The concept discussed above in relation to the Earth’s density distribution is 
illustrated in Fig. 6.5.

Fig. 6.5   Radial density dis-
tribution of the Earth by the 
authors’ interpretation
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6.10  �Oscillation Frequency and Angular Velocity 
of the Earth’s Shell Rotation

In order to determine numerical values of frequency of the virial oscillations and the 
angular velocities, which are the main dynamical parameters of the Earth’s shells, 
we accept equation (4) of the density distribution (6.73) as the first approximation. 
All further relevant calculations can be made by applying this equation.

For calculations of the upper Earth’s shell, the mean values of the planet’s den-
sity 0 = 5.519 g/сm3 and the frequency of angular velocity ωt = 7.29 × 10−5 s−1 are 
known. Applying these values, the frequency and period of the virial oscillations, 
and the coefficient ke of the tangential component of the inner forces, can be found. 
In accordance with Eq. (6.67) the frequency of the upper shell is equal to

The period of oscillation is found from the expression

The product of the found frequency and the Earth’s radius gives the value of the first 
cosmic velocity, the mean value of which is

Unlike the usual expression for the first cosmic velocity in the form of v1 =
√

GM/r,  
we used here the physical condition of the dynamical equilibrium at the Earth’s sur-
face between the inner gravitational pressure of interacting masses and the outer 
background pressure including atmospheric pressure.

In the next chapter our own observation data on the near-surface atmospheric 
pressure and temperature oscillations at the near-surface layer and the results of the 
spectral analysis are given, which prove the above theoretical calculations of the 
planet’s frequency of virial oscillations.

Now, applying the known mean value of the Earth’s angular velocity 
ωt = 7.29× 10−5s−1  and the known value of the frequency of virial oscillations 
for the upper shell ωo = 1.24× 10−3s−1  by Eq. (6.69) the coefficient ke can be 
found

ω0(r) =


4

3
πGρ0(r) =


4

3
3.14× 6.67× 10−8 × 5.519 = 1.24× 10−3s−1.

Tω =
2π

ω0(r)
=

6.28

1.24× 10−3 = 5060.4 s = 1.405 h.

v1 = ω0 (r) re =
�
1.2× 10−3× 6370 = 7.9 km/s.

ke =
ω2

t

ω2
0

=
�
7.29× 10−5

2

�
1.24× 10−3

2 =
1

289.33
= 0.003456.
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The coefficient ke is known in geodynamics as a parameter that shows the ratio 
between the centrifugal force at the Earth’s equator and the acceleration of the grav-
ity force there equal to ke = 1/289.37  (Melchior, 1972). The parameter is used to 
study the Earth’s shape based on the Clairaut hydrostatic theory.

6.10.1  �Thickness of the Upper Earth’s Rotating Shell

It is known that the value of the mean linear velocity of the upper planet’s shell is 
vе = 0.465 km/c. We can find the thickness hе at which the velocity vе corresponds to 
the found frequency of radial oscillations of the shell ωo = 1.24 × 10−3 s−1

� (6.82)

Such is the thickness of the upper shell of the Earth which is rotating by forces in 
its own force field. It is assumed that the shell is found in the solid state. In reality 
it is known that the rigid shell has a thickness less than 50 km. The remaining more 
than 300 km-thick part of the shell has a viscous-plastic consistency, the density of 
which increases with depth. The border of the near-by Mohorovičich discontinu-
ity has a decreased density because of the melted substance due to high friction 
and saturation by a gaseous component. The border plays a role of some sort of 
spherical hinge. Because the density of the Earth’s crust is lower than that of the 
underlying matter, then it occurs in the suspended state. During the oscillating mo-
tion the crust shells are affected by the alternating-sign acceleration and the inertial 
isostatic effects.

6.10.2  �Oscillation of the Earth’s Shells

Let us obtain the expression of virial oscillations for the Earth’s other shells by ap-
plying expression (4) of (6.73) for the radial density distribution. Write Eq. (6.67)

where
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Then

�

(6.83)

At r/R = 0 then ωо( rо) = 0.6743 × 10−3 s−1; at r/R = 1 then ωо( rо) = 1.24 × 10−3 s−1; 
at ρmax = 8.57 g/сm3 ωо( rо) = 1.486 × 10−3 s−1, where r/R = 0.49.

Figure 6.6a shows a change in the virial oscillation frequencies of the Earth’s 
shells by Eq. (6.83).

6.10.3  �Angular Velocity of Shell Rotation

Angular velocity of the Earth’s shell rotations is determined from Eq. (6.68)

�

(6.84)
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Fig. 6.6   Radial change in virial oscillation frequencies (a) and angular velocity of rotation (b) accor-
ding to Eqs. (6.83) and (6.84)
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where ωt( rо) is the angular velocity of the shell rotation; ωo( r) is the shell oscillation 
frequency which is determined by Eq. (6.83).

The geodynamic parameter ke( rо), which expresses the ratio of the tangential 
component of the force field and the gravity force acceleration for the upper shell, 
is approximated in the

where hc is the distance between the sphere’s surface and the density jump; R is the 
sphere’s radius.

At r/R = 1, ke( rо) = 0.003456; at r/R = 0, ke( rо) = 1, ωt(0) = ωo(0), i.e. the virial 
oscillation frequency corresponds to the gravity pressure of the uniform density 
masses. In this particular case we are interested in a change in the angular velocity of 
rotation of the upper (1000 km) and lower (up to the core border) mantle (2900 km). 
Figure 6.6b shows the radial change of the angular velocity of rotation calculated by 
Eq. (6.84). It is seen that the angular velocity at the lower mantle–outer core is close 
to zero but changes its direction.

We emphasize once more that Equations (6.83) and (6.84) express the third 
Kepler law which determines radial distribution of both the virial oscillation fre-
quencies and the angular velocities of rotation. Numerical values of these param-
eters are determined by the radial density distribution law. It also determines the 
density jumps which mark the effect of the shell’s isostatic equilibrium.

6.11  �Perturbation Effects in Dynamics of the Earth

The most noteworthy effects of dynamics of the Earth are the interrelated phenom-
ena of the precession and nutation of the axis of rotation, tidal effects of the oceans, 
and atmosphere, the axial obliquity and declination of the plumb-line and the grav-
ity change at each point of the planet. The present-day ideas about the nature of 
these phenomena were formed on the basis of the planet’s hydrostatic equilibrium 
and since early times were considered as effects of perturbation from the Sun, Moon 
and other planets. All the above phenomena represent periodic processes and many 
observational and analytical works were done for their understanding and descrip-
tion. The present-day studies of these processes are still continuing to be specified 
and corrected. This is because such topical problems as correct time, ocean dy-
namics, short and long-term weather and climate changes and other environmental 
changes are important for every-day human life.

Now, after it was found that the conditions of the hydrostatic equilibrium are 
not acceptable for study of the Earth’s dynamics, we reconsider the nature of the 
phenomena by applying the concept of the planet’s dynamical equilibrium and de-
veloping a novel approach to solving the problem.

ke(r) =
ω2

t (r)
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h2
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,
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6.11.1  �The Nature of Perturbations in the Framework  
of Hydrostatic Equilibrium

Phenomenon of precession.  The phenomenon of the precession of equinoxes was 
already observed in the second century BP by the Greek astronomer and mathemati-
cian Hypparchos. His discovery was based on comparison of longitudes of the far 
stars with the longitudes of the same stars determined 150 years earlier by other 
astronomers.

The classical explanation of precession is based on the inertial rotation of a 
symmetrical rigid body with a fixed point. Such a motion of a body, presented in 
Fig. 6.7, includes its rotation with angular velocity Ω relative to the axis Оz, fixed 
in the body, and from rotation with angular velocity ω around the axis Оz1. Here the 
axes х1, y1, z1 are accepted to be immobile because motion of the body is considered 
relative to them. The straight line ON perpendicular to the plane z1Oz is called the 
line of nodes, and angle ψ = x1ON is the precession angle. Together with precession, 
the body performs the nutation motions (axis wobbling) which cause changes in the 
nutation angle Θ = z1Oz.

Perturbation of the Earth’s inertial rotation is considered as a result of the applied 
solar-moon force couple, the axis of which is at right angles to the rotation axis; the 
body turns around the third mutually perpendicular axis. In this model the Earth 
is accepted as a rigid body oblate along the rotary axis. Newton’s idea was that 
the spherical body has an equatorial bulge that appears as the result of the planet’s 
oblateness. In this case the Sun is more strongly attracted by the body’s equatorial 
bulge and this tends to decrease the inclination of the Earth’s equatorial plane to 
the ecliptic. The Moon has an analogous affect but is two times as powerful due 
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Fig. 6.7   Classical explana-
tion of precession motion
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to its closer distance. The common effect of the Sun and Moon on the equatorial 
excess of the rotating Earth’s mass leads to the rotary axis precession. Because the 
induced precession forces are continuously varying due to changes in the Sun and 
Moon positions relative to the Earth, then additional nutations (wobble) of the axis 
are observed during translational motion of the planet. In addition to the lunisolar 
precession, the effect of the other planets of about a few tenths of an arc second is 
observed. The combined Earth precession rate is estimated to be equal to ~50.3″/
year or one complete rotation in ~26 000 years.

The theory of the precession and nutation of the Earth’s axis of rotation based 
on hydrostatics was developed in the works of D’Alembert, Laplace and Euler. 
The precession values were calculated by Bessel and Struve and are undergoing 
verification even today. The physical basis of modern studies remains unchanged. 
The main emphasis in the studies is on consideration of the elastic and rheological 
properties of the planet, effects of dynamics of the atmosphere and the oceans and 
dynamics of the liquid core, the probability of which is assumed (Jeffreys, 1970; 
Munk and MacDonald, 1960; Melchior, 1972; Sabadini and Vermeersten, 2004; 
Molodensky, 1961; Magnitsky, 1965).

Tidal effects.  The theory of the ocean tides was also presented first by Newton in 
his Principia, Proposition XXIV, Theorem XIX. He stated that the tides are caused 
by action of the Moon and the Sun. It follows from Corollaries IХ and ХХ (Propo-
sition LXVI, Book I), that the sea should rise and subside twice per every lunar 
and twice per every solar day, and the highest tide in the free and deep seas should 
appear less than six hours after the tide-body has passed the place meridian. And it 
exhibits the same behavior all along the East Atlantic and Pacific shores. The effects 
of both tide-bodies are summed up. At joining and opposing positions of the bod-
ies their effects are summed up and provide the highest or lowest tide. Observation 
shows that the tide effect of the Moon is stronger than that of the Sun.

Modern studies in the theory of precession and nutation remain on the physical 
basis described by Newton. Besides, all the above phenomena are considered in 
close relationship and their amplitudes and periods are described by common equa-
tions which follow from the attraction theory (Melchior, 1972).

The modern physical picture for explanation of the tidal interaction is presented as 
follows (Pariysky, 1972). The tidal force is equal to the difference between any Moon-
attracted particle on the Earth (including in the atmosphere, in the oceans, and in the 
solid body itself) and the same particle replaced to the center of the planet. (Fig. 6.8).

The normal tide forces are proportional to the mass of the Moon m and the dis-
tance to the center of the Earth r, and to the inverse cubic distance between the Moon 
and the Earth R, and the zenith distance of the Moon z. The vertical component of 
the tidal force per mass unit F changes the value of the gravity force into the value

� (6.85)

where G is the gravity constant.
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The gravity force decreases by 0.1 mgal or by 10−7 of its value on the Earth’s 
surface when the Moon stays in zenith or nadir, and twice increases when the Moon 
rises or sets.

The horizontal component of the tidal force is equal to zero when the Moon stays 
zenith, nadir and on the horizon. Its maximum value reaches 0.08 mgal at zenith 
distance of the Moon equal to 45°:

� (6.86)

The tidal force of the Sun is formed analogously. But because of distance, its value 
is 2.16 times less than of the lunar one Due to rotational and orbital motion of the 
Earth, the Moon, and the Sun, the tide force of each point in the atmosphere, the 
oceans and the planet’s surface continuously changes in time. Tables have been 
compiled of integral values of the tide forces in the form of the sums of periodic 
components (~500 terms or more) calculated by the theory of motion of the Moon 
round the Earth and the Earth round the Sun.

By estimation of many authors, the total tidal-slowing down of the Earth’s rota-
tion amounts to 3.5 msec in 100 years. By astronomic observation the Earth’s rota-
tion is accelerated by 1.5 msec per 100 years.

Note, that in the framework of the hydrostatic approach, the problems of the 
nature of the obliquity of the axis of the Earth’s rotation to the ecliptic and the na-
ture of the obliquity of axes of the Moon and the Sun to their orbit planes and their 
obliquity to the ecliptic are not discussed. These problems have as yet not even been 
formulated.

6.11.2  �The Nature of Perturbations Based  
on Dynamic Equilibrium

To begin, let us consider the physical meaning of gravitational perturbation for in-
teracting volumetric (but not point) body masses. Contrary to hydrostatics, where 

Fh =
3

2
G

mr

R3
sin2z.

Fig. 6.8   Scheme of mass 
interaction between the 
Moon and the Earth for 
explanation of tidal effects. 
(By Pariysky, 1975) To the Moon 
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the measure of perturbation in the precession-nutation and the tidal phenomena is 
the perturbing force, in the dynamic approach that measure of perturbation is power 
pressure. In Chap. 2 we concluded that the mass points and the vector forces as a 
physical and mathematical instrument in the problem solution of dynamics of the 
Earth in its own force field are inapplicable. This is because the outer vector central 
force field of the interacting volumetric masses incorrectly expresses dynamical ef-
fects of their interaction. As a result, the kinetic effect of interaction of the mass par-
ticles, namely, the kinetic energy of their oscillation, is lost. And also the geometric 
center of a body is accepted as the gravity center and center of the inertia (reaction). 
In dynamics it leads to wrong results and conclusions. In this connection we found 
that in dynamics of the Earth as a self-gravitating body the effect of gravitational 
interaction of mass particles should be considered as the power pressure. In addi-
tion, in this case we are free in our choice of a reference system. Our conclusion 
does not contradict Newton’s physical ideas which are presented in Book I of his 
Principia where he says:

I approach to state a theory about the motion of bodies tending to each other with centripetal 
forces, although to express that physically it should be called more correct as pressure. But 
we are dealing now with mathematics and in order to be understandable for mathematicians 
let us leave aside physical discussion and apply the force as its usual name.

Accepting the power pressure as an effect of gravitational interaction, we come 
to an understanding that, in the considered problem of the mutual perturbations 
between the Earth, the Moon, and the Sun, the interaction results not between the 
body centers or shells along straight lines, but between the outer force fields of the 
bodies and between their inner force fields of the shells. Satellite observations show 
that the outer force field, induced by the Earth’s mass, has 4π-outward direction of 
propagation and acquires a wave nature. We consider this outer wave force field 
as a physical media by which the bodies transmit their energy. Thus, the Earth and 
other planets are held and move on the orbits by the power of the outer wave field of 
the Sun. This power, in terms of its normal and equal to its tangential components, 
remains valid since the planets separation (see above Sects. 6.5 and 6.6). In order 
to demonstrate validity of the above conception let us calculate the mean values of 
velocity of the Earth and the Moon orbital motion from the frequencies of oscilla-
tion of the respective outer wave fields of their parents.

In accordance with Eq. (6.67), the frequency ωs of oscillation of the self-gravi-
tating Sun’s outer force field at the mean distance Re of the Earth’s orbit is

where Ms is the Sun’s mass; Res is the mean distance between the Earth and the 
Sun.

In accordance with wave mechanics, the mean value of the Earth’s orbital veloc-
ity is

ωs =


GMs

R3
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=


6.67× 10−8 × 1.99× 1033

�
1.496× 1013

3 = 1.9931× 10−7s−1,
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If we extend the outer force fields of the Sun and the Earth up to equality of their 
reduced densities, then in accordance with the same Eq. (6.67) the border between 
the two interacting fields can be found. By calculation the mean (nodal) value of the 
Earth’s field border is found to extend up to 2.128 × 109 m and the Sun’s border—to 
1.478 × 1011 m.

Applying the same procedure, the orbital velocity of the Moon from the frequen-
cy oscillation ωe of the Earth’s outer force field at the distance Rme  has value

where Me is the Earth’s mass; Rme is the mean distance between the Moon and the 
Sun.

Then the Moon’s orbital velocity is

The Moon’s border of the outer force field in the nodal plane extends to the Earth 
up to 0.72 × 108 m and the Earth’s border—to 3.724 × 108 m.

The obtained values of velocities, as well as the values for the pericenters and 
apocenters, are exactly the same as known from observation. It means that the ob-
served ecliptic inclination relative to the equatorial plane of the Sun and inclination 
of the Moon’s orbit relative to the ecliptic reflect asymmetric distribution of the solar 
and the planet’s masses. It also means that the observed inclination of the Moon’s or-
bit plane and the ecliptic are governed by asymmetric distribution of the Earth’s and 
the Sun’s force fields. The force fields of the Earth and the Moon, together with the 
bodies themselves being local “secondary” inclusions in the powerful force fields of 
the Sun and the Earth, are obliged to adjust their positions in order to be in dynamic 
equilibrium. The observed parameters of the orbits and their inclination relative to 
the plane diameters of the Sun, the Earth and the Moon give a general view of the 
asymmetric distribution of the body’s masses. In particular, the northern hemisphere 
of the Earth is more massive than the southern one. So, in the perihelion the northern 
hemisphere is turned to the less massive hemisphere of the Sun. So that, the polar 
oblateness of each body controls the location of its pericenter and apocenter, and 
the equatorial oblateness of each body responds to location of its nodes. Thus, the 
body motion in the outer force field of its parent occurs under strict conditions of 
dynamic equilibrium which is also the main condition of its separation. It follows 
from the condition of dynamic equilibrium that the orbital motion of the Earth and 
the Moon reflects asymmetry in mass density distribution of the Sun, the Earth, 
and the Moon and asymmetry in the potential of the outer wave field distribution. 

ve = ωsRes = 1.9931× 10−7 × 1.496× 1013 = 2.98× 106 cm/s = 29.9 km/s.
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�
3.844× 1010

3 = 2.64907× 10−6s−1,

νm = ωeRm = 2.64907× 10−6 × 1.496× 1013 = 1.0183× 105 cm/s

= 1.0183 km/s.
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Only the structure of the Sun’s outer wave field controls the Earth’s trajectory at the 
orbital motion and the Earth’s force field manages the orbital motion of the Moon, 
but not vice versa.

6.11.3  �Change of the Outer Force Field and the Nature  
of Precession and Nutation

At the right time of motion of the bodies with the outer wave fields, their mutual 
perturbations are transferred not directly from each body to the other one or from 
their shells, but through the outer fields by means of the corresponding active and 
reactive wave pressure of the interacting fields. There is an important dynamic ef-
fect of all the perturbations. This is the continuous change in the outer wave field 
of each body which proceeds from its non-uniform radial distribution of the mass 
density. As it was earlier shown, the non-uniform radial distribution of mass den-
sity initiates the differential rotation of the body shells. And, in accordance with 
Eqs. (6.67)–(6.68) expressing the third Kepler’s law, the reduced body shells’ per-
turbing effects are transferred to the other body by means of the outer wave field. So 
that the Sun, for instance, through its outer wave field, continuously transfers to the 
Earth all the perturbations resulting during rotation of the interacting masses of the 
shells. The Earth, in the framework of the energy conservation law, demonstrates all 
the perturbations by changes in its orbit turns around the Sun (see below Fig. 6.9).

Earlier it was shown that in the case of non-uniform distribution of mass density 
the body’s potential and kinetic energies have radial and tangential components 
which induce oscillation and rotation of the shells. It was defined by Eq. (6.82) that 
the observed daily rotation of the Earth concerns only the upper shell with thickness 

Fig. 6.9   Real picture of 
motion of a body A in the 
force field of a body B. 
Digits identify succession of 
turns of the body A moving 
around body B along the 
open orbit C
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of ~375 km and reaches the near-by Mohorovicić discontinuity. By the same rea-
soning it is not difficult to find the thickness of the upper shells for the Sun and the 
Moon correspondingly equal to:

� (6.87)

� (6.88)

We do not know real number and angular velocities of rotation for the inner shells 
of the three bodies. These velocities have a direct interrelation with the observed 
changes in parameters of the orbital motion of the Earth and the Moon including the 
retrograde motion of the orbital nodes and the apsidal line. In this connection let us 
try to understand first of all the nature of precession and nutation of the bodies from 
the point of view of the dynamic approach.

It was noted above that, in accordance with the hydrostatic approach, precession 
of the equinoxes of the Earth is an effect of the net torque of the Moon and the Sun 
on the equatorial “bulge” aroused from gravitational attraction. The torque aspires 
to diminish inclination of the equatorial belt with surplus mass relative to the eclip-
tic and induce the retrograde motion of the nodal line. In addition, because the ratio 
of distance between the interacted bodies is changed, then the relationship between 
the forces is also changed. In this connection the precession is accompanied by nu-
tation (wobbling) motion of the axes of rotation.

Analysis of orbits of the artificial satellite motion around the Earth shows that, in 
spite of absence of the equatorial “bulge” of mass, the apparatus demonstrates the 
precession effect. Its orbital plane has a clockwise rotation with retrograde motion 
of the nodal line. But a new explanation of the phenomenon is given. It appears that 
the retrograde motion of the nodal line associates with the Earth equatorial and polar 
oblateness. The amplitude of the nodal line shift depends on the satellite orbit incli-
nation to the Earth’s equatorial plane. In the case of the poles’ orbital plane the nodal 
line shift is completely absent. This is because the motion excludes both the polar 
and the equatorial oblatenesses of the Earth. The direction of motion of the apsidal 
line depends on the satellite’s orbit inclination and is determined by the Lentz law.

It is also known that for the other free-of-satellite planets the retrograde motion 
of the nodal line is also a characteristic phenomenon called the “secular perihe-
lion shift”. It was found from observation of Mercury, Venus, Earth and Mars that 
their secular perihelion shifts are decreased from ~40′′ through ~8.5′′, ~5′′ to ~1.5′′ 
accordingly (Chebotarev, 1974).

All these facts imply that the explanation given for the satellites’ precession de-
pending on their orbital inclination to the ecliptic is correct. But the nature of this 
unique phenomenon, characteristic for all celestial bodies, are inconsistent with the 
hydrostatic approach and should be reconsidered, taking also into account the satel-
lite observations.
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6.11.4  �Observed Picture of a Body Precession

The precession of the Earth, the Moon and the artificial satellites in the form of mo-
tion of an orbital plane toward the backward direction of the body’s motion should 
be considered as a virtual explanation of the phenomenon. In fact, the orbit’s plane 
is a geometric shape traced by the body. And there is no reason to consider its move-
ment without the body itself. There is no difficulty to present the real body motion 
in space in two opposite directions synchronously. In particular, the actual picture 
of the Earth, the Moon and the satellite motion in counterclockwise direction and 
retrograde movement of the nodal line is shown in Fig. 6.9.

Here the satellite is moving in the counterclockwise direction along the unlocked 
elliptic orbit 1 in the continuously changing (perturbed by oblatenesses) planet’s 
force field. Because of the counterclockwise rotation of the Earth’s mass, the satel-
lite in perigee started to move on the orbit 2 and makes a shift in retrograde direction 
in the ascending and descending nodes. At the same time the eccentricity of the orbit 
2 changes by a proper value. Analogously the body passes on orbit 3, 4, 5 and so on. 
The theory of dynamic equilibrium of the Earth explains the physics of the observed 
phenomenon as follows.

6.11.5  �The Nature of Precession and Nutation Based  
on Dynamical Equilibrium

The dynamic equilibrium theory assumes that the Earth is a self-gravitating body, 
the interacting mass particles of which induce the inner and outer force fields. Sepa-
ration of the planet’s asymmetric shells results in an inner force field in accord-
ance with the radial mass density distribution. The normal component of the body’s 
power pressure provides oscillation, and the tangential component induces rotation 
of the shells having a different angular velocity. At the same time the mantle shells 
A and the outer shell of the core B may have the same (Fig. 6.10a) or opposite direc-
tion (Fig. 6.10b) of rotation depending on the radial mass density distribution.

The seismic data show that the inner core C has a uniform density distribution. 
Because of this, it does not rotate and its potential energy is realized in the form 
of oscillation of the interacting particles. The potential Е of the outer force field is 
controlled by integral effect of the interacted masses of all the shells and presented 
by the reduced shell D having continuously changing power.

The energy of the Earth’s outer force field is changed from the body surface in 
accordance with the 1/r law and at every r is continuously varied because of dif-
ferences in the angular velocity of rotation of the shell’s masses. This force field 
controls the direction and angular velocity of orbital motion of a satellite. Taking 
into account the non-uniform and asymmetric distribution of the masses of rotating 
shells, the change in the trajectory of the body motion is accompanied by a cor-
responding change in eccentricity of the orbit both at each and subsequent turns. 
Its maximum value is reached when the non-uniformities of the rotating masses 
coincide and the minimal value appears at the opposite position.
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It is worth noting that because the effect of retrograde motion of the nodal line of 
the Earth, the Moon and artificial satellites appears to be a common phenomenon, 
then the conclusion follows that the Sun, in the outer force field of which the Earth 
and the other planets move, has the same effects in its shell structure and motion. 
It is obvious that the other planets with their satellites have the same character of 
structure and motion.

If one takes into account the effect of a planet’s orbital plane inclination to the 
equatorial plane of the Sun, then the above changes are found to follow the law of 
1/r This observable fact proves our conclusion that the changes in the outer force 
field of a body are controlled by rotation of its reduced inner force shell (see the 
force shell D on Fig. 6.10). It explains why Mercury has maximal value of the 
“secular perihelion shift” between the other planets.

Thus, the Earth’s orbital motion and retrograde movement of its nodal line are 
controlled by the Sun’s dynamics of the masses through the outer force field. The 
Earth plays the same role for the Moon and the artificial satellites. As to the nutation 
motion, then its nature is related to the same peculiarities in the structure and motion 
of the bodies but the effects of their perturbations are fixed by the axis wobbling.

6.11.6  �The Nature of Possible Clockwise Rotation  
of the Outer Core of the Earth

The question arises why the outer planet’s core may have a clockwise rotation. It 
was shown in Sect. 2.6 that the law of radial density distribution determines the 
direction of a body’s shell rotation (Fig. 2.2).

It was found that in the case of uniform mass density distribution all energy of 
the mass interaction is realized in the form of oscillation of the interacting particles 
(Fig. 2.2a). If the density increases from the body’s surface to the center, then there 

Fig. 6.10   Sketch of rotation of the Earth’s shells by action of the inner force field: А is the mantle 
shells; B is the outer core; C is the inner core; E is the outer force field; D is the reduced shell of 
the inner force field of the planet
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are oscillations and counterclockwise rotation of shells (Fig. 2.2b). Increase of mass 
density from center to surface leads to oscillation and clockwise rotation with dif-
ferent angular velocities of the body shells (Fig. 2.2c). Finally, the parabolic law of 
radial density distribution (Fig. 6.11), where the density increases from the surface 
and then it decreases, leads to oscillation and reverse directions of rotation. Namely, 
the upper shells have a counterclockwise and the central shells—clockwise rotation. 
Case of Fig. 6.11, obviously, is characteristic for a self-gravitating body.

Note that direction of the body rotation depends on radial density distribution 
and corresponds with the Lenz right-hand or right-screw rule, well known in elec-
trodynamics. Taking into account the observed effect of the retrograde motion of 
the satellite nodal line, the gravitational induction of the inner and outer force fields 
of the Earth has a common nature with electromagnetic induction noted earlier. Just 
Fig. 6.11 may explain the nature of the retrograde motion of the nodal line of a satel-
lite orbit related to change in the potential of the outer Earth’s force field according 
to the induction law. The continuous and opposite-directed movement of the asym-
metric mass density distribution of the mantle and the outer core (Fig. 6.10) seems 
to be the physical cause of precession, nutation and variation of the inner and outer 
force fields observed by satellites. This idea is proved by the satellite data about the 
retrograde motion of the nodal line depending on inclination of its orbital plane with 
respect to the planet’s equatorial plane.

It is worth recalling, from the literature, that the idea of dynamical effects of the 
(probably) liquid core of the Earth has been discussed among geophysicists for a 
long time (Melchior, 1972).

6.11.7  �The Nature of the Force Field Potential Change

It follows from the above discussion that in the frame of the considered dynamical 
approach, the variation of potential of the inner and outer force field relates to the 
non-uniform distribution of mass density of a self-gravitating body. Rotation of the 
outer and inner shells leads to the observed effects of precession, nutation and vari-
ation of their own force fields.

