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Preface

Many classical partial differential equations, arising in modeling of various physical
and biological phenomena, are only taking into consideration local spatial or time
variables, ignoring any possible spatial dependence on the neighboring points as
well as neglecting any feasible memory effects. For instance, the classical (local)
nonlinear heat equation provides the rate of change of temperature at every (local-
ized) point and for any time where the source term overlooking any possible effects
from any nearby points and ignoring the history of the heating process. In contrast,
non-local models consider any possible reliance of the involved physical quantities
on the evolution of the inspected process all over the nearby spatial points or any
dependence on preceding times. Such a non-local dependence usually stems from a
distance interaction or from several conservation laws. Some of the first non-local
equations appeared in the literature are encountered in the field of phase transition
and are related to theories due to van der Waals, Ginzburg & Landau and Cahn &
Hilliard [5]. Lately, a wide variety of non-local equations emerged in the literature
with significant applications in engineering, astrophysics, and biology. For instance
such models with non-local spatial terms are encountered in the Ohmic heating
production [29, 30], in the shear banding formation in metals being deformed under
high strain rates [1, 2], in the theory of gravitational equilibrium of polytropic stars
[27], in the investigation of the fully turbulent behavior of real flows, using invariant
measures for the Euler equation [3], in population dynamics [8], in modeling
aggregation of cells via interaction with a chemical substance (chemotaxis) [32], just
to mention a few of them. Some more applications of non-local equations with
memory (integral) terms can be found in [31]. Therefore, non-locality is not a
technical obstruction to scientific research but it actually provides an essence of what
happens in reality, and for that purpose, its mathematical study can provide very
useful predictions in many areas of applications. In general, non-local models pro-
vide more accurate predictions compared to their local counterparts since they
actually use all the available information regarding the evolution of the inspected
process. On the other hand, the presence of the non-local terms might be responsible
for the lack of some fundamental features, that share the local analogue problems,
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like the maximum principle [30, 31]. Additionally, most of the non-local problems
exhibit quite rich dynamics, which is usually more complicated to the dynamics
of their local counterparts. In particular, the long-time behavior of non-local para-
bolic equations might be more complex than the one of their local complements, see
for example [4, 6, 7, 8]. Another very intriguing phenomenon which is basically due
to the presence of the nonlinearity, but whose impact grows when a non-local term is
also present, is the occurrence of finite-time blow-up or finite-time quenching, when
solutions of nonlinear equations cannot be extended after a finite time. Notably,
blow-up and quenching fight against the well-posedness of nonlinear evolution
equations, since both, under some circumstances, they rule out the possibility of
existence of global in time solutions. Detailed profiles of the blowing up and
quenching solutions, however, are heavily associated with the form of the nonlin-
earity, and the whole mechanisms of these phenomena have not yet been clarified in
many equations as it happens with the blow-up of the solutions for the famous
example of the Navier–Stokes equation. Still a lot of efforts have been paid since the
pioneering work of Fujita [9, 10] on the blow-up of semilinear parabolic equations,
and many important outcomes have been produced. At the earliest stage, studies on
blow-up and quenching were thought to be related only within the field of pure
mathematics where several toy models were investigated. However, recently it has
been recognized that many realistic models are reduced to semilinear equations with
non-local terms and many of them exhibit the phenomena of finite blow-up and
quenching. This monograph is devoted to this type of nonlinear partial differential
equations, investigating both their mathematical modeling and their mathematical
analysis.

Part I of the current monograph is devoted to the investigation of some non-local
models linked with applications from engineering. Chapter 1 focuses on the study
of the following non-local model associated with electrostatic MEMS control

@u
@t

¼ Duþ k

ð1� uÞ2 1þ a
R
X

1
1�u

� �2 in X� ð0; TÞ ð1Þ

uðx; tÞ ¼ 0 on @X� ð0; TÞ ð2Þ

uðx; 0Þ ¼ u0ðxÞ in X; ð3Þ

where uðx; tÞ denotes the deformation of an elastic membrane which is part of the
MEMS device. Here and henceforth, k stands for a positive parameter. In the first
place, the construction of the above model is presented. To this end, we describe the
two main physical problems which build up the operation of an idealized MEMS
device: the elastic and the electric problem . In the second place, we proceed with
its mathematical analysis. First, the structure of the set of radially symmetric
steady-state solutions is investigated together with their stability. Then, the cir-
cumstances under which finite-time quenching, or otherwise called touching down
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in the MEMS context, occurs are investigated following the approach developed in
[11, 16]. Finally Chap. 1 closes up with the investigation of a hyperbolic variation
of Eqs. (1)–(3) along the lines of the approach introduced in [14].

Chapter 2 discusses some non-local models describing Ohmic heat production in
various industrial processes. In the first part of the chapter, the process of food
sterilization by using Ohmic heating is considered and the following
one-dimensional non-local model is formulated

@u
@t

þ @u
@x

¼ @2u
@x2

þ kf ðuÞR 1
�1 f ðuÞdx

� �2 in ð0; 1Þ � ð0; TÞ; ð4Þ

uð0; tÞ ¼ uxð1; tÞ ¼ 0 in ð0; TÞ; ð5Þ

uðx; 0Þ ¼ u0ðxÞ in ð0; 1Þ; ð6Þ

along the lines of [24, 29]. Here, uðx; tÞ stands for the temperature of the sterilized
food, while the nonlinearity f ðuÞ represents either electrical conductivity or resis-
tivity and is taken to be positive. Next, and under different circumstances, a
hyperbolic variation of Eqs. (4)–(6) with a non-local convection velocity is built up
following the approach introduced in [25]. Both of these non-local models are
inspected in terms of their stability and the occurrence of finite-time blow-up, where
the latter in the current context means food burning. Different approaches should be
followed though depending on the monotonicity of the nonlinearity f ; since no
maximum principle is available for the non-local parabolic problem (Eqs. (4)–(6))
when f is increasing. In the case where f is decreasing, some useful estimates of the
blow-up (burning) time are given via the method developed in [19, 28]. Finally, the
hyperbolic problem is treated via the method of characteristics. The second part of
Chap. 2 deals with another application of Ohmic heating process in the thermistor
device which is modeled by the following

@u
@t

¼ r kðuÞruð Þþ kf ðuÞR
X f ðuÞ� �2 in X� ð0; TÞ; ð7Þ

@u
@m

þ bu ¼ 0 on @X� ð0; TÞ; ð8Þ

uðx; 0Þ ¼ u0ðxÞ in X; ð9Þ

where uðx; tÞ is the temperature across the thermistor device, while @
@m stands for the

normal outward derivative to @X and 0� b�1; kðuÞ[ 0: The finite-time
blow-up, which suggests either the destruction of the thermistor device or the
failure of the model, is investigated via the methods developed in [18].
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Chapter 3 debates an application arising in the process of linear friction welding
applied in metallurgy. Initially, the following one-dimensional non-local model is
constructed

ut ¼ uxx þ euR1
0 eu dx

� �1þ a ; in ð0;1Þ � ð0; TÞ; a[ 0; ð10Þ

uxð0; tÞ;¼ 0; lim
x!1 uxðx; tÞ ¼ �1; in ð0; TÞ; ð11Þ

uðx; 0Þ ¼ u0ðxÞ; in ð0;1Þ; ð12Þ

for the soft-material case, where uðx; tÞ serves as the temperature across the welding
region. Next, a similar non-local model is derived for the hard-material case where
the exponential nonlinearity is replaced by f ðuÞ ¼ ð�uÞ�p for p ¼ 1

a : The stability
of Eqs. (10)–(12) is investigated using the analytical approach developed in [13],
which actually proves convergence to the unique steady state. On the other hand,
the stability in the case of the power-law nonlinearity is investigated by means of a
numerical approach [13].

The following degenerate non-local model

ut ¼ DbðuÞþ kf ðbðuÞÞ
ðRX f ðbðuÞÞdxÞ2 ; in X� ð0; TÞ; T [ 0; ð13Þ

bðuÞþ kðxÞ @bðuÞ
@m

¼ 0; on @X� ð0;TÞ; ð14Þ

uðx; 0Þ ¼ u0ðxÞ; in X; ð15Þ

is produced in Chap. 4, where 0� kðxÞ�1 and bðuÞ� 0 are continuous functions
with bð0Þ ¼ 0: Non-local model (Eqs. (13)–(15)) is associated with the industrial
process of resistance spot welding and uðx; tÞ serves as the temperature in the
welding area. By using a numerical scheme developed in [26], the occurrence of an
emerging interface (free boundary), stemming from the degeneracy due to the
condition bð0Þ ¼ 0; is revealed.

Part II is handling some applications of non-local models coming for the field of
biology. In Chap. 5, the following non-local problem is derived

ut ¼ Du� uþ up

�
Z
X
ur dx

� �c ; in X� ð0; TÞ; ð16Þ

@u
@m

¼ 0; on @X� ð0; TÞ; ð17Þ
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uðx; 0Þ ¼ u0ðxÞ[ 0; in X; ð18Þ

by the shadow system of Gierer–Meinhardt system, an inhibitor–activator system
arising in cell biology, when the inhibitor diffuses much faster than the activator
does. The longtime behavior of uðx; tÞ, representing the concentration of the acti-
vator, is examined according to the values of parameters p; r and c: Among other
interesting results, and following the approach in [23], a diffusion-driven blow-up
(a sort of Turing instability result) for the solution of Eqs. (16)–(18) is proven under
the Turing instability condition p� 1\rc:

In Chap. 6, we deal with an application arising in evolutionary game dynamics
and in particular in its subarea known as replicator dynamics. Considering an
infinite continuous strategy space, corresponding, for example, to a continuously
varying trait of a biological population, as well as payoff functions of Gaussian
type, we end up with the following non-local degenerate model

@u
@t

¼ uðDuþ
Z
X
jruj2 dxÞ; in X� ð0; TÞ; ð19Þ

uðx; tÞ ¼ 0; on @X� ð0; TÞ; ð20Þ

uðx; 0Þ ¼ u0ðxÞ; in X; ð21Þ

where uðx; tÞ denotes the probability density of the probability measure providing
the state of the biological population (population of players). As it is appropriate for
degenerate problems, a regularized approximation of Eqs. (19)–(21) is used and
then some a priori estimates for its solutions are derived. Afterward, by adopting the
arguments introduced in [17], global-in-time existence and blow-up results are
obtained according to the value of the initial mass jju0jjL1ðXÞ:

Chapter 7 debates the biological phenomenon of chemotaxis. Initially, a version
of Keller-Segel system is considered which describes the movement of some cell
population toward a chemo-attractant produced by the population itself. Next, it is
shown, using the approach of [20, 32], that in the case where the chemo-attractant
diffuses much faster than the cell population, then Keller-Segel reduces to the
following non-local problem

ut ¼ Duþ keuR
X eu

in X� ð0; TÞ; ð22Þ

uðx; tÞ ¼ 0 on @X� ð0; TÞ; ð23Þ

uðx; 0Þ ¼ u0ðxÞ in X; ð24Þ
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where uðx; tÞ stands for the concentration of the chemo-attractant. For k\8p
global-in-time existence is derived whereas for k[ 8p and for radially symmetric
solutions, by using the approach developed in [20], the occurrence of blow-up is
proven.

Chapter 8 introduces the following non-local reaction–diffusion system

ut ¼ d1Du� ku � �
Z
Bð�;RÞ \X

v in X� ð0; TÞ; ð25Þ

vt ¼ d2Dv� kv � �
Z
Bð�;RÞ \X

u in X� ð0; TÞ; ð26Þ

@u
@m

¼ @v
@m

¼ 0 on @X� ð0; TÞ; ð27Þ

uðx; 0Þ ¼ u0ðxÞ� 0; vðx; 0Þ ¼ v0ðxÞ� 0 in X; ð28Þ

where

�
Z

¼ 1
xNRN

Z
:

In the first place, system (Eqs. (25)–(28)) is built up as a mathematical model in cell
biology to describe the evolution of protein dimers within human cells. Indeed,
system (Eqs. (25)–(28)) inspects the situation when chemical reactions occur only
when two chemicals within cells and with concentrations u and v are in distance R;
called the reaction radius [12, 21]. Next, the longtime behavior of the solutions of
Eqs. (25)–(28) is investigated as well as the phase separation phenomenon develops
on extremely fast reaction rates (k ! þ1) is also examined [21, 22].

In the Appendix, some more non-local models are presented arising in further
applications ranged from point vortices theory to differential geometry.
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Chapter 1
Micro-Electro-Mechanical-Systems (MEMS)

Abstract In the current chapter we first present the construction of some non-local
models describing the operation of an idealized MEMS (Micro-electro-mechanical
system). In particular, theMEMSdevice is considered to be part of an electrical circuit
and using elastic and electric theories two different non-local models are derived: a
parabolic and a hyperbolic one. In the first place, the investigation of the structure
of the corresponding non-local elliptic steady state problem is undertaken and some
estimates of the pull-in voltage are obtained. Next, we focus on the mathematical
analysis of the derived evolutionary non-local equations. Notably, the circumstances
under which finite-time quenching occurs for both of evolutionary problems are
investigated, so then some useful conclusions regarding the possible destruction
of the MEMS device or the invalidity of the used models can be derived. Since,
maximum principle is not available for both of the inspected non-local models, and
thus comparison methods are not applicable, finally energy methods are called forth
to investigate their long-time behavior.

1.1 Derivation of the Basic Model and Its Variations

The term “MEMS” more precisely refers to precision devices which combine
mechanical processes with electrical circuits. In particular, electrostatic actuation
is a popular application of MEMS. MEMS devices range in size from millime-
tres down to microns, and involve precision mechanical components that can be
constructed using semiconductor manufacturing technologies. Various electrostatic
actuatedMEMShave been developed and used in awide variety of devices applied as
sensors and have fluid-mechanical, optical, radio frequency (RF), data-storage, and
biotechnology applications. Examples of microdevices of this kind include micro-
phones, temperature sensors, RF switches, resonators, accelerometers, micromirrors,
micropumps, microvalves, data-storage devices etc., [9, 36, 46].

The principal part of such an electrostatic actuatedMEMS device usually consists
of an elastic plate suspended above a rigid ground platewhose length is equal to L and
which are in distance d. Typically the elastic plate (or membrane) is held fixed at two
ends while the other two edges remain free to move and additionally both plates are

© Springer International Publishing AG 2018
N.I. Kavallaris and T. Suzuki, Non-Local Partial Differential Equations
for Engineering and Biology, Mathematics for Industry 31,
https://doi.org/10.1007/978-3-319-67944-0_1
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4 1 Micro-Electro-Mechanical-Systems (MEMS)

considered to be perfect conductors, see Fig. 1.1. An alternative configuration could
entail the plate or membrane being held fixed around its entire edge.When a potential
difference Vs is applied between the membrane and the plate, the membrane deflects
towards the ground plate. We first make the realistic assumption that the width of the
gap, between the membrane and the bottom plate, is small compared to the device
length, and the configuration of the two parallel plates is connected in series with
a fixed voltage source and a fixed capacitor. Then our main purpose in the current
section is to derive a mathematical model describing the deformation of the elastic
membrane by following the approach presented in [36, 37]. We actually separate the
composed procedure into two different problems: the elastic and the electric.

1.1.1 The Elastic Problem

To describe the elastic problem we use variational calculus. In particular, we apply
Hamilton’s principle (or the principle of least action) which is equivalent to the
stationary action S of the system from time t1 to t2 given as

S =
∫ t2

t1

∫
Ω

L dx ′dy′dt,

where Ω ⊂ R
2 is the domain occupied by the elastic membrane (plate) considering

that the plate is very thin.
Here L is the Lagrangian of the system defined at any point of the system as

L = K inetic Energy + Damping Energy − Potential Energy.

Let v = v(x ′, y′, t ′) be the dynamic deflection of the membrane, then the kinetic
energy of the membrane can be written as

Ek = ρh

2

∫
Ω

v2t ′dx ′ dy′,

where ρ, h stand for the mass density per unit volume of the membrane and the
thickness of the membrane respectively.

Furthermore, the damping energy Ed has the form

Ed = a

2

∫
Ω

v2dx ′ dy′,

where a represents the damping constant.
The potential energy is E p = Es + Eb, where Es, Eb are the stretching and

bending energy respectively. The former one is provided by
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Es = μ

(∫
Ω

√
1 + |∇⊥v|2dx ′ dy′ − |Ω|

)
,

where we are using the notation ∇⊥to indicate the differentiation only with respect
to x ′ and y′, while μ stands for the tension of the membrane and |Ω| represents the
area of the domain Ω. It should be noted that for small deflections we may linearize
to derive

Es = μ

∫
Ω

|∇⊥v|2dx ′ dy′.

On the other hand, the bending energy is defined by

Eb = D

2

∫
Ω

Curvature dx ′ dy′

and by again linearizing we deduce

Eb = D

2

∫
Ω

(Δ⊥v)2 dx ′ dy′,

where D is the flexural rigidity of the membrane.
We thus obtain

E p =
∫

Ω

(
μ

2
|∇⊥v|2 + D

2
(Δ⊥v)2

)
dx ′ dy′,

and the Lagrangian is provided by

L = ρh

2
v2t ′ + a

2
v2 − μ

2
|∇⊥v|2 − D

2
(Δ⊥v)2 .

Therefore, the functional to be stationary is

S =
∫ t2

t1

∫
Ω

(
ρh

2
v2t ′ + a

2
v2 − μ

2
|∇⊥v|2 − D

2
(Δ⊥v)2

)
dx ′ dy′ dt ′.

Consequently, the Euler–Lagrange equation for v is

ρh vt ′t ′ + avt ′ − μΔ⊥v + DΔ2
⊥v = 0, (x ′, y′, z′) ∈ Ω × (0, d),

where Δ2
⊥ represents the bi-laplacian operator again with respect to x ′ and y′. If in

addition the membrane is subject to a force Fe due to an electric field then

ρh vt ′t ′ + avt ′ − μΔ⊥v + DΔ2
⊥v = Fe, (x ′, y′, z′) ∈ Ω × (0, d).
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1.1.2 The Electric Problem

It is assumed that the elastic (plate) membrane is held at the potential Vs, while the
ground fixed plate is held at zero potential. Therefore, ifφ is the electrostatic potential
then due to the conservation of electric charge we have the Laplace equation

Δφ = 0, (1.1)

holding everywhere in the region between the elastic (plate) membrane and the
ground plate as well as in the region surrounding the MEMS device. Moreover the
following boundary conditions are imposed

φ = Vs on the elastic membrane, (1.2)

and

φ = 0 on the ground plate. (1.3)

Although, at the first glance the electric problem seems to be uncoupled to the elastic
problem, however the two problems are coupled through the boundary condition
(1.3) since Vs depends on v, see also below.

Furthermore, due to Ohm’s law the electric field can be expressed as

Fe = −ε0

2
|∇φ|2,

where ε0 is the permittivity of the free space and thus v satisfies

ρh vt ′t ′ + avt ′ − μΔ⊥v + DΔ2
⊥v = −ε0

2
|∇φ|2, (1.4)

for (x ′, y′, z′) ∈ Ω × (0, d) and t ′ > 0.
Next we rescale our system (1.1)–(1.4) in order to express our governing equation

into a dimensionless formulation. In particular, we consider the new variables

θ = v

d
, ψ = φ

Vs
, x = x ′

L
, y = y′

L
, z = z′

d
, t = μt ′

aL2
, (1.5)

and substituting to (1.1)–(1.4) we derive the dimensionless system

ε2Δ⊥ψ + ψzz = 0, (1.6)

ψ = 1 on the elastic membrane, (1.7)

ψ = 0 on the ground plate, (1.8)

β2θt t + θt − Δ⊥θ + δΔ2
⊥θ = −λ

[
ε2|∇⊥ψ |2 + (ψzz)

2
]
, (1.9)
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where the parameter β is defined as

β =
√

ρhμ

aL
. (1.10)

The parameter δ defined by

δ = D

L2μ
, (1.11)

is a measure of the relative importance of tension and rigidity, whereas the parameter

ε = d

L
, (1.12)

is the aspect ratio of the system.
Finally, the parameter

λ = ε0V 2
s L2

2d3μ
, (1.13)

represents a ratio of a reference electrostatic force to a reference elastic force.
Observe, that since λ is proportional to the square of the applied voltage Vs it could
be actually used as a tuning parameter of the MEMS device.

1.1.3 An Uncoupled Local Model

In many applications, including the Grating Light Valves (GLV), the lateral dimen-
sions of the MEMS device in Fig. 1.1 are much larger compared to the size of the
gap between the elastic plate and the ground fixed plate, that is ε = d

L � 1. In that
case, as we will see in the following the coupled system of the elastic and the electric
problems can be reduced to a single equation.

Indeed, under the aspect ratio limit ε → 0 the electrostatic problem reduces to

ψzz = 0, for (x, y, z) ∈ Ω × (0, 1), t > 0,

which can be solved exactly to

ψ = Cz + D.

Now using the boundary conditions

ψ(x, y, θ, t) = 1,
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Fig. 1.1 Sketch of the capacitive control circuit (controlled-voltage operation)

and

ψ(x, y, 0, t) = 0,

we finally deduce

ψ(θ) = z

θ
, for z ∈ (0, 1). (1.14)

We should note here that the electric potential given by (1.14) actually corresponds
to the case where the fringing fields have been ignored.

Now considering the limit ε → 0 into (1.9) and taking into account (1.14) we
finally derive the uncoupled equation

β2θt t + θt − Δθ + δΔ2θ = − λ

θ2
,

for (x, y) ∈ Ω, and t > 0. Note that we have removed the index ⊥ from the
differentiations since now θ depends only on and x and y.

In various applications, e.g., certain MEMS micro-pumps, GLV, e.t.c., the elastic
plate is of very low rigidity and thus we can take δ = 0 into (1.15) to derive

β2θt t + θt − Δθ = − λ

θ2
, (1.15)

for (x, y) ∈ Ω, and t > 0. Moreover, since it is assumed that the edges of elastic
plate are kept fixed then (1.15) is also combined with boundary conditions of the
form

θ = 1 on ∂Ω, (1.16)
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as well as with initial conditions

θ(x, 0) = θ0(x) in Ω. (1.17)

Frommany experiments it is evident that the applied voltage Vs controls the oper-
ation of the MEMS device. It is observed that when Vs exceeds a critical threshold
Vcr , called the pull-in voltage, then the phenomenon of touch-down (or pull-in insta-
bility as it is also known in MEMS literature) occurs when the elastic membrane
touches the rigid ground plate.

For the mathematical Eqs. (1.15), (1.16), this actually means that there is some
critical value λcr of the parameter λ above which singular behavior should be antici-
pated. Focusing on the nonlinear term of Eqs. (1.15), (1.16) one can notice that such
singular behavior is possible only when u takes the value 0, a phenomenon known
in the mathematical literature as quenching.

Additionally, it has been experimentally observed, see [46], that there is a sig-
nificant uncertainty regarding the values of Vs . In particular, Vs fluctuates around
an average value V0, hence this implies that λ = λ0 + α η(x, t) where α > 0 is a
coefficient measuring the intensity of the noise term η(x, t). The coefficient α might
depend on the deformation θ as well, whereas the noise η(x, t) could be taken to be a
space-time white noise i.e., η(x, t) = ∂t W (x, t), where W (x, t) is a Wiener process
and thus the following stochastic variation of (1.15)–(1.17) is derived

β2θt t + θt − Δθ = − λ

θ2
+ σ(1 − θ) ∂t W (x, t), in Ω × (0, T ), T > 0, (1.18)

θ = 1, on ∂Ω × (0, T ), (1.19)

θ(x, 0) = θ0(x), x ∈ Ω, (1.20)

where σ is a positive function of the quantity 1 − θ, in the current monograph
we mainly focus on the mathematical analysis of the deterministic model (1.15)–
(1.17) and its non-local variation. Whilst regarding the mathematical analysis of the
touching down behavior of the stochastic local MEMS (1.18)–(1.20) the reader can
see [25].

1.1.4 An Uncoupled Non-local Model

As it has been pointed out above, the pull-in instability is a ubiquitous feature of
electrostatically actuated systems. Many researchers have focused on extending the
stable operation of electrostatically actuated systems beyond the pull-in regime. In
particular, in [42, 43] the basic capacitive control scheme was first proposed by
Seeger and Crary to elaborate this kind of stabilization, see also [5]. More precisely,
this scheme provides control of the voltage by the addition of a series capacitance
to the circuit containing the MEMS device, see Fig. 1.2, since the added capacitance
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Fig. 1.2 The basic
capacitive control circuit

acts as a voltage divider. The novelty to the produced mathematical model is that
now the induced nonlinearity is of a non-local form.

Indeed, a straightforward application of Kirchoffs laws to the circuit gives that
the voltage across the electrical circuit is provided by

V = Vs

1 + C
C f

, (1.21)

where Vs stands for the source voltage while C, C f represent the capacitance of the
device and the capacitance of the fixed series capacitor respectively.

Now the stabilization effect of the new configuration is justified as follows: the
capacitance C depends on the deflection of the system and it actually increases as
the gap between the components of the system decreases. This, in turn, produces a
drop in the value of V and thus reduces the electrostatic force stabilizing the device.
This will is depicted later on by the mathematical analysis of the produced model.
In that case the electric problem is modified as follows

Δφ = 0 on the space between the two plates, (1.22)

φ = Vs f
( v

d

)
on the elastic membrane, (1.23)

φ = 0 on the ground plate, (1.24)

where the dimensionless function f exhibits the fact that the voltage drop across our
device when embedded in a circuit may depend upon the deflection of the elastic
plate v.

Now implementing again the scaling (1.5) system (1.22)–(1.24) is transformed
to

ε2Δ⊥ψ + ψzz = 0, (1.25)

ψ = f (θ) on the elastic membrane, (1.26)

ψ = 0 on the ground plate, (1.27)

β2θt t + θt − Δ⊥θ + δΔ2
⊥θ = −λ

[
ε2|∇⊥ψ |2 + (ψzz)

2
]
, (1.28)
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where the parameters β, δ, ε and λ are defined again by (1.10), (1.11), (1.12) and
(1.13) respectively.

Considering now the small aspect ratio limit ε → 0 into (1.25)–(1.28) and fol-
lowing the same steps as in the Sect. 1.1.3 we derive

ψ(θ) = z f (θ)

θ
, (1.29)

and thus the uncoupled equation

β2θt t + θt − Δθ + δΔ2θ = −λ
f 2(θ)

θ2
, (1.30)

where we have again dropped the subscript ⊥ since θ is independent of z.
It then remains to compute the term f (θ) which is actually given as

f (θ) = V

Vs
= 1

1 + C
C f

= 1

1 + C0
C f

∫
Ω

ψz(x, y, 0)dxdy
(1.31)

by virtue of (1.21) and taking also into account that the capacity C is provided by

C = C0

∫
Ω

ψz(x, y, 0)dx dy,

where C0 the capacitance of the undeflected device.
Utilizing (1.30) as well as that ψz(x, y, 0) = 1, due to the fact that V = Vs at

z = 0, then (1.31) yields

f (θ) = 1

1 + α

∫
Ω

1

θ(x, y)
dx dy

(1.32)

where α = C0
C f

.

Now plugging (1.32) into (1.30) we end up with the following

β2θt t + θt − Δθ + δΔ2θ = − λ

θ2

(
1 + α

∫
Ω

1

θ(x, y)
dxdy

)2 , (1.33)

for (x, y) ∈ Ω and t > 0. An interesting feature of Eq. (1.33) is that it is non-local
due to the presence of the spatial integral which is actually an output of the model
reduction and coupled domain structure of the initial problem. Its occurrence also
indicates that the deformation of each point of the elastic plate also depends on the
deformation of the neighboring points as it is anticipated.
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If we consider again the case where the elastic plate has low rigidity, i.e., δ → 0,
then (1.33) is reduced to

β2θt t + θt − Δθ = − λ

θ2

(
1 + α

∫
Ω

1

θ(x, y)
dxdy

)2 , (1.34)

for (x, y) ∈ Ω and t > 0, which is also associated with the boundary condition

θ = 1 on ∂Ω, (1.35)

elaborating the assumption that the edges of the elastic plate are kept fixed as well
as with the initial condition.

θ(x, 0) = θ0(x) in Ω. (1.36)

1.2 Mathematical Analysis

In the current section we investigate the mathematical behavior of the non-local
models derived in Sect. 1.1.We begin with the investigation of the parabolic problem,
when β � 1, and, we continue with study of the hyperbolic problem, when β 
 1.

1.2.1 A Non-local Parabolic Problem

We now consider the non-local parabolic problem in QT := Ω × (0, T )

ut − Δu = λ

(1 − u)2
(
1 + α

∫
Ω

1

1 − u
dxdy

)2 , 0 ≤ u < 1 in QT , (1.37)

u = 0 on ∂Ω × (0, T ), (1.38)

0 ≤ u(x, 0) = u0(x) < 1 in Ω, (1.39)

which describes the operation of theMEMSdevicewhen it is a part capacitive control
circuit. Henceforth, without any loss of generality we consider α = 1.

1.2.1.1 Local Existence and Uniqueness

We first begin with the local existence and uniqueness of classical solutions to prob-
lem (1.37)–(1.39). Note that since the integrand in the non-local term is an increasing
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function, the usual comparison principle for parabolic problems is not applicable for
problem (cf. [30]) and thus lower and upper solutions of (1.37)–(1.39) are not nec-
essarily ordered. Therefore, in the following we define the notion of lower-upper
solution pairs which will be applied for comparison purposes.

Definition 1.2.1 Apair of functions 0 ≤ v(x, t), z(x, t) < 1with v, z ∈ C2,1(QT )∩
C(QT ) is called a lower-upper solution pair of (1.37)–(1.39), if v(x, t) ≤ z(x, t)
for (x, t) ∈ QT , v(x, 0) ≤ u0(x) ≤ z(x, 0) in Ω , v(x, t) ≤ 0 ≤ z(x, t) for
(x, t) ∈ ∂Ω × [0, T ], and

vt ≤ Δv + λ

(1 − v)2
(
1 + ∫

Ω
dx
1−z

)2 in QT ,

zt ≥ Δz + λ

(1 − z)2
(
1 + ∫

Ω
dx
1−v

)2 in QT .

If the above inequalities are strict, then (v, z) is called a strict lower-upper solu-
tion pair. Using now the concept of lower-upper solution pair introduced in Defini-
tion1.2.1 we show the following local in time existence result.

Proposition 1.2.2 Let (v, z) be a lower-upper solution pair to (1.37)–(1.39) in QT

for some T > 0. Then there exists a unique (classical) solution u to (1.37)–(1.39)
such that v ≤ u ≤ z in QT .

Proof First, we define the iteration scheme starting with u0 = z and u0 = v, and
proceeding according to

unt = Δun + λ

(1 − un−1)
2
(
1 + ∫

Ω
dx

1−un−1

)2 in QT ,

unt = Δun + λ

(1 − un−1)2
(
1 + ∫

Ω
dx

1−un−1

)2 in QT ,

un(x, t) = un(x, t) = 0, on ∂Ω × (0, T ),

un(x, 0) = un(x, 0) = u0(x), for x ∈ Ω,

for n = 1, 2, . . .. The above problems are local, therefore, using the standard com-
parison arguments for parabolic problems and Definition 1.2.1, we easily see that the
sequences {un}∞n=1, {un}∞n=1 ∈ C2,1(QT ) ∩ C(QT ) are strictly positive and satisfy

v ≤ un−1 ≤ un ≤ · · · ≤ un ≤ un−1 ≤ z.

Hence, by the parabolic regularity theory and Dini’s theorem, the sequences {un}∞n=1,{un}∞n=1 converge as n → ∞ uniformly to u1, u2 ∈ C2,1(QT )∩C(QT ), respectively,
such that v ≤ u1 ≤ u2 ≤ z.
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We claim that u1 = u2. Indeed, u1, u2 satisfy

u1t = Δu1 + λ

(1 − u1)2
(
1 + ∫

Ω
dx

1−u2

)2 in QT ,

u2t = Δu2 + λ

(1 − u2)2
(
1 + ∫

Ω
dx

1−u1

)2 in QT ,

u1(x, t) = u2(x, t) = 0, on ∂Ω × (0, T ),

u1(x, 0) = u2(x, 0) = u0(x), for x ∈ Ω.

Denote ψ(x, t) = u1(x, t) − u2(x, t) then ψ(x, t) satisfies

ψt = Δψ + A(x, t)ψ + B(x, t)
∫

Ω

∫ 1

0

dθ[
1 − θu1 − (1 − θ)u2

]2 ψdx, in QT ,

ψ(x, t) = 0, for (x, t) ∈ (∂Ω × (0, T )) ∩ (Ω × {0}),

where

A(x, t) := 2λ

∫ 1

0

dθ

[1 − θu1 − (1 − θ)u2]3(
1 + ∫

Ω
dx

1−u2

)2 > 0,

and

B(x, t) := λ

(1 − u2)2

2 + ∫
Ω

dx
1−u1

+ ∫
Ω

dx
1−u2(

1 + ∫
Ω

dx
1−u1

)2(
1 + ∫

Ω
dx

1−u2

)2 > 0.

Applying Proposition 52.24 in [39] (which is actually a maximum principle for non-
local problems) we easily obtain that ψ(x, t) = 0 in QT . Hence u1 = u2 := u in
QT .

Finally, suppose that there is a second solution U satisfying v ≤ U ≤ z. Then by
the preceding iterative scheme we derive that un ≤ U ≤ un for every n = 1, 2, . . ..
By sending n → ∞, we obtain that U = u. This proves the proposition. �

Remark 1.2.3 By the above analysis we derive that the solution of problem (1.37)–
(1.39) continues to exist as long as it remains less than or equal to b for some b < 1.
This argument implies that u ceases to exist only by “quenching”, i.e., if there exists
a sequence (xn, tn) → (x∗, t∗) as n → ∞ with t∗ ≤ ∞ such that u(xn, tn) → 1 as
n → ∞.

Let z(x, t) be the unique solution of the following problem:
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zt − Δz = λ

(1 − z)2 (1 + |Ω|)2 in QT , (1.40)

z = 0 on ∂Ω × (0, T ), (1.41)

z(x, 0) = z0(x) for x ∈ Ω. (1.42)

Then we have the following.

Corollary 1.2.4 If z0(x) ≥ u0(x) for every x ∈ Ω , then problem (1.37)–(1.39) has
a unique (classical) solution u on Ω ×[0, T ), where [0, T ) is the maximal existence
time interval for the solution z(x, t) of problem (1.40)–(1.42), and u(x, t) ≤ z(x, t)
on Ω × [0, T ).

Proof Set v(x, t) = 0, then we have

zt − Δz = λ

(1 − z)2 (1 + |Ω|)2 = λ

(1 − z)2
(
1 + ∫

Ω
dx
1−v

)2 in QT ,

z = 0 on ∂Ω × (0, T ),

z(x, 0) = z0(x) for x ∈ Ω,

while v(x, t) satisfies

vt − Δv = 0 ≤ λ

(1 − v)2
(
1 + ∫

Ω
dx
1−z

)2 in QT ,

v = 0 on ∂Ω × (0, T ),

v(x, 0) = 0 for x ∈ Ω.

Therefore, (v, z) is a lower-upper solution pair for problem (1.37)–(1.39) and the
result immediately follows by Proposition 1.2.2. �

Remark 1.2.5 All the results of this section could be carried out without any change
for equation

ut − Δu = λ f (x)

(1 − u)2
(
1 +

∫
Ω

1

1 − u
dxdy

)2 , (1.43)

as well, when f (x) > 0.

1.2.1.2 Estimates of Pull-In Voltage

The corresponding steady-state problem to (1.37)–(1.39) has the form

Δw + λ

K (1 − w)2
= 0, x ∈ Ω, w = 0, x ∈ ∂Ω, (1.44)
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where

K = K (w) :=
(
1 +

∫
Ω

dx

1 − w

)2
. (1.45)

Note that we always have 0 < w < 1 in Ω for a (classical) solution of (1.44).
By setting

μ = λ

K
= λ(

1 + ∫
Ω

dx
1−w

)2 , (1.46)

then (1.44) is transformed to

Δw + μ(1 − w)−2 = 0 x ∈ Ω, w = 0 x ∈ ∂Ω. (1.47)

Problems (1.44) and (1.47) are equivalent through (1.46), i.e., w is a solution of
(1.44) corresponding to λ if and only if w satisfies (1.47) for μ = λ/K . Thus, some
features of the solution set

S = {(λ, w)|w = wλ(x) is a classical solution to (1.44) for λ > 0},

resemble those of the solution set

C = {(μ, w)|w = wμ(x) is a classical solution to (1.47) for μ > 0}.

The structure of C is well known. Indeed, for any N , we recall from [15] that
there exists a positive constantμ∗ such that a solution of (1.47) exists, ifμ < μ∗, and
no solutions of (1.47) exist if μ > μ∗. Moreover, for each μ ∈ (0, μ∗) the minimal
solution of (1.47), denoted by wμ, satisfies

0 < wμ1(x) < wμ2(x) < 1 for x ∈ Ω, if 0 < μ1 < μ2 < μ∗, (1.48)

i.e., the minimal solutions are ordered with respect to the parameter μ.

Remark 1.1 We should point out here that a solution of (1.44) can be constructed
for small values of λ by using monotone iteration techniques and the concept of
lower-upper pairs of solutions, see [1].

In the radial symmetric case, i.e., when Ω = B1 ≡ B1(0) = {x ∈ R
N | 0 ≤

|x | < 1} is the unit ball of RN , N ≥ 2, it is proved in [21] (see also the proof
of Theorem 1.2.10 below) that S is homeomorphic to R and has end points (0, 0)
and (μ̂, 1 − |x |2/3) with μ̂ = [4 + 6(N − 2)]/9. Moreover, when 2 ≤ N < 7 the
solution curve (μ(s), w(·, s)), s ∈ R, of (1.47) bends infinitely many times around
the singular point (μ̂, 1 − |x |2/3). Whereas for N ≥ 7 the solution curve terminates
at (μ̂, 1 − |x |2/3) and no bendings occur. For a detailed analysis on the structure
of problem (1.47) when the term μ(1 − w)−2 is also multiplied by the function
f (x) = |x |p, p > 0, see [6, 8, 13, 27].
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Recall that for N = 1 there is λ∗ > 0 such that a steady state of (1.37)–(1.39)
exists if and only if λ ≤ λ∗. In fact, by Theorem 2.1 of [18], there are exactly two
solutions of (1.44) if λ ∈ (0, λ∗), while (1.44) has a unique solution if λ = λ∗ and
no solution if λ > λ∗. This indicates that the solution structure of the local problem
(cf. [31]) is preserved by the non-local one when N = 1. However, it is not obvious
that the aforementioned features of the local problem (1.47) are preserved by the
non-local problem (1.44) for the case N ≥ 2.

In the case where the Eq. (1.37) of problem (1.37)–(1.39) is substituted by (1.43),
the related stationary problem is given by

Δw + λ f (x)

K (1 − w)2
= 0, x ∈ Ω, w = 0, x ∈ ∂Ω, (1.49)

where K is given by (1.45) and f (x) ≥ 0.
In the following, we will focus on the case N ≥ 2. We first prove some results

regarding the case of a general smooth domain Ω and then we shift to the radial
symmetric case when Ω = B1(0) = {x ∈ R

N | 0 ≤ |x | < 1}.
Using the monotonicity property (1.48) we can prove the following existence

theorem, which actually provides a lower bound of the pull-in voltage λ∗.

Theorem 1.2.6 There exists a (classical) steady-state solution of (1.37)–(1.39) if
λ ∈ (0, (1 + |Ω|)2μ∗).

Proof We look for w = wμ for some μ. Note that, by (1.48), we have

(1 + |Ω|)2 = K (0) < K (wμ1) < K (wμ2), if 0 < μ1 < μ2 < μ∗.

Hence there exists a unique μ ∈ (0, μ∗) such that

μK (wμ) = λ, (1.50)

if λ ∈ (0, (1+ |Ω|)2μ∗). This proves the theorem, since problems (1.44) and (1.47)
are equivalent through (1.46). �

LetΩ be a strictly star-shaped domain ofRN , N ≥ 2. Then there exists a constant
β > 0 such that

s · ν ≥ β

∫
∂Ω

ds for any s ∈ ∂Ω,

where ν is the unit outward normal at s. Let v be a solution of the problem

Δv + μ f (v) = 0 x ∈ Ω, v = 0 x ∈ ∂Ω.

Then we have the following Pohozaev’s identity (see [38]):

μN
∫

Ω

F(v)dx − μ(N − 2)

2

∫
Ω

v f (v)dx = 1

2

∫
∂Ω

(s · ν)
( ∂v

∂ν

)2
ds, (1.51)
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where F(v) := ∫ v
0 f (s)ds.

Next we make use of Pohozaev’s identity to obtain an upper bound of the pull-in
voltage λ∗.
Theorem 1.2.7 Let Ω be a strictly star-shaped domain of R

N , N ≥ 2. Then
problem (1.44) has no solution if

λ > λ0 := N (1 + |Ω|)4
2β|Ω|2 ,

where |Ω| is the N-dimensional Lebesgue measure of Ω . Moreover, for N ≥ 2 there
exists λ∗ > 0 such that problem (1.44) has a unique solution for 0 < λ < λ∗ < λ0.

Proof Wefirst prove the second statement of the theorem.For N ≥ 3, byTheorem3.1
in [7] there exists a positive constantμ∗ such that problem (1.47) has a unique solution
for 0 < μ < μ∗. A similar result holds true for N = 2, see Theorem 4.1 in [20]. On
the other hand, any solution w = w(x) to (1.44) solves (1.47) with

μ = λ(
1 + ∫

Ω
dx
1−w

)2 ≤ λ

(1 + |Ω|)2 ,

due to the fact that 1
1−w ≥ 1, when w is a regular solution i.e., ||w||∞ < 1. We

claim that problem (1.44) has a unique solution for 0 < λ < λ∗ := μ∗(1 + |Ω|)2.
Indeed, let us assume that problem (1.44) has two distinct solutions w1, w2 for some
0 < λ < λ∗. We claim that

∫
Ω

dx

1 − w1
=
∫

Ω

dx

1 − w2
. (1.52)

Otherwise, if, for example,

∫
Ω

dx

1 − w1
<

∫
Ω

dx

1 − w2
,

then we have

λ

(1 + |Ω|)2 ≥ μ1 := λ(
1 + ∫

Ω
dx

1−w1

)2 > μ2 := λ(
1 + ∫

Ω
dx

1−w2

)2 . (1.53)

Since 0 < λ < λ∗ = μ∗(1 + |Ω|)2, we obtain by (1.53) that 0 < μ2 < μ1 <

μ∗. Hence w1(x) = w(x;μ1) and w2(x) = w(x;μ2) are minimal solutions of the
local problem (1.47). It follows by the monotonicity property (1.48) for the minimal
solution branch of (1.47) that w1(x) > w2(x) for x ∈ Ω . This implies that

∫
Ω

dx

1 − w1
>

∫
Ω

dx

1 − w2
,
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which is a contradiction. Using the same arguments we can exclude the possibility
of ∫

Ω

dx

1 − w1
>

∫
Ω

dx

1 − w2
.

Hence (1.52) is established and so local problem (1.47) has two distinct solutions
w1, w2 corresponding to the same μ, which contradicts to [7, Theorem 3.1] and [20,
Theorem 4.1]. Therefore, the second statement of the theorem is proved.

For the first statement, we suppose that problem (1.44) has a solution w for some
λ > 0. Then applying Pohozaev’s identity (1.51) to problem (1.44) with

f (w) = 1

K (1 − w)2
, F(w) = w

K (1 − w)
,

we obtain

λN

K

∫
Ω

w

1 − w
dx − λ(N − 2)

2K

∫
Ω

w

(1 − w)2
dx = 1

2

∫
∂Ω

(s · ν)
( ∂w

∂ν

)2
ds. (1.54)

By Hölder’s inequality, we have

0 ≤ −
∫

∂Ω

∂w

∂ν
ds ≤

( ∫
∂Ω

(∂w

∂ν

)2
ds
)1/2( ∫

∂Ω

ds
)1/2

,

hence due to the divergence theorem we derive

1

2

∫
∂Ω

(s · ν)
(∂w

∂ν

)2
ds ≥ β

2

( ∫
∂Ω

ds
) ∫

∂Ω

(∂w

∂ν

)2
ds ≥ β

2

( ∫
∂Ω

−∂w

∂ν
ds
)2

= β

2

( ∫
Ω

−Δwdx
)2 = λ2β

2K 2

( ∫
Ω

1

(1 − w)2
dx
)2

. (1.55)

By dropping out the negative terms in (1.54) and using again Hölder’s inequality,
it follows from (1.54) that

λN
∫
Ω

dx
1−w(

1 + ∫
Ω

dx
1−w

)2 ≥ λN

K

∫
Ω

w

1 − w
dx ≥ λ2β

2

⎡
⎢⎣

∫
Ω

dx
(1−w)2(

1 + ∫
Ω

dx
1−w

)2
⎤
⎥⎦

2

≥ λ2β

2|Ω|2

⎡
⎣

∫
Ω

dx
1−w(

1 + ∫
Ω

dx
1−w

)
⎤
⎦

4

≥ λ2β

2|Ω|2
( |Ω|
1 + |Ω|

)4

= λ2β

2

( |Ω|1/2
1 + |Ω|

)4
, (1.56)
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where the last inequality in (1.56) comes out from the fact that

∫
Ω

dx

1 − w
≥ |Ω|,

and since the function g(s) = s/(1 + s) is increasing in s > 0. Note also that

s

(1 + s)2
≤ 1

4
for all s ≥ 0. (1.57)

Combining (1.56) and (1.57), we get

λN

4
≥ λ2β

2

( |Ω|1/2
1 + |Ω|

)4
,

or equivalently

λ ≤ N (1 + |Ω|)4
2β|Ω|2 .

This completes the proof of the theorem. �

Remark 1.2.8 The second statement of Theorem 1.2.7 is still true for a general
domain Ω. Indeed, for N = 2 Theorem 4.1 in [21] guarantees the existence of μ∗
such that the local problem (1.47) has a unique solution for 0 < μ < μ∗, see also
Theorem 3.3 in [7]. On the other hand in higher dimensions an analogous result
can be found in Sect. 5 of [44]. Furthermore, the second statement of Theorem 1.2.7
holds for problem (1.49) when f (x) = |x |p, p > 0, and Ω is a bounded domain in
R

N , N ≥ 3, since in this case Theorem 3.2 in [7] guarantees the existence ofμ∗ > 0
such that the local problem (1.47) has only the minimal solution for 0 < μ < μ∗.

Remark 1.2.9 LetωN denote the volume of the N -dimensional unit ball B1(0).Then
Theorem 1.2.7 implies that no steady states exist if λ > N 2(1+ωN )4

2ωN
,whenΩ = B1(0).

1.2.1.3 Structure of Radial Symmetric Solutions

When Ω = B1 ≡ B1(0), then the solution of (1.44) is radial symmetric, [14], i.e.,
w(x) = w(r), where r = |x | and (1.44) is reduced to

(r N−1wr )r + λr N−1

K (1 − w)2
= 0 for r ∈ (0, 1), (1.58)

w(1) = 0, wr (0) = 0, (1.59)
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where now K has the form

K =
(
1 + NωN

∫ 1

0

r N−1

1 − w
dr
)2

,

or equivalently to the local problem

(r N−1wr )r + μr N−1

(1 − w)2
= 0 for r ∈ (0, 1), (1.60)

w(1) = 0, wr (0) = 0, (1.61)

where μ = λ
K .

We then denote Cr ,Sr instead of C ,S respectively. Also, set

S λ
r = {w ∈ C2(B1) ∩ C0(B1) | w solves (1.58)−(1.59)

}
,

the section ofSr cut by λ > 0. Then we have the following characterization ofSr .

Theorem 1.2.10 If N ≥ 2, then Sr is homeomorphic to R and has end points (0, 0)
and (̂λ, 1 − |x |2/3), where

λ̂ = Λ
(
1 + NωN

γ

)2
, Λ := 2

3
(N − 4/3) = μ̂, γ = N − 2/3.

Moreover, if 2 ≤ N < 7, then Sr bends infinitely many times with respect to λ

around λ̂ and there exist two positive constants λ∗ and λ∗ with 0 < λ∗ < λ̂ < λ∗
such that problem (1.58)–(1.59) has

• a unique solution for 0 < λ < λ∗ and for λ = λ∗,
• a finite number of solutions for λ ∈ (λ∗, λ∗) and λ �= λ̂,

• infinite number of solutions for λ = λ̂,
• no solutions for λ > λ∗,

see Fig.1.4.
Whereas no bending occurs in the case of N ≥ 7, i.e., problem (1.58)–(1.59) has

a unique solution for any 0 < λ < λ̂ = λ∗ and no solution for λ ≥ λ̂ = λ∗, see
Fig.1.5.

Proof Weproceed as in [21] using phase-plane analysis. First we note that every pos-
itive solution of problem (1.60)–(1.61) can be obtained as a solution of the following
initial-value problem

(r N−1wr )r + μr N−1

(1 − w)2
= 0, r > 0, (1.62)

w(0) = A, wr (0) = 0, (1.63)
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with a certain positive constant A ∈ (0, 1). We always require that 0 < w(r) < 1
for r ∈ (0, 1).

Putting

k =
√

Λ(1 − A)3

μ
=
√

KΛ(1 − A)3

λ
,

we apply the Emden transformation

w(r; t) = 1 − (1 − A) e2t/3z(t), r = ket , (1.64)

for Λ = [6(N−2)+4]
9 . Then problem (1.62)–(1.63) is transformed to

z̈ + γ ż + Λ

(
z − 1

z2

)
= 0, t > −∞, (1.65)

lim
t→−∞ e2t/3z(t) = 1, lim

t→−∞ e2t/3 ż(t) = −2

3
, (1.66)

where we require that 0 < z(t) < e−2t/3/(1 − A). Next if we set

w(r; t) = 1 − (1 − A) e−2t/3 z̃(t), r = ke−t ,

then z̃(t) satisfies

¨̃z − γ ˙̃z + Λ

(
z̃ − 1

z̃2

)
= 0, t > −∞,

lim
t→+∞ e−2t/3 z̃(t) = 1, lim

t→+∞ e−2t/3 ˙̃z(t) = 2

3
.

It has been proved in [21], that problem (1.65)–(1.66) has a global-in-time solu-
tion with the orbit O = {(z(t), ż(t)), t ∈ R} starting at t = −∞ from the point
(+∞,−∞) above its tangent line ż + 2z/3 = 0 and approaching the point (1, 0)
as t → +∞, see Fig. 1.3. On the other hand the orbit Õ = {(̃z(t), ˙̃z(t)), t ∈ R}
starts at t = −∞ from the point (+∞,+∞) below its tangent line ż − 2z/3 = 0
and approaches the point (1, 0) as t → +∞. Moreover, the orbits O and Õ are
symmetric with respect to z-axis in the phase plane, see [21]. Hence we obtain

∣∣∣ ż(t)
z(t)

∣∣∣ < 2

3
, (1.67)

for any t ∈ R.

Through the transformation (1.64), the boundary condition w(1) = 0 in (1.59) is
converted to

z(τ ) = [Λ/μ(τ)]1/3, τ := −1

2
ln

[6 (N − 2) + 4] (1 − A)3

9μ
= − ln k.
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In other words, for any τ ∈ R, (A(τ ), μ(τ), w(·, τ )) defined by

w(r; τ) = 1 − z(τ + ln r)

z(τ )
r2/3, (1.68)

μ(τ) = Λ

z3(τ )
, (1.69)

A(τ ) = 1 − 1

e2τ/3z(τ )
, (1.70)

satisfies the initial-value problem (1.62)–(1.63) or equivalently the local problem
(1.60)–(1.61). Let

K (τ ) :=
(
1 + NωN

∫ 1

0

r N−1

1 − w(r; τ)
dr
)2

,

then (λ(τ ), w(·, τ ))with λ(τ) = μ(τ)K (τ ) satisfies the non-local steady-state prob-
lem (1.58)–(1.59). Conversely, every solution of (1.58)–(1.59) corresponds, through
the Emden transformation (1.64) (where μ and A are given by (1.69) and (1.70)
respectively) and λ = μK , to an element of the orbit O for a certain τ ∈ R.

Therefore, there is an one-to-one and onto correspondence between the solutions to
(1.58)–(1.59) and the elements of the orbit O, henceSr is homeomorphic to O and
so to R.

Now, taking the limit as τ → −∞ in (1.69), we obtain that μ(τ) → 0, which
implies as well that w(·; τ) → 0 in B1 as τ → −∞, hence λ(τ) → 0 as τ → −∞.
On the other hand, taking the limit as τ → +∞ we obtain that μ(τ) → Λ and
w(·; τ) → w∗(·) in B1, where w∗(r) := 1− r2/3 is actually a singular, ||w∗||∞ = 1,
solution to (1.58)–(1.59). This implies that

λ(τ) → λ̂ := Λ
(
1 + NωN

∫ 1

0
r N−5/3dr

)2 = Λ
(
1 + NωN

γ

)2
as τ → +∞. (1.71)

Hence the terminating point of the solution curveSr is (̂λ, w∗).Besides, the singular
points (+∞,−∞) and (0, 1) of (1.65)–(1.66) correspond to the end points (1, 0)
and (̂λ, w∗) of the solution curve Sr . This proves the first part of the theorem.

Moreover, by Lemma 6 in [21], for 2 ≤ N < 7 the orbit O of (1.65)–(1.66)
starts from (+∞,−∞) above the tangent line ż + 2z/3 = 0 and terminates to
(1, 0) crossing clockwise infinitely many times the positive part of the z-axis, say
for t1 < t2 < · · · < tk < · · · , k ∈ N, as well as the curve Γ defined by

ż = −Λ

γ

(
z − 1

z2

)
:= f (z), (1.72)

for s1 < s2 < · · · < sk < · · · , k ∈ N, without crossing itself.
Let Qk = (z(tk), 0) and Pk = (z(sk), ż(sk)), k ∈ N, be the intersection points of

the orbitO with the z-axis and the curve Γ respectively, see Fig. 1.3. Then it suffices
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Fig. 1.3 The phase plane for 2 ≤ N < 7

to show that λ̇(τ ) changes sign across the arcs Q2k−1P2k−1 and Q2k P2k, see also
[33].

We note

λ(τ) = μ(τ)G2(τ ) = Λ
G2(τ )

z3(τ )
, G(τ ) := K 1/2(τ ). (1.73)

Also, from (1.68) it follows that

G(τ ) = 1 + NωN z(τ )

∫ 1

0

1

z(τ + ln r)
rγ−1dr

= 1 + NωN z(τ )e−γ τ

∫ τ

−∞
1

z(s)
eγ sds, (1.74)

and hence

Ġ(τ ) = ż(τ )

z(τ )
[G(τ ) − 1] − γ [G(τ ) − 1] + NωN . (1.75)

Then

λ̇(τ ) = 2Λ
G(τ )Ġ(τ )

z3(τ )
− 3Λ

G2(τ )

z4(τ )
ż(τ )

= ΛG(τ )

z4(τ )

[
2Ġ(τ )z(τ ) − 3ż(τ )G(τ )

]
. (1.76)
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Using (1.75), relation (1.76) reads

λ̇(τ ) = ΛG(τ )

z4(τ )

{
− ż(τ )[G(τ ) + 2] + 2

(
NωN − γ [G(τ ) − 1]

)
z(τ )

}
, (1.77)

which implies

λ̇(t2k−1) = 2ΛG(t2k−1)

z3(t2k−1)

(
γ + NωN − γ G(t2k−1)

)
, (1.78)

and

λ̇(s2k−1) = ΛG(s2k−1)

z4(s2k−1)

[
− (G(s2k−1) + 2) f (z(s2k−1))

+ 2
(
γ + NωN − γ G(s2k−1)

)
z(s2k−1)

]
, (1.79)

respectively, because Q2k−1 is on the z-axis.
By the mean value theorem equality (1.74) can be written in the form

G(τ ) = 1 + NωN
z(τ )

z(τ + ln r0(τ ))

∫ 1

0
rγ−1dr = 1 + NωN

γ

z(τ )

z(τ + ln r0(τ ))
, (1.80)

where r0(τ ) ∈ (0, 1). In particular, we have

G(t2k−1) = 1 + NωN

γ

z(t2k−1)

z(t2k−1 + ln r0(t2k−1))
, (1.81)

for any k.
Moreover, due to (1.71) we have

G(τ ) → 1 + NωN

γ
as τ → ∞.

Therefore, by (1.80) and the continuity of z(τ ) we derive

ln r0(τ ) → 0 as τ → ∞.

The later implies that at t2k−1 and for k sufficiently large we have | ln r0(t2k−1)| �
1. But, at t2k−1 a local minimum for z(t) occurs and hence z(t2k−1) < z(t2k−1 +
ln r0(t2k−1)) for k sufficiently large. It finally yields

G(t2k−1) < 1 + NωN

γ
for k sufficiently large, (1.82)
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by (1.81). Then (1.78) and (1.82) imply

λ̇(t2k−1) > 0, (1.83)

for k sufficiently large.
On the other hand, at the point P2k−1 we have z(s2k−1) < 1, and hence the first

term in the bracket in the RHS of (1.79) is strictly negative. Besides, there holds

G(s2k−1) = 1 + NωN

γ

z(s2k−1)

z(s2k−1 + ln r0(s2k−1))
, (1.84)

with 0 < − ln r0(s2k−1) � 1 whenever k is large enough. But, since z is strictly
increasing along the arc Q2k−1Q2k , equality (1.84) yields that

G(s2k−1) > 1 + NωN

γ
, (1.85)

for k sufficiently large. Therefore, we conclude from (1.79) that

λ̇(s2k−1) < 0, (1.86)

for k sufficiently large.
Now, from (1.83) and (1.86), whenever k is large there exists a point on the orbit

O denoted by R2k−1 = (z(τ2k−1), ż(τ2k−1)) with t2k−1 < τ2k−1 < s2k−1, located in
the arc Q2k−1P2k−1 such that λ̇(τ2k−1) = 0.

In a similarmanner, it is derived that λ̇(t2k) < 0 and λ̇(s2k) > 0,because z achieves
a local maximum at t2k and z(τ ) is strictly decreasing along the arc Q2k Q2k+1.

Therefore, we can again find, for k sufficiently large, a point R2k = (z(τ2k), ż(τ2k)),
t2k < τ2k < s2k , lying on the arc Q2k P2k such that λ̇(τ2k) = 0. Also by (1.77) we
obtain λ̇(τ ) < 0 for any s2k−1 < τ < t2k , while λ̇(τ ) > 0 for any s2k < τ < t2k+1.
Hence only the points {Rk} correspond to the bendings ofSr . For the distribution of
points {Rk} across the orbitO see Fig. 1.3. The above analysis implies thatSr bends
infinitely many times around λ̂, see Fig. 1.4.

On the other hand, when N ≥ 7, the orbit starts from (+∞,−∞) and stays inside
the area {(z, ż) | z > 0, 0 > ż > −2z/3} terminating to (1, 0) without crossing
neither the z-axis nor itself. Therefore, through the homeomorphism between Sr

and O , the curveSr exhibits no bending, and hence the local problem (1.60)–(1.61)
has a unique solution for 0 < μ < μ̂ = Λ. This means that the non-local problem
(1.58)–(1.59) has a unique solution for any 0 < λ < λ̂, see Fig. 1.5. The proof of
the theorem is complete. �

Remark 1.2.11 Using the same reasoning as above, an analogous result to Theo-
rem 1.2.10 could be proven for problem (1.49), see also Theorem 1.2 in [27].

Remark 1.2.12 By Theorem 1.2.10, if 2 ≤ N < 7 there is a strictly increasing
sequence {τk}∞k=1 ⊂ R such that the functions τ ∈ [τ2k−1, τ2k] �−→ λ(τ) and
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Fig. 1.4 The response
diagram of (1.58)–(1.59)
when 2 ≤ N < 7

Fig. 1.5 The response
diagram of (1.58)–(1.59)
when N ≥ 7

τ ∈ [τ2k, τ2k+1] �−→ λ(τ) are strictly decreasing and increasing respectively, and
λ(τ2) < λ(τ4) < · · · < λ(τ2k) < λ(τ2k+2) < · · · < λ̂ < · · · < λ(τ2k+1) <

λ(τ2k−1) < · · · < λ(τ3) < λ(τ1). On the other hand, if N ≥ 7 the function
τ ∈ (−∞,∞) �−→ λ(τ) is strictly increasing and for each λ ∈ (0, λ̂) the non-
local steady-state problem (1.58)–(1.59) has a unique solution.

Given w ∈ S λ, the linearized eigenvalue problem around (λ, w) is given as
follows

−Δφ − 2λφ

(1 − w)3
(
1 + ∫

Ω
dx
1−w

)2 +
2λ
∫
Ω

φdx
(1−w)2

(1 − w)2
(
1 + ∫

Ω
dx
1−w

)3 = ρφ, x ∈ Ω, (1.87)

φ = 0, x ∈ ∂Ω. (1.88)

The number of the negative eigenvalues ρ of problem (1.87)–(1.88), denoted by
i = i(λ, w), is called the Morse index at (λ, w).

In the case where Ω = B1(0), the number of the negative eigenvalues of the
corresponding linearized eigenvalue problem in the space of radially symmetric
functions around the radial symmetric solution w(r) ∈ S λ

r is denoted by iR =
iR(λ, w) and is called the radial Morse index at (λ, w). Regarding the radial Morse
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index the following result holds. For an analogous result associated to the non-local
Gelfand problem see [33, 34].

Theorem 1.2.13 If Ω = B1(0), then i(λ, w) = iR(λ, w) and this index increases
by one at each turning (bending) point of the solution curve Sr .

Proof The first statement of the theorem is proven by using a similar argument to the
proof of Proposition 3.3 in [32]. Indeed, when Ω = B1(0) any solution w to (1.44)
is radially symmetric, i.e., w(x) = w(r), r = |x |. Hence, applying the separation of
variables, any solution to (1.87)–(1.88) can be written in the form

φk(x) = ψk(r)ek(x/|x |), x ∈ B1(0), k = 1, 2, · · · ,

where {ek}∞k=1 is the sequence of eigenfunctions of the Laplace operator on the unit
sphere ∂ B1(0) with corresponding eigenvalues 0 = ν1 < N − 1 = ν2 ≤ ν3 ≤ · · · .
Owing to the radial symmetry of w and ψk we obtain

∫
B1(0)

φkdx

(1 − w)2
= 0 for k ≥ 2.

Then ψk(r) satisfies the problem

−ψ ′′
k − N − 1

r
ψ ′

k + νk

r2
ψk − 2λψk

(1 − w)3
(
1 + ∫B

dx
1−w

)2 = ρψk, 0 < r < 1,

(1.89)

ψ ′
k(0) = ψk(1) = 0, (1.90)

for any k ≥ 2. Note that problem (1.89)–(1.90) has the same form with the problem
obtained by (1.47) under linearization and separation of variables.

We claim that, under the assumption ρ < 0, we get ψk = 0 and so φk = 0 for
k ≥ 2. Indeed, let assume thatψk �= 0 and r1 be the first positive zero ofψk such that
ψk > 0 in (0, r1). Then using similar arguments as in [32] we derive for 0 < r < r1

[
∂ψk

∂r

∂w

∂r
r N−1 − ψk

∂2w

∂r2
r N−1

]r=r1

r=0

+
∫ r1

0

N − 1 − νk

r2
ψk

∂w

∂r
r N−1dr

= −ρ

∫ r1

0
ψk

∂w

∂r
r N−1dr. (1.91)

Taking into account that w(r) is radial decreasing as well as that νk ≥ N − 1 for
k ≥ 2 we derive by (1.91) that ρ > 0, leading to a contradiction. Therefore, under
the hypothesis ρ < 0 we have that the solution of (1.87)–(1.88) could be written
in the form φ(x) = cψ(r), for some constant c with ψ(r) satisfying (1.89)–(1.90),
which implies the desired result i(λ, w) = iR(λ, w).

The second part of the theorem is proven by the method of [34]; note that each
(λ, w) ∈ Cr corresponds to (z(τ ), ż(τ )) ∈ O and therefore, it is parameterized by
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τ ∈ R: (λ, w) = (λ(τ ), w(τ )). We denote by ρ�
τ , � = 1, 2, . . . , the �-th eigenvalue

of the linearized problem (1.87)–(1.88) around (λ(τ ), w(τ )) which corresponds to a
radially symmetric eigenfunction. Each ρ�

τ is simple. If (λ(τ ), w(τ )) is on a turning
point ofCr , then, by the implicit function theorem, there is � ≥ 1 such that ρ�

τ = 0. If
ρ�

τ = 0 holds for some � ≥ 1 with (λ(τ ), w(τ )) ∈ Cr not on a turning point, then, by
the bifurcation theory on the critical point of odd multiplicity, [40, 41], it is actually
a bifurcation point of Cr . But, this is impossible by the geometric features of Sr

provided by Theorem 1.2.10, and therefore, (λ(τ ), w(τ )) is on a turning point of Cr

if and only if (1.87)–(1.88) has a zero eigenvalue ρ�
τ = 0 for some � ≥ 1. Denoting

the k-th turning point of Cr by Tk = (λ(τk), w(·, τk)), τ1 < τ2 < · · · < τk < · · · ,
then the assertion follows if we can prove that ρ̇�(k)

τk
< 0 for k ≥ 1, where �(k) is

such that ρ�(k)
τk

= 0.
By differentiating (1.44) with respect to τ , we deduce

Δẇ + λ̇(1 − w)−2

(
1 + ∫B1(0)

dx
1−w

)2 + 2λ(1 − w)−3ẇ(
1 + ∫B1(0)

dx
1−w

)2 − 2λ(1 − w)−2
∫

B1(0)
(1 − w)−2ẇdx(

1 + ∫B1(0)
dx
1−w

)3 = 0 in B1(0),

(1.92)
ẇ = 0 on ∂ B1(0), (1.93)

where ẇ := ∂w/∂τ and λ̇ := dλ/dτ . Hence wk := w(·, τk) satisfies

Δẇk + 2λ(1 − wk)−3ẇk(
1 + ∫B

dx
1−wk

)2 − 2λ(1 − wk)−2 ∫
B1(0)

(1 − wk)−2ẇkdx(
1 + ∫B

dx
1−wk

)3 = 0 in B1(0),

ẇk = 0 on ∂ B1(0),

recalling that λ̇(τk) = 0.
We claim that

ẇ(r, τ ) = r2/3
z(τ + ln r)ż(τ ) − ż(τ + ln r)z(τ )

z2(τ )
�≡ 0, ∀ τ ∈ R.

Indeed, if there is a τ ∈ R such that ẇ(r, τ ) ≡ 0, then we have ż/z is identically
equal to a constant. This constant must be −2/3 by (1.66). Then (1.65) implies that
1
z2 ≡ 0, a contradiction. Hence the claim is proved and we obtain that ẇk is an
eigenfunction of the linearized problem (1.87)–(1.88) corresponding to ρ = ρ�(k)

τk
=

0. Therefore, the standard perturbation theory ([24]) guarantees the existence of a
function ψ = ψ(·, τ ) and ρ = ρ(τ) satisfying the linearized problem (1.87)–(1.88)
such that ψ(·, τk) = ẇk and ρ(τk) = ρ�(k)

τk
= 0.
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Differentiating problems (1.92)–(1.93) and (1.87)–(1.88) with respect to τ and
taking into account that λ̇(τk) = ρ(τk) = 0, we obtain

Δẅk + λ̈(1 − wk)
−2

(
1 + ∫B

dx
1−wk

)2 + 6λ(1 − wk)
−4ẇ2

k(
1 + ∫B

dx
1−wk

)2 + 2λ(1 − wk)
−3ẅk(

1 + ∫B
dx

1−wk

)2

−8λ(1 − wk)
−3ẇk

∫
B(1 − wk)

−2ẇkdx(
1 + ∫B

dx
1−wk

)3 − 4λ(1 − wk)
−2
∫

B(1 − wk)
−3ẇ2

k dx(
1 + ∫B

dx
1−wk

)3

+
6λ(1 − wk)

−2
( ∫

B(1 − wk)
−2ẇkdx

)2
(
1 + ∫B

dx
1−wk

)4 − 2λ(1 − wk)
−2
∫

B(1 − wk)
−2ẅkdx(

1 + ∫B
dx

1−wk

)3 = 0, (1.94)

for x ∈ B1(0) with ẅk = 0 on ∂ B1(0), and

Δψ̇k + 6λ(1 − wk)
−4ψkẇk(

1 + ∫B
dx

1−wk

)2 + 2λ(1 − wk)
−3ψ̇k(

1 + ∫B
dx

1−wk

)2

−4λ(1 − wk)
−3ψk

∫
B(1 − wk)

−2ẇkdx(
1 + ∫B

dx
1−wk

)3 − 4λ(1 − wk)
−3ẇk

∫
B(1 − wk)

−2ψkdx(
1 + ∫B

dx
1−wk

)3

−4λ(1 − wk)
−2
∫

B(1 − wk)
−3ψ2

k dx(
1 + ∫B

dx
1−wk

)3 +
6λ(1 − wk)

−2
( ∫

B(1 − wk)
−2ψkdx

)2
(
1 + ∫B

dx
1−wk

)4

−2λ(1 − wk)
−2
∫

B(1 − wk)
−2ψ̇kdx(

1 + ∫B
dx

1−wk

)3 = −ρ̇ψk, (1.95)

for x ∈ B1(0) with ψ̇k = 0 on ∂ B1(0). Using ψk = ẇk , it follows by (1.94) and
(1.95) that

λ̈(τk)(1 − wk)
−2

(
1 + ∫B

dx
1−wk

)2 = ρ̇(τk)ẇk . (1.96)

Multiplying (1.96) by ẇk and integrating over B1, we derive that

λ̈(τk)
∫

B(1 − wk)
−2ẇkdx(

1 + ∫B1

dx
1−wk

)2 = ρ̇(τk)

∫
B1

ẇ2
kdx . (1.97)

Thus, in order to obtain the desired result we need to prove that the left-hand side of
(1.97) is negative.

Using that λ̇(τk) = 0 relation (1.76) implies
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Ġ(τk) = 3

2

ż(τk)G(τk)

z(τk)
, (1.98)

while (1.77) also reads

ż(τk)
(

G(τk) + 2
)

= 2
(

NωN − γ (G(τk) − 1)
)

z(τk), (1.99)

for every k = 1, 2, . . . .
Differentiating (1.77) with respect to τ , we obtain

λ̈(τ ) = Λ
Ġ(τ )z4(τ ) − 4G(τ )z3(τ )ż(τ )

z8(τ )
×
[

− ż(τ )(G(τ ) + 2) + 2
(

NωN − γ (G(τ ) − 1)
)

z(τ )
]

+ ΛG(τ )

z4(τ )

[
− z̈(τ )(G(τ ) + 2) − ż(τ )Ġ(τ ) − 2γ Ġ(τ )z(τ ) + 2

(
NωN − γ (G(τ ) − 1)

)
ż(τ )

]
,

and due to (1.99) yields

λ̈(τk) = ΛG(τk)

z4(τk)

[
− z̈(τk)(G(τk) + 2) − ż(τk)Ġ(τk) − 2γ Ġ(τk)z(τk)

+2
(

NωN − γ (G(τk) − 1)
)

ż(τk)
]
. (1.100)

Now (1.100), via (1.98), yields

λ̈(τk) = 2

3

ΛĠ(τk)

z3(τk)

[
− z̈(τk)

ż(τk)
(G(τk) + 2) − Ġ(τk) − 2γ Ġ(τk)

z(τk)

ż(τk)

+2
(

NωN − γ (G(τk) − 1)
)]

.

Using (1.75), (1.98) and (1.99), we finally end up with the following

λ̈(τk) = 2

3

ΛĠ(τk)

z3(τk)

[
− z̈(τk)

ż(τk)
(G(τk) + 2) − γ (1 + 2G(τk)) + 3

ż(τk)

z(τk)
− NωN

]
.

Noting that

Ġ(τk) =
∫

B1(0)
(1 − wk)

−2ẇkdx,

it follows by (1.97)

2ΛĠ(τk)
2

3z3(τk)

C(τk)(
1 + ∫B1(0)

dx
1−wk

)2 = ρ̇(τk)

∫
B1(0)

ẇ2
kdx,
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where

C(τk) := − z̈(τk)

ż(τk)
(G(τk) + 2) − γ (1 + 2G(τk)) + 3

ż(τk)

z(τk)
− NωN .

Therefore, it is enough to prove that C(τk) < 0 as well as that Ġ(τk) �= 0.
Note that for τ = τ2k−1 there holds

z̈(τ2k−1)

ż(τ2k−1)
> 0,

since ż(τ2k−1) > 0 and z̈(τ2k−1) > 0.
The latter actually holds because the point R2k−1 = (z(τ2k−1), ż(τ2k−1)) is below

the curve Γ, i.e., ż(τ2k−1) < f (z(τ2k−1)) and due to the orbit equation (1.65) the
strictly positivity of z̈(τ2k−1) is obtained, see also Fig. 1.2. Analogously, we have that
ż(τ2k) < 0 and z̈(τ2k) < 0, since now R2k = (z(τ2k), ż(τ2k)) is above the curve Γ.

