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  Preface 

    During the past 40 years, I have been engaged in a study on the stability analysis 
of earth slopes. The study was initiated in 1973 when I received a research grant 
from the Institute for Mining and Minerals Research, University of Kentucky. 
When the research project was completed in 1977, the U.S. Congress passed the 
Surface Mining Control and Reclamation Act, which requires stability analysis 
for refuse dams, hollow fi lls, and spoil banks created by surface mining, thus 
putting the research into practical use. The results of the research were published 
in several journals and reports and also were presented in a number of short 
courses. Both the simplifi ed and the computerized methods of stability analysis, 
as developed from this research, have been widely used by practicing engineers 
throughout Kentucky for the application of mining permits. The large number 
of out-of-state participants in the short courses indicates that the methods devel-
oped have widespread applications. 

 In 1983, my book  Stability Analysis of Earth Slopes  was published by the Van 
Nostrand Reinhold Company. The book was well received by the engineering 
profession and was reprinted quite a few times. It was recommended by the 
Professional Civil Engineering Book Club as a feature selection and was trans-
lated into Chinese and Russian by foreign publishers. Two computer programs, 
one called SWASE (Sliding Wedge Analysis of Sidehill Embankments) for analyz-
ing plane or noncircular failure surfaces, and the other called REAME (Rotational 
Equilibrium Analysis of Multilayered Embankments) for cylindrical failure sur-
faces, written in both Fortran and Basic languages, were listed in the book. In 
1994, the SWASE program was incorporated into the REAME program, and a 
separate program for three-dimensional analysis, named REAME3D, was devel-
oped. In 1996, the fi rst Windows version of REAME for both two- and three-
dimensional analyses was released and used widely by the mining industries. 
The program has been continuously improved, and a new version has been 
released every four years, culminating in the latest REAME2012. Because the 
name REAME is a misnomer and the computer software associated with this 
book is very similar to REAME2012 with only some minor changes, the name 
REAME has been changed to LEAME (Limit Equilibrium Analysis of Multilay-
ered Earthworks) in this book to refl ect the capabilities of the software better. 

 Further evolutions of the book and software have prompted their separation 
into two separate products.  Slope Stability Analysis by the Limit Equilibrium Method: 
Fundamentals and Methods  presents the basic principles at work in the analysis of 
slope stability and common methods for analyzing slope stability in two and 
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x Preface

three dimensions. A companion product,  LEAME Software and User ’ s Manual: 
Analyzing Slope Stability by the Limit Equilibrium Method  provides both the soft-
ware program and the supporting documentation for its use. The software can 
be obtained at  http://dx.doi.org/10.1061/9780784477991 . 

 Although some of the materials presented in this book, such as the fi ve chap-
ters in Part 1 and Chapter 7 in Part 2, are essentially the same as the 1983 book, 
this revised and updated volume is dramatically different in the following aspects:

   1.      Many new sections have been added, such as the back-calculation of 
shear strength, undrained shear strength varying linearly with depth, 
granular materials with curved strength envelope, unsteady-state seep-
age, and external and internal forces.  

  2.      Some new stability charts have been added and some others have been 
deleted, because they are too cumbersome for hand calculations. With the 
availability of the LEAME software, no one likes to resort to stability 
charts for preliminary analysis unless they are very simple to use.  

  3.      Only the limit equilibrium method is covered here, and the section on fi -
nite element method is eliminated. Also, only the methods incorporated 
in LEAME are presented in detail, while the sections on Janbu ’ s method 
and Morgenstern ’ s and Price ’ s method are eliminated. The section on the 
probabilistic method has been expanded greatly, and a new chapter on 
reliability is presented.  

  4.      The three-dimensional analysis, which was not even mentioned in the 
previous book, is presented here in a full chapter. It covers the theoretical 
aspect by showing how the failure mass is divided into columns and de-
riving the equations used for LEAME.  

  5.      Spreadsheets have been added to solve many of the examples, and the 
results are compared with the LEAME computer program. It is amazing 
that many problems involving iterations or using trial-and-error can be 
solved easily by spreadsheets. Although spreadsheets can be used to 
check the correctness of a computer program, they cannot serve as a sub-
stitute, because they involve only a single failure surface; to determine 
the minimum factor of safety, hundreds of failure surfaces need to be 
analyzed.  

  6.      Homework problems and more examples have been added so the book 
can serve as a college text for senior and graduate courses in soil mechan-
ics and geotechnical engineering.    

 This volume is divided into two parts. Part 1 presents the fundamentals of 
slope stability and consists of fi ve chapters. Chapter 1 describes slope move-
ments and discusses some of the more well-known methods for stability analysis. 
Chapter 2 explains the mechanics of slope failures and defi nes the factor of safety 
for both cylindrical and plane failures. Chapter 3 discusses both the laboratory 
and the fi eld methods for determining the shear strength of soils used for 
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Preface xi

stability analysis. Chapter 4 illustrates some methods for estimating the location 
of the phreatic surface and determining the pore pressure ratio. Chapter 5 out-
lines remedial measures for correcting slides. 

 Part 2 presents methods of stability analysis and also consists of fi ve chapters. 
Chapter 6 derives some simple formulas for determining the factor of safety for 
plane failures. Chapter 7 presents a number of stability charts for determining 
the factor of safety for cylindrical failures, as well as the well-known friction 
circle and logarithmic spiral methods. Chapter 8 discusses methods of slices for 
two-dimensional analysis and derives the equations used in developing LEAME. 
Chapter 9 discusses the three-dimensional analysis with both ellipsoidal and 
planar ends and derives the equations used in LEAME. Chapter 10 discusses 
various methods to determine the reliability of slope design, including the use 
of Taylor ’ s expansion for closed-form solutions and the mean-value fi rst order 
second moment (MFOSM) method for computer solutions. 

 The Appendix provides an introduction to the LEAME software to encourage 
readers to obtain the software. The LEAME computer software is completely 
different from the REAME program listed in the 1983 book. It is an excellent and 
well-tested software program to determine the factors of safety for both two- and 
three-dimensional slopes and contains many new features not available else-
where. It can be downloaded and used right away to solve practical problems 
in slope stability. 

 Finally, I want to thank ASCE Press for giving me the opportunity to 
publish these books. It is my sincere hope that the books, especially the LEAME 
computer software, will be helpful to civil engineers in their engineering practice 
and to college professors in teaching courses in slope stability. 

   Yang H. Huang, Sc.D., P.E.   
 Professor Emeritus of Civil Engineering   

 University of Kentucky     
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3

    Chapter 1 

  Introduction    

       Problems associated with failures of natural and artifi cial slopes often pose for-
midable challenges in geotechnical engineering. In general, an exposed inclined 
ground surface that is unrestrained may be prone to mass movement due to 
gravitational forces. The resulting shear stresses, induced along a potential or 
known failure surface, could exceed the shear strength of the soil and cause slope 
failure. The ratio of available shear strength to induced shear stress on a potential 
failure surface most commonly is referred to as the factor of safety. The intent of 
any limit equilibrium stability analysis is to determine this factor, by which the 
soil strength is divided or reduced, to bring the slope to the threshold of instabil-
ity. The types of slope movements and the use of various limit equilibrium 
methods to determine the factor of safety for the sliding types of mass move-
ments are reviewed in this chapter. 

  1.1     Slope Movements 

 The stability analysis of slopes plays a very important role in civil engineering. 
Stability analysis is used in the construction of transportation facilities such as 
highways, railroads, airports, and canals; the development of natural resources 
such as surface mining, refuse disposal, and earth dams; as well as many other 
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4 Slope Stability Analysis by the Limit Equilibrium Method

human activities involving building construction and excavation. Failures of 
slopes in these applications may be caused by movements within the human-
created cut or fi ll, in the natural slope, or a combination of both. These movement 
phenomena usually are studied from two different points of view. Geologists 
consider the movement phenomena as a natural process and study the crux of 
their origin, their courses, and the resulting surface characteristics. Engineers, 
however, investigate the safety of slopes based on the principles of soil mechan-
ics and develop methods for a reliable assessment of the stability of slopes, as 
well as the controlling and corrective measures needed. The most viable stability 
studies can be achieved only by the combination of both approaches. The quan-
titative assessment of the stability of slopes by the methods of soil mechanics 
must be based on knowledge of the geological structure of the area, the detailed 
composition and orientation of strata, and the geomorphological history of the 
land surface. On the other hand, geologists may obtain a clearer picture of the 
origin and character of the movement process by checking their considerations 
against the results of engineering analyses based on soil mechanics. For example, 
it is well known that one of the most favorable settings for landslides is where 
permeable or soluble beds overlie or are interbedded with relatively impervious 
beds. This geological phenomenon was explained by Henkel  (1967)  using the 
principles of soil mechanics. 

 Slopes failures involve such a variety of processes and causative factors that 
they afford unlimited possibilities of classifi cation. For instance, they can be 
divided according to the form of failures, the type of materials moved, the age, 
the stage of development, or the cause of movements. 

 One of the most comprehensive references on landslides or slope failures is 
a special report published by the Transportation Research Board (Turner and 
Schuster  1996 ). According to this report, the type of slope movements is divided 
into fi ve main groups: falls, topples, slides, spreads, and fl ows (Varnes  1978 ). A 
sixth group, complex slope movements, includes the combination of two or more 
of these fi ve types. The type of materials is divided into two classes: rock and 
soil. Soil is further divided into debris and earth. Table  1-1  shows the classifi ca-
tion of slope movements. 

  Recognizing the types of slope movements is important because they dictate 
the method of stability analysis and the remedial measures to be employed. 
Varnes  (1978)  described the types of movements as follows:

   •      In falls, a mass of any size is detached from a steep slope or cliff, along 
a surface on which little or no shear displacement takes place, and de-
scends mostly through the air by free fall, leaping, bouncing, or rolling. 
Movements are very rapid and may or may not be preceded by minor 
movements leading to progressive separation of the mass from its source.  

  •      In topples, one or more units of mass rotate forward about some pivot 
point, below or low in the unit, under the action of gravity and forces 
exerted by adjacent units or by fl uids in cracks. In fact, it is tilting without 
collapse.  
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Introduction 5

 Table 1-1.      Classifi cation of Slope Movements  

 TYPE OF MOVEMENT  

 TYPE OF MATERIAL 

Bedrock

Engineering Soils

Predominantly 
Coarse

Predominantly 
Fine

Falls Rock fall Debris fall Earth fall

Topples Rock topple Debris topple Earth topple

Slides Rotational Few units Rock slump Debris slump Earth slump

Translational Rock block 
slide

Debris block 
slide

Earth block slide

Many units Rock slide Debris slide Earth slide

Lateral spreads Rock spread Debris spread Earth spread

Flows Rock fl ow 
(deep creep)

Debris fl ow 
(soil creep)

Earth fl ow (soil 
creep)

Complex combination of two or more principal types of 
movement

   (Varnes  1978 , © National Academy of Sciences, Washington, DC. Reproduced with permission of 
the Transportation Research Board, Washington, DC)   

  •      In slides, the movement consists of shear strain and displacement along 
one or several surfaces that are visible or may reasonably be inferred, or 
within a relatively narrow zone. The movement may be progressive; that 
is, shear failure may not initially occur simultaneously over what eventu-
ally becomes a defi ned surface of rupture, but, rather, it may propagate 
from an area of local failure. This displaced mass may slide beyond the 
original surface of rupture onto what had been the original ground sur-
face, which then becomes a surface of separation. Slides are divided into 
rotational slides and translational slides. This distinction is important 
because it affects the methods of analysis and control. Furthermore, the 
presence of a weak sublayer or boundary between weathered and un-
weathered strata reveals another type of slide known as the compound 
slide (Cruden and Varnes  1996 ). These geological anomalies dictate the 
location of the surface of rupture (Hutchinson  1988 ).  

  •      In spreads, the dominant form of movement is lateral extension accom-
panied by shear or tensile fractures. Movements may involve fracturing 
and extension of coherent material, either bedrock or soil, owing to liq-
uefaction or plastic fl ow of subjacent material. The coherent upper units 
may subside, translate, rotate, or disintegrate, or they may liquefy and 
fl ow. The mechanism of failure can involve elements not only of rotation 
and translation but also of fl ows; hence, some lateral spreading failures 
may be regarded as complex. The sudden spreading of clay slopes was 
discussed by Terzaghi and Peck  (1967) .  
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6 Slope Stability Analysis by the Limit Equilibrium Method

  •      In fl ows, slope movements may appear in several different forms. In 
unconsolidated materials, they generally take the form of fairly obvious 
fl ows, fast or slow, wet or dry. In saturated soils, they are triggered when 
the ground becomes completely saturated by infi ltration, as a result of 
intense rainfall or by the rise of the groundwater table. Thus, water is the 
primary transport agent and the saturated soils resembling a viscous fl u-
id possess no strength and result in shallow slope failures. In bedrock, the 
movements are extremely slow and are distributed among many closely 
spaced, noninterconnected fractures that result in folding, bending, or 
bulging.    

 According to age, slope movements are divided into contemporary, dormant, 
and fossil movements. Contemporary movements are generally active and are 
relatively easily recognizable by their confi guration, because the surface forms 
produced by the mass movements are expressive and not affected by rainwash 
and erosion. Dormant movements usually are covered by vegetation or are dis-
turbed by erosion so that the traces of their last movements are not easily dis-
cernible. However, the causes of their origin still remain and the movement may 
be renewed. Fossil movements generally developed in the Pleistocene or earlier 
periods, under different morphological and climate conditions, and cannot 
repeat themselves at present. 

 According to stage, slope movements can be divided into initial, advanced, 
and exhausted movements. At the initial stage, the fi rst signs of the disturbance 
of equilibrium appear and cracks in the upper part of the slope develop. In the 
advanced stage, the loosened mass is propelled into motion and slides downslope. 
In the exhausted stage, the accumulation of slide mass creates temporary equi-
librium conditions. 

 Chowdhury  (1980)  classifi ed slides according to their causes: (1) exceptional 
landslides arising from earthquake, intense precipitation, severe fl ooding, accel-
erated erosion from wave action, and liquefaction; (2) ordinary landslides result-
ing from known or usual causes that can be explained by traditional theories; 
and (3) unexplainable landslides that occur without any apparent cause. 

 It should be evident from this discussion that the stability of slopes is a 
complex problem, which may defy any theoretical analysis. In this book only the 
slide type of mass movements will be discussed, not only because it is more 
amenable to theoretical analysis but also because it is the predominant type of 
failures, particularly in human-created slopes.  

  1.2     Limit Plastic Equilibrium 

 The primary purpose of most stability analyses is to determine the factor of 
safety of the slope based on the concept of limit plastic equilibrium. First, a 
failure surface is assumed. A state of limit equilibrium is said to exist when the 
shear stress along the failure surface is expressed as
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Introduction 7

  τ = s
F

      (1-1)  

in which  τ   =  shear stress,  s   =  shear strength, and  F   =  factor of safety. According 
to the Mohr-Coulomb failure theory, the shear strength can be expressed as

  s c n= + σ φtan       (1-2)  

in which  c   =  cohesion,  σ   n    =  normal stress, and  ϕ   =  angle of internal friction. Both 
 c  and  ϕ  are known properties of the soil. Once the factor of safety is known, the 
shear stress along the failure surface can be determined from Eq.  (1-1) . 

 In the limit equilibrium method, only the concept of static equilibrium is 
applied. Unfortunately, except in the simplest cases, most problems in slope 
stability are statically indeterminate, because the number of available equations 
is not suffi cient to solve the number of unknowns. In order to determine a unique 
factor of safety, some simplifying assumptions must be made to increase the 
number of equations and make it exactly equal to the number of unknowns. 
Some examples of statically determinate and statically indeterminate problems 
are discussed as follows. 

  1.2.1     Statically Determinate Problems 

 Two cases, one involving a plane failure and the other a cylindrical failure, will 
be discussed here. 

 Fig.  1-1  shows a fi ll on a sloping ground. The failure surface is assumed to 
be a plane at the bottom of the fi ll along the sloping ground. The weight of the 
fi ll is  W , the force normal to the failure plane is  N , and the shear force,  T , along 
the failure plane can be expressed as

   T
C N

F
= + tan φ

      (1-3)  

in which  C   =  total cohesion resistance, which is equal to the unit cohesion,  c , 
multiplied by the area of failure surface. There are a total of three unknowns: the 

  Fig. 1-1.      Statically determinate plane failure    
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8 Slope Stability Analysis by the Limit Equilibrium Method

factor of safety,  F , the magnitude of  N , and the point of application of  N . Accord-
ing to statics, there are also three equilibrium equations; specifi cally, the sum of 
forces in the normal direction is zero, the sum of forces in the tangential direction 
is zero, and the sum of moments about any given point is zero. The moment 
requirement implies that  W ,  T , and  N  must intersect at the same point. Knowing 
the magnitude and direction of  W  and the direction of  N  and  T , the magnitude 
of  N  and  T  can be determined from the force diagram shown in Fig.  1-1  and the 
factor of safety from Eq.  (1-3) . This case is statically determinate, because all 
forces applied to the failure mass, including their magnitude, direction, and 
point of application, can be determined by statics. To fi nd the factor of safety 
algebraically, from Eq.  (1-3) ,

  F
cL W

W
= + cos tan

sin
α φ
α

      (1-4)  

in which  L   =  length of failure surface, which is also the area of failure surface 
(note that the width is equal to unity, thus the area and length are equivalent), 
and  α   =  angle of the sloping ground. It can be seen from Eq.  (1-4)  that, for stati-
cally determinate problems, the factor of safety is defi ned as the ratio between 
the resisting force and the driving force, both applied on the failure surface. 

  Example 1.1            Fig.  1-2  shows a triangular fi ll placed on a sloping surface. It is 
assumed that the plane failure is along the slope surface, because a thin layer 
of weak material with a cohesion,  c , of 250 psf (12 kN/m 2 ) and a friction angle, 
 ϕ , of 15° exists at the bottom of the fi ll. If the fi ll has a unit weight,  γ , of 125 pcf 
(19.7 kN/m 3 ), determine its factor of safety.   

  Solution     The triangular fi ll has a height and a base of 50 ft so, assuming the 
width of fi ll as 1 ft, the weight of the fi ll  W   =  0.5  ×  125  ×  50  ×  50  =  156,250 lb, and 
the area of failure surface  L   =  [(150) 2   +  (50) 2 ] 0.5   =  158.1 ft 2 . The angle of slope  α   =  
tan  − 1 (50/150)  =  18.4°. From Eq.  (1-4) ,

 F = × + ° °
°

= +250 158 1 156 250 18 4 15
156 250 18 4

39 525 39. , cos . tan
, sin .

, ,,
,

.
727

49 320
1 607=          

  Fig. 1-2.      Example 1.1    
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Introduction 9

 The second case involves a cylindrical surface cutting through a soil with  ϕ  
 =  0, as shown in Fig.  1-3 . When  ϕ   =  0, the shear resistance along the failure arc 
is dependent on the cohesion only, independent of the normal force. By assuming 
that the cohesion,  c , is distributed uniformly along the failure arc, it can be seen 
from Fig.  1-3 (a) that the cohesion resistance along the failure surface can be 
resolved into two components, one parallel to the chord and the other perpen-
dicular to the chord. The component parallel to the chord is in the same direction 
and can be added together, while that perpendicular to the chord is in opposite 
directions and neutralizes each other. Consequently, the resultant cohesion resis-
tance is parallel to the chord with a magnitude of  cL c  , where  L c   is the chord length, 
and the shear force,  T , is equal to

   T
cL
F

c=       (1-5)   

 The distance,  d , from the center of circle to the shear force,  T , can be obtained 
by taking moment about point O, i.e.,  cL c d   =   cL a R  or

  d
RL
L

a

c

=       (1-6)  

in which  L a    =  arc length. Given the exact location of weight,  W , and shear force, 
 T , their intersection O ′  can be found graphically, as shown in Fig.  1-3 (b). To 
satisfy the moment equilibrium, the normal force,  N , must also pass through 
point O ′ . Because each of the normal forces distributed over the failure arc passes 
through point O, the resultant of all normal forces,  N , must also pass through 
point O, so the direction of  N  can be determined graphically by connecting the 
two points O and O ′ . Knowing the magnitude and direction of  W  and the direc-
tion of  T  and  N , the magnitude of  T  can be determined by the force diagram, as 

  Fig. 1-3.      Statically determinate cylindrical failure with  ϕ   =  0    
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10 Slope Stability Analysis by the Limit Equilibrium Method

shown in Fig.  1-3 (c), and the factor of safety obtained from Eq.  (1-5) . This case 
is statically determinate, because the magnitude, direction, and point of applica-
tion of all the forces applied to the failure mass can be determined by statics 
alone. 

 To solve the factor of safety algebraically, it is more convenient to take the 
moment about point O:

  Td Wa=       (1-7)   

 Substituting Eqs.  (1-5)  and  (1-6)  into Eq.  (1-7) , the following equation is 
obtained:

  F
cL R
Wa

a=       (1-8)   

 For statically determinate problems, Eq.  (1-8)  defi nes the factor of safety as 
the ratio between the resisting moment and the overturning moment. The dif-
fi culty in applying Eq.  (1-8)  is how to determine the driving moment,  Wa . Fig. 
 1-4  illustrates the method for computing the area of failure mass and the overall 
driving moment by dividing the total area into several small areas, or

   Area ABCG Area OABC OFC OEF AGD AED= − − − +Δ Δ Δ Δ       (1-9)   

 Area OABC  =   π  R  2  θ /360, where  R   =  radius,  θ   =  central angle, or the angle 
between the two radii in degrees. The center of gravity of Area OABC is on the 
dashed bisector of the central angle at a distance of  b  from the center, or

  b R=

⎛
⎝

⎞
⎠

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4
3

2
sin

θ

θ
      (1-10)  

  Fig. 1-4.      Computation of driving moment    
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Introduction 11

in which  θ   =  central angle in radians. The area of each triangle can be easily 
computed, and the distance from its center of gravity to the vertical side of each 
triangle is equal to one-third of the length of the horizontal side. 

  Example 1.2            Fig.  1-5  shows a circular failure surface. The coordinates at the cent-
er, O, and at three points, A, G, and C, on the slope surface are given. If the soil 
has a unit weight of 125 pcf (19.7 kN/m 3 ), a cohesion of 1,600 psf (7.7 kN/m 2 ), and 
a friction angle of 0°, determine the factor of safety. 

  
  Solution     All dimensions shown in the fi gure are based on the four sets of coordi-
nates in parentheses. Radius:  R   =  [(120  −  30) 2   +  (90  −  60) 2 ] 0.5   =  94.9 ft. Chord length: 
 L c    =  [(120) 2   +  (60) 2 ] 0.5   =  134.2 ft. Central angle: From geometry, sin( θ /2)  =  0.5  ×  
134.2/94.9  =  0.707, or  θ   =  2  ×  sin  − 1 (0.707)  =  90°. Distance EF:  ∠ COF  =  tan  − 1 (90/30) 
 =  71.6°, or  ∠ EOF  =  90  −  71.6  =  18.4°, so EF  =  30  ×  tan 18.4°  =  10 ft. 

 The graphical method is more complex and will be discussed fi rst. The weight 
of failure mass can be determined from Area ABCG shown in Fig.  1-5  multiplied 
by the unit weight of the soil. The area can be computed by Eq.  (1-9) , so  W   =  
125  ×  [ π (94.9) 2   ×  90/360  −  30  ×  90/2  −  30  ×  10/2  −  60  ×  90/2  +  60  ×  20/2]  =  125  ×  
(7,073  −  1,350  −  150  −  2,700  +  600)  =  434,125 lb. From Eq.  (1.10) ,  b   =  (4/3)  ×  94.9  ×  
sin 45°/( π /2)  =  56.96 ft. The overturning moment is  Wa   =  125  ×  [7,073  ×  56.96  ×  
sin 26.6°  −  1,350  ×  30  −  150  ×  ( − 3.333)  −  2,700  ×  0  +  600  ×  ( − 23.3)]  =  15,464,034 ft-lb, 

  Fig. 1-5.      Example 1.2    
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12 Slope Stability Analysis by the Limit Equilibrium Method

or  a   =  15,464,034/434,125  =  35.6 ft. The arc length is  L a    =   π  R  θ /180  =  3.1416  ×  94.9 
 ×  90/180  =  149.1 ft. From Eq.  (1-6) ,  d   =  94.9  ×  149.1/134.2  =  105.4 ft. With the dis-
tances  a  and  d  known, the exact location of  W  and  T  can be drawn on the fi gure, 
and the direction of  N , which must pass through points O and O ′ , can be deter-
mined. From the force diagram on the right side of the fi gure,  T   =  150,000 lb. From 
Eq.  (1-5) ,  F   =   cL c  / T   =  1,600  ×  134.2/150,000  =  1.43. The purpose of this graphical 
method is to show that the magnitude, direction, and line of application of all 
three forces can be determined by statics. If only the factor of safety is required, 
it is much quicker and more accurate by the algebraic method using Eq.  (1-8) , 
or  F   =  1,600  ×  149.1  ×  94.9/15,464,034  =  1.46, which checks with the 1.43 by the 
graphical method.    

  1.2.2     Statically Indeterminate Problems 

 Except for the simple cases shown in Figs.  1-1  and  1-3 , most problems encoun-
tered in engineering practice are statically indeterminate. Fig.  1-6 (a) shows the 
free-body diagram of a fi ll with weight,  W , and the normal and shear forces on 
the two failure planes at the bottom. If both moment and force equilibrium are 
considered, there are fi ve unknowns but only three equations. The fi ve unknowns 
are the factor of safety,  F , the magnitude and point of application of  N  1 , and the 
magnitude and point of application of  N  2 . The shear forces,  T  1  and  T  2 , on the 
failure surface are known once the factor of safety is determined. This problem 
is statically indeterminate, because the number of equations is less than the 
number of unknowns. 

  If only force equilibrium is considered, there are three unknowns (factor of 
safety and magnitudes of  N  1  and  N  2 ) but only two equations. To make the 
problem statically determinate, it is necessary to divide the fi ll into two sliding 
blocks, as shown by Fig.  1-6 (b), and arbitrarily assume the inclination of the force, 
 P , acting between the two blocks. Because each block can have two equilibrium 
equations, the number of equations is four, which is equal to the number of 
unknowns (factor of safety and magnitudes of  P ,  N  1 , and  N  2 ). If  P  is assumed 
horizontal, or there is no friction between the two blocks, the factor of safety is 
the minimum. An increase in the inclination of  P  also will increase the factor of 
safety. Therefore, a judicious selection of an inclination for  P  is needed to ensure 

  Fig. 1-6.      Statically indeterminate problem    
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Introduction 13

that a reasonable factor of safety can be obtained. Details about sliding block 
analyses are presented in Sections 6.4 and 6.5. 

 A very powerful method, which can be applied to either circular or noncir-
cular failure surfaces, is the method of slices. Fig.  1-7  shows an arbitrary failure 
mass divided into a number of slices. The forces applied on a slice are shown in 
the free-body diagram. If the failure mass is divided into a suffi cient number of 
slices, the width,  Δ  x , will be small, and it is reasonable to assume that the normal 
force,  N , is applied at the midpoint of the failure surface. In the free-body 
diagram, the known forces are the weight,  W , and the shear force,  T , which 
depends on the factor of safety, as indicated by Eq.  (1-3) . The unknowns are the 
factor of safety,  F , the shear force on the vertical side,  S , the normal force on the 
vertical side,  E , the vertical distance,  h t  , and the normal force,  N . If there are a 
total of  n  slices, the number of unknowns is 4 n   −  2, as tabulated:

Unknown Total Number

 F  (related to  T ) 1
 N  n 
 E  n   −  1
 S  n   −  1
 h t   n   −  1

Total 4 n   −  2

 Because each slice can have three equations by statics—two with respect to 
force equilibrium and one with respect to moment equilibrium—the total number 
of equations is 3 n . Therefore, there is an indeterminacy of  n   −  2. The problem 
can be solved statically only by making assumptions on the forces between two 
slices.    

  1.3     Methods of Stability Analysis 

 The method presented in this book is called the limit equilibrium method, 
because the factor of safety is based on statics by considering the force and/or 

  Fig. 1-7.      Method of slices    
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14 Slope Stability Analysis by the Limit Equilibrium Method

moment equilibrium. Another procedure for stability analysis is the fi nite element 
method, which is based on solid mechanics by considering not only the equa-
tions of equilibrium but also those of compatibility. The advantage of the fi nite 
element method is its ability to determine not only the factor of safety but also 
the displacements. However, the displacements depend strongly on the elastic 
modulus, which is diffi cult to ascertain. The fi nite element method will not be 
discussed in this book. 

 Due to the large number of limit equilibrium methods available, it is neither 
possible nor desirable to review each of them. Therefore, only the most popular 
and well-known methods will be discussed in this book. Hopkins et al.  (1975)  
and Duncan  (1996)  presented a review on several methods. The methods are 
based on the method of slices and can be divided broadly into four categories, 
depending on the number of equilibrium equations to be satisfi ed. 

  1.3.1     Methods that Satisfy Overall Moment Equilibrium 

 These methods are applicable only to circular failure surfaces and only consider 
the overall moment equilibrium. The overall force equilibrium is neither consid-
ered at all nor satisfi ed in both directions. Included in this category are the 
Fellenius method (Fellenius  1936 ), the normal method (Bailey and Christian 
 1969 ), and the simplifi ed Bishop method (Bishop  1955 ). 

 The Fellenius method, usually referred to as the ordinary method of slices, 
has been used extensively for many years, because it is applicable to nonhomo-
geneous slopes and is very amenable to hand calculations. When pore pressures 
are present, a modifi ed version of the Fellenius method—based on the concept 
of submerged weight and hereafter called the normal method—can be used. In 
both methods, the interslice forces are ignored. The Fellenius and normal methods 
are used in this book to generate stability charts for practical use. The factor of 
safety obtained by the normal method is usually smaller than that given by the 
simplifi ed Bishop method. Details about the normal method are presented 
in Section 8.2 for two-dimensional (2D) analysis and Section 9.4 for three-
dimensional (3D) analysis. 

 In the simplifi ed Bishop method, the interslice forces are assumed horizontal. 
Although the overall moment equilibrium and the vertical force equilibrium are 
satisfi ed, neither moment nor horizontal force equilibrium is satisfi ed for each 
individual slice. Even though equilibrium conditions are not satisfi ed completely, 
the method is, nevertheless, a satisfactory procedure and is recommended for 
most routine work where the failure surface can be approximated by a circle. 
Bishop compared the factor of safety obtained from his simplifi ed method with 
that from a more rigorous method in which all equilibrium equations are satis-
fi ed. He found that the vertical interslice force,  S , could be assumed zero without 
introducing signifi cant error, typically less than 1%. The simplifi ed Bishop 
method cannot be used for noncircular failure surfaces, where an arbitrary 
moment center is assumed, because it only considers the force equilibrium in the 
vertical direction but not in the horizontal direction, so two moment centers at 

c01.indd   14c01.indd   14 12/16/2013   1:35:39 PM12/16/2013   1:35:39 PM



Introduction 15

two different elevations will result in two different factors of safety. Details about 
the simplifi ed Bishop method are presented in Sections 8.3 and 9.5.  

  1.3.2     Methods that Satisfy Overall Moment and Overall 
Force Equilibrium 

 Included in this category is the original Spencer method (Spencer  1967 ), which 
assumes that all interslice forces are parallel and incline at an angle  δ  with the 
horizontal, where  δ  is an unknown to be determined. It considers the overall 
moment equilibrium, the overall force equilibrium in the  δ  direction, and the 
force equilibrium of each slice in the direction perpendicular to  δ . Because 
the overall force equilibrium in two perpendicular directions is satisfi ed fully, 
the method also can be used for noncircular failure surfaces, where a moment 
center must be selected arbitrarily. The original Spencer method was later refi ned 
and is hereafter called the Spencer method (Spencer  1973 ), in which moment 
equilibrium also is satisfi ed for each slice. The original Spencer method has the 
advantage that the factor of safety always converges, whereas the Spencer 
method sometimes may encounter convergence problems. Details about the 
original Spencer method are presented in Sections 8.4 and 9.6.  

  1.3.3     Methods that Satisfy Force Equilibrium of Each Slice 

 These methods only consider the force equilibrium in each slice. Once the force 
equilibrium is satisfi ed in each slice, the overall force equilibrium will be satisfi ed 
automatically. Although moment equilibrium is not considered explicitly, these 
methods may yield accurate results if the inclination of interslice forces is 
assumed in such a manner that the moment equilibrium is satisfi ed implicitly. 
Arbitrary assumptions on the inclination of interslice forces may have a large 
infl uence on the factor of safety. Depending on the inclination of interslice 
forces, a range of safety factors may be obtained in many problems. Force 
equilibrium methods should be used cautiously, and the user should be well 
aware of the particular interslice force assumptions employed. Included in 
this category are the procedures suggested by Janbu (Janbu et al.  1956 ; 
Janbu  1973 ), Lowe and Karafi ath  (1959) , and the U.S. Army Corps of Engineers 
( 1970 ). 

 The force equilibrium method proposed by Janbu also is called the simplifi ed 
Janbu procedure, in contrast to his more rigorous method that also considers 
moment equilibrium of each slice. In the simplifi ed procedure, the interslice 
forces are assumed horizontal, so the factor of safety thus obtained is always 
smaller than that by the more rigorous methods. To increase the factor of safety, 
Janbu et al.  (1956)  proposed the use of correction factors based on the depth-to-
length ratio of the sliding mass and the type of soils. These correction factors 
are only approximate and were determined from a number of slope stability 
calculations by comparing the factors of safety obtained from the simplifi ed 
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16 Slope Stability Analysis by the Limit Equilibrium Method

procedure with those from the more rigorous procedure. Lowe and Karafi ath 
 (1959)  suggested that the interslice forces act at the average of the inclination 
of the slope surface and the failure surface, whereas the U.S. Army Corps of 
Engineers ( 1970 ) recommended that the interslice forces be parallel to the slope 
surface. Of the three discussed methods, it appears that Lowe ’ s and Karafi ath ’ s 
assumption on the inclination of the interslice forces is most reasonable and 
generally yields factors of safety closest to those obtained by the more rigorous 
methods where the moment equilibrium also is satisfi ed. Due to the negli-
gence of moment equilibrium, force equilibrium methods are not used in the 
LEAME software presented in the companion volume to this book,  LEAME 
Software and User ’ s Manual: Analyzing Slope Stability by the Limit Equilibrium 
Method .  

  1.3.4     Methods that Satisfy Moment and Force Equilibrium 
of Each Slice 

 Included in this category are the Spencer method (Spencer  1973 ), the Janbu 
method (Janbu  1954,1973 ), and the method by Morgenstern and Price  (1965) . All 
these methods consider the moment and force equilibrium in each slice. If the 
moment and force equilibrium is satisfi ed in each slice, the overall moment 
and force equilibrium will be satisfi ed automatically. The basic concept in 
these methods is the same; the difference lies in the assumption of the interslice 
forces. If both moment and force equilibrium are satisfi ed, the assumption on 
interslice forces should have only small effect on the factor of safety obtained. 
All these methods can be applied to both circular and noncircular failure 
surfaces. 

 Similar to the original Spencer method, the Spencer method also assumes 
that the interslice forces are parallel and incline at an angle  δ  with the horizontal. 
However, instead of overall moment equilibrium, it considers the moment equi-
librium of each slice. Force equilibrium is used to compute the factor of safety, 
 F , and the moment equilibrium is used to compute  δ . Because  F  and  δ  are inter-
dependent, both need continuous adjustments until the results converge. Details 
about the Spencer method are presented in Section 8.5. 

 In the Janbu method, the location of interslice normal forces, or the line of 
thrust, must be assumed arbitrarily. The method is easy to use and requires 
less computer time than the Spencer method. Because the number of equa-
tions is one less than the number of unknowns and the factor of safety may be 
diffi cult to converge to the required tolerance, the Janbu method is not used in 
LEAME. 

 In the Morgenstern and Price method, an assumption is made regarding the 
relationship between interslice shear and normal forces. After obtaining the 
computer output based on this assumption, all the computed quantities, includ-
ing the interslice forces, must be examined to determine whether they seem 
reasonable. If not, a new assumption must be made. Bishop  (1955)  indicated that 
the range of equally correct values of safety factor might be quite narrow and 
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that any assumption leading to reasonable stress distributions and magnitudes 
would give practically the same factor of safety.  

  1.3.5     Methods Discussed in this Book and Incorporated in LEAME 

 The following four well-known methods are selected: normal, simplifi ed Bishop, 
original Spencer, and Spencer. The reasons for their selection are explained as 
follows. 

 The normal method is exactly the same as the Fellenius method if there is 
no seepage. If there is seepage, the normal method applies the concept of sub-
merged weight, instead of the pore water pressure at the bottom of slices, and 
thus gives a greater factor of safety than the Fellenius method. For circular failure 
surfaces, generally it is agreed that the simplifi ed Bishop method gives a reason-
able factor of safety and the Fellenius method yields a factor of safety smaller 
than that by the simplifi ed Bishop method. The use of the normal method will 
draw the factor of safety closer to that by the simplifi ed Bishop method. Although 
the normal method is not recommended for fi nal design, it can be used to 
develop stability charts for preliminary design. Because the factor of safety can 
be determined easily without iterations only by the normal method, it can be 
used as the fi rst trial factor of safety in all other methods where iterations are 
required. 

 The simplifi ed Bishop method is recognized by the engineering profession 
as a valid method for circular failure surfaces. Most computer programs have 
included this method, which is also used by LEAME, for both 2D and 3D circular 
failure surfaces. 

 The original Spencer method is used for 3D analysis, because it is much 
simpler than the Spencer method. All the sample problems and examples for 2D 
analysis presented in this book or on the computer screen indicate that the factors 
of safety obtained by the original Spencer method check very closely with the 
more refi ned Spencer method. Because the 3D analysis is a simple extension of 
the 2D analysis with the same assumptions, the original Spencer method should 
be applicable to 3D analysis as well. This can be proved by comparing the 3D 
factors of safety obtained by LEAME with other available solutions, as reported 
in Section 3.10 of the companion volume. An advantage of the original Spencer 
method is that it always converges, whereas the Spencer method may have con-
vergence problems. 

 The Spencer method satisfi es all equations of equilibrium by assuming that 
the interslice forces in all slices incline at the same angle  δ . It is a special case of 
the Morgenstern and Price method where the inclination of interslice forces can 
vary from slice to slice. Duncan  (1996)  evaluated various methods for limit equi-
librium analysis of slopes and concluded that factors of safety for solutions with 
reasonable and unreasonable interslice force distributions were not signifi cantly 
different. Because slope stability analyses are performed to calculate factors of 
safety, and not interslice forces, it does not matter in the end whether the inter-
slice force distribution is reasonable, provided the method satisfi es all equations 
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18 Slope Stability Analysis by the Limit Equilibrium Method

of equilibrium. For this reason, the much simpler Spencer method is selected 
instead of the Morgenstern-Price method.   

  Summary 

   1.      There exist a number of classifi cation systems for mass movements. The 
most widely used system was devised by Varnes  (1978) , who grouped 
the movements into falls, topples, slides, spreads, and fl ows. In this 
book only the slide type of movement will be discussed in detail, not 
only because it is more amenable to theoretical analysis but also because 
it is the predominant type of failures, particularly in human-created 
slopes.  

  2.      Slope movements also can be classifi ed according to age as contemporary, 
dormant, and fossil; according to stage as initial, advanced, and exhaust-
ed; and according to cause, as exceptional, ordinary, and unexplainable.  

  3.      The most commonly used method for stability analysis is the limit equi-
librium method in which the shear stress along a failure surface is ex-
pressed as a quotient of the shear strength over an unknown factor of 
safety, and then the factor of safety is solved by using the equilibrium 
equations from statics.  

  4.      For statically determinate problems, where the number of equilibrium 
equations is equal to the number of unknowns, the factor of safety can be 
expressed directly as a ratio between the shear resistance and the shear 
force, both applied over the failure surface.  

  5.      For statically indeterminate problems, where the number of equations is 
less than the number of unknowns, some simplifying assumptions must 
be made to reduce the number of unknowns.  

  6.      A number of limit equilibrium methods that satisfy only overall moment 
equilibrium, overall moment and overall force equilibrium, force equi-
librium of each slice, or both moment and force equilibrium of each slice 
are described and the assumptions made in each method are briefl y dis-
cussed.  

  7.      Four well-known limit equilibrium methods (normal, simplifi ed Bishop, 
original Spencer, and Spencer) are discussed and incorporated in the 
LEAME computer software. The reasons for their inclusion are explained.    
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  Problems 

   1.1      Derive Eq.  (1-10) .
   [Hint: moment at center by integrating (2/3 r  cos  θ )(1/2 r  2  d  θ )]     

  1.2      A triangular fi ll with the dimension shown in Fig.  P1-2  is placed on a 
natural slope of 20°. The fi ll has a total unit weight of 19.7 kN/m 3 . If a thin 
layer of weaker soil with a cohesion of 7.7 kN/m 2  and a friction angle of 
24° exists at the bottom of the fi ll, determine the factor of safety.
   [Answer: 1.319]     

  Fig. P1-2.     

  1.3      An engineer needs to place a new fi ll onto an existing slope, as shown in 
Fig.  P1-3 , to accommodate a roadway widening. The new fi ll is a granu-
lar material of high quality with a unit weight of 145 pcf. The natural soil 
has a cohesion of 100 psf and a friction angle of 28°. It is assumed that a 
surcharge load of 300 psf is placed on the new fi ll and that the most criti-
cal failure surface is a plane along the bottom of the new fi ll. What is the 
factor of safety against sliding for the proposed widening?
   [Answer: 2.073]     

  Fig. P1-3.     
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20 Slope Stability Analysis by the Limit Equilibrium Method

  1.5      Fig.  P1-5  shows the coordinates of a circular failure surface with  ϕ   =  0. If 
the soil has a total unit weight of 19 kN/m 3 , what should be the minimum 
cohesion required to achieve a safety factor of 1.5?
   [Answer: 150.7 kN/m 2 ]     

  Fig. P1-4.     

  Fig. P1-5.     

  1.4      Fig.  P1-4  shows the coordinates of a circular failure surface with  ϕ   =  0. If 
the soil has a cohesion of 100 kN/m 2  and a total unit weight of 18 kN/m 3 , 
determine the factor of safety.
   [Answer: 1.299]     
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  1.7      Fig.  P1-7  shows a 31.5-ft vertical cut in a clay with an unconfi ned com-
pressive strength of 2,100 psf, or  c   =  1,050 psf, and a total unit weight of 
120 pcf. For the circular failure surface shown in the fi gure, determine the 
factor of safety.
   [Answer: 1.151]     

  1.6      Fig.  P1-6  shows a circular failure surface. The soil has a cohesion of 
1,300 psf, a friction angle of 0°, and a total unit weight of 120 pcf. Deter-
mine the factor of safety.
   [Answer: 1.211]     

  Fig. P1-6.     

  Fig. P1-7.     
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22 Slope Stability Analysis by the Limit Equilibrium Method

  1.9      What is the factor of safety if the circle is allowed to curve back, as shown 
in Fig.  P1-9 . Is this type of failure surface possible?
   [Answer: 2.301]      

  Fig. P1-8.     

  Fig. P1-9.     

  1.8      The slope is the same as in the previous problem, but the location of the 
failure surface is shown in Fig.  P1-8 . Because the center of the circle is 
14.9 ft below the ground level and, when the method of slices is used, the 
circle cannot curve backward, LEAME assumes the failure surface to be a 
circular arc and a vertical line. Determine the factor of safety.
   [Answer: 1.586]     
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    Chapter 2 

  Mechanics of Slides    

       This chapter describes three types of failure surface: circular, noncircular, and 
composite. The use of the method of slices and the sliding-block analysis for 
determining the factor of safety is illustrated. The drawback of the well-known 
Fellenius method is discussed, and the normal method based on the concept of 
submerged weight is introduced. The differences between the total stress analy-
sis for short-term stability and the effective stress analysis for long-term stability 
are delineated. The minimum factors of safety required under various conditions 
are discussed. 

  2.1     Types of Failure Surface 

 The purpose of stability analysis is to determine the factor of safety of a potential 
failure surface. The factor of safety is defi ned as a ratio between the resisting 
force and the driving force, both applied along the failure surface, or

  Factor of Safety
Resisting force along failure surface
Driv

=
iing force along failure surface

       

 When the driving force due to the weight and loading is equal to the resisting 
force due to the shear strength, the factor of safety is equal to 1 and failure is 
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24 Slope Stability Analysis by the Limit Equilibrium Method

imminent. The shape of the failure surface may be quite irregular, depending 
on the homogeneity of the materials in the slope. This is particularly true in 
natural slopes, where the relic joints and fractures dictate the locus of the failure 
surface. Fig.  2-1  shows three types of failure surface: circular, noncircular, and 
composite. 

  The circular failure surface also is called the cylindrical failure surface, 
because the actual failure surface is part of a cylinder. If the materials in the slope 
are relatively homogeneous with no apparent weak layers, the most critical 
failure surface will be cylindrical, because a cylindrical failure surface has the 
least surface area per failure mass. Because the surface area is more related to 
the resisting force and the failure mass is more related to the driving force, a 
smaller resisting force and a larger driving force will result in a smaller factor of 
safety. To fi nd the minimum factor of safety, a large number of circles must be 
tried to determine which is most critical. 

 The composite failure surface is principally circular, but when the circle cuts 
a layer of weak material, the failure surface will follow the bottom of the weak 
layer, so part of the circular failure surface is replaced by the plane failure surface. 
Fig.  2-2  shows two types of composite failure surface. If the weak layer appears 
on the surface of the slope, the circular arc is on one end, as shown in Fig.  2-2 (a). 
If the weak layer is buried inside the slope, the circular arc will appear on both 
ends, as shown in Fig.  2-2 (b). The composite failure surface can be analyzed by 
the method of slices. The method used to generate composite failure surfaces 
will be discussed in Section 2.16 of the companion volume. 

  The noncircular failure surface also is called the plane failure surface, because 
the failure surface consists of a series of planes. The noncircular failure surface 
may occur if there are weak layers or seams that start and end at or near the 

  Fig. 2-1.      Three types of failure surface    

  Fig. 2-2.      Two types of composite failure surface    
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slope surface, so the most critical failure surface will be located along the bottom 
of the weak layers. Sliding-block analysis, which only satisfi es force equilibrium, 
can be used for simple cases of noncircular failures consisting of no more than 
three failure planes. However, for more accurate results, the method of slices, 
which satisfi es both force and moment equilibrium, should be used.  

  2.2     Total Stress versus Effective Stress 

 There are two methods for analyzing the stability of slopes: total stress analysis 
and effective stress analysis. 

 Total stress analysis is based on the undrained shear strength and also is 
called  c u  ,  ϕ   u  -analysis. If a saturated soil is undergoing undrained loading,  ϕ   u   can 
be assumed 0, so a special case of total stress analysis, commonly called  s u  -
analysis, with an undrained shear strength,  s u  , equal to  c u  , can be used. In the 
 s u  - or  c u  ,  ϕ   u  -analysis, pore pressure should be taken as 0 along any failure surface 
where undrained strength is specifi ed. This step does not imply that pore pres-
sures are actually zero, but, rather, is done to be consistent with the fact that the 
undrained strength determined from tests already has included the effect of pore 
pressure and needs not be considered again in the stability analysis. 

 Effective stress analysis is based on the drained shear strength and is called 
 c  ′ ,  ϕ  ′  analysis. In engineering practice, it is not necessary to perform both total 
and effective stress analyses for every slope. In many cases, the total stress analy-
sis is not needed unless some wet, fi ne-grained soils with a degree of saturation 
in the range of 70% or higher are encountered. At a low degree of saturation, the 
difference between total and effective envelopes is insignifi cant, so only the effec-
tive stress analysis with steady-state seepage needs to be considered for long-
term stability. 

 The total stress analysis based on undrained shear strength usually is used 
for determining short-term stability during or at the end of construction and the 
effective stress analysis based on the drained shear strength for long-term stabil-
ity after the construction. The major difference between a total stress analysis 
and an effective stress analysis is that the former does not require knowledge of 
the pore pressure, whereas the latter does. In principle, short-term stability also 
can be analyzed in terms of effective stress and long-term stability in terms of 
total stress. However, this would require extra testing efforts and is therefore not 
recommended. Depending on the type of soils, the following methods of analysis 
are suggested:

   1.      For saturated soils, use  s u  -analysis with  ϕ   =  0 and  c   =   s u   for short-term 
stability;  c  ′ ,  ϕ  ′ -analysis with 0 or steady-state pore pressure for long-term 
stability; and  c  ′ ,  ϕ  ′ -analysis with actual or estimated pore pressure for in-
termediate times.  

  2.      For partially saturated soils, use  c u  ,  ϕ   u  -analysis from undrained tests for 
short-term stability;  c  ′ ,  ϕ  ′ -analysis with 0 or steady-state pore pressure for 
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long-term stability; and  c  ′ ,  ϕ  ′ -analysis with actual or estimated pore pres-
sure for intermediate times.  

  3.      For granular soils or soils with a degree of saturation less than 70%, 
only the long-term  c  ′ ,  ϕ  ′ -analysis with 0 or steady-state pore pressure is 
needed.    

 It should be pointed out that, in certain cases, a failure surface may pass 
partly through a free-draining soil, where strength is expressed appropriately in 
terms of effective stress, and partly through a clay-like soil, where undrained 
strength should be used. In such cases, the parameters  c  ′  and  ϕ  ′ , together with 
appropriate pore pressures, apply along one portion of the surface, and the 
 ϕ   =  0 or  c u  ,  ϕ   u  -analysis with zero pore pressure applies along the other part. 

 For fi ll slopes, the total stress analysis for short-term stability is more critical 
than the effective stress analysis for long-term stability because of the increase 
in effective stress with time, so the total stress analysis should be made before 
the effective stress analysis. For cut slopes, the effective stress analysis for long-
term stability is more critical because, when the weight removes during excava-
tion, the soil expands and generates a negative pore pressure, which gradually 
dissipates with time, so the effective stress analysis should be conducted fi rst. 
Another explanation, much easier to understand, is to relate the shear strength 
to the void ratio; that is, the greater the void ratio, the smaller the shear strength. 
For fi ll slopes, the soil consolidates, and void ratio decreases with time, so the 
short-term stability is more critical. For cut slopes, the soil expands, and the void 
ratio increases with time, so the long-term stability is more critical.  

  2.3     Total Stress Analysis 

 Two examples are given to illustrate the total stress analysis for circular and 
noncircular failure surfaces. The circular failure surface is analyzed by the well-
known Fellenius method and the noncircular failure surface by the sliding-block 
method. 

  2.3.1     Fellenius Method 

 This method was original formulated by Fellenius  (1936) , a professor of hydrau-
lics at the (Swedish) Royal Institute who was appointed as the chairman of the 
Geotechnical Commission of Swedish State Railways to investigate the cause of 
landslide problems. Fig.  2-3  shows one of the many circles for which the factor 
of safety is to be determined. The sliding mass is divided into  n  slices. The  i th 
slice has a weight,  W i  , a length of failure surface,  L i  , an angle of inclination,  θ   i  , 
and a normal force,  N i  . According to the Mohr-Coulomb theory, the resisting 
force in slice  i  is  c i L i    +   N i   tan  ϕ   i  . Note that  N i   depends on the forces on the two 
sides of the slice and is statically indeterminate unless some simplifying assump-
tions are made. By assuming that there are no forces on the two sides of a slice, 
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the driving force is equal to  W i   sin  θ   i  , which is the component of weight along 
the failure surface. The factor of safety is a ratio between the resisting force 
and the driving force and can be determined by

  F
c L N

W

i i i i
i

n

i i
i

n=
+

=

=

∑

∑

( tan )

( sin )

φ

θ

1

1

      (2-1)   

  When the failure surface is circular, the factor of safety also can be defi ned 
as the ratio between two moments. Because both the numerator and the denomi-
nator in Eq.  (2-1)  can be multiplied by the same moment arm, which is the radius 
of the circle, it makes no difference whether the force or moment is used. In the 
Fellenius method, it is assumed that the forces on the two sides of a slice are 
zero, so they have no effect on the force normal to the failure surface, or

  N Wi i i= cosθ       (2-2)   

 Thus Eq.  (2-1)  becomes

  F
c b W

W

i i i i i i
i

n

i i
i

n=
+

=

=

∑

∑

( sec cos tan )

sin

θ θ φ

θ

1

1

      (2-3)   

 The method presented here is called the total stress analysis, because no 
phreatic surface or pore pressure is considered. Another method, called the effec-
tive stress analysis, which involves the application of pore pressure on the failure 
surface, will be presented in Section 2.4. 

  Fig. 2-3.      Circular failure surface    
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28 Slope Stability Analysis by the Limit Equilibrium Method

  Example 2.1            Fig.  2-4  shows a circular failure surface with the coordinates of 
three points indicated in parentheses. The circle has a radius of 100 ft (30.5 m) 
and a center at (0, 100). The circle intercepts the slope surface at (0, 0) and (90, 
56.4). The failure mass is divided into nine slices, each with a width of 10 ft 
(3.05 m). The soil in the slope has a cohesion of 800 psf (38.3 kN/m 2 ), a friction 
angle of 10°, and a total unit weight of 125 pcf (19.6 kN/m 3 ). Compute the factor 
of safety by the Fellenius method.  

  Solution     The equation of the circle is  x  2   +  (100  −   y ) 2   =   R  2 , or  y   =  100  −  (10,000  −  
 x  2 ) 0.5 . To determine  θ , differentiate the above equation with respect to  x  as follows: 
tan  θ   =   dy / dx   =   − 0.5 x (10,000  −   x  2 )  − 0.5 ( − 2)  =   x /(10,000  −   x  2 ) 0.5  or  θ   =  tan  − 1 [ x /(10,000 
 −   x  2 ) 0.5 ]. The height of slice  h   =  0.627 x   +  (10,000  −   x  2 ) 0.5   −  100 and the weight of slice 
 W   =  1,250 h . At the centerline of each slice, as indicated by the vertical dashed 
line in the right fi gure, Table  2-1  presents the values of  x ,  h ,  θ , and  W  tabulated in 
columns (2) to (5) and other calculated values are in columns (6) to (9). The factor 
of safety can be obtained by dividing the sum in column (9) with that in column 
(6), or  F   =  109,803/66,998  =  1.639.    

  Fig. 2-4.      Example  2.1     

 In Table  2-1 , all calculations were done by hand with a pocket calculator. 
Because the calculations used for each slice are all the same, it is much easier 
and more accurate to solve this problem by a spreadsheet. A sample spreadsheet 
is presented in Table  2-2 . The formulas used for computing columns C to H of 
the fi rst slice, cell F14, cell I14, and cell D15 are:

c02.indd   28c02.indd   28 12/16/2013   1:35:49 PM12/16/2013   1:35:49 PM
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 Table 2-2.      Spreadsheet for Computing Factor of Safety by Fellenius Method  

A B C D E F G H I

 3 No. x h  θ  in radian W W sin  θ cb sec  θ W cos  θ tan  ϕ (7)  +  (8)

 4  (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9) 

5 1 5 3.010 0.050 3,762 188 8,010 663 8,673

 6 2 15 8.274 0.151 10,342 1,551 8,092 1,803 9,894

 7 3 25 12.500 0.253 15,624 3,906 8,262 2,668 10,930

 8 4 35 15.620 0.358 19,525 6,834 8,540 3,225 11,765

 9 5 45 17.518 0.467 21,897 9,854 8,958 3,448 12,406

 10 6 55 18.001 0.582 22,502 12,376 9,579 3,314 12,893

 11 7 65 16.748 0.708 20,936 13,608 10,527 2,805 13,333

 12 8 75 13.169 0.848 16,461 12,346 12,095 1,920 14,015

 13 9 85 5.973 1.016 7,467 6,347 15,187 694 15,880

 14 Sum 67,010 109,788

 15  Factor of safety   = 1.638

 Table 2-1.      Computations of Safety Factor by Fellenius Method  

No.  x  h  θ  W  W  sin  θ  cb  sec  θ  W  cos  θ  tan  ϕ (7)  +  (8)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 5 3.1 2.9 3,875 196 8,010 682 8,693

2 15 8.3 8.6 10,375 1,551 8,091 1,809 9,900

3 25 12.5 14.5 15,625 3,912 8,263 2,667 10,930

4 35 15.6 20.5 19,500 6,829 8,541 3,221 11,762

5 45 17.5 26.7 21,875 9,829 8,955 3,446 12,401

6 55 17.9 33.4 22,500 12,386 9,583 3,312 12,895

7 65 16.7 40.5 21,000 13,638 10,521 2,816 13,337

8 75 13.1 48.6 16,375 12,283 12,097 1,909 14,006

9 85 6.0 58.2 7,500 6,374 15,182 697 15,879

Sum 66,998 109,803

   Note:    θ  is in degrees;  b   =  10 ft;  c   =  800 psf;  ϕ   = 10°.   