Fig. 6.11   Dependence of 
shell rotation on the parabolic 
law of radial density distri-
bution for the Earth. Here rm 
and rg are the reduced radiu-
ses of inertia and gravitation
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6.11.8  �The Nature of the Earth’s Orbit Plane Obliquity

Celestial mechanics does not discuss the problem of obliquity of the planet’s and 
satellite’s orbit planes and accepts it as an observable fact. The theory of dynamic 
equilibrium explains this phenomenon and the nature of apocenters and pericenters 
by asymmetric distribution of masses and by effect of rotation of asymmetric shells 
of self-gravitating bodies (see Fig. 6.11). In fact, if the mass of the Sun’s shells has 
an asymmetric distribution, then the potential of the outer force field has the same 
asymmetry. This asymmetry determines inclination of the Earth’s orbit plane rela-
tive to the plane of the Sun’s rotation. Each point of the orbit reflects a condition 
of dynamical equilibrium of the interacting outer force fields of the planet and the 
Sun. The position of the Earth’s aphelion and perihelion reflects the position of the 
reduced maximal and minimal concentration of the Sun’s mass density in the shells. 
Because the Sun’s asymmetric shells have different angular velocities of rotation, 
then amplitude of the nodal line will decrease with increasing distance between the 
mass anomalies and vise versa. The effect of variation of the nodal line is proved by 
observation. So, the present-day angle of ecliptic inclination to the plane of rotation 
of the Sun equal to ~7°15′ expresses the relation between maximum and minimum 
concentrations of the reduced mass density of the Sun’s shells. An analogous effect 
is shown by inclination of the Moon’s orbital plane to the plane of rotation of the 
Earth.

6.11.9  �The Nature of Chandler’s Effect of the Earth  
Pole Wobbling

As it was noticed, changes in the planet’s inner force field are observed in the form 
of nutation or wobbling of the axis of rotation. The axis itself reflects the dynamics 
of the upper planet’s shell, the thickness of which, by our estimate, is about 375 km. 
The Moon is rotating about the Sun in the force field of the Earth which is perturbed 
by its natural satellite. Its maximum yearly perturbation should be the Chandler 
effect. The Moon’s yearly cycle seems to be the ratio of the Earth’s to the Moon’s 
month (in days). Then this cycle is 365(30.5/27) ≈ 410 days.

6.11.10  �Change in Climate as an Effect of Rotation  
of the Earth’s Shells

The above analysis of dynamical effects of the Earth’s shells is based first of all on 
the data of satellite’s orbit changes and measurements of the planet’s force field. 
Unfortunately, a specific feature of an artificial satellite orbital motion is its artifi-
cial velocity which is ~16 times higher than the angular velocity of the upper Earth’s 

6.11 Perturbation Effects in Dynamics of the Earth



188

shell. In this connection all its parameters of satellite motion are unnatural. So, we 
cannot directly divide the natural component of its nodal retrograde shift in order to 
get the total picture of perturbations which propagate the Earth’s inner shells. This 
is an experimental problem.

But there are also long term astronomical observations of the Earth’s dynamics 
relative to the far stars, the results of which correspond to the presented ones. In ad-
dition, periodicity in rotation of asymmetric inner shells of the Sun can be fixed by 
climatic changes on the Earth over a long period of time. Such changes were being 
studied, for instance, by data of the oxygen isotopic composition in mollusk shells 
over a number of years. Figure 6.12 demonstrates the results of Emiliani (1978) 
who studied the core obtained during deep sea drilling in the Caribbean basin.

The author obtained the picture of climate change in the Pleistocene era over 
730 000 years. It is seen that the periods of climate change vary from 50 000 to 
120 000 years. It means that the pure period of rotation of the asymmetric mass 
shells of the Sun is absent and the orbital trajectory has not been locked into place 
during the studied time.

6.11.11  �The Nature of Obliquity of the Earth’s Equatorial  
Plane to the Ecliptic

It is obvious that the obliquity of the planet’s equatorial plane is related to the polar 
and equatorial oblateness of the Earth’s masses. It follows from Eq. (6.68) that the 
obliquity, in turn, is determined by the tangential component of the inner force pres-
sure generated by the non-uniform radial mass density distribution. This tangential 
component of the inner force field induces the inner field of the rotary moments, the 
energy of which was discussed in Sect. 6.9 and presented in Table 6.1. The obliquity 
value can be obtained from the ratio of the potential energy of the uniform Uo and 
non-uniform Ut body of the same mass. Accepting this physical idea and the data of 
Table 6.1, we write and obtain:

� (6.89)

where o and t are the structural form-factors taken from Table 6.1.

cos =
Uo

Ut
=

α2
o

αt
2
=

0.6

0.66
= 0.909,  = 24.5◦,

Fig. 6.12   Isotopic composition of oxygen in shells of mollusk Globigerinoides Sacculifera within 
time period 0–730 000 years. (Emiliani, 1978)
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The error obtained in calculation of obliquity by formula (6.89) equal to about 
1о or ∆α2

t = 0.006—can be explained by the accepted law of the continuous radial 
distribution of the planet’s mass density.

Eq. (6.89) is an integral effect of the obliquity of the planet’s equatorial plane 
which is observed on the surface of the upper rotating shell. It was shown earlier 
that the observed obliquity is really an integral dynamical effect of the Earth’s mass 
including the upper shell up to the near-by Mohorovičich discontinuity. But being 
in a suspended state, relative to the other parts of the body, the upper shell is able to 
wobble as if on a hinge joint by perturbation from the Sun and the Moon. This effect 
of the upper shell wobbling gives an impression of the axial wobbling.

By the same cause the obliquity of the ecliptic with respect to the solar equator 
is determined by the Sun’s polar and equatorial oblateness. The trajectory of the 
Earth’s orbital motion at each point is controlled by the outer asymmetric solar force 
field in accordance with the dynamic equilibrium conditions. And only in the nodes, 
which are common points for equatorial oblateness of the Sun and the Earth, is the 
Huygens’ effect of the innate initial conditions fixed by the third Kepler law.

6.11.12  �Tidal Interaction of Two Bodies

Let us consider the mechanism and effects of interaction of the outer force pressure 
of two bodies being in dynamic equilibrium. Come back to the mechanism and 
conditions of separation of a body mass with respect to its density when a shell with 
light density is extruded to the surface. Rewrite Eq. (6.71) for acceleration of the 
gravity force in points А and В of the two body shells (Fig. 6.1b) and their densities 
М and m

� (6.90)

After the shell with density m appears on the outer surface of the body, the condi-
tion of its separation by Eq. (6.90) will be:

� (6.91)

The gravitational pressure will replace the shell up to the radius А + δА, where the 
condition of its equilibrium reaches М = m. This condition is kept on the new 
border line between the body and its upper shell. Taking into account that the shell 
in any case has a thickness, then, by the Archimedes law, the body will be subject 
to its hydrostatic pressure. If the separated shell is non-uniform with respect to 
density, then a component of the tangential force pressure appears in it, and the 
secondary self-gravitating body-satellite is formed. The new body will be kept on 
the orbit by the normal and equal tangential components of the outer force pres-
sure. In this case the reaction of the normal gravitational pressure will be local and 
non-uniform. If the upper shell is uniform with respect to density, then the reaction 
of the normal gravitational pressure along the whole surface of the body and the 

qAB = 4πGr


2

3
ρM − ρm


,

ρM > 2/3ρm.
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shell remains uniform in value. In this case the separated shell remains in the form 
of a uniform ring.

The above schematic description of the physical picture of the separation and 
creation of a secondary body can be used for construction of a mechanism of 
the tidal phenomena in the oceans, the atmosphere and the upper solid shell at 
interaction between the Earth and the Moon. The outer gravitational pressure of 
the Moon, due to which it maintains itself in equilibrium on the orbit, at the same 
time renders hydrostatic pressure on the Earth’s atmosphere, oceans and upper 
solid shell through its outer force field. This effect determines the tidal wave in the 
oceans and takes active part in formation and motion of cyclonic and anti-cyclonic 
vortexes. In accordance with the Pascal law, the reaction of the Moon’s hydro-
static pressure is propagated within the total mass of the ocean water and forms 
two tidal bulges. Because the upper shell of the Earth is faster-moving relative to 
motion of the Moon, the front tidal bulge appears ahead of the moving planet. Our 
perception of the ocean tides as an effect of attraction of the Moon appears to be 
speculative.

6.12  �Earthquakes, Orogenesis and Volcanism

It is known from geological and geophysical observations that the Earth’s crust is 
subjected to continuous vertical and horizontal movements. The physical mecha-
nisms such as vertical rising and sinking of the mantle matter because of its heating 
up and density differentiation, horizontal shift of the crust and its plate-blocks as a 
result of the rotary convective flow of the planet’s matter, are used for explanation 
of the tectonics hypotheses. Each of such hypotheses is proved by many facts.

In this work we have tried to solve those physical and analytical parts of the 
problem in which we give explanations for the nature of forces performing the work 
on transferring of enormous masses of matter with tectonic movements, as well as to 
determine the mechanism of action of such forces in time. We have shown that the 
forces of the Earth in the form of the force pressure are generated by the planet itself 
through interaction of its masses on the level of micro-particles. These forces form 
inner and outer fields of force pressure having a non-uniform structure because of 
heterogeneous distribution of the mass density. The gravitational force field includes 
radial, tangential and dissipative components and acts in an oscillating regime. The 
radial component is responsible for the radial transfer of the masses. The tangential 
component performs horizontal movement of the matter. And the dissipative com-
ponent forms the inner and outer electromagnetic fields of the planet.

Let us discuss in general form the nature of such practically important phenom-
ena as the Earth’s crust oscillation, earthquakes, orogenesis and volcanism. From 
the point of view of the presented theory all the above phenomena have a common 
nature. It associates local, regional or global changes in the potential and kinetic 
energy of the Earth’s shells. Therefore, in order to find the cause of one or another 
event, the perturbing energy link has to be first of all identified. Herein, one should 
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proceed from these causes to the fact that the Earth’s energy and its electromagnet-
ic component are being continuously generated. The perturbations from the outer 
force fields of the Sun and the Moon propagate through the outer force field of 
the Earth and reciprocal perturbation of the planet’s shells in the inner force field 
takes place. The observed diurnal rotation of the Earth is valid only for the upper 
shell of ~375 km thick and the total integral period of the planet’s mass rotation is 
~18.6 year. In addition, each planet’s shell occurs in a suspended state and is sub-
jected to an effect of the hydrostatic pressure.

6.12.1  �Earth Crust Tremor and Earthquakes

The world net of seismic stations continuously records an innumerable amount of 
elastic, mainly weak, oscillations of the Earth’s surface. Their total energy is esti-
mated as 1019 J. Jeffreys assumed that the Earth is absolutely an elastic body and 
during its rotation the elastic stresses are developed in it. If the limit of the elastic 
deformations is exceeded they develop into a plastic flow and finally a disconnec-
tion of continuity and a break of the matter happen. At this moment a sharp local 
change in the stresses arises which leads to appearance and propagation of elastic 
waves in the body, causing an earthquake. This physical basis of earthquakes con-
tinues to exist. It is assumed that in the seismic center of the body volume, where 
the process is developed, the energy, accumulated during some time, is released. 
The release of energy is accompanied by ruptures of the geological structures and 
instantaneous displacement of the matter masses.

From the point of view of the considered theory for understanding the nature 
of the given phenomena, the following refinements and additions should be intro-
duced. In accordance with the effects of differentiation of the planet’s shells with 
respect to their radial masses density distribution (see Sect. 6.5 and Eq. (6.71)) by 
the action of gravitational energy, continuously generated in the auto-oscillating 
regime, and of its force pressure, the process of mass-transfer is constantly occur-
ring. In the existing phase states of the Earth’s masses the most effective process 
of mass-transfer by the force pressure towards the surface is preferential in the 
gaseous phase. The gases under the pressure would be accumulated in the shells 
with densities expressed by the relationship М = 2/3m, which corresponds to the 
jumps observed by seismic observations. The hydrostatic pressure of the accumu-
lated gases increases with time and breaks through the overlying shell in the regime 
of explosion. The break of the pressurized gases can happen at any depth where they 
perform a wide spectrum of shallow and deep focus underground shocks and local 
breaks in mines and adits.

The catastrophic aftereffects of earthquakes on the oceanic bottom can be ampli-
fied by a disturbance in the dynamical equilibrium of water masses in the form of 
tsunami waves. The earthquake energy in the oceans can be amplified or attenuated 
by the resulting effect of the equilibrium state if wave processes such as tidal effects 
exist.
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As to the weak oscillations, many of them have been identified through spectral 
analysis as periodic virial oscillations of the shells with periods from minutes to 
one hour.

6.12.2  �Orogenesis

As observations show, orogenesis is the most powerful natural process having a re-
lation with dynamical equilibrium of the planet as a whole. The term “orogenesis”, 
in a wide meaning of the phenomenon, includes not only creation of the mountains 
on the continents, but also the continents themselves. From the position of dy-
namical equilibrium of the planet, the nature and mechanism of this phenomenon 
appear to be an effect of the mass density differentiation of the planet discussed 
in Sect. 6.5. Geologists long ago noticed that the Earth’s crust and the underly-
ing shell of the substratum represent a light (by density) sialic matter composed 
of silicon and aluminum. The matter of the deeper shells of the Earth represents 
heavier simatic matter composed of silicon and manganese. In addition, the fact of 
the suspended state of the crust is well documented by seismic records and by study 
of the Earth’s gravitational field. It has also been determined that the continental 
mountains have no anomalies in the gravitational field and, thus, they are equili-
brated on the surface with plain regions. It follows from the condition expressed by 
Eq. (6.71) that the continental mountains, together with the bottom topography of 
the oceans, were being formed and continue forming in the course of differentiation 
of the planet’s shells with respect to density, under actions of both the radial compo-
nent of the inner force field (the Archimedes forces) and its tangential component 
(Coriolis force). In other words, differentiation of the matter with respect to density 
occurs in the vertical and horizontal directions. Thus, both geological hypotheses 
of fixizm (vertical motion of rocks) and mobilizm (horizontal motion of the rocks), 
based on geological observations, are correct and represent two sides of the unique 
global evolutionary process resulting in the interior of the planet. The presented 
theory allows us to obtain quantitative estimations of this process.

6.12.3  �Volcanism

As it was noticed, all geotectonic catastrophic phenomena have a common nature 
and are interrelated. The inner gravitational pressure and effect of mass density 
differentiation are the main physical cause of volcanism and volcanologists well 
understand the mechanism of action of the phenomenon. The subjects of discussion 
are the conditions and real mechanism of melting of the rocks up to their magmatic 
state. In order to answer the question we may turn again to the Earth’s shells with 
jumps of their mass density. We found earlier that such shells should serve as the 
borders of the angular velocity of the shell rotation change. In Sect. 6.4 according 
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Eq. (6.69) it was found that the shell’s angular velocity is equal to its frequency of 
oscillation multiplied by the coefficient of oblateness. In turn, the coefficient of 
oblateness is proportional to the coefficient of friction, which determines the tem-
perature. Thus, the effect of volcanic activity of the Earth’s interior is linked with 
development of the pressure of gases, being the real product of virial oscillations of 
the masses and their differentiation with respect to density. In turn, the shell friction 
at the density jumps is the real mechanism of rock melting where gases are accumu-
lated during their migration to the surface. The gases burst in the weakest locations 
of the rock strata, accompanied by ejection of the melted products, is a probable 
mechanism of the volcanic process. The ejected eruptive and fumigate gases from 
a volcano in the form of Н, Н2О, НСl, HF, CO, CO2 and other volatile compounds 
are a weighty confirmation for the above described mechanism.

6.13  �Earth’s Mass in its Own Force Field

The conception of mass as a physical value of some volume of matter was intro-
duced by Newton. In his mechanics the inert and gravity or heavy masses are dis-
tinguished. In definition of the movement ( p = mv) and the force ( F = ma) the mass 
plays the role of the coefficient of proportionality, i.e. constant value, characterizing 
a measure of inertia and dynamical ability of a body.

In Newton’s gravitational theory the mass is represented as a source of the gravity 
field and at interaction with the mass of another body it feels its action also through 
the gravity field. In this case, the interacting fields possess the only property of at-
traction. On this basis the relationship for defining the weight of a body, being in 
the gravity field of the other body, has the form P = mg (where g = GM/R2 is the 
acceleration of gravity). Here the mass m represents the gravity mass of a body.

In relativity mechanics the mass is not an additive characteristic of a body. When 
two particles are divided or joined into a steady-state compound, an excess of en-
ergy is released. This energy is called the constraint energy or the mass defect. This 
effect is notably developed in nuclear reactions.

As it was mentioned in Chap. 1, Galileo found the constancy of acceleration of 
free fall of different bodies on the surface of the Earth in its gravity field. This ef-
fect is called the principle of equivalence. This principle certifies that the gravity 
and inert masses of a body in the outer force field are equivalent and at appropriate 
measuring units are equal to each other. Later on the principle was checked and 
proved experimentally by Eötvös, Dicke, Braginsky and other researchers. On the 
basis of this principle the value of mass of the Earth, the Moon and other bodies 
was determined relative to the mass of the Sun by analytical calculations apply-
ing the equations of their orbital motion and taking into account the perturbations 
from other planets. In the calculations, orbital motion is considered as the motion 
of the bodies as mass points in the central force field of the Sun. The Earth’s mass, 
found by such “weighting”, amounts to ~5.976 × 1024 kg, which we find adequate 
for practical use.
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The given method of the Earth’s mass determination ignores its own force field 
because of its negligible value in comparison with the Sun’s force field. The same 
reason was given to ignore their own force field effect in the bodies studied in Gali-
leo’s and other researchers’ experiments. But when our study concerns the dynamics 
of the Earth as a self-gravitating body, we cannot ignore its own force field and our 
experience has proved this fact. In particular, it appears that the gravitational and in-
ert non-uniform masses are different. It means that the problem of a body in its own 
force field cannot be identified with the problem of a body in the outer central force 
field. It is worth noting that such a problem is not everywhere forgotten. The effects 
of their own force fields have been for a long time studied in non-linear systems. 
For instance, the non-linear generalization of Born and Infield in classical electro-
dynamics has resolved the problem of the energy of the Coulomb’s field of the mass 
point, which was infinite. For mathematical convenience in field theory, the charge 
point is often considered as continuously distributed in some volume, and the defi-
nition of density of the charge is introduced, with its distribution written by means 
of Dirac’s delta-function. Then, the total charge is defined by the density integration 
for an accepted volume, keeping, thus, the meaning of the charge point. One of the 
important discovered effects of the non-linear system is the exited non-damping 
oscillations due to transforming of the friction-dragging energy. The effects of inner 
energy release like this are discovered in our study of the self-gravitating Earth and 
the Sun, remaining at the same time in the framework of classical mechanics.

So, the mass of the Earth together with the mass of the Moon in the framework 
of hydrostatic equilibrium is determined by the data of astronomical observations of 
the planet’s motion around the Sun expressing the results in the units of solar mass. 
We mark the sought-for mass in the solar and the Earth’s reference system (Fig. 2.1) 
as Мо and М. They will differ by a mass defect (bonding energy), released into the 
potential energy of the self-gravitating planet. In addition, because of non-uniform-
ity of the mass density distribution, the gravitational ( Мg) and inertial ( Mm) masses 
of the planet, in turn, differ from their mean value М. In order to determine the three 
values Мg, Mm and М of the Earth’s mass in its own force field the value Мо (without 
the mass of the Moon) should be multiplied by the coefficients (see Table 6.1), i.e.

Then the values of the corresponding masses are equal to

� (6.92)

Thus, the mass of a self-gravitating body implements simultaneously two functions. 
On one side, at interaction of its discrete components the bonding energy is realized 

(1− β2
0 ) = (1− 0.6) = 0.4,

(1− β2) = (1− 0.49725) = 0.50275,
(1− α2) = (1− 0.66074) = 0.33926.

M = 5.9765× 1024 × 0.4 = 2.3906× 1024 kg ,

Mm = 5.9765× 1024 × 0.50275 = 3.004685× 1024 kg ,

Mg = 5.9765× 1024 × 0.33926 = 2.027587× 1024 kg ,
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in the form of potential energy of irradiation. This energy creates the inner and outer 
force fields and plays the role of an active component of the force function. On the 
other side, the same mass takes the reactive action of constraints of the irradiated 
energy and plays the role of a reactive component of the force function. This second 
function of the mass is observed in the form of oscillation, rotation or translation 
(e.g. a rocket). The direction of irradiation and reactive motion of an inert mass is 
determined by distribution of its mass. The effect of the reactive motion of the real-
ized binding energy (the mass defect) in general is developed in the form of attrac-
tion or repulsion of the mass.

Thus, the active component of the force function of the interacting masses of 
a body forms through the energy irradiation the inner and outer force fields and 
determines the body’s gravitational properties. The reactive component of the force 
function determines the inert properties and the character of the body’s mass mo-
tion. The reactive component of the mass interaction represents the force function 
of inertia. The gravitational and the inertial masses of a self-gravitating body are 
not equal.

As to the experiments of Galileo, Eötvös and the conclusion about the equality 
of the gravitational and inertial masses, they remain correct for the study conditions, 
i.e. for the body’s interaction in the uniform outer force field of the Earth.
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The atmosphere and the oceans (collectively) are both upper shells of the Earth. The 
first of them occurs in a gaseous and the second one in a liquid phase. These shells 
exist in the solid Earth’s outer force field but the atmosphere exists in dynamical 
equilibrium, and the oceans are in a weighted transition to a hydrostatic state. The 
atmosphere as a gaseous shell is totally “dissolved” in the Earth’s outer force field in 
the form of atomic and molecular sub-layers, differentiated with respect to density, 
and these self-gravitating masses appear in a dynamical equilibrium state. Relative-
ly homogeneous water masses of the oceans have too low a density (approximately 
2/3) in comparison with the mineral crust to be an independent, with respect to its 
dynamics, self-gravitating shell. Therefore, it appears to be suspended in a semi-
hydrostatic equilibrium relative to the crust’s shell. Its inner gravitational pressure 
on the shell’s surface is equilibrated with the atmospheric and outer gravitational 
pressure. The surface water is practically found to be in a limiting hydrostatic equi-
librium. The small portion of the continuously pumping solar energy varies within 
7% in the annual cycle and leads to the dynamical process of water transfer from its 
liquid to vapor, and vice verse, phase.

Dynamics of the main nitrogen and oxygen components with close densities 
(atomic weights) of the atmospheric masses in a non-perturbed state could be repre-
sented by its own virial oscillation and rotation about the solid Earth. But the water 
vapor which is continuously injected into the gaseous shell, being a component of 
very large-capacity energy (1 cm3 of water generates more than 1000 cm3 water 
vapor) appears to be the cause of the stormy dynamical perturbation within the 
near-surface shell of the atmosphere. The cyclonic activity of the atmospheric vapor 
has scientific, but mainly practical, interest. The weather and climate change by 
variation of the solar energy flux through the water vapor dynamics have a negative 
effect on the biosphere.

In turn, the oceans being in a balanced hydrostatic state, are continuously per-
turbed both by the inner gravity pressure of the planet related to the density differen-
tiation of the shells and by perturbation from the Sun’s and the Moon’s outer force 
fields. All the above dynamical processes seem to be of interest for consideration 
from the point of view of dynamical equilibrium theory.

V. I. Ferronsky, S. V. Ferronsky, Dynamics of the Earth, 
DOI 10.1007/978-90-481-8723-2_7, © Springer Science+Business Media B.V. 2010
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In this chapter we search for a solution of Jacobi’s virial equation for the non-
perturbed atmosphere as the Earth’s shell which is affected by both inner and outer 
perturbations. In order to justify applicability of the virial equation for the study of 
dynamics of the atmosphere in the framework of a model of a continuous medium, 
we derive this equation from the Euler equations.

7.1  �Derivation of the Virial Equation for the Earth’s 
Atmosphere

We consider the problem of global oscillations of the Earth’s atmosphere as its shell. 
We accept that the atmosphere is found to be in dynamical equilibrium both in its 
own force field and in the outer force field of the Earth. Derivation of the virial 
equation is done in the framework of the continuous medium model. We accept 
also that the dynamics of the atmosphere is described by Euler’s equations and the 
medium is composed of an ideal gas.

The Euler equations are written in the form (Landau and Lifshitz, 1954)

� (7.1)

where ρ is the gas density; p is the gas pressure; ∂v/∂t  is the rate of velocity change 
at a fixed point of space; F is the density of mass forces.

In addition, the continuity equation

� (7.2)

holds for a gas medium.
Multiplying Eq. (7.2) by v and summing the product with Eq. (7.1), we obtain

� (7.3)

We take the divergence of Eq. (7.3) and note that

Then Eq. (7.3) can be rewritten in the form

� (7.4)

ρ
∂v

∂t
+ ρ(v∇)v = −grad p+ ρF ,
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= −

∂2ρ
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.

∂2ρ

∂t2
= div


ρ(v∇) v + vdiv(ρv)+ grad p− ρF


.
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Multiplying Eq. (7.4) by r2/2 and integrating the obtained expression over the whole 
volume of the atmosphere, we have

� (7.5)

The left-hand side of Eq. (7.5) can be rewritten in the form

where Ф is the Jacobi function of the atmosphere.
Thus, we obtain Jacobi’s equation for the Earth’s atmosphere derived from the 

Eulerian equation (7.1) and the continuity equation (7.2) as follows:

� (7.6)

We assume that the Earth is a rigid spherical body with mass M and radius R and 
that the mass of the atmosphere is negligible in comparison with the earth’s mass. 
We can transform the right-hand side of Eq. (7.6) as follows:

where

is the kinetic energy of the gas of the atmosphere in the Earth’s gravitational field;

is the potential energy of the atmosphere in the Earth’s field;
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is the internal energy of the gas atmosphere;

is the energy of the outer surface force pressure effecting the atmosphere.
In fact, we can write an expression for the mass forces, taking into account the 

spherical symmetry of the system considered:

Then

Analogously, we have

It is easy to show that

Owing to the immobility of the rigid Earth and the atmospheric boundary as well as 
the condition of continuity for the gas, the equilibrium hydrostatic condition holds 
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If we assume

then

It follows from this that Jacobi’s virial equation (7.6) takes the form

� (7.7)

Finally, using the energy conservation law for a continuum (Sedov, 1970) and the 
conservativity of a system, following from the accepted model (the Earth is a solid 
body and atmospheric gas is ideal), Eq. (7.7) can be written in the form of the stand-
ard Jacobi virial equation

� (7.8)

where the total energy of the atmosphere is conserved and equal to

� (7.9)

Let us make some important notes concerning the study of the atmosphere by a 
conventional approach based on use of the virial theorem.

The standard solution of the problem using the same assumption at zero approxi-
mation (barometric height formula) expresses the equilibrium condition between 
the atmospheric gravity and the gas pressure. In our case this condition is satisfied 
if Jacobi’s virial equation (7.8) is averaged with respect to time, i.e. it is reduced to 
the condition of the hydrostatic equilibrium. But in that case the kinetic energy of 
the particle interaction is excluded. Assuming that the motion of the gas particles is 
finite, and after time averaging Eq. (7.8) over a sufficiently large time interval, the 
validity of the virial theorem is easily shown to be

� (7.10)

At known parameters of the atmosphere and the Earth, the potential and total ener-
gies of the atmosphere can be estimated as
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7.2  �Non-perturbed Oscillation of the Atmosphere

Let us now consider the solution of Eq. (7.8) for the spherical model of the atmos-
phere and find the dependence of its Jacobi function Ф (polar moment of inertia) on 
time in explicit form.

In the previous chapter it was shown that Eq. (7.8) is resolved both for the uni-
form medium and for the medium with radial density distribution by some law. In 
the last case the polar moment of inertia and potential energy are expanded on the 
uniform and tangential components and instead of Eq. (7.8) two Eqs. (6.61) and 
(6.62) are written.

Let us consider a solution for the uniform component of the atmosphere whose 
radial density distribution changes by the barometric equation. The uniform com-
ponent of Eq. (7.8) has a solution when there is a relationship between the Jacobi 
function and the potential energy of the system in the form

� (7.11)

Assume that the Earth has a spherical shape with mass M and radius R and be 
enveloped by a uniform atmosphere with mass m which has thickness Δ. Then the 
potential energy of the shell Ua, which is in the gravitational field of the sphere, is

where ρa is the mass density of the shell.
The Jacobi function of the atmosphere is

�

(7.12)

Expressing the gas density ρa through its mass, we can write the relationship (7.11) 
in the form

�

(7.13)
where λ = Δ/R.