Hence at every turning point Rk = (z(τk), ż(τk)) we have

z̈(τk)

ż(τk)
> 0. (1.101)

Furthermore, by (1.67)

3
ż(τk)

z(τk)
− NωN < 2 − NωN < 0 for any N ≥ 2. (1.102)

Hence C(τk) is strictly negative as an immediate consequence of (1.101) and (1.102)
since also G(τ ) > 0.

Moreover, differentiating (1.73) with respect to τ we obtain

μ̇(τk) = −2λ(τk)Ġ(τk)

G3(τk)
. (1.103)

On the other hand, differentiating (1.69) with respect to τ we have

μ̇(τk) = −3Λz−4(τk)ż(τk) �= 0, (1.104)

since at τ = τk the orbit O does not meet the curve z-axis. Therefore by (1.103)
and (1.104) we derive that Ġ(τk) �= 0 and we finally conclude that ρ̇(τk) < 0 which
proves the desired assertion. This completes the proof of the theorem. �

Remark 1.2.14 The above theorem characterizes the level of stability of the steady-
state solutions. In particular, for 2 ≤ N < 7 we have i = iR = k on the arc Tk Tk+1

of the curve Sr , where Tk = (λ(τk), w(τk)), k = 0, 1, 2, . . . with τ0 = −∞.
That means that moving from the minimal to the maximal branch of the steady-
state problem, for 0 < λ < λ̂ the solutions become less stable. On the other hand,
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there always holds i = iR = 0 for N ≥ 7, i.e., the unique steady-state solution for
0 < λ < λ̂ is asymptotically stable.

Remark 1.2.15 Following the same arguments as above, the second statement of
Theorem 1.2.13 could be also proved for problem (1.49) when f (x) = |x |p, p > 0,
see also Theorem 1.3 in [27]. On the other hand, the first statement of Theorem
1.2.13 does not hold for problem (1.49), since general theorems, see [14, 35], of
radial symmetry for stationary problems are not valid when fr > 0, r = |x | (which
is the case for f (x) = |x |p, p > 0).

1.2.1.4 Global Existence Versus Quenching

Given λ ∈ (0, (1+|Ω|)2)μ∗), by Theorem 1.2.6, there exists a minimal steady-state
solution of (1.37)–(1.39), denoted bywλ, such thatwλ = wμ withμ satisfying (1.50).
Then we have the following theorem on the global existence for small values of λ.

Theorem 1.2.16 For any λ ∈ (0, (1 + |Ω|)2μ∗), then problem (1.37)–(1.39) with
u0 ≤ wλ has a solution which exists globally in time and converges to the minimal
steady state wλ as t → ∞.

Proof By Corollary 1.2.4, we obtain that 0 ≤ u ≤ z ≤ wλ, where z is the unique
solution of the local problem (1.40)–(1.42) with z0 = u0 ≤ wλ. Therefore we derive
that 0 ≤ u ≤ z ≤ wμ for 0 < μ = λ/(1+|Ω|)2 < μ∗. But it is known that the local
problem (1.40)–(1.42) has a global-in-time solution for 0 < μ < μ∗ and z0 ≤ wμ

hence the non-local problem (1.37)–(1.39) does so.
The proof of convergence result can be carried out by a similar argument as that

in [18] and so we omit it here. �

Next, we show that the solution of problem (1.37)–(1.39) quenches in finite time
for certain initial data. It is easy to see that problem (1.37)–(1.39) admits an energy
functional of the form

E[u](t) ≡ E(t) = 1

2

∫
Ω

|∇u|2dx + λ(
1 + ∫

Ω
(1 − u)−1dx

) , (1.105)

which decreases with respect to time across any solution of problem (1.37)–(1.39).
More precisely there holds

d E

dt
= −

∫
Ω

u2
t (x, t)dx < 0, (1.106)

hence

0 ≤
∫ T

0

∫
Ω

u2
t (x, t)dxdt = E(0) − E(T ) ≤ E(0) < ∞, (1.107)
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for any 0 < T < Tmax , where Tmax is the maximal existence time of problem (1.37)–
(1.39). The following quenching result reveals the fact that quenching can also be
controlled via initial conditions too, see [16, 17].

Theorem 1.2.17 For any fixed λ > 0, there exist initial data such that the solution
of problem (1.37)–(1.39) quenches in finite time provided the corresponding initial
energy E(0) is chosen sufficiently small, i.e., if

E(0) <
λ q (|Ω|)

2
. (1.108)

Proof Suppose that problem (1.37)–(1.39) has a global-in-time (classical) solution
u. Set

Z(t) =
∫

Ω

u2(x, t)dx .

Multiplying Eq. (1.37) by u and integrating by parts over Ω , we derive

1

2

d Z

dt
=
∫

Ω

u
[
Δu +

λ
(1−u)2(

1 + ∫
Ω

(1 − u)−1dx
)2
]
dx

= −
∫

Ω

|∇u|2dx + λ

∫
Ω

u
(1−u)2

dx(
1 + ∫

Ω
(1 − u)−1dx

)2 . (1.109)

Using (1.105) and the energy dissipation formula (1.106), relation (1.109) reads

1

2

d Z

dt
= −2E(t) + 2λ

1 + ∫
Ω

(1 − u)−1dx
+ λ

∫
Ω

u
(1−u)2

dx(
1 + ∫

Ω
(1 − u)−1dx

)2

≥ −2E(0) + λ
2
(
1 + ∫

Ω
dx
1−u

)
+ ∫

Ω
u

(1−u)2
dx

(
1 + ∫

Ω
(1 − u)−1dx

)2

= −2E(0) + λ
2 + ∫

Ω
2−u

(1−u)2
dx(

1 + ∫
Ω

(1 − u)−1dx
)2 . (1.110)

On the other hand, using Hölder’s and Young’s inequalities, we can deduce that

(
1 +

∫
Ω

dx

1 − u

)2 ≤ 2 + 2|Ω|
∫

Ω

dx

(1 − u)2
. (1.111)

Combining (1.110) and (1.111) yields
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1

2

d Z

dt
≥ −2E(0) + λq (|Ω|) ,

where

q (|Ω|) :=
⎧⎨
⎩
1, |Ω| ≤ 1

2 ,
1

2|Ω| , |Ω| ≥ 1
2 ,

see [16, 17], and finally

Z(t) ≥ 2 [q (|Ω|) λ − 2E(0)] t + Z(0).

The latter implies that Z(t) → ∞ as t → ∞ provided that E(0) satisfies (1.108).
On the other hand, by our initial assumption we have that Z(t) ≤ |Ω| for any

t > 0, leading to a contradiction. Therefore the theorem follows. �

Remark 1.2.18 Note that for N = 1 and Ω = (0, 1/2) the condition (1.108) holds
if for example choose

u0(x) =

⎧⎪⎨
⎪⎩

1
1−δ

x, 0 ≤ x < δ
2 (1 − δ),

δ
2 ,

δ
2 (1 − δ) ≤ x ≤ 1

2 − δ
2 (1 − δ),

1
1−δ

(x − 1
2 ),

1
2 − δ

2 (1 − δ) ≤ x ≤ 1
2 ,

where 0 < δ < 1 and for λ sufficiently large.
Indeed for such initial data we have

E(0) := 1

2

∫ 1/2

0
(u′

0(x))2dx + λ

1 + ∫ 1/20
dx

1−u0(x)

= δ

2(1 − δ)
+ λ

1 + 1
2−δ

− 2(1 − δ) ln(1 − δ
2 )

and then condition (1.108) is satisfied for any λ > 5.5 by choosing for example
0.97 < δ < 1. Such initial data as above, leading to quenching, could be constructed
in higher dimensions as well.

In the following we present a quenching result for problem (1.37)–(1.39) holding
for any λ > λ∗, recalling that λ∗ is given by Theorem 1.2.10, in the radial symmetric
case Ω = B1(0). Indeed the following holds see also [29].

Theorem 1.2.19 Consider symmetric and radial decreasing initial data u0(r). Then
for any λ > λ∗ the solution of problem (1.37)–(1.39) quenches in finite time Tq < ∞.

The proof of Theorem 1.2.19 will be given in different steps and thus we need
first to provide some auxiliary concepts and results.

For the purposes of the current section we will need the notion of a weak solution
of problem (1.44). In particular we define the following form of weak solution for
(1.44).
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Definition 1.2.20 A function w ∈ H 1
0 (Ω) is called a weak finite-energy solution of

(1.44) if there exists a sequence {w j }∞j=1 ∈ C2(Ω) ∩ C0(Ω) satisfying as j → ∞

w j ⇀ w weakly in H 1
0 (Ω) , (1.112)

w j → w a.e., (1.113)
1

(1 − w j )2
→ 1

(1 − w)2
in L1(Ω) , (1.114)

1

(1 − w j )
→ 1

(1 − w)
in L1(Ω), (1.115)

and

Δw j + λ

(1 − w j )2
(
1 + ∫

Ω
dx

1−w j

)2 → 0 in L2(Ω). (1.116)

It follows that any weak finite-energy solution of (1.44) also satisfies

−
∫

Ω

∇φ · ∇w dx + λ

∫
Ω

φ

(1−w)2
dx(

1 + ∫
Ω

dx
1−w

)2 = 0 for all φ ∈ H 1
0 (Ω),

i.e., it is a weak H 1
0 (Ω)−solution of (1.44) as well, see also [47].

Set

λ̂ := sup {λ > 0 : problem (1.44) admits a weak finite-energy solution} .

The relation between λ∗ and λ̂ is then provided by the following:

Proposition 1.2.21 For radially symmetric problems, with radially decreasing solu-
tions, the suprema of the spectra of the classical and weak problems are identical,
that is λ∗ = λ̂.

Proof Since any classical solution of (1.44) is also a weak finite-energy solution,
then we have λ∗ ≤ λ̂.

On the other hand, we can take λ1 arbitrarily close to λ̂ so that there is a weak
finite-energy solution w1 for λ = λ1. Since w1 is decreasing with 0 ≤ w ≤ 1, either
w < 1 for 0 < r ≤ 1 or there is some s > 0 such that w = 1 for 0 ≤ r < s. In the
latter case

∫
Ω

(1 − w)−1 dx becomes infinite so that w is then a weak finite-energy
solution of Δw = 0 satisfying 0 ≤ w ≤ 1, as well as the boundary condition w = 0,
giving w ≡ 0. We must then have w1(r) < 1 for r > 0 and it follows that w1 is
regular for r > 0.

For N = 1, simple integration now gives that the solution is classical. For N ≥ 2,
following now [17] (see also [21]), the (classical) problem can be solved in r > 0 to
find that there is precisely one limiting value of λ, say λ∗, for which w(0) = 1 and
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w is then a weak finite-energy solution but not classical. Depending upon the value
of N , λ∗ < λ∗ or λ∗ = λ∗. In either case, λ∗ = λ̂. �

A key estimate for proving our quenching result is given by the following:

Lemma 1.2.22 Let u be a global-in-time solution of problem (1.37)–(1.39). Then
there is a sequence {t j }∞j=1 ↑ ∞ as j → ∞ such that

λ

∫
Ω

u j (1 − u j )
−2 dx ≤ C1H 2(u j ), (1.117)

for some positive constant C1, where u j = u(·, t j ) and

H(u j ) := 1 +
∫

Ω

(1 − u j )
−1 dx > 0. (1.118)

Proof Suppose that the problem (1.37)–(1.39) has aglobal-in-time solutionu(x, t) =
u(x, t; λ). Then, multiplying Eq. (1.37) by u and integrating over Ω , we derive

∫
Ω

u ut dx =
∫

Ω

u

⎡
⎢⎣Δu + λ(1 − u)−2

(
1 + ∫

Ω
(1 − u)−1 dx

)2
⎤
⎥⎦ dx

= −
∫

Ω

|∇u|2 dx + λ
∫
Ω

u(1 − u)−2 dx(
1 + ∫

Ω
(1 − u)−1 dx

)2

= −2E(t) + 2λ

1 + ∫
Ω

(1 − u)−1 dx
+ λ

∫
Ω

u(1 − u)−2 dx(
1 + ∫

Ω
(1 − u)−1 dx

)2 , (1.119)

using also integration by parts and relation (1.105).
By virtue of Hölder’s inequality and (1.107) then (1.119) implies

λ

∫
Ω

u(1 − u)−2 dx = 2E(t)H 2(u) − 2λH(u) + H 2(u)

∫
Ω

u ut dx

≤ 2E0H 2(u) + ||u(·, t)||2 ||ut (·, t)||2 H 2(u)

≤ 2E0H 2(u) + |Ω|1/2 ||ut(·, t)||2 H 2(u). (1.120)

On the other hand, the energy dissipation formula (1.106) reads

0 ≤
∫ t

τ

∫
Ω

u2
t (x, s) dx ds = E(τ ) − E(t),

and thus from (1.107) we deduce that

∫ ∞

τ

∫
Ω

u2
t (x, s) dx ds ≤ C < ∞, (1.121)
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where the constant C is independent of τ .
Now (1.121) yields the existence of a sequence {t j }∞j=1 ↑ ∞ such that

||ut (·, t j )||22 =
∫

Ω

u2
t (x, t j ) dx → 0 as t j → ∞, (1.122)

and thus by virtue of (1.120)

λ

∫
Ω

u j (1 − u j )
−2 dx ≤ C1H 2(u j ), (1.123)

for some C1 > 0. �

The next step is to provide another key estimate for H(u) which will allow us not
only to prove finite-time quenching but also to characterize the form of the quenching
set.

In the radial symmetric case, i.e., when Ω = B1(0) problem (1.37)–(1.39) in N
dimensions is written as

ut − Δr u = F(r, t), (r, t) ∈ (0, 1) × (0, T ), (1.124)

ur (0, t) = u(1, t) = 0, t ∈ (0, T ), (1.125)

0 ≤ u(r, 0) = u0(r) < 1, 0 < r < 1, (1.126)

where Δr u := urr + (N − 1)r−1ur for N ≥ 1 and

F(r, t) = λk(t)(1 − u(r, t))−2, (1.127)

for

k(t) =
(
1 + NωN

∫ 1

0
r N−1 (1 − u(r, t))−1 dr

)−2

,

where ωN = |B1(0)| = π N/2

Γ (N/2) stands for the volume of the N -dimensional unit

sphere B1(0) in RN and Γ is the gamma function.
Condition ur (0, t) = 0, for N ≥ 1 is imposed to guarantee the regularity of

the solution u. If we consider radial decreasing initial data u0(r), i.e., u′
0(r) ≤ 0,

then it is a standard result that the monotonicity property is inherited by u so that
ur (r, t) ≤ 0 for r > 0 and t > 0.

For the sake of simplicity we obtain the desired estimate for H(1− v) where v is
defined as v := 1 − u. Then v → 0+ if u → 1−. Moreover v satisfies

vt − vrr − (N − 1)r−1vr = − f v−2, (r, t) ∈ (0, 1) × (0, T ), (1.128)

vr (0, t) = 0, v(1, t) = 1, t ∈ (0, T ), (1.129)

0 < v(r, 0) = v0(r) ≤ 1, 0 < r < 1, (1.130)
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where

f = f (t) = λ

(1 + NωN
∫ 1
0 r N−1v−1 dr)2

. (1.131)

Then we have the following:

Lemma 1.2.23 Consider symmetric and radial increasing initial data v0(r). Then
for any k > 2

3 there exists a positive constant C(k) such that

1 − u(r, t) ≥ C(k)rk for (r, t) ∈ (0, 1) × (0, Tmax ), (1.132)

where Tmax is the maximum existence time of solution u.
Furthermore, there exists C2 uniform in λ and independent of time t such that

H(u) = H(1 − v) ≤ C2 for any 0 < t < Tmax . (1.133)

Proof Fixing some a, 1 < a < 2, there are some t1 > 0 and ε1 > 0 such that

vr > ε1rv−a at t = t1for 0 < r < 1. (1.134)

We define
z = r N−1vr , (1.135)

and it is then easy to check, [11], by differentiating (1.128), that

zt − zrr + (N − 1)r−1zr = 2r N−1 f v−3vr . (1.136)

We define
J = z − εr N v−a, (1.137)

where
0 < ε < ε1 .

Then
Jt = zt + aεr N v−a−1vt , (1.138)

Jr = zr + aεr N v−a−1vr − Nεr N−1v−a, (1.139)

and

Jrr = zrr + aεr N v−a−1vrr + 2Naεr N−1v−a−1vr − a(a + 1)εr N v−a−2v2r − N (N − 1)εr N−2v−a .

(1.140)
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We define a function G(ε) by

G(ε) = ε
2

a+1

(ε
1

a+1 + NωN
Na+N−2 (a + 1)

a
a+1 2

1
a+1 )2

. (1.141)

Our choice of ε is then, more precisely, given by

0 < ε < min{ε1, ε2} , (1.142)

where ε2 > 0 is chosen to satisfy

ε2 < sup

{
ε : ε ≤ min

{
1

N
,

(
2 − a

2a

)}
λG(ε)

}
; (1.143)

a small ε2 satisfying (1.143) can be found since G(ε) is of order ε
2

a+1 
 ε for ε small
(recall that a > 1). Then

J > 0 for 0 < r ≤ 1at t = t1. (1.144)

As long as J > 0,

z > εr N v−a ⇒ vr > εrv−a ⇒ v >

(
(a + 1)ε

2

) 1
a+1

r
2

a+1 , (1.145)

which leads to (1.132).
Then

∫ 1

0
r N−1v−1 dr <

(
2

(a + 1)ε

) 1
a+1
∫ 1

0
r

Na+N−2
a+1 −1 dr =

(
2

(a + 1)ε

) 1
a+1
(

a + 1

Na + N − 2

)

and so

f (t) = λ

(1 + NωN
∫ 1
0 r N−1v−1 dr)2

> λG(ε) . (1.146)

In particular, f (t) > λG(ε) in a neighbourhood of t = t1.
We suppose for a contradiction that

there is some t2 ∈ (t1, Tmax ) such that f (t2) = λG(ε) with f (t) > λG(ε) for t1 ≤ t < t2.
(1.147)

Now
J = 0 on r = 0. (1.148)
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On the boundary r = 1 we have

J = vr − ε and then,

Jr = vrr +(N−1)vr +aεvr −Nε = ( f −(N−1)vr )+(N−1)vr +aεvr −Nε = f +aεvr −Nε,

so both Jr − aεJ = f + aε2 − Nε > f − Nε on r = 1, (1.149)

and, since vr ≥ 0 on r = 1, Jr ≥ f − Nε on r = 1. (1.150)

Provided that
ε < f/N , (1.151)

either (1.149) or (1.150) gives a positive boundary condition on r = 1.
Now

Jt − Jrr + (N − 1)r−1 Jr = 2r N−1 f v−3vr + (aεr N v−a−1)(2(N − 1)r−1vr − f v−2)

− 2Naεr N−1v−a−1vr

+ a(a + 1)εr N v−a−2v2r + N (N − 1)εr N−2v−a

− N (N − 1)εr N−2v−a

> (2r N−1 f v−3 + 2(N − 1)aεr N−1v−a−1 − 2Naεr N−1v−a−1)vr

− aε f r N v−a−3

= 2( f v−3 − aεv−a−1)z − aε f r N v−a−3

= 2( f v−3 − aεv−a−1)J + 2( f v−3 − aεv−a−1)εr N v−a

− aε f r N v−a−3

= 2( f v−3 − aεv−a−1)J + ε(2 − a) f r N v−a−3

− 2aε2r N v−2a−1 .

Thus
Jt − Jrr + (N − 1)r−1 Jr > 2( f v−3 − aεv−a−1)J , (1.152)

as long as

ε <
(2 − a)

2a
f . (1.153)

Following the standard arguments for the maximum principle, we now show that
J > 0 for 0 < r ≤ 1, t1 ≤ t ≤ t2.

In 0 < r ≤ 1, t1 ≤ t ≤ t2, because v > 0, the coefficient of J in (1.152)
is bounded. We can then define a new variable J̃ = e−D1t J which then satisfies
boundary condition (1.148), boundary inequality (1.149) and

J̃t − J̃rr + (N − 1)r−1 J̃r > −D2 J̃ , (1.154)
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where D1 and D2 are positive constants. Should J̃ be non-positive somewhere (with
r > 0), it must take a non-positive minimum at some (r3, t3) with 0 < r3 ≤ 1 and
t1 < t3 ≤ t2.

For r3 = 1, (1.150) gives J̃r > 0 on r = 1, leading to a contradiction, so the
supposed minimum must have 0 < r3 < 1, where J̃t ≤ 0, J̃r = 0 and J̃rr ≥ 0. With
J̃ ≤ 0 and D2 > 0, (1.154) gives another contradiction. Hence both J̃ and J remain
positive in r > 0 for t1 ≤ t ≤ t2.

This now gives that (1.146) holds at t = t2, contradicting the assumption (1.147).
Thus, as long as the solution exists, f (t) > λG(ε) for t ≥ t1.

It follows that J > 0, (1.132) holds and

∫ 1

0
r N−1v−1 dr <

1

Na + N − 2
(a + 1)

a
a+1

(
2

ε

) 1
a+1

(1.155)

for all t ≥ t1, if (1.128)–(1.130) have a global solution, and up to and including the
quenching time, if the solution quenches. Thanks to the definition of H(u) (1.155)
implies the desired estimate. �

Remark 1.2.24 An estimate similar to (1.132) has been also obtained in [18] but only
for the one-dimensional case. Furthermore, here we also prove that the exponent 2

3
is optimal for the validity of (1.132), see below.

Proof of Theorem 1.2.19 Let λ > λ∗ and assume that problem (1.124)–(1.126) has a
global-in-time solution. Then (1.117) in conjunction with (1.133) yields

λNωN

∫ 1

0
r N−1u j (1 − u j )

−2 dr ≤ C3 , for any t > 0, (1.156)

where the constant C3 is independent of j .
From this and (1.133) we have

NωN

∫ 1

0

r N−1 dr

(1 − u j )2
= NωN

∫ 1

0

r N−1 dr

(1 − u j )
+ NωN

∫ 1

0

r N−1u j dr

(1 − u j )2

≤ (C2 − 1) + C3

λ
:= C4, (1.157)

where C4 is independent of j .
From the energy dissipation formula (1.107) we also have

||∇u j ||2L2(B1)
≤ C5 < ∞, (1.158)

with constant C5 being independent of j as well. Passing to a subsequence, if nec-
essary, relation (1.158) implies the existence of a function w such that
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u j ⇀ w in H 1
0 (B1(0)), (1.159)

u j → w a.e. in B1(0). (1.160)

For N ≥ 2 by virtue of (1.132) we directly derive that 1/(1 − u j )
2 is uniformly

integrable and since 1/(1 − u j )
2 → 1/(1 − w)2, a.e. in B1(0), due to (1.160), we

deduce

1

(1 − u j )2
→ 1

(1 − w)2
as j → ∞ in L1(B1(0)), (1.161)

applying the dominated convergence theorem. Similarly we also derive

H(u j ) → H(w) as j → ∞ in L1(B1(0)). (1.162)

Note that the weak formulation of (1.124) along the sequence {t j } is given by

∫
B1(0)

∂u j

∂t
φ dx = −

∫
B1(0)

∇u j · ∇φ dx + λH−1(u j )

∫
B1(0)

φ(1 − u j )
−2 dx as j → ∞, (1.163)

for any φ ∈ H 1
0 (B1(0)).

Passing to the limit as j → ∞ in (1.163), and in conjunctionwith (1.122), (1.159),
(1.161) and (1.162), we derive

Δu j + λ

(1 − u j )2
(
1 + ∫

Ω
dx

1−u j

)2 → 0 in L2(B1(0)),

which implies that w is an weak finite-energy solution of problem (1.44) correspond-
ing to λ > λ∗, contradicting the result of Proposition 1.2.21.

On the other hand, for N = 1 by using (1.122), (1.124), (1.127), (1.157) and
(1.158) we deduce that (u j )x is bounded in W 1,1(−1, 1) and thus, by virtue of
Sobolev’s inequality,

(u j )x is bounded in L∞(−1, 1), (1.164)

Furthermore

[
(1 − u j )

−1
]

is bounded in W 1,1(−1, 1),

since

[
(1 − u j )

−1
]

x = (u j )x

(1 − u j )2
is bounded in L1(−1, 1),

due to (1.157) and (1.164), and
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(1 − u j )
−1 is bounded in L1(−1, 1),

by virtue of (1.133).
Therefore Sobolev’s inequality guarantees that

[
(1 − u j )

−1
]

is bounded in L∞(−1, 1),

and thus

[
(1 − u j )

−2
]

is bounded in L∞(−1, 1).

Now by virtue of (1.160) we derive that

(1 − u j )
−1 → (1 − w)−1 and (1 − u j )

−2 → (1 − w)−2 as j → ∞ in L∞(−1, 1).

Consequently,

Δw + λ

(1 − w)2
(
1 + ∫

Ω
dx
1−w

)2 = 0 in L2(B1(0)),

where the non-local term is bounded and hence elliptic regularity arguments entail
that w classical steady solution, again contradicting Proposition 1.2.21. �

Remark 1.2.25 Theorem1.2.19 improves the results of Theorem4.1 in [18] andThe-
orems 5.2, 5.3 in [21]. Indeed, the earlier results have provided finite-time quenching
only for large values of the parameter λ, without giving a threshold for λ above which
quenching occurs.

Another quenching result for big initial data, i.e., for 0 < u0(x) < 1 close to 1, can
be obtained by employing the widely used classical technique of Kaplan, [23]. The
estimate of Lemma 1.2.23, permitting us to treat the non-local problem (1.37)–(1.39)
as a local one. In particular we have:

Theorem 1.2.26 For any λ > 0 there exist symmetric initial data u0 satisfying
the assumptions of Theorem 1.2.19 that are close to 1 such that the solution u of
(1.37)–(1.39) quenches in finite time Tq < ∞.

Proof Set λ1 = λ1(B1(0)) > 0 the principal eigenvalue of the following problem

−Δφ = λφ, x ∈ B1(0), φ(x) = 0, x ∈ ∂ B1(0) ,

with associated positive eigenfunction φ1(x) normalized so that

∫
B1(0)

φ1(x) dx = 1.



1.2 Mathematical Analysis 45

Let us assume that problem (1.124)–(1.126) has a global-in-time solution, i.e.,
Tmax = ∞ so that 0 < u(x, t) < 1 for any (x, t) ∈ B1(0) × (0,+∞).

Multiplying (1.124) by φ1, integrating over B1(0) and using Green’s second iden-
tity, we obtain, via Lemma 1.2.23,

dA

dt
= −λ1A(t) + λ

∫
B1(0)

φ1(1 − u)−2 dx

H 2(u)

≥ −λ1A(t) + λ
∫

B1(0)
φ1(1 − u)−2 dx

C2
2

, (1.165)

where A(t) = ∫B1(0)
u φ1 dx . Applying Jensen’s inequality to (1.165),

dA

dt
≥ −λ1A(t) + λ

C2
2

(1 − A(t))−2 for any t > 0 . (1.166)

Choosing γ ∈ (0, 1) so that

Ψ (s) := λ

C2
2

(1 − s)−2 − λ1s > 0 for all s ∈ [γ, 1),

then by considering u0 close enough to 1 such that A(0) ≥ γ , relation (1.165) yields

dA

dt
≥ Ψ (A(t)) > 0 for any t > 0,

which then leads to

t ≤
∫ A(t)

A(0)

ds

Ψ (s)
≤
∫ 1

A(0)

ds

Ψ (s)
< ∞,

contradicting the assumption Tmax = ∞. This completes the proof of the
theorem. �

Below we address the question: where does quenching takes place? Namely for
radially symmetric andmonotonic decreasing initial data, quenching, when it occurs,
takes place at a single point, the origin:

Theorem 1.2.27 If we consider initial data as in Theorem 1.2.19 so that the solution
of problem (1.124)–(1.126) quenches in finite time Tq < ∞, the quenching occurs
only at the origin r = 0.

Proof The proof follows immediately from relation (1.132). �

Due to the non-locality, obtaining the sharp profile of the standard (local) problem
(cf. [10]) for (1.124)–(1.126) might be hard. However it can be rigorously shown
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that the exponent 2
3 in (1.132) is optimal, at least in the sense that (1.132) cannot be

true for any exponent k < 2
3 .

The optimality of the exponent 2
3 is a consequence of the following result.

Proposition 1.2.28 Let Tq be the quenching time of the solution u of (1.124)–(1.126)
then

lim
t→Tq

||(1 − u)−1||m = ∞ for any m >
3N

2
> 1. (1.167)

Proof First note θ = (1 − u)−1 satisfies θt − Δθ ≤ f (t)θ4 ≤ λθ4 with θ = 1 on
∂Ω. Next fix any Λ > 0 and assume that ||θ(t0)||m ≤ Λ for some m > 3N

2 > 1 and
t0 ∈ (0, Tq).

By virtue of [39, Theorem 15.2, Example 51.27], see also [2, Theorem 1] and [45,
Theorem 1], we have that problem

zt − Δz = λ(1 + z)4 in Ω × (t0, Tq),

z = 0 on ∂Ω × (t0, Tq),

z(x, t0) = θ(x, t0) x ∈ Ω,

is well posed and in particular there exists τ > 0 such that

||z(t0 + s)||∞ ≤ K s−N/2m, s ∈ (0, τ ], (1.168)

where K , τ depend only on Λ, m,Ω, λ. By comparison θ exists and satisfies θ ≤
z + 1 on [t0, t0 + τ ]. Since limt→Tq ||θ(t)||∞ = ∞ it follows that ||θ(t)||m > Λ for
all t ∈ (max(0, Tq − τ), Tq

)
and thus (1.167). �

Remark 1.2.29 It should be noted that in the critical case m = mc = 3N
2 the time τ

in (1.168) depends on θ(t0) and not just on ‖θ(t0)‖m (see [2] and [39, Remarks 15.4
and 16.2(iv)]). Therefore, in this case, it is no longer certain that Tq < ∞ implies
the finite-time blow-up of the norm ‖θ(t0)‖m .

Corollary 1.2.30 Relation (1.132) is not valid for any k < 2
3 .

Proof First note that since Tq = Tmax < ∞ it is easily seen by the proof of Lemma
1.2.23 that (1.132) is valid up to Tmax . Assume now that there is k0 < 2

3 such that

1 − u(r, t) ≥ C(k0)r
k0 for (r, t) ∈ (0, 1) × (0, Tmax ],

then

lim
t→Tmax

||(1 − u)−1||m =
∫ 1

0

r N−1

(1 − u(Tmax ))m
dr ≤ C−1(k0)

∫ 1

0
r N−1−mk0 dr < ∞,

for m > 3N
2 close to 3N

2 , contradicting Proposition 1.2.28. �
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We close the study of (1.124)–(1.126) by providing a lower estimate of its quench-
ing rate. We recall that considering radial decreasing initial data u0 then u inherits
this property and hence

M(t) := max
x∈B̄1

u(x, t) = u(0, t).

The next result provides a lower estimate of the quenching rate:

Theorem 1.2.31 The lower bound of the quenching rate of problem (1.124)–(1.126)
is given by

M(t) ≥ 1 − Ĉ(Tq − t)1/3 for 0 < t < Tq , (1.169)

where Ĉ is a positive constant independent of time t.

Proof It can be easily checked that the function M(t) is Lipschitz continuous and
hence, by Rademacher’s theorem, is almost everywhere differentiable, see [11, 26].
Furthermore, since u is decreasing in r , Δr u(0, t) ≤ 0 for all t ∈ (0, Tq). Therefore,
for any t where dM/dt exists, we have

dM

dt
≤ λ

(1 − M(t))−2

(
1 + ∫B1(0)

1
1−u dx

)2 ≤ λ
(1 − M(t))−2

(1 + NωN )2
for a.e. t ∈ (0, Tq),

which yields

∫ 1

M(t)
(1 − s)2 ds ≤ λC(Tq − t),

for C = 1
(1+NωN )2

, giving the desired estimate

M(t) ≥ 1 − Ĉ(Tq − t)1/3 for 0 < t < Tq ,

where Ĉ = (3λC)1/3. �

1.2.2 A Non-local Hyperbolic Problem

Now we are investigating the following non-local problem

utt = uxx + λ

(1 − u)2
(
1 + ∫ 1

0
1

1−u dx
)2 , 0 < x < 1, t > 0, (1.170)

u(0, t) = 0, u(1, t) = 0, t > 0, (1.171)
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0 < u(x, 0) = u0(x) < 1, ut (x, 0) = u1(x), 0 < x < 1. (1.172)

The steady-state problem corresponding to (1.170)–(1.172) is

w′′ + λ

(1 − w)2
(
1 + ∫ 1

0
1

1−w dx
)2 = 0 , 0 < x < 1 ; w(0) = 0 , w(1) = 0 .

(1.173)
If we set W = 1 − w then (1.173) becomes

W ′′ = μ

W 2
, 0 < x < 1 ; W (0) = 1 , W (1) = 1 , (1.174)

where

μ = λ(
1 + ∫ 1

0
1
W dx

)2 . (1.175)

Then multiplying both sides by W ′ and integrating from m = min{W (x), x ∈
[0, 1]} = W

(
1
2

)
to W we derive

∫ W ′

0
W ′dW ′ =

∫ x

1
2

W ′′W ′dx = μ

∫ x

1
2

W ′

W 2
dx = μ

∫ W

m

dW

W 2
,

hence
1

2
(W ′)2 = μ

(
1

m
− 1

W

)
.

This gives equivalently
dx

dW
=
√

m

2μ

√
W

W − m
,

which implies

x − 1
2 =

√
m

2μ

[√
W (W − m) − 1

2
m ln(m) + m ln

(√
W + √

W − m
)]

.

This yields, on setting x = 1 so that W = 1,

μ = 2m

[√
1 − m − 1

2
m ln(m) + m ln

(
1 + √

1 − m
)]2

.

Furthermore we have
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∫ 1

0

1

W
dx =

∫ 1

0

dx

dW

dW

W
=
√
2m

μ

∫ 1

m

1√
W (W − m)

dW

= 1√
1 − m − 1

2m ln(m) + m ln
(
1 + √

1 − m
)
∫ 1

m

1√
W (W − m)

dW

= 1√
1 − m − 1

2m ln(m) + m ln
(
1 + √

1 − m
) ln

(
2 − m + 2

√
1 − m

m

)
.

On using (1.175), we finally establish the following relation between λ and m,

λ = 2m

[√
1 − m + m ln

((
1 + √

1 − m
)

√
m

)
+ ln

(
2 − m + 2

√
1 − m

m

)]2
.

(1.176)

From the above relation, we can obtain the response (bifurcation) diagramof problem
(1.173) see Fig. 1.6. In particular, (1.176) implies that λ ∼ 2α2m(lnm)2 as m → 0.

The presented mathematical analysis follows [28].

1.2.2.1 Local Existence

In this sectionwe establish local existence of the solution of problem (1.170)–(1.172)
where u0, u1 ∈ C1

(
(0, 1)

)
and u0(0) = u0(1) = 0, by modifying appropriately the

proof given for the local problem in [4], see also [12].

Definition 1.2.32 We say that u is a weak solution of (1.170)–(1.172) in QT ≡
(0, 1) × (0, T ) if:

• (i) u is continuous in Q̄T and satisfies the initial and boundary conditions.
• (ii) There exists some δ > 0 such that |u| ≤ 1 − δ in Q̄T .
• (iii) u has weak derivatives ux , ut in Q̄T and for all t ∈ (0, T ), ux , ut ∈ L2

(
(0, 1)

)
.

• (iv) For any function ζ(x, t) ∈ C2(Q̄T ) satisfying the boundary conditions and
for 0 ≤ t ≤ T ,

Fig. 1.6 Response diagram
for problem (1.173) where
λ∗ ≈ 8.533
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∫ 1

0
ζ(x, t)ut (x, t) dx =

∫ t

0

∫ 1

0
[ζτ (x, τ )uτ (x, τ ) − ζx (x, τ )ux (x, τ )] dx dτ

+ λ

∫ t

0

∫ 1

0

ζ(x, τ ) dx dτ

(1 − u(x, τ ))2
(
1 + ∫ 1

0
1

1−u(y,τ )
dy
)2 .

(1.177)

• (v) The total energy associated with (1.170)–(1.172) is preserved i.e.,

ET (t) = 1

2

∫ 1

0
(u2

x + u2
t ) dx + λ(

1 + ∫ 1
0

1
1−u dx

) = ET (0) := E0. (1.178)

We consider a fixed δ ∈ (0, 1) and assume that the initial data satisfy the condition

||u0||∞ + T ||u1||∞ < 1 − 2δ, (1.179)

for a positive T . Define the odd periodic (with period two) extensions with respect
to x on R × [0, T ] of u, u0, v0 which are denoted, without any confusion, again as
u, u0, v0.

We also define the function G p : R × [0,+∞) × (−1, 1) → R, as

G p(x, t, u) =
{

F(u), x ∈ [2n, 2n + 1),
F(−u), x ∈ [2n − 1, 2n),

(1.180)

for n = 0,±1,±2, . . ., where

F(u) = 1

(1 − u)2
(
1 + ∫ 1

0
1

1−u dx
)2 .

Then by standard arguments applied towave equations, we have that u is a solution
of (1.170)–(1.172) if and only if u solves in R × [0, T ] the integral equation

u(x, t) = ũ(x, t) + λ

2

∫ t

0

∫ x+t+τ

x−t+τ

G p(y, τ, u(y, τ )) dy dτ, (1.181)

where

ũ(x, t) = 1

2
[u0(x + t) + u0(x − t)] + 1

2

∫ x+t

x−t
u1(z) dz.

Note that (1.179) implies that

||ũ||T = sup
t∈[0,T ]

||ũ(t)||∞ < 1 − 2δ. (1.182)
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LetBT be the Banach space of continuous odd periodic (with period two) functions
with respect to x , defined in R × [0, T ], vanishing on x = n, n ∈ Z, with the norm
|| · ||T . Also let B̄(ũ, δ) be the closed ball of radius δ centered on ũ inBT . Consider
the operator

T [u(x, t)] = ũ(x, t) + λ

2

∫ t

0

∫ x+t+τ

x−t+τ

G p(y, τ, u(y, τ )) dy dτ,

which, owing to the definition of the function G p, is well-defined.
In order to show that (1.170)–(1.172), or equivalently (1.181), has a local-in-time

solution, it is enough to show that the operator T is a contraction from B̄(ũ, δ) to
B̄(ũ, δ). (Note that ũ ∈ BT .) In particular, we have to show that

∥∥T u − ũ
∥∥

T < δ ,
∥∥T u − T v

∥∥
T < K

∥∥u − v
∥∥

T ,

for u, v ∈ B̄(ũ, δ) and 0 < K < 1.
In the following, for convenience, we write f (u) := 1

1−u and I (u) := ∫ 1
0 f (u)dx ,

hence F(u) := f 2(u)

[1+I (u)]2 . Then we have

∥∥T v(x, t) − T u(x, t)
∥∥

T = λ

2

∥∥∥
∫ t

0

∫ x+t+τ

x−t+τ

[
G p(y, τ, v(y, τ )) − G p(y, τ, u(y, τ ))

]
dy dτ

∥∥∥
T

,

where for x − t + τ > 0

[
G p(y, τ, v(y, τ )) − G p(y, τ, u(y, τ ))

] = f 2(v)

[1 + I (v)]2 − f 2(u)

[1 + I (u)]2
= f 2(v)

(
1

[1 + I (v)]2 − 1

[1 + I (u)]2
)

+ 1

[1 + I (u)]2
(

f 2(v) − f 2(u)
)
.

Note that f 2(v) − f 2(u) = ( f (v) + f (u))( f (u) − f (v)) and ‖ f (u) − f (v)‖T ≤
| f ′(1 − δ)| ‖u − v‖T , by taking into account (1.182) and the fact that f is a convex
function.

Moreover we have

1

[1 + I (v)]2 − 1

[1 + I (u)]2 = [1 + I (u)]2 − [1 + I (v)]2
[1 + I (v)]2 [1 + I (v)]2

< [2 + (I (u) + I (v))][I (u) − I (v)] ,

since I (u), I (v) > 0. Using again (1.182) and the fact that f is an increasing and
convex function we derive ‖I (u) − I (v)‖T ≤ f ′(1− δ)‖u − v‖T and ‖2+ (I (u) +
I (v))‖T ≤ 2[1 + f (1 − δ)]. Thus finally
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∣∣G p(y, τ, v(y, τ )) − G p(y, τ, u(y, τ ))
∣∣ ≤ 2 f 2(1 − δ) f ′(1 − δ)[1 + f (1 − δ)]∥∥u − v

∥∥
T

+2 f (1 − δ) f ′(1 − δ)
∥∥u − v

∥∥
T ,

or

∣∣G p(y, τ, v(y, τ )) − G p(y, τ, u(y, τ ))
∣∣ ≤ C( f, δ)‖u − v‖T ,

for C( f, δ) = 2 f 2(1− δ) f ′(1− δ)[1+ f (1− δ)] + 2 f (1− δ) f ′(1− δ). The same
final estimate also holds when x − t + τ < 0.

Therefore

∥∥T v(x, t) − T u(x, t)
∥∥

T = λ

2

∥∥
∫ t

0

∫ x+t+τ

x−t+τ

[
G p(y, τ, v(y, τ )) − G p(y, τ, u(y, τ ))

)]
dydτ

∥∥
T

≤ λ

2
t2C( f, δ)‖u − v‖T ≤ λ

2
σ 2C( f, δ)

∥∥u − v
∥∥

T , (1.183)

for 0 ≤ t ≤ σ . Note that K = λ
2σ

2C( f, δ) < 1 if σ <

√
2
λ

1√
C( f,δ)

.
It remains to show that ‖T u − u1‖T < δ. We have again for x − t + τ > 0,

‖T u(x, t) − u1‖T = λ

2

∥∥∥
∫ t

0

∫ x+t+τ

x−t+τ

G p(y, τ, u(y, τ ))dy dτ

∥∥∥
T

≤
∥∥∥λ

2

∫ t

0

∫ x+t+τ

x−t+τ

f 2(u)

[1 + I (u)]2 dy dτ

∥∥∥
T

≤ λ

2
f 2(1 − δ)

∥∥∥
∫ t

0

∫ x+t+τ

x−t+τ

dydτ

∥∥∥
T

≤ λ

2
t2 f 2(1 − δ) ≤ λ

2
σ 2 f 2(1 − δ).

Since the same final estimate is obtained for x −t +τ < 0 (when the first inequality in
(1.183) becomes strict), we end upwith ‖T u(x, t)−u1‖T ≤ δ as long as λ

2σ
2 f 2(1−

δ) ≤ δ, i.e., if σ ≤
√

2
λ

√
δ

f 2(1−δ)
.

Thus finally, if we choose σ such that

σ < min

{
T,

√
2

λ

(
δ

f 2(1 − δ)

) 1
2

,

√
2

λ

(
1

C( f, δ)

) 1
2

}
,

we conclude that the operator T : B(u1, δ) → B(u1, δ) is a contraction and hence
the Banach fixed point theorem guarantees the existence of a unique fixed point for
T .

We have thus established local existence of solution of problem (1.170)–(1.172)
in an interval [0, σ ]. In particular:
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Theorem 1.2.33 If the initial data u0(x), v0(x) ∈ C1((0, 1)) satisfy condition
(1.179), then, for anyλ > 0, problem (1.170)–(1.172)has a unique weak C1−solution
on QT = (0, 1) × [0, T ] if T is sufficiently small.

Remark 1.2.34 By the proof of the above theorem we also obtain that the solution
u to (1.170)–(1.172) is piecewise C2 in QT . Furthermore, the solution of (1.170)–
(1.172) could be extended to any interval of the form [0, T + τ ] for τ sufficiently
small and positive as long as |u| < 1 on Q̄T .

Remark 1.2.35 In the case of zero initial datum we could obtain, by differentiating
relation (1.181), that u(x, t) is a regular solution to (1.170)–(1.172) except on the
point set

{(x, t) ∈ R × [0, T ]|x, x − t, x + t are integers},

see also [4].

Definition 1.2.36 The solutionu(x, t)of problem (1.170)–(1.172) quenches at point
x∗ ∈ (0, 1) in finite time 0 < T < ∞ if there exist sequences {xn}∞n=1 ∈ (0, 1) and
{tn}∞n=1 ∈ (0,∞) with xn → x∗, tn → T − and u(xn, tn) → 1− as n → ∞. In the
case where T = ∞ we say that u(x, t) quenches in infinite time at x∗.

By Remark 1.2.34 we conclude that the solution u(x, t) to problem (1.170)–
(1.172) ceases to exist only by quenching. In MEMS terminology quenching is usu-
ally called touch-down since it describes the phenomenonwhen the elasticmembrane
touches the rigid plate on the bottom of the MEMS device.

1.2.2.2 Global Existence Versus Quenching

In order to prove global existence of problem (1.170)–(1.172), we need as a first step
to determine the corresponding energy functional. Unless otherwise stated, || · || now
denotes || · ||2.

To find the energy, we multiply Eq. (1.170) by ut and integrate over [0, 1]. Thus
we obtain

∫ 1

0
(ut utt − ut uxx ) dx = λ

∫ 1

0

ut dx

(1 − u)2

1

(1 + α
∫ 1
0

1
1−u dx)2

,

or

1

2

d

dt

(∫ 1

0

(
u2

t + u2
x

)
dx

)
= λ

d

dt

(∫ 1

0

1

1 − u
dx

)
1

(1 + ∫ 1
0

1
1−u dx)2

= −λ
d

dt

(
1

1 + ∫ 1
0

1
1−u dx

)
.

Thus finally we get
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1

2

∫ 1

0

(
u2

t + u2
x

)
dx + λ

(
1

1 + ∫ 1
0

1
1−u dx

)
= E0 , (1.184)

where E0 is a constant representing the initial energy of the systemwhich is conserved
and is given by

E0 = 1

2

∫ 1

0

(
u2
1 + u0x

2
)

dx + λ

(
1

1 + ∫ 1
0

1
1−u0

dx

)
. (1.185)

From Eq. (1.184) we deduce that

‖ut‖2 + ‖ux‖2 + 2λ

(
1

1 + ∫ 1
0

1
1−u dx

)
= 2E0 ,

where ‖ut‖ = ‖ut (·, t)‖, ‖ux‖ = ‖ux (·, t)‖, and that

‖ux‖2 + 2λ

(
1

1 + α
∫ 1
0

1
1−u dx

)
≤ 2E0 . (1.186)

At this point we can use the one-dimensional Sobolev embedding and the Poincaré
inequality to obtain

4u2(x, t) ≤ ‖ux‖2 , for (x, t) ∈ [0, 1] × [0, T ]. (1.187)

We also define M := max{u(x, t), (x, t) ∈ [0, 1]× [0, T ]}. For cases where M < 1
irrespective of the value of T , the maximal time of existence of u is infinite.

Therefore we have that u ≤ M , 1 − u ≥ 1 − M , 1 + ∫ 1
0

1
1−u dx ≤ 1 + 1

1−M , and
that

1

1 + ∫ 1
0

1
1−u dx

≥ 1

1 + 1
1−M

.

Thus we obtain by (1.186)

‖ux‖2 + 2λ

(
1

1 + 1/(1 − M)

)
≤ 2E0,

and due to (1.187) we conclude that

4u2(x, t) + 2λ

(
1

1 + 1/(1 − M)

)
≤ 2E0 for (x, t) ∈ [0, 1] × [0, T ]. (1.188)

Considering the simplest case where u0 = 0, v0 = 0 we have that E0 = λ/2.
Note that the solution u ceases to exist if M = 1, and the inequality (1.188) yields
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h(M) = h(M ; λ) := 2M2 + λ(1 − M)/(2 − M) ≤ E0 . (1.189)

We have that h(1) = 2 and h(0) = λ
2 , hence for λ < 4 we have that h(1) > h(0).

Also h′(M) = 4M − λ/(2 − M)2 with h′(1) = 4 − λ > 0 for λ < 4.
Hence the following global-in-time existence result has been established.

Theorem 1.2.37 Problem (1.170)–(1.172) with zero initial data has a global-in-
time solution, i.e., 0 < u(x, t) < 1 for all (x, t) ∈ [0, 1] × [0,∞), provided that
λ < 4.

Let λ∗ be the largest value of the parameter λ so that problem (1.170)–(1.172) has
a global-in-time solution for λ < λ∗, then Theorem 1.2.37 implies that λ∗ ≥ 4.

Now consider the case of non-zero initial data, i.e., u0 �= 0 or v0 �= 0. In this case
the initial energy is given by the expression

E0 = E0(λ, u0, u1) = 1

2
‖u1‖2 + 1

2
‖u0x‖2 + λ

(
1

1 + ∫ 1
0

1
1−u0

dx

)
.

Following the above, for u to exist it would then be enough to show that

4M2 + 2λ

(
1 − M

2 − M

)
≤ ‖u1‖2 + ‖u0x‖2 + 2λF(u0), (1.190)

for F(u0) = 1
1+∫ 1

0
1

1−u0
dx
, guarantees that M < 1. Clearly inequality (1.190) fails at

M = 1 if

4 > ‖u1‖2 + ‖u0x‖2 + 2λ, (1.191)

since F(u0) ≤ 1. Thus the solution exists for all time as long as

λ <

(
2 − 1

2
(‖u1‖2 + ‖u0x‖2)

)
.

(N.B. With u0 = 0, F(u0) = 1/2, and a stronger estimate, as of Theorem 1.2.37, is
achieved.)

We first consider the case of zero initial conditions, i.e., u0(x) = u1(x) ≡ 0.
Our purpose is to show that there exists a critical value λ∗+ ≥ λ∗− of λ such that the
solution of problem (1.170)–(1.172) quenches in finite time for any λ ≥ λ∗+. Thus
λ∗+ is the supremum of those λ for which (1.170)–(1.172) has a global solution.1

For convenience and due to the expected symmetry of the solution u(x, t) at the
point x = 1

2 we will consider the equivalent problem

1Because (1.170)–(1.172) lacks clear monotonicity properties, it is not obvious that λ∗+ = λ∗−.
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utt = uxx + λ

(1 − u)2
(
1 + 2α

∫ 1
2
0

1
1−u dx

)2 , 0 < x <
1

2
, t > 0 , (1.192)

u(0, t) = 0, ux

(1
2
, t
)

= 0, t > 0, (1.193)

u(x, 0) = 0, ut (x, 0) = 0, 0 < x <
1

2
. (1.194)

We restrict our analysis for times 0 < t < 1/2 so that the characteristic line t = x
remains in the strip 0 < x < 1/2.

Initially we consider the general problem

utt − uxx = g(t), 0 < x <
1

2
, t > 0, (1.195)

u(0, t) = 0, ux

(1
2
, t
)

= 0, t > 0, (1.196)

u(x, 0) = 0, ut (x, 0) = 0, 0 < x <
1

2
, (1.197)

with g(t) > 0 and continuous. For x ≥ t , the solution of (1.195)–(1.197) is given
by

u(x, t) = 1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
g(s) dξ ds = 1

2

∫ t

0
g(t) [x + (t − s) − x + (t − s)] ds

=
∫ t

0
(t − s)g(s) ds := G(t), (1.198)

since in that case the domain of dependence of the point (x, t) is the triangle D =
{(ξ, s)| x − (t − s) < ξ < x + (t − s) and 0 < s < t}. On the other hand, for
x ≤ t we have to subtract the contribution coming from x < 0 so we get

u(x, t) = G(t) − G(t − x) =
∫ t

0
(t − s)g(s) ds −

∫ t−x

0
(t − x − s)g(s) ds . (1.199)

Note that in this case the domain of dependence is no longer a triangular but is instead
split into two parts D1 = {(ξ, s)| x −(t −s) < ξ < x +(t −s) and t −x < s < t}
and D2 = {(ξ, s)| t − x − s < ξ < x + (t − s) and 0 < s < t − x}.

From the above analysis we bear in mind that the solution of (1.195)–(1.197) in
the area x ≥ t is only a function of time, u(x, t) = G(t). In addition for t ≤ 1/2
by the form of the solution we can easily deduce that ux ≥ 0 (= 0 for x ≥ t ,
= ∫ t−x

0 g(s) ds > 0 for x ≤ t). Finally for every 0 < x < 1/2, 0 < t < 1/2 we
have 0 ≤ u(x, t) ≤ G(t) = maxx∈[0,1/2] u(x, t).
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In the following we consider the more general problem

utt − uxx = h(x, t), 0 < x <
1

2
, t > 0, (1.200)

u(0, t) = 0, ux

(1
2
, t
)

= 0, t > 0, (1.201)

u(x, 0) = 0, ut (x, 0) = 0, 0 < x <
1

2
, (1.202)

with h(x, t) > 0, hx (x, t) > 0 and continuous.
Using the same reasoning as above we easily obtain that the solution of problem

(1.200)–(1.202) is given by

u(x, t) = 1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
h(y, s) dξ ds, (1.203)

for x ≥ t , and

u(x, t) = 1

2

∫ t

t−x

∫ x+(t−s)

x−(t−s)
h(y, s) dξ ds + 1

2

∫ t−x

0

∫ x+(t−s)

t−s−x
h(y, s) dξ ds ,

for x ≤ t . Due to the fact that h(x, t) > 0 and hx (x, t) > 0 we have ux (x, t) ≥ 0
and hence maxx∈[0,1/2] u(x, t) is given by (1.203).

In our case, going back to our original problem (1.192)–(1.194), the function h
has the specific form h(x, t) = f (u)g(t) where f (u) = 1

(1−u)2
and

g(t) = λ(
1 + 2

∫ 1/2
0

1
1−u dx

)2 .

Note also that the function f is such that f (0) = 1 and f ′(s) > 0 for 0 < s < 1.
We shall show that for x ≥ t the solution of problem (1.192)–(1.194) is purely

a function of time, i.e., u(x, t) = U (t) = maxx∈[0,1/2] u(x, t), by applying a Picard
iteration.

Initially we define u0 to be the solution of the problem

u0t t − u0xx = g(t), 0 < x <
1

2
, 0 < t <

1

2
,

with the boundary and initial conditions as defined above. As we have already stated,
by the analysis of the problem (1.195)–(1.197), u0(x, t) = U0(t) for x ≥ t , u0x ≥ 0
and 0 ≤ u0(x, t) ≤ U0(t) where U0(t) = maxx∈[0,1/2] u0(x, t) coincides with G(t)
given by (1.198).



58 1 Micro-Electro-Mechanical-Systems (MEMS)

We inductively define the function un(x, t) to be the solution of the problem

untt − un xx = f (un−1)g(t), 0 < x <
1

2
, 0 < t <

1

2
,

with the standard initial andboundary conditions.By the analysis of problem (1.200)–
(1.202) we have, since h(x, t) = f (un−1)g(t) > 0 and

hx(x, t) = f ′(un−1)u(n−1)x g(t) > 0,

( f ′ > 0 and (un−1)x > 0 by the induction hypothesis), that un has the required
property un x > 0. By the induction hypothesiswe also have that un−1(x, t) is purely a
function of time in the area x ≥ t hence f (un−1)g(t) is also, implying that un(x, t) =
Un(t) = maxx∈[0,1/2] un(x, t) for any n ∈ N and x ≥ t and Un(t) is given by

Un(t) = 1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
f (Un−1(s))g(s) dξ ds , (1.204)

which implies that the sequence {Un(t)}∞n=1 is increasing, recalling that f (s) > 1 and
f ′(s) > 0 for 0 < s < 1.Moreover, we have that 0 < Un(t) < 1 for every 0 < t < t0
for some t0 ≤ 1/2 hence {Un(t)}∞n=1 converges as n → ∞ to a function U (t) which
is actually the maximum value of the unique solution u(x, t) of (1.192)–(1.194)
achieved for x ≥ t, i.e., u(x, t) = U (t) = maxx∈[0,1/2] u(x, t) for x ≥ t.

The latter implies that the solution of problem (1.192)–(1.194) satisfies for x ≥ t
the equation

Utt = f (U )g(t),

and since

g(t) ≥ λ[
1 + 1

(1−U )

]2 ,

U (t) finally satisfies the differential inequality

Utt ≥ λ

[2 − U ]2
, (1.205)

with U (0) = 0 and Ut (0) = 0.
Therefore we obtain that the following inequality is satisfied

√
2λt ≤ 2

3
2

[
sin−1

(√
U

2

)
+

√
U (2 − U )

2

]
,



1.2 Mathematical Analysis 59

and we deduce that U (t) reaches 1 before time t = 1/2, provided that

λ ≥ 4

[
2 sin−1

(
1√
2

)
+ 1

]2
= λ+ = 26.43596. (1.206)

Finally we have proved the following result:

Theorem 1.2.38 If λ ≥ λ+, where λ+ is given by (1.206), then the solution u(x, t)
to problem (1.192)–(1.194) quenches in finite time T ≤ 1/2, i.e., ||u(·, t)||∞ → 1−
as t → T ≤ 1/2.

The least upper bound for global existence, λ∗+, then satisfies λ∗+ ≤ λ+.

Remark 1.2.39 For the local problem, differential inequality (1.205) implies that
||utt (·, t)||∞ blows up at the quenching time, i.e., ||utt (·, t)||∞ → +∞ as t → T,

which is in agreement with the result in [3].

A result similar to Theorem 1.2.38 can be deduced when the initial data are non-
zero as it is shown below.

Indeed we take λ large enough, depending on the initial data u0 and u1, and we
prove finite-time quenching using some of the arguments developed previously.

We consider problem (1.170)–(1.172) and we assume that u0 is bounded away
from 1.

Let w be the solution of the problem

wtt − wxx = 0, 0 < x < 1, t > 0, (1.207)

w(0, t) = w(1, t) = 0, t > 0, (1.208)

w(x, 0) = u0(x), wt (x, 0) = v0(x), 0 < x < 1. (1.209)

We also define the function v as the difference v = u − w hence v(x, 0) = 0
and vt (x, 0) = 0; moreover v satisfies homogeneous Dirichlet boundary conditions
v(0, t) = 0 = v(1, t).

Now we assume that u0(x) and v0(x) are smooth enough so that wt (x, t) is
bounded below for x ∈ (1/4, 3/4) and t ∈ (0, 1/4). Then for some t0 < 1/4
there exists ε > 0 such that sup(1/4,3/4)×(0,t0) w(x, t) < 1−2ε. Note that t0 and ε can
be taken independent of λ, and, having fixed t0, ε can be arbitrarily small. We define
C0, independent of λ and of ε, by C0 = inf [0,1]×[0,t0]{w} ≤ 0.

Now take t1(ε, λ) ≤ t0 such that ||v(., t)||∞ < ε for 0 ≤ t < t1. Then

C0 − ε ≤ u = w + v ≤ 1 − 2ε + ε for 0 ≤ t ≤ t1 .

Hence, for 0 < t < t1,

ε < 1 − u < 1 + C0 − ε , 1 + 1

1 + C0 − ε
< 1 +

∫ 1

0
(1 − u)−1dx < 1 + 1

ε
,
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and
λ[

(1 + C0 − ε)
(
1 + 1

ε

)]2 < vtt − vxx <
λ(

ε
[
1 + 1

1+C0−ε

])2 .

In particular, following the previous subsection, since t ≤ x ≤ 1 − t for 1/4 ≤ x ≤
3/4, 0 ≤ t ≤ 1/4, for 0 < t < t1 ≤ t0 ≤ 1/4,

v(x, t) = V (t) for
1

4
≤ x ≤ 3

4 , with 0 ≤ v(x, t) ≤ V (t) for x ≤ 1
4 and for x ≥ 3

4 ,

where

0 <
λ[

(1 + C0 − ε)
(
1 + 1

ε

)]2 <
d2V

dt2
<

λ(
ε
[
1 + 1

1+C0−ε

])2 .

Then, at t = t1(ε, λ),

vt = dV

dt
≥ λt1

((1 + C0 − ε) (1 + 1/ε))2
and

λt21

2
[
(1 + C0 − ε)

(
1 + 1

ε

)]2 < v = V <
λt21

2
(
ε
[
1 + 1

1+C0−ε

])2 ,

for 1/4 < x < 3/4.
Additionally, v ≤ V ≤ ε is guaranteed in 0 ≤ t ≤ t1 by taking λt21 ≤

2ε3
[
1 + 1

1+C0−ε

]2
, for example by

t1 =
√
2

λ

[
1 + 1

1 + C0 − ε

]
ε

3
2 . (1.210)

In t1 < t < t0, 1/4 ≤ x ≤ 3/4, we still have v(x, t) = V (t) with d2V/dt2 > 0, as
long as the solutions u and v exist. It follows that

v

(
1

2
, t

)
= V (t) >

λt21

2
[
(1 + C0 − ε)

(
1 + 1

ε

)]2 + λt1(t − t1)[
(1 + C0 − ε)

(
1 + 1

ε

)]2 .

Assuming the solution exists up to t0, i.e., T ≥ t0,

u

(
1

2
, t

)
= v

(
1

2
, t

)
+ w

(
1

2
, t

)
> C0 + λt1

(
t0 − t1

2

)
[
(1 + C0 − ε)

(
1 + 1

ε

)]2 ≥ 1,
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if

λt1

(
t0 − t1

2

)
≥
[
(1 + C0 − ε)

(
1 + 1

ε

)]2
. (1.211)

Therefore, taking t1 to be given by (1.210), quenching before t = t0 will take place
on choosing λ large enough to satisfy

√
2λt1

(
t0 −

[
1 + 1

1 + C0 − ε

]
ε

3
2 /
√
2λt1

)
≥
[
(1 + C0 − ε)

(
1 + 1

ε

)]2
.

(1.212)
Note that, for restricted regions of smoothness for the initial data, different inter-

vals of x and smaller values of t0 could be used.
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Chapter 2
Ohmic Heating Phenomena

Abstract The current chapter considers two main applications associated with
Ohmic heating phenomena. Initially we deal with an application from food industry,
building up two one-dimensional non-local problems illustrating the evolution of
the temperature of the sterilized food. The former model consists of a diffusion-
convection equation while the latter of a convection equation with non-local convec-
tion velocity. Both of these non-local models are investigated in terms of their stabil-
ity and the occurrence of finite-time blow-up, where the latter in the current context
indicates food burning. Different approaches should be followed though depending
on the monotonicity of the nonlinearity appearing in the non-local term, since no
maximum principle is available for the non-local parabolic problem when this non-
linearity is increasing. The second part of the chapter is devoted to the study of a
non-local parabolicmodel illustrating the operation of the thermistor device.Notably,
conditions under which finite-time blow-up, which here indicates the destruction of
the thermistor device, occurs are investigated by using both energy and comparison
methods.

2.1 Ohmic Heating of Foods

2.1.1 Derivation of the Basic Model and Its Variations

One of the methods developed in recent years for sterilizing food is to heat it rapidly
by means of an electric current. The food is passed through a conduit, part of which
lies between two electrodes. A high electric current flowing between the electrodes
results in Ohmic heating of the food which quickly gets hot. We next present the
derivation of the mathematical model describing the above process. A more detailed
background on this type of process can be found in [8, 12, 16, 38, 41, 44].

The electric potential ϕ and the current density
−→
j are related by Ohm’s law,

−→
j = −σ∇ϕ,
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where σ is the electrical conductivity, which is assumed to vary with temperature.
Then for conservation of charge, we have

∇ · (σ∇ϕ) = 0, (2.1)

where it is assumed that on electro-magnetic time scales the situation is only slowly
varying and the change density is small.

For food (or other substance) with density ρ, specific heat c, and velocity −→v , all
assumed constant here, the temperature T satisfies

ρc

[
∂T

∂t
+ −→v · ∇T

]
= ∇ · (k∇T ) + σ |∇ϕ|2 . (2.2)

Here, k is the thermal conductivity and the last term on the right hand side of (2.2)
represents Ohmic heating. This model can be additionally simplified on assuming
the following:

• (i) the thermal conductivity is constant independent on the temperature T ;
• (i i) the food enters the heater with a temperature T0 independent of its position
along the channel;

• (i i i) end effects for the problem can be neglected so that the potential is 0 at the
start of the heater, z = 0, and V (t) at the far (down-steam) end, z = L .

Here, z is the distance along the channel (i.e. in the direction of −→v ) which has
parallel sides and owing assumptions (i) − (i i) we then derive that the potential and
temperature only vary with z and time t and satisfy the system

∂

∂z

(
σ

∂ϕ

∂z

)
= 0 , 0 < z < L , t > 0, (2.3)

ρc

(
∂T

∂t
+ v

∂T

∂z

)
= k

∂2T

∂z2
+ σ

(
∂ϕ

∂z

)2

, 0 < z < L , t > 0, (2.4)

ϕ = 0 , T = T0 , z = 0 ; ϕ = V , z = L . (2.5)

Also, V is known if the potential difference across the device is specified (but
has to be determined if the process is controlled in some other way). Equation (2.3)
is integrated to give,

σ
∂ϕ

∂z
= J (t) , so V = J

∫ L

0

dz

σ
,

where J is the electric current density (along the channel) and finally (2.4) is trans-
formed to

∂T

∂t
+ v

∂T

∂z
= k

ρc

∂2T

∂z2
+ J 2

ρcσ
= k

ρc

∂2T

∂z2
+
(

V 2

ρc

)(
1

σ

)(∫ L

0

1

σ
dz

)−2

.
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This is a variant of the non-local parabolic problem considered in [10, 29, 30]; heat
transport is now happening both by convection and conduction.

It is convenient to scale the distance with the length of channel and the time to
make the convective velocity 1. Additionally this scaling changes the temperature
variable so that it becomes 0 at the inlet and its derivative becomes zero at the outlet,
i.e. the right hand side of the device is thermally insulated. Then the dimensionless
temperature u satisfies the following conduction-convection problem [22],

ut + ux = uxx + λ f (u)(∫ 1
0 f (u) dx

)2 , 0 < x < 1 , t > 0 , (2.6)

u (0, t) = ux (1, t) = 0 , t > 0 , (2.7)

u (x; 0) = u0 (x) , 0 < x < 1 , (2.8)

with f > 0 being the dimensionless electrical reactivity
(
∝ 1

σ

)
. The parameter

λ > 0 canbe identifiedwith (the square of) applied potential difference; on occasions
we shall absorb λ into f .

If the heater is part of a circuit, so that it is connected in series with a constant
resistance, and a fixed EMF (Electromotive Force) is applied across the two, then
the scaled non-local equation is replaced by

ut + ux = uxx + λ f (u)[
a + b

∫ 1
0 f (u) dx

]2 , 0 < x < 1 , t > 0 , (2.9)

where a, b > 0.
When the heating of the food is rapid, heat diffusion both in the direction of flow

and normal to it can be neglected, i.e. 0 < k � 1, as suggested in [36]. Following
then the same steps as above, we end up with the model [31],

ut + ux = λ f (u)(∫ 1
0 f (u) dx

)2 , 0 < x < 1 , t > 0 , (2.10)

u (0, t) = 0 , t > 0 , (2.11)

u (x; 0) = u0 (x) , 0 < x < 1 , (2.12)

which is a non-local hyperbolic model.
If it is assumed that the density ρ and the velocity−→v of the food vary significantly

with temperature T , then one has to take the change of mass of the food into account
as well, so additionally to system (2.1)–(2.2) we have the equation

∂ρ

∂t
+ ∇ · (ρ−→v ) = 0, (2.13)

expressing the conservation of mass.
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Under assumptions (i) − (i i i) and for a rapid food heating, system (2.1), (2.2)
and (2.13) is then reduced to

∂

∂x

(
σ

∂ϕ

∂x

)
= 0, 0 < x < L , t > 0, (2.14)

ρ
∂T

∂t
+ ρ v

∂T

∂x
= σ

(
∂ϕ

∂x

)2

, 0 < x < L , t > 0, (2.15)

∂ρ

∂t
+ ∂(ρv)

∂x
= 0, 0 < x < L , t > 0. (2.16)

We integrate (2.14) to derive

ρ
∂T

∂t
+ ρv

∂T

∂x
= I 2

σ
= V 2

σ

(∫ 1

0

dx

σ

)−2

, (2.17)

and then integrating (2.16) and substituting ρ back to (2.17) we deduce after proper
scaling that the dimensionless temperature u satisfies the following hyperbolic non-
local problem

ρ(u)ut +
(
1 −

∫ x

0
ρ′(u)ut dy

)
ux = λ f (u)(∫ 1

0
f (u)dx

)2 , 0 < x < 1, t > 0, (2.18)

u (0, t) = 0 , t > 0 , (2.19)

u (x; 0) = u0 (x) , 0 < x < 1 , (2.20)

where now λ = V 2, see also [24]. Obviously problem (2.18)–(2.20) reduces to
(2.10)–(2.12) when ρ is constant.

Remarkably, non-local equations similar to (2.6) arise in various applications
including the shear banding formation in metals being deformed under high strain
rates, [1, 2], the investigation of the fully turbulent behavior of real flows, using
invariantmeasures for the Euler equation, [3], tomention a few of them.Additionally,
for the case of high strained metals and when there is lack of knowledge of certain
physical parameters of the system, thenwe end up, [20], with the following stochastic
system

∂u

∂t
= Δu + λ eu(∫

D eu dx
)p + σ(u) ∂t W (x, t), in DT := D × (0, T ), (2.21)

u(x, t) = 0, o ∂ D × (0, T ), (2.22)

u(x, 0) = ξ(x), in D, (2.23)

for a bounded domain D ∈ R
N , N ≥ 1 and 0 < p ≤ 1. Here W (x, t) is a

Wiener process and the multiplicative noise σ(u) ∂t W (x, t) encapsulates the present
uncertainty in the system. In the current manuscript, only the deterministic version,
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i.e. when σ(u) ≡ 0, of (2.21)–(2.23) is investigated, however the interested reader
is referred to [20] for the inspection of the finite-time blow-up (occurrence of shear
banding formation) of the stochastic problem (2.21)–(2.23).

2.1.2 Local Existence and Monotonicity

2.1.2.1 Parabolic Case

The well-possedeness of problem (2.6)–(2.8) can be obtained by using a Picard type
argument. In particular, by {un}∞n=1 satisfying

un
t + un

x = un
xx + λun−1

(∫ 1
0 f (un−1)dx

)2 , 0 < x < 1 , t > 0 ,

un (0, t) = un
x (1, t) = 0 , t > 0 ,

un (x; 0) = u0 (x) , 0 < x < 1 ,

we can easily prove the following

Theorem 2.1 Fix λ > 0 and take f strictly positive satisfying a Lipschitz condition
in the interval (α, β) where

α < min

{
0, inf

(0,1)
u0(x)

}
and β > max

{
0, sup

(0,1)
u0(x)

}
.

Assume also that u0 ∈ L∞ (0, 1) then there exists T > 0 such that problem (2.6)–
(2.8) has a unique (classical) solution in [0, 1] × [0, T ].

For a proof of Theorem 2.1 see [18].

Remark 2.1.1 The (unique) solution provided by Theorem 2.1 continues to exist as
long as it remains less than or equal to β. This argument implies that u ceases to exist
only by blow-up; that is, there exists a sequence (xn, tn) → (x∗, t∗) with t∗ ≤ ∞
such that u(xn, tn) → ∞ as n → ∞.

For the study of the long-time behavior of the solutions to problem (2.6)–(2.8)
we will need the concept of lower and upper solutions.

Definition 2.1.2 A function u is an upper solution to problem (2.6)–(2.8) if it satis-
fies
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ut + ux ≥ uxx + λ f (u)(∫ 1

0
f (u) dx

)2 , 0 < x < 1, t > 0,

u(x, t) ≥ u(x, t), x = 0, 1, t > 0,

u(x, 0) ≥ u(x, 0), 0 < x < 1,

whereas a lower solution u to (2.6)–(2.8) satisfies the above inequalities but reversed,
i.e.

ut + ux ≤ uxx + λ f (u)(∫ 1

0
f (u) dx

)2 , 0 < x < 1, t > 0,

u(x, t) ≤ u(x, t), x = 0, 1, t > 0,

u(x, 0) ≤ u(x, 0), 0 < x < 1.

An importance observation is that if f is a decreasing function then we may
use comparison methods, i.e. upper and lower solutions of problem (2.6)–(2.8) are
ordered.

Indeed, if we define v(x, t) := u(x, t) − u(x, t), by continuity there exists a time
T > 0 such that v ≥ 0 for 0 ≤ t < T and

vt + vx ≥ vxx + I (s, u) v , (x, t) ∈ QT := (0, 1) × (0, T ),

v(x, t) ≥ 0 , x = 0, 1 , 0 < t < T , v(x, 0) ≥ 0, 0 < x < 1,

where

I (s, u) := λ f ′(s)(∫ 1

0
f (u) dx

)2 ,

is bounded for any s ∈ (u, u). The latter, by the maximum principle, implies that
v = u − u ≥ 0 for 0 ≤ t ≤ T , see also [29].