   Cell C5:  =  0.627*B5  +  SQRT(10000  −  B5  ∧  2)-100   
  Cell D5:  =  ATAN(B5/SQRT(10000  −  B5  ∧  2))  
  Cell E5:  =  1250*C5  
  Cell F5:  =  E5*SIN(D5)  
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  Cell G5:  =  8000/COS(D5)  
  Cell H5:  =  E5*COS(D5)*TAN(RADIANS(10))  
  Cell F14:  =  SUM(F5:F13) Cell I14:  = SUM(I5:I13)  
  Cell. D15:  =  I14/F14    

   Because of round-off errors, the data computed by hand are somewhat dif-
ferent from those by the spreadsheet. However, the fi nal factor of safety should 
be nearly the same. It can be seen that the spreadsheet gives a safety factor of 
1.638, which is nearly the same as the 1.639 by the manual method.  

  2.3.2     Sliding-Block Method 

 Fig.  2-5  shows the free-body diagram of plane failure at the bottom of a fi ll. The 
sliding mass is divided into two blocks. Both the normal and the shear forces on 
each failure plane depend on the interacting force,  P , between the two blocks 
and can be determined only by considering the two blocks jointly. The lower 
block has a weight,  W  1 , and a length of failure plane,  L  1 ; the upper block has a 
weight,  W  2 , and a length of failure plane,  L  2 . Note that  ϕ   d   is the developed friction 
angle, which must be assumed. When  ϕ   d   is assumed 0, or the side force is hori-
zontal, the factor of safety is minimum and the design is on the safe side. When 
the frictional resistance is developed fully, or  ϕ   d    =   ϕ , the factor of safety is 
maximum. These provide lower and upper bounds within which the factor of 
safety based on any moment and force equilibrium should lie. As can be seen 
from the free-body diagram, there are four unknowns:  F ,  P ,  N  1 , and  N  2.  With four 
force equilibrium equations, two for each block, these four unknowns can be 
solved. 

  In the original Spencer method, the angle  δ , which is the same as  ϕ   d  , is con-
sidered as an unknown to be solved. Several values of  δ , ranging from 0 to 0.6 
rad (35°), are assumed, and the factors of safety based on force equilibrium are 

  Fig. 2-5.      Free-body diagram of sliding blocks    
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checked against those based on overall moment equilibrium. The value of  δ , 
which gives the same factor of safety for both force and moment equilibrium, 
is the correct  δ  to be used. The fact that the correct  δ  mostly lies between 0 and 
35° may indicate that the most reasonable assumption to be used is tan  ϕ   d    =  
(tan  ϕ )/ F , or

  φ
φ

d
F

= ⎛
⎝

⎞
⎠

−tan
tan1       (2-4)   

 More about the sliding-block analysis is presented in Sections 6.4 and 6.5. 

  Example 2.2            Fig.  2-6  shows a fi ll with the coordinates indicated in parentheses. 
The failure mass is divided into two sliding blocks. To be on the safe side, it is 
assumed that the force between the two blocks is horizontal. If the soil has a 
cohesion of 500 psf (23.9 kN/m 2 ), a friction angle of 15°, and a total unit weight 
of 120 pcf (18.9 kn/m 3 ), determine the factor of safety.  

  Solution     From the dimensions shown in the fi gure,  W  1   =  0.5  ×  45  ×  90  ×  120  =  
243,000 lb,  L  1   =  90 ft,  W  2   =  0.5  ×  45  ×  65  ×  120  =  175,500 lb,  L  2   =  [(65) 2   +  (45) 2 ] 0.5   =  
79.1 ft, and  α   =  tan  − 1 (45/65)  =  34.7°. 

 First consider the left block, or block 1. The equilibrium of forces in the ver-
tical direction requires  N  1   =   W  1   =  243,000 lb. In the horizontal direction,  P   =   T  1   =  
( cL  1   +   N  1  tan  ϕ )/ F   =  (500  ×  90  +  243,000  ×  tan 15°)/ F   =  110,112/ F . 

 Next, consider the right block, or block 2. The equilibrium of forces in the 
normal direction requires  N  2   =   P  sin  α   +   W  2  cos  α   =  110,112  ×  sin 34.7°/ F   +  175,500 
 ×  cos 34.7°, or

  N
F

2
62 685

144 286= +,
,       (2-5)   

 In the tangential direction,  P  cos  α   +   T  2   =   W  2  sin  α , or

  110 112 34 7 500 79 1 15
175 500 34 72, cos . . tan

, sin .
× ° + × + ° = × °
F

N
F

      (2-6)   

  Fig. 2-6.      Example  2.2     
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 Substituting  N  2  from Eq.  (2-5)  into Eq.  (2-6)  and simplifying, the following 
quadratic equation is obtained:

  F F2 1 689 0 168 0− − =. .       (2-7)  

or

  F or= ± + × = ± = −1 689 1 689 4 0 168
2

1 689 1 877
2

1 783 0 094
2. ( . ) . . .

. .        

 A negative factor of safety of  − 0.094 is unreasonable and is therefore rejected, 
so the factor of safety is 1.783.      

  2.4     Effective Stress Analysis 

 Eq.  (2-1)  is based on the total stress analysis, which does not include the effect 
of pore pressures. In the effective stress analysis, three cases need to be consid-
ered: steady-state seepage, rapid drawdown, and earthquake. 

  2.4.1 Steady-State Seepage 

 Fig.  2-7  shows the slope with a phreatic surface. The effective normal force,  N  ′   i  , 
is equal to the total normal force,  N i  , minus the neutral force, or the force due to 

  Fig. 2-7.      Effect of phreatic surface    
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water pressure,  γ   w   h iw   b i  sec  θ   i  . The use of  γ   w h iw   as the pore pressure at the failure 
surface is an approximation by assuming that the water is stationary with a water 
level at a distance of  h iw   above the failure surface. The validity of this assumption 
will be discussed in Section 4.1.3. In terms of effective stress, the Mohr-Coulomb 
theory can be represented by

  s c n= ′ + ′ ′σ φtan       (2-8)  

 in which  c  ′   =  effective cohesion,  ′σn      =  effective normal stress, and  ϕ  ′   =  effective 
angle of internal friction. Therefore, Eq.  (2-1)  for a circular failure surface can be 
written in terms of effective stress as

  F
c L N

W

i i
i

n

i i
i
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′ + ′ ′

=

=

∑

∑

( tan )

( sin )

φ

θ

1

1

      (2-9)  

and

  ′ = −N W h bi i i w wi i icos secθ γ θ       (2-10)  

in which  h wi    =  height of phreatic surface above the base of the slice, and  b i    =  width 
of the slice. Eq.  (2-10)  is used in the Fellenius method and sometimes yields 
unreasonable results, because when  θ  is large, say greater than 45°,  ′Ni     may 
become negative. 

  Example 2.3            Same as Example  2.1  except that the soil has an effective cohesion of 
200 psf (9.6 kN/m 2 ) and an effective friction angle of 35°, and also that a phrea tic 
surface is parallel to the slope surface and located at a distance of 5 ft (1.52 m) be-
low, as shown in Fig.  2-8 . Determine the factor of safety by the Fellenius method.  

  Solution     The solution is presented in Table  2-3 . 

  Fig. 2-8.      Example  2.3     
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 Except for columns (8) and (9), the table is the same as Table  2-1 . The effective 
normal force,  N  ′ , is determined by Eq.  (2-10) . If  h   ≤  5 ft,  N  ′   =   W  cos  θ . If  h   >  5 ft, 
 N  ′   =   W  cos  θ   −  624( h   −  5)/cos  θ . The factor of safety can be obtained by divid-
ing the sum in column (9) with that in column (6), or  F   =  68,288/66,998  =  1.019. 
Because the phreatic surface is 5 ft below the slope surface, all values of  N  ′  are 
positive. If the phreatic surface is on the slope surface, for slice 8 with  θ  of 48.6°, 
 N  ′   =  16,375  ×  cos 48.6°  −  624  ×  13.1/cos 48.6°  =   − 1,532 lb. This clearly indicates the 
diffi culty of using the Fellenius method.  

    To avoid the negative effective normal stress,  N  ′ , many engineers have used 
the more conventional concept of the submerged or effective weight,  ′Wi    , by 
considering

  ′ = ′ = −N W W h bi i i i w wi i icos ( )cosθ γ θ       (2-11)   

 The use of Eq.  (2-11)  for stability analysis is called the normal method, because 
the normal practice in soil mechanics for computing the effective stress under a 
soil overburden is to use the total unit weight,  γ , if the soil is above the water 
table, and the submerged unit weight,  γ   −   γ   w  , if the soil is below the water table. 
Based on this concept,  ′= − + − = − = −W b h h b h b h h b W h bi i i wi i wi w i i w wi i i w wi i( ) ( )γ γ γ γ γ γ    , 
which is the same as expressed in Eq.  (2-11) . It can be seen that the normal 
method is exactly the same as the Fellenius method when there is no pore pres-
sure. With pore pressures, the normal method generally yields a factor of safety 
slightly greater than the Fellenius method. 

 Table 2-3.      Effective Stress Analysis by Fellenius Method  

No.  x  h  θ  W  W  sin  θ  cb  sec  θ  N  ′  tan  ϕ (7)  +  (8)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 5 3.1 2.9 3,875 196 2,003 2,710 4,713

2 15 8.3 8.6 10,375 1,551 2,023 5,726 7,749

3 25 12.5 14.5 15,625 3,912 2,066 7,207 9,273

4 35 15.6 20.5 19,500 6,829 2,135 7,845 9,980

5 45 17.5 26.7 21,875 9,829 2,239 7,570 9,809

6 55 18.0 33.4 22,500 12,386 2,396 6,349 8,745

7 65 16.8 40.5 21,000 13,638 2,630 4,401 7,031

8 75 13.1 48.6 16,375 12,283 3,024 2,231 5,255

9 85 6.0 58.2 7,500 6,374 3,795 1,938 5,733

Sum 66,998 68,288

   Note:    b   =  10 ft;  c   =  200 psf;  ϕ   =  35°;  W   =  1,250 h   
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  Example 2.4            Same as Example  2.3  but determine the factor of safety by the 
normal method.  

  Solution     The solution is presented in Table  2-4 , in which columns (1) to (7) are 
the same as in Table  2-1 . The effective weight,  W  ′ , is computed as follows: if 
 h   ≤  5 ft,  W  ′   =   W ; if  h   >  5 ft,  W  ′   =  5 b  γ   +   b ( h   −  5)( γ   −   γ   w  )  =  6,250  +  626( h   −  5). The factor 
of safety can be obtained by dividing the sum in column (10) with that in column 
(6), or  F   =  78,905/66,998  =  1.178, which is slightly greater than the 1.019 by the 
Fellenius method.     

  2.4.2     Rapid Drawdown 

 Rapid drawdown is usually the most critical situation in the design of earth 
dams. The downstream slope is controlled by the case of steady-state seepage, 
but the upstream slope is controlled by the case of rapid drawdown. As shown 
in Fig.  2-9 , the phreatic surface under rapid drawdown is along the dashed line, 
as well as along the surface of both slopes. The phreatic surface on the 

 Table 2-4.      Effective Stress Analysis by Normal Method  

No.  x  h  θ  W  W  sin  θ  cb  sec  θ  W  ′  W  ′  cos  θ  tan  ϕ  ′ (7)  +  (9)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 5 3.1 2.9 3,875 196 2,003 3,875 2,710 4,713

2 15 8.3 8.6 10,375 1,551 2,023 8,315 5,757 7,780

3 25 12.5 14.5 15,625 3,912 2,066 10,945 7,420 9,486

4 35 15.6 20.5 19,500 6,829 2,135 12,886 8,451 10,586

5 45 17.5 26.7 21,875 9,829 2,239 14,075 8,805 11,044

6 55 18.0 33.4 22,500 12,386 2,396 14,388 8,411 10,807

7 65 16.8 40.5 21,000 13,638 2,630 13,637 7,261 9,891

8 75 13.1 48.6 16,375 12,283 3,024 11,321 5,242 8,266

9 85 6.0 58.2 7,500 6,374 3,795 6,876 2,537 6,332

Sum 66,998 78,905

   Note:    b   =  10 ft;  c   =  200 psf;  ϕ   = 35°;  W   =  1,250 h   

  Fig. 2-9.      Phreatic surface for rapid drawdown    
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downstream side is used for steady-state seepage and on the upstream side for 
rapid drawdown. Because more of the sliding mass is under water, the upstream 
slope is more critical than the downstream slope. 

  It should be noted that rapid drawdown occurs only in earth dams with 
permanent impoundment but not in road embankments subjected to occasional 
fl ooding. For clayey soils, it takes many years to develop a steady-state phreatic 
surface and, without such a phreatic surface inside the embankment, the condi-
tion of rapid drawdown never will occur. For granular soils, the phreatic surface 
inside the embankment will recede as fast as the fl ood, and no rapid drawdown 
need be considered. 

 This method of analyzing rapid drawdown for long-term stability is quite 
conservative. It is based on the assumption that there is no change in the effective 
stress during and after the drawdown. In fact, the effective stress will increase 
because, fi rst, the soils in an earth dam are supposed to be well compacted, so a 
sudden change in stress because of the lowering of water level in the pond will 
cause the soils to dilate, thus increasing the effective stress. Second, the soils are 
located so close to the surface that some consolidation will occur during the 
period of rapid drawdown. 

 If rapid drawdown takes place during or at the end of construction, the 
undrained shear strength used for short-term stability analysis before drawdown 
also can be used for that after drawdown.  

  2.4.3     Earthquake Consideration 

 In the case of earthquake, a horizontal seismic force is applied at the centroid of 
each slice, as shown in Fig.  2-10 . The seismic force is equal to  C s W i  , where  C s   is 
the seismic coeffi cient and ranges from 0 to 0.4 or more, depending on the geo-
graphic location, and  W i   is the weight of the slice. With seismic force, Eq.  (2-9)  
can be written as

  Fig. 2-10.      Driving force due to earthquake    
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in which  b i    =  width of the slice,  a i    =  moment arm, and  R   =  radius of the circle. 
By using the normal method,
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in which  ′Wi      =  submerged weight of the slice. 
 In the lack of detailed local earthquake information, several maps can be 

found in the literature to determine the seismic coeffi cients in the continental 
United States. The earliest map was presented by Algermissen  (1969) , as shown 
in Fig.  2-11 . 

  Fig. 2-11.      Seismic zone map of the continental United States (Algermissen  1969 )    
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38 Slope Stability Analysis by the Limit Equilibrium Method

  The map is divided into four zones, Zone 0, Zone 1, Zone 2, and Zone 3, with 
seismic coeffi cients,  C s  , from 0, 0.025, 0.05, to 0.10–0.15 for each zone. Neumann 
 (1954)  modifi ed these coeffi cients, based on an average epicenter of 15 mi (24 km), 
and used Eq.  (2-14)  to determine the seismic coeffi cients, as shown in Table  2-5 .

   C
MM

s =
+ − ×−log [ . ( ) . ]1 0 267 1 0 308

980
      (2-14)  

in which  MM  is the Modifi ed Mercalli intensity scale. 
 Fig.  2-12  is a newer map published by the Applied Technology Council 

 (1978) . In this publication, a large map, including every county of the 50 states 
and U.S. territories, is divided into seven areas, each with a different color so the 
value of seismic coeffi cients can be found easily. 

  Fig. 2-12.      Seismic coeffi cients of the continental United States (Applied Technology 
Council  1978 )    

 Table 2-5.      Seismic Coeffi cients Corresponding to Each Zone  

ZONE
INTENSITY OF MODIFIED 

MERCALLI SCALE
AVERAGE SEISMIC 

COEFFICIENT REMARK

0 — 0 No damage

1 V and VI 0.03 to 0.07 Minor damage

2 VII 0.13 Moderate damage

3 VIII and higher 0.27 Major damage
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  An earthquake probability map was published recently by the U.S. Geologi-
cal Survey (Petersen et al.  2008 ). This map uses the seismic coeffi cient as an 
indicator for earthquake with a 90% probability not likely to be exceeded in 50 
years. The map was printed in color to show the seismic coeffi cients in different 
parts of the continental United States, as presented in Section 1.7 of the compan-
ion volume. 

 The earthquake analysis presented here is called the psuedostatic method. 
For high-risk dams in seismically active regions or with fi ne-grained soils sub-
jected to liquefaction, more sophisticated dynamic analyses, as suggested by 
Seed et al.  (1975a, 1975b) , should be used. 

 The effective stress analysis is applicable only to granular materials or fi ne-
grained soils with a degree of saturation less than 70%, so there is no change in 
pore pressure during an earthquake. If the seismic excitation causes a signifi cant 
change in pore pressure, total stress analysis should be used. Total stress analysis 
should also be used if the earthquake takes place during or at the end of con-
struction. Following the fi ndings of Makdisi and Seed  (1978) , most authorities 
recommend that 80% of the static shear strength should be used for pseudostatic 
analysis and that the minimum required seismic factor of safety might range 
from 1 to 1.15.   

  2.5     Factors of Safety 

 In the stability analysis of slopes, many design factors cannot be determined with 
certainty. Therefore, a degree of risk should be assessed in an adopted design. 
The factor of safety fulfi lls this requirement. The factor should take into account 
not only the uncertainties in the design parameters but also the consequence of 
failure. Where the consequences of failure are slight, a greater risk of failure or 
a lower factor of safety may be acceptable. 

 The potential seriousness of failure is related to many factors other than the 
size of the project. A low dam located above or close to inhabited buildings can 
pose a greater danger than a high dam in a remote location. Often, the most 
potentially dangerous types of failure involve soils that undergo a sudden release 
of energy without much warning. This is true for soils subjected to liquefaction 
that have a low ratio between the residual and peak strength. For earth slopes 
composed of intact homogeneous soils, when the strength parameters have been 
chosen on the basis of good laboratory tests and a careful estimate of pore pres-
sure has been made, a safety factor of at least 1.5 is commonly employed (Lambe 
and Whitman  1969 ). With fi ssured clays and for nonhomogeneous soils, larger 
uncertainties generally will exist, and more caution is necessary. 

 The factors of safety suggested by the U.S. Army Corps of Engineers (USACE 
 1986 ) are listed in Table  2-6 . The factors of safety presented in Table  2-6  may be 
modifi ed under the following conditions:

   1.      For slopes where either sliding or large deformations have occurred, and 
back-analyses have been performed to establish design shear strengths, 
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a lower factor of safety may be used. In such cases, probabilistic analyses 
may be useful in supporting the use of lower factors of safety for design. 
Lower factors of safety also may be justifi ed when the consequences of 
failure are small.  

  2.      Temporary excavated slopes are sometimes designed only for short-term 
stability, with knowledge that long-term stability would be inadequate. 
Special care, and possibly higher factors of safety, should be used in such 
cases.  

  3.      The factors of safety are based on experience and are applicable only to 
U.S. Army Corps of Engineers projects, where methods of exploration, 
testing, and analysis are consistent and the degree of uncertainty does not 
vary widely. For other situations involving different engineering prac-
tices, the factors of safety shown in Table  2-6  may not be appropriate.    

  Table  2-7  shows the factors of safety suggested by various sources for mining 
operations (D’Appolonia Consulting Engineers 1975;  Federal Register   1977 ; Mines 
Branch, Canada  1972 ; National Coal Board  1970 ). All of these stipulations are 
based on the assumptions that the most critical failure surface is used in the 
analysis, that strength parameters are reasonably representative of the actual 
case, and that suffi cient construction control is ensured.   

  Summary 

   1.      There are three types of failure surface: circular, noncircular, and compos-
ite. The composite failure surface is mainly circular, but when the circle 
intercepts a weak soil layer, the failure surface will follow the bottom of 
the weak layer, so part of the circular failure surface is replaced by one or 
more plane failure surfaces. If the weak layer extends to the surface of the 
slope, the failure surface also will appear on the slope surface.  

 Table 2-6.      Factors of Safety Recommended by U.S. Army Corps of Engineers 
(USACE  1986 )  

Types of Slopes
End of 

Construction
Long-Term 

Steady Seepage
Rapid 

Drawdown  a  

Slopes of dams, levees, and dikes, and 
other embankment and excavation 
slopes

1.3 1.5 1.0–1.2

    a    F   =  1.0 applies to drawdown from maximum surcharge pool, for conditions where these water 
levels are unlikely to persist long enough to establish steady seepage.  F   =  1.2 applies to 
maximum storage pool level, likely to persist for long periods prior to drawdown. For slopes 
in pumped storage projects, where rapid drawdown is a normal operating condition, a higher 
factor of safety (e.g., 1.3 to 1.4) should be used.   
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 Table 2-7.    Factors of Safety Suggested for Mining Operations  

 UNITED STATES ( FEDERAL REGISTER ,  1997 )  MINIMUM SAFETY FACTOR 

I End of construction 1.3

II Partial pool with steady seepage saturation 1.5

III Steady seepage from spillway or decant crest 1.5

IV Earthquake (cases II and III with seismic loading) 1.0

 UNITED STATES (D’APPOLONIA CONSULTING 

ENGINEERS, INC.,  1975 ) 

 SUGGESTED MINIMUM 

FACTORS OF SAFEY WITH 

HAZARD POTENTIAL 

High Moderate Low

Designs based on shear strength parameters 
measured in the laboratory

1.5 1.4 1.3

Designs that consider maximum seismic acceleration 
expected at the site

1.2 1.1 1.0

 BRITAIN (NATIONAL COAL BOARD,  1970 ) 

 FACTOR OF 

SAFETY 

I * II ** 

(1) For slip surfaces along which the peak shear stress is used. 1.5 1.25

(2) For slip sufaces passing through a foundation statum that is at its 
residual shear strength (slip circles wholly within the bank should 
satisfy (1))

1.35 1.15

(3) For slip surfaces passing along a deep vertical subsidence crack 
where no shear strength is mobilized and that is fi lled with water 
(slip surfaces wholly within intact zones of bank and foundations 
should satisty (1)).

1.35 1.15

(4) for slip surfaces where both (2) and (3) supply. 1.2 1.1

 CANADA (MINES BRANCH, CANADA,  1972 ) 

 FACTOR OF 

SAFETY 

I * II ** 

Design is based on peak shear strength parameters 1.5 1.3

Design is based on residual shear strength parameters 1.3 1.2

Analyses that include the predicted 100-year return period accelerations 
applied to the potential failure mass

1.2 1.1

For horizontal sliding on base of dike in seismic areas asuming shear 
strength of the fi ne refuse in impoundment reduced to zero

1.3 1.3

   *  where there is a risk of danger to persons or property  
  **  where no risk of danger to persons or property is anticipated   
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  2.      Examples are given to illustrate the Fellenius and normal methods for 
determining the factor of safety, using the method of slices. Both methods 
can be performed easily by hand calculations with a pocket calculator. 
Because of the repeated applications of the same formula to each slice, it 
is more convenient to solve a problem by the use of a spreadsheet.  

  3.      The difference between the Fellenius and the normal methods lies in the 
treatment of pore pressure for determining the effective normal stress on 
the failure surface. When the failure surface inclines at a steep angle with 
the horizontal, the effective normal stress obtained by the Fellenius meth-
od may become negative. To avoid this unreasonable occurrence, the nor-
mal method uses the submerged unit weight to compute the effective 
stress, instead of the pore pressure. If there is no seepage, both methods 
are identical. Otherwise, the factor of safety obtained by the normal meth-
od is slightly greater than that by the Fellenius method.  

  4.      Sliding-block analysis, which only satisfi es force equilibrium, can be used 
for simple cases of noncircular failures consisting of no more than three 
failure planes. The factor of safety depends on the angle of internal fric-
tion between the two blocks, and the greater the angle, the greater the 
factor of safety. The assumption of no friction between the two blocks 
gives the smallest factor of safety and the most conservative design.  

  5.      Two types of analysis can be performed: total stress analysis for short-
term stability and effective stress analysis for long-term stability. The total 
stress analysis is based on the undrained shear strength and includes  s u  -
analysis for saturated soils and  c u  ,  ϕ   u  -analysis for partially saturated soils. 
Because the effect of pore pressure has been considered already in deter-
mining the shear strength, no pore pressure should be used in the analy-
sis. The effective stress analysis is based on the drained shear strength 
and also is called  c  ′ ,  ϕ  ′ -analysis. Instead of drained tests, the effective 
shear strength parameters,  c  ′  and  ϕ  ′ , usually are determined by consoli-
dated undrained tests with pore pressure measurements.  

  6.      For fi ll slopes, the total stress analysis for short-term stability is more crit-
ical than the effective stress analysis for long-term stability, so the total 
stress analysis should be undertaken before the effective stress analysis. 
For cut slopes, the effective stress analysis for long-term stability is more 
critical than the total stress analysis for short-term stability, so the effec-
tive stress analysis for long-term stability needs to be performed fi rst. In 
many cases, the total stress analysis is not needed unless some wet, fi ne-
grained soils with a degree of saturation in the range of 70% or higher are 
encountered.  

  7.      The pore pressure on the failure surface can be obtained by multiplying 
the depth below the phreatic surface with the unit weight of water. Theo-
retically, this defi nition of pore pressure is not correct because the pore 
pressure should represent the piezometric surface; that is, the water level 
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in a piezometric tube located at the failure surface. However, because of 
the gentle slope of the phreatic surface, the difference between the phreat-
ic and piezometric surfaces is quite small, and the use of the phreatic 
surface is on the safe side.  

  8.      The effective stress analysis can be used to analyze rapid drawdown by 
assuming that there is no change in effective stress after the drawdown. If 
rapid drawdown takes place during or at the end of construction, the 
undrained shear strength used for short-term stability also can be used 
for the analysis of rapid drawdown.  

  9.      The seismic factor of safety is based on the psuedostatic method using a 
seismic coeffi cient. For silty soils susceptible to liquefaction, or for high-
risk dams in seismically active regions, more sophisticated dynamic anal-
yses should be used. A lower shear strength, say 80% of the static shear 
strength, and a lower acceptable factor of safety, say 1.1 to 1.15, may be 
used for pseudostatic analysis.  

  10.      The factor of safety required for a given project should take into account 
not only the uncertainties in design parameters but also the consequence 
of failure. Where the consequences of failure are slight, a greater risk of 
failure or a lower factor of safety may be acceptable. The minimum re-
quired factors of safety for several agencies are presented. The minimum 
factor of safety established by one agency may be different from another 
because of differences in engineering practices in exploration, testing, 
and analysis.    

  Problems 

   2.1      Fig.  P2-1  shows the cross section of a fi ll. Because a thin layer of weaker 
material with a cohesion of 160 psf and a friction angle of 24° exists at the 
bottom of the fi ll, the potential failure surface is noncircular along the bot-
tom of the fi ll. If the fi ll has a total unit weight of 125 pcf and there is no 
friction between the two sliding blocks, determine the factor of safety.
   [Answer: 1.472]     

  Fig. P2-1.     
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  2.2      Solve Example  2.3  by the use of a spreadsheet.
   [Answer: 1.022]     

  2.3      Solve Example  2.4  by the use of a spreadsheet.
   [Answer: 1.180]     

  2.4      Fig.  P2-4  shows the dimensions of the slope and the location of the failure 
circle and the phreatic surface. The soil has a cohesion of 200 psf, a friction 
angle of 30°, and a total unit weight of 125 pcf. If the failure mass is di-
vided into eight slices, determine the factor of safety by the Fellenius 
method.
   [Answer: 1.029]     

  Fig. P2-4.     

  2.5      Same as Problem 2.4, but determine the factor of safety by the normal 
method.

   [Answer: 1.208]              
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    Chapter 3 

  Shear Strength    

       Shear strength is one of the most important factors that affect the factor of safety. 
A subsurface investigation is needed to determine the nature and extent of mate-
rials underground, the location of the sites for fi eld tests, and the collection of 
representative samples for laboratory tests. The use of fi eld tests, such as stan-
dard penetration, Dutch cone, piezocone penetration, and vane shear—together 
with laboratory direct shear and triaxial compression tests to determine the shear 
strength of soils—is described. Also presented are the ranges of shear strength 
for various materials, including municipal wastes, and correlations of effective 
friction angle or undrained shear strength with other index properties, such as 
plasticity index, liquid limit, and percent of clay. Other subjects include the shear 
strength of granular soils with a curved strength envelope, and the back-
calculation of shear strength from failed slopes. 

  3.1     Subsurface Investigations 

 The shear strength of soils can be determined by fi eld or laboratory tests. No 
matter what tests are used, it is necessary to conduct an overall geologic appraisal 
of the site, followed by a planned subsurface investigation. The purpose of the 
subsurface investigation is to determine the nature and extent of each type of 
material that may have an effect on the stability of the slope. For simple cases, 
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a detailed knowledge of the slope from toe to crest is essential. For more complex 
cases, knowledge outside of this zone also should be considered. Fills situated 
over a deep layer of clays and silts may merit expensive drilling. Auger holes, 
pits, or trenches will suffi ce for smaller fi lls or those with bedrock only a short 
distance below the surface. 

 The log of boring forms the permanent record used for design. Either dis-
turbed or undisturbed samples can be taken while boring. To obtain reliable 
results, the strength parameters should be determined from undisturbed or 
remolded samples. However, the effective strength parameters of saturated gran-
ular soils and silt clays are not affected signifi cantly by the moisture content 
and density, so disturbed samples may be used for the direct shear test to deter-
mine the effective strength. It is diffi cult to generalize the appropriate number, 
depth, and spacing of borings required for a project as these will depend 
on a variety of factors, such as site conditions, size of the project, among others. 
Often the fi nal location of borings should be made in the fi eld, and additions 
must be made to the boring program based on the information from the boring 
already completed. During boring, the depth to the groundwater table also 
should be determined.  

  3.2     Field Tests 

 There are a variety of fi eld tests for determining the shear strength of soils in the 
fi eld. However, only the standard penetration test, the Dutch cone test, the piezo-
cone test, and the vane shear test will be discussed here. These tests are appli-
cable to soils free from substantial gravel or cobble-sized particles. 

  3.2.1     Standard Penetration Test 

 This test also is used to collect soil samples. When a borehole is extended to a 
given depth, the drill tools are removed and a standard split-spoon sampler is 
lowered to the bottom of the borehole. The sampler is driven into the soil by a 
140-lb (623-N) hammer with a 30-in. (0.76-m) drop. The number of blows required 
for the spoon to penetrate three 6-in. (152-mm) intervals is recorded. The stan-
dard penetration number, generally referred to as the  N -value, is obtained by 
adding the blow counts for the last two intervals. The sampler then is removed, 
and the soil sample is recovered, placed in a glass jar, and shipped to the labora-
tory. The method is specifi ed by ASTM D1586 “Standard Test Method for Pen-
etration Test and Split-Barrel Sampling of Soils” (ASTM  2010 ). 

 For sands, Fig.  3-1  gives a relationship between effective friction angle,  ϕ  ′ , 
and  N -value based on the effective overburden pressure,  ′σvovo   , during the fi eld 
test. If there is no water table, the effective overburden pressure is equal to the 
depth below the ground surface multiplied by the total unit weight of the soil. 
If part of the overburden is below the water table, the submerged unit weight 
should be used for the overburden below the water table. 
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  Fig. 3-1.      Blow count versus effective friction angle for sand (Schmertmann  1975 . 
Reproduced with permission) 

 Note:   1 tsf  =  95.8 kN/m 2     

  For clays, Fig.  3-2  shows the correlation between the standard penetration 
test and the unconfi ned compressive strength. The undrained shear strength,  s u  , 
is equal to one-half of the unconfi ned compressive strength,  q u  . 

  If the clay normally is consolidated with  N   <  depth in feet/5 (depth in 
meters/1.5), Schmertmann  (1975)  suggests

  s tsf Nu( ) ≥ /15       (3-1)  

  s kN m Nu( ) ./ 2 6 4≥       (3-2)  

in which  s u    =  undrained shear strength and  N   =  blow count per foot of 
penetration. 

 It is worthy of note that blow count is not a reliable method for determining 
the shear strength of clays. The use of this method should proceed with caution, 
and check some samples with the laboratory unconfi ned compression tests. 

   Example 3.1            A standard penetration test was performed on sand at a depth of 
15 ft (4.6 m) below the ground surface. The water table is located 10 ft (3.05 m) 
below the surface. The soil has a total unit weight of 125 pcf (19.6 kN/m 3 ). If the 
 N -value obtained from the test is 14, determine the effective friction angle of 
the soil.  

  Solution     Effective overburden pressure  ′ = × + × −( )[ ]σvo 10 125 5 125 62 4 2 000  /. ,     
= 0 78 tsf. . From Fig.  3.1 ,  ϕ  ′   =  39°.  
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48 Slope Stability Analysis by the Limit Equilibrium Method

  Example 3.2            The standard penetration test on a silty clay gives a blow count of 
8 at a depth of 50 ft (15.3 m) from the ground surface. If the silty clay is of medium 
plasticity, determine the undrained shear strength.  

  Solution     Given  N   =  8 and clay of medium plasticity, from Fig.  3-2 , unconfi ned 
compressive strength  q u    =  1.3 tsf. The undrained shear strength is equal to one-
half of the unconfi ned compressive strength, so  s u    =  0.5  ×  1.3  =  0.65 tsf. 

 If Eq.  (3-1)  is used, the depth of the borehole must be greater than 5 N , or 40 ft. 
The actual depth is 50 ft, so Eq.  (3-1)  is valid. From Eq.  (3-1) ,  s u    =  8/15  =  0.53 tsf, 
which compares with 0.65 tsf from Fig.  3-2 . The discrepancy is expected, because 
these empirical correlations are approximate at best. As can be seen from Fig. 
 3-2 , the unconfi ned compressive strength for clays of low plasticity is 3.3 times 
greater than those of high plasticity, so a small change in plasticity will have a 
large effect on the undrained shear strength.    

  3.2.2     Dutch Cone Test 

 This test, originally developed by the Dutch engineer P. Barentsen (Broms and 
Flodin  1988 ), has been used for soil exploration since the early 1930s. A 60° cone 
with a base area of 1.55 in. 2  (10 cm 2 ) is pushed into the ground at a steady rate of 
about 0.8 in./s (20 mm/s). The resistance to the penetration of the cone and the 
frictional resistance of the sleeve are measured. The test also is called the cone 
penetration test (CPT) and does not require the drilling of a borehole. Electrical 
versions were developed in late 1940s by the Delft Soil Mechanics Laboratory, 
which offered continuous measurements of tip resistance and sleeve friction with 
depth and direct strip chart plotting of the sounding record. 

  Fig. 3-2.      Blow count versus unconfi ned compressive strength for clays 
(U.S. Navy  1971 ) 

 Note:   1 tsf  =  95.8 kN/m 2     
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 Based on the CPT calibration tests from fi ve sands, Robertson and Campan-
ella  (1983)  proposed the following expression for the peak friction angle of clean 
quartz sand:

  ′ = +
′

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

−φ
σ

tan . . log1 0 1 0 38
qc

vo

      (3-3)  

in which  q c    =  cone resistance and  ′σvovo      =  effective overburden pressure. Eq.  (3-3)  
can be used to plot the chart shown in Fig.  3-3 . 

  Another expression derived from calibration tests of 24 sands was proposed 
by Kulhawy and Mayne  (1990) :
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      (3-4)  

in which  p a    =  atmospheric pressure, or 1.06 tsf. 

  Fig. 3-3.      Cone resistance versus effective friction angle for sands 
(Robertson and Campanella  1983 . Reproduced with permission from IOS Press) 

 Note:   1 tsf  =  95.8 kN/m 2     

  Example 3.3            When the Dutch cone penetrates to a sand deposit at a depth of 
35 ft (10.7 m) below the ground surface, the recorded cone resistance is 100 tsf 
(9.6 MN/m 2 ). If the total unit weight of sand is 130 pcf (20.5 kN/m 3 ) and the water 
table is 10 ft (3.1 m) below the ground surface, estimate the effective friction angle 
of the sand.  
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50 Slope Stability Analysis by the Limit Equilibrium Method

  Solution     The effective overburden pressure  ′ = × + × −( )σvo 10 130 25 130 62 5.     
 = 2 987 5, . psf    or 1.49 tsf. Given  q c    =  100 tsf, from Fig.  3-3 ,  ϕ  ′   =  39°, which checks 
with the 38.5° from Eq.  (3-3) , or  ϕ  ′   =  tan  − 1 [0.1  +  0.38 log(100/1.49)]  = 38.5°. 

 If Eq.  (3-4)  is used,  ϕ  ′   =  17.6  +  11  × [log(100/1.06)  −  0.5  ×  log(1.49/1.06)]  =  38.5°, 
which is the same as from Eq.  (3-3) .  

  For clays, the correlation between the cone resistance and the undrained 
shear strength depends on the overconsolidation ratio, which is the ratio between 
the maximum precompression and the existing overburden pressure. An equa-
tion used by many engineers for clays that are not highly sensitive with an 
overconsolidation ratio less than 2 and a plasticity index greater than 10 is 
(Schmertmann  1975 ),

  s
q

u
c vo=

− ′σ
16

      (3-5)   

 Drnevich et al.  (1974)  showed that

  su = ×0 8. friction sleeve resistance       (3-6)    

  3.2.3     Piezocone Penetration Test 

 The curves presented in Fig.  3-3  are designed for cohesionless sand but are also 
applicable to fi ne-grained soils with a small cohesion. However, it may not be 
used for clayey soils because the penetration of the cone will generate consider-
able excess pore pressures, which affect signifi cantly not only the load applied 
to the cone but also the effective stress in the soil. The introduction of the piezo-
cone in the mid 1970s permits the simultaneous measurements of cone resistance, 
 q c  , sleeve friction,  f s  , and pore pressure,  u t  , and provides new possibilities for soil 
identifi cation and classifi cation and the interpretation of soil parameters. This 
type of CPT with pore pressure measurements is called CPTU and is specifi ed 
by ASTM D5778 “Standard Test Method for Performing Electric Friction Cone 
and Piezocone Penetration Testing of Soils” (ASTM  2010 ). 

 Piezocones are normally available in two standard sizes: (1) a 35.7-mm (1.4-
in.) diameter version with cone area  A c    =  10 cm 2  (1.55 in. 2 ) and sleeve area  A s    =  
150 cm 2  (23.3 in. 2 ), and (2) a 44-mm (1.75-in.) diameter version with  A c    =  15 cm 2  
(2.33 in. 2 ) and sleeve area  A s    =  200 to 300 cm 2  (31 to 46.5 in. 2 ). Although the 10-cm 2  
(1.55-in. 2 ) version is the original standard size, many commercial fi rms have 
found that the 15-cm 2  (2.33-in. 2 ) version is stronger for routine profi ling and is 
more easily outfi tted with additional sensors for specifi c needs. Because the rod 
size is normally 35.7 mm (1.4 in.) in diameter, the 15-cm 2  (2.33-in. 2 ) cone also tends 
to open a larger hole and thus reduce side rod friction during pushing. Fig.  3-4  
shows a schematic of a piezocone and its calibration. This fi gure actually is 
divided into four parts and described as follows: 
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 In Fig.  3-4 (a), when the rod is pushed downward, the cone and the friction 
sleeve also will move down, so the direction of the reactive forces  P c   beneath 
the cone and  P f   around the sleeve is upward. The two strain gauges at the lower 
location are used to measure  P c   and the other two gauges at the higher loca-
tion to measure  P c    +   P f  . Knowing  P c   and  P c    +   P f  ,  P f   can be obtained by sub-
traction. Division of  P c   by the area of the cone,  A c  , gives the cone resistance, 
 q c  , and the division of  P f   by the surface area of sleeve gives the sleeve friction, 
 f s  . Note that pore pressure has not been considered in these defi nitions of  q c   
and  f s  . 

  Fig.  3-4 (b) illustrates the effect of pore pressure on  q c   and  f s  . Because the cone 
and the friction sleeve are two different pieces separated by a small space, pore 
pressures will exert on the top of the cone and the bottom of the sleeve, as indi-
cated by the two arrows identifi ed by  u t   in the fi gure. The total pore pressure, 
 u t  , consists of the hydrostatic pore pressure,  u o  , due to the phreatic surface and 
the excess pore pressure,  Δ  u , due to penetration of the cone, or

  u u ut o= + Δ       (3-7)   

  Fig. 3-4.      Schematic and calibration of a piezocone 
 Note:   1 tsf  =  95.8 kN/m 2     
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 The downward pore pressure on the cone increases the cone resistance from 
 q c   to  q t  , or

  q q
A A

A
u q

A
A

u q a ut c
c

c
t c

c
t c n t= + −⎛

⎝⎜
⎞
⎠⎟ = + −⎛

⎝⎜
⎞
⎠⎟ = + −1 11 1( )       (3-8)  

in which  A c    =  area of cone with a diameter of  d c  ,  A  1   =  area with a diameter of  d  1 , 
and  a n    =  net area ratio. 

 The upward pore pressure on the friction sleeve decreases the frictional 
resistance from  f s   to  f t  , or

  f f
d d

d h
u f b ut s

c

c s
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= −
2

2
2

4
      (3-9)  

in which  h s    =  height of friction sleeve and  b n    =  cross section and surface area ratio. 
Although values of  a n   and  b n   can be computed from the dimensions of the piezo-
cone, as shown in Eqs.  (3-8)  and  (3-9) , it is more accurate and reliable to calibrate 
them directly in a triaxial chamber. 

 Fig.  3-4 (c) demonstrates the calibration of  u t   and  q c   under various chamber 
pressures,  σ  3 . The  u t   registered by the pressure transducer should be equal to  σ  3 , 
as expected. The plot of  q c   versus  σ  3  results in a straight line with a slope  a n   of 
0.581, because the  q c   registered by the lower strain gauges represents the differ-
ence in pore pressure at the top of the cone relative to that at the bottom, 
expressed as an area ratio  A  1 / A c  . 

 Fig.  3-4 (d) illustrates the calibration of  f s  . The slope of the straight line gives 
a  b n   of 0.014. Given  q c   and  f s   together with the calibrated  a n   and  b n  , the corrected 
 q t   and  f t   can be computed by Eqs.  (3-8)  and  (3-9) , respectively. 

 The following procedures for determining the effective friction angle of both 
granular and fi ne-grained soils were developed by the Norwegian Institute of 
Technology, as reported by Senneset et al.  (1989) . 

 The effective shear strength of fi ne-grained soils can be approximated 
by a straight line, as shown in Fig.  3-5 . The negative intercept at the normal 
stress axis is called the effective attraction,  a  ′ , which is related to the effective 
cohesion by

  ′ = ′ ′c a tan φ       (3-10)   

  Fig. 3-5.      Effective shear strength of fi ne-grained soils    
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  For a given type of soil, the effective friction angle,  ϕ  ′ , depends on two dimen-
sionless parameters: cone resistance number,  N m  , and pore pressure ratio,  B q  , 
defi ned as

  N
q

a
m

t vo

vo

=
−

′ + ′
σ

σ
      (3-11)  

and

  B
u u
q

q
t o

t vo

= −
− σ

      (3-12)  

in which  q t    =  corrected cone resistance,  σ   vo    =  total overburden pressure,  ′σvovo     =  
effective overburden pressure,  u t    =  measured pore pressure,  u o   i =  initial pore 
pressure due to phreatic surface, and  a  ′   =  effective attraction. The effective attrac-
tion can be obtained from the CPTU records by plotting  ′σvovo    versus  q t    −   σ   vo  , as 
indicated by Eq.  (3-11)  and Fig.  3-6 . This method is applicable when relatively 
homogeneous soil deposits or layers are encountered. 

  In cases where such estimates cannot be obtained, it is suggested that typical 
values from triaxial tests on similar soils be used, as shown in Table  3-1 . Table 
 3-1  also gives the typical ranges of shear strength parameters for some common 
soil types and may be useful for evaluating the parameter values interpreted 
from CPTU data. The soil type can be identifi ed from  q t   and  B q   by Fig.  3-7 . 

   Fig.  3-8  can be used to determine tan  ϕ  ′  for three different types of soil, based 
on the values of  N m   and  B q  . 

  Mayne and Campanella  (2005)  indicated that the charts for most soils with 
a small cohesion, as shown in Fig.  3-8 (a), can be approximated by

  ′ = + +φ ( ) . [ . . log ].in degrees 29 5 0 256 0 3360 121B B Nq q m       (3-13)   

 Eq.  (3-13)  is applicable for 0.1  <   B q    <  1.0 and 20°  <   ϕ  ′   <  45°. 

  Fig. 3-6.      Determination of effective attraction from CPTU data    
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54 Slope Stability Analysis by the Limit Equilibrium Method

  Fig. 3-7.      Chart for classifi cation of soil type by CPTU data (Senneset et al.  1989 , 
© National Academy of Sciences, Washington, DC. Reproduced with permission of 
the Transportation Research Board, Washington, DC) 

 Note:   1 tsf  =  0.1 MN/m 2     

 Table 3-1.      Typical Values of Attraction, Friction Angle, and Other Parameters  

Soil Type Consistency  a  ′  (psf) tan  ϕ  ′  ϕ  ′  N m   B q  

Clay Soft 100–200 0.35–0.45 19–24 1–3 0.8–1.0
Medium 200–400 0.40–0.55 19–29 3–5 0.6–0.8
Stiff 400–1,000 0.50–0.60 27–31 5–8 0.3–0.6

Silt Soft 0–100 0.50–0.60 27–31 — —
Medium 100–300 0.55–0.65 29–33 5–30 0–0.4
Stiff 300–600 0.60–0.70 31–35 — —

Sand Loose 0 0.55–0.65 29–33 — —
Medium 200–400 0.60–0.75 31–37 30–100  < 0.1
Dense 400–1,000 0.70–0.90 35–42 — —

Hard, stiff soil, over-
consolidated, cement

 > 1,000 0.8–1.0 38–45 100  < 0

   (Senneset et al.  1989 , © National Academy of Sciences, Washington, DC. Reproduced with permis-
sion of the Transportation Research Board, Washington, DC)  

  Note:   1 psf  =  0.048 kN/m 2    
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 Fig.  3-9  is a comparison of effective friction angles,  ϕ  ′ , computed by Eq.  (3-
13) , as shown by the straight lines, versus those obtained from Fig.  3-8 (a), as 
shown by the individual points. It can be seen that, in the applicable ranges, both 
check very closely. For granular soils with  B q    =  0, Eq.  (3-13)  does not work, so 

  Fig. 3-8.      Charts for determining friction tan  ϕ  ′  (Senneset et al.  1989 , © National 
Academy of Sciences, Washington, DC. Reproduced with permission of the 

Transportation Research Board, Washington, DC)    

  Fig. 3-9.      Comparison of effective friction angle based on Eq.  (3-13)  and Fig.  3-8 (a) 
(Mayne and Campanella  2005 . Reproduced with permission from IOS Press)    
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Eq.  (3-3)  is plotted instead. The comparison between using Eq.  (3-3)  and Fig. 
 3-8 (a) indicates that the results check very well when  ϕ  ′  is smaller than 30°; 
however, when  ϕ  ′  is greater than 40°, Eq.  (3-3)  gives a  ϕ  ′  value two to three 
degrees lower than that obtained by Fig.  3-8 (a). Because Eq.  (3-3)  is more con-
servative, it is suggested that Eq.  (3-3)  be used for granular material with  B q    =  0. 

   Example 3.4            Piezocone penetration tests were conducted on a site with the water 
table 10 ft (3.1 m) below the surface. At a depth of 20 ft (6.1 m) below the ground 
surface is a layer of medium clay with a cone resistance,  q c  , of 7,500 psf (359 kN/
m 2 ) and a total pore pressure,  u t  , of 5,500 psf (263 kN/m 2 ). If the net area ratio, 
 a n  , of the piezocone is 0.581 and the average unit weight of soil in the top 20 ft 
(6.1 m) is 125 pcf (19.7 kN/m 3 ), estimate the effective cohesion and angle of inter-
nal friction of the clay.  

  Solution     From Eq.  (3-8) ,  q t    =  7,500  +  (1  −  0.581)  ×  5,500  =  9,805 psf.  σ   vo    =  125  ×  20 
 =  2,500 psf.  ′ = − × =σvo 2 500 62 4 10 1 876, . , psf   . Assuming  a  ′   =  300 psf (average for 
medium clay in Table  3-1 ), from Eq.  (3-11) ,  N m    =  (9,805  −  2,500)/(1,876  +  300)  =  
3.357. From Eq.  (3-12) ,  B q    =  (5,500  −  624)/(9,805  −  2,500)  =  0.667. From Fig.  3-8 (a), 
tan  ϕ  ′   =  0.55, or  ϕ  ′   =  28.8°. From Eq.  (3-10) ,  c  ′   =  300  ×  tan 28.8°  =  164.9 psf. If Eq.  (3-
13)  is used,  ϕ  ′   =  29.5  ×  (0.667) 0.121 [0.256  +  0.336  ×  0.667  +  log 3.357]  =  28.3°, which 
compares with the 28.8° obtained from the chart. In this example, the soil type is 
given as medium clay. If this information is not given, it can be found from Fig. 
 3-7  that, with  q t    =  4.9 tsf and  B q    =  0.667, the soil is classifi ed as medium clay. 

 It should be noted that, when the effective cohesion is small, the arbitrary as-
sumption of  a  ′  has very little effect on  ϕ  ′ . For example, if  a  ′   =  200 psf,  N m    =  (9,805 
 −  2,500)/(1,876  +  200)  =  3.52 and, from Eq.  (3-13) ,  ϕ  ′   =  29.3°; if  a  ′   =  400 psf,  N m    =  
(9,805  −  2,500)/(1,876  +  400)  =  3.21 and, from Eq.  (3-13) ,  ϕ  ′   =  27.7°. Even if the as-
sumed  a  ′  is not correct, the use of a larger  a  ′  will be compensated by a decrease in 
 ϕ  ′ , so the net effect on shear strength may not be signifi cant.  

  The relationship between undrained shear strength,  s u  , and cone resistance,  
q t  , can be expressed as

  s
q

N
u

t vo

c

=
− σ

      (3-14)  

in which  N c    =  cone factor. The cone factor usually is determined from a reference 
value for  s u  , either from a fi eld vane shear test or a laboratory triaxial compres-
sion test. Values of  N c   seem to range from 10 to 15 for normally consolidated 
clays, and from about 15 to 19 for overconsolidated clays. Because of the large 
scatter in values of  N c  , local correlations at the site are highly recommended.  

  3.2.4     Vane Shear Test 

 This test commonly is used for determining the undrained strength of clays in 
situ. The test basically consists of placing a four-blade vane in the undisturbed 
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soil and rotating it from the surface to determine the torsional force required to 
cause a cylindrical surface to be sheared by the vane. This force then is converted 
to the undrained shear strength. Both the peak and residual undrained strength 
can be determined by measuring the maximum and post-maximum torsional 
forces. The method is specifi ed by ASTM D2573 “Standard Test Method for Field 
Vane Shear Test in Cohesive Soils” (ASTM  2010 ). Because of the difference in 
failure mode, the results of fi eld vane tests do not always agree with other shear 
tests. Bjerrum  (1972)  recommended that, depending on the plasticity index, PI, 
of the soil, the undrained shear strength obtained from the fi eld vane shear test 
be multiplied by a correction factor,  λ , as shown in Fig.  3-10 . 

   Example 3.5            In the previous example, fi eld vane shear tests on the clay layer give 
an undrained shear strength of 650 psf (31.1 kN/m 2 ). If the clay has a plasticity 
index of 22, determine the cone factor,  N c  , in Eq.  (3-14) .  

  Solution     From Fig.  3-10 ,  λ   =  0.9, so  s u    =  0.9  ×  650  =  585 psf. From Example  3.4 , 
 q t    =  9,805 psf and  σ   vo    =  2,500 psf. From Eq.  (3-14) ,  N c    =  (9,805  −  2,500)/585  =  12.5.     

  3.3     Laboratory Tests 

 Laboratory tests complement fi eld tests to give a more complete picture of 
the materials within the slope and their engineering properties. Furthermore, it 
is possible in the laboratory to establish the changes in soil behavior due to 
the changes in environment. For example, the construction of an embankment 

  Fig. 3-10.      Correction factor for vane shear test (Bjerrum  1972 . Reproduced 
with permission)    
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certainly will affect the shear strength in the foundation soils. Field tests before 
construction cannot establish these changes, whereas laboratory tests can simu-
late these changes as they occur in the fi eld. 

 The major laboratory tests for determining the shear strength of soils include 
the direct shear test, the triaxial compression test, and the unconfi ned compres-
sion test. The direct shear test is very easy to conduct because of its simplicity. 
Because of the thin specimen used, drained conditions exist for most materials 
except for the highly plastic clays. Therefore, the direct shear test usually is used 
to determine the effective shear srrength. The triaxial compression test can be 
used for determining either the total strength or the effective strength. The 
unconfi ned compression test is similar to the triaxial compression test but without 
the confi ning pressure and can only be used to determine the undrained shear 
strength. 

  3.3.1     Direct Shear Test 

 Fig.  3-11  shows a schematic of the direct shear box. The soil sample is placed 
between two porous stones to facilitate drainage. The normal load is applied to 
the sample by placing weights in a hanger system. The shear force is applied by 
the piston driven by an electric motor. The horizontal displacement is measured 
by a horizontal dial gauge and the shear force by a proving ring and load dial, 
which are not shown in the fi gure. Instead of the dial gauge, proving ring, and 
hanging weights, LVDT and load cell with automatic recording devices are 
available, but the basic arrangement is the same. The method is specifi ed by 
ASTM D3080 “Direct Shear Test of Soils under Consolidated Drained Condition” 
(ASTM  2010 ). 

  For silty clays and coal refuse, Huang  (1978b)  found that their effective shear 
strength can be determined easily by the direct shear tests, which check closely 
with the results of triaxial compression tests with pore pressure measurements. 
His suggested procedure is as follows. 

  Fig. 3-11.      Schematic diagram of direct shear box assembly    
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  Fig. 3-12.      Stress-displacement curves of fi ne refuse 
 Note:   1 in.  =  25.4 mm; 1 tsf  =  95.8 kN/m 2     

 The soil is air-dried and sieved through a No. 4 sieve (4.75 mm). The material 
retained on the sieve is discarded, because the specimen is only 2.5 in. (63.5 mm) 
in diameter and is not adequate for large particles. The material passing the sieve 
is mixed with a large amount of water to make it very plastic, and then it is 
placed in the direct shear box. To prevent the sample from squeezing out, a Tefl on 
ring is used to separate the two halves of the shear box. 

 After a given normal stress is applied for about 10 min, the shear stress is 
applied at a rate of 0.02 in. (0.5 mm) per min until the specimen fails, as indicated 
by a decrease in the reading of the proving ring dial. If the specimen does 
not fail, the test is stopped at 20 min or a horizontal deformation of 0.5 in. 
(12.7 mm). At least three tests involving three different normal stresses must be 
performed. 

 Fig.  3-12  shows the stress-displacement curves of a fi ne coal refuse under 
three different normal stresses: 0.52, 1.55, and 2.58 tsf (49.8, 148.5, and 247.2 kN/
m 2 ). In all three curves, the shear stress increases with the horizontal displace-
ment up to a peak and then decreases until a nearly constant value is obtained. 
The shear strength at the peak is called the peak shear strength, and that at the 
constant value is called the residual shear strength. Because of progressive failure, 
the average shear strength actually developed along a failure surface is some-
where between the peak and the residual strength. If the two strengths are not 
signifi cantly different, as is the case shown in Fig.  3-12 , the peak strength can be 
used for stability analysis. 
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  Fig.  3-13  shows a plot of peak shear stress versus normal stress for fi ne coal 
refuse. A straight line passing through the three points is drawn. The vertical 
intercept at zero normal stress is the effective cohesion,  c  ′ , and the angle of the 
straight line with the horizontal is the effective friction angle,  ϕ  ′ . The fi gure shows 
that the fi ne coal refuse has an effective cohesion of 0.1 tsf (9.6 kN/m 2 ) and an 
effective friction angle of 35.4°. 

  It is believed that the strength parameters determined from this procedure 
are quite conservative because: (1) only the fraction passing through the No. 4 
sieve is used in the test. If suffi cient coarse materials are present, the shear 
strength may be slightly greater; (2) no compaction is applied to the specimen 
other than the normal load used in the test. If the material is compacted, a slightly 
higher strength may be obtained; and (3) the specimen is very wet and com-
pletely saturated, which may not occur in the fi eld. 

 It should be pointed out that this procedure for determining effective shear 
strength is applicable only to silty clays and coal refuse. It may not be used for 
highly plastic clays unless the rate of loading is kept exceedingly low.  