Note that Eq. (7.13) depends only on the ratio of thickness of the shell to the 
radius of a central body and varies over limited ranges, while λ varies from 0 to ∞. 
At λ = 0
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and at λ → ∞

On the other hand, the Jacobi function (7.11) expressed through the mass of the 
shell, is written in the form

� (7.14)

It follows from (7.14) that the Jacobi function of the atmosphere does not depend 
only on the value λ but also on the radius of the body R. Moreover, the value Фa 
varies over unlimited ranges when λ runs from 0 to ∞. The same can be said about 
the potential energy of the atmosphere:

Accepting the mass of the atmosphere m = 1021 kg, we can find the value В as

� (7.15)

Taking (7.15) into account, Eq. (7.8) can be written in the form of an equation of 
virial oscillations of the atmosphere (subscript a at Ф is farther drop):

� (7.16)

where А = −2E; E = −1.6 × 1033 erg.
As shown in Chap. 4, at А = const and B = const, Eq. (7.16) has two first inte-

grals, as follows:
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where C and t0 are integration constants. The constant C has a dimension of square 
angular momentum.

The integrals (7.17) and (7.18) are solutions of the equation (7.16). Introducing 
new variables

and rewriting (7.18) in the form of Kepler’s equation

expressions can be obtained for Ф( t) and ̇(t)  from the first integrals (7.17) and 
(7.18) in explicit form, using Lagrange’s series (Duboshin, 1975):

� (7.19)

where M  = (2A)3/2(t − t0 )/4B = n(t − t0 ); n is the frequency of the atmos-
pheres own virial oscillations; t0 is the time moment when Ф acquires its maximal 
value.

At 0 < C < 2B2/A the Jacobi function changes in time in accordance with Eq. 
(7.19). At C = 2B2/A the Jacobi function is equal to Ф = B2/A2, which corresponds 
to the hydrostatic equilibrium of the system or to the virial theorem.

The solution represents the non-linear periodic pulsation of the Jacobi function 
of the atmosphere as a whole with period Tv. Using the numerical values of con-
stants B = 1.03 × 1053 and A = −U = 3.2 × 1033 erg, the period of unperturbed virial 
oscillations of the Earth atmosphere is equal to

� (7.20)

Note that the expression (7.20) for the period of virial oscillations Tv includes three 
fundamental constants: the body M, radius R and gravity constant G. The simplest 
combination of these three constants, which gives the dimension of time, coincides 
with (7.20). In this case the nature of the virial oscillations of the atmosphere can 
be explained by the change in time of the gravitational potential of the solid Earth. 
The period (7.20) coincides with the period of revolution of a satellite along a cir-
cular orbit with first cosmic velocity v = 7.9 km/s, radius of the Earth and with a 
mathematical pendulum the length of whose filament is equal to the radius of the 
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Earth. This is because the parameters considered are defined by the same constants 
g, m, and R.

7.3  �Perturbed Oscillations

We now consider a general approach to solving the problem of perturbed virial 
oscillations of the atmosphere, taking as an example the perturbations caused by 
the variation throughout the year of the solar energy flux owing to the ellipticity of 
the Earth’s orbit. We assume that all the dissipative processes that occur during the 
interaction between the atmosphere and the hydrosphere and in the atmosphere it-
self are compensated by solar energy. We note, however, that the value of the flux is 
evidently dependent on time. Assuming also that the eccentricity of the Earth’s orbit 
and the mean total energy of the atmosphere are known and remain unchanged in 
time, the total energy of the Earth’s atmosphere is proportional to the power of the 
solar energy flux L( x) which reaches the atmosphere at a given point of the orbit.

Then

� (7.21)

where L0 is the mean energy flux reaching the Earth’s atmosphere; r is the radius of 
the Earth’s orbit; a is the semi-major axis of the Earth’s orbit.

Using the property of the elliptical motion, we obtain

� (7.22)

where e′ is the eccentricity of the Earth’s orbit; E′ is the eccentric anomaly that 
characterizes the location of the Earth on the orbit and is linked with time by the 
Keplerian equation

� (7.23)

where n = 2π/τ is the cyclic frequency of the Earth’s revolution round the Sun; τ is 
the period of revolution and is equal to one year; t0 is the moment of time required 
by the Earth to pass through the orbit’s perihelion; M′ is the mean of the anomaly.

If the eccentricity e′ ≤ ē = 0.6627…, which is the Laplacian limit, then, using 
the Lagrangian series, we can obtain expressions for E′ and φ( E′) in the form of an 
absolute convergent infinite series expanded by entire positive powers of e′.

Note that in order to obtain the expression for (1 − e′cos E′) we can write the 
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Expanding the eccentric anomaly E′ in the Lagrangian series by the power of ec-
centricity e′ (Duboshin, 1975), we obtain

� (7.24)

This can be rewritten in a more convenient form:

where

As the absolute convergent series can be differentiated term by term, we obtain

� (7.25)

where

Multiplying the series (7.25) by itself, we obtain

� (7.26)

where

Then the expression (7.21) for the solar energy flux reaching the atmosphere can 
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In agreement with (7.27), the change of the total energy of the Earth’s atmosphere 
is proportional to the change of the solar energy flux L( t) − L0. Then the expression 
for the total energy of the atmosphere is

where k is a proportionality factor.
Thus, in our problem of virial oscillations of the atmosphere perturbed by the 

solar energy flux varying during the motion of the Earth along the orbit, the equa-
tion can be written as

� (7.28)

where Х( e′, M′) is the perturbation function, which has the form

� (7.29)

To estimate the geophysical effect of the variation of the solar energy within a time 
period of one year, we introduce the perturbation function (7.29) into equation 
(7.28) of perturbed oscillations, to an accuracy of squared eccentricity, i.e.,

� (7.30)

where kLo ≈ 3× 1031 erg.

In this case, the expressions for the Jacobi function of the atmosphere and its first 
derivative to an accuracy of e have the form
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Integrating (7.33) with respect to time, we obtain the law of variation of the virial 
oscillation eccentricity as a first approximation of the perturbation theory:

�

(7.34)

Finally, putting the expression for the eccentricity of the perturbed oscillations into 
(7.31), we obtain

�

(7.35)
where

It follows from (7.34) that a contribution of the long-periodic part of the first-order 
perturbations to the variation of the Jacobi function of the Earth’s atmosphere is

� (7.36)

where Ф0 = 1.06 × 1039 g · cm2; Фa/Ia = ¾.
Assuming in first approximation that the rotations of the Earth and the atmos-

phere are synchronous, and using the law of conservation of angular momentum for 
the Earth-atmosphere system as (I⊕ + Ia) ω⊕ = const , we obtain

� (7.37)

where ω0 is the angular velocity of the Earth’s daily rotation; T = 8.64 × 104 s; 
I⊕ = 8.04 × 1044g · cm2.

It is easy to show that the Earth’s rate of rotation has annual variations with 
daily amplitude of variation of about 2 ms duration and can be approximated in 
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respectively. This estimate is in good agreement with the observed data of the sea-
sonal variation of the Earth’s angular velocity.

7.4  �Resonance Oscillation

We now consider the solution for identification of the resonance frequencies of the 
perturbed oscillations of the atmosphere due to the change of solar energy flux dur-
ing the earth’s motion along an elliptic orbit.

Let us assume that the Earth’s atmosphere satisfies all the conditions needed 
for writing the equation (7.16) of unperturbed virial oscillations. We can solve this 
equation because its two first integrals of motion (7.17) and (7.18) are known. We 
accept from the solution of Eq. (7.16) that the Jacobi function Ф changes in time 
with the period τ″ = 5060.7 s−1 and the frequency n″ = 2π/τ″ = 0.00124 s−1. As-
suming also that the perturbation of the Earth’s atmosphere is affected only by the 
change of power of the solar radiation flux during the year owing to the ellipticity 
of the Earth’s orbit, then the equation of the perturbed virial oscillations should 
have the form of (7.28) and the perturbation function Х( e′, M′), represented by 
(7.29), should be a periodic function of time with period τ′ = 31 556 929.9747 s and 
frequency n′ = 2π/τ′ = 1.9910638 s−1.

We use the Picard method to obtain the solution of Eq. (7.28), which in this case 
is written as

� (7.38)

where A = −2E0; B = |Ua|
√
a; e = 0.014 is the eccentricity of the Earth’s orbit;

M  = n(t − t0) = E − esinE is the mean anomaly determined from the Kepler 
equation; E′ is the eccentric anomaly.

Using Lagrange’s method of variation of the arbitrary constants C and t, which 
determine the solution of Eq. (7.38) in the form

� (7.39)

� (7.40)

we can write the system of differential equations (5.19) and (5.20) (see Chap. 5) 
determining the change of C и  t

0  in time:

� (7.41)

� (7.42)
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B
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M  ,

dt0
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�
M (, C) ,
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where the function Ψ(Ф, C) was defined earlier, and Х( M′) is a periodic function of 
the argument M′ with the period 2π.

Substituting the expressions for Ф and ̇ from (7.39) and (7.40) into (7.41) и 
(7.42), we obtain the system of two differential equations:

� (7.43)

�
(7.44)

where F1 and F2 are periodic functions of the arguments M′ and M″ with the period 2π.
Owing to the periodicity of the right-hand side of the system of equations (7.43) 

and (7.44), they can be expanded into a double Fourier series. In this case the sys-
tem (7.43) and (7.44) can be written:

�

(7.45)

�

(7.46)
Here the coefficients A00, Ak k  , Bk k  , a00, ak k  , bk k  do not depend on M′ and M″, 
but are functions of the unknown quantities C and t

0 .

Using the Picard procedure, we determine C(1) and t(1)
0  in the first approxima-

tion by substituting the constant values C(0) and t(0)
0  into the expressions for F1 and 

F2. The values C(0) and t(0)
0  could be found through the initial conditions of Ф0 and 

̇0 using corresponding formulas (7.17) and (7.18) which describe the unperturbed 
virial oscillations.

After integration of the system (7.45) and (7.46) with respect to time, we have

�
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�

(7.48)
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where C(1) and t(1)
0  are the arbitrary constants which determine solution of the 

equation (7.28); A(0)
k ,k  , B(0)

k ,k  , a(0)
00 , a(0)

k ,k  , b(0)
k ,k   are corresponding coefficients of the 

system (7.45)–(7.46) after replacing C и t
0 .  by C(0) and t(0)

0 .

Thus we have obtained the analytical structure of the solutions (7.47) and (7.48) 
known in general perturbation theory which have three classes of terms: constant, 
periodic and secular. Of the periodic terms, the most important are the resonance 
terms, i.e. those quantities ns = k′n′ + k″n″ which are substantially less then both n″ 
and n′. These terms give a series of long periodic inequalities (their number is infi-
nite) and they allow prediction of the development of the natural processes within 
relatively long intervals of time.

Let us calculate, as an example, such lower resonance frequencies which have 
climatic significance:

and so on, and corresponding to those frequencies the periods are:

It should, however be kept in mind that the first approximation obtained in the 
framework of perturbation theory is in good agreement with observations within 
short (not cosmogenic) intervals of time.

Note that one can find analogously the resonance frequencies and the periods 
of virial oscillations which occur owing to other perturbations, such as, for exam-
ple, diurnal perturbations, because of the rotation of the Earth around its axis and 
its latitudinal perturbations, etc. As is well known, the mean solar day has period 
τ ≈ 8.64 × 104 s and frequency ns = 2π/τ = 7.27× 10−5 s−1 . Then calculating 
the resonance frequency ns = k n + k n  n, n , we obtain:

and so on, and corresponding periods:

For the monthly Moon perturbations, when τ = 2.352 672 × 106 s and ns = 2.67 × 
10−6 s−1, we have

n2:12471 = (2× 12415− 12471× 1.9910638)10−7 = 0.556× 10−7s−1,

n3:18706 = (3× 12415− 18706× 1.9910638)10−7 = 0.161× 10−7s−1,

n11:68589 = (11× 12415− 68589× 1.9910638)10−7 = 0.07× 10−7s−1

τ2:12471 = 3.6 years; τ3:18706 = 12.36 years, and τ11:68598 ≈ 28 years.

n1:17 = (1× 124.17− 17× 7.27)10−5 = 0.58× 10−5s−1,
n2:24 = (2× 124.17− 24× 7.27)10−5 = 1.16× 10−5s−1

τ1:17 = 12.5d; τ2:24 = 6.24d and so on.

n1:465 = (1× 1241.7− 2.67× 465)10−6 = 0.15× 10−6s−1,
n2:930 = (2× 1241.7− 2.67× 930)10−6 = 0.3× 10−6s−1

7.4 Resonance Oscillation



212

and so on, and corresponding periods:

7.5  �Observation of the Virial Eigenoscillations  
of the Earth’s Atmosphere

It was predicted in Sect. 7.2, by means of the solution of Jacobi’s virial equation, 
that the eigenoscillations of the Earth’s atmosphere with a period of Tv = 1h.4 and 
frequency ω = 1.24 × 10−3 s−1 exists. This solution describes the periodic change of 
the Jacobi function of the Earth’s atmosphere in time and can be expressed in the 
form of a trigonometric Fourier series expanded by entire multiple values of argu-
ment M related to t as

where t
0  is the moment of time defining the phase of the virial oscillations.

The first four terms of this series are

�

(7.49)

where Ф0 is the mean value of the Jacobi function, determined by the virial theorem; 
e is the parameter of the virial oscillations of the atmosphere which characterizes 
the amplitude of the Jacobi function change; e 1.

It has been shown theoretically that the period of chance of the Jacobi function of 
the atmosphere depends on the value of its total energy, and in the case of non-per-
turbed atmosphere is equal to 1h.4. In the framework of the model considered with 
spherically symmetric atmosphere, the change of Jacobi function takes place owing 
to the change of the radial mass density distribution of the atmosphere having the 
same period. Direct experimental test of this statement is difficult because the value 
of the Jacobi function cannot be measured directly to prove the expression (7.49). 
But, as it was shown in Sects. 2.2 and 2.3, permanent changes in the Earth’s Jacobi 
function (polar moment of inertia) is fixed by artificial satellites and earthquake 
measurements. Moreover, the process of virial oscillations is accompanied by syn-
chronous changes of pressure, temperature, air moisture, magnetic field intensity 
and other measurable geophysical parameters at the Earth’s surface. In addition, 
from the condition of a global scale of the virial oscillations, it follows that all the 
geophysical parameters are pulsating with the same period and are coherent both 
within the considerable interval of time and in space over all the Earth’s surface 
as well as vertically. The expression for the virial pulsations of the atmospheric 

τ1:465 = 1.3 years; τ2:930 = 0.66 years.
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pressure p( t) and temperature T( t) can be expanded into a Fourier series (7.49) as 
follows:

� (7.50)

� (7.51)

where p0 and T0 are the mean values of the atmospheric pressure and temperature 
averaged over all the Earth’s surface and through the mass of the atmosphere re-
spectively.

We shall use for this expansion the analysis and interpretation of the experimen-
tal data.

As is well known, regular observation of the atmospheric pressure and tempera-
ture at various points of the Earth prevents the discovery of a rigorous periodic-
ity in changes of atmospheric parameters, especially for short periods. There are a 
number of reasons for this, including their variability which defines the dynamics of 
air masses at any point of observation. The parameters recognized and studied until 
now are seasonal, diurnal and semidiurnal periodicity, in addition to variation of the 
atmospheric parameters connected with the motion of the planet along the elliptical 
orbit around the Sun, with the obliquity of the axis of rotation to the ecliptic, and 
with perturbations caused by the Moon.

In our case, in order to prove that the predicted oscillations of various geophysi-
cal parameters with period 1h.4 exist, we used the applicable spectral analysis of 
experimental data.

7.5.1  �Oscillation of the Temperature

We now describe the results of spectral analysis of temperature data recorded by 
our colleagues in the Central Hydrometeorological Observatory at the Ostankino 
TV Tower, Moscow.

Let us consider two sets X1 and Y1 representing regular records of the air temper-
ature variation of 34 hours duration, each of which were obtained simultaneously in 
July 1971 at heights of 503 m and 83 m (Fig. 7.1). The discreteness interval of the 
numerical record of the temperature was 120 s, the interval of the gauge was ~60 s,  
and the sensitivity was 0.1°C. The sets X1 and Y1 contain 1024 discrete values of 
recorded temperature starting at 10 h 34 m on 17 July through 21 h 34 m on 18 July. 
Spectral analysis of the data received was carried out by computer using the method 
of quick Fourier transformation with the program developed by A.B. Leybo and 
V.Yu. Semenov.
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Figure 7.1a shows the recorded power spectra Sxx and Syy of the sets X1 and Y1. 
With the help of this initial information, we calculated the function of the mutual 
spectral density Sxx = S 

xy + iS 
xy . Then the function of the mutual coherence was 

found to be

Fig. 7.1   Power spectra of 
sets of temperature variation 
at heights of 503 m and 83 m 
(a); functions of mutual 
coherence of the sets X1 and 
Y1 ( 1), X2 and Y2 ( 2), X3 and 
Y3 ( 3) (b); functions of phase 
difference of the sets X1 and 
Y1 ( 1), X2 and Y2 ( 2), X3 and 
Y3 ( 3) (c). ( Arrows show the 
range of 95% of the confi-
dence intervals)
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� (7.52)

and the function of the phase difference was defined as

� (7.53)

They are both plotted in Figs. 6.12b and c.
It is known (Bendat and Pearson, 1971) that the range of the confidence intervals 

for estimating the phase difference ∆φ tends to zero as Co2 runs to unity. Hence the 
higher the value of the function of the mutual coherence, the higher the stability 
of the phase difference of the harmonics of the two processes X and Y. Therefore, 
the relationship between the harmonics is probable for those frequencies where the 
value of Co2 is close to unity. At the same values of Co2 the meaning of the phase 
difference is lost because of the wide range of the confidence interval.

We can see from Fig. 7.1b that in the vicinity of the period Tv = 1h.4, predicted 
by theory, the function of the mutual coherence of the sets X1 and Y1 is significant, 
i.e. has high probability of not being equal to zero, and sometimes of being even 
greater than 0.7. Note also that the phase difference function in the neighborhood 
of the period of oscillations Tv is equal to zero, which indicates that the harmonic 
constituents of the temperature variations with the period Tv within the considered 
interval of time are coherent at heights of 503 and 83 m.

Twice as much extended time for sets X1 and Y1 does not change the general 
character of the discovered regularity. Figures 7.1b and 7.1c demonstrate values of 
the mutual coherence function Co2 and the phase difference ∆φ of two sets X2 and 
Y2 each containing 2048 experimental points and recorded synchronously with the 
same discreteness interval. Recording was continued for three days starting at 10 h 
34 m on 17 July through 6 h 54 m on 20 July 1971. However, reduction of time for 
the sets leads to an increase in values of the mutual coherence function on the low 
frequencies, but the values of the frequencies corresponding to the period Tv do not 
increase. This proves the theoretically predicted conclusion concerning the exist-
ence of a coherent harmonic with the period Tv.

Figure 7.1b plots the mutual coherence function for two sets of temperature vari-
ations recorded at 17 h 2 m in each case. These sets were recorded at a height of 
503 m with the same discreteness interval as discussed above, but in different years. 
Set Х3 covers a time interval from 10 h 34 m on 17 July until 3 h 36 m on 18 July 
1971, and Y3 was recorded from 9 h 14 m 30 July to 2 h 16 m on 31 July 1971. We 
can see from the plot that in this case the mutual coherence function acquires a value 
equal to 0.6 at T = 1h.31, which proves the theory of the steady state virial oscilla-
tions within sufficiently long intervals of time.

Let us estimate the amplitude of temperature virial oscillations in the neat sur-
face layer of the atmosphere. For this purpose we recall that the value of the power 
spectrum of a process at a given value of the frequency is proportional to the square 
of the amplitude value of the harmonics with the same frequency in Fourier analysis 

Co2 =
|Sxy|2

|Sxx||Syy|

ϕ = atctg
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xy

S 
xy
.
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of the process. We plot the power spectrum of a sinusoid of some known amplitude, 
for example, equal to 1°C with period 1h.4 and a given discreteness τ ≈ 120 s. The 
value of the power spectrum of the sinusoid for the frequency related to period 
Tv = 1h.4 was found equal to 3.4 grad2 per hertz, and the value of the power spec-
trum of temperature micro-fluctuation at heights of 83 m to 503 m in July 1971, 
according to the Observatory recording, was 0.3 grad2 per hertz. It is easy to obtain 
the estimated value of the amplitude of the temperature virial oscillations, which 
is 0.3°C.

7.5.2  �Oscillation of the Pressure

We now consider our results of the spectrum analysis of the atmospheric pressure 
records made by means of a microbarograph designed by V.N. Bobrov in the Insti-
tute of Earth Magnetism and Radio Wave Propagation, Russian Academy of Sci-
ences. Analyzing the records, we took the pressure ordinates correct to 1 mm at 
amplitude of pressure oscillation within several cm (at microbarograph sensitivity 
equal to 0.02 mb/mm). The spectral analysis was done using the methodology de-
scribed above.

Figure 7.2a shows the power spectrum of two sets X4 and Y4 containing 1024 
of the pressure ordinates taken with discreteness interval 76.5 s covering the time 
interval from 18 h on 31 August through 15 h 30 m of 1 September 1977 and from 
15 h 00 m on 1 September through 12 h 30 m on 2 September 1977.

The experimental data of micro-fluctuations of the atmospheric pressure were 
obtained at a near surface layer of the northeast coastal area of the Caspian Sea by 
our colleagues from the Institute of Earth Magnetism and Radio Wave Propagation. 
Using the function of mutual spectral density Sxx, we calculated the functions of 
mutual coherence Co2 and phase difference ∆φ, shown in Figs. 7.2b and 7.2c.

The spectral densities were analyzed by averaging the values of seven experi-
mental points (the number of degrees of freedom equal to 14). The graph of spectral 
densities was plotted in relative units and on logarithmic scale (in order to have the 
same range of confidence intervals for any value of the spectral density).

Figure 7.2b shows that in the vicinity of the frequency value corresponding to the 
period Tv = 1h.4, the coherence coefficient is significant and is equal to Co2 = 0.6. It 
is also important to note that, for the same frequency, the phase difference is stable 
and close to zero (see Fig. 7.2c). These facts prove the theory of the existence of 
coherent oscillations of the Earth’s atmosphere with period close to Tv.

Figures 7.2b and 7.2c also show the curves of mutual coherence and phase dif-
ference for the other two sets X5 and Y5 plotted on a base of 512 experimental points 
of atmospheric pressure recorded within time intervals starting at 16 h 56 m on 
28 August and at 2 h 45 m on 29 August and at 18 h 00 m 31 August through 3 h 
49 m on 1 September 1977, respectively. The mutual coherence function has a value 
equal to 0.5 in the vicinity of Tv, and the function of the phase difference has a value 
close to zero. This also proves the conclusion discussed above.

7 Dynamics of the Earth’s Atmosphere and Oceans
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We can also show that virial pulsation of the Earth’s atmosphere with period 
Tv = 1h.4 is observed in both mid and low latitudes. For this purpose we studied 
records of micro-fluctuations of the atmospheric pressure obtained by the same re-
searchers during their expedition to Cuba.

Let us analyze two sets of experimental data X6 and Y6 taken from their records 
of micro-fluctuations of the atmospheric pressure with discreteness interval equal to 

Fig. 7.2   Power spectra of the 
sets X4 and Y4 of atmospheric 
pressure micro-fluctuations 
northeast of the coastal area 
of the Caspian Sea (a); func-
tions of mutual coherence of 
the sets X4 and Y4 ( 1) and X5 
and Y5 ( 2) (b); functions of 
the phase difference of the 
sets X4 and Y4 ( 1) and X5 and 
Y5 ( 2) (c). ( Arrows show the 
range of 95% of the confi-
dence intervals)
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180 s. The process X6 covers a time interval starting at 19 h 00 m on 7 May through 
20 h 36 m on 8 May 1976 and the process Y6 covers an interval from 21 h 54 m on 
7 May through 23 h 30 m on 9 May 1976. Figure 7.3a shows the power spectra of 
the processes X6 and Y6. The functions of mutual coherence and phase difference 

Fig. 7.3   Power spectra of the 
sets X6 and Y6 of atmospheric 
pressure variations in Cuba 
(a); functions of mutual 
coherence of the sets X6 and 
Y6 ( 1) and X7 and Y7 ( 2) and 
X8 and Y8 ( 3) (b); functions 
of the phase difference of 
the sets X6 and Y6 ( 1) and 
X7 and Y7 (2) (c). ( Arrows 
show the range of 95% of the 
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which, in the vicinity of the period Tv, have values Co2 = 0.56 and ∆φ = 0° respec-
tively, are shown in Figs. 7.3b and 7.3c. The same figures also show functions of 
mutual coherence and phase difference for two other sets, X7 and Y7, representing 
256 experimental points each and analyzed with the same discreteness intervals. 
They cover time intervals starting at 21 h 37 m on 25 April through 10 h 23 m on 
26 April and on 20 h 00 m on 28 April on 9 h 14 m on 29 April 1976. The value of 
function Co2 = 0.6 and ∆φ = 0° relative to frequencies with period Tv = 1h.4.

Our estimate of the amplitude of virial oscillations of the atmospheric pressure 
made by using the above procedure gives the value of 0.1 mbar.

Figure 7.3b shows the function of mutual coherence of two sets of atmospheric 
pressure X8 and Y8 taken with discreteness interval ∆t = 6 m and recorded in various 
years and at different points of the globe: (a) in Cuba within a time interval starting 
at 19 h 00 m on 7 May through 2 h 30 m 8 May 1976; (b) on northeastern shore of 
the Caspian Sea at 19 h 00 m 4 September through 20 h 30 m on 5 September 1977. 
We also observed here that the function Co2 takes a value of about 0.65 in the vicin-
ity of the period Tv = 1h.4. This also proves our hypothesis.

Analogous results were obtained on analysis of the experimental data of micro-
fluctuation of the atmospheric pressure recorded at the Black Sea. The analyses 
were made with discreteness interval equal to 120 s.

We have shown the existence of harmonics with period close to Tv = 1h.4, coher-
ent within long time intervals for micro-fluctuations of atmospheric pressure and 
temperatures in the near surface layer of the atmosphere, obtained at various points 
of the globe and in different seasons of the year. The resulting data from analyses of 
experimental records of micro-fluctuations of pressure and temperature as well as 
the geomagnetic field of the Earth are given in Table 7.1.

7.6  �The Nature of the Oceans

It follows from equation (6.71) that the world ocean is found to be in a suspended 
state because the density value of its water is by far less (2/3) than the mean density 
of the solid Earth. Accepting this criterion, we may assume that in the earlier stage 
of creation of the planet its hydrosphere remained in the gaseous phase. Only after 
irradiation of the corresponding part of the potential energy has the water vapor 
condensed into the liquid phase (see Chap. 9). Taking into account the observed 
geographic distribution of the Atlantic and Pacific oceanic basins, we also may as-
sume that their floors were formed as a consequence of the planet’s equatorial ob-
lateness during formation. Applying the same argument and geography of location, 
one may conclude that the Indian oceanic floor was formed on the same base at 
the Earth’s polar flattening and due to the asymmetric deformation of the southern 
hemisphere (see Chaps. 1 and 2).

The oceans have their own potential energy value which is equal to U ≈ 2 × 
1032 erg. This value is by four degrees less of their oscillating and rotating kinetic 

7.6 The Nature of the Oceans
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energy. It means that the oceans stay in hydrostatic equilibrium in the outer force 
field of the solid Earth which provides rotational motion of this shell.

This suspended stay of equilibrium of the oceans determines their dynamics. Ac-
cording to equation (6.71), angular velocity of the rotating oceanic water, because 
of low density, is less than that of the solid Earth. Therefore, the oceanic water in its 
rotary motion has lower angular velocity with respect to the solid Earth. Encounter-
ing the continents on their way, the ocean waters form the latitudinal currents along 
both American and Asian continents. The observed multiply disordered regional 
and local linear and eddy currents are the consequences of different perturbations, 
which dominate over the regular currents due to the above energy effects.

The regular currents, which move along the east shores of the continents, play an 
important role as heating system in formation of weather and climate processes in 
the middle and high latitudes.

7.7  �The Nature of the Weather and Climate Changes

The atmosphere and oceans comprise a common natural system which controls the 
weather and climate on the planet. Both shells, being uniform in density and stay-
ing in semi-hydrostatic and semi-dynamic equilibrium in the outer force field of the 
solid Earth, are affected by virial oscillations of the planet and rotate with a cor-
responding angular velocity. However, irregular seasonal pumping of solar energy, 
because of ellipticity of the Earth’s orbit and the precession and nutation perturba-
tion of the upper solid shell, leads to continuous redistribution of solar energy in 
the latitude and longitude directions. Those perturbations cause permanent change 
in balance of the evaporated water from the ocean surface and lead to changes in 
baric topography and in trajectories of the cyclonic vortexes which carry clouds of 
moisture. From point of view of the considered theory, those are the perturbations 
that appear to be the cause of weather and climate change.