This gives an alternative proof for the existence of a local-in-time solution u of
problem (2.6)–(2.8) which lies in (u, u) under the monotonicity of f , [35, 39], and
the monotonicity of f as well as the ordering of lower and upper solutions.

When f is increasing, however, the maximum principle is not applicable [29, 37].
Then upper and lower solutions are not necessarily ordered. Therefore, some new
type of comparison functions should be defined, see also Chap.1.

Definition 2.1.3 A pair of functions v, z ∈ C2,1(QT ) ∩ C(QT ) is called a lower-
upper solution pair of (2.6)–(2.8), if v(x, t) ≤ z(x, t) for (x, t) ∈ QT , v(x, 0) ≤
u0(x) ≤ z(x, 0) in [0, 1], v(x, t) ≤ 0 ≤ z(x, t) for x = 0, 1, 0 < t < T, and

http://dx.doi.org/10.1007/978-3-319-67944-0_1
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vt + vx ≤ vxx + λ f (v)(∫ 1

0
f (z) dx

)2 in QT ,

zt + zx ≥ zxx + λ f (z)(∫ 1

0
f (v) dx

)2 in QT .

If the above inequalities are strict, then (v, z) is called a strict lower-upper solution
pair.

Then we can prove local-in-time existence of the solution by similar arguments
to Proposition 1.2.2.

2.1.2.2 Hyperbolic Case

Notably local-in-time existence for the hyperbolic problems (2.10)–(2.12) and
(2.18)–(2.20) can be established through the theory of characteristic curves and
applying a Picard type approach. In the following we focus only to the more general
problem (2.18)–(2.20).

The characteristics of (2.18)–(2.20) are given as a solution of the following system
of ordinary differential equations

dt

dτ
= ρ(u), (2.24)

dx

dτ
= 1 −

∫ x

0
ρ ′(u)ut dy, (2.25)

du

dτ
= λ f (u)

(
∫ 1
0 f (u) dx)2

. (2.26)

Although discontinuities of u0 or a mismatch between u0 and the boundary condition
give rise to irregular behavior of u, these are simply propagated along the charac-
teristics and allow the existence of a (local) weak solution. So, in the following we
will generally be thinking of u0 being continuous (and normally, but not always,
differentiable) with u0(0) = 0.

Now if f is a Lipschitz continuous function and ρ ∈ C1(0,∞), then the iteration
argument implies the existence of a solution to (2.24)–(2.26); also nonexistence
can only come about through blow-up with u becoming infinite after some finite
time t∗, see [24]. Especially, (2.24) and (2.26), together with the iteration argument
imply, since ρ ∈ C1(0,∞), that ut is bounded as far as u is bounded. Using the same
arguments it is proved that ux becomes unbounded onlywhen u becomes unbounded.

Although (2.18)–(2.20) is a hyperbolic problem in the casewhere f is a decreasing
function, more information can be gained by a comparison result. In fact, if f is a

http://dx.doi.org/10.1007/978-3-319-67944-0_1
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decreasing and Lipschitz continuous function, then 0 ≤ f (β) − f (α) ≤ K (α −
β), where β ≤ α ≤ M, M > sup(0,1) u0(x) for some positive constant K ≡
K (M). Then a lower solution u and a solution u to problem (2.18)–(2.20) satisfy the

inequality
dv

dτ
≤ λ f (0)

f 2(M)
on a characteristic curve as long as they lie under M . So

u ≤ M and u ≤ M while

τ ≤ (M − sup u0) f 2(M)

λ f (0)
.

Considering now v0 = u, it can be defined iteratively {vn} for n ≥ 1 by

dvn

dτ
+ λK

f 2(M)
vn = λ f (vn−1)(∫ 1

0
f (vn−1)dx

)2 + λK

f 2(M)
vn−1, (2.27)

with vn = u0 at τ = 0 and vn = 0 for x = 0.
Problem (2.27) has a unique solution since is linear andmore precisely there holds

vn ≤ M for τ ≤ T ≡ (M − sup u0) f 2(M)/λ( f (0) + K M) ≤ T1; note also that
dv1
dτ

+ λK

f 2(M)
v1 = λ f (v0)(∫ 1

0
f (v0)dx

)2 + λK

f 2(M)
v0 ≥ dv0

dτ
+ λK

f 2(M)
v0,

since v0 = u is a lower solution to Eq. (2.26) and v1 ≥ v0 for τ = 0, x = 0; thus
v1 ≥ v0 for 0 ≤ τ ≤ T1 (0 ≤ x ≤ 1) and some T1 > 0.

Moreover,

dv1
dτ

− λ f (v1)(∫ 1
0 f (v1)dx

)2 =
λ f (v1)

∫ 1

0
( f (v1) + f (v0))dx

∫ 1

0
( f (v1) − f (v0))dx

(∫ 1

0
f (v1)dx

)2 (∫ 1

0
f (v0)dx

)2

+ λ( f (v0) − f (v1))(∫ 1

0
f (v0)dx

)2 + λK

f 2(M)
(v0 − v1)

≤
λ f (v1)

∫ 1

0
( f (v1) + f (v0))dx

∫ 1

0
( f (v1) − f (v0))dx

(∫ 1

0
f (v1)dx

)2 (∫ 1

0
f (v0)dx

)2

+ λK (v0 − v1)

⎛
⎜⎝ 1

f 2(M)
− 1(∫ 1

0 f (v0)dx
)2
⎞
⎟⎠ ≤ 0,



2.1 Ohmic Heating of Foods 73

provided that f is Lipschitz continuous and decreasing. It follows, inductively, that
u = v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn ≤ . . . ≤ M and so vn → u ≥ u for some
solution u ≤ M and 0 ≤ τ ≤ T . The uniqueness of the solution for τ ∈ [0, T ]
is proved similarly. Supposing that there exist two solutions u1, u2 in [0, T ] then
0 ≤ u1, u2 ≤ M and using the Lipschitz continuity of f we get

∣∣∣∣ d

dτ
(u1 − u2)

∣∣∣∣ ≤
λ f (u1)

∫ 1

0
( f (u1) + f (u2))dx

∫ 1

0
| f (u1) − f (u2)|dx

(∫ 1

0
f (u1)dx

)2 (∫ 1

0
f (u2)dx

)2

+ λ| f (u1) − f (u2)|(∫ 1

0
f (u2)dx

)2 ≤ Λ|u1 − u2|, (2.28)

where Λ = (2λ f 2(0) + λ f 2(M))K/ f 4(M). Since for 0 ≤ τ ≤ T there holds
|u1 − u2| ≤ M due to (2.28) we get |u1 − u2| ≤ Λ M T and inductively we obtain
|u1 − u2| ≤ M(ΛT )n

n! → 0 as n → ∞ resulting in u1 ≡ u2.
Using the same arguments but now starting at τ = T we deduce that u ≥ u as long

as they both exist. The proof that u ≤ u, if u is an upper solution to (2.18)–(2.20), is
similar.

2.1.3 Stationary Problem

The key point for the study of the long-time behavior of problems (2.6)–(2.8) and
(2.18)–(2.20) is the study of the corresponding stationary problems. Henceforth, we
assume that function f satisfies

f (s) > 0 , f ′(s) < 0 s ≥ 0. (2.29)

2.1.3.1 Parabolic Case

The corresponding steady-state problem to (2.6)–(2.8) is

w′′ − w′ + μ f (w) = 0, 0 < x < 1, (2.30)

w(0) = w′(1) = 0, (2.31)

where

μ = λ(∫ 1
0 f (w) dx

)2 , (2.32)
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is a positive local parameter (λ is the non-local one). Problem (2.30)–(2.31) has a
unique solution for every μ > 0, since f satisfies (2.29) (by using monotone type
arguments), [5, 9, 34], and Lemma 2.1.5 holds, see below.

Here, due to the convection term, the steady problem is not symmetric, in contrast
with the pure diffusion problem, [30]. In the sequel we shall investigate the spectrum
of (2.30)–(2.31).

Integrating (2.30) over (0, 1) we obtain

w′(0) + M = μ

∫ 1

0
f (w)dx,

and by virtue of (2.32) we finally derive

λ(M) = (w′(0) + M)2

μ
, (2.33)

where M = ||w||∞ = w(1).
Also multiplying (2.30) by w′ and integrating we obtain

(w′(0))2

μ
= 2

[∫ M

0
f (s) ds − 1

μ

∫ 1

0
(w′(x))2 dx

]
≤ 2

∫ M

0
f (s) ds. (2.34)

We now have:

Lemma 2.1.4 If
∫∞
0 f (s) ds < ∞ then (w′(0))2

μ
→ 2I∞ as μ → ∞ where

I∞ = ∫∞
0 f (s) ds.

Proof We first consider the auxiliary problem:

z′′(x) + μg(z(x)) = 0, 0 < x < 1 − δ, (2.35)

z(x) = sup
x

w(x) = M, z′(x) = 0 for 1 − δ ≤ x ≤ 1 (2.36)

z(0) = 0, (2.37)

where 0 < g(s) < f (s), and z, z′, are continuous at the point x = 1 − δ.
Now,multiplying (2.35) by z′ and integrating over the interval (0, 1−δ)we obtain

(z′(x))2 = 2μ
∫ M

z(x)

g(s) ds = 2μ[G(z) − G(M)], (2.38)

where G(z) = ∫∞
z g(s) ds. Since z′(x) > 0 in [0, 1 − δ), then (2.38) entails

∫ M

0
[G(z) − G(M)]−1/2 dz = (1 − δ)

√
2μ. (2.39)
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We next prove that the solution of problem (2.35)–(2.37) is a lower solution to
problem (2.30)–(2.31). Indeed,

z′′(x) − z′(x) + μ f (z) = μ f (z) > 0 for 1 − δ ≤ x ≤ 1.

Also taking into account (2.35)–(2.39),

z′′ − z′ + μ f (z) = z′ + μ( f (z) − g(z))

= −√2μ [G(z) − G(M)]1/2 + μ( f (z) − g(z)) for 0 < x < 1 − δ.

(2.40)

Now choosing μ such that

μ ≥ μ0 = sup
x∈(0,M)

2[G(z) − G(M)]
[ f (z) − g(z)]2 , (2.41)

and δ < 1, relations (2.40), (2.41) imply

z′′ − z′ + μ f (z) > 0 for 0 < x < 1 − δ,

In addition z(0) = z′(1) = w(0) = w′(1) = 0, and thus z is a lower solution problem
(2.30)–(2.31). Therefore

z(x) ≤ w(x) for 0 < x ≤ 1 and 0 < z′(0) ≤ w′(0). (2.42)

Now we choose:

(a) g, such that 0 < g(s) < f (s) and I∞ − ε ≤ G(0) = ∫∞
0 g(s) ds < I∞,

(b) M such that [G(0) − G(M)] > I∞ − 2ε for ε > 0,
(c) μ to satisfy (2.41).

Note that since G ′(z) = −g(z) < 0 and we have G(0) ≤ I∞ and then by virtue of
(2.34), (2.38) and (2.42) we obtain

2I∞ >
(w′(0))2

μ
≥ (z′(0))2

μ
= 2[G(0) − G(M)] > 2(I∞ − 2ε), for any ε > 0,

which implies the desired result. �

Also, by adapting some ideas from [9], we can prove following:

Lemma 2.1.5 If w is the solution to (2.30)–(2.31) and
∫∞
0 f (s) ds < ∞ then

w(x;μ) → ∞ as μ → ∞ for every x in (0, 1].
Proof We first prove that Φ(μ) = ∫ 1

0 f (w(x;μ)) dx → 0 as μ → ∞. To this end
we construct a lower solution of (2.30)–(2.31) of the form z = βφ1 for some β > 0
where φ1 is the principal eigenfunction of
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−φ′′ + φ′ = λφ, 0 < x < 1, (2.43)

φ(0) = φ′(1) = 0. (2.44)

It is known that λ1 > 0 andφ1 > 0, alsowe normalizeφ1 by taking ||φ1||∞ = 1. Now
on choosing β to satisfy λ1β

f (β)
≤ μ, βφ1 becomes a lower solution of (2.30)–(2.31).

Thus, it is sufficient to choose β

f (β)
= μ

λ1
.

This choice of β is unique for each μ > 0. Indeed L (β) := λ1β

f (β)
is one to one

since L ′(β) > 0 and maps R+ onto R+ since L ((0,∞)) = (0,∞). Finally L is
a diffeomorphism, hence to each μ corresponds a unique β(μ)φ1 which is a lower
solution to (2.30)–(2.31).

Therefore we obtain that

Φ(μ) =
∫ 1

0
f (w(x;μ)) dx ≤

∫ 1

0
f (β(μ)φ1(x)) dx → 0 as μ → ∞.

The last limit implies that w(x;μ) → ∞ as μ → ∞ for 0 < x ≤ 1, otherwise
we could find an x0 so that w(x;μ) < ∞ in (0, x0), but this would imply that
limμ→∞ Φ(μ) > 0, contradicting that Φ(μ) → 0 as μ → ∞. �

An immediate consequence of Lemma 2.1.5 is that M = w(1) → ∞ as μ → ∞.
Furthermore, by using maximum principle to problem (2.30)–(2.31) we obtain the
response local diagram, see Fig. 2.1d.

Now, multiplying (2.30) by w′ − w, we obtain

(w′(0))2

μ
= 2

[∫ M

0
f (s) ds −

∫ 1

0
f (w)w dx

]
+ M2

μ
. (2.45)

In addition we have

∫ 1

0
f (w)w dx = f (w(ξ ;μ))w(ξ ;μ), ξ ∈ (0, 1), (2.46)

and hence we derive

∫ 1

0
f (w)w dx → 0 as μ → ∞ , (2.47)

by virtue of Lemma 2.1.5, taking also into account that f is decreasing.
Also by virtue of (2.45) we obtain, by taking the limit as μ → ∞,

M2

μ
→ 0. (2.48)

Henceforth, for convenience we normalize the integral
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∫ ∞

0
f (s) ds = I∞ = 1. (2.49)

Now we have the following:

Proposition 2.1.6 If (2.49) holds then λ(M) → 2 as M → ∞ (or equivalently as
μ → ∞).

The proof is an immediate consequence of (2.33), (2.48) and Lemma 2.1.4.
We now consider the complementary case where

∫ ∞

0
f (s) ds = ∞. (2.50)

Proposition 2.1.7 Let f satisfy (2.50) and w be the solution of (2.30)–(2.31). Then

(w′(0))2

μ
→ ∞ as μ → ∞ and λ(M) → ∞ as M → ∞.

Proof Let z satisfy

z′′(x) + μg(z(x)) = 0, 0 < x < 1 − δ, (2.51)

z(x) = M, z′(x) = 0, 1 − δ ≤ x ≤ 1, z(0) = 0. (2.52)

It is easily proved that z is a lower solution of (2.30)–(2.31) provided that

(a) 0 < g(s) < f (s) , g′(s) < 0 and
∫ ∞

0
g(s) ds = ∞, for instance g can be

taken as g(s) = γ f (s), 0 < γ < 1,
(b) μ ≥ μ0 = supz∈(0,M){[2

∫ M
z g(s) ds]/[ f (z) − g(z)]2},

thus we obtain:

(w′(0))2

μ
≥ (z′(0))2

μ
= 2

∫ M

0
g(s) ds → ∞,

as μ → ∞.
Hence

λ(M) = (w′(0) + M)2

μ
≥ (w′(0))2

μ
→ ∞ as M → ∞.

�

From the above analysis we can obtain the main possible response diagrams, see
Fig. 2.1. It is possible, see Fig. 2.1b, to have more than one turning points. This can
occur even in the cases of Fig. 2.1a, c, see also [34, 42].
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(a) (b)

(c) (d)

Fig. 2.1 λ, μ - diagrams represent the non-local, local response diagrams respectively of problem
(2.30)–(2.31). (i) (a), (b) for the case

∫∞
0 f (s) ds = 1 and (ii) (c) for the case

∫∞
0 f (s) ds = ∞

where M = w(1)

Remark 2.1 Solutions of the steady-state problem (2.30)–(2.31) for small values
of the parameter λ can be constructed via monotone iteration techniques for both
decreasing and increasing nonlinear functions f , see [1].

2.1.3.2 Hyperbolic Case

The steady-state problem to (2.18)–(2.20), which actually coincides with the one of
(2.10)–(2.12), is

w′ = μ f (w), 0 < x < 1, w(0) = 0, (2.53)

where again μ = λ(∫ 1
0 f (w)dx

)2 is referred to as the local parameter while λ as the

non-local one.
Equation (2.53) can be written

dw

f (w)
= μ dx, 0 < x < 1, (2.54)

from which by integration over (0, 1) we obtain
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Fig. 2.2 The local response
diagram to (2.53), where
M(μ) = w(1; μ) = w(1)

μ = μ(M) =
∫ M

0

ds

f (s)
, M = ||w||∞ = w(1). (2.55)

The latter implies that μ′(M) = 1
f (M)

> 0 leading to the response diagram

appearing in Fig. 2.2. Also by integration of (2.53) over (0, 1) we get λ = M2/μ

and so λ = λ(M) = M2/
∫ M
0

ds
f (s) . Since limM→∞ λ(M) = 2 limM→∞ M f (M), we

distinguish two cases:

(i)
∫∞
0 f (s)ds < ∞, then M f (M) ≤ 2

∫ M
M/2 f (s) ds → 0 as M → ∞, and so

there exists a λ∗ such that for 0 < λ < λ∗ problem (2.53) has at least two
steady-state solutions while for λ > λ∗ there is no steady-state solution, see
Fig. 2.3c.

(ii)
∫∞
0 f (s)ds = ∞, if limM→∞ M f (M) exists then two things might happen.
Either M f (M) → c, 0 < c < ∞ as M → ∞ and so the spectrum to (2.53)
is bounded, see Fig. 2.3b, or M f (M) → ∞ as M → ∞ and (2.53) has at least
one steady state for any λ > 0 (λ∗ = ∞ , see Fig. 2.3a).

Moreover, if μ(M) = ∫ M
0

ds
f (s) > M/2 f (M) for M > 0, then

λ′(M) = M

μ(M)

[
2μ(M) − M

f (M)

]
> 0,

and thus there is a unique steady state to each 0 < λ < λ∗.From the above analysiswe
get the possible non-local response diagrams of Fig. 2.3. Each diagram may contain
more turning points than shown (so that for some λ there are more solutions).

2.1.4 Stability

2.1.4.1 Parabolic Case

We now study the stability of the steady solutions, for 0 < λ ≤ λ∗ < ∞ if∫ ∞

0
f (s) ds < ∞ or for any λ > 0 if

∫ ∞

0
f (s) ds = ∞, by using comparison

methods, see also [22].
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Fig. 2.3 Possible non-local response diagrams to (2.53). (a) M f (M) → ∞ as M → ∞, (b)
M f (M) → c, 0 < c < ∞ as M → ∞, (c) M f (M) → 0 as M → ∞, where M = w(1)

In particular, we construct an upper solution U (x, t) = w(x;μ(t)) decreasing
in time, and a lower solution z(x, t) = w(x;μ(t)) increasing in time, of problem
(2.6)–(2.8). Both μ and μ satisfy the following initial value problem:

ν̇ = h(ν) ≡ inf
x∈(0,1)

{
f (w)

wν

}
λ − λ(ν)(∫ 1

0
f (w) dx

)2 , ν(0) = ν0 , (2.56)

where w = w(x; ν(t)) is the solution of (2.30)–(2.31) with μ = ν(t). Furthermore,
w = w(x;μ) is the unique solution of problem (2.30)–(2.31), where (ν, M) =
(ν(t), M(t)) is a point on the graph indicated in Fig. 2.1d. The wν−problem is derived
by differentiating (2.30)–(2.31) with respect to μ and substituting ν for μ.



2.1 Ohmic Heating of Foods 81

The existence of w = w(x; ν(t)) is a consequence of the fact that to each t > 0
there corresponds μ so that μ = ν(t) is continuous and maps R+ onto [ν0,∞).
Moreover, the continuity of the function h(ν) and the form of diagrams in Fig. 2.1
imply the existence and uniqueness of the solution ν = ν(t) of (2.56), see also [11].

The function ν = ν(t) is global-in-time since ν is bounded: μ(0) ≤ ν(t) ≤
μ(0). We have also that ν is strictly monotone. More precisely, μ(t) and μ(t) are
decreasing and increasing, respectively (see below). Moreover, it holds that wν > 0
by the maximum principle, recalling f ′(s) < 0. Also wν is finite; indeed for a fixed
ν, any sufficiently large constant is an upper solution of the wν−problem. Hence
inf x∈(0,1) { f (w)/wν} is always positive since also f (s) is bounded away from zero
for s ≤ supw < ∞.

To construct upper and lower solutions, we choose ν0 satisfying w(x; ν(0)) ≥
u0(x) and w(x; ν(0)) ≤ u0(x), respectively. This is possible since wν > 0. More
precisely, this can be done by u0 ≥ 0 and u0 ∈ C1([0, 1]). Otherwise we choose
ν(ε) so that w(·; ν(ε)) ≥ u(·, ε) for small ε > 0.

If the response diagram is as in Fig. 2.1a, c, or b for λ < λ∗, a unique steady-state
solution corresponds to each λ. Then we have a unique M(μ) and take either ν0 > μ

or ν0 < μ. In the complementary case, when two steady-states correspond to each λ

denoted by M1 = M(μ1) and M2 = M(μ2), for example, we take μ(λ∗) = μ∗ <

ν0 < μ1 , or μ1 < ν0 < μ2, or ν0 > μ2 for λ∗ < λ < λ∗ as in Fig. 2.1b. The
case with more than two turning points is similar, where each λ corresponds to more
than two M’s.

The above analysis implies that λ − λ(ν) < 0, ν = μ(t) and λ − λ(ν) > 0,
ν = μ(t) for the upper and lower solutions, respectively. These inequalities extend
to a proper region of ν, that is for the case of unique solution, λ − λ(ν) < 0 and
λ − λ(ν) > 0 if ν > μ and ν < μ, respectively, and for the case of two solutions,
λ − λ(ν) < 0 and λ − λ(ν) > 0 if μ1 < ν < μ2, μ∗ < ν < μ1 and ν > μ2,
respectively.

These properties imply U (x, t) = w(x;μ(t)) and z(x, t) = w(x;μ(t)) are upper
and lower solutions, respectively, and hence λ − λ(μ) < 0 < λ∗ − λ(μ) and λ −
λ(μ) > 0 > λ∗ − λ(μ), respectively. Then it holds that Ut = wν ν̇ < 0 and

zt = wν ν̇ > 0, since wν > 0, μ̇(t) < 0, and μ̇(t) > 0.
Returning to the case of a unique steady-state w(x) ≡ w1(x), the above con-

struction implies that z(x, t) ≤ u(x, t) ≤ U (x, t). Then u(x, t) is a global-in-
time solution and z(x, t) ↑ w(x) and U (x, t) ↓ w(x) as t → ∞ uniformly in
x , since μ(t) → l = μ+, μ(t) → l = μ− as t → ∞, which means that
μ(t) → μ, (μ(t) → μ) and μ(t) > μ (μ(t) < μ). The latter is true i.e.

l = l = μ, since assuming that μ(t) → μ̂+ = μ̂ > μ, as t → ∞ problem (2.56)

would imply
∫ μ(t)

μ(0)

ds

h(s)
= t , and by taking the limit as t → ∞ we should have

∫ μ̂

μ(0)

ds

h(s)
= ∞. But this can occur if and only if h(μ̂) = 0 or equivalently λ(μ̂) = λ

which contradicts the uniqueness of the solution of the non-local steady problem,
(otherwise we would have λ(μ̂) = λ(μ) = λ with μ̂ > μ, which is a contradiction,
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see Fig. 2.1c, d). The same argument applies to all other cases with more steady-
states, giving always an extra steady solution. Similarly it is shown thatμ(t) → μ−,
as t → ∞.

Consequently we deduce that w is a globally asymptotically stable solution. Here,
if ∫ ∞

0
f (s)ds = ∞,

then we can also prove that u(x, t) is a global in time solution. Indeed we have

Ṁ(t) ≤ λ f (M)(∫ 1

0
f (u)dx

)2 <
λ

f (M)
or
∫ M(t)

M(0)
f (s) ds < λt,

which implies that u(x, t) is global in time.
In case thatmore than one stationary solutions existwe can apply a similar analysis

to show the stability alternates starting from a stable minimal stationary solution,
proceeding to greater one which is unstable and so on, see [22].

Now we examine the long time behavior of u when f is an increasing function
inspired by [14, 22]. For simplicity we consider Dirichlet boundary conditions,

u(0, t) = u(1, t) = 0 ,

and expand u(x, t) as

u(x, t) =
∞∑

n=1

En(t)yn(x), (2.57)

where yn(x) = ex/2 sin(nπx), n = 1, 2, · · · , are the eigenfunctions of the operator
− ∂2

∂x2 + ∂
∂x , under Dirichlet boundary conditions.

Substituting (2.57) into Eq. (2.6) and taking into account the monotonicity of f ,
see also [22], we obtain the following estimate:

|En(t)| ≤ |En(0)|e−λn t + 2λ

n2π2 f (0)
[1 − e−λn t ],

hence

lim sup
t→∞

|En(t)| ≤ 2λ

n2π2 f (0)
,

where λn = 1

4
+ n2π2.
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By virtue of (2.57) we have

lim sup
t→∞

u(x, t) ≤ e1/2 lim sup
t→∞

∞∑
n=1

|En(t)| ≤ 2λe1/2

f (0)

∞∑
n=1

1

n2π2
= λe1/2

3 f (0)
,

since the series of |En(t)| converges uniformly and hence in that case a global-in-time
solution exists which is bounded for each time t > 0.

For the Neumann boundary condition

ux (0, t) = ux (1, t) = 0, (2.58)

a similar analysis yields that the solution u(x, t) of problem (2.6), (2.58) and (2.8)
is global-in-time but not necessarily bounded, see [22].

2.1.4.2 Hyperbolic Case

Now we investigate the stability of steady states of (2.18)–(2.20), using the compar-
ison result given in Sect. 2.1.2.

For this reasonwe consider comparison functions of the form v(x, t)=w(x;μ(t)).

Using vx = μ f (v) and μx =
∫ w

0

ds

f (s)
obtained by (2.53) and (2.54), respectively,

we get vt = μ̇(t)x f (v) with v(0, t) = 0. Thus by following the calculations in [22]
we derive

H (v) := ρ(v)vt +
(
1 −

∫ x

0
ρ ′(v)vt dy

)
vx − λ f (v)(∫ 1

0
f (v)dx

)2

= f (v)

[
μ̇(t)xρ(v) + μ(t) − μ̇(t)

∫ v

0
yρ ′(s)ds − λ/

(∫ 1

0
f (v)dx

)2
]

.

However, since
∫ 1
0 f (v)dx = 1

μ(t)

∫ 1
0 vx dx = M(t)

μ(t) for M(t) = supx v(x, t) =
v(1, t), choosing

μ̇(t) = μ̇ = h(μ(t)) ≡ 1

ρ(0)

(
λμ2

M2(μ)
− μ

)
, for t > 0, (2.59)

we obtain

H (v) = f (v)

[
1

ρ(0)

(
λμ2

M2(μ)
− μ

)(
ρ(v)x −

∫ v

0
yρ ′(s)ds

)
+ μ − λμ2

M2(μ)

]
.
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Let λ >
M2(μ)

μ
. Using the fact that ρ(s) is a positive decreasing function, we

get H (v) ≤ 0 for 0 < x < 1. Thus in this case v(x, t) is an increasing-in-time
(vt = μ̇(t)x f (v) > 0) lower solution to (2.18)–(2.20), provided that v(x, 0) =
w(x;μ(0)) ≤ u0(x). Also for λ <

M2(μ)

μ
and v(x, 0) = w(x;μ(0)) ≥ u0(x) we

obtain that v(x, t) is a decreasing-in-time upper solution to (2.18)–(2.20).
We start with the case that a unique steady statew exists. Then to each 0 < λ < λ∗

(λ∗ = ∞ when
∫∞
0 f (s)ds = ∞) there exists μ > 0 such that λ = λ(μ) :=

μ
(∫ 1

0 f (w)dx
)2

and the function λ(μ) is increasing. For the case u0(x) ≤ w(x)

we can choose 0 < μ(t) < μ, so λ = λ(μ) > λ(μ(t)) = M2(t)

μ(t)
, satisfying the

Eq. (2.59). Then μ(t) satisfies the transcendental equation

∫ μ(t)

μ(0)

ds

h(s)
= t, t > 0, where h(s) = 1

ρ(0)

(
λs2

M2(s)
− s

)
. (2.60)

Equation (2.60) has a unique solution in [μ(0), μ), for any μ(0) ≥ 0. Hence in this

case G : [μ(0), μ) → [0,∞) with G (ξ) := ∫ ξ

μ(0)
ds

h(s) is a C1–diffeomorphism,

[22]. Thus (2.59) has a unique solution μ(t) and since wμ = x f (w) ≥ 0 we can
choose μ(0) ≥ 0 such that w(x;μ(0)) ≤ u0(x). Hence v(x, t) = w(x;μ(t)) is an
increasing-in-time lower solution to (2.18)–(2.20), so v(x, t) ≤ u(x, t) ≤ w(x) for
x ∈ [0, 1] and t > 0. Moreover μ(t) → μ− as t → ∞, because, otherwise there
would be another steady state. Therefore, v(·, t) → w(·) as t → ∞ uniformly in x
resulting in u(·, t) → w(·) as t → ∞ uniformly in x .

When u0(x) ≥ w(x), it is possible to choose μ̄(t) > μ (so λ < λ(μ̄(t))) to
satisfy (2.59) and construct a decreasing-in-time upper solution z(x, t) to (2.18)–
(2.20), provided that z(x, 0) = w(x; μ̄(0)) ≥ u0(x). The latter is achieved since
u0(x), u′

0(x) are bounded and wμ̄ > 0. Thus we obtain w(x) ≤ u(x, t) ≤ z(x, t)
and finally u(·, t) → w(·) as t → ∞ uniformly in x , with μ̄(t) → μ+ as t → ∞.
Hence the unique steady state w(x) is globally asymptotically stable and u(x, t) is a
global-in-time bounded solution.

We turn to the case where (2.53) has two steady states w1 = w(x;μ1) and w2 =
w(x;μ2). Then for each λ∗ < λ < λ∗ there exist μ1 and μ2 such that λ = λ(μ1) =
λ(μ2) and function λ(μ) is increasing for 0 < μ < μ∗ and decreasing for μ > μ∗
with μ∗ satisfying λ′(μ∗) = 0. For 0 < u0(x) < w1(x), choosing 0 < μ(t) < μ1 <

μ∗ such that (2.59), we get as above a lower solution v(x, t) = w(x;μ(t)) with
v(·, t) → w1(·) as t → ∞ uniformly in x . Whereas for w1(x) < u0(x) < w2(x),

on choosing μ1 < μ̄(t) < μ∗, we construct an upper solution z(x, t) = w(x; μ̄(t))
such that z(·, t) → w1(·) as t → ∞ uniformly in x . Hence for λ∗ < λ < λ∗ the
minimal steady state w1 is asymptotically stable with a region of attraction [0, w2],
while for 0 < λ < λ∗ w1 is globally asymptotically stable. This implies that u(x, t)
is a global-in-time bounded solution.
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If we consider u0(x) > w2(x) and choose μ(t) > μ2 satisfying (2.59) then an
unbounded lower solution v(x, t) = w(x;μ(t)) can be constructed. More precisely,
μ(t) → ∞ as t → T ∗ ≤ ∞. Otherwise there would be a third steady state which is
a contradiction. Hence ‖u(·, t)‖∞ → ∞ as t → t∗ ≤ T ∗ ≤ ∞, which means that
u(x, t) is unbounded. The latter implies that the maximal steady state w2 is unstable.

Moreover, w∗(x) = w(x; λ∗) is unstable. In fact, w∗ is stable from below, 0 <

u0(x) < w∗(x), and unstable from above, u0(x) > w∗(x). If for each λ∗ < λ < λ∗
more than two steady states exist, then the above arguments imply that the minimal
steady state is stable, that the greater one is unstable, and so on.

We note that problem (2.18)–(2.20) has unbounded solutions for λ > λ∗. Indeed,

in this case there holds λ > λ(μ) = M2

μ
for μ > 0. Hence we can construct a

lower solution of the form w(x;μ(t)), which actually becomes unbounded since
μ(t) → ∞ as t → T ∗ ≤ ∞ and due to the fact that for λ > λ∗ there is no
steady state. Consequently u(x, t) becomes unbounded at some t∗ ≤ T ∗ ≤ ∞, i.e.
‖u(·, t)‖∞ → ∞ as t → t∗−.

2.1.5 Finite-Time Blow-Up

The phenomenon of finite-time blow-up. apart from its mathematical interest, is
very significant for the process of sterilization of food. Indeed, in this context finite-
time blow-up is closely associated with thermal runaway which finally leads to food
burning and it should be avoided, since, otherwise the whole process of the food
sterilization is inefficient. Therefore, it is important form the application point of
view to investigate under which circumstances finite-time blow-up occurs so we can
optimize the whole process.

In the following we provide a thorough study of the phenomenon of finite-time
blow-up for the solutions of both (2.6)–(2.8) and (2.18)–(2.20). Here by finite-time
blow-up we mean that there exists a point (x∗, t∗) ∈ (0, 1) and sequence (xn, tn) →
(x∗, t∗) as n → +∞ such that u(xn, tn) → +∞ as n → +∞.

2.1.5.1 Parabolic Case

So far we have shown that when λ ∈ (λ∗, λ∗] and u0(x) > w2(x) or when λ > λ∗,
the solution u of (2.6)–(2.8) is unbounded.

In the following, we actually prove that u blows up in finite time in these two
cases. We first consider the case

λ > λ∗ and
∫ ∞

0
f (s) ds < ∞, (2.61)

and we construct a lower solution z = z(x, t) to (2.6)–(2.8) of the form:
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zxx + μ(t) f (z) = 0, 0 < x < δ(t), t > 0, (2.62)

z(0, t) = 0, t > 0, (2.63)

z(x, t) = M(t) = sup
x∈(0,δ)

z(x, t), zx (x, t) = 0, δ(t) ≤ x ≤ 1, t > 0.

(2.64)

Multiplying (2.62) by zx and integrating we get

zx (x, t) = √2μ [F(z) − F(M)]1/2 , (2.65)

where F(σ ) =
∫ ∞

σ

f (s) ds, so F ′(σ ) = − f (σ ) < 0.

The relation (2.65) implies

∫ M

0

ds

[F(s) − F(M)]1/2
= δ
√
2μ. (2.66)

Also

∫ 1

0
f (z) dx = −

∫ δ

0

zxx

μ
dx + (1 − δ) f (M) =

(
2

μ

∫ M

0
f (s) ds

)1/2
+ (1 − δ) f (M)

=
√

2

μ
+ f (M) + o(1), (2.67)

as δ → 0 and M → +∞.

Let

δ(M) = a

2
f (M)

∫ M

0
[F(s) − F(M)]−1/2 ds , (2.68)

where a is a suitable constant with a > 1/
[(

λ
2

)1/2 − 1
]

. It is easily seen that such

a choice of a entails Λ = 1
2

[
λ

(1+a)2
− 2

a2

]
> 0 . Then it holds that

√
2

μ
= a f (M), (2.69)

and thus, by using (2.29), (2.66) and (2.69), we obtain

δ = 1√
2μ

∫ M

0
[F(s) − F(M)]−1/2 ds ≤ a(M f (M))1/2,

which implies δ → 0 as M → ∞ (or equivalently, as μ → ∞.)
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Therefore we deduce that

∫ 1

0
f (z) dx = (1 + a) f (M) + o(1) as M → +∞. (2.70)

Now we can prove the following finite-time blow-up result.

Theorem 2.1.8 Under the condition (2.61) the solution u of problem (2.6)–(2.8)
blows up globally in finite time.

Proof As the first step we show that z defined above is a blowing up lower solution
of problem (2.6)–(2.8). Indeed, for δ ≤ x ≤ 1 we have

F (z) : = zt − zxx + zx − λ f (z)(∫ 1

0
f (z)dx

)2 = Ṁ − λ f (M)(∫ 1

0
f (z) dx

)2

= Ṁ − λ

(1 + a)2 f (M)
+ o(1) < Ṁ − Λ

f (M)
+ o(1), as M → +∞. (2.71)

Hence F (z) ≤ 0 provided that 0 < Ṁ ≤ Λ/ f (M) and for M sufficiently large.
Notably it can be proven that M(t) is differentiable almost every where following
the approach in [15, 21].

Now we integrate relation (2.65) with respect to x ∈ (0, δ) and then differentiate
with respect to t , to obtain

zt = xμ̇√
2μ

[F(z) − F(M)]1/2 + 1

2
Ṁ f (M)[F(z) − F(M)]1/2

∫ z

0
[F(s) − F(M)]−3/2ds

:= A + B. (2.72)

Owing to (2.66) and (2.69) we have

A = − f ′(M)Ṁ

f (M)
[F(z) − F(M)]1/2

∫ z

0
[F(s) − F(M)]−1/2 ds

≤ − f ′(M)Ṁ f 1/2(z)M

2 f 3/2(M)

≤ Λ f (z)

2 f 2(M)
, (2.73)

since s(M1/2 − s) ≤ 1
4 M , provided that 0 ≤ Ṁ ≤ −Λ/M f ′(M).

Also we have

B ≤ 1

2
Ṁ f (M) f 1/2(z)(M − z)1/2 f −3/2(M)

∫ z

0
(M − s)−3/2ds
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≤ Ṁ f 1/2(z)

f 1/2(M)
≤ Λ f (z)

2 f 2(M)
, (2.74)

as long as

0 ≤ Ṁ ≤ Λ

2 f (M)
.

Finally, if 0 ≤ Ṁ(t) ≤ min

{
Λ

2 f (M)
,

−Λ

M f ′(M)

}
in x ∈ (0, δ], we obtain

F (z) ≤ Λ f (z)

f 2(M)
+ μ f (z) + 2M1/2 f (z)

a f 3/2(M)
− λ f (z)

(1 + a)2 f 2(M)
+ o(1)

≤ f (z)

f 2(M)

[
Λ + 2

a2 + Λ − λ

(1 + a)2

]
+ o(1) = f (z)

f 2(M)
[2Λ − 2Λ] + o(1) = o(1),

(2.75)

as M → +∞, taking also into account that
2( f (M)M)1/2

a
≤ Λ for M

sufficiently large.
Therefore, by choosing

Ṁ = min

{
Λ

2 f (M)
,− Λ

M f ′(M)

}
, (2.76)

there holds that F (z) ≤ 0 for x ∈ (0, δ) ∪ (δ, 1). Since z, zx are continuous and
z(0, t) = zx (1, t) = 0, the function z is a lower solution of (2.6)–(2.8) for M large
enough, after some time at which u is sufficiently large.

We shall show now that z blows up in finite time. Indeed relation (2.76) implies

Λ
dt

d M
= max{2 f (M),−M f ′(M)} ≤ 2 f (M) − M f ′(M) or

Λt ≤ 3
∫ M

0
f (s) ds − M f (M) < 3

∫ ∞

0
f (s) ds < ∞,

since M f (M) → 0 as M → ∞. The latter implies that z blows up at T ∗ =
3

Λ

∫ ∞

0
f (s) ds < ∞. Hence u must also blow up at some t∗ ≤ T ∗ < ∞.

Now,we claim that u blows up globally, whichmeans that u(x, t) → ∞ as t → t∗
for all x in (0, 1] and ux (0, t) → ∞ as t → t∗. Indeed, noting that

M(t) = sup
[0,1]

u(·, t) satisfies Ṁ ≤ λ f (0)(∫ 1

0
f (u) dx

)2 = h(t),



2.1 Ohmic Heating of Foods 89

we have M(t) − M(0) ≤
∫ t

0
h(s) ds → ∞ as t → t∗−, which implies∫ 1

0
f (u) dx → 0 as t → t∗−. Thus for λ > λ∗ or for λ∗ < λ ≤ λ∗ and u0 > w2 ,

u blows up globally and ux (0, t) → ∞ as t → t∗−. �

An analogous result to Theorem 2.1.8 could be proved in the case

λ∗ < λ ≤ λ∗ and
∫ ∞

0
f (s) ds < ∞,

by a similar construction of a blowing lower solution of problem (2.6)–(2.8). For
more details see [22].

Remark 2.1.9 All the results obtained in Sects. 2.1.2–2.1.5 can be easily derived
when the Dirichlet boundary condition u(0, t) = 0 is replaced by ux (0, t) −
a u(0, t) = 0, t > 0 for a > 0. Similar results can be derived if Eq. (2.6) is
replaced by (2.9).

A nonlinearity is encountered quite often in application is the Heaviside function:

H(s) =
{
0, s < 0,
1, s ≥ 0.

In fact, it is a good approximation for the food resistivity since in many occasions
food materials change their resistivity during the sterilization process [40].

In that case problem (2.6)–(2.8) takes the form, [23],

ut − uxx + ux = λH(1 − u)(∫ 1

0
H(1 − u)dx

)2 , 0 < x < 1, t > 0, (2.77)

u(0, t) = ux (1, t) = 0, t > 0, (2.78)

u(x, 0) = u0(x), 0 < x < 1, (2.79)

where now u0(x), u′
0(x) are considered to be bounded with u0(x) ≥ 0 in [0, 1]

(the last requirement is a consequence of the fact that for any u0(x) the solution u
becomes non-negative throughout 0 < x < 1 at some time t).

From the mathematical point of view, the Heaviside function is neither Lipschitz
nor strictly positive however it is decreasing and so the techniques used in the previous
sections can bemodified to derive analogous results regarding the long time behavior
of u. It should be pointed out that in this case the finite-time blow-up cannot occurs
but instead finite-time quenching takes place when λ > λ∗ or when 0 < λ < λ∗ and
for large enough initial data. For a rigorous investigation of the long time behavior
of the solution to (2.77)–(2.79) see [23].
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2.1.5.2 Hyperbolic Case

It has been noted in Sect. 2.1.4 that the unbounded solutions to problem (2.18)–(2.20)
exist either for λ > λ∗ or for u0(x) sufficiently large and λ ≤ λ∗. The exact behavior
of such solutions to (2.18)–(2.20) depends upon the decreasing rate of f (s). More
precisely we have, [24],

Theorem 2.1.10 If
∫∞
0 f (s)ds < ∞ and ρ(s) ≥ γ > 0 for s > 0 then the

unbounded solutions to (2.18)–(2.20)blow up globally in finite time, i.e. u(x, t) → ∞
as t → t∗ < ∞ for any x ∈ (0, 1] and ux (0, t) → ∞ as t → t∗.

Proof As in Sect. 2.1.4 we can construct a lower solution of the form v(x, t) =
w(x; ν(t)) with ν(t) satisfying (2.59). Moreover, recalling that M(μ) is defined
implicitly by

μ(M) =
∫ M

0

ds

f (s)
,

we note that M(0) = 0, and thus Hardy’s inequality [17] entails

∫ ν

0

(
M(σ )

σ

)2

dσ ≤ 4
∫ ν

0
(M ′(σ ))2dσ. (2.80)

Also, by virtue of M ′(ν) = f (M(ν)), then (2.80) implies

∫ ν

0

(
M(σ )

σ

)2

dσ ≤ 4
∫ ν

0
(M ′(σ ))2dσ = 4

∫ M(ν)

0
f (s)ds < 4

∫ ∞

0
f (s)ds < ∞.

(2.81)
Since ν(t) satisfies (2.59), we obtain

t = ρ(0)
∫ ν(t)

0

M2(σ )

σ 2

(
λ − M2(σ )

σ

) dσ for any t > 0. (2.82)

Taking into account
M2(μ)

μ
= M2(μ)∫ M

0
ds
f (s)

→ 0 as μ → ∞ and
∫∞
0 f (s) < ∞, we

deduce

∫ ∞

β

M2(σ )

σ 2

(
λ − M2(σ )

σ

) dσ = 1

λ

∫ ∞

β

(
M(σ )

σ

)2

dσ + o(1) as β → +∞.

(2.83)
Finally, combining (2.81), (2.82) and (2.83) we derive ν(t) → ∞ as t → T ∗−,
where
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T ∗ = ρ(0)
∫ ∞

0

M2(σ )

σ 2

(
λ − M2(σ )

σ

) dσ < ∞.

Hence u(x, t) blows up in finite time, i.e. ‖u(·, t)‖∞ → ∞ as t → t∗− ≤ T ∗ < ∞.
To prove global blow-up, we first note that N (t) = max[0,1]u(·, t) satisfies

d N

dt
= λ f (N )

ρ(N )

(∫ 1

0
f (u)dx

)2 ≤ λ f (0)

γ

(∫ 1

0
f (u)dx

)2 = h(t),

and since u blows up we take N (t) − N (0) ≤ ∫ t
0 h(s)ds → ∞ as t → t∗. The

latter implies h(t) → ∞ as t → t∗ and so
∫ 1
0 f (u)dx → 0 as t → t∗, giving

that u(x, t) → ∞ as t → t∗ for any x ∈ (0, 1] and ux (0, t) ≥ wx (0, ν(t)) =
ν(t) f (0) → ∞ as t → t∗. �

A complementary result to Theorem 2.1.10 is the following, [24],

Theorem 2.1.11 If
∫∞
0 f (s)ds = ∞ and ρ(s) ≥ γ > 0 for s > 0 then any

unbounded solution u(x, t) to (2.18)–(2.20) diverges or blows up in infinite time
globally, i.e. u(x, t) → ∞ as t → ∞ for any x ∈ (0, 1] and ux (0, t) → ∞ as
t → ∞.

Proof We consider the function v = v(t) > 0 such that

dv

dt
= λ

γ f (v)
. (2.84)

Then there holds that

H (z) := ρ(z)zt +
(
1 −

∫ x

0
ρ ′(z)zt dy

)
zx − λ f (z)(∫ 1

0
f (z)dx

)2

= ρ(v)
dv

dt
− λ f (v)(∫ 1

0
f (v)dx

)2 ≥ λ

f (v)
− λ

f (v)
= 0. (2.85)

Choosing v(0) such that u0(x) ≤ v(0), we see that z(x, t) = v(t) is an upper
solution to (2.18)–(2.20). Also (2.84) implies

∫ v(t)
v(0) f (s)ds = λ

γ
t, leading, due to

the hypothesis
∫∞
0 f (s) ds = ∞, to v(t) → ∞ as t → ∞. Hence, z(x, t) is a

global-in-time unbounded upper solution to (2.18)–(2.20). This implies that u(x, t)
diverges or blows up in infinite time, i.e. ‖u(·, t)‖∞ → ∞ as t → ∞. Using similar
arguments as in Theorem 2.1.10, it is proved that

∫ 1
0 f (u)dx → 0 as t → ∞. Thus

u(x, t) → ∞, for any x ∈ (0, 1] and ux (0, t) → ∞ as t → ∞. This completes the
proof. �
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2.2 A Non-local Thermistor Problem

The second part of the current chapter is devoted to the study of the thermistor, a
device for regulating electric current in a circuit.

The operation of the thermistor is described by the following system

ut = ∇ · (κ(u)∇u) + ρ(u) |∇φ|2, x ∈ Ω, t > 0, (2.86)

∇ · (ρ(u)∇φ) = 0, x ∈ Ω, t > 0, (2.87)

together with some boundary conditions for u(x, t) and φ(x, t) on ∂Ω, see for exam-
ple [3, 4, 13]. Here, Ω is assumed to be a smooth, bounded open set of RN , N ≥ 1,
and stands for the spatial domain occupied by the conductor (the body of the thermis-
tor); the physical situation corresponds to N = 3. Moreover, φ(x, t) is the electrical
potential, u(x, t) the temperature inside the conductor, κ(u) > 0 the thermal con-
ductivity, and ρ(u) > 0 stands for the electrical conductivity. The parabolic equa-
tion (2.86) describes the heat flow in the system, while the elliptic equation (2.87)
describes the conservation of charge in the system, provided that its variation in space
and time is not too rapid.

Using a similar approach to Sect. 2.1.1 we can reduce system (2.86)–(2.87) to the
following non-local equation

ut = ∇ · (κ(u)∇(u)) + λ f (u)(∫
Ω

f (u) dx
)2 , x ∈ Ω, t > 0, (2.88)

which is also associated with boundary and initial conditions. The form of the bound-
ary conditions depending on the flux conditions are applied at the edge of the ther-
mistor device. Belowwe will mainly deal with zero-flux (Neumann), mixed (Robin),
and Dirichlet type boundary conditions.

Local-in-time existence of problems for Eq. (2.88) can be obtained using similar
ideas as in Sect. 2.1.2 and therefore we focus on the blowing-up behavior of the
associated problems. Again blow-up behavior is closely linked with the occurrence
of thermal runaway which might cause destruction of thermistor device. Therefore
its thorough investigation is interesting from applications point of view as well.

2.2.1 Neumann Problem

We start our study from the simplest case, when u(x, t) satisfies Neumann boundary
conditions, i.e. the boundary of the thermistor is thermally insulated, and so the
(dimensionless) temperature u(x, t) satisfies the problem
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ut = ∇ · (κ(u)∇(u)) + λ f (u)(∫
Ω

f (u) dx
)2 , x ∈ Ω, t > 0, (2.89)

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0, (2.90)

u(x, 0) = u0(x), x ∈ Ω, (2.91)

where f (s) > 0, f ′(s) < 0 and κ(u) ≥ c > 0. Here ∂/∂ν denotes the normal
outward derivative to the boundary ∂Ω. In the following we assume that u0(x) ≥ 0.

In this case the associated steady-state problem

∇ · (κ(w)∇(w)) + λ f (w)(∫
Ω

f (w) dx
)2 = 0, x ∈ Ω,

∂w

∂ν
= 0, x ∈ ∂Ω, (2.92)

does not permit any kind of solution for every λ > 0.
Otherwise, if we integrate the equation of problem (2.92) we get

0 = λ∫
Ω

f (w) dx
,

which is a contradiction. The lack of stationary solutions is an indication that time-
dependent solutions should be unbounded. From the physical point of view this is
justified since the source term is positive, the system is provided with heat. On the
other hand the boundary condition ∂u/∂ν = 0 prevents any heat from escaping.
Thus, in such a situation, one expects the solution (concentration of heat) to become
unbounded. This physical situation is described by the following.

Theorem 2.2.1 There exists t∗ ≤ ∞ such that ||u(·, t)||∞ → ∞ as t → t∗. If∫∞
0 f (s) ds < ∞ then u(x, t) blows up in finite time, i.e. t∗ < ∞, whereas if∫∞
0 f (s) ds = ∞ then blow-up in infinite-time occurs, i.e. t∗ = ∞ and ‖u(·, t)‖∞ →

∞ as t → t∗. Moreover in each case blow-up is global and flat (uniform) i.e.

u(x, t) = ||u(·, t)||∞(1 + o(1)) as t → t∗ − for a.e. x ∈ Ω.

Proof We first assume
∫∞
0 f (s) ds < ∞. Under this assumption and the positivity

of u (which is a consequence of the maximum principle) the functional

Y (t) =
∫

Ω

∫ ∞

u(x,t)
f (σ ) dσ dx,

is well-defined and nonnegative [3, 21].
Taking the derivative of Y (t) with respect to t and using Eq. (2.89) we obtain
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Y ′(t) = −
∫

Ω

f (u) ut dx = −
∫

Ω

f (u)∇ · (κ(u)∇(u)) d x − λ
∫
Ω

f 2(u) d x(∫
Ω

f (u) dx
)2 .

Using Jensen’s inequality for φ(s) = s2 and integration by parts we have

Y ′(t) ≤ −
∫

Ω

f (u)∇ · (κ(u)∇(u)) d x − λ

|Ω| =
∫

Ω

f ′(u) κ(u) |∇u|2 dx − λ

|Ω| .

Now using the monotonicity of f (s) as well the positivity of κ(u) then

Y ′(t) ≤ − λ

|Ω| ,

which finally yields

0 ≤ Y (t) ≤ Y (0) − λ

|Ω| t.

The latter yields that u(x, t) cannot exist beyond t∗, where

t∗ ≤ T ∗
u = |Ω| Y (0)

λ
< ∞. (2.93)

Since the solution u(x, t) of (2.89)–(2.91) ceases to exist only when it becomes
unbounded, we deduce that ||u(·, t)||∞ → ∞ as t → t∗− (finite-time blow-up). An
immediate result of relation (2.93) is that as the L1−norm of the initial conditions
increases then the bound T ∗

u on the blow-up time, as it is expected, decreases. More-
over we can prove that u(x, t) blows up globally, using similar ideas as in Theorem
2.1.8, and uniformly i.e. u(x, t) ∼ ||u(·, t)||∞ as t → t∗ for a.e. x ∈ Ω (global and
flat blow-up).

Applying a similar approach as in [15, 21], we obtain that n(t) = minx∈Ω̄ u(x, t)
and N (t) = maxx∈Ω u(x, t) are differentiable almost for almost every t and thus it
satisfies

dn

dt
≥ λ f (n)(∫

Ω
f (u) dx

)2 ≥ λ f (N )(∫
Ω

f (u) dx
)2 ≥ d N

dt
, a.e. in (0, t∗),

which implies n(t) < N (t) ≤ n(t) + C, C = N (0) − n(0), for every t ∈ (0, t∗).
Hence the blow-up is uniform and it holds that

u(x, t) = ||u(·, t)||∞(1 + o(1)) as t → t∗ − for a.e. x ∈ Ω.

We now consider the case where
∫∞
0 f (s) ds = ∞. Again N (t) satisfies
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d N

dt
≤ λ f (N )(∫

Ω
f (u) d x

)2 ≤ λ

f (N ) |Ω|2 a.e in (0, t),

and integrating over (0, t) yields

∫ N (t)

N (0)
f (s) ds ≤ λ

|Ω|2 t,

for every t > 0. The latter implies that the solution cannot blow-up in finite time. By
the inequality (∫

Ω

u(x, t)dx

)
t

≥ λ

|Ω | f (0)
> 0,

we deduce limt→∞
∫
Ω

u(x, t) dx = ∞ and thus N (t) diverges in infinite time. �

2.2.2 Robin Problem

We now investigate a problem with Robin-type boundary conditions, i.e. non-
Newtonian cooling,

ut = ∇ · (κ(u)∇(u)) + λ f (u)(∫
Ω

f (u) dx
)2 , x ∈ Ω, t > 0, (2.94)

∂u

∂ν
+ β u(x, t) = 0, x ∈ ∂Ω, t > 0, (2.95)

u(x, 0) = u0(x), x ∈ Ω, (2.96)

where β = β(x) > 0. We still assume that f (s) > 0, f ′(s) < 0 and
∫∞
0 f (s) d s <

∞; actually for simplicity we take

∫ ∞

0
f (s) d s = 1. (2.97)

Then the following blow-up result holds:

Theorem 2.2.2 Assume ( f (s)κ(s))′ < 0 then if u(x, t) is a solution of (2.94)–
(2.96) then for λ sufficiently large there exists t∗ < ∞ such that ||u(·, t)||∞ → ∞
as t → t∗−, i.e. u(x, t) blows up in finite time. Moreover blow-up is global and flat.

Proof In this case the technique used for the Neumann problem fails because when
integrating by parts the term containing ∂u/∂ν does not vanish any more on the
boundary. In order to overcome this difficulty we modify the form of the functional
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Y (t). This can be achieved by using an auxiliary function in the definition of Y (t).
More precisely we consider

Y (t) =
∫

Ω

Ψ (x)

(∫ ∞

u(x,t)
f (σ ) d σ

)
d x,

where Ψ (x) is the Robin eigenfunction corresponding to the principal eigenvalue of
the Laplacian, i.e. Ψ (x) satisfies the problem

− ΔΨ = μ1 Ψ, x ∈ Ω,
∂Ψ

∂ν
+ β Ψ = 0, x ∈ ∂Ω. (2.98)

It is known, see for example [2] Theorem 4.3, that μ1 is positive and that Ψ (x) does
not change sign inΩ, so it can be chosen to be positive and for simplicity normalised
so that ∫

Ω

Ψ (x) d x = 1. (2.99)

Hence the functional Y (t) is nonegative and well-defined due to (2.97).
Differentiating Y (t) and using (2.94) we obtain

Y ′(t) ≤ −
∫

∂Ω

Ψ f (u) κ(u)
∂u

∂ν
ds +

∫
Ω

∇ (Ψ (x) f (u)) κ(u) · ∇(u) dx − λ m

|Ω|
= β

∫
∂Ω

Ψ f (u) κ(u) u ds +
∫

Ω

∇Ψ (x) · ∇
(∫ u

0
f (σ )κ(σ )dσ

)
dx

+
∫

Ω

Ψ (x) f ′(u)κ(u)|∇u|2dx − λ m

|Ω| ,

due to the boundary conditons. Then f ′(s) < 0 implies

Y ′(t) ≤ β

∫
∂Ω

Ψ f (u) κ(u) u ds − β

∫
∂Ω

Ψ

(∫ u

0
f (σ )κ(σ )dσ

)
ds

−
∫

Ω

ΔΨ

(∫ u

0
f (σ )κ(σ )dσ

)
dx − λ m

|Ω|
= μ1 − λ m

|Ω| ,

for m = minx∈Ω Ψ (x) > 0 by ( f (s)κ(s))′ < 0, (2.99), and (2.97).
The latter yields

0 < Y (t) ≤ Y (0) −
(

λ m

|Ω| − μ1

)
t,

and finally, we conclude that the solution of (2.94)–(2.96) blows up globally in finite
time by
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T ∗
u = Y (0)

λ m
|Ω| − μ1

,

provided that λ > λ̂ = μ1 |Ω|
m . It can also be proven that blow-up is global and

uniform. �

The above method, apart from the existence of blow-up, provides us with an
upper estimate of λ∗, the supremum of the spectrum of the corresponding steady-
state problem. Indeed, we claim that λ∗ ≤ λ̂, because otherwise, for initial conditions
u(x, 0) < wm(x; λ)wherewm(x; λ) is theminimal stationary solution corresponding
to a λ̂ < λ < λ∗, we could prove, using similar ideas as in [30], that u(x, t) → wm(x)

as t → ∞,which is a contradiction since blow-up occurs for every initial conditions
if λ > λ̂. This estimate does not seem to be optimal, at least for f (s) = e−s . In fact,
as Bebernes and Lacey conjectured in [5] that λ∗ in this case will be proportional to
2 |∂Ω|2. However, for the one-dimensional case the above estimate λ̂ improves the
ones in [30, 42].

As it has been pointed out in the second part of the current chapter, the occur-
rence of blow-up is linked with thermal runaway which might be responsible for the
destruction of thermistor device. Therefore, it is important from applications point of
view to estimate when finite blow-up takes place. Thus, in the following we provide
some useful estimates of the blow-up time when λ > λ∗.

For simplicity we take a nonlinearity f satisfying

f (s), f ′′(s) > 0, f ′(s) < 0, s ≥ 0 , (2.100)

f (s) ≤ c

s2
, c > 0 for s � 1 and

∫ ∞

0
f (s) ds < ∞, (2.101)

and we also deal with the one-dimensional case, e.g. Ω = (−1, 1), for κ(u) = 1,
i.e.,

ut = uxx + λ f (u)(∫ 1
−1 f (u) dx

)2 , x ∈ (−1, 1), t > 0, (2.102)

ux (x, t) ± β u(x, t) = 0, x = ±1, t > 0, (2.103)

u(x, 0) = u0(x), x ∈ (−1, 1). (2.104)

In particular, in [26] is proven the following

Theorem 2.2.3 Let f satisfy (2.100) and (2.101). Assume, further, that the steady-
state problem of (2.102)–(2.104) has at least a classical solution, say w∗, corre-
sponding to λ∗. Then for any λ sufficiently close to λ∗, the blow-up time Tb of the
solution of (2.102)–(2.104) can be estimated as follows

Tl (λ − λ∗)−
1
2 ≤ Tb ≤ Tu (λ − λ∗)−

1
2 , (2.105)
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where Tl, Tu are positive constants.

The proof of Theorem 2.2.3 is based on several ideas introduced in [28] and is
lengthy. Thus it is omitted here. In [26], some estimates of the blow-up via asymptotic
and numerical methods are also provided for f (s) = e−s which actually confirm the
results of Theorem 2.2.3.

2.2.3 Dirichlet Problem

We finally close our study with the Dirichlet case where for simplicity we also
consider κ(u) = 1 and thus we focus on the following

ut = Δu + λ f (u)(∫
Ω

f (u) dx
)2 , x ∈ Ω, t > 0, (2.106)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (2.107)

u(x, 0) = u0(x), x ∈ Ω. (2.108)

In this case we expect for blow-up to occur if f (s) is decreasing and satisfies (2.97).
Indeed, under those conditions there exists a critical parameter λ∗ ≥ 2 |∂Ω|2, see
Theorem 2.2 in [5], such that the steady-state problem

Δw + λ f (w)(∫
Ω

f (w) dx
)2 = 0, x ∈ Ω, w(x) = 0, x ∈ ∂Ω, (2.109)

has no solutions forλ > λ∗.Actually, in the one-dimensional case a thorough study of
finite-time blow-up for λ > λ∗ is provided in [29, 30]. Here we provide an extension
of those blow-up results in the higher dimensional case however we should restrict
the class of the considered nonlinear functions f.

Notably the approach used in the case ofNeumann andRobin boundary conditions
fails here, for more details see [21]. Therefore, we will proceed for the proof of
blow-up by constructing a proper blowing up lower solution. We actually have the
following

Theorem 2.2.4 For λ > λ∗ and sufficiently large initial conditions the solution of
the problem (2.106)–(2.108) blows up globally and uniformly in finite time provided
that f (s) satisfies

∫ ∞

0
[2s f (s) − s2 f ′(s)] ds < ∞. (2.110)

Proof For the construction of this lower solution we will need first to define a
lower solution of the problem for the steady-state problem (2.109), which was first
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introduced in [5]. This lower solution has the form

v(x;μ, ν, δ) =

⎧⎪⎨
⎪⎩

V (
√

ν δ d(x, ∂Ω);μ), d(x, ∂Ω) <
μ√
ν δ

,

V (μ;μ) = M, d(x, ∂Ω) ≥ μ√
ν δ

,
(2.111)

where V is the solution of the problem

V ′′ + f (V ) = 0, 0 < y < μ, V (0;μ) = 0, V ′(μ;μ) = 0, (2.112)

while δ = λ/(
∫
Ω

f (w) dx)2 is the so called local parameter of (2.109) and ν is
a constant to be determined later. Here d(x, ∂Ω) stands for the distance between
x ∈ Ω and the boundary ∂Ω. Also, d is smooth and more precisely |Δd| < K ,

for some K, in a neighborhood of the boundary if ∂Ω is smooth. In particular, such
a neighborhood consists of all x ∈ Ω such that d(x, ∂Ω) ≤ μ√

ν δ
< ρ, where

ρ is smaller than the infimum of the radius of the largest interior ball touching the
boundary at some z ∈ ∂Ω.Hence in the following δ is chosen large enough to ensure
that μ√

ν δ
< ρ.

Obviously v satisfies the correct boundary condition and is C1. Moreover there
holds

Δv + δ f (v) = δ f (V (μ)) > 0 for d(x, ∂Ω) ≥ μ√
ν δ

,

Δv + δ f (v) = ν δ |∇d|2 V ′′ + √
ν δ V ′ Δd + δ f (V )

= (1 − ν) δ f (V ) + √
ν δ V ′ Δd where d(x, ∂Ω) <

μ√
ν δ

> (1 − ν) δ f (V ) − √
δ K V ′ ≥ 0, for ν < 1,

provided that ν ≤ 1 − K G(μ)√
δ

, where G(μ) = supy∈(0,μ)
V ′

f (V )
.

Therefore, by choosing ν = 1 − K G(μ)/
√

δ, v is a lower solution of problem
(2.109) for sufficiently large δ, i.e. for λ < λ∗ sufficiently close to λ∗.

Problem (2.112) also implies that V satisfies

V ′ 2 = 2
∫ M

V
f (s) ds = 2

∫ ∞

V
f (s) ds − 2

∫ ∞

M
f (s) ds = 2(F(V ) − F(M)),

where F(σ ) = ∫∞
σ

f (s) ds and thus the relation between μ and M is defined by

μ = μ(M) = 1√
2

∫ M

0
[F(s) − F(M)]−1/2 ds. (2.113)

We now consider as a candidate lower solution the function
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z(x, t) =

⎧⎪⎨
⎪⎩

V (
√

ν δ d(x, ∂Ω);μ), d(x, ∂Ω) <
μ√
ν δ

,

V (μ;μ) = M(t), d(x, ∂Ω) ≥ μ√
ν δ

,
(2.114)

where the functions μ = μ(t), M = M(t), δ = δ(t) and the constant ν will be
determined below.

Indeed, due to (2.113) the relation between M(t) and μ(t) is already determined,
while we are free to chose the relation between M(t) and δ(t). It is evident, from the
definition of z(x, t), that if the ratio μ/

√
νδ decreases to 0 as t increases then the

spatial independent behavior of z(x, t) dominates the behavior near the boundary,
i.e. the growth of z(x, t) is uniform (flat) as t increases. In the following we will
choose M(t) and the dependence between M and δ such that, for large enough intitial
conditions, z(x, t) is a lower solution of problem (2.106)–(2.108) which blows up in
finite time.

We choose

δ = δ(M) = M2

f (M)
, (2.115)

while we impose M(t) to satisfy

Ṁ(t) := d M

dt
= λ − λ∗
(∫

Ω
f (z) dx

)2 inf
x∈Ω

{
f (z)

zM

}
> 0 for t > 0, (2.116)

and M(0) is chosen large enough so that δ0 = δ(M(0)) = M2(0)/ f (M(0)) is also
sufficiently large (note that δ′(M) > 0).

Consequently, we have that

zM = ∂z

∂ M
= ∂V

∂y
y′(M) + ∂V

∂μ
μ′(M) > 0,

where y = y(M) = √
ν δ(M) d(x, ∂Ω). In fact, differentiating problem (2.112)with

respect to y and using the monotonicity of f (s) together with maximum principle
arguments we get ∂V/∂y > 0. Besides, y′(M) = 1

2 y(M) δ′(M)/δ(M) > 0 and
μ′(M), Vμ(y;μ) > 0.

Setting Y = y/μ then problem (2.112) can be written as

W ′′ + μ2 f (W ) = 0, 0 < Y < 1, W (0;μ) = 0, W ′(1;μ) = 0,

where W (Y ) = V (y). Differentiating this problem with respect to μ we obtain

−W ′′
μ − μ2 f ′(W ) Wμ = 2μ f (W ) > 0, 0 < Y < 1, Wμ(0;μ) = 0, W ′

μ(1;μ) = 0,

which implies (due the maximum principle) that Wμ(Y ;μ) = Vμ(y;μ) > 0 for
0 < y < μ and Wμ(1;μ) = M ′(μ) > 0, hence μ′(M) > 0.
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Now if we choose δ0 large enough then the fact that δ ′(M) > 0 and M(t) satisfies
(2.116) guarantee that δ(t) remains large enough for every t > 0.

Therefore
− Δz ≤ δ(t) f (z) for every t > 0, (2.117)

provided that ν is chosen such that

ν ≤ inf
M>M(0)

(
1 − K G(M)√

δ(M)

)
, (2.118)

where M(0) is also taken large enough. The latter choice is possible since

lim
M→+∞

G(M)√
δ(M)

= 0.

Therefore we derive

zt − Δz − λ f (z)(∫
Ω f (z) dx

)2 = zM Ṁ(t) − Δz − λ f (z)(∫
Ω f (z) dx

)2
≤ zM Ṁ(t) + δ(t) f (z) − λ f (z)(∫

Ω f (z) dx
)2 (due to (2.11.7))

≤ zM Ṁ(t) + [λ∗ − λ] f (z)(∫
Ω f (z) dx

)2 + o(1)

= zM

(
λ − λ∗

(∫
Ω f (z) dx

)2 inf
x∈Ω

{
f (z)

zM

}
+ [λ∗ − λ](∫

Ω f (z) dx
)2 f (z)

zM

)
+ o(1)

= zM (λ − λ∗)(∫
Ω f (z) dx

)2
[
inf

x∈Ω

{
f (z)

zM

}
− f (z)

zM

]
+ o(1) ≤ 0 as M → +∞,

since δ(t) ≤ λ∗/
(∫

Ω
f (z) dx

)2 + o(1) as M → +∞, and by choosing M(0)
sufficiently large.

Consequently, z(x, t) is a lower solution of problem (2.106)–(2.108) provided that
M(t) satisfies (2.116) with sufficiently large initial conditions M(0). Furthermore,
we show that (2.116) guarantees the occurrence of finite-time blow-up for the lower
solution z(x, t).

Indeed, we first note that

inf
x∈Ω

{
f (z)

zM

}
= min

{
f (M), inf

d(x,∂Ω)<μ/
√

ν δ

{
f (z)

zM

}}
,

where

inf
d(x,∂Ω)<μ/

√
ν δ

{
f (z)

zM

}
= inf

y∈(0,μ)

{
f (V (y;μ))

VM(y;μ)

}
= 1

supy∈(0,μ)

{
VM (y;μ)

f (V (y;μ))

} .
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Since

VM(y;μ) = 1

2
y

δ′(M)

δ(M)

∂V

∂y
+ ∂V

∂μ
μ′(M),

then

sup
y∈(0,μ)

{
VM (y; μ)

f (V (y; μ))

}
≤ 1

2

δ′(M)

δ(M)
sup

y∈(0,μ)

{
Vy(y; μ) y

f (V (y; μ))

}
+ sup

y∈(0,μ)

{
Vμ(y; μ) μ′(M)

f (V (y; μ))

}

≤ 1

2

δ′(M)

δ(M)
G(μ(M)) μ(M) + sup

y∈(0,μ)

{
Vμ(y; μ)

f (V (y; μ))

}
μ′(M). (2.119)

Note that

lim
M→+∞

μ(M)√
δ(M)

= 0, (2.120)

and

lim
M→+∞

G(μ(M))√
δ(M)

= 0. (2.121)

For the former by virtue of (2.113) we have

μ(M) = 1√
2

∫ M

0
[F(s) − F(M)]−1/2 ds ≤ 1√

2

∫ M

0
[(M − s) f (M)]−1/2 ds

=
√

2 M

f (M)
,

and thus

0 < lim
M→+∞

μ(M)√
δ(M)

≤ lim
M→+∞

√
2 M
f (M)√

δ(M)
= lim

M→+∞

√
2 M
f (M)

M√
f (M)

= 0.

For the latter, taking into account the monotonicity of f we obtain that

f 2(M) (F(V ) − F(M))/ f 2(V ) ≤ (M − V ) f 2(M)/ f (V ) ≤ (M − V ) f (M) ≤ M f (M),

which implies

G(μ(M)) = sup
V ∈(0,M)

√
2 (F(V ) − F(M))

f (V )
≤
√

2 M

f (M)
,

and thus
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0 < lim
M→+∞

G(μ(M))√
δ(M)

≤ lim
M→+∞

√
2 M
f (M)√

δ(M)
= lim

M→+∞

√
2 M
f (M)

M√
f (M)

= 0.

Furthermore,

sup
y∈(0,μ)

{
Vμ(y;μ)

f (V (y;μ))

}
≤ Vμ(μ;μ)

f (V (μ;μ))
= M ′(μ)

f (M)
, (2.122)

since
∂2V (y;μ)

∂μ ∂y
= −

∫ y

0
f ′(V (s;μ)) Vμ(s;μ) ds + ∂2V (0;μ)

∂μ ∂y
≥ 0.

Now by using (2.120)–(2.122) then relation (2.119) entails

sup
y∈(0,μ)

{
VM(y)

f (V (y))

}
<

1

2
δ′(M) + 1

f (M)
= 1

2
δ′(M)(1 + o(1)) as M → +∞,

taking into account

lim
M→∞

1
f (M)

δ′(M)

2

= lim
M→∞

2
δ′(M)

f (M)
= lim

M→∞
2

2 M − M2 f ′(M)

f (M)

= 0,

and thus

inf
x∈Ω

{
f (z)

zM

}
≥ min

{
f (M),

2

δ′(M)

}
+ o(M) = 2

δ′(M)
+ o(M) as M → +∞.