  3.3.2     Triaxial Compression Test 

 The triaxial compression test can be used to determine either the total strength 
parameters or the effective strength parameters. Fig.  3-14  shows the schematic 
of a triaxial chamber. The specimen is covered with a rubber membrane and 
placed in the triaxial chamber. Water is introduced into the chamber and a given 
confi ning pressure is applied. A vertical axial load then is applied gradually until 
the specimen fails, as indicated by a decrease in reading of the applied load. The 
deformation of the specimen and magnitude of the applied load can be measured 
either by dial gauges or other electronic devices. If the specimen does not fail, 
the test continues until a strain of 15% is obtained. 

  Fig. 3-13.      Strength of fi ne refuse by direct shear test 
 Note:   1 tsf  =  95.8 kN/m 2     
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  One simple way to determine the total strength parameters of unsaturated 
soils is to prepare two identical specimens, and then subject one to the uncon-
fi ned compression test and the other to the triaxial compression test. The confi n-
ing pressure used for the triaxial test should nearly equal the maximum 
overburden pressure expected in the fi eld. The procedure for the unconfi ned 
compression test is similar to the triaxial test, except that the specimen is not 
enclosed in the rubber membrane and no confi ning pressure is applied. 

 To prevent any drainage in the triaxial test, the drainage valves must be 
closed. After both tests are completed, two Mohr ’ s circles are drawn, and a 
straight line tangent to these two circles is the Mohr ’ s envelope. The vertical 
intercept of the envelope at zero normal stress is the cohesion, and the angle of 
the envelope with the horizontal is the friction angle, as shown in Fig.  3-15 . The 
total strength parameters generally exhibit a large cohesion and a small friction 
angle. If the specimen is saturated completely, the envelope will be horizontal 
with an angle of internal friction equal to zero. Procedures for undrained triaxial 
test are specifi ed by ASTM D2850 “Unconsolidated-Undrained Triaxial Com-
pression Test on Cohesive Soils” (ASTM  2010 ). 

  Fig. 3-14.      Schematic of a triaxial chamber    
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  The effective strength parameters can be determined by a consolidated 
drained test or a consolidated undrained test with pore pressure measurements. 
Instead of using the total normal stress as shown in Fig.  3-15 , the shear stress is 
plotted versus the effective normal stress, and a Mohr ’ s envelope in terms of 
effective stress is obtained. The vertical intercept of the envelope at zero effective 
normal stress is the effective cohesion, and the angle of the envelope with the 
horizontal is the effective friction angle. The effective strength parameters always 
exhibit a small effective cohesion and a large effective friction angle. The method 
is specifi ed by ASTM D4767 “Consolidated Undrained Triaxial Compression Test 
for Cohesive Soils” (ASTM  2010 ). 

 Another procedure to obtain the effective strength parameters is by the use 
of the stress path method (Lambe and Whitman  1969 ). Fig.  3-16  shows the  p  ′  
versus  q  diagram of the fi ne coal refuse used in the direct shear test shown in 
Fig.  3-13 . 

  Fig. 3-15.      Total strength parameters of a compacted specimen 
 Note:   1 tsf  =  95.8 kN/m 2 ; 1 pcf  =  157.1 N/m 3     

  Fig. 3-16.      Triaxial compression test on fi ne refuse 
 Note:   1 tsf  =  95.8 kN/m 2     
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  Note that

  ′ = ′ + ′
p

σ σ1 3

2
      (3-15)  

  q = − = ′ − ′σ σ σ σ1 3 1 3

2 2
      (3-16)  

in which  σ  1   =  major principal stress and  σ  3   =  minor principal stress. The corre-
sponding effective stresses,  ′σ1    and  ′σ3   , can be determined by subtracting the 
measured pore pressure from the total stresses,  σ  1  and  σ  3 . 

 Fig.  3-16  shows the effective stress path of triaxial compression tests with 
pore pressure measurements using the same fi ne refuse for the direct shear test 
shown in Fig. 13-13. Each point on the stress path is called the stress point. The 
tests were made on two specimens, one subjected to an effective confi ning pres-
sure of 0.6 tsf (58 kN/m 2 ) and the other to 1.4 tsf (134 kN/m 2 ). To saturate the 
specimens, fi lter strips were placed around the sample and a chamber pressure 
was applied. The load was increased until the stress path approached a straight 
line. A line tangent to the failure part of the stress path is called the  K f  -line. The 
angle of the  K f  -line with the horizontal is called  α  ′ , which is related to  ϕ  ′  by

  sin tan′ = ′φ α       (3-17)   

 The intercept of the  K f  -line with the  q -axis is called  a  ′ , which is related to  c  ′  
by

  ′ = ′
′

c
a

cosφ
      (3-18)   

 Fig.  3-16  shows that the fi ne coal refuse has an effective cohesion of 0.10 tsf 
(7.7 kN/m 2 ) and an effective friction angle of 36.3°, which check closely with the 
result of direct shear test. 

 An advantage of using the stress path method is that the effective cohesion 
and the effective friction angle may be estimated from a single test by approxi-
mating a straight line through the stress points at the latter part of the test, 
whereas two tests are required if the Mohr ’ s circle is used. Furthermore, if several 
triaxial tests are run and only the  ′σ1     and  ′σ3     at the time of failure are measured, 
it is much easier to approximate a straight line through all the stress points than 
to plot a straight line tangent to all the circles. 

  Example 3.6            The principal stresses,  ′σ1     and  ′σ3   , of three triaxial shear tests at the 
time of failure are tabulated as follows (where 1 psi  =  144 psf  =  6.9 kN/m 2 ):

Test No.  ′σ1     (psi)  ′σ3     (psi)  p  ′  (psi)  q  (psi)

1 46 14 30 16

2 89 29 59 30

3 137 45 91 46
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64 Slope Stability Analysis by the Limit Equilibrium Method

 By the use of a  p  ′  versus  q  diagram and the principle of least squares, deter-
mine the effective cohesion,  c  ′ , and the effective angle of internal friction,  ϕ  ′ , of 
the soil.  

  Solution     From Eqs.  (3-15)  and  (3-16) , values of  p  ′  and  q  are computed, as listed 
in the preceeding table. The  K f  -line, which passes through the three points with 
coordinates ( p  ′ ,  q ), is supposed to be a straight line represented by the following 
linear equation:

  y a bxq = +       (3-19)  

in which  y q    =  computed value of  q  obtained by substituting  p  ′  as the value of  x  
in Eq.  (3-19) , and  a  and  b  are constants to be determined by the principle of least 
squares. The purpose herein is to obtain a line so that

  ( ) ( )y y y a bxq− = − − =∑ ∑2 2 minimum       (3-20)   

 This can be achieved by taking the partial derivative of Eq.  (3-20)  with respect 
to  a  and  b  and setting it to 0, or

  
∂
∂

− − = − − − =

= +

∑ ∑
∑∑

a
y a bx y a bx

y na b x

( ) [ ( )]
2

2 0

or
      (3-21)  

in which  n   =  number of points, which is 3 in this example.

  

∂
∂

− − = − − − =

= +

∑ ∑
∑ ∑∑

b
y a bx y a bx x

xy a x b x

( ) [ ( ) ]
2

2

2 0

or
      (3-22)   

 Eqs.  (3-21)  and  (3-22)  can be used to solve  a  and  b . In this example, substitut-
ing values of  q  as  y  and  p  ′  as  x , Eq.  (3-21)  becomes

  
16 30 46 3 30 59 91

92 3 180
+ + = + + +

= +
a b

a b

( )
or

      (3-23)   

 From Eq.  (3-22) ,

  
30 16 59 30 91 46 180 30 59 91

0

2 2 2× + × + × = + + +
= +

a b

a

[( ) ( ) ( ) ]
,or 6 436 18 12,,662b

      (3-24)   

 From Eqs.  (3-23)  and  (3-24) ,  a   =  1.147 psi and  b   =  0.492. From Eq.  (3-17) , sin  ϕ  ′  
 =  0.492, or  ϕ  ′   =  sin  − 1 (0.492)  =  29.5°. From Eq.  (3-18) ,  c  ′   =  1.147/cos 29.5°  =  1.318 psi. 
Fig.  3-17  is the  p  ′  versus  q  diagram and the best fi t least square line.  
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   The discussed procedures for determining the cohesion and internal friction 
may not be applicable to granular soils. Theoretically, granular materials are 
cohesionless, and the cohesion should be zero. However, when two triaxial tests 
under two different confi ning pressures are run, the failure envelope—which is 
a line tangent to both circles—does not pass through the origin, because the 
Mohr ’ s failure envelope is actually a curve, and the angle of internal friction 
decreases with the increase in confi ning pressure due to the increasing break-
down of particles under higher stresses. Consequently, a line tangent to both 
circles may result in a cohesion intercept, which does not exist in reality. To 
approximate the failure envelope by a straight line, the line must be forced to 
pass through the origin. When a cohesionless material is placed in an embank-
ment, the most critical failure surface obtained by LEAME is a very shallow 
circle, which barely scratches the surface of the slope. This type of failure surface 
is impossible, because the higher friction angle near the surface will prevent the 
formation of a very shallow failure surface. As the depth increases, the friction 
angle decreases, but the normal stress increases, and there is a critical depth at 
which the factor of safety is minimum. A theoretical method for analyzing curved 
envelope is presented in the next section.   

  3.4     Shear Strength of Granular Materials 

 In all the methods of stability analysis discussed so far, it is assumed that the 
Mohr ’ s failure envelope is a straight line, as indicated by Eq. (1-2) or (2-8). 
Because granular materials are cohesionless and fully drained, the shear strength 
can be expressed in effective stress by

  s = ′ ′σ φtan       (3-25)  

in which  σ  ′   =  effective normal stress on the failure plane at the time of failure. 
 Fig.  3-18  shows the Mohr ’ s circles for four triaxial tests on the rockfi ll materi-

als used for the shell of Oroville Dam in California, as reported by Marachi 

  Fig. 3-17.      Example  3.6  
 Note:   1 psi  =  144 psf  =  6.9 kN/m 2     
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66 Slope Stability Analysis by the Limit Equilibrium Method

et al.  (1969) . The principal stresses used to plot the Mohr ’ s circles are shown in 
Table  3-2 . The strength envelope tangent to the circles is a curve, and each point 
on the curve represents the normal and shear stresses on a failure plane at the 
time of failure. With no cohesion, a line passing through the origin and tangent 
to each circle gives the value of  ϕ  ′  for each circle. The dashed line in the fi gure 
is the tangent to the largest circle. It can be seen that the values of  ϕ  ′  decrease 
with the increase in  ′σ3    . Given the major principal stress,  ′σ1   , and the minor 
principal stress,  ′σ3   , the angle of internal friction can be computed by

  ′ = ′ − ′
′ + ′

⎛
⎝⎜

⎞
⎠⎟

−φ σ σ
σ σ

sin 1 1 3

1 3

      (3-26)   

   Experimental evidences show that the value of  ϕ  ′  for curved envelope can 
be expressed by

  ′ = − ′⎛
⎝⎜

⎞
⎠⎟

φ φ φ σ
o

ap
Δ log 3       (3-27)  

  Fig. 3-18.      Mohr ’ s circles and failure envelope for a rockfi ll material 
 Note:   1 psi  =  6.9 kN/m 2     

 Table 3-2.      Stresses at Time of Failure and Values of  ϕ  ′   
Test  ′σ3     (psi)  ′σ1     (psi)  ϕ  ′  (deg)  ′σ3/pa    

1 30 193 46.9 2.04

2 140 754 43.4 9.52

3 420 1,914 39.8 28.6

4 650 2,770 38.2 44.2

   Note:   1 psi  =  6.9 kN/m 2    
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in which  p a    =  atmospheric pressure, or 14.7 psi (101 kN/m 2 ),  ϕ  o  is the value of  ϕ  ′  
when  ′ =σ3 pa   , and  Δ  ϕ  is the reduction in  ϕ  ′  for a 10-fold increase in  ′σ3   . Eq.  (3-27)  
implies that a plot of  ϕ  ′  versus  log( )′σ3     should result in a straight line. 

 Table  3-2  is the numerical values of the principal stresses at the time of failure 
and the computed  ϕ  ′  and  ′σ3/pa    for the Oroville Dam shell. To determine  ϕ   ο   and 
 Δ  ϕ , values of  ϕ  ′  are plotted versus  log( )′σ3/pa    , as shown in Fig.  3-19 . 

  In Fig.  3-19 , a straight line is drawn through these four points and the value 
of  ϕ  ′  at  ′ =σ3 1/pa     is  ϕ  o , and the difference in  ϕ  ′  between  ′ =σ3 1/pa     and 10 is  Δ  ϕ . 
The plot gives a  ϕ   ο   of 49.5° and a  Δ  ϕ  of 6.5°. 

 In the method of slices, the shear strength is based on the normal stress, 
which is the effective normal stress on the failure plane at the time of failure,  ′σ ff    . 
It can be proved by geometry that

  ′ =
′

+ ′
σ

σ
φ3

1
ff

sin
      (3-28)   

 Values of  ϕ  ′  may range from 30° to 50°, so the ratio  ′ ′σ σ3/ ff     may range 
from 0.667 to 0.566. With  Δ  ϕ   =  6.5°, the use of 0.667 as the  ′ ′σ σ3/ ff     ratio will 
increase  ϕ  ′  by  − 6.5  ×  log(0.667), or 1.14°, whereas the use of 0.566 will increase 
by  − 6.5  ×  log(0.566), or 1.61°, so the difference is only 0.47°. It is therefore con-
cluded that the  ′ ′σ σ3/ ff     ratio has very little effect on the computed  ϕ  ′  and that a 
conservative ratio of 0.667 can be used regardless of  ϕ  ′ . 

 In stability analysis,  ′ = ′σ σ3 0 667. n    , where  ′σn     is the normal stress on the 
failure plane at the bottom of the slice, so Eq.  (3-27)  can be written as

  ′ = − ′⎛
⎝⎜

⎞
⎠⎟

φ φ φ σ
o

n

ap
Δ log

.0 667
      (3-29)   

 Using English units with stress in psf, Eq.  (3-29)  becomes

  ′ = − ′⎛
⎝⎜

⎞
⎠⎟φ φ φ σ

o
nΔ log

,3 174
      (3-30a)   

  Fig. 3-19.      Effect of confi ning pressure on  ϕ   ′      
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 Using SI units with stress in kN/m 2 , Eq.  (3-29)  becomes

  ′ = − ′⎛
⎝

⎞
⎠φ φ φ σ

o
nΔ log

152
      (3-30b)   

 Eq.  (3-29)  was incorporated in LEAME to determine the effective friction 
angle at the bottom of each slice based on the effective force normal to the failure 
surface. 

 It should be noted that the most critical failure surface for granular materials 
is not a deep circle. Even though the Oroville Dam is more than 770 ft (235 m) 
high, the tallest slice in the most critical circle is less than 200 ft (61 m). It really 
is not necessary to use very high confi ning pressures to defi ne the failure enve-
lope unless some extraordinary conditions dictate the formation of deep failure 
surfaces. Assuming a unit weight of 150 pcf (23.7 kN/m 3 ), the second circle with 
a confi ning pressure of 140 psi (965 kN/m 2 ) is equivalent to a normal stress of 
210 psi or an overburden of not more than 200 ft (61 m). 

 Table  3-3  lists the typical values of  ϕ  o  and  Δ  ϕ , as reported by Wong and 
Duncan  (1974) . In Table  3-3 ,  RC  is the relative compaction defi ned by

   RC d

d

= γ
γ max

      (3-31)  

in which  γ   d    =  in situ dry density, and  γ   d   max   =  maximum dry density determined 
in the laboratory according to ASTM D698 “Standard Test method for Laboratory 

 Table 3-3.      Values of  ϕ  and  Δ  ϕ  for Gravels and Sands  

Unifi ed 
Classifi cation

Standard 
Proctor,  RC  (%)

Relative 
Density,  D r   (%)  ϕ  o  (deg)  Δ  ϕ  (deg)

GW, SW 105 100 46 10
100 75 43 8

95 50 40 6
90 25 37 4

GP, SP 105 100 42 9
100 75 39 7

95 50 36 5
90 25 33 3

SM 100 — 36 8
95 — 34 6
90 — 32 4
85 — 30 2

   (Wong and Duncan  1974 )   
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Compaction Characteristics of Soil Using Standard Effort” (ASTM  2010 ). The 
relative density,  D r  , is defi ned by

  D
e e

e e
r = −

−
max

max min
      (3-32)  

in which  e  max   =  void ratio for minimum dry density in the loosest state,  e  min   =  void 
ratio for maximum dry density in the densest state, and  e   =  in situ void ratio. The 
values of minimum dry density can be determined in the laboratory according to 
ASTM D4257 “Standard Test Methods for Minimum Index Density and Unit 
Weight of Soils and Calculation of Relative Density” (ASTM  2010 ). 

 For well-graded (SW) or poorly-graded (SP) sands, the most important factor 
that affects the shear strength is the relative density. When the standard or cone 
penetration tests are used for subsurface exploration, the blow count,  N , of the 
standard penetration test or the cone resistance,  q c  , of the cone penetration test 
can be used to determine the relative density, as shown in Figs.  3-20  and  3-21 , 
so the shear strength,  ϕ  o  and  Δ  ϕ  can be estimated from Table  3-3 .    

  3.5     Shear Strength of Municipal Solid Waste 

 In the design of landfi lls, it is necessary to know the shear strength of solid waste. 
The strength of solid waste varies considerably depending on the amount of soil 

  Fig. 3-20.      Use of standard penetration test to determine relative density of sands 
(USBR  1974 ) 

 Note:   1 tsf  =  95.8 kN/m 2     
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and sludge and the proportion of plastic and other materials that cause interlock 
action and increase in shear strength. Although solid waste tends to decompose 
and degrade with time, Kavazanjian  (2001)  indicated that the degradation did 
not have signifi cant effect on shear strength. 

 Kavazanjian et al.  (1995)  developed the lower-bound strength envelope of 
municipal solid waste (MSW), using direct shear test data and back-analysis of 
seven stable landfi lls, as shown in Fig.  3-22 . When the normal stress is less than 
0.39 tsf (37 kN/m 2 ), the envelope is horizontal with  c   =  0.25 tsf (24 kN/m 2 ) and 
 ϕ   =  0. When the normal stress is greater than 0.39 tsf (37 kN/m 2 ), the envelope is 
inclined at  =  33° with  c   =  0. 

  Based on the results of large-scale direct shear tests and back-analysis of a 
few failed slopes, Eid et al.  (2000)  developed the range of strength envelopes for 
MSW, as shown in Fig.  3-23 . All three envelopes are inclined at a friction angle 
of 35°. The cohesion ranges from 0 to 0.52 tsf (50 kN/m 2 ) with an average of 
0.26 tsf (25 kN/m 2 ). 

  Bray et al.  (2009)  conducted a comprehensive testing program using direct 
shear, triaxial, and simple shear tests to determine the shear strength of MSW. 
The results of their studies indicate that the direct shear test is appropriate to 
evaluate the shear strength along the weakest orientation of the large fi brous 
particles and, thus, gives the most conservative shear strength. More than 100 
test results from their and other studies indicate that the static shear strength is 
best characterized by a stress-dependent Mohr-Coulomb strength criterion with 

  Fig. 3-21.      Use of cone penetration test to determine relative density of sands 
(Schmertmann  1975 . Reproduced with permission) 

 Note:   1 tsf  =  95.8 kN/m 2     

c03.indd   70c03.indd   70 12/18/2013   7:07:11 PM12/18/2013   7:07:11 PM



Shear Strength 71

 c   =  1.5 kN/m 2  (310 psf),  ϕ  o   =  36°, and  Δ  ϕ   =  5°. Without considering the undrained 
behavior of saturated waste and strength loss due to pore pressure generation 
resulting from cyclic loading, the dynamic shear strength of MSW can be esti-
mated to be a minimum of 20% greater than its static strength. 

  Fig. 3-22.      Shear strength envelope for municipal solid waste (Kavazanjian et al.  1995 . 
Reproduced with permission) 

 Note:   1 tsf  =  95.8 kN/m 2     

  Fig. 3-23.      Range of shear envelopes for municipal solid waste (Eid et al.  2000 . 
Reproduced with permission) 

 Note:   1 tsf  =  95.8 kN/m 2     
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 The following two equations, similar to Eqs.  (3-25)  and  (3-29)  based on tri-
axial tests, can be used to determine the shear strength of MSW by direct shear 
tests:

  s c n= ′ + ′ ′σ φtan       (3-33)  

  ′ = − ′⎛
⎝⎜

⎞
⎠⎟

φ φ φ σ
o

n

ap
Δ log       (3-34)   

 For granular materials,  c  ′  is equal to 0, and the input parameters,  ϕ  o  and  Δ  ϕ , 
must be obtained from triaxial tests. For MSW,  c  ′  is not 0, because of their fi brous 
fragments, and the input parameters,  c  ′ ,  ϕ  o , and  Δ  ϕ , must be obtained from direct 
shear tests.  

  3.6     Typical Ranges and Correlations 

 When actual test data are not available, empirical correlations between shear 
strength and soil classifi cation or index properties are available. However, these 
correlations should be used cautiously, because there is substantial scatter in the 
data to establish these correlations. 

  3.6.1     Effective Shear Strength 

 Kenney  (1959)  presented the relationship between sin  ϕ  ′  and the plasticity index, 
PI, for normally consolidated soils, as shown in Fig.  3-24 . Although there is con-
siderable scatter in the data, a defi nite trend toward decreasing  ϕ  ′  with increasing 

  Fig. 3-24.      Plasticity index versus sin  ϕ  ′  for normally consolidated soils (Kenny 1959. 
Reproduced with permission)    
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plasticity is apparent. Note that normally consolidated soil is a soil that has not 
been subjected to precompression or to a previous effective overburden pressure 
greater than the present effective overburden pressure. If the soil has been pre-
compressed, the effective angle of internal friction should be slightly higher. 

  Bjerrum and Simons  (1960)  presented a similar relationship for both undis-
turbed and remolded soil, as shown in Fig.  3-25 . The relationship by Kenney is 
plotted in the dashed curve for comparison. 

  Skempton  (1964)  presented a correlation between the residual effective angle 
of internal friction and percent of clay, as shown in Fig.  3-26 . The friction angle 
based on the residual stress is smaller than that based on the peak stress. 

  Fig. 3-25.      Plasticity index versus effective friction angle (Bjerrum and Simons  1960 . 
Reproduced with permission)    

  Fig. 3-26.      Percent clay versus residual effective friction angle (Skempton  1964 . 
Reproduced with permission from  Geotechnique )    
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  There are many correlations available today for residual friction angle of 
clayed soils. Stark and Eid  (1994)  found that the residual friction angle was 
related to the liquid limit as an indicator of clay mineralogy, the percent of clay 
size fraction (CF) smaller than 0.002 mm, and the effective normal stress, as 
shown in Fig.  3-27 . 

  Table  3-4  shows the average effective shear strength of soils compacted to 
the Proctor maximum dry density at optimum moisture content, as suggested 
by the U.S. Bureau of Reclamation ( 1973 ). 

  If the soil is subject to saturation, then  c  ′   =   c  sat . If the soil is at the optimum 
moisture content and the maximum density,  c  ′   =   c o  . The shear strength listed in 
Table  3-4  is for compacted soils. For natural soils, the effective cohesion may be 
larger or smaller than the listed values, depending on whether the soil is overly 
or normally consolidated, but the effective angle of internal friction should be 
affected to a much lesser degree. 

 Table  3-5  shows the typical ranges of effective friction angle for granular 
materials and silts, as suggested by Bowles  (1984) . 

   Example 3.7            According to the plasticity chart of the Unifi ed Soil Classifi cation 
system, the silty and clayey soil with the dual classifi cation ML-CL should have 
a plasticity index, PI, between 4 and 8 and a liquid limit, LL, between 12 and 30. 
If such a soil is normally consolidated with an average plastic index of 6, an aver-
age liquid limit of 21, and a clay content of 5%, estimate its effective friction angle 
by the various tables and fi gures presented in this section.  

  Fig. 3-27.      Relationship between effective friction angle and liquid limit in terms 
of clay size friction and effective normal stress (Stark and Eid  1994 . Reproduced 

with permission)    
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 Table 3-4.      Average Effective Shear Strength of Compacted Soils  

 UNIFIED CLASSIFICATION  SOIL TYPE 

 PROCTOR COMPACTION 

Maximum 
Dry Density 

pcf

Optimum 
Moisture 

Content %

As Compacted 
Cohesion  c  o  

tsf

Saturated 
Cohesion 

 c  sat  tsf

Friction 
Angle  ϕ  ′  

deg

GW well graded clean graves, 
gravel-sand mixture

 > 119  < 13.3  *  *  > 38

GP poorly graded clean gravels, 
gravel sand mixture

 > 110  < 12.4  *  *  > 37

GM silty gravels, poorly graded 
gravel-sand-silt

 > 114  < 14.5  *  *  > 34

GC clayed gravels, poorly 
graded gravel-sand-clay

 > 115  < 14.7  *  *  > 31

SW well graded clean sands, 
gravelly sands

119  ±  5 13.3  ±  2.5 0.41  ±  0.04  * 38  ±  1

SP poorly graded clean sands, 
sand-gravel mixture

110  ±  2 12.4  ±  1.0 0.24  ±  0.06  * 37  ±  1

SM silty sands, poorly graded 
sand-silt mixture

114  ±  1 14.5  ±  0.4 0.53  ±  0.06 0.21  ±  0.07 34  ±  1

SM-SC sand-silt-clay with slightly 
plastic fi nes

119  ±  1 12.8  ±  0.5 0.21  ±  0.07 0.15  ±  0.06 33  ±  3
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Table 3-4. (Continued)

 UNIFIED CLASSIFICATION  SOIL TYPE 

 PROCTOR COMPACTION 

Maximum 
Dry Density 

pcf

Optimum 
Moisture 

Content %

As Compacted 
Cohesion  c  o  

tsf

Saturated 
Cohesion 

 c  sat  tsf

Friction 
Angle  ϕ  ′  

deg

SC clayey sands, poorly graded 
sand-clay mixture

115  ±  1 14.7  ±  0.4 0.78  ±  0.16 0.12  ±  0.06 31  ±  3

ML inorganic silts and clayey 
silts

103  ±  1 19.2  ±  0.7 0.70  ±  0.10 0.09  ±   * 32  ±  3

ML-CL mixtures of inorganic silts 
and clays

109  ±  2 16.8  ±  0.7 0.66  ±  0.18 0.23  ±   * 32  ±  2

CL inorganic clays of low to 
medium plasticity

108  ±  1 17.3  ±  3 0.91  ±  0.11 0.14  ±  0.02 28  ±  2

OL organic silts and silty clays 
of low plasticity

 *  *  *  *  * 

MH inorganic clayed silts, elastic 
silts

82  ±  4 36.3  ±  3.2 0.76  ±  0.31 0.21  ±  0.09 25  ±  3

CH inorganic clays of high 
plasticity 

94  ±  2 25.5  ±  1.2 1.07  ±  0.35 0.12  ±  0.06 19  ±  5

OH organic clays and silty clays  *  *  *  *  * 

   *  denotes insuffi cient data,  >  is greater than,  <  is less than  
  (U.S. Bureau of Reclamation 1973; 1 pef  =  157.1 N/m 3 , 1 tsf  =  95.8 kPa  ) 
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Shear Strength 77

  Solution     By Table  3-4 : For the ML-CL classifi cation,  ϕ  ′   =  32°, or ranging from 
30° to 34°. Because the specimen is not subject to any precompression before the 
strength test, other than the Proctor compactive effort, it is considered as a nor-
mally consolidated remolded soil. 

 By Table  3-5 : There is no silty and clayey soil type in the table. The one closest 
to it is the inorganic silt. If compacted, the soil should be dense with  ϕ  ′  ranging 
from 30° to 35°, or an average of 32.5°. If some clay is added to the silt to fi ll the 
voids,  ϕ  ′  should increase slightly. 

 By Fig.  3-24 : With PI  =  6, sin  ϕ  ′  is outside the range of the chart. By extrapola-
tion, sin  ϕ  ′   =  0.63, or  ϕ  ′   =  39°, which certainly is too high. Note the two test points 
in the fi gure, one with sin  ϕ  ′   =  0.5 when PI  =  8 and the other with sin  ϕ  ′  slightly 
smaller when PI  =  9. When PI  =  6, by a straight-line extrapolation, sin  ϕ  ′   =  0.53, 
or  ϕ  ′   =  32°. 

 By Fig.  3-25 : With PI  =  6,  ϕ  ′  =  35° if undisturbed and 32° if remolded. The 
remolded case is the same as in Table  3-4  and yields the same average of 32°. 

 By Fig.  3-26 : With 5% of clay, or particles smaller than 0.002 mm,  ϕ  ′   =  29° to 
33°, with an average of about 31°. 

 By Fig.  3-27 : With LL  =  21 and CF  =  5%  <  20%,  ϕ  ′   =  32° regardless of normal 
stress. 

 It can be seen that most of the tables and charts give an effective friction angle 
of 32°.  

  Table  3-6  shows the relationship among relative density, STP blow count, 
CPT cone resistance, and effective friction angle for sands, as suggested by 
Meyerhof  (1956) .   

  3.6.2     Undrained Shear Strength 

 For normally consolidated soils, Bjerrum and Simons  (1960)  show that the ratio 
between the undrained shear strength and the effective overburden pressure, 

 Table 3-5.      Typical Range of Effective Friction Angle for Soils Other than Clays  

SOIL

EFFECTIVE FRICTION ANGLE, deg

LOOSE DENSE

Sand, crushed (angular) 32–36 35–45

Sand, bank run (subangular) 30–34 34–40

Sand, beach (well rounded) 28–32 32–38

Gravel, crushed 36–40 40–50

Gravel, bank run 34–38 38–42

Silty sand 25–35 30–36

Silt, inorganic 25–35 30–35

   (Bowles  1984 . Reproduced with permission from McGraw-Hill, Inc.)   
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78 Slope Stability Analysis by the Limit Equilibrium Method

 s u  / p  ′ , is related to the plasticity index, as shown in Fig.  3-28 . Karlsson and Viberg 
 (1967)  presented the relationship between  s u  / p  ′  and liquid limit, as shown in 
Fig.  3-29 . 

   For overconsolidated soils, Ladd and Foott  (1974)  presented the relationship 
between the overconsolidated ratio and the ratio between the overconsolidated 

 Table 3-6.      Correlation of Effective Friction Angle to Relative Density, STP Blow 
Count, and CPT Cone Resistance for Sand  

State of Packing
Relative 

Density,  D r   (%)
SPT blow 
count,  N 

CPT cone 
resistance,  q c   (tsf)

Effective friction 
angle,  ϕ  ′  (deg)

Very loose  < 20  < 4  < 20  < 30

Loose 20–40 4–10 20–40 30–35

Medium 40–60 10–30 40–120 35–40

Dense 60–80 30–50 120–200 40–45

Very dense  > 80  > 50  > 200  > 45

   (Meyerhof  1956 . Reproduced with permission)  
  Note:   1 tsf  =  95.8 kN/m 2    

  Fig. 3-28.      Plasticity index versus  s u   /  p  ′  (Bjerrum and Simons  1960 . Reproduced 
with permission)    

  Fig. 3-29.      Liquid limit versus  s u   /  p  ′  (Karlsson and Viberg  1967 . Reproduced with 
permission from Norwegian Geotechnical Institute)    
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and normally consolidated  s u  / p  ′ , as shown in Fig.  3-30 . The overconsolidated 
ratio is the ratio between the maximum effective overburden pressure, in which 
the soil has ever been subjected to during the past, and the present effective 
overburden pressure. The maximum effective overburden pressure can be deter-
mined from a consolidation test. 

  The undrained shear strength of soils varies a great deal depending on the 
moisture content and density. Table  3-7  shows the range of undrained shear 
strength of soils and a simple method of identifi cation. 

   Example 3.8            The ML-CL soil in Example  3.7  with a plasticity index of 8 is nor-
mally consolidated and located at a distance of 40 ft (12.2 m) below the ground 
surface. The groundwater table is 15 ft (4.6 m) below the surface, or 25 ft (7.6 m) 
above the soil. If the total wet unit weight of the soil is 130 pcf (20.4 kN/m 3 ), de-
termine the undrained shear strength of the soil. If the soil has an overconsolida-
tion ratio of 4, what should be its undrained shear strength?  

  Fig. 3-30.      Relationship between overconsolidated and normally consolidated  s u  / p  ′  
(Ladd and Foott  1974 . Reproduced with permission)    

 Table 3-7.      Undrained Shear Strength of Soils  

 CONSISTENCY  UNDRAINED SHEAR STRENGTH,   tsf  FLELD TEST 

Very soft 0–1 Squeezed between fi ngers when fi st is 
closed

Soft 1–2 Easily molded by fi ngers

Firm 2–4 Molded by strong pressure of fi ngers

Stiff 4–6 Dented by strong pressures of fi ngers

Very stiff 6–8 Dented only slightly by fi nger pressure

Hand 8  +  Dented only slightly by pencil point

   (Adapted from Sowers  1979 ; 1 tsf  =  95.8 kPa)   
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80 Slope Stability Analysis by the Limit Equilibrium Method

  Solution     To determine the effective overburden pressure, the total unit weight 
should be used for the soil above the water table and the submerged unit weight 
for the soil below the water table, so  p  ′   =  15  ×  130  +  25  ×  (130  −  62.4)  =  3,640 psf. 
With PI  =  8, from Fig.  3-26 ,  s u  / p  ′   =  0.12, or  s u    =  0.12  ×  3,640  =  436.8 psf  =  0.218 tsf. 
If the soil is overconsolidated with an overconsolidation ratio of 4, from Fig.  3-27 ,

  
s p
s p

s pu oc

u nc

u oc
/
/

or / tsf
′( )
′( ) = ′ = × =2 9 2 9 0 218 0 632. ( ) . . .        

 It was mentioned in the previous example that ML-CL soil has a liquid limit 
between 12 and 30. From Fig.  3-26 , a value of 0.12 for  s u  / p  ′  is equivalent to a liq-
uid limit of 25, which is within the given range of 12 to 30.     

  3.7     Back-Analysis of Shear Strength 

 When failure occurs in a simple slope involving only one type of soil, one way 
to determine the shear strength of the soil is by back-calculation, using the failure 
site as a large-scale model test. When a slope fails, the factor of safety should be 
equal to 1. Based on the dimensions of the fi ll and the groundwater conditions 
at the time of failure, the shear strength that results in a safety factor of 1 can be 
back-calculated using stability charts or a computer program such as LEAME. 
In view of the fact that the factor of safety depends on not only the shear strength 
but also on so many other factors, which are diffi cult to evaluate, the use of the 
back-calculation method should proceed with caution, preferably in collabora-
tion with other fi eld or laboratory tests. 

  3.7.1     Total Stress Analysis with  ϕ   =  0 

 If  ϕ   =  0, the only shear strength parameter to be determined is the cohesion,  c . 
First, a value of  c  is assumed and the factor of safety,  F , is determined. Because 
the factor of safety is proportional to  c , the developed cohesion,  c d  , that produces 
a safety factor of 1 can be computed by

  c
c
F

d =       (3-35)    

  3.7.2     Total Stress Analysis with both  c  and  ϕ  

 For total stress analysis with both cohesion and internal friction, a safety factor 
of 1 can be produced by various combinations of  c  and  ϕ . It is well known that 
the depth of the failure surface for soils with a large cohesion is greater than that 
with a small cohesion, so the depth of a failure surface can be used to determine 
the amount of cohesion relative to the internal friction. The depth of the failure 
surface is related to the dimensionless parameter,  λ   c    ϕ  , defi ned as
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  λ γ φ
φc

H
c

= tan
      (3-36)  

in which  H   =  height of a simple slope and  γ   =  total unit weight of the soil. Eq. 
 (3-36)  indicates that, for a given slope, the relationship between tan  ϕ  and  c  is 
represented by the parameter  λ   c    ϕ  . A smaller  λ   c    ϕ   implies that the soil has a larger 
cohesion and a smaller friction angle, so the depth of the failure surface is greater. 
In the back-calculation, several values of  λ  c   ϕ   and  c  are assumed. For each pair of 
 c  and  ϕ , the factor of safety,  F , can be determined by LEAME. The developed 
cohesion,  c d  , to produce a safety factor of 1 can be computed by Eq.  (3-35) , and 
the developed angle of internal friction,  ϕ   d  , by

  φ
φ

d
F

= ⎛
⎝

⎞
⎠

−tan
tan1       (3-37)   

 The LEAME computer program also gives the height of tallest slice, which 
is the same as the depth of the failure surface. The pair of  c d   and  ϕ   d   that gives a 
height of the tallest slice nearly equal to the actual depth of the failure surface 
is the back-calculated shear strength to produce a safety factor of 1. 

  Example 3.9            Fig.  3-31  shows a 2:1 fi ll slope with a height of 50 ft (15.2 m). The 
fi ll and foundation are of the same soil, which is a partially saturated silty clay 
with a total unit weight of 125 pcf (19.7 kN/m 3 ). The slope failed immediately 

  Fig. 3-31.      Example  3.9  
 Note:   1 ft  =  0.305 m    
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82 Slope Stability Analysis by the Limit Equilibrium Method

after construction, and the depth of failure surface is 30 ft (9.2 m). Back-calculate 
the soil parameters  c  and  ϕ  at the time of failure.  

  Solution     Procedures for determining the pair of  c d   and  ϕ   d   to produce a safety fac-
tor of 1 can be best illustrated by the following table:

 λ   c  ϕ   c  (psf)  ϕ  (deg)  F  c d   (psf)  ϕ   d   (deg)
Height of 

tallest slice (ft)

(1) (2) (3) (4) (5) (6) (7)

1 1,000 9.1 1.613 620 5.7 45.8

5 700 29.2 2.411 290 13.1 25.6

500 50 38.7 1.860 27 23.3 8.4

 Each column is explained as follows:

   (1)      At least three values of  λ   c    ϕ   must be assumed, starting from a small  λ   c    ϕ   for 
a deep circle to a large  λ   c    ϕ   for a shallow circle.  

  (2)      The assumed value of  c  is immaterial. It is reasonable to assume a large  c  
for the smaller  λ   c    ϕ   and a small  c  for the large  λ   c    ϕ  . However, any value of  c  
can be used. Even if the same  c  of 1,000 psf is assumed for all three cases, 
the same results will be obtained.  

  (3)      Compute  ϕ  from Eq.  (3-36) , or  ϕ   =  tan  − 1 ( c  λ   c    ϕ  /6,250).  
  (4)      Use LEAME to determine the minimum factor of safety,  F .  
  (5)      Compute  c d   by Eq.  (3-38) .  
  (6)      Compute  ϕ   d   by Eq.  (3-39) .  
  (7)      For each pair of  c  and  ϕ , LEAME also gives the depth of the failure sur-

face, which is the same no matter whether  c  and  ϕ  or  c d   and  ϕ   d   are used.    

 Finally, plot  c d   and  ϕ   d   versus the depth of the failure surface, as shown 
in Fig.  3-32 . When the depth of the failure surface is 30 ft, the cohesion and 

  Fig. 3-32.      Total shear strength versus depth of failure surface 
 Note:   1 ft  =  0.305 m; 1 psf  =  47.9 N/m 2     
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friction angle to produce a safety factor of 1 are 360 psf and 11.3°, respectively, as 
indicated by the dashed lines. A rerun of LEAME using the stated shear strength 
resulted in a safety factor of 1.006 and a height of tallest slice of 29.151 ft, which 
check with the expected values of 1 and 30 ft.      

  3.7.3     Effective Stress Analysis with  c  ′  and  ϕ  ′  
 The same procedures for total stress analysis can be applied to the effective stress 
analysis, except that Eqs.  (3-35)  and  (3-37)  be changed to

  c
c
F

d = ′       (3-38)  

and

  φ
φ

d
F

= ′⎛
⎝

⎞
⎠

−tan
tan1       (3-39)   

 Because the effective shear strength has a small cohesion and a large friction 
angle,  λ   c    ϕ   cannot be too small. Too small a  λ   c    ϕ  , such as  λ   c    ϕ    =  1, may result in a 
large cohesion and a small friction angle, which fall outside the range of the 
effective shear strength. 

  Example 3.10            Fig.  3-33  shows a 1.5:1 slope with a height of 50 ft (15.2 m) and a 
total unit weight of 125 pcf (19.7 kN/m 3 ). The location of the phreatic surface at 
the time of failure is indicated by the dashed line. If the slope fails and the depth 
of the failure surface is 22 ft (6.7 m), what should be the effective cohesion and 
friction angle at the time of failure?  

  Solutions     The results are tabulated in the following table and plotted in 
Fig.  3-34 :

  Fig. 3-33.      Example  3.10  
 Note:   1 ft  =  0.305 m    
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84 Slope Stability Analysis by the Limit Equilibrium Method

  Fig. 3-34.      Effective shear strength versus depth of failure surface 
 Note:   1 ft  =  0.305 m; 1 psf  =  47.9 N/m 2     

 λ   c  ϕ   c ′   (psf)  ϕ   ′   (deg)  F  ′cd     (psf)  ′φd     (deg) Height of tallest slice (ft)

(1) (2) (3) (4) (5)  (6) (7)

10 100 9.1 0.329 304 25.9 28.5

50 100 38.7 1.132 88 35.3 19.8

300 100 25.6 5.939 17 38.9 15.8

20 100 17.9 0.537 186 30.7 24.0

 Originally, three values of 10, 50, and 300 were assumed for  λ   c    ϕ  . It was later 
found that the spacing between  λ   c    ϕ    =  10 and  λ   c    ϕ    =  50 was too far apart, so an ad-
ditional  λ   c    ϕ   of 20 was added, as shown by the small triangles in the fi gure. With 
a depth of the failure surface equal to 22 ft, the effective cohesion at the time of 
failure is 140 psf, and the effective friction angle is 33°. A rerun of LEAME using 
the stated shear strength resulted in a safety factor of 1.007 and a height of the 
tallest slice of 23.331 ft, which compare with the expected values of 1 and 22 ft, 
respectively.  

    The two examples shown indicate that the back-calculated shear strength 
obtained from LEAME gives a factor of safety very close to 1, but the height of 
the tallest slice may be somewhat different from the expected depth of the failure 
surface, indicating that the height of the tallest slice obtained by LEAME might 
not be very accurate. Two circles may produce the same minimum factor of 
safety, but the height of the tallest slice may be quite different. As a result, the 
depth of the failure surface may have two values depending on which circle is 
selected as the most critical. It is therefore suggested that more than three points 
be used to plot the curve relating  c d   or  ϕ   d   to the depth of the failure surface. If a 
point is slightly out of line, the error can be minimized by smoothing out the 
curve through all points.   
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  Summary 

   1.      A subsurface investigation is needed to determine the nature and extent 
of materials from toe to crest of the slope. The log of boring forms the 
permanent record and should be kept as complete as possible. The fi nal 
location of borings should be made in the fi eld, and additions must be 
made to the boring program based on the information from the borings 
already completed. During boring, the depth to the groundwater table 
also should be recorded.  

  2.      The charts relating the effective friction angle,  ϕ  ′ , to the blow count,  N , of 
standard penetration tests or to the cone resistance,  q c  , of Dutch cone tests 
are designed for cohesionless sands but are also applicable to fi ne-grained 
soils with a small cohesion. However, if the soils are overconsolidated 
with a large effective cohesion or the penetration causes a signifi cant 
change in pore pressure or effective stress, piezocone penetration tests, 
which take into account the effect of effective cohesion and excess pore 
pressure, should be used.  

  3.      For clays, the correlation between the cone resistance and the undrained 
shear strength can be evaluated by Eq.  (3-14) , where the empirical cone 
factor,  N c  , can be determined by correlating the cone resistance with the 
undrained shear strength obtained from fi eld vane or laboratory triaxial 
compression tests.  

  4.      In both fi eld and laboratory tests, it is generally assumed that the Mohr ’ s 
failure envelope is a straight line with a slope equal to the angle of in-
ternal friction and an intercept at the origin equal to the cohesion. For 
granular materials with no cohesion, the Mohr ’ s envelope should pass 
through the origin. However, when two triaxial compression tests un-
der two different confi ning pressures are run, the failure envelope, 
which is a line tangent to both circles, does not pass through the origin, 
because the Mohr ’ s failure envelope is actually a curve with the angle 
of internal friction decreasing with the increase in confi ning pressure 
owing to the increasing breakdown of particles under higher stresses. 
Consequently, a line tangent to both circles may result in a cohesion in-
tercept, which does not exist in reality. The current practice is to tilt the 
envelope slightly and force it to pass through the origin. When a cohe-
sionless material is placed in an embankment, the most critical failure 
surface obtained by LEAME is a very shallow circle, which barely 
scratches the surface of the slope. This type of failure surface is impos-
sible, because the higher friction angle near to the surface will prevent 
the formation of very shallow failure surfaces. As the depth increases, 
the friction angle decreases, but the normal stress increases, and there is 
a critical depth at which the factor of safety is at minimum. A theoreti-
cal method for analyzing a curved envelope is presented, in which the 
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conventional soil parameters,  c  and  ϕ , are replaced by a new pair of pa-
rameters,  ϕ  o  and  Δ  ϕ .  

  5.      When actual test data are not available, empirical correlations between 
shear strength and soil classifi cation or index properties are available. 
However, these correlations should be used cautiously, because there is 
substantial scatter in the data to establish these correlations. Charts are 
presented for normally consolidated clays showing the relationship be-
tween the effective friction angle and the plasticity index or the percent of 
clay. There are also many correlations available today for relating the re-
sidual friction angle of clayey soils to the liquid limit, the percent of clay 
size fraction smaller than 0.002 mm, and the effective normal stress for 
overconsolidated clays; the undrained shear strength depends on the 
overconsolidation ratio.  

  6.      In the design of landfi lls, it is necessary to know the shear strength of 
solid waste. The strength of municipal solid wastes varies considerably 
depending on the amount of soil and sludge and the proportion of plastic 
and other materials that cause interlock action and increase in shear 
strength. Based on the results of large-scale direct shear tests and the 
back-analysis of some failed slopes, it was found that solid waste has an 
effective cohesion from 0 to 0.52 tsf (49.8 kN/m 2 ) and an effective friction 
from 33° to 35°. The most recent studies indicate that the shear strength is 
best characterized by a curved strength envelope with  c   =  15 kN/m 2  
(310 psf),  ϕ  o   =  36°, and  Δ  ϕ   =  5°. These strength parameters can be deter-
mined more readily by the large-scale direct shear test than by the triaxial 
text. Although solid waste tends to decompose and degrade with time, it 
also was found that the degradation did not have signifi cant effect on 
shear strength.  

  7.      When failure occurs in a simple slope involving only one type of soil, one 
way to determine the shear strength of the soil is by back-calculation, 
using the failure site as a large-scale model test. When a slope fails, the 
factor of safety should be equal to 1. Based on the dimensions of the fi ll 
and the groundwater conditions at the time of failure, the shear strength 
that results in a safety factor of 1 can be back-calculated. It is well known 
that the most critical failure surface for a soil with a large cohesion and 
a small friction angle is a deep circle, whereas that with a small cohesion 
and a large friction angle is a shallow circle. Based on the actual depth of 
the failure surface, a method is presented to back-calculate the cohesion 
and friction angle of the soil and results in a safety factor of 1. In view of 
the fact that the factor of safety depends on not only the shear strength 
but also on so many other factors, which may be diffi cult to evaluate, the 
use of back-analysis should be done cautiously, preferably in collabora-
tion with other fi eld or laboratory tests.    
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  Problems 

   3.1      A standard penetration test was performed on sand at a depth of 30 ft be-
low the ground surface. The water table is located 15 ft below the surface. 
The soil has a total unit weight of 130 pcf. If the  N -value obtained from 
the test is 30, determine the effective friction angle of the soil. If the sand 
is well graded, estimate its  ϕ  o  and  Δ  ϕ .
   [Answer: 43°, 43°, 8°]     

  3.2      Based on Fig.  3-2 , derive equations showing the relationship between un-
drained shear strength and blow count for clay of low plasticity and also 
for clay of high plasticity. For the same blow count, what is the strength 
ratio between the two soils?
   [Answer: 3.3]     

  3.3      When a Dutch cone penetrates to a sand deposit at a depth of 20 ft below 
the ground surface, the recorded cone resistance is 68 tsf. If the total unit 
weight of the sand is 125 pcf and the water table is 10 ft below the ground 
surface, estimate the effective friction angle of the sand using Fig.  3-3 , Eq. 
 (3-3) , and Eq.  (3-4) . If the sand is poorly graded, estimate its  ϕ  o  and  Δ  ϕ .
   [Answer: 39°, 38.9°, 37.8°, 37°, 6°]     

  3.4      In Fig.  3-4 , the standard size piezocone has a cone diameter,  d c  , of 35.7 mm 
and a sleeve height,  h s  , of 134 mm. Theoretically, what should be the di-
mension of  d  1  to obtain a calibrated  a n   of 0.581? What should be the di-
mension of  d  2  for a calibrated  b n   of 0.014?
   [Answer: 27.2 mm, 31.7 mm]     

  3.5      The cone resistance,  q c  , of a dense sand at a depth of 40 ft below the ground 
is 300 tsf. The total unit weight of the sand is 130 pcf, and the groundwater 
table is at a depth of 20 ft below the ground. If there is no excess pore pres-
sure, determine the effective angle of internal friction of the sand by Fig. 
 3-3 , and compare with that by Fig.  3-8 .
   [Answer: 42.5°, 42°]     

  3.6      The piezocone data indicates that a loose silt with a total unit weight of 
120 pcf has a cone resistance,  q c  , of 6.6 tsf, and a total pore pressure,  u t  , of 
1.6 tsf at a depth of 25 ft below the ground surface. If the calibrated net 
area ratio,  a n  , is 0.581 and the water table is 5 ft below the ground surface, 
estimate the effective cohesion and the effective friction angle of the silt 
by Fig.  3-8 .
   [Answer: 28 psf, 29.2°]     

  3.7      Derive Eqs.  (3-17)  and  (3-18) .  
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88 Slope Stability Analysis by the Limit Equilibrium Method

  3.8      For the granular material with the four sets of principal stresses shown in 
Table  3-2 , plot the  p  ′  versus  q  diagram and determine the  K f  -line by the 
principle of least squares. What are the effective cohesion and the effec-
tive friction angle of the material?
   [Answer: 30.5 psi, 37.7°]     

  3.9      If the  K f  -line in Problem 3.8 is forced to pass through the origin, plot the  p  ′  
versus  q  diagram and the  K f  -line. Determine the slope of the  K f  -line by 
least squares and the effective friction angle of the granular material.
   [Answer: 0.629, 39°]     

  3.10      Derive Eq.  (3-28) .   
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    Chapter 4 

  Phreatic Surfaces    

       Seepage in embankments and dams is one of the important factors affecting 
stability, and many dam failures are caused by seepage. Seepage can be best 
represented by a phreatic surface. Theoretically, the pore water pressure along 
the failure surface should be determined from the piezometric surface rather 
than the phreatic surface. However, unless the phreatic surface is steeply inclined, 
the difference between the two surfaces is insignifi cant. Furthermore, the use of 
the phreatic surface always gives a lower and more conservative factor of safety. 
This chapter discusses various methods for determining the phreatic surface. 
Once a phreatic surface is known, its coordinates can be read by a computer 
program, and its effect on the factor of safety can be evaluated. A simplifi ed but 
approximate method to characterize seepage is by the use of a pore pressure 
ratio. Pore pressure ratios also can be used for short-term stability analysis to 
predict the excess water pressure because of consolidation. These applications 
of pore pressure ratios also will be briefl y described. 

  4.1     Flownets 

 In the stability analysis of slopes, particularly those related to earth dams, it is 
necessary to estimate the location of the phreatic surface, or the line of seepage. 
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90 Slope Stability Analysis by the Limit Equilibrium Method

In the case of an existing slope, the phreatic surface can be determined from 
subsurface investigation by observing the water level in bore holes with adjust-
ments for seasonal changes. If the slope has not been constructed and is quite 
complex in confi guration, the phreatic surface can be obtained by drawing a 
fl ownet or using a fi nite-element computer program. For simple cases, such as 
a homogeneous dam, the phreatic surface can be obtained by simple charts. The 
differences between phreatic and piezometric surfaces will be explained in 
Section 4.1.3. In this section, only cases involving homogeneous cross sections 
will be discussed. Details about fl ownets in nonhomogeneous cross sections 
consisting of soils with different coeffi cients of permeability can be found in 
Cedergren ( 1977 ). 

  4.1.1     Isotropic Cross Section 

 Fig.  4-1  shows several fl ownets for homogeneous and isotropic cross sections. 
An isotropic soil has the same permeability in both the horizontal and vertical 
directions. A fl ownet consists of a number of fl ow lines, as shown by the solid 
curves in the fi gure, and a series of equipotential lines, as indicated by the dashed 
curves. To construct the fl ownet, fi rst a trial phreatic surface must be drawn. At 

  Fig. 4-1.      Construction of fl ownets for isotropic cross section    

c04.indd   90c04.indd   90 12/16/2013   1:36:37 PM12/16/2013   1:36:37 PM



Phreatic Surfaces 91

equal intervals on the phreatic surface, as indicated by the short horizontal lines, 
the equipotential lines can be drawn, followed by the fl ow lines. If the fl ow lines 
and equipotential lines are perpendicular and form curvilinear squares, at which 
the average distance between the two fl ow lines is equal to that between the two 
equipotential lines, the assumed phreatic surface is correct; otherwise, the phre-
atic surface must be changed until a satisfactory fl ownet is obtained. The use of 
squares is for convenience only. At the impervious boundary, rectangles also may 
be used as long as they are all of the same shape. For example, the toe drain at 
the top of Fig.  4-1  has only three fl ow lines, including the impervious boundary, 
and two fl ow channels. The bottom channel should not be considered a full 
channel but only a 0.6 channel, because it is formed by rectangles with the same 
width-to-length ratio of 0.6. 

  If the rate of seepage is desired, the following equation can be used:

  q kh
N
N

f

d

=       (4-1)  

in which  q   =  rate of fl ow per unit width,  k   =  coeffi cient of permeability,  h   =  
total head loss,  N f    =  number of fl ow channels, and  N d    =  number of equipotential 
drops.  

  4.1.2     Anisotropic Cross Section 

 An anisotropic soil has a coeffi cient of permeability in the horizontal direction 
different from that in the vertical direction. When the fi ll is compacted in layers, 
the coarse particles may be broken down under the high-contact pressure of the 
roller, so a thin layer of fi ne materials may be formed at the top of each com-
pacted layer. These thin layers will reduce greatly the permeability in the vertical 
direction, but the permeability in the horizontal direction will be affected to a 
much lesser degree. To draw the fl ownet, an anisotropic cross section must be 
transformed to an isotropic section by changing the  x -coordinates while the 
 y -coordinates remain unchanged, or

  X
k

k
xy

x

=
⎛

⎝⎜
⎞

⎠⎟
      (4-2)  

in which  X  is the coordinate after transformation,  x  is the original coordinate 
before transformation,  k x   is the coeffi cient of permeability in the  x  direction, and 
 k y   is the coeffi cient of permeability in the  y  direction. Because  k y   is usually smaller 
than  k x  , the horizontal distance is reduced. Once the section is transformed, a 
fl ownet can be drawn and the location, or  X -coordinates, of the phreatic surface 
can be determined. The transformed  X -coordinates of the phreatic surface then 
can be transformed back to the original  x -coordinates, which are the coordinates 
to be used for stability analysis. 
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 Eq.  (4-1)  also can be used to determine the rate of seepage for the anisotropic 
cross section. However, in the equation,  k  is an equivalent permeability 
defi ned by

  k k kx y=       (4-3)   

  Example 4.1            Fig.  4-2 (a) shows the original cross section of a refuse dam con-
structed of two different materials, silty clay and coarse coal refuse. The starter 
dam was built of silty clay, which has a permeability several orders of magnitude 
smaller than that of coarse coal refuse, so the surface of the starter dam can be 
considered as an impervious boundary, or the bottom-most fl ow line. The coarse 
coal refuse is anisotropic with a horizontal permeability of 3.28  ×  10  − 6  ft/s (1  ×  
10  − 4  cm/s) and a vertical permeability of 8.2  ×  10  − 7  ft/s (2.5  ×  10  − 5  cm/s). A drain-
age blanket is provided under the coarse coal refuse to lower the phreatic surface. 
Determine the coordinates of the phreatic surface and compute the rate of seep-
age through the dam.  

  Fig. 4-2.      Determination of phreatic surface for anisotropic cross section 
 Note:   1 ft  =  0.305 m    
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  Solution     From Eq.  (4-2) ,  X x x= × × =− −8 2 10 3 28 10 0 57 6. / . .    , so the transformed 
section can be drawn by reducing the  x -coordinates by one-half, while the  y -
coordinates remain the same. Fig.  4-2 (b) is the transformed section with an unac-
ceptable fl ownet, because it is not formed by squares. Fig.  4-2 (c) is an acceptable 
fl ownet with the coordinates of the phreatic surface shown in parentheses. The 
section is transformed back to the original by doubling the  x -coordinates, and the 
coordinates of the phreatic surface are shown in Fig.  4-2 (a). To determine the rate 
of seepage, fi rst from Eq.  (4-3) ,  k = × × = ×− −3 28 8 2 10 1 64 1013 6. . . ft/s   ; then from 
Eq.  (4-1) ,  q   =  1.64  ×  10  − 6   ×  (260  −  33)  ×  2/8  =  9.31  ×  10  − 5  cfs per foot of dam. 