The principles of perturbation and resonance oscillation of the atmosphere pre-
sented in this chapter could be used as a basis for development of an analytical 
solution of the problem.

7.7 The Nature of the Weather and Climate Changes
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We assume that the Earth’s electromagnetic field is generated by the magneto-
hydro-dynamo action provided by the planet’s liquid metal core. Its essence is in 
the motion of the conducting liquid core where self-excitation of the electric and 
magnetic poloidal (meridional) and toroidal (parallel) fields occurs. During rotation 
of the inner planet’s shells with different angular velocities, in the case of asym-
metric thermal convection of the shell mass, the intensity of the fields is increased. 
This condition for the Earth is achieved because the rotation and magnetic axes do 
not coincide and thermal convection supposedly takes place. But a physically justi-
fied theory of the Earth’s phenomenon of an electromagnetic field is absent. There 
is no explanation of the mechanism of generation of the energy of this field except 
for the general physical principle of mass and charge interaction. Also, ideas or 
hypotheses about the source of replenishment of the Earth’s energy that is spent for 
gravitational and thermal irradiation are absent. The only source of solar and star 
irradiated energy is accepted to be interior nuclear fusion.

In order to find a solution of the problem, in this chapter we discuss a novel idea 
based on the innate capacity of a body’s energy for performing motion. As it was 
shown in Chap. 3, energy is a measure of the motion and interaction of particles of 
any kind of a body’s matter. The various forms of energy are interconvertible and its 
sum for a system remains constant. The above unique properties of energy, with its 
oscillating mode of motion in our dynamics, make it possible to consider the nature 
of the electromagnetic and gravitational effects of the Earth and other celestial bod-
ies as interconnected events.

It was shown in Chap. 6 that the Earth’s gravitational (potential) energy results in 
volumetric pulsations of the planet’s shells, having an oscillating regime, frequen-
cies of which depend on the mass density. In our consideration the Earth is accepted 
as a self-gravitating body. Its dynamics is based on its own internal force field and 
the potential and kinetic energies are controlled by the energy of oscillation of the 
polar moment of inertia, i.e. by interaction of the body’s elementary particles.

Applying the dynamical approach and the results obtained, we show below that 
the nature of creation of the electromagnetic field and mechanism of its energy 
generation appears to be an effect of the volumetric gravitational oscillation of the 
body’s masses. This effect is also characteristic for any celestial body.

V. I. Ferronsky, S. V. Ferronsky, Dynamics of the Earth, 
DOI 10.1007/978-90-481-8723-2_8, © Springer Science+Business Media B.V. 2010

Chapter 8
The Nature of the Earth’s Electromagnetic Field 
and Mechanism of its Energy Generation
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8.1  �Electromagnetic Component of Interacting Masses

It was shown in Sect. 6.2 that electromagnetic energy is a component of the ex-
panded analytical expression of potential energy. The expansion was done by means 
of an auxiliary function of the density variation relative to its mean value. The 
expression of the body’s potential gravitational energy in the expanded form (6.48) 
was found as

� (8.1)

where U is the potential energy of the gravitational interaction; 2 is the form- 
factor of the force function; G is the gravity constant; M is the body mass; R is its 
radius; Ψ(s) is the auxiliary function of radial density distribution relative to its 
mean value.

We have considered and applied the two first right-hand side terms of Eq. (8.1). 
The third term in dimensionless form represents an additive part of the potential 
energy of the interaction of the non-uniformities between themselves, which was 
written as

� (8.2)

The non-uniformities are determined as the difference between the given density 
of a spherical layer and the mean density of the body within the radius of the con-
sidered layer. We apply for interpretation of the third term the analogy of electro-
dynamics (Ferronsky et al., 1996). Each particle there generates an external field, 
which determines its energy. The energies of some other interacting particles and 
their own charges are determined by this field. If the potential of the field is ex-
pressed by means of the Poisson equation through the density of charge in the same 
point, then the total energy can be presented in additive form through application 
of the squared field potential. If the body mass is considered as a moving system, 
then the Maxwell radiation field applies. In our solution the dimensionless third 
term of the field energy is written as:

� (8.3)

where Е = Ψ/x2 is a dimensionless form of the electromagnetic field potential which 
is a part of the gravitational potential; Ψ plays role of the charge; dV = x2dx is the 
volume element in dimensionless form.
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In order to determine the numerical value of λ, which is integral of (8.3), calcula-
tions were made for a sphere with different laws of radial density distribution includ-
ing the politropic model (Ferronsky et al., 1996). The results of the calculations show 
that, for physically significant models of the density distribution in celestial bodies, 
the parameter λ is equal to 0.022. There is also an observational confirmation of this 
conclusion. Spitzer (1968) demonstrates observational results of nebulae of different 
mass and size in Table 3.2 of his book, which we reproduce here in Table 8.1.

For the accepted parabolic low of the Earth’s radial density distribution (see 
Chap. 6, Table 6.1) the third dimensionless term in Eq. (8.1) is αγ

2 = 0.01 and the 
total field energy should be

� (8.4)

Thus, the virial approach to the problem solution of the Earth’s global dynamics 
gives a novel idea about the nature of the planet’s electromagnetic field. The energy 
of this field appears to be the component of the potential energy of the interacting 
masses. The question arises about the mechanism of the body’s energy generation, 
which provides radiation in a wide range of the wave spectrum from radio through 
thermal and optical to x and γ rays.

8.2  �Potential Energy of the Coulomb Interaction  
of Mass Particles

With the help of a model solution, we can show that for the Coulomb interactions 
of the charged particles, constituting a celestial body, the relationship between the 
potential energy of a self-gravitating system and its Jacobi function holds (Ferronsky 
et al., 1981a), i.e.

� (8.5)

where Uc is the potential energy of the Coulomb interactions.

Uγ =



9

2

1

0

E2dV



 GM 2

R
= 0.01

GM 2

R
.

−Uc

√
 = const,

Table 8.1   Observational parameters of equilibrium nebulae
Parameters Visible dark nebulae

Small globula Large globula Intermediate cloud Large cloud
M/MSun >0.1 3 8 × 102 1.8 × 104

R (pc) 0.03 0.25 100 20
п ( п/сm3) >4 × 104 1.6 × 103 100 20
М/πR2 (g/сm2) >10−2 3 × 10−3 3 × 10−3 3 × 10−3

8.2 Potential Energy of the Coulomb Interaction of Mass Particles
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Derivation of the expression for the potential energy of the Coulomb interactions 
of a celestial body is based on the concept of an atom following, for example, from 
the Tomas-Fermi model (Flügge, 1971). In our problem this approach does not re-
sult in limited conclusions since the expression for the potential energy, which we 
write, will be correct within a constant factor.

Let us consider a one-component, ionized, quasi-neutral and gravitating gaseous 
cloud with a spherical symmetrical mass distribution and radius of the sphere R. 
We shall not consider here the problem of its stability, assuming that the potential 
energy of interaction of charged particles is represented by the Coulomb energy. 
Therefore, in order to prove relationship (8.5) it is necessary to obtain the energy of 
the Coulomb interactions of positively charged ions with their electron clouds.

Assume that each ion of the gaseous cloud has the mass number Аi and the order 
number Z and the function ρ( r) expresses the law of mass distribution inside the 
gaseous cloud. The mass of the ion will be Аimp (where mp = 4.8 × 10−24 g is the 
mass of the proton) and its total charge will be +Ze (where e = 4.8 × 10−10 GCSE 
is an elementary charge). Then, let the total charge of the electron cloud, which is 
equal to −Ze, be distributed around the ion in the spherically symmetrical volume of 
radius ri with charge density qe( re), re ∈ [0, ri]. Radius ri of the effective volume of 
the ion may be expressed through the mass density distribution ρ( r) by the relation

� (8.6)

Then

� (8.7)

Let us calculate the Coulomb energy U 
c  per ion, using relation (8.7) Assuming that 

the charge distribution law in the effective volume of radius ri is given, we may 
write U 

c  in the form

� (8.8)

where U (−)
c  is the potential energy of the Coulomb repulsion of electrons inside the 

effective volume radius ri; U (+)
c  is the potential energy of attraction of the electron 

cloud to the positive ion.
Let the charge distribution law qe( re) = qо( re) inside the electron cloud be given. 

Then normalization of the electron charge of the cloud, surrounding the ion, may 
be written in the form

� (8.9)
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e dre.
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From expression (8.9) we may obtain the normalization constant qо, which will 
depend on the given law of charge distribution, as

� (8.10)

Now it is easy to obtain expressions for U (−)
c  and U (+)

c  in the form

� (8.11)

� (8.12)

Finally, expression (8.8) for the potential energy U 
c  corresponding to one ion may 

be rewritten using (8.10)–(8.12) in the form

� (8.13)

It is easy to see that in the right-hand side of equation (8.13), the expression enclosed 
in brackets determines the inverse value of some effective diameter of the electron 
cloud, which may be expressed through the form-factor α2

i  of the ion radius ri, i.e.

� (8.14)

Thus, expression (8.13), using (8.14), yields

� (8.15)

The numerical values of the form-factor α2
i  depending on the charge distribution 

qe( re) inside the electron cloud are given in Table 8.2 and their calculations were 
given in our work (Ferronsky et al., 1981a).
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Using expression (8.15), the total energy of the Coulomb interaction of particles 
may be written as:

� (8.16)

Introducing in expression (8.16) the form-factor of the Coulomb energy α2
i ,  de-

pending on the mass distribution in the gaseous cloud and on the charge distribution 
inside the effective volume of the ion, we obtain:

� (8.17)

where

Since the total number of ions N in the gaseous cloud is equal to

and the relation between the radius of the cloud and the radius of the ion may be 
obtained from the relationship of the corresponding volumes
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Aimp
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Table 8.2   Numerical values of the form-factors α2
i  for different radial distribution of charge of 

the electron cloud around the ion
The law of charge distribution* α2

i

qe( re) = qо(re/ri) 0.76
qe( re) = qо = const 0.9
qe( re) = qо(1 − re/ri) 1.257
qe( re) = qо(1 − re/ri)n

(n+ 3)
�
11n2 + 41n+ 36



8(2n+ 3) (2n+ 5)
qe( re) = qо(re/ri)n

(n+ 3)2

(n+ 2) (2n+ 5)
The same for п → ∞ α2

i → 1/2

*Here qо is the charge value in the centre of the sphere; re is the parameter of radius, re ∈ [0, ri]; п 
is an arbitrary number, n = 0, 1, 2, …
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then the expression (8.17) may be rewritten in the following form:

� (8.18)

Hence, the form-factor entering the expression for the potential energy of the Coulomb 
interaction acquires the same physical meaning that it has in the expression for the po-
tential energy of the gravitational interaction of the masses considered in Sect. 2.6. It 
represents the effective shell to which the charges in the sphere are reduced, i.e.

� (8.19)

Taking into account that the moment of inertia of the body is

� (8.20)

then the relation (8.5) can be written in the form

� (8.21)

The numerical values of the form-factors α2
c  and β2 calculated by Eq. (8.21) are 

given in our work (Ferronsky et al., 1981a).
The considered task about the potential energy of the Coulomb interactions of 

the charged particles proves the legitimacy of solution of the virial equation of dy-
namical equilibrium for study of the Earth’s electromagnetic effects.

8.3  �Emission of Electromagnetic Energy by a Celestial 
Body as an Electric Dipole

In Chap. 5 we considered the solution of the virial equation of dynamical equilib-
rium for dissipative systems written in the form

� (8.22)

Here the function of the energy emission [1 − q( t)] was accepted on the basis of the 
Stefan-Boltzmann law without explanation of the nature of the radiation process. 
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Now, after an analysis of the relationship between the potential energy and the polar 
moment of inertia, considered in the previous section, and taking into account the 
observed relationship by artificial satellites, we try to obtain the same relation for 
the celestial body as an oscillating electric dipole (Ferronsky et al., 1987).

Equation (8.22) for a celestial body as a dissipative system can be rewritten as

where X( t − to) is the perturbation function sought, expressing the electromagnetic 
energy radiation of the body as

The electromagnetic field formed by the body is described by Maxwell’s equations, 
which can be derived from Einstein’s equations written for the energy-momentum 
tensor of electromagnetic energy. In this case only the general property of the cur-
vature tensor in the form of Bianchi’s contracted identity is used. We recall briefly 
this derivation sketch (Misner et al., 1975).

Let us write Einstein’s equation in geometric form:

� (8.23)

where G is an Einstein tensor and Т is an energy-momentum tensor.
In the absence of mass, the energy-momentum tensor of the electromagnetic 

field can be written in arbitrary co-ordinates in the

� (8.24)

where gαβ is the metric tensor in co-ordinates, and Fμν the tensor of the electromag-
netic field.

From Bianchi’s identity

� (8.25)

where ∇ is a covariant 4-delta, follows the equation expressing the energy-momen-
tum conservation law:

� (8.26)

In the component form, the equation is

� (8.27)

After a series of simple transformations, we finally have

� (8.28)

Here and above, the symbol “;” defines covariant differentiation.

̈ = −A0 +
B
√

+ X (t − t0),

X (t − t0) = Eγ (t − t0).

G = 8πT ,

4πTµv = FµαFvβgαβ −
1

4
gµvFστFστ ,

G ≡ 0,

T ≡ 0.

Fµα
;σgατFστ + Fµα

;τgασFτα = gµv�Fvτ ;σ + Fσv;τ


Fστ .

Fβu
;v = 0.
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To obtain the total power of the electromagnetic energy emitted by the body, 
Maxwell’s equations should be solved, taking into account the motion of the charg-
es constituting the body. In the general case, the expressions for the scalar and vec-
tor potentials are

� (8.29)

� (8.30)

where ρ and j are densities of charge and current; [  j] denotes the retarding effect 
(i.e. the value of function j at the time moment t − R/c); R is the distance between 
the point of integration and that of observation, and с the velocity of light.

In this case, however, it seems more convenient to use the Hertz vector Z of the 
retarded dipole р( t − R/c) (Таmm, 1976). The Hertz vector is defined as

� (8.31)

Electromagnetic field potentials of the Hertz dipole can be determined from the 
expressions

� (8.32)

� (8.33)

Moreover, the Hertz vector satisfies the equation

� (8.34)

where □ is the d’Alembertian operator.
The intensities of the electric and magnetic fields Е and Н are expressed in terms 

Z̄  by means of the equations

� (8.35)

� (8.36)

The radiation of the system can be described with the help of the Hertz vector of 
the dipole p̄ = qr̄ , where q is the charge and r the distance of the vector from the 
charge (+q) to (−q).
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4π Ā =


(V )

[ j]dV

R
,

4πZ =
1

R
ρ


t −

R

c


.

φ = −divZ ,
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From the sense of the retardation of the dipole р( t − R/c) we can write the fol-
lowing relations:

Then the components of the fields Ē  and H̄  of the dipole are as follows:

� (8.37)

� (8.38)

where θ is the angle between р and R̄;  Hφ ⊥ Eθ and ⊥ R; the other components of E 
and H in the wave zone are tending to zero quicker than 1/R in the limit R → ∞.

The flax of energy (per unit area) is equal to

� (8.39)

The total energy radiated per unit time is given by

� (8.40)

Thus, transforming the dissipative system to an electric dipole by means of the 
Hertz vector, we have reduced the task of a celestial body model construction to the 
determination of the dipole charges +Q and −Q through the effective parameters of 
the body.

This problem can be solved by equating expression (8.40) for the total radiation 
of a celestial body as an oscillating electric dipole. In addition, the relation for the 
black body radiation expressed through effective parameters is presented below in 
Sect. 8.5.

The expression (8.40) for the total rate of the electromagnetic radiation J of the 
electric dipole can be written in the form (Landau and Lifshitz, 1973b)

� (8.41)

where Q is the absolute value of each of the dipole charges, and r is the vector dis-
tance between the polar charges of the dipole. Its length in our case is equal to the 
effective radius of the body.

In our elliptic motion model of the two equal masses the vector r̄  satisfies the 
equation
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�
(8.42)

Thus, the total rate of the electromagnetic radiation of the dipole is

�
(8.43)

In order to obtain the average flux of electromagnetic energy radiation, the cal-
culated value of the factor 1/r4 should be averaged during the time period of one 
oscillation. Using the angular momentum conservation law, we can replace the 
time-averaging by angular averaging, taking into consideration that

� (8.44)

where М is angular momentum, and φ is the polar angle.
The equation of the elliptical motion is

� (8.45)

where а is the semi-major axis, and ε is the eccentricity of the elliptical orbit.
The value of 1/r4 can be found by integration. In our case of small eccentricities, 

we neglect the value of ε2 and write

� (8.46)

Finally we obtain

� (8.47)

Earlier it was shown (Ferronsky et al., 1987) that

� (8.48)

where σ is the Stefan-Boltzmann constant; Ae = Gmμe/3k is the electron branch con-
stant; μe is the electron mass; and k is the Boltzmann constant.

Equating relations (8.47) and (8.48), we find an expression for the effective 
charge Q as follows:

� (8.49)

where rg = Gm/c2 is the gravitation radius of the body.
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We have thus demonstrated that it is possible to construct a simple model of the 
radiation emitted by a celestial body, using only the effective radius and the charge 
of the body. Moreover, a practical method was shown for determining the effective 
charge using the body’s temperature from observed data.

The logical question about mechanism of generation of the wide spectrum en-
ergy emitted by the bodies arises. Let us consider this important problem at least in 
first approximation.

8.4  �Quantum Effects of Generated Electromagnetic Energy

The problem of energy generation technology for human practical use has been 
solved long ago. In the beginning it was understood how to transfer the energy from 
wind and fire into the energy of translational and rotary motion. Later on scientists 
and engineers learned how to produce electric and atomic energy. Technology of 
thermo-nuclear fusion energy generation is the next step. It is assumed that the Sun 
replenishes its emitted energy by thermo-nuclear fusion of hydrogen, helium and 
carbon. The Earth’s thermal energy loss is considered to be filled up by convection 
of its masses and thermal conductivity. But the source of energy for convection of 
the masses is not known.

The obtained solution of the problem of volumetric pulsations for a self-gravi-
tating body based on their dynamical equilibrium creates a real physical basis on 
which to formulate and solve the problem. In fact, if a body performs gravitational 
pulsations (mechanical motions of masses) with strict parameters of contraction 
and expansion of any arbitrarily small volume of the mass, then such a body, like a 
quantum generator, should generate electromagnetic energy by means of its trans-
formation from a mechanical form, through forced energy level transitions and their 
inversion, on both the atomic and nuclear levels. In short, the considered process 
represents transfer of mechanical energy of mass pulsation to the energy of an elec-
tromagnetic field (Fig. 8.1).

An interpretation of the process can be presented as follows. While pulsating 
and acting in a regime of the quantum generator, the body should generate and emit 
coherent electromagnetic radiation. Its intensity and wave spectrum should depend 

Fig. 8.1   Quantum transition of energy levels at contraction phase of the body mass (a) and inver-
sion at the phase of its expansion (b); ε1, ε2, ε3, ε4 are levels of energy

ε4

ε3

ε2

ε1
a b
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on the body mass, its radial density distribution and chemical (atomic) content. 
As it was shown in Sect. 6.4, a body with uniform density and atomic content 
provides pulsations of uniform frequency within the entire volume. In this case, 
the energy generated during the contraction phase will be completely absorbed at 
the expansion phase. The radiation appearing at the body’s boundary surface must 
be in equilibrium with the outer flux of radiation. A phenomenon like this seems 
to be characteristic for the equilibrated galaxy nebulae and for the Earth’s water 
vapor in anti-cyclonic atmosphere.

The pulsation frequencies of the shell-structured bodies are different but steady 
for each shell density. In the case of density increase to the body’s center, the 
radiation generated at the contraction phase will be partially absorbed by an over-
lying stratum at the expansion phase. The other part of radiation will be summed 
up and transferred to the body’s surface. That part of the radiation forms an outer 
electromagnetic field and is equilibrated by interaction with the outer radiation 
flux. The rest of the non-equilibrated and more energetic particles in the spectrum 
of radiation moves to space. The coherent radiation which reaches the bound-
ary surface has a pertinent potential and wave spectrum depending on mass and 
atomic content of the interacting shells in accordance with Moseley’s law. The 
Earth emits infrared thermal radiation in an optical short wave range of the spec-
trum. The Sun and other stars cover the spectrum of electromagnetic radiation 
from radio- through optical, x and gamma rays of wave ranges. The observed 
spectra of star radiation show that the total mass of a body takes part in genera-
tion and formation of surface radiation. According to the accepted parabolic law 
of density distribution of the Earth, it has maximum density value near the lower 
mantle boundary. The value of the outer core density has jump-like fall and the 
inner core density seems to be uniform up to the body’s center. The mechanism of 
energy generation that we have discussed is justified by the observed seismic data 
of density distribution. It is assumed that the excess of electromagnetic energy 
generated from the outer core comes to the inner core and keeps there the pres-
sure of dynamical equilibrium at the body’s pulsation during the entire time of the 
evolution. The parabolic distribution of density seems to be characteristic for most 
of the celestial bodies.

In connection with the discussed problem it is worth considering the equilibrium 
conditions between radiation and matter on the body’s boundary surface.

8.5  �Equilibrium Conditions on the Body’s  
Boundary Surface

Any conclusion about the quantum electromagnetic nature of energy in maintaining 
equilibrium of a self-gravitating body needs to analyze the conditions on its bound-
ary surface. Electromagnetic energy has discrete-wave structure, therefore we shall 
search for the particle mass which satisfies equilibrium between the matter and the 

8.5 Equilibrium Conditions on the Body’s Boundary Surface
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radiation on the border with the outer flux of energy. This question was considered 
earlier (Ferronsky et al., 1987; 1996) and here we continue the analysis.

We can write the equation of hydrodynamic equilibrium for the flux of particles 
that are blocked by gravity forces on the body’s boundary surface

� (8.50)

where μ is the mean value of the particle mass; υ is the velocity of thermal motion 
of the particle running from the gravitational field.

The heat velocity υ depends on the boundary temperature Т0 as

� (8.51)

where k is the Boltzmann constant.
Now using the equilibrium condition for retaining particle flow can be rewritten 

as

� (8.52)

By means of Eq. (8.52) we can calculate numerical values of particle masses, which 
are “locked” by the gravitational forces at different stages of the system’s evolution. 
With the help of the same equation we identified proton ТpRp and electron ТеRе 
phases in the evolution history of proto-solar nebula (Ferronsky et al., 1987). They 
are as follows:

It means, that for the contemporary Sun with radius R = 7 × 1010 сm and surface 
temperature T0 = 5000 K the boundary equilibrium is maintained by the mass of 
the electrons. At the same temperature of the system its boundary equilibrium is 
“locked” by the mass of the protons on radius R = 7 × 1014 сm, which corresponds 
to the orbit of Jupiter.

Thus, we may assume that evolution of the proto-solar nebula has passed at least 
two phases. First was the proton phase AB (Fig. 8.2) when the planetary mass dif-
ferentiation and separation took place. The second electron phase CD is character-
istic for the present-day equilibrium state when the Sun, having a non-uniform or 
even a shell structure, is pulsating in the regime of an optic quantum generator. The 
process of mass density differentiation in the interior is definitely continuing and the 
light mass component is emerging on the surface in the form of so-called sunspots.

A more general consideration of the problem related to the particle mass, which 
determines radiation equilibrium on the boundary surface of a body at its separation 
from a gaseous nebula, can be obtained from solution of the equation suggested by 
Chandrasekhar and Fermi (1953).

GMµ

R2
=
µυ2

R
,

µυ2 = 3kT0,

GMµ

3k
= T0R.

TpRp = GMµp/3k = 5 × 1017cm · K ,

TeRe = GMµe/3k = 2.73 × 1014cm · K .
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8.6  �Solution of the Chandrasekhar-Fermi Equation

The following equation for a self-gravitating body, which is separated from gaseous 
nebula as a result of equilibrium between gravitational and electromagnetic forces, 
was proposed by Chandrasekhar and Fermi (1953)

� (8.53)

here ρ is the mean density of the body; p is the pressure; υ is the mean velocity 
of the particle; Н and Е are the components of the electromagnetic field; G is the 
gravitational constant; V is the volume of the system; ∇U is the gradient of the 
gravitational field.

At the moment of separation of the self-gravitating body, its kinetic effects com-
pared to the mass term are small. In this case Eq. (8.53) can be written as (Ferronsky 
et al., 1981b; 1996)

or

� (8.54)

where the coefficient 0.1 represents the electromagnetic component in expansion of 
the potential energy (8.1) found by means of data of the astronomical observations 
of equilibrated nebulae (Ferronsky et al., 1996).

The left-hand side of equation (8.54) is proportional to the Coulomb energy of in-
teraction of the charged particles (electrons, protons, ionized atoms and molecules). 
The right-hand side of the equation is proportional to the gravitational energy of the 
mass particles’ interaction. Then, assuming that the separated secondary body has 
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Fig. 8.2   Proton AB and 
electron CD phases of the 
Sun’s evolution
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mass m, radius R and mean value of mass of the constituting particles μ, equation 
(8.54) can be rewritten in the form of equality of energies of the gravitational and 
Coulomb interactions. For the purpose of estimating the order of magnitude we 
rewrote the expression for the energy of the Coulomb interaction in equation (8.54), 
through the Madelung energy, in the form

� (8.55)

where e = 4.8 × 1010 e.s.u., the electron charge. Then from equation (8.55) one has

� (8.56)

Eq. (8.56) allows estimation of the mass of the equilibrated particle of the solar 
nebula at the time of its separation from the galactic one, which is

For the Earth the mass of the particle is μe = (2 × 1016/Me)1/2 = 1.8 × 10−22 g, for 
Jupiter it is μj = 10−23 g and for the Universe, taking its mass to be М ~ 1056 g, one 
has that μв= 10−36 g.

The maximal average mass of particles in cosmic space can be determined from 
the condition μ = М. Then µMax = 3

√
2x10−16 = 0.6× 10−5 g. The obtained value 

is close to the Planck mass or the mass of the “cold” plasma.

8.7  �The Nature of the Star Emitted Radiation Spectrum

We assume that the Novas and Supernovas after explosion and collapse fracture 
into neutron stars, white dwarfs, quasars, black holes and other exotic creatures 
which emit electromagnetic radiation in different ranges of the wave spectrum. The 
effects discussed in the book are based on dynamical equilibrium evolution of self-
gravitating celestial bodies, allowing the exotic stars to be interpreted from a new 
position. We consider the observed explosions of stars as a natural logical step of 
evolution related to their mass differentiation with respect to the density. The proc-
ess is completed by separation of the upper “light” shell. At the same time the wave 
parameters of the generated energy of the star after shell separation are changed be-
cause of changes in density and atomic contents. As a result, the frequency intensity 
and spectrum of the coherent electromagnetic radiation on the boundary surface are 
changing. For example, instead of radiation in the optical range, coherent emission 
is observed in the x or gamma ray range. But the body’s dynamical equilibrium 
should remain during all the time of evolution. The loss of the upper body shell 
leads to decrease of the angular velocity and increase of the oscillation frequency. 

0.1
GM 2

R
≈

M

µ

e2

R 3
√
µ/M

.

Mµ2 = 2×10−16g3.

µs = (2×1016/Mc)1/2 = 3×10−24g.
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The idea of a star’s gravitational collapse seems to be an effect of the hydrostatic 
equilibrium theory.

As to the high temperature on the body surface, the order from the Rayleigh-
Jeans equation is 107 K or more. In our interpretation wherein we apply Eq. (8.52) 
for evolution of a star of solar mass at the electron phase (Fig. 8.2), the limiting 
temperate T0 → µec2/3k  or (Ferronsky et al., 1996)

This means that on the body’s surface the temperature of the gas approaches that of 
the electrons because the velocity of its oscillating motion runs to c.

The total energy is a quantitative measure of interaction and motion of all the 
forms of the matter being studied. In accordance with the law of conservation, en-
ergy neither disappears nor appears of its own volition. It only passes from one form 
to another. For a self-gravitating body the energy of mechanical oscillations, in-
duced by gravitational interactions, passes to electromagnetic energy of the radiation 
emission and vice versa. The process results from the induced quantum transition of 
the energy levels and their inversion. Here transition of the gravitational energy into 
electromagnetic energy, and vice versa, results in a self-oscillating regime. In the 
outer space of the body’s border, the emitted radiation energy forms an equilibrium 
electromagnetic field. The non-equilibrium part of the energy in the corresponding 
wave range of the spectrum is irradiated to outer space. The irreversible loss of the 
emitted energy is compensated by means of the binding energy (mass defect) at the 
fission and fusion of molecules, atoms and nuclei. The body works in the regime of 
a quantum generator. Those are conclusions that follow from the theory based on a 
body’s dynamical equilibrium.