Consequently in view of relation (2.116) we obtain

Ṁ(t) ≥ λ − λ∗
(∫

Ω f (z) dx
)2 2

δ′(M)
+ o(M) = 2 (λ − λ∗)

|Ω|2 δ′(M) f 2(M)
+ o(M)

= (λ − λ∗)

|Ω|2 [2 M f (M) − M2 f ′(M)] + o(M), as M → +∞,

since
∫
Ω

f (z) dx = f (M) |Ω|+o(M) as M → +∞due to (2.120) and the definition
of z(x, t). The latter implies that M(t) → ∞ as t → t∗

1 , where

t∗
1 ≤ |Ω|2

(λ − λ∗)

∫ ∞

M(0)
[2 σ f (σ ) − σ 2 f ′(σ )] dσ + o(M) < ∞, as M → +∞,

(2.123)
recalling that f satisfies (2.110).

Consequently z(x, t) is lower solution which blows up in finite time t∗
1 , provided

that M(0) is chosen large enough. The latter implies that u(x, t) blows up in finite
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time t∗ ≤ t∗
1 , i.e. ||u(·, t)||∞ → ∞ as t → t∗, for large enough initial conditions. It

can be proven, using the same arguments as in the Neumann problem, that blow-up
is global.

Finally, in this case we can also prove that blow-up is uniform (flat). Actually, if
we consider the problem

vt = Δv + h(t) f (N ), x ∈ Ω, t > 0,

v(x, t) = 0, x ∈ ∂Ω, t > 0,

v(x, 0) = 0, x ∈ Ω,

where N = N (t) = maxx∈Ω u(x, t) and h(t) = λ/(
∫
Ω

f (u(x, t)) dx)2 then v(x, t)
is a lower solution of problem (2.106)–(2.108) since f (s) is decreasing.

Set v(x, t) = θ(x, t) + V (t) where V (t) is the solution of the problem

dV (t)

dt
= h(t) f (N ), V (0) = 0,

and θ(x, t) satisfies

θt = Δθ, x ∈ Ω, t > 0,

θ(x, t) = −V (t), x ∈ ∂Ω, t > 0,

θ(x, 0) = 0, x ∈ Ω.

Thus θ has the integral representation

θ(x, t) =
∫ t

0
V (τ )

∫
∂Ω

∂G(x, s, t − τ)

∂ν
dsdτ,

where G(x, y, t) is the Green’s function for the heat equation in Ω with Dirichlet
boundary conditions. Thus

v(x, t) = V (t) +
∫ t

0
V (τ )

∫
∂Ω

∂G(x, s, t − τ)

∂ν
dsdτ, (2.124)

and for any fixed x ∈ Ω the second term on the right-hand side of (2.124) is much
smaller than the first as t → t∗, due to the contribution of the Green’s function term,
and so v(x, t) = V (t)(1+ o(1)) as t → t∗ for any x ∈ Ω. Hence N (t) ≥ u(x, t) ≥
V (t)(1 + o(1)) as t → t∗ for any x ∈ Ω.

Now using the fact
d N (t)

dt
≤ h(t) f (N ) = dV (t)

dt
,
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we obtain N (t) ≤ V (t) ≤ N (t)(1+ o(1)) as t → t∗ and thus it follows that V (t) =
N (t)(1+ o(1)) as t → t∗ and consequently we deduce u(x, t) = N (t)(1+ o(1)) as
t → t∗− for any x ∈ Ω (uniform blow-up). �

Remark 2.2.5 Relation (2.110) is satisfied by f (s) = e−s as well as by f (s) =
1/(1 + s)1+k, for k > 1.

Remark 2.2.6 It should pointed out that the upper bound of blow-up time given
by relation (2.123) is of the same form with the upper estimate obtained in Theo-
rem 2.2.3, although the method used to derive (2.123) is independent of the spatial
dimension.

In the case of a non-constant thermal conductivity κ(u) some blow-up results not
only for the Dirichlet case can be found in [19, 32].

The case λ = λ∗ seems to be critical since an infinite-time blow-up result holds
for the one-dimensional case, e.g. Ω = (−1, 1). Indeed, we can construct an upper
solution V to problem (2.106)–(2.108) which is global in time and unbounded.

Such an upper solution has the form

V (x, t) = w(y(x, t);μ(t)), δ(t) ≤ |x | ≤ 1, t > 0,

V (x, t) = M(t) = max
δ(t)≤|x |≤1

w(y(x, t);μ(t)), 0 ≤ |x | < δ(t), t > 0,

where 0 ≤ y(x, t) = |x | − δ(t)

1 − δ(t)
≤ 1, and 0 < δ(t) < 1 is a function can be chosen

properly whereas w(y;μ(t)) satisfies the following quasi steady-state problem

wyy + μ(t) f (w) = 0, 0 < y < 1, t > 0, w′(0) = w(1) = 0,

with ε(t) = 1 − δ(t).
More precisely the following holds

Theorem 2.2.7 Let f (s) be a decreasing function satisfying relation (2.97) as well
as the one of the following conditions

lim inf
s→∞ g(s) > c > 0

or

lim inf
s→∞ g(s) = 0 and g(s) ≥

√
2 (1 + α)√

ln s
, α > 0 for s � 1,

where

g(s) = f (s)
√

μ(s)∫ ∞

s
f (σ ) dσ

.
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Then the solution u∗(x, t) of problem (2.106)–(2.108) for λ = λ∗ is global-in-time.
Moreover,

lim
t→∞ u∗(x, t) = ∞ for all ∈ (−1, 1),

and u∗
x (±1, t) → ∓∞ as t → ∞, i.e. u∗ blows in infinite time (diverges) globally

in x .

The proof of Theorem 2.2.7 is very lengthy and thus we omit it here, however it can
be found in [27], where also a divergence result for the radial case is proven.

An analogous divergence result to Theorem 2.2.7 for the case of a non-constant
thermal conductivity κ(u) is given in [33].

Closing the current chapter we would like to specify that the following non-local
parabolic equation

ut = ∇ · (κ(u)∇(u)) + λ f (u)(∫
Ω

f (u) dx
)p , x ∈ Ω, t > 0, (2.125)

where p �= 2 can serve as a mathematical model for a variety of industrial processes.
In particular, for p ≤ 1 (2.125) can be used to describe the torsion test in metallurgy
where finite-time blow-up is now associated with the phenomenon of shear banding
formation, [6, 7].

For some finite-time blow-up results for Eq. (2.125) associated with different
boundary conditions see [5, 7, 19, 25, 43] where a variety of methods are employed.
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Chapter 3
Linear Friction Welding

Abstract The current chapter discusses an application arising in the process of linear
friction welding applied in metallurgy. In the first place a one-dimensional non-local
model defined in the half-line is constructed in order to describe the evolution of
the temperature within the welding region. In this study we mainly consider two
cases: the soft-material which is modeled by an exponential nonlinearity and the
hard-material case when a power-law nonlinearity is regarded. In the former case
the non-local problem has variational structure, and so can be treated as a gradient
flow, which is used to derive appropriate a priori estimates for the solution. Thus
parabolic regularity theory can be used to prove global-in-time existence and finally
prove the convergence of its solution towards the unique steady state. On the other
hand, the power-law case lacks such a variational structure and thus we have to
appeal to a numerical scheme of Crank–Nicolson type in order to presume the long-
tume behavior in this case as well as to confirm the analytical results derived in the
exponential case.

3.1 Derivation of the Model

Problems of thermo-viscous flow and of thermo-viscoelastic flow in channels have
previously been seen to lead to non-local parabolic equations [1]. These models
have held in bounded domains, corresponding to cross-sections of the channels.
Conditions under which such problems can exhibit some form of blow-up, possibly
corresponding to shear-band formation, have been investigated in a number of papers
[1–5, 16, 17].

A related problem of thermo-plastic flow arises from the consideration of linear
friction welding. In this process twometal workpieces are forced to slide against each
other, in a rubbing motion, while also being pressed together. The rubbing leads to
heat generation, consequent softening near the workpieces’ adjoining surfaces, and
plastic flow.Viscous dissipation continues heat generationwithin a thin softened layer
where the two workpieces merge. The forcing together of the workpieces results in
an additional, but rather smaller, squeezing motion, with the workpieces moving
slowly towards each other, and some material – including impurities on the original

© Springer International Publishing AG 2018
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for Engineering and Biology, Mathematics for Industry 31,
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Fig. 3.1 A schematic description of the procedure of linear friction welding

surfaces – being expelled from the sides as “flash”. In a time the process is halted
and cooling of previously warmer regions results in a weld between the workpieces.
For a schematic description of the above process see Fig. 3.1.

In [6, 14], the process has been modelled by assumimg that the forced sliding
velocities of the workpieces, ±W (t), are square waves with W (t) = ±We. This
means that the sliding speed is always We. This, combined with an assumption that
in the soft layer the corresponding (oscillating) sliding velocity dominates the non-
oscillatory squeezing velocity, means that the rate of heat generation within the layer
is, to leading order, independent of time. The latter assumption will hold provided,
roughly speaking, that the squeezing force is small enough in comparison with other
operating parameters and material constants.

Another key part of the model in [6, 14], mentioned also in [10], is the thinness of
the soft layer, which can then be looked at using lubrication theory, subject to match-
ing conditions with outer problems applying to the cooler parts of the workpieces
which move as simple rigid bodies. Figure3.2 indicates some of the key features
of the model. If the sides of the workpieces have low Biot number, that is, the heat
transfer between them and their surroundings is poor, and the oscillations have small
amplitude, temperature will be, to leading order, independent of position, z, along
the weld.

All this allows the process to be represented by an essentially one-dimensional
mathematical model. The squeezing velocity along the weld, the z direction, w̄, is
proportional to z, measured from the centre of the weld, but on writing w̄ = zw∗, the
new variable w∗ is independent of z. The flow in the soft layer is dominated by one-
dimensional, plastic, sliding flow, and is modelled in the same way as the shear-band
models of [1, 2]. The energy equation for temperature, however, requires a matching
condition, with y, the distance from the plane of symmetry along the weld, large
compared with h, the width of the soft layer. (More accurately, h is the length scale
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Fig. 3.2 Some features of
the model for linear friction
welding
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part of the upper workpiece.
Unknown approach speed V in the rigid

expelled here.

part of the upper workpiece.
Known sliding velocityW in the rigid

through the workpieces.

between the workpieces.

across this thin, soft layer.) The matching is with an outer problem for temperature,
in the rigid parts of the workpieces, which gives a value for the temperature gradient
in terms of the approach speed V . Thus, looking at the inner problem which applies
over a length scale of h in the thin, soft zone, a temperature gradient is applied at
infinity – more accurately, for y/h � 1. This contrasts with the shear-band models,
which have boundary conditions imposed for temperature at the surfaces which are
a finite distance apart.

A clear problem with the model as outlined above, and discussed more fully
in [10, 14], is the case that W (t) is not of constant size; variation something like
W (t) = We cos�t is much more reasonable. A preliminary investigation has sug-
gested possible bad behavior as W (t) passes through 0, when the relative sliding
is stopped for an instant, with certain quantities becoming infinite [14]. The mod-
elling was based upon a quasi-steady theory for temperature in the inner region; this
approximation will fail for t sufficiently close to the zeros of W (t). For example, if
|t − (n + 1

2 )π/�| =O(h2/D), where D is the thermal diffusivity, for any integer n
the time derivative of temperature, Tt , contributes a lot and is not neglectable.

In this chapter we discuss a model problem for a guidance on the behavior of
the solution to the inner problem for such time regimes. A key sub-problem for this
purpose is the energy equation for the temperature T :

ρcTt = kTyy + τwy , (3.1)

where ρ, c, and k are the density, the specific heat, and the thermal conductivity,
respectively, all regarded as being constant. Furthermore, τ is the shear stress which
is a-priori unknown and w is the velocity along the weld, i.e. along the soft layer,
denoted by the z direction. It should be noted that even if there were significant
temperature variation with z, thinness of the layer, 0 < h � L , with L being the
width of a workpiece, ensures that the Tzz term is negligible in comparison with Tyy .
Also, the convective term involving vTy , with v standing for the velocity in the y
direction, is similar from (3.1). The last term in (3.1), τwy , represents the dissipation
and acts as a body heat source. Equation (3.1) is taken to hold for 0 < y < ∞, with
an assumed symmetry condition holding along the central plane,
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Ty = 0 on y = 0 ,

and a matching condition at infinity,

Ty → −A as y → ∞ .

Matching with the outer region should be expected to provide a rather stronger
condition, T ∼ −Ay + T ∗ for y → ∞, and some results appearing in the following
section will require such a hypothesis.

The flow turns out to be “slow”, in the sense that inertial terms can be neglected
from momentum equations, as is usual in lubrication theory. One of these equations
then becomes simply τy = 0 and hence

τ = τ(t).

The material is, in the lubricating layer, non-Newtonian and undergoes both shear
thinning and thermal softening so that a relevant constitutive equation is of the form

τ = F(T )|wy|a−1wy = F(T )|wy|a sign(wy) , (3.2)

with F(T ) a decreasing function of temperature and a is typically 1/4. In fact, many
metals have exponent a close to this value, although other types of material have
different power laws [6, 11, 13]. Symmetry is again applied so that

w = 0 on y = 0 ,

while the imposed sliding motion gives

w → W (t) as y → ∞ .

Equation (3.2) can be rewritten as wy = F(T )−1/a|τ |1/a sign τ which gives

W =
∫ ∞

0
wy dy = (sign(τ ))|τ |1/a

∫ ∞

0
F(T )−1/ady,

and hence

τ = |W (t)|a sign(W (t))(∫ ∞
0 F(T )−1/ady

)a .

Substitution of this into (3.1) leads to

ρcTt = kTyy + |W (t)|a+1F(T )−1/a

(∫ ∞
0 F(T )−1/ady

)(1+a)
,

or
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Tt = DTyy + g(t) f (T )(∫ ∞
0 f (T )dy

)(1+a)
, (3.3)

where g(t) is regarded as specified and f (T ) = F(T )−1/a is an increasing function
of temperature.

One further aspect of the problem must be mentioned. Since we are looking at
a thin zone, the temperature T varies little in comparison with the outer region.
Under various circumstances it is then possible to approximate F(T ) by a simple
function. In [11], the temperature-dependent factor is often taken in the Arrhenius
type, const.× exp(Ta/T ) for some activation temperature Ta . But in [6], a prod-
uct of an Arrhenius term and a linear term vanishing at Tm was taken: F(T ) =
const.×(T − Tm) exp(Ta/T ). It is more appropriate if T approaches the melting
temperature denoted by Tm .

The report [6] is concentrated on a typical case of a “hard” material. There, the
operating conditions and material properties are such that T lies extremely close to
Tm where F(T ) can be approximated by a linear function. A partially scaled version
of (3.3) then becomes

ut = uxx − G(t)u−p

(∫ ∞
0 u−pdy

)1+1/p for 0 < x < ∞,

with
ux (0, t) = 0 and lim

x→∞ ux (x, t) = 1,

where p = 1/a ≈ 4 and T = Tm−const.×u.
To justify this model, we shall investigate the corresponding autonomous problem

where G is replaced by a constant numerically in Sect. 3.3.
In [10, 14], both “hard” and “soft” materials were considered. The latter case is

subject to suitable material constants and operating conditions, where T does not
get close to Tm in contrast to the former. For Ta sufficiently large, it is the Arrhenius
term that varies significantly in the soft layer. Then F can be approximated by a
simple exponential, as in high-activation-energy asymptotics, for instance in thin-
flame theory. Then the simplified problem with suitable scaling is

ut = uxx + G(t)eu(∫ ∞
0 eudy

)1+a for 0 < x < ∞ ,

with
ux (0, t) = 0 and lim

x→∞ ux (x, t) = −1.

Again we investigate the autonomous problem. In this particular equation we can, by
using suitable rescaling, replaceG by 1. Numerical experiments are again carried out
in Sect. 3.3. Because of the structure of this problem, see Sect. 3.2, it admits a suitable
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energy. Then we are able to prove that the solution exists for all time and tends,
uniformly on compact intervals, to the unique steady state. This is strongly indicative
of the non-autonomousmodel being awell-posed and sensiblemathematical problem
and of being a good model for the local behavior of temperature and flow in these
thin, short-time regimes occurring in linear friction welding.

3.2 The Exponential Case

In the exponential case the time-dependent problem is written in the form

ut = uxx + eu(∫ ∞
0 eudx

)1+a , 0 < x < ∞, t > 0, a > 0, (3.4)

ux (0, t) = 0, ux (x, t) → −1 as x → ∞, t > 0, (3.5)

u(x, 0) = u0(x), 0 < x < ∞. (3.6)

We consider u0(x) which satisfies the compatibility conditions

u′
0(0) = 0, and u′

0(x) → −1 as x → ∞, (3.7)

and the monotonicity condition

u′
0(x) < 0, 0 < x < ∞.

This condition implies, via themaximum principle, that ux (x, t) < 0 for 0 < x < ∞
and t > 0. For the results below we need the stronger condition that

u0(x) + x is bounded. (3.8)

Theorem 3.2.1 Problem (3.4)–(3.6) has a global-in-time solution.

Proof We consider a self-similar solution of the problem

vt = vxx , 0 < x < ∞, t > 0,

vx (0, t) = 0 , vx (x, t) → −1 as x → ∞, t > 0,

that is, v(x, t) = −t1/2V (η) for η = xt−1/2, where V (η) satisfies

V ′′ + η

2
V ′ − 1

2
V = 0, V ′(0) = 0, V (η) ∼ η, η → ∞.

Then for c sufficiently large negative, c + v is lower solution of problem (3.4)–(3.6)
and so

u ≥ c − t1/2V (Rt−1/2) for every 0 ≤ x ≤ R. (3.9)
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Moreover the function θ(x, t) satisfying the problem

θt = θxx + eu(∫ R
0 eudx

)1+a , 0 < x < R, t > 0, a > 0,

θx (0, t) = 0, θx (R, t) = 0, t > 0,

θ(x, 0) = u0(x), 0 < x < R,

is an upper solution of problem (3.4)–(3.6) restricted to the interval [0, R] for every
R > 0, and hence u(x, t) ≤ θ(x, t) for 0 ≤ x ≤ R.

Setting h(x, t) = eu/
(∫ R

0 eudx
)1+a

, we have

∫ R

0
h(x, t) dx = 1(∫ R

0 eu dx
)a ≤ 1(

ec
∫ R
0 e−t1/2 V (R t−1/2) dx

)a ≤ R−a e−a c ea t
1/2 V (R t−1/2),

and so

u(x, t) ≤ θ(x, t) ≤ B1(R) + B2(R) t1/2 ea V (R t−1/2) t1/2 , 0 ≤ x ≤ R,

for every R > 0. This, along with the fact that u(x, t) is decreasing in x , excludes
blow-up in finite time. �


The associated steady-state problem of (3.4)–(3.6) is

w′′ + ew(∫ ∞
0 ewdx

)1+a = 0, 0 < x < ∞, w′(0) = 0, w′(x) → −1 as x → ∞,

(3.10)
and can be solved exactly to findw(x) = ln

(
1
2 sech2 x

2

)
.Note also that

∫ ∞
0 ew dx=1.

Setting z(x, t) = u(x, t) − w(x), we arrive at

zt = zxx + eu(∫ ∞
0 eudx

)1+a − ew(∫ ∞
0 ewdx

)1+a , 0 < x < ∞, t > 0, a > 0, (3.11)

zx (0, t) = 0, zx (x, t) → 0 as x → ∞, t > 0, (3.12)

z(x, 0) = z0(x) = u0(x) − w(x). (3.13)

To obtain a priori estimates we consider the functional

J (t) = 1

2

∫ ∞

0
z2xdx + 1

a

((∫ ∞

0
ewezdx

)−a

+ a
∫ ∞

0
ewz dx − 1

)

which satisfies, due to the boundary conditions,
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d J (t)

dt
=

∫ ∞

0
zx zxt dx −

∫ ∞
0 eu ut dx(∫ ∞
0 eudx

)1+a +
∫ ∞

0
ew zt dx

= −
∫ ∞

0
(uxx − w′′) ut dx −

∫ ∞
0 eu ut dx(∫ ∞
0 eu dx

)1+a +
∫ ∞

0
ew ut dx

= −
∫ ∞

0
u2t dx ≤ 0.

Thus we obtain

J (t) ≤ J (0) ≡ J0 = 1

2

∫ ∞

0
(z′0)2 dx + 1

a

((∫ ∞

0
eu0dx

)−a

+ a
∫ ∞

0
ewz0 dx − 1

)
,

or equivalently,

1

2

∫ ∞

0
z2xdx +

∫ ∞

0
ewz dx ≤ J0 + 1

a
− 1

a

(∫ ∞

0
eudx

)−a

≤ J0 + 1

a
= K,

which implies

0 ≤ 1

2

∫ ∞

0
z2x dx = K1 ≤ K −

∫ ∞

0
ew z dx . (3.14)

Using the Cauchy–Schwarz inequality, we derive

(∫ r

0
|zx |dx

)2

≤ r
∫ r

0
z2x dx ≤ 2 K1 r,

which yields that

|z(r, t) − z(0, t)| ≤
∫ r

0
|zx | dx ≤ √

2 K1 r .

Setting m(t) = z(0, t), we obtain

m − √
2 K1 r ≤ z(r, t) ≤ m + √

2 K1 r for every r > 0, (3.15)

and so

m −
√
2 K1C2

0 ≤
∫ ∞

0
ew z dx ≤ m +

√
2 K1C2

0 , (3.16)

writing
∫ ∞
0

√
x ew dx = C0 ≈ 1.072 and recalling that

∫ ∞
0 ew dx = 1.

From (3.14) we get
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0 ≤ K1 = 1

2

∫ ∞

0
z2x dx ≤ K − m +

√
2 K1C2

0 ,

so
(
√
K1 − √

2C0)
√
K1 ≤ K − m,

or (√
K1 − C0√

2

)2

≤ K − m + C2
0

2
. (3.17)

Hence m(t) is bounded above. Furthermore, the next lemma clarifies the long-time
behavior of m(t).

Lemma 3.2.2 It holds that limt→∞ m(t) = 0.

Proof Since m(t) is bounded above, there are three possible types of long-time
behavior of m(t) : (i) m(t) → −∞ as t → ∞, (i i) m(t) oscillates as t → ∞ or
(i i i) m(t) → m∗ > −∞.

In the first case, using ∂z
∂x ≤ 1, we obtain z(x, t) − m(t) ≤ x . Then inequality

(3.17) implies

z(x, t) − m(t) ≤ min{x,√2 K1 x} =
{
x, 0 ≤ x ≤ 2 K1√
2 K1 x, x ≥ 2 K1

,

and hence

∫ ∞

0
eu dx =

∫ ∞

0
ew+z dx ≤ em

(∫ 2K1

0
ew+x dx +

∫ ∞

2K1

ew+√
2 K1 xdx

)
.

Let M(t) = −u(0, t) = ln 2 − m(t). Relation (3.17) gives

K1 ≤ M + C
√
M for M sufficiently large,

where C is a positive constant. Then
∫ 2K1

0
ew+x dx ≤

∫ 2K1

0
eC1 dx ≤ C2(M + C

√
M),

and
∫ ∞

2K1

ew+√
2 K1 xdx ≤

∫ ∞

2K1

eC1−x+√
2 K1 xdx = C3

∫ ∞

0
e2K1

√
1+x1/2K1−2K1−x1dx1 < C4,

for C1 being a constant such that w(x) + x ≤ C1, and C2, C3, and C4 are other
positive constants. Finally we get



118 3 Linear Friction Welding

∫ ∞

0
eu dx < 2e−M

(
C2(M + C

√
M) + C4

)
< C5Me−M , (3.18)

for M sufficiently large.
Setting g(t) = ( ∫ ∞

0 eudx
)−(1+a)

, in view of (3.18) we obtain

g(t) ≥ C6M
−(1+a)eM(1+a) for M � 1,

for some positive constant C6. Now we take M2 > M1 > 0 to be chosen suitably
later. First, for some time t1 we assume

u(0, t1) = −M1, u(0, t) < −M1 for t1 < t < t1 + δ, (3.19)

and
u(0, t) > −M2 for 0 ≤ t ≤ t1 + δ, (3.20)

where δ > 0. If (3.19) does not hold then u(0, t) is certainly bounded below and so
is m(t), leading to contradiction.

While M(t) = u(0, t) ≥ −M2, −M2 − x is a lower solution for u, so that
u(x, t) > −M2 − x for 0 ≤ t ≤ t1 + δ and x > 0. On the other hand, relation (3.15)
implies

u(x, t) ≥ M(t) + ln 2 + w(x) − √
2K1(M(t))x for x > 0, t > 0,

with K1(M) denoting the largest value of K1 such that (3.17). In particular, at t = t1
we have

u(x, t) ≥ max
{ − M2 − x, −M1 + ln 2 + w(x) − √

2K1(M1)x
}
.

Also, as long as M(t) ≥ M1, i.e. u(0, t) ≤ −M1, which is certainly true for t1 ≤
t ≤ t1 + δ, we get g(t) ≥ C6e(1+a)MM−(1+a) ≥ C6e(1+a)M1M−(1+a)

1 for M1 large
enough. Writing u = U − M2, we have

∂U

∂t
= ∂2U

∂x2
+ g(t)e−M2eU , 0 < x < ∞, t > t1, (3.21)

∂U

∂x
= 0 at x = 0, Ux → −1 as x → ∞, t > t1. (3.22)

Then it holds that

U (x, t1) ≥ max
{ − x, M2 − M1 + ln 2 + w(x) − √

2K1(M1)x
}

≥ max
{ − x, C7

√
M1(1 − √

x) + w(x)
}

≥
{
C7

√
M1(1 − √

x) − w(x), 0 ≤ x < 1
−x, x ≥ 1

, (3.23)
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for C7 being a positive constant and M2 = M1 +C7
√
M1 −w(1) for M1 sufficiently

large. Also, it holds that g(t)e−M2 ≥ C6e(aM1−C7
√
M1)M−(1+a)

1 ≥ C8eC9M1 for M1

sufficiently large.
It is easily seen that

W (x) ≡ max{−x, k(1 − x2) − 1} =
{
k(1 − x2) − 1, 0 ≤ x < 1
−x x ≥ 1

,

is a lower solution of problem (3.21)–(3.23) for t ≥ t1, while U (0, t) ≤ C7
√
M1,

provided that

• (i) k > 1 to ensure U (0, t) ≥ W (0) > 0, i.e. u(0, t) > −M2, and that W (x) is
well-defined, i.e. k(1 − x2) − 1 + x ≥ 0 for 0 ≤ x < 1),

• (i i) k ≤ C7
√
M1

4 − w(x) to ensure that W (x) ≤ U (x, t) at t = t1, i.e.
k(1 − x2) − 1 ≤ C7

√
M1(1 − √

x) for 0 ≤ x < 1),

• (i i i) k ≤ C8
2 e

C9M1−1(to ensure W ′′ + ge−M2eW ≥ 0).

Taking k = C7
4

√
M1, and M1 large, we have (i)− (i i i) all, andW is a lower solution

to (3.21)–(3.23) for t ≥ t1. ThusU (0, t) > W (0, t) > 0, i.e. u(0, t) > −M2 as long
as u(0, t) ≤ −M1. Consequently, we have u(0, t) > −M2 for every t > 0 which
contradicts the hypothesis (i), m(t) → −∞ as t → ∞.

In the second case thatm(t) oscillates, there existma < mb and sequences of time
t1 ≤ t̂1 ≤ t2 ≤ t̂2 ≤ ... such that m(tn) = ma, m (̂tn) = mb and ma < m(t) < mb

for tn < t < t̂n. Then for tn < t < t̂n we obtain

∫ ∞

0
eu dx ≥ 1

2
em

∫ ∞

0
sech2

x

2
e−√

2 K1x dx ≥ 1

2
em

∫ ∞

0
e−x−√

2 K1x dx

≥ 1

2
ema

∫ ∞

0
e−x−

√
2 Ĉ1 x dx = A > 0,

where Ĉ1 =
(√

K − ma + C2
0
2 + C0√

2

)2

and A is a constant.

In such time intervals, m(t) satisfies

dm

dt
= d

dt
u(0, t) ≤ eu(0,t)

(∫ ∞
0 eu dx

)1+a = em

2
(∫ ∞

0 eu dx
)1+a ≤ 1

2
emb A−(1+a) = Ĉ2,

which, by integration, implies t̂n − tn ≥ δ = mb−ma

Ĉ2
> 0.

Using the estimate (3.15) for z(x, t), we obtain a lower bound for the functional
J (t). Indeed, taking also into account of (3.16) and (3.17), we derive
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J (t) ≥
∫ ∞

0
ew z dx − 1

a
≥ m −

√
2K1C2

0 − 1

a
≥ ma −

√
2K1C2

0 − 1

a
.

Thus, taking a subsequence if necessary, there exists a sequence t̃n ∈ (tn, t̂n) s.t.
J̇ (t̃n) = max[tn ,̂tn ] J̇ (t) with J̇ (t̃n) → 0 as n → ∞, where ˙ = d

dt , and m(t̃n) → m∗
as n → ∞. Hence the sequence u(·, t̃n) is uniformly bounded in C([0, R]) for every
R > 0. Using Schauder-type estimates we obtain that u(·, t̃n) is uniformly bounded
in C1([0, R]) ∩C2((0, R)) as well. Therefore, there is a subsequence denoted again
by u(x, t̃n) and a function ŵ(x) such that

u(·, t̃n) → ŵ(·) as n → ∞ in C1([0, R]) ∩ C2((0, R)) for every R > 0.

Taking now the inner product in L2([0, R]) of (3.4) with an arbitrary function ξ ∈
H 1

0 ([0, R]) for t = t̃n , we derive

∫ R

0
ut (x, t̃n) ξ(x) dx = −

∫ R

0
ux (x, t̃n) ξ ′(x) dx +

∫ R

0

eu(x,t̃n)

(∫ ∞
0 eu(y,t̃n) dy

)1+a ξ dx,

(3.24)
where ξ ′ is the distributional derivative of ξ.

Passing to the limit as t̃n → ∞ in (3.24) and taking also into account of

∫ R

0
u2t (x, t̃n) dx → 0 as n → ∞ for every R > 0,

with Lebesgue’s dominated convergence theorem, we deduce

−
∫ R

0
ŵ′(x) ξ ′(x) dx +

∫ R

0

eŵ(x)

(∫ ∞
0 eŵ(y) dy

)1+a ξ dx = 0.

Since ŵ(x) ∈ C1([0, R])∩C2((0, R)) for every R > 0, thus ŵ(x) coincides with the
unique classical steady-state solution, hence m∗ = 0. It is a contradiction because
under the hypothesis that m(t) oscillates we can always find ma < mb with 0 /∈
(ma,mb). Using the same arguments, we can also rule out case (i i i) that m(t) →
m∗ �= 0. Thus we finally deduce that m(t) → 0 as t → ∞. �


We claim that u(x, t) → w(x) as t → ∞ for every 0 < x < ∞. To this end we
need the following

Lemma 3.2.3 The difference between the solution u and equilibrium w, z(x, t) =
u(x, t) − w(x), is uniformly bounded.

Proof Using the fact that u(0, t) → w(0) = − ln 2 as t → ∞, we get that z(x, t) is
bounded from below, i.e. u(x, t) ≥ Ml − x for

Ml = min{inf
t>0

u(0, t), inf
x>0

(u0(x) + x)} < 0.
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Note that, by (3.8) and Lemma3.2.2, Ml is finite.
To obtain an upper bound for u(x, t) we apply the intersection comparison argu-

ments. Consider a related steady-state solution w(x; λ, R) satisfying the equation
w′′ + λew = 0, centred on R ≥ 0, i.e. w(x; λ, R) = ln

(
1
2λ sech

2
(
x−R
2

))
, for some

λ > 0. For any λwe can take R large enough so that u0(x) crossesw(x; λ, R) exactly
once, using the fact that u′

0 < 0. With such an R, w(·; λ, R) > u(·) at infinity and,
because ux < 0, if a second crossing occurs at some time it must appear at some
time ta with u(x, ta) tangent to w(x, λ, R) at some point xa > R.

There remain two possibilities:

(a) u(x, ta) crosses w(x, λ, R) at some x < R and then u(x, ta) touches w(x, λ, R)

from below at xa > R;
(b) at some time t = tb, u(·) crosses w(·; λ, R) at x = R.

In the former case we should have λ ≤ (
∫ ∞
0 eu dx)−(1+a) at t = ta . On the other

hand with u(x, t) bounded below, e.g. u(x, t) ≥ Ml − x, a choice of

λ ≥ λ1 =
(∫ ∞

0
eMl−x dx

)−(1+a)

≥
(∫ ∞

0
eu dx

)−(1+a)

,

ensures that this cannot happen. Notice that λ1 is independent of R.

In case (b) we proceed as following. From the definition of J (t) we deduce that

J (t) >
1

2

∫ R

0
z2x dx +

∫ ∞

0
ew z dx − 1

a
for every R > 0. (3.25)

From the lower bound on u(x, t), we derive

∫ ∞

0
ew(x) z(x) dx ≥

∫ ∞

0
ew(x) (Ml − x − w(x)) dx = K2.

Furthermore, at t = tb we have, writing M = supt>0 m(t),

∫ R

0
z2x dx ≥ [z(R, tb) − z(0, tb)]

2

R

= [u(R, tb) − w(R) − m(tb))]
2

R

=
[− ln 2λ + ln

(
2 cosh2 R

2

) − m(tb)
]2

R

≥ [
ln eR − ln 4λ − M

]2
/R

≥ R − 2(ln 4λ + M),

for R sufficiently large. Then, by (3.25) we obtain, taking R ≥ 2
[
J (0) − K2 + 1

a+ ln 4λ + M],



122 3 Linear Friction Welding

J (tb) >
R

2
− (ln 4λ + M) + K2 − 1

a
≥ J (0) ,

which cannot happen.
Thus u(x, t) intersects w(x; λ, R) at most once for every t > 0 and so there

must be some constant Mu such that u(x, t) ≤ Mu − x for 0 < x < ∞ and t > 0.
Therefore, z is uniformly bounded. Before proceeding to the proof of the convergence
towards to the unique steady-state solution we need the following auxiliary result. �

Lemma 3.2.4 There exists a constant C > 0 such that | J̈ (t)| < C for every t > 0.

Proof Since

| J̈ (t)| = 2
∣∣∣
∫ ∞

0
zt ztt dx

∣∣∣ ≤ 2
∫ ∞

0
|zt ||ztt | dx,

it suffices to show that
∫ ∞

0
|zt ||ztt | dx ≤ C < ∞.

Since Ml − x ≤ u(x, t) ≤ Mu − x for 0 < x < ∞, we have that H(x, t) =
eu/(

∫ ∞
0 eudx)1+a is uniformly integrable in (0,∞) for every t > 0. Here,

uxx (x, t) =
∫ ∞

0
Gxx (x, ζ, t) u0(ζ ) dζ

+
∫ t

0

∫ ∞

0
Gxx (x, ζ, t − τ)

(
H(ζ, τ ) − H(x, τ )

)
dζ dτ, (3.26)

where G(x, t) is the Green’s function of the heat equation in (0,∞) satisfying the
boundary conditions Gx (0, t) = 0 and Gx (x, t) → 0 as x → ∞. Using the smooth-
ing effect of the Green’s function and the uniform integrability of H(x, t) in (0,∞),

we obtain from (3.26) that uxx (x, t) is uniformly integrable in the half line for every
t > 0. Coming back to the Eq. (3.4), we deduce that the same holds for ut (x, t).
Since zt = ut we derive that zt is bounded for t ≥ ε > 0, as well as its summability
in (0,∞).

Using now a bootstrap argument, we can prove that
∫ ∞
0 |Ht (x, t)| dx < K4 < ∞.

Via relation

utxx (x, t) =
∫ ∞

0
Gxx (x, ζ, t) ut (ζ, 0) dζ

+
∫ t

0

∫ ∞

0
Gxx (x, ζ, t − τ) (Ht (ζ, τ ) − Ht (x, τ )) dζ dτ,

we obtain
∫ ∞
0 |utxx (x, t)|dx < K5 < ∞. Therefore, from

utt (x, t) = utxx (x, t) + Ht (x, t),
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we deduce that utt (x, t) is uniformly integrable in the half line for every t > 0 and
so is ztt (x, t). Hence it holds that

| J̈ (t)| ≤ 2
∫ ∞

0
|zt ||ztt | dx < C < ∞, t > 0. (3.27)

�

Theorem 3.2.5 The solution u(x, t) of problem (3.4)–(3.6) converges as t → ∞ to
the unique steady-state solution w(x).

Proof First, we show
lim
t→∞ J̇ (t) = 0. (3.28)

We assume that there exists a sequence (tn)n∈N with tn → ∞ as n → ∞ such that

lim
n→∞ J̇ (tn) = − lim

n→∞

∫ ∞

0
u2t (x, tn) dx = −c < 0, (3.29)

and derive a contradiction.
Due to (3.29) there exists N such that J̇ (tn) < −2c/3, for n ≥ N . Using J̈ (t) <

K , we obtain J̇ (t) < −c/3 for tn ≤ t ≤ tn + c/3K and n ≥ N . The latter yields
J (tn) → −∞ as n → ∞ leading to a contradiction.

Now since z(x, t) is uniformly bounded in every interval [0, R], R > 0,we obtain
via a Schauder-type estimate that z(x, t) belongs toC2+q,1+q/2([0, R]× (0,∞)), for
some q > 0, and for every R > 0.

The latter implies that there exists a sequence tn → ∞ and a function ψ(x)
such that

||z(·, tn) − ψ(·)||C1([0,R])∩C2((0,R)) → 0 as n → ∞, for every R > 0 ,

or equivalently,

ω(u0) = {φ ∈ L∞((0,∞)) : there exists tn → ∞ : ||u(·, tn; u0)
−φ(·)||C1([0,∞))∩C2((0,∞)) → 0} �= ∅.

Now we claim that ω(u0) ⊆ S, for S the set of the steady states, and hence
ω(u0) = {w}, since S = {w}. Indeed, considering φ ∈ ω(u0), there is a sequence
(tn)n∈N with tn → ∞ as n → ∞, such that ||u(·, tn) − φ(·)||C1([0,R])∩C2((0,R)) → 0,
or equivalently ||z(·, tn) − ψ(·)||C1([0,R])∩C2((0,R)) → 0 as n → ∞, for ψ = φ − w.
By similar arguments as in Lemma 3.2.2, taking also into account (3.28), we derive
ψ ≡ 0, hence ω(u0) = {w}. The latter yields the desired result, otherwise, due
to the uniform boundedness of z, there must be a subsequence tm → ∞ such that
||z(·, tm) − ψ(·)||C1([0,∞))∩C2((0,∞)) → 0 with ψ �= 0 or, equivalently, ||u(·, tm) −
φ(·)||C1([0,∞))∩C2((0,∞)) → 0 as m → ∞ with φ �= w, contradicting the above. �
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3.3 Numerical Results

In this section we present a numerical approach for both cases: the “soft” and the
“hard” material case.

3.3.1 The Soft Material Case

Since the problem is defined in an infinite domain, [0,∞), an approximated problem
is solved numerically in the domain, [0, b], for b large enough, i.e.

ut = uxx + eu

I 1+a
, 0 < x < b, t > 0, (3.30)

ux (0, t) = 0, ux (b, t) = −1, (3.31)

u(x, t) = u0(x). (3.32)

Regarding the term, I , we have

I =
∫ ∞

0
eudx =

∫ b

0
eudx +

∫ ∞

b
eudx ∼

∫ b

0
eudx + 2e−b, taking b � 1 ,

assuming that for x large u ∼ w.

In order to solve problem (3.30)–(3.32) numerically, a three-step Crank–Nicolson
scheme (which is unconditionally stable) is used. Taking a partition of M + 1 points
in [0, b], 0 = x0, x0 + δx = x1, · · · , xM = b and using a time step δt for a partition
in the time interval [0, T ], we have

ui+1
j − ui−1

j

2δt
= 1

2

ui+1
j+1 − 2ui+1

j + ui+1
j−1

δx2
+ 1

2

ui−1
j+1 − 2ui−1

j + ui−1
j−1

δx2

+ eu
i
j(∫ b

0 eui dx + e−b
)1+a . (3.33)

The integral
∫ b
0 eu

i
dx , where ui = (ui1, u

i
2, · · · , uiM)T , is evaluated in each time

step by Simpson’s rule. Taking into account the boundary conditions the numerical
scheme takes the form

Aui+1 = Bui−1 + bui , (3.34)

or
ui+1 = A−1Bui−1 + A−1bui ,

where A, B are M × M matrices and b a 1 × M vector.
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Fig. 3.3 The numerical
solution of problem
(3.30)–(3.32), for various
values of b and a = 1/2. In
each case the plot of u(x, t)
is at t = 25
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Fig. 3.4 The numerical
solution of problem
(3.30)–(3.32) at x = 0,
u(0, t), is plotted for the
values of a,
−0.4, −0.1, 0, 0.5 , 1,
taking b = 5
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The first attempt is to investigate if by changing b we notice any difference in the
solution.

In Fig. 3.3, u(x, t) is plotted, at t = 25, against x ∈ [0, b] for various values of
b together with the steady-state solution w. It is found that u(x, t) converges to the
steady state: running the program for a time interval [0, T ] and in a space interval
[0, b] for increasing values of both T and b, starting with initial condition u0(x) = 0,
the plot of u(x, T ) approaches with that of w (the thick line). The conclusion is that
the numerical solution approximates the solution of (3.4)–(3.6) if b is large enough,
e.g. b ≥ 5. However, in Fig. 3.3, the relatively poor agreement for b = 5 arises from
the slower convergence, with respect to time, associated with the larger interval.

In the next plot, Fig. 3.4, we plot u(t, 0) against time starting with initial condition
u0(x) = 0 for various values of a. For a > 0 the solution converges to the steady
state while for a < 0 the solution blows up.
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3.3.2 The Hard Material Case

For the problemwith f (u) = u−p no analytical results are yet available. For this case
we must therefore employ a numerical approximation in order to get an indication
of the behavior of the solution.

The problem in this case takes the form

ut = uxx + (−u)−p

(∫ ∞
0 (−u)−pdx

)1+a
, 0 < x < ∞ , t > 0 , with a = 1/p > 0,

(3.35)

ux (0, t) = 0 , ux (x, t) → −1 as x → ∞ , t > 0 , (3.36)

u(x, 0) = u0(x) , 0 < x < ∞ . (3.37)

An equivalent form of the problem can be given by replacing u by −u and setting
ux (x, t) → 1. Then the problem has the form

ut = uxx − u−p

(∫ ∞
0 u−p dx

)1+a , 0 < x < ∞, t > 0, a > 0, (3.38)

ux (0, t) = 0, ux (x, t) → 1 as x → ∞, t > 0, (3.39)

u(x, 0) = u0(x), 0 < x < ∞. (3.40)

As for the exponential case we will apply a finite difference scheme to the approx-
imate problem in the domain 0 < x < b for b being large enough. The approximate
problem is

ut = uxx − u−p

(∫ b
0 u−p dx

)1+a , 0 < x < b, t > 0, a > 0, (3.41)

ux (0, t) = 0, u(b, t) = b t > 0, (3.42)

u(x, 0) = u0(x), 0 < x < ∞. (3.43)

The finite difference scheme in this case takes the form

ui+1
j − ui−1

j

2δt
= 1

2

ui+1
j+1 − 2ui+1

j + ui+1
j−1

δx2
+ 1

2

ui−1
j+1 − 2ui−1

j + ui−1
j−1

δx2

− (uij )
−p

(∫ b
0 (ui )−pdx + b−p+1

−p+1

)1+a . (3.44)
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Again the integral
∫ b
0 (ui )−pdx , where ui = (ui1, u

i
2, · · · , uiM)T , is evaluated in each

time step by Simpson’s rule. Taking into account the boundary conditions the numer-
ical scheme takes the form of Eq. (3.34).

In addition in this case, in order to test the convergence of the scheme (3.44), we
have to approximate the steady-state solution of the problem,

wxx = w−p

(∫ b
0 w−pdx

)1+a , 0 < x < b, a > 0, (3.45)

wx (0, t) = 0, w(b, t) = b. (3.46)

Again using a simple finite difference scheme we have that

wj+1 − 2wj + wj−1

δx2
= w−p

(∫ b
0 (w)−pdx

)1+a . (3.47)

This results in a nonlinear algebraic system of the form Mw = b(w) + c which is
solved by using a Newton–Raphson iterative scheme.

In Fig. 3.5 the numerical solution of the steady-state problem is plotted, for p = 4
and for different values of the parameter b. The result indicates that as b increases
the numerical solution converges.

In Fig. 3.6 the problem (3.41)–(3.43) is solved numerically in a time interval [0, T ]
and the solution at time t is plotted against space for different values of the parameter
p (solid line). In each case the solution approaches the relevant steady state (dotted
line). In each case the initial condition is u0(x) = 1 for x < 1, u0(x) = x for x ≥ 1;
the solution is plotted at t = T = 25. Finally in Fig. 3.7 the problem (3.41)–(3.43),
with u(x, 0) = 1, is solved numerically and the minimum of the solution u(0, t) is

Fig. 3.5 The numerical
solution of problem
(3.45)–(3.46), w(x) is plotted
for b values of
5, 10, 20, 30, with p = 4
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Fig. 3.6 The numerical
solution of problem
(3.41)–(3.43), u(x, t) at
t = 25 (solid curves)
compared with steady states
w(x) (dotted curves) for
p = 1.1, 2, 4, 6, all with
b = 5
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Fig. 3.7 The numerical
solution of problem
(3.41)–(3.43) at x = 0,
u(0, t), is plotted against
time for p values of 2, 4, 6,
taking b = 5 and u(x, 0) = 1
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plotted against time for different value of the parameter p. In all of the simulations
u(0, t) initially decreases but it never reaches zero.

In conclusion, these numerical results indicate that the solution u of the problem
(3.38)–(3.40) does not quench and that instead it converges to the steady state.
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Chapter 4
Resistance Spot Welding

Abstract In the current chapter we debate a joining process called resistance spot
welding which finds many applications ranging from the automobile industry to
robotics. In the first part of the chapter we present the construction of a non-
local mathematical model illustrating the phase transition occurs during this joining
process. Since the derived model consists of a degenerate non-local parabolic equa-
tion its analytical study is rather hard due to many arising technicalities and so we
appeal to a numerical approach. We then consider a time discretization scheme for
solving the resulting non-local moving boundary problem. The scheme consists of
solving at each time step a linear elliptic partial differential equation and then mak-
ing a correction which takes into account the nonlinearity. The stability and error
estimates of the developed scheme are also investigated. Finally, some numerical
experiments are presented which verify the efficiency of the developed numerical
algorithm, as well as demonstrate the emergent interfaces due to the degeneracy of
the problem.

4.1 Derivation of the Non-local Model

In the current chapter we focus on another application associated with the industrial
process of welding. In particular we are dealing with the so called resistance spot
welding process. Resistance welding is a thermo-electric process in which Joule
heating is generated at the interface of the parts to be joined by passing an electrical
current through the parts for a precisely controlled time and under a controlled
pressure. The term resistance welding stems from the fact that the resistance of the
workpieces and electrodes are used in combination or contrast to generate the heat
at their interface. A common configuration of the resistance spot welding process
can be seen in Fig. 4.1. Key advantages of the resistance welding process include:
very short process time, no consumables, operator safety because of low voltage,
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Fig. 4.1 Schematic diagram
of resistance spot welding
system

current source
electrodes

sheet metal

weld nugget

clean and environmentally friendly and finally a reliable electro-mechanical joint is
formed. Resistance spot welding is the most popular joining process in automobile
body assembly production lines; other applications include robotics, orthodontist’s
clinic and batteries manufacturing.

When an electric current, with local current density
−→
j , flows through the elec-

trodes and the sheet metals, then owning to a significantly higher resistivity in the
contact area a rapid heating up of this area occurs, which is caused by the Joule
effect. The rapid heating leads to the development of a weld nugget (a mushy region
where the solid and liquid phases coexist) which actually grows quite fast. Once,
the electrical current is switched off the weld nugget solidifies, leading to a lasting
weld joint (known also as weldment) between the metal sheets. The main physical
quantities are involved in the description of the configuration of Fig. 4.1 are: the
temperature u, a parameter ψ standing for the proportion of the two phases and the
applied electrical potential φ. In the melting-solidification process ψ = 0 in the solid
phase while in the liquid phase we have ψ = 1.

The temperature evolution of the above system is governed by the following
internal energy balance equation

∂u

∂t
+ �

∂ψ

∂t
= ∇ · (k(u, ψ)∇u) + ρ(u, ψ)|−→j |2 in

ST := D × (0, T ), T > 0, (4.1)

where k(u, ψ) and ρ(u, ψ) represent the thermal conductivity and the electrical
resistance of the metal sheets respectively whilst � stands for the lateral heat of
the phase change process. Here D denotes the joined part of the two metal sheets
indicated with blue color in Fig. 4.1. In case the lateral heat � is small, a rather realistic
assumption, then (4.1) reduces to

∂u

∂t
= ∇ · (k(u, ψ)∇u) + ρ(u, ψ)|−→j |2 in ST . (4.2)

Owning to Ohm’s law the current density satisfies
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−→
j = −τ(u, ψ)∇φ, (4.3)

where τ(u, ψ) = 1/ρ(u, ψ) is the electrical conductivity of the metal sheets and
thus (4.2) reads

∂u

∂t
= ∇ · (k(u, ψ)∇u) + τ(u, ψ))|∇φ|2, in ST . (4.4)

Also due to conservation of charge ∇ · −→
j = 0 and hence we derive the second

governing equation of our system

∇ · (τ (u, ψ)∇φ) = 0, in ST . (4.5)

Next we describe the derivation of the third mastering equation of our system which
describes the phase transition. It is usually called the phase equation and describes
the time-evolution of 0 ≤ ψ ≤ 1. First we note that the free energy of the system can
be chosen having the Landau–Ginzburg form

F(u, ψ) = cV u(1 − log u) + u

(
ĝ(ψ) + μ

|∇ψ |2
2

)
+ �ψ, (4.6)

where cV is the specific heat, taking henceforth equal to 1 for simplicity, and μ is a
positive constant [24]; ĝ has usually the form of a double well potential, e.g.

ĝ(ψ) = 1

2
(1 − ψ2)2,

see [4, 6].
Assuming that our isothermal system moves towards local minima of the total

free energy

F (u, ψ) =
∫
D
F(u, ψ) dx,

we can impose that the order-parameter dynamics is given by

u
∂ψ

∂t
= −δψF (u, ψ), in ST , (4.7)

where δψF (u, ψ) represents the variational derivative ofF with respect toψ.Taking
into account (4.6) as well as the fact that 0 < � � 1 then (6.10) yields

∂ψ

∂t
= μΔψ + g(ψ), in ST , (4.8)

where g is the derivative of ĝ, [6].

http://dx.doi.org/10.1007/978-3-319-67944-0_6
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From experimental data we can observe that usually both thermal and elec-
trical conductivities have a discontinuity in the melting point, [16]. Actually we
can assume the mixture ansatz k(u, ψ) = (1 − ψ)̃k1(u) + ψ k̃2(u) and τ(u, ψ) =
(1 − ψ)̃τ1(u) + ψτ̃2(u) with possibly different k̃1, k̃2 and τ̃1, τ̃2, see [6, 18]. Or
alternatively we have

k(u, ψ) = k̃(u) =
{
k1(u), if u < um,

k2(u), if u > um,

and

τ(u, ψ) = τ̃ (u) =
{

τ1(u), if u < um,

τ2(u), if u > um,

for k1(s) �= k2(s) and τ1(s) �= τ2(s). Here um stands for the melting temperature of
the metal workpieces.

Then the melting-solidification process is described by

∂u

∂t
= ∇ · (̃k(u)∇u

)+ τ̃ (u)|∇φ|2 in ST , (4.9)

∇ · (̃τ (u)∇φ) = 0, in ST . (4.10)

Consider now the case where the contact area D is long and thin of length L with
axis parallel to z-direction and its ends at z = 0, L where φ = 0, V respectively. Let
Ω be the cross section of the contact area D, then we consider that its dimensions are
much smaller compared L . For the case of a cylindrical contact area with diameter R
much less that the length L , i.e. R � L , see Fig. 4.2. We also assume that the conduct
area D is electrically insulated, ∂φ

∂n = 0 on Γ1 := ∂D, and the temperature is kept
fixed on its curved surface, u = 0 on Γ1. Neglecting the end effects at z = 0, L we
can actually take that the potential φ depends only on the z-variable and thus (4.10)
yields (̃τ (u)φz)z = 0 which finally implies that (̃τ (u)φz) depends only on time t.
Under integration over the cross section Ω we take

=Vφ

Ω

n

R

n

z

D = 0φ

y= 0φ

x

u= 0 L>>R

Fig. 4.2 A long and thin cylindrical conduct area
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∫
Ω

τ̃ (u)φz dxdy = I (t)

A
,

where I (t) is the total current flowing through each cross section of the conductor
and A = |Ω|, thus

φz = I (t)

A
∫
Ω

τ̃ (u) dxdy
. (4.11)

Combining (4.9) and (4.11) and letting x denotes the position in the cross-section
and Δ the two-dimensional Laplacian then system (4.9) and (4.10) is reduced to the
single non-local equation

∂u

∂t
= ΔK (u) + λ τ̃ (u)

(
∫
Ω

τ̃ (u) dx)2
, in Ω × (0, T ), (4.12)

associated with boundary and initial conditions

K (u) = 0 on x ∈ ∂Ω,

and

u(x, 0) = u0(x), x ∈ Ω,

provided also that the total current I (t) = I is constant. Here λ = I 2

A2 is the parameter
that actually controls the welding process. Also K (u) is defined as

K (u) =
∫ u

0
k̃(s) ds.

Alternatively, by applying Fourier’s law for diffusion and heat conduction as well
as conservation of energy, [12, 24], we can take u satisfying a mixed-type boundary
condition

K (u) + k(x)
∂K (u)

∂n
= 0 on x ∈ ∂Ω.

To our knowledge the mathematical model (4.12) and (4.13) represents the first
coupling of Joule effect and phase-transition under a single non-local equation, see
also [9]. It should be note that similar non-local models, describing Ohmic heating
production as well as linear friction welding are derived and considered in Chaps. 2
and 3, see also [1, 2, 5, 8, 10, 11, 19].

http://dx.doi.org/10.1007/978-3-319-67944-0_2
http://dx.doi.org/10.1007/978-3-319-67944-0_3
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4.2 The Mathematical Problem

Motivated by Sect. 4.1, in the rest of the current chapter we investigate the behavior
of the following non-local degenerate problem

ut = Δβ(u) + λ f (β(u))

(
∫
Ω

f (β(u)) dx)2
, in QT := Ω × (0, T ), T > 0, (4.13)

β(u) + k(x)
∂β(u)

∂ν
= 0, on ∂Ω × (0, T ), (4.14)

u(x, 0) = u0(x), in Ω, (4.15)

where λ is positive constant whilst as usual ∂
∂ν

= ∇ · ν denotes the normal derivative
on the boundary Γ = ∂Ω.

Moreover, β(u) stands for a continuous function defined on R satisfying β(0) = 0
and Ω is a polyhedral and convex domain in R

d(d ≥ 1). A common case, see [24],
for function β is the power-law function β(u) = um,m > 0, and then (4.13) is a non-
local porous medium equation. Nevertheless, under the general condition β ′(u) ≥ 0,

which is actually necessary for making Eq. (4.13) formally parabolic, equation (4.13)
is called a non-local filtration equation. The nonlinear function f (s) can be consid-
ered, for some applications, as monotonic though in the current paper we only assume
to be positive and Lipschitz continuous. Also k(x) is considered in C1+δ(Γ ), δ > 0,

and k(x) = 0, k(x) = ∞ and 0 < k(x) < ∞ correspond to Dirichlet, Neumann and
Robin (mixed) type boundary conditions respectively.

Since f (s) > 0, whenever u0(x) > 0 in Ω, we obtain via the comparison prin-
ciple for the (local) porous medium operator that u(x, t) > 0 in Ω × (0, T ) and
hence problem (4.13)–(4.15) is non-degenerate, [22]. Thus local-in-time existence
and uniqueness of a classical solution to (4.13)–(4.15) is guaranteed and can be
obtained by classical arguments, [7, 12]. Furthermore long-time behavior was stud-
ied by using comparison and energy methods for different nonlinear functions f (s),
[7, 12, 20, 21]. Even finite-time and infinite blow-up of the solution of (4.13)–(4.15)
is proven to occur under some circumstances in the non-degenerate case, see [7, 8,
12, 13, 20, 21].

On the other hand, when u0(x) has compact support i.e. there exists a bounded
closed set Ω0 � Ω such that u0(x) = 0, for x /∈ Ω0 then u(x, t) will remain com-
pactly supported for all later times t, thus problem (4.13)–(4.15) becomes degenerate.
In that case only a weak solution of (4.13)–(4.15) can be defined which is a function
u ∈ L2(QT ) with β(u) ∈ L∞ ((0, T ); L2(Ω)

) ∩ L2
(
(0, T ); H 1

0 (Ω)
)

and

λ f (β(u))(∫
Ω

f (β(u)) dx
)p ∈ L2(QT )
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which satisfies the equation

∫
Ω

[u(x, t1)v(x, t1) − u(x, 0)v(x, 0)] dx

=
∫ t1

0

∫
Ω

(
uvt − ∇β(u) · ∇v + λ f (β(u))v

(
∫
Ω

f (β(u)) dx)p

)
dx dt,

for any t1 ∈ [0, T ] and v ∈ Ḣ 1,1(Qt1) (where Ḣ 1,1(Qt1) is the closure of H 1,1(Qt1)

with respect to its norm) with v = 0 on ∂Ω, [7].
This degeneracy results into the interesting phenomenon of thefinite speedof prop-

agation. Indeed, a moving boundary is formed, called also interface, separating the
regions Pu(t) = {x ∈ Ω : β(u(x, t)) > 0} and Nu(t) = {x ∈ Ω : β(u(x, t)) < 0}.
It is defined as Γu(t) = ∂Pu ∩ QT and propagates with finite speed see also [22].
A intriguing problem both from mathematical and application point of view is the
determination of the evolution in time of the emerged interface. In the current chapter
we develop a numerical scheme which supplies an approximation of the interface
(moving boundary) and also provides a uniform approach for both non-degenerate
and degenerate cases.

4.3 The Numerical Scheme

In the current section we propose a numerical scheme for investigating the long-
time behavior of the non-local problem (4.13)–(4.15). We are actually inspired by a
numerical scheme developed in [15].

In particular, Nochetto and Verdi [15] studied the following local nonlinear par-
abolic problem

∂u

∂t
− Δβ(u) = f (β(u)), in Ω × (0, T ), (4.16)

β(u) = 0, on ∂Ω × (0, T ), (4.17)

u(x, 0) = u0(x), in Ω, (4.18)

where β(s) satisfies the assumption (Hβ) below. They introduced a finite element
method for solving (4.16)–(4.18) and the error estimates in both semidiscrete and
fully discrete cases were derived. The usual technique to approximate (4.16)–(4.18)
amounts to discretizing a nonlinear elliptic partial differential equations at each time
step. The success of such a procedure relies on the smoothness of the solution u and
θ = β(u). It is not a priori obvious that standard techniques for mildly nonlinear par-
abolic equations apply on low-regularity (degenerate) problem (4.16)–(4.18). Based
on this observation, Nochetto and Verdi [15] tried the following numerical scheme.

Let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ]. LetUn ≈ u(tn) andΘn ≈
f (β(u(tn))) be the approximate solutions of u(tn) and f (β(u(tn))). Nochetto and
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Verdi [15] introduced the following time discretization scheme which is a nonlinear
Chernoff formula, find Θn ∈ H 1

0 (Ω),Un ∈ L2(Ω), such that, for any ξ ∈ H 1
0 (Ω),

U 0 := u0, (4.19)

(Θn, ξ) − τ

μ
(∇Θn,∇ξ) = (β(Un−1), ξ) + τ

μ

(
f (β(Un−1)), ξ

)
, (4.20)

Un := Un−1 + μ(Θn − β(Un−1)), 1 ≤ n < N := T

τ
. (4.21)

Actually the above scheme was first introduced in [3] for tackling the filtration equa-
tion ut = Δβ(u). Here τ > 0 is the time step and μ > 0 is the relaxation parameter
which satisfies the stability constraint μ < L−1

β (Lβ = Lipschitz constant of β).
The numerical scheme consists of solving at each time step a linear elliptic partial
differential equation and then making a correction to account for the nonlinearity.

One of the first numerical studies on non-local problems of the form of (4.13)–
(4.15) was done in [17]. The authors, in [17], considered the following non-local
filtration problem

∂u

∂t
− Δβ(u) = λ f (u)

(
∫
Ω

f (u) dx)2
, in Ω × (0, T ), (4.22)

β(u) = 0, on Γ × (0, T ), (4.23)

u(x, 0) = u0(x), in Ω. (4.24)

They introduced a time discretization scheme and proved the error estimates. How-
ever, no numerical results were presented in [17] for testing the validity and the
efficiency of the produced numerical scheme.

Motivated by the numerical scheme considered in [15] we introduce a similar to
(4.19)–(4.21) time discretization scheme which captures all the key features of the
possible degenerate problem (4.13)–(4.15) considering for simplicity only homoge-
neous Dirichlet boundary conditions. So we look for a Θn ∈ H 1

0 (Ω),Un ∈ L2(Ω)

such that, for any ξ ∈ H 1
0 (Ω)

U 0 := u0, (4.25)

(Θn, ξ) − τ

μ
(∇Θn,∇ξ) = (β(Un−1), ξ) + λτ

μ

( f (β(Un−1)), ξ)( ∫
Ω

f (β(Un−1)) dx
)2 , (4.26)

Un := Un−1 + μ(Θn − β(Un−1)), 1 ≤ n < N := T

τ
. (4.27)

Denote θ(t) = β(u(t)), eθ = θ(t) − Θn and eu = u(t) −Un for any t ∈ (tn−1, tn),
then we will prove the following error estimates

‖eθ‖L2(Ω×(0,T )) +
∥∥∥
∫ t

0
eθ

∥∥∥
L∞(0,T ;H 1(Ω))

+ ‖eu‖L∞(0,T ;H−1(Ω)) = O(τ
1
2 ).
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We only deal with Dirichlet boundary conditions, though with some small mod-
ifications, the introduced numerical scheme could easily apply to the mixed type
boundary conditions of the form (4.14), by following the technique developed in
[14].

4.4 Stability

In this section, we consider the stability of the time discretization scheme (4.25)–
(4.27). To that end, we first introduce some fundamental assumptions on f and β

appearing in (4.13)–(4.15), see [15].

Assumption (Hβ): β : R → R is nondecreasing and Lipschitz continuous function;
more precisely

0 ≤ β ′(s) ≤ Lβ < +∞, for a.e. s ∈ R. (4.28)

Moreover, β satisfies β(0) = 0 and grows at least linearly at infinity, that is, there
exist c1, c2 > 0 such that

|s| ≤ c1 + c2|β(s)|, for any s ∈ R.

Assumption (Hf ): f : R → R is a uniformly Lipschitz continuous function; that
is,

| f (s1) − f (s2)| ≤ L f |s1 − s2|, ∀ s1, s2 ∈ R;

moreover
f (s) ≥ σ > 0, ∀ s ∈ R.

Assumption (Hu0): u0 ∈ L∞(Ω).
We shall choose the relaxation parameter μ in (4.25)–(4.27) such that 0 < μ ≤

L−1
β , then the following property holds

α := I − μβ satisfies 0 ≤ α′(s) ≤ 1, for a.e. s ∈ R. (4.29)

Lemma 4.4.1 Let (Un,Θn)be the solutionof (4.25)–(4.27). Assume that (Hβ), (Hf )

and (Hu0) hold. Then there exists a constant C > 0 such that

max
1≤n≤N

‖β(Un)‖L2(Ω) +
N∑

n=1

‖Un −Un−1‖2
L2(Ω) +

N∑
n=1

τ‖Θn‖2
H 1(Ω) ≤ C.

Proof Let us denote F(β(Un−1)) = ( f (β(Un−1)),v)
(
∫
Ω

f (β(Un−1)) dx)2 . Then Eqs. (4.25)–(4.27) can

be rewritten as, with ∂Un = (Un −Un−1)/τ ,
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(∂Un, ξ) + (∇Θn,∇ξ) = (F(β(Un−1)), ξ), for any ξ ∈ H 1
0 (Ω). (4.30)

Choose v = τΘn in (4.30) and sum up from 1 to N , then

N∑
n=1

(∂Un, τΘn) +
N∑

n=1

(∇Θn, τΘn) =
N∑

n=1

(F(β(Un−1)), τΘn).

Note that, by virtue of (4.29),

Θn = 1

μ
(Un −Un−1) + β(Un−1) = 1

μ
(Un −Un−1) + 1

μ
(Un−1 − α(Un−1))

= 1

μ
Un − 1

μ
α(Un−1)

= 1

2
β(Un) + 1

2μ
Un + 1

2μ

(
α(Un) − α(Un−1)

)− 1

2μ
α(Un−1),

and thus we have

2
N∑

n=1

(∂Un, τΘn) = 2
N∑

n=1

(Un −Un−1,Θn)

= 2
N∑

n=1

(
Un −Un−1,

1

2
β(Un)

)
+ 2

N∑
n=1

(
Un −Un−1,− 1

2μ
α(Un−1)

)

+ 2
N∑

n=1

(
Un −Un−1,

1

2μ
Un

)
+ 2

N∑
n=1

(
Un −Un−1,

1

2μ
(α(Un) − α(Un−1))

)
.

Given a function π : R → R, Φπ stands for the convex function defined by

Φπ(s) =
∫ s

0
π(z) dz, for s ∈ R.

Since β ′(s) > 0 and α′(s) > 0, then we take

Φβ(Un) − Φβ(Un−1) = Φ ′
β(c)(Un −Un−1) = β(c)(Un −Un−1) ≤ β(Un)(Un −Un−1),

Φα(Un) − Φα(Un−1) = Φ ′
α(c)(Un −Un−1) = α(c)(Un −Un−1) ≥ α(Un−1)(Un −Un−1),

(Un −Un−1, α(Un) − α(Un−1)) ≥ 0.
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Further, using the equality 2a(a − b) = a2 − b2 + (a − b)2, we derive

2
N∑

n=1

(∂Un, τΘn) ≥
∫

Ω

N∑
n=1

{[Φβ(Un) − Φβ(Un−1)]

+ 1

μ
[Φα(Un−1) − Φα(Un)]

}
dx + 1

μ

N∑
n=1

(Un −Un−1,Un)

=
∫

Ω

N∑
n=1

{
[Φβ(Un) − Φβ(Un−1)] + 1

μ
[Φα(Un−1) − Φα(Un)]

}
dx

+ 1

μ

[
‖Un‖2

L2(Ω) − ‖U 0‖2
L2(Ω) +

N∑
n=1

‖Un −Un−1‖2
L2(Ω)

]
.

Since 1
2Lβ

β2(s) ≤ Φβ(s) ≤ Lβ

2 s2 and 0 ≤ β ′(s) ≤ Lβ , we have

∫
Ω

N∑
n=1

[Φβ(Un) − Φβ(Un−1)] dx =
∫

Ω

[Φβ(UN ) − Φβ(U 0)]

≥ 1

2Lβ

‖β(UN )‖2
L2(Ω) − Lβ

2
‖U 0‖2

L2(Ω).

Furthermore since 1
2Lα

α2(s) ≤ Φβ(s) ≤ Lα

2 s2 and 0 ≤ β ′(s) ≤ 1, we obtain

1

μ

∫
Ω

N∑
n=1

[Φα(Un−1) − Φα(Un)] dx = 1

μ

∫
Ω

[Φα(U 0) − Φα(UN )]

≥ 1

2μ
‖α(U 0)‖2

L2(Ω) − 1

2μ
‖UN‖2

L2(Ω).

Therefore

2
N∑

n=1

(Un −Un−1,Θn)

≥ 1

2Lβ

‖β(UN )‖2
L2(Ω) − Lβ

2
‖U 0‖2

L2(Ω) + 1

2μ
‖α(U 0)‖2

L2(Ω) − 1

2μ
‖UN‖2

L2(Ω)

+ 1

2μ

[
‖UN‖2

L2(Ω) − ‖U 0‖2
L2(Ω) +

N∑
n=1

‖Un −Un−1‖2
L2(Ω)

]

≥ −C + C‖β(UN )‖2
L2(Ω) + 1

2μ
‖Un −Un−1‖2

L2(Ω).
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We next consider the non-local term
∑N

n=1

(
F(β(Un−1)), τΘn

)
. Using the fact that

f satisfies Lipschitz condition (Hf ) as well as that f (s) ≥ σ > 0 for s ∈ R, we
derive

|F(β(Un−1))| =
∣∣∣ λ f (β(Un−1))

(
∫
Ω

f (β(Un−1)) dx)2

∣∣∣ ≤ C | f (β(Un−1))| ≤ C(1 + |β(Un−1)|).

Hence, noting that Θn = 1
μ
(Un −Un−1) + β(Un−1), we have

N∑
n=1

(F(β(Un−1)), τΘn) ≤
N∑

n=1

τ
(

1 + ‖β(Un−1)‖L2(Ω)

)
‖Θn‖L2(Ω)

≤
N∑

n=1

τ
(

1 + ‖β(Un−1)‖L2(Ω)

)( 1

μ
‖Un −Un−1‖L2(Ω) + ‖β(Un−1)‖L2(Ω)

)

=
N∑

n=1

τ‖β(Un−1)‖L2(Ω) +
N∑

n=1

τ‖β(Un−1)‖2
L2(Ω)

+
N∑

n=1

τ
1

μ
‖Un −Un−1‖L2(Ω) +

N∑
n=1

τ‖β(Un−1)‖L2(Ω)

(
1

μ
‖Un −Un−1‖L2(Ω)

)

≤
N∑

n=1

(
τ + τ‖β(Un−1)‖2

L2(Ω)

)
+

N∑
n=1

τ‖β(Un−1)‖2
L2(Ω)

+
N∑

n=1

(
Cετ

2 + ε‖Un −Un−1‖2
L2(Ω)

)
+

N∑
n=1

(
‖τβ(Un−1)‖2

L2(Ω)
+ ε‖Un −Un−1‖2

L2(Ω)

)

≤ C +
N∑

n=1

τ‖β(Un−1)‖2
L2(Ω)

+ 2ε

N∑
n=1

‖Un −Un−1‖2
L2(Ω)

.

Combining all these estimates, and for 2ε = 1
4μ

, we obtain

− C + C‖β(UN )‖2
L2(Ω) + 1

2μ

N∑
n=1

‖Un −Un−1‖2
L2(Ω) + τC

N∑
n=1

‖Θn‖2
H 1

0 (Ω)

≤ C + C
N∑

n=1

τ‖β(Un−1)‖2
L2(Ω) + 1

4μ

N∑
n=1

‖Un −Un−1‖2
L2(Ω),

which implies that

C‖β(UN )‖2
L2(Ω) + 1

4μ

N∑
n=1

‖Un −Un−1‖2
L2(Ω)

+ τC
N∑

n=1

‖β(Un)‖2
L2(Ω) ≤ C + C

N∑
n=1

τ‖β(Un−1)‖2
L2(Ω).
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Finally by virtue of Gronwall lemma, we derive

max
1≤n≤N

‖β(Un)‖L2(Ω) +
N∑

n=1

‖Un −Un−1‖2
L2(Ω) +

N∑
n=1

τ‖Θn‖2
H 1(Ω) ≤ C,

and the proof of Lemma 4.4.1 is now complete. �

4.5 Error Estimates

The main purpose of the current section is the derivation of some error estimates of
the time discretization scheme (4.25)–(4.27). We actually have

Theorem 4.5.1 Let (Un,Θn) be the solution of (4.25)–(4.27). Let u be the solution
of (4.13)–(4.15). Assume that (Hβ), (Hf ) and (Hu0) hold. Assume also that u0 ∈
L∞(Ω), Δβ(u0) ∈ L1(Ω) and in addition that

max
1≤n≤N

‖Un‖L∞(Ω) ≤ C.

Then we have

‖eθ‖L2(Ω×(0,T )) +
∥∥∥
∫ t

0
eθ

∥∥∥
L∞(0,T ;H 1(Ω))

+ ‖eu‖L∞(0,T ;H−1(Ω)) = O(τ
1
2 ), for any t ∈ (tn−1, tn),

where θ(t) = β(u(t)), eθ = θ(t) − Θn and eu = u(t) −Un.

In order to prove Theorem 4.5.1, we need the following auxiliary result.

Lemma 4.5.2 If u0 ∈ L∞(Ω), Δβ(u0) ∈ L1(Ω), we have

N∑
i=1

∫ ti

ti−1

(u(t),Ui −Ui−1) dt ≤ Cτ.

Proof The proof is similar to the proof of (4.24) in [15] and so it is omitted.