 If the fl ownet in the transformed section is transformed back to the original 
section, the fl ownet will become rectangles instead of squares, and the equipo-
tential lines no longer will be perpendicular to the fl ow lines.     

  4.1.3     Phreatic Surface versus Piezometric Surface 

 Theoretically, the pore pressure along the failure surface under steady-state 
seepage should be determined by drawing a fl ownet, or, more accurately, by 
using a fi nite-element program for seepage analysis. Fig.  4-3  shows the phreatic 
surface and the equipotential line passing through point A at the bottom of a 
slice. If point B on the phreatic surface, which lies directly above point A, is at a 
distance of  h w   above point A, the pressure head at point A is  h w   cos  2  β , where  β  is 
the slope of the phreatic surface at point B. When a piezometer is placed at point 
A, the water table in the piezometric tube will rise to point C at a distance of 
 h w   cos  2  β  above point A, so point C is on the piezometric surface. The pore pres-
sure at the bottom of slice can be written as

  u hw w= γ βcos2       (4-4)  

in which  γ   w    =  unit weight of water. A simplifi cation is to consider the phreatic 
surface as a piezometric surface, so if a piezometer is placed a point A, the water 
level in the piezometer will rise to the elevation at point B. Thus, the pore pres-
sure at point A can be expressed simply as

  u hw w= γ       (4-5)   

  Fig. 4-3.      Pore pressure at bottom of slice    
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94 Slope Stability Analysis by the Limit Equilibrium Method

  Compared to Eq.  (4.4) , Eq.  (4-5)  is a more conservative estimate of the pore 
water pressure. However, the differences between the two representations of 
pore water pressure are typically small because the slope angle,  β , for most 
phreatic surfaces is quite small. Even if  β  is large in some local regions, the dif-
ference between the two surfaces occurs only over a limited area, and its effect 
on the factor of safety is quite small. In view of the fact that the phreatic surface 
is diffi cult to estimate and is at times unconservative, the use of Eq.  (4-5)  to rep-
resent the pore pressure at the bottom of the slice is just as suitable as Eq.  (4-4) . 
The same conclusion was drawn by Duncan and Wright ( 2005 ). For this reason, 
Eq.  (4-4)  is used to compute the pore water pressure throughout this book. 

 Based on  β   =  0, the Fellenius method assumes that the neutral force normal 
to the failure surface is  γ   w h w b  sec  θ . It is more reasonable to assume  β   =   θ , so the 
neutral force by the Fellenius method should be multiplied by cos  2  θ , which is 
the same as  γ   w h w b  cos  θ  by the normal method. Therefore, the use of the normal 
method to replace the Fellenius method is theoretically sound.   

  4.2     Earth Dams without Filter Drains 

 Fig.  4-4  shows an earth dam on an impervious base. The downstream face of the 
dam has a slope of S:1 (horizontal:vertical). If no drainage system is provided, 
the downstream slope should be relatively fl at, generally not steeper than 1.5:1, 
or 30°. In such a case, Dupuit ’ s assumption that the hydraulic gradient in every 
point on a vertical line is constant and equal to the slope,  dy / dx , is valid. The 
seepage through the dam can be expressed by Darcy ’ s law as

  q k y x
dy
dx

= −( tan )α       (4-6)  

  Fig. 4-4.      Earth dam on inclined ledge    
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in which  q   =  discharge per unit time,  k   =  permeability,  α   =  angle of inclination 
of the base, and  x  and  y  are the coordinates. At the point of exit,

  q
ka S

S
= −( tan )1 α

      (4-7)  

in which  a  is the  y -coordinate of the exit point. 
  Equating Eqs.  (4-6)  and  (4-7)  and integrating, an equation of the following 

form is obtained:

  Function( , , )x y c1 0=       (4-8)  

in which  c  1  is a constant of integration. 
 Following the procedure originally suggested by Casagrande ( 1937 ), it is 

assumed that the theoretical line of seepage starts from the pool level at a dis-
tance of 0.3 Δ  from the dam, where  Δ  is the horizontal distance shown in Fig.  4-4 . 
Therefore, when the toe of the downstream slope is used as the origin of coor-
dinates, one point on the line of seepage with  x   =   d  and  y   =   h  is known. Substi-
tuting this  x ,  y  pair into Eq.  (4-8)  allows the evaluation of the constant of 
integration,  c  1 . Assuming the  x - and  y -coordinates of the exit point as  aS  and  a , 
and substituting this  x ,  y  pair into Eq.  (4-8) , an equation of the following form 
is obtained:

  Function( )a = 0       (4-9)   

 Eq.  (4-9)  was solved by Huang ( 1981 ) using a numerical method, and the 
results are presented in Fig.  4-5 . 

  Next, assume that the  x - and  y -coordinates of the midpoint are ( aS   +   d )/2 
and  b , respectively. Substituting this  x ,  y  pair into Eq.  (4-8)  and bearing in mind 
that the value of  a  has been determined by Eq.  (4-9) , an equation of the following 
form is obtained:

  Function( )b = 0       (4-10)   

 The solution of Eq.  (4-10)  is presented in Fig.  4-6 . Knowing the three points 
on the phreatic surface, i.e., the starting point, the midpoint, and the exit point, 
a curve can be drawn, which is the theoretical line of seepage. Because the 
actual line of seepage must be perpendicular to the upstream slope and tangent 
to the downstream slope, the theoretical line can be adjusted slightly to fulfi ll 
these boundary requirements. This adjustment is not really necessary when the 
phreatic surface is inputted into a computer program. The phreatic surface 
within a dam can be represented simply by two straight lines: one from the 
water entrance point (point of intersection between the upstream water table 
and the upstream slope) to the midpoint, and the other from the midpoint to the 
exit point. There is no need to draw a fl ownet or use a fi nite-element seepage 
program. 
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96 Slope Stability Analysis by the Limit Equilibrium Method

  When the dam is constructed on a horizontal base, i.e.,  α   =  0, the solution is 
the same as that developed by Schaffernak and Iterson in 1916, as reported by 
Casagrande ( 1937 ). 

  Example 4.2            Fig.  4-7 (a) shows the cross section of a dam with all the necessary 
dimensions given. Determine the location of the phreatic surface.  

  Solution     From the given coordinates,  α   =  tan  − 1 (60/530)  =  6.5°;  Δ   =  530  −  350  =  
180 ft. 

  Fig. 4-5.      Chart for determining point of exit (Huang  1981 . Reproduced 
with permission)    
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  Fig. 4-6.      Chart for determining midpoint (Huang  1981 . Reproduced with permission)    

  Fig. 4-7.      Example  4.2     
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98 Slope Stability Analysis by the Limit Equilibrium Method

 Location of starting point:  d   =  350  +  0.3  ×  180  =  404 ft,  h   =  150 ft, so the coordi-
nates are (404, 150). 

 Location of exit point: From Fig.  4-5 , with  α   =  6.5° and  d / h   =  404/150  =  2.7, 
when  S   =  1.5,  a / h   =  0.29; and when  S   =  2,  a / h   =  0.43. When  S   =  1.75,  a / h   =  (0.29  +  
0.43)/2  =  0.36, or  a   =  0.36  ×  150  =  54 ft.  aS   =  1.75  ×  54  =  94.5, so the coordinates are 
(94.5, 54). 

 Location of midpoint: From Fig.  4-6 , when  S   =  1.5,  b / h   =  0.72; and when  S   =  
2,  b / h   =  0.76. When  S   =  1.75,  b / h   =  (0.72  +  0.76)/2  =  0.74, or  b   =  0.74  ×  150  =  111 ft. 
 x   =  (94.5  +  404)/2  =  249.3 ft, so the coordinates are (249.3, 111). 

 Knowing the three points, the line of seepage can be drawn, as shown in 
Fig.  4-7 (b).     

  4.3     Earth Dams with Filter Drains 

 If a drainage system is provided within the dam, such as the use of porous shells, 
toe drains, or underdrains, the line of seepage becomes steeper and Dupuit ’ s 
assumption is no longer valid, so the method presented in Section 4.2 for deter-
mining the location of phreatic surface cannot be used. Depending on the angle 
 β  of the fi lter drain shown in Fig.  4-8 , two methods can be used to determine the 
point of exit, one for  β   ≤  60° and the other for 60°  <   β   ≤  180°. 

   4.3.1     When  β   ≤  60  °   

 Based on the assumption that the hydraulic gradient is  dy / d  ℓ , instead of  dy / dx  
by Dupuit, where  ℓ  is the distance along the line of seepage, Gilboy ( 1933 ) devel-
oped a simple chart for a dam on a horizontal base, as shown in Fig.  4-9 . The 
insert in the fi gure shows only the more impervious part of the dam; the porous 
shell, if any, is not shown. When  β  is less than 30°, the solutions check closely 
with Fig.  4-5  for  α   =  0. The solutions by Fig.  4-9  are very satisfactory for slopes 
up to 60°. If deviations of 25% are permitted, it may even be used up to 90°, i.e., 
for a vertical discharge face.  

  Example 4.3            Fig.  4-10  shows a zoned dam with the porous shells outside and 
the clay core inside. The dimensions necessary to determine the exit point of the 
phreatic surface are indicated by the coordinates in parentheses. Determine the 
distance,  a , of the exit point.  

  Fig. 4-8.      Measurement of angle  β     
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  Solution     Because of the porous nature of the shells, the starting point of the 
phreatic surface is at (120, 130). From the coordinates of the four given points,  h   =  
130 ft,  Δ   =  120 ft,  d   =  0.3  ×  120  +  (400  −  120)  =  316 ft, and  β   =  tan  − 1  [150/(400  −  260)]  =  
47°. With  d / h   =  316/130  =  2.43 and  β   =  47°, from Fig.  4-9 ,  m   =  0.28, or  a   =  0.28  ×  130 
 =  36.4 ft. The location of the phreatic surface can be approximated by connecting 
a straight line between the starting and exit points.     

  Fig. 4-9.      Location of phreatic surface (Gilboy  1933 . Reproduced with permission from 
the International Commission on Large Dams)    

  Fig. 4-10.      Example  4.3     
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  4.3.2     When 60  °    <   β   ≤  180° 

 Fig.  4-11  shows an earth dam with an underdrain, or  β   =  180°. The equation for 
the line of seepage was derived by Kozeny and can be expressed as a basic 
parabola (Harr  1962 )

  x
y y

y
o

o

=
−2 2

2
      (4-11)   

  Note that when  x   =  0,  y   =   y o   and that when  y   =  0,  x   =   − 0.5 y o  . The intercept  y o   
can be determined by letting  x   =   d  and  y   =   h , which are the coordinates of one 
known point on the line of seepage, and then solving  y o  , or

  y d h do = + −2 2       (4-12)   

  Example 4.4            Fig.  4-12  shows a dam with an underdrain. Given the coordinates 
of the three points shown in parentheses, compute the  x  coordinates at every  y  
interval of 20 ft (6.1 m) and sketch the line of seepage.  

  Solution     Based on the given coordinates,  h   =  140 ft,  Δ   =  400  −  120  =  280 ft, and 
 d   =  120  +  84  =  204 ft. From Eq.  (4-12) ,  y o    =  [(204) 2   +  (140) 2 ] 0.5   −  204  =  43.4 ft. From Eq. 
 (4-11) , the equation of the basic parabola is

  x
y

=
−2 1 883
86 8

,
.

      (4-13)   

  Fig. 4-11.      Basic parabola for underdrain    
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 The  x - and  y -coordinates of eight points from  y   =  0 ft to  y   =  140 ft are tabulated 
as follows:

 x  (ft)  y  (ft)  x  (ft)  y  (ft)

 − 21.7 0 52.0 80

 − 17.1 20 93.5 100

 − 3.3 40 144.2 120

19.8 60 204.0 140

 The basic parabola is plotted in the fi gure as indicated by the dashed curve. 
Because the line of seepage is a fl ow line, which must be perpendicular to the 
equipotential line or the upstream slope, the basic parabola must be adjusted at 
the upstream side, as indicated by the solid curve.  

   When  β   <  180°, Casagrande ( 1937 ) developed a method for sketching the line 
of seepage. By comparing the line of seepage obtained from the fl ownets for 
various angles,  β , he found the distance,  Δ  λ , between point A on the basic 
parabola and point B on the line of seepage, as shown in Fig.  4-13  for a toe drain 
with  β   =  135°. To adjust the basic parabola, a correction factor,  c f  , must be obtained 
from Fig.  4-14 . The correction factor is defi ned as

  c f =
+
Δ

Δ
λ

λ λ
      (4-14)  

in which  λ   +   Δ  λ  is the distance from the origin to the basic parabola along the 
slope surface. Eq.  (4-14)  can be used to determine  Δ  λ . Having plotted the basic 
parabola and determined the discharge point by scaling a distance of  Δ  λ  from 
the basic parabola, the entire line of seepage can be sketched in easily. The fol-
lowing rules are convenient for sketching the line of seepage:

  Fig. 4-12.      Example  4.4     
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   1.      When  β   <  90°, the line of seepage is tangent to the slope; when  β   ≥  90°, it 
is tangent to a vertical line.  

  2.      When  y   =  0,  x   =   −  y o  /2.  
  3.      When  x   =  0,  y   =   y o  , and the line of seepage makes an angle of 45° with 

horizontal.    

    Example 4.5            Fig.  4-15 (a) shows an earth dam with a toe drain. Sketch the line of 
seepage using Casagrande ’ s procedure.  

  Solution     Based on the given coordinates, it can be easily found that  d   =  304 ft and 
 h   =  140 ft. From Eq.  (4.12) ,  y o    =  [(304) 2   +  (140) 2 ] 0.5   −  304  =  30.7 ft. From Eq.  (4-11) , the 
equation of the basic parabola is

  Fig. 4-13.      Comparison of basic parabola and fl ownet    

  Fig. 4-14.      Correction factor for phreatic surface (Casagrande  1937 . Reproduced with 
permission of  Journal of the New England Water Works Association )    
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  x
y

=
−2 942

61 4.
       

 The basic parabola is plotted in Fig.  4-15 (a). Some adjustments must be made 
at the entrance and exit ends. An exploded view of the line of seepage near the 
toe is shown in Fig.  4-15 (b). The intersection of the toe with the basic parabo-
la can be determined by substituting  y   =   −  x  into the equation, and a quadratic 
equation  y  2   −  61.4 y   −  942  =  0 is obtained. The solution is  y   =  12.7 ft, or  λ   +   Δ  λ  
 =  12.7/sin 45°  =  18.0 ft. With  β   =  135°, from Fig.  4-14 ,  c f    =  0.15. From Eq.  (4-14) , 
 Δ  λ   =  0.15  ×  18  =  2.7 ft. In Fig.  4-15 (b), the basic parabola is shown in the solid curve 
and the adjusted line of seepage in the dashed curve. Because of the large  β , there 
is not much adjustment at the exit end.      

  4.4     Unsteady-State Seepage 

 The phreatic surface discussed so far is concerned with the steady-state seepage. 
In most cases, it is assumed that, after a period of time, a steady-state seepage 
condition fi nally will develop, so the steady-state phreatic surface can be used 
for stability analysis. However, the assumption of steady-state seepage for tem-
porary dams, such as those used for refuse disposal and sediment control, does 
not appear to be reasonable, because the steady-state condition might not be 
reached during the design life. In fact, many of the refuse dikes and silt dams 
constructed in the Eastern Kentucky Coal Field would be considered unsafe 
should a steady-state seepage condition be assumed. To achieve the required 
factor of safety, the designer has to assume an unsteady-state phreatic surface 
arbitrarily. Although unsteady-state seepage can be analyzed by numerical 
methods or transient fl ownets, they are too complex to be of general use. The 
uncertainty in determining the permeability and effective porosity of soils usually 
precludes the use of more refi ned methods. 

  Fig. 4-15.      Example  4.5     
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104 Slope Stability Analysis by the Limit Equilibrium Method

 Based on the transient fl ownets presented by Cedergren ( 1977 ), Huang ( 1986 ) 
developed a simple chart for estimating the unsteady-state seepage in an earth 
dam, as shown in Fig.  4-16 . The chart can be applied to an earth dam on a hori-
zontal impervious base with an upstream slope of 2:1. Given the dimensionless 
time,  T , the distance,  x , traveled by the phreatic surface along the base of the 
dam can be determined. 

  The dimensionless time is expressed as

  T
kt

n he

=       (4-15)  

in which  t  =   actual time for the phreatic surface to travel a distance  x  along the 
base of the dam,  k   =  permeability,  n e    =  effective porosity of the soil, and  h   =  depth 
of water in the pond. 

 It can be visualized that the phreatic surface progresses from upstream to 
downstream, with the upper end fi xed at the pool elevation and the lower end 
moving along the impervious base. Although the phreatic surface is not a straight 
line between these two ends, the assumption of a straight line is quite reasonable, 
especially at the later stage. In the initial stage where the phreatic surface is 
curved, the assumption of a straight line is on the safe side, because it results in 
a higher phreatic surface. 

  Example 4.6            Fig.  4-17  shows a temporary dam with a horizontal impervious 
base. The soil in the dam has a permeability of 3  ×  10  − 7  ft/s (2.7  ×  10  − 5  cm/s) and 
an effective porosity of 0.2. If the dam is used for only fi ve years, determine the 
location of the unsteady state phreatic surface at the end of the fi fth year.  

  Fig. 4-16.      Relationship between dimensionless time and dimensionless distance 
(Huang  1986 . Reproduced with permission)    
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  Solution     Given  t   =  5 years,  k   =  3  ×  10  − 7  ft/s  =  9.5 ft/year,  n e    =  0.2, and  h   =  50 ft, 
from Eq.  (4-15) ,  T   =  9.5  ×  5/(0.2  ×  50)  =  4.75. From Fig.  4-16 ,  x / h   =  4.66, or  x   =  4.66  ×  
50  =  233 ft. The location of the phreatic surface at the end of the fi fth year is shown 
in Fig.  4-17  by the dashed line.  

   The chart presented in Fig.  4-16  is based on the results obtained by Cedergren 
( 1977 ) for dams with a horizontal impervious base and an upstream slope of 2:1. 
For dams with other confi gurations, as shown in Fig.  4-18 , the chart should give 
a phreatic surface higher than reality, so using it for stability analysis is on the 
safe side. 

  In Fig.  4-18 , if the impervious base is not horizontal, as shown in (a), or the 
dam is placed on a soil foundation, as shown in (b), an imaginary horizontal 

  Fig. 4-17.      Example  4.6     

  Fig. 4-18.      Applications to special cases    
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106 Slope Stability Analysis by the Limit Equilibrium Method

base is assumed, and the method is applied as usual. The extra fl ow region below 
the imaginary base will lower the phreatic surface, so the assumption of a hori-
zontal base is on the safe side. If the slope is steeper than 2:1, as shown in (c), a 
2:1 slope can be drawn from the toe. Because the hatched portion of the dam is 
considered as water instead of soil, the value of  x  for the 2:1 slope should be 
greater than that for the steeper slope, so the use of the chart based on a 2:1 slope 
is on the safe side. If the slope is fl atter than 2:1, as shown in (d), a 2:1 slope can 
be drawn from the pool elevation, and the consideration of the hatched portion 
of the dam as a body of water will give a larger and more conservative value of 
 x . However, to measure the  x  distance from the toe of the actual slope, the dis-
tance  d  between the two toes must be added.  

  4.5     Pore Pressure Ratio 

 Pore pressure ratio can be used for two purposes: fi rst, to replace the phreatic 
surface for steady-state seepage, and second, to simulate the excess water pres-
sure due to consolidation during or immediately after construction. Both cases 
will be discussed in this section. 

  4.5.1     Pore Pressure Ratio for Steady-State Seepage 

 When the location of the phreatic surface is unknown or unpredictable, it is 
convenient to assume a pore pressure ratio so that the adverse effect of water 
can be included in the stability analysis. Even if the location of the phreatic 
surface is known a priori, the conversion of the phreatic surface to a pore pres-
sure ratio can simplify the use of equations and charts for determining the factor 
of safety, as demonstrated in Chapters 6 and 7. 

 The pore pressure ratio is defi ned as a ratio between the water pressure and 
the overburden pressure, or

  r
u
h

h
h

u
w w= =

γ
γ

γ
      (4-16)  

in which  u   =  pore water pressure,  γ   w    =  unit weight of water,  h w    =  depth of water 
between the phreatic surface and the failure surface,  γ   =  total unit weight of soil, 
and  h   =  depth of soil between the ground surface and the failure surface. Because 
the pore pressure ratio generally is not uniform throughout a slope, an average 
pore pressure ratio should be used in stability analysis. 

 Fig.  4-19  shows the conversion of a phreatic surface to a pore pressure ratio 
for both the plane and the cylindrical failure surfaces. As defi ned by Eq.  (4-16) , 
the pore pressure ratio is a ratio between the pore pressure and the over-
burden pressure, or between the total upward force due to water pressure and 
the total downward force due to the weight or overburden pressure. According 
to the Archimedes principle, the upward force is equal to the weight of water 
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displaced, or the volume of sliding mass under water multiplied by the unit 
weight of water. The downward force is equal to the weight of the sliding mass. 
Therefore, the pore pressure ratio can be determined by

  ru =
×Volume of sliding mass under water unit weight of water

Volume of ssliding mass unit weight of soil×
      (4-17)   

  Since the unit weight of water is approximately equal to one-half the unit 
weight of soil, the pore pressure ratio can be determined approximately by

  ru =
×

area of the sliding mass under water
2 area of the sliding mass

      (4-18)   

 If the location of the failure surface is known, the average pore pressure ratio 
can be determined by Eq.  (4-17)  or  (4-18) , as shown in the fi gure. If the location 
of the failure surface is not known, proper judgment or prior experience in esti-
mating its location is needed in order to determine the pore pressure ratio. 

 In applying their stability charts, as presented in Section 7.5.1, Bishop and 
Morgenstern ( 1960 ) suggested the use of an average pore pressure ratio by 
weighing the pore pressure ratio over the area through the entire slope, or

  ru =
×( )∑ Pore pressure ratio area

Total area
      (4-19)   

 Eq.  (4-19)  is useful when the pore pressure is determined from fi eld measure-
ments or from the construction of fl ownets, because it is not necessary to know 
the location of the most critical circle a priori. However, the use of Eq.  (4-17)  
based on the probable location of the most critical circle is more accurate and 
should be used whenever possible. If the total area is used, Eq.  (4-17)  is still valid 
except that the volume of the sliding mass is replaced by the volume of the entire 
slope, as illustrated in Example  4.7 . 

  Fig. 4-19.      Determination of pore pressure ratio    
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108 Slope Stability Analysis by the Limit Equilibrium Method

 In an effective stress analysis, the pore pressure ratio is used to convert the 
total weight of soil,  W , to the effective weight,  W ′  , or

  ′ = −W r Wu( )1       (4-20)   

 If there is no water table or no seepage in the slope, or  r u    =  0, then  W ′    =   W . 
If the entire soil mass in under water, or  r u    =  0.5, then  W ′    =  0.5 W . The effective 
weight is used to determine the shear resistance along the failure surface, and 
the total weight is used to determine the driving force. 

  Example 4.7            Fig.  4-20  is an earth dam on a horizontal ledge with the location 
of the phreatic surface shown by the dashed line. The most critical circle has a 
radius of 115 ft (35.1 m) and a central angle of 83°. The surface of the dam is along 
afbcd and the chord of the circle is along abd. If the total unit weight of the soil is 
130 pcf (20.4 kN/m 3 ), determine the average pore pressure ratio based on the area 
of the sliding mass and compare it to that based on the total area.  

  Solution 
  Based on area of sliding mass 
 Area of sliding mass  =  Area of the circular segment abde  −  Area abf  +  Area bcd. 
The area of the circular segment can be computed by

  
Area of circular segment = − = −π θ θ πR R2 2 2

360 2
115 83

360
115sin ( ) ( ) ( )22

2

83
2

3 016

sin( )

,

°

= ft
       

 Some other areas are based on the measurements from the fi gure and should 
be considered as approximate only.

  Fig. 4-20.      Example  4.7     
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  Area of sliding mass ft= − × × + × × =3 016
1
2

81 5
1
2

72 4 2 958 2, ,        

 The area of the sliding mass above the water table can be determined by di-
viding the area into two triangles and one trapezoid, or

  Area above water table ft= × × + × +( ) × + × × =1
2

98 22
1
2

25 16 12
1
2

16 8 1 388, 22        

 Area of the sliding mass under water  =  2,958  −  1,388  =  1,570 ft 2  
 From Eq.  (4-17) ,

  ru = ×
×

=1 570 62 4
2 958 130

0 255
, .
,

.         

  Based on total area 
 It is estimated that the most critical circle will fall in a region within 20 ft beyond 
the top edge and 10 ft beyond the toe, as shown in Fig.  4-20 . The total area con-
sists of two rectangles and one trapezoid, or

  Total area ft= × + × + × + × =5 10
1
2

5 65 120 65 20 5 550 2( ) ,        

 The area under water includes one rectangle and two trapezoids:

  Area under water ft= × + × + × + × + × =5 10
1
2

5 15 20
1
2

15 41 120 3 610 2( ) ( ) ,       

  ru = × × =3 610 62 4 5 550 130 0 312, . ( , ) ./        

 If the width of the total area is reduced to 10 ft from the top edge, instead of 
the original 20 ft, the pore pressure ratio is 0.315, which is about the same as the 
original 0.312. 

 It can be seen that there is a signifi cant difference between the two methods, 
which is expected. In most cases, the use of the average over the total area is 
more conservative and results in a higher pore pressure ratio and a lower factor 
of safety.      

  4.5.2     Pore Pressure Ratio due to Consolidation 

 When a new overburden is placed above a layer of clay located below the phre-
atic surface, an excess pore pressure, other than that due to steady-state seepage, 
will be developed in the clay layer. If the clay is completely saturated and the 
new overburden is applied instantaneously, an excess pore pressure equal to the 
new overburden pressure is developed instantaneously with a pore pressure 
ratio equal to 1, but this excess pore pressure will dissipate gradually and fi nally 
disappear after a long period of time. In the long-term stability analysis, it is 
assumed that the soil above the phreatic surface has no pore pressure, and the 
soil below the phreatic surface has a static pore pressure caused by the 
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110 Slope Stability Analysis by the Limit Equilibrium Method

steady-state seepage. In the short-term stability analysis, the excess pore pressure 
in the soil below the phreatic surface caused by a new overburden also should 
be considered. The theory of consolidation so well known in soil mechanics can 
be applied to determine the excess pore pressure in any clay layer at any time 
after the load is applied. If a dam is built in stages, the short-term stability at the 
end of each stage must be analyzed by taking the excess pore pressure into 
account. 

 Fig.  4-21  shows the relationship between the consolidation ratio and the time 
factor based on Terzaghi ’ s one-dimensional (1D) consolidation theory with a 
drainage layer at the top and an impervious boundary at the bottom. In the 
fi gure,  z  is the distance below the drainage layer,  H  is the length of drainage 
path, which is the same as the thickness of clay layer,  U z   is the consolidation 
ratio, and  T  is the time factor defi ned as

  T
c t
H

v=
2

      (4-21)  

in which  c v    =  coeffi cient of consolidation, and  t   =  time since consolidation started. 
The relationship between the consolidation ratio,  U z  , and pore pressure ratio, 
 r u  , is

  r Uu z= −1       (4-22)   

  Fig.  4-21  clearly shows that the pore pressure ratio varies signifi cantly with 
depth. Because trial failure surfaces may cut through the clay layer at any depth, 
unless the clay layer is thin, it may be necessary to divide it into several layers, 
each represented by a pore pressure ratio at its midheight. Theoretically, a point 
somewhat above the midheight gives a better representation of the average pore 
pressure ratio. However, the use of midheight is recommended, because it gives 
a higher pore pressure ratio than average, so the design is on the safe side. The 
difference between the average pore pressure ratio and the pore pressure ratio 
at the midheight decreases as the time increases. 

  Fig. 4-21.      Relationship between consolidation ratio and time factor (Taylor  1948 )    
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Phreatic Surfaces 111

 It should be noted that Fig.  4-21  also could be applied to a clay layer with 
drainage at both the top and bottom. In this case, the thickness of layer is 2 H , 
and an impervious boundary can be assumed at the midheight to separate the 
clay layer into two halves. The water in the top half will drain to the top and 
that in the bottom half drain to the bottom. Because both parts are symmetrical 
with the same length of drainage path,  H , Fig.  4-21  can be fl ipped down and 
applied to the lower part as well. 

  Example 4.8            A new dam is to be constructed over a clay layer 20 ft (12.2 m) 
thick, as shown in Fig.  4-22 . The clay layer is located below the water table and is 
completely saturated. The soil above the clay layer is sand and can serve as a 
drainage layer. The clay layer on the downstream side is underlain by rock, which 
can be considered as an impervious boundary, and that on the upstream side by 
a thin layer of sand, which can provide adequate drainage. To obtain a better 
representation of the pore pressures, the clay is divided into four sublayers. From 
start to fi nish, it will take two years to complete the dam. If the clay has a coef-
fi cient of consolidation of 1.4  ×  10  − 4  in. 2 /s (5.4 mm 2 /min), determine the excess 
pore pressure ratio at the end of construction in each of the sublayers on both 
sides.  

  Solution     Given total construction time of two years, the average consolidation 
time  t   =  1 year. 

 Downstream side: With drainage on one side,  H   =  20 ft. Given  c v    =  1.4  ×  
10  − 4  in. 2 /s  =  30.66 ft 2 /year, from Eq.  (4-21) ,  T   =  30.66  ×  1/(20) 2   =  0.077. From top 
to bottom, the values of  z / H  at the midheights of the sublayers are 0.125, 0.375, 
0.625, and 0.875. From Fig.  4-21 , the pore pressure ratios are 0.25, 0.68, 0.89, 
and 0.96. 

 Upstream side: With drainage on both sides,  H   =  10 ft. Since  T  is inversely 
proportional to  H  2 ,  T   =  4  ×  0.077  =  0.31. From Fig.  4-21 , the pore pressures for 
 z / H  at 0.25 and 0.75 are 0.22 and 0.55. The pore pressure ratio for each sublayer 
is shown in Fig.  4-22 .      

  Fig. 4-22.      Example  4.8     
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  Summary 

   1.      For homogeneous and isotropic cross sections, the location of the phreatic 
surface can be determined easily by drawing a fl ownet. If the cross section 
is anisotropic with permeability in the horizontal direction greater than 
that in the vertical direction, it can be transformed into an isotropic cross 
section by reducing the horizontal coordinates according to Eq.  (4-2) .  

  2.      Charts are presented in Figs.  4-5  and  4-6  to determine the location of the 
phreatic surface in earth dams on an impervious base. These charts are 
based on Dupuit ’ s theory and are applicable when the downstream slope 
is not greater than 30°. If the impervious base is horizontal and the down-
stream slope is  > 30° but  < 60°, Fig.  4-9  can be used. If the base is not imper-
vious, the phreatic surface will be lower and the use of the charts for 
stability analysis is on the safe side.  

  3.      For earth dams with fi lter drains, as shown in Fig.  4-8  for shell drains, toe 
drains, and underdrains, the exit point varies with the angle  β . In the case 
of an underdrain with  β   =  180°, the equation of the phreatic surface is a 
basic parabola and can be plotted directly based on the distances  h  and  d , 
as shown in Fig.  4-11 . When  β   >  60° but  <  180°, the basic parabola must 
be adjusted by moving the exit point down the slope a distance of  Δ  λ , 
using the correction chart developed by Casagrande ( 1937 ), as shown in 
Fig.  4-14 .  

  4.      A simple chart is presented to determine the location of the unsteady-
state phreatic surface as a function of time. Although the chart is based on 
a dam with a horizontal impervious base and an upstream slope of 2:1, 
with slight modifi cations, it also can be applied to other confi gurations 
with more conservative results.  

  5.      When the location of the steady-state phreatic surface is unknown or un-
predictable, it is convenient to assume a pore pressure ratio, so the ad-
verse effect of water can be included in the stability analysis. Even if the 
location of the phreatic surface is known a priori, the conversion of the 
phreatic surface to a pore pressure ratio can simplify the use of equations 
and charts for determining the factor of safety, as demonstrated in Chap-
ters 6 and 7. Given the location of both the phreatic and failure surfaces, 
the pore pressure ratio can be computed by Eq.  (4-17) . If the location of 
the failure surface is unknown and cannot be roughly estimated, the same 
equation still can be applied by considering the entire slope as a failure 
mass, instead of the mass above the failure surface.  

  6.      Another use of the pore pressure ratio is to evaluate the effect of excess 
pore pressure for short-term stability during or at the end of construction. 
When a new overburden is placed above a layer of clay located below 
the phreatic surface, an excess pore pressure, other than that due to 
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steady-state seepage, will be developed in the clay layer. If the clay is 
completely saturated and the new overburden is applied instantaneously, 
an excess pore pressure equal to the new overburden pressure is devel-
oped instantaneously with a pore pressure ratio equal to 1, but this excess 
pore pressure will dissipate gradually and fi nally disappear after a long 
period of time. Because trial failure surfaces may cut through the clay 
layer at any depth, unless the clay layer is thin, it may be necessary to 
divide it into several layers, each represented by a pore pressure ratio at 
its midheight. Methods for determining the excess pore pressure ratio 
during or at the end of construction are presented.    

  Problems 

   4.1      Fig.  P4-1  shows an earth dam with an underdrain. Using the information 
provided, sketch the fl ownets for the following two cases: (a) the soil is 
isotropic with the same permeability in both the horizontal and vertical 
direction, and (b) the soil is anisotropic with the horizontal permeability 
four times greater than the vertical permeability.  

  Fig. P4-1.        

  Fig. P4-2.        

  4.2      Same as Problem 4.1 except refer to Fig.  P4-2 .  
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114 Slope Stability Analysis by the Limit Equilibrium Method

  4.3      Fig.  P4-3  shows an earth dam with an underdrain. Using the coordi-
nates provided, sketch the fl ownet and determine the coordinates of the 
phreatic surface. If the dam has a permeability of 2  ×  10  − 5  cm/s, compute 
the amount of seepage in cfs per ft of dam.
   [Answer: 1.11  ×  10  − 5  cfs per ft]     

  Fig. P4-3.        

  4.4      Based on the dimensions shown in Fig.  P4-4 , determine the values of “a” 
from Fig.  4-5  and “b” from Fig.  4-6  and sketch the phreatic surface.
   [Answer: 72 ft, 144 ft]     

  Fig. P4-4.        

  4.5      Fig.  P4-5  shows an earth dam on an inclined ledge. Locate the midpoint 
and exit point and sketch the phreatic surface. If the dam has a perme-
ability of 5  ×  10  − 4  cm/s, what is the amount of seepage in cfs per foot 
of dam?
   [Answer: 1.36  ×  10  − 5  cfs per ft]     

  Fig. P4-5.        
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  Fig. P4-6.        

  Fig. P4-7.        

  Fig. P4-8.        

  4.6      Same as Problem 4.5 except refer to Fig.  P4-6 .  
  [Answer: 7.87  ×  10  − 5  cfs per ft]  

  4.7      Fig.  P4-7  shows an earth dam with a chimney drain. Locate the exit point 
of the phreatic surface by both Gilboy ’ s and Casagrende ’ s methods.
   [Answer: 24.5 ft, 22.2 ft]     

  4.8      For the dam shown in Fig.  P4-8 , sketch the location of the phreatic 
surface.  
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  Fig. P4-9.        

  4.9      For the dam shown in Fig.  P4-9 , sketch the location of the phreatic 
surface.  

  4.10      Fig.  P4-10  shows a new earth dam on bedrock. The permeability of the 
dam is 5  ×  10  − 5  cm/s and its effective porosity is 0.2. If the reservoir be-
hind the dam is fi lled up instantaneously to a height of 35 ft, determine 
the location of the phreatic surface at the end of 120 days, as indicated by 
the distance  x  from the toe. If the face of the dam has a slope of 3:1, what 
should be the most conservative values of  x ?
   [Answer: 133 ft, 168 ft from toe]     

  Fig. P4-10.        
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  4.11      A coal waste embankment is placed on top of a slurry pond consisting 
of saturated fi ne refuse. The fi ne refuse is 30 ft thick with drainage layers 
on both the top and bottom, as shown in Fig.  P4-11 . The fi ne refuse has a 
coeffi cient of consolidation of 0.0035 cm 2 /s and is divided into three lay-
ers for stability analysis. If the construction of the embankment takes one 
year to complete, or the average consolidation time is 183 days, estimate 
the pore pressure ratios at the end of construction for each layer.
   [Answer: 0.33, 0.66, 0.33]                       

  Fig. P4-11.        
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    Chapter 5 

  Remedial Measures for 
Correcting Slides    

       Before planning and design of remedial measures, a fi eld investigation must be 
undertaken. The scope of fi eld investigation is described in this chapter. Also 
described are the various methods for correcting slides, including slope reduc-
tion or removal of weight, buttresses, surface drainage, subsurface drainage, 
retaining walls, anchor systems, bridging or tunneling, soil reinforcements, pile 
systems, vegetation and biotechnical stabilization, and hardening of soils. The 
selection of methods for stabilization also is discussed. 

  5.1     Field Investigation 

 The scope of a fi eld investigation should include topography, geology, water, 
weather, and history of slope changes. If a slide has occurred, the shape of the 
sliding surface also should be determined. After the fi eld investigation, some 
preliminary planning is needed before the start of the permanent remedial works. 

  5.1.1     Topography 

 The topography or geometry of the ground surface is an overt clue to past land-
slide activity and potential instability. More detail than that shown on existing 
topographic or project design maps usually is required for landslide studies. 
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Because the topography of a landslide is changing continually, the area must be 
mapped at different times, if possible, from several years before construction to 
several years after remedial measures are undertaken. Ultimately, the effective-
ness of corrective measures is indicated by whether there is further change in 
the topography. 

 If a detailed survey of the area and the preparation of a contour map are not 
possible because of the lack of time, at least several cross sections must be sur-
veyed from the accumulated masses at the toe of the slide to above the head 
scarp. The cross section must be long enough to cover part of the undisturbed 
area above and below the slide. The surface of the area should not be shown in 
a simplifi ed form but with as many topographic features as possible, such as all 
marked edges, swells and depressions, scarps, cracks, and so on. The surveyed 
sections are supplemented by the logs of borings. 

 Aerial photos are most useful for the investigation of landslides, because they 
offer a perfect three-dimensional (3D) view of the area. From an aerial photo, 
one can determine precisely the boundaries of a landslide, because the slope 
surface below the scarp is irregularly undulated with ponded depressions. Also, 
the character of vegetation on the slope affected by the slide differs from that of 
the undisturbed adjacent slope. The amount of movement is determined easily 
from the offset of linear features, such as highways, railroads, and alleys, as soon 
as they continue to the undisturbed area.  

  5.1.2     Geology 

 Geologic structure is frequently a major factor in landslides. Although this topic 
includes major large-scale structural features, such as folds and faults, the minor 
structural details, including joints, small faults, and local shear zones, may be 
even more important. The landslide and the surrounding area should be mapped 
geologically in detail. On the map, the shape of the head scarp and the area of 
accumulation, outcrops of beds, offsets in strata, changes in joint orientation, 
dips, and strikes should be identifi ed. 

 An important characteristic of the sliding slope is the shape of the cross 
section. If the slope was sculpted by erosion and covered with waste deposited 
by rainwash, the profi le forms a gentle curve at its transition into the fl ood plain. 
Even a very ancient landslide is recognized from the curved, bulged shape of 
the toe.  

  5.1.3     Water 

 Water is a major factor in most slides. The plan for corrective measures requires 
a good knowledge of the hydrological conditions of the slide itself and of its 
surroundings. The fi rst task is to determine the depth of the groundwater table 
and its fl uctuation and to map all streams, springs, seeps, wet grounds, un-
drained depressions, aquiferous pressures, and permeable strata. 

 The changes of slope relief produced by sliding alter the drainage conditions 
of the surface water, as well as the regime of the groundwater. The seepage of 
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groundwater has a signifi cant effect on slope stability. Less pressure is built up 
when water is seeping out of the ground than when the exits for groundwater 
are blocked. For example, in one major slide area, landslide activity always was 
preceded by the stoppage of spring discharge near the toe; the cessation of move-
ment was marked by an increase in spring discharge. Slip surfaces are generally 
impervious, retaining both surface water and groundwater. When slip surfaces 
approach the ground surface, new springs and wet grounds appear. In the boring 
logs, the depth and fl uctuation of groundwater must be recorded. However, the 
pore pressure in clayey soils affected by sliding cannot be determined simply by 
observing the water table in a borehole, because by fi lling the borehole, the water 
loses the pressure in its vicinity. Therefore, the installation of piezometric instru-
ments for pore pressure measurements is needed.  

  5.1.4     Weather 

 The climate of the area, including rainfall, temperature, evaporation, wind, 
snowfall, relative humidity, and barometric pressure, is the ultimate dynamic 
factor infl uencing most landslides. The effects of these factors seldom can be 
evaluated analytically, because the relations are too complex. Empirical correla-
tions of one or more of these factors, particularly rainfall, snow, and melting 
temperatures, with episodes of movement or movement rates can point out their 
infl uences that must be controlled to minimize movements.  

  5.1.5     History of Slope Changes 

 Many clues can alert an investigator to past landslides and future risks. Some of 
these are hummocky ground, bulges, depressions, cracks, bowed and deformed 
trees, slumps, and changes in vegetation. Large features can be determined from 
large-scale maps and aerial photos; however, the evidence often is hidden by 
vegetation or is so small that it can only be determined by direct observation. 
Even then, only a person intimately familiar with the soils, geologic materials, 
and conditions in that particular area can recognize the potential hazards. 

 Among the most diffi cult kinds of slides to recognize and guard against are 
old slides that have been covered by glacial till or other, more recent sediments. 
Recent and active landslides can be recognized easily by their fresh appearance 
with steep and bared head scarps, open cracks, and strung tree roots. The state 
of tree growth is indicative of the age of the movements. Trees on unstable 
ground are tilted downslope but tend to return to a vertical position during the 
period of rest, so that the trunks become conspicuously bent. From the younger, 
vertically growing trunk segments, the date of the last sliding movement can be 
inferred.  

  5.1.6     Shapes of Failure Surfaces 

 As noted in Section 1.1, slides are divided into two types: translational and 
rotational. Translational slides are marked by lateral separation with very little 
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vertical displacement, and by vertical cracks. Rotational slides are charac-
terized by the rotation of the block or blocks of which they are composed, and 
by concave, rather than vertical, cracks. Fig.  5-1  is a schematic of these two 
types of slides, which took place during the 1964 Alaska earthquake (Hansen 
 1965 ). 

  In translational slides, the mass progresses down and out along a more or 
less planar or gently undulatory surface and has little of the rotational movement 
or backward tilting characteristics. The moving mass commonly slides out on 
the original ground surface. 

 The most common examples of rotational slides are slightly deformed 
slumps, which are slides along a surface of rupture that is concave upward. The 
exposed cracks are concentric in plan and concave toward the direction of 
movement. In many rotational slides, the underlying surface of rupture, together 
with the exposed scarps, is spoon-shaped. If the slide extends for a considerable 
distance along the slope perpendicular to the direction of movement, much of 
the rupture surface may approach the shape of a cylinder, the axis of which is 
parallel to the slope. In the head area, the movement may be almost wholly 
downward and have little apparent rotation. However, the top surface of each 
unit commonly tilts backward toward the slope, although some blocks may tilt 
forward. The classic purely rotational slide on a circular or cylindrical surface is 
relatively uncommon in natural slopes because of their internal inhomogene-
ities and discontinuities. Because rotational slides occur most frequently in 
fairly homogeneous materials, their incidence among constructed embankments 
and fi lls, and hence their interest to engineers, has been high relative to other 
types of failure. 

 The distinction between translational and rotational slides is useful in plan-
ning control measures. A translational slide may progress indefi nitely if the 
surface on which it rests is inclined suffi ciently, as long as the shear resistance 
along this surface remains lower than the more or less constant driving force. 
The movement of translational slides commonly is controlled structurally by 
surfaces of weakness, such as faults, joints, bedding planes, and variations in 
shear strength between layers of bedded deposits, or by the contact between fi rm 
bedrock and overlying detritus. The rotational slide, if the surface of rupture dips 
into the hill at the foot of the slide, tends to restore equilibrium in the unstable 
mass. The driving moment during movement decreases, and the slide may stop 
moving. 

 The location of the slip surface can be determined by an inclinometer. The 
inclinometer measures the change in inclination or tilt of a casing in a bore-
hole, and thus allows the distribution of lateral movements to be determined as 
a function of depth below the ground surface and as a function of time. Incli-
nometers have undergone rapid development to improve reliability, provide 
accuracy, reduce weight and bulk of instruments, lessen data acquisition and 
reduction time, and improve versatility of operation under adverse conditions. 
Automatic data-recording devices, power cable reels, and other features are now 
available.   
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  Fig. 5-1.      Translational and rotational slides (Hansen  1965 )    

  5.2     Preliminary Planning 

 When a slide takes place, it is necessary to determine the cause of the slide so 
that proper remedial measures can be taken to correct it. The processes involved 
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in slides comprise a continuous series of events from cause to effect. Seldom, if 
ever, can a slide be attributed to a single defi nite cause. The detection of the 
causes may require continuous observations, and a fi nal decision cannot be made 
within a short time. Because water is the major cause that may initiate a slide, 
or intensify a slide after it has occurred, the following initial remedial measures 
should be taken as soon as possible.

   1.     Capture and drain all the surface water that fl ows into the slide area;  
  2.     Pump the groundwater out from all wells in the slide area and dewater 

all the undrained depressions; and  
  3.     Fill and tamp all open cracks to prevent the infi ltration of surface water.    

 Only after the completion of the initial measures should other permanent 
and more expensive measures based on a detailed investigation be undertaken. 

 Peck ( 1967 ) described the catastrophic slide in 1966 on the Baker River north 
of Seattle, Washington, which may be titled, “The Death of a Power Plant.” He 
claimed that the state of the art at that time was unable to make reliable assess-
ments of the stability of many, if not all, natural slopes under circumstances of 
practical importance. After the destruction of the power plant by the slide, he 
asked the following questions: “Was spending the time necessary to get informa-
tion about subsurface conditions and movements a tactical error? Could the 
unfavorable developments have been prevented by providing extensive reslop-
ing, deep drainage, and other means rather than the use of the observational 
methods?” Although these questions cannot be answered satisfactorily, they 
clearly indicate the importance of prompt action in the correction of slides. 

 After the geometry of a slide, the location of the water table, and the soil 
parameters of various layers are determined, the factor of safety can be calcu-
lated. The factor of safety at the time of failure should be close to 1. If not, some 
of the parameters used in the analysis must be adjusted. If the soil is homoge-
neous and there is only one soil, the shear strength of the soil can be back-
calculated, as described in Section 3.6. This shear strength then can be used for 
the redesign of the slope. 

 Based on the results of the investigation, a new slope is designed, and stabil-
ity analysis can be used to determine the factor of safety. If a strong retaining 
structure is used, the stability or safety of the structure also should be separately 
considered by the principles of soil and structural mechanics.  

  5.3     Corrective Methods 

 Corrective methods can be used either to decrease the driving forces or increase 
the resisting forces. Because the factor of safety is a ratio between the resisting 
forces and the driving forces, a reduction of the driving forces or an increase of 
resisting forces will increase the factor of safety. Many of the practical examples 
presented here to illustrate the different corrective methods were described in 
a special report titled, “Landslides Analysis and Control” published by the 
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Transportation Research Board (Schuster and Krizek  1978 ). A much-expanded 
version of a special report titled, “Landslides: Investigation and Mitigation,” 
which contains 25 chapters written by 30 authors covering a diversity of subjects, 
also was issued by the Transportation Research Board and can serve as an excel-
lent reference for the study of landslides (Turner and Schuster  1996 ). 

  5.3.1     Slope Reduction or Removal of Weight 

 Fig.  5-2  shows three methods for slope reduction: direct reduction, fl attening by 
cutting berms, and fl attening without hauling material away. Although the third 
method is the most economical, care must be taken to ensure that the material 
to be placed on the toe is of good quality. If necessary, a drainage blanket should 
be placed to minimize the effect of water. 

  Fig.  5-3  shows the stabilization of the Cameo slide above a railroad in the 
Colorado River Valley by partial removal of weight (Peck and Ireland  1953 ). 
Stability analyses determined that the removal of volume B was more effective 
than the removal of volume A, as expected. 

  Fig. 5-2.      Methods for slope reduction    

c05.indd   125c05.indd   125 12/18/2013   7:07:37 PM12/18/2013   7:07:37 PM



126 Slope Stability Analysis by the Limit Equilibrium Method

  Fig.  5-4  shows a slope fl attening, which was used effectively on a 320-ft 
(98-m) cut for a southern California freeway (Smith and Cedergren  1962 ). A 
failure took place during construction on a 1:1 benched cut slope composed 
predominately of sandstone and interbedded shale. After considerable study and 
analysis, the slope was modifi ed to 3h:1v, and the fi nal roadway grade was raised 
some 60 ft (18 m) above the original elevation. Moreover, to provide additional 
stability, earth buttresses were placed from roadway levels to a height of 70 ft 
(21 m).   

  5.3.2     Buttresses 

 There are two types of buttresses. The earth buttress, as shown in Fig.  5-4 , is an 
additional earth berm placed near the toe of the slope to reduce the overturning 

  Fig. 5-3.      Stabilization of the Cameo slide by partial removal of weight (Peck and 
Ireland  1953 . Reproduced with permission from AREMA) 

 Note:   1 ft  =  0.305 m    

  Fig. 5-4.      Typical section of Mulholland cut showing original and modifi ed design 
(Smith and Cedergren  1962 , © ASTM International. Reproduced with permission) 

 Note:   1 ft  =  0.305 m    
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moment, thus increasing the factor of safety. Because the purpose of an earth 
buttress is to serve as a counterweight to reduce the overturning moment, any 
earthy materials can be used. 

 Another buttress of high-strength, well-compacted material is shown in 
Fig.  5-5  for correcting a slide in a shale embankment on I-74 in southern Indiana 
(Haugen and DiMillio  1974 ). The borrow material used in the embankment was 
predominately local shale materials that were interbedded with limestone and 
sandstone. These shale materials, after being placed in the embankment, deterio-
rated with time and fi nally caused the embankment to fail. Careful studies of the 
in situ shear strength versus the original strength used in the design showed an 
approximate reduction of one-half in shear strength. After considering various 
alternatives, an earth and rock buttress design fi nally was selected. The use of a 
high-strength buttress will reduce not only the overturning moment and increase 
the resisting moment, thus enhancing the safety of the design, but also will 
protect the slope surface from erosion.   

  5.3.3     Surface Drainage 

 Of all possible methods for correcting slides, proper drainage of water is prob-
ably the most important. Good surface drainage is strongly recommended as 
part of the treatment for any slide. Every effort should be made to ensure that 
surface waters are carried away from a slope by interception trenches and diver-
sion ditches. The surface of the area affected by sliding is generally uneven, 
hummocky, and transversed by unnoticed cracks and deep fi ssures. Therefore, 
reshaping the surface of a slide mass can be extremely benefi cial in that cracks 
and fi ssures are sealed and water-collecting surface depressions are eliminated. 
This is particularly true for the cracks behind a scarp face where large volumes 
of water can seep into the failure zone and result in serious consequences. 

  Fig. 5-5.      Stabilization berm to correct landslide in shale on I-74 in Indiana (Haugen 
and DiMillio  1974 ) 

 Note:   1 ft  =  0.305 m    
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Although surface drainage in itself is seldom suffi cient for the stabilization of a 
slope in motion, it can contribute substantially to the drying of the material in 
the slope, thus controlling the slide.  

  5.3.4     Subsurface Drainage 

 Because groundwater is one of the major causes of slope instability, subsurface 
drainage is a very effective remedial measure. Methods frequently used are the 
installation of drainage layers, trench drains, horizontal drains, vertical drains, 
drainage tunnels or galleries, and wellpoints. 

 Drainage layers, sometimes also called underdrains, can be placed at the 
bottom of fi lls over the entire area to facilitate drainage. If the granular materials 
used for the drainage layer do not satisfy the fi lter criteria, a fi lter fabric or 
granular material that satisfi es the fi lter criteria must be placed between the 
drainage layer and the adjoining soils to prevent clogging. 

 Trench drains are excavated trenches fi lled with granular materials that 
satisfy the fi lter criteria for the adjoining soils, or with rocks encased in fi lter 
fabric. An underdrain pipe may be required to facilitate drainage. Trenches 
usually are excavated at the steepest side slopes and should extend below the 
water-bearing layer. For large areas, an extensive system of trenches in the form 
of fi nger drains or a herringbone pattern may be needed. 

 A horizontal drain is a small-diameter well drilled into a slope on an approxi-
mately 5 to 10% grade and fi tted with a perforated pipe. Pipes should be pro-
vided to carry the collected water to a safe point of disposal to prevent surface 
erosion. Fig.  5-6  shows the use of both surface and subsurface drainage for 

  Fig. 5-6.      Corrective measures for Castaic-Alamos Creek slide (Fig. 8.8 in Gedney and 
Weber  1978 , © National Academy of Sciences, Washington, DC. Reproduced with 

permission of the Transportation Research Board, Washington, DC)    
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correcting the slide on the Castaic-Alamos Creek in California (Dennis and Allan 
 1941 ). The surface water is collected by the intercepting trench connected to the 
perforated pipe and gravel underdrain, which are used also for subdrainage. 

  A vertical drainage well can be either a gravity drain or a pumped well, 
depending on whether there is an outlet for the water to drain by gravity. In 
many cases, a horizontal drain can be drilled to intercept the vertical drain at the 
bottom. Fig.  5-7  shows the use of both vertical and horizontal drains for correct-
ing an active landslide that occurred at San Marcos Pass near Santa Barbara, 
California (Root  1958 ). The vertical wells were about 3 ft (1 m) in diameter, 40 ft 
(12 m) long, and belled at the bottom so that they interconnected to form a some-
what continuous curtain. The drains had 8-in. (20-cm) perforated pipes in the 
center for the full depth of the vertical drains and were backfi lled with pervious 
material. The horizontal drains then were drilled to intersect the vertical drains 
at the belled portion of the vertical wells. 

  A drainage tunnel or gallery is a deep and large structure, usually about 3 ft 
(1 m) wide by 6 ft (2 m) high in cross section, constructed for the purpose of dis-
charging a large amount of water. The effectiveness of a drainage tunnel may be 
increased by drilling short or long drainage borings in the wall, fl oor, or roof of 
the tunnel to collect water from various locations. 

 Wellpoints are small-diameter wells that are driven or jetted into place. 
Vacuum is applied to the top of the wellpoints through a header, or a horizontal 
pipe that applies vacuum to suck water up the wellpoints. They work very well 
in clean sands but not as well in fi ne-grained soils. Because the water is drawn 
up the riser pipe by vacuum, their maximum effective lift is limited to 20 to 25 ft 
(6.1–7.6 m). For greater lifts, pumped wells, each with its own pump to push 
water to the top of the well, can be used.  

  5.3.5     Retaining Walls 

 Fig.  5-8  shows the use of a retaining wall to correct a cut slope failure on I-94 in 
Minneapolis–St. Paul, Minnesota (Shannon and Wilson, Inc.  1968 ). The use of a 

  Fig. 5-7.      Slide treatment consisting of horizontal and vertical drains (Root  1958 , © 
National Academy of Sciences, Washington, DC. Reproduced with permission of the 

Transportation Research Board, Washington, DC)    
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retaining wall is often occasioned by the lack of space necessary for the develop-
ment of the slope to a full length. Because retaining walls are subject to an unfa-
vorable system of loading, a large wall width is necessary to increase stability. 
Although the methods of stability analysis can be applied to determine the factor 
of safety of a slope with failure surfaces below the wall, the design of the wall 
will require special considerations to ensure that the wall itself is stable against 
sliding, overturning, and bearing capacity failure.   

  5.3.6     Anchor Systems 

 One type of anchor system is the tieback wall, which carries the backfi ll forces 
on the wall by a “tie” system to transfer the imposed load to an area behind the 
slide mass where satisfactory resistance can be established. The ties may consist 
of pre- or post-tensioned cables, rods, or wires, and some form of deadmen or 
other methods to develop adequate passive earth pressure. Fig.  5-9  shows a 
section of tieback wall to correct the slide condition on New York Avenue in 
Washington, DC (O’Colman and Trigo  1970 ).   