In conclusion we wish to stress that discovery of the artificial satellites’ relation-
ship between the gravitational field (potential energy) and the polar moment of in-
ertia of the Earth leads to understanding the nature of the mechanism of the planet’s 
energy generation as the force function of all the dynamical processes released in 
the form of oscillation and rotation of matter. Through the nature of energy we un-
derstand the unity of forms of gravitational and electromagnetic interactions which, 
in fact, are the two sides of the same natural effect.

3kT0 → µec2 ≈ 0.5MeV ,

T ≈ 5× 109 K .
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During the second half of the twentieth century, many advances have been made 
in the field of cosmogenics. New facts and rich general information in physics of 
space near the Earth, the Moon, and nearby planets Mars, Venus, Mercury, and 
Jupiter were obtained by means of cosmic apparatus and techniques. Lunar rock 
samples brought back to the Earth by astronauts and automatic space devices have 
provided much data on the physical-mechanical properties of those rocks and on 
that basis a number of new cosmophysical and cosmochemical conclusions have 
been drawn. Due to new techniques available for studying natural substances, much 
knowledge was gained on the chemical and isotopic composition and the absolute 
ages of meteorites, lunar and terrestrial rocks, water, and gases.

The programme of deep sea drilling and ultra-deep inland drilling initiated the 
most important studies of the century concerning the structure of the ocean and the 
inland crust, and have already provided many important facts.

Finally, the most valuable studies of dynamical properties of the Earth’s gravi-
tational field were conducted by artificial geodetic satellites. All those results and 
the novel approach to dynamics of the Earth considered in this work, allow us to 
return with added insight to discussion of the oldest scientific problem of creation 
and evolution of our planet.

9.1  �A Selection of Existing Approaches to Solution  
of the Problem

Let us briefly review the existing hypotheses that are available for research into the 
nature of the Solar system. At present the most common theories of formation of the 
Earth and the other planets of the Solar system are based upon the idea of accretion 
of substances from a proto-planetary gas-dust cloud. There are several options on 
the origin of the cloud itself. Some scientists believe that the proto-planetary cloud 
was captured from interstellar nebula by the existing Sun during its motion through 
interstellar space (Schmidt, 1957). Others consider it to be the product of evolution 
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of a more massive cloud from which the Sun itself originated (Cameron and Pine, 
1973; Cameron, 1973).

Before the ‘accretion’ theory was advanced, there were a lot of other ideas and 
theories concerning the origin of the solar system which have been discussed re-
peatedly in great detail. (Spenser, 1956). But the majority of these theories were 
rejected, being unable to explain a number of observed astronomical facts and as-
pects of celestial mechanics and cosmochemistry. However, in the light of effects of 
the dynamic equilibrium approach presented in this book, some of them, such as the 
theories of Laplace and Descartes deserve rehabilitation.

According to the accretion hypothesis, the planets and satellites of the solar 
system were formed as a result of successive accumulation of dust particles. The 
subsequent growth of these accumulations into planetary and satellite bodies has 
been considered on the basis of the mechanism of gravitational instability and the 
amalgamation of small bodies with larger ones.

The majority of geological and geochemical reconstructions concerning the for-
mation of the Earth and its shells, based on the accretion hypothesis, postulate the 
initial existence of a chemically homogeneous substance. It is assumed that at the 
initial stage of the Earth’s formation the temperature of the condensing matter was 
low and water was retained, along with carbon, nitrogen, and other volatile con-
stituents (Urey, 1957). Subsequently, due to the gravitational heat generated during 
accretion and the energy produced by radioactive decay, the matter constituting the 
Earth underwent complete or partial melting. During the melting of this matter, the 
water and the volatile components degassed to the surface producing the hydro-
sphere and the atmosphere.

Rubey (1964) notes that the СО2 concentration in the atmosphere and the oceans 
remains more or less constant over a considerable period of geologic time. In his 
opinion, if only 1 / 100 of the carbonates in sedimentary rocks were transferred to 
the oceans and the atmosphere, life on Earth would not be possible. From analytical 
computations based on the geochemical balance of the volatile substances contained 
in old sedimentary rocks and in the present hydrosphere, atmosphere, and biosphere 
on the one hand, and in disintegrated igneous rocks on the other, he obtained the 
very interesting data shown in Table 9.1.

As can be seen from Table 9.1, there is an enormous excess of volatile sub-
stances in the surface zone of the Earth which could not have been produced by the 
disintegration of igneous rock material and its subsequent transfer into sediments 
and solutions. Analyzing possible reasons for the excess, Rubey concludes that the 
present-day oceans formed gradually through the emergence of water together with 
other volatile substances from the deep interior of the Earth or, more specifical-
ly, from what he called hydrothermal sources. Therefore, in Rubey’s opinion, the 
present hydrosphere is of juvenile origin.

Although satisfactory explanations exist for a number of observed facts in the 
framework of the cold origin hypothesis, many authors have noted certain funda-
mental contradictions. For example, Ringwood (1966; 1979) has drawn attention 
to the extremely high concentrations of iron and nickel oxides in ultramafic basic 
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rocks and basalts and to very large amounts of СО and СО2 which would have been 
released through the reduction of the iron constituting the planet’s core. If the theory 
were correct, these gases would have had a mass half that of the entire core, which 
is hardly possible. The mechanism of formation of the core and the other shells of 
the Earth also remains problematic.

Cosmochemical facts, which have been obtained in recent years by many re-
searchers studying meteorites, the Moon, and the planets, indicate that other ideas 
concerning the formation of the bodies in the solar system should be employed. 
These new ideas have shown that the processes of condensation of the chemical 
elements and compounds that might have occurred in the protoplanetary substance 
have actually taken place. Due to these processes the bodies of the solar system 
could have become inhomogeneous in chemical composition and differentiated 
into shells. The development of these ideas is closely related to the problem of 
the original formation and evolution of the Earth and its shells and are therefore 
considered in detail below, including the effects following from our theory of the 
planet’s motion based on its dynamical equilibrium. We consider that the main ef-
fect of planet body formation is differentiation of the cloud’s mass in density and 
their separation due to development of the normal and the tangential components 
of the force function at gravitational interaction of the non-uniform masses as 
discussed in Chap. 6.

The fact of existence of gaseous clouds and nebulae is proved by observation. 
The evolutionary process inevitably leads to their density separation. The study of 
the isotopic composition of a substance is one of the most efficient ways of learning 
about the origin of that substance. We carried out analysis of vast experimental data 
on isotopic composition of the hydrogen and oxygen of water on the Earth in order 
to solve the problem of origin of the hydrosphere by means of its separation during 
formation. Analogous analysis was done on the basis of isotopic composition of 
the carbon and sulfur in natural objects of organic and inorganic origin. The results 
prove the fact of the separation process which has taken place in accordance with 
the chosen theory. We present our analysis below (Ferronsky, 1974; Ferronsky and  
Polyakov, 1982; 1983).

Table  9.1   The content of volatile components near the surface of the earth and in fractured rocks 
(Rubey, 1964)
Object Volatiles (×1020 g)

Н2О Carbon 
in СО2

CI N S H, B, Br and 
others

Present atmosphere, hydrosphere, 
biosphere

14 600     1.5 276 39 13   1.7

Ancient sedimentary rocks     2100 920   30   4 15 15
Total 16 700 921.5 306 43 28 16.7
Fractured igneous rocks       130   11     5   0.6   6   3.5
Excess of volatile components 16 570 910.5 301 42.4 22 13.2

9.1 A Selection of Existing Approaches to Solution of the Problem
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9.2  �Separation of Hydrogen and Oxygen Isotopes  
in Natural Objects

At present we definitely know the physical ground for the separation of isotopes, 
and much experimental data concerning the isotope composition of water in differ-
ent objects has been obtained. These objects are: atmospheric moisture, water of the 
oceans and their sediments, inland surface and ground waters, liquid inclusions in 
rocks and minerals, deuterium and oxygen-18 contents in sedimentary and igneous 
rocks and minerals, in meteorites, and in lunar samples. The available data permit us 
to discuss the problem of origin of the Earth’s hydrosphere as the planet’s shell.

When considering the evolution of the isotopic composition of any element 
through what is assumed to be a wide range of temperatures, the isotopic separation 
can be expected to occur only within strictly defined temperature and pressure limits 
corresponding to the phase transition of the element to and from the gaseous, liquid 
and solid state. The isotopes of a given element in the gaseous state will be distrib-
uted uniformly throughout the gas volume. If, on the other hand, an element in the 
gas phase reacts with other substances on reaching an appropriate temperature for 
the formation of new compounds constituting a condensed phase, then the separa-
tion effect will begin to manifest itself as a depletion of the gas phase in these same 
isotopes. The transition of the compounds in question to each successive phase state 
will be accompanied by enrichment of the new phase in heavy isotopes.

In a single-component system, the isotopic composition of the condensed and 
gas phases under equilibrium conditions is determined by the vapour pressure of the 
isotopic varieties of the molecules forming the condensed phase, and the enrichment 
of the low-temperature phase in heavy isotopes occurring within a certain tempera-
ture range. In a multi-component system, where the element of interest is present in 
various chemical compounds, the isotopic composition of each compound will be 
determined by the isotopic exchange constants, which are in turn a function of the 
free energy of the system.

Close examination of this process from the thermodynamic point of view shows 
that, with increasing system temperature, isotopic separation among the various 
compounds decreases. Under certain equilibrium conditions the system components 
or phase will be depleted or enriched in one or another isotope according to the iso-
topic exchange constant, and as the isotopic exchange constant is a function of tem-
perature, changes in temperature must lead to change in isotopic composition of the 
components or phases through isotopic exchange reactions. For example, CO2 gas, 
being in isotopic equilibrium with water in the liquid phase, will be enriched in 18O 
by approximately 40% relative to the oxygen constituting H2O molecules at 25°C.

It should be borne in mind that during the Earth’s formation and subsequent 
evolution, isotopic separation of the elements also occurred as a result of many 
secondary effects associated with global and local changes in temperature due to 
internal and external release or absorption of energy. Global changes in the isotopic 
composition of water through the secondary effects associated with variation in the 
temperature regime are very pronounced when there is interaction between the open 
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water basins of the Earth and the atmosphere in the form of evaporation, conden-
sation and precipitation. The same effects are observed locally in closed systems 
where underground waters interact with rocks and where individual minerals and 
other components with water during the formation of rocks of different origin.

The temperature range within which the isotopes of water undergo detectable 
fractionation during the phase transition of water is −40 to +374°С. Within 220–
374°С the separation factor of hydrogen isotopes becomes less than 1. At higher 
temperatures, the various isotopes of water in a given gas volume will have a sta-
tistically uniform distribution. The separation of hydrogen and oxygen isotopes 
in other compounds during their formation, and under the influence of secondary 
temperature effects, will occur within other temperature ranges. It is known, for 
example, that when oxygen interacts with the silicate phase of rocks, isotopic sepa-
ration occurs up to a temperature of 1000°С (Ferronsky and Polyakov, 1982). If one 
knows exactly the temperature induced separation relationship between two inter-
acting components from the actual isotopic ratios, it is possible to calculate exactly 
their interaction temperature. This is the principle underlying oxygen paleother-
mometry, which is used for determining the formation temperature of sedimentary 
rocks, glaciers, and other terrestrial features. 

Many papers containing data on the isotopic composition of water and other 
natural and cosmic substances have been published. The authors of the book have 
analysed many of these with a view to determining the limits of variation in the con-
centration of the heavy isotopes deuterium and oxygen-18 in various substances. 
The results are presented in Table 9.2, where the isotopic values are given in units 
relative to the mean ocean water standard SMOW (see Ferronsky and Polyakov, 
1983).

From Table 9.2 it can be seen that the isotopic composition of the surface waters 
of the continents and of the Earth’s atmosphere, which is determined exclusively by 
the present temperature regime of the Earth’s surface, varies within broad limits. As 
one would expect, the water most depleted in heavy isotopes is fixed in the polar re-
gions ( δ2Н up to −500‰, δ18О up to −60‰ (Craig, 1963)), while that most enriched 
is in closed basins in arid zones ( δ2Н = +129‰, δ18О = +31.3‰ (Fontes and Gonfi-
antini, 1967)). It should be noted that the isotopic composition of surface waters, at-
mospheric moisture, and gases is controlled by secondary effects of the continuous, 
natural evaporation-condensation-precipitation cycle. All these processes, which 
occur at widely varying temperatures at the Earth’s surface and in the atmosphere, 
cause fractionation of hydrogen and oxygen isotopes within broad limits.

Ocean water is uniform in its isotopic composition. Investigations carried out by 
many authors (Craig, 1965; Craig and Gordon, 1965) have shown that at depth of 
500 m or more ocean water has a very uniform isotopic composition with small re-
gional variation ( δ2Н from −25 to +10‰ and δ18О from 0.6 to +2‰) observed in the 
surface layer. Despite the enormous amount of evaporation from the ocean surface, 
which enriches the surface layer in heavy isotopes, there does not appear to be any 
appreciable change in the isotopic composition as a whole. This is because most of 
the evaporated water ultimately returns to the ocean. Such a situation can obviously 
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persist as long as the overall temperature balance on the Earth is maintained. If this 
balance is upset over a long time, the balance of isotopic composition in ocean water 
will break down. However, as has been shown by recent paleotemperature measure-
ments of old ocean sediments and glaciers based on 18О/16О (Emiliani, 1970; 1978), 
temperature variations at the ocean surface in the equatorial zone have not exceeded 
5–6°С during the past 0.7 million years, and the 18О/16О ratios in the water have not 
deviated by more than 0.5‰ from the present-day value. Similar results have been 

Table 9.2   Deuterium and oxygen-18 contents in natural objects

δ2Н, ‰                               δ18О, ‰ 
         Object                                 –1000 –600  –200  0  +200     –60     –20     0   +20  +60

Galaxy                                                        +2860 – +5360

Solar atmosphere 

Earth’s atmosphere 
   Molecular hydrogen 
   Carbon dioxide  
   Molecular oxygen 
   Atmospheric precipitation 
   Methane  

Surface waters 
   Oxygen dissolved in water    
   Rivers and lakes 

Oceans
   
Underground waters and rocks  
   Sedimentary carbonates and silicates 
   Igneous and metamorphic rocks 
   Basalts and granites 
   Brines 
   Hydrothermal waters 
   Steam and gas from thermal waters 
   and volcanoes 

Natural organic material 

Meteorites  
   Tectites  
   Chondrites 
   Iron meteorites  
   Water in carbonaceous chondrites  
   Organic matter in carbonate  
   chondrites  

Lunar material 
   Water in rocks  
   Molecular hydrogen  
   Carbon dioxide  
   Rock samples 
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obtained by determining deuterium in water contained in clay minerals of marine 
origin and of various ages.

The isotopic and chemical composition of the ocean water may therefore be 
considered to have remained virtually constant over the past 250–300 million years. 
This is confirmed by a number of facts obtained during paleotemperature studies 
based on the comparison of the oxygen isotope ratios of organogenic carbonates 
and shells of ancient and modern molluscs (Bowen, 1966; 1991; Teys and Naydin, 
1973).

Taylor (1974) came to a similar conclusion after analyzing data on the hydrogen 
and oxygen isotope ratios in Cambrian and Precambrian siliceous charts obtained 
by Knauth and Epstein (1971; 1976). Moreover, he has suggested that the isotopic 
composition of the ocean water has remained unchanged, at least during the major-
ity of the upper Precambrian era.

Similar results were derived while analyzing the carbon and oxygen isotope 
composition of Precambrian limestones and dolomites in Africa, Canada, and Eu-
rope (Schidlowski et. al., 1975). It was found that the near-constancy of δ13С ≈ 0 
during geologic time corresponds to the constant ratio of the organic carbon to the 
total amount of carbon in sedimentary rocks (Со/Сt ≈ 0.2). On this basis it has been 
concluded that at least 80% of the modern oxygen isotopes were formed earlier than 
3 × 109 years ago.

A very important question concerns the isotopic composition of deep under-
ground waters and also the δ2Н and δ18О composition of liquid inclusions in min-
erals of magmatic origin and in rocks belonging to the Earth’s upper mantle. The 
data available concerning studies of isotopic ratios in various types of mineralized 
underground waters and brines in numerous regions of the United States, Canada, 
Japan, and the former Soviet Union with oil and gas fields, were considered in detail 
and shows that the relative deuterium concentration in such waters varies from +29 
to −109‰, with a clear tendency to depletion in heavy isotopes relative to ocean 
water.

It has been shown by many researchers that the water-bearing carbonate and 
silicate rocks are always enriched in heavy isotopes of oxygen. Oxygen exchange 
occurred through the interaction of deep underground water (depleted in heavy iso-
topes as a result of mixing with local atmospheric precipitation in the course of their 
formation) with water-bearing carbonates and silicates at appropriate temperatures. 
This process led to some enrichment of the brines in heavy oxygen compared with 
local precipitation, and sometimes compared with ocean water.

It may be assumed that one of the secondary temperature effects leading to the 
enrichment of deep underground waters in deuterium and oxygen-18 was that of 
the surface evaporation of water of these basins being included in inland seas and 
lakes.

The range of variation in the isotopic composition of the Earth’s thermal waters 
is from −18‰ to −207‰ for δ2Н, and from +7.5‰ to −22.5‰ for δ18О. The cor-
responding values for steam and gas from springs and volcanoes are from −40‰ to 
−520‰ for δ2Н and from +0.7‰ to 22.5‰ for δ18О. Rubey (1964), and a number 
of other authors, think that those places where thermal waters emerge at the Earth’s 
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surface (from crystalline rocks and in active volcanic regions) are where juvenile 
water emerges, and mark the sources which gave rise to our present oceans. Craig 
(1963) has made a detailed analysis of the isotopic composition of water from hot 
springs in many parts of the Earth. His investigations have shown that all hot springs 
discharge water having an isotopic composition identical with that of the local at-
mospheric precipitation. The widely observed higher enrichment is explained by 
oxygen substitution, which takes place when these waters interact with water-bear-
ing carbonate and silicate rocks.

Measurement of tritium concentrations in thermal waters performed by Theod-
orsson (1967) in Iceland, Begemann (1963) in the United States, and other investiga-
tors, have yielded values that are absolutely identical with the tritium concentrations 
in local surface waters and rainfall. Because tritium is an isotope formed primarily 
by cosmic rays and concentrations can only be increased during nuclear bomb tests, 
it is impossible that any tritium could have been derived from underground sources. 
In any case, the circulation period of waters to hot springs fed by atmospheric and 
surface waters ranges from several months to several years. Thus, the above men-
tioned investigations suggest that hot springs do not supply juvenile water.

Let us consider the δ2Н and δ18О variation in sedimentary rocks, liquid inclu-
sions, and minerals in magmatic rocks, granites, and basalts. The limits of varia-
tions of these isotopes are shown in Table 9.2. It can be seen that for all the types 
of rocks in question the isotopic ratios of hydrogen are negative relative to ocean 
water, whereas the oxygen values for all the rock types listed are positive rela-
tive to ocean water. The oxygen isotope ratios range from 6–7‰ for basalts and 
7–12‰ for granites and igneous rocks. In younger carbonate and silicate sedimen-
tary rocks (no older than Riphean) the relative content of heavy oxygen ranges 
from +25‰ tо +38‰, whereas in the ancient (Proterozoic, Archean, and older) 
carbonates, clay, and siliceous shales it is much lower: from +7 tо +25‰. The 
global trend of the heavy oxygen content to decrease over time is interpreted in 
different ways.

Weber (1965), who examined more than 600 samples of ancient and modern 
calcites and dolomites from various geographical regions of the world, reported that 
the gradual increase of the oxygen-18 content in younger carbonate rocks is the re-
sult of enrichment of the ocean water in heavy oxygen due to discharges of juvenile 
water during the growth of the ocean.

Silverman (1951) has reported that if the primary ocean was created by the emer-
gence of juvenile waters, its water should be enriched in oxygen-18 compared with 
modern ocean water. The result of the melting of rocks of the Earth’s deep interior 
and the degassing of water in equilibrium with large masses of the mantle silicates, 
should be enrichment in oxygen-18 by at least +7‰.

Craig (1963) has also considered that if primary oceans were formed due to 
emergency of the juvenile waters, then it should exhibit a relative δ18О content of 
about +7‰. The subsequent depletion of the ocean water in 18О could have occurred 
as a result of the accumulation of carbonate and silicate sedimentary rocks enriched 
in heavy oxygen compared with the original igneous rocks. Craig has assumed that 
the primary calcium carbonates and silicates precipitate from the solution with 
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relative 18О contents up to +30‰. The relative content of heavy oxygen in sedimen-
tary rocks decreases on average to +20‰ in the course of isotope exchange with 
fresh waters. Since the primary igneous waters had on average 18О content of about 
+10‰ before their destruction, then during the formation of sedimentary rocks a 
continuous depletion of the ocean in heavy oxygen should occur.

Migdisov et al. (1974) have pointed to the importance of such processes as the 
volcanic activity of the Earth in the evolution of the isotopic composition of the 
ocean. Such activity was accompanied by increases in the weathering of the igneous 
rocks and the sedimentation of the weathering products. In addition, the volcanic 
activity is accompanied by the emergency of juvenile water and СО2, leading to the 
enrichment of the ocean in 18О. A similar effect is produced during the process of 
the deep metamorphism of sedimentary rocks accompanied with the emergence, to 
the ocean, of water and СО2 enriched in heavy oxygen.

It should be pointed out that the volcanic activity, and related processes of rock 
sedimentation that may have taken place in certain geologic epochs, could not have 
markedly affected the 18О change in the ocean because of the great differences 
between the total masses of oxygen in the ocean water and in sedimentary rocks 
formed during volcanic activity. Savin and Epstein (1970) have evaluated the glo-
bal effect of the sedimentary process upon changes in the isotope composition of 
ocean water during the whole observed history of the Earth. They found that all 
the accumulated sedimentary rocks (pelagic sediments, carbonates, sandstones, and 
clays) could have resulted in the depletion of the hydrosphere in oxygen-18 by 3‰ 
and during the whole post-Precambrian period by only 0.6‰. As for deuterium, the 
ocean could have been enriched with it during the whole history in the course of 
sedimentation by less than 0.3‰, i.e. less than the errors in the measurements.

Considering the possible periodic changes in the isotopic composition of the 
ocean water, it should be noted that there are more effective processes than the sedi-
mentation of rocks during volcanic activities. Those include temperature variations 
on the Earth over time and the associated accumulation and melting of ice in glacial 
and non-glacial times. According to the data of Craig (1963), only in the Pleistocene 
have 18О variation in the ocean amounted to 1‰, and 7‰ for deuterium; in the ear-
lier epochs these variations could have been even greater.

The contribution of juvenile water to the oceans during volcanic activity has not 
as yet been confirmed experimentally. Some researchers (Arnason and Sigurgeirs-
son, 1967; Friedman, 1967; Kokubu et al., 1961), while studying the water isotope 
composition of volcanic lavas and gases, do not consider this water to be juvenile. 
Only Kokubu et al. (1961), analyzing liquid inclusions in samples of basalts in Ja-
pan, have concluded that they dealt with water of magmatic origin. Later, Craig 
showed that in terms of the hydrogen and oxygen isotope ratios this water lies on the 
curve for local atmospheric precipitation and, therefore, is of meteoric origin.

The deuterium content in waters of the volcanic lavas and gases varies over wide 
ranges. According to data obtained by Friedman (1967), who carried out investiga-
tions during volcanic eruptions on the Hawaii Islands in 1959–1960, the deuterium 
content in water of lava samples at the top of the volcano ranges from −55 to −79‰ 
and in samples taken from its slopes from −57 to −91‰.
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Arnason and Sigurgeirsson (1967) studied the isotopic composition of steam and 
gases in the eruption of one of the Iceland volcanoes during 3.5 years (1964–1967). 
Their data are close to those obtained by Friedman and indicate an average deute-
rium content of −55.3‰.

Sheppard and Epstein (1970), while studying the oldest (tо 1.14 billion years) 
samples of rocks and minerals (peridotite, olivine, dunite, mylonite, kimberlite, 
etc.), which, in their opinion, are representative of rocks of the upper mantle of 
the lower part of the Earth’s crust, found an average value of deuterium of −58 ± 
18‰. On the basis of the obtained data they concluded that the hydrogen isotope 
fractionation between phlogopites and water can amount to about 10‰ at 700°С. 
In view of this fact the 2Н/1Н ratio for juvenile water should be −48 ± 20‰ relative 
to the standard SMOW.

Craig and Lupton (1976) studied the hydrogen isotope composition of basalts 
sampled from the mid-oceanic ridges of the Atlantic and Pacific Oceans. It was 
found that the studied samples of deep water tollite exhibit δ2Н = −77‰. On the ba-
sis of analysis of the obtained data together with results of neon and helium isotope 
composition studies, the authors have concluded that the obtained δ2Н value may 
possibly reflect the juvenile hydrogen isotope composition.

A wide range in the deuterium content of terrestrial materials is found in various 
organic compounds (from −12‰ to −430‰). The corresponding range of oxygen-
18 concentrations is from +16‰ to −5‰. This can only be attributed to great ranges 
of hydrogen and oxygen isotope fractionation during the oxidation-reduction proc-
esses, leading to the formation and evolution of natural organic compounds (Schiegl 
and Vogel, 1970; Ester and Hoering, 1980).

It is worth noting that oil in deposits of different origin and age has a stable 
deuterium concentration of about −100‰ relative to the standard. The natural pho-
tosynthetic process, despite its importance in the geochemistry of the upper terres-
trial shells, could not have had a marked effect upon the evolution of hydrogen and 
oxygen isotopes in the hydrosphere. This is because the mass of organic substance 
accumulated during the Earth’s history is too small in comparison with the mass of 
the sedimentary rocks and especially with the water mass in the hydrosphere.

With regard to the deuterium and oxygen-18 concentration in different types of 
meteorites, there is a wide range of deuterium variation in carbonaceous chondrites. 
As investigations of the isotopic composition of water and organic compounds in 
carbonaceous chondrites have shown (Briggs, 1963), the upper limits for the deute-
rium content of these two compounds are very similar (+290 and +275‰), whereas 
lower limits are −154 and −15‰ respectively.

While studying the oxygen isotope ratios in minerals of stone meteorites (Taylor 
et al., 1965; Reuter et al., 1965; Vinogradov et al., 1960), like many common fea-
tures which make them similar to their terrestrial analogues, a number of peculiari-
ties have been found. The 18О content in the meteorite piroxenes varies from −0.5 
tо +8.6‰ depending upon meteorite type. In piroxenes of terrestrial igneous rocks 
the range is from +5.5 to +6.6‰. Olivine of carbonaceous chondrites exhibits con-
siderable 18О variations, being approximately 6‰ lower than those in olivine of 
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other stone meteorites. If the terrestrial basalts and gabbro are enriched in 18О as 
compared with the ultrabasic rocks, than the basaltic chondrites become depleted 
compared with the ultramafic chondrites.

An interesting interpretation of the data on oxygen isotope composition in differ-
ent types of meteorites has been given by Clayton  et al. (1976); Clayton and Mayeda 
(1978a, b). On the basis of the measured 18О/16О and 17О/16О isotope ratios and the 
construction of a diagram with δ18О–δ17О coordinates they have distinguished six 
types of meteoric substances. Each of these types, characterized by its own oxygen 
isotope composition, cannot be obtained from any other type by means of fractiona-
tion or differentiation of substance. These groups are: (1) the terrestrial group, con-
sisting of substances of the Earth, Moon, and enstatite ordinary chondrites; (2) the 
L and LL types of ordinary chondrites; (3) the H type of the ordinary chondrites; (4) 
the nonhydrated minerals of the C2 and C4 chondrites; (5) the hydrated minerals of 
the base of C2 chondrites; (6) urelites (Herndon and Suss, 1977).

The authors found that the substances of the solar nebulae from which the bod-
ies were formed were inhomogeneous in the oxygen isotope composition. They 
pointed out that, as a first approximation, a two-component model of this substance 
can be assumed. The portion of the substance whose oxygen isotope composition 
has been formed on the basis of mass fractionation effects provided by chemical 
reactions and diffusion processes, can be indicated on the δ18О–δ17О diagram by a 
straight line with a slope of 0.52. The other portion of the substance, like common 
oxygen, contains the component enriched in 16О and having independent origin. 
Figure 9.1 indicates on the three-isotope diagram δ18О–δ17О the distribution of the 
oxygen isotopes in various types of meteorites.