Proof (Theorem 4.5.1) We first denote

F(β(u)) = λ f (β(u))

(
∫
Ω

f (β(u)) dx)2
.
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Then (4.13)–(4.15) can be rewritten as

∂u

∂t
− Δβ(u) = F(β(u)), in Ω × (0, T ), (4.31)

β(u) = 0, on ∂Ω × (0, T ), (4.32)

u(0) = u0, in Ω. (4.33)

The variational form of (4.31)–(4.33) is given as

(ut , ξ) + (∇θ,∇ξ) = (F(β(u)), ξ), for any ξ ∈ H 1
0 (Ω), (4.34)

where u ∈ H 1
0 (Ω) and θ = β(u). Now (4.48) under integration over (tn−1, tn), and

with un = u(tn) implies

(un − un−1, ξ) + τ(∇θ
n
,∇ξ) = τ

(
F(β(u))

n
, ξ), for any ξ ∈ H 1

0 (Ω), (4.35)

where

θ
n = 1

τ

∫ tn

tn−1

θ(t) dt, F(β(u))
n = 1

τ

∫ tn

tn−1

F(β(u(t))) dt.

The time discretization scheme (4.25)–(4.27) can be written as

(Un −Un−1, ξ) + τ(∇Θn,∇ξ) = τ(F(Un−1), ξ), ∀ ξ ∈ H 1
0 (Ω), (4.36)

Un −Un−1 = μ(Θn − β(Un−1)). (4.37)

Subtracting (4.36) from (4.35) and summing up from 1 to i , we obtain

i∑
n=1

(
(un −Un) − (un−1 −Un−1), ξ

)
+ τ

i∑
n=1

(∇(θ
n − Θn),∇ξ

)

= τ

i∑
n=1

(
F(β(u))

n − F(Un−1), ξ
)
, for any ξ ∈ H 1

0 (Ω),

or equivalently

(ui −Ui , ξ) + τ

i∑
n=1

(∇(θ
n − Θn),∇ξ

)

= τ

i∑
n=1

(
F(β(u))

n − F(Un−1), ξ
)
, for any ξ ∈ H 1

0 (Ω), (4.38)

by noting that U 0 = u0 = u(0).
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Choosing ξ = τ(θ
i − Θ i ) in (4.38) and summing up from 1 to N ,

N∑
i=1

(ui −Ui , τ (θ
i − Θ i )) + τ 2

N∑
i=1

i∑
n=1

(∇(θ
n − Θn),∇(θ

i − Θ i )
)

= τ

i∑
n=1

(
F(β(u))

n − F(Un−1), τ (θ
i − Θ i )

)
. (4.39)

Noting that

(ui −Ui , τ (θ
i − Θ i )) =

∫ ti

ti−1

(ui −Ui , θ(t) − Θ i ) dt

=
∫ ti

ti−1

(ui −Ui , eθ (t)) dt =
∫ ti

ti−1

(ui − u(t) + u(t) −Ui , eθ (t)) dt

=
∫ ti

ti−1

(eu(t), eθ (t)) dt −
∫ ti

ti−1

(u(t) − ui , eθ (t)) dt,

we obtain

I + I I =
N∑
i=1

∫ ti

ti−1

(eu(t), eθ (t)) dt + τ 2
N∑
i=1

i∑
n=1

(∇(θ
n − Θn),∇(θ

i − Θ i )
)

=
N∑
i=1

∫ ti

ti−1

(u(t) − ui , eθ (t)) dt + τ 2
i∑

n=1

(
F(β(u))

n − F(Un−1), θ
i − Θ i

)

= I I I + I V .

For t ∈ (ti−1, ti ), we have

eu(t) = u(t) −Ui = μθ(t) + α(u) −Ui = μeθ (t) + α(u) − α(Ui−1),

and

eθ (t) = β(u(t)) − Θ i = β(u(t)) − β(Ui−1) − 1

μ
(Ui −Ui−1).

Hence

I =
N∑
i=1

∫ ti

ti−1

(eu(t), eθ (t)) dt

=
N∑
i=1

∫ ti

ti−1

μ(eθ (t), eθ (t)) dt +
N∑
i=1

∫ ti

ti−1

(α(u) − α(Ui−1), eθ (t)) dt
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=
N∑
i=1

∫ ti

ti−1

μ‖eθ (t)‖2
L2(Ω) dt +

N∑
i=1

∫ ti

ti−1

(α(u) − α(Ui−1), β(u) − β(Ui−1)) dt

+
N∑
i=1

∫ ti

ti−1

(α(u) − α(Ui−1),− 1

μ
(Ui −Ui−1)) dt.

Furthermore, we have

α(u) − α(Ui−1) = u(t) − μθ(t) −Ui−1 + μβ(Ui−1) = u(t) −Ui − μ eθ (t),

and thus

I = μ

N∑
i=1

∫ ti

ti−1

‖eθ (t)‖2
L2(Ω) dt +

N∑
i=1

∫ ti

ti−1

(
α(u) − α(Ui−1), β(u) − β(Ui−1)

)
dt

+ τ

μ

N∑
i=1

(Ui , (Ui −Ui−1)) +
N∑
i=1

∫ ti

ti−1

(eθ (t), (U
i −Ui−1)) dt

− 1

μ

N∑
i=1

∫ ti

ti−1

(u(t), (Ui −Ui−1)) dt = I N1 + I2 + I3 + I4 + I5.

For I2, we have the estimate

I2 =
N∑
i=1

∫ ti

ti−1

(α(u) − α(Ui−1), β(u) − β(Ui−1)) dt ≥ 0,

taking into account that α, β are increasing functions.
On the other hand the term I3 is estimated below as follows

I3 = τ

μ

N∑
i=1

(Ui ,Ui −Ui−1)

= τ

μ

N∑
i=1

(
‖Ui‖2

L2(Ω) − ‖Ui−1‖2
L2(Ω) + ‖Ui −Ui−1‖2

L2(Ω)

)

≥ τ

2μ

N∑
i=1

(‖Ui‖2
L2(Ω) − ‖Ui−1‖2

L2(Ω))

≥ τ

2μ
(‖UN‖2

L2(Ω) − ‖U 0‖2
L2(Ω)) ≥ − τ

2μ
‖U 0‖2

L2(Ω),

by using the equality 2a(a − b) = a2 − b2 + (a − b)2.
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For term I4 by virtue of Young’s inequality ab ≤ εa2 + Cεb2, we obtain the upper
estimate

|I4| =
∣∣∣

N∑
i=1

∫ ti

ti−1

(eθ (t),U
i −Ui−1) dt

∣∣∣ ≤
N∑
i=1

∫ ti

ti−1

‖eθ (t)‖L2(Ω)‖Ui −Ui−1)‖L2(Ω) dt

≤ ε

N∑
i=1

∫ ti

ti−1

‖eθ‖2
L2(Ω)

dt + Cε

N∑
i=1

τ‖Ui −Ui−1‖2
L2(Ω)

≤ 1

4
I N1 + Cτ,

where the last inequality follows from Lemma 4.4.1.
Thus we finally derive the estimate

I ≥ I N1 − τ

2μ
‖U 0‖2

L2(Ω) − |I4| + I5.

Now regarding term II we have the following estimate from below

I I = τ 2
N∑
i=1

i∑
n=1

(∇(θ
i − Θ i ),∇(θ

n − Θn)
) ≥ 1

2
τ 2
∥∥∥

N∑
i=1

∇(θ
n − Θn)

∥∥∥2

L2(Ω)

= 1

2

∥∥∥
N∑
i=1

∫ ti

ti−1

∇(θ(t) − Θ i ) dt
∥∥∥2

L2(Ω)
= 1

2

∥∥∥∇
∫ tN

t0

eθ (t) dt
∥∥∥2

L2(Ω)
,

where we also made use of the equality 2
∑N

i=1 ai (
∑i

n=1 an) = (∑N
i=1 ai

)2 +∑N
i=1 a

2
i .

Next term III is estimated as

I I I =
∣∣∣

N∑
i=1

∫ ti

ti−1

(u(t) − ui , eθ (t)) dt
∣∣∣ =

∣∣∣
N∑
i=1

∫ ti

ti−1

(
−
∫ ti

t

∂u

∂s
ds, eθ (t)

)
dt
∣∣∣

≤
N∑
i=1

∫ ti

ti−1

(∫ ti

ti−1

∥∥∥∂u

∂s

∥∥∥
H−1

ds‖eθ (t)‖H 1(Ω)

)
dt

≤
[

N∑
i=1

(∫ ti

ti−1

∥∥∥∂u

∂s

∥∥∥
H−1(Ω)

ds

)2
] 1

2
[

N∑
i=1

(∫ ti

ti−1

‖eθ (t)‖H 1(Ω) dt

)2
] 1

2

≤ τ

(∫ tN

0

∥∥∥∂u

∂s

∥∥∥2

H−1(Ω)
ds

) 1
2
(∫ tN

0
‖eθ (t)‖2

H 1(Ω) dt

) 1
2

.
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Finally for term IV, we derive

I V =
∣∣∣

N∑
i=1

∫ ti

ti−1

(
i∑

n=1

τ
[
F(β(u))

n − F(β(Un−1))
]
, θ

i − Θ i

)
dt
∣∣∣

=
∣∣∣

N∑
i=1

∫ ti

ti−1

(
i∑

n=1

τ
[
F(β(u))

n − F(β(Un−1))
]
, eθ (t)

)
dt
∣∣∣

≤ ε

∫ tN

0
‖eθ (t)‖2

L2(Ω)
dt + Cε

N∑
i=1

τ

∥∥∥
i∑

n=1

τ
[
F(β(u))

n − F(β(Un−1))
]∥∥∥2

L2(Ω)

≤ ε

∫ tN

0
‖eθ (t)‖2

L2(Ω)
dt + Cε

N∑
i=1

τ

(
i∑

n=1

τ‖F(β(u))
n − F(β(Un−1))‖2

L2(Ω)

)

= ε

∫ tN

0
‖eθ (t)‖2

L2(Ω)
dt + Cε

N∑
i=1

τ

(
i∑

n=1

τ

∥∥∥ 1

τ

∫ tn

tn−1

[F(β(u)) − F(β(Un−1))] ds
∥∥∥2

L2(Ω)

)

= ε

∫ tN

0
‖eθ (t)‖2

L2(Ω)
dt + Cε

N∑
i=1

τ

(
i∑

n=1

∫ tn

tn−1

‖F(β(u)) − F(β(Un−1))‖2
L2(Ω)

ds

)
.

Since β and f satisfy Lipschitz conditions, we have

|F(β(u)) − F(β(Un−1))| =

∣∣∣∣∣∣∣
λ f (β(u))( ∫

Ω f (β(u)) dx
)2 − λ f (β(Un−1))( ∫

Ω f (β(Un−1)) dx
)2

∣∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣∣
f (β(u)) − f (β(Un−1))( ∫

Ω f (β(u)) dx
)2

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
f (β(Un−1))

[ ∫
Ω f (β(u)) − f (β(Un−1)) dx

][ ∫
Ω f (β(u)) + f (β(Un−1)) dx

]
( ∫

Ω f (β(u)) dx
)2( ∫

Ω f (β(Un−1)) dx
)2

∣∣∣∣∣∣∣
≤ C |β(u) − β(Un−1)| + C

∫
Ω

| f (β(u)) − f (β(Un−1))| dx

≤ C |β(u) − β(Un−1)| + C

(∫
Ω

| f (β(u)) − f (β(Un−1))|2 dx
) 1

2

≤ C |β(u) − β(Un−1)| + C‖β(u) − β(Un−1)‖L2(Ω),

noting that ‖Un‖L2(Ω), ‖ f (β(Un−1))‖L2(Ω), ‖ f (β(u))‖L2(Ω) ≤ C and β(u) ≥ σ >

0.

Further we have

β(u) − β(Un−1) = eθ (t) + 1

μ
(Un −Un−1),
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and thus

‖F(β(u)) − F(β(Un−1))‖2
L2(Ω) =

∫
Ω

|F(β(u)) − F(β(Un−1))|2 dx

≤ C
∫

Ω

|β(u) − β(Un−1)|2 dx + C‖β(u) − β(Un−1)‖2
L2(Ω)

≤ C‖β(u) − β(Un−1)‖2
L2(Ω) ≤ C‖eθ (t)‖2

L2(Ω) + C‖Un −Un−1‖2
L2(Ω), (4.40)

which implies the following estimate

I V ≤ ε

∫ TN

0
‖eθ (t)‖2

L2(Ω) dt

+ Cε

N∑
i=1

τ

[
i∑

n=1

∫ tn

tn−1

(
‖eθ (t)‖2

L2(Ω) + ‖Un −Un−1‖2
L2(Ω)

)
dt

]

= 1

4

∫ TN

0
‖eθ (t)‖2

L2(Ω) dt + Cε

N∑
i=1

τ

[
i∑

n=1

∫ tn

tn−1

‖eθ (t)‖2
L2(Ω) dt

]

+ Cε

N∑
i=1

τ

[
i∑

n=1

∫ tn

tn−1

‖Un −Un−1‖2
L2(Ω) dt

]

≤ 1

4
I N1 + C

N∑
i=1

τ I i1 + C
N∑
i=1

τ

[
i∑

n=1

τ‖Un −Un−1‖2
L2(Ω)

]

= 1

4
I N1 + C

N∑
i=1

τ I i1 + C
N∑
i=1

τ‖Ui −Ui−1‖2
L2(Ω)

≤ 1

4
I N1 + C

N∑
i=1

τ I i1 + Cτ.

Combining all the above estimates we finally derive

I N1 − Cτ − |I4| + I5 + 1

4

∥∥∥∇
∫ TN

0
eθ (t) dt

∥∥∥2

L2(Ω)

≤ Cτ + 1

4
I N1 + C

N∑
i=1

τ I i1 + Cτ.

Besides we note that |I4| ≤ 1
4 I

N
1 , and thus

μ

4
‖eθ‖2

L2(Ω×(0,T )) + 1

4

∥∥∥∇
∫ TN

0
eθ (t) dt

∥∥∥2

L2(Ω)
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≤ C
N∑
i=1

τ‖eθ‖2
L2(0,ti ;L2(Ω)) + Cτ + 1

μ

N∑
i=1

∫ ti

ti−1

(u(t),Ui −Ui−1) dt.

By virtue of Lemma 4.5.2 and Gronwall lemma, we have

‖eθ‖L2(Ω×(0,T )) +
∥∥∥
∫ t

0
eθ

∥∥∥
L∞(0,T ;H 1(Ω))

= O(τ
1
2 ), (4.41)

and thus the following H−1(Ω)-error bound for the unknown u is derived,

‖eu‖L∞(0,T ;H−1(Ω)) ≤ Cτ
1
2 . (4.42)

Combining now estimates (4.41) and (4.42) we derive the desired error estimate and
this completes the proof of Theorem 4.5.1. �

4.6 Numerical Experiments

In this section, we present two numerical examples in order to test the efficiency
of the numerical scheme introduced in Sect. 4.3. For each example, we consider the
approximate solutions both for the local and non-local problems. We actually use
finite element method for spatial discretization and backward Euler method for time
discretization.

Consider the following non-local problem, with p > 0,

∂u

∂t
− Δβ(u) = λ f (β(u))

(
∫
Ω

f (β(u)) dx)p
, in Ω × (0, T ), (4.43)

− ∂β(u)

∂ν
= k(x)(β(u) − q(x)), on ∂Ω × (0, T ), (4.44)

u(x, 0) = u0(x), in Ω. (4.45)

For the functions involved in the mixed-type boundary condition (4.44) we take
k, q ∈ L2(∂Ω) while u0 ∈ L∞(Ω).

Denote θ = β(u). The variational form of (4.43)–(4.45) is to find u(t) ∈ L2(Ω),

θ(t) ∈ H 1(Ω), such that

(
∂u

∂t
, ξ

)
L2(Ω)

+ (∇θ,∇ξ)L2(Ω) + (kθ, ξ)L2(∂Ω)

= (kq, ξ)L2(∂Ω) + λ( f (θ), ξ)L2(Ω)

(
∫
Ω

f (θ) dx)p
, ∀ ξ ∈ H 1(Ω). (4.46)
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For any h > 0, let τh be a decomposition of Ω into triangles τh : {Tk}Nh
k=1 with diam-

eters bounded by h, which stands for the mesh size. Let {τh}h be a regular family of
decompositions. We do not require either the quasi-uniformility or the acuteness of
the family {τh}h . We have

Ω = Ωh =
K⋃

k=1

Tk .

Let

Mh = {ψ : Ωh → R : Ψ |Tk is constant ∀ k = 1, 2, . . . , K },
Sh = {χ ∈ C0(Ωh) : χ |Tk is linear ∀ k = 1, 2, . . . , K }.

Let Πh : C(Ω) → Sh denote the local linear interpolation operator. We define

〈χ,Φ〉h =
K∑

k=1

∫
Tk

Πh(χφ) dx .

We also introduce the L2(Ω)-projection operator P0
h onto Mh which, for any ξ ∈

L2(Ω), is defined by
(P0

h ξ, ψ) = (ξ, ψ), ∀ ψ ∈ Mh .

Let τ = T/N be the time step (N is a positive integer) and tn = nτ . We define the
following finite element method for solving (4.43)–(4.45). FindUn ∈ Mh, Θn ∈ Sh ,
where Un ≈ u(tn), Θn ≈ β(u(tn)) = θ(tn), such that, for any χ ∈ Sh ,

U 0 = P0
h u0, (4.47)

〈Θn, χ〉h + τ

μ
(∇Θn,∇χ)L2(Ω) + τ

μ
(kΘn, χ)L2(∂Ω)

= τ

μ
(kq, χ)L2(∂Ω) + (β(Un−1), χ)L2(Ω) + τ

μ

λ( f (β(Un−1)), χ)L2(Ω)

(
∫
Ω

f (β(Un−1)) dx)p
,

(4.48)

Un = Un−1 + μ[P0
h Θn − β(Un−1)], (4.49)

where μ : 0 < μ ≤ L−1
β is a fixed number (the so-called relaxation parameter).

Let ϕ j , j = 1, 2, . . . , Nh be the basis functions on the nodes Pj , j = 1, 2, . . . , Nh

on Sh . Assume that

Θn =
Nh∑
j=1

θn
j ϕ j ,
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and choose χ = ϕl, l = 1, 2, . . . , Nh in (4.48) then we get

〈
Nh∑
j=1

θn
j ϕ j , ϕl

〉

h

+ τ

μ

⎛
⎝∇

Nh∑
j=1

θn
j ϕ j ,∇ϕl

⎞
⎠

L2(Ω)

+ τ

μ

⎛
⎝k

Nh∑
j=1

θn
j ϕ j , ϕl

⎞
⎠

L2(∂Ω)

= τ

μ
(kg, ϕl)L2(∂Ω) + (β(Un−1), ϕl)L2(Ω) + τ

μ

λ( f (β(Un−1)), ϕl)L2(Ω)

(
∫
Ω

f (β(Un−1)) dx)p
.

(4.50)

Denote

M = (ϕ j , ϕl)L2(Ω) K = (kϕ j , ϕl)L2(∂Ω), G = (kq, ϕl)L2(∂Ω),

B = (β(Un−1), ϕl)L2(Ω), F = ( f (Θn−1), ϕl)L2(Ω), Θn = (θn
j ),

and Q =
( ∫

Ω
f (Θn−1) dx

)p
, then we have the matrix form

(
M + τ

μ
S + τ

μ
K
)

Θn = τ

μ
G + B + τ

μ

λF
Q

.

Once we obtain Θn , we can calculate Un from (4.49).
We use the following steps to calculate B,F and Q.
For the calculation of B, we note that

(β(Un−1), ϕl)L2(Ω) =
∫

Ω

β(Un−1)ϕl dx =
Nh∑
k=1

∫
Tk

β(Un−1)ϕl dx,

where β(Un−1) is a piecewise constant function and

∫
Tk

ϕl dx =
{

|Tk |/3, if Pl is a node of Tk,

0, otherwise,

for |Tk | denoting the area of Tk .
To calculate F, we note that

( f (Θn−1), ϕl)L2(Ω) =
⎛
⎝ f

⎛
⎝ Nh∑

j=1

θn−1
j ϕ j

⎞
⎠ , ϕl

⎞
⎠

L2(Ω)

≈
Nh∑
j=1

f (θn−1
j )(ϕ j , ϕl)L2(Ω) = (M ∗ f (Θn−1))l .
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Finally, we have

Q =
(∫

Ω

f (Θn−1) dx

)p

=
⎛
⎝∫

Ω

f

⎛
⎝ Nh∑

j=1

θn−1
j ϕ j

⎞
⎠ dx

⎞
⎠

p

=
⎛
⎝ Nh∑

j=1

f (θn−1
j ) ·

∫
Ω

ϕ j dx

⎞
⎠

p

,

where
∫
Ω

ϕ j dx =∑Nh
k=1

∫
Tk

ϕ j dx . Therefore we have built the following algorithm
(A ):

Step 1: Find U 0 = P0
h u0, u0 is the initial value.

Step 2: Find β(U 0).
Step 3: Find Θ1 by (4.48).
Step 4: Find U 1 by (4.49).
Step 5: Go to Steps 1–4 to find next Θn,Un, n = 2, 3, . . . .

In the following we present two examples focusing on the two-dimensional case,
which according to Sect. 4.1, is very interesting from the application point of view.

Example 4.1 ([3, 14, 15, 23]) Let Ω = (0, 0.5) × (0, 0.25), 0 < t < T = 0.25 and

β(u) =

⎧⎪⎨
⎪⎩

u, if u < 0,

0, if 0 ≤ u ≤ 1,

u − 1, if u > 1.

When f = 0, the exact solution of (4.43)–(4.45) is

u(x, y, t) =
{

2[eΦ(x,y,t) − 1] + 1, if Φ(x, y, t) ≥ 0,

eΦ(x,y,t) − 1, if Φ(x, y, t) < 0,

where
Φ(x, y, t) = −x − y + 2t + 0.1 = 0,

is the interface (moving boundary). Dirichlet data are prescribed on the boundary Γ .

Let M1 and M2 be any positive integers. Let 0 = x0 < x1 < x2 < · · · < xM1 = 0.5
be the partition of the interval [0, 0.5] and hx = 0.5/M1 the step-size. Similarly
0 = y0 < y1 < y2 < · · · < yM2 = 0.25 is a partition of the interval [0, 0.25] and
hy = 0.25/M2 the step-size. We divide the rectangle Ω = [0, 0.5] × [0, 0.25] into
the triangles Tk, k = 1, 2, . . . , Nh with the same size. The length of the longest side

of each triangle is then h =
√
h2
x + h2

y . Let now 0 = t0 < t1 < t2 < · · · < tN = T
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Table 4.1 The estimated order of convergence for Example 4.1 at T = 0.25

M1(= M2) Nel Eu Eθ pu pθ

5 50 0.062 0.00635

10 200 0.0547 0.0042 0.18 0.60

15 450 0.0482 0.0033 0.31 0.57

20 800 0.0447 0.0028 0.26 0.55

be the time partition of [0, T ] and τ the time step-size. We will choose τ = C∗h for
any constant C∗ in our numerical simulations below.

The authors in [15] provided the error estimates both for time and space discretiza-
tions for local problem (4.16)–(4.18) and their numerical experiments show that the
numerical results are consistent with the theoretical results. In the current chapter we
only provided the error estimates for the time discretization for the non-local prob-
lem (4.43)–(4.45). However we believe that one can obtain similar error estimates
for the space discretization as for the local problem in [15]. We will evaluate the
actual order of convergence of both variables u and θ in our numerical experiments.

Denote

Eh
θ :=

{
τ

N∑
n=1

Nh∑
k=1

∫
Tk

Πh([Θn − θn]2) dx

} 1
2

,

and analogously for Eh
u . Assume that Eh

u = Chpu and Eh
θ = Chpθ , then we have

pu = log(Eh1
u /Eh2

u )

log(h1/h2)
, pθ = log(Eh1

θ /Eh2
θ )

log(h1/h2)
.

Since we do not know the exact solution θn and un for our non-local problem, in order
to check the estimated convergence orders pu and pθ , we assume that the exact solu-
tions θn and un are obtained by using a very small mesh size h with M1 = M2 = 40
which implies that the number of elements is 2 × M1 × M2 = 3200. We then choose
M1 = M2 = 5, 10, 15, 20 respectively and calculate the approximate solutions Θn

and Un . The estimated convergence orders pθ and pu are listed in Table 4.1. We note
that pθ ≈ 1

2 and pu ≈ 1
4 which are consistent with the error estimates for the local

problem in [15]. According to the general theory, see [22], the formation of a mov-
ing boundary is expected for problem (4.43)–(4.45). As mentioned in Sect. 4.1 the
moving boundary describes the mushy region formulated between the two phases
(liquid and solid) in the contact area during the welding process. In Fig. 4.3, the
discrete interfaces at different times with f = 0 for the function β(u) considered
in Example 4.1 are shown where we choose τ = 0.25/70 and M1 = M2 = 20.
Figure 4.4 depicts the formation of the interface at different times for f (s) = s2 + 1
when λ = 1, p = 2 for τ = 0.25/70 and M1 = M2 = 20. It is worth mentioning that
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Fig. 4.3 Formation of interface for the function β(u) considered in Example 4.1 when f (s) = 0
at various times

due to the external disturbance f �= 0 the interface moves faster compared to the case
f = 0. Furthermore, as λ, or equivalently the applied voltage, increases then again
the evolution of the moving boundary in time becomes faster.

Example 4.2 ([14, 15, 23]) Let Ω = (−0.22, 0.18) × (0, 0.2), 0 < t < T = 0.4
and

β(u) =

⎧⎪⎨
⎪⎩

1
2u, if u < 0,

0, if 0 ≤ u ≤ 1,
1
3 (u − 1), if u > 1.

When f = 0, the exact solution of (4.43)–(4.45) is

u(x, y, t) =
{

6Φ(x, y, t) + 1, if Φ(x, y, t) ≥ 0,

2Φ(x, y, t), if Φ(x, y, t) < 0,
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Fig. 4.4 Formation of interface for the function β(u) considered in Example 4.1 when f (s) =
s2 + 1 and for λ = 1, p = 2 at various times

where
Φ(x, y, t) = (x2 + y2 − e−4t )/4e2.4 = 0,

is the moving boundary. Dirichlet data are prescribed on the boundaries.

We use the same notation as in Example 4.1. In Fig. 4.5, the discrete interfaces
at different times with f = 0 for the function β(u) considered in Example 4.2 are
shown where we choose τ = 0.25/70 and M1 = M2 = 20.

Experimental data show that the electrical conductivity, denoted by f (s), usually
has a discontinuous profile, see also Sect. 4.1. But a discontinuous function does
not satisfy Assumption (Hf ) and hence the developed algorithm in Sect. 4.3 is not
applicable in this case. However, algorithm (A ) can still provide reliable numerical
experiments in this delicate case. Therefore in the current example, in order to be
consistent with applications, we consider the following discontinuous function

fe(s) =
{

es
2 + 1, if s ≥ 0,

es
2 + 2, if s < 0.
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Fig. 4.5 Formation of interface for the function β(u) considered in Example 4.2 when f (s) = 0
at various times

Table 4.2 The estimated order of convergence in Example 4.2 at T = 0.4

M1(= M2) Nel Eu Eθ pu pθ

5 50 0.0622 0.00135

10 200 0.0516 0.0010 0.27 0.43

15 450 0.0478 8.1319e-004 0.19 0.51

20 800 0.0441 7.1035e-004 0.28 0.47

Following the same approach to estimate pu and pθ as in Example 4.1 we finally
derive Table 4.2. We also note that pθ ≈ 1

2 and pu ≈ 1
4 which are consistent with the

error estimates obtained for the local problem [15].
Also Fig. 4.6 depicts the formation of this interface at various times for the func-

tion β(u) considered in Example 4.2 and for f (s) = s2 + 1 when λ = 1, p = 2 for
τ = 0.25/70 and M1 = M2 = 20. It is worth mentioning that due to the external dis-
turbance f �= 0 the interface moves faster compared to the case f = 0. Furthermore,
as λ, or equivalently the applied voltage, increases then again the moving boundary
evolves faster.
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Part II
Applications in Biology



Chapter 5
Gierer–Meinhardt System

Abstract The purpose of the current chapter is to contribute to the comprehension
of the dynamics of the shadow system of an activator-inhibitor system known as a
Gierer–Meinhardt model. Shadow systems are intended to work as an intermediate
step between single equations and reaction-diffusion systems. In the case where the
inhibitor’s response to the activator’s growth is rather weak, then the shadow system
of the Gierer–Meinhardt model is reduced to a single though non-local equation
whose dynamics is investigated.Wemainly focus on the derivation of blow-up results
for this non-local equation which can be seen as instability patterns of the shadow
system. In particular, a diffusion driven instability (DDI), or Turing instability, in the
neighbourhood of a constant stationary solution, which is destabilised via diffusion-
driven blow-up, is obtained. The latter actually indicates the formation of some
unstable patterns, whilst some stability results of global-in-time solutions towards
non-constant steady states guarantee the occurrence of some stable patterns.

5.1 Derivation of the Non-local Model

In as early as 1952, A. Turing in his seminal paper [28] attempted, by using reaction-
diffusion systems, to model the phenomenon of morphogenesis, the regeneration
of tissue structures in hydra, an animal of a few millimeters in length made up of
approximately 100,000 cells. Further observations on the morphogenesis in hydra
led to the assumption of the existence of two chemical substances (morphogens), a
slowly diffusing (short-range) activator and a rapidly diffusing (long-range) inhibitor.
A. Turing was the first to indicate that although diffusion has a smoothing and triv-
ializing effect on a single chemical, for the case of the interaction of two or more
chemicals with different diffusion rates could force the uniform steady states of the
corresponding reaction-diffusion systems to become unstable and to lead to nonho-
mogeneous distributions of such reactants. Such a phenomenon is now known as
diffusion driven instability (DDI), or Turing instability.

Exploring Turing’s idea further, A.Gierer andH.Meinhardt, [2], proposed in 1972
the following activator-inhibitor system, known since then as a Gierer–Meinhardt
system, to model the regeneration phenomenon of hydra located in a domain Ω ⊂
© Springer International Publishing AG 2018
N.I. Kavallaris and T. Suzuki, Non-Local Partial Differential Equations
for Engineering and Biology, Mathematics for Industry 31,
https://doi.org/10.1007/978-3-319-67944-0_5
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R
N , N ≥ 1

ut = ε2Δu − u + u p

vq
, in Ω × (0, T ), (5.1)

τvt = DΔv − v + ur

vs
, in Ω × (0, T ), (5.2)

∂u

∂ν
= ∂v

∂ν
= 0, on ∂Ω × (0, T ), (5.3)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, in Ω, (5.4)

where Ω is the domain of interaction of the two reactants and ν denotes the unit
normal vector to ∂Ω , whilst u and v stand for the concentrations of the activator and
the inhibitor respectively. System (5.1)–(5.4) intends to provide a thorough explana-
tion of symmetry breaking as well as of de novo pattern formation by virtue of the
coupling of a local activation and a long-range inhibition process. The inserted non-
linearities describe the fact that the activator promotes the differentiation process and
it stimulates its own production, whereas the inhibitor acts as a suppressant against
the self-enhancing activator to prevent the unlimited growth.

Here, ε2, D represent the diffusing coefficients whereas the exponents satisfying
the conditions:

p > 1, q, r,> 0, and s > −1,

measure the morphogens interactions. In particular, the dynamics of system (5.1)–
(5.4) can be characterised by twonumbers: thenet self-activation indexρ ≡ (p−1)/r
and the net cross-inhibition index γ ≡ q/(s + 1). Indeed, ρ correlates the strength
of self-activation of the activator with the cross-activation of the inhibitor. So, if ρ is
large, then the net growth of the activator is large nomatter the inhibitor’s growth. On
the other hand, γ measures how strongly the inhibitor suppresses the production of
the activator and that of itself. Now if γ is large then the production of the activator is
strongly suppressed by the inhibitor. Finally, the parameter τ quantifies the inhibitor’s
response against the activator’s growth.

Guided by biological interpretation as well as by mathematical reasons, it is
usually assumed that the parameters p, q, r, s satisfy the following condition

ρ ≡ p − 1

r
<

q

s + 1
≡ γ,

or equivalently
p − rγ < 1. (5.5)

Condition (5.5) is called a Turing condition whilst the reverse inequality

p − rγ > 1, (5.6)

will be referred to as an anti-Turing condition, see also [7].
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TheTuring conditionguarantees, [22], that the spatially homogeneous equilibrium
(u, v) = (1, 1) of the corresponding kinetic (ODE) system

du

dt
= −u + u p

vq
, τ

dv

dt
= −v + ur

vs
, (5.7)

is stable if τ < s+1
p−1 .Nevertheless, once diffusion terms are introduced,with ε2 � D,

and under (5.5) then (u, v) = (1, 1) becomes unstable and bifurcation occurs, see
also [22, 23]. Therefore, diffusion driven instability (DDI) takes place which leads
to pattern formation and then explains the phenomenon of morphogenesis.

Apart from its vital biological importance the system (5.1)–(5.4) has also inter-
esting mathematical features and emerging singularities. As such, it has attracted a
lot of attention from the field of mathematical analysis. Subjects of interest include
the existence of global-in-time solutions, which was first investigated in [25] and
then studied more thoroughly in [17, 20]. The author in [6] proved that under the
condition p−1

r < 1, a global-in-time solution exists, which is an almost optimal
result, also taking into consideration the results in [22]. Furthermore, [8] contains an
investigation of the asymptotic behavior of the solution of (5.1)–(5.4). In particular
the authors showed that if τ = s+1

p−1 , s > 0, and

2
√
d1 d2

d1 + d2
≥

√
(s + 1)(p − 1)

sp
, d1 = ε2, d2 = τ−1D,

then the global-in-time solution of (5.1)–(5.4) is approaching uniformly a spatially
homogeneous solution, which is always periodic-in-time unless it is a constant one.
The occurrence of finite-time blow-up, which actually means unlimited growth for
the activator, was first established in [17] and later in [9, 15, 30], whereas the case of
nondiffusing activator finite-time blow-up is also investigated in [9]. The existence
and stability of spiky stationary solutions is thoroughly studied in the survey paper
[29].

As specified above, in the case of the Gierer–Meinhardt system, the inhibitor
diffuses much faster compared to the activator, i.e. ε2 � D, and thus the system
(5.1)–(5.4) can be fairly approximated by its shadow system when D � 1. The
concept of a shadowsystemwas introducedbyKeener, [11], to describe the qualitative
behavior of reaction-diffusion systems when one of the diffusing coefficients is very
large. Such a system is formed by a reaction-diffusion equation coupled with an
ordinary differential equation (ODE) with non-local effects and it actually contains
all the essential dynamics of the original reaction-diffusion system. In particular, if
there is a compact attractor for the shadow system the original reaction-diffusion
system has a compact attractor too, see also [3].

In the following we provide a formal derivation of the shadow system of the
Gierer–Meinhardt system (5.1)–(5.4). A rigorous proof can be found in [18, 19]
where it is also shown that the convergence of the original reaction-diffusion system
towards its shadow system is valid locally in time except for an initial layer. Now,
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dividing (5.2) by D and letting D ↑ +∞ for any fixed t ∈ (0, T ), then due to the
boundary condition (5.3) v becomes spatial homogeneous, i.e. v(x, t) = ξ(t). Next,
integrating the resulting equation over Ω we finally derive that u(x, t), ξ(t) satisfy
the shadow system:

ut = ε2Δu − u + u p

ξ q
, in Ω × (0, T ), (5.8)

τξt = −ξ + 1

ξ s
−
∫

Ω

ur dx in Ω × (0, T ), (5.9)

∂u

∂ν
= 0, on ∂Ω × (0, T ), (5.10)

u(x, 0) = u0(x) > 0, ξ(0) = v̄0 = 1

|Ω|
∫

Ω

v0, in Ω, (5.11)

where

−
∫

Ω

ur dx ≡ 1

|Ω|
∫

Ω

ur dx .

Notably problem (5.8)–(5.11) is non-local due to the presence of the integral term
in (5.9).

Since the convergence towards (5.8)–(5.11) holds only locally in time there might
be discrepancies between the global-in-time dynamics of system (5.1)–(5.4) and
those of (5.8)–(5.11) for some range of the involved parameters p, q, r, s; this has
been also indicated in [7, 13, 14]. On the other hand, there are ranges of the involved
parameters, where the two systems have exactly the same long-time behavior [13,
Theorem1] and thus it is worth investigating the shadow system (5.8)–(5.11), which
is simpler compared to the full system (5.1)–(5.4), so we can capture some of the
features of (5.1)–(5.4).

Henceforth, we focus on the case where τ = 0; i.e. when the inhibitor’s response
rate is quite small against the inhibitor’s growth. For τ = 0 the second equation (5.9)
is solved as

ξ(t) =
(

−
∫

Ω

ur (x, t) dx

) 1
s+1

,

and thus the shadow system reduces to the following non-local problem

ut = Δu − u + u p(
−
∫

Ω

ur dx
)γ

, in Ω × (0, T ), (5.12)

∂u

∂ν
= 0, on ∂Ω × (0, T ), (5.13)

u(x, 0) = u0(x) > 0, in Ω, (5.14)
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where for simplicity it has been considered ε = 1.
The rest of the current chapter is devoted to the study of problem the (5.12)–(5.14)

whose mathematical structure is intriguing. In particular, owing to the presence of
the non-local term and the monotonicity of its nonlinearity, then problem (5.12)–
(5.14) does not admit a maximum principle, [24], and so alternatives to comparison
techniques should be employed to investigate its long-time behavior. Some global-
in-time existence and blow-up results for problem (5.12)–(5.14) were presented in
[14], whereas some slow moving spike solutions were constructed in [5]. Here, we
provide novel global-in-time and blow-up results, extending further themathematical
analysis provided in [14], aswell as describing the formof the destabilization patterns
developed due to the phenomenon of DDI.

In addition, the investigation of the non-local problem (5.12)–(5.14) is also attrac-
tive from the biological point of view. Specifically, it will reveal under which cir-
cumstances the dynamics of the interaction of the two morphogens (activator and
inhibitor) can be controlled by governing only the dynamics of the activator itself.

Note that under condition (5.5) the solution of the spatially homogeneous part

du

dt
= −u + u p−rγ , u(0) = ū0 > 0, (5.15)

never exhibits blow-up, since the non-linearity is sublinear, and its unique stationary
state u = 1 is asymptotically stable. Below, by using stability analysis we show that
condition (5.5) implies linear instability.

Indeed, the linearized problem of (5.12)–(5.14) around u = 1 is given by

φt = Δφ + (p − 1)φ − rγ−
∫

Ω

φ, in Ω × (0, T ),

∂φ

∂ν
= 0, on ∂Ω,

and can be written in the form of an evolution equation in X = L2(Ω) as

dφ

dt
= −Aφ.

Here the generator A is a self-adjoint operator associated with the bi-linear form (see
Kato [10])

a(φ,w) = −
∫

Ω

(∇φ · ∇w + (1 − p)φw) dx + rγ−
∫

Ω

φ·−
∫

Ω

w, φ,w ∈ V = H 1(Ω).
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Now for φ = w we derive

a(φ, φ) = ‖∇φ‖22 + (1 − p)−
∫

Ω

φ2 + rγ

(
−
∫

Ω

φ

)2

=
∞∑
j=1

μ2
j |(φ, ϕ j )|2 +

∞∑
j=1

(1 − p)|(φ, ϕ j )|2 + rγ |(φ, ϕ1)|2

= (1 − p + rγ )|(φ, ϕ1)|2 +
∞∑
j=2

(μ2
j + 1 − p)|(φ, ϕ j )|2,

where 0 = μ1 < μ2 ≤ · · · → ∞ denote the eigenvalues of −Δ associated with
the Neumann boundary condition, and ϕ j is the corresponding j-th eigenfunction
normalized by ‖ϕ j‖2 = 1. Note that under the Turing condition (5.5), the linearized
instability of the steady-state solution u = 1 arises if and only if μ2

2 < p − 1. The
latter suggests that under condition (5.5) a Turing instability phenomenon should
be anticipated, which is actually shown in Theorem5.7, this Turing instability is
exhibited in the form of a finite-time blow-up.

5.2 Mathematical Analysis

Nextwe focus on themathematical analysis of the dynamics of the non-local problem
(5.12)–(5.14) which it will reveal intriguing features including the diffusion-driven
finite-time blow-up mentioned in the previous section, see also [7].

5.2.1 Global-in-time Existence

Wefirst point out that the solution of problem (5.12)–(5.14) could cease to exist either
by quenching (when u reaches 0 at some finite or infinite time), i.e. there exists

T ≤ +∞ and lim inf
t↑T ‖u(·, t)‖r = 0 for some r > 1, (5.16)

or via finite-time or infinite-time blow-up when there exists T ≤ +∞ such that

lim sup
t↑T

‖u(·, t)‖r = +∞ for some r > 1.

Note that by the parabolic regularity there actually holds

T < +∞ ⇒ lim
t↑T ‖u(·, t)‖∞ = +∞. (5.17)
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Our first observation is that quenching in finite time cannot occur for u. Indeed, there
holds

Proposition 5.1 Each T > 0 admits CT > 0 such that the solution of (5.12) and
(5.13) satisfies

u ≥ CT in Ω × [0, T ). (5.18)

Proof By the maximum principle and comparison theorems there holds that u =
u(x, t) > 0 and u(x, t) ≥ ũ(t), where ũ = ũ(t) is the solution to the initial value
problem

dũ

dt
= −ũ in (0, T ), ũ(0) = ũ0 ≡ inf

Ω
u0(x) > 0,

which implies (5.18) with CT = ũ0e−T . �

Due to Proposition5.1 the following alternatives are left; blow-up in finite time
indicated by T < +∞, blow-up in infinite time, quenching in infinite time, and
global-in-time compact orbit in C(Ω). However, as the following Theorem shows
infinite time quenching cannot occur.

Theorem 5.1 There is δ0 > 0 such that for any 0 < δ ≤ δ0 the solution of (5.12)
and (5.13) admits the estimate

−
∫

Ω

u−δ ≤ C. (5.19)

Proof Set χ = u
1
α , α �= 0, then χ satisfies

αχt = α
(
Δχ + 4(α − 1)|∇χ

1
2 |2

)
− χ + f in Ω × (0, T ), (5.20)

∂χ

∂ν
= 0, on ∂Ω × (0, T ), (5.21)

χ(x, 0) = u
1
α

0 (x), in Ω, (5.22)

with

f = u p−1+ 1
α(−∫

Ω
ur

)γ . (5.23)

Averaging (5.20) over Ω , we obtain

α
d

dt
−
∫

Ω

χ + 4α(1 − α)−
∫

Ω

|∇χ
1
2 |2 + −

∫
Ω

χ = −
∫

Ω

f, (5.24)

and hence

d

dt
−
∫

Ω

χ + 4(1 − α)−
∫

Ω

|∇χ
1
2 |2 + 1

α
−
∫

Ω

χ ≤ 0, (5.25)
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for α < 0 since also f > 0. Letting now δ = − 1
α
we have

d

dt
−
∫

Ω

χ + 4(1 + δ−1)−
∫

Ω

|∇χ
1
2 |2 ≤ δ−

∫
Ω

χ.

Since Poincaré–Wirtinger’s inequality reads

‖∇w‖22 ≥ μ2‖w‖22, for any w ∈ H 1(Ω),

where μ2 is the second eigenvalue of the Laplace operator associated with Neumann
boundary conditions, then application of (5.25) for w = χ1/2 entails

d

dt
−
∫

Ω

χ + c−
∫

Ω

χ ≤ 0, (5.26)

for 0 < δ � 1. Differential inequality (5.26) implies that χ(t) ≤ C < ∞ for any
t > 0 and thus (5.19) follows by the fact that χ = u−δ. �

Remark 5.2.1 Wenote that this property does not arise neither for the original system
(5.1)–(5.4) nor for the shadow system (5.8) and (5.9). The former can be easily
concluded by the classification of the homogeneous orbits given in [23], while the
latter is an immediate consequence of the Theorem5.1.

In fact, inequality (5.19) implies −
∫

Ω

uδ ≥ c = C−1 and then

−
∫

Ω

ur ≥
(

−
∫

Ω

uδ

)r/δ

≥ cr/δ > 0 for any t > 0, (5.27)

follows by Jensen’s inequality taking δ ≤ r, where again c is independent of time t.
Consequently, relation (5.27) guarantees that the nonlinear termof non-local equation
(5.12) stays away from zero and therefore the solution u is bounded away from zero
as well.

Remark 5.2.2 Remark5.2.1 is interpreted in biological context as follows: the acti-
vator can never be diminished.

The second global-in-time result is concerned with the special case r = p + 1
where a problem (5.12)–(5.14) admits a variational structure, which is not the case
for the initial system (5.1)–(5.4). In particular we have

d

dt
J (u) = −‖ut‖22 ≤ 0, (5.28)

for

J (u) = 1

2

(‖∇u‖22 + ‖u‖22
) − 1

(p + 1)(1 − γ )

(
−
∫

Ω

u p+1 dx

)1−γ

,
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which entails the following result by the method of double well potential, see [12,
26].

Theorem 5.2 Let N ≥ 3 and r = p + 1. If p−1
p+1 < γ < 1 and 1 < p < N+2

N−2 then a
global-in-time solution exists, i.e.

T = +∞ and sup
(0,T )

‖u(·, t)‖∞ ≤ C. (5.29)

Proof In this case we have 0 < γ < 1 and (p + 1)(1 − γ ) < 2. By J (u) ≤ J (u0)
it holds that

1

2
(‖∇u‖22 + ‖u‖22) ≤ J (u0) + |Ω|γ

(p + 1)(1 − γ )

(
−
∫

Ω

u p+1

)1−γ

.

In addition Sobolev’s and Young’s inequalities imply

(
−
∫

Ω

u p+1

)1−γ

= ‖u‖(p+1)(1−γ )

p+1 ≤ 1

4
‖u‖2H 1 + C,

by (p + 1)(1 − γ ) < 2 and thus

‖u(·, t)‖H 1 ≤ C. (5.30)

Therefore u satisfies

ut = Δu − u + a(t)u p,
∂u

∂ν

∣∣∣
∂Ω

= 0, u
∣∣∣
t=0

= u0(x) > 0,

with 0 ≤ a(t) ≤ C due to (5.27) and 1 < p < N+2
N−2 . Then (5.30) implies (5.29) by a

standard bootstrap argument (see Lemma8.1 of [27]). �

Remark 5.2.3 Theorem5.2 indicates that in case where r = p + 1 then there is a
discrepancy between the behavior of the full system (5.1)–(5.4) and those of the
non-local problem (5.12)–(5.14). Indeed, under the anti-Turing condition the full
system does not exhibit any instability, whilst an instability occurs only when Turing
condition (5.31) holds.

Remark 5.2.4 In the case where γ = p−1
p+1 and 1 < p < N+2

N−2 , we have always
T = +∞, whilst infinite-time blow-up, i.e. limt↑+∞ ‖u(·, t)‖∞ = +∞, may occur.
In fact, by the proof of Theorem5.2 we have

‖u(·, t)‖H 1 ≤ C(1 + t) for 0 < t < T,

and then by virtue of Sobolev’s imbedding we obtain ‖u(·, t)‖∞ ≤ CT , which
entails T = +∞ by the parabolic regularity. Furthermore, in case where J (u0) < 0
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we derive
d

dt
‖u‖22 ≥ −2J (u0) > 0,

and then it follows that limt↑∞ ‖u(·, t)‖2 = +∞. The latter implies that
limt↑+∞ ‖u(·, t)‖∞ = +∞ and thus infinite-time blow-up occurs in that case.

Note that for r = p + 1 Turing condition (5.5) is reduced to

γ >
p − 1

p + 1
. (5.31)

Turing condition (5.31) further implies that the solution orbit for problem (5.12)–
(5.14) is compact in C(Ω) and the ω-limit set

ω(u0) = {u∗ ∈ C(Ω) | ∃tk ↑ +∞ s.t. lim
k→∞ ‖u(·, tk) − u∗‖∞ = 0},

of this orbit is nonempty, connected, compact, and lies in the set of stationary solu-
tions, which are defined as the solutions of the following problem

− Δu∗ + u∗ = u p
∗(

−
∫

Ω

u p+1
∗

)γ
, u∗ > 0 in Ω,

∂u∗
∂ν

= 0 on ∂Ω. (5.32)

Concerning (5.32), existence of stable spiky stationary solutions is known (see the
survey paper by Wei [29]) and thus formation of Turing patterns converging to these
spiky solutions is guaranteed as long as (5.31) holds.

In the following, global-in-time existence of the solution is obtained via a priori
estimates of some L�-norms of solution u(x, t). Those a priori estimates hold in
a parameter range which implies condition p−1

r < 1 which, as mentioned earlier,
guarantees the global-in-time existence of the solution to the original model (5.1)–
(5.4).

Theorem 5.3 If p−1
r < min{1, 2

N , 1
2 (1 − 1

r )} and 0 < γ < 1, then problem (5.12)–
(5.13) has again a global-in-time solution.

Proof We assume p−1
r < min{1, 2

N , 1
2 (1 − 1

r )} with 0 < γ < 1 and we only focus
on the case N ≥ 2 since the complementary case N = 1 is simpler.

Since p > 1, the above assumption implies p−1
r < 2

N and r > p. Then there
holds that

0 <
1

r − p + 1
< min

{
1,

1

p − 1
· 2

N − 2
,

1

1 − p + rγ

}
,

since also 0 < γ < 1.
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Choosing 1
r−p+1 < α < min{1, 1

p−1 · 2
N−2 ,

1
1−p+rγ }, we have

max

{
N − 2

N
,
1

αr

}
<

1

−α + 1 + αp
,

and hence there is β > 0 such that

max

{
N − 2

N
,
1

αr

}
<

1

β
<

1

−α + 1 + αp
< 2, (5.33)

which also satisfies
β

αr
< 1 <

β

−α + 1 + αp
. (5.34)

Note that for f defined by (5.23) holds

−
∫

Ω

f = −∫
Ω
u p−1+ 1

α(−∫
Ω
ur

)γ = −∫
Ω

χ−α+1+αp(−∫
Ω

χαr
)γ .

Also by virtue of (5.34)

−
∫

Ω

χ−α+1+αp ≤
(

−
∫

Ω

χβ

) −α+1+αp
β

and

(
−
∫

Ω

χαr

)γ

≥
(

−
∫

Ω

χβ

) αr
β

·γ
,

and thus

−
∫

Ω

f ≤
(

−
∫

Ω

χβ

) −α+1+αp−αrγ
β

= ‖χ 1
2 ‖2(1−σ)

2β , (5.35)

with 0 < σ = α{1 − p + rγ } < 1, recalling p−1
r < γ and α < 1

1−p+rγ .

Now since 1 < 2β < 2N
N−2 holds due to (5.33), then Sobolev’s and Young’s

inequalities entail

d

dt
−
∫

Ω

χ + c‖χ 1
2 ‖2H 1 ≤ C, 0 < t < T,

using also 0 < α < 1, and in particular,

−
∫

Ω

χ ≤ C, for any 0 < t < T .
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Since 1
α
can be chosen to be close to r − p + 1, we have

‖u(·, t)‖q ≤ Cq , 0 < t < T, for any 1 ≤ q < r − p + 1, (5.36)

taking into account that χ = u
1
α . Since p−1

r < 1
2 (1 − 1

r ) implies r−p+1
p > 1, then if

there is a > 1 such that

‖u(·, t)‖q ≤ Cq , 0 < t < T, for any 1 ≤ q < a(r − p + 1), (5.37)

by virtue of the classical semigroup estimate, see [25], then inequality (5.37) can be
extended for any q ≥ 1 as long as N

2 ( 1
�

− 1
q ) < 1. Therefore, we obtain

‖u(·, t)‖q ≤ Cq , 0 < t < T, for any 1 ≤ q < a1(r − p + 1), (5.38)

and for a1 > 0 defined by

1

a1
= 1

a
− 2

N
· r − p + 1

p
, (5.39)

as long as the right-hand side of (5.39) is positive, otherwise q = ∞ into relation
(5.38). We eventually obtain (5.29), and the proof is complete. �

Remark 5.2.5 The result of Theorem5.3 is in agreement with the global-in-time
existence result obtained in [6] for the full system, and so in that case (5.1)–(5.4) and
(5.12)–(5.14) share the same dynamics.

Now we consider the following L�−norms, � > 0, of solution u(x, t)

ζ(t) = −
∫

Ω

ur dx, z(t) = −
∫

Ω

u−p+1+r dx, w(t) = −
∫

Ω

u p−1+r dx . (5.40)

By choosing proper initial data and using phase plane analysis, we can actually derive
estimates of ζ(t), z(t) and w(t), identifying also some invariant regions in the plane.
In particular, the following result is satisfied.

Theorem 5.4 Let γ > 1, r ≥ 1 and p−1
r < 1. Assume also that w(0) < ζ(0)1−γ

and ζ(0)1+γ > z(0). Then problem (5.12)–(5.13) has a global-in-time solution, i.e.
(5.29) holds.

Proof We first note that by virtue of Hölder’s inequality we have

wz ≥ ζ 2. (5.41)

Under the assumption r ≥ 1 relation (5.48) entails

1

r

dζ

dt
≤ −ζ + z

ζ γ
, for 0 ≤ t < T . (5.42)
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Furthermore, since α = 1
p−1−r < 0 results from p−1

r < 1, then (6.10) implies

α
dw

dt
≥ −w + ζ 1−γ , for 0 ≤ t < T,

or equivalently

1

−p + 1 + r

dw

dt
≤ w − ζ 1−γ , for 0 ≤ t < T . (5.43)

We claim that the assumption ζ(0)1+γ > z(0) yields that ζ(t)1+γ > z(t) for any
0 ≤ t < T . Indeed, let us assume there exists t0 > 0 such that

ζ(t)1+γ > z(t), 0 ≤ t < t0, and ζ(t0) = z(t0).

Then we obtain

dζ

dt
< 0, for 0 ≤ t < t0 and w(t0) ≥ ζ(t0)

1−γ , (5.44)

by virtue of (5.42) and (5.41).
On the other hand, w(0) < ζ(0)1−γ , due to (5.43), entails

dw

dt
< 0, for 0 ≤ t < t0.

Consequently, since also γ > 1 then the curve (w(t), ζ(t)) for 0 ≤ t ≤ t0, remains
in the region w < ζ 1−γ and hence w(t0) < ζ(t0)1−γ , which contradicts the second
inequality of (5.44).

Thus it follows that

dζ

dt
< 0,

dw

dt
< 0, for 0 ≤ t < T,

and in particular, we have

‖u(·, t)‖p−1+r ≤ C, for 0 ≤ t < T .

Since r ≥ 1 implies p−1+r
p ≥ 1, we obtain (5.29) by the same bootstrap argument

used in Theorem 5.3. �

Remark 5.2.6 Theorem5.4, on the contrary, deals with the case of global-in-time
existence under Turing condition and it is also in agreement with Jiang’s result in
[6]. Consequently under assumptions of Theorem5.4 both the full system (5.1)–
(5.4) as well as the non-local problem (5.12)–(5.14) ensemble the same long-time
behavior.

http://dx.doi.org/10.1007/978-3-319-67944-0_6
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5.2.2 ODE Type Blow-Up

In this subsection we present some blow-up results for the non-local problem (5.12)–
(5.14). Here, finite-time blow-up is actually induced by the presence of the non-local
reaction term.

Our first blow-up result is based on the following

Proposition 5.2 Assume that p ≥ r and condition (5.5) hold then

ū ≥ max{1, ū0}. (5.45)

Whereas if anti-Turing condition (5.6) holds and ū0 > 1, then finite-time blow-up
occurs, i.e. T < +∞.

Proof Since p > 1 and p ≥ r , there is r ≤ μ ≤ p satisfying s ≥ 1. Then we obtain

−
∫

Ω

u p ≥
(

−
∫

Ω

uμ

) p
μ

,

(
−
∫

Ω

ur
)γ

≤
(

−
∫

Ω

uμ

) r
μ
γ

,

via Hölder’s inequality and hence

dū

dt
= −ū + −∫

Ω
u p(−∫

Ω
ur

)γ ≥ −ū +
(

−
∫

Ω

uμ

) p−rγ
μ

≥ −ū + ū p−rγ . (5.46)

In case p − rγ < 1 then the differential inequality (5.46) implies (5.45). Whilst, in
the complementary case p−rγ > 1 again by virtue of (5.46) we derive that ū blows
up in finite time provided ū0 > 1, and hence u does so. �

Remark 5.2.7 Proposition5.2 illustrates that under the assumptions p ≥ r and (5.6)
then the qualitative behavior of the full system (5.1)–(5.4) and those of the non-
local problem (5.12)–(5.14) is quite different. It should be pointed out that under the
anti-Turing condition (5.6) the full system does not exhibit any instability, whilst an
instability emerges when Turing condition (5.5) is imposed.

Now we consider the case r = p + 1 where, as it has already pointed out in the
previous section, problem (5.12)–(5.14) has a variational structure which is used to
prove the following

Theorem 5.5 Let r = p + 1 and γ < min{1, p−1
p+1 }. If J (u0) ≤ 0 then finite-time

blow-up occurs, i.e. T < +∞.

Proof Since J (u0) ≤ 0, thenvia the dissipation relation (5.28)wederive J (u(t)) ≤ 0
for any 0 < t < T .

We also have
d

dt
‖u‖22 = −2I (u),
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where

I (u) = ‖∇u‖22 + ‖u‖22 − −∫
Ω
u p+1(−∫

Ω
ur

)γ = ‖∇u‖22 + ‖u‖22 −
(

−
∫

Ω

u p+1

)1−γ

= 2J (u) +
(

2

(p + 1)(1 − γ )
− 1

) (
−
∫

Ω

u p+1

)1−γ

≤ −
(
1 − 2

(p + 1)(1 − γ )

)
‖u‖(p+1)(1−γ )

p+1 .

Since 0 < γ < min{1, p−1
p+1 }, there holds that (p+1)(1−γ ) > 2, and thus by virtue

of Hölder’s inequality we can find α > 0 such that

d

dt
‖u‖22 ≥ c‖u‖2+α

2 , (5.47)

since also p > 1.Now (5.47) entails that ‖u‖22 blows up in finite time since u0(x) > 0
and thus u exhibits a finite-time blow-up as well. �
Remark 5.2.8 Theorem5.5 can be interpreted in the biological context as follows:
if the activator’s initial concentration is large and its suppression by the inhibitor
is rather small (since 0 < γ < 1) then naturally the activator’s growth becomes
unlimited. Moreover, Theorem5.5 similarly with Theorem5.2 indicates that when
r = p + 1 then there is a discrepancy between the behavior of the full system
(5.1)–(5.4) and those of the non-local problem (5.12)–(5.14).

We close the current subsection with the following blow-up result

Theorem 5.6 Let 0 < γ < 1, r ≤ 1, and p−1
r > 1. Assume, furthermore that either

(1) w(0) < ζ(0)1−γ , or (2) p−1
r ≥ 2 and w(0) < 1. Then finite-time blow-up occurs

for problem (5.12)–(5.14), i.e. T < +∞.

Proof We first consider r ≤ 1 <
p−1
r and 0 < γ < 1. Since r ≤ 1 then (5.24) for

α = 1
r yields

1

r

dζ

dt
= 4

r

(
1

r
− 1

)
−
∫

Ω

|∇u
r
2 |2 − ζ + z

ζ γ
for 0 < t < T, (5.48)

and taking (5.41) into account we derive

1

r

dζ

dt
≥ −ζ + ζ 2−γ

w
= ζ

w

(−w + ζ 1−γ
)

for 0 < t < T . (5.49)

Furthermore, since p−1
r > 1 then (5.24) for α = 1

−p+1+r reads

α
dw

dt
= 4α(α − 1)−

∫
Ω

|∇u
1
2α |2 − w + ζ 1−γ , for 0 < t < T, (5.50)
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which, since α = 1
−p+1+r < 0, implies

α
dw

dt
≥ −w + ζ 1−γ , for 0 < t < T,

or equivalently

1

p − 1 − r

dw

dt
≤ w − ζ 1−γ , for 0 < t < T . (5.51)

The condition 0 < γ < 1, entails that the curve

Γ1 : w = ζ 1−γ , ζ > 0, (5.52)

is concave in the wζ−plane, with its endpoint at the origin (0, 0). Relations (5.49)
and (5.51) imply that the region R = {(ζ,w) | w < ζ 1−γ } is invariant for the
system (5.48), (6.10), i.e. if (ζ(0),w(0)) ∈ R then (ζ(t),w(t)) ∈ R for any t >

0. Furthermore, ζ = ζ(t) and w = w(t) are increasing and decreasing on R,

respectively.
In case w(0) < ζ(0)1−γ , then

dw

dt
< 0,

dζ

dt
> 0, for 0 ≤ t < T,

and thus,

1

w
− 1

ζ 1−γ
≥ 1

w(0)
− 1

ζ(0)1−γ
≡ c0 > 0, for 0 ≤ t < T .

Therefore by virtue of (5.49) we have

1

r

dζ

dt
≥ −ζ + ζ 2−γ

w
= ζ 2−γ

(
1

w
− 1

ζ 1−γ

)
≥ c0ζ

2−γ , 0 ≤ t < T . (5.53)

Since 2 − γ > 1 then (5.53) implies that ζ(t) blows up in finite time

t1 ≤ t̂1 ≡ (ζ(0))γ−1

(1 − γ )c0r
,

and using the inequality

ζ(t) = −
∫

Ω

ur dx ≤ ‖u(·, t)‖r∞,

we conclude that u(x, t) blows up in finite time T ≤ t1 as well.

http://dx.doi.org/10.1007/978-3-319-67944-0_6
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We consider now the second case when p−1
r ≥ 2 and thus q = p−1−r

r ≥ 1. Then
by virtue of Jensen’s inequality

−
∫

Ω

ur ·
(

−
∫

Ω

(u−r )q
) 1

q

≥ −
∫

Ω

ur · −
∫

Ω

u−r ≥ 1,

and thus ζ
1
r ≥ w− 1

p−1−r which entails

w ≥ ζ− p−1−r
r = ζ 1− p−1

r . (5.54)

In addition, inequality p−1
r ≥ 2 implies that the curve

Γ2 : w = ζ 1− p−1
r , ζ > 0,

is convex and approaches +∞ and 0 as ζ ↓ 0 and ζ ↑ +∞, respectively. The
crossing of Γ1 and Γ2 is the point (ζ,w) = (1, 1), and therefore w(0) < 1 combined
with (5.54) imply w(0) < ζ(0)1−γ . Consequently, the second case is reduced to the
first one and again the occurrence of finite-time blow-up is established. �

Remark 5.2.9 Since p−1
r > 1 > γ is assumed, Theorem5.6 is associated with

the finite-time blow-up under anti-Turing condition and it is in agreement with the
blow-up result [17, Theorem2]. This is actually an indication, that under condition
p−1
r > 1 > γ , the qualitative behavior of the non-local problem (5.12)–(5.14)

resembles the one of the full system (5.1)–(5.4).

Remark 5.2.10 The biological interpretation of Theorem5.6 is as follows: a large
initial concentration for the activator combined with small net cross-inhibition index
can lead to its unlimited growth.

Remark 5.2.11 The existence of the invariant region R = {(ζ,w) | w < ζ 1−γ } for
the system (5.48), (5.50) entails that if the consumption of the activator cannot be
suppressed initially then this can lead to its unlimited growth.

5.2.3 Diffusion Driven Blow-Up

In the current section we restrict ourselves to the radial case Ω = B1(0) = {x ∈
R

N : |x | < 1} and we also consider N ≥ 3. Then the solution of (5.12)–(5.14) is
radial symmetric, that is u(x, t) = u(ρ, t) for 0 ≤ ρ = |x | < 1.

We regard, as in [4], spiky initial data of the form

u0(ρ) = λϕδ(ρ), (5.55)
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with 0 < λ � 1 and

ϕδ(ρ) =
{

ρ−a, δ ≤ ρ ≤ 1

δ−a
(
1 + a

2

) − a
2 δ

−(a+2)ρ2, 0 ≤ ρ < δ
, (5.56)

for a = 2
p−1 and 0 < δ < 1.

It can be easily checked that u0(ρ) is decreasing, i.e. u′
0(ρ) < 0, and thus

maxρ∈[0,1] u0(ρ) = u0(0). Furthermore, due to the maximum principle we have
that u(ρ, t) is radial decreasing too, i.e. uρ(ρ, t) < 0. Now having specified the
form of the considered initial data, we have the following

Theorem 5.7 Let N ≥ 3, 1 ≤ r ≤ p, p > N
N−2 and 2

N <
p−1
r < γ. Then there is

λ0 > 0 with the following property: any 0 < λ ≤ λ0 admits 0 < δ0 = δ0(λ) < 1
such that any solution of problem (5.12)–(5.14) with initial data of the form (5.55)
and 0 < δ ≤ δ0 blows up in finite time, i.e. T < +∞.

We perceive that Theorem5.7 for r = 1 is nothing but Proposition3.3 in [13],
which was proven using a series of auxiliary results and inspired by an approach
introduced in [1, 4]. Therefore, in order to prove Theorem5.7 we are following in
short the arguments presented in [13], and we provide any modifications where are
necessary.

The next lemma is elementary and so its proof is omitted.

Lemma 5.1 The function φδ defined by (5.56) satisfies the following:

(i) There holds that
Δϕδ ≥ −Naϕ

p
δ , (5.57)

in the weak sense for any 0 < δ < 1.
(ii) If m > 0 and N > ma, we have

−
∫

Ω

ϕm
δ = N

N − ma
+ O

(
δN−ma

)
, δ ↓ 0. (5.58)

Lemma5.1 can used to obtain some further useful estimates. Indeed, ifwe consider

μ > 1 + rγ, (5.59)

and set

α1 = sup
0<δ<1

1

ϕ̄
μ
δ

−
∫

Ω

ϕ
p
δ , and α2 = inf

0<δ<1

1

ϕ̄
μ
δ

−
∫

Ω

ϕ
p
δ , (5.60)

then since p > N
N−2 , relation (5.58) is applicable for m = p and m = 1, and thus

due to (5.59) we obtain

0 < α1, α2 < ∞. (5.61)
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Furthermore, there holds that

d ≡ inf
0<δ<1

(
1

2α1

) rγ
p

(
1

2ϕ̄δ

) rγ
p μ

> 0. (5.62)

The following auxiliary result provides a key inequality satisfied by the initial data
u0 = u0(|x |) defined by (5.55). Indeed, we have

Lemma 5.2 If p > N
N−2 and p−1

r < γ , there exists λ0 = λ0(d) > 0 such that for
any 0 < λ ≤ λ0 there holds

Δu0 + dλ−rγ u p
0 ≥ 2u p

0 . (5.63)

Proof Note that inequality (5.63) is equivalent to

Δϕδ + dλ−rγ+p−1ϕ
p
δ ≥ 2λp−1ϕ

p
δ ,

which is reduced to
dλ−rγ+p−1 ≥ Na + 2λp−1,

due to (5.57). Then the desired result follows since p−1
r < γ. �

Henceforth we fix 0 < λ ≤ λ0 = λ0(d) so that (5.63) is satisfied. Given 0 < δ <

1, let Tδ > 0 be the maximal existence time of the solution to (5.12)–(5.14) with
initial data of the form (5.55).

In order, to get rid off the linear dissipative term−u we introduce the new variable
z = etu, which then satisfies

zt = Δz + K (t)z p, in Q ≡ Ω × (0, Tδ), (5.64)
∂z

∂ν
= 0, on ∂Ω × (0, Tδ), (5.65)

z(x, 0) = u0(|x |), in Ω, (5.66)

where

K (t) = e(1+rγ−p)t(
−
∫

Ω

zr
)γ

. (5.67)

It is clear that u blows up in finite time if and only if z does so.
Due to (5.27), we have

0 < K (t) = e(1−p)t(
−
∫

Ω

ur
)γ

≤ C < ∞, (5.68)



182 5 Gierer–Meinhardt System

thus (5.64) entails
dz̄

dt
= K (t)−

∫
Ω

z p, (5.69)

and we finally derive the following estimate

z̄(t) ≥ z̄(0) = −
∫

Ω

u0. (5.70)

Another helpful estimate of z is given by the following lemma

Lemma 5.3 There holds that

ρN z(ρ, t) ≤ z̄(t) in (0, 1) × (0, Tδ), (5.71)

and

zρ

(
3

4
, t

)
≤ −c, 0 ≤ t < Tδ, (5.72)

for any 0 < δ < 1.

Proof Set w = ρN−1zρ , then w satisfies

H [w] = 0, in (0, 1) × (0, Tδ),

w(0, t) = w(1, t) = 0, for t ∈ (0, Tδ),

w(ρ, 0) < 0, for 0 < ρ < 1,

where

H [w] ≡ wt − wρρ + N − 1

ρ
wρ − pK (t)z p−1w.

The maximum principle now implies w ≤ 0, and hence zρ ≤ 0 in (0, 1) × (0, Tδ).
Then inequality (5.71) follows since

ρN z(ρ, t) = z(ρ, t)
∫ ρ

0
NsN−1ds ≤

∫ ρ

0
Nz(s, t)sN−1ds

≤
∫ 1

0
Nz(s, t)sN−1ds = −

∫
Ω

z = z̄(t).

Once w ≤ 0 is proven, we have

wt − wρρ + N − 1

ρ
wρ = pK (t)z p−1w ≤ 0 in (0, 1) × (0, Tδ),

w

(
1

2
, t

)
≤ 0, w (1, t) ≤ 0, for t ∈ (0, Tδ),

w(ρ, 0) = ρN−1u′
0(ρ) ≤ −c, for

1

2
< ρ < 1,
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which entails w ≤ −c in ( 12 , 1) × (0, Tδ), and finally (5.72) holds. �
The following lemma will ultimately provide another effective estimate of z

Lemma 5.4 Given ε > 0 and 1 < q < p then ψ defined as

ψ := ρN−1zρ + ε · ρN zq

z̄γ+1
, (5.73)

satisfies

H [ψ] ≤ − 2qε

z̄γ+1 z
q−1ψ + ερN zq

z̄2(γ+1)

{
2qεzq−1 − (γ + 1)z̄γ−rγ −

∫
Ω

z p − (p − q)z p−1 z̄γ+1−rγ
}

(5.74)

in (0, 1) × (0, Tδ).

The proof of Lemma5.4 follows the same steps as the proof of inequality (28) in
[13], which holds for r = 1, and thus it is omitted.

Observe that when p > N
N−2 there is 1 < q < p such that N >

2p
q−1 and thus the

following quantities

A1 ≡ sup
0<δ<1

1

ūμ
0

−
∫

Ω

u p
0 = λμ−pα1, A2 ≡ inf

0<δ<1

1

ūμ
0

−
∫

Ω

u p
0 = λμ−pα2, (5.75)

are bounded due to (5.61). The following result,which is amodification ofLemma3.3
in [13] for r = 1, provides a key estimate of the L p−norm of z in terms of A1 and
A2 and, since it is a core result for the proof of Theorem5.7, we will provide a short
proof for it.

Proposition 5.3 There exist 0 < δ0 < 1 and 0 < t0 ≤ 1 independent of any
0 < δ ≤ δ0, such that the following estimate is satisfied

1

2
A2z

μ ≤ −
∫

Ω

z p dx ≤ 2A1z
μ, (5.76)

for any 0 < t < min{t0, Tδ}.
The proof of the above proposition requires some auxiliary results proven below.
We first take 0 < t0(δ) < Tδ to be the maximal time for which inequality (5.76)

holds true in 0 < t < t0(δ), then we have

1

2
A2 z̄

μ ≤ −
∫

Ω

z p ≤ 2A1 z̄
μ, for 0 < t < t0(δ). (5.77)

We only consider the case t0(δ) ≤ 1, since otherwise there is nothing to prove.
Now the first auxiliary result reads as follows
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Lemma 5.5 There exists 0 < t1 < 1 such that

z̄(t) ≤ 2ū0, 0 < t < min{t1, t0(δ)}, (5.78)

for any 0 < δ < 1.