  5.3.7     Bridging or Tunneling 

 In particularly serious cases, the removal of steep, long, and narrow unstable 
slopes may be too costly or dangerous, so a bridge can be constructed to span 
the unstable area. The bridge must be supported by driven piles or drilled shafts 
placed well below the foundation materials. Bridges are commonly applicable 
only to small landslides or unstable areas. For large slides with bridges more 

  Fig. 5-8.      Retaining wall to correct slide on I-94 in Minnesota (Adapted from 
Shannon and Wilson  1968 . Reproduced with permission from Shannon and 

Wilson, Inc.)    
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  Fig. 5-9.      Tieback wall to correct slide on New York Avenue in Washington, DC 
(O’Colman and Trigo  1970 ) 

 Note:   1 ft  =  0.305 m    

  Fig. 5-10.      Tunnel to correct slide on Spaichingen-Nusplingen Railway line in 
Germany (Zaruba and Mencl  1969 , © Academia Publishing of the Czech Academy 

of Sciences) 

 Note:   1 ft  =  0.305 m    

than 100 to 300 ft (30 to 90 m) long, this method usually is not economically justi-
fi ed when compared with other methods. 

 In mountainous areas with large slides, it may be necessary to construct a 
tunnel, as shown in Fig.  5-10  for the slide on the Spaichingen-Nusplingen Railway 
line in Germany (Zaruba and Mencl  1969 ).   

c05.indd   131c05.indd   131 12/18/2013   7:07:38 PM12/18/2013   7:07:38 PM



132 Slope Stability Analysis by the Limit Equilibrium Method

  5.3.8     Soil Reinforcements 

 Soil reinforcements include mechanically stabilized earth (MSE) walls, reinforced 
soil slopes (RSS), and soil nailing walls. One of the greatest advantages of using soil 
reinforcements is their fl exibility and capacity to absorb deformation due to poor 
subsoil conditions in the foundation. Also, based on observations in seismically 
active zones, these structures have demonstrated a higher resistance to seismic 
loading than do rigid concrete structures. In addition to global stability to check the 
factors of safety over the entire slope and the adequacy of the reinforcements pro-
vided, these reinforced soil structures also should be treated as retaining walls by 
considering the external stability of the wall, including sliding, overturning, bearing 
capacity, and the position of the resultant within the middle third of the base, as is 
usually done for gravity retaining walls. 

 The majority of the MSE walls for permanent applications use a segmental 
precast concrete facing and galvanized steel reinforcement, whereas geotextile-
faced MSE walls are used more frequently for temporary construction. Recently, 
modular block facings with geosynthetic reinforcements, principally geogrids, 
have gained acceptance because of their lower cost and nationwide availability. 
Fig.  5-11  shows the use of a MSE wall to correct a large landslide on a section of 
I-40 near Redwood, Tennessee (Royster  1974 ). The slope-forming materials were 
essentially a thick surface deposit of colluvium underlain by residual clays and 
clay shales. The groundwater table was seasonally variable but generally was 
found to be above the colluvium and residuum interface. This particular slide 
occurred within an embankment placed as a sidehill fi ll directly on a colluvium-
fi lled drainage ravine. Because of blocked subsurface drainage and weakened 
foundation soils, the fi ll failed some four years after construction. Final design 

  Fig. 5-11.      Reinforced earth wall to correct slide on I-40 in Tennessee (Royster  1974 . 
Reproduced with permission from the Highway Geology Symposium)    
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plans called for careful excavation of the failed portion of the fi ll to a fi rm, 
unweathered shale base, installation of a highly permeable drainage course 
below the wall area, placement of a MSE wall, and fi nal backfi ll operations. 

  A major difference between a reinforced soil slope and a MSE wall is that the 
former has a surface slope less than 70° and does not require a precast or block 
facing, whereas the latter has a steep surface and requires such a facing to confi ne 
the selected backfi ll and facilitate the compaction. Fig.  5-12  shows the widening 
of a major highway to accommodate an additional 10-ft- (3-m-)wide paved 
shoulder. A 45° cut was made into the existing slope, which allowed for the 
construction of the reinforced soil slope. Primary geogrids usually are inter-
spersed with secondary geogrids, which aid in compaction at the face of the 
slope and also tend to reduce surface erosion. 

  Soil nailing is an in situ soil reinforcement technique that has been used 
during the past four decades. The main components of a soil nailed retaining 
system are the in situ ground, the tension-resistant nails, and the facing element. 
The nails are usually corrosion-resistant steel bars or other metallic elements that 
can resist tensile stresses, shear stresses, and bending moments. They generally 
are placed in drilled boreholes and grouted along their total length or driven 
into the ground. The facing is not a major structural load-carrying element, but, 
rather, ensures local stability of the soil between the nails and protects 
the ground from surface erosion and weathering effects. It generally consists 
of a thin layer of shotcrete about 4 to 6 in. (100–150 mm) thick with wire or steel 
mesh between the nails. Prefabricated or cast-in-place concrete panels have 
increasingly been used in the construction of permanent structures to satisfy 

  Fig. 5-12.      Shoulder widening of the Pennsylvania Turnpike using geogrids (Berg et al. 
 1990 , © National Academy of Sciences, Washington, DC. Reproduced with permission 

of the Transportation Research Board, Washington, DC) 

 Note:   1 ft  =  0.305 m    
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specifi c needs and accommodate adequate drainage. Successive incremental 
excavations with a height of 3 to 6 ft (0.9–1.8 m) are fi rst made on the ground, the 
nails are then installed, and the shotcrete is applied. The next excavation is made 
and the process repeated until completion. 

 Soil nailing has most frequently been used in Europe for construction of 
temporary retaining structures in excavation. In North America, the behavior of 
a lateral support system similar to the European system was investigated by 
Shen et al. ( 1978, 1981a, 1981b ). Fig.  5-13  shows a typical section of this soil nailed 
retaining system.   

  5.3.9     Pile Systems 

 Recorded attempts to use driven steel or wooden piles of nominal diameter to 
retard or prevent landslides seldom have been successful. Unless the slide is 
shallow, such piles are incapable of providing adequate shear resistance. Shallow 
slides can be controlled by piling, because the piles can be driven to an adequate 
depth. Otherwise, they may tilt from the vertical position, thus disturbing the 
adjacent material and the material underneath the piles and causing the develop-
ment of a slip surface below the pile tip. 

 Fig.  5-14  shows the use of piles to correct a shallow slide in a railway cutting 
at East Slovakie, Czechoslovakia (Zaruba and Mencl  1969 ). The cutting has a 
slope of 4h:1v and was made in a fi ssured marly clay subjected to slaking. During 
the rainy spring of 1965, a small sheet slide developed at the toe of the slope, 
which extended to a length of 165 ft (50 m) and reached up to the top of the slope. 
Because the site was not accessible and the removal of a large volume of soil was 
diffi cult, piles were employed to prevent the further spreading of the slide. 

  Fig. 5-13.      Construction details of a lateral earth support system (Shen et al.  1978 . 
Reproduced with permission) 

 Note:   1 ft  =  0.305 m; 1 in.  =  25.4 mm; 1 ksi  =  6.9 MN/m 2     
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Forty-two piles, 20 ft (6 m) long, were driven into prepared bore holes to a depth 
of 13 ft (4 m). Reinforced concrete slabs were supported against the piles to 
prevent movement of the soil between and around the piles. The pile spacing 
was 3 to 5 ft (1–1.5 m). A sand drain was constructed along the slab, discharging 
water to a ditch. After the treatment, the slope was fl attened to 5h:1v. 

  Fig.  5-15  shows a cylinder pile wall system for stabilizing a deep-seated slope 
failure in I-94 in Minneapolis-St. Paul, Minnesota (Shannon and Wilson, Inc. 
 1968 ). The pile wall was placed as a restraining system, in which the forces 
tending to cause movement were predicted carefully. The cast-in-place piles were 
designed as cantilevers to resist the full earth thrust imposed by the soil.   

  Fig. 5-15.      Cylinder pile to stabilize deep-seated slide on I-94 in Minnesota (Adapted 
from Shannon and Wilson Inc.  1968 . Reproduced with permission from Shannon and 

Wilson, Inc.)    

  Fig. 5-14.      Stabilization of a slide by piles in Czechoslovakia (Zaruba and Mencl  1969 , 
© Academia Publishing of the Czech Academy of Sciences) 

 Note:   1 ft  =  0.305 m    
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136 Slope Stability Analysis by the Limit Equilibrium Method

  5.3.10     Vegetation and Biotechnical Stabilization 

 Slope movements generally disturb the vegetative cover, including both trees 
and grass. The reforestation of the slope is an important task in corrective treat-
ment. This is done during the fi nal stage, invariably after at least partial stabiliza-
tion of the slide. Forestation is most benefi cial for shallow slides. Slides with 
deep-lying failure surfaces cannot be detained by vegetation, although in this 
case, too, vegetation can lessen the infi ltration of surface water into the slope and 
thus contribute indirectly to the stabilization of the slide. 

 It generally is accepted that forest growth has two functions: drying out of 
the surface layers and consolidating them by a network of roots. Trees draw the 
water necessary for their growth from the slope surface, so the most suitable 
species will be those that have the largest consumption of water and the highest 
evapotranspiration rate. Therefore, it is more advantageous to plant deciduous 
trees than conifers. 

 Biotechnical stabilization combines the use of vegetation and other mechani-
cal reinforcement, such as live-cut stems and branches, to prevent surfacial 
erosion and arrest shallow mass movement (Gray and Leiser  1982 ). In addition 
to the immediate effect on stabilization, secondary stabilization will occur as the 
result of rooting along the length of the buried stems. Gray and Leiser ( 1992, 
1995 ) also found that alternate layers of earth and live brush can intercept water 
and divert it to the slope surface, thus reducing pore pressures in the process.  

  5.3.11     Hardening of Soils 

 If the water in the slope cannot be drained by subsurface drainage methods, 
foundation engineers may consider several methods of hardening of soils. These 
methods can be divided into chemical treatments, cement grouting, electro-
osmosis, and thermal treatments. 

 Chemical treatments, which have been used with varying degrees of success, 
include lime or lime-soil mixtures, and ion exchange. One successful treatment, 
in which quicklime was placed in predrilled 0.5-ft- (0.2-m-)diameter holes on 5-ft 
(1.5-m) centers throughout an extensive slide area, was reported by Handy and 
Williams ( 1967 ). The ion exchange technique, which consists of treating the clay 
minerals along the plane of potential movement with a concentrated chemical, 
was reported by Smith and Forsyth ( 1971 ). 

 Cement grouting has been used in England for the stabilization of embank-
ments and cuttings (Zaruba and Mencl  1969 ). Experience shows that this method 
yields fi ne results with rather shallow landslides in stiff materials such as clay-
shales, claystones, and stiff clays, which break into blocks separated by distinct 
fi ssures. The method is actually a mechanical stabilization of the slope by fi lling 
the fi ssures with cement grout rather than changing the consistency of soil mass, 
because the cement mortar cannot enter into the soil mass. Cement grout was 
also used for a 300-ft (90-m) benched cut slope on I-40 along the Pigeon River in 
North Carolina (Schuster and Krizek  1978 ). Large volumes of cement grout were 
injected into the voids of broken rubble and talus debris to stabilize the slope. 
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 The electro-osmosis technique has the same fi nal effect as subsurface drain-
age but differs in that water is drained by an electric fi eld rather than by gravity. 
The loss of pore water causes consolidation of the soil and a subsequent increase 
in shear strength. Casagrande et al. ( 1961 ) described the use of this method to 
stabilize a cut slope during the construction of a bridge foundation on the Trans-
Canada Highway in Ontario. Casagrande et al. ( 1981 ) also reported on the use 
of electro-osmosis to stabilize an excavation in British Columbia. 

 The use of thermal treatments for preventing slides was fi rst reported by Hill 
( 1934 ). Since 1955, the Russians have experimented with and reported on the 
success of thermal treatment on plastic loess soils. High temperatures cause a 
permanent drying of the embankments and cut slopes. Beles and Stanculescu 
( 1958 ) described the use of thermal methods to reduce the in situ water contents 
of heavy clay soils in Romania. Applications to highway landslides and unstable 
railroad fi lls also were cited.   

  5.4     Selection of Methods for Stabilization 

 Not all stabilization methods as described are appropriate for every type of slope 
failure. For instance, slope fl attening and berms, in conjunction with surface 
drainage, are often the fi rst methods to be considered. However, if there is no 
space to allow the use of a fl atter slope, tieback walls or slope reinforcements by 
soil nails or geosynthetics are often the solution to the stability problem. Although 
retaining walls also can be used for small slides, they are not effective for large 
slides. If the water table is high, subsurface drainage is a very effective and rapid 
method for mitigating slides. There are no hard and fast rules for prescribing the 
treatment of slides. Many slides result from the combination of several causes, 
so the most economical and effective means of treating slopes consist of a com-
bination of several methods. In choosing the methods that are technically pos-
sible, the following factors need to be considered.

   1.      When a slide occurs, it is necessary to determine the purpose of stabiliz-
ing the slope: whether to prevent further movements or to restore the 
load-carrying capacity. For example, an embankment may fail because of 
poor compaction and the infi ltration of surface water. If diversion ditches 
are constructed to intercept surface water, the slope surface is graded and 
compacted to facilitate drainage, and all the cracks and fi ssures are sealed 
properly, the movements and the slope may become stable. Conversely, 
the restoration of an embankment to support a pavement or structure will 
be much more diffi cult, especially when the ground has been disrupted 
by large movements already.  

  2.      The time required to complete the repair work may dictate the stabilizing 
methods to be used. If the work must be completed within a short time, 
an expeditious method that can be undertaken without delay may be 
considered as the most appropriate. If the repair work is not urgent and 
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can be delayed, more studies should be made so that a less expensive 
method may be devised. However, these long and laborious studies 
should not delay the requisite measures that obviously must be taken, as 
the treatment of active landslides is always a contest with time. In sched-
uling stability work, weather conditions always should be taken into ac-
count. In the northern part of the United States, extensive operations are 
very diffi cult, or even impossible, in winter when the slide areas may be 
frozen or covered by snow. It may be better to postpone some operations 
until spring or more favorable weather conditions.  

  3.      Site accessibility and conditions may limit the methods of stabilization. In 
mountainous areas with only small roads, methods involving the use of 
heavy equipment might not be employed. Limitation of the right of way 
and adjacent facilities may require the use of retaining structures, soil re-
inforcements, or tieback walls.  

  4.      The total cost of stabilization must be reasonable and within the limit of 
fi nancial resources. The total cost should include the stabilizing system 
itself, right of way, temporary and permanent easements, disposal of un-
suitable materials, and drainage. If the total cost exceeds the benefi ts, less 
expensive methods should be used.  

  5.      Other factors to be considered include safety, availability of materials and 
equipment, aesthetics, environmental impact, and political issues.     

  Summary 

   1.      Before taking any remedial measures, a fi eld investigation of the slide 
area must be made. The scope of fi eld investigation should include to-
pography, geology, water, weather, history of slope changes, and shape of 
the sliding surface.  

  2.      The distinction between translational and rotational slides is useful in 
planning control measures. A translational slide may progress indefi nite-
ly if the surface on which it rests is suffi ciently inclined, as long as the 
shear resistance along this surface remains lower than the more or less 
constant driving force. A rotational slide, if the surface of rupture dips 
into the hill at the foot of the slide, tends to restore equilibrium in the 
unstable mass, so the driving moment during movement may decrease, 
and the slide may stop moving.  

  3.      When a slide takes place, it is necessary to determine the cause of the 
slide so that proper remedial measures can be taken to correct it. The de-
tection of the cause may require continuous observations, and a fi nal de-
cision cannot be made within a short time. Because water is the major 
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cause that may initiate a slide or intensify a slide after it has occurred, 
some initial remedial measures should be taken as soon as possible, such 
as capturing and draining all the surface water that fl ows into the slide 
area, pumping the groundwater out from all wells in the slide area, dewa-
tering all the undrained depressions, and fi lling and tamping all open 
cracks to prevent the infi ltration of surface water.  

  4.      One of the simplest ways to stabilize a slope is to fl atten it by removing 
the weight from the top and placing it at the bottom. The placement of a 
buttress as a counterweight near the toe will reduce the overturning mo-
ment and increase the factor of safety. The use of a high-strength buttress 
will not only reduce the overturning moment and increase the resisting 
moment but also protect the slope surface from erosion.  

  5.      Of all the possible methods for correcting slides, proper drainage of water 
is probably the most important. Good surface drainage is recommended 
strongly as part of treatment for any slide. Every effort should be made to 
ensure that surface waters are carried away from a slope by intercepting 
trenches or division ditches. Because groundwater is one of the major 
causes of slope instability, subsurface drainage is a very effective reme-
dial measure. Methods frequently used are the installation of drainage 
layers, trench drains, horizontal drains, vertical drains, drainage tunnels 
or galleries, and wellpoints.  

  6.      The use of retaining walls to correct slides often is occasioned by the lack 
of space necessary for the development of the slope to a full length. Al-
though the methods of stability analysis can be applied to determine the 
global factor of safety for a slope with failure surfaces below and behind 
a wall, the design of a wall requires special considerations to ensure that 
the wall itself is stable against sliding, overturning, and bearing capacity 
failures. A special type of retaining wall is the tieback wall, which carries 
the backfi ll forces on the wall by a “tie” system to transfer the imposed 
load to an area behind the slide mass where satisfactory resistance can be 
established. In particularly serious cases, a retaining wall might not be 
suffi cient, making it necessary to construct a bridge or a tunnel to avoid 
slides.  

  7.      Soil reinforcements, which include mechanically stabilized earth (MSE) 
walls, reinforced soil slope (RSS), and soil nailing walls, also can be 
used as remedial measures. One of the greatest advantages of using soil 
reinforcements is their fl exibility and capability to absorb deformation 
due to poor subsoil condition in the foundation. Also, based on observa-
tions in seismically active zones, these structures have demonstrated a 
higher resistance to seismic loading than do rigid concrete structures. In 
addition to global stability to check the factors of safety over the entire 
slope and the adequacy of the reinforcements provided, these reinforced 
soil structures also should be treated as gravity retaining walls and 
designed by considering the external stability of the wall, including 
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sliding, overturning, bearing capacity, and position of the resultant 
within the middle third of the base.  

  8.      Recorded attempts to use driven steel or wooden piles of nominal diam-
eter to retard or prevent landslides seldom have been successful. Unless 
the slide is shallow, such piles are incapable of providing adequate shear 
resistance. For large and deep-seated slides, a pile wall system consisting 
of a retaining wall supported by large-cylinder piles can be used. The 
cast-in-place cylinder piles are designed as cantilevers to resist the full 
earth thrust imposed by the soil.  

  9.      The reforestation of a slope is an important task in corrective treatment. 
Forestation is most benefi cial for shallow slides. Slides with deep-lying 
failure surfaces cannot be detained by vegetation, although vegetation 
can lessen the infi ltration of surface water into the slope and thus contrib-
ute indirectly to the stabilization of the slide. Biotechnical stabilization 
combines the use of vegetation and other mechanical reinforcements, 
such as live-cut stems and branches, to prevent surfacial erosion and ar-
rest shallow mass movement. In addition to the immediate effect on sta-
bilization, secondary stabilization will occur as the result of rooting along 
the length of the buried stems. It also was found that alternate layers of 
earth and live brush could intercept water and divert it to the slope sur-
face, thus reducing pore pressures in the process.  

  10.      If the water in the slope cannot be drained by subsurface drainage, meth-
ods used for hardening of soils may be considered. These methods in-
clude chemical treatments such as placing quicklime in predrilled holes, 
using the ion exchange technique to treat the clay minerals along the 
plane of potential movement with a concentrated chemical, cement grout-
ing by fi lling the fi ssures of stiff materials with cement grout, electro-
osmosis by applying an electric fi eld to drain out the subsurface water, 
and thermal treatment by heating in situ soils to reduce water content.  

  11.      Not all stabilization methods are appropriate for every type of slope fail-
ure. There are no hard and fast rules for prescribing the treatment of slides. 
Many slides result from a combination of several causes, so the most eco-
nomical and effective means of treating slopes consists of a combination 
of several methods. In choosing the methods that are technically possible, 
the major factors to be considered include the purpose of stabilization, 
the time required to complete the work, site accessibility and conditions, 
and total cost. Other factors to be considered include safety, availability of 
materials and equipment, aesthetics, environmental impact, and political 
issues.         

c05.indd   140c05.indd   140 12/18/2013   7:07:38 PM12/18/2013   7:07:38 PM



    Part 2 

  Methods of Stability 
Analysis   

c06.indd   141c06.indd   141 12/16/2013   1:37:09 PM12/16/2013   1:37:09 PM



This page intentionally left blank 



143

    Chapter 6 

  Simplifi ed Methods for 
Plane Failure Surfaces    

       This chapter presents several simplifi ed methods for the stability analysis of 
plane failure surfaces. These methods are called simplifi ed because of the fol-
lowing limitations: (1) only force equilibrium is satisfi ed and the requirement 
for moment equilibrium is ignored; (2) the effect of seepage can be consid-
ered only approximately by using a pore pressure ratio rather than the more 
precise phreatic surface; and (3) the number of failure planes is limited to three 
so that solutions can be obtained without the service of a computer. To remove 
these stated limitations, the method of slices described in Chapter 8 should be 
used instead. 

  6.1     Infi nite Slopes 

 Fig.  6-1  shows an infi nite slope underlain by a rock surface with an angle of 
inclination,  β . The slope is considered as infi nite, because it has a length much 
greater than the depth,  d . If a free-body of width  b  is taken, the forces on the two 
vertical sides are the same, because every plane, which has the same infi nite 
distances to both top and bottom, should be considered the same with the same 
side force. Because the side forces neutralize each other, the only forces to be 
considered are the weight,  W , the seismic force,  C s W  ( C s   is the seismic coeffi cient), 
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the effective normal force,  N ′  , and the neutral force,  r u W  cos  β , where  r u   is the 
pore pressure ratio. Note that the use of cos  β  to compute the neutral force, 
instead of sec  β , is based on the normal method explained in Section 2.4.1. For 
an infi nite slope with both phreatic and failure surfaces inclined at the same 
angle  β , the use of  r u W  cos  β  as the neutral force theoretically is correct, as 
explained in Section 4.1.3. 

  In all the derivations that follow, only the effective stress analysis will be 
presented. The equations also can be applied to a total stress analysis by simply 
replacing the effective strength parameters by the total strength parameters. It 
will be shown that for a soil with a cohesion and a friction angle, the factor of 
safety decreases with the increase in  d , so the most critical failure surface is paral-
lel to the slope along the bottom of the soil overburden. The factor of safety is 
defi ned as a ratio of the resistant force due to the shear strength of soil along the 
failure surface to the driving force due to the weight of the sliding mass. The 
resisting force is composed of two parts: one due to cohesion and equal to 
 c ′ b  sec  β , and the other due to friction and equal to  N ′   tan  ϕ  ′ , where  N ′   is the effec-
tive force normal to the failure plane. Consider force equilibrium normal to the 
failure surface,

  ′ = − − ′N W r Cu s[( )cos sin ]tan1 β β φ       (6-1)   

 The driving force is always equal to the components of weight and seismic 
force parallel to the failure surface, or  W  sin  β   +   C s W  cos  β . Therefore, the factor 
of safety,  F , can be written as

  F
c b W r C

W C
u s

s

= ′ + − − ′
+

sec [( )cos sin ]tan
(sin cos )

β β β φ
β β

1
      (6-2)   

  Fig. 6-1.      Analysis of infi nite slope    
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 Replacing  W  by  γ  bd ,

  F

c
d

r C

C

u s

s

=

′ + − − ′

+
γ

β β β φ

β β

sec [( )cos sin ]tan

(sin cos )

1
      (6-3)  

in which  γ   =  total unit weight of the soil and  d   =  depth of the failure surface 
below the slope surface. 

 Eq.  (6-3)  is applicable to an infi nite slope possessing both a cohesion and an 
angle of internal friction. Note that when there is no seepage,  r u    =  0, and when 
water fl ows along the surface of the slope,  r u    =   γ   w  / γ   ≅  0.5. For the most general 
case where water fl ows parallel to and at a depth of  d w   below the slope surface, 
from Eq. (4-17),

  r
d d

d
d
d

u
w w w w= − = −⎛

⎝
⎞
⎠

γ
γ

γ
γ

( )
1       (6-4)   

 It can be seen from Eqs.  (6-3)  and  (6-4)  that  F  decreases with the increase in 
 d . For a cohesionless material not subjected to earthquake, or  c ′    =  0 and  C s    =  0, 
Eq.  (6-3)  can be simplifi ed to

  F ru= −( ) ′
1

tan
tan

φ
β

      (6-5)   

 Eq.  (6-5)  shows that the factor of safety for a cohesionless material is inde-
pendent of  d , so every plane parallel to the slope is a critical plane and has the 
same factor of safety. However, this statement is true only when  r u    =  0 or 0.5, or 
when a pore pressure ratio is assumed a priori, regardless of the location of the 
failure surface. If there is a phreatic surface within the soil overburden,  r u   will 
increase with the increase in  d , as indicated by Eq.  (6-4) , so the most critical failure 
plane is still at the bottom above the rock surface. 

 It is interesting to note that the failure of a cohesionless soil in an infi nite 
slope is similar to the dumping of sand from a dump truck. When sand is 
dumped to form a pile, the particles on the surface will roll down the slope, 
indicating a plane failure. This type of failure also can be considered as a cylin-
drical failure with a center at infi nity. In an effective stress analysis, the effective 
cohesion,  c ′  , is usually quite small but should not be assigned 0. If  c ′    =  0, the soil 
is cohesionless and the most critical failure surface is a shallow circle with a very 
large radius, which barely scratches the surface of the slope. To design a homo-
geneous embankment with zero cohesion, it is not necessary to use any computer 
software to determine the minimum factor of safety, because the most critical 
failure surface is a shallow circle and the minimum factor of safety simply can 
be computed by Eq.  (6-5) . 
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  Example 6.1            Fig.  6-2  is an example of an infi nite slope with a slope angle of 16°, a 
soil overburden of 10 ft (3.1 m), and a phreatic surface as shown. Assuming a soil 
unit weight of 125 pcf (19.7 kN/m 3 ) and a seismic coeffi cient of 0.1, determine both 
the static and the seismic factors of safety for the following two cases: (a) the soil has 
an effective cohesion of 200 psf (9.6 kPa) and an effective friction angle of 30°, and 
(b) the soil is cohesionless with an effective friction angle of 30°.  

  Solution     Because 50% of the sliding mass is under water, from Eq. (4-16), 
 r u    =  0.25. 

 (a) With  c ′    =  200 pcf,  ϕ  ′   =  30°,  γ   =  125 pcf,  β   =  16°, and  C s    =  0, from Eq.  (6-3) , the 
static factor of safety with  C s    =  0 is

  
F = ×

⎛
⎝

⎞
⎠ ° + −( ) ° °

°
=

200
125 10

16 1 0 25 16 30

16
0 583
0 27

sec . cos tan

sin
.
. 66

2 112= .
      

 If  C s    =  0.1, a term involving  C s   is added to both the numerator and denomina-
tor, so the seismic factor of safety is

  F = − × ° °
+ × °

= =0 583 0 1 16 30
0 276 0 1 16

0 567
0 372

1 524
. . sin tan

. . cos
.
.

.       

 (b) With  c ′    =  0 pcf,  ϕ  ′   =  30°,  γ   =  125 pcf,  β   =  16°, and  C s    =  0, from Eq.  (6-3) , the 
static factor of safety is

  F = −( ) ° °
°

= =1 0 25 16 30
16

0 416
0 276

1 507
. cos tan

sin
.
.

.       

 If  C s    =  0.1, from Eq.  (6-3) , the seismic factor of safety is

  F = − × ° °
+ × °

= =0 416 0 1 16 30
0 276 0 1 16

0 400
0 372

1 075
. . sin tan

. . cos
.
.

.            

  Fig. 6-2.       Example 6.1     
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  6.2     Triangular Cross Section 

 Fig.  6-3  shows a triangular fi ll on a sloping surface. It is assumed that the failure 
plane is along the bottom of the fi ll. Good examples for this type of failure are 
the spoil banks created by surface mining, where the original ground surface is 
not properly scalped, and a weak layer exists at the bottom of the fi ll. In addition 
to the vertical weight, a horizontal seismic force equal to  C s W  also is applied. 

  Similar to Eq.  (6-2)  for an infi nite slope, except for the change of notation 
from  β  to  α  and the replacement of  b  sec  β  by  H  csc  α , the factor of safety can be 
written as

  F
c H W r C

W C
u s

s

= ′ + − − ′
+

csc [( )cos sin ]tan
(sin cos )

α α α φ
α α

1
      (6-6)  

  and W H= −( )1
2

2γ β α β αcsc csc sin       (6-7)  

in which  γ   =  unit weight of soil and  β   =  angle of the outslope. Substituting  W  
from Eq.  (6-7)  into Eq.  (6-6) ,

  F

c
H

r C

C

u s

s

=
− ′⎛

⎝⎜
⎞
⎠⎟

+ − − ′

+

2 1sin csc( ) [( )cos sin ]tan

sin c

β β α
γ

α α φ

α oosα
      (6-8)   

 If the fi ll width,  W f  , is given instead of the height,  H ,

  F
c W W r C

W C
f u s

s

=
′ − + − − ′

+
sin csc( ) [( )cos sin ]tan

(sin cos )
β β α α α φ

α α
1

      (6-9)  

in which

  W Wf= −1
2

2γ α β β αsin sin csc( )       (6-10)   

  Fig. 6-3.      Plane failure of triangular fi ll    
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 Substituting  W  from Eq.  (6-10)  into Eq.  (6-9) ,

  F

c
W

r C

C
f

u s

s

=

′⎛
⎝⎜

⎞
⎠⎟

+ − − ′

+

2 1csc [( )cos sin

sin cos

α
γ

α α φ

α α

]tan
      (6-11)   

 Eq.  (6-11)  shows that the factor of safety is independent of the angle of out-
slope,  β , when the fi ll width,  W f  , is given, because when  β  changes, both the 
resisting force and the driving force change in the same proportion. 

  Example 6.2            In Fig.  6-3 , given  H   =  40 ft (12.2 m),  α   =  20°,  β   =  36°,  γ   =  125 pcf 
(19.7 kN/m 3 ),  c ′    =  160 psf (7.7 kPa),  ϕ  ′   =  24°, and  r u    =  0.05, determine both the static 
factor of safety with  C s    =  0 and the seismic factor of safety with  C s    =  0.1.  

  Solution     From Eq.  (6-8)  with  C s    =  0, the static factor of safety is

  
F =

° ° − °
×

⎛
⎝

⎞
⎠ + − ° °2 36 36

160
125 40

1 0 05sin csc( ) ( . )cos 20 tan 24

sin

20

220
0 534
0 342

1 561
°

= =.
.

.
      

 For  C s    =  0.1, a term involving  C s   is added to both the numerator and denomi-
nator, so the seismic factor of safety is

  F = − × ° °
+ × °

= =0 534 0 1 20
0 342 0 1 20

0 519
0 436

1 190
. . sin tan

. . cos
.
.

.
24

          

  6.3     Trapezoidal Cross Section 

 Fig.  6-4 (a) shows the forces acting on a trapezoidal fi ll. An example of this type 
is a hollow fi ll where the top part of the fi ll is placed on a natural slope and the 

  Fig. 6-4.      Plane failure along bottom of trapezoidal fi ll    

c06.indd   148c06.indd   148 12/16/2013   1:37:10 PM12/16/2013   1:37:10 PM



Simplifi ed Methods for Plane Failure Surfaces 149

bottom part on a horizontal ground. If the natural slope and original ground 
surfaces are not properly scalped, plane failures will occur along the bottom of 
the fi ll. 

  The factor of safety with respect to failure along the bottom of the fi ll can be 
determined by dividing the fi ll into two sliding blocks. Assuming that the force, 
 P , acting between the two blocks is horizontal, and that the shear force has a 
factor of safety,  F , four equations (two from each block) can be determined from 
statics to solve the four unknowns,  P ,  F ,  ′N1   , and  ′N2   , where  ′N1   , and  ′N2    are the 
effective forces normal to the failure planes. It has been found that the assump-
tion of a horizontal  P , or neglecting the friction between the two blocks, always 
results in a smaller factor of safety and is therefore on the safe side. 

 From the equilibrium of forces on the lower block in both the vertical and 
horizontal directions, as shown in Fig.  6-4 (b),

  ′ = −N r Wu1 11( )       (6-12)  

  P C W
c BH N

F
s+ = ′ + ′ ′

1
1 tan φ

      (6-13)  

in which  W  1   =  weight of the lower block and  B  is the ratio between the base 
width and height. Substituting Eq.  (6-12)  into Eq.  (6-13) ,

  P
c BH r W

F
C Wu

s= ′ + − ′ −( ) tan1 1
1

φ
      (6-14)   

 The equilibrium of forces on the upper block in both normal and tangential 
to the failure plane gives

  ′ = + − −N P W r Cu s2 2 1sin [( )cos sin ]α α α       (6-15)  

  W C P
c H N

F
s2

2[sin cos ] cos
csc tanα α α α φ+ = + ′ + ′ ′

      (6-16)  

in which  W  2   =  weight of the upper block. Substituting Eqs.  (6-14)  and  (6-15)  
into Eq.  (6-16) , a quadratic equation can be obtained to solve the factor of 
safety,  F :

  a F a F a1
2

2 3 0+ + =       (6-17)  

in which

  a a C a as1 4 4 5= + +sin ( )cosα α       (6-18)  

  a
c
H

B r C a au s2 4 5
1

1= − ′ +⎛
⎝

⎞
⎠ + − − + ′⎧

⎨
⎩γ

α
α

α α φcos
sin

[( )cos sin ]( )tan ⎫⎫
⎬
⎭

      (6-19)  

  a B
c
H

r
a
B

u3
51= − ′ ′ + − ′⎡

⎣⎢
⎤
⎦⎥

sin tan ( ) tanα φ
γ

φ       (6-20)   
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  Fig. 6-5.      Two types of trapezoidal fi lls    

 For an irregular slope with  W  1  and  W  2  given,

  a
W
H

4
2
2

=
γ

      (6-21)  

  a
W
H

5
1
2

=
γ

      (6-22)   

 For type I fi ll, as shown in Fig.  6-5 (a),

  a
B

4

21
2

1 1= − −⎡
⎣⎢

⎤
⎦⎥tan

( tan )
tanα

β
β

      (6-23)  

  a B5
21

2
= tanβ       (6-24)   

  For type II fi ll, as shown in Fig.  6-5 (b),

  a4
1

2
=

tanα
      (6-25)  

  a B5
1

2
= −

tanβ
      (6-26)   

 Note that in using Eqs.  (6-21)  and  (6-22)  for irregular slopes, the weights  W  1  
and  W  2  must be calculated from measurements on the cross section. If the slope 
is uniform, as shown in Fig.  6-5 , either Eqs.  (6-23)  and  (6-24)  or Eqs.  (6-25)  and 
 (6-26)  may be used, depending on whether the fi ll is type I or type II. The type 
I fi ll, in which  B   ≤  cot  β , has a triangular lower block, whereas the type II fi ll, in 
which  B   >  cot  β , has a trapezoidal lower block. 
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  Example 6.3            A trapezoidal fi ll, with the dimensions shown in Fig.  6-6 , has a 
total unit weight,  γ , of 125 pcf (19.7 kN/m 3 ) and subjected to seepage with a pore 
pressure ratio,  r u  , of 0.05, and earthquake with a seismic coeffi cient,  C s  , of 0.1. 
Assuming plane failures along the bottom of the fi ll, where the soil has an effec-
tive cohesion,  c ′  , of 160 psf (7.7 kN/m 2 ) and an effective friction angle,  ϕ  ′ , of 24°, 
determine the seismic factor of safety.  

  Solution     The fi ll is type I, because it has a triangular cross section at the bottom. 
The base width is 460 ft and the height,  H , is 230 ft, or  B   =  460/230  =  2. With  β   =  
24°,  α   =  37°, and  B   =  2, from Eqs.  (6-23)  and  (6-24) ,

  a4
1
2

1
37

1 2 24
24

0 650=
°

− − °
°

⎡
⎣⎢

⎤
⎦⎥

=
tan

tan
tan

.
( )2

     

  a5
21

2
2 24 0 890= ° =( ) tan .       

 From Eqs.  (6-18)  to  (6-20) ,

  a1 0 65 37 0 1 0 65 0 89 37 0 514= ° + × + ° =. sin . ( . . )cos .      

  

a2
160

125 230
2 37

1
37

1 0 05 37

0 1 3

= −
×

° +
°

⎛
⎝

⎞
⎠ + − °{

−

cos
sin

[( . )cos

. sin 77 0 65 0 89 24

0 497

° + °}
= −

]( . . ) tan

.

     

  a3 2 37
160

120 230
1 0 05

0 89
2

0 10= − °
×

+ − °⎡
⎣⎢

⎤
⎦⎥

= −sin tan ( . )
.

tan .24 24 44       

 Thus, the quadratic equation becomes

  0 514 0 497 0 104 02. . .F F− − =       

  F = ± + × ×
×

= −0 497 0 497 4 0 514 0 104
2 0 514

1 144 0 182
2. ( . ) . .

.
. .or        

 Disregarding the negative value, the seismic factor of safety is 1.144.     

  Fig. 6-6.       Example 6.3     
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152 Slope Stability Analysis by the Limit Equilibrium Method

  6.4     Two Sliding Blocks 

 Fig.  6-7  shows a plane failure surface consisting of two sliding blocks. This type 
of failure rarely occurs unless a weak layer exists at the bottom of each block. 
There are a total of four unknowns ( P ,  ′N1   ,  ′N2   , and  F ), which can be solved by 
four equilibrium equations, two for each block. As in the normal method 
described previously, the total weight is used to compute the driving force and 
the submerged weight for the shear resistance. By resolving the forces in two 
directions, one parallel to and the other perpendicular to the failure plane at the 
bottom of each block, the following two equations are obtained for the lower 
block, or block 1:

  
′ + ′ ′ = + + −c L N

F
W C Ps d

1 1
1 1 1 1

tan
[sin cos ] cos( )

φ α α φ α       (6-27)  

  ′ = − − + −N W r C Pu s d1 1 1 1 11[( )cos sin ] sin( )α α φ α       (6-28)  

 in which  L   =  length of the failure plane,  α   =  angle of inclination of the failure 
plane, and  ϕ   d    =  developed angle of internal friction between the two blocks. The 
subscript 1 refers to the lower block. Substituting Eq.  (6-28)  into  (6-27)  and 
solving for  P ,

  P
c L W r C FW C

F
u s s= ′ + − − ′ − +1 1 1 1 1 1 11[( )cos sin ]tan [sin cos ]

cos
α α φ α α
(( ) sin( )tanφ α φ α φd d− − − ′1 1

      (6-29)   

 Similar to block 1,  P  for the upper block, or block 2, can be obtained by 
changing the subscript from 1 to 2 and changing the sign, because  P  in block 2 
is opposite in direction to that in block 1, or

 P
c L W r C FW C

F
u s s= − ′ + − − ′ − +2 2 2 2 2 2 21[( )cos sin ]tan [sin cos ]

co
α α φ α α
ss( ) sin( )tanφ α φ α φd d− − − ′2 2

      (6-30)   

  Fig. 6-7.      Plane failure with two sliding blocks    
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 Changing Eqs.  (6-29)  and  (6-30)  to simplifi ed forms and setting them equal,

  
a a F
a F a

b b F
b F b

1 2

3 4

1 2

3 4

−
−

= − −
−

      (6-31)   

 Solving Eq.  (6-31)  for  F , the following quadratic equation is obtained:

  aF bF c2 0+ + =       (6-32)   

 For ease of reference, expressions leading to the coeffi cients  a ,  b , and  c  are shown 
in Table  6-1 . 

   Example 6.4            Fig.  6-8  shows a fi ll divided into two sliding blocks. The soil at the 
bottom of the fi ll has an effective cohesion of 100 psf (4.8 kPa), an effective friction 
angle of 25°, and a unit weight of 125 pcf (19.7 kN/m 3 ). Given a pore pressure ra-
tio of 0.05 and a seismic coeffi cient of 0.1, determine the seismic factors of safety 
for  ϕ   d   of 0°, 17.2° (0.3 rad), and 34.4° (0.6 rad), respectively.  

  Solution     From the coordinates in Fig.  6-8 ,

    β   =  tan   − 1 (250/150)  =  31°  
   α  1   =  tan   − 1 (50/300)  =  9.5°  
   α  2   =  tan   − 1 [(150  −  50)/(470  −  300)]  =  30.5°  
   L  1   =  [(300) 2   +  (50) 2 ] 0.5   =  304.1 ft  
   L  2   =  [(470  −  300) 2   +  (150  −  50) 2 ] 0.5   =  197.2 ft    

 Table 6-1.      Coeffi cients of Quadratic Equation for Two Sliding Blocks  

a 1   =  c ′ L 1   +  W 1 [(1  −  r u )cos  α  1   −  C s  sin  α  1 ]tan  ϕ  ′ 
a 2   =  W 1 (sin  α  1   +  C s  cos  α  1 )

a 3   =  cos( ϕ  d   −   α  1 ) a  =  a 2 b 3   +  b 2 a 3 
a 4   =  sin( ϕ  d   −   α  1 )tan  ϕ  ′ 

b 1   =  c ′ L 2   +  W 2 [(1  −  r u )cos  α  2   −  C s  sin  α  2 ]tan  ϕ  ′ b  =   − (a 1 b 3   +  b 1 a 3   +  a 2 b 4   + b 2 a 4 )
b 2   =  W 2 (sin  α  2   +  C s  cos  α  2 )

b 3   =  cos( ϕ  d   −   α  2 ) c  =  a 1 b 4   +  b 1 a 4 
b 4   =  sin( ϕ  d   −   α  2 )tan  ϕ  ′ a F 2  +  b F  +  c  =  0

  Fig. 6-8.       Example 6.4     
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 Block 1 is divided into two triangles:

    AB  ft= + =[( ) ( ) ] ..150 250 291 52 2 0 5      
  Area of  ΔABC AB= × × × − = × × × ° − °0 5 0 5 291 5 304 1 31 9 51. sin( ) . . . sin( . )L β α    

 = 16 244, ft2      
   W  1   =  125  ×  (16,244  +  0.5  ×  100  ×  50)  =  2,343,000 lb    

 Block 2 is a right triangle:

    W  2   =  0.5  ×  100  ×  170  ×  125  =  1,062,500 lb    

 From Table  6-1 ,

    a  1   =  100  ×  304.1  +  2,343,000[(1  −  0.05)cos 9.5°  −  0.1  ×  sin 9.5°]tan 25°  =  1,036,074  
   a  2   =  2,343,000[sin 9.5°  +  0.1  ×  cos 9.5°]  =  617,793  
   b  1   =  100  ×  197.2  +  1,062,500[(1  −  0.05)cos 30.5°  −  0.1  ×  sin 30.5°]tan 25°  =  400,125  
   b  2   =  1,062,500[sin 30.5°  +  0.1  ×  cos 30.5°]  =  630,808    

 When  ϕ   d    =  0,

    a  3   =  cos( − 9.5°)  =  0.986  
   a  4   =  sin( − 9.5°)tan 25°  =   − 0.077  
   b  3   =  cos( − 30.5°)  =  0.862  
   b  4   =  sin( − 30.5°)tan 25°  =   − 0.237  
   a   =  617,793  ×  0.862  +  630,808  ×  0.986  =  1,154,506  
   b   =   − [1,036,074  ×  0.862  +  400,125  ×  0.986  +  617,793  ×  ( − 0.237)  +  630,808  ×  

( − 0.077)]  =   − 1,092,630  
   c   =  1,036,074  ×  ( − 0.237)  +  400,125  ×  ( − 0.077)  =   − 276,359    

 The quadratic equation is 1,154,506  F  2   −  1,092,630  F   −  276,359  =  0, or  F  2   −  0.946 
 F   −  0.239  =  0, so the solution is  F   =  1.153. 

 When  ϕ   d    =  17.2°,

    a  3   =  cos(17.2°  −  9.5°)  =  0.991  
   a  4   =  sin(17.2°  −  9.5°)tan 25°  =  0.0625  
   b  3   =  cos(17.2°  −  30.5°)  =  0.973  
   b  4   =  sin(17.2°  −  30.5°)tan 25°  =   − 0.107  
   a   =  617,793  ×  0.973  +  630,808  ×  0.991  =  1,226,243  
   b   =   − [1,036,074  ×  0.973  +  400,125  ×  0.991  +  617,793  ×  ( − 0.107)  +  630,808  ×   

  0.0625]  =   − 1,377,946  
   c   =  1,036,074  ×  ( − 0.107)  +  400,125  ×  0.0625  =   − 85,852    

 The quadratic equation is 1,226,243  F  2   −  1,377,946  F   −  85,852  =  0, or  F  2   −  1.124 
 F   −  0.070  =  0, so the solution is  F   =  1.183. 

 When  ϕ   d    =  34.4°,

    a  3   =  cos(34.4°  −  9.5°)  =  0.907  
   a  4   =  sin(34.4°  −  9.5°)tan 25°  =  0.196  
   b  3   =  cos(34.4°  −  30.5°)  =  0.998  
   b  4   =  sin(34.4°  −  30.5°)tan 25°  =  0.0317  
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   a   =  617,793  ×  0.998  +  630,808  ×  0.907  =  1,188,700  
   b   =   − [1,036,074  ×  0.998  +  400,125  ×  0.907  +  617,793  ×  0.0317  +  630,808  ×  0.196] 

 =   − 1,540,138  
   c   =  1,036,074  ×  0.0317  +  400,125  ×  0.196  =  111,268    

 The quadratic equation is 1,188,700  F  2   −  1,540,138  F   +  111,268  =  0, or  F  2   −  1.296 
 F   +  0.094  =  0, so the solution is  F   =  1.219. 
 It can be seen that the factor of safety increases with the increase in  ϕ   d   ,  which 

is as expected. These three  ϕ   d   angles of 0°, 17.2°, and 34.4° were selected because 
they are recommended by LEAME for use in the original Spencer method, as 
described in Section 8.4.  

    Example 6.5            If the fi ll in Example  6.4  has a friction angle of 32°, which is much 
greater than the 25° at the bottom, determine the factor of safety when tan  ϕ   d    =  
tan 32°/ F , that is, the same factor of safety is applied to the vertical interface be-
tween the two blocks as to the failure planes at the bottom.  

  Solution     The results of Example  6.5  are plotted in Fig.  6-9 , as indicated by the 
curve with three small circles. Based on the given relationship tan  ϕ   d    =  tan 32°/ F , 
the values of tan  ϕ   d   for  F  values of 1.1, 1.2, and 1.3 are computed and plotted as 
the curve with three crosses. The intersection of these two curves gives a safety 
factor of 1.203.  

  Fig. 6-9.       Example 6.5     

  It can be seen that the assumption of  ϕ   d    =  0 is more conservative and results 
in a safety factor of 1.153, which is smaller than the more theoretically correct 
value of 1.203. In view of the fact that the sliding block analysis only considers 
the force equilibrium while neglecting the moment equilibrium completely, it is 
better to be more conservative by using a lower factor of safety. Furthermore, 
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the use of  ϕ   d    =  0 eliminates the necessity of plotting the two curves shown in Fig. 
 6-9  and is more amenable to hand calculation. 

  Example  6.4  is repetitive and requires the computation of safety factors three 
times, one for each  ϕ   d  . After these tedious computations, Example  6.5  uses a 
graphical method, which is neither convenient nor accurate. It is much more 
effi cient to solve the same problems by a spreadsheet, as illustrated by the fol-
lowing example. 

  Example 6.6            Solve both Examples  6.4  and  6.5  by using a spreadsheet.  

  Solution     Table  6-2  is the spreadsheet for both Examples  6.4  and  6.5 . All the 
equations used for the spreadsheet are presented in Table  6-1 . Details about the 
spreadsheet are as follows:

   1.      The fi rst three rows include all the input parameters. For convenience, all 
angles in degrees are converted to radians in row 4 before calling any of 
the trigonometric functions. For example,  ϕ  in cell B4 is converted from 
degrees to radians by the expression RADIANS(D1). Row 5 contains the 
four parameters not affected by  ϕ   d   or the factor of safety.  

  2.      Rows 6 to 18 give the solutions to Example  6.4 , and rows 19 to 23 to Ex-
ample  6.5 . The most important part, which requires much time to work 
out, is rows 7 to 10. Once these rows are completed, they can be copied 
and pasted repeatedly three times with only slight changes, if needed.  

  3.      Cell D7 is the angle of internal friction between the two blocks, which 
may not be equal to that along the failure surface at the bottom of the fi ll. 
The expression for  ϕ   d   in cell A9 is ATAN(TAN(RADIANS(D7))/H7) so, if 
the assumed factor of safety in cell H7 is 1, D7 is the given developed 
angle of internal friction between the two blocks, such as the given 0, 
17.2°, and 34.4° in Example  6.4 , but expressed in terms of radians. After 
A9 is determined, a 3  in cell B9 can be determined by COS(A9-D$4). Be-
cause cell B9 will be copied to different rows but not to different columns, 
a $ sign must be placed before row 4 so that row 4 will not be changed 
when copied. The same should be applied to other variables, such as var-
iable  a  in cell F9 can be expressed as H$2*D9 + H$3*B9. Any variables with 
a row number of less than 6 must have a $ sign on the row number. The 
computed factor of safety in cell H10 is the solution for Example  6.4  with 
 ϕ   d    =  0.  

  4.      To fi nd the factors of safety in Example  6.4  for other values of  ϕ   d  , simply 
change the value in cell D11 to 17.2 and that in cell D15 to 34.4, and the 
computed factor of safety will appear automatically.  

  5.      To fi nd the factor of safety for Example  6.5 , change the value in cell D20 
to 32, which is the given angle of internal friction of the fi ll. By trial and 
error, an assumed safety factor of 1.203, exactly equal to the computed 
factor of safety, can be easily obtained.        
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  6.5     Three Sliding Blocks 

 Fig.  6-10  shows a plane failure surface consisting of three sliding blocks. There 
are a total of six unknowns ( P  1 ,  P  2 ,  ′N1    ,  ′N2    ,  ′N3    , and factor of safety,  F ), which 
can be solved by six equilibrium equations, two for each block. Blocks 1 and 2 
are the same as the two sliding blocks shown in Fig.  6-7 , except that  P  is replaced 
by  P  1  or  P  2 , so Eq.  (6-29)  can still be applied and written in the following simpli-
fi ed forms:

   P
a a F
a F a

1
1 2

3 4

= −
−

      (6-33)  

 Table 6-2.      Spreadsheet for Solving Examples  6.4  and  6.5   

A B C D E F G H

1 c in psf  =  100  ϕ  in deg  =  25 Cs  =  0.1 ru  =  0.05

2 W1 in lb  =  2343000 L1 in ft  =  304.1  α 1 in deg  =  9.5

3 W2 in ib  =  1062500 L2 in ft  =  197.2  α 2 in deg  =  30.5

4  ϕ  in rad  =  0.436332  α 1 in rad  =  0.165806  α 2 in rad  =  0.532325

5 a 1   =  1036074 a 2   =  617793 b 1   =  400125 b 2   =  630808

6   Example 6.4  

7   ϕ  between blocks in deg  =   0 Assumed factor of safety, F  =  1.000

8  ϕ  d a 3 a 4 b 3 b 4 a b c

9 0 0.986286  − 0.07696 0.861629  − 0.236669 1154465  − 1092588  − 276001

10  Computed factor of safety, F  =   1.154

11   ϕ  between blocks in deg  =   17.2 Assumed factor of safety, F  =  1.000

12  ϕ  d a 3 a 4 b 3 b 4 a b c

13 0.300197 0.990983 0.062479 0.973179  − 0.107274 1226343  − 1377941  − 86144

14  Computed factor of safety, F  =   1.183

15   ϕ  between blocks in deg  =   34.4 Assumed factor of safety, F  =  1.000

16  ϕ  d a 3 a 4 b 3 b 4 a b c

17 0.600393 0.907044 0.196332 0.997684 0.031716 1188533  − 1540047 111418

18  Computed factor of safety, F  =   1.219

19   Example 6.5  

20   ϕ  between blocks in deg  =   32 Assumed factor of safety, F  =  1.203

21  ϕ  d a 3 a 4 b 3 b 4 a b c

22 0.479067 0.951334 0.143699 0.998582  − 0.024823 1217026  − 1490568 31779

23  Computed factor of safety, F  =   1.203
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  Fig. 6-10.      Plane failure with three sliding blocks    

  P
b b F
b F b

2
1 2

3 4

= −
−

      (6-34)   

 The resultant of the forces on both sides of block 3 is  P  3  and can be obtained 
from Eq.  (6-29)  by simply changing all the subscripts to 3:

 P
c L W r C FW C

F
u s s

3
3 3 3 3 3 3 31= ′ + − − ′ − +[( )cos sin ]tan (sin cos )

co
α α φ α α
ss( ) sin(φ α φ α φd d− − − ′3 3 )tan

      (6-35)   

 To satisfy force equilibrium  P  2   +   P  1   +   P  3   =  0, or in simplifi ed forms,

  
b b F
b F b

a a F
a F a

c c F
c F c

1 2

3 4

1 2

3 4

1 2

3 4

0
−

−
+ −

−
+ −

−
=       (6-36)   

 After simplifi cation, the following cubic equation is obtained:

  aF bF cF d3 2 0+ + + =       (6-37)   

 Expressions for these coeffi cients are shown in Table  6-3 . Eq.  (6-37)  can be 
solved by trial and error, as illustrated by the following example. 