In their δ2Н and δ18О contents, meteorites in general are not—when considered 
as chemical complexes—identical with any type of terrestrial rock. At the same 
time, the range of isotopic ratios points to their close affinity with certain types of 

Fig. 9.1   Oxygen isotopic 
composition of various types 
of meteorites on the three-
isotope diagram: carbona-
ceous chondrites ( С1, С2, С3); 
ordinary chondrites ( HL); 
enstatites and autrites ( Е); 
eucrites, hovardites, diageni-
tes, mezosiderites, pallasites 
( AMP); nakhelites and lafay-
ettites ( NL); uraelites ( U); 
irons ( IAB, IIE); Bencubbin 
and Wetherford ( B); Eagle 
Station and Itzavisis ( ES); 
Moon ( M). (Clayton  and 
Mayeda, 1978a)
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rock. It is possible to say only that the conditions of the formation of meteorites 
were different from that of terrestrial rocks.

In connection with this question, there is natural interest in information on the 
isotopic composition of lunar material brought to Earth under the space programmes 
of the United States and the former Soviet Union. Published data on the isotopic 
composition of water in lunar dust and breccia from the Sea of Tranquillity (con-
centration of 81–810 ppm) and of hydrogen gas (concentration of 18–66 ppm) point 
to extremely low deuterium concentrations in these materials (Epstein and Taylor, 
1970; Friedman et al., 1970). However the deuterium content in such small sam-
ples varies over wide ranges (from −158‰ tо −870‰ for water and from −830‰ 
tо −970‰ for hydrogen gas). This clearly demonstrates the non-terrestrial origin 
of water and hydrogen gas on the lunar surface. Moreover, the wide fractionation 
range for hydrogen isotopes suggests that the lunar rock samples probably have dif-
ferent temperature history.

The published data (Epstein and Taylor, 1970; Onuma et al., 1970; Friedman 
et al., 1970) indicate a much narrower range of oxygen-18 concentration: from 
+19‰ to +14‰ for carbon dioxide and from +7.2‰ tо +2.8‰ for rock samples.

A very interesting oxygen isotopic composition pattern emerges from the analy-
sis of individual minerals in lunar rocks. The isotopic composition of the oxygen 
in individual minerals varies appreciably; this is also evidence of the complex tem-
perature history which these minerals experienced during formation of the corre-
sponding compounds. The latest data on deuterium and oxygen-18 in samples from 
the Sea of Storms (Epstein and Taylor, 1971; Onuma et al., 1970; Friedman et al., 
1971), presents another picture. While the oxygen isotopic composition lies within 
the same range (from +7.15‰ to +3.83‰), deuterium concentrations are much 
higher: in one of the crystalline samples a value of +283‰ was found (Friedman 
et al., 1971).

As to the problem of the existence of water in lunar rocks, there are conflicting 
opinions. Friedman et al. (1970; 1971) affirm that water is presented in the lunar 
rock samples. Epstein and Taylor (1970; 1971; 1972) consider that Friedman and 
co-workers found water which was brought back by astronauts or obtained dur-
ing transportation and processing of samples. Analyzing the lunar rock samples 
brought to the Earth by Apollo-14 and 15, Epstein and Taylor (1972) noted a rather 
great homogeneity of rocks on the whole in oxygen-18 (the observed changes range 
from +5.3‰ tо 6.62‰). The extracted amounts of water (about 10 mol/g) contain 
deuterium from −227‰ tо 419‰. The 18О/16О ratio in water range from −5.9‰ 
tо −18.2‰. The obtained values are rather close to the 18О content in atmospheric 
moisture in the region of Los Angeles, where analyses have been carried out. This 
circumstance allowed Epstein and Taylor to conclude that the studied samples could 
have been contaminated with local moisture. The deuterium content in the gaseous 
hydrogen, as earlier, was low (about molecules per million), so that the 2Н/1Н ratios 
ranged from −250 tо −902‰.

When we analyze the isotopic composition of water in various terrestrial and 
cosmic materials, the following observations are particularly striking:
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1.	 Despite the very wide range of deuterium and oxygen-18 concentrations in vari-
ous materials, the isotopic composition of ocean water remains constant over a 
long period of geologic time.

2.	 The concentration of deuterium in all terrestrial and cosmic materials tends fairly 
consistently towards depletion as compared with ocean water, reaching, in the 
gas phase of molecular hydrogen, values characteristic for the Sun’s atmosphere 
(see Table 9.2). The only exceptions are carbonaceous chondrites and lunar rocks, 
where the water and molecular hydrogen present are sometimes enriched in deu-
terium. This may be due to secondary temperature phenomena which occurred 
during their formation and the subsequent appearance of compounds of more 
complex chemical composition.

3.	 The hypothesis that the present oceans were formed by the gradual emergence 
at the Earth’s surface of juvenile waters from the depths of the Earth is not con-
firmed by evidence.

4.	 Underground waters are enriched in 18О relative to rocks and minerals.
5.	 On the whole the hydrosphere is enriched in deuterium and depleted in oxygen-

18 relative to rocks and minerals.
6.	 Meteorites and lunar rock samples differ in hydrogen isotope composition from 

terrestrial materials. At the same time the ranges of the oxygen-18 isotope vari-
ation in lunar rock samples are close to those in terrestrial rocks of similar min-
eralogical composition. All these facts point to a common material from which 
the Earth, Moon, and meteorites were formed, but this formation occurred at 
different temperature conditions and under different sequences of processes 
accompanying the formation over time and space. It has been noted that water 
is contained in extremely small amounts in lunar rocks and some researchers 
consider its presence to be doubtful.

How do the facts established above tally with current ideas about the origin of the 
Earth’s hydrosphere (and especially the oceans) following from the ‘cold’ and ‘hot’ 
creation hypotheses concerning the Earth’s origin?

According to the accretion hypothesis, the hydrosphere was formed through the 
emergence at the Earth’s surface of its light components in the course of global and 
local melting of the initial cold homogeneous body. If that were true, the ocean 
should have a relative 18О content up to +7‰, corresponding to the oxygen isotope 
ratio in basalts. The deuterium content in water of the initial oceans should have 
been about −80‰, estimated by the igneous rocks (Craig, 1963), about −60‰, esti-
mated by the volcanic steam and gas (Arnason and Sigurgeirsson, 1967; Friedman, 
1967), and −48 ± 20‰, using ancient rocks of the upper mantle (Sheppard and 
Epstein, 1970).

As one can see, the present ocean is enriched in deuterium and depleted in oxy-
gen-18 compared with the probable initial ocean.

Among the known processes which can result in the enrichment in deuterium of 
the initial ocean, the process of the dissipation of free hydrogen from the Earth’s 
gravitational field during which protium escapes preferentially is usually invoked. 
In fact, within a sufficient degree of accuracy one can consider that the ratio of the 
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escape velocities of 1H2 and 1H2H molecules is proportional to (M1
H

2
H/M1

H
1
H)1/2 = 

1.22. This value can be taken as the fractionation factor of hydrogen isotopes analo-
gous to the fractionation factor in diffusion processes. In this case one can easily es-
timate that the enrichment of the ocean in the deuterium by 20‰ due to preferential 
losses of protium can be attained only by a decrease of the ocean mass by 11%. If 
free hydrogen is formed in the upper atmospheric layers during photodissociation of 
water molecules, then a reduction of the ocean by 11% (at its mass of 1.4 × 1021 kg) 
should result in the release into the upper atmosphere of 1.25 × 1020 kg of free oxy-
gen. When the deuterium concentration in the juvenile water is lower than −20‰ 
(i.e. −48‰ according to Epstein and Taylor and −80‰ according to Craig), the 
amount of free oxygen in the atmosphere must increase proportionally. Taking into 
account the portion of oxygen which has been expended on oxidation of the igne-
ous rocks (about 2.8 × 1018 kg) (Goldschmidt, 1954) and was buried together with 
ancient organic material (about 1016 kg) then one must conclude that even in this 
case a large amount of free oxygen could have accumulated in the atmosphere, 
exceeding its modern content in the atmosphere by more than two orders of magni-
tude. This is not what one finds in practice, and the free oxygen has been commonly 
assumed to be formed due to photosynthetic processes in the biosphere.

Easy theoretical estimations show that the possible losses of protium during the 
hydrogen escape from the Earth’s gravitational field are rather low. Therefore, there 
is no reason to consider that the required enrichment of the ocean in the deuterium 
by 50–80‰ due to the dissipation of protium has taken place. Earlier we considered 
the possible ranges of enrichment of the ocean in deuterium due to sedimentation 
of the decomposed igneous rocks. This effect can be considered as insignificant, re-
sulting in changes of about 0.3‰. Since there are no other processes known which 
lead to the enrichment of the hydrosphere in deuterium, such a phenomenon is 
doubtful.

Let us consider now ways of depletion of the initial oceans in oxygen-18. The 
most effective depletion process is the sedimentation of rocks. Despite the possible 
errors in the estimation of initial amounts of various types of sedimentary rocks 
required for calculations (these values differ markedly in works of various authors), 
the final effect of sedimentation of rocks estimated by Savin and Epstein (1970), 
yielding 3‰ at least, has not been reduced. In this case, when the oxygen of carbon 
dioxide is in isotope equilibrium with rocks during its degassing, the ocean could 
have become only partly depleted in oxygen-18.

Moreover, we must assume that the enrichment of acid rocks in heavy oxygen 
has taken place due to the water of the hydrosphere since one can hardly suggest 
any other source of available heavy oxygen. Assuming that the average δ18О value 
in granites is +10‰, the ocean’s juvenile water should have it to +20‰. In the case 
of the degassing origin of the hydrosphere this last δ18О value seems very improb-
able.

There have been attempts to resolve the above-mentioned concentrations con-
cerning the oxygen isotope composition with the help of the appropriate model of 
growth and change of the ocean isotopic composition with time. For example, it 
has been suggested (Chase and Perry, 1972; Ahmad  and Perry, 1980) to use the 
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model of recirculation through the mantle of the ocean water depleted in heavy 
oxygen, where it should become enriched in 18О. But such a model has difficulty 
in explaining the physical reasons behind such a process occurring in nature. This 
model also contradicts facts already mentioned, which are evidence of the very 
early stage of ocean formation and the constancy of its chemical and isotopic com-
position over long geologic time. On the other hand, the model has been suggested 
to account for the low δ2Н values in mantle and igneous rocks (Taylor, 1978) for 
the modern ideas of plate tectonics and the spreading of the ocean floor. It is known 
that the hydroxyl-bearing minerals of the authigenic sea sediments have δ2Н values 
close (~−60‰) to those of magmatic rocks. Assuming that the sea sediments are 
continuously contributing to the mantle through subduction zones, the process can 
be accepted as the mechanism of injection of light hydrogen into mantle rocks. 
But in this case the same process should be accompanied by the removal of heavy 
oxygen from the ocean and the enrichment in heavy oxygen of the igneous rocks 
contained in the same sea sediments. New difficulties arise at this point.

Thus, the observed facts of the isotopic composition of water in the oceans and 
in underground rocks contradict the ‘cold’ origin hypothesis.

These same facts lead to the conclusion that juvenile water (i.e. water formed in 
the deep layers of the Earth and in its upper and lower mantle, which emerges at 
the surface) does not, and never did, exist on our planet and that the hydrosphere 
resulted from an atmophile process. Such a process follows from the ‘hot’ model of 
origin considered by, for example, Goldschmidt (1954).

If one assumes that during the first stage of the Earth’s geochemical differentia-
tion water remained in the gas phase and did not escape, and that there was no free 
oxygen, then the isotopic composition of the hydrogen and oxygen in the water 
falling on to the Earth’s surface might well have corresponded to the concentrations 
now found in the ocean water. But the ‘hot’ hypothesis of origin of the Earth has 
been subjected, as already indicated, to justified criticism. Therefore, one should 
look for a mechanism of the Earth’s formation that can satisfy the conditions of for-
mation of the isotopic composition of the hydrosphere, following the ‘hot’ hypoth-
esis. Such a mechanism should be in agreement with the geochemical conditions 
which were formulated, for example, by Urey (1957) and are best fitted to the ‘cold’ 
hypothesis of the Earth’s origin.

9.3  �Evidence from Carbon and Sulfur Isotopes

Carbon and sulfur form a number of mobile compounds in nature (СО, СО2, CO2−
3 ,  

SO2, SO2−
4 , SO3, H2S etc.), which take part in the intensive cycling of the matter in 

the geosphere in close relationship with water of the hydrosphere. The study of the 
principles of the distribution of carbon and sulfur isotopes provides important data 
concerning the origin and sequence of evolution of the hydrosphere and the Earth 
itself.

9.3 Evidence from Carbon and Sulfur Isotopes
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Carbon isotopes.  Solar carbon, according to the observational data available, is 
enriched in the light isotope. Some authors (Reghini, 1963) have considered the 
degree of enrichment to be rather great (13С/12С ≈ 10−5), others (Burnett et al., 1965) 
consider it to be more moderate (13С/12С ≈ 10−2).

Meteorites remained up to recent time the most easily available medium for 
studying carbon cosmic material. Comparing the δ13С values obtained for iron, 
iron-stone and stone meteorites, it has been found that they range from −5 tо −30‰ 
with the average value of −22‰ (relative to the PDB-1 standard). Carbon is com-
monly contained in insignificant amounts (hundredth %) and is present in a dis-
persed state. In the Canion Diablo iron meteorite, carbon has been found in the form 
of a graphite inclusion in troilite with δ13С = −6.3‰ and carbon of the carbide iron 
with δ13С = −17.9‰ (Craig, 1953). The graphite of Yardimlinsky’s iron meteorite 
has δ13С = −5‰ (Vinogradov et al., 1967). Generalizing the carbon isotope data in 
iron meteorites (Deines  and Wickman, 1975), it has been found that the observed 
depletion of taenite in heavy isotopes ( δ13С = −18.5‰) compared with graphite 
( δ13С = −5.5‰) is common.

In view of the fact that the chondritic model of the Earth’s origin is widespread, 
knowledge of the isotope composition of carbon and chemical forms of its occur-
rence in the most widespread type of meteorites, chondrites, is of particular interest. 
Carbon has been found in chondrites in the form of graphite, carbonate, carbide, 
diamond, and organic compounds. Ordinary chondrites have a light isotope com-
position of carbon with an average value δ13С = −24‰. The carbon content itself 
amounts to only 0.1–0.01% (Hayes, 1967).

Carbonaceous chondrites have been studied by Boato (1954), who reported that 
they can be divided into two types according to the gross content of carbon and 
water in them. In the first type the content of carbon ranges from 1.6 tо 3.3% 
and δ13С from −3‰ tо −12‰, in the second type δ13С varies from −13 tо −18‰ 
with a carbon content ranging from 0.3 tо 0.85%. In these meteorites the average 
δ13С = −7‰.

Thus, on the whole the following general principle is observed in meteorites: 
the lighter isotope composition of carbon is observed in those meteorites where its 
gross content is lower. Boato has suggested that an initial undifferentiated substance 
of the solar system is represented by the carbonaceous chondrites of the first type. In 
his opinion, the observed correlation between the isotope composition and the gross 
amount of carbon is a likely indicator of the preferential escape of 13С in the process 
of depletion of the initial material in volatile elements.

Other viewpoints concerning the origin of the heavy isotope composition of car-
bonaceous chondrites were proposed. For example, Galimov (1968) has reported 
that the enrichment of the carbon of carbonaceous chondrites in heavy isotopes can 
be accounted for by the excessive yield of 13С in nucleosynthesis by reaction 16О( n, 
4He)13C in the course of the formation of carbonaceous chondrites in a medium 
with a high oxygen content. Therefore, the isotope composition of carbon in the 
meteorites and 13С cosmogenic variations in the primeval carbon, were conditioned 
by the nucleosynthesis of the carbon isotopes before formation of the solar system 
and nuclear reactions proceeding on high-energy particles in the pre-planet material 
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during the early stage of evolution of the solar system. Later only redistribution  
occurred in various geospheres of the isotope concentrations inherited from the 
initial course.

According to Epstein and Taylor (1972), the range of δ13С variations in the lunar 
rock samples is wide (from −20‰ tо −30‰). It has been found that, as well as in 
the case of carbonaceous chondrites, the degree by which the samples are enriched 
in heavy carbon is dependent on the content of carbon itself. In the lunar basalts 
the δ13С values range between −30‰ and −18.6‰ and in the fine-grained soils 
and breccia the δ13С values are greater than −3.6‰. It is of interest to note that in 
lunar samples no carbon with δ13С within the range from −3.6‰ to −18.6‰ has 
been found. At the same time, as pointed out earlier, the average value of the carbon 
content in chondrites is within this range. In order to explain the observed enrich-
ment of soil and breccia with heavy carbon a number of hypotheses were suggested 
concerning the effect of solar wind and meteorites upon the surface of the Moon. It 
is assumed that the relative content of heavy carbon in the solar wind ranges from 
−10‰ to +10‰ (Galimov, 1968).

Comparing experimental data on the isotope ratios of carbon in meteorites and 
in the Moon it has been found that their isotope ratios are markedly different. This 
difference, as a rule, depends upon the gross content of carbon and its chemical 
form in the subject. Therefore, it follows that the determination of genetic relation-
ships while studying the questions of the origin of cosmic bodies cannot be carried 
out without account being made of the isotope data. For example, since the isotope 
composition of carbon in lunar rock differs from that in chondrites, the chondritic 
model of the moon cannot be true.

Let us consider now the principles governing the carbon isotope composition in 
the main reservoirs of the Earth and the main mechanisms of the fractionation of 
carbon isotopes in nature (Table 9.3).

It is known that atmospheric CO2, together with radioactive carbon dioxide, 
constitute an indivisible exchangeable system. The partial pressure of CO2 in the 
atmosphere corresponds to the equilibrium state of this system. On the other hand, 
the atmospheric CO2 is a source of carbon in biochemical systems. After the death 
of an organism some portion of it returns to the atmosphere and another portion is 
transformed in the hydrocarbon-bearing sediments and minerals. Thus, atmospheric 
carbon dioxide represents the common chain of organic and inorganic cycling of 
carbon on the Earth. The most important process of fractionation of carbon in nature 
corresponds to these two chains of the carbon cycle on the Earth. Biological frac-
tionation results in a considerable enrichment of organic sediments in light isotopes 
of carbon system compared with atmospheric carbon dioxide. Fractionation in the 
atmosphere-hydrosphere leads to enrichment of the carbonate-ion heavy isotopes 
of carbon.

On the whole the relative content of 13C in the atmosphere is −7‰ and sea air is 
subjected to smaller variations of δ13C compared with land air. Daily, yearly, and 
other cycles of variations of the isotopic composition are observed, which correlate 
with the process of photosynthetic activity of the organisms. The average isotope 
composition of land carbon is characterized by δ13C = −10‰ (Galimov, 1968). 
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Isotope fractionation results in variations of the carbon isotopes in living material 
from −7‰ to −32‰ depending on the ecological system and photosynthetic type. 
On average this value is −25‰ for inland plants with a Calvin photosynthetic cycle 
(Park and Epstein, 1960).

The process of carbon isotope fractionation in the atmosphere-ocean system re-
sults in enrichment of the seawater bicarbonate up to the average value of δ13С = 
−2‰. Here the value lies within narrow ranges from −1.3‰ to −2.9‰ which can 
be accounted for by a high rate of exchange of atmospheric carbon dioxide with the 
ocean. Variations of heavy carbon in the sea’s sedimentary rocks (limestones) range 
from +6‰ to −9‰. But 70–80% of all the carbonates have values ranging from +2 
to −2‰ with an average value close to zero. Note that theoretical ideas concerning 
the above-mentioned process of carbon isotope fractionation in nature do not con-
tradict the experimental data (Galimov, 1968; Epstein, 1969).

Fractionation of carbon isotopes is also observed in the course of decomposition 
of organic material. Attempts were undertaken to study the variations of the carbon 
isotope composition in the vertical section of bottom sediments with a simultaneous 
determination of their age by the radiocarbon method. It was found that the organic 

Table 9.3   Stable carbon isotope variations relative to the pdb-1 standard in natural objects (Craig, 
1953; Galimov, 1968)
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material in sediments is enriched in light isotopes of carbon compared with living 
organisms (Eckelmann  et al., 1962). The accumulation of 12С increases from young 
to old ooze layers. It is assumed that enrichment in the light carbon isotope occurs 
as a result of the presence of a greater amount of the heavy isotope in carboxyl 
groups of aminoacids, which are less stable and more subject to decomposition, or 
due to the preservation of the lipid fractions, which contain an excessive amount of 
light carbon isotopes (Epstein, 1969).

Besides the above-mentioned carbon isotope fractionation process there are 
also some other mechanisms of its fractionation in nature, including some high-
temperature processes. These mechanisms only have regional importance. Among 
these processes we shall note only the Fisher-Tropsh reaction (Lancet and Anders, 
1970), which is as follows:

Both oxidized and reduced products are formed by this reaction. The major por-
tion of the oxygen contained in CO is transformed into H2O and a small proportion 
(several tenths of a percent) into CO2. Among the reduced products, methane is 
predominant. The content of hydrocarbons that are volatile at 400°C amounts to 
~30% to the end of the reaction. About 1.5% of the polymerized organic compounds 
remain on the catalyst at this temperature.

The carbon dioxide formed in the Fisher-Tropsh process is enriched in 13C by 
about 30% relative to the initial carbon present in CO. The carbon present in the 
fraction which is volatile at temperature <400°C becomes enriched in the light iso-
tope by approximately 20‰, whereas the high-molecular product remaining on the 
catalyst exhibits even more enrichment in the light isotope relative to the initial CO 
(~33‰). At the beginning of the reaction the carbon of the methane fraction exhib-
its maximum enrichment in the light isotope. At this moment the enrichment of CO2 
relative to CH4 reaches ~100‰ and the enrichment of CO relative to CH4 reaches 
~60‰. During the course of the reaction methane becomes depleted in the light 
isotope so that, in the later stages, its isotope composition becomes approximately 
equal to that of the initial CO.

The Fisher-Tropsh process is usually considered as the most probable model 
of the abiogenic synthesis of organic compounds in nature. It is assumed that this 
process causes the formation of organic compounds, for example, in the carbona-
ceous chondrites (Lancet and Anders, 1970). It is thought by some researchers that 
the hydrocarbons and bitumens of igneous rocks are formed by the Fisher-Tropsh 
reaction (Galimov, 1973).

Within the scope of questions about the Earth’s origin and its hydrosphere for-
mation, estimation of the average value of the relative content of heavy carbon 
in the terrestrial crust as a whole, and the comparison of this value with δ13С val-
ue of the other Earth’s shells and meteorites, is of importance. This estimation is 
based on the knowledge of the amount of carbon and its isotope composition in the 
Earth’s major reservoirs.

nCO+ (2n+ 1)H2 → CnH2n+2 + nH2O,

2nCO+ (n+ 1)H2 → CnH2n+2 + nCO2.

9.3 Evidence from Carbon and Sulfur Isotopes
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According to the data of Craig (1953) the δ13С value in the Earth’s crust ranges 
from −7‰ to −15.6‰ with an average of −12‰. Galimov (1968) has determined at 
range of variations of this value between −3‰ and −8‰ with an average value of 
−5‰. Epstein  (1969), using data of the carbon content in sedimentary rocks, which 
are representative of the main reservoirs of carbon in the upper sphere of the Earth 
(73%, δ13С = 0), and data on the carbon content in shales, representing a second 
considerable reservoir of carbon (26%, δ13С = −27‰), has found that in the Earth’s 
crust the average value of δ13С = −7‰.

Thus, despite some differences in estimation of the average δ13С value, obtained 
by different authors for the Earth’s crust, all agree that the Earth’s crust is enriched 
in the heavy carbon isotope compared with meteorite and solar material.

As pointed out earlier, the isotope fractionation is reduced or even absent at high- 
temperature processes. Assuming the chondrite model of the Earth’s origin, and that 
carbon has appeared in its upper sphere along with other volatile components, due 
to degassing from its interior during geologic time, a light isotope composition of 
carbon in terrestrial crust should be expected. But in fact the opposite phenomenon 
is observed.

In the framework of the degassing hypothesis there is an idea that the type of 
material of carbonaceous chondrites, whose isotope composition is similar to that of 
the Earth’s crust, has played an important role in the formation of the isotope com-
position of the Earth’s crust (Galimov, 1973). But it is difficult to find the sources 
through which the emergence of this substance to the surface occurred.

In discussing the principles of hydrogen and oxygen isotope distribution, we 
have already pointed out that the existing opinion of the emergence of juvenile 
material through hydrotherms appears to be incorrect. Although it is impossible to 
pinpoint the sources of the emergence of mantle carbon at present, one can assume 
that they existed in the past.

The carbon isotope composition of sedimentary carbonates is known to be a 
sensitive indicator of the general geologic paleo-situation. If, during the Earth’s 
history, there were periods in which a considerable emergence of the mantle carbon 
dioxide occurred, then it should have been reflected in the isotope composition 
of the sedimentary carbonates. It was concluded earlier, on the basis of data on 
the heavy carbon content in limestones, that their isotope composition bears no 
relation to geologic age (Craig, 1953). Galimov (1968), generalizing the available 
data on the isotope composition of sea and fresh water limestones, has come to the 
conclusion that carbonates were extremely enriched in the light isotope of carbon 
during two periods, the Carboniferous and Tertiary. He pointed out the synchronous 
limestone isotope changes with the amount of organic substance on the globe dur-
ing these times. Galimov suggested that the enrichment of limestones in the light 
isotope can be accounted for by the intensive contribution of carbon dioxide in the 
Hercynian and Alpine orogenies. The enrichment of limestones in the heavy carbon 
isotope in subsequent epochs occurred due to the withdrawal of the light isotope 
during the plant’s intensive photosynthetic activity and the burial in sediments of 
considerable amounts of the light carbon. But this interpretation is disputable. As 
Schell  et al. (1967) have reported, the increase in temperature of the world oceans 
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results in a shift of equilibrium in the carbonate-calcium system in such a way that 
this, in turn, leads to the more active process of photosynthesis in plants. As a result 
the sea and fresh water limestones become enriched in the light carbon isotopes. 
The decrease of temperature of the world oceans in subsequent time should result 
in opposite effects.

The problem of carbon origin in the upper shell of the Earth requires further 
investigation. But on the basis of the data available at present there are reasons to 
assume that neither now, nor in the past, has there been any considerable emergence 
of the mantle carbon to the surface through degassing.

In this connection it is of interest to note that some authors (Epstein, 1969) have 
attempted to consider various alternatives of the possible existence of the primary 
form of main reservoirs of carbon on the Earth in the past. One can assume, for 
example, that at a certain stage in the Earth’s early history the main reservoirs of 
carbon contained carbonate rocks with δ13С = −7‰. If the carbon isotope fractiona-
tion effects between the main reservoirs have remained unchanged up to the present 
time, then the atmospheric carbon dioxide exhibits δ13С = −14‰ and the organic 
material δ13С = −34‰. On the other hand, if the major portion of the carbon was 
represented by the organic substance with δ13С = −7‰, then the atmospheric car-
bon dioxide had δ13С = +13‰ and carbon of the carbonate rocks must had δ13С = 
+20‰.

Sulfur isotopes.  The available data on the sulfur isotope composition of iron, iron-
stone, and stone meteorites indicate that the 34S/32S ratio, characteristic of cosmic 
bodies, is approximately constant (Ault and Kulp, 1959). Different δ34S values were 
discovered in the Orgueil carbonaceous chondrite for individual chemical compo-
nents of sulfur (for the elementary, troilite and sulfate forms). For the meteorite as 
a whole the δ34S value relative to the troilite standard of the iron meteorite from the 
Canyon Diablo appear to be zero (Monster et al., 1965).

Analyzing the sulfur isotope composition of lunar rock samples, it has been 
found (Kaplan and Smith, 1970) that δ34S in the dust ranges from +4.4‰ to +8.2‰. 
In breccias this value has been found to vary from +3.3‰ to +3.6‰ and in fine-
grained soil from +1.2‰ to +1.3‰. The relatively high δ34S content in the dust has 
been accounted for by the vaporization of the sulfur light isotope by bombardment 
of the Moon’s surface with micrometeorites and protons of the Solar wind.

The main geochemical cycle of sulfur on the Earth is related to existence of the 
oceans. Despite the continuous process of sulfur contribution to the ocean together 
with river runoff, its concentration and isotope composition remains constant in 
the ocean due to sulfate reduction. During the cycle the relatively light continental 
sulfate with δ34S = +5‰ becomes enriched up to the oceanic average value of δ34S 
= +20‰ and the excess of the isotope is bonded in diagenetic sulfides.

The isotope composition of sulfur in oceanic sulfate is a sensitive indicator of its 
dynamic equilibrium in the cycle and the constancy of ocean salt composition on 
the whole. This equilibrium is determined by the rate of biogenic sulfate reduction 
and therefore by the total amount of biomass on the Earth. On the other hand, the 
content of sulfur in the oceans is closely related to its total salinity.
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Wide studies concerning the sulfur isotope composition of evaporates of differ-
ent ages have been undertaken, aimed at elucidation of the biochemical history of 
the oceans.