Proof Since r ≥ 1 and t0(δ) ≤ 1, it follows that

dz̄

dt
≤ 2A1e

1+rγ−p z̄μ−rγ , 0 < t < t0(δ),

taking also into account relations (5.67) and (5.69).
Setting C1 = 2A1e1+rγ−p, we obtain

z(t) ≤
[
ū1+rγ−μ

0 − C1(μ − rγ − 1)t
]− 1

μ−rγ−1
,

by (5.59). Therefore, (5.78) holds for any 0 < t < min{t1, t0(δ)}where t1 is estimated
as

t1 ≤ min

{
1 − 21+rγ−μ

C1(μ − rγ − 1)
u1+rγ−μ

0 , 1

}
,

and it is independent of any 0 < δ < 1. �

Another fruitful estimate is provided by the next auxiliary result

Lemma 5.6 There exist 0 < δ0 < 1 and 0 < ρ0 < 3
4 such that for any 0 < δ ≤ δ0

the following estimate holds

1

|Ω|
∫
B(ρ0,0)

z p ≤ A2

8
z̄μ, for 0 < t < min{t1, t0(δ)}. (5.79)

Proof First observe that

ū0 ≤ z̄(t) ≤ 2ū0, for 0 < t < min{t1, t0(δ)}, (5.80)

follows from (5.70) and (5.78). Then, note that the growth of −∫
Ω
z p is controlled by

(5.76) for 0 < min{t1, t0(δ)}. Since p > q then Young’s inequality guarantees that
the second term of the right-hand side in (5.74) is negative for 0 < t < min{t1, t0(δ)},
uniformly in 0 < δ < 1, provided that 0 < ε ≤ ε0 for some 0 < ε0 � 1. Thus

H [ψ] ≤ −2qεzq−1

z̄γ+1
ψ in (0, 1) × (0,min{t1, t0(δ)}). (5.81)
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Due to (5.71) and (5.80), we also have

ψ = ρN−1zρ + ε · ρN zq

z̄γ+1
≤ ρN−1zρ + ε · ρN (1−q) z̄q−γ−1

≤ ρN−1zρ + C · ερN (1−q) in (0, 1) × (0,min{t1, t0(δ)}),

which, for 0 < ε ≤ ε0, entails

ψ

(
3

4
, t

)
< 0, 0 < t < min{t1, t0(δ)}, (5.82)

by (5.72) and provided that 0 < ε0 � 1.
Additionally (5.73) for t = 0 gives

ψ(ρ, 0) = ρN−1

(
λϕ′

δ(ρ) + ελq−γ−1ρ · ϕ
q
δ

ϕ̄
γ+1
δ

)
. (5.83)

Now if 0 ≤ ρ < δ and ε are chosen small enough and independent of 0 < δ < δ0,

then the right-hand side of (5.83) is estimated as follows:

ρNλ

(
−aδ−a−2 + ελq−γ−2 · ϕ

q
δ

ϕ̄
γ+1
δ

)
� ρNλ

(−aδ−a−2 + ελq−γ−2 · δ−aq
)

� 0,

since also
ϕ
q
δ

ϕ̄
γ+1
δ

� δ−aq , δ ↓ 0, uniformly in 0 ≤ ρ < δ,

holds by (5.56) and (5.58) form = 1, taking also into account that a+2 = ap > ak.
On the other hand, if δ ≤ ρ ≤ 1 then we obtain

ψ(ρ, 0) = ρNλ

(
−aρ−a−1 + ελq−γ−1 ρ−aq+1

ϕ̄
γ+1
ρ

)
, (5.84)

by using again (5.58) form = 1. Since a+2 = ap > aq implies−a−1 < −aq+1,
we derive

ψ(ρ, 0) < 0, δ ≤ ρ ≤ 3

4
,

for any 0 < δ ≤ δ0 and 0 < ε ≤ ε0, provided ε0 is chosen sufficiently small.
Consequently we deduce

ψ(ρ, 0) < 0, 0 ≤ ρ ≤ 3

4
, (5.85)
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for any 0 < δ ≤ δ0 and 0 < ε ≤ ε0, provided 0 < ε0 � 1.
Combining (5.81), (5.82) and (5.85) we end up with

ψ = ρN−1zρ + ε · ρN zq

z̄γ+1
≤ 0 in

(
0,

3

4

)
× (0,min{t1, t0(δ)}),

which implies

z(ρ, t) ≤
(ε

2
(q − 1)

)− 1
q−1 ·ρ− 2

q−1 · z̄ γ−1
q−1 (t) in

(
0,

3

4

)
×(0,min{t1, t0(δ)}). (5.86)

Since − 2
q−1 · p + N − 1 > −1 due to N >

2p
q−1 , we finally obtain (5.79) for some

0 < ρ0 < 3
4 . �

Remark 5.2.12 It is worth noting that relation (5.86) implies that if z(ρ, t) blows up
then this can only happen in the origin ρ = 0; that is, only a single-point blow-up is
possible. In particular if we define

S = {x0 ∈ Ω | ∃xk → x0, ∃tk ↑ Tδ, lim
k→∞ z(xk, tk) = +∞},

to be the blow-up set of z then S = {0} in the case z blows up in finite time.

Next we prove the key estimate (5.76) using essentially Lemmas5.5 and 5.6.

Proof of Proposition5.3 By virtue of (5.59) and since p−1
r < δ, there holds that

� = μ

p > 1. We can easily see that θ = z

z�
satisfies

θt = Δθ + e(rγ+1−p)t

[
z p

z�
(−∫

Ω
zr

)γ − �z−∫
Ω
z p

z�+1 (−∫
Ω
zr

)γ

]
,

in Q0 := Ω × (0,min{t0, Tδ}),
∂θ

∂ν
= 0 on ∂Ω × (0,min{t0, Tδ}),

θ(x, 0) = z(x, 0)

z̄�
0

in Ω.

Now due to (5.27), (5.70), (5.71), (5.77), and (5.78), there holds that

∥∥∥∥∥θ,
z p

z�
(−∫

Ω
zr

)γ ,
�z−∫

Ω
z p

z�+1 (−∫
Ω
zr

)γ

∥∥∥∥∥
L∞((Ω\B(0,ρ0))×min{t1,t0(δ)})

≤ C,

uniformly in 0 < δ ≤ δ0.
Therefore, by the standard parabolic regularity, see DeGiorgi–Nash–Moser esti-

mates in [16, pp. 144–145], there is 0 < t2 ≤ t1 independent of 0 < δ ≤ δ0 such
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that

sup
0<t<min{t2,t0(δ)}

∥∥θ p(·, t) − θ p(·, 0)∥∥L1(Ω\B(0,ρ0))
≤ A2

8
|Ω|,

which implies

∣∣∣∣ 1

|Ω|
∫

Ω\B(0,ρ0))

z p

z̄μ
− 1

|Ω|
∫

Ω\B(0,ρ0)

z p0
z̄μ
0

∣∣∣∣ ≤ A2

8
, 0 < t < min{t2, t0(δ)}, (5.87)

for any 0 < δ ≤ δ0. Inequalities (5.79) and (5.87) entail

∣∣∣∣−
∫

Ω

z p

zμ − −
∫

Ω

z p0
zμ
0

∣∣∣∣ ≤ 3A2

8
, for 0 < t < min{t2, t0(δ)} and 0 < δ ≤ δ0,

and hence

5A2

8
≤ −

∫
Ω

z p

zμ ≤ 11A1

8
, 0 < t < min{t2, t0(δ)}, 0 < δ ≤ δ0, (5.88)

taking into account that

A2 ≤ −
∫

Ω

z p0
z̄μ
0

≤ A1.

Therefore, if we take t0(δ) ≤ t2 then it follows that

1

2
A2 z̄

μ <
5

8
A2 z̄

μ ≤ −
∫

Ω

z p ≤ 11

8
A1 z̄

μ < 2A1 z̄
μ, 0 < t < t0(δ),

and by a continuity argument we deduce that

1

2
A2 z̄

μ ≤ −
∫

Ω

z p ≤ 2A1 z̄
μ, 0 < t < t0(δ) + η,

for some η > 0, which contradicts the definition of t0(δ).
Consequently, we obtain t2 < t0(δ) for any 0 < δ ≤ δ0, and the proof is complete

for t0 = t2. �
Now we have all the ingredients to proceed to the proof of the main result of this

section.
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Proof of Theorem5.7 Since t0 ≤ t1 in (5.78), we have

K (t) ≥ 1(−∫
Ω
zr

)γ ≥ 1(−∫
Ω
z p

) rγ
p

≥
(

1

2A1 z̄μ

) rγ
p

=
(

1

2A1

) rγ
p

·
(
1

z̄

) rγ
p μ

=
(

1

2α1

) rγ
p

·
(

1

2ϕ̄δ

) rγ
p μ

λ−rγ ≥ dλ−rγ ≡ D, 0 < t < min{t0, Tδ},
(5.89)

by virtue of (5.62) and (5.75). Since 0 < λ ≤ λ0(d), then inequality (5.63) applies
to derive

Δu0 + Dup
0 ≥ 2u p

0 , (5.90)

for any 0 < δ ≤ δ0.
By using (5.89) and (5.90) the comparison principle yields that the solution z of

(5.64)–(5.66) satisfies

z ≥ z̃ in Q0 ≡ Ω × (0,min{t0, Tδ}), (5.91)

where z̃ = z̃(x, t) solves the following

z̃t = Δz̃ + Dz̃ p, in Q0, (5.92)
∂ z̃

∂ν
= 0, on ∂Ω × (0,min{t0, Tδ}), (5.93)

z̃(|x |, t) = u0(|x |) in Ω. (5.94)

Let us now introduce
h(x, t) := z̃t (x, t) − z̃ p(x, t),

then due to (5.90) and (5.92) h satisfies

ht = Δh + p(p − 1)z̃ p−2|∇ z̃|2 + Dpz̃ p−1 h ≥ Δh + Dpz̃ p−1 h in Q0,

and

h(x, 0) = Δz̃(x, 0) + Dz̃ p(x, 0) − z̃ p(x, 0) = Δu0 + (D − 1)u p
0 ≥ u p

0 > 0, in Ω,

with boundary condition

∂h

∂ν
= 0 on ∂Ω × (0,min{t0, Tδ}).

Then the maximum principle entails that h > 0 in Q0, that is,

z̃t > z̃ p in Q0. (5.95)
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Inequality (5.95) implies

z̃(0, t) ≥
(

1

z p−1
0 (0)

− (p − 1)t

)− 1
p−1

=
{(

δa

λ(1 + a
2 )

)p−1

− (p − 1)t

}− 1
p−1

,

for 0 < t < min{t0, Tδ}, and therefore,

min{t0, Tδ} <
1

p − 1
·
(

δa

λ(1 + a
2 )

)p−1

. (5.96)

For 0 < δ � 1, the right-hand side on (5.96) is less than t0, and then Tδ < +∞
follows. Furthermore, by (5.96) Tδ → 0 as δ → 0 and the proof is complete. �

Remark 5.2.13 The blowing up solution u obtained in Theorem5.7 exhibits a single-
point blow-up at the origin ρ = 0. Recalling that z = etu we obtain the occurrence
of single-point blow-up for u in view of Remark5.2.12.

An alternative way to prove single-point blow-up is by virtue of the following
estimate

−
∫

Ω

z p dx = NωN

∫ 1

0
ρN−1z p dρ ≤ C, for 0 < t ≤ Tδ, (5.97)

which holds due to (5.76) and (5.78), taking 0 < δ � 1 small enough such that
Tδ ≤ t0. Using the fact that z = z(ρ, t) is radially decreasing, then (5.97) implies
that S = {0}.

5.2.4 Blow-Up Rate and Blow-Up Pattern

One of our purposes in the current section is to determine the blow-up rate of the
diffusion-driven blowing up solution provided by Theorem5.7. We also intend to
identify its blow-up pattern (profile) and thus reveal the formed patterns anticipated
under this DDI event.

Theorem 5.8 Let N ≥ 3, max{r, N
N−2 } < p < N+2

N−2 and 2
N <

p−1
r < γ. Then

the blow-up rate of the diffusion-induced blowing-up solution of Theorem5.7 is
determined as follows

‖u(·, t)‖∞ ≈ (Tmax − t)−
1

p−1 , t ↑ Tmax, (5.98)

where Tmax stands for the blow-up time.
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Proof We first note that

0 < K (t) = e(1+rγ−p)t(
−
∫

Ω

zr
)γ

≤ C < ∞, (5.99)

by virtue of (5.97) and in view of Hölder’s inequality since p > r.
Consider now Φ satisfying

Φt = ΔΦ + CΦ p, in Ω × (0, Tmax ),

∂Φ

∂ν
= 0, on ∂Ω × (0, Tmax ),

Φ(x, 0) = z0(x), in Ω,

then via comparison z ≤ Φ in Ω × (0, Tmax ).

Yet it is known, see [24, Theorem44.6], that

|Φ(x, t)| ≤ Cη|x |− 2
p−1−η for η > 0,

when x ∈ Ω, 0 < t < Tmax , and thus

|z(x, t)| ≤ Cη|x |− 2
p−1−η for (x, t) ∈ Ω × (0, Tmax ), (5.100)

which by virtue of (5.99), (5.100) and using also standard parabolic estimates entails
that

z ∈ BU C σ

(
{ρ0 < |x | < 1 − ρ0} ×

(
Tmax

2
, Tmax

))
, (5.101)

for some σ ∈ (0, 1) and each 0 < ρ0 < 1, where BU C σ (M) denotes the Banach
space of all bounded and uniform σ−Hölder continuous functions h : M ⊂ R

N →
R; see also [24].

Consequently (5.101) implies that limt→Tmax z(x, t) exists and it is finite for all
x ∈ B1(0) \ {0}.

Recalling that
2p

p − 1
< N (or equivalently p >

N

N − 2
, N > 2) then by using

(5.99), (5.100) and in view of the dominated convergence theorem we derive

lim
t→Tmax

K (t) = ω ∈ (0,+∞). (5.102)

Applying now Theorem44.3(ii) in [24], taking also into account (5.102), we can find
a constant Cu > 0 such that

||z(·, t)||∞ ≤ Cu (Tmax − t)−
1

(p−1) in (0, Tmax ). (5.103)
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On the other hand, setting N (t) := ||z(·, t)||∞ = z(0, t) then N (t) is differentiable
for almost every t ∈ (0, Tmax), in view of [1], and it also satisfies

dN

dt
≤ K (t)N p(t).

Now since K (t) ∈ C([0, Tmax)) is bounded in any time interval [0, t], t < Tmax,

then upon integration we obtain

||z(·, t)||∞ ≥ Cl (Tδ − t)−
1

(p−1) in (0, Tmax), (5.104)

for some positive constant Cl .

Since z(x, t) = etu(x, t) then by virtue of (5.103) and (5.104) we obtain

C̃l (Tmax − t)−
1

(p−1) ≤ ||u(·, t)||∞ ≤ C̃u (Tmax − t)−
1

(p−1) for t ∈ (0, Tmax ),

where now C̃l, C̃u depend on Tmax , which actually leads to (5.98). �

Remark 5.2.14 Condition (5.98) implies that the diffusion-induced blow-up pro-
vided by Theorem5.7 is of type I, i.e. the blow-up mechanism is controlled by the
ODE part of (5.12).

In contrast, for the finite-time blow-up furnished by Proposition5.2 and Theo-
rems5.5 and 5.6 we cannot derive a blow-up rate as in (5.98) since the blow-up of
some L�−norm, � ≥ 1, in each of these cases entails that

K (t) = e(1−p)t(
−
∫

Ω

ur
)γ

→ 0 as t → Tmax ,

and thus the approach of Theorem5.8 fails. This might be an indication that in the
preceding cases finite-time blow-up is rather of type II.

Remark 5.2.15 First observe that (5.100) provides a rough form of the blow-up
pattern for z and thus for those of u as well. Nonetheless, owing to (5.99) then the
non-local problem (5.64)–(5.66) can be treated as the corresponding local one for
which the following more accurate asymptotic blow-up profile, [21], is available

lim
t→Tmax

z(|x |, t) ∼ C

[ | log |x ||
|x |2

]
for |x | � 1.

Therefore using again that z = etu we derive a similar asymptotic blow-up profile
for the driven-induced blowing up solution u. This actually reveals the form of the
developed patterns which are induced as a result of the DDI.
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Chapter 6
A Non-local Model Illustrating Replicator
Dynamics

Abstract The current chapter discusses a utilization from the field of evolutionary
game dynamics and in particular from its subarea called replicator dynamics. Consid-
ering an infinite continuous strategy space, which for examplemight be considered as
the sampling space of a continuously varying trait of a biological population, as well
as payoff functions of Gaussian type we build up a non-local degenerate parabolic
problem. As it is appropriate for degenerate problems, a regularized approximation
is constructed and then some a priori estimates for its solutions are obtained. Using
the derived estimates, we prove that solutions converge to the trivial solution if the
initial population is small, whereas they undergo a blow-up in finite time if the initial
population is large. In particular, in the latter case, it is shown that the blow-up set
coincides with the whole strategy space, i.e. the finite-time blow-up is global.

6.1 Derivation of the Non-local Model

Evolutionary game dynamics is a major part of modern game theory. It was appro-
priately fostered by evolutionary biologists such as W. D. Hamilton and J. Maynard
Smith (see [11] for a collection of survey papers and [42] for a popularized account)
and it actually brought a conceptual revolution to the game theory analogous with
the one of population dynamics in biology. The resulting population-based approach
has also found many applications in non-biological fields like economics or learn-
ing theory and introduces a significant enrichment of classical game theory which
focuses on the concept of a rational individual.

The main subject of evolutionary game dynamics is to explain how a population
of players update their strategies in the course of a game according to the strategies’
success. This contrasts with classical noncooperative game theory that analyzes how
rational players will behave through static solution concepts such as the Nash Equi-
librium (NE) (i.e., a strategy choice for each player whereby no individual has a
unilateral incentive to change his or her behavior).

As Hofbauer and Sigmund [20] pointed out, strategies with high pay-off will
spread within the population through learning, imitation or inheriting processes or
even by infection. The pay-offs depend on the actions of the co-players, i.e. the
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196 6 A Non-local Model Illustrating Replicator Dynamics

frequencies inwhich the various strategies appear, and since these frequencies change
according to the pay-offs, a feedback loop appears. The dynamics of this feedback
loop will determine the long time progress of the game and its investigation is exactly
the course of evolutionary game theory.

According to the extensive survey paper [20] there is a variety of different
dynamics in evolutionary game theory: replicator dynamics, imitation dynamics,
best response dynamics, Brown-von Neumann-Nash dynamics e.t.c.. However, the
dynamics most widely used and studied in the literature on evolutionary game theory
are the replicator dynamics which were introduced in [49] and baptised in [40]. Such
kind of dynamics illustrates the idea that in a dynamic process of evolution a strategy
should increase in frequency if it is a successful strategy in the sense that individuals
playing this strategy obtain a higher than average payoff.

Let us consider a game with m discrete pure strategies, forming the strategy
space S = {1, 2, . . . , m}, and corresponding frequencies pi (t), i = 1, 2, . . . , m,

for any t ≥ 0. (Alternatively S could be considered as the set of different states
(genetic programmes) of a biological population). The frequency (probability) vector
p(t) = (p1(t), p2(t), . . . , pm(t))T belongs to the invariant simplex

S(m) =
⎧
⎨

⎩
y = (y1, y2, . . . , ym)T ∈ R

m : yi ≥ 0, i = 1, 2, . . . , m and
m∑

i=1

yi = 1

⎫
⎬

⎭
.

The game is actually determined by the pay-off matrix A = (ai j ), which is a real
m × m symmetric matrix. Pay-off means expected gain, and if an individual plays
strategy i against another individual following strategy j , then the pay-off to i is
defined to be ai j while the pay-off to j is a ji . For symmetric games matrix A is
considered to be symmetric. (In the case of a biological population pay-off represents
fitness, or reproductive success.)

Then the expected pay-off for an individual playing strategy i can be expressed
as

(A · p(t))i =
m∑

j=1

ai j p j (t),

whereas the average pay-off over the whole population is given by

(p(t)T · A · p(t)) =
m∑

i=1

m∑

j=1

ai j pi (t)p j (t).

Particularly if our game is symmetricwith infinitelymany players (or if the biological
population is infinitely big and its generations blend continuously to each other) then
we obtain that pi (t) evolve as differentiable functions.Note that the rate of increase of
the per capita rate of growth ṗi/pi of strategy (type) i is a measure of its evolutionary
success; here ṗi stands for the time derivative of pi . A reasonable assumption, which
is also in agreement with the basic tenet of Darwinism, is that the per capita rate of
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growth (i.e. the logarithmic derivative) ṗi/pi is given by the difference between the
pay-off for strategy (type) i and the average pay-off. This yields the the replicator
dynamical system,

dpi

dt
=

⎛

⎝
m∑

j=1

ai j p j (t) −
m∑

i=1

m∑

j=1

ai j pi (t)p j (t)

⎞

⎠ pi (t), i = 1, 2, . . . , m, t > 0.

(6.1)
The dynamical system (6.1) actually describes the mechanism that individuals tend
to switch to strategies that are doing well, or that individuals bear offspring who
tend to use the same strategies as their parents, and the fitter the individual, the more
numerous his offspring.

Most of the work on replicator dynamics has focused on games that have a finite
strategy space, thus leading to a dynamical system for the frequencies of the popu-
lation which is finite dimensional. However, interesting applications arise either in
biology or economics where the strategy space is not finite or, even, not discrete, see
[8, 33–35]. In case the strategy space S is discrete but consists of an infinite number
of strategies, e.g. S = Z, then the replicator dynamics describing the evolution of
the infinite dimensional vector p(t) = (. . . , p1(t), p2(t), . . .) is described by the
following

dpi

dt
=

⎛

⎝
∑

j∈Z
ai j p j (t) −

∑

j∈Z

∑

i∈Z
ai j pi (t)p j (t)

⎞

⎠ pi (t), t > 0,

which is a infinite dynamical system with pi (t) ≥ 0 for i ∈ Z and ||p(t)||�1(Z) = 1
for any t > 0.

In the current chapter we are concentrating on gameswhose pure strategies belong
to a continuum. For instance, this could be the aspiration level of a player or the size
of an investment in economics or it might arise in situations where the pure strategies
correspond to geographical points as in economic geography, [25]. On the other hand,
in biology such strategies correspond to some continuously varying trait such as the
sex ratio in a litter or the virulence of an infection, [20]. There are different ways of
modelling the evolutionary dynamics in this case. However, in the current work we
adapt the approach introduced in [8]. In that case the strategy set Ω is an arbitrary,
not necessarily bounded, Borel set of RN , N ≥ 2. Hence strategies can be identified
by x ∈ Ω . For the case of symmetric two-player games, the pay-off can be given
by a Borel measurable function f : Ω × Ω → R, where f (x, y) is the pay-off for
player 1 when she follows strategy x and player 2 plays strategy y. A population
is now characterized by its state, a probability measure P in the measure space
(Ω,A ) where A is the Borel algebra of subsets of Ω . The average (mean) pay-off
of a sub-population in state P against the overall population in state Q is given by
the form

E(P,Q) :=
∫

Ω

∫

Ω

f (x, y)Q(dy)P(dx).
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Then, the success (or lack of success) of a strategy x followed by population Q is
provided by the difference

σ(x,Q) :=
∫

Ω
f (x, y)Q(dy) −

∫

Ω

∫

Ω
f (x, y)Q(dy)Q(dx) = E(δx ,Q) − E(Q,Q),

where δx is the unit mass concentrated on the strategy x .
The evolution in time of the population state Q(t) is given by the replicator

dynamics equation

dQ

dt
(A) =

∫

A
σ(x,Q(t))Q(t)(dx), t > 0, Q(0) = P, (6.2)

for any A ∈ A , where the time derivative should be understood with respect to the
variational norm of a subspace of the linear span M of A . The well-posedeness
of (6.2) as well as relating stability issues were investigated in [34, 35] under the
assumption that the pay-off function f (x, y) is bounded.

The abstract form of Eq. (6.2) does not actually allow us to obtain insight on the
form of its solutions and thus a better understanding of the evolutionary dynamics
of the corresponding game. In order to have a better overview of the evolutionary
game, following the approach in [23, 24], we restrict our attention to measures
Q(t) which, for each t > 0, are absolutely continuous with respect to the Lebesgue
measure, with probability density u(x, t). Then the replicator dynamics equation
(6.2) can be reduced to the following integro-differential equation for x ∈ Ω and
t > 0,

∂u

∂t
=

(∫

Ω

f (x, y)u(y, t) dy −
∫

Ω

∫

Ω

f (z, y)u(y, t)u(z, t)dy dz

)

u(x, t), (6.3)

taking also into account that the probability density u satisfies

∫

Ω

∫

Ω

u(y, t) u(z, t) dy dz = 1, (6.4)

hence we can skip the denominator from the average pay-off term into (6.3).
There are applications in biology where the pay-off kernel has the form f (x, y) =

G(x − y) with G being a steep function of Gaussian type, see [18, 19]. This case,
in general, models games where the pay-off is measured as the distance from some
reference strategy and finally under some proper scaling leads to

∫

Ω

f (x, y)u(y, t) dy ≈ Δu(x, t), (6.5)
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(see also [22]) which by virtue of (6.2) yields

∂u

∂t
≈

(

Δu −
∫

Ω

u Δu dx

)

u. (6.6)

Another alternative towards getting pay-offs of this type is to consider a game
with a discrete strategy space and take the appropriate scaling limit. In that case a
Taylor expansion and a proper scaling gives a similar approximation to (6.5), see
also [23, 24].

Therefore, in case thatΩ is a bounded and smooth domain inRN , it is easily seen
that via integration by parts the non-local integro-differential dynamics equation
(6.3) is approximated by the degenerate non-local parabolic equation

∂u

∂t
= u

(
Δu +

∫

Ω

|∇u|2 dx
)
, x ∈ Ω, t > 0. (6.7)

The non-local equation (6.7) is associated with initial data

u(x, 0) = u0(x), x ∈ Ω, (6.8)

and homogeneous Dirichlet boundary conditions

u(x, t) = 0, x ∈ ∂Ω, t > 0, (6.9)

when the individuals of the biological population do not interact once they are close
to the spatial boundary where probably the “food” is less. We remark that if on
the boundary of the strategy space the population individuals do not really distin-
guish between nearby strategies and hence populate them equally, then the non-local
Eq. (6.7) should rather be complemented with homogeneous Neumann boundary
conditions not explicitly considered here, see [24].

Our analysis will reveal that initial unit-population is preserved and guarantees
that

∫

Ω

u(x, t) dx = 1, (6.10)

when
∫

Ω

u0(x) dx = 1,

see also Theorem 6.2.14 (ii), which in this case provides an a-posteriori justification
for (6.4).

From a mathematical perspective, the evolution in (6.7) is governed by two char-
acteristicmechanisms, each ofwhich already gives rise to considerable challenges on
its own. First, diffusion in (6.7) is strongly degenerate at small densities in the sense
that at near points where u = 0, typical diffusive effects are substantially inhibited.
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Additionally in (6.7), this degenerate diffusion process interacts with a spatially
non-local source which is such that unlike in large bodies of the literature on related
non-local parabolic equations [39], even basic questions concerning local solvability
appear to be far from trivial. Indeed, in light of an expected loss of appropriate
solution regularity due to strongly degenerate diffusion, even for smooth initial data
it seems a priori unclear whether solutions can be constructed which allow for a
meaningful definition of the Dirichlet integral

∫

Ω
|∇u|2 for positive times. This is

in stark contrast to most non-local parabolic problems previously studied, in which
diffusion is non-degenerate and hence such first-order profiles are controllable by
L∞− bounds of solutions. In the semi-linear problem

ut = Δu + um

(∫

Ω

|∇u|2 dx

)r

,

studied for m ≥ 1, r > 0 in [45], e.g., allows local theories based on extensibility
criteria in L∞(Ω) only (see [9, 43] and also the book [39]).

6.2 Mathematical Analysis

Previous mathematical studies on the non-local PDE in (6.7) have concentrated on
analyzing self-similar solutions only. In [23], the authors constructed self-similar
solutions in the case Ω = R, and in [36] the same was achieved in the multi-
dimensional case Ω = R

N with N ≥ 2.
More recently, the authors in [37] investigated the existence of self-similar solu-

tions in the one-dimensional case for a closely related problem inwhich the Laplacian
is perturbed by a time-dependent term containing the first derivative as well; all these
self-similar solutions are shown to be regular and to approach Dirac-type distribu-
tions as t ↘ 0+. An analogous study in higher dimensions is provided in [38].

In the current chapter we develop a fundamental theory of local solvability for
problem (6.7)–(6.9), and also provide the first step towards an understanding of the
qualitative solution behavior following an approach developed in [21]. In order to
formulate our results, we determine the specific setting within which (6.7)–(6.9) is
investigated by requiring that Ω denotes a bounded domain in R

N , N ≥ 1, with
smooth boundary and by introducing the solution concept as follows.

Definition 6.2.1 Let T ∈ (0,∞]. By a weak solution of (6.7)–(6.9) in Ω × (0, T )

we mean a nonnegative function

u ∈ L∞
loc(Ω̄ × [0, T )) ∩ L2

loc([0, T ); W 1,2
0 (Ω)) with ut ∈ L2

loc(Ω̄ × [0, T )),

which satisfies
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−
∫ T

0

∫

Ω

uϕt dxdt +
∫ T

0

∫

Ω

∇u · ∇(uϕ) dxdt =
∫

Ω

u0ϕ(·, 0) dx (6.11)

+
∫ T

0

( ∫

Ω

uϕ dx
)

·
( ∫

Ω

|∇u|2 dx
)

dt,

for all ϕ ∈ C∞
0 (Ω ×[0, T )). A weak solution u of (6.7)–(6.9) inΩ × (0, T ) is called

locally positive if 1
u ∈ L∞

loc(Ω × [0, T ]).
Remark 6.2.2 Since u ∈ L2

loc([0, T ); W 1,2
0 (Ω)) and ut ∈ L2

loc(Ω̄ × [0, T )) imply

u ∈ C0([0, T ); L2(Ω)).

Equation (6.11) is equivalent to u(·, 0) = u0, and

∫ T

0

∫

Ω

utϕ dx dt +
∫ T

0

∫

Ω

∇u · ∇(uϕ) dx dt =
∫ T

0

( ∫

Ω

uϕ dx
)

·
( ∫

Ω

|∇u|2 dx
)

dt, (6.12)

for any ϕ ∈ C∞
0 (Ω × (0, T )).

We assume that the initial data satisfy

(H1) u0 ∈ L∞(Ω) ∩ W 1,2
0 (Ω),

(H2) u0 ≥ 0 and 1
u0

∈ L∞
loc(Ω),

(H3) there exists L > 0 such that ‖u0‖Φ,∞ ≤ L .

For a measurable function v : Ω → R we set

‖v‖Φ,∞ := ess sup
x∈Ω

∣
∣
∣

v

Φ

∣
∣
∣ ,

where Φ ∈ C2(Ω) denotes the solution to

− ΔΦ = 1 in Ω, Φ|∂Ω = 0. (6.13)

From the Hopf boundary point lemma, requiring ‖u0‖Φ,∞ < ∞ is equivalent to ask
|u0| ≤ ‖u0‖Φ,∞Φ on ∂Ω .

6.2.1 Local Existence and Extendability of Weak Solutions

The first result asserts the local existence of positive weak solutions, along with a
favorable extensibility criterion only involving the norm of the solution in L∞(Ω).

Theorem 6.2.3 Let u0 satisfy (H1)–(H3). Then there exist Tmax ∈ (0,∞] and a
locally positive weak solution u to (6.7)–(6.9) in Ω × (0, Tmax ) which satisfies
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either Tmax = ∞ or lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞. (6.14)

For each smooth bounded subdomain Ω ′ ⊂⊂ Ω there exists CΩ ′ > 0 such that

∫

Ω

|∇u(·, t)|2 ≤
∫

Ω

|∇u0|2 · exp
[

1

2CΩ ′

(

sup
τ∈(0,t)

∫

Ω

u(·, τ )

)

·
(∫

Ω ′
φ ln u(·, τ )|tτ=0 +

∫ t

0

∫

Ω ′
u

)]

. (6.15)

It holds also that

‖u(·, t)‖Φ,∞ ≤ max

{

‖u0‖Φ,∞ , sup
τ∈(0,t)

∫

Ω

|∇u(x, τ )|2
}

, (6.16)

for a.e. t ∈ (0, Tmax ).

If the second condition of (6.14) is fulfilled then we say that the solution u of
(6.7)–(6.9) blows in finite time. When finite-time blow-up occurs, understanding the
solution behavior near the blow-up time necessarily requires to describe the set of
all points where the solution becomes unbounded. Accordingly, we shall next be
concerned with the blow-up setB by

Bc =
{

x ∈ Ω

∣
∣
∣there exists an open set U containing x such that lim sup

t↑T
‖u(·, t)‖L∞(Ω∩U ) < +∞

}
,

of exploding solutions.
We emphasize that the extensibility criterion (6.14) particularly excludes any

gradient blow-up phenomenon in the sense of finite-time blow-up of ∇u despite
boundedness of u itself. Indeed, the occurrence of unbounded gradients of bounded
solutions appears to be a characteristic qualitative implication of various types of
interplay between diffusion, possibly degenerate, and gradient-dependent nonlinear-
ities [2, 4, 30, 48].

In order to prove Theorem 6.2.3 we will follow an approach well-established
in the context of degenerate parabolic equations and thus some necessary auxiliary
results will be provided first. In particular, we aim at constructing a solution u to
(6.7)–(6.9) as the limit of solutions to certain regularized problems. For this purpose,
let us fix a sequence (ε j ) j∈N ⊂ (0, 1) such that ε j ↘ 0 as j → ∞, and a sequence
(u0ε)ε=ε j ⊂ C3(Ω̄) with the properties

u0ε ≥ ε in Ω, u0ε = ε on ∂Ω, Δu0ε = −
∫

Ω

|∇u0ε|2 on ∂Ω, (6.17)
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for all ε ∈ (ε j ) j∈N and

lim sup
ε=ε j ↘0

‖u0ε − ε‖Φ,∞ ≤ L , (6.18)

with L > max
{∫

Ω
|∇u0|2, ‖u0‖Φ,∞

}
, cf. (H3), aswell as for any compact set K ⊂ Ω

there is CK > 0 such that

lim inf
ε=ε j ↘0

inf
K

u0ε ≥ CK , (6.19)

with

u0ε → u0 in W 1,2(Ω) as ε = ε j ↘ 0, (6.20)

and
∫

Ω

u0ε =
∫

Ω

u0 for all ε ∈ (ε j ) j∈N. (6.21)

The first observation is that such an approximation is possible.

Lemma 6.2.4 Let u0 satisfy (H1)–(H3). Then there is a sequence (u0ε)ε∈(ε j ) j∈N ⊂
C3(Ω̄) having the properties (6.17)–(6.21).

Proof Here we restrict ourselves to giving an outline; a more detailed proof can be
found in [21]. By modification of the usual mollification procedure (cf. [57, Sect. I
3]) commonly employed to obtain (6.20), it is possible to obtain the other properties
as well. More precisely, we set

u0ε = ε + C(1 − ρ)Φ + ρ(ϕ + αϑ),

where ϕ ∈ C∞
0 (Ω) is a mollified version of u0 after “locally shifting u0 towards

the interior of the domain”, ρ ∈ C∞
0 (Ω), 0 ≤ ρ ≤ 1, such that the supports of ∇ρ

and ϕ are disjoint, 0 ≤ ϑ ∈ C∞
0 (Ω) with

∫

Ω
ϑ = 1 (in order to adjust (6.21)), Φ is

the solution to −ΔΦ = 1 in Ω , Φ = 0 on ∂Ω (for achieving the third property in
(6.17)), and C and α are appropriately adjusted constants, depending on ε as well as
several different integrals containing the functions Φ, ρ, θ , their gradients, and u0.

��
For ε ∈ (ε j ) j∈N, we consider the regularized problem

uεt = uεΔuε + uε · ρε

(∫

Ω

|∇uε|2
)

, x ∈ Ω, t > 0, (6.22)

uε(x, t) = ε, x ∈ ∂Ω, t > 0, (6.23)

uε(x, 0) = u0ε(x), x ∈ Ω, (6.24)
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where

ρε(z) := min
{

z,
1

ε

}
for z ≥ 0.

The first result regarding the regularized problem (6.22)–(6.24) can be seen below.

Lemma 6.2.5 For all sufficiently small ε ∈ (ε j ) j∈N, problem (6.22)–(6.24) has a
unique classical global-in-time solution uε ∈ C2,1(Ω × [0,∞)).

Proof To prove the uniqueness statement for all ε, we assume that both u1 and u2
are classical solutions of (6.22)–(6.24) from the indicated class in Ω × (0, T ) for
some T > 0. Then w := u1 − u2 satisfies w = 0 on ∂Ω and at t = 0, and

wt = u1Δw + Δu2 · w + ρε

( ∫

Ω

|∇u2|2
)

· w + u1 ·
[
ρε

( ∫

Ω

|∇u1|2
)

− ρε

( ∫

Ω

|∇u2|2
)]

, (6.25)

for t ∈ (0, T ). Now given T ′ ∈ (0, T ), we can find a constant M > 0 such that
u1, |∇u1|, u2 and |∇u2| are bounded above by M in Ω × (0, T ′), since u1, u2 are
classical solutions. Thus, by Hölder’s inequality and the pointwise estimate

∣
∣
∣|∇u1| − |∇u2|

∣
∣
∣ ≤ |∇(u1 − u2)|,

we obtain
∣
∣
∣
∣ρε

( ∫

Ω

|∇u1|2
)

− ρε

( ∫

Ω

|∇u2|2
)∣∣
∣
∣ ≤‖ρε

′‖L∞((0,∞)) ·
∣
∣
∣

∫

Ω

(|∇u1|2 − |∇u2|2
)∣∣
∣

≤
∫

Ω

∣
∣
∣|∇u1| − |∇u2|

∣
∣
∣ · (|∇u1| + |∇u2|

)

≤2M
∫

Ω

|∇w|

≤2M |Ω| 1
2 ·

( ∫

Ω

|∇w|2
) 1

2
, (6.26)

for all t ∈ (0, T ′)by‖ρε
′‖L∞((0,∞)) ≤ 1.Uponmultiplying (6.25) byw and integrating

over Ω, we see that for t ∈ (0, T ′)

1

2

d

dt

∫

Ω

w2 =
∫

Ω

u1Δww +
∫

Ω

w2Δu2 +
∫

Ω

w2ρε

(∫

Ω

|∇u2|2
)

+
∫

Ω

wu1

[

ρε

(∫

Ω

|∇u1|2
)

− ρε

(∫

Ω

|∇u2|2
)]

≤ −
∫

Ω

u1|∇w|2 −
∫

Ω

∇u1∇ww − 2
∫

Ω

w∇w∇u2

+
∫

Ω

w2ρε

(∫

Ω

|∇u2|2
)

+
∫

Ω

|w|u1

∣
∣
∣
∣ρε

(∫

Ω

|∇u1|2
)

− ρε

(∫

Ω

|∇u2|2
)∣
∣
∣
∣ .

(6.27)
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Together with Young’s inequality, (6.26) and the facts that u1 ≥ ε (which, thanks to
the actual non-degeneracy of problem (6.22)–(6.24) for positive ε, is an immediate
consequence of the maximum principle) and ρε(s) ≤ 1

ε
for all s > 0, this entails

1

2

d

dt

∫

Ω

w2 ≤ −ε

∫

Ω

|∇w|2 + ε

4

∫

Ω

|∇w|2 + 1

ε

∫

Ω

w2|∇u1|2 + ε

2

∫

Ω

|∇w|2 + 8

ε

∫

Ω

w2|∇u2|2

+1

ε

∫

Ω

w2 + 2M |Ω| 12
(∫

Ω

|∇w|2
) 1

2
∫

Ω

|w|u1,

for t ∈ (0, T ′). The choice of M now ensures that

1

2

d

dt

∫

Ω

w2 ≤ − ε

4

∫

Ω

|∇w|2 + M2

ε

∫

Ω

w2 + 8M2

ε

∫

Ω

w2 + 1

ε

∫

Ω

w2

+ 2M |Ω| 1
2

(∫

Ω

|∇w|2
) 1

2
(∫

Ω

|w|2
∫

Ω

u2
1

) 1
2

≤ − ε

4

∫

Ω

|∇w|2 + 9M2 + 1

ε

∫

Ω

w2 + ε

4

∫

Ω

|∇w|2 + 4M4|Ω|2
ε

∫

Ω

|w|2,
(6.28)

for t ∈ (0, T ′), so that (6.28) finally turns into

1

2

d

dt

∫

Ω

w2 ≤
(3M2 + 1

ε
+ 4M4|Ω|2

ε

)
·
∫

Ω

w2,

for all t ∈ (0, T ′).
Integration of this yields that w ≡ 0 in Ω × (0, T ′) and hence also in Ω × (0, T ),

because T ′ < T was arbitrary. It remains to show that for all T > 0, (6.22)–(6.24) is
classically solvable in Ω × (0, T ), provided that ε is sufficiently small. To this end,
fix T > 0 and let ε ∈ (ε j ) j∈N be so small that

∫

Ω
|∇u0ε|2 < 1

ε
, which is possible

due to (6.20). By [27, Theorem V.1.1], there are K1 > 0 and θ > 0 such that any
classical solution w to the problem

wt = wΔw + c(x, t) in Ω × [0, T ], w|∂Ω = ε, w(·, 0) = u0ε,

with c ∈ L∞(Ω × (0, T )) satisfies

‖w‖
Cθ, θ

2 (Ω×[0,T ]) ≤ K1, (6.29)

by 0 ≤ c ≤ 1
ε
‖u0ε‖L∞(Ω) e

T
ε and ε ≤ w ≤ ‖u0ε‖∞ e

T
ε .

Fix δ > 0. By an application of [13, Theorem 7.4] to w−u0ε − tb0, corresponding
to θ, K1 and δ, there is K2 such that any solution w to

wt = a(x, t)Δw + b(x, t) in Ω × [0, T ], w|∂Ω = ε, w(·, 0) = u0ε,
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fulfils
‖w‖

C1+δ, δ
2 (Ω×[0,T ]) ≤ K2, (6.30)

if a ∈ Cθ, θ
2 (Ω ×[0, T ]), a(x, t) = ε for (x, t) ∈ ∂Ω ×[0, T ], ε ≤ a ≤ ‖u0ε‖L∞ e

T
ε ,

‖a‖
Cθ, θ

2 (Ω×[0,T ]) ≤ K1, and b ∈ C(Ω × [0, T ]) with b(x, 0) = b0 ∈ R, ‖b‖∞ ≤ K1
ε
.

With this in mind, in the space X = C1+ δ
2 , δ

4 (Ω × [0, T ]) we consider the set

S :=
{

v ∈ X
∣
∣
∣ v ≥ ε in Ω × (0, T ), v(·, 0) = u0ε and ‖v‖

C1+δ, δ
2 (Ω×[0,T ]) ≤ K2

}
,

which is evidently closed, bounded, convex, and compact in X . For each v ∈ S, the
definition of ρε implies that

f (t) := ρε

( ∫

Ω

|∇v(·, t)|2
)
, t ∈ [0, T ], (6.31)

defines a non-negative δ
2 -Hölder continuous function f on [0, T ]. The choices of f ,

S and ε show that f (0) = ∫

Ω
|∇u0ε|2 and thus (6.17) ensures that the compatibility

condition of first order is satisfied. Therefore, the quasilinear, actually non-degenerate
parabolic problem

uεt = uεΔuε + f (t)uε, x ∈ Ω, t > 0, (6.32)

uε(x, t) = ε, x ∈ ∂Ω, t > 0, (6.33)

uε(x, 0) = u0ε(x), x ∈ Ω, (6.34)

possesses a classical solution uε ∈ C2,1(Ω ×[0, T ]) by [27, Theorem V.6.1], which,
by comparison, satisfies

ε ≤ uε ≤ ‖u0ε‖L∞(Ω) · e
T
ε in Ω × (0, T ), (6.35)

because u(x, t) := ε and u(x, t) := ‖u0ε‖L∞(Ω) · e
t
ε are easily seen to define a sub-

and a supersolution of (6.32)–(6.34), respectively.
We now introduce a mapping F : S → X by setting Fv := uε, where uε solves

(6.32)–(6.34) with (6.31).
Then defining c(x, t) := uε(x, t) f (t), x ∈ Ω, t ∈ [0, T ], this function satisfies

‖c‖∞ ≤ 1
ε
‖u0ε‖∞ e

T
ε and accordingly, as stated in (6.29) above, ‖Fv‖

Cθ, θ
2

≤ K1 for
any v ∈ S.

Using a(x, t) := (Fv)(x, t) and b(x, t) := (Fv)(x, t) · f (t), we see that, again,
the above considerations are applicable and ‖Fv‖

C1+δ, δ
2 (Ω×[0,T ]) ≤ K2 for any v ∈ S

by (6.30). In particular, we observe that F S ⊂ S.
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Furthermore invoking [27, IV.5.2], we can conclude the existence of k > 0 and
K3 > 0 such that

‖Fv‖
C2+δ,1+ δ

2 (Ω×[0,T ]) ≤ k
(
‖Fv · f ‖

Cδ, δ
2 (Ω×[0,T ]) + ‖u0ε‖C2+δ(Ω×[0,T ]) + ε

)
≤ K3,

(6.36)

for all v ∈ S. To see that F is continuous, we suppose that (vk)k∈N ⊂ S and v ∈ S
are such that vk → v in X . Then fk(t) := ρε

( ∫

Ω
|∇vk(·, t)|2) satisfies

fk → f in C0([0, T ]), (6.37)

as k → ∞, with f as given by (6.31). By (6.36) and the theorem of Arzelà-Ascoli,
(Fvk)k∈N is relatively compact in C2,1(Ω × [0, T ]), and if ki → ∞ is any sequence
such that uki := Fvki converges in C2,1(Ω × [0, T ]) to some w as i → ∞, then in

∂t uki = uki Δuki + fki (t)uki , x ∈ Ω, t ∈ (0, T ),

we may let ki → ∞ and use (6.37) to obtain that w is a classical solution of (6.32)–
(6.34). Since classical solutions of (6.32)–(6.34) are unique due to the comparison
principle,wemust havew = Fv.We therebyderive that thewhole sequence (Fvk)k∈N
converges to Fv and hence conclude that F is continuous. Therefore the Schauder
fixed point theorem asserts the existence of at least one uε ∈ S for which uε = Fuε

holds. Since such a fixed point obviously solves (6.22)–(6.24), and the proof is
complete. ��

The basis of both our existence proof and our boundedness result is formed by the
next two lemmata which provide useful a priori estimates for uε in terms of certain
presupposed bounds. The first lemma essentially derives a uniform pointwise bound
for uε from a space-time integral estimate for |∇uε|2.
Lemma 6.2.6 For all M > 0 and B > 0 there exists C(M, B) > 0 with the
following property: If

u0ε ≤ M in Ω and
∫ T

0

∫

Ω

|∇uε|2 ≤ B, (6.38)

holds for some ε ∈ (ε j ) j∈N and T ∈ (0,∞] then we have

uε ≤ C(M, B) in Ω × [0, T ). (6.39)

Proof Our plan is to use a separated function of the form

u(x, t) := z(t) · (M + Φ(x)), x ∈ Ω̄, t ∈ [0, T ), (6.40)
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as a comparison function, where M is as in the hypothesis of the lemma,Φ ∈ C2(Ω̄)

is the solution of (6.13), and z denotes the solution of

z′ = −z2 + (
f (t) + 1

) · θ, t ∈ (0, T ), z(0) = 1, (6.41)

with f (t) := ∫

Ω
|∇uε(·, t)|2. In fact, it follows from (6.41) that ζ := 1

z is a solution
of ζ ′ = 1 − ( f (t) + 1)ζ , ζ(0) = 1, and hence given by

ζ(t) = e− ∫ t
0 f (s)ds−t +

∫ t

0
e− ∫ t

s f (σ )dσ−(t−s)ds, t ∈ [0, T ).

We claim that

1 ≤ z(t) ≤ eB+1 for all t ∈ (0, T ). (6.42)

To see this, we note that if t ∈ (0, T ) satisfies t < 1, then (6.38) implies

ζ(t) ≥ e− ∫ t
0 f (s)ds−t ≥ e−B−t ≥ e−B−1,

whereas if t ∈ [1, T ) then again (6.38) shows

ζ(t) ≥
∫ t

t−1
e− ∫ t

s f (σ )dσ−(t−s)ds ≥
∫ t

t−1
e−B−(t−s)ds

≥
∫ t

t−1
e−B−1ds = e−B−1.

This yields the right inequality in (6.42), while the left immediately results from an
ODE comparison of z with z(t) ≡ 1, because z′ + z2 − ( f (t) + 1)z = − f (t) ≤ 0.
Consequently, since Φ ≥ 0 in Ω , the function u defined by (6.40) satisfies

u(x, 0) = M + Φ(x) ≥ M ≥ uε(x, 0) for all x ∈ Ω,

due to (6.38), and on the lateral boundary we have

u(x, t) = z(t) · M ≥ M ≥ ε for all x ∈ ∂Ω and t ∈ (0, T ).

Moreover,

ut − uΔu − f (t) · u = z′ · (M + Φ) + z2 · (M + Φ) − f (t) · θ · (M + Φ)

= z · (M + Φ) ≥ 0 for all x ∈ Ω and t ∈ (0, T ),
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whence the comparison principle ensures that uε ≤ u in Ω × (0, T ). In view of
(6.42), this entails that

uε(x, t) ≤ eB+1 · (M + ‖Φ‖L∞(Ω)

)
for all x ∈ Ω and t ∈ (0, t),

so that (6.39) is valid upon an obvious choice of C = C(M, B). ��
Next, the fact that solutions of (6.22)–(6.24) cannot blow up immediately can be

turned into a quantitative local-in-time boundedness estimate in terms of the norm
of the initial data in L∞(Ω) ∩ W 1,2(Ω). Moreover, our technique at the same time
yields an estimate involving integrals of uεt and ∇uε, as long as uε is appropriately
bounded.

Lemma 6.2.7 (i) For all M > 0 there exist T1(M) > 0 and C1(M) > 0 such that
if

u0ε ≤ M in Ω and
∫

Ω

|∇u0ε|2 ≤ M, (6.43)

hold for some ε ∈ (ε j ) j∈N, then

uε ≤ C1(M) in Ω × [0, T1(M)). (6.44)

(ii) For each M > 0 and T > 0 there exist T2(M) ∈ (0, T ] and C2(M) > 0 such
that whenever ε ∈ (ε j ) j∈N is such that

uε ≤ M in Ω × (0, T ) and
∫

Ω

|∇u0ε|2 ≤ M, (6.45)

are satisfied, then

∫ T2(M)

0

∫

Ω

u2
εt

uε

+ sup
t∈(0,T2(M))

∫

Ω

|∇uε(·, t)|2 ≤ C2(M). (6.46)

Proof (i) We multiply (6.22) by uεt
uε and integrate by parts, use that uεt = 0 on ∂Ω ,

and apply Hölder’s together with Young’s inequality to see that

∫

Ω

u2
εt

uε

+ 1

2

d

dt

∫

Ω

|∇uε|2 =
(∫

Ω

uεt

)

· ρε

(∫

Ω

|∇uε|2
)

≤
(∫

Ω

u2
εt

uε

) 1
2
(∫

Ω

uε

) 1
2
∫

Ω

|∇uε|2

≤ 1

2

∫

Ω

u2
εt

uε

+ 1

2

(∫

Ω

uε

)(∫

Ω

|∇uε|2
)2

, (6.47)

for all t > 0, because ρε(ξ) ≤ ξ for all ξ ≥ 0. Hence,
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∫

Ω

u2
εt

uε

+ d

dt

∫

Ω

|∇uε|2 ≤
(∫

Ω

uε

)(∫

Ω

|∇uε|2
)2

. (6.48)

Using the Poincaré inequality, we obtain

∫

Ω

uε(·, t) ≤ c1 ·
((∫

Ω

|∇uε(·, t)|2
) 1

2

+ 1

)

,

with a positive constant c1 independent of ε ∈ (ε j ) j∈N ∈ (0, 1) and t > 0. Therefore,
(6.48) yields

∫

Ω

u2
εt

uε

+ d

dt

∫

Ω

|∇uε|2 ≤ c1 ·
((∫

Ω

|∇uε|2
) 1

2

+ 1

)(∫

Ω

|∇uε|2
)2

, (6.49)

which in particular implies that z(t) := ∫

Ω
|∇uε(·, t)|2 satisfies

z′(t) ≤ c(
√

z + 1)z2 for all t > 0, and z(0) ≤ M.

Hence, if we let ζ denote the local-in-time solution of

ζ ′(t) = c(
√

ζ + 1)ζ 2, t > 0,

ζ(0) = M,

with maximal existence time Tζ > 0, then due to (6.43) and an ODE comparison we
have z ≤ ζ in (0, Tζ ). Defining T1(M) := 1

2Tζ , for instance, we obtain from this that∫

Ω
|∇uε(·, t)|2 ≤ ζ(T1(M)) for all t ∈ [0, T1(M)), whereupon (6.44) now results

from Lemma 6.2.6.
(ii) If the first inequality in (6.45) holds then (6.48) entails that z as defined above
even satisfies the nonlinear ODI

z′(t) ≤ M |Ω|z2 for all t > 0,

whence we have
∫

Ω
|∇uε(·, t)|2 ≤ 1

M−1−M |Ω|t for all t ∈ (0, T2) with

T2 := min{T, 1/(M2|Ω|)},

by the second inequality in (6.45). Inserting this into (6.49) again and integrating
over (0, T2) proves (6.46). ��

When constructing the solution u of (6.7)–(6.9) as the limit of solutions uε of
(6.22)–(6.24), it will be comparatively easy to obtain the approximation property
∇uε → ∇u in the sense of L2

loc(Ω × [0, T ))-convergence. For handling the non-
local term in the equation, however, it seems appropriate to make sure that also∫

Ω
|∇uε|2 → ∫

Ω
|∇u|2 in L1

loc([0, T )).



6.2 Mathematical Analysis 211

In order to achieve the latter we exclude certain boundary concentration phenom-
ena of ∇uε in the following sense.

Lemma 6.2.8 For any T > 0, C > 0, M > 0 and δ > 0, there is K =
K (M, C, T, δ) ⊂⊂ Ω and η > 0 such that whenever ε ∈ (ε j ) j∈N is such that
ε < η and

sup
t∈[0,T ]

∫

Ω

|∇uε(t)|2 ≤ C and uε ≤ M, (6.50)

we have ∫ T

0

∫

Ω\K
|∇uε|2 < δ.

Proof For q ∈ (0, 1), we multiply (6.22) by uq−1
ε and integrate by parts to obtain

1

q

d

dt

∫

Ω

uq
ε =

∫

∂Ω

uq
ε ∂νuε −

∫

Ω

quq−1
ε |∇uε|2 +

∫

Ω

uq
ε ρε

(∫

Ω

|∇uε|2
)

,

where we can use ∂νuε ≤ 0 on ∂Ω and integrate with respect to time to derive

q
∫ T

0

∫

Ω

uq−1
ε |∇uε|2 ≤ − 1

q

∫

Ω

uq
ε (T )+ 1

q

∫

Ω

uq
0ε+

∫ T

0

(∫

Ω

uq
ε

∫

Ω

|∇uε|2
)

=: C(T ),

(6.51)

for all ε > 0 satisfying (6.50), which gives control on |∇uε|2 where ever uε is
small – which is the case near the boundary, as we ensure next: In order to lay the
groundwork for the corresponding comparison argument, note that by (6.50),

uεt = uεΔuε + uερε

(∫

Ω

|∇uε|2
)

≤ uεΔuε + Cuε, uε|∂Ω = ε, uε(0) = u0ε.

Fix η > 0 such that (2η)1−q C(T )

q < δ. Let Φ solve (6.13). Choose A > C such that
AΦ + η > u0ε for all 0 < ε < η, which is possible due to condition (8.92). Then
u := AΦ + η satisfies

ut = 0 ≥ −(AΦ + η)A + (AΦ + η)C = u AΔΦ + Cu = uΔu + Cu. (6.52)

As long as ε < η, also u|∂Ω ≥ uε|∂Ω holds and furthermore

u(0) ≥ u0ε.

Therefore, by the comparison principle, we obtain u ≥ uε.

http://dx.doi.org/10.1007/978-3-319-67944-0_8
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Now choose K ⊂⊂ Ω in such a way that

AΦ ≤ η in Ω \ K .

This entails uε ≤ u = AΦ + η ≤ 2η in Ω \ K . Then

∫ T

0

∫

Ω\K
|∇uε|2 =

∫ T

0

∫

Ω\K
uq−1

ε |∇uε|2u1−q
ε

≤ (2η)1−q
∫ T

0

∫

Ω\K
uq−1

ε |∇uε|2

≤ (2η)1−q
∫ T

0

∫

Ω

uq−1
ε |∇uε|2 ≤ (2η)1−qC(T )

q
,

by virtue of (6.51). ��
We are now ready to prove that uε in fact approach a weak solution of (6.7)–(6.9)

that is locally positive in the sense of Definition 6.2.1. Before we do so, however, we
prepare the following estimate for uε that will be useful in proving assertions about
the blow-up behavior of u.

Lemma 6.2.9 Let Ω ′ ⊂⊂ Ω be a domain with smooth boundary. Assume also that
φ denotes the solution to −Δφ = 1 in Ω ′, φ|∂Ω ′ = 0. Then there exists CΩ ′ > 0 such
that for each ε ∈ (ε j ) j∈N and any t > 0 the solution uε of (6.22)–(6.24) satisfies

∫

Ω

|∇uε(·, t)|2 ≤
∫

Ω

|∇u0ε|2 exp
[

1

2CΩ ′

(

sup
τ∈(0,t)

∫

Ω

uε(τ )

)(∫

Ω ′
φ ln uε(·, t) −

∫

Ω ′
φ ln u0ε +

∫ t

0

∫

Ω ′
uε

)]

.

(6.53)

Proof Asuεt = 0 on ∂Ω , similarly to (6.47),multiplying (6.22) by uεt
uε

and integrating
over Ω yields

∫

Ω

u2
εt

uε

=
∫

Ω

uεtΔuε +
∫

Ω

uεtρε

(∫

Ω

|∇uε|2
)

= −1

2

d

dt

∫

Ω

|∇uε|2 +
∫

Ω

uεtρε

(∫

Ω

|∇uε|2
)

.

After rearranging, by Hölder’s and Young’s inequalities and the definition of ρε this
entails

d

dt

∫

Ω

|∇uε|2 ≤ −2
∫

Ω

u2
εt

uε

+ 2

⎡

⎣

(∫

Ω

(
uεt√

uε

)2
) 1

2 (∫

Ω

√
uε

2
) 1

2

⎤

⎦ ρε

(∫

Ω

|∇uε|2
)

,
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≤ −2
∫

Ω

u2
εt

uε

+ 2
∫

Ω

u2
εt

uε

+ 1

2

∫

Ω

uερε

(∫

Ω

|∇uε|2
)2

≤ 1

2

∫

Ω

uερε

(∫

Ω

|∇uε|2
)∫

Ω

|∇uε|2 in (0,∞).

This looks like a quadratic differential inequality for z(t) := ∫

Ω
|∇uε|2 and at first

does not seem helpful for obtaining an estimate for this quantity. Therefore we shall
split the respective quadratic term and apply Gronwall’s lemma to z′(t) ≤ g(t)z(t),
where

g(t) = 1

2

∫

Ω

uε(t)ρε

(∫

Ω

|∇uε(t)|2
)

,

which leads to

z(t) ≤ z(0) exp
∫ t

0
g(τ )dτ for all t > 0. (6.54)

In this situation, however, we are left with a term
∫ t
0 ρε

(∫

Ω
|∇uε|2

)
in the exponent

and we prepare an estimate for this in the following way: With φ as specified in the
hypothesis, we let CΩ ′ = ∫

Ω ′ φ > 0. Multiplication of (6.22) by φ

uε
and integrating

over Ω ′ then gives

d

dt

∫

Ω ′
ln uεφ =

∫

Ω ′
Δuεφ +

∫

Ω ′
φρε

(∫

Ω

|∇uε|2
)

=
∫

Ω ′
uεΔφ +

∫

∂Ω ′
∂νuεφ −

∫

∂Ω ′
uε∂νφ + CΩ ′ρε

(∫

Ω

|∇uε|2
)

on (0,∞).

Taking into account the definition of φ and the following consequence of Hopf’s
boundary value lemma ∂νφ|∂Ω ′ ≤ 0 = φ|∂Ω ′ , we infer that

d

dt

∫

Ω ′
φ ln uε ≥ −

∫

Ω ′
uε + CΩ ′ρε

(∫

Ω

|∇uε|2
)

in (0,∞).

Therefore

∫ t

0
ρε

(∫

Ω

|∇uε|2
)

≤ 1

CΩ ′

[∫ t

0

∫

Ω ′
uε +

∫

Ω ′
φ ln uε(t) −

∫

Ω ′
φ ln u0ε

]

,

for any t > 0, and we can conclude from (6.54) that

∫

Ω

|∇uε(t)|2 ≤
∫

Ω

|∇u0ε|2 exp
[

1

2CΩ ′
sup

τ∈(0,t)

∫

Ω

u(τ )

(∫ t

0

∫

Ω ′
uε +

∫

Ω ′
φ ln uε(t) −

∫

Ω ′
φ ln u0ε

)]

,

for all t > 0. ��
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Another useful piece of information is that a condition like (H3) remains satisfied
for any t > 0.

Lemma 6.2.10 Let T > 0, M > 0 and ε ∈ (ε j ) j∈N be such that ‖u0ε − ε‖Φ,∞ <

∞. Then any solution uε of (6.22)–(6.24) which satisfies

∫

Ω

|∇uε(t)|2 ≤ M for any t ∈ [0, T ],

already fulfils
‖uε − ε‖Φ,∞ ≤ max

{
M, ‖u0ε − ε‖Φ,∞

}
.

Proof Let C = max{M, ‖u0ε − ε‖Φ,∞} and consider u := CΦ + ε with Φ as in
(6.13). Then ut = 0 ≥ (M − C)(CΦ + ε) = uΔu + Mu, whereas uεt = uεΔuε +
uερε

(∫

Ω
|∇uε|2

) ≤ uεΔuε+Muε. Additionally u|∂Ω = ε = uε|∂Ω and u(x, 0)−ε =
CΦ(x) ≥ Φ(x) ‖u0ε − ε‖Φ,∞ ≥ u0ε(x) − ε and therefore the comparison principle
[51] asserts that uε ≤ u and hence implies the claim. ��

With this information at hand, we can proceed to the proof of convergence of the
uε to a solution of (6.7)–(6.9) that still satisfies an inequality like (6.53).

Lemma 6.2.11 Suppose that u0 satisfies (H1)-(H3). Then there exists T > 0depend-
ing on bounds on ‖u0‖L∞(Ω) and ‖∇u0‖L2(Ω) and a locally positive weak solution
u of (6.7)–(6.9) in Ω × (0, T ). This solution can be obtained as the a.e. pointwise
limit of a subsequence of the solutions uε of (6.22)–(6.24) as ε = ε j ↘ 0, and for
any smoothly bounded subdomain Ω ′ ⊂⊂ Ω there is CΩ ′ > 0 such that

∫

Ω

|∇u(·, t)|2

≤
∫

Ω

|∇u0|2 exp
[

1

2CΩ ′

(

sup
τ∈(0,t)

∫

Ω

u(τ )

)(∫

Ω ′
φ ln u(·, t) −

∫

Ω ′
φ ln u0 +

∫ t

0

∫

Ω ′
u

)]

,

(6.55)

as well as

‖u(t)‖Φ,∞ ≤ max

{

‖u0‖Φ,∞ , ess sup
τ∈(0,t)

∫

Ω

|∇u(τ )|2
}

, (6.56)

for a.e. t ∈ (0, T ).

Proof We set M1 := max{‖u0‖L∞(Ω) + 1,
∫

Ω
|∇u0|2 + 1

}
and let T1 = T1(M1) and

c1 = C1(M1) be as in Lemma 6.2.7 (i). Then this lemma states that uε ≤ c1 in Ω ×
(0, T1) for all ε ∈ (ε j ) j∈N. Accordingly, corresponding to M2 = max{c1,

∫

Ω
|∇u0|2+

1}, Lemma 6.2.7 (ii) provides T = T2(M2) ∈ (0, T1) and c2 = C2(M2) > 0 such
that
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∫ T

0

∫

Ω

u2
εt

uε

+ sup
t∈(0,T )

∫

Ω

|∇uε(·, t)|2 ≤ c2, (6.57)

for all ε ∈ (ε j ) j∈N, which by uε ≤ c1 can be turned into a uniform bound on
‖uεt‖L2(Ω×(0,T ), from which it follows by means of the fundamental theorem of
calculus that after possibly enlarging c2, we also have

‖uε‖C
1
2 ([0,T ];L2(Ω))

≤ c2, (6.58)

for such ε.
In order to prove a uniform estimate for uε from below, locally in space, we

follow a standard comparison procedure: Given a compact set K ⊂ Ω , we pick any
smoothly bounded domain Ω ′ ⊂⊂ Ω such that K ⊂⊂ Ω ′ and let φ ∈ C2(Ω̄ ′) solve
−Δφ = 1 in Ω ′ with φ|∂Ω ′ = 0. Then the lower estimate in (6.19) guarantees that
writing c3(K ) := 1

2‖φ‖L∞(Ω′)
lim infε↘0 infK u0ε we can find ε0(K ) > 0 such that

whenever ε ∈ (ε j ) j∈N satisfies ε < ε0(K ), we have

u0ε(x) ≥ 1

2
lim inf

ε↘0
inf
K

u0ε ≥ c3(K )φ(x) for all x ∈ Ω ′. (6.59)

Letting z(t) := c3(K )

1+c3(K )t , t ≥ 0, denote the solution of z′ = −z2 with z(0) = c3(K ),
we thus find that u(x, t) := z(t)φ(x) satisfies u ≤ uε on the parabolic boundary of
Ω ′ × (0,∞). Since

ut − uΔu = z′φ + z2φ = 0 in Ω ′ × (0,∞),

and

uεt − uεΔuε = uε · ρε

( ∫

Ω

|∇uε|2
)

≥ 0 in Ω × (0,∞),

we conclude from the comparison principle (see [51] for an adequate version) that
u ≤ uε and thus, in particular, that for each T ′ > 0 there exists a suitably small
c4(K , T ′) > 0 such that

uε ≥ c4(K , T ′) in K × (0, T ′), (6.60)

holds for all ε ∈ (ε j ) j∈N satisfying ε < ε0(K ). By positivity of each individual
uε, one can readily verify that upon suitably diminishing c4(K , T ′), (6.60) trivially
extends so as to actually be valid for all ε ∈ (ε j ) j∈N. Now the estimate uε ≤ c1,
(6.57), (6.58) and (6.60) along with standard compactness arguments allow us to
extract a subsequence (ε jk )k∈N of (ε j ) j∈N and a function u : Ω × [0, T ] → R such
that
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uε → u in C0([0, T ); L2(Ω)) and a.e. in Ω × (0, T ), (6.61)

∇uε ⇀ ∇u in L2
loc(Ω̄ × [0, T )), and (6.62)

uεt ⇀ ut in L2(Ω × (0, T )), (6.63)

as ε = ε jk ↘ 0. From (6.61), the inequality uε ≤ c1 and (6.60), we know that
u ≤ c1 a.e. in Ω × (0, T ) and u ≥ c4(K , T ) a.e. in K × (0, T ) whenever K ⊂⊂ Ω .
Moreover, since uε−ε vanishes on ∂Ω , (6.62) implies that u ∈ L2((0, T ); W 1,2

0 (Ω)),
so that u fulfills all regularity and positivity properties required for a locally positive
weak solution in Ω × (0, T ) in the sense of Definition 6.2.1. In order to verify that
u is a weak solution of (6.7)–(6.9) it thus remains to check (6.12). To prepare this,
we claim that in addition to (6.62), we also have the strong convergence properties

∇uε → ∇u in L2
loc(Ω × [0, T ]) and a.e. in Ω × (0, T ), (6.64)

as well as
∫

Ω

|∇uε(x, ·)|2dx →
∫

Ω

|∇u(x, ·)|2dx in L1((0, T )), (6.65)

as ε = ε jk ↘ 0. To see (6.64), we let K ⊂⊂ Ω be given and fix a nonnegative
ψ ∈ C∞

0 (Ω) such that ψ ≡ 1 in K . Then

∫ T

0

∫

K
|∇uε − ∇u|2 ≤

∫ T

0

∫

Ω

|∇uε − ∇u|2ψ

=
∫ T

0

∫

Ω

∇(uε − u) · ∇uε · ψ −
∫ T

0

∫

Ω

∇u · ∇(uε − u) · ψ

=: I1(ε) − I2(ε) for all ε ∈ (ε j ) j∈N, (6.66)

where I2(ε) → 0 as ε = ε jk ↘ 0 by (6.62). Using the equation for uε, however,
after an integration by parts we find that

I1(ε) = −
∫ T

0

∫

Ω

(uε − u)Δuε · ψ −
∫ T

0

∫

Ω

(uε − u)∇uε · ∇ψ

= −
∫ T

0

∫

Ω

(uε − u) · uεt

uε

· ψ +
∫ T

0

∫

Ω

(uε − u) · ρε

( ∫

Ω

|∇uε|2
)

· ψ

−
∫ T

0

∫

Ω

(uε − u)∇uε · ∇ψ

=: I11(ε) + I12(ε) + I13(ε) for all ε ∈ (ε j ) j∈N.

Due to (6.61) and (6.62), we have I13(ε) → 0, and (6.61) together with (6.57) and
Hölder’s inequality imply that
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|I12(ε)| ≤
( ∫ T

0

∫

Ω

(uε − u)2
) 1

2 ·
[ ∫ T

0

( ∫

Ω

|∇uε|2
)2] 1

2 · ‖ψ‖L2(Ω) → 0,

as ε = ε jk ↘ 0, where we again have used the fact that ρε(z) ≤ z for any z ≥ 0 and
all ε ∈ (ε j ) j∈N. We now use Hölder’s inequality and the local lower estimate (6.60),
which in conjunction with (6.57) yields

|I11(ε)| ≤
( ∫ T

0

∫

Ω

u2
εt

uε

) 1
2 ·

( ∫ T

0

∫

Ω

(uε − u)2

uε

· ψ2
) 1

2

≤ c
1
2
2 · ‖ψ‖L∞(Ω)

(c4(suppψ, T ))
1
2

·
( ∫ T

0

∫

Ω

(uε − u)2
) 1

2 → 0,

as ε = ε jk ↘ 0, by (6.61). Altogether, we obtain that I1(ε) → 0 and hence, by
(6.66), that ∇uε → ∇u in L2(K × (0, T )) as ε = ε jk ↘ 0 for arbitrary K ⊂⊂ Ω .

Having thus proved (6.64), with the aid of Lemma 6.2.8 we obtain (6.65) as a
straightforward consequence:

Given δ > 0, we let K = K (c1, c2, T, δ
4 ) and η > 0 be the set and the constant

provided by Lemma 6.2.8, and employ the convergence asserted by (6.62) to choose
k0 ∈ N such that for all k, l > k0 we have

∫ T
0

∫

K ||∇uεk |2 − |∇uεl |2| ≤ δ
2 . Then for

all k, l > k0,

∫ T

0

∣
∣
∣
∣

∫

Ω

|∇uεk |2 −
∫

Ω

|∇uεl |2
∣
∣
∣
∣ ≤

∫ T

0

∫

K

∣
∣|∇uεk |2 − |∇uεl |2

∣
∣ +

∫ T

0

∫

Ω\K
|∇uεk |2

+
∫ T

0

∫

Ω\K
|∇uεl |2 ≤ δ

2
+ δ

4
+ δ

4
,

and thanks to the completeness of L2((0, T )) we obtain (6.65). We can now proceed
to verify that (6.12) holds for all ϕ ∈ C∞

0 (Ω × (0, T )). To this end, we multiply
(6.22) by ϕ ∈ C∞

0 (Ω × (0, T )) and integrate to obtain

∫ T

0

∫

Ω
uεtϕ +

∫ T

0

∫

Ω
|∇uε|2ϕ +

∫ T

0

∫

Ω
uε∇uε · ∇ϕ =

∫ T

0

∫

Ω
uε · ρε

( ∫

Ω
|∇uε|2

)
· ϕ.