   Example 6.7            Fig.  6-11  shows a fi ll consisting of three sliding blocks. The soil at 
the bottom of the fi ll has a cohesion of 160 psf (7.7 kPa) and a friction angle of 
24°. Assuming that the unit weight of the fi ll is 125 pcf (19.7 kN/m 3 ), the forces 
between blocks are horizontal, and there is no seepage, determine the static factor 
of safety for plane failure.  
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Simplifi ed Methods for Plane Failure Surfaces 159

 Table 6-3.      Coeffi cients of Cubic Equation for Three Sliding Blocks  

a 1   =  c ′ L 1   +  W 1 [(1  −  r u )cos  α  1   −  C s  sin  α  1 ]tan  ϕ  ′ 

a 2   =  W 1 (sin  α  1   +  C s  cos  α  1 )

a 3   =  cos( ϕ  d   −   α  1 )

a 4   =  sin( ϕ  d   −   α  1 )tan  ϕ  ′ 

b 1   =  c ′ L 2   +  W 2 [(1  −  r u )cos  α  2   −  C s  sin  α  2 ]tan  ϕ  ′ 

b 2   =  W 2 (sin  α  2   +  C s  cos  α  2 )

b 3   =  cos( ϕ  d   −   α  2 )

b 4   =  sin( ϕ  d   −   α  2 )tan  ϕ  ′ 

c 1   =  c ′ L 3   +  W 3 [(1  −  r u )cos  α  3   −  C s  sin  α  3 ]tan  ϕ  ′ 

c 2   =  W 3 (sin  α  3   +  C s  cos  α  3 )

c 3   =  cos( ϕ  d   −   α  3 )

c 4   =  sin( ϕ  d   −   α  3 )tan  ϕ  ′ 

a  =  a 2 b 3 c 3   +  a 3 b 2 c 3   +  a 3 b 3 c 2 

b  =   − (a 1 b 3 c 3   +  a 2 b 3 c 4   +  a 2 b 4 c 3   +  a 3 b 1 c 3   +  a 3 b 2 c 4   +  a 3 b 3 c 1   +  a 3 b 4 c 2   +  a 4 b 2 c 3   +  a 4 b 3 c 2 )

c  =  a 1 b 3 c 4   +  a 1 b 4 c 3   +  a 2 b 4 c 4   +  a 3 b 1 c 4   +  a 3 b 4 c 1   +  a 4 b 1 c 3   +  a 4 b 2 c 4   +  a 4 b 3 c 1   +  a 4 b 4 c 2 

d  =   − (a 1 b 4 c 4   +  a 4 b 1 c 4   +  a 4 b 4 c 1 )

a F 3   +  b F 2   +  c F  +  d  =  0

  Solution     From the coordinates shown in the fi gure,

 α  1   =  tan   − 1 (40/300)  =  7.6°  L  1   =  [(40) 2   +  (300) 2 ] 0.5   =  302.7 ft
 α  2   =  tan   − 1 (120/150)  =  38.7°  L  2   =  [(120) 2   +  (150) 2 ] 0.5   =  192.1 ft
 α  3   =  tan   − 1 (40/100)  =  21.8°  L  3   =  [(40) 2   +  (100) 2 ] 0.5   =  107.7 ft
 W  1   =  0.5  ×  300  ×  110  ×  125  =  2,062,500 lb
 W  2   =  0.5  ×  150  ×  120  ×  125  =  1,125,000 lb
 W  3   =  0.5  ×  100  ×  (110  +  120)  ×  125  =  1,437,500 lb

  Fig. 6-11.       Example 6.7     
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160 Slope Stability Analysis by the Limit Equilibrium Method

 From Table  6-3 ,

    a  1   =  160  ×  302.7  +  2,062,500  ×  cos 7.6°  ×  tan 24°  =  958,650  
   b  1   =  160  ×  192.1  +  1,125,000  ×  cos 38.7°  ×  tan 24°  =  421,640  
   c  1   =  160  ×  107.7  +  1,437,500  ×  cos 21.8°  ×  tan 24°  =  611,478  
   a  2   =  2,062,500  ×  sin 7.6°  =  272,779  
   b  2   =  1,125,000  ×  sin 38.7°  =  703,398  
   c  2   =  1,437,500  ×  sin 21.8°  =  533,841  
   a  3   =  cos(0  −  7.6°)  =  0.991  
  b 3   =  cos(0  −  38.7°)  =  0.780  
   c  3   =  cos(0  −  21.8°)  =  0.928  
   a  4   =  sin(0  −  7.6°)  ×  tan 24°  =   − 0.059  
   b  4   =  sin(0  −  38.7°)  ×  tan 24°  =   − 0.278  
   c  4   =  sin(0  −  21.8°)  ×  tan 24°  =   − 0.165  
   a   =  272,779  ×  0.780  ×  0.928  +  0.991  ×  703,398  ×  0.928  +  0.991  ×  0.780  ×  533,841 

 =  1,256,975  
   b   =   − (958,650  ×  0.780  ×  0.928  −  272,779  ×  0.780  ×  0.165  −  272,779  ×  0.278  ×  0.928 

 +  0.991  ×  421,640  ×  0.928  −  0.991  ×  703,398  ×  0.165  +  0.991  ×  0.780  ×  611,478 
 −  0.991  ×  0.278  ×  533,841  −  0.059  ×  703,398  ×  0.928  −  0.059  ×  0.780  ×  
533,841)  =   − 1,123,683  

   c   =   − 958,650  ×  0.780  ×  0.165  −  958,650  ×  0.278  ×  0.928  +  272,779  ×  0.278  ×  0.165 
 −  0.991  ×  421,640  ×  0.165  −  0.991  ×  0.278  ×  611,478  −  0.059  ×  421,640  ×  
0.928  +  0.059  ×  703,398  ×  0.165  −  0.059  ×  0.780  ×  611,478  +  0.059  ×  0.278 
 ×  533,841  =   − 631,210  

   d   =   − (958,650  ×  0.278  ×  0.165  +  0.059  ×  421,640  ×  0.165  +  0.059  ×  0.278  ×  611,478) 
 =   − 58,107    

 The cubic equation is 1,256,975  F  3   − 1,123,683  F  2   −  631,210  F   −  58,107  =  0, or

  Function( ) . . .F F F F= − − − =3 20 894 0 502 0 0462 0       (6-38)   

 Eq.  (6-38)  can be solved by trial and error:

   Assume  F   =  1.25, Function( F )  =   − 0.1175  
  Assume  F   =  1.30, Function( F )  =   − 0.0127  
  Assume  F   =  1.305, Function( F )  =   − 0.00137  
  Assume  F   =  1.306, Function( F )  =  0.00091    

 The factor of safety is between 1.305 and 1.306 and Function(1.306) is closer to 
0, so the factor of safety accurate to three decimal points is  F   =  1.306.  

   The same graphical method can be used to determine the factor of safety for 
tan  ϕ   d    =  tan  ϕ / F . However, to do this by hand is very hectic and prone to error. 
It is much easier to solve the problem using a spreadsheet. 

  Example 6.8            Check the results of Example  6.7  using a spreadsheet. If the angle of 
internal friction between the two blocks is 30° and the developed friction angle, 
 ϕ   d  , between the two blocks is  ϕ   d    =  tan   − 1  (tan 30°/ F ), determine the factor of safety.  
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  Solution     The top part of Table  6-4  is the spreadsheet for checking Example  6.6  
with  ϕ  between blocks  =  0°, or  ϕ   d    =  0°. All the computed values in the spreadsheet 
check very well with those in Example  6.7 . The factor of safety can be obtained by 
solving the following cubic equation, Function( F )  =   aF  3   +   bF  2   +   cF   +   d   =  0. By trial 
and error, it was found that when  F  is changed from 1.305 to 1.306, Function( F ) 
changes from negative to positive. Because Function( F ) is closer to 0 when  F   =  
1.306, the factor of safety is 1.306, which checks exactly with Example  6.6 . 

 The bottom part of Table  6-4  is the spreadsheet for this example with  ϕ  
between blocks  =  30° and  ϕ   d    =  tan   − 1 (tan 30°/ F ). When the assumed  F  is 1.369, 
Function( F ) is negative and, when the assumed  F  is 1.370, Function( F ) is positive. 
Because the positive value is closer to 0 than the negative, the factor of safety is 
1.370. 

 Table 6-4.      Spreadsheet Solution for Examples  6.6  and  6.7   

c in psf  =  160  ϕ  in deg  =  24 Cs  =  0 ru  =  0

W1 in lb  =  2062500 L1 in ft  =  302.7  α 1 in deg  =  7.6

W2 in ib  =  1125000 L2 in ft  =  192.1  α 2 in deg  =  38.7

W3in lb  =  1437500 L3 in ft  =  107.7  α 3 in deg  =  21.8

 ϕ  in rad  =  0.418879  α 1 in rad  =  0.132645  α 2 in rad  =  0.675442  α 3 in rad  =  0.380482

a 1   =  958649.5 b l   =  421639.8 c 1   =  611478

a 2   =  272778.8 b 2   =  703398 c 2   =  533841.3

  ϕ  between blocks in deg  =   0 Assumed factor of safety, F  =  1.000

 ϕ  d a 3 a 4 b 3 b 4 c 3 c 4 

0 0.991216  − 0.05888 0.78043  − 0.278376 0.928486  − 0.165344

a b c d F Function(F) F Function(F)

1257985  − 1124449  − 632310.7  − 58252.9 1.305  − 2578.578 1.306 285.2384

 When  ϕ  between blocks  =  0, F  =    1.306 

  ϕ  between blocks in deg  =   30 Assumed factor of safety, F  =  1.369

 ϕ  d a 3 a 4 b 3 b 4 c 3 c 4 

0.399099 0.964711 0.085635 0.962059  − 0.088733 0.999827 0.006054

a b c d

1436305  − 1936331  − 46707.36 4942.825 Function(F)  =  aF3  +  bF2  + cF  +  d  =   − 2830.108

  ϕ  between blocks in deg  =   30 Assumed factor of safety, F  =  1.370

 ϕ  d a 3 a 4 b 3 b 4 c 3 c 4 

0.398837 0.96478 0.08549 0.961988  − 0.08875 0.999832 0.005965

a b c d

1436337  − 1936017  − 47003.95 4931.959 Function(F)  =  aF3  +  bF2  + cF  +  d  =  155.583

 When  ϕ  between blocks  =  30, F  =    1.370 
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162 Slope Stability Analysis by the Limit Equilibrium Method

  Fig. 6-12.      Active and passive earth pressures, simple case 
 Note: 1 ft  =  0.305 m; 1 psf  =  47.9 kN/m 2 ; 1 pcf  =  157.1 N/m 3     

 The factor of safety for any slopes with three sliding blocks can be found by 
simply changing the input parameters on the fi rst four lines. In Fig.  6-11 , the fail-
ure surface at the bottom of block 1 is uphill, so  α  1  is positive. If the failure surface 
is downhill,  α  1  should be entered as negative.     

  6.6     Earth Pressure Method 

 The application of earth pressure theory can be illustrated by the simple example 
shown in Fig  6-12 . By assuming the active force,  P A  , and the passive force,  P P  , as 
horizontal, it can be proved easily by Rankine ’ s or Coulomb ’ s theory that the 
failure plane inclines at an angle of 45°  +   ϕ /2 for the active wedge and 45°  −   ϕ /2 
for the passive wedge. From basic soil mechanics,

  P H cHA A A= ° −⎛
⎝

⎞
⎠ − ° −⎛

⎝
⎞
⎠

1
2

45
2

2 45
2

2 2γ φ φ
tan tan       (6-39)  

  P H cHP P P= ° +⎛
⎝

⎞
⎠ + ° +⎛

⎝
⎞
⎠

1
2

45
2

2 45
2

2 2γ φ φ
tan tan       (6-40)  

in which  H A   and  H P   are the heights of the active and passive wedges, respectively. 
The factor of safety can be determined by

  F
cL W

P PA P

= +
−

tan φ
      (6-41)  

in which  L   =  length of failure surface at the middle wedge, and  W   =  weight of 
the middle wedge. 

  Although this case is very similar to the case of three sliding blocks, the factor 
of safety defi ned by Eq.  (6-41)  applies only to the middle wedge, whereas in the 
three-block analysis the factor of safety applies to all three blocks. Without the 
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reduction of shear strength by a factor of safety, the shear resistance is greater 
and so is the factor of safety. Consequently, the factors of safety computed by 
Eq.  (6-41)  are much larger than those by the limit equilibrium method. 

  Example 6.9            For the case shown in Fig.  6-12  with  c   =  160 psf (7.7 kPa),  ϕ   = 24°,  γ   =  
125 pcf (19.6 kN/m 3 ),  H A    =  50 ft (15.2 m),  H P    =  10 ft (3.0 m), and  L   =  80 ft (24.4 m), 
determine the factor of safety by Eq.  (6-41) .  

  Solution     From the dimensions shown in Fig.  6-12 ,  W   =  0.5  ×  80  ×  (10  +  50)  ×  125  =  
300,000 lb. From Eq.  (6-39) ,  P A    =  0.5  ×  125  ×  (50) 2   ×  (tan 33°) 2   −  2  ×  160  ×  50  ×  tan 33° 
 =  55,505 lb. From Eq.  (6-40) ,  P P    =  0.5  ×  125  ×  (10) 2   ×  (tan 57°) 2   +  2  ×  160  ×  10  ×  tan 57° 
 =  19,747 lb. From Eq.  (6-41) ,

  F = × + °
−

= =160 80 300 000 24
55 505 19 747

146 369
35 758

4 093
, tan

, ,
,
,

.        

 The factor of safety obtained from the three-block analysis based on  ϕ   d    =  0 is 
1.880, which is much smaller than the 4.093 obtained in this example.  

  This concept was employed also by Mendez ( 1971 ) for solving a more com-
plex case, as shown in Fig.  6-13 . A computer program was developed in which 
the inclination of the failure planes,  θ   A   and  θ   P  , and the inclination of earth pres-
sures,  α  A  and  α  P , can be varied. The wedge ABC is used to determine the active 
force,  P A   1 , in soil 1. The wedge CDF, together with the weight of BCDE and the 
active force  P A   1 , is used to determine the active force  P A   2  in soil 2. The same pro-
cedure is applied to the passive wedge, as shown by  P P   1 ,  P P   2 , and  α   P   in the fi gure. 
The factor of safety is determined by

  F
cL W P P

W P
A P P

A

= + + −( ) + −( )[ ]
+ −( ) −

cos sin sin tan
sin cos

θ α θ θ α φ
θ α θ

A

A PPP Pcos( )θ α−
      (6-42)  

  Fig. 6-13.      Active and passive earth pressures, complex case    
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164 Slope Stability Analysis by the Limit Equilibrium Method

 in which  P A    =   P A   1   +   P A   2 ,  P P    =   P P   1  +   P P   2 , and  θ  is the angle of inclination of failure 
surface at middle block. It was found that the factor of safety is a minimum when 
 α  A   =   α  P   =  0. 

 The U.S. Navy ( 1971 ) also suggests the use of active and passive earth pres-
sures for stability analysis but in a different way. Fig.  6-14 (a) shows a slope 
composed of three different soils. It is assumed that the earth pressures are hori-
zontal and the inclinations of failure planes in the active wedges are 45°  +   ϕ /2 
and those in the passive wedges are 45°  −   ϕ /2. 

  In this method,  P A   and  P P   are not considered as the driving force, because 
they include the shear resistance along the failure planes in the active and passive 
wedges. The factor of safety is defi ned as the ratio between the resisting force 
and the driving force. The driving force is caused only by the soil weight, exclud-
ing any shear resistance, which should be included in the resisting force. As 
shown by the force diagram in Fig.  6-14 (b), the active earth pressure applied 
to the central wedge is equal to  P A   when the shear resistance along the failure 
plane is considered, and is equal to  D A   when only the weight,  W A  , and the normal 
force,  R , are considered without the shear resistance. Therefore,  D A   should be 
taken as the driving force and the shear resistance,  R A  , as  D A    −   P A  . For each 
passive wedge, as shown in Fig.  6-14 (c),  R P    =   P P    −   D P  . The factor of safety is 
determined by

  F
R R c L W

D D
A P

A P

=
+ + +

−
∑ ∑

∑ ∑
3 3tan φ

      (6-43)  

in which  Σ  is the summation over all wedges. For the case shown in Fig.  6-14 (a), 
there are three active wedges and two passive wedges. 

  Example 6.10            Solve Example  6.9  by the U.S. Navy ’ s method using Eq.  (6-43) .

    W A    =  0.5   ×   50  ×  50  ×  tan(45°  −  12°)  ×  125  =  101,470 lb  
   D A    =  101,470  ×  tan(45°  +  12°)  =  156,250 lb  
   W P    =  0.5   ×   10  ×  10  ×  tan(45°  +  12°)  ×  125  =  9,624 lb  
   D P    =  9624  ×  tan(45°  −  12°)  =  6,250 lb    

 As determined in Example  6.9 ,  P A    =  55,505 lb and  P P    =  19,747 lb, so  R A    =  156,250 
 −  55,505  =  100,745, and  R P    =  19,747  −  6250  =  13,497 lb. From Eq.  (6-43) ,

  F = + + × + × °
−

=100 745 13 497 160 80 300 000 24
156 250 6 250

260 61, , , tan
, ,

, 11
150 000

1 737
,

.=        

 A safety factor of 1.737 by the U.S. Navy ’ s method checks better with the 1.880 by 
the three-block analysis.    
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  Summary 

   1.      A case of practical interest, which occurs frequently in nature, is the infi -
nite slope where a thin soil overburden is laid above a rock slope of con-
siderable length. The factor of safety for such a slope can be determined 
by Eq.  (6-3)  with the pore pressure ratio computed by Eq.  (6-4) . The most 
critical failure surface is located at the bottom of the overburden along the 
rock surface. For a homogeneous embankment with zero cohesion, it is 
not necessary to use any computer software to determine the minimum 

  Fig. 6-14.      U.S. Navy ’ s method for plane failure (U.S. Navy  1971 )    
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166 Slope Stability Analysis by the Limit Equilibrium Method

factor of safety, because the most critical failure surface is a shallow circle 
with a center at infi nity, which is similar to an infi nite slope, so the mini-
mum factor of safety simply can be computed by Eq.  (6-5) .  

  2.      When soils or rocks are pushed and placed over a hillside, the new fi ll 
will form a triangular cross section. If the natural slope surface is not 
properly scalped and a layer of weak materials exists at the bottom of the 
new fi ll, the most critical failure surface will be a plane through the bot-
tom of the weak layer. The factor of safety for such a fi ll can be deter-
mined by Eq.  (6-8)  or  (6-11) , depending on whether the fi ll height,  H , or 
the fi ll width,  W f  , is given.  

  3.      If a fi ll is placed partially on a natural slope and partially on horizontal 
ground, a trapezoidal cross section will be formed. This is a special case 
of the two-block analysis discussed in Section 6.4. By assuming that the 
lower block has a horizontal base and the force between the two blocks is 
horizontal, a simple quadratic equation amenable to hand calculations 
can be obtained.  

  4.      Sliding-block analysis may be used when a layer of weak material exists 
at the bottom of each block. In the case of two sliding blocks, a quadratic 
equation is available to determine the factor of safety for a given  ϕ   d  , which 
is the developed friction angle between the two blocks. The coeffi cients of 
the quadratic equation can be found in Table  6-1 . It is shown that the fac-
tor of safety increases with the increase in  ϕ   d  . The case of  ϕ   d    =  0 implies 
that there is no friction between the two blocks, so the factor of safety is 
minimum. When  ϕ   d    =   ϕ , where  ϕ  is the friction angle of the material in the 
blocks, the factor of safety is maximum. The most correct solution is to 
fi nd a  ϕ   d   between 0 and  ϕ  such that tan  ϕ   d    =  tan  ϕ / F , where  F  is the factor 
of safety. However, this solution requires the use of a graphical method 
by determining the factor of safety at three different values of  ϕ   d  . This 
problem can be solved easily by trial and error using a spreadsheet. In 
view of the fact that the sliding-block analysis only considers the force 
equilibrium while neglecting the moment equilibrium completely, it is 
better to be more conservative by assuming  ϕ   d    =  0.  

  5.      For three sliding blocks, a cubic equation is presented to determine the 
factor of safety for any given  ϕ   d  . The coeffi cients of the cubic equation can 
be found in Table  6-3 . The summary presented here for the two sliding 
blocks also applies to the three sliding blocks. Although manual solutions 
of three sliding blocks with  ϕ   d    =  0 are possible, as illustrated by Example 
 6.7 , it is more convenient to use a spreadsheet, especially when tan  ϕ   d    =  
tan  ϕ / F  is assumed, as demonstrated by Example  6.8 .  

  6.      The active and passive earth pressure theory also has been used for the 
stability analysis of earth slopes. One method uses the central block as 
a free body with an active force,  P A  , on one side and a passive force,  P B  , 
on the other. Due to the difference in defi nition, the factor of safety ob-
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tained by this method is unreasonably high when compared to the three-
block analysis. Another method, as proposed by the U.S. Navy, also uses 
the active and passive earth pressures but in a different way and results 
in a factor of safety more comparable to that based on the three-block 
analysis.    

  Problems 

   6.1      Consider an infi nite slope consisting of 20 ft of soil underlain by bedrock, 
oriented at 10° from horizontal. The soil has a cohesion of 500 psf, an an-
gle of internal friction of 18°, and a unit weight of 110 pcf. Determine the 
factor of safety.
   [Answer: 3.167]     

  6.2      If there is seepage in Problem 6.1 and the line of seepage is parallel to the 
bedrock at a distance of 8 ft below the surface, determine the factor of 
safety. If there is an earthquake with a seismic coeffi cient of 0.1 in addi-
tion to the seepage, what is the seismic factor of safety?
   [Answer: 2.540, 1.603]     

  6.3      Fig.  P6-3  shows a sidehill bench having a total unit weight of 125 pcf 
and subjected to a pore pressure ratio of 0.05. If the failure surface is a 
plane along the bottom of the fi ll where the soil has an effective cohesion 
of 160 psf and an effective friction angle of 24°, determine the factor of 
safety.
   [Answer: 1.708]     

  Fig. P6-3.        

  6.4      Same as Problem 6.3 except that that the degree of the natural slope,  α , is 
steeper than 20°. What is the degree of the natural slope,  α , when failure 
is imminent or the factor of safety is reduced to 1?
   [Answer: 29.7°]     
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168 Slope Stability Analysis by the Limit Equilibrium Method

  6.5      Fig.  P6-5  is a trapezoidal fi ll on a stiff ground. The soil in the fi ll has a 
cohesion of 400 psf, an internal friction of 24°, and a total unit weight of 
120 pcf. If the fi ll is divided into two blocks and the force between them is 
horizontal, determine the factor of safety.
   [Answer: 2.784]     

  Fig. P6-5.        

  Fig. P6-7.        

  6.6      Same as Problem 6.5 except that the force between the two blocks inclines 
at an angle of 30° with the horizontal.
   [Answer: 3.562]     

  6.7      Fig.  P6-7  shows a sidehill fi ll. The soil in the fi ll has an effective cohesion 
of 160 psf, an effective friction angle of 24°, and a total unit weight of 
125 pcf. It is assumed that the force between the two blocks inclined at 
an angle,  ϕ   d  , of 20° with the horizontal and that the fi ll is subjected to a 
pore pressure ratio of 0.05 and a seismic coeffi cient of 0.1. Determine the 
seismic factor of safety.
   [Answer: 1.579]     

  6.8      Same as Problem 6.7 except that the soil parameters are changed as fol-
lows:  c ′    =  300 psf,  ϕ  ′   =  25°, and  γ   =  120 pcf.
   [Answer: 1.918]     
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  Fig. P6-9.        

  Fig. P6-11.        

  6.9      Fig.  P6-9  shows the dimensions of the fi ll. The soil at the bottom of the fi ll 
has a cohesion of 500 psf, a friction angle of 20°, and a total unit weight 
of 125 pcf. By dividing the fi ll into three blocks and assuming no friction 
between the blocks, determine the factor of safety.
   [Answer: 2.354]     

  6.10      Same as Problem 6.9 except that the friction angle developed between 
two blocks is  ϕ   d  , where  ϕ   d    =  tan   − 1 (tan 20°/ F ) and  F  is the factor of safety to 
be determined.
   [Answer: 2.390]     

  6.11      Fig.  P6-11  shows a slope divided into three blocks. The soil has a cohesion 
of 500 psf, a friction angle of 20°, and a total unit weight of 125 pcf. By as-
suming the forces between two blocks as horizontal, determine the factor 
of safety by the conventional three-block analysis.
   [Answer: 1.767]     

  6.12      Same as Problem 6.11, except that the friction angle developed between 
two blocks is  ϕ   d  , where  ϕ   d    =  tan   − 1 (tan 20°/ F ).
   [Answer: 1.987]     

  6.13      Same as Problem 6.11, but determine the factor of safety by using the 
earth pressure method and considering the central block as a free body.  
  [Answer: 21.193]  
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  6.14      Same as Problem 6.11, but determine the factor of safety by the U.S. 
Navy ’ s method.
   [Answer: 1.682]     

  6.15      Fig.  P6-15  shows a slope divided into three blocks. The soil has a cohesion 
of 500 psf, a friction angle of 20°, and a total unit weight of 125 pcf. By as-
suming the forces between two blocks as horizontal, determine the factor 
of safety by the conventional three-block analysis.
   [Answer: 1.651]     

  Fig. P6-15.        

  6.16      Same as Problem 6.15 except that the friction angle developed between 
two blocks is  ϕ   d  , where  ϕ   d    =  tan   − 1 (tan 20°/ F ).
   [Answer: 1.848]     

  6.17      Based on Rankine ’ s theory and Mohr ’ s envelope, derive Eqs.  (6-39)  and 
 (6-40) .  

  6.18      Based on Coulomb ’ s theory and the force diagrams presented in Fig.  6-14 , 
prove the following equations:

  P W cLA A A= ° − − ° +tan( ) cos( )45 2 2 45 2φ φ/ /      

   P W cLP P P= ° + + ° −tan( ) cos( )45 2 2 45 2φ φ/ /                      
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    Chapter 7 

  Stability Charts and 
Other Solutions    

       Since Taylor ( 1937 ) fi rst published his stability charts, various charts have been 
presented by Bishop and Morgenstern ( 1960 ), Morgenstern ( 1963 ), and Spencer 
( 1967 ). These charts are applicable only for cylindrical failure surfaces and will 
be discussed in this chapter. Also included are the charts developed by Huang 
for triangular and trapezoidal fi lls on rock or stiff slopes (1977a), triangular fi lls 
on soil slopes (1978b), and earth dams and embankments (1975), and some new 
charts for the effective stress analysis of nonhomogeneous dams. With simple 
calculations, these charts can provide a quick answer to the safety factor of a 
proposed slope and are therefore particularly useful for preliminary design and 
estimating purposes. The well-known friction circle and logarithmic-spiral 
methods originally developed by Taylor ( 1937 ) also are presented. 

  7.1     Homogeneous Slopes with  ϕ   =  0 

 Fig.  7-1  shows the stability chart for  ϕ   =  0 analysis of a simple slope (Taylor,  1937, 
1948 ). The slope has an angle,  β , a height,  H , and a ledge at a depth of  DH  below 
the toe, where  D  is a depth ratio, the depth to bedrock divided by the height of 
the slope. 

  The chart can be used to determine not only the developed cohesion,  c d  , as 
shown by the solid curves but also  nH , which is the distance from the toe to the 
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  Fig. 7-1.      Stability chart for soils with zero friction angle (Taylor  1937, 1948 )    

failure circle, as indicated by the short dashed curves. When  ϕ   =  0, the most criti-
cal circle is always tangent to the rock. If there is no loading outside the toe, the 
most critical circle is a midpoint circle with its center on a vertical line through 
the midpoint of the slope, as indicated by case A in the fi gure. If there are load-
ings outside the toe, the most critical circle is a toe circle, as shown by case B, 
and the long dashed curves should be used. If the curve falls on the left side of 
the  n   =  0 line, the most critical circle is a slope circle, which intersects the slope 
surface and does not pass below the toe, so the loading outside the toe has no 
effect on the developed cohesion. A slope circle occurs only when the ledge is at 
the same elevation as or closely below the toe. 

 Given  β  and  D , a stability number defi ned as  c d  / γ  H , where  γ  is the total unit 
weight and  H  is the height of the slope, can be found from the chart, so the 
amount of cohesion actually developed can be determined. The factor of safety 
can be obtained by dividing the allowable cohesion, or the shear strength, with 
the developed cohesion. Note that the greater the stability number, the smaller 
the factor of safety. 
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  Example 7.1            Fig.  7-2  shows a simple slope with a height,  H , of 40 ft (12.2 m), a 
slope angle,  β , of 22.5°, and a ledge 60 ft (18.3 m) below the toe. If the soil has a co-
hesion,  c , of 1,200 psf (57.5 kPa), and a total unit weight,  γ , of 120 pcf (18.9 kN/m 3 ), 
determine the factor of safety and the distance from the toe to the point where the 
most critical circle appears on the ground surface. What is the factor of safety if 
there are heavy loadings outside the toe?   

  Fig. 7-2.      Example  7.1     

  Solution     For  D   =  60/40  =  1.5 and  β   =  22.5°, from the solid curve in Fig.  7-1 , 
 c d  / γ  H   =  0.1715, or  c d    =  0.1715  ×  120  ×  40  =  823.2 psf. The factor of safety is  F   =   c/c d    =  
1,200/823.2  =  1.46. From the short dashed curve,  n   =  1.85, or the distance between 
the toe and the failure circle  nH   =  1.85  ×  40  =  74 ft. 

 When there are loadings outside the toe, the point falls on the horizontal 
portion of the long dashed curve with  c d  / γ  H   =  0.1495, or  c d    =  0.1495  ×  120  ×  40  =  
717.6 psf. The factor of safety is  F   =  1,200/717.6  =  1.67.    

  7.2     Homogeneous Slopes with Both  c  and  ϕ  

 By the use of the friction circle method, as described in Section 7.9, Taylor ( 1937, 
1948 ) determined the developed cohesion,  c d  , for a given developed friction 
angle,  ϕ   d  , and plotted a series of curves shown in Fig.  7-3 . When the friction angle 
is not zero, the most critical circle is a shallow circle. If the ledge lies at a consid-
erable depth below the toe, the location of the ledge, as indicated by the depth 
ratio,  D , should have no effect on the developed cohesion. 

  In Fig.  7-3 , the most critical circle may pass through the toe, designated as 
case 1 and shown by the solid curves, or pass below the toe, designated as case 
2 and shown by the long dashed curves. However, if  D   =  0, the most critical circle 
will lie above the toe, designated as case 3 and shown by the short dashed curves. 
The fi gure can be used to determine the factor of safety with respect to cohesion, 
 F c  , by assuming that the angle of internal friction is developed fully, or to deter-
mine the factor of safety with respect to internal friction,  F   ϕ  , by assuming that 
the cohesion is developed fully. To fi nd the factor of safety with respect to shear 
strength,  F , a trial-and-error or graphical method is required, as illustrated in 
Example  7.2 . 

c07.indd   173c07.indd   173 12/16/2013   1:37:43 PM12/16/2013   1:37:43 PM



174 Slope Stability Analysis by the Limit Equilibrium Method

  Example 7.2            Given  H   =  40 ft (12.2 m) and  β   =  30° and the ledge is far away from 
the surface. If the soil has a cohesion,  c , of 800 psf (38.3 kPa), a friction angle,  ϕ , 
of 10°, and a total unit weight,  γ , of 100 pcf (15.7 kN/m 3 ), determine  F c  ,  F   ϕ  , and  F .  

  Solution     Assume that the angle of internal friction is developed fully, or  ϕ   d    =  10°. 
From Fig.  7-3 , for  β   =  30°,  c d  / γ  H   =  0.075, or  c d    =  0.075  ×  100  ×  40  =  300 psf, so 
 F c    =   c/c d    =  800/300  =  2.67. 

 Next, assume that the cohesion is developed fully, or  c d  / γ  H   =  800/(100  ×  40)  =  
0.2. It can be seen from Fig.  7-3  that when  c d  / γ  H   =  0.2 and  β   =  30°, the developed 
friction angle is less than zero, or the factor of safety with respect to internal fric-
tion is infi nity. This situation occurs when the resisting moment because of cohe-
sion is greater than the driving moment. 

  Fig. 7-3.      Stability chart for soils with friction angle (Taylor  1937, 1948 )    
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 To determine the factor of safety with respect to shear strength, the same fac-
tor of safety should be applied to both cohesion and internal friction. A value of 
 F c   is assumed, and a value of  F   ϕ  , which is equal to tan  ϕ /tan  ϕ   d  , is determined from 
the chart. By trial and error, the factor of safety with respect to shear strength is 
obtained when  F c    =   F   ϕ  . Instead of trial and error, a graphical method may be used 
by plotting  F c   versus  F   ϕ   and fi nding its intersection with a 45° line, as shown in 
Fig.  7-4 . 

  Fig. 7-4.      Factor of safety with respect to shear strength    

  In the fi gure, one point on the  F c   versus  F   ϕ   curve was determined previously 
as  F c    =  2.67 and  F   ϕ    =  1. It is necessary to have two more points in order to plot 
the curve. First, assume  F c    =   c/c d    =  2, or  c d    =  800/2  =  400 psf. For  c d  / γ  H   =  400/(100 
 ×  40)  =  0.1, from Fig.  7-3 ,  ϕ   d    =  7°, or  F   ϕ    =  tan 10°/tan 7°  =  1.44. Next, assume  F c    =  
1.8, or  c d    =  800/1.8  =  444 psf. For  c d  / γ  H   =  444/(100  ×  40)  =  0.111 from Fig.  7-3 , 
 ϕ   d    =  5 or  F   ϕ    =  tan 10°/tan 5°  =  2.02. Fig.  7-4  shows the plot of the three points. The 
factor of safety with respect to shear strength is 1.82.  

  A variational limiting equilibrium approach was used by Leshchinski and 
San ( 1994 ) to develop seismic stability charts for a simple slope, as shown in Fig. 
 7-5 . This case is similar to Taylor ’ s but includes the seismic coeffi cient,  C s  , as a 
variable. Because most of their charts are concerned with slopes steeper than 1:1, 
only two charts with slopes of 1:1 and 2:1 are of practical interest to earth slopes 
and therefore presented here. 

  A particular feature of the chart is the dimensionless parameter,  λ , defi ned 
as

  λ
γ φ

= 1
H

c
tan

      (7-1)   
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 Without the use of  λ , the chart is similar to Taylor ’ s by assuming a value of 
 ϕ   d   and fi nding a corresponding value of  c d  . Because the factors of safety,  F   ϕ   and 
 F c  , are not equal, an iteration or graphical method must be used to determine the 
factor of safety with respect to shear strength. With the use of  λ , the factor of 
safety with respect to shear strength can be determined directly without the need 
of iterations. Given the values of  λ  and  C s  , a vertical line can be drawn from their 
point of intersection to determine  ϕ   d  , and a horizontal line to determine  c d  . The 
two factors of safety, one based on  F   ϕ   and the other based on  F c  , are automatically 
equal, so either one can be used to determine the factor of safety with respect to 
shear strength. 

  Example 7.3            Given a 2:1 slope with  H   =  100 ft (30.5 m),  c   =  1000 psf (48 kN/m 2 ), 
 ϕ   =  18°, and  γ   =  125 pcf (19.7 kN/m 3 ), determine the factor of safety with respect 
to shear strength for  C s    =  0 and  C s    =  0.2.  

  Solution     From Eq.  (7-1) ,  λ   =  1,000/(125  ×  100  ×  tan 18°)  =  0.25. 
 When  C s    =  0: From Fig.  7-5 , read vertically  ϕ   d    =  12°, or  F   =  tan 18°/tan 12°  =  1.53. 

If read horizontally,  c d  / γ  H   =  0.051, or  c d    =  0.051  ×  125  ×  100  =  637.5 psf. 
 F   =  1,000/637.5  =  1.56, which checks with the 1.53 based on  ϕ   d  . 

 When  C s    =  0.2: From Fig.  7-5 , read vertically  ϕ   d    =  17.4°, or  F   =  tan 18°/tan 17.4° 
 =  1.04. If read horizontally,  c d  / γ  H   =  0.078, or  c d    =  0.078  ×  125  ×  100  =  975 psf. 
 F   =  1,000/975  =  1.03, which checks with the 1.04 based on  ϕ   d  .    

  Fig. 7-5.      Seismic stability charts for a simple slope (Leshchinski and San  1994 . 
Reproduced with permission)    
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  Fig. 7-6.      Triangular fi ll on rock slope    

  7.3     Triangular Fills on Rock or Stiff Slopes 

 Fig.  7-6  shows a triangular fi ll on a rock or stiff slope. The fi ll has a height,  H , 
an angle of outslope,  β , and a degree of natural slope,  α . The natural slope is 
assumed to be much stiffer than the fi ll, so the failure surface will lie entirely 
within the fi ll. When  α   =  0, the fi ll is placed on a level ground. 

  Based on the Fellenius or normal method, the factor of safety can be com-
puted by Eq. (2-3). By dividing the equation into two parts, one due to cohesion 
and the other due to internal friction, Eq. (2-3) can be written as

  F
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W

W

i i
i
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i i
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i i
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∑

∑

∑

∑
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1

      (7-2)   

 Because  W i   is proportional to  γ  H , Eq.  (7-2)  can be simplifi ed as

  F
cN

H
Nc= +

γ
φ(tan )       (7-3)  

in which  N c   and  N  are functions of geometry, independent of soil parameters. To 
apply Eq.  (7-3) , the location of the most critical circle must be known a priori. 
By assuming that the soil has cohesion,  c , but no angle of internal friction,  ϕ , the 
location of the most critical circle can be determined and used to evaluate  N c   and 
 N . This assumption is correct for total stress analysis with  ϕ   =  0 but gives a 
slightly larger factor of safety for effective stress analysis with both  c    and  ϕ   , 
because the most critical circle for soils with both cohesion and friction is differ-
ent from that with cohesion only. 

 Values of  N c   can be computed by LEAME or any other computer programs 
by assuming  H   =  10,  γ   =  100,  c   =  1,000, and  ϕ   =  0. The factor of safety obtained 
by LEAME is actually the value of  N c  , as can be seen by substituting these param-
eters into Eq.  (7-3) . Similarly, by assuming  c   =  0 and  ϕ   =  45°, the factor of safety 
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is equal to  N . Instead of using Eq.  (7-3)  directly, Huang ( 1977a, 1978b ) used the 
following equation to determine  F :

  F N
c
H N

c
f

= +
⎡

⎣
⎢

⎤

⎦
⎥γ

φtan
      (7-4)  

in which  N c    =  cohesion factor and  N f    =  friction factor defi ned as

  N
N
N

f
c=       (7-5)   

 Values of  N c   and  N f   for various combinations of  α  and  β  are presented in Figs. 
 7-7  and  7-8 , respectively. Knowing  N c   and  N f  , the factor of safety can be computed 
by Eq.  (7-4) . For effective stress analysis with a pore pressure ratio,  r u  , Eq.  (7-4)  
becomes

  F N
c
H

r
N

c u
f

= ′ + − ′⎡

⎣
⎢

⎤

⎦
⎥γ

φ
( )

tan
1       (7-6)   

  Example 7.4            Given a triangular fi ll with  H   =  30 ft (9.1 m),  c   =  800 psf (38.3 kN/m 2 ), 
 ϕ   =  0,  γ   = 125 pcf (19.7 kN/m 3 ),  α   =  15°, and  β   =  30°, determine the factor of safety. 
If the degree of natural slope,  α , is 0, determine the factor of safety and compare 
with that obtained by Fig.  7-1 .  

  Solution     With  α   =  15°, and  β   =  30°, from Fig.  7-7 ,  N c    =  10.6. With  H   =  30 ft, 
 c   =  800 psf, and  γ   =  125 pcf, from Eq.  (7-4) ,  F   =  800  ×  10.6/(125  ×  30)  =  2.261. 

  Fig. 7-7.      Cohesion number for triangular fi lls (Huang  1977a . Reproduced 
with permission)    

c07.indd   178c07.indd   178 12/16/2013   1:37:44 PM12/16/2013   1:37:44 PM



Stability Charts and Other Solutions  179

 If  α   =  0 and  β   =  30°, from Fig.  7-7 ,  N c    =  7.5. From Eq.  (7-4) ,  F   =  800  ×  7.5/(125  ×  
30)  =  1.6. With  D   =  0 and  β   =  30°, from Fig.  7-1 ,  c d  /( γ  H )  =  0.134, so  c d    =  0.134  ×  125 
 ×  30  =  502.5, and  F   =  800/502.5  =  1.592, which checks with the 1.6 obtained from 
Fig.  7-7 .  

  When  ϕ   =  0, Eq.  (7-4)  in conjunction with Fig.  7-7  should give a factor of 
safety very close to the minimum factor of safety obtained by LEAME, because 
the most critical circle actually is used to determine  N c  . However, the use of the 
same circle to evaluate  N f   is not theoretically correct and results in a factor of 
safety that is too high. Although a slightly higher factor of safety may be desir-
able and closer to the simplifi ed Bishop method, to obtain more accurate and 
conservative results, a correction factor may be applied to the factor of safety 
obtained from Eq.  (7-4) . 

  Fig.  7-9  gives the correction factor,  C f  , for the factor of safety computed 
by Eq.  (7-4) . The correction factor depends on the angle of outslope,  β , the 
degree of natural slope,  α , and the percent of cohesion resistance,  P c  , which is 
defi ned as

  P

c
H

c
H

r
N

c

u
f

=

′

′ + − ′
γ

γ
φ

( )
tan

1
      (7-7)   

  The curves in Fig.  7-9  were obtained from a series of analyses by comparing 
the factor of safety from Eq.  (7-6)  with that from the LEAME computer program. 
The corrected factor of safety is the product of the correction factor and the factor 

  Fig. 7-8.      Friction number for triangular fi lls (Huang  1977a . Reproduced with 
permission)    
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of safety from Eq.  (7-6) . Although Fig.  7-9  only gives the correction factor for 
three values of  β , that is, 37°, 27°, and 17°, the correction factor for other values 
of  β  can be obtained by a straight-line interpolation. 

 Although the method presented here is based on the triangular cross section 
shown in Fig.  7-6 , it also can be applied to the effective stress analysis of the 
slope shown in Fig.  7-10 , where the rock slope is quite irregular. In such a case, 
 α  is the degree of natural slope at the toe. Because of the small cohesion used in 
effective stress analysis, the failure surface will be a shallow circle close to the 
surface of the slope near the toe and is independent of all slopes behind the toe. 

  Fig. 7-9.      Chart for correcting factor of safety (Huang  1977a . Reproduced 
with permission)    

  Fig. 7-10.      Approximating of hollow fi ll by triangular fi ll    
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   Example 7.5            Fig.  7-11  shows the cross section of a triangular fi ll and the 
coordinates of boundary lines in parentheses. The soil has a cohesion of 200 psf 
(9.6 kN/m 2 ), a friction angle of 30°, and a total unit weight of 125 pcf (19.7 kN/m 3 ). 
If there is no seepage, determine the factor of safety by the normal method.   

  Fig. 7-12.      Trapezoidal fi ll on rock slope    

  Solution     From the coordinates,  H   =  50 ft (15.2 m),  β   =  tan   − 1 (50/100)  =  26.6°, and 
 α   =  tan   − 1 (50/250)  =  11.3°. From Fig.  7-7 ,  N c    =  10.7 and, from Fig.  7-8 ,  N f    =  4. From 
Eq.  (7-4) ,  F   =  10.7[200/(125  ×  50)  +  (tan 30°)/4]  = 10.7(0.032  +  0.144)  =  1.88. From 
Eq.  (7-7) ,  P c    =  0.032/(0.032  +  0.144)  =  0.18, or 18%. With  β   =  26.6° and  α   =  11.3°, 
from Fig.  7-9 ,  C f    =  0.89.  F   =  0.89  ×  1.88  =  1.67. The factor of safety obtained by 
LEAME using the normal method is 1.663, which checks with the 1.67 obtained 
from the charts.     

  7.4     Trapezoidal Fills on Rock or Stiff Slopes 

 Fig.  7-12  shows the cross section of a trapezoidal fi ll with a height,  H , an outslope 
 S :1, an angle of natural slope,  α , and a base width  BH , where  B  is a ratio between 
base width and height. The triangular fi ll is a special case of trapezoidal fi ll when 
 B   =  0. By using the same procedure as in triangular fi lls, values of  N c   and  N f   for 
various combinations of  S ,  B , and  α  are computed and presented in Figs.  7-13  
and  7-14 , respectively. Knowing  N c   and  N f  , the factor of safety can be computed 
by Eq.  (7-6) . 

  Fig. 7-11.      Example  7.5     
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   Example 7.6            Given a trapezoidal fi ll with  S   =  2,  H   =  30 ft (9.1 m),  B   =  0.4,  α   =  15°, 
 c   =  800 psf (38.3 kN/m 2 ), and  γ   =  125 pcf (19.7 kN/m 3 ), determine the factor of 
safety. Determine the factor of safety if  α   =  0 and compare with that obtained by 
Fig.  7-1 .  

  Solution     With  S   =  2,  H   =  30 ft,  B   =  0.4,  α   =  15°, from Fig.  7-13 ,  N c    =  10.4. From 
Eq.  (7-4) ,  F   =  (800  ×  10.4)/(125  ×  30)  =  2.22. 

  If  α   =  0, from Fig.  7-13 ,  N c    =  8.1. From Eq.  (7-4) ,  F   =  800  ×  8.1/(125  ×  30)  =  
1.73. From Fig.  7-1 , with  D   =  0 and  β   =  tan   − 1 0.5  =  26.6°,  c d  /( γ  H )  =  0.124, so 
 c d    =  0.124  ×  125  ×  30  =  465 and  F   =  800/465  =  1.72, which checks with the 1.73 
obtained from Fig.  7-13 .  

  The friction number,  N f  , is based on the circle with a center and radius the 
same as the most critical circle for  ϕ     =  0. In other words, the same circle is used 
for determining  N c   and  N f  . If  α  or  c    is very small, the most critical circle for 
 ϕ     =  0 may be quite different from that for  ϕ     ≠  0, so a trial-and error procedure, 

  Fig. 7-13.      Cohesion number for trapezoidal fi lls (Huang  1977a . Reproduced with 
permission)    
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as described in the following examples, should be used to determine the minimum 
factor of safety. 

  Example 7.7            Fig.  7-15  shows the cross section of a trapezoidal fi ll and the coor-
dinates of boundary lines in parentheses. The soil has an effective cohesion of 
200 psf (9.6 kN/m 2 ), an effective friction angle of 30°, and a total unit weight of 
125 pcf (19.7 kN/m 3 ). If there is no seepage, determine the factor of safety.   

  Solution     With  S   =  2,  B   =  60/50  =  1.2, and  α   =  tan   − 1 (50/90)  =  29°, from Fig.  7-13 , 
 N c    =  8.5 and, from Fig.  7-14 ,  N f    =  3.25. From Eq.  (7-6) ,  F   =  8.5[200/(125  ×  50)  +  
(tan 30°)/3.25  =  1.78. This factor of safety is based on the assumption that the 
most critical circle is tangent to the rock surface. For the effective stress analysis 
with a small cohesion and a large friction angle, the most critical circle may be a 
shallow circle, so several different locations of rock surfaces must be assumed to 
determine which gives the minimum factor of safety. 

  Fig. 7-14.      Friction number for trapezoidal fi lls (Huang  1977a . Reproduced with 
permission)    
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184 Slope Stability Analysis by the Limit Equilibrium Method

  Four different values of  B , that is, 0.4, 0.6, 0.8, and 1.0, are assumed. For each 
 B , select the largest  α  that can be obtained from the charts, as shown in the fol-
lowing table: 

Trial No.  B  α  N c   N f   F 

1 0.4 22.5° 13.9 6.25 1.73

2 0.6 27.5° 13.3 6.4 1.63

3 0.8 35° 13.4 6.25 1.66

4 1.0 45° 13.7 5.9 1.77

  It can be seen that the minimum factor of safety is 1.63 and occurs at trial 
No. 2. The factors of safety obtained by LEAME are 1.690 based on the simplifi ed 
Bishop method and 1.625 based on the normal method. 

  Example 7.8            Fig.  7-16  shows an embankment on a horizontal ledge. The em-
bankment is 50 ft (15.3 m) high with a side slope of 1.5:1. The soil has an effective 
cohesion of 300 psf (14.4 kN/m 2 ), an effective friction angle of 30°, and a total 
unit weight of 120 pcf (18.8 kN/m 3 ). The pore pressure ratio is assumed to be 0.1. 
Determine the factor of safety (a) using Figs.  7-7 ,  7-8 , and  7-9 , and (b) by a trial-
and-error method using Figs.  7-13  and  7-14 .   

  Fig. 7-15.      Example  7.7     

  Fig. 7-16.      Example  7.8     
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  Fig. 7-17.      Typical cross section of dams    

  Solution     (a) With  α   =  0 and  β   =  tan   − 1 (1/1.5)  =  33.7°, from Fig.  7-7 ,  N c    =  7.1 and from 
Fig.  7-8 ,  N f    =  2.9. From Eq.  (7-6) ,  F   =  7.1  ×  [300/(120  ×  50)  +  (1  −  0.1)(tan 30°)/2.9] 
 =  7.1  ×  (0.05  +  0.179)  =  1.626. From Eq.  (7-7) ,  P c    =  0.05/(0.05  +  0.179)  =  0.218, or 
21.8%. From Fig.  7-9 , when  β   =  27°,  C f    =  0.87 and, when  β   =  37°,  C f    =  0.82. When  β   =  
33.7°,  C f    =  0.87  −  (33.7  −  27)(0.87  −  0.82)/10  =  0.837. The factor of safety is  F   =  0.837 
 ×  1.626  =  1.36. The factor of safety by LEAME is 1.359 by the normal method. 

 (b) Starting from  B   =  0 and ending at  B   =  1.2, four values of  B  are tried, each 
with the largest possible  α  as can be obtained from the charts. Values of  N c   are 
obtained from Fig.  7-13 ,  N f   from Fig.  7-14 , and  F  from Eq.  (7-6) . The results are 
presented in the following table:

Trial No.  B  α  N c   N f   F 

1 0 22.5° 12.3 5.8 1.72

2 1.4 32.5° 12.0 6.7 1.53

3 0.8 50° 10.7 6.6 1.38

4 1.2 50° 7.4 3.6 1.44

 It can be seen that the minimum factor of safety is 1.38, which checks with the 
1.359 obtained from LEAME based on the normal method.    

  7.5     Effective Stress Analysis of Homogeneous Dams 

 Four sets of charts are presented in this section, each having their own advan-
tages and limitations. A typical cross section of a dam is shown in Fig.  7-17 . The 
dam has a height  H  and a ledge at a depth of  DH  below the toe, where  D  is the 
depth ratio. 

  Bishop ’ s and Morgenstern ’ s charts can be used to fi nd the factors of safety 
at different  D  ’ s and determine which is the minimum. Morgenstern ’ s charts 
assume  D   =  0, whereas both Spencer ’ s and Huang ’ s charts assume  D   =   ∞ . 
Because the most critical failure surface in an effective stress analysis is usually 
a very shallow circle, the effect of  D  is not very signifi cant. The use of  D   =   ∞  
always gives a slightly lower factor of safety and is therefore on the safe side. 
The slope of the dam is expressed as  S :1, except in Spencer ’ s charts where the 
slope angle  β  is used. 
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186 Slope Stability Analysis by the Limit Equilibrium Method

  7.5.1     Bishop ’ s and Morgenstern ’ s Charts 

 Fig.  7-18  shows the stability charts for effective stress analysis when  c   / γ  H   =  0 
and 0.025, and Fig.  7-19  shows those when  c   / γ  H   =  0.05. The factor of safety is 
based on the simplifi ed Bishop method (Bishop  1955 ) and can be expressed as

  F m r nu= −       (7-8)  

  Fig. 7-18.      Stability charts for  c  ′ / γ  H   =  0 and 0.025 (Bishop and Morgenstern  1960 . 
Reproduced with permission from ICE Publishing)    
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  Fig. 7-19.      Stability charts for  c  ′ / γ  H   =  0.05 (Bishop and Morgenstern  1960 . Reproduced 
with permission from ICE Publishing)    

in which  m  and  n  are the stability coeffi cients determined from the charts. The 
values of  m  and  n  depend on the depth ratio,  D . When  c   / γ  H   =  0.05, the charts 
show three different depth ratios of 0, 0.25, and 0.5. When  c   / γ  H   =  0.025, only 
two depth ratios of 0 and 0.25 are needed. The most critical circle is supposed 
to be a shallow circle and expected to fall within these depths. The charts for 
 c   / γ  H   =  0 can be used to interpolate the factors of safety when  c   / γ  H  lies between 
0 and 0.025. When  c   / γ  H   =  0, it is not really necessary to use the charts because, 
similar to an infi nite slope, the factor of safety can be computed by Eq. (6-5). 
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188 Slope Stability Analysis by the Limit Equilibrium Method

    Example 7.9            Given the dam shown in Fig.  7-17  with  c   / γ  H   =  0,  ϕ     =  30°, and 
 S   =  3 ( β   =  18.4°), determine the factors of safety for  r u     =   0 and  r u    =  0.2, using Fig. 
 7-18  and comparing with Eq. (6-5).  

  Solution     When  r u    =  0: With  c   / γ  H   =  0,  ϕ     =  30°, and  S   =  3, from Fig.  7-18 ,  F   =   m   =  
1.74. With  ϕ     =  30° and  β   =  18.4°, from Eq. (6-5),  F   =  tan 30°/tan 18.4°  =  1.73, which 
checks closely with the 1.74 obtained from Fig.  7-18 . 

 When  r u    =  0.2: From Fig.  7-18 ,  m   =  1.74 and  n   =  1.95; and from Eq.  (7-8) ,  F   =  
1.74  −  0.2  ×  1.95  =  1.35. From Eq. (6-5),  F   =  (1  −  0.2)  ×  tan 30°/tan 18.4°  =  1.38. The 
difference between Fig.  7-18  and Eq. (6-5) is because of the difference in the defi -
nition of  r u  . Eq. (6-5) is based on the normal method by reducing the normal force 
by  r u W cos  β , as shown in Fig. 6-1, whereas Fig.  7-18  is based on the simplifi ed 
Bishop method by reducing the normal force by  r u W sec  β , as shown in Fig. 8-6. If 
 r u   is defi ned by the simplifi ed Bishop method, the  r u   used in Eq. (6-5) should be 
multiplied by cos  2  β , or  F   =  1.74  −  0.2  ×  (cos 18.4°) 2   ×  1.95  =  1.38, which is exactly 
the same as that obtained from Fig.  7-18 .  

  If the ledge is far from the surface, it is necessary to determine which depth 
ratio is most critical. This determination can be facilitated by using the line of 
equal pore pressure ratio,  r ue  , on the chart defi ned as

  r
m m
n n

ue = −
−

2 1

2 1
      (7-9)   

 If the given value of  r u   is greater than  r ue   for the given section and strength 
parameters, the factor of safety determined with the greater depth ratio has a 
smaller value than the factor of safety determined with the smaller depth ratio 
because  n  2  is greater than  n  1 . With the help of the lines of equal pore pressure 
ratio, the most critical depth ratio with the lowest factor of safety can be identi-
fi ed without having to compute the factor of safety for every depth ratio and 
determine which is most critical. 

  Example 7.10            Given  S   =  4,  H   =  64 ft (19.5 m),  DH   =  30 ft (9.2 m),  c    =  200 psf (9.6 kPa), 
 ϕ     =  30°,  γ   =  125 pcf (19.6 kN/m 3 ), and  r u    =  0.5, determine the factor of safety.  

  Solution     Because  c   / γ  H   =  200/(125  ×  64)  =  0.025, the chart in Fig.  7-18  should be 
used. The depth ratio is  D   =  30/64  =  0.47, which is greater than 0.25, so the chart 
with  D   =  0.25 can be used to replace  D   =  0.47. Any circle with a  D  greater than 
0.25 is expected to have a factor of safety equal to that with  D   =  0.25. The use 
of the lines of equal pore pressure ratio, as indicated by the dashed lines, gives  
r ue    =  0.42. Since  r u    >   r ue  ,  D   =  0.25 is more critical than  D   =  0. When  D   =  0.25,  S   =  4, 
and  ϕ     =  30°, from Fig.  7-18 ,  m   =  2.95 and  n   =  2.78, or  F   =  2.95  −  0.5  ×  2.78  =  1.56. 

 It is interesting to compare the factors of safety between  D   =  0 and  D   =  0.25. 
When  D   =  0, from Fig.  7-18 ,  m   =  2.89 and  n   =  2.63, or  F   =  2.89  −  0.5  ×  2.63  =  1.58, 
which is only slightly greater than the 1.56 for  D   =  0.25. It can be seen that the 
effect of  D  on the factor of safety is quite small. 
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 In this example,  c   / γ  H  is exactly equal to 0.025. If  c   / γ  H  is smaller than 0.025, 
the factor of safety for  c   / γ  H   =  0 should also be determined. The factor of safety 
can be computed by a straight-line interpolation between the two.  

  In Fig.  7-19 , the case of  D   =  0.5 also applies to  D   >  0.5. If the given  D  is greater 
than 0.5, the lines of equal pore pressure ratio for  D   =  0.25 should be used to 
determine whether the case of  D   =  0.5 is more critical than  D   =  0.25. If so, the 
factor of safety for  D   =  0.5 gives the solution required. Otherwise, the line of 
equal pore pressure ratio for  D   =  0 should be used to determine whether  D   =  0 
or  D   =  0.5 is the most critical. 

  Example 7.11            Same as Example  7.10  except that  c   / γ  H  is increased to 0.05; deter-
mine the factor of safety.  

  Solution     With  S   =  4,  ϕ     =  30°, and  D   =  0.25, from the lines of equal pore pressure 
ratio in Fig.  7-19 ,  r ue    =  0.72, which is greater than the given 0.5, so  D   =  0.25 is more 
critical than  D   =  0.5. Next, from the lines of equal pore pressure ratio for  D   =  0, 
it can be found that  r ue    =  0, which is smaller than the given 0.5, so  D   =  0.25 is the 
most critical among the three. For  D   =  0.25, from Fig.  7-19 ,  m   =  3.25 and  n   =  2.83, 
or  F   =  3.25  −  0.5  ×  2.83  =  1.84. 

 If the lines of equal pore pressure ratio are not used, it will be necessary to 
compute the factors of safety for all three depth ratios to determine which is the 
most critical. To check that  D   =  0.25 does give the lowest factor of safety, the 
factors of safety at  D   =  0 and  D   =  0.5 are computed as follows: When  D   =  0, from 
Fig.  7-19 ,  m   =  3.27 and  n   =  2.76, or  F   =  3.27  −  0.5  ×  2.76  =  1.89. When  D   =  0.5, 
 m   =  3.45 and  n   =  3.12, or  F   =  3.45  −  0.5  ×  3.12  =  1.89. It can be seen that the 
minimum factor of safety does occur at  D   =  0.25 but the difference in factors of 
safety among the three depth ratios is not very signifi cant.    

  7.5.2     Morgenstern ’ s Charts 

 Morgenstern ’ s charts (1963) can be used only to determine the factor of safety of 
a dam after a rapid drawdown. Fig.  7-20  shows the case considered. By assuming 
horizontal fl ow lines and vertical equipotential lines, the phreatic surface and 
the piezometric surface are identical. 

  Fig. 7-20.      Slope subject to rapid drawdown    
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190 Slope Stability Analysis by the Limit Equilibrium Method

  It is assumed that an earth dam is placed on an impervious base. The original 
water level is at the same elevation as the top of the dam. Then the water level 
suddenly is lowered a distance  L  below the top of the dam to simulate rapid 
drawdown. The factor of safety is determined by the simplifi ed Bishop method 
by assuming that the critical circle is tangent to the impervious base, that the 
fl ow lines are horizontal and the equipotential lines are vertical after rapid draw-
down, and that the weight of the soil is twice the weight of water. The assump-
tion of vertical equipotential lines indicates that the phreatic surface after the 
rapid drawdown is located along the surface of the slope. 