While studying sulfates in the Phanerozoic evaporates, it has been shown (Ault 
and Kulp, 1959; Vinogradov, 1980) that the sulfur isotope composition has no time-
ordered changes. There occur only slight variations of the δ34S values from the 
average value corresponding to the sulfur isotope composition of the present ocean 
(+20‰). The only exceptions are the Permian evaporates, which always exhibit 
depletion down to the value of δ34S = +10‰. Vinogradov (1980) has explained 
this phenomenon in terms of paleogeographical peculiarities in the accumulation of 
Permian evaporates. These peculiarities consisted, in his opinion, in an increase in 
the role of the inland sulfates component in the recharge of salt basins in the transi-
tion from the sulfate to the haloid accumulation of salts. On the whole, the isotope 
composition of sulfur in sulfates in ancient evaporates during the whole Phanero-
zoic period has remained constant, and close to the modern composition of the 
oceans. This circumstance is evidence in favor of the constancy of the ocean’s sa-
linity, amount of the biomass, and concentration of oxygen on the Earth during the 
whole Phanerozoic period.

While studying the Precambrian metamorphic rocks from East Siberia, the 
Pamirs, and South Africa, which exhibit salt-forming features by a number of min-
erals (skapolite, apatite, lasurite, carbonatites), it has been found (Vinogradov  et al., 
1960; Vinogradov, 1975) that these rocks contain relatively high concentrations 
of sulfide, sulfate, and native sulfur. The isotope composition of sulfur in sulfate 
of the metasomatic minerals is characterized by high enrichment in the heavy iso-
tope (from +13‰ to +45‰) and the identical content of δ34S relative to sulfates 
and sulfides of the sulfur-bearing carbonate rocks. On this basis the authors have 
come to a reasonable conclusion regarding the sedimentary origin of the initial 
sulfates. These sulfates were accumulated at the steady dynamic cycle of sulfur 
and served as the initial source of sulfides. In the metasamotic minerals of the 
Archean carbonabe rocks in Aldan (East Siberia) and rocks of the Swaziland sys-
tem (South Africa) up to 3.5 × 109 years old, widely developed regional scale sul-
fates of sedimentary origin were found, with δ34S = +6‰, which are not typical 
for sedimentary sulfates. On the basis of experimental data analysis, it has been 
found that the sources of sulfur, participating in the metasomatism and metamor-
phism processes, were the metamorphic sedimentary thicknesses containing sulfur 
in the form of sedimentary sulfide. From the existence in the section of sedimentary 
rocks of layers of dolomites enriched in sulfate-sulfur, it has been concluded that 
the process of the sedimentation of sulfates has taken place in the normal facial 
conditions in the course of the salinization of the sea basin. But the sulfur cycle 
in the basin has not attained dynamic equilibrium and the sulfate-sulfur in a basin 
has not yet been enriched in the heavy isotope. But in individual sites of a basin 
such enrichment of the sulfate-sulfur of metasomatic minerals has occurred and 
the δ34S = +20‰ has been found there. This has led the above authors to conclude 
that the establishment of the dynamic equilibrium of the sulfur cycle, at a level 
which approximates the modern one, coincides with the age of the studied rocks, 
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i.e. occurred about (3–3.5) × 109 years ago. On this basis Vinogradov (1980) has 
concluded that the emergence of the main mass of sulfur from the interior to the 
upper shell of the Earth, and also the formation of the oxygen composition of the 
atmosphere and the salinity of the ocean, which approximates the modern levels, 
ended not later than 3.5 × 109 years ago.

Let us consider now the comparative analysis of the sulfur isotope composi-
tion of the upper shell of the Earth. The balance estimations show (Grinenko and 
Grinenko, 1974) that the major sulfur reservoir in the Earth’s crust is the platform 
sedimentary thickness of the continents, characterized by an average value of δ34S 
of about +4‰. In the geosynclinal areas containing up to 30% sulfur the value of 
δ34S is close to zero. The ocean water contains15% sulfur in the form of dissolved 
sulfates, enriched in the heavy isotope up to +20‰. The sulfur of the ocean sedi-
ments, amounting to about 10% of that in the sedimentary thickness, exhibits δ34S = 
+7.7‰. The average δ34S value in the abyssal clays, limestone, and siliceous sedi-
ments is equal to +17‰. The ultramafic oceanic and inland rocks are characterized 
by an average value of δ34S = +1.2‰. For basic rocks this value is +2.7‰ and for 
acid rocks it is equal to +5.1‰. Therefore, the outer sphere of the Earth together 
with the ocean is enriched in 34S by 5.5‰ and the terrestrial crust on the whole by 
3‰ relative to meteorite material. It is of note that as one moves from the basaltic 
sphere towards the granite sphere and farther to the sedimentary continental layers 
and the oceans, the amount of sulfur increases with a simultaneous enrichment in 
the heavy isotope. Some researches (Grinenko and Grinenko, 1974) have assumed 
that such global processes as degassing of the mantle, crystalline differentiation, 
and metamorphism of rocks have the same effect. This effect manifests itself as 
increases in the amount of sulfur in sedimentary rocks from the Archean to the Pro-
terozoic, Phanerozoic, and Cenozoic with simultaneous increases of sulfate-sulfur 
enrichment in 34S.

It should be pointed out that such an approach to the observed global principle of 
increases in the amount of sulfur with enrichment in 34S from the ultramafic rocks 
to the acid ones and to the oceans contradicts the evidence given above in favor 
of the constancy of the salt and isotope composition of the oceans during the last 
(3–3.5) × 109 years. On the other hand the above-mentioned principle including the 
relationship between the gross content of the element with its isotopic composi-
tion is typical for the other elements stated: oxygen, carbon, and hydrogen. For all 
these elements we have observed enrichment in heavy isotopes while moving from 
ultramafic rocks to acid rocks and to the ocean. The only exception is the oxygen 
isotopic composition of the ocean. In order to explain this general principle, while 
considering the isotopic composition of different elements, different researchers 
employ assumptions which are often contradictory when compared. In addition to 
the above-mentioned principles of the distribution of the isotopes of the volatile 
elements Н, О, С, S already considered, one should bear in mind one more cos-
mochemical principle. This principle states that the Earth’s crust is, in general, en-
riched in the heavy isotopes of these elements relative to meteorite substance. The 
available experimental data on boron isotope distribution, despite being limited, 
shows that for isotopes of this element the above-mentioned principle also holds.
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It should be pointed out that the data on the isotope distribution of noble gases 
(Не, Ne, Ar, Kr, Xe) in the upper sphere of the Earth and in meteorite substances 
indicate the applicability of the above principle to this group of elements also.

The observed regularities of the distribution of volatile elements in the upper ter-
restrial sphere, meteorite, and lunar material, and also the results of cosmochemical 
and cosmophysical studies obtained during recent years, suggest the importance 
of the processes of chemical differentiation of substance which took place at the 
pre-planetary stage of evolution of the planets. In this case the idea of chemical 
and isotope homogeneity of the forming planet material is doubtful. In this connec-
tion, let us consider in brief the cosmochemical results which have been obtained 
in recent years by studying meteorites, the Moon, and other planets. They have a 
direct bearing on the problem of the origin of the Earth and its shells including the 
hydrosphere and the atmosphere.

9.4  �Chemical Differentiation of Proto-planetary Substance

The fact that the average density of the material of planets decreases with increasing 
distance from the Sun is of importance and was noted in the early hypotheses con-
cerning the origin of planets in the solar system. On the basis of experimental and 
theoretical data it has been found that there is a sharp difference in the mass density 
at the transition from the planets of the terrestrial group to the major planets of the 
Jupiter group. The major planets were formed of low-temperature volatile elements 
and compounds, mainly of hydrogen, helium, methane, and ammonium. The plan-
ets of the terrestrial group, previously thought to be formed mainly of silicates and 
iron, exhibit decreases in iron with increasing distance from the Sun.

It has also been found that the comets moving around the Sun in eccentric orbits 
are constituted of light elements and compounds.

By studying different types of meteorites it has been found that they differ sharp-
ly in their chemical composition and, for some elements, difference in isotope ratios 
is observed.

All these facts indicate that during the formation of the planets of the solar sys-
tem, processes occurred which resulted in the chemical differentiation of their mate-
rial. The elucidation of the mechanism of these processes, together with that mecha-
nism which has caused the observed principles of their motion, is one of the main 
problems which must be solved in the development of cosmogonic theories. The 
solution of this problem is closely related to the problem of the origin of the Earth 
and of the formation of planet shells.

Urey was one of the first researchers to point out the necessity of taking into 
account the observed geochemical and cosmochemical facts in developing geo-
chemical and cosmochemical theories concerning the origin of the solar system. 
He formulated the boundary conditions (Urey, 1957), which have formed the ba-
sis of the chemical differentiation of initial material in the course of formation of 
meteorites and planets of the terrestrial group and had a great effect on the course of 

9 Observable Facts Related to Creation and Evolution of the Earth



265

the development of studies in cosmogony. In this respect Urey’s conclusion that the 
initial protoplanetary material underwent a high-temperature stage during its evolu-
tion when its temperature could have attained 2000°C, i.e. the temperature when the 
initial substances were in gaseous state, was of greatest importance.

Recent studies concerning the composition and structure of meteorites have con-
firmed this conclusion and shown that in the course of the evolution of the proto-
planetary material, processes leading to its temperature condensation took place, 
i.e. processes leading to the transition of the substance from gaseous to liquid and 
solid phases. These cosmochemical conclusions have had an effect upon theoretical 
studies concerning development of the general cosmogonical hypotheses, in which 
attempts were made to determine, from the physical view-point, the probability of 
the occurrence of a high-temperature stage in the initial cloud (Cameron and Pine, 
1973; Cameron, 1973).

Let us consider now under which conditions and in what sequence the process 
of condensation of chemical elements and their compounds should have proceeded 
during evolution of the gaseous cloud, if this process took place at all.

The question of the chemical condensation of elements and their compounds 
from gaseous material was studied earlier by Urey  (1959), Wood (1963), Ringwood 
(1966; 1979), Lord (1965), Anders (1972) and others. They were mainly trying to 
find an explanation for the observed picture of the depletion of the planets and dif-
ferent types of meteorites with volatile elements. On the basis of their studies it was 
found that, in different types of meteorites, certain principles are observed regard-
ing the content of the high-temperature nonvolatile and low-temperature volatile 
fraction of the condensed material. At the same time, while explaining the chemical 
composition of meteorites on the basis of the obtained calculations, they met dif-
ficulties concerning the unsteadiness of the degree of depletion of different types of 
meteorites by different types of volatile elements.

For estimating the condensation temperatures of elements, Larimer (1967) has 
employed the common equations of thermodynamics of ideal gases and the data 
on the elements’ cosmic abundances which were obtained earlier by Cameron. For 
the starting point of gas condensation, Latimer has assumed that when attaining 
corresponding thermodynamic conditions in the gaseous cloud, the gas pressure of 
an element of natural abundance attains the corresponding partial pressure. Estima-
tions were carried out at equilibrium conditions of condensation on the assumption 
that the process proceeded in hydrogen gas and the condensing elements were in 
atomic or simple molecular states.

Table 9.4 shows the theoretical condensation temperatures of elements obtained 
by Larimer for two values of the total gas pressure рτ in the cloud. It follows from 
Table 9.4 that the temperature of condensation of the elements has little effect upon 
the sequence of their condensation at two different gas pressures.

The calculation of the condensation temperatures of various complex chemical 
compounds was carried out by Larimer on the basis of the same principle of attain-
ment, by a given compound, of a temperature corresponding to its partial pressure 
obtained from the gas thermodynamics equation. But in this case it has appeared 
to be necessary to account for the possible distribution of each element within the 

9.4 Chemical Differentiation of Proto-planetary Substance



266

different compounds. This has been done by estimating the equilibrium constants 
using the thermodynamic constants of the reaction products.

While considering the problem concerning condensation of different elements, 
compounds, and alloys, the gas pressure is of principal importance, being a function 
of density of the medium abundances of elements and their amounts. Larimer has 
considered the condensation process of the compounds and alloys to be dependent 
on the reaction’s kinetics and the diffusion rate. In view of this the condensation 
of pure elements and compounds could have occurred during quick gas cooling. 
During slow cooling the diffusion equilibrium in the gas-condensate system will be 
maintained, resulting in the formation of alloys and solid solutions.

The first estimates of the temperatures and condensation sequence of the ele-
ments and compounds, which were carried out by Larimer (1967), were later de-
veloped by Larimer and Anders (1967; 1970), and Grossman and Larimer (1974). 
These re-estimated data, presented in Fig. 9.2, indicate that, from the cooling gas 
cloud at pressure of 10 Pа, such refractory elements as Os, Re and Zr should con-
dense first. Their formation temperature was to be higher than that of Al2O3, being 
a widespread compound, whose condensation temperature is 1679 K. For Ti and 
Ca, forming CaTiO3 and Ca2Al2SiO7 compounds, the condensation temperature 
is about 1500 K. The rare elements U, Pu, Th, Ta and Nb form solid solutions in 
CaTiO3. CaMgSi2O6 is formed at Т = 1387 K after about 10% of Mg and Si has 
been condensed. The metal iron precipitates at Т = 1375 K. The latter compound, 
on reacting with vapor, later forms MgSiO3 which absorbs the Si remaining in the 
gaseous phase.

The elements condensing at higher temperatures than 1250 K form the group of 
the refractory compounds. At lower temperatures Cu, Ge, and Ga precipitate in the 
form of solid solutions in metals. Then CaAl2Si2O8 is formed at Т = 1299 K and 
Na, K and Rb, condense in the form of solid solutions. The alkali metals precipitate 
completely at Т = 1000 K, Ag at Т = 750 K. The metal iron oxidizes at Т = 750 K, 
troilite at Т = 700 K being formed by the reaction between metallic iron and gaseous 

Table 9.4   Calculated temperatures of condensation of four elements (Larimer, 1967)
рτ = 105 Pа рτ = 6.6 × 102 Pа рτ = 105 Pа рτ = 6.6 × 102 Pа
Element Т (K) Element Т (K) Element Т (K) Element Т (K)
Fe 1790 Fe 1620 Pb 655 Pb 570
V 1760 V 1500 Bi 620 Bi 530
Ni 1690 Ni 1440 Sb2 590 Sb2 515
Cu 1260 Sc 1090 Tl 540 Tl 475
Sc 1250 Cu 1045 Te 517 Te 460
Mn 1195 Ge   980 Zn 503 Zn 430
Ge 1150 Au   970 S2 489 S2 400
Au 1100 Mn   920 Se 416 Se 375
Ga 1015 Ga   880 Cd 356 Cd 318
Sn   940 Sn   806 Hg 196 Hg 181
Ag   880 Ag   780 I2 185 I2 169
In   765 In   670
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Н2S. Pb, Bi, In and Tl, which are highly depleted in chondrites, condense within the 
temperature range 600–400 K, magnetites at Т = 405 K, hydrated silicates at Т = 
350 K. Ar, CH4, NH3, H2O, and hydrate methane condense at 200 K. The investiga-
tion of the condensational conditions of the substance over the range of pressure 
from 10 to 10−3 Pа for the high-temperature compounds, rich in Са, Аl and Тi, 
indicates that the sequence of their formation is preserved.

On the basis of the obtained data on the temperatures and sequences of conden-
sation of elements and compounds, attempts were made to explain chemical frac-
tionation in meteorites, and to reconstruct some cosmochemical events which took 
place in the protoplanetary cloud.

Larimer has come to a conclusion that the observed picture of fractionation of 
chemical elements in chondrites should be related to their fractionation in the solar 
nebula during the condensation of the elements and compounds. The subsequent 
process of heating of the meteorite bodies, being possible in his opinion, has not 
resulted in further fractionation except for the most volatile elements, noble gases 
and mercury.

The studies of Larimer and Anders (1967), concerning the observed fractiona-
tion of the thirty-one most volatile elements in the carbonaceous and ordinary chon-
drites, led them to conclude the following. The abundance of these elements in the 
carbonaceous chondrites С1, С2, and С3 type and in the enstatite chondrites type 
I gradually decrease in order of their sequences. Taking unity for the abundance 
of the elements in the С1 type chondrites, their abundances in chondrites of other 
types are in the ratios 1:0.5:0.3:0.7. In the ordinary chondrites and enstatite type II 
chondrites, nine elements (Au, Cu, F, Ca, Ga, Ge, S, Sb, Se, Sn) have approximately 
constant depletion coefficients ~0.25 and ~0.5. The other 18 elements (Ag, Bi, Br, 
C, Cd, Cl, Cs, H, Hg, I, In, Kr, N, Pb, Tl, Te, Xe, Zn) have a coefficient of 0.002.

On the basis of the experimental data given above, the authors assumed that 
chondrites are composed of a mixture of two types of substances: a low-tempera-
ture fraction representing the basis of condensed material, which holds the volatile 
elements, and a high-temperature fraction represented by individual chondrules and 
metallic grains, which have lost volatile elements. Further, these facts indicate the 
possible formation of the above-mentioned fractions directly from high-tempera-
ture nebula during cooling. They could not have been formed in any parent mete-
orite bodies. Conclusions were also made concerning the probable temperatures of 
formation of the meteorites: Т ≤ 400 K for the carbonaceous chondrites, 400–800 K 
for enstatite meteorites (type I), 530–680 K for ordinary and enstatite (type II) chon-
drites, and Т ≤ 530 K for ordinary non-equilibrium chondrites. These temperatures 
are considerably higher than those typical of the asteroid belt (170 K). On the basis 
of this hypothesis the authors have assumed that the enstatite chondrites originate 
from the inner part of the asteroid belt, the ordinary chondrites from its central part, 
and carbonaceous chondrites from the outer belt.

Larimer, Anders, Grossman, and other researchers appear to have developed a 
theory which successfully explains many aspects of the chemical differentiation of 
substances in meteorites. But this theory of the equilibrium condensation of chemi-
cal elements and compounds of the protoplanetary material has met with a number 
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of difficulties. For example, in the carbonaceous chondrite Allende (fell in 1969, 
2000 kg), the high-temperature inclusions of minerals were surrounded by incom-
patible low-temperature minerals. The relative 18O content in the three inclusions 
of halenite and spinel in this meteorite range from −9.7‰ to −11.5‰, which corre-
sponds to the equilibrium temperature of their formation, approximately 800 K, for 
those portions of the cloud where these inclusions were formed. This temperature 
appears to be too low compared with that following from studying the texture and 
mineralogy of the inclusion. The type I enstatite chondrites must have been formed 
at very high pressures so that Tl remained at Т = 400 K. The presence of graphite 
requires high formation temperatures and the presence of water requires low tem-
peratures. The general conditions of the formation of carbonaceous chondrites were 
found to be inadequate on the whole. With regard to the formation temperatures of 
these meteorites they should not have been hydrated, whereas the majority of them 
contain a great amount of water. Besides, Clayton et al. (1977) have discovered in 
all the C2, C3 and C4 meteorites they studied as a whole, and in the spinel, olivine, 
and feldspar minerals, that there is excess of 16О, which has been prescribed to the 
pre-solar component, for which the mechanism of transfer to the meteorites and 
larger bodies including the planets remains uncertain. The fractionation picture in 
the iron-silicates system also remains ambiguous. The volatile elements in which 
all the stone meteorites are depleted, and the existence of organic materials in the 
form of the high-molecular hydrocarbon compounds in meteorites, create a serious 
problem which is unsolved as yet. The observed amounts of the noble gases should 
also be explained. It has been found that the content of Ar, Kr and Xe in individual 
types of chondrites differs by three orders of magnitude. Helium and neon were 
found only in the carbonaceous chondrites and in very small amounts in the or-
dinary chondrites, which is in disagreement with their content in the Solar wind. 
Some promising ideas of application of the absorption effects and equilibrium dis-
solution of noble gases in the meteorite material during its formation have appeared 
recently for explanation of the observed data.

Grossman and Larimer (1974) have pointed out that in order to explain, from the 
view point of the equilibrium of a substance and its accretion, a number of chemi-
cal, mineralogical, and textural peculiarities in stone meteorites, at least four proc-
esses are required, resulting in fractionation of the condensed material:

1.	 The most refractory material, rich in Ca, Al and Ti, must have transferred into 
the internal zone of the protosun cloud. Enstatite and ordinary chondrites were 
preferentially depleted in this material and outer zones of the Earth and Moon 
were enriched in it. These formations also included the metallic portion, rich in 
refractory compounds.

2.	 Most of the metal must have been extracted from the silicate grains at Т = 1000–
700 K. This process could only have occurred in the initial material of chon-
drites, which explains the observed differences in the densities of the terrestrial 
planets.

3.	 Before the accretion started, some portion of the condensed material must have 
been heated in order to obtain chondrites depleted in volatile elements.

9.4 Chemical Differentiation of Proto-planetary Substance
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4.	 The chemically unseparated dust fraction should have remained in equilibrium 
with the gaseous phase gradually being enriched in the volatile components (In, 
Tl, Xe etc.). By inclusion of the chondrules in different proportions, ordinary 
(at Т = 450 ± 50 K and pressure 1 Pа) and carbonaceous (at Т = 350 ± 50 K and 
pressure 0.1 Pа) chondrites could have been formed.

As to conditions of the formation of iron meteorites, Kelly and Larimer (1977) have 
pointed out that under their apparent plain composition lies a complicated cosmo-
chemical history. According to variations of a number of elements (Au, Co, Cu, Fe, 
Ga, Ge, In, Mo, Ni, Os, Pd, Pt, Re, Rh, Rn) the iron meteorites are divided into 12 
groups (Scott and Wasson,1976). The cosmochemical history of their metallic phase 
is related to the four stages of evolution:

1.	 Condensation and fractionation in the protosun nebula and accretion of the 
substances.

2.	 Oxidation-reduction process in the nebula and parent bodies.
3.	 Melting and differentiation in the parent bodies.
4.	 Fractionation crystallization during solidification.

On the basis of studies of distribution of the above-mentioned elements in iron 
meteorites on the whole, and also in their metallic, silicate, and sulfide phase, Kelly 
and Larimer (1977) have found that out of 12 groups of iron meteorites five sat-
isfy the conditions of passing through all these four stages. The seven groups have 
unusual histories. In order to explain the observed variations of the chemical com-
position in some groups, high-temperature condensation (Т = 1270 K at рτ = 1 Pа) 
and, therefore, high-temperature accretion is required. For the other groups there is 
evidence of quick metal cooling (7–200 degree/million years) and partial melting of 
aggregates of the parent bodies. In the third group some features are observed which 
indicate the occurrence of recrystallization after partial melting.

The cosmochemical history of the metallic phase in chondrites and achondrites 
does not seem to be a less complicated problem.

Herndon and Suess (1976) have reported that the possibility that such miner-
als as TiN, Si2N2O and CaS, which occur in enstatite chondrites and achondrites, 
are formed directly from the gas nebula at the accepted conditions of equilibrium 
condensation is doubtful. They have noted that an extremely reducing medium is 
needed to obtain Ti and Fe with inclusions of the elementary silica. According to 
Herndon and Suess the models of formation of the above-mentioned compounds 
can be constructed only when assuming the pressure in the gaseous cloud to be 
рτ ≥ 105 Pа.

Herndon and Suess have also thrown doubt upon the possibility of iron formation 
in sulphide, oxide, and pure metal forms in chondrules at equilibrium conditions. 
They have assumed that one way of obtaining iron in the three chemical forms oc-
curring in ordinary chondrites is described by the non-equilibrium gas condensation 
model, which is being developed by a number of researchers.

Blander and Katz (1967), Blander and Abdel-Gavad (1969) have considered the 
problem of condensation from the gas nebula of the primary formation from which 
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planets and meteorites could later have been formed under non-equilibrium condi-
tions of condensation. They suggested that the chemical composition of the cooling 
gas corresponded to the composition of elements in the solar system. Using data 
obtained earlier by Suess, Urey, and Cameron as a basis, the authors (Blander and 
Katz, 1967; Blander and Abdel-Gavad, 1969) have assumed the following sequence 
of ratios for the main constituents of the gas: H2:H2O:SiO2:Mg:Fe as 1010:107:105.5:
105.4:105.3. It was assumed that the cooling of the nebula occurred, along with other 
possible processes, due to energy losses by radiation as a result of which the gas 
cooled quickly at the boundary and more slowly in the interior of the nebula. Gas 
condensation was determined by its pressure and the rate of cooling. In this case as 
the upper limit of pressure and the lower limit of the rate of cooling in the centre of 
the nebula are reduced, the size of the nebula is increased. The condensation process 
occurred under non-equilibrium conditions and displayed a threshold character. It 
has been shown by the above authors that under the isobaric process of gas cool-
ing at certain conditions, iron will precipitate first and then the silicate phase is 
condensed. The compounds enriched in calcium can condense earlier than silicates. 
It has been found that the process of material cooling at conditions of restricted 
equilibrium results in large variation of the chemical elements in the condensation 
products, which can explain the high content of oxides of iron in the silicate phase 
and also the observations of the different content of volatile elements in chondrites. 
Finally, they have studied the formation mechanism of individual chondrules in 
meteorites, and on the basis of the obtained experimental data have shown that 
they are the primeval formations of the liquid droplet condensate precipitated in the 
overcooled condition and subsequently solidified.

On the other hand, Arrhenius  and Alfven (1977), while studying the conditions 
of evolution of the protoplanetary material on the basis of their own evidence, as-
sumed that the process of its condensation could have started directly from the 
plasma state of the cloud, being at a temperature of 104 K and pressure <10−2 Pа 
proceeding under disequilibrium conditions. In this case the refractory elements 
and compounds condense at рτ = 10 Pа and Т = 1250 K. The elements in which 
chondrites are normally depleted condense in the temperature range 1300–600 K, 
hydrosilicates at Т < 350 K, CH4, NH3, H2O, and hydrated methane at Т < 200 K. 
Arrhenius and Alfen note that the temperature of solidification of material could 
have been considerably lower than the temperature of the surrounding gas. This is 
because the meteoric substance, according to the observation data, was not differ-
entiated at the first stage and, therefore, it was formed under extreme disequilibrium 
temperature conditions with the surrounding gas.

Experimental observations and conclusions concerning the conditions of con-
densation and chemical fractionation of the protoplanetary material in meteorites, 
and also direct cosmochemical observation of the Moon and planets, are leading 
to a gradual revision of our ideas on the nature of the chemical differentiation of 
material in planets.

Analysing the theories of possible formation of the Earth with regard to the two-
component model, Larimer and Anders (1967) have considered that starting from 
the suggested hypothesis, the high-temperature component could have formed the 
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planet’s core at Т ≥ 1159 K. The low-temperature fraction should have amounted 
to 10%. In view of the actual abundances of Bi, In and Tl in the Earth’s core and 
also the higher temperature at distance of 1 A.U. from the Sun, the temperature of 
formation of the upper shell of the planet could have been ≤400 K.

Turekian and Clark (1969) and Clark et al. (1972) have suggested that the for-
mation of the Earth occurred in a sequence determined by the process of substance 
cooling, which started at Т = 2000 K and pressure 102 Pa. According to their model 
the primeval Earth immediately obtained a shell structure due to a decrease of the 
iron-silicate ratio from the Earth’s centre to the surface. In the course of the Earth’s 
growth its gravitational energy increased, resulting in melting of the body being 
formed. In this case the liquid iron must descend to the planet’s centre, forming its 
core. Finally, when the Earth cooled, 20% of its substance, rich in volatile com-
ponents, were added. In Turekian and Clark’s model an attempt has been made to 
avoid the geochemical difficulties which were noted by Ringwood (1966).

Vinogradov (1971; 1975) came to the conclusion that at the high-temperature 
stage of the evolution of gaseous cloud physicochemical differentiation, accompa-
nied by emergence of iron and silicate phases, had already started. These phases, 
during further processes of the cloud’s evolution, provided the basis for formation 
of the cores and mantles of the future planets.

On the basis of Larimer and Anders’s two-component model, Laul et al. (1973) 
estimated the formation temperatures of the Earth, Moon and meteorites of differ-
ent type. They took Tl as the cosmothermometer, since Tl/Rb and Tl/Cs ratios for 
the lunar and terrestrial rocks were found to be the same and the K/U, Rb/U, and 
Cs/U ratios for the same rocks approximate to constant values, where uranium was 
considered as a nonvolatile element. The magmatic processes are known to be inef-
ficient in the fractionation of rocks.

In Table 9.5 the temperatures obtained by Laul et al. (1973) are shown and, for 
comparison, those obtained by Onuma et al. (1972) on the basis of oxygen isotope 
ratios for the same objects are added.