Here, as ε = ε jk ↘ 0 we have

∫ T

0

∫

Ω

uεtϕ →
∫ T

0

∫

Ω

utϕ,

by (6.63), whereas (6.64) and (6.61) allow us to conclude that

∫ T

0

∫

Ω

|∇uε|2ϕ →
∫ T

0

∫

Ω

|∇u|2ϕ,
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and

∫ T

0

∫

Ω

uε∇uε · ∇ϕ →
∫ T

0

∫

Ω

u∇u · ∇ϕ,

because ϕ vanishes near ∂Ω and near t = T . Finally,

∫ T

0

∫

Ω

uε · ρε

( ∫

Ω

|∇uε|2
)

· ϕ →
∫ T

0

∫

Ω

u
( ∫

Ω

|∇u|2
)

· ϕ,

because of (6.61), (6.65) and the fact that ρε(z) → z for all z ≥ 0 as ε ↘ 0.
We thereby see that (6.12) holds and thus infer that u in fact is a weak solution of
(6.7)–(6.9) in Ω × (0, T ). The inequality (6.55) results from Lemma 6.2.9 and the
convergence statements. The estimate (6.56) results from Lemma 6.2.10. By (6.57)
and (8.92) we have the necessary bounds on gradient and initial value, independent
of ε ∈ (ε j ) j∈N. Furthermore, for any t ∈ [0, T ] we can find a subsequence (ε jk )k∈N
of (ε j ) j∈N such that

uε jk
(t) − ε jk

Φ
⇀∗ u(t)

Φ
in L∞(Ω),

and finally the same bound as in Lemma 6.2.10 holds for u(t) because

‖u(t)‖Φ,∞ =
∥
∥
∥
∥

u(t)

Φ

∥
∥
∥
∥∞

≤ lim inf
ε=ε jk ↘0

∥
∥
∥
∥

uε(t) − ε

Φ

∥
∥
∥
∥∞

≤ lim inf
ε=ε jk ↘0

max

{

sup
0<τ<t

∫

Ω

|∇uε(τ )|2, ‖u0ε − ε‖Φ,∞
}

≤ lim inf
ε=ε jk ↘0

max

{

sup
0<τ<t

∫

Ω

|∇uε(τ )|2, ‖u0‖Φ,∞ + ε

}

≤max

{

ess sup
0<τ<t

∫

Ω

|∇u(τ )|2, ‖u0‖Φ,∞
}

,

where for the last inequality we relied on the pointwise a.e. convergence of
∫

Ω
|∇uε|2

in (0, T ), due to (6.65) valid along a subsequence. ��
We are now in the position to prove Theorem 6.2.3, which asserts the existence

of a locally positive weak solution and Tmax ∈ (0,∞] such that the solution blows
up at Tmax or exists globally.

Proof of Theorem 6.2.3 According to the statement of Lemma 6.2.11 there exists
T > 0 such that (6.7)–(6.9) possesses a locally positiveweak solution u onΩ×(0, T )

which satisfies (6.15) and (6.16) for a.e. t ∈ (0, T ). Hence, the set

http://dx.doi.org/10.1007/978-3-319-67944-0_8
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S :=
{

T̃ > 0

∣
∣
∣
∣there exists a locally positive solution u to (6.7)–(6.9) on Ω × (0, T̃ )

satisfying (6.15) and (6.16) for a.e. t ∈ (0, T̃ )

}

,

is not empty and
Tmax = sup S ∈ (0,∞],

is well-defined. Assume that Tmax < ∞ and lim supt↗Tmax
‖u(·, t)‖L∞(Ω) < ∞.

This implies the existence of a constant M > 0 such that u ≤ M and hence, due
to (6.15), also that there is C > 0 with

∫

Ω
|∇u|2 ≤ C on [0, Tmax ). Lemma 6.2.11

provides T > 0 such that for any initial data u0 satisfying u0 ≤ M ,
∫

Ω
|∇u0|2 ≤ C ,

a locally positive weak solution existing on Ω × (0, T ) can be constructed.
Choose t0 ∈ (Tmax − T

2 , Tmax ) such that u(x, t0) ≤ M and
∫

Ω
|∇u(x, t0)|2 ≤ C

and such that u satisfies (6.15) and (6.16) at t = t0.
Let v denote the corresponding solution with initial value u(·, t0) and define

û(x, t) =
{

u(x, t), x ∈ Ω, t < t0
v(x, t − t0), x ∈ Ω, t ∈ (t0, t0 + T )

.

Then û is a solution of (6.7)–(6.9), and (6.15) and (6.16) obviously hold for a.e.
t ∈ (0, t0), whereas for t ∈ (t0, t0 + T ) we have

∫

Ω

|∇û(·, t)|2

≤
∫

Ω

|∇u(t0)|2×

× exp

[
1

2CΩ ′

(

sup
τ∈(t0,t)

∫

Ω

û(·, τ )

)(∫

Ω ′
φ ln û(·, t) −

∫

Ω ′
φ ln u(·, t0) +

∫ t

t0

∫

Ω ′
û

)]

≤
∫

Ω

|∇u0|2 exp
[

1

2CΩ ′

(

sup
τ∈(0,t0)

∫

Ω

u(·, τ )

)(∫

Ω ′
φ ln u(·, t0) −

∫

Ω ′
φ ln u0 +

∫ t0

0

∫

Ω ′
u

)]

×

× exp

[
1

2CΩ ′

(

sup
τ∈(t0,t)

∫

Ω

û(·, τ )

)(∫

Ω ′
φ ln û(·, t) −

∫

Ω ′
φ ln u(·, t0) +

∫ t

t0

∫

Ω ′
û

)]

≤
∫

Ω

|∇u0|2 exp
[

1

2CΩ ′

(

sup
τ∈(0,t)

∫

Ω

û(·, τ )

)

·

·
( ∫

Ω ′
φ ln u(·, t0) −

∫

Ω ′
φ ln u0 +

∫ t0

0

∫

Ω ′
u +

∫

Ω ′
φ ln û(·, t) −

∫

Ω ′
φ ln u(·, t0) +

∫ t

t0

∫

Ω ′
û
)]

=
∫

Ω

|∇u0|2 exp
[

1

2CΩ ′

(

sup
τ∈(0,t)

∫

Ω

û(·, τ )

)(∫

Ω ′
φ ln û(·, t) −

∫

Ω ′
φ ln u0 +

∫ t

0

∫

Ω ′
u

)]

.

Also, for a.e. t ∈ (0, t0 + T ),
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‖û(·, t)‖Φ,∞ ≤ max

{

‖u(·, t0)‖Φ,∞ , sup
τ∈(t0,t)

∫

Ω
|∇û(·, τ )|2

}

≤ max

{

max

{

‖u0‖Φ,∞ , sup
τ∈(0,t0)

∫

Ω
|∇u(·, τ )|2

}

, sup
τ∈(t0,t)

∫

Ω
|∇û(·, τ )|2

}

≤ max

{

‖u0‖Φ,∞ , sup
τ∈(0,t)

∫

Ω
|∇û(·, τ )|2

}

.

Thus û is defined on (0, Tmax + T
2 ), contradicting the definition of Tmax . ��

As a direct consequence of (6.16) we obtain that finite-time gradient blow-up
cannot occur. More precisely, we have the following.

Corollary 6.2.12 Let u and Tmax be as given by Theorem 6.2.3. If lim supt↗Tmax‖u(·, t)‖L∞(Ω) = ∞, then also

lim sup
t↗Tmax

∫

Ω

|∇u(x, t)|2dx = ∞.

Combining now Corollary 6.2.12 with the estimate (6.15), we can conclude that
if finite-time L∞−blow-up occurs, then also L1−blow-up takes place at the same
finite time.

Corollary 6.2.13 Let u and Tmax be as given by Theorem 6.2.3. If lim supt↗Tmax‖u(·, t)‖L∞(Ω) = ∞, then also

lim sup
t↗Tmax

∫

Ω

u(x, t)dx = ∞.

6.2.2 Global Existence Versus Blow-Up

Anatural next topic appears to consist in deriving conditions on the initial data which
ensure that the local solutions given by Theorem 6.2.3 either exist for all times, or
blow-up infinite time.Here in viewof the essentially cubic character of the production
term in (6.7) it is not surprising that this may dominate the smoothing effect of the
merely quadratic-type diffusion term when the initial data are suitably large in an
adequate sense; precedentworks indicate that indeed such intuitive considerations are
appropriate in related non-degenerate and degenerate parabolic equations with local
reaction terms [39, 41, 47, 52]. As a remarkable feature of the precise structure of
this interplay in (6.7), we shall see that actually a complete classification of all initial
data in this respect is possible, exclusively involving the size of the total initial mass
m := ∫

Ω
u0 as the decisive quantity: In fact, the second of our main results identifies

the value m = 1 to be critical with regard to global solvability, and moreover gives
some basic information on the asymptotic behavior of solutions.
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Theorem 6.2.14 Let u0 satisfy (H1)-(H3), and let u and Tmax denote the corre-
sponding locally positive weak solution of (6.7)–(6.9), as well as its maximal time
of existence, provided by Theorem 6.2.3.
(i) If

∫

Ω
u0 < 1, then Tmax = ∞ and

∫

Ω

u(x, t) dx → 0 as t → ∞.

(ii) Suppose that
∫

Ω
u0 = 1. Then Tmax = ∞ and

∫

Ω

u(x, t) dx = 1 for all t > 0.

(iii) In the case
∫

Ω
u0 dx > 1, we have Tmax < ∞ and

lim sup
t↗Tmax

∫

Ω

u(x, t) dx = ∞.

For the new proof of the above theorem we need the following auxiliary result

Lemma 6.2.15 For any weak solution u of (6.7)–(6.9) on [0, T ], then

y(t) =
∫

Ω

u(x, t) dx, t ∈ [0, T ), (6.67)

defines an absolutely continuous function y : [0, T ] → R that satisfies

y′(t) = (y(t) − 1)
∫

Ω

|∇u(x, t)|2 dx,

for almost every t ∈ (0, T ).

Proof We will show that whenever 0 < s < t < T ,

y(t) − y(s) =
∫ t

s

(

(y(τ ) − 1)
∫

Ω

|∇u(x, τ )|2 dx

)

dτ, (6.68)

where absolute continuity follows from the representation as integral and the assertion
about the derivative is a direct consequence of division by t − s and passing to the
limit s → t .

Let 0 < s < t < T and 0 < δ < min {s, T − t}. Define the function χ : R → R

by setting:
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χ(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, τ < s − δ,

1 + τ−s
δ

, s − δ ≤ τ < s,

1, s ≤ τ < t,

1 − τ−t
δ

, t ≤ τ < t + δ,

0, τ ≥ t + δ.

Then, according to standard approximation arguments, ϕ(x, t) := χ(t) defines an
admissible test function for (6.11) and we obtain

−1

δ

∫ s

s−δ

∫

Ω

u + 1

δ

∫ t+δ

t

∫

Ω

u +
∫ t+δ

s−δ

∫

Ω

|∇u|2ϕ =
∫ t+δ

s−δ

( ∫

Ω

uϕ
)

·
( ∫

Ω

|∇u|2
)
.

Since u ∈ Cloc([0, T ), L2(Ω)), we have

1

δ

∫ t+δ

t

∫

Ω

u → y(t) and
1

δ

∫ s

s−δ

∫

Ω

u → y(s),

as δ ↘ 0.
Also by Lebesgue’s dominated convergence theorem,

∫ t+δ

s−δ

∫

Ω

|∇u|2ϕ →
∫ t

s

∫

Ω

|∇u|2,

and ∫ t+δ

s−δ

( ∫

Ω

uϕ
)

·
( ∫

Ω

|∇u|2
)

→
∫ t

s

( ∫

Ω

u
)

·
( ∫

Ω

|∇u|2
)
,

as δ ↘ 0. Hence, (6.68) holds. ��
Proof of Theorem 6.2.14 (i) In the case of subcritical initial mass Lemma 6.2.15
shows that y as defined in (6.67) is decreasing, which by Corollary 6.2.13 entails
global existence, and from the nonnegativity of y we derive that y(t) → c as t → ∞
for some c ≥ 0. Note that Poincaré’s and Hölder’s inequalities imply that for some
CP > 0 we have

∫

Ω

|∇u|2 dx ≥ 1

CP

∫

Ω

u2 dx ≥ 1

CP |Ω|
(∫

Ω

u dx

)2

= 1

CP |Ω| y2 on (0,∞),

and hence Lemma 6.2.15, due to the negativity of y(t) − 1, entails that

y′(t) ≤ (y(t) − 1)
1

CP |Ω| y2(t) ≤ −1 − y(0)

CP |Ω| y2(t) ≤ −1 − y(0)

CP |Ω| c2,

for almost every t > 0. This would lead to a contradiction to the nonnegativity of
y(t) if c were positive, whence actually c = 0.
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(ii) If
∫

Ω
u0 = 1, then Lemma 6.2.15 implies that

y(t) − 1 =
∫ t

0

[

(y(s) − 1)
∫

Ω

|∇u(x, s)|2 dx

]

ds,

and by virtue of Gronwall’s lemma we conclude y(t) − 1 ≡ 0 throughout the time
interval on which the solution exists, which combined with Corollary 6.2.13 also
implies global existence.
(iii) In the case when the total mass is supercritical initially, Lemma 6.2.15 entails
that y is nondecreasing, and again Poincaré’s and Hölder’s inequalities imply that

y′(t) ≥ y(0) − 1

CP |Ω| y2(t) for a.e. t ∈ [0, Tmax ),

with some CP > 0. Now let z denote the solution to

z′(t) = y(0) − 1

CP |Ω| z(t)2, z(0) = z0,

for some 1 < z0 < y(0), defined up to its maximal existence time T0 > 0. Then
T := Tmax < T0, because y ≥ z, and the assertion follows by Theorem 6.2.3 in
combination with Corollary 6.2.13. ��
Remark 6.2.3 In case (i i) of Theorem 6.2.14 there actually holds that the global-in-
time solutionu converges towards theunique steady-statewhich is aNash equilibrium
for the corresponding evolutionary dynamic game. In particular there holds

lim
t→+∞

∣
∣
∣
∣

∣
∣
∣
∣u(·, t) − Φ(·)

∫

Ω
Φ dx

∣
∣
∣
∣

∣
∣
∣
∣
W 1,2

0 (Ω)

= 0,

where Φ denotes the solution of the following problem

−ΔΦ = 1 in Ω, Φ = 0, on ∂Ω,

see Theorem 1 in [28].

In numerous related equations, involving either linear or degenerate diffusion,
blow-up driven by local superlinear production terms is known to occur in thin
spatial sets only which in radial settings typically reduce to single points [14, 17,
41]. Only few exceptional situations detected in the literature lead to regional or even
global blow-up, thus referring to cases in which |B| > 0 or even B = Ω (cf. [15,
16, 26, 47, 53], for instance). In cases of sources which at least partially consist of
non-local terms, blow-up in sets of positivemeasuremay occur if the relative size of a
possibly contained local contribution at large densities is predominant, as compared
to the strength of the respective diffusion term [12, 29, 31, 44, 46, 50]. Our main
result in this direction will reveal that any of our non-global solutions in fact blow
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up globally in space, thus indicating a certain balance in the competition of diffusion
and non-local production in Eq. (6.7):

Theorem 6.2.16 Suppose that
∫

Ω
u0 dx > 1, and let u denote the locally positive

weak solution of (6.7)–(6.9) from Theorem 6.2.3. Then u blows up globally in the
sense that its blow-up set satisfies B = Ω .

Proof Assume to the contrary that the closed setB is strictly contained in Ω . Then
there exists a smoothly bounded subdomain Ω ′ ⊂ Ω \ B such that u is bounded in
Ω ′ × (0, Tmax ). Let φ be a solution to −Δφ = 1 in Ω ′, φ = 0 on ∂Ω ′.

Consider T ′ < Tmax . Due to the local positivity of u wehave φ

u ∈ L∞(Ω×(0, T ′))
and ∇ φ

u = ∇φ

u − φ

u2 ∇u ∈ L2(Ω ′ × (0, T ′)) and hence φ

u ∈ L2((0, T ′), W 1,2
0 (Ω ′)) ∩

L∞(Ω × (0, T ′)) ⊂ L2((0, T ′), W 1,2
0 (Ω)) ∩ L∞(Ω × (0, T ′)). Therefore, it can

readily be verified by approximation arguments that it is possible to use ϕ = φ

u as a
test function in (6.12), which then leads to

∫ t

0

∫

Ω ′

ut

u
φ dx ds +

∫ t

0

∫

Ω ′
∇u · ∇φ dx ds =

∫ t

0

(∫

Ω ′
φ dx

)

·
(∫

Ω

|∇u|2 dx

)

ds,

for any t ∈ (0, Tmax ). Hence, with CΩ ′ := ∫

Ω ′φ and since ∂νφ
∣
∣
∂Ω ′ ≤ 0,

∫

Ω ′
φ ln u(t) dx −

∫

Ω ′
φ ln u0 dx −

∫ t

0

∫

Ω ′
u · Δφ dx ds ≥ CΩ ′

∫ t

0

∫

Ω

|∇u|2 dx ds,

that is

∫ t

0

∫

Ω ′
u dx ds +

∫

Ω ′
φ ln u(t) dx −

∫

Ω ′
φ ln u0 dx ≥ CΩ ′ h(t), (6.69)

where h(t) := ∫ t
0

∫

Ω
|∇u(x, s)|2 dx ds and where – due to the choice of Ω ′ – the left

hand side is bounded from above.
On the other hand, from Lemma 6.2.15 we know that

y′(t)
y(t) − 1

=
∫

Ω

|∇u|2 dx,

for y(t) = ∫

Ω
u(x, t) dx . Therefore

h(t) =
∫ t

0

∫

Ω

|∇u|2 dx ds =
∫ t

0

y′(τ )

y(τ ) − 1
ds = ln(y(t)−1)−ln(y(0)−1) = ln

∫

Ω
u(x, t) dx − 1
∫

Ω
u0 dx − 1

,

and, by Theorem 6.2.14 (iii), lim supt↗Tmax
h(t) = ∞, contradicting the boundedness

of the left hand side of (6.69). ��
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Chapter 7
A Non-local Model Arising in Chemotaxis

Abstract The current chapter deals with the biological phenomenon of chemotaxis.
In the first place, a parabolic-parabolic Keller–Segel system is considered which
describes themovement of some cell population towards a chemo-attractant produced
by the population itself. Next, this version of Keller–Segel system is reduced to a
non-local parabolic problem for the concentration of chemo-attractant in the case the
chemo-attractant diffuses much faster than the cell population. Using the variational
structure of the derived non-local parabolic problem we obtain some appropriate a
priori estimates permitting us to derive global-in-time solutions when the total cell
population is below the threshold 8π. It is also proven that the global-in-time solution
converges to the unique steady state solution in the radial symmetric case. When the
cell population exceeds the threshold 8π then all the radially symmetric solutions
exhibit finite-time blow-up on the origin of the considered sphere, i.e. single-point
blow-up occurs.

7.1 Derivation of the Non-local Model

Chemotaxis is themovement of amotile cell or organism, in a direction corresponding
to a gradient of increasing or decreasing concentration of a particular substance. Out
of the many mathematical models that have been proposed to deal with particular
aspects of chemotaxis, the one introduced by Keller and Segel in 1970 (cf. [17])
has received particular attention. The so called Keller–Segel model consists of two
equations, describing the evolution of the population density u(x, t) of motile cells
(or organisms), and the concentration v(x, t) of a chemical attracting substance, in a
bounded domain Ω ⊂ R

N , where N = 2, 3, and in a time interval [0, T ] :

εut = ∇ · (D1∇u − χ u∇v) inΩ × (0, T ), (7.1)

τvt = �v − av + u inΩ × (0, T ), (7.2)
∂u

∂ν
− u

∂v

∂ν
= v = 0 on ∂Ω × (0, T ), (7.3)

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω, (7.4)

where ε, τ are positive constants.
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More precisely the first equation describes the random (Brownian) diffusion of
the population of cells u, which is biased in the direction of a drift velocity, pro-
portional to the gradient of the concentration of the chemo-attractant ∇v. The diffu-
sion coefficient is denoted by D1 > 0 and the proportionality coefficient of the drift
(mobility parameter) is denoted by χ > 0. According to the second equation, the
chemo-attractant v, which is directly emitted by the cells, diffuses with a diffusion
coefficient D2 = 1/τ > 0 on the substrate, while is generated proportionally to the
density of cells and at the same time is degraded with a rate equal to a/τ ≥ 0.

A natural boundary condition, since it guarantees the conservation of total mass,
is the no-flux type condition for u, namely the first condition of (7.3) where ν stands
for the outer unit normal vector at ∂Ω. As for v, a Dirichlet type boundary condition
is assumed. Note that the parabolic system (7.1)–(7.4) preserves the nonnegativity
of the initial conditions, i.e. u, v ≥ 0 for t > 0, which is also expected to be true for
the physical problem. For simplicity, D1, χ are considered to be constant and under
suitable scaling can be taken D1 = χ = 1.

In view of experimental facts, the degradation of the chemical v is rather small so
it can be taken a = 0 and therefore we actually focus on the following system

εut = ∇ · (D1∇u − χ u∇v) inΩ × (0, T ), (7.5)

τvt = �v + u inΩ × (0, T ), (7.6)
∂u

∂ν
− u

∂v

∂ν
= v = 0 on ∂Ω × (0, T ), (7.7)

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω. (7.8)

For (ε, τ ) = (1, 0)we have an interesting case of the above system,when actually the
chemo-attarctant diffuses much faster than cell population. In that case system (7.5)–
(7.8) has been studied thoroughly in various research papers, see [4, 11, 21] to name
a few of them. Additionally, the same limiting case for the following chemotaxis
system

εut = ∇ · (∇u − u∇v)Ω × (0, T ), (7.9)

τvt = �v + u − 1

|Ω|
∫

Ω

u inΩ × (0, T ), (7.10)

∂u

∂ν
− u

∂v

∂ν
= ∂v

∂ν
= 0 on ∂Ω × (0, T ), (7.11)

∫
Ω

v(x, t)dx = 0 for t ∈ (0, T ), (7.12)

u|t=0 = u0(x) ≥ 0, v|t=0 = v0(x) inΩ, (7.13)

has been investigated in [27, 29, 32].
On the other hand, the other limiting case (ε, τ ) = (0, 1), which was first consid-

ered byWolansky [34] is not so thoroughly studied. The latter limit actually describes
the situation when chemo-attractant diffuses much faster compared to the cell pop-
ulation. In that case (7.5) together with non-flux boundary condition (7.7) entail
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∇u − u∇v = 0 in Ω,

which actually gives

u = λev∫
Ω

ev dx
, (7.14)

where λ is the total (conserved) mass of the population u, i.e.

λ =
∫

Ω

u(x, t) dx =
∫

Ω

u0(x) dx .

Next by substituting (7.14) into (7.6) we derive the following non-local parabolic
equation

vt = �v + λev∫
Ω

ev dx
inΩ × (0, T ), (7.15)

for the chemo-attractant, which is also associated with initial and boundary condi-
tions

v = 0 on ∂Ω × (0, T ), (7.16)

v(x, 0) = v0(x) ≥ 0 in Ω. (7.17)

In the current chapter we will investigate the long-time behavior of problem (7.15)-
(7.17) in the two-dimensional case, i.e. when Ω ⊂ R

2 which is a natural setting for
species raised in a cell-culture dish. We will mainly focus on its blow-up time behav-
ior which is actually linked with the case where chemo-attractant’s concentration
becomes quite high.

7.2 Mathematical Analysis

7.2.1 Preliminaries

Since Ω ⊂ R
2 is a bounded domain with smooth boundary ∂Ω , then the functional

Jλ(v) = 1

2
‖∇v‖22 − λ log

(∫
Ω

ev

)
+ λ(log λ − 1),

is C2 for any v ∈ H 1
0 (Ω), and we obtain the Trudinger–Moser inequality indicated

by
inf

v∈H 1
0 (Ω)

J8π (v) > −∞. (7.18)
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Equation (7.15) is actually the gradient flow of functional J , i.e. there holds

vt = −δJλ(v) in X = H 1
0 (Ω), (7.19)

where δJλ stands for the functional derivative of Jλ, hence

d

dt
Jλ(v(·, t)) = −‖vt (·, t)‖22 . (7.20)

Furthermore the mapping

v ∈ X �→ ev∫
Ω

ev
∈ X,

is Lipschitz continuous on each bounded set of X , and therefore, (7.15) is well-
posed in X. In particular, given initial value v0 ∈ X , there exists a unique semi-group
solution v = v(·, t) ∈ X locally in time, and henceforth its maximum existence time
is denoted by T = Tmax ∈ (0,+∞], which is estimated frombelowby ‖∇v0‖2. Then,
due to (7.18) and via the parabolic regularity we obtain for λ < 8π

T = +∞ and sup
t≥0

‖v(·, t)‖∞ < +∞, (7.21)

whereas
lim
t↑T

‖v(·, t)‖∞ = +∞, (7.22)

if T < +∞. In the latter case we can define the set

S = {
x0 ∈ Ω | ∃xk → x0,

∃tk ↑ T, s.t. v(xk, tk) → +∞} �= ∅,

which is called the blow-up set of v. The blow-up setS can be also defined in case
where (7.22) is fulfilled for T = ∞.

Note also that
v(·, t) ≥ inf

Ω
v0,

by the comparison principle, and henceforth, v0 ≥ 0 is assumed without loss of
generality.

The parabolic Brezis–Merle’s inequality [9, 35], on the other hand, is concerned
with the linear parabolic equation

vt = �v + f (x, t) inΩ × (0, T ), v|∂Ω = 0, v|t=0 = 0,

where Ω is again a two-dimensional bounded domain with smooth boundary ∂Ω .
Its global form assures that any δ > 0 admits p > 1 and C > 0 such that
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sup
t∈(0,T )

‖ f (·, t)‖1 < 4π − δ ⇒ sup
t∈(0,T )

∥∥ev(·,t)∥∥
p ≤ C.

This induces the local version, andgiven subdomainsω and ω̂ satisfyingω ⊂⊂ ω̂ ⊂⊂
Ω and δ > 0, we obtain p > 1 and C > 0 both determined by sup t∈(0,T ) ‖ f (·, t)‖1
such that

sup
t∈(0,T )

‖ f (·, t)‖L1(ω̂) < 4π − δ ⇒ sup
t∈(0,T )

∥∥ev(·,t)∥∥
L p(ω)

≤ C.

Remark 7.2.1 Here we should point out that local-existence of problem (7.15)–
(7.17) can be also derived by using two iteration schemes with starting point an
upper-lower solution pair (z, w) defined as

zt ≤ �z + λez∫
Ω

ew dx
in Ω × (0, T ), (7.23)

wt ≥ �w + λew∫
Ω

ez dx
in Ω × (0, T ), (7.24)

z(x, t) ≤ 0 ≤ w(x, t), on ∂Ω × (0, T ), (7.25)

z(x, 0) ≤ v0(x) ≤ w(x, 0) in Ω, (7.26)

and following a similar approach to Proposition 1.2.2.

7.2.2 Blow-Up Results

This subsection is devoted to the investigation of the blow-up behavior of problem
(7.15)–(7.17). Our first result rules out the possibility of blow-up taking place on the
boundary ∂Ω in case of a convex domain Ω. In particular, the following holds

Lemma 7.1 If T < +∞ and Ω is convex, then S ⊂ Ω .

Proof Let v = v(x, t) be a solution to (7.15) with v|t=0 = v0(x). Having assumed
v0 ≥ 0, we obtain v = v(x, t) ≥ 0, and then

sup
t∈[0,T )

‖v(·, t)‖p < +∞, (7.27)

follows for any p ≥ 1 by virtue of the global parabolic Brezis–Merle inequality.
Notably v is a solution to

vt = �v + σ(t)ev inΩ × (0, T ), v|∂Ω = 0, v|t=0 = v0(x)

http://dx.doi.org/10.1007/978-3-319-67944-0_1


234 7 A Non-local Model Arising in Chemotaxis

for σ(t) = λ∫
Ω

ev(·,t) and the method of the moving plane, [8], is applicable. Using

(7.27), now we can apply the argument of [5], and conseqeuntly, there is an open set
ω̂ containing ∂Ω and a constant C > 0 such that

sup
t∈[0,T )

‖v(·, t)‖L∞(Ω∩ω̂) ≤ C,

and therefore, S ⊂ Ω . �
Remark 7.2.2 Due to a uniform L1−estimate of the solution of (7.15) the result of
the above Lemma can be extended to higher dimensions N ≥ 2. In fact, multiplying
the equation of (7.15) by the eigenfunction φ1(x) > 0 corresponding to the principal
eigenvalue λ1 of −�D and integrating all over Ω we obtain

d

dt

∫
Ω

v(x, t) φ1(x) dx ≤ −λ1

∫
Ω

v(x, t) φ1(x) dx + λM, 0 < t < T,

for M = maxΩ̄ φ1(x) > 0, which implies

∫
Ω

v(x, t) φ1(x) dx ≤ C := C(v0, λ1, λ, M) for any 0 < t < T . (7.28)

Since Ω is convex, using the method of moving planes, [8], we can find Ω̄0 ⊂ Ω

such that
∫

Ω

v(x, t) dx ≤ k + 1

m

∫
Ω0

v(x, t) φ1(x) dx ≤ k + 1

m

∫
Ω

v(x, t) φ1(x) dx < C1,

(7.29)
by (7.28) for any 0 < t < T and m = minΩ̄0

φ1(x) > 0. Using now estimate (7.29),
which for N = 2 stems from the parabolic version of the Brezis–Merle’s inequality,
along with the arguments introduced in [5] we derive the desired result. If v = v(x, t)
is radially symmetric and decreasing in r = |x |, and if (7.22) holds, then S = {0}
by the same reasoning. We also note that in the case of Tmax = +∞, any radially
symmetric solution becomes decreasing in r = |x | eventually, see [25].

Note that stationary problem to (7.15)–(7.17) is described by

− �v∗ = λev∗∫
Ω

ev∗
inΩ, v∗ = 0 on ∂Ω. (7.30)

Let now
E = {v∗ | v∗is a classical solution to (7.30)}

then we have the following result due to Wolansky, see Theorem 8 in [34]. Since
the local well-posedness in time of (7.15)–(7.17) in X = H 1

0 (Ω) together with the
Trudinger–Moser inequality are used then its proof is valid only to N = 1, 2. How-
ever, here a simpler proof is provided.
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Lemma 7.2 If E = ∅, then it holds that

• (i)

lim
t↑T

∫
Ω

ev(·,t) = +∞, (7.31)

• (i i) S �= ∅,

where the case T = +∞ is also permitted.

Proof We first prove statement (i i). If we assume that S = ∅, then

sup
t∈[0,T )

‖v(·, t)‖∞ < +∞.

The latter implies T = +∞ and E �= ∅ by a standard argument using Lyapunov
function [10], which leads to a contradiction.

Next we proceed with the proof of (i). Therefore if we assume that

lim inf
t↑T

∫
Ω

ev(·,t) < +∞,

then we obtain

lim
t↑T

Jλ(v(·, t)) ≥ lim sup
t↑T

{
−λ log

(∫
Ω

ev(·,t)
)}

+ λ(log λ − 1) > −∞, (7.32)

and finally

1

2
lim inf

t↑T
‖∇v(·, t)‖22

≤ Jλ(v0) + λ lim inf
t↑T

log

(∫
Ω

ev(·,t)
)

− λ(log λ + 1) < +∞.

The latter estimation guarantees T = +∞ owing to the well-posedness of (7.15)–
(7.17) in X = H 1

0 (Ω). Furthermore, there are δ ∈ (0, 1), tk ↑ +∞, and C > 0 such
that tk+1 > tk + 1 and

sup
t∈(tk ,tk+δ)

‖∇v(·, t)‖2 ≤ C.

The latter implies

∞∑
k=1

∫ tk+δ

tk

‖vt (·, t)‖22 dt ≤
∫ ∞

0
‖vt (·, t)‖22 dt < +∞,
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by (7.32) and (7.20), and therefore,

lim
k→∞

∫ tk+δ

tk

‖vt (·, t)‖22 dt = 0.

Then, we can find t ′
k ∈ (tk, tk + δ) satisfying

∥∥vt (·, t ′
k)

∥∥
2 → 0. Since∥∥∇v(·, t ′

k)
∥∥
2 ≤ C , we obtain a subsequence, denoted by the same symbol, such that

v(·, t ′
k) ⇀ ∃w weakly in X . This implies ev(·,tk ) → ew strongly in L p(Ω), p ≥ 1, by

the Trudinger–Moser inequality, and then w ∈ E follows, which is a contradiction.
�

The following result which is due to Wolansky, [34], actually says that above the
threshold 8π a mass concentration occurs at the origin x = 0 in the case of the unit
disc Ω = B1(0) = {

x ∈ R
2 | 0 ≤ |x | < 1

}
.

Theorem 7.1 If Ω = B1(0), v0 = v0(|x |) is smooth and λ ≥ 8π, then

ev∫
Ω

ev
⇀ δ0(dx) as t ↑ T, (7.33)

for the solution v of (7.15)–(7.17), where T ≤ +∞.

Proof LetΩ = B1(0), v0 = v0(|x |) ≥ 0, and λ ≥ 8π . We obtain E = ∅ in this case,
and therefore, S �= ∅ and also (7.31) holds true. Since v = v(|x | , t), then any
x0 ∈ Ω \ {0} admits 0 < r � 1 such that

sup
t∈(0,T )

∥∥∥∥ λev(·,t)∫
Ω

ev(·,t)

∥∥∥∥
L1(B2r (x0))

< 4π.

Accordingly, the local parabolic Brezis–Merle’s inequality applied to problem
(7.15)–(7.17) guarantees

sup
t∈(0,T )

∥∥ev(·,t)∥∥
L p(Br (x0))

< +∞,

with p > 1, and therefore, there holds that

sup
t∈(0,T )

∥∥∥∥ λev(·,t)∫
Ω

ev(·,t)

∥∥∥∥
L p(Br (x0))

< +∞,

since v ≥ 0. The latter implies

sup
t∈(0,T )

‖v(·, t)‖W 2,p(Br/2(x0)) < +∞,

via the local parabolic regularity, and hence x0 /∈ S by Sobolev’s imbedding theo-
rem. Consequently, we have S = {0} and so (7.33) is valid. �
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Although the case T = +∞ is also admitted in the above theorem, in [16] is
proven the following more delicate result.

Theorem 7.2 If Ω = B1(0) and v0 = v0(|x |) is smooth, then finite-time blow-up
occurs for the solution of (7.15)–(7.17), i.e. T < +∞, provided that λ > 8π .

Proof First note, that v is radial symmetric, i.e. v(x, t) = v(r, t)where r = |x |, since
Ω = B(0, 1). Furthermore, for u defined by (7.14) we have∇u = u∇v and therefore
via integration by parts,

−
∫

Ω

u∇ · ψ dx =
∫

Ω

uψ · ∇v dx, (7.34)

for any ψ ∈ C1(Ω) × C1(Ω). In view of the following problem

vt = �v + u in Ω, v = 0 on ∂Ω, (7.35)

we can express v as follows

v = (−�D)−1u − (−�D)−1vt ,

where w = (−�D)−1u denotes the solution of the following Dirichlet problem

−�w = u inΩ, w = 0 on ∂Ω.

Next we define the function

ρ(x, x ′) = ψ(x) · ∇x G(x, x ′) + ψ(x ′) · ∇x ′ G(x, x ′),

where G = G(x, x ′) is the Green’s function of −�D satisfying G(x ′, x) = G(x, x ′)
and

G(x, x ′) = 1

2π
log

1

|x − x ′| + K (x, x ′), (7.36)

with K ∈ C2+θ
loc (Ω × Ω ∪ Ω × Ω) for 0 < θ < 1.

Thus, the right-hand side of (7.34), see [32], is equal to
∫

Ω

uψ · ∇v dx =
∫

Ω

uψ · ∇ {
(−�D)−1u − (−�D)−1vt

}
dx

= 1

2

∫ ∫
Ω×Ω

ρ(x, x ′)u(x, t)u(x ′, t)dxdx ′ −
∫

Ω

uψ · ∇(−�D)−1vt dx .

Considering now a test function of the form ψ(x) = xϕ(|x |) for ϕ = ϕ(|x |) ∈
C∞
0 (Ω) satisfying 0 ≤ ϕ ≤ 1 and ϕ = 1 near x = 0 then, ∇ · ψ |x=0 = 2 and there-

fore, ∫
Ω

u∇ · ψ dx = 2λ + o(1), (7.37)
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holds as t ↑ T by (7.33).
The relation (7.36), on the other hand, guarantees

ρ(x, x ′) = − 1

2π
+ L(x, x ′),

with L = L(x, x ′) ∈ C(Ω × Ω) satisfying L(0, 0) = 0, and therefore,

1

2

∫ ∫
Ω×Ω

ρ(x, x ′)u(x, t)u(x ′, t)dxdx ′ = − λ2

4π
+ o(1),

as t ↑ T . Thus, by virtue of (7.34) and (7.37) we obtain

−
∫

Ω

u(ψ · ∇)(−�D)−1vt dx = λ2

4π
− 2λ + o(1), (7.38)

as t ↑ T .

In addition, the relation V = (−�D)−1vt implies (r Vr )r = −rvt , and hence

r Vr (r, t) = −
∫ r

0
svt (s, t)ds.

The latter implies

(ψ · ∇)(−�D)−1vt = ϕ(r)r∂r (−�D)−1vt = −ϕ(r)

∫ r

0
svt (s, t)ds

= −ϕ(r)

2π

∫
B(0,r)

vt (s, t) dx,

and thus we derive

−
∫

Ω

u(ψ · ∇)(−�D)−1vt dx ≤ λ

2π
sup

r
ϕ(r)

∫
B(0,r)

vt dx ≤ λ

2π
‖vt‖1,

since u ≥ 0 and

‖u‖1 = λ. (7.39)

Finally by virtue of (7.38) and taking also into account that λ > 8π we end up
with

lim inf
t↑T

‖vt (·, t)‖1 ≥ λ

2
− 4π > 0, (7.40)

which entails
‖vt (·, t)‖2 ≥ δ, (7.41)
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with δ > 0 independent of t ≥ 1, in case of a global-in-time solution, i.e. for
T = +∞.

Let now 0 < μ1 < μ2 ≤ . . . be the eigenvalues of −�D with corresponding L2-
normalized eigenfunctions ϕ j = ϕ j (x), j = 1, 2, ..., i.e.

−�ϕ j = μ jϕ j in Ω, ϕ j = 0 on ∂Ω, with
∥∥ϕ j

∥∥
2 = 1.

Then, we have the following asymptotic behavior, [30],

μ j ∼ j and
∥∥ϕ j

∥∥∞ ≤ C j1/4 as j → ∞. (7.42)

If T = +∞, then by virtue of (7.27) for p = 2, we can find tk → +∞ and a v∗ ∈
L2(Ω) such that

v(·, tk) ⇀ v∗(·) weakly in L2(Ω) as k → ∞. (7.43)

Set g j (t) = 〈
v(·, t), ϕ j

〉
then there holds

ġ j = −μ j g j + 〈
u, ϕ j

〉
,

and thus

g j (t + tk) = e−μ j t g j (tk) +
∫ t

0
e−(t−s)μ j

〈
u(·, s + tk), ϕ j

〉
ds.

The above relation leads, taking also into account (7.39), to the estimate

∣∣〈v(·, t + tk), ϕ j
〉∣∣ ≤ e−μ j t ‖v(·, tk)‖2 + λ

∥∥ϕ j

∥∥∞ μ−1
j ,

which by virtue of (7.27) and (7.42) implies

∣∣〈v(·, t + tk), ϕ j
〉∣∣ ≤ A j ,

for t ≥ 1 and k = 1, 2, . . . where A j = C(e−α j + λ j− 3
4 ) > 0 for j � 1, α > 0, and

C > 0, satisfying
∑∞

j=1 A2
j < +∞.

Now using (7.33) and (7.43) we derive

g j (t + tk) → e−μ j t
〈
v∗, ϕ j

〉 +
∫ t

0
e−(t−s)μ j λϕ j (0)ds

= e−μ j t 〈v∗, ϕ〉 + λϕ j (0)

μ j
(1 − e−μ j t ),

as k → ∞ uniformly in t ≥ 1 for each j , and therefore,

v(·, t + tk) → V (·, t) as k → ∞,
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in L2(Ω) uniformly in t ≥ 1, where

V (·, t) =
∞∑
j=1

{
e−μ j t

〈
v∗, ϕ j

〉 + λϕ j (0)

μ j
(1 − e−μ j t )

}
ϕ j .

Similarly,
vt (·, t + tk) → W (·, t) as k → ∞,

in L2(Ω) uniformly in t ≥ 1, where

W (·, t) =
∞∑
j=1

e−μ j t
{−μ j

〈
v∗, ϕ j

〉 + λϕ j (0)
}
ϕ j = Vt , (7.44)

and thus

‖W (·, t)‖22 ≥ δ2, (7.45)

by virtue of (7.41).
On the other hand, (7.44) implies

‖W (·, t)‖22 =
∞∑
j=1

e−2μ j t
∣∣−μ j

〈
v∗, ϕ j

〉 + λϕ j (0)
∣∣2 → 0 as t → +∞,

which actually contradicts (7.45). This completes the proof of the theorem.

The above theorem entails that the formation of collapse with dis-quantized mass
occurs in finite time for the limiting case ε = 0, in contrast with what happens in
other limiting case τ = 0, regarding the problem (7.5)–(7.8).

7.3 An Associated Competition-Diffusion System

In the current subsection a brief investigation of a non-local reaction-diffusion system
stems from (7.15)–(7.17) is delivered. Specifically, we consider the following

zt = �z + f (z, w) in Ω × (0, T ), (7.46)

wt = �w + g(z, w) in Ω × (0, T ), (7.47)

z(x, t) = w(x, t) = 0, on ∂Ω × (0, T ), (7.48)

z(x, 0) = z0(x), w(x, 0) = w0(x), in Ω, (7.49)
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where

f (z, w) = λez∫
Ω

ew dx
and g(z, w) = λew∫

Ω
ez dx

.

Notably, in case where z(x, t) = v(x, t) then system (7.23)–(7.26) is reduced to
problem (7.15)–(7.17).

Next, we observe that

∂ f (z, w)

∂w
≤ 0 and

∂g(z, w)

∂z
≤ 0, (7.50)

and thus (7.23)–(7.26) is a competition-diffusion system with non-local competition
terms according to [19].

As it is pointed out in [19] one of the prominent characteristics of competition-
diffusion systems for two species is the so-called comparison principle, which stems
from the maximum principle. Owing to this property, the general theory of strongly
order-preserving local semiflows, [12] implements to system (7.23)–(7.26), thereby
providing a number of results on the dynamical structure of this system. To this end,
we first introduce the comparison principle for system (7.23)–(7.26) as follows.

Comparison Principle: Let (z, w), (z̄, v̄) be solutions to (7.23)–(7.26) with ini-
tial data (z0, w0), (z0, v0) respectively. Suppose z0(x) ≥ z0(x), w0(x) ≤ w0(x)

for all x ∈ Ω and z(x, t) ≥ z(x, t), w(x, t) ≤ w(x, t) for all (x, t) ∈ ∂Ω ×
(0, T ). Then w(x, t) ≥ w(x, t), and z(x, t) ≤ z(x, t) for all (x, t) ∈ Ω × (0, T ).

Motivated by the above comparison principle we determine, see also [19], the
following order relation in the space C(Ω) × C(Ω)

(
z
w

)
≥

(
z
w

)
⇔ z(x) ≥ z(x) and w(x) ≤ w(x) for any x ∈ Ω. (7.51)

The strict form of relation (7.51) is defined as follows:
(

z
w

)
�

(
z
w

)
⇔ z(x) ≥ z(x) and w(x) ≤ w(x) with z(x)�z(x) and w(x) � w(x),

for any x ∈ Ω̄.

Owing to (7.50) the local semiflow designated by system (7.23)–(7.26) preserves
the order relation defined above. Moreover, since we actually have

∂ f (z, w)

∂w
< 0 and

∂g(z, w)

∂z
< 0,

then there finally holds that the local semiflow is strongly order-preserving with
respect to the order relation provided above, [19].
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Property (7.50) suggests that some interesting properties of the determined local
semiflow hold as described by Theorem 7.3.2, see also [12, 19]. Before stating the
result of this theorem we need to introduce the following definition

Definition 7.3.1 We say that

φ(x) =
(

z(x)

w(x)

)
,

is a (time-independent) super-solution to (7.23)–(7.26) if the following inequalities
are satisfied

−�z ≥ λez∫
Ω

ew dx
, −�w ≤ λew∫

Ω
ez dx

in Ω,

z ≥ 0 ≥ 0, on ∂Ω.

In case the reverse inequalities are fulfilled then φ is called a (time-independent)
sub-solution. Once, the above inequalities are strict then we end up with strict super
and sub-solutions.

Theorem 7.3.2 The following statements hod true:

(i) Theω−limit sets of almost bounded orbits of system (7.23)–(7.26)are contained
in the set of the stationary solutions designated as:

−�v1 = λev1∫
Ω

ev2 dx
, −�v2 = λev2∫

Ω
ev1 dx

in Ω, (7.52)

v1 = v2 = 0, on ∂Ω. (7.53)

(ii) Any periodic orbit of of system (7.23)–(7.26) is unstable.
(iii) Any unstable stationary solution

v∗(x) =
(

v∗
1(x)

v∗
2(x)

)
,

(which solves (7.52)–(7.53)) has a non-trivial unstable set, i.e. there exists

φ(x, t) =
(

z(x, t)
w(x, t)

)
�= v∗(x) =

(
v∗
1(x)

v∗
2(x)

)
,

such that φ(t) → v∗ as t → −∞ in C(Ω̄).

(iv) Assume that ξ =
(

ξ1
ξ2

)
∈ C(Ω) × C(Ω) be a strict super-solution and ζ =(

ζ1
ζ2

)
∈ C(Ω) × C(Ω) be a strict sub-solution of (7.23)–(7.26) such that
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ξ(x) � ζ(x) in Ω, then there exists a stable stationary solution v∗ =
(

v∗
1

v∗
2

)

such that ξ(x) ≤ v∗(x) ≤ ζ(x) in Ω, i.e.

ξ1(x) ≤ v∗
1(x) ≤ ζ1(x) and ζ2(x) ≤ v∗

2(x) ≤ ξ2(x) for any x in Ω.

An immediate consequence of Theorem 7.3.2 is the following

Corollary 7.3.3 If for system (7.23)–(7.26) we consider initial data

(
z0
w0

)
= v∗ =

(
v∗
1

v∗
2

)
,

where v∗ is the stable stationary point provided by Theorem 7.3.2 (iv) then system
(7.23)–(7.26) has a global-in-time solution.

Proof Indeed a straightforward application of the comparison principles entails that

ξ(x) =
(

ξ1(x)

ξ2(x)

)
≤

(
z(x, t)
v(x, t)

)
≤

(
ζ1(x)

ζ2(x)

)
= ζ(x) for any x ∈ Ω and for any t > 0.

�
which evidently entails the existence of a global-in-time solution for problem (7.23)–
(7.26).

Remark 7.3.4 In case where

ξ(x) =
(

ψ(x)

0

)
and ζ(x) =

(
0

ψ(x)

)
,

for ψ being a steady-state solution of (7.15)–(7.17) then Corollary 7.3.3 guarantees
the existence of a global-in-time solutions of this problem.

We close this section with a brief investigation of the steady-state problem (7.52)–
(7.53) in the radial symmetric case, i.e. whenΩ = B1(0) = {

x ∈ R
N | |x | < 1

}
, for

N ≥ 3. We first observe that in this case the solutions of (7.52)–(7.53) are radially
symmetric and thus problem (7.52)–(7.53) reduces to

−�r v1 = λev1

NωN
∫ 1
0 r N−1ev2(r) dr

, −�r v2 = λev2

NωN
∫ 1
0 r N−1ev1(r) dr

in (0, 1),

(7.54)
∂v1
∂r

∣∣∣
r=0

= ∂v2
∂r

∣∣∣
r=0

= 0, v1(1) = v2(1) = 0, (7.55)

where �r := r N−1 ∂2

∂r2 + (N − 1)r N−2 ∂2

∂r2 and r = |x |, recalling that ωN denotes the
volume of the N -dimensional unit sphere. Let us set
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σ1 = λ

NωN
∫ 1
0 r N−1ev2(r) dr

and σ2 = λ

NωN
∫ 1
0 r N−1ev1(r) dr

, (7.56)

then the non-local system (7.52)–(7.53) is reduced to the following local one

−�r v1 = σ1ev1 , −�r v2 = σ2ev2 in (0, 1), (7.57)
∂v1
∂r

∣∣∣
r=0

= ∂v2
∂r

∣∣∣
r=0

= 0, v1(1) = v2(1) = 0, v1(1) = v2(1) = 0,

(7.58)

and those two problems are equivalent through (7.56). Moreover, (7.56) also yields

σ1NωN

∫ 1

0
r N−1ev1(r) dr = σ1

σ2
λ and σ2NωN

∫ 1

0
r N−1ev2(r) dr = σ2

σ1
λ.

(7.59)

Remarkably, the solution set

C r
i = {(σi , vi )|vi (x) is a classical solution to (7.57)–(7.58) for σi > 0}, i = 1, 2,

is a one-dimensional open manifold with end points (0, 0) and (2(N − 2), log 1
r ),

where the latter one is a weak solution of (7.57)–(7.58), see also [15, 20]. Therefore,
the solution set

S r =
{
(λ, v1, v2)

∣∣∣
(

v1
v2

)
is a classical solution to (7.54)–(7.55) for λ > 0

}
,

is a two-dimensional manifold with end points (0, 0, 0) and (2αN , log 1
r , log 1

r ),
where αN = NωN denotes the (N − 1)-dimensional volume of the surface of the
unit ball in R

N . Again the latter end point is a weak solution of (7.54)–(7.55).
Using Emden’s transformation

vi (r) = wi (τ ) − 2τ + A, r = Beτ , B =
(
2(N − 2)

σi eA

)1/2

, i = 1, 2, (7.60)

then system (7.57)–(7.58) is transformed to

ẅi + (N − 2)ẇi + 2(N − 2)(ewi − 1) = 0, lim
τ→−∞ wi (τ ) = −∞, lim

τ→−∞ ẇi (τ ) = 2, i = 1, 2,

(7.61)

where ẇi = dwi
dτ

, ẅi = d2wi
dτ 2 , and by this transformation any (σi , vi ) ∈ C r

i ,

i = 1, 2, corresponds to a point P(wi , ẇi ) ∈ O = {(w(t), ẇ(t)), t ∈ R}.
Additionally, by virtue of (7.56), (7.61) we also have
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λ = σiαN

∫ 1

0
r N−1evi (r) dr = −αN

∂vi

∂r

∣∣∣
r=1

= αN (2 − ẇi ), i = 1, 2, (7.62)

which in conjunction with (7.59) entails

2 − ẇ1 = λ

αN

σ1

σ2
= λ

αN
ew1−w2 and 2 − ẇ2 = λ

αN

σ2

σ1
= λ

αN
ew2−w1 . (7.63)

Now for any given 0 < λ < λ∗ where

λ∗ := sup{λ > 0 : problem (7.54) − (7.55) has a solution corresponding to λ},

we consider a point P(w0, ẇ0) ∈ O determined by 2 − ẇ0 = λ
αN

. Assuming that
w1 > w2, then there exists γ > 1 such that w2 = w1 − log γ, and thus

2 − ẇ1 = γ
λ

αN
and 2 − ẇ2 = 1

γ

λ

αN
, (7.64)

by virtue of (7.62) and (7.63).
Writing w2 = w2(γ ), we then have

2 − ẇ2(γ ) = 1

γ

λ

αN
,

by (7.64), and if N ≥ 10 the mapping γ ∈ (1, 2) �→ ẇ2(γ ) is monotone increasing
and there holds

lim
γ↓1 ẇ2(γ ) = λ

αN
and lim

γ↑2 ẇ2(γ ) = 2.

Consequently, the following statement holds true

Theorem 7.3.5 For any 0 < λ ≤ αN and N ≥ 10 there exists a solution

(
v1
v2

)
to

(7.54)–(7.55) such that

v2 ≤ v0 ≤ v1, (7.65)

where v0 is a solution to the following

−�r v = λev

NωN
∫ 1
0 r N−1ev(r) dr

, in (0, 1),

∂v

∂r

∣∣∣
r=0

= 0, v(1) = 0.

In case λ = αN , then v1 = v2 = v0, otherwise the inequalities in (7.65) are strict.
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7.4 Miscellanea

The current section is devoted to several remarks. First of all we note that the Green’s
function of the operator −�D for Ω = B1(0) is given explicitly by

G(x, x ′) = − 1

4π
log

∣∣∣∣ z − z′

1 − zz′

∣∣∣∣
2

,

where z and z′ are complex numbers corresponding to x and x ′, respectively. The
latter implies

x · ∇x G(x, x ′) + x ′ · ∇x ′ G(x, x ′) = − 1

2π
· 1 − |ζ |2
|1 − ζ |2 ,

for ζ = zz′. We can then see that this function does not belong to L∞(Ω × Ω)

in contrast with the corresponding function derived from the Green’s function to
−�J L , see also [32]. There is a similar difficulty in (7.5)–(7.8), and the control of the
boundary blow-up points has not been completed even in the case of (ε, τ ) = (1, 0).

Next, if 0 < λ < 8π , the stationary problem (8.103) admits a unique solution
[31]. Since (7.21) holds in this range of λ, then solution v = v(x, t) to (7.15)–(7.17)
converges uniformly to this steady solution. Now, what is anticipated for the case
λ = 8π, Ω = B1(0) is that an infinite-time blow-up occurs for the solution v, i.e.,
T = +∞ and v(x, t) → 4 log 1

|x | locally uniformly in x ∈ Ω \ {0} as t ↑ +∞.
In the limiting case ε = 0 system (7.9)–(7.13) is described by

vt = �v + λ

(
ev∫
Ω

ev
− 1

|Ω|
)

inΩ × (0, T ), (7.66)

∂v

∂ν
= 0 on ∂Ω × (0, T ), (7.67)

with the smooth initial value v0 = v0(x) satisfying
∫
Ω

v0 dx = 0.
In the case where either 0 < λ < 4π or 0 < λ < 8π , v0 = v0(|x |), and

Ω = B1(0), we obtain (7.21) similarly to the full system, see [2, 7, 23]. In con-
trast to the case of problem (7.30) the stationary problem of (7.66)–(7.67) has the
trivial solution v = 0 for any λ. Furthermore, multiple existence of the stationary
(non-radially symmetric) solution arises even for 0 < λ < 4π and Ω = B1(0) [26,
32]. On the other hand, either T = +∞ or (7.33) with T < +∞ holds for prob-
lem (7.66)–(7.67), similarly to Theorem 7.2. There is, furthermore, a bifurcation
of non-constant radially symmetric stationary solutions at λ = λ∗ > 8π . Then, we
conjecture that any λ > 8π admits a radially symmetric stationary solution (possi-
bly the trivial one v = 0), stable in the space of radially symmetric functions. The
possibility of the occurrence of a mass concentration at the origin x = 0 as in (7.33)
holding with T < +∞ is left open for problem (7.66)–(7.67) even for λ > 8π and
Ω = B1(0) in contrast to Theorem 7.2.

http://dx.doi.org/10.1007/978-3-319-67944-0_8
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A simple blow-up criterion is obtained for the semilinear parabolic equation

vt = �v + |v|q−1 v inΩ × (0, T ), v = 0 on ∂Ω × (0, T ),

with 1 < q < ∞. In fact, this equation admits the properties

d

dt
J (v(·, t)) ≤ 0,

1

4

d

dt
‖v(·, t)‖22 = −J (v(·, t)) +

(
1

2
− 1

q + 1

)
‖v(·, t)‖q+1

q+1 ,

for

J (v) = 1

2
‖∇v‖22 − 1

q + 1
‖v‖q+1

q+1 .

Using the above, we can infer T < +∞ by J (v0) ≤ 0. The same argument is valid
to the following non-local problem

vt = �v + λev(∫
Ω

ev
)p in Ω × (0, T ),

v(x, t) = 0 on ∂Ω × (0, T ),

v(x, 0) = v0(x) in Ω,

with 0 < p < 1, see [1], but this is not the case for problem (7.15)–(7.17).
In fact, problem (7.15)–(7.17) can be written in the form (7.35) with u = λev∫

Ω
ev

satisfying ‖u‖1 = λ. Set Jλ(v) = L(u, v), where

Jλ(v) = 1

2
‖∇v‖22 − λ log

(∫
Ω

ev

)
+ λ(log λ − 1),

L(u, v) =
∫

Ω

u(log u − 1) + 1

2
‖∇v‖22 − 〈v, u〉 .

Then, it holds that

1

4

d

dt
‖v‖22 = −L(u, v) +

∫
Ω

u(log u − 1) − 1

2
uv dx

= −Jλ(v) + K (u, v),

with

K (u, v) =
∫

Ω

u(log u − 1) − 1

2
uv dx

≥ K |
u= λev/2∫

Ω ev/2
= −λ log

∫
Ω

ev/2 + λ(log λ − 1),
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i.e.,

1

4

d

dt
‖v(·, t)‖22 ≥ −Jλ(v(·, t)) − λ log

(∫
Ω

ev(·,t)/2
)

+ λ(log λ − 1).

In spite of
d

dt
Jλ(v(·, t)) ≤ 0,

the above inequality is not sufficient to guarantee T < +∞ because of the negativity
of the second term on its right-hand side.
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Chapter 8
A Non-local Reaction-Diffusion System
Illustrating Cell Dynamics

Abstract Initially a reaction-diffusion systemwith non-local reaction terms is build
up as amathematical model to illustrate the evolution of protein dimers within human
cells. The derived system inspects the situation when chemical reactions occur when
the two chemicals within a cell are in distance R, where such a distance is the
reaction radius. Next, the long-time behavior of the solutions of the preceding non-
local system is investigated as well as the phase separation phenomenon occurring
when the reaction takes place very fast is also examined. It is actually shown that a
two-phase Stefan problem is derived in the limit of infinite chemical reaction rate.
Next the convergence of the global-in-time solution to the preceding system towards
the unique stationary solution is derived. The chapter closes with some results on
the determination of the decay rate of the above convergence towards the unique
stationary solution.

8.1 Derivation of the Non-local Reaction-Diffusion System

We first consider the system describing the dynamics of the spatially distributed
fundamental chemical reaction between the reactants A and B

A + B → C, (8.1)

with a reaction rate k. Taking also into account the diffusion, this process is usually
modeled by the following reaction-diffusion system

∂qA

∂t
= DAΔqA − kAqAqB,

∂qB
∂t

= DBΔqb − kBqAqB, (8.2)

using the diffusion constants DA, DB , the renormalized reaction rates kA = k[B]∗,
kB = k[A]∗, and the relative concentrations 0 ≤ qA = [A]/[A]∗ ≤ 1, 0 ≤ qB =
[B]/[B]∗ ≤ 1, where [A] and [B] are the concentrations of the reactants A and B,
respectively, and [A]∗ and [B]∗ are those in saturated states. The law of mass action
which actually interprets the fact that the chemical reaction occurswith theprobability

© Springer International Publishing AG 2018
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proportional to the collision of the molecules of the reactants A, B and that this prob-
ability is proportional to the product of [A] and [B] entails

d[A]
dt

= −k[A][B], d[B]
dt

= −k[A][B],

which implies
dqA

dt
= −kAqAqB,

dqB
dt

= −kBqAqB . (8.3)

On the other hand, in a microscopic level, and differently from [16], we consider
0 ≤ qA = qA(x, t) ≤ 1 and 0 ≤ qB = qB(x, t) ≤ 1 as the existence probabilities of
A and B molecular, respectively and thus the diffusion process can be described as
a random walk of many interacting particles. We assume that this walk is provided
with the constant jump length Δx and let 0 ≤ σ = σ(x, t;ω) ≤ 1 be its transient
probability in the direction ω ∈ S N−1 = {ω ∈ R

N | |ω| = 1} during the calculation
time Δt . This setting establishes the master equation

qi (x, t + Δt) − qi (x, t) =
∫
S N−1

σi (x + ωΔx, t;−ω)qi (x + ωΔx, t)dω

−
∫
S N−1

σi (x, t;ω)dω · qi (x, t), (8.4)

for i = A, B and then the mean waiting time τ is defined by

1

Δt

∫
S N−1

σi (x, t;ω)dω = τ−1. (8.5)

Here and henceforth, dω stands for a probability measure on S N−1, and thus

∫
S N−1

dω = 1.

Einstein’s formula asserts that τ is independent of (x, t) and is given by the relation

τ = (Δx)2

2ND
,

with the diffusion coefficient D, see [3]. In the simplest case that σi (x, t;ω) is a
constant denoted by σi , it follows that

σi

Δt
= 2NDi

(Δx)2
,
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and hence the master equation (8.4) is reduced to

1

Δt
{qi (x, t + Δt) − qi (x, t)} = σi

Δt

∫
S N−1

[
qi (x + ωΔx, t) − qi (x, t)

]
dω

= 2NDi

(Δx)2

∫
S N−1

[
qi (x + ωΔx, t) − qi (x, t)

]
dω.

(8.6)

Then
∂qi
∂t

= DiΔqi , i = A, B, (8.7)

arises in the mean field limit Δt ↓ 0, Δx ↓ 0, assuming that qi = qi (x, t) is smooth
in (x, t) and using the following elementary result (see [11])

Lemma 8.1 If dω is isotropic, that is

∫
S N−1

ωiω j dω = δi j

N
, i, j = 1, · · · , N ,

then there holds
∫
S N−1

[
f (x + ωΔx) − f (x)

]
dω = 1

2N
(Δx)2{Δ f (x) + o(1)}, Δx ↓ 0 (8.8)

for each f = f (x) ∈ C2(S N−1) where ω j = x j/|x |.
Using accordingly Lemma 8.1 then system (8.2) arises as a combination of (8.3)

and (8.7).
Next we adopt the ansatz that the chemical reaction takes place with definite rate

and it occurs if and only if a pair of A-B molecules are in a distance less than R, see
Fig. 8.1 Under this law of chemical reaction the master equation for A molecule is
now formulated by

Fig. 8.1 Chemical reaction
by distance R
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qA(x, t + Δt) − qA(x, t)

=
∫
S N−1

[
σA(x + ωΔx, t;−ω)qA(x + ωΔx, t) − σA(x, t;ω)qA(x, t)

]
dω

−QA→B
r Δt

v

∫
B(x,R)∩Ω

qB(y, t)dy · qA(x, t),

where 0 ≤ σA = σA(x, t;ω) ≤ 1 denotes the transient probability of A molecule,
and, more importantly, QA→B

r stands for the rate by which A molecule hits B mole-
cule to cause chemical reaction per unit time. The normalizing factor v has thus the
dimension of volume. It must hold that

0 ≤ 1

v

∫
B(x,R)∩Ω

qBdy ≤ 1

because this
1

v

∫
B(x,R)∩Ω

qBdy stands for the existence probability of B molecule

inside B(x, R) with qB regarded to be 0 outside Ω and consequently it follows that
v = |B(x, R)| = ωN RN . Similarly we derive

qB(x, t + Δt) − qB(x, t) =
∫
S N−1

σB(x + ωΔx, t;−ω)qB(x + ωΔx, t)

−σB(x, t;ω)qB(x, t)dω

−QB→A
r Δt

|B(x, R)|
∫
B(x,R)∩Ω

qA(y, t)dy · qB(x, t),

where QB→A
r denotes the rate bywhich Bmolecule hits Amolecule to cause chemical

reaction per unit time. In the case of constant transient probabilities, then the limit
system

∂qA

∂t
= DAΔqA − QA→B

r

|B(·, R)|
∫
B(·,R)∩Ω

qBdy · qA, (8.9)

∂qB
∂t

= DBΔqB − QB→A
r

|B(·, R)|
∫
B(·,R)∩Ω

qAdy · qB, (8.10)

arises in the mean field limit Δt ↓ 0,Δx ↓ 0 using again Lemma 8.1. Then (8.9)–
(8.10) is transformed to (8.2) if and only if

QA→B
r = kB = k[B]∗, and QB→A

r = kA = k[A]∗. (8.11)

More precisely, when the solution (qA, qB) to (8.9)–(8.10) is independent of x then
it satisfies (8.3) in ΩR × (0, T ), ΩR = {x ∈ Ω | dist(x, ∂Ω) > R}, provided that
(8.11) is satisfied.
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Next using the notation

u = [A] = qA[A]∗, d1 = DA,

v = [B] = qB[B]∗, d2 = DB,

then problem (8.9)–(8.10) with (8.11) reads

ut = d1Δu − ku · −
∫
B(·,R)∩Ω

v in Ω × (0, T ), (8.12)

vt = d2Δv − kv · −
∫
B(·,R)∩Ω

u in Ω × (0, T ), (8.13)

∂u

∂ν
= ∂v

∂ν
= 0 on ∂Ω × (0, T ), (8.14)

u|t=0 = u0(x) ≥ 0, v|t=0 = v0(x) ≥ 0 in Ω, (8.15)

where

−
∫

= 1

ωN RN

∫
.

8.2 Mathematical Analysis

8.2.1 Preliminary Results

We first note that by a standard argument we obtain a unique local-in-time classical
solution

(u, v) ∈ C2,1(Ω × [0, T ))2,

of problem (8.12)–(8.15), for 0 < T < 1, under the assumption

0 ≤ u0, v0 ∈ C2(Ω),
∂u0
∂ν

= ∂v0
∂ν

= 0 on ∂Ω. (8.16)

Then it follows that

0 ≤ u ≤ ‖u0‖∞, 0 ≤ v ≤ ‖v0‖∞ in QT = Ω × (0, T ), (8.17)

by virtue of the comparison principle. The later a priori estimate and the standard
parabolic regularity entail that the solution of problem (8.12)–(8.15) is extended
globally in time, [14].

Furthermore, by Schauder-type arguments we obtain

‖u‖C1+θ,1/2+θ/2(QT ) + ‖v‖C1+θ,1/2+θ/2(QT ) ≤ C,
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for 0 < θ < 1with a constantC = C(k, T ) independent of R > 0,which guarantees
the convergence as R ↓ 0, i.e.

uR → u, vR → v in C1,0(QT ), (8.18)

passing to a subsequence. This (u, v) ∈ C1,0(QT ) is a weak solution to the following
(local) reaction-diffusion system

ut = d1Δu − kuv in Ω × (0, T ), (8.19)

vt = d2Δv − kvu in Ω × (0, T ), (8.20)
∂u

∂ν
= ∂v

∂ν
= 0 on ∂Ω × (0, T ), (8.21)

u|t=0 = u0(x) ≥ 0, v|t=0 = v0(x) ≥ 0 in Ω, (8.22)

and, hence it is derived, by means of parabolic regularity, that it is the classical
solution. Due to the uniqueness of the solution of problem (8.19)–(8.22), we finally
derive that the limit in (8.18) is the (unique) solution of (8.19)–(8.22).

Several properties are known regarding the dynamics of the solutions of problem
(8.19)–(8.22). First if ‖u0‖1 = ‖v0‖1, [7, 8, 10], then the solution decays with rate
which resembles that of the ODE part

dU

dt
= −kUV, U (0) = u0 ≡ −

∫
Ω

u0,

dV

dt
= −kUV, V (0) = v0 ≡ −

∫
Ω

v0.

More precisely, as t → ∞ we have

‖(u, v)(·, t)‖∞ = O(t−1),

‖(u, v)(·, t) − (U, V )(t)‖∞ = O(t−2),

‖(u, v)(·, t) − (u, v)(t)‖∞ = O(e−dμ2t ),

for

u(t) = −
∫

Ω

u(·, t), v(t) = −
∫

Ω

v(·, t),

where
d = min{d1, d2}, (8.23)

andμ2 > 0 denotes the second eigenvalue of−Δ providedwith theNeumann bound-
ary condition. In the complementary case, when ‖u0‖1 > ‖v0‖1, only u survives as
t ↑ +∞ and there holds
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‖u(·, t) − u∞‖∞ =
{
O(e−βt ), d1μ2 
= u∞
O(te−βt ), d1μ2 = u∞

,

‖v(·, t)‖∞ = O(e−u∞t ),

where β = min{d1μ2, u∞} and

u∞ = −
∫

Ω

(u0 − v0) > 0.

The second property characterizing problem (8.19)–(8.22) is the phase separation
occurring as k ↑ +∞, see [4]. In particular, if we put as k ↑ +∞ z = −u and assume
z0 · v0 = 0, z0 = −u0 then (zk, vk) converges strongly in L1(QT ) with the limit
denoted by (z, v).

Set w = z + v then w solves the following two-phases problem

wt = ∇ · d(w)∇w in Ω × (0, T ), (8.24)
∂w

∂ν
= 0 on ∂Ω × (0, T ), (8.25)

w|t=0 = w0(x) in Ω, (8.26)

where w0 = z0 + v0 and

d(w) =
⎧⎨
⎩
d1, w > 0
d1+d2

2 , w = 0
d2, w < 0.

There also holds that

w+ = v, w− = −z, w+ · w− = 0, (8.27)

where w± = max{±w, 0}.
The above observation actually means that the interaction of A, B molecules is

thus reduced to the non-uniform diffusion as k ↑ +∞ in the case where z0 · v0 = 0.
Indeed w = w(x, t) ∈ L1(QT ) is the weak solution of (8.24)–(8.26) with ∇w ∈

L2(QT ) satisfying

∫∫
QT

wξt − d(w)∇w · ∇ξ dxdt +
∫

Ω

w0(x)ξ(x, 0)dx = 0, (8.28)

for any
ξ = ξ(x, t) ∈ C1(Ω × [0, T )), ξ = 0, 0 < T − t � 1. (8.29)

The value d(w) = d1+d2
2 at w = 0 does not contribute in (8.24) because ∇w = 0 a.e.

on {w = 0}. Furthermore w is also the solution to the free boundary problem, [2],
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zt = d1Δz in Q+,

vt = d2Δv in Q−,

d1
∂z

∂ν
+ d2

∂v

∂ν
= 0 on Γ ,

∂z

∂ν
= ∂v

∂ν
= 0 on ∂Ω × (0, T ),

z|t=0 = z0(x), v|t=0 = v0(x) in Ω,

where

Q− = {(x, t) ∈ QT | z(x, t) < 0 = v(x, t)},
Q+ = {(x, t) ∈ QT | z(x, t) = 0 < v(x, t)},
Γ = {(x, t) ∈ QT | z(x, t) = v(x, t) = 0}.

Regarding to the regularity of w there actually holds w = w(x, t) ∈ Cθ,θ/2(QT ),
0 < θ < 1, whilst an improved partial regularity result is valid. In particular there
is an open set O in QT such that w = w(x, t) ∈ C2+θ,1+θ/2(O) with C2+θ,1+θ/2-
portion of the free boundary {(x, t) ∈ O | w(x, t) = 0} ⊂ Γ, see [22]. The residual
setW = QT \ O , furthermore, is composed ofWi , i = 1, 2 satisfyingPN (W1) = 0
and

lim
r↓0

1

rn+2

∫
Pr (x,t)

|∇w|2dxdt = 0, (x, t) ∈ W2,

where

Pr (x, t) = {(y, s) ∈ QT | |y − x | < r, |s − t | < r2},

and

PN (W ) = lim inf
δ↓0

⎧⎨
⎩
∑
j

r Nj | W ⊂
⋃
j

Pr j (x j , t j ), 2r j < δ for all j

⎫⎬
⎭ .

Finally we note that the phase field model associated to (8.24)–(8.26), see [18], is

wt = ∇ · d(ϕ)∇w in Ω × (0, T ), (8.30)

τϕt = −δFw(ϕ) in Ω × (0, T ), (8.31)
∂w

∂ν
= ∂ϕ

∂ν
= 0 on ∂Ω × (0, T ), (8.32)

w(x, 0) = w0(x), ϕ(x, 0) = ϕ0(x) in Ω, (8.33)

where

d(ϕ) = 1

2
(d1 − d2)ϕ + 1

2
(d1 + d2),
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Fw(ϕ) =
∫

Ω

ξ 2

2
|∇ϕ|2 + W (ϕ) − 2wϕ dx,

W (ϕ) = 1

4
(1 − ϕ2)2,

for ξ being a constant related to the molecular distance.
This phase field model actually realizes the continuously varying diffusion coef-

ficient which takes values d1,
d1+d2

2 , and d2 according as ϕ = 1, ϕ = 0, and ϕ = −1,
respectively. Conversely, ϕ = 1 and ϕ = −1 are stable according to w > 0 and
w < 0, respectively.

8.2.2 Phase Separation

In the current subsection we are investigating whether the phenomenon of phase
separation can be predicted by the non-local reaction-diffusion system (8.12)–(8.14)
when the reaction rate k is extremely big, i.e. when the indicated reactions happen
very rapidly, see Fig. 8.2. The approach of the current section goes along the lines of
[4, 10]. However, here, we have to take into consideration the non-local interaction
of A, B molecules. This difficulty is tackled by using the symmetry of the interaction
kernel, which stems from the action-reaction law.

We first put z = −u into (8.12)–(8.14) to obtain

zt = d1Δz − 1

ε
z · −

∫
B(·,R)∩Ω

v in Ω × (0, T ), (8.34)

vt = d2Δv + 1

ε
v · −

∫
B(·,R)∩Ω

z in Ω × (0, T ), (8.35)

∂z

∂ν
= ∂v

∂ν
= 0 on ∂Ω × (0, T ), (8.36)

z|t=0 = z0(x) = −u0(x) ≤ 0, v|t=0 = v0(x) ≥ 0 in Ω, (8.37)

where ε = k−1. So in the followingweprove that if the initial states of A, Bmolecules
are separated as

Fig. 8.2 Phase separation
process for fast reaction
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v0(x) · z0(y) = 0, |x − y| < R, x, y ∈ Ω, (8.38)

then there is the limit (z, v) of (zε, vε) as ε ↓ 0 which stabilizes at the same state,
that is

v(x, t) · z(y, t) = 0, |x − y| < R, x, y ∈ Ω, t ≥ 0.