 Figs.  7-21 ,  7-22 , and  7-23  show the factors of safety under rapid drawdown 
for  c   / γ  H  of 0.0125, 0.025, and 0.05, respectively. The factor of safety is plotted 
against the drawdown ratio,  L/H , for various  S  and  ϕ   . When the drawdown ratio 
is equal to 1, the circle tangent to the impervious base is the most critical. When 
the drawdown ratio is less than 1, several circles must be tried by assuming the 
impervious base at different elevations so that the one with the lowest factor of 
safety can be determined. 

  Fig. 7-21.      Drawdown stability chart for  c  ′ / γ  H   =  0.0125 (Morgenstern  1963 . 
Reproduced with permission from ICE Publishing)    
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  Fig. 7-22.      Drawdown stability chart for  c  ′ / γ  H   =  0.025 (Morgenstern  1963 . Reproduced 
with permission from ICE Publishing)    

   Example 7.12            Given  S   =  3,  H   =  65 ft (19.8 m),  c     =  200 psf (9.6 kPa),  ϕ     =  30°, and  γ   =  
124.8 psf (19.6 kN/m 3 ), determine the factors of safety when  L/H   =  1 and  L/H   =  0.5.  

  Solutions     When  L/H   =  1,  c   / γ  H   =  200/(124.8  ×  65)  =  0.025,  S   =  3, and  ϕ     =  30°, from 
Fig.  7-22 , the factor of safety  F   =  1.2. 

  When  L/H   =  0.5, three different trials are needed to determine the minimum 
factor of safety, as shown in Fig.  7-24 . 

  (a) Assume the circle tangent to the base with  H   =  65 ft and  L   =  32.5 ft. For 
 c   / γ  H   =  0.025,  L/H   =  0.5, from Fig.  7-22 ,  F   =  1.52. 

 (b) Move the base up to the pool level and assume the circle tangent to the 
base with  H   =   L   =  32.5. For  c   / γ  H   =  0.05,  L/H   =  1, from Fig.  7-23 ,  F   =  1.48. 

 (c) Place the base between (a) and (b) with  H   =  48.75 ft,  L   =  32.5 ft,  c   / γ  H   =  200/
(124.8  ×  48.75)  =  0.033, and  L/H   =  32.5/48.75  =  0.67. The factor of safety can be de-
termined by a straight-line interpolation of  c   / γ  H  between 0.025 and 0.05. From 
Fig.  7-22 , with  c   / γ  H   =  0.025,  F   =  1.37. From Fig.  7-23  with  c   / γ  H   =  0.05,  F   =  1.66. 
By interpolation,  F   =  1.37  +  (1.66  −  1.37)  ×  0.008/0.025  =  1.46. 
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  Fig. 7-23.      Drawdown stability chart for  c  ′ / γ  H   =  0.05 (Morgenstern  1963 . Reproduced 
with permission from ICE Publishing)    

  Fig. 7-24.      Example  7.12     

  The minimum factor of safety is 1.46. Although a slightly lower value could 
perhaps be found, further refi nements are unwarranted. This example demon-
strates that for partial drawdown, the critical circle often may lie above the base 
of the dam, and it is important to investigate several levels of tangency.    
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  Fig. 7-25.      Stability chart for different pore pressure ratios (Spencer  1967 . Reproduced 
with permission from ICE Publishing)    

  7.5.3     Spencer ’ s Charts 

 Fig.  7-25  shows the Spencer ’ s charts (1967) for determining the required slope 
angle when the factor of safety is given. This type of charts is very useful for 
preliminary design purposes, because the required factor of safety is always 
known a priori and the required slope angle is the answer to be sought. If the 
angle of slope is given, it is more convenient to use other charts, because the 
application of Spencer ’ s charts requires the use of a trial-and-error procedure. 

  Spencer ’ s charts are based on the original Spencer method, which assumes 
parallel interslice forces and satisfi es both overall force and moment equilibrium. 
It checks well with the simplifi ed Bishop method, which only satisfi es the overall 
moment equilibrium, because the factor of safety based on moment equilibrium 
is insensitive to the direction of interslice forces. The charts use three different 
pore pressure ratios, that is, 0, 0.25, and 0.5, and assume that the ledge or fi rm 
stratum is at a great depth below the surface. In using the charts, it is necessary 
to fi nd the developed friction angle defi ned as

  φ φd F= ′−tan (tan / )1       (7-10)   

 Spencer ( 1967 ) also developed charts for locating the critical surface, which 
are not reproduced here. If the ledge is very close to the surface, the design based 
on Fig.  7-25  is somewhat conservative. 
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  Example 7.13            Same as Example  7.10  except that, instead of giving  S   =  4, a safety 
factor of 1.56 is given. Find the required  S .  

  Solution     With  H   =  64 ft,  c    =  200 psf,  γ   =  125 pcf, and  F   =  1.56,  c   /  F  γ  H   =  200/(1.56 
 ×  125  ×  64)  =  0.016. With  ϕ     =  30°,  ϕ   d    =  tan   − 1 (tan 30°/1.56)  =  20.3°, and  r u    =  0.5, from 
Fig.  7-25 , slope angle  =  13.8°, or  S   =  1/tan 13.8°  =  4.07, which checks well with the 
given  S   =  4 in Example  7.10 . 

 Note that the factor of safety obtained in Example  7.10  is based on the circle 
with a depth ratio,  D , of 0.25, whereas the factor of safety used in Fig.  7-25  is the 
minimum among various depth ratios. If the minimum factor of safety in Example 
 7.10  is slightly smaller than 1.56, as it should be, the value of  S  will be slightly 
decreased and a better agreement between Examples 7.10 and 7.13 will be 
obtained.    

  7.5.4     Huang ’ s Charts 

 Fig.  7-26  shows the stability charts for a homogeneous dam, as developed by 
Huang ( 1975 ). The factor of safety is based on the simplifi ed Bishop method. 
Similar to Spencer ’ s charts, it is assumed that the ledge is located at a great depth 
below the surface. 

  The left upper corner of Fig.  7-26  shows an earth embankment with a height,  
H , and an outslope of  S :1. In the effective stress analysis, the soil has a small 
cohesion relative to the angle of internal friction, so the most critical failure 
surface may be a toe circle or a circle slightly below the toe. As long as the 
bedrock is at a considerable distance from the surface, the location of bedrock 
has no effect on the factor of safety. 

 In Fig.  7-26 , the solid curves indicate zero pore pressure and the dashed 
curves indicate a pore pressure ratio of 0.5. The factor of safety for other pore 
pressure ratios can be obtained by a straight-line interpolation between the solid 
and dashed curves. The number on each curve is the cohesion factor (C.F.) in 
percent, which is equal to 100  c   / γ  H . 

 For a given effective friction angle and a given cohesion factor, the factor of 
safety for a given slope can be determined directly from the charts. These charts 
cannot be applied to total stress analysis because, when  ϕ   =  0, the most critical 
circle will be a deep circle tangent to the bedrock. Because the depth to bedrock 
is not given, the factor of safety cannot be determined. This is why all curves 
stop at  ϕ     =  5° and should not be extended to  ϕ     =  0. 

 Fig.  7-27  presents a practical example for the application of stability charts. 
This dam, which provides the water supply to Springfi eld, Kentucky, failed by 
sliding away some of the material on the downstream face. The location of the 
failure surface is very close to the most critical circle obtained by LEAME, as 
indicated in the fi gure. This provides a good opportunity to back-calculate the 
shear strength of the soil in the fi eld. The failure can be considered as a full-scale 
model test. When the dam failed, the factor of safety should have decreased 
to 1. 
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  Fig. 7-26.      Stability charts for effective stress analysis of earth dam (Huang  1975 , 
© National Academy of Sciences, Washington, DC. Reproduced with permission of 

the Transportation Research Board, Washington, DC)    

  As shown in the fi gure, the original downstream slope is not uniform, being 
fl atter at the toe than at the top. However, it can be changed to a uniform slope 
by approximating the slope at the toe with a horizontal line and an inclined line, 
so that the cut is equal to the fi ll. The downstream slope is 1.75:1, and the height 
is 37 ft (11.3 m). The phreatic surface is determined theoretically by drawing a 
fl ownet, as described in Section 4.1.1. By using LEAME and assuming an effec-
tive cohesion of 200 psf (9.6 kPa) and an effective friction angle of 25°, a safety 
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factor of 0.97 was obtained. This indicates that the assumed shear strength is 
reasonable, because it yields a factor of safety close to 1. Therefore, this shear 
strength can be used for the redesign of the dam. Unfortunately, there was an 
offi ce building not far from the dam, so the downstream slope could not be fl at-
tened. Finally, a rock berm at a slope of 1:1 was constructed to increase the factor 
of safety. 

  Example 7.14            For the dam shown in Fig.  7-27  with  H   =  37 ft (11.3 m),  S   =  1.75, 
 c     =  200 psf (9.6 kPa),  ϕ     =  25°,  γ   =  125 pcf (19.7 kN/m 3 ), and the given phreatic 
surface, determine the factor of safety.  

  Solution     Cohesion factor  =  100  ×  200/(125  ×  37)  =  4.32. To determine the pore 
pressure ratio, it is necessary to know the percentage of fi ll under water. It is 
estimated that 75% of the area is below and 25% is above the water table. The 
detailed calculations are presented in Fig.  7-28 . 

  For an outslope of 1.5:1, a cohesion factor of 4.32, and a friction angle of 25°, 
as indicated by the chart on the left of Fig.  7-28 , the factor of safety is 1.3 from 
the solid curves, where no fi ll is under water, and 0.7 from the dashed curves, 
where the entire fi ll is under water, so the factor of safety is  F   =  0.75  ×  0.7  +  0.25 
 ×  1.3  =  0.85. 

  Fig. 7-27.      Stability of Springfi eld Dam in Kentucky 
 Note:   1 ft  =  0.395 m; 1 psf  =  47.9 Pa; 1 pcf  =  157.1 N/m 3     

  Fig. 7-28.      Example  7.14     
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 For an outslope of 2:1, as indicated by the chart on the right of Fig.  7-28 , the 
factor of safety is 1.6 from the solid curves and 0.9 from the dashed curves, so 
the factor of safety is  F   =  0.75  ×  0.9  +  0.25  ×  1.6  =  1.07. 

 The actual outslope is 1.75:1, which is the average of 1.5:1 and 2:1, so the 
average factor of safety is  F   =  (0.85  +  1.07)/2  =  0.96.    

  7.5.5     Comparison of Charts 

 The advantages and limitations of the various charts are as follows:

   1.      Bishop ’ s and Morgenstern ’ s charts are applicable no matter whether the 
ledge is on, near to, or far below the toe. The factors of safety for differ-
ent depth ratios,  D , can be determined from the charts. With the help of 
the lines of equal pore pressure ratio, the most critical depth ratio with 
the lowest factor of safety can be identifi ed easily without needing to 
compute the safety factor of every depth ratio and determining which 
is most critical. The charts can be applied to the case of full rapid draw-
down by assuming  r u    =  0.5. Due to the limitation of  c   / γ  H  to 0.05, the 
charts cannot be used for total stress analysis with relatively high cohe-
sion. If  c   / γ  H  is not exactly equal to 0.025 or 0.05, some kind of interpola-
tion is needed.  

  2.      Morgenstern ’ s charts can be used only to analyze full or partial draw-
down. Although the charts assume that the dam is placed directly on a 
ledge with  D   =  0, it can give an approximate but slightly higher factor of 
safety even when the ledge is at great depth below the toe. To determine 
the lowest factor of safety for partial drawdown, at least three circles, 
each with the ledge at a different height, must be tried. The charts can be 
used only when  c   / γ  H  is not greater than 0.05, and need interpolations if 
 c   / γ  H  is not exactly equal to 0.0125, 0.025, or 0.05.  

  3.      Spencer ’ s charts assume a ledge far below the toe but can give conserva-
tive results if the ledge is at or close to the toe. Instead of checking the 
factor of safety for a given slope, the required slope angle for a given fac-
tor of safety can be read directly from the charts. This feature makes the 
charts particularly useful for preliminary design, because the required 
factor of safety is usually known before the slope angle is determined. If 
the slope angle is given, the factor of safety can be determined by a trial-
and-error procedure, which is quite cumbersome. The charts can be used 
for the case of full rapid drawdown by assuming  r u    =  0.5.  

  4.      Similar to Spencer ’ s charts, Huang ’ s charts also assume a ledge far below 
the toe and will give a lower and more conservative factor of safety if 
the ledge is at or close to the toe. Given the slope  S , the friction angle,  ϕ   , 
and the cohesion factor, 100  c   / γ  H , the factor of safety can be read direct-
ly from the charts with no further calculations needed. These charts are 
good supplements to Bishop ’ s and Morgenstern ’ s charts by adding a case 
of  D   =   ∞ , so if  D  is great than 0.25 or 0.5, the minimum factor of safety can 
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198 Slope Stability Analysis by the Limit Equilibrium Method

be determined right away and no comparison of different depth ratios is 
needed. The curves for  r u    =  0 and  r u    =  0.5 and those for different cohesion 
factors are all placed on the same chart, so the factor of safety for any 
given  r u   and cohesion factor can be interpolated visually. The charts can 
be used for full rapid drawdown by assuming  r u    =  0.5. The extension of 
the charts to very large cohesion factors allows the use of the charts for 
total stress analysis with a large cohesion and a relatively small friction 
angle.    

 It is interesting to compare the results obtained by different methods, as 
illustrated by the following example. 

  Example 7.15            Given  H   =  48 ft (14.6 m),  D   =  0,  S   =  3,  c     =  300 psf (14.4 kPa),  ϕ     =  30°, 
and  γ   =  125 pcf (19.7 kN/m 3 ), compare the factors of safety after full rapid draw-
down, as obtained by all four methods.  

  Solution    

  ′ = × =c H/ /γ 300 125 48 0 05( ) .       

 Bishop ’ s and Morgenstern ’ s charts: With  D   =  0,  S   =  3, and  ϕ     =  30°, from Fig. 
 7-19 ,  m   =  2.57 and  n   =  2.17. For  r u    =  0.5,  F   =  2.57  −  0.5  ×  2.17  =  1.49. 

 Morgenstern ’ s charts: With  S   =  3,  L/H   =  1, and  ϕ     =  30°, from Fig.  7-23 , 
 F   =  1.49, which checks with Bishop ’ s and Morgenstern ’ s charts, because both 
assume  D   =  0. 

 Huang ’ s charts: With  S   =  3, cohesion factor C.F.  =  100c’/( γ H)  =  100  ×  300/
(125  ×  48)  =  5, and  ϕ     =  30°, from the dashed curves in Fig.  7-26 ,  F   =  1.46, which is 
slightly smaller than 1.49, because Huang ’ s charts assume  D   =   ∞  instead of  D   =  0. 

 Spencer ’ s charts: tan  ϕ     =  tan 30°  =  0.577 and  β   =  tan   − 1 (0.333)  =  18.4°. The fac-
tor of safety can be determined by trial and error. Several values of  F  are tried to 
make  β  as close to 18.4° as possible. 

 Assume  F   =  1.5, with  c   / F  γ  H   =  0.05/1.5  =  0.0333,  ϕ   d    =  tan   − 1 (0.577/1.5)  =  21°, 
and  r u    =  0.5, from Fig.  7-25 ,  β   =  18.0°. 

 Assume  F   =  1.45, with  c   / F  γ  H   =  0.05/1.45  =  0.0345,  ϕ   d    =  tan   − 1 (0.577/1.45)  =  
21.7°, and  r u    =  0.5, from Fig.  7-25 ,  β   =  18.8°. 

 Assume  F   =  1.47, with  c   / F  γ  H   =  0.05/1.47  =  0.034,  ϕ   d    =  tan   − 1 (0.577/1.47)  =  
21.4°, and  r u    =  0.5, from Fig.  7-25 ,  β   =  18.4°. 

 The factor of safety by Spencer ’ s charts is 1.47, which is slightly smaller than 
1.49, because Spencer ’ s charts are also based on  D   =   ∞ . 

 Due to the small scale of the charts, it is diffi cult to read them to two decimal 
points. However, this example does indicate that all four charts yield about the 
same result, and the location of the ledge has very little effect on the factor of 
safety obtained.     
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  7.6     Effective Stress Analysis of 
Nonhomogeneous Dams 

 All the charts presented in the previous section are based on the assumption that 
the dam and foundation have the same soil parameters. This is usually not true 
in reality, so the case shown in Fig.  7-29 , where the dam and foundation have 
different effective cohesions,  c   , effective friction angles,  ϕ   , and pore pressure 
ratios,  r u  , is of practical interest. 

  For a given circle, similar to Eq. (2-13), the static factor of safety based on the 
normal method can be expressed as

  F
c b r W
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i i u i i
i

n

i i
i
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′ + − ′[ ]

=

=

∑

∑
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1

      (7-11)   

 The three soil parameters,  c   ,  ϕ   , and  r u  , are shown clearly in the equation, 
whereas all the remaining terms, other than the unit weight, are related to geom-
etry, independent of the soil properties. Because the soil unit weight does not 
change signifi cantly, an average unit weight can be assumed. Note that  W i   is 
proportional to the soil unit weight,  γ , and height,  H . By dividing both the 
numerator and denominator by  γ  H , Eq.  (7-11)  can be written as

  F
c
H

N
c
H

N r N r Nc c u f u f= ′ + ′ + − ′ + − ′1
1

2
2 1 1 1 2 2 21 1

γ γ
φ φ( )(tan ) ( )(tan )       (7-12)  

in which subscripts 1 and 2 refer to soils 1 and soil 2, respectively,  N c    =  cohesion 
number, and  N f    =  friction number. These numbers are the collection of geometric 
terms, such as  b i   and  θ   i  , and can be determined by LEAME or any other computer 
programs using the Fellenius or normal method. 

 To determine  N c   1 , input  ′ =c2 0   ,  ′ =φ1 0   ,  ′ =φ2 0   ,  ′ =c1 12 500,    ,  γ   =  125, and  H   =  100. 
The factor of safety thus obtained is equal to  N c   1 , as can be seen by substituting 
the stated values into Eq.  (7-12) . To determine  N f   1 , input  ′ =c1 0   ,  ′ =c2 0   ,  ′ = °φ1 45    , 
 r   u 1   =  0, and  ′ =φ2 0   , so  F   =   N f   1 . The same procedure can be applied to soil 2 by 
exchanging the subscripts. 

  Fig. 7-29.      Soil parameters for a nonhomogeneous dam    

c07.indd   199c07.indd   199 12/16/2013   1:37:49 PM12/16/2013   1:37:49 PM



200 Slope Stability Analysis by the Limit Equilibrium Method

 For a given slope,  S , and depth ratio,  D , it is necessary to know the location 
of the most critical circle. Unfortunately, the location of the most critical circle 
depends on the shear strength of the two soils. Fig.  7-30  shows two extreme cases, 
one with  ϕ   =  0 and the other with  c   =  0. By using LEAME and assuming that 
soils 1 and 2 are identical, the most critical center for  c   =  0, as indicated by the 
solid curve, is always located at (90, 190), regardless of the magnitude of  ϕ ; that 
for  ϕ   =  0, as indicated by the dashed curve, is always located at (145, 250), regard-
less of the magnitude of  c . The use of these two circles for a given set of soil 
parameters may result in two widely different factors of safety. For example, the 
critical center for  c   =  0 and  ϕ   =  30° should be at (90, 190), and the factor of safety 
should be 2.111; however, if the center at (145, 250) were used, the factor of safety 
would be 2.412. Fortunately, in the effective stress analysis, the shear strength 
contributed by the effective cohesion is very small and, therefore, has very little 
effect on the location of the most critical circle. A comparison between  c   =  0 and 
 ϕ   =  30° and the most general case of  c   =  200 psf (9.6 kPa) and  ϕ   =  30° shows that 
the most critical center is the same and the factor of safety is increased only 
slightly, from 2.111 to 2.248. To be more realistic, the case of  ′ = ′ =c c1 2 200 9 6psf kPa( . )    
and  ′ = ′ = °φ φ1 2 30     was used to locate the most critical center. 

  Fig.  7-31  shows the charts for  N c   and  N f  , as determined by LEAME. When  
D   >  0, the factor of safety is determined by Eq.  (7-12) . When  D   =  0, there is only 
one soil and the factor of safety is determined by

  F
c
H

N r Nc u f= ′ + − ′
γ

φ( )(tan )1       (7-13)   

  Eq.  (7-13)  also can be applied to a homogeneous dams, where  N c    =   N c   1   +   N c   2  
and  N f    =   N f   1   +   N f   2 . 

 It should be mentioned that theoretically there is a slight variation in  N c   1  
among the various depth ratios,  D . Because the variation is small and has very 
little effect on the factor of safety, the average of the six depth ratios was used 

  Fig. 7-30.      Location of critical circles 
 Note:   1 ft  =  0.305 m    
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  Fig. 7-31.      Cohesion and friction numbers for various depth ratios    

to plot  N c   1 . The coordinates for  N c  ,  N c   1 , and  N c   2  are not fi nely divided, because 
their contribution to the factor of safety is quite small, so an estimate of their 
values to one decimal point is suffi cient. 

  Example 7.16            In Fig.  7-29 , given  S   =  3.5,  D   =  0.4,  H   =  100 ft (30.5 m),  γ   =  
125 pcf (19.7 kN.m 3 ),  ′ =c1 100 4 8psf kPa( . )   ,  ′ = °φ1 25    ,  r u   1   =  0.4,  ′ =c2 200 9 6psf kPa( . )   , 
 ′ = °φ2 35    ,  r u   2   =  0.2, determine the factor of safety.  

  Solution      ′ = × =c H1 100 125 100 0 008/ /γ ( ) .    ,  ′ =c H2 0 016/γ .    ,  ( )tan ( . )1 1 0 41 1− ′ = −ru φ    
tan .25 0 28° = ,  ( )tan ( . )tan .1 1 0 2 35 0 562 2− = − ° =ru φ    . 

 When  D   =  0.4, from Fig.  7-31 ,  N c   1   =  6.1,  N c   2   =  2.8,  N f   1   =  3.34,  N f   2   =  0.66, from Eq. 
 (7-12) ,  F   =  0.008  ×  6.1  +  0.016  ×  2.8  +  0.28  ×  3.34  +  0.56  ×  0.66  =  1.398. 

 To be sure that  D   =  0.4 is the most critical circle, the factor of safety for  D   =  
0.3 also must be determined. When  D   =  0.3, from Fig.  7-31 ,  N c   1   =  6.1,  N c   2   =  3.5, 
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 N f   1   =  2.95,  N f   2   =  0.9, from Eq.  (7-12) ,  F   =  0.008  ×  6.1  +  0.016  ×  3.5  +  0.28  ×  2.95  +  0.56 
 ×  0.9  =  1.43, which is greater than the 1.398 for  D   =  0.4. 

 The minimum factor of safety is 1.398, which checks with the 1.420 obtained 
by LEAME, using the normal method. If the simplifi ed Bishop method is used, 
the factory of safety is 1.574, so the use of normal method is more conservative.  

  A major difference between this section and Sections 7.3 and 7.4 lies in the 
soil used to evaluate these cohesion and friction numbers. In the previous sec-
tions, a soil with  ϕ   =  0 is used to determine the location of the most critical circle, 
so the charts are quite accurate for total stress analysis with  ϕ   =  0. For effective 
stress analysis with  ϕ   ≠  0, a correction factor or a trial-and-error procedure must 
be applied to determine the minimum factor of safety. In this section, a soil with 
 c     =  200 psf (9.6 kN/m 2 ) and  ϕ   =  30° is used to determine the location of the most 
critical circle, so Fig.  7-31  can be used for effective stress analysis but not for total 
stress analysis. For total stress analysis, Fig.  7-35  based on  ϕ   =  0, as presented in 
Section 7.8, should be used. 

  Huang ( 1979, 1980 ) also presented a method and a series of charts for deter-
mining both the static and the seismic factors of safety of nonhomogeneous dams 
consisting of a large number of soil layers. This information was included in the 
previous book (Huang  1983 ) but was purposely deleted from this volume because 
the method is too cumbersome to use. With the LEAME computer program 
readily available, it is no longer necessary to use any stability charts for prelimi-
nary design and estimating purposes unless they are very simple and easy 
to use.  

  7.7     Total Stress Analysis of Dams with  ϕ   =  0 

 For a homogeneous dam with  ϕ   =  0, Eq.  (7-6)  can be simplifi ed to

  F
c
H

Nc=
γ

      (7-14)  

in which  N c   is a cohesion number. By defi nition, the factor of safety can be 
expressed as

  F
c
cd

=       (7-15)  

in which  c   =  cohesion of the soil and  c d    =  developed cohesion, or the cohesion 
actually developed. Equating Eqs.  (7-14)  and  (7-15) ,

  N
H
c

c
d

= γ
      (7-16)   

 It can be seen that the cohesion number,  N c  , is the reciprocal of the stability 
number shown in Figs.  7-1  and  7-3 . 
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 Fig.  7-32  shows the charts for total stress analysis of dams with  ϕ   =  0 (Huang 
 1975 ). These charts are based on a homogeneous simple slope, as shown in the 
upper left corner of the fi gure. The dam has a height,  H , and an outslope  S :1. A 
ledge is located at a depth of  DH  below the toe, where  D  is the depth ratio. The 
center of the circle is at a horizontal distance  XH  and a vertical distance  YH  from 
the top edge of the dam. When the critical circle passes below the toe, it can be 
proved easily that the center of the critical circle lies on a vertical line intersecting 
the slope at midheight, or  X   =  0.5 S . This type of failure surface is called a mid-
point circle, the results of which are shown by the solid curves in Fig.  7-32 . If the 

  Fig. 7-32.      Stability charts for total stress analysis of earth dams (Huang  1975 , 
© National Academy of Sciences, Washington, DC. Reproduced with permission of 

the Transportation Research Board, Washington, DC)    
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depth ratio,  D , is small, the failure surface may intersect the slope at or above 
the toe. This type of failure surface is called a toe or slope circle, the results of 
which are shown by the dashed curves. It can be seen from the fi gure that in 
most cases the most critical circle occurs when  X   =  0.5 S  except for  D   =  0 and 
 S   ≤  2, where the value of  X  specially is noted. 

  It can be seen from the fi gure that the deeper the circle, the smaller the cohe-
sion number and the smaller the factor of safety. Therefore, the critical circle is 
always tangent to the ledge. The charts are different from Taylor ’ s in that the 
cohesion numbers for various circles with centers at different coordinates ( XH , 
 YH ) are shown, whereas Taylor ’ s only shows the stability number for the most 
critical circle. Given the location of the circle, the chart can be applied to both 
homogeneous and nonhomogeneous dams, as illustrated by the following 
examples. 

  Example 7.17            The homogeneous slope is the same as in Example  7.1 , with  H   =  
40 ft (12.2 m),  β   =  22.5° ( S   =  2.5),  D   =  1.5,  c   =  1,200 psf (57.5 kPa), and  γ   =  120 pcf 
(18.9 kN/m 3 ). Determine the factor of safety.  

  Solution     With  S   =  2.5 and  D   =  1.5, from Fig.  7-32 , the minimum factor of safety 
occurs at  Y   =  1.2 with  N c    =  5.8. From Eq.  (7-14) ,  F   =  1,200  ×  5.8/(120  ×  40)  =  1.45, 
which checks with the 1.46 obtained from Taylor ’ s chart.  

   Example 7.18            Fig.  7-33  shows the cross section of a nonhomogeneous dam. The 
dam is 20 ft (6.1 m) high and has an outslope of 3:1 and a cohesion of 1,500 psf 
(71.9 kPa). The foundation consists of one 40-ft (12.2-m) soil layer having a co-
hesion of 800 psf (38.3 kPa) and one 20-ft (6.1 m) soil layer having a cohesion 
of 100 psf (4.8 kPa), which is underlain by a ledge. Although the unit weights 
for different soils are generally not the same, an average unit weight of 130 pcf 
(20.4 kN/m 3 ) is assumed. Determine the factor of safety.   

  Fig. 7-33.      Example  7.18     
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  Solution     With  S   =  3 and  D   =  60/20  =  3, from Fig.  7-32  the most critical circle for 
a homogeneous dam is a midpoint circle with a center located at  YH   =  2  ×  20  =  
40 ft above the top of the dam, and a minimum cohesion number of 5.7 is ob-
tained. The average cohesion can be determined by measuring the length of the 
arc through each soil layer, or

  c = × + × × + ×
+ × +

=24 1 500 2 57 800 142 100
24 2 57 142

505
,

psf        

 From Eq.  (7-14) ,  F   =  505  ×  5.7/(130  ×  20)  =  1.11. 
 If a circle with a larger radius, say  Y   =  6 or  YH   =  6  ×  20  =  120 ft, is used, from 

Fig.  7-32 ,  N c    =  6.05. The average cohesion is

  c = × + × × + ×
+ × +

=28 1 500 2 70 800 180 100
28 2 70 180

494
,

psf       

 The factor of safety is  F   =  494  ×  6.05/(130  ×  20)  =  1.15, which is slightly greater 
than the 1.11 obtained previously, so the minimum factor of safety is 1.11. It can 
be seen that the use of the critical center based on a homogeneous dam still yields 
a smaller factor of safety. This is usually the case, so only one or two circles need 
to be tried. The factor of safety obtained by LEAME is 1.077.  

  In the previous example, the weaker layer lies at the bottom directly above 
the ledge, so it is apparent that the most critical circle should be tangent to the 
ledge. If the bottom layer is stronger than the top layer, the factors of safety at 
two different depth ratios, one tangent to the bottom of each layer, must be tried 
to determine which is more critical.  

  7.8     Total Stress Analysis of Triangular Fills on 
Soil Slopes 

 Fig.  7-34  shows a triangular fi ll having a height,  H , an angle of outslope,  β , and 
a degree of natural slope,  α . The fi ll is built of soil 2 with an undrained shear 

  Fig. 7-34.      Triangular fi ll on soil slope    
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strength, or cohesion, of  c  2 , whereas the natural slope is formed by soil 1 with 
an undrained shear strength of  c  1 . Below soil 1 lies the bedrock or stiff material. 
It is assumed that soils 1 and 2 have the same unit weight,  γ . If the two unit 
weights are different, an average unit weight should be used. 

  In Fig.  7-34 , the thickness of soil 1 is  DH , where  D  is the depth ratio and  H  
is the height of the fi ll. When  D   =  0, the circle is tangent to the natural slope and 
the case of triangular fi lls on rock or stiff slopes applies. For  D   >  0, unless soil 2 
is much weaker than soil 1, the most critical circle with the lowest factor of safety 
is always tangent to the rock. 

 The factor of safety for frictionless material also can be expressed in the fol-
lowing form (Huang  1977b ):

  F N
c
H

L
c
H

Lc f f= − +⎡
⎣⎢

⎤
⎦⎥

1 21
γ γ

( )       (7-17)  

in which  L f    =  length factor defi ned as

  L
L

L L
f =

+
2

1 2
      (7-18)  

in which  L  1   =  length of the failure arc in soil 1 and  L  2   =  length of the failure arc 
in soil 2. 

 Values of  N c   and  L f   for various combinations of  α  and  β  are presented in Fig. 
 7-35  with  D  values of 0.2, 0.4, and 0.6. When  D   =  0, Eq.  (7-6)  in conjunction with 
Fig.  7-7  can be used instead. 

  Example 7.19            For the slope shown in Fig.  7-34  with  α   =  15°,  β   =  35°,  γ   =  125 pcf 
(19.6 kN/m 3 ),  c  1   =  1,200 psf (57.5 kN/m 2 ), and  c  2   =  1,500 psf (71.8 kN/m 2 ), deter-
mine the factor of safety.  

  Solution      c  1 / γ  H   =  1,200/(125  ×  50)  =  0.192;  c  2 / γ  H   =  1,500/(125  ×  50)  =  0.24; when  
D   =  0.6, from Fig.  7-35 ,  N c    =  5.4 and  L f    =  0.11; from Eq.  (7-17) ,  F   =  5.4  ×  [0.192  ×  
(1  −  0.11)  +  0.24  ×  0.11]  =  1.065, which checks with the 1.067 obtained by LEAME.  

  In the previous book (Huang  1983 ), charts for  N f   1  and and  N f   2 , similar to Eq. 
 (7-12) , were presented for the effective stress analysis of triangular fi lls on soil 
slopes. Because the location of most critical circle is based on soils with  ϕ   =  0 and 
the actual soils have both  c  and  ϕ , the factor of safety thus obtained is inaccurate, 
so those charts for effective stress analysis are not presented here. 

 Huang ( 1977b ) also presented stability coeffi cients for sidehill benches in a 
series of tables with  D  ranging from 0 to 1,  α  from 0° to 30°, and  β  from 5° to 
40°. Each combination consists of three cases: case 1 for soils with  ϕ   =  0, case 2 
for soils with  ϕ   =  30° and  c / γ  H   =  0.025, and case 3 for soils with  c   =  0. Depending 
on the shear strength of the actual soils, one of these cases can be selected to 
compute the factor of safety.  
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  7.9     Friction Circle Method 

 It was shown in Fig. 1-3 that a circular failure surface with  ϕ   =  0 is statically 
determinate, because the three forces due to weight, cohesion, and normal reac-
tion can be determined by considering both force and moment equilibrium. If 
the soil in the slope has both cohesion and internal friction, the problem becomes 
statically indeterminate and the friction circle method, originally proposed by 
Taylor ( 1937 ), can be used. Although this method can be applied only to a homo-
geneous slope and is of limited utility, an understanding of the method will give 
insight into the problems of slope stability. 

 Fig.  7-36  shows the forces in a stability analysis by the friction circle method. 
A circular failure surface of radius  R  and a concentric circle of radius  R sin  ϕ   d   are 
shown, where  ϕ   d   is the developed friction angle. Any line tangent to the inner 
circle must intercept the failure circle at an obliquity  ϕ   d  . This inner circle is called 
the friction circle. The forces considered in this analysis include the driving force, 
 D , which consists of weight, seismic force, and neutral force; the resultant force 
owing to cohesion,  T ; and the resultant of normal and frictional forces along the 
failure arc,  P . The magnitude and the line of application of  D  are known. The 
magnitude of  T  is  cL c /F , where  L c   is the chord length, and  F  is the unknown factor 

  Fig. 7-35.      Charts for total stress analysis of triangular fi lls on soil slopes 
(Huang  1978b )    
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208 Slope Stability Analysis by the Limit Equilibrium Method

  Fig. 7-36.      Forces in friction circle method    

of safety. As explained in Section 1.2.1, the line of application of  T  is parallel to 
chord AB at a distance of  RL a /L c   from the center of circle, where  L a   is the arc 
length. To satisfy moment equilibrium, the three forces,  D ,  T , and  P , must meet 
at the same point. The problem now at hand is how to determine the direction 
of  P . Once the direction of  P  is known, a parallelogram can be drawn, and the 
magnitude of  T , as well as  P , can be determined. The direction of  P  cannot be 
determined from statics unless a distribution of the normal stress along the 
failure arc is assumed. 

  One possible, although somewhat trivial, assumption is that all of the normal 
stress is concentrated at a single point along the failure arc. In such a case,  P  is 
tangent to the friction circle, and a lower bound of  F  is obtained. Another 
assumption is that the normal stress is concentrated entirely at the two end 
points of the failure arc. In this case, the resultant of these two end forces is 
tangent to a circle slightly larger than the friction circle with a radius of  KR sin  ϕ   d  , 
where  K  is a coeffi cient greater than unity, and an upper bound of  F  is obtained. 
Taylor ( 1937 ) computed the factor of safety by assuming the normal stress is 
distributed uniformly or as a half sine curve. He found that the coeffi cient  K  
depends on the central angle, as shown in Fig.  7-37 . Intuitively, the use of a half 
sine curve with a maximum normal stress at center and zero stress at both ends 
should provide a quite realistic value for the factor of safety. The direction of  P  
shown in Fig.  7-36  is based on the assumption that the forces are concentrated 
at the two end points, so their resultant should pass through the intersection of 
the two tangents to the friction circle. 

  Whitman and Moore ( 1963 ) applied different normal stress assumptions to 
determine the factor of safety of the slope shown in Fig.  7-38  by the friction circle 
method. By assuming that the soil has an effective cohesion of 90 psf (4.3 kPa), 
an effective friction angle of 32°, and a total unit weight of 125 pcf (19.7 kN/m 3 ), 
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  Fig. 7-37.      Coeffi cient K of friction circle (Taylor  1937 )    

  Fig. 7-38.      Slope analyzed by friction circle method (Whitman and Moore  1963 , 
© Associacao Brasileira de Mecanica dos Solos) 

 Note: 1 ft  =  0.305 m    

they found that the upper and lower bounds for the factor of safety are 1.60 and 
1.27, respectively. Assuming that the normal effective stresses are distributed as 
a half sine curve, the factor of safety is 1.34. 

  To use the method, a safety factor with respect to the friction angle,  F   ϕ  , is 
assumed and the developed friction angle determined by

  φ
φ

φ
d

F
=

⎛
⎝⎜

⎞
⎠⎟

−tan
tan1       (7-19)   

 Based on the central angle, a friction circle with a radius of  KR sin  ϕ   d   can be 
constructed and the magnitude of  T  determined. The factor of safety with respect 
to cohesion is

  F
cL
T

c
c=       (7-20)   
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210 Slope Stability Analysis by the Limit Equilibrium Method

 As explained in Section 1.2.1,  cL c   is the resisting force due to cohesion along 
the failure arc and  T  is the driving force along the failure arc to keep 
equilibrium. 

 To determine the factor of safety with respect to shear strength, three friction 
circles must be drawn to obtain three pairs of  F   ϕ   and  F c  . A graphical method then 
can be used so that  F   ϕ    =   F c  , as illustrated by the following example. 

  Example 7.20            Fig.  7-39 (a) shows a slope to be analyzed by the friction circle 
method. The soil has a cohesion of 400 psf (19.2 kPa), a friction angle of 20°, and 
a total unit weight of 125 pcf (19.7 kN/m 3 ). Assuming the normal stress as a half 
sine distribution, determine the factor of safety.   

  Fig. 7-39.      Example  7.20     

  Solution     First, determine the magnitude and line of application of weight,  W . 
From Fig.  7-39 (a), the area of failure mass  =  OAF  −  OAC  −  OCD  −  BEF  +  DEF  =  
 π (130.5) 2 /4  −  0.5  ×  34  ×  126  −  0.5  ×  34  ×  9.2  −  0.5  ×  92  ×  140  +  0.5  ×  92  ×  24.8  =  13,376 
 −  2142  −  156  −  6440  +  1141  =  5779 ft 2 .  W   =  5,779  ×  125  =  722,375 lb. 
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 The center of gravity of area OAF is on the bisector of the central angle at a 
distance of  b  from the center. From Eq. (1-10),

  b = × °⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

=4
3

130 5
90
2 2

78 33. sin .
π

ft        

 Take the moment at center  M   =  125  ×  [13,376  ×  78.33  ×  sin 29.9  −  2142  ×  126/3 
 −  156  ×  ( − 9.3)/3  −  6440  ×  (126  −  113.3)  +  1141  ×  ( − 9.2  −  2  ×  24.8/3)]  =  125  ×  (522,286 
 −  89,964  +  484  −  81,788  −  29,362)  =  40,207,000 ft-lb. The distance from  W  to the 
center of the circle is  a   =  40,207,000/722,375  =  55.7 ft. 

 The resultant force due to cohesion,  T , is parallel to chord BF at a distance of 
 RL a /L c   from the center. With  L a    =  2 π   ×  130.5/4  =  204.99 ft (62.5 m) and  L c    =  [(160) 2   +  
(100  −  8) 2 ] 0.5   =  184.56 ft (56.3 m),  d   =  130.5  ×  204.99/184.56  =  144.9 ft. 

 The location of  W  and  T  is plotted in Fig.  7-39 (a). The resultant of normal and 
frictional forces,  P , must pass through the intersection point of  W  and  T  and be 
tangent to the friction circle. 

 By assuming  F   ϕ   of 1, 1.4, and 2, respectively, three friction circles can be 
drawn. With a central angle of 90°, from Fig.  7-37 ,  K   =  1.062. The radii,  R f  , of the 
friction circles are computed as follows:

   When  F   ϕ    =  1, from Eq.  (7-19) ,  ϕ   d    =   ϕ   =  20°,  R f    =  1.062  ×  130.5  ×  (sin 20°)  =  47.4 ft.  
  When  F   ϕ    = 1.4,  ϕ   d    =  tan   − 1 (tan 20°/1.4)  =  14.6°,  R f    =  1.062  ×  130.5  ×  (sin 14.6°)  =  

34.9 ft.  
  When  F   ϕ    =  2,  ϕ   d    =  tan   − 1 (tan 20°/2)  =  10.3°,  R f    =  1.062  ×  130.5  ×  (sin 10.3°)  =  

24.8 ft.    

 Next, draw the force diagram shown in Fig.  7-39 (b). With the magnitude of  W  
known, draw  P  and  T  parallel to those in Fig.  7-39 (a). The magnitudes of  T  for the 
three values of  F   ϕ   can be scaled from the diagram and are noted in the fi gure. The 
factors of safety with respect to cohesion,  F c  , are computed as follows:

   When  F   ϕ    =  1,  T 1  =  51,000 lb, from Eq.  (7-20) ,  F c    =  400  ×  184.56/51,000  =  1.45.  
  When  F   ϕ    =  1.4,  T 2  =  114,000 lb,  F c    =  400  ×  184.56/114,000  =  0.65.  
  When  F   ϕ    =  2,  T 2  =  164,000 lb,  F c    =  400  ×  184.56/164,000  =  0.45.    

 Finally, plot  F   ϕ   versus  F c  , as shown in Fig.  7-39 (c), and draw a smooth curve 
through the three points. The intersection of the 45° line with the curve gives  
F   =   F   ϕ    =   F c    =  1.10.    

  7.10     Logarithmic-Spiral Method 

 In using the friction circle method or the method of slices, the distribution of 
forces along the failure arc or on both sides of a slice must be assumed arbitrarily. 
This diffi culty can be overcome if a logarithmic spiral is used as a failure surface. 
No matter what the magnitude of normal forces on the failure surface may be, 
the property of the logarithmic spiral is such that the resultant of the normal and 

c07.indd   211c07.indd   211 12/16/2013   1:37:52 PM12/16/2013   1:37:52 PM



212 Slope Stability Analysis by the Limit Equilibrium Method

frictional forces always will pass through the origin of the spiral. Consequently, 
when a moment is taken about the origin, the combined effect of normal and 
frictional forces is nil, and only the weight and cohesion moments need to be 
considered. This logarithmic-spiral method was fi rst suggested by Taylor ( 1937 ) 
for stability analysis. 

  7.10.1     Factor of Safety with Respect to Cohesion 

 Fig.  7-40 (a) illustrates the construction of a logarithmic spiral. The equation of a 
logarithmic spiral in polar coordinates can be expressed as

  r r eo= θ φtan       (7-21)  

in which  r   =  radius from origin to logarithmic spiral,  r o    =  initial radius,  θ   =  angle 
between the initial radius and radius  r , in radians, and  ϕ   =  angle of internal fric-
tion of the soil. Starting from the center O, a number of radial lines can be drawn. 
The fi rst line has a length  r o   and all the other lines, each making a different angle 
 θ  with the fi rst line, have a length computed by Eq.  (7-21) . The shape of the loga-
rithmic spiral is controlled by the friction angle,  ϕ . The larger the  ϕ , the more 
weight is placed near the toe, and the smaller the overturning moment. The 
fi gure is based on a  ϕ  of 20°. Note that a line normal to the logarithmic spiral 
always makes an angle of 20° with the radial line. Any radial line can be assigned 
as  r o  , as shown in Fig.  7-40 (b). Eq.  (7-21)  applies if  θ  is measured clockwise, or 
the length of the radial lines increases with the increase in  θ . If  θ  is measured 
counterclockwise, or the length of the radial lines decreases with the increase in 
 θ ,  θ  is considered negative, so a negative sign should be placed before  θ  in 
Eq.  (7-21) . 

  Fig.  7-41  shows a logarithmic spiral passing through the toe of a simple slope 
with an angle,  i , and a height,  H . The origin, O, of the logarithmic spiral is located 
by two arbitrary angles  t  and  z , in which  z  is the angle between the initial radius, 

  Fig. 7-40.      Characteristics of a logarithmic spiral    
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  Fig. 7-41.      Logarithmic spiral passing through toe    

 gH , and the fi nal radius,  mgH . The following equations were presented by Taylor 
( 1937 ):

  m ez= tan φ       (7-22)  

in which  z   =  central angle in radians.

  g
t m m z

=
+ −

1

1 22sin cos
      (7-23)  

  j t
z

m m z
= +

+ −
−sin

sin

cos
1

21 2
      (7-24)  

  q j z= − −π       (7-25)  

in which  t ,  z ,  j , and  q  are angles in radians or in degrees, whichever is more 
convenient. If in degrees, the  π  in Eq.  (7-25)  should be changed to 180°. The 
moment,  M w  , about the origin due to the weight of soil mass is

 M
H g m j q m j q

H

w =
− − +( )

+
⎡
⎣⎢

⎤
⎦⎥

−

γ φ
φ

γ

3 3 3 3

2

3

3
3

9 1

6

sin sin tan cos cos
tan

gg q q j i mg j i j j3 3 2 2 2 23sin cot cot cot cos cot cot cot−( ) + − −( ) −[ ]

      (7-26)  

in which  γ   =  unit weight of soil. The moment,  M c  , due to the cohesion along the 
logarithmic spiral is

  M
c g H

mc
d= −( )

2 2
2

2
1

tan φ
      (7-27)  
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214 Slope Stability Analysis by the Limit Equilibrium Method

in which  c d   is the developed cohesion, or the cohesion actually developed over 
the failure surface. Let  M w    =   M c  , the developed cohesion,  c d  , can be determined. 
The factor of safety with respect to cohesion is

  F
c
cd

=       (7-28)   

   Example 7.21            Eqs.  (7-23) ,  (7-24) ,  (7-26) , and  (7-27)  were presented by Taylor 
( 1937 ). Prove that these equations are theoretically correct.  

  Solution     Based on the law of cosine, or the well-known trigonometry formula 
 a  2   =   b  2   +   c  2   −  2 bc  cos A, from  Δ OAB in Fig.  7-42 (a),

 
H

t
gH mgH m gH z

t
g m m z

sin
cos

sin
cos⎛

⎝
⎞
⎠ = ( ) + ( ) − ( ) = + −(

2
2 2 2

2
2 22

1
1 2or ))

=
+ −

so g
t m m z

1

1 22sin cos

    
  (7-29)   

  Based on the law of sine,  a /sin A  =   b /sin B, from  Δ OAB in Fig.  7-42 (a),

 

gH
j t

H
t
z

j t g z t j t
z

msin
sin
sin

sin( ) sin sin sin( )
sin

−( ) = − = − =
+

or or
1 22

1

2

2

1 2

−

= +
+ −

−

m z

j t
z

m m z

cos

sin
sin

cos
so

    
  (7-30)   

  Fig. 7-42.      Example  7.21     
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 To determine  M w  , Eq.  (7-26)  is divided into two parts. The fi rst part is the 
moment due to area OABC, as shown in Fig.  7-42 (b), and the second part is the 
moments due to several triangular areas, as shown in Fig.  7-42 (c). The moment of 
the failure mass is the difference between the two parts. 

 In the fi rst part, area OABC is divided into two areas, OAB and OBC, by a 
vertical line with a length  r  1 . From Eq.  (7-21) ,  r  1   =   gHe  ( π /2  −   q )tan  ϕ  . The moment due 
to OBC causes the mass to overturn and is positive, whereas that due to OAB is 
negative. 

 First, consider the moment due to the weight of area OBC. The hatched trian-
gle shown in Fig.  7-42 (b) has an area of  r  2  d  θ /2 and a moment arm of 2 r  sin  θ /3, so 
the moment due to weight of area OBC can be obtained by integration:

  

M r d
r

e d

g H e

OBC

q q
= =

=

− −−

∫ ∫
γ θ θ γ θ θ

γ

π
θ φ

π

π

3 3

3

3 1
3

0
2 3

0
2

3 3 3
2

sin sintan

−−⎛
⎝⎜

⎞
⎠⎟ − − −

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

q
e

tan
tan ( tan sin cos )

tan

φ θ φ

π

φ θ θ
φ

3

2

0

3
9 1

22

3 3
3

2

23
3

9 1

−

−⎛
⎝⎜

⎞
⎠⎟

=
− − +

+

⎛

⎝

⎜
⎜

⎞

⎠

⎟

q

q
g H q q eγ φ

φ

π φ
tan cos sin

tan

tan

⎟⎟

       

 Next, consider the moment due to weight of area OAB:

  

M r d
r

e d

g H e

OAB

j j
= =

=

− −

−

∫ ∫
γ θ θ γ θ θ

γ

π
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π
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3

3
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3
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e
⎛
⎝⎜

⎞
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⎡
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π
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3
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+

⎛

⎝
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⎜

⎞

⎠

⎟
−⎛

⎝⎜
⎞
⎠⎟γ φ

φ

π φ
g H m j j e

q
3 3 3

3
2
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3
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tan

⎟⎟

      

  M M M
H g m j q m j q

OABC OBC OAB= − =
− − +( )γ φ

φ

3 3 3 3

23
3

9
sin sin tan cos cos

tan ++
⎡
⎣⎢

⎤
⎦⎥1

      

which checks with the fi rst part of Eq.  (7-26) . 
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 In the second part of Eq.  (7-26) , the moments due to the weights of the trian-
gular areas are

 

M M M M gH q gH q
gH q

gH

OFC OEF ADG ADE+ + − = ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

+

γ
2 3

( sin )( cos )
cos

( ssin )( sin cot )
sin cot

( cot )
cot

cos

q gH q j

gH q j
H H i

H i
mgH−⎛

⎝⎜
⎞
⎠⎟ + −

3 3
jj

H H j
H j

mgH j

H
g q q g

⎛
⎝

⎞
⎠

− −⎛
⎝⎜

⎞
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[ sin cos sin

3

6

3
3 2 3γ 33 2 2

2

3
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3 3

6

q j i

mg i j j mg j j

H
g q

cot cot

cot cos cot cot cos ]

[ sin

+

− − +

= γ
((cot cot ) cot

cos (cot cot ) cot ]

2 2 2

23

q j i

mg j i j j

− +

− − −

      

which checks with the second part of Eq.  (7-26) . 
 Eq.  (7-27)  is much easier to derive. The shear resistance along the failure sur-

face for a small incremental length  rd  θ  is  c d   rd  θ . The moment about the center is 
 c d r  2  d  θ , where  r   =   gHe   θ tan  ϕ  . The moment due to cohesion can be determined by 
integration:

  

M c gHe d c g H e d
c g H

ec d

z

d

z d= = =∫ ∫( )
tan

tan tan tanθ φ θ φ θθ θ
φ

2

0

2 2 2

0

2 2
2

2
φφ

φ

φ φ

[ ]

= − = −

0

2 2
2

2 2
2

2
1

2
1

z

d z dc g H
e

c g H
m

tan
( )

tan
( )tan

      

which checks with Eq.  (7-27) .  

  Taylor ’ s method assumes that the angle of internal friction,  ϕ , although fully 
mobilized, is still not suffi cient to resist the overturning moment, so part of the 
shear resistance is carried by the cohesion. If the angle of internal friction of the 
soil exceeds the angle of the slope, the developed cohesion,  c d  , becomes negative, 
and a usable factor of safety cannot be obtained. Thus, the method is applicable 
only to relatively steep slopes or to moderate slopes with weak soils. 

  Example 7.22            Fig.  7-43  shows a 1.5:1 slope. The soil in the slope has a cohesion 
of 600 psf (28.7 kPa), a friction angle of 20°, and a total unit weight of 125 pcf 
(19.7 kN/m 3 ). A logarithmic spiral passing through the toe is defi ned by an angle, 
 t , of 29.9° and a central angle,  z , of 90°, or  π /2. If the angle of internal friction is 
developed fully, determine the factor of safety with respect to cohesion.   
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  Fig. 7-43.      Example  7.22     

  Solution     From Eq.  (7-22) ,  m   =  e 0.5 π  tan 20   =  1.771 and  m  3   =  5.555. From Eq.  (7-23) ,

  g =
° + − × × °

=
×

=1

29 9 1 1 771 2 1 771 90

1
0 498 2 034

0 987
2sin . ( . ) . cos . .

.        

 From Eq.  (7-24) ,  j   =  29.9°  +  sin   − 1 (sin 90°/2.034)  =  59.3°. From Eq.  (7-25) , 
 q   =  180°  −  59.3°  −  90°  =  30.7°. From Eq.  (7-26) ,
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° − °
− °125 92 0 987
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5 555 59 3 30 7
3 20 5 5553 3( ) ( . )
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⎢
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⎥
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 From Eq.  (7-27) ,

  M
c

cc
d

d=
°

−[ ] =( . ) ( )
tan

( . ) ,
0 987 92
2 20

1 771 1 24 199
2 2

2        

 Let  M w    =   M c  ,  c d    =  6,677,844/24,199  =  275 psf, so the factor of safety  =  600/275 
 =  2.182.  
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  The logarithmic spiral passing through the toe may not have the lowest factor 
of safety. It is therefore necessary to examine a failure surface passing below the 
toe, as shown in Fig.  7-44 . It can be seen easily that the most dangerous situation 
occurs when the origin of the logarithmic spiral lies vertically above the mid-
height of the slope, because the removal of area ABCD reduces the counterweight 
and decreases the factor of safety. However, further removal of area CDEF 
reduces the overturning moment and increases the factor of safety. From geom-
etry, the distance  nH , from the failure surface to the toe, is

  nH mgH j
H

i= −cos cot
2

      (7-31)   

  The increase in overturning moment,  ′Mw   , due to the removal of area 
ABCD is

  ′ = = −M H nH H mg j iw
γ γ
2 2

1
2

2 3 2( ) ( cos cot )       (7-32)   

 Let  M M Mw w c+ ′ =    ; the developed cohesion,  c d  , can be determined and the 
factor of safety obtained. 

  Example 7.23            The logarithmic spiral in Example  7.22  passes through the toe and 
is not the most critical, because its origin does not lie vertically above the mid-
height of the slope. Determine the most critical location of the logarithmic spiral 
and the minimum factor of safety with respect to cohesion.  

  Solution     The dashed line in Fig.  7-45  is the location of the original slope surface. 
To obtain a lower factor of safety, the origin of the logarithmic spiral must move 
outward toward the toe, or the slope surface moves inward a distance of  nH . 
From Eq.  (7-31) ,  nH   =  1.771  ×  0.987  ×  92  ×  cos 59.3°  −  0.5  ×  92  ×  cot 33.7°  =  13.1 ft, so 
the logarithmic spiral must move horizontally toward the toe a distance of 13.1 ft. 

  Fig. 7-44.      Logarithmic spiral passing below toe    
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Stability Charts and Other Solutions  219

  From Eq.  (7-32) ,  ′ = × × × =Mw 0 5 125 92 13 1 986 7582. ( . ) , ft-lb   . From Example 
 7.22 ,  M w    =  6,677,844 ft-lb and  M c    =  24,199 c d  . Let  M M Mw w c+ ′ =    , or 6,677,844  +  
986,758  =  24,199 c d  , so  c d    =  7,664,602/24,199  =  316 psf. The factor of safety  =  
600/316  =  1.899.    

  7.10.2     Factor of Safety with Respect to Shear Strength 

 The factor of safety determined by Taylor, as described, is that with respect to 
cohesion, instead of that with respect to shear strength (i.e., both cohesion and 
angle of internal friction). In view of the fact that the design and evaluation of 
slopes by most engineering organizations are based on the factor of safety with 
respect to shear strength, a modifi cation of Taylor ’ s method is needed. Further-
more, modern construction usually requires greater safety with the angle of slope 
generally smaller than the angle of internal friction of the soil, thus making 
Taylor ’ s method inapplicable. This problem can be overcome if a factor of safety 
greater than 1 is applied to both cohesion and internal friction. 

 To determine the factor of safety with respect to strength, all the equations 
derived by Taylor are still valid, except that any terms involving tan  ϕ  must be 
divided by  F  and the term  c d   in Eq.  (7-27)  must be replaced by  c/F . Thus, Eqs. 
 (7-22) ,  (7-26) , and  (7-27)  become

  m e
z

F=
⎛
⎝⎜

⎞
⎠⎟

tan φ

      (7-33)  

  M
H g m j q

F
m j q

F

w =
− − +( )

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥γ
φ

φ

3 3
3 3

2

2

3

3

9
1

sin sin
tan

cos cos

tan ⎥⎥
⎥

      (7-34)  

  Fig. 7-45.      Example  7.23     
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  M
cg H

mc = −( )
2 2

2

2
1

tan φ
      (7-35)   

 Similar to the previous procedure, by letting  M M Mw w c+ ′ =    , the factor of 
safety,  F , can be determined by trial and error using a spreadsheet. 