Table 9.5   Accretion temperatures of the earth, the moon, and meteorites
Object Heliocentric 

distance 
(A.U.)

Pressure 
(Pа)

Low-tempe-
rature phase 
content (%)

Т (K)
Tl 18O/16O

The Earth (oceanic basalts) 1.0 10 11 458 450–470
The Earth (continental 

basalts)
1.0 10 11 456 450–470

The Moon 1.0 10   1.5 496 455
Chondrites type H, L, LL 2–3   1 25 420–500 445–480
Sherghotites 2–3   1 21 433 455
Nakhlites 2–3 (?)   1 40 438 460
Eucrites 2–3 (?)   1   0.5 432 475
Carbonaceous chondrites 

type С1

3   0.1 >0.95 394 360

Carbonaceous chondrites 
type С2

3   0.1   5.5 394 380
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The data presented in Table 9.5 indicate, assuming that the initial assumptions 
are right, that the Earth, Moon, and all the above-mentioned types of meteorites 
were found within the narrow temperature range which could have existed in that 
part of the protoplanetary cloud where the formation of the considered bodies oc-
curred. However, these data characterize the formation of the low-temperature 
phase. Assuming that the above-mentioned bodies contained the high-temperature 
phase in different proportions, this interpretation has certain difficulties with regard 
to the accretion hypothesis.

The latest studies of the Moon, the terrestrial group of planets, and Jupiter show 
that the processes of chemical differentiation of the protoplanetary substance have 
been more complicated in their character than those described in the existing mod-
els.

According to data obtained by the rubidium-strontium method (Wasserburg et 
al., 1972; Wood, 1974) the age of the sampled inland rocks ranges within (4.3–
4.6) × 109 years. This interpretation of the results of the age, combined with petro-
logical studies, leads to the conclusion that the Moon underwent a stage of melting 
and chemical differentiation (at least in its upper shell) at the final stage of its 
formation. At that time the whole of the upper layer of the Moon within depth 
≥100 km was in a melting state and during crystallization formed a low density core 
(ρ = 2.9 g/cm3), mainly of plagioclase composition, within a short time interval 
(~200 million years). The surface melt was not formed as a result of the processes 
occurring in the interior of the Moon but more likely reflects the high-temperature 
conditions of its formation. Only some local areas of the lunar seas where filled by 
subsequent lava eruptions of a somewhat younger age and corresponding chemical 
composition. The formation of a crust with a lower density, as compared with the 
average density characteristic of the whole body, indicates that the chemical differ-
entiation of the lunar substances had been completed up to the moment of the body 
formation, including the formation of a small size metallic core. On the basis of 
estimation of the energy losses and the core heat conductivity, the time of cooling 
of the surface layer and crystallization of the core was found to be 108 years. The 
calculations have shown that, in order for the energy released by radioactive decay 
to melt the lunar substance, such decay would have to continue for 2 × 109 years. 
According to direct measurements the heat flux from the lunar surface at the present 
time has been found to be unexpectedly large, about 3 × 10−2 J/m2 seс.

The conclusions concerning the heat history of the Moon throw doubts upon the 
model of the cold accretion of substance during formation of the Moon and required 
a reassessment of the role being played by radiogenic energy in the thermal history 
of the Moon, and obviously in the history of all the planets of the terrestrial group.

Cameron’s model attempts to explain the early lunar heating by the release of 
gravitational energy during the quick accretion of substance and meets the serious 
cosmochemical difficulties.

Analyzing the chemical composition of the samples of lunar soils, breccias, and 
igneous rocks, it has been found that they are characterized by a number of cosmo-
chemical peculiarities which distinguish them from terrestrial rocks and meteorites. 
The igneous lunar rocks are enriched by 10–100 times in Ca, Zn, Hf, Ta, rare earth, 
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and other refractory elements and depleted in alkaline, halogen, and volatile met-
als (Bi, Tl, Hg) compared with carbonaseous chondrites of the С1 type. The lunar 
rocks as a whole are enriched in high-temperature and depleted in low-temperature 
elements relative to their cosmic abundance. Ganapathy and Anders (1974) have 
given comparative data on the abundance of elements in lunar and terrestrial rocks 
(Table 9.6).

Attempts were made to explain the observed distribution of chemical elements in 
lunar rocks on the basis of the different models. The idea that the Moon could have 
been formed from high-temperature compounds, which are represented in inclu-
sions of the carbonaseous chondrites (С1 type), meets with difficulties in that these 
compounds in chondrites are enriched both in high-temperature siderophylous (Re, 
Os, Ir) and litophylous elements. The lunar rocks are extremely depleted in the lat-
ter elements. The two-component model of the accretion of the Moon is therefore 
preferable. But this suggestion meets difficulties in explaining the oxygen isotope 
composition of the lunar rocks where δ18O ≈ +6‰, whereas inclusions of the carbo-
naseous chondrite Allende indicates δ18O ≈ −10.5‰.

Attempts directed towards explaining the oxygen isotopic composition in the 
framework of the two-component model of the primeval lunar substance have 
therefore failed.

Other important facts which have not been explained from the viewpoint of the 
conditions of the Moon’s substance are:

1.	 The Moon does not have water and obviously did not have any (at least in its 
upper layers). In the case of its accretion from the substance which makes up the 
Earth, the lunar rocks should be hydrated or have features of hydration, but these 
are not actually observed.

2.	 No signs were found of granitization of rocks, which is likely to be closely related 
to the absence of water.

3.	 The lunar minerals tend to be reduced due to a deficit of oxygen, which can also 
be accounted for by the absence of water.

4.	 Iron is also in a reduced condition and indicates a phenomenon which is usually 
for terrestrial silicates, also obviously accounted for by the absence of water.

Table 9.6   Relative abundance of some groups of elements in terrestrial and lunar rocks
Group of elements Temperature of conden-

sation in the cloud (K)
Abundance relative to 
cosmic
Earth Moon

Refractory elements (Al, Ca, Ti, Ba, Sr, 
U, Th, Ph, Ir)

>1400 −1 2.7

Silicates (Mg, Si) 1400–1200 1* 1*
Metals (Fe, Ni, Co, Cr, Au) 1400–1200 ~1 0.25
Zvolatile elements (S, Na, K, Cu, Zn, 

Te)
1300–600 0.25 0.05

High volatile elements (Cl, Br, Hg, Pb, 
In)

<600 0.02 0.0005

*Given relative to the magnesium silicates
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5.	 An age paradox is observed: the lunar dust, being the product of rock destruction, 
appeared to be older than the rocks themselves. This phenomenon is accounted 
for by the presence of the ‘magic’ component in the dust composed of potassium, 
rare earths, and phosphorus and also by the effect of the solar wind.

6.	 There are visible signs of the formation of minerals of surface sediments from 
the vapor phase.

The obtained data on cosmochemistry and the thermal history of the Moon have 
created great difficulties in justification of the accretion, chondritic model of its for-
mation. The other models of lunar formation based on the hypothesis of separation 
of its substance from that of the Earth were found to be less inconsistent.

An analysis of the high-resolution photographs of Mercury obtained during the 
flight of Mariner-10 allowed the following conclusions concerning this planet to be 
drawn (Murray et al., 1974).

The surface of Mercury resembles the lunar seas and represents the hardened 
melt of large-scale fluxes of lava. According to the visible signs this melt is mainly 
constituted by silicates with density of about 3 g/сm3. Because the mean density of 
the planet is equal to about 5.5 g/сm3, the internal layers of the planet should consist 
of substances heavier than silicates. The planet obviously represents a body differ-
entiated by density and chemical composition with a massive iron core.

Mercury’s surface, as with the lunar surface, is covered with craters of impact 
origin. It is quite justifiably assumed that the chemical differentiation of Mercury, 
as well as that of the Moon, was finished before the formation of the body. If it were 
not, a sign of the intense bombardment of its surface by meteorites would have been 
lost. For the same reason it has been concluded that Mercury has had neither a pri-
mary nor a secondary atmosphere, in contrast to Mars where aeolian processes had 
considerably changed the primary landscape of the planet.

The comparison of the surface structures of Mercury, Mars, and the Moon has 
led to the conclusion that the mechanisms of the formation of these bodies and their 
chemical differentiation were common.

The studies of Jupiter, carried out with the help of spacecraft, had provided 
a number of important results. The most interesting of these appeared to be the 
data of the high-temperature state of the planet and on the powerful flux of ra-
diation from its surface. On the basis of measurements carried out by the cosmic 
spacecraft Pioner-10, the temperature of the planet’s core is estimated to be about 
50 000 K, the temperature of the surface layer is 2000 K, and that of the atmos-
phere is 120 K. Jupiter radiates energy whose value is 2–3 times greater than that 
obtained from the Sun. The approximate chemical composition of the planet is 
estimated as the following: 82% hydrogen, 17% helium, and 1% other elements 
(Cotardiere, 1975).

The obtained data on the temperature regime and chemical composition of Jupi-
ter does not provide any basis for the usage of any of the existing hypotheses for an 
explanation of the conditions of its formation. The accretion hypothesis is the most 
vulnerable. It is worth noting that Jupiter exhibits the greatest angular momentum of 
all the bodies of the Solar System. Despite this fact, the hypotheses being developed 
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concerning the origin of the Solar System dealt mainly with planets of the terrestrial 
group. This is most probably the weakest point of the existing hypotheses.

The data given above on the cosmochemical studies of meteorites, planets, and 
the Moon, compiled in the second part of the twentieth century, leads to one general 
and possibly indisputable conclusion that, in both the protosolar and protoplan-
etary clouds, there were common processes of chemical differentiation of the initial 
substances. These processes have obviously led to cosmochemical differentiation 
between the planets and the Sun, and between the planet’s shells as well. The dif-
ferentiation mechanism seems to be the same. Let us apply our analytical solutions 
in dynamics to the above-presented cosmochemical observations.

9.5  �Differentiation of the Substances with Respect  
to Density and Conditions for the Planet  
and Satellite Separation

From the point of view of planetary dynamics, chemical differentiation of substances 
during separation of planets and satellites from the common solar nebula and forma-
tion of body shells is the problem of differentiation of the cloud’s matter with respect 
to atomic and molecular weights or, generally saying, according to density. The physi-
cal basis for consideration of this problem comprises the dissipative processes in the 
nebula or cloud which are related to gravitational and electromagnetic interaction 
between the constituencies. This condition results in generation of gravitational and 
electromagnetic energy and its loss from the surface shell in the form of radiation. 
This condition follows from consideration of the structure of the potential energy of 
a system that is non-homogeneous in its elementary content, such as considered in 
Sect. 6.2. The given condition for the protosolar system is satisfied a priori.

The problem of differentiation of substances with respect to the atomic and mo-
lecular weights of a cloud in its own force field was considered in Sect. 6.5, where 
separation of a mass with respect to density is based on Roche’s dynamics and New-
ton’s theorem about gravitational interaction of the material point and a spherical 
shell. The real mechanism of separation of atoms and molecules in a diffused stage 
of the cloud should be the same mechanism of generation of the electromagnetic 
(gravitational) energy considered in Chap. 8.

The process of atomic and molecular mass separation in natural systems (in neb-
ulae and bodies) seems to be not an episode in their history. This is the continuous 
process of any system connected with its evolution, the essence of which is collision 
and scattering of the particles (molecules, atoms, nuclei and so on) accompanied by 
their destruction and removal of smaller, up to elementary, particles, which form the 
flux that we call energy and its emission. In turn, as it was shown in Chap. 8, the 
energy generation, i.e. the transition of the mechanical energy of a system oscilla-
tion into the energy of the electromagnetic oscillation on atomic and molecular (and 
nuclear for the stars) level leads to change the atomic and molecular weight and 
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the substances themselves. Let us consider the problem of separation of the planets 
and satellites from the protosolar nebula. For this we come back to solution of the 
equation of dynamical equilibrium of a dissipative system presented in Sect. 5.2 in 
the form (5.36)

� (9.1)

where Ф is Jacobi’s function (polar moment of inertia of the system); q(t) is the time 
parameter continuously ascending due to dissipation of energy at ‘smooth’ evolu-
tion of the system in the time interval t ∈ [0, τ ] ; А and В are constant values.

Solution of Eq. (9.1) was found in the form (5.37) and (5.38)

�

(9.2)

Equations of the discriminant curves limiting the amplitude of oscillation of the 
Jacobi function (polar moment of inertia) are (5.39) and (5.40)

� (9.3)

Expression for the period of oscillation Тv and amplitude of the moment of inertia of 
the system, obtained from Eqs. (9.2) and (9.3) are (5.41) and (5.42)

� (9.4)

� (9.5)

Figure 9.3 shows changes of the polar moment of inertia due to oscillating dis-
sipation of the system’s energy. The changes are confined the discriminant curves 
(9.3). At the point Оb the integral curve (9.2) and the discriminant curves (9.3) tend 
to coincide and the amplitude of the oscillation of the moment of inertia of the sys-
tem decreases up to zero. In this case the system reaches the stage close to
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Expression (9.6) is the second solution of the non-linear differential Eq. (9.1). The 
point Оb is physically interpreted as the bifurcation point. Here, under action of 
its own force field, the mass of the upper shell of the system reaches dynamical 
equilibrium with the inner mass and separates into a new subsystem. Equating the 
radicand of Eq. (9.3) to zero one finds that

� (9.7)

where qb is the value of the parameter q for the bifurcation point equal to

� (9.8)

Then Jacobi’s function (polar moment of inertia) Фb of the system at the bifurcation 
point, where the discriminant curves coincide, is

� (9.9)

While analyzing the equation of dynamical equilibrium of a celestial body by taking 
into account the Coloumb interactions of the charged particles shown, we found in 
Chap. 8, that the relationship between the polar moment of inertia and potential en-
ergy of the Coulomb interactions, written for conservative and dissipative systems, 
holds. In this case solution (9.2) of Eq. (9.1) for electromagnetic interactions also 
holds and the system can be represented by the model of the oscillating electric di-
pole which generates electromagnetic oscillations (Ferronsky et al., 1982). Mecha-
nism of that process was considered in the previous chapter from which it follows 
that the dissipative system cannot be electrically neutral.
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The obtained solution of the equation of dynamical equilibrium of a dissipative 
system (9.1) represents a theoretical solution of the problem of the equilibrium or 
‘smooth’ form of evolution of a celestial body. The condition of achievement by a 
dissipative system of the bifurcation point and the obtained relations for its param-
eters should be a qualitative solution of the problem of secondary body separation. 
For application to the cosmogony of the Solar System, it means that all its planets 
were formed from the common gaseous nebula by its separation during evolution 
through emission of electromagnetic energy. The evolutionary process was devel-
oped by density differentiation of the gaseous substances of the nebula and by sepa-
ration of the planets and satellites from the outer shell. The normal and tangential 
volumetric forces of the interacting mass particles there built up permanent condi-
tions for creation of vortexes which seems to be the main mechanism in formation 
of new entities. The conditions for the formation of meteorites existed during the 
formation of both the planets and their satellites.

Now we can define the specific physical effect of separation of bodies in the 
Solar System from the common nebula. It should be the inner energy (force func-
tion) of Coulomb interaction of the atomic, molecular and nuclei particles. It has 
been shown (Ferronsky et al., 1978) that for the planets in the Solar System, at the 
moment of their formation, the magnitude of the gravitational interaction energy 
was equal to the electromagnetic energy. In fact, the well-known expression for 
the energy of the Coulomb interactions Uc, written through the Madelung energy 
(Kittel, 1968) is:

� (9.10)

where n = m/μ is the quantity of interacting molecules; m is the body mass; μ is 
the average molecular weight; e = 4.8 × 10−10 is the charge of the electron; k is the 
Madelung coefficient; Ro = ( V/n)1 / 3 = Ro( μ/m)1 / 3 is the average radius of the Cou-
lomb interactions of the molecules; V is the volume of the body.

Equating the expressions for the potential energy of the gravitational and Cou-
lomb interactions, one can derive a relationship between the critical mass of the 
planet and its average molecular weight μ:

� (9.11)

From expression (9.11) one can find the value of the average molecular weight μ for 
the planets of the Solar System (see Table 9.7) (Ferronsky et al., 1978).

We consider relationship (9.11) to express the condition of formation of the con-
densing protoplanetary clouds, characterized by the corresponding average chemi-
cal compositions included in Table 9.7. On the basis of expression (9.11) we ob-
tain an important cosmochemical dependence of the planet’s mass from its average  
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chemical composition,

� (9.12)

where b is a constant depending in each case on the mass density distribution and 
the average chemical composition of the body being formed, due to the effect of the 
Coulomb interactions, as follows:

Earlier, in Sect. 8.4, from solution of the Chandrasekhar-Fermi equation we ob- 
tained a rigorous solution of the problem of secondary bodies separating from 
the nebula at its evolution and found that the constant b = 2 × 10−16 g3 (Ferronsky 
et al.,1996). The corrected average values of the molecular weight for the planets 
calculated by (9.12) are given also in Table 9.7.

Thus, the first condition of the planet or satellite creation from the protosolar 
nebula at its evolution was equality of gravitational and Coulomb energy of inter-
action for the outer shell. Taking into account the mechanism of mass density dif-
ferentiation of a cloud, the probable mechanism of a planetary body creation should 
be cyclonic vortexes. In this connection it is worth recalling the vortex hypotheses 
of creation of the Solar System proposed by Descartes which now appears to be 
reasonable. The argument against this theory, related to distribution of the angular 
momentum between the Sun and the planets, taking into account the found oscil-
lating (volumetric) mode, which is the moment of momentum in this book, now 
drops out.

The second important condition of a body separation from the common nebula 
is equality of the normal and tangential components of the potential energy for the 
outer shell. This condition determines necessity of dynamical equilibrium of a new 
entity as a self-gravitating body and its ability to move on the orbit in the outer 
parent’s force field.

Accounting for the Coulomb forces one may obtain a qualitative solution of the 
problem of chemical differentiation of substance in the course of the formation of 
planets. We have already pointed out that expression (9.12) is the cosmochemical 
criterion for the formation of planets and satellites. Coulomb forces are more effec-
tive for the elements with greater atomic numbers. In the process of dissipation of 
the potential energy by radiation, a differentiation of the substance occurs on the 
same physical basis in accordance with boiling temperatures and the relative vola-
tilities of the elements and compounds.

mµ2 = b = const,

b =
e3–k3/2

a2G3/2
.

Table 9.7   The average value of the molecular weight (in a.u.m) for the planets at time of their 
creation
Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune
By Eq. (9.11) 256 66   60 183 3   6 15 14
By Eq. (9.12) 467 85 109 336 6 11 28 26
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To the first approximation, while estimating the chemical diffraction of the sub-
stance of the planets and satellites, one can use the following model which is similar 
to the two-component model of Larimer and Anders (1967).

Assume that when the protosolar nebula reaches the stage of the bifurcation 
point (see Fig. 9.3) it gives birth to protoplanetary condensation—the cloud, the 
substance of which consists of chemical compounds characterized by their aver-
age molecular weight μ in accordance with relationship (9.11). In this case all the 
protoplanetary cloud’s elements and compounds, boiling temperatures of which are 
higher than that of the element and compound with molecular weight μ (refractory 
component), should remain in the gaseous phase, dissolved in the major component 
of the condensate. The quantitative estimation of abundances of the elements and 
compounds being present in the condensed and gaseous phases is determined by the 
abundances of these elements and compounds in the shell of the protosolar nebula 
from which the formation of the protoplanet has occurred. The separation of the 
high-temperature and volatile components of the protoplanetary cloud and the for-
mation of its shells, takes place due to the Coulomb forces at the stage of formation 
and evolution of the secondary body.

Let us use this condensational model of planet formation to explain the observed 
distribution of volatile elements on the Earth and also their average isotope com-
position in comparison with their solar abundance (Onufriev, 1978). To a first ap-
proximation one can use for this purpose the thermodynamic laws of the ideal gases 
and write the separation factor ηАВ of the low-temperature (volatile) component А 
and high-temperature (refractory) component и В in the gas-condensate system in 
the form

� (9.13)

where р, L and Т are the vapor pressure, boiling heat of vaporization, and boiling 
temperature, respectively; n is the numerical factor; R0 is the gas constant.

If the accepted model of the formation of the chemical and isotope composition 
of substance is true and expression (9.13) reflects, to a first approximation, the real 
process of such a formation, then the observed abundance of chemical elements on 
the Earth relative to their solar abundances can be written as follows:

� (9.14)

where Nc and N3 are the solar and terrestrial abundances of a component respec-
tively.

In view of the above-mentioned abundances of the noble gases Не, Ne, Ar, Kr, 
Xe were studied on the Earth and Moon relative to their solar abundances (Оnufriev, 
1978). Figure 9.4 indicates the dependence of the deficit of each of the elements 
on Earth and the Moon [Δlg( Nc/Nз)] upon the separation factor ( lg η) defined by 
the boiling temperature of the elements relative to xenon. The observed linear de-
pendence of the considered parameters indicates a correspondence between the ex-
perimental facts and the accepted model based on ideas about the studied process. 
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Besides the shallower slope of the line corresponding to the dependence on deficit 
of the element and the separation factor for the Moon as compared with the Earth, 
the line shows that the formation of the Moon and the distribution of the elements 
within the protoearth cloud occurred at rather high temperatures, which is also in 
accordance with the given theoretical and model concepts.

The probable conditions of formation of the volatile elements, some of their 
components, and the isotope composition of the upper shell of the Earth, were also 
considered (Onufriev, 1978). Assuming the maximum boiling temperature of high-
temperature constituents of the Earth to be equal to 3300 K, the corresponding val-
ues of the deficit lg (Nc/N3) depended on the separation factor lg η for the noble 
gases and a number of the refractory elements were plotted in Fig. 9.5. The relative 
volatility of the noble gases, which do not form chemical compounds, depends di-
rectly on boiling temperature. It follows from Fig. 9.5a that the dependence of lg 
(Nc/N3) ≈ f(lg η) has a natural character. The group of high-temperature elements 
does not indicate such a dependency in the domain where the values of abundances 
are close to the solar ones.

The first group of elements was studied in more derail together with a number 
of other volatile elements and compounds at a maximum boiling temperature of 
1600 K (Fig. 9.5b). It follows from the figure that the value of the deficit of each of 
the considered elements decreases with a decrease of their relative volatility, which 
corresponds to the model considerations regarding the formation of the Earth’s 
chemical composition concerning at least the volatile elements.

From the agreement between the corresponding thermodynamic parameters and 
the observed data on the deficit of a number of other volatile elements and their com-
pounds, plotted in Fig. 9.5b, the following conclusions have been drawn (Onufriev,  
1978). During the formation of the Earth from the protosolar nebula the hydrogen 
reservoir was mainly represented by water and only a small portion of hydrogen 
was in the molecular form Н2. The nitrogen reservoir was represented by ammonia 

Fig. 9.4   Relationship between the value of inert gases deficit and differentiation factor for the 
Earth (a) and for the Moon (b)
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NH3 and the Earth’s atmosphere as a whole was in a reduced form. Searching the 
possible primeval carbon compounds of the Earth (CO, CH4, CO2, COS), it ap-
peared that neither one of them nor all being taken in corresponding proportions can 
explain from the assumed viewpoint the observed deficit of carbon. The condition 
can only be satisfied if assuming the existence of a higher temperature compounds 
of the form CnH2n + 2 with boiling temperature of ~400 K. Assuming the initial ex-
istence of sulphur in the form of S, S2 and so on, the existence of the lighter low-
temperature compounds such as H2S, CaS is required.

Note that investigation of the dependence of the element’s deficit upon its relative 
volatility, expressed through the boiling temperature, together with a consideration 
of the different forms of its chemical compounds, provides the key for understand-
ing the general principle of the successive increase of the element deficit on the 
Earth in row Hg, S, C, N, H, Xe, Kr, Ar, Ne, He.

The considered model of formation of the chemical composition of the Earth 
should be completely applicable for studying the conditions of formation of their 
isotopes.

Without any loss of generality, one can consider that an element’s isotope with 
a greater mass number is less volatile compared with the lighter isotope. Therefore, 
expressions (9.13) and (9.14) are valid for estimation of the dependence of abun-
dance on the planets of isotopes of corresponding elements upon the separation 
factor expressed through the boiling temperature.

It has been shown (Onufriev, 1978) that the above-mentioned enrichment of the 
Earth’s upper shell in heavy isotopes, compared with the cosmic abundance for the 
volatile elements, is natural from the viewpoint of our model. In view of this there 
are reasons to consider that water of the hydrosphere was initially enriched in heavy 

Fig. 9.5   Relationship  between the value of the element and the compound deficit and differentia-
tion coefficient for the Earth at 3300 K (a) and 1600 K (b)
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oxygen to about +20‰. The hydrosphere itself should have been in the vapour 
phase. With decreasing temperature the water over the Earth’s surface should have 
been converted into the liquid phase. Precipitation of large amounts of water on 
the Earth’s surface was the trigger mechanism for magmatic processes to start. The 
process of granitization of rocks on the continents should have resulted in depletion 
of the hydrosphere in heavy oxygen and the subsequent enrichment of granite up 
to the present values. Thus, starting from the considered model of the formation of 
the Earth, with its chemical and isotopic composition, the observed enrichment of 
the upper shell of the Earth in heavy isotopes of the light elements can be explained 
uniquely.

Note that we can now derive a conclusion regarding the meteoric origin of the 
hydrosphere. The condensation of water to the liquid phase occurred at the final 
stage of our planet’s formation. One can reasonably assume that the time inter-
val between the end of condensation of the mineral part of the Earth and the be-
ginning of water condensation could have been large in view of the difference in 
their boiling temperatures. This interval could have been markedly enlarged if the 
greenhouse effect was provided by carbon dioxide and water vapor, similar to that 
now observed on Venus. Thus there are reasons for considering that the Earth’s 
hydrosphere, in the liquid phase, is a considerably younger formation than all the 
other shells. Further, the observed stability of chemical and isotopic composition of 
the oceans in time is a result of inherited thermodynamic equilibrium which it had 
attained when in the gaseous phase.

9.6  �Conclusion

The problem of dynamics of a celestial body in its own force field is a new task 
in theoretical and celestial mechanics. Its formulation and solution appears to be 
possible by application of volumetric (power) forces and volumetric moments. The 
geodetic satellites of the Earth have made it possible to study these entities closely, 
and thus prove this approach and demonstrate incorrectness of the hydrostatic equi-
librium of the planet. By means of these satellite studies the physical meaning of 
the famous Jacobi equation which, in fact, is the equation of dynamical equilibrium 
of celestial bodies, becomes clear. We demonstrated applicability of this equation 
not only for solution of the problem in the framework of classical mechanics, but 
also in quantum mechanics and field theory. This opens the way to formulate and 
solve the problem of a unified field theory. Application of the dynamical approach 
in thermodynamics, which still remains a phenomenological branch of the science 
and is based on hydrostatics, make it possible to find its theoretical basis.

Finally, the problem of the carrier of the energy, generated by particle interaction, 
in the frame-work of the dynamical approach, is given a good background against 
which to discuss feasible material agents such as the elementary particles, including 
the infinitesimals, instead of Newton’s ether. In this connection Newton, defining 
the inertial forces, noted: The motion and quiescence, at their usual consideration, 
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are distinguished like what seems to the ordinary look. By irony of fate his words 
completely relate to the hydrostatic equilibrium of the Earth. The inert mass of the 
planet appears to be guileful. It conceals inside the forces the carrier of which is … 
a certain most subtle spirit which pervades and lies in all gross bodies; by the force 
and action of which spirit the particles of bodies attract one another at near dis-
tances, and cohere, if contiguous; and electric bodies operate to greater distances, 
as well repelling as attracting the neighboring corpuscles; and light is emitted, 
reflected, refracted, inflected, and heats bodies; and all sensation is excited, and the 
members of animal bodies move at the command of the solid filaments of the nerves, 
from the outward organs of sense to the brain, and from brain into the muscles. But 
these are things that cannot be explained in a few words, nor are we furnished with 
that sufficiency of experiments which is required to an accurate determination and 
demonstration of the laws by which this electric and elastic spirit operates. The 
great thinker had a keen understanding of the real world around him, but at that 
time the reserve of knowledge of electromagnetism was too small. The “dark mass” 
which at present is a potent subject for speculation of astronomers, could turn out to 
be the best media for transmission of energy between interacting bodies. It physi-
cally could represent the elementary infinitesimal particles that form a background 
around each cosmic body, including the Universe itself.

We have no plan to study all the aspects of the problem of dynamics of the Earth 
based on its dynamical equilibrium. It is impossible to do all of this in one study or 
one book. We have tried to develop only the principal physical and analytical basis 
of the relevant dynamics for solution of some special tasks. We will be happy if we 
have succeeded.

9.6 Conclusion
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