The above result can be stated into the following

Theorem 8.1 If (z0, v0) satisfies (8.16) and (8.38) then any ε j ↓ 0 admits a subse-
quence denoted by the same symbol such that

vε j → w+, zε j → −w−, vε j + zε j → w in L1(QT ),

∇vε j → ∇w+, ∇zε j → −∇w− in L2(QT ).

Furthermore, there holds

w+(x, t) · w−(y, t) = 0, for almost everywhere (a.e.) x, y ∈ Ω, |x − y| < R, t ≥ 0,

and w+ = v, w− = −z.

Before we proceed to the proof of Theorem 8.1 we first need to prove some
auxiliary lemmas

Lemma 8.2 There is C1 = C1(d1, d2, ‖z0‖∞, ‖v0‖∞) > 0 independent of ε such
that

∫∫
QT

|∇z|2 + |∇v|2 dxdt + 1

dε

∫ T

0
dt ·

∫
Ω

[
z2(x, t)−

∫
B(x,R)∩Ω

v(·, t) − v2(x, t)−
∫
B(x,R)∩Ω

z(·, t)
]
dx ≤ C1, (8.39)

where d > 0 is defined by (8.23) and (z, v) = (zε(x, t), vε(x, t)) is the solution to
(8.34)–(8.37).

Proof We first note that

‖z(·, t)‖∞, ‖v(·, t)‖∞ ≤ C2, 0 ≤ t < T, (8.40)

by (8.17). Then we observe

∫
Ω

[
v2(x, T ) + z2(x, T ) − v20(x) − z20(x)

]
dx =

∫∫
QT

∂

∂t
(v2 + z2)dxdt

= 2
∫∫

QT

v

(
d2Δv + 1

ε
v−
∫
B(·,R)∩Ω

z

)
+ z

(
d1Δz − 1

ε
z−
∫
B(·,R)∩Ω

v

)
dxdt,
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where the boundary condition is applicable. There also holds that

2d2

∫∫
QT

|∇v|2dxdt + 2d1

∫∫
QT

|∇z|2dxdt

+2

ε

∫ T

0
dt

∫
Ω

[
z2(x, t)−

∫
B(x,R)∩Ω

v(·, t) − v2(x, t)−
∫
B(x,R)∩Ω

z(·, t)
]
dx

=
∫

Ω

[
v20(x) + z20(x) − v2(x, T ) − z2(x, T )

]
dx

≤ 2|Ω|C2
2 ,

and hence
∫∫

QT

(
|∇v|2 + |∇z|2

)
dxdt

+ 1

dε

∫ T

0
dt

∫
Ω

[
z2(x, t)−

∫
B(x,R)∩Ω

v(·, t) − v2(x, t)−
∫
B(x,R)∩Ω

z(·, t)
]
dx

≤ 2|Ω|
d

C2
2 = C1.

�

Lemma 8.3 Whenever (8.38) holds then

‖vt (·, t)‖1 + ‖zt (·, t)‖1 ≤ C3, 0 ≤ t < T, (8.41)

where C3 = d2‖Δv0‖1 + d1‖Δz0‖1 and (z, v) = (zε(x, t), vε(x, t)) is the solution
to (8.34)–(8.37).

Proof We take a convex function Φ(x) such that Φ(0) = Φ ′(0) = 0 to obtain

∫ T

0

d

dt

∫
Ω

[Φ(vt ) + Φ(zt )] dxdt

=
∫∫

QT

Φ ′(vt )
[
d2Δvt + 1

ε

(
v−
∫
B(x,R)∩Ω

z

)
t

]
dxdt

+
∫∫

QT

Φ ′(zt )
[
d1Δzt − 1

ε

(
z−
∫
B(x,R)∩Ω

v

)
t

]
dxdt

= −
∫∫

QT

d2Φ
′′(vt )|∇vt |2 + d1Φ

′′(zt )|∇zt |2 dxdt

+1

ε

∫∫
QT

Φ ′(vt )
(
v−
∫
B(x,R)∩Ω

z

)
t

− Φ ′(zt )
(
z−
∫
B(x,R)∩Ω

v

)
t

dxdt.
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Since
∫
Ω

Φ ′(vt )
(
v−
∫
B(x,R)∩Ω

z

)
t
dx =

∫∫
RN×RN

Φ ′(vt (x, t))

× χ|x−y|<R(x, y)

ωN RN
χΩ(x)χΩ(y) {v(x, t)z(y, t)}t dxdy,

and
∫

Ω

Φ ′(zt )
(
z−
∫
B(x,R)∩Ω

v

)
t

dx

=
∫∫

RN×RN

Φ ′(zt (x, t))
χ|x−y|<R(x, y)

ωN RN
χΩ(x)χΩ(y) {v(y, t)z(x, t)}t dxdy

=
∫∫

RN×RN

Φ ′(zt (y, t))
χ|x−y|<R(x, y)

ωN RN
χΩ(x)χΩ(y) {v(x, t)z(y, t)}t dxdy,

we derive that
∫

Ω

[Φ(vt (x, T )) + Φ(zt (x, T ))] dx ≤
∫

Ω

[Φ(vt (x, 0)) + Φ(zt (x, 0))] dx

+1

ε

∫ T

0
dt ·

∫∫
RN×RN

χ|x−y|<R(x, y)

ωN RN
χΩ(x)χΩ(y)

· [Φ ′(vt (x, t)) − Φ ′(zt (y, t))
]
[vt (x, t)z(y, t) + v(x, t)zt (y, t)] dxdy,(8.42)

taking also into consideration that Φ ′′ ≥ 0.
Next we place Φ into (8.42) by a sequence of convex functions Φn = Φn(s) such

that |Φ ′
n(s)| ≤ 1 to derive

Φn(s) → |s| locally uniformly in s ∈ R,

Φ
′
n(s) → sgn(s) pointwise in s ∈ R \ {0},

and then we take the limit n → ∞. Since (z, v) is the classical solution we have

∫ T

0
dt ·

∫∫
RN×RN

χ|x−y|<R(x, y)

ωN RN
χΩ(x)χΩ(y)

·Φ ′
n(vt (x, t))vt (x, t)z(y, t)dxdy →∫ T

0
dt ·

∫∫
RN×RN

χ|x−y|<R(x, y)

ωN RN
χΩ(x)χΩ(y))|vt (x, t)|z(y, t)dxdy,

and hence

lim sup
n→∞

∫ T

0
dt ·

∫∫
RN×RN

χ|x−y|<R(x, y)

ωN RN
χΩ(x)χΩ(y)

· [Φ ′
n(vt (x, t)) − Φ ′

n(zt (y, t))
]
vt (x, t)z(y, t)dxdy ≤ 0,
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by z ≤ 0 and

[
Φ ′

n(vt (x, t)) − Φ ′
n(zt (y, t))

]
vt (x, t) ≥ Φ ′

n(vt (x, t))vt (x, t) − |vt (x, t)|.

Similarly we have

lim sup
n→∞

∫ T

0
dt ·

∫∫
RN×RN

χ|x−y|<R(x, y)

ωN RN
χΩ(x)χΩ(y)

· [Φ ′
n(vt (x, t)) − Φ ′

n(zt (y, t))
]
v(x, t)zt (y, t)dxdy ≤ 0,

and thus ∫
Ω

|vt (x, T )| + |zt(x, T )| dx ≤
∫

Ω

|v0t (x)| + |z0t (x)| dx .

Consequently, we deduce

∫
Ω

|z0t (x)|dx ≤ d1‖Δz0‖1 + 1

ε

∫
Ω

∣∣∣∣z0(x)−
∫
B(x,R)∩Ω

v0(y)dy

∣∣∣∣ dx = d1‖Δz0‖1,

by z0 ≤ 0 ≤ v0 and (8.38), and, similarly,

∫
Ω

|v0t (x)|dx ≤ d2‖Δv0‖1,

and the proof is complete. �

Proof of Theorem 8.1 By virtue of Lemmas 8.2 and 8.3, we obtain zε ≤ 0 ≤ vε, and
owing to the compact imbedding W 1,1(QT ) ↪→ L1(QT ) we can find a subsequence
ε j → 0, henceforth denoted with ε → 0 for simplicity, such that for the solution
(vε, zε) to (8.34)–(8.37) there holds

vε → v, zε → z a.e. and strongly in L1(QT ),

∇vε ⇀ ∇v,∇zε ⇀ ∇z weakly in L2(QT ). (8.43)

(Note that owing to the uniqueness of the weak solution w of problem (8.24)–(8.26)
it will be eventually verified in the proof of Theorem 8.3 that v = w+ and z = −w−.

Since zε ≤ 0 ≤ vε we finally get

z ≤ 0 ≤ v, a.e. in QT . (8.44)

We have, on the other hand,

∫ T

0
dt

∫
Ω

[
zε(x, t)2−

∫
B(x,R)∩Ω

vε(·, t) − vε(x, t)2−
∫
B(x,R)∩Ω

zε(·, t)
]
dx ≤ C1dε,
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by Lemma 8.2 which implies

∫ T

0
dt

∫
Ω

[
z2(x, t)−

∫
B(x,R)∩Ω

v(·, t) − v2(x, t)−
∫
B(x,R)∩Ω

z(·, t)
]
dx ≤ 0.

Thus we obtain

z2−
∫
B(·,R)∩Ω

v = v2−
∫
B(·,R)∩Ω

z = 0 a.e. in QT ,

and hence

z(x, t) · v(y, t) = 0 a.e. x, y ∈ Ω, |x − y| < R, t ≥ 0.

�

In the following we provide a similar to Theorem 8.1 result but for the regularized
reaction radius problem

zt = d1Δz − 1

ε
z · v in Ω × (0, T ), (8.45)

vt = d2Δv + 1

ε
v · z in Ω × (0, T ), (8.46)

∂z

∂ν
= ∂v

∂ν
= 0 on ∂Ω × (0, T ), (8.47)

z(x, 0) = z0(x) = −u0(x) ≤ 0, v(x, 0) = v0(x) ≥ 0 in Ω, (8.48)

where

v(x, t) =
∫

Ω

χ(x, y)v(y, t)dy,

z(x, t) =
∫

Ω

χ(x, y)z(y, t)dy,

using a smooth function χ = χ(x, y) such that

χ(x, x) > 0, 0 ≤ χ(x, y) = χ(y, x) ≤ 1. (8.49)

In particular there holds

Theorem 8.2 If (z0, v0) satisfies (8.16) and

z0(x)χ(x, y)v0(y) = 0, x, y ∈ Ω, (8.50)
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then any ε j ↓ 0 admits a subsequence denoted by the same symbol such that

vε j → w+, zε j → −w−, vε j + zε j → w in L1(QT ),

∇vε j → ∇w+, ∇zε j → −∇w− in L2(QT ),

where (zε, vε) denotes the solution to (8.45)–(8.48). There also holds that

z(x, t)χ(x, y)v(y, t) = 0, a.e. x, y ∈ Ω , t ≥ 0, (8.51)

where z = −w− and v = w+, and, furthermore,

wt = d1Δz + d2Δv in QT , (8.52)

where w = z + v.

Proof We can actually follow a similar approach with the one employed for the
system (8.45)–(8.48) associated with regularized reaction radius. We then deduce

∫∫
QT

|∇z|2 + |∇v|2 dxdt + 1

dε

∫ T

0
dt ·

∫∫
Ω×Ω

[
z2(x, t)χ(x, y)v(y, t) − v2(x, t)χ(x, y)z(y, t)

]
dxdy ≤ C1,

in the same spirit with estimation (8.39). Additionally a similar relation to (8.41)
holds under the assumption (8.50) where the symmetry χ(x, y) = χ(y, x) is used
essentially. Then the limit (8.43) is valid together with (8.44) and (8.51) due to
χ(x, x) > 0, x ∈ Ω.

Let

wε = zε + vε =
∫

Ω

χ(·, y)[zε(y, t) + vε(y, t)]dy.

Since the equality χ(x, y) = χ(y, x) implies z · v = v · z then we have

wε
t (x, t) = −

∫
Ω

(d1∇zε(y, t) + d2∇vε(y, t)) · ∇yχ(x, y)dy

= −
∫

Ω

(d1∇zε(y, t) + d2∇vε(y, t)) · ∇xχ(x, y)dy.

Testing by ξ = ξ(x, t) ∈ C1
0(Ω × [0, T )) and using Green’s identity implies

∫∫
QT

wεξt dxdt +
∫

Ω

wε
0(x)ξ(x, 0)dx

=
∫ T

0
dt

∫∫
Ω×Ω

(d1∇zε(y, t) + d2∇vε(y, t)) · ∇xχ(x, y)ξ(x, t)dxdy
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= −
∫ T

0
dt

∫∫
Ω×Ω

(d1∇zε(y, t) + d2∇vε(y, t))χ(x, y) · ∇xξ(x, t)dxdy

= −
∫
QT

(d1∇zε(y, t) + d2∇vε(y, t)) · ∇xξ(x, t)dx, (8.53)

and thus (8.52) is derived in a distributional form by taking the limit ε ↓ 0. �
The limit equation (8.52) arises by means of (zε, vε) under an additional assump-

tion for the weighted function χ(x, y) which is not the case of (8.34)–(8.37)for
χ(x, y) = χB(x,R)∩Ω(y)/ωN RN ; here χB(x,R)∩Ω denotes the characteristic (indica-
tor) function of B(x, R) ∩ Ω. More precisely there holds.

Theorem 8.3 Assume that the assumptions of Theorem 8.2 are still valid, then if

∂χ

∂νx
(x, y) = 0, (x, y) ∈ ∂Ω × Ω, (8.54)

there holds

vε → w+, zε → −w−, vε + zε → w in L1(QT ),

∇vε → ∇w+, ∇zε → −∇w− in L2(QT ), (8.55)

as ε ↓ 0 where w = z + v is the weak solution to (8.26).

Proof Due to (8.54) we obtain
∂zε

∂ν
= ∂vε

∂ν
= 0 on ∂Ω . Then ξ = ξ(x, t) in (8.53) is

extended as in (8.29), and, therefore, the above limit w = w(x, t) is a weak solution
to (8.24)–(8.26). Since this weak solution is unique the convergence (8.55) is valid.
�

8.2.3 Long-Time Behavior

Next we focus on the investigation of the long-time behavior of the solution of our
non-local reaction-diffusion system. For simplicity, we go back again to the initial
problem (8.12)–(8.15) for which the following convergence result is valid

Theorem 8.4 If ‖u0‖L1(Ω) ≥ ‖v0‖1 and (8.16) still holds then the global-in-time
solution (u, v) to (8.12)–(8.15) satisfies

u(·, t) → u∞, v(·, t) → 0 in Cm(Ω), t ↑ +∞, (8.56)

for every m ∈ [0, 2), where

u∞ = ||u0||L1(Ω) − ||v0||L1(Ω)

|Ω| ≥ 0.
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Proof We first note that problem (8.34)–(8.37) determines a conservation law, that
is

d

dt

∫
Ω

(u − v) dx = k
∫

Ω

[
u−
∫
B(·,R)∩Ω

v − v−
∫
B(·,R)∩Ω

u
]
dx,

with the right-hand side equal to

k
∫∫

RN×RN

1

ωN RN
χΩ(x)χΩ(y)χ|x−y|<R(x, y) · [u(x, t)v(y, t)

− u(y, t)v(x, t)
]
dx dy = 0,

by Fubini’s theorem and the symmetricity of the characteristic function

χ|x−y|<R(x, y).

Hence,

∫
Ω

[
u(x, t) − v(x, t)

]
dx =

∫
Ω

[
u0(x) − v0(x)

]
dx,

which yields

−
∫

Ω

[
u(x, t) − v(x, t)

]
dx = u0 − v0 = u∞. (8.57)

Next we define the operator

Bp(w) = (−d2Δ + α)w, with domain D(Bp) =
{
w ∈ W 2,p(Ω) | ∂w

∂ν

∣∣∣∣
∂Ω

= 0
}
,

where α > 0 and 1 < p < ∞. The spectrum of operator Bp settles in the positive
axis owing to the resolvent estimate and hence the fractional powersBγ

p , 0 ≤ γ < 1
are defined. It also generates the analytic semigroup {e−tBp }t≥0 and there holds

∥∥Bγ
p e

−tBpw
∥∥
p

≤ C2(γ )q−γ (t)e−αt‖w‖p, (8.58)

for t > 0, see [6, 17] where 0 ≤ γ < 1 and 0 < q(t) = min{t, 1} ≤ 1. Then it is
readily seen

∫ t

0
q−γ (σ ) eδσ dσ ≤

⎧⎨
⎩
C3(γ, δ) eδt , δ > 0
C3(γ, δ) (t + 1), δ = 0
C3(γ, δ), δ < 0.

(8.59)
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Finally, given m ∈ [0, 2) and p ∈ (1,+∞) such that

m < 2 − N/p, (resp. m < 2β − N/p, β ∈ (0, 1)),

we obtain the imbedding, see [6],

D(Bp) ⊂ Cm(Ω) (resp. D(Bβ
p) ⊂ Cm(Ω), β ∈ (0, 1)). (8.60)

Using the variation of constants formula, then equation (8.35) can be written in the
integral form

v(t) = e−tBp v0 + α

∫ t

0
e−(t−s)Bp v(s) ds − k

∫ t

0
e−(t−s)Bp [v(s) · −

∫
B(·,R)∩Ω

u(s)] ds.
(8.61)

Operating withBγ
p , we derive

Bγ
p v(t) = Bγ

p e
−tBp v0 + α

∫ t

0
Bγ

p e
−(t−s)Bp v(s) ds

−k
∫ t

0
Bγ

p e
−(t−s)Bp [v(s) · −

∫
B(·,R)∩Ω

u(s)] ds.

Let t ≥ δ > 0 then due to (8.58) and (8.17) we deduce

∥∥Bγ
p e

−tBp v0
∥∥
p

≤ C(γ )q−γ (t)e−αt‖v0‖p ≤ C(γ, p, δ), (8.62)

while

∫ t

0

∥∥Bγ
p e

−(t−s)Bp v(s)
∥∥
p
ds ≤ C(γ, p,Ω)

∫ t

0
q−γ (t − s) ds ≤ C(γ, δ, p,Ω),

(8.63)

is derived by virtue of (8.17) and (8.58). Finally, we have

∫ t

0

∥∥∥∥Bγ
p e

−(t−s)Bp v(s)−
∫
B(·,R)∩Ω

u(s)

∥∥∥∥
p

ds ≤ C(γ, δ, p,Ω), (8.64)

since (8.17) implies

‖v(·, t) · −
∫
B(·,R)∩Ω

u(·, t)‖∞ ≤ ‖u0‖∞‖v0‖∞.
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Combining (8.62), (8.63), and (8.64), we obtain

∣∣∣
∣∣∣Bγ

p v(t)
∣∣∣
∣∣∣
p

≤ C(γ, δ, p,Ω), t ≥ δ, (8.65)

and hence the orbit {v(t)}t≥δ is compact in C(Ω) by Morrey’s imbedding theorem.
Therefore there exist t j ↑ +∞ and v∗ ∈ C(Ω) such that

v(·, t j ) −→ v∗ in C(Ω), j → ∞. (8.66)

Following the arguments of Lemma 3.1 in [9] it is also proved that the function

t �−→ Bγ
p v(t) is Hölder continuous in [δ,+∞). (8.67)

Moreover, by (8.67) also follows that the function

t �−→ ‖∇v(t)‖22 is uniformly continuous in [δ,+∞), (8.68)

see also Lemma 8 in [15].
Now, multiplying the second equation of (8.35) by v and integrating over space

and time, we obtain

‖v(t)‖22 + 2d2

∫ t

0
‖∇v(s)‖22 ds

+ 2k
∫ t

0

∫
Ω

v2(x, t)

[
−
∫
B(x,R)∩Ω

u(y, t) dy

]
dxds = ‖v0‖22, (8.69)

which yields

∫ ∞

0
‖∇v(s)‖22 ds < +∞. (8.70)

An immediate consequence of (8.68) and (8.70) is

‖∇v(t)‖22 −→ 0, t ↑ +∞. (8.71)

Taking into account Poincare’s inequality

μ2 ‖v(t) − v(t)‖2 ≤ ‖∇v(t)‖2,

as well as (8.66) and (8.71), we derive

v(·, t j ) −→ v∗ = constant in C(Ω), j → ∞. (8.72)
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Analogous properties to (8.65) and (8.66) arise also for u, and, therefore, there is a
subsequence of {t j } denoted by the same symbol and u∗ ∈ C(Ω) such that

u(·, t j ) −→ u∗ = constant in C(Ω), j → ∞. (8.73)

By (8.67) and Morrey’s imbedding theorem, we finally obtain

t �−→ ‖v(t)‖2∞ is uniformly continuous in [δ,+∞),

and, similarly,

t �−→ ‖u(t)‖2∞ is uniformly continuous in [δ,+∞).

Thus there holds that

t �−→
∥∥∥∥v(·, t)2 · −

∫
B(·,R)∩Ω

u(t)

∥∥∥∥
1

is uniformly continuous in [δ,+∞).

We also have

v(·, t)2 · −
∫
B(·,R)∩Ω

u(t) ∈ L1(0,+∞; L1(Ω)),

by (8.69), and, hence

∥∥∥∥v(·, t)2 · −
∫
B(·,R)∩Ω

u(t)

∥∥∥∥
1

→ 0, t ↑ +∞. (8.74)

Therefore we derive

v(·, t j )2 · −
∫
B(·,R)∩Ω

u(t j ) → F(·, R)(v∗)2u∗ in L1(Ω), j → ∞

due to (8.72) and (8.73) where F(x, R) = |B(x, R) ∩ Ω|/|B(x, R)|. Then (8.74)
entails

(v∗)2u∗ = 0, (8.75)

since F(x, R) 
= 0. On the other hand, we obtain

u∗ − v∗ = u∞, (8.76)

due to (8.72), (8.73), and (8.57). In the case where u∞ > 0 then (8.75) and (8.76)
imply u∗ = u∞, v∗ = 0, while in the complimentary case u∞ = 0 it follows that
u∗ = v∗ = 0. Then the uniqueness of the above limits yields
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u(·, t) −→ u∞, v(·, t) → 0 in C(Ω), t ↑ +∞. (8.77)

In order to prove the last part of the theorem we use the following interpolation
inequality [6],

∥∥Bθ
pv(t)

∥∥
p

≤ C
∥∥Bγ

p v(t)
∥∥θ/γ

p
‖v(t)‖1−θ/γ

p , (8.78)

where 0 < θ < γ < 1. Since
∥∥Bγ

p v(t)
∥∥
p is bounded by (8.65), inequality (8.78)

yields

∥∥Bθ
pv(t)

∥∥
p

→ 0, t ↑ +∞, (8.79)

for every θ ∈ (0, 1). Then (8.89) implies

‖v(t)‖Cm (Ω) → 0, t ↑ +∞,

for every m ∈ [0, 2). Similarly, we obtain

‖u(t) − u∞‖Cm (Ω) → 0, t ↑ +∞,

which completes the proof. �

In the context of biology, Theorem 8.4 actually means that if the initial concen-
trations [A] and [B] of the A and B molecules are equal then they will eventually
die out. Otherwise, only the reactant with the highest concentration will survive.

Our motivation is mainly in cell biology associated with protein dimers, which is
the reason why we restrict our study on the fundamental process (8.1). Our results,
however, extend to the process nA + mB → C with minor modifications.

8.2.4 Decay Rate Towards the Steady States

The topic of the current subsection is the investigation of the rate of convergence of
the solution of (8.12)–(8.15) towards the unique stationary solution.

Before we proceed with the derivation of the decay rate towards the steady states
for the non-local reaction-diffusion system (8.12)–(8.15)we review themain existing
results regarding the decay rates of the (local) reaction diffusion system (8.19)–
(8.22). The reason for that is that we will eventually compare the decay rates for
both systems (8.12)–(8.15) and (8.19)–(8.22) since the former system converges to
the later as R ↓ 0, see the above section as well as [12].

Theorem 8.5 ([7, 8, 10]) The solution (u, v) = (u(·, t), v(·, t)) of (8.19)–(8.22)
exists globally in time and decays towards the unique steady with the
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following rate. Below we assume ‖u0‖1 ≥ ‖v0‖1 without loss of generality and put
u∞ = (‖u0‖1 − ‖v0‖1)/|Ω| ≥ 0:

1. If u∞ > 0 it holds that

‖u(·, t) − u∞‖∞ =
{
O(e−βt ), d1μ2 
= ku∞
O(te−βt ), d1μ2 = ku∞

‖v(·, t)‖∞ = O(e−k u∞t )

as t ↑ +∞, where β = min{d1μ2, k u∞}.
2. If u∞ = 0 it holds that

‖(u, v)(·, t)‖∞ = O(t−1),

‖(u, v)(·, t) − (U, V )(t)‖∞ = O(t−2),

‖(u, v)(·, t) − (u, v)(t)‖∞ = O(e−dμ2t ),

as t ↑ +∞, where (U, V ) is the solution to the ODE system

dU

dt
= −kUV, U (0) = u0 ≡ −

∫
Ω

u0,

dV

dt
= −kUV, V (0) = v0 ≡ −

∫
Ω

v0,

and

u(t) = −
∫

Ω

u(·, t), v(t) = −
∫

Ω

v(·, t).

Moreover, μ2 > 0 is the second eigenvalue of −Δ associated with Neumann
boundary condition, and

d = min{d1, d2}.

Our result concerning the non-local reaction-diffusion system (8.12)–(8.15) is
provided in accordance with the principal eigenvalue μ1(R) of

− d2Δw + u∞kF(R, x)w = μw in Ω,
∂w

∂ν
= 0 on ∂Ω, (8.80)

where

F(R, x) = |B(x, R) ∩ Ω|
|B(x, R)| .

Since Ω is a bounded domain with smooth boundary ∂Ω , there holds

FR = min
x∈Ω

F(R, x) > 0.



8.2 Mathematical Analysis 273

We also have F(R, x) ≤ 1, and thus

0 ≤ u∞kF R ≤ μ1(R) ≤ u∞k, (8.81)

follows from the Rayleigh principle

μ1(R) = inf

{∫
Ω

|∇w|2 + u∞kF(R, x)w2 dx | w ∈ H 1(Ω), ‖w‖2 = 1

}
.

In particular, μ1(R) = 0 if and only if u∞ = 0 by (8.81).
It also follows that

lim
R↓0 F(R, x) =

{
1, x ∈ Ω

1/2, x ∈ ∂Ω
,

and hence
lim
R↓0 μ1(R) = ku∞, (8.82)

by Rellich’s compactness theorem, [5], applied to

−d2ΔwR + u∞kF(R, x)wR = μ1(R)wR, wR > 0 in Ω,

∂wR

∂ν

∣∣∣∣
∂Ω

= 0,
∫

Ω

w2
Rdx = 1.

Owing to (8.82), the next result is regarded as a natural extension of some parts
of Theorem 8.5.

Theorem 8.6 The global-in-time solution (u, v) = (u(·, t), v(·, t)) of (8.12)–(8.15)
satisfies the following decay rates towards the stationary state as t ↑ +∞ provided
that ‖u0‖1 ≥ ‖v0‖1:
1. If u∞ > 0 there holds

‖u(·, t) − u∞‖∞ =
{
O
(
e−β0t

)
, d1μ2 
= μ1(R)

O
(
te−β0t

)
, d1μ2 = μ1(R)

,

‖v(·, t)‖∞ = O
(
e−μ1(R)t

)
,

where β0 = min{d1μ2, μ1(R)},.
2. If u∞ = 0 then

‖(u, v)(·, t)‖∞ = O(t−1). (8.83)

Comparing Theorems 8.5 and 8.6, we observe that the asymptotic equivalence
of the solution to the non-local system (8.12)–(8.15) with the ODE solution and
the spatial mean is absent. Actually, the difference between the preceding reaction
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diffusion systems is that we have no spatially homogeneous solution for the non-local
one (8.12)–(8.15).

We first provide some preliminaries and then by employing ideas initially devel-
oped in [7, 10] we prove the first and the second cases of Theorem 8.6. Henceforth,
Ci , i = 1, 2, · · · , are used to denote various positive constants independent of ele-
ments involved in the corresponding inequality. If they depend on the parameters,
say, α, β, · · · , we shall write them as Ci (α, β, · · · ).

In the following we also use the notation

‖(w1,w2)‖p =
(
‖w1‖2p + ‖w2‖2p

)1/2
,

for 1 ≤ p ≤ ∞, where

‖w‖p =
{( ∫

Ω
|w(x)|p dx

)1/p
1 ≤ p < ∞,

ess. supx∈Ω |w(x)| p = ∞.

Moreover in the following, we use the operators

Ap(w) = −d1Δw,

Bp(w) = (−d2Δ + α)w,

in L p(Ω), 1 < p < ∞, provided with the domains

D(Ap) = D(Bp) =
{
w ∈ W 2,p(Ω) | ∂w

∂ν

∣∣∣∣
∂Ω

= 0
}
,

where α > 0. The spectrum of the operatorBp settles in the positive axis, while the
operators −Ap and −Bp are sectorial which generate analytic semigroups denoted
by {e−tAp }t≥0 and {e−tBp }t≥0, respectively. Next, we consider the projection

P0 : L p(Ω) → L p(Ω), P0(w) = 1

|Ω|
∫

Ω

w(x) dx = w,

and put
P+ = I − P0.

Then the spectrum of the operator Ap+, defined by

Ap+ = Ap

∣∣
P+L p(Ω)

: P+L p(Ω) → P+L p(Ω),

settles on the positive axis, and −Ap+ generates an analytic semigroup {e−tAp+}t≥0

on P+L p(Ω). In accordance with the fractional powers of Bp and Ap+, we have
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∥∥A γ
p+e−tAp+ P+w

∥∥
p

≤ C1(γ )q(t)−γ e−d1μ2t ‖P+w‖p , (8.84)∥∥Bγ
p e

−tBpw
∥∥
p

≤ C2(γ )q(t)−γ e−αt ‖w‖p , (8.85)
∥∥e−t A P+w

∥∥
p ≤ C3q(t)−

N
2 ( 1

q − 1
p )e−μ2t ‖P+w‖q , (8.86)

for t > 0, 1 ≤ q ≤ p ≤ ∞, and 0 ≤ γ < 1, where

0 < q(t) = min{t, 1} ≤ 1,

see [6, 17]. Here, the operator A used in (8.86) denotes−Δ associatedwithNeumann
boundary condition, and therefore, μ2 is nothing but the second eigenvalue of A.

Notably a direct consequence of inequalities (8.59) is

∫ t

0
q(t − s)−γ eδsds ≤ C4(γ, δ), δ < 0. (8.87)

In fact, the first inequality of (8.59) with δ replaced by −δ > 0 implies

∫ t

0
q(t − s)−γ eδsds = eδt

∫ t

0
q(s)−γ e−δsds ≤ C4(γ, δ).

Next, given μ ∈ [0, 2), we take p ∈ (1,+∞) and γ ∈ (0, 1) satisfying

μ < 2γ − N/p. (8.88)

Then there holds, see [6],

D(A γ
p+) ⊂ D(Bγ

p ) ⊂ Cμ(Ω). (8.89)

8.2.4.1 Proof of Theorem 8.6 for u∞ > 0

We split the proof of Theorem 8.6 in two parts. We first prove the case u∞ > 0 and
later on we provide the proof of the second case u∞ = 0.

We first recall that μ1(R) > 0 is equivalent to u∞ > 0 by (8.81). To prove Theo-
rem 8.6 in this case we begin with the following lemma.

Lemma 8.4 Given 1 ≤ p < ∞, any 0 < ε � 1 admits T � 1 such that

‖v(·, t)‖p ≤ C5(p)e
−(μ1(R)−ε)(t−T )‖v(·, T )‖p, t ≥ T . (8.90)

Proof By (8.56), the behavior of the solution (u, v) = (u(·, t), v(·, t)) to (8.12)–
(8.15) is controlled by that of the linear part around the stationary solution (u∞, 0)
as t ↑ +∞. More precisely, the perturbation (u(·, t) − u∞, v(·, t)) will be approxi-
mated for t � 1 by (ũ, ṽ) = (ũ(·, t), ṽ(·, t)) solving the following linearized system
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ũt = d1Δũ − ku∞ · −
∫
B(·,R)∩Ω

ṽ in Ω × (T,+∞),

ṽt = d2Δṽ − kF(R, x) u∞ṽ in Ω × (T,+∞),

∂ ũ

∂ν
= ∂ ṽ

∂ν
= 0 on ∂Ω × (T,+∞),

ũ(x, T ) = u(x, T ) − u∞, ṽ(x, T ) = v(x, T ) ≥ 0 in Ω,

where T � 1.
Next we consider the operator

Cp(w) = (−d2Δ + kF(R, x) u∞)w,

in L p(Ω), 1 < p < ∞, associated with the domain

D(Cp) =
{
w ∈ W 2,p(Ω) | ∂w

∂ν

∣∣∣∣
∂Ω

= 0
}
.

This operator is associated with the ṽ-component. Namely, using the analytic
semigroup {e−Cp t }t≥0 generated by −Cp, we obtain

ṽ(·, t) = e−Cp (t−T )v(·, T ), t ≥ T .

Then the semigroup estimate

‖e−Cpt‖L p→L p ≤ C6(p)e
−μ1(R)t , t ≥ 0, (8.91)

see [1] page 250, establishes

‖ṽ(·, t)‖p ≤ C6(p)e
−μ1(R)(t−T )‖v(·, T )‖p , t ≥ T . (8.92)

Next observe that z = v − ṽ satisfies

zt = −Cpz + k[F(R, ·)u∞ − −
∫
B(·,R)∩Ω

u(y, s)dy]v, x ∈ Ω, t ≥ T,

z(x, T ) = 0, x ∈ Ω,

which implies

z(·, t) = k
∫ t

T
e−Cp(t−s)[F(R, ·)u∞ − −

∫
B(·,R)∩Ω

u(y, s)dy]v(·, s) ds.

Hence there holds
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‖z(·, t)‖p ≤ k
∫ t

T
‖e−Cp(t−s)[F(R, ·)u∞ − −

∫
B(·,R)∩Ω

u(y, s)dy]v(·, s)‖pds

≤ C7(p)
∫ t

T
e−μ1(R)(t−s)‖F(R, ·)u∞ − −

∫
B(·,R)∩Ω

u(y, s)dy‖∞ · ‖v(·, s)‖p ds.

(8.93)

We also have

F(R, ·)u∞ − −
∫
B(·,R)∩Ω

u(y, s)dy = −
∫
B(·,R)∩Ω

(u∞ − u(y, s))dy,

and hence
∥∥∥∥F(R, ·)u∞ − −

∫
B(·,R)∩Ω

u(y, s)dy

∥∥∥∥
∞

=
∥∥∥∥−
∫
B(·,R)∩Ω

(u∞ − u(y, s))dy

∥∥∥∥
∞

≤ ‖u∞ − u(·, s)‖∞. (8.94)

It thus follows

‖z(·, t)‖p ≤ C7(p) · max
s≥T

‖u∞ − u(·, s)‖∞ ·
∫ t

T
e−μ1(R)(t−s)‖v(·, s)‖pds.

Now, given ε > 0, we choose T � 1 such that

C7(p) · sup
s≥T

‖u∞ − u(·, s)‖p < ε,

recalling (8.56). Then we obtain

‖v(·, t)‖p ≤ ‖ṽ(·, t)‖p + ‖z(·, t)‖p

≤ C6(p)e
−μ1(R)(t−T )‖v(·, T )‖p + ε

∫ t

T
e−μ1(R)(t−s)‖v(·, s)‖pds,

and hence

X (t) ≤ C6(p)e
μ1(R)T ‖v(·, T )‖p + ε

∫ t

T
X (s)ds, (8.95)

where
X (t) = eμ1(R)t‖v(·, t)‖p.

The latter implies

Y ′ − εY ≤ C6(p)e
μ1(R)T ‖v(·, T )‖p, t ≥ T,



278 8 A Non-local Reaction-Diffusion System Illustrating Cell Dynamics

for

Y (t) =
∫ t

T
X (s)ds,

which yields
e−εt Y ≤ C7(p, ε)e

μ1(R)T ‖v(·, T )‖p, t ≥ T,

since Y (T ) = 0.
Therefore inequality (8.90) thus holds since (8.95) yields

X (t) ≤ [C6(p) + C7(p, ε)e
εt ]eμ1(R)T ‖v(·, T )‖p, t ≥ T .

The proof is complete. �

In the following lemma, the rate u(·, t) → u∞, t ↑ +∞, is estimated inCm-norm.
We emphasize again that μ1(R) > 0 follows from the assumption u∞ > 0.

Lemma 8.5 For every m ∈ [0, 2) there holds

‖u(·, t) − u∞‖Cm (Ω) ≤ C8(m)e−β1(t−T )‖v(·, T )‖∞, t ≥ T, (8.96)

where

β1 =
{
d1μ2, d1μ2 < μ1(R)

μ1(R) − ε, d1μ2 ≥ μ1(R)
,

with 0 < ε � 1.

Proof By virtue of relations (8.12) and (8.14) we derive

u(·, t) = e−(t−T )Ap u(·, T ) − k
∫ t

T
e−(t−s)Ap

[
u(·, s)−

∫
B(·,R)∩Ω

v(y, s)dy

]
ds,

(8.97)
for t ≥ T and 1 ≤ p < ∞.

By using the decomposition

u(·, t) = P0u(·, t) + P+u(·, t),

and by virtue of (8.57), we first derive

P0u(·, t) = 1

|Ω|
∫

Ω

u(y, t)dy = 1

|Ω|
∫

Ω

v(y, t) dy + u∞,

and hence

|P0u(·, t) − u∞| ≤ 1

|Ω| ‖v(·, t)‖1 ≤ C9e
−(μ1(R)−ε)(t−T )‖v(·, T )‖1, t ≥ T,

(8.98)
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by Lemma 8.4. As for P+u(·, t), we use (8.97) to deduce

A γ
p+P+u(·, t) = A γ

p+e−(t−T )Ap+ P+u(·, T )

− k
∫ t

T
A γ

p+e−(t−s)Ap+ P+[u(·, s)−
∫
B(·,R)∩Ω

v(y, s)dy] ds,

where 0 ≤ γ < 1. Since P+u(·, T ) ∈ D(A γ
p+) we obtain that

‖A γ
p+e−(t−T )Ap+ P+u(·, T )‖p ≤ C1(γ )‖A γ

p+P+u(·, T )‖p e
−d1μ2(t−T ). (8.99)

Also by (8.17) we derive the estimate

∫ t

T
‖A γ

p+e−(t−s)Ap+ P+[u(·, s)−
∫
B(·,R)∩Ω

v(y, s)dy]‖p ds

≤
∫ t

T
C1(γ )q(t − s)−γ e−d1μ2(t−s)‖P+[u(·, s)−

∫
B(·,R)∩Ω

v(y, s)dy]‖p ds

≤ C1(γ )‖P+‖L p→L p‖u0‖∞ ·
∫ t

T
q(t − s)−γ e−d1μ2(t−s)‖−

∫
B(·,R)∩Ω

v(y, s)dy‖p ds,

(8.100)

the last integrand term of which can be treated by Fubini’s theorem and Jensen’s
inequality.

In fact, first, we have

∣∣∣ 1

ωN RN

∫
B(x,R)∩Ω

v(y, s) dy
∣∣∣p =

∣∣∣ 1

|B(x, R)|
∫
B(x,R)

χΩ(y)v(y, s) dy
∣∣∣p

≤ 1

ωN RN

∫
B(x,R)

χΩ(y)vp(y, s) dy

= 1

ωN RN

∫
RN

χΩ(y)χ|x−y|<R(x, y)vp(y, s) dy,

and then
∥∥∥∥−
∫
B(·,R)∩Ω

v(y, s)dy

∥∥∥∥
p

p

≤ 1

ωN RN

∫∫
RN×RN

χ|x−y|<R(x, y)χΩ(x)χΩ(y) vp(y, s)dx dy

=
∫

Ω

F(R, y)v(y, s)p dy

≤ ‖v(·, s)‖p
p, (8.101)
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by 0 < F(R, x) ≤ 1. Combining (8.100) and (8.101), we arrive at

∫ t

T
‖A γ

p+e−(t−s)Ap+ P+[u(·, s)−
∫
B(·,R)∩Ω

v(y, s)dy]‖p ds

≤ C1(γ )‖P+‖L p→L p‖u0‖∞
∫ t

T
q(t − s)−γ e−d1μ2(t−s)‖v(·, s)‖p ds

≤ C10(γ )‖P+‖L p→L p‖u0‖∞‖v(·, T )‖p

·
∫ t−T

0
q(t − T − s)−γ e−d1μ2(t−T−s)e−(μ1(R)−ε)s ds, (8.102)

for t ≥ T, using again Lemma 8.4. Hence it suffices to estimate the term

Iε(t) =
∫ t−T

0
q(t − T − s)−γ e−d1μ2(t−T−s)e−(μ1(R)−ε)s ds.

If μ1(R) − d1μ2 > 0 is the case we then take 0 < ε � 1 in 0 < ε < μ1(R) −
d1μ2 to use the first inequality of (8.59). Then it follows that

Iε(t) = e−(μ1(R)−ε)(t−T )

∫ t−T

0
q(t − T − s)−γ e(μ1(R)−d1μ2−ε)(t−T−s)ds

≤ C11e
−(μ1(R)−ε)(t−T ) · e(μ1(R)−ε−d1μ2)(t−T )

= C11e
−d1μ2(t−T ), t ≥ T .

In the other case when d1μ2 ≥ μ1(R), we just use the third inequality of (8.59) to
get

Iε(t) ≤ C12e
−(μ1(R)−ε)(t−T ).

Using ‖v(·, T )‖p ≤ |Ω|1/p‖v(·, T )‖∞, we complete the proof. �

Notably Lemma 8.5 improves Lemma 8.4 as follows.

Lemma 8.6 For every 1 ≤ p < ∞ there holds

‖v(·, t)‖p ≤ C13(p)e
−μ1(R)(t−T )‖v(·, T )‖p, t ≥ T . (8.103)

Proof By (8.93) and (8.94) we have

‖z(·, t)‖p ≤ C7(p)
∫ t

T
e−μ1(R)(t−s)‖u∞ − u(·, s)‖∞ · ‖v(·, s)‖pds.

Here, any given ε > 0 admits T � 1 such that

C7(p)‖u∞ − u(·, s)‖∞ ≤ εe−β1(t−T ), t ≥ T,
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by (8.96) and (8.56). Therefore we derive

‖z(·, t)‖p ≤ ε

∫ t

T
e−μ1(R)(t−s)e−β1(s−T )‖v(·, s)‖pds, t ≥ T,

which, in conjunction with (8.92), implies

‖v(·, t)‖p ≤ ‖ṽ(·, t)‖p + ‖z(·, t)‖p ≤ C6(p)e
−μ1(R)(t−T )‖v(·, T )‖p

+ ε

∫ t

T
e−μ1(R)(t−s)e−β1(s−T )‖v(·, s)‖pds.

The latter inequality entails

eμ1(R)t‖v(·, t)‖p ≤ C6(p)e
μ1(R)T ‖v(·, T )‖p + ε

∫ t

T
e−β1(s−T ) · eμ(R)s‖v(·, s)‖pds,

and hence

X (t) ≤ C6(p)e
μ1(R)T ‖v(·, T )‖p + ε

∫ t

T
e−β1(s−T )X (s)ds,

for
X (t) = eμ1(R)t‖v(·, t)‖p.

Then, Gronwall’s lemma implies

X (t) ≤ C6(p)e
μ1(R)T ‖v(·, T )‖p · exp(ε

∫ t

T
e−β1(s−T )ds) = C14(p, ε)e

μ1(R)T ‖v(·, T )‖p,

and the proof is complete. �

Lemma 8.6 now provides the following improvement of Lemma 8.5.

Lemma 8.7 It holds that

‖u(·, t) − u∞‖Cμ(Ω)
≤ C15(μ) ·

{
e−β0(t−T )‖v(·, T )‖∞, d1μ2 
= μ1(R)

(t − T + 1)e−β0(t−T )‖v(·, T )‖∞, d1μ2 = μ1(R)
,

(8.104)

for t ≥ T and μ ∈ [0, 2), where β0 = min{d1μ2, μ1(R)} is the exponent defined in
Theorem 8.6.

Proof We prove the current lemma by repeating the proof of Lemma 8.5. In fact,
once Lemma 8.6 is established, it suffices to estimate

I (t) =
∫ t−T

0
q(t − T − s)−γ e−d1μ2(t−T−s)e−μ1(R)sds,
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where inequality (8.59) is available.
The argument is essential the same for d1μ2 
= μ1(R). If d1μ2 = μ1(R) then

I (t) =
∫ t−T

0
q(t − T − s)−γ e−d1μ2(t−T )ds ≤ C20(t − T + 1)e−d1μ2(t−T ),

by the second inequality of (8.59). Thus the proof is complete. �

We conclude the proof of Theorem 8.6 for the case of u∞ > 0 with the following
lemma.

Lemma 8.8 For any m ∈ [0, 2) there holds

‖v(·, t)‖Cm (Ω) = O
(
e−μ1(R)t ), t ↑ +∞. (8.105)

Proof We take Bp for α > μ1(R) to derive

v(·, t) = e−(t−T )Bp v(·, T ) + α

∫ t

T
e−(t−s)Bp v(·, s) ds

− k
∫ t

T
e−(t−s)Bp [v(·, s) · −

∫
B(·,R)∩Ω

u(y, s)dy] ds, t ≥ T,

and hence

Bγ
p v(·, t) = Bγ

p e
−(t−T )Bp v(·, T ) + α

∫ t

T
Bγ

p e
−(t−s)Bp v(·, s) ds

−k
∫ t

T
Bγ

p e
−(t−s)Bp [v(·, s) · −

∫
B(·,R)∩Ω

u(y, s)dy] ds,

for 0 < γ < 1. It is evident that

‖Bγ
p e

−(t−T )Bp v(·, T )‖p ≤ C1(γ )q(t − T )−γ e−α(t−T )‖v(·, T )‖p

≤ C16e
−α(t−T ) ≤ C17e

−μ1(R)(t−T ), t ≥ T + 1

by α > μ1(R). Next, by virtue of (8.103) we obtain

∫ t

T
‖Bγ

p e
−(t−s)Bp v(·, s)‖p ds

≤ C17

∫ t

T
q(t − s)−γ e−α(t−s) e−μ1(R)(s−T ) ds

= C17e
−μ1(R)(t−T )

∫ t

T
q(t − s)−γ e−(α−μ1(R))(t−s) ds

≤ C18 e
−μ1(R)(t−T ). (8.106)
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Finally, using

∥∥∥∥−
∫
B(·,R)∩Ω

u(y, s)dy

∥∥∥∥
∞

≤ ‖u(·, s)‖∞ ≤ ‖u0‖∞,

we obtain

∫ t

T
‖Bγ

p e
−(t−s)Bp [v(·, s) · −

∫
B(·,R)∩Ω

u(y, s)dy]‖p ds

≤ C2(γ )

∫ t

T
q(t − s)−γ e−α(t−s)‖v(·, s)‖p‖u0‖∞ ds

≤ C19‖u0‖∞
∫ t

T
q(t − s)−γ e−α(t−s) · e−μ1(R)(s−T )ds

≤ C20e
−μ1(R)(t−T )

∫ t

T
q(t − s)−γ e−(α−μ1(R))(t−s) ds

≤ C21 e
−μ1(R)(t−T ), t ≥ T, (8.107)

by Lemma 8.7 and (8.59). Taking the exponents 1 < p < ∞ and 0 < γ < 1 as in
(8.88), we obtain (8.105). �

8.2.4.2 Proof of Theorem 8.6 for u∞ = 0

We recall that u∞ = 0 is equivalent to μ1(R) = 0. In this case, there also holds that

u(t) = v(t). (8.108)

We begin with the following lemma.

Lemma 8.9 There is 0 < δ1 � 1 such that

1

2

d

dt
‖u(·, t)‖22 + d1‖∇u(·, t)‖22 + δ1‖u(·, t)‖33 ≤ C22M(t)‖(∇u(·, t),∇v(·, t))‖22,

(8.109)

for t > 0 and

1

2

d

dt
‖v(·, t)‖22 + d2‖∇v(·, t)‖22 + δ1‖v(·, t)‖33 ≤ C22M(t)‖(∇u(·, t),∇v(·, t))‖22,

(8.110)

for t > 0 where

M(t) = max{‖u(·, t) − ū(t)‖∞, ‖v(·, t) − v̄(t)‖∞}.
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Proof First, multiplying (8.12) by u and integrating by parts over Ω , we have

1

2

d

dt
‖u(·, t)‖22 + d1‖∇u(·, t)‖22 + k

∫
Ω

u2(x, t)
(
−
∫
B(x,R)∩Ω

v(y, t)dy
)
dx = 0.

Here, the term

I (t) =
∫

Ω

u2(x, t)
(
−
∫
B(x,R)∩Ω

v(y, t)dy
)
dx,

is treated by Fubini’s theorem, hence

I (t) = 1

ωN RN

∫∫
RN×RN

u2(x, t) v(y, t)χΩ(x) χΩ(y)χ|x−y|<R(x, y) dxdy.

Then we use
min
z≥0

(z + |1 − z|) = 1,

to derive
u2(x, t) v(y, t) ≥ u3(x, t) − u2(x, t)|u(x, t) − v(y, t)|.

Hence it follows that

I (t) ≥ 1

ωN RN

∫∫
RN×RN

u3(x, t)χΩ(x) χΩ(y)χ|x−y|<R(x, y) dxdy

χΩ(x) χΩ(y)χ|x−y|<R(x, y) dxdy

=
∫

Ω

F(R, x) u3(x, t) dx − 1

ωN RN

∫∫
Ω×Ω

u2(x, t)|u(x, t)

−v(y, t)|χ|x−y|<R(x, y) dxdy

≥ FR‖u(·, t)‖33 − I1(t), (8.111)

with

I1(t) = 1

ωN RN

∫∫
Ω×Ω

u2(x, t)|u(x, t) − v(y, t)| χ|x−y|<R(x, y) dxdy.

Nowwe estimate I1(t), using (8.108). Namely, by Hölder’s and Young’s inequalities,
we derive

I1(t) ≤ |Ω|2/3‖u(·, t)‖23
ωN RN

( ∫∫
Ω×Ω

|u(x, t) − v(y, t)|3 χ|x−y|<R(x, y) dxdy
)1/3

≤ |Ω|2/3‖u(·, t)‖23
ωN RN

[( ∫∫
Ω×Ω

|u(x, t) − u(t)|3 χ|x−y|<R(x, y) dxdy
)1/3

+
( ∫∫

Ω×Ω

|v(y, t) − v̄(t)|3 χ|x−y|<R(x, y) dx dy
)1/3]
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≤ |Ω|2/3‖u(·, t)‖23
(ωN RN )2/3

(
‖u(·, t) − ū(t)‖3 + ‖v(·, t) − v̄(t)‖3

)

≤ |Ω|‖u(·, t)‖23
(ωN RN )2/3

‖u(·, t) − u(t)‖1/3∞ ‖u(·, t) − u(t)‖2/32

+|Ω|‖u(·, t)‖23
(ωN RN )2/3

‖v(·, t) − v(t)‖1/3∞ ‖v(·, t) − v(t)‖2/32

≤ 4δ|Ω|3/2
3ωN RN

‖u(·, t)‖33 + 1

3δ2

(
‖u(·, t) − u(t)‖∞‖u(·, t) − u(t)‖22

+‖v(·, t) − v(t)‖∞‖v(·, t) − v(t)‖22
)
,

where 0 < δ � 1. Then, by Poincaré-Wirtinger’s inequality; we obtain

I1(t) ≤ 4δ|Ω|3/2
3ωN RN

‖u(·, t)‖33 + 1

3μ2δ2

(
‖u(·, t) − u(t)‖∞‖∇u(·, t)‖22

+‖v(·, t) − v(t)‖∞‖∇v(·, t)‖22
)

≤ 4δ|Ω|2/3
3ωN RN

‖u(·, t)‖33 + C23(δ)M(t)‖(∇u(·, t),∇v(·, t))‖22,

recalling that μ2 > 0 denotes the second eigenvalue of A. Taking 0 < δ � 1 such
that

FR − 4δ|Ω|2/3
3ωN RN

= δ1 > 0,

we obtain (8.109). The proof of (8.110) is similar. �
Next, we show the following lemma.

Lemma 8.10 There exists T � 1 such that

‖(u(·, t), v(·, t))‖p ≤ C24(t − T + 1)−1, for t ≥ T, (8.112)

for any 1 ≤ p ≤ 2.

Proof Adding (8.109) and (8.110), we have

1

2

d

dt
‖(u(·, t), v(·, t)‖22 + d0‖(∇u(·, t),∇v(·, t))‖22 + δ1‖(u(·, t), v(·, t))‖33

≤ C22M(t)‖(∇u(·, t),∇v(·, t)‖22, t > 0,

where d0 = min{d1, d2}. Regarding (8.56) with u∞ = 0, we take T � 1 satisfying

M(t) ≤ d0
C22

, t ≥ T,
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which implies

1

2

d

dt
‖(u(·, t), v(·, t))‖22 + |Ω|−1/2δ1‖(u(·, t), v(·, (t))‖32

≤ 1

2

d

dt
‖((u(·, t), v(·, (t))‖22 + δ1‖(u(·, t), v(·, (t))‖33 ≤ 0, t ≥ T .

Thus
dX

dt
+ δ2X

2 ≤ 0, t ≥ T,

for δ2 = |Ω|−1/2δ1 and X = ‖(u, v)‖2. This inequality, together with

‖(u(·, T ), v(·, T )‖2 ≤ |Ω|1/2‖(u(·, T ), v(·, T ))‖∞ ≤ |Ω|1/2‖(u0, v0)‖∞,

implies (8.112) for p = 2. Accordingly (8.112) for any 1 ≤ p ≤ 2 by Hölder’s
inequality. �

Turning to the proof of the second case of Theorem 8.6, we use, again the decom-
position

(u, v) = P0(u, v) + P+(u, v).

First, by Lemma 8.10 we obtain

|P0(u(·, t), v(·, t))| ≤ 1

|Ω| ‖(u(·, t), v(·, t))‖1 ≤ C25(t − T − 1)−1, t ≥ T .

(8.113)
To find a similar estimate for the P+(u, v), we apply P+ to the integral equation
equivalent to (8.12), that is,

P+u(·, t) = e−(t−T )d1AP+u(·, T ) − k
∫ t

T
e−(t−s)d1A P+[u(·, s)−

∫
B(·,R)∩Ω

v(y, s)dy] ds, t ≥ T .

Asimilar integral equationholds for the second component vwhere nowd1 is replaced
by d2. Adding these two integral equations and applying the L p − Lq estimate (8.86),
for 1 ≤ q ≤ p ≤ ∞, we derive

‖P+(u(·, , v(·, t))‖p ≤ C26e
−d0 μ2(t−T )‖P+(u(·, T ), v(·, T ))‖p

+C26

∫ t

T
q(t − s)−

N
2 ( 1

q − 1
p )e−μ2d0(t−s)‖P+[u(·, s)−

∫
B(·,R)∩Ω

v(y, s)dy

+v(·, s)−
∫
B(·,R)∩Ω

u(y, s)dy]‖q ds, (8.114)

recalling d0 = min{d1, d2}.



8.2 Mathematical Analysis 287

Since

‖P+(u(·, T ), v(·, T ))‖p ≤ |Ω|1/p‖P+(u(·, T ), v(·, T ))‖∞ ≤ C27‖(u0, v0)‖∞,

it suffices to estimate the second term in the right-hand side of (8.114). The following
inequality, comparable to (3.20) of [7], will be appropriate for this purpose.

Lemma 8.11 There holds
∥∥∥∥P+

[
u−
∫
B(·,R)∩Ω

vdy + v−
∫
B(·,R)∩Ω

udy

]∥∥∥∥
q

≤ C28
(‖(u, v)‖∞‖P+(u, v)‖q + |P0u| · |P0v|

)
.

(8.115)

Proof First, we have

P+
[
u · −

∫
B(·,R)∩Ω

vdy

]
= P+

[
(P0u + P+u) · −

∫
B(·,R)∩Ω

(P0v + P+v))dy
]

= P+
[
P0u · −

∫
B(·,R)∩Ω

P+vdy

+P+u · −
∫
B(·,R)∩Ω

vdy

]
+ P0u · P0v · P+F(R, ·).

Then we derive
∥∥∥∥P+

[
u · −

∫
B(·,R)∩Ω

v dy

]∥∥∥∥
q

≤ ‖P+‖Lq→Lq

(
|P0u| ·

∥∥∥∥−
∫
B(·,R)∩Ω

P+v dy
∥∥∥∥
q

+‖P+u‖q ·
∥∥∥∥−
∫
B(·,R)∩Ω

v dy

∥∥∥∥
∞

)
+ |P0u| · |P0v| · ‖FR(·)‖q

≤ C29
(‖u‖∞‖P+v‖q + ‖v‖∞‖P+u‖q + |P0u| · |P0v|

)
,

by (8.101). The proof of

∥∥∥∥P+
[
v · −

∫
B(·,R)∩Ω

u dy

]∥∥∥∥
q

≤ C30
(‖u‖∞‖P+v‖q + ‖v‖∞‖P+u‖q + |P0u| · |P0v|

)
,

is similar. �

Plugging (8.115) into (8.114), we have

‖P+(u(·, t), v(·, t))‖p ≤ C31

(
e−d0μ2(t−T )‖(u(·, T ), v(·, T ))‖∞

+
∫ t

T
e−d0μ2(t−s)q(t − s)−

N
2 ( 1

q − 1
p ) Iq(s) ds

)
, t ≥ T, (8.116)
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for 1 ≤ q ≤ p ≤ ∞ where

Iq(s) = ‖P+(u(·, s), v(·, s))‖q + |P0u(s)| · |P0v(s)|.

To ensure integrability near s = t of the integrand terms appearing in (8.116) we
impose

N

2

( 1
q

− 1

p

)
< 1. (8.117)

Here, (8.117) is satisfied for p = ∞ and q = 2 whenever N ≤ 3. For this choice
(8.116) yields

‖P+(u(·, t), v(·, t))‖∞ ≤ C31

(
e−d0μ2(t−T )‖(u(·, T ), v(·, T ))‖∞

+
∫ t

T
e−d0μ2(t−s)q(t − s)−N/4 I2(s) ds

)
,

which via (8.112) first gives

‖P+(u(·, t), v(·, t))‖∞

≤ C32

(
e−d0μ2(t−T ) +

∫ t

T
e−d0μ2(t−s) q(t − s)−N/4(s − T + 1)−1 ds

)

= C32

(
e−d0μ2(t−T ) +

∫ t−T

0
e−d0μ2s q(s)−N/4(t − T − s + 1)−1 ds

)
,

since

I2(t) ≤ C33
{
(t − T + 1)−1 + (t − T + 1)−2

} ≤ C34(t − T + 1)−1.

Next we use the elementary inequality

(T + 1)
∫ T

0
e−δsq(s)−γ (T − s + 1)−1ds ≤ C35(γ, δ), T ≥ 0, (8.118)

valid for 0 < γ < 1 and δ > 0. Since N
4 < 1 it follows that

‖P+(u(·, t), v(·, t))‖∞ ≤ C36(t − T + 1)−1, t ≥ T,

and the proof is complete for N ≤ 3.
To confirm (8.118) we use

∫ T/2

0
e−δsq(s)−γ T + 1

T − s + 1
ds ≤ 2

∫ T/2

0
e−δsq(s)−γ ds ≤ 2C4(γ,−δ),
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and

∫ T

T/2
e−δsq(s)−γ T + 1

T − s + 1
ds ≤ (T + 1)e−δT/2

∫ T

T/2
e−δs/2q(s)−γ ds

≤ (T + 1)e−δT/2C4(γ,−δ/2) ≤ C37(γ, δ).

Then (8.118) is obtained.
In the complementary case N ≥ 4 we define a sequence of exponents {p j } by

p 0 = 1,
1

p j
− 1

p j+1
= 1

N
, j = 0, 1, ..., N − 1.

It is easily seen that {p j } is an increasing sequence with pN = ∞. Setting p = p j+1

and q = p j in (8.116), we obtain

‖P+(u(·, t), v(·, t))‖p j+1 ≤ C31

(
e−d0μ2(t−T ) +

∫ t

T
q(t − s)−1/2 Ip j (s) ds

)
,

(8.119)

for j = 0, 1, ..., N − 1.Based on (8.112) for p = 1we can use (8.119) recursively
for j to derive

‖P+(u(·, t), v(·, t))‖p j ≤ C37(t − T + 1)−1, t ≥ T, j = 1, 2, · · · , N .

Then (8.83), which is actually (8.112)with p = ∞, follows for N ≥ 4 since pN = ∞.
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Appendix

Herewe review several other systems providedwith non-local termsmodeling elastic
string, point vortices, and geometric deformation.

A.1 Kirchhoff Equation

We first consider Kirchhoff’s equation which in one dimension takes the form

utt −
(

ε2 + 1

2�

∫ 1

0
u2x dx

)
uxx = 0 in (0, 1) × (0, T ), T > 0, (A.1)

where u = u(x, t) denotes the deformation of an elastic string under the oscillation
of small amplitude and � is a constant reflects the elastic features of the string.
Equation (A.1) was introduced by G.R. Kirchhoff in 19th century but global-in-time
wellposedness in Sobolev spaces is still an open problem in spite of several results
on real analytic initial values [2, 6, 20]. The problem in higher dimensions can be
written as

utt − Φ(‖∇u‖22)Δu = 0 in R
N × (0, T ),

u(x, 0) = u0(x), ut (x, 0) = u1(x) in R
N ,

with Φ = Φ(s) ∈ C[0,∞) satisfying

inf
s>0

Φ(s) > 0, and
∫ ∞

0
Φ(s)ds = ∞.

The total energy is provided by

E(t) = 1

2

(
F(‖∇u‖22) + ‖ut‖22

)
,
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where F(s) = ∫ s
0 Φ(s ′)ds ′ and it is preserved, i.e. E(t) = E(0) for any t > 0. The

energy conservation implies uniformboundsof the norms‖∇u(·, t)‖2 and‖ut (·, t)‖2.
Higher order norms, on the other hand, must be controlled for the global-in-time
wellposeness, because those norms are necessary for the short time solvability. For
this purpose we consider

Em(t) = 1

2

(
Φ(‖∇u‖22)‖∇u‖2Hm + ‖ut‖2Hm

)
,

for m ≥ 1
2 and we deduce

dEm

dt
= Φ ′(‖∇u‖22)

(
|∇| 1

2 ut , |∇| 3
2 u

)
‖∇u‖2Hm ≤ C0 E 1

2
Em,

owing to the energy conservation. Therefore, the control of E 1
2
is the key estimate to

guarantee the global-in-time existence of the solution. Closely related linear theory
is concerned on

(∂2
t − a2(t)Δ)u = 0 in R

N × (0, T ),

u(x, 0) = u0(x), ut (x, 0) = u1(x), in R
N ,

with a = a(t) > 0 being singular at t = T < ∞, say a ∈ C1[0, T ) ∩ L1(0, T )

and |a′(t)| = O((T − t)−1) as t ↑ T . Then a class of non-analytic function spaces
provided with global-in-time wellposedness of (A.1) is introduced [10, 11, 16].

A.2 Equilibrium and Relaxation States of Point Vortices

The motion of the perfect fluid occupied in a bounded, simply connected domain
Ω ⊂ R

2 and with high Reynolds number is described by the Euler–Poisson equation

ωt + ∇ · uω = 0, Δψ = −ω, u = ∇⊥ψ, ψ |∂Ω = 0 (A.2)

where ∇⊥ =
(

∂
∂x2

− ∂
∂x1

)
for x = (x1, x2). Assuming the point vortex model

ω(x, t) =
N∑
i=1

αiδxi (t)(dx),

we can reduce system (A.2) to

αi
dxi
dt

= ∇⊥
xi HN , 1 ≤ i ≤ N , (A.3)
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associated with the Hamiltonian

HN (x1, · · · , xN ) = 1

2

N∑
i=1

α2
i R(xi ) +

∑
1≤i< j≤N

αiα j G(xi , x j ),

where G = G(x, x ′) is the Green’s function of −Δ associated with Dirichlet bound-
ary condition and

R(x) =
[
G(x, x ′) + 1

2π
log |x − x ′|

]
x ′=x

,

stands for the Robin function.
Onsager [19] proposed the use of statistical mechanics to handle (A.3). Indeed,

considering the limit N → ∞ with αN = 1, local mean of vortex distribution is
given by

ω̃(x) =
∫
I
α̃ρα̃(x)P(dα̃), x ∈ Ω,

where αi = α̃iα, α̃i ∈ I = [−1, 1] is the intensity of the i-th vortex, ρα̃(x) is the
existence probability of the vortex at x with relative intensity α̃ which satisfies

∫
Ω

ρα̃(x) dx = 1, α̃ ∈ I,

and P(dα̃) is the numerical density of the vortices with the relative intensity α̃.
Assuming HN = E = constant, α2NβN = β = constant, and taking the limit as
N → ∞, then by a series of arguments the following mean field equation is derived

− Δψ =
∫
I
α

e−βαψ∫
Ω
e−βαψ

P(dα), ψ |∂Ω = 0, (A.4)

with

ω = −Δψ, ρα = e−βαψ∫
Ω
e−βαψ

,

see [25]. The non-local term in (A.4) is associated with the canonical measure trans-
formed from the micro-canonical measure using thermodynamical relations. The
simplest case α̃1 = 1 is particularly studied in details for this model. There is a
recursive hierarchy with mass quantization, which means that the singular limit of
the family of solutions arises only when β → −8πN with exactly N blow-up points
denoted by x∗

1 , · · · , x∗
N , whose location coincides with that of the critical point of

HN = HN (x1, · · · , xN ): ∇xi H(x∗
1 , · · · , x∗

N ) = 0, 1 ≤ i ≤ N , see [17].
There is a quasi-equilibrium in several isolated systems with many components.

The observation is that there is a relatively stationary state, different from the
equilibrium, which eventually approaches the latter. Relaxation indicates this time
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interval, from quasi-equilibrium to equilibrium. There is a kinetic mean field model
assuming the Brownian point vortices, see [5],

∂ρα

∂t
+ ∇ · ραu = ∇ · D(∇ρα + βαρα∇ψ),

∂ρα

∂ν
+ βαρα ∂ψ

∂ν

∣∣∣∣
∂Ω

= 0, (A.5)

ω =
∫
I
αραP(dα) = −Δψ, ψ |∂Ω = 0, u = ∇⊥ψ, (A.6)

β = −
∫
Ω D∇ω · ∇ψ∫

Ω

∫
I α2ραP(dα)|∇ψ |2 , (A.7)

where D is the diffusion coefficient. Inverse temperature β is associated with the
non-local term, which realizes the thermodynamical law valid to the isolated system,
that is, conservations of total mass and energy as well as increase of entropy.

In fact, averaging (A.5)–(A.7) entails

∂ω

∂t
+ ∇ · ωu = ∇ · D(∇ω + βω2∇ψ),

∂ω

∂ν
+ βω2

∂ψ

∂ν

∣∣∣∣
∂Ω

= 0,

ω = −Δψ, ψ |∂Ω = 0, u = ∇⊥ψ, β = −
∫
Ω
D∇ω · ∇ψ∫

Ω
Dω2|∇ψ |2 ,

with

ω =
∫
I
ωραP(dα), ω2 =

∫
I
α2ραP(dα).

Then we obtain

d

dt

∫
Ω

ω = 0, (ω t , ψ) = 1

2

d

dt
(ω, (−Δ)−1ω) = 0.

We also write
∂ρα

∂t
= ∇ · ραu = ∇ · Dρα∇(log ρα + βαψ),

for (A.5) and thus it follows that

d

dt

∫
Ω

Φ(ρα) + βα(ρα
t , ψ) = −

∫
Ω

Dρα|∇(log ρα + βαψ)|2,

where Ψ (s) = s(log s − 1) + 1 ≥ 0, s > 0. Consequently, we deduce

d

dt

∫
Ω

(∫
I
Φ(ρα)P(dα)

)
= −

∫
Ω

(∫
I
Dρα|∇(log ρα + βαψ)|2P(dα)

)
≤ 0.

The patch model
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ω(x, t) =
N∑
i=1

σi IΩi (t)(x),

is used to describe detailed vortex distribution, where N , σi , and Ωi (t) denote the
number of patches, the vorticity of the i-th patch, and the domain of the i-th patch,
respectively. Mean field equations for equilibrium and relaxation time are derived by
the principles of maximum entropy and maximum entropy production, respectively,
see [21–24]. At the scaling limit those patch models converge to the point vortex
models, and in this way the Brownian point vortex model for relaxation dynamics
has a physical reality [26].

In the canonical setting the inverse temperature β is a given constant in (A.5).
Study of the asymptotic behavior of the solution is done in [29]. Without the vortex
term ∇ · ραu, and particularly, for the one intensity case that P(dα) = δ1(dα), this
is the Smoluchowski–Poisson equation for self-gravitating Brownian particles, [7],
as well as it serves as form of chemotaxis system in mathematical biology [12], see
also Chap.7. Then there is a quantized blow-upmechanism for both blow-up in finite
and in infinite time described as in Theorems 1.2.2 and 1.9.1 of [28], see also [27].

A.3 Normalized Ricci Flow on Surfaces

The normalized Ricci flow describes an evolution in time of the metric g = g(t)
on a compact Riemannian manifold. If Ω is a compact Riemannian surface without
boundary, this flow is described by

∂g

∂t
= (r − R)g, (A.8)

where R = R(·, t) stands for the scalar curvature of (Ω, g(t)) and r = r(t) represents
the average scalar curvature:

r =
∫
Ω
R(·, t)dμt∫
Ω
dμt

.

R. Hamilton, [8], was first introduced this flow to approach the Poincaré conjecture.
The case that Ω is a compact Riemannian surface is described in [9]. It is shown that
the solution to (A.8) is global-in-time, and converges in C∞−topology to a metric
as t ↑ ∞, and the scalar curvature of this limit metric is constant.

An analytic approach was undertaken by [1], assuming R(·, 0) > 0 everywhere.
In fact, then R continues to be positive by the maximum principle applied to

∂R

∂t
= Δt R + R(R − r),

http://dx.doi.org/10.1007/978-3-319-67944-0_7
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where Δt is the Laplace–Beltrami operator associated with g(t). Then, from Gauss-
Bonnet’s theorem follows

∫
Ω

R(·, t) dμt = 4πχ(Ω) > 0,

where χ(Ω) = 2 − 2k(Ω) stands for the Euler characteristic of Ω . Hence k(Ω) is
the genus ofΩ and it holds that k(Ω) = 0. Then the uniformization theorem reduces
the problem to the case Ω = S2, g(t) = ew(·,t)g0, where S2 the two dimensional
sphere, g0 is its standard metric, and w = w(·, t) is a smooth function. In this case
(A.8) is reduced to

∂ew

∂t
= Δw + λ

(
ew∫
Ω
ew

− 1

|Ω|
)

, (A.9)

with λ = 8π . This equation is studied in [13, 14] for general Ω and λ. The funda-
mental property is

d

dt

∫
Ω

ew = 0 and
d

dt
Jλ(w) = −

∫
Ω

eww2
t ,

which implies that r = λ∫
Ω
ew

is a constant.

In fact, under the change of variables u = rew and t = r−1τ , and writing t for τ ,
we obtain

ut = Δ log u + u − u, u = 1

|Ω|
∫

Ω

u.

Then, rewriting w = log u, we reach to

∂ew

∂t
= Δw + ew − λ

|Ω| , (A.10)

which implies
eww2

t + ewwtt = Δwt + ewwt .

Hence
pt = e−wΔp + p − p2, p = wt ,

and then follows that

p = wt ≤ et

et − 1
, (A.11)

from the comparison theorem. By virtue of (A.10) we also derive

d

dt
Jλ(w) = −

∫
Ω

eww2
t ≤ 0, (A.12)
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for

Jλ(w) = 1

2
‖∇w‖22 − λ

(
log

∫
Ω

ew − w

)
, w = 1

|Ω|
∫

Ω

w.

Using (A.11), (A.12), and the concentration compactness lemma [18] (see also
[3]), we obtain a uniformly bounded global-in-time solution, provided that λ ≤ 8π .
Therefore, (A.12) guarantees the inclusion of the ω-limit set in the set of stationary
solutions. Since the stationary solution of the original problem (A.9) for Ω = S2

and λ = 8π is unique (see [4, 15] for the analytic proof), we now recover the result
[9] for g(Ω) = 0.
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