  Example 7.24            Same as Example  7.23 , but determine the factor of safety with re-
spect to shear strength.  

  Solution     Table  7-1  is the spreadsheet for computing the factor of safety by trial 
and error. The fi rst two rows are the input parameters. The variables to be evalu-
ated are listed in the fi rst column, and the equations to be used are listed in the 
last column. Several factors of safety were assumed. The purpose herein is to fi nd 
a factor of safety that gives the value of  M M Mw w c+ ′ −     as close to 0 as possible. It 
was found that when  F   =  1.303, Value  =   − 12,766; when  F   =  1.304, Value  =  16,382. 
Because  − 12,766 is closer to 0 than is 16,382, the factor of safety is 1.303. 

  Table 7-1.      Spreadsheet for Analyzing Logarithmic-Spiral Failure Surface  
c in psf  =  750 tan  ϕ   =  0.364  γ  in pcf  =  125 H in ft  =  92

t in rad  =  0.522 z in rad  =  1.571 i in rad  =  0.588

Assumed F 1.200 1.300 1.302 1.303 1.304  

m 1.610 1.553 1.551 1.551 1.550 Eq. 7-22

g 1.058 1.086 1.086 1.087 1.087 Eq. 7-23

j 1.078 1.094 1.094 1.095 1.095 Eq. 7-24

q 0.493 0.476 0.476 0.476 0.476 Eq. 7-25

M w 12,210,214 14,374,447 14,414,633 14,434,684 14,454,706 Eq. 7-26

M c 15,550,916 14,501,651 14,482,003 14,472,197 14,462,403 Eq. 7-27

 ′Mw    155,734 26,808 25,424 24,747 24,080 Eq. 7-32

 Value M M Mw w c= + ′ −     − 3,184,968  − 100,396  − 41,946  − 12,766 16,382

F  =  1.303

  Huang and Avery ( 1976 ) developed a computer program using a logarithmic 
spiral to determine the factor of safety of homogeneous slopes. Let  M M Mw w c+ ′ =    , 
and a quadratic equation in the following general form is obtained:

  AF BF C2 0+ + =       (7-36)  

in which the coeffi cients,  A ,  B , and  C , are functions of not only  γ ,  H ,  c ,  ϕ ,  t , and 
 z  but also of  F  itself. Eq.  (7-36)  can be solved by an iterative method. First, a value 
of  F  was assumed and a new  F  was computed by

  F
BF C

A
= − +( )       (7-37)   
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 By using the new  F  as the assumed  F , another new  F  was obtained. The 
process was repeated until the difference between the new  F  and the assumed  F 
 became negligible. 

 The program consists of three do loops: one for angle  t , one for angle  z , and 
another for  F . Angle  t  starts from large to small at a specifi ed interval, with the 
fi rst angle slightly smaller than the angle of the slope. After a starting angle,  z , 
and a specifi ed interval are assigned, the factor of safety for the starting  z  and 
the next decreasing  z  will be computed. If the latter is smaller than the former, 
the factor of safety for each successive decreasing  z  will be determined until a 
lowest value is obtained. If greater, the movement will be in the opposite direc-
tion until a lowest factor of safety is found. Using the  t  and  z  with the lowest 
factor of safety as a new starting angle and an interval one-fourth of the original, 
the process is repeated until a new lowest factor of safety is obtained. 

 The result of the study by Huang and Avery shows that the factor of safety 
for a simple slope can be determined effectively by the logarithmic-spiral method. 
The disadvantage of this method lies in the requirement that the angle of internal 
friction of the soils be constant throughout the slope. However, the simple fact 
that the method satisfi es moment equilibrium with no further assumptions other 
than the logarithmic-spiral failure surfaces makes possible the use of the method 
as a yardstick to check the accuracy of the other methods.   

  Summary 

   1.      Given the slope angle,  β , and the depth ratio,  D , Taylor ’ s chart for homo-
geneous slope with  ϕ   =  0 can be used to fi nd the stability number,  c d  / γ  H . 
By dividing the allowable cohesion,  c , with the developed cohesion,  c d  , 
the factor of safety can be found. The chart also identifi es three types of 
failure circles: midpoint circle, toe circle, and slope circle. For a midpoint 
circle, the chart can give the distance,  nH , from the toe to the point where 
the failure circle appears on the ground surface. If loads are placed adja-
cent to the toe to prevent failure by the midpoint circle, the failure surface 
will be changed to a toe circle and a reduced stability number can be read 
from the chart.  

  2.      Similar to the case of  ϕ   =  0, Taylor ’ s chart for homogeneous slopes with 
both  c  and  ϕ  also identifi es three types of failure circles. Given a devel-
oped friction angle,  ϕ   d  , a corresponding stability number,  c d  / γ  H , can be 
read from the chart. By assuming that the friction angle be fully devel-
oped, or  ϕ   d    =   ϕ , the developed cohesion,  c d  , can be found, and the factor of 
safety with respect to cohesion,  F c  , can be computed by  c/c d  . By assuming 
that the cohesion is developed fully, or  c d    =   c , the developed friction angle, 
 ϕ   d   can be found, and the factor of safety with respect to friction angle,  F   ϕ  , 
can be determined by tan  ϕ /tan  ϕ   d  . To determine the factor of safety with 
respect to shear strength, a trial-and-error or graphical procedure can 
be used.  
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222 Slope Stability Analysis by the Limit Equilibrium Method

  3.      Charts based on the Fellenius or normal method are presented to deter-
mine the factor of safety of triangular fi lls on rock or stiff slopes. The rock 
surface or natural ground is assumed to be much stiffer than the fi ll, so all 
circular failure surfaces will lie entirely within the fi ll. Based on the di-
mensions of the fi ll, a cohesion number,  N c  , and a friction number,  N f  , can 
be found from the charts, and the factor of safety can be computed. Be-
cause the most critical circle used for developing these charts is based on 
 ϕ   =  0, the charts give an accurate factor of safety for total stress analysis 
with  ϕ   =  0 but may result in a factor of safety that is too high for effective 
stress analysis with both  c    and  ϕ   . To obtain more accurate results, a cor-
rection factor must be applied.  

  4.      Similar charts are presented for trapezoidal fi lls on rock or stiff ground 
surfaces. The charts give an accurate factor of safety for total stress analy-
sis with  ϕ   =  0 but a slightly larger factor of safety for effective stress analy-
sis with both  c    and  ϕ   . A factor of safety slightly higher than that by the 
normal method is desirable, because it checks more closely with the 
well-recognized simplifi ed Bishop method. To obtain more accurate re-
sults, a trial-and-error process must be used to locate the minimum factor 
of safety.  

  5.      Four sets of charts are presented for the effective stress analysis of homo-
geneous dams. The charts by Bishop and Morgenstern ( 1960 ) can be used 
for dams with  D   =  0, 0.25, and 0.5, where  D  is the depth ratio or the depth 
to bedrock divided by the height of the dam. By comparing the factors of 
safety with different depth ratios, the minimum factor of safety can be 
determined. The charts by Huang ( 1975 ) supplement Bishop ’ s and 
Morgenstern ’ s by adding a case of  D   =   ∞ , so if  D  is greater than 0.25 or 0.5, 
the minimum factor of safety can be determined right away and no com-
parison of different depth ratios is needed. The charts by Spencer ( 1967 ) 
also assume  D   =   ∞  and can be used to determine the slope angle,  β , if the 
factor of safety is given. This feature is different from all the other charts 
where the slope angle is given and the factor of safety is to be found. The 
charts by Morgenstern ( 1963 ) are different from the others, because they 
can be used only to determine the factor of safety due to rapid draw-
down. Although all these charts can be used for full drawdown by as-
suming a pore pressure ratio of 0.5, Morgenstern ’ s charts are the only 
ones suitable for analyzing the case of partial drawdown. In spite of the 
difference in the assumed location of the ledge (some at or near to the bot-
tom of the dam and some at a great depth), Example  7.15  clearly shows 
that they all yield about the same factor of safety. In view of the prelimi-
nary nature of the charts, the diffi culty in reading them accurately, and 
the insensitivity of the safety factor to the location of the ledge, it appears 
reasonable to assume that the ledge is located at a great depth, such as in 
the charts by Spencer and Huang, so a lowest and most conservative fac-
tor of safety can be obtained.  
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  6.      A new method is presented for determining the factor of safety of earth 
dams with two sets of soil parameters, one for the foundation and one for 
the embankment. Based on the normal method, the factor of safety can be 
expressed by Eq.  (7-12) , which contains two cohesion numbers,  N c   1  and 
 N c   2 , and two friction numbers,  N f   1  and  N f   2 . Note that subscripts 1 and 2 
refer to the foundation and the embankment, respectively. Charts for de-
termining these numbers in terms of slope,  S , and depth ratio,  D , are pre-
sented in Fig.  7-31 . Similar to the use of Bishop ’ s and Morgenstern ’ s 
charts, the factors of safety at several depth ratios must be computed to 
determine which is minimum. This new method is different from the 
previous method in determining the location of the most critical circle. 
The new method assumes that the soils have an effective cohesion 
 ′ = ′ =c c1 2 200 9 6psf kPa( . )     and an effective friction angle  ′ = ′ = °φ φ1 2 30    , 
whereas the previous method assumes  ′ = ′ =φ φ1 2 0   . As a result, these new 
charts are more accurate for effective stress analysis with a small cohesion 
and large friction angle, and the previous charts are more accurate for 
total stress analysis with a large cohesion and a small friction angle.  

  7.      For the total stress analysis of earth dams with  ϕ   =  0, the charts developed 
by Huang ( 1975 ) can be used. Given the slope,  S , and the depth ratio,  D , 
the cohesion number,  N c  , which is the reciprocal of the stability number 
by Taylor ’ s chart, can be found from the charts. The charts are different 
from Taylor ’ s in that the cohesion numbers for various circles with cent-
ers at different coordinates ( XH ,  YH ) are shown, whereas Taylor ’ s only 
shows the stability number for the most critical circle. Knowing the loca-
tion of the circle, it is possible to apply the charts to nonhomogeneous 
dams consisting of several different soil layers. For a given circle,  N c   can 
be found from Fig.  7-32 , and the average cohesion,  c , can be determined 
by measuring the length of the arc through each layer and fi nding the 
weighted average, so the factor of safety can be computed by Eq.  (7-14) . 
Theoretically, several circles, each with a center at a different  YH , should 
be tried to determine which is most critical. Fortunately, the most critical 
circle for a nonhomogeneous dam is usually the same as that for a homo-
geneous dam, so only one or two circles need to be tried to determine 
which is most critical.  

  8.      Charts are presented for the total stress analysis of sidehill benches with 
the soil in the bench being different from the soil in the natural ground. 
By assuming the natural ground as horizontal, the charts also can be used 
for the total stress analysis of earth dams and embankments.  

  9.      The friction circle method is basically a graphical method for determining 
the safety factor of a homogeneous slope with both a cohesion and a fric-
tion angle. To make the problem statically determinate, an assumption of 
a normal stress distribution along the failure arc must be made. The most 
reasonable assumption is that the normal stress is distributed as a half 
sine curve with its maximum at the center and zero at both ends. Given 
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the developed friction angle,  ϕ   d  , the developed cohesion,  c d  , can be deter-
mined. To determine the factor of safety with respect to shear strength, 
three different friction circles, each with a different  ϕ   d  , must be construct-
ed, and the corresponding  c d   is determined. The method is cumbersome 
to use and is of little utility. However, this method is of historical signifi -
cance, because it was the earliest method suggested by Taylor ( 1937 ) in 
developing the stability charts presented in Figs.  7-1  and  7-3 .  

  10.      Similar to the friction circle method, the logarithmic-spiral method can be 
used to determine the safety factor of a homogeneous slope with both a 
cohesion and an angle of internal friction. However, the method is alge-
braic and can be programmed for a computer. The equations used in the 
method are derived, and the procedures to obtain the factor of safety are 
illustrated. Although the method is of limited applications and only can 
be applied to a simple embankment composed of one soil and not subject-
ed to any pore pressure, the simple fact that it satisfi es moment equilibri-
um with no further assumptions other than the logarithmic-spiral failure 
surfaces makes it possible to use this method as a yardstick to check the 
accuracy of the other methods.    

  Problems 

   7.1      An embankment with a height of 50 ft and a slope of 2:1 is placed on a 40-
ft soil foundation underlain by rock, as shown in Fig.  P7-1 . If the embank-
ment and the foundation consist of the same soil with a total unit weight 
of 125 pcf and the embankment fails immediately after construction, what 
should be the undrained shear strength of the soil? Where should the 
failure surface appear at the ground, as indicated by the distance,  x , from 
the toe?
   [Answer: 1,038 psf, 45 ft]     

  Fig. P7-1.        

  7.2      The cross section is the same as that shown in Fig.  P7-1 . If the soil has a 
cohesion of 500 psf, a friction angle of 20°, and a total unit weight of 
125 pcf, determine the factor of safety with respect to shear strength using 
Fig.  7-3 .
   [Answer: 1.62]     
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  7.3      Same as Problem 7.2, but determine the factor of safety using Fig.  7-5 .
   [Answer: 1.62]     

  7.4      Fig.  P7-4  shows the dimensions of an embankment on a horizontal ledge. 
If the soil in the embankment has an undrained shear strength of 1,800 psf 
and a total unit weight of 120 pcf, determine the factor of safety using Fig. 
 7-7  and compare it with that by Fig.  7-1 .
   [Answer: 1.42, 1.40]     

  Fig. P7-4.        

  7.5      Fig.  P7-5  shows the dimensions of a trapezoidal fi ll on rock. If the fi ll has 
an undrained shear strength of 1,800 psf and a total unit weight of 120 pcf, 
determine the factor of safety.
   [Answer: 2.10]     

  Fig. P7-5.        

  7.6      The cross section of the fi ll is shown in Fig.  P7-4 . If the soil has a cohesion 
of 800 psf, a friction angle of 25°, and a total unit weight of 120 pcf, deter-
mine the factor of safety by Figs.  7-7 ,  7-8 , and  7-9 .
   [Answer: 1.73]     

  7.7      The cross section of a trapezoidal fi ll is shown in Fig.  P7-5 . If the soil has 
a cohesion of 800 psf, a friction angle of 25°, and a total unit weight of 
120 pcf, determine the factor of safety by Figs.  7-13  and  7-14  using several 
combinations of  B  and  α .
   [Answer: 1.90]     
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  7.8      Fig.  P7-8  shows the dimensions of an embankment placed directly on a 
ledge and the soil parameters for stability analysis. Determine the factor 
of safety using Fig.  7-31 .
   [Answer: 1.51]     

  Fig. P7-8.        

  Fig. P7-9.        

  Fig. P7-10.        

  7.9      Fig.  P7-9  shows the cross section of an earth dam placed directly on a soil 
foundation underlain by rock. The dam and foundation are formed by 
the same material with the soil parameters shown in the fi gure. Deter-
mine the factor of safety using (a) Fig.  7-18 , (b) Fig.  7-25 , and (c) Fig.  7-26 .
   [Answer: 1.22, 1.23, 1.21]     

  7.10      Fig.  P7-10  shows the cross section of an earth dam and the soil parame-
ters. The original pool elevation was at the top of the dam and was rap-
idly lowered 30 ft. Determine the factor of safety immediately after the 
drawdown.
   [Answer: 1.30]     
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  7.11      Fig.  P7-11  shows the cross section of an embankment on a soil foundation. 
The shear strength and pore pressure ratio of the embankment are differ-
ent from those of the foundation soil, as indicated in the fi gure. Deter-
mine the factor of safety using Fig.  7-31 .
   [Answer: 1.11]     

  Fig. P7-11.        

  Fig. P7-12.        

  Fig. P7-13.        

  7.12      Fig.  P7-12  shows the cross section of an earth dam and the soil parameters 
for total stress analysis. Determine the factor of safety using (a) Fig.  7-31 , 
(b) Fig.  7-32 , and (c) Fig.  7-35 . Comment on the accuracy of each chart by 
pointing out which is most accurate and which is least accurate. Why?
   [Answer: 1.80, 1.76, 1.72]     

  7.13      Fig.  P7-13  shows the dimensions of a slope and the location of the circular 
failure surface. If the soil has a cohesion of 1,000 psf, a friction angle of 
15°, and a total unit weight of 125 pcf, determine the factor of safety with 
respect to shear strength by the friction circle method.
   [Answer: 1.37]     
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  7.14      Fig.  P7-14  shows the dimensions of a slope, the location of the logarithmic 
spiral, and the shear strength parameters of the soil. Determine the factor 
of safety with respect to cohesion.
   [Answer: 29.237]     

  Fig. P7-14.        

  Fig. P7-15.        

  7.15      The logarithmic spiral is the same as Problem 7.14, but the origin is moved 
forward above the midpoint of the slope, as shown in Fig.  P7-15 . Deter-
mine the factor of safety with respect to cohesion.
   [Answer: 3.003]     

  7.16      Same as Problem 7.15, but determine the factor of safety with respect to 
shear strength.

   [Answer: 1.434]                     
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    Chapter 8 

  Method of Slices    

       The method of slices is a very powerful tool that can be used to analyze slopes 
of any confi guration consisting of different soils and groundwater conditions. 
The problem is statically indeterminate and, to solve it statically, some simplify-
ing assumptions must be made. In this chapter, four different limit equilibrium 
methods will be discussed: normal, simplifi ed Bishop, original Spencer, and 
Spencer. All of these methods are incorporated in the LEAME computer software 
described in the companion volume to this book. The simplifi ed Bishop method 
can be used for circular failure surfaces, and the Spencer method is recom-
mended for noncircular and composite failure surfaces. The original Spencer 
method can be used as a check by simply changing an input parameter. The 
important equations used in LEAME will be derived, and some special tech-
niques to solve these equations also will be discussed. The use of spreadsheets 
to compute the factors of safety will be demonstrated. 

  8.1     Overall Moment Equilibrium 

 Because the equations of overall moment equilibrium are used in the fi rst three 
methods (normal, simplifi ed Bishop, and original Spencer), they will be derived 
in this section before each method is discussed. Furthermore, an analysis of 
overall moment equilibrium will display all the external forces involved. 
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230 Slope Stability Analysis by the Limit Equilibrium Method

  Fig. 8-1.      External forces on a slope with a circular failure surface    

 Fig.  8-1  shows the cross section of a circular failure surface. The failure mass 
is divided into a number of slices, one of which is designated as slice  i . This slice 
has a width,  b i  , a total weight,  W i  , and an angle,  θ   i  , at the bottom. The slice is 
subjected to a horizontal seismic force,  C s W i  , at the midheight of the slice, a 
normal force due to water pressure,  U i  , on the failure surface, and a line load,  L i  , 
on the surface of the slope. Note that  C s   is the seismic coeffi cient and that slice  i  
is only one of the many slices in a given slope. By changing the subscript  i , these 
forces and weights can be applied to other slices as well. Because the failure 
surface cuts through bodies of water on both sides of the slope, a horizontal force, 
 P  1 , due to water pressure is applied on the left side and  P  2  on the right side. The 
moment arms from the center to each of the forces are shown in the fi gure. 

  According to Mohr-Coulomb theory, the shear strength,  s , of a soil can be 
expressed as

  s c un= ′ + − ′( )tanσ φ       (8-1)  

in which  c     =  effective cohesion,  σ   n    =  total normal stress on the failure surface,  u  
 =  pore water pressure on the failure surface, and  ϕ     =  effective angle of internal 
friction. After reducing the shear strength by a factor of safety and multiplying 
by the area of the failure surface, the shear force,  T i  , at the bottom of slice  i  can 
be written as

  T
c b N

F
i

i i i i i=
′ + ′ ′sec tanθ φ

      (8-2)  
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in which  ′Ni     is the effective force normal to the failure surface. The force normal 
to the failure surface due to pore water pressure is  U i   and can be computed by

  U u bi i i i= secθ       (8-3)   

 The pore water pressure,  u i  , at the bottom of slice  i  can be determined from 
the location of the phreatic surface. By drawing a vertical line through the middle 
of the slice, the height of the phreatic surface above the bottom of slice,  h wi  , can 
be determined and the pore water pressure computed by

  u hi w wi= γ       (8-4)  

in which  γ   w    =  unit weight of water. In the normal method, sec  θ   i   in Eq.  (8-3)  must 
be changed to cos  θ   i   to avoid the possibility of negative  ′Ni    , as discussed in 
Section 2.4.1. 

 If a pore pressure ratio,  r u  , is specifi ed,

  u r hi u i= γ       (8-5)  

in which  γ   =  average unit weight of slice and  h i    =  height of the slice. If, in addi-
tion to the phreatic surface, an excess pore pressure is generated during construc-
tion by the weight of new fi ll only, then  h i   in Eq.  (8-5)  should be the height of the 
slice in the new fi ll rather than the total height of the slice. The sum of  ′Ni     and 
 U i   is the total force normal to the failure surface. 

 Referring to Fig.  8-1  for a circular failure surface and summing the moments 
about point O for all slices results in the following equilibrium equation:

 RW R
c b N

F
C W L P Pi i

i i i i i
s i si i Lisin

sec tan
θ

θ φ
λ λ λ λ∑ ∑ ∑−

′ + ′ ′
+ + − +1 1 2 2∑∑ = 0     

  (8-6)  

in which  R   =  radius of the circle. Because the normal forces,  ′Ni     and  U i  , pass 
through the moment center, they do not contribute to the overall moment. Also, 
the forces on both sides of each slice are internal forces and do not enter into the 
equation, because whenever there is a force on one slice, there is an equal but 
opposite force on the adjoining slice, thus neutralizing their effect. A rearrange-
ment of terms in Eq.  (8-6)  yields

  F
R c b N

RW C W L P P
i i i i i

i i s i si i Li

=
′ + ′ ′

+ + − +
∑

∑ ∑
( sec tan )

sin

θ φ
θ λ λ λ1 1 2λλ2∑

      (8-7)   

 With the exception of the effective normal force,  ′Ni    , all terms in Eq.  (8-7)  
are either given or can be calculated from geometry. Because  ′Ni     depends on the 
forces between two slices and is statically indeterminate, some simplifying 
assumptions must be made to solve  ′Ni    . For example, the Fellenius or normal 
method assumes that there is no force between two slices, so  ′Ni     can be deter-
mined simply by considering the equilibrium of all forces in the normal or  ′Ni     
direction. The simplifi ed Bishop method assumes that the force between two 
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232 Slope Stability Analysis by the Limit Equilibrium Method

slices is horizontal, so  ′Ni     can be determined directly by considering the equi-
librium of all forces in the vertical direction. The original Spencer method 
assumes that all the interslice forces make an angle  δ  with the horizontal, so  ′Ni     
can be determined by summing all forces in a direction perpendicular to  δ . Eq. 
 (8-7)  can be used in the normal, simplifi ed Bishop, and original Spencer methods 
to determine the factor of safety for circular failure surfaces. 

 For noncircular failure surfaces, an arbitrary point, O, must be selected as a 
moment center, as shown in Fig.  8-2 . Since there is no fi xed radius,  R , and the 
normal forces,  ′Ni     and  U i  , may not pass through the moment center,  R  must be 
replaced by  λ   Ti  , and a term  ( )′ +N Ui i Niλ     must be added to the overturning 
moment. Thus, Eq.  (8-7)  should be modifi ed as

  F
c b N

W C W L P P
Ti i i i i i

i wi s i si i Li

=
′ + ′ ′

+ + − +
∑

∑ ∑
λ θ φ

λ λ λ λ λ
( sec tan )

1 1 2 22∑ ∑− ′ +( )N Ui i Niλ
      (8-8)   

  For composite failure surfaces, Eq.  (8-7)  applies to the circular part and Eq. 
 (8-8)  to the noncircular part. 

 To ensure that the arbitrary selection of a moment center has no effect on the 
factor of safety, one basic requirement is that the overall force equilibrium must 
be satisfi ed in two perpendicular directions. The normal method considers the 
force equilibrium of each slice in a direction normal to the failure surface, but 
the direction changes from slice to slice, so there is not a single direction in which 
the force equilibrium is satisfi ed. The simplifi ed Bishop method considers the 
force equilibrium of each slice in the vertical direction. If the force equilibrium 
in the vertical direction is satisfi ed for each slice, the overall force equilibrium in 

  Fig. 8-2.      Moments due to normal and shear forces on a noncircular failure surface    
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Method of Slices 233

the vertical direction is satisfi ed automatically. Because the horizontal force equi-
librium is not satisfi ed for each slice, two moment centers with different  y  coor-
dinates may yield two different factors of safety, although the factor of safety is 
not affected by the difference in  x  coordinates. Therefore, neither the normal nor 
the simplifi ed Bishop methods is suitable for analyzing noncircular and compos-
ite failure surfaces, and the use of Spencer ’ s method, which satisfi ed all equa-
tions of equilibrium, is recommended.  

  8.2     Normal Method 

 The normal method (Bailey and Christian  1969 ), designated as method 1, is 
similar to the well-known Fellenius method in which the forces between two 
slices are assumed to be zero. Fig.  8-3  shows one of the slices for a noncircular 
failure surface. Theoretically, many of the variables should have a subscript  i . 
For simplicity, the subscript purposely is omitted hereafter for all the equations 
that follow. The case of a noncircular failure surface is illustrated, because it is 
more complex than a circular failure surface. By assuming  λ   N    =  0 and  λ   T    =   R , the 
equations derived from the noncircular failure surface can be applied to a circular 
surface as well. 

  Summing the forces in a direction normal to the failure surface,

  ′ = ′ − + −N W C W L Lscos sin sin cos cos sinθ θ α θ α θ       (8-9)  

  Fig. 8-3.      Forces on a slice based on the normal method    
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234 Slope Stability Analysis by the Limit Equilibrium Method

in which  α   =  angle of inclination of the line load,  L , and  W     =  submerged weight, 
or

  ′ = −W W ub       (8-10)   

 If  ′Ni     obtained from Eq.  (8-9)  is negative, the frictional resistance no longer 
exists, and tan  ϕ    in Eq.  (8-7)  or  (8-8)  should be assigned 0. Knowing  ′Ni    , Eq.  (8-7)  
can be used to determine the factor of safety for circular failure surfaces and Eq. 
 (8-8)  for noncircular failure surfaces. In Eq.  (8-8) ,  W i   λ   wi    =   λ   T W i  sin  θ   i    +   λ   N W i  cos  θ   i   
and  ′ + =N U Wi i i icosθ    , so Eq.  (8-8)  is exactly the same as Eq.  (8-7) . Therefore, for 
the normal method, Eq.  (8-7)  also can be applied to noncircular failure surfaces 
by simply replacing  R  by  λ   Ti  . 

 To obtain a unique factor of safety, the total number of equations must be 
equal to the total number of unknowns. With a total of  n  slices, the number of 
equations and unknowns are tabulated as follows:

Eqs. Unknowns

Description No. Description No.

 Σ  forces normal to failure surface  =  0  n Effective normal forces,  N    n 

Overall moment equilibrium 1 Factor of safety,  F 1

Total  n   +  1 Total  n   +  1

 The application of the normal method is quite straightforward. First, deter-
mine  N    by Eq.  (8-9)  and then compute  F  by Eq.  (8-7)  or  (8-8) . Every term in the 
equations is given or can be computed from geometry, and no iterations are 
needed. No matter what method is specifi ed, LEAME always uses the normal 
method to determine the initial factor of safety for the fi rst iteration. 

  Example 8.1            Fig.  8-4  shows the dimensions of a slope with a circular failure sur-
face. The failure mass is divided into fi ve slices of equal width. The centerlines of 
slices are shown in dashed lines with the coordinates ( x m  ,  y m  ) in parentheses at the 
lower end points. The soil has a cohesion,  c , of 500 psf (23.9 kPa), a friction angle, 
 ϕ , of 18°, and a total unit weight,  γ , of 125 pcf (19.7 kN/m 3 ). Determine the factor 
of safety by the normal method, or method 1.   

  Solution     The solution is presented in Table  8-1 . Each column is explained here:

   1.      To simplify the calculations, especially later by the more complex meth-
ods, only fi ve slices are used. The same problem was solved by LEAME 
using both fi ve and 10 slices. The factor of safety with fi ve slices is 1.617, 
which is not too much different from the 1.630 by 10 slices.  

  2.      Each slice has a width,  b , of 40 ft. This does not occur in real cases because, 
to obtain more accurate results, a slice must be subdivided at each break 
point on the slope surface. This example is so designed that the break 
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Method of Slices 235

point (120, 60) is located exactly on the boundary between two slices, so 
no subdivision of the slice is needed.  

  3.      The height,  h , of each slice is the length of the dashed line, or the differ-
ence in the  y  coordinates between the two end points. With an outslope of 
2:1, the  y  coordinates at the upper end point is  y   =  0.5 x  and those at the 
lower end point are shown in the fi gure.  

  4.      The weight,  W , of each slice is equal to  bh  γ .  
  5.      The angle,  θ , at the bottom of each slice can be determined from geome-

try. It can be proved easily that  θ   =  tan   − 1  [( x m    −   x o  )/( y o    −   y m  ).  

  Fig. 8-4.      Example  8.1     

 Table 8-1.      Analysis of Circular Failure Surface by Normal Method  

Slice 
No. ft 

(1)

Width  b  
ft 
(2)

Height  h  
lb 
(3)

Weight  W  
deg 
(4)

Angle  θ  
ft-lb 
(5)

Driving  M o   
ft-lb 
(6)

Resisting  M r   
ft-lb
(7)

1 40 14.2 71,000  − 8.9  − 2,196,887 8,607,000

2 40 36.4 182,000 2.6 1,651,213 15,819,000

3 40 50.5 252,500 14.2 12,388,023 20,033,200

4 40 45.7 228,500 26.4 20,319,828 17,766,000

5 40 19.4 97,000 40.2 12,521,879 10,051,500

Sum 44,684,056 72,276,700
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236 Slope Stability Analysis by the Limit Equilibrium Method

  Fig. 8-5.      Example  8.2     

  6.      The driving moment,  M o    =   RW sin  θ . The values of  W ,  θ , and  M o   listed in 
columns 4 to 6 can be used later in other examples.  

  7.      The resisting moment,  M r  , is computed by  M r    =   R ( cb  sec  θ   +   W cos  θ  tan  ϕ )    

  The factor of safety by the normal method is  F   =  72,276,700/44,684,056  =  
1.618, which checks with the 1.617 obtained by LEAME.  

  The next example involves the use of the normal method to determine the 
factor of safety for a noncircular failure surface. Although the normal method is 
not applicable to noncircular failure surfaces, some of the information provided 
by the example can be used later in other examples where more refi ned methods 
are involved. 

  Example 8.2            Fig.  8-5  shows the dimensions of a slope with a noncircular failure 
surface. Similar to Example  8.1 , the failure mass is divided into fi ve slices, as 
shown by the solid lines. The centerline of each slice is shown in dashed lines 
with the coordinates ( x m  ,  y m  ) at the lower end points. The soil parameters are the 
same as Example  8.1 . Determine the factor of safety by the normal method, or 
method 1.   

  Solution     The differences between noncircular and circular failure surfaces are 
that the normal force,  N , on the noncircular surface does not pass through the 
moment center and that the moment arm for the shear force,  T , is not a constant. 
If a moment center is selected arbitrarily at (30, 65), it is necessary to compute 
the moment arms  λ   N   and  λ   T   by determining the point of intersection of two per-
pendicular lines, one passing through ( x m  ,  y m  ) with a slope of tan  θ , and the other 
passing through ( x o  ,  y o  ) with a slope of  − 1/tan  θ . The general equation for a line 
with a slope of tan  θ  is

  y x c− =tanθ       (8-11)   

 If the line passes through point ( x m  ,  y m  ), the constant,  c , can be obtained by 
substituting  x   =   x m   and  y   =   y m   into Eq.  (8-11) , or

  y x y xm m− = −tan tanθ θ       (8-12)   
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Method of Slices 237

 Similarly, the equation for a line passing through ( x o  ,  y o  ) with a slope of  − 1/
tan  θ  is

  y
x

y
x

o
o+ = +

tan tanθ θ
      (8-13)  

  or y y
x x

o
o= + −

tanθ
      (8-14)   

 Substituting Eq.  (8-14)  into Eq.  (8-12) ,

  x
y y x

x
o m m

o

=
− + +

+

tan
tan

tan
tan

θ
θ

θ
θ

1       (8-15)   

 Given the value of  x ,  y  can be obtained by substituting  x  into Eq.  (8-14) . 
 Knowing the point of intersection ( x ,  y ),  λ   N   and  λ   T   can be computed by

  λN m mx x y y= ± − + −( ) ( )2 2       (8-16)  

where  λ   N   is positive if  x   <   x m   and negative if  x   >   x m  .

  λT o ox x y y= − + −( ) ( )2 2       (8-17)   

 The solution is presented in Table  8-2 . 
  The factor of safety is  F   =  23,556,000/13,919,692  =  1.692, which checks with 

the 1.686 obtained by LEAME. Note that column 6 is computed by Eq.  (8-15) , 
column 7 by Eq.  (8-14) , column 8 by Eq.  (8-16) , and column 9 by Eq.  (8-17) ; and 
that the column 10 overturning moment  M o    =   W ( x m    −   x o  )  −   λ   N W cos  θ , and the 
column 11 resisting moment  M r    =   λ   T  ( cb sec  θ   +   W cos  θ  tan  ϕ ).  

 Table 8-2.      Analysis of Noncircular Failure Surface by Normal Method  

Slice 
No. 
(1)

 b  
ft 
(2)

 h  
ft 
(3)

 W  
lb 
(4)

 θ  
deg 
(5)

 x  
ft 
(6)

 y  
ft 
(7)

 λ   N   
ft 
(8)

 λ   T   
ft 
(9)

 M o   
ft-lb 
(10)

 M r   
ft-lb 
(11)

1 40 8.0 40,000 5.7 36.14 3.60  − 16.22 61.71 245,592 2,037,100

2 40 24.0 120,000 5.7 36.14 3.60 23.98 61.71 728,100 3,638,000

3 40 40.0 200,000 5.7 36.14 3.60 64.18 61.71 1,227,500 5,238,900

4 40 44.0 220,000 11.3 43.64  − 3.26 98.27 69.61 2,999,700 6,299,100

5 40 20.0 100,000 45.0 117.50  − 22.50 88.39 123.74 8,718,800 6,342,900

Sum 13,919,692 23,556,000
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238 Slope Stability Analysis by the Limit Equilibrium Method

  Fig. 8-6.      Forces on a slice based on the simplifi ed Bishop method    

  In the example, it is really not necessary to compute  λ   N   because  W  can be 
resolved at ( x m  ,  y m  ) into  W sin  θ  and  W cos  θ . Because  W ( x m    −   x o  )  =   λ   T W sin  θ   +  
 λ   N W cos  θ , a simpler equation  M o    =   λ   T W sin  θ  may be used. However, this is not 
true if there are seismic or other forces or if the simplifi ed Bishop or the original 
Spencer method is employed. The values of  λ   N   and  λ   T   listed in the table can be 
used later in Example  8.4 .  

  8.3     Simplifi ed Bishop Method 

 The simplifi ed Bishop method (Bishop  1955 ), designated as method 2, is the most 
widely used method recognized by the engineering profession. It is recom-
mended for use with circular failure surfaces and should yield a factor of safety 
very close to the more refi ned methods. By assuming the forces between two 
slices as horizontal and considering the vertical equilibrium of each slice, the 
effective normal force,  N   , can be determined even without knowing the magni-
tude of the horizontal forces on both sides of the slice. 

 Fig.  8-6  shows one of the slices to be analyzed by the simplifi ed Bishop 
method. Based on the equilibrium of all forces in the vertical direction,

  W
c b N

F
L N ub− ′ + ′ ′ + − ′ − =sec tan

sin sin cos
θ φ θ α θ 0       (8-18)  

  or ′ = ′ + − ′
+ ′

N
F W L c b

F
( sin ) tan

cos sin tan
α θ

θ θ φ
      (8-19)  
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Method of Slices 239

in which  W     =   W   −   ub . Knowing  N   , the factor of safety can be determined from 
Eq.  (8-7)  for circular failure surfaces and from Eq.  (8-8)  for noncircular failure 
surfaces. If  N    is negative, tan  ϕ    in Eqs.  (8-7) ,  (8-8) , and  (8-19)  should be changed 
to 0. The number of equations and unknowns are tabulated as follows:

 EQS.  UNKNOWNS 

Description No. Description No.

 Σ  forces in vertical direction  =  0  n Effective normal forces,  N    n 

Overall moment equilibrium 1 Factor of safety,  F 1

Total  n   +  1 Total  n   +  1

  It can be seen from Eq.  (8-7)  or  (8-8)  and  (8-19)  that  F  depends on  N   , whereas 
 N    depends on  F . Thus, an iteration method must be used to solve  F . First,  N    is 
computed by Eq.  (8-19) , using the factor of safety determined by the normal 
method as the fi rst trial. Based on the  N    thus determined, a new  F  is computed 
by Eq.  (8-7)  or  (8-8) . The process is repeated until the difference between the 
assumed  F  and the new  F  is reduced to a specifi ed tolerance. By using Newton ’ s 
method of tangent, as described in Section 8.6.1, the factor of safety converges 
very rapidly, usually within two or three iterations. 

  Example 8.3            Based on the information provided by Example  8.1 , determine the 
factor of safety by the simplifi ed Bishop method, or method 2.  

  Solution     The simplifi ed Bishop method requires iterations and is much easier to 
solve by a spreadsheet, such as that in Table  8-3 . 

 Items  W ,  θ , and the driving moment, which are needed to compute the factor 
of safety,  F , by the simplifi ed Bishop method, are provided in Example  8.1 . The 
normal force,  N , is obtained from Eq.  (8-19)  by assuming an initial  F  of 1.618, as 
determined by the normal method. The resisting moment is the numerator of Eq. 
 (8-7)  and can be expressed as  R ( c  ×  b   ×  sec  θ   +   N  ×   tan  ϕ   ). Dividing the sum of the 
resisting moment by the sum of the driving moment gives a new  F  of 1.688. Us-
ing the new  F  as the assumed F, the process is repeated until the factor of safety 
converges to 1.693 at the fourth iteration, which checks with the 1.692 obtained 
by LEAME. Special techniques are available to speed up the convergence, as il-
lustrated by Example  8.6 .  

  The iterative procedures illustrated by Table  8-3  are similar to those pro-
grammed in LEAME. When spreadsheets are used, it is really not necessary to 
use four sets of normal force,  N , and resisting moment to determine the four 
factors of safety. By use of trial and error, only one set of data will be suffi cient. 
Any factor of safety can be assumed, and a new factor of safety is computed. 
Using the computed factor of safety as the assumed factor of safety, the process 
is repeated until the factor of safety converges to 1.693, as shown by the last 
column in the table. If the factor of safety does not converge but oscillates back 
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 Table 8-3.      Spreadsheet for Circular Failure Surface by Simplifi ed Bishop Method  

ASSUMED FACTOR OF SAFETY 1.618 1.688 1.692 1.693

No. W  θ Driving M. N ′ Resisting M. N ′ Resisting M. N ′ Resisting M. N ′ Resisting M.

1 71,000  − 8.9  − 2,201,000 76,221 9,001,918 76,034 8,989,740 76,024 8,989,086 76,023 8,989,050

2 182,000 2.6 1,638,000 179,984 15,700,217 180,076 15,706,138 180,080 15,706,457 180,081 15,706,474

3 252,500 14.2 12,372,500 244,793 20,033,677 245,416 20,074,178 245,450 20,076,362 245,452 20,076,480

4 228,500 26.4 20,336,500 225,750 19,135,840 226,868 19,208,488 226,928 19,212,414 226,932 19,212,626

5 97,003 40.2 12,513,000 96,880 11,532,662 97,961 11,602,896 98,020 11,606,701 98,023 11,606,906

Sum 44,659,000 75,404,313 75,581,441 75,591,020 75,591,537

Computed factor of safety 1.688 1.692 1.693 1.693
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Method of Slices 241

and forth, instead of using the computed factor of safety as the assumed factor 
of safety, a slightly smaller value midway between the computed and assumed 
factors of safety should be used to ensure convergence.   

  8.4     Original Spencer Method 

 The original Spencer method, designated as method 3, assumes parallel interslice 
forces making an angle of  δ  with the horizontal and considers the force equilib-
rium of each slice in the direction perpendicular to  δ , the overall force equilib-
rium in the  δ  direction, and the overall moment equilibrium (Spencer  1967 ). 
If the force equilibrium of each slice in the direction perpendicular to  δ  is satis-
fi ed, the overall force equilibrium in the direction perpendicular to  δ  is automati-
cally satisfi ed. Later on, Spencer ( 1973 ) improved the method by considering 
both the moment and force equilibrium of each slice. This improved method now 
generally is called the Spencer method and will be presented in Section 8.5. 
However, the difference in the factor of safety between these two methods is 
usually quite small. The original Spencer method has the advantage that it 
always converges, whereas the Spencer method sometimes may have conver-
gence problems. 

 It should be noted that all equations of equilibrium are based on total forces, 
including the neutral forces, if any. When assuming the direction of interslice 
forces, the forces due to soil and water pressures are considered as an entity and 
act in the same direction. The soil pressure is separated from the water pressure 
only when the shear strength is to be evaluated. 

  8.4.1     Factors of Safety Based on Moment Equilibrium 

 The equation for computing the factor of safety based on overall moment equi-
librium is the same as Eq.  (8-7)  or  (8-8)  used in the normal and simplifi ed Bishop 
methods. However, the forces between two slices are assumed to incline at an 
angle  δ  with the horizontal. Consequently, the normal force,  N   , depends not only 
on  F  but also on  δ . To determine the factor of safety by the original Spencer 
method, three different values of  δ  must be assumed, and the factor of safety for 
each  δ  is then determined. 

 Fig.  8-7  shows all the forces considered in the original Spencer method, 
including the two interslice forces,  Z  1  and  Z  2 , which make an angle of  δ  with the 
horizontal, and the forces,  P  1  and  P  2 , due to the water pressure. By considering 
the equilibrium of all forces on a slice in a direction perpendicular to  δ ,

  
′ −( ) + −( ) + ′ + ′ ′ −( )

+

N ub
c b N

F
C Ws

cos sec cos
sec tan

sin

sin

θ δ θ θ δ θ φ θ δ

δ −− − −( ) =W Lcos sinδ α δ 0
      (8-20)   
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242 Slope Stability Analysis by the Limit Equilibrium Method

  After simplifi cation,

 ′ = ′ − − + −( )[ ] − ′ −( )
N

F W ub C W L c b
F

scos tan sin sin sin sec sinδ θ δ δ α δ θ θ δ
ccos sin tanθ δ θ δ φ−( ) + −( ) ′

      (8-21)   

 To determine the factor of safety with respect to moment equilibrium for a 
given value of  δ , a factor of safety is fi rst assumed, and the value of  N    is com-
puted by Eq.  (8-21) . Substituting the  N    thus determined into Eq.  (8-7)  or  (8-8) , a 
new factor of safety is obtained. Using the new factor of safety as the assumed 
factor of safety, the process is repeated until the factor of safety converges. It is 
interesting to note that when  δ   =  0, the factor of safety is the same as that by the 
simplifi ed Bishop method.  

  8.4.2     Factors of Safety Based on Force Equilibrium 

 The factor of safety with respect to force equilibrium can be obtained by summing 
the forces in the  δ  direction:

  
P

c b N
F

P W

C Ws

1 2cos
sec tan

cos cos sin

cos

δ θ φ θ δ δ δ

δ

+ ′ + ′ ′⎛
⎝

⎞
⎠ −( ) − −

−

∑ ∑
∑∑ ∑ ∑− −( ) − ′ +( ) −( ) =L N Ucos sinα δ θ δ 0

       

  Fig. 8-7.      Resolution of forces based on the original Spencer method    
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 Note that the interslice forces,  Z  1  and  Z  2 , do not appear in the equation, 
because they are internal forces. Moving  F  to one side results in

  F
c b N

W N U

C Ws

=
′ + ′ ′( ) −( )

+ ′ +( ) −( )
+

∑
∑ ∑

sec tan cos

sin sin

cos

θ φ θ δ
δ θ δ

δ∑∑ ∑+ −( ) + −( )L P Pcos cosα δ δ2 1

      (8-22)  

in which  U  can be computed by Eq.  (8-3) . Eq.  (8-22)  in conjunction with Eq.  (8-
21)  can be used to determine the factor of safety with respect to force equilibrium. 
In both force and moment equilibrium, the factor of safety obtained by the 
normal method is used as the initial trial value. If  N    obtained by Eq.  (8-21)  for 
any given slice is negative, tan  ϕ    in Eqs.  (8-21)  and  (8-22)  for that particular slice 
must be changed to 0.  

  8.4.3     Overall Factor of Safety 

 To determine the factor of safety that satisfi es both moment and force equilib-
rium, three different values of  δ , 0, 0.3, and 0.6 rad, are assumed. For each  δ , the 
factors of safety with respect to moment and force equilibrium are determined, 
both by Newton ’ s method of tangent described in Section 8.6.1. These factors of 
safety always converge when  δ   =  0. However, if the actual value of  δ  is small, 
the factor of safety at  δ  of 0.3 or 0.6 may not converge. If the factor of safety at 
 δ  of 0.3 does not converge, then the factors of safety at 0.1125 and 0.225 are 
determined, so the three values of  δ  to be used are 0, 0.1125, and 0.225. If the 
factor of safety at  δ  of 0.6 does not converge, then the factor of safety at  δ  of 0.15 
is determined, so the three values of  δ  to be used are 0, 0.15, and 0.3. If the factor 
of safety still does not converge even after the stated adjustment, further reduc-
tion of  δ  should be made until the factor of safety converges. After the factors of 
safety at the three values of  δ  are determined, a parabola relating  F  to  δ  is devel-
oped for both moment and force equilibrium. The intersection of these two 
parabolas, as shown in Fig.  8-8 , gives the fi nal values of  F  and  δ  desired. If the 
fi nal value of  δ  thus determined is greater than 0.6 but smaller than 0.7, the 
extrapolated value is considered acceptable. If the extrapolated value of  δ  is 
greater than 0.7,  δ  values of 0, 0.45, and 0.9 will be used for interpolation. 

  Although the values of  δ  and  F  can be determined manually by the graphical 
method shown in Fig.  8-8 , a numerical method by converting each curve into an 
equation and then fi nding their intersection is needed for machine computations. 
The well-known Lagrange interpolation formula, or Eq.  (8-23) , can be used for 
this purpose.

  F F F= − −
− −

+ − −
− −

( )( )
( )( )

( )( )
( )( )

δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ δ δ

2 3

1 2 1 3
1

1 3

2 1 2 3
22

1 2

3 1 3 2
3+ − −

− −
( )( )

( )( )
δ δ δ δ

δ δ δ δ
F       (8-23)   

 The curve represented by Eq.  (8-23)  apparently passes through the three 
points ( δ  1 ,  F  1 ), ( δ  2 ,  F  2 ), and ( δ  3 ,  F  3 ), because when  δ   =   δ  1 ,  F   =   F  1 , whereas the other 
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244 Slope Stability Analysis by the Limit Equilibrium Method

two terms are 0. The same is true when  δ   =   δ  2 ,  F   =   F  2  and when  δ   =   δ  3 ,  F   =   F  3 . If 
the three points are spaced equally, Eq.  (8-23)  can be written as

  ( )2 2 2s F A B C= + +δ δ       (8-24)  

in which  s  =   spacing between  δ  1  and  δ  2 , which is the same as between  δ  2  and  δ  3 ,

  A F F F= − +1 2 32       (8-25)  

  B F F F= + − + − +2 1 3 2 2 3 1 1 2 3( ) ( ) ( )δ δ δ δ δ δ       (8-26)  

  C F F F= − +δ δ δ δ δ δ2 3 1 1 3 2 1 2 32       (8-27)   

 Let  A m  ,  B m  , and  C m   be the coeffi cients when the three factors of safety based 
on moment equilibrium are substituted into Eqs.  (8-25) ,  (8-26) , and  (8-27) . With 
 δ  1   =  0,  δ  2   =  0.3, and  δ  3   =  0.6, or  s   =  0.3, Eq.  (8-24)  can be written as

  0 18 2. F A B Cm m m= + +δ δ       (8-28)   

 Similarly, let  A f  ,  B f  , and  C f   be the coeffi cients for force equilibrium, or

  0 18 2. F A B Cf f f= + +δ δ       (8-29)   

 Subtracting Eq.  (8-28)  from Eq.  (8-29) , the following quadratic equation is 
obtained for solving  δ :

  ( ) ( )A A B B C Cf m f m f m− + − + − =δ δ2 0       (8-30)  

  or δ =
− − + − − − −

−
( ) ( ) ( )( )

( )
B B B B A A C C

A A
f m f m f m f m

f m

2 4
2

      (8-31)   

  Fig. 8-8.      Factor of safety by the original Spencer method    
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Method of Slices 245

 Substituting  δ  into Eq.  (8-28) , the factor of safety,  F , can be obtained by

  F A B Cm m m= + +( ) .δ δ2 0 18/       (8-32)   

 The number of equations and unknowns for the original Spencer method are 
tabulated as follows:

 EQS.  UNKNOWNS 

Description No. Description No.

 Σ  forces in  δ  direction  =  0 1 Effective normal forces,  N   n

 Σ  forces on slice  ⊥  to  δ   =  0 n Angle of interslice force,  δ 1

Overall moment equilibrium 1 Factor of safety,  F 1

Total n  +  2 Total n  +  2

  Example 8.4            Based on the information provided by Example  8.2 , determine the 
factor of safety by the original Spencer method, or method 3.  

  Solution     To determine the factor of safety by the original Spence method, six 
factors of safety at three different values of  δ  must be computed. Table  8-4  is the 
spreadsheet for computing these six factors of safety, three based on moment 
equilibrium and three based on force equilibrium, and a factor of safety of 2.127, 
which satisfi es both moment and force equilibrium. Details about the spread-
sheet are as follows:

   1.      Rows 5 to 9 are the input data obtained from Table  8-2 . Rows 12 to 21 
compute the three factors of safety for moment equilibrium and rows 24 
to 33 compute those for force equilibrium. Based on the six factors of safe-
ty, rows 37 to 42 determine the factor of safety that satisfi es both moment 
and force equilibrium.  

  2.      For moment equilibrium with  δ   =  0, a factor of safety must fi rst be as-
sumed and then the normal force in cell B15, the driving moment in cell 
C15, and the resisting moment in cell D15 must be fi lled out. When typing 
an equation, be sure that the symbol for  c  is $I$5, for tan  ϕ  is $I$7, the as-
sumed angle  δ  is D$12, the assumed factor of safety is D$13, and all input 
data from rows 5 to 9 (e.g., B5 and G9) are $B5 and $G9. Once these three 
cells (B15, C15, and D15) are fi lled, they can be copied vertically to the 
cells from rows 16 to 19. Row 20 sums up the driving moment and the 
resisting moment. Dividing the sum of the resisting moment by the sum 
of the driving moment gives the computed factor of safety. Using the 
computed factor of safety as the assumed factor of safety, the process is 
repeated until the factor of safety converges to 2.544. After completing  δ  
 =  0, cells in columns B to D and rows 12 to 21 can be copied as a group to 
cell E12 and then again to cell H12. If there are no mistakes in the spread-
sheet, the three sets of data all should be identical. Then change the 
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  Table 8-4.      Spreadsheet for Noncircular Failure Surface by Original Spencer Method  

A B C D E F G H I J

 3 Data input

 4 Slice b W  θ  in radian  λ N  λ T  λ w

 5 1 40 40,000 0.0995  − 16.22 61.71  − 10 c  =   500 psf

 6 2 40 120,000 0.0995 23.98 61.71 30  ϕ   =   18 deg

 7 3 40 200,000 0.0995 64.18 61.71 70 tan  ϕ   =  0.32492

 8 4 40 220,000 0.1972 98.27 69.61 110

 9 5 40 100,000 0.7854 88.39 123.74 150

 10 

 11 Factor of safety based on moment equilibrium

 12 Assumed angle  δ 0

Normal N ′ Driving M

0.3

Normal N ′ Driving M

0.6

 13 Assumed Factor of Safety 2.544 2.117 2.015

 14 Slice Normal N ′ Driving M Resisting M Resisting M Resisting M

 15 1 38,914 231,184 2,020,590 42,242 285,162 2,087,316 47,252 366,430 2,187,777

 16 2 118,299 763,180 3,612,332 122,742 656,647 3,701,410 129,789 487,651 3,842,715

 17 3 197,685 1,312,585 5,204,073 203,242 955,912 5,315,503 212,327 372,879 5,497,652

 18 4 217,204 2,855,392 6,332,355 215,699 3,003,292 6,298,315 216,562 2,918,408 6,317,851

 19 5 115,546 4,786,894 8,145,492 93,401 6,744,313 7,255,130 78,952 8,021,415 6,674,220

 20 Sum 9,949,236 25,314,842 Sum 11,645,325 24,657,673 Sum 12,166,782 24,520,215

 21 2.544 2.117 2.015
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A B C D E F G H I J

 22  

 23 Factor of safety based on force equilibrium

 24 Assumed angle  δ 0

Normal N ′ Driving F

0.3

Normal N ′ Driving F

0.6

 25 Assumed Factor of Safety 1.992 2.133 2.278

 26 Slice Normal N ′ Driving F Resisting F Resisting F Resisting F

 27 1 38,564 3,831 32,468 42,217 3,413 33,139 46,047 489 30,761

 28 2 117,673 11,689 58,045 122,697 11,026 58,765 127,673 6,491 54,029

 29 3 196,783 19,548 83,622 203,178 18,639 84,391 209,298 12,494 77,298

 30 4 215,286 42,180 88,595 215,665 42,883 89,991 214,203 40,255 82,792

 31 5 109,381 77,344 45,131 93,502 73,177 51,889 79,517 71,122 53,193

 32 Sum 154,592 307,861 Sum 149,138 318,175 Sum 130,851 298,073

 33 1.991 2.133 2.278

 34 

 35 Factor of safety and angle  δ  that satisfy both moment and force equilibrium

 36 

 37 D1  =  0 D2  =  0.3 D3  =  0.6

 38 FM1  =  2.544 FM2  =  2.117 FM3  =  2.015

 39 FF1  =  1.991 FF2  =  2.133 FF3  =  2.278

 40 AM =  0.325 BM  =   − 0.354 CM  =  0.458

 41 AF  =  0.003 BF  =  0.084 CF  =  0.358

 42 Angle D or  δ 0.288 Factor of safety F  = 2.127

Table 8-4. (Continued)
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248 Slope Stability Analysis by the Limit Equilibrium Method

assumed angle  δ  to 0.3 and 0.6 and determine the factor of safety by trial 
and error in the same way as when  δ   =  0.  

  3.      The normal force,  N , in cell B15 can be obtained from Eq.  (8-21)  and 
typed as (D$13*$C5*COS(D$12)-$I$5*$B5*SIN($D5-D$12)/COS($D5))/
(D$13*COS($D5-D$12)  +  SIN($D5-D$12)*$I$7). The driving moment in 
cell C15 can be obtained from the denominator of Eq.  (8-8)  and typed as 
$C5*$G5-B15*$E5. The resisting moment in cell D15 is the numerator of 
Eq.  (8-8)  and can be typed as $F5*($I$5*$B5/COS($D5)  +  B15*$I$7).  

  4.      The same procedures can be applied for force equilibrium. The normal 
force in cell B27 is the same as that in cell C15 except that D$12 and D$13 
must be changed to D$24 and D$25, respectively. The driving force in cell 
C27 can be obtained from the denominator of Eq.  (8-22)  and typed as 
$C5*SIN(D$24)  +  B27*SIN($D5-D$24). The resisting force in cell D27 is 
the numerator of Eq.  (8-22)  and can be typed as ($I$5*$B5/COS($D5)  +  
B27*$I$7)*COS ($D5-D$24).  

  5.      The input parameters for determining the factor of safety that satisfi es 
both moment and force equilibrium are the three  δ  angles in row 37, the 
three factors of safety for moment equilibrium in row 38, and the three 
factors of safety for force equilibrium in row 39. The coeffi cients of Eq. 
 (8-24)  for moment equilibrium can be obtained from Eqs.  (8-25) ,  (8-26) , 
and  (8-27) , with AM in cell C40 typed as C38-2*E38  +  G38, BM in cell 
E40 as 2*(C$37  +  G$37)*E38-(E$37  +  G$37)*C38-(C$37  +  E$37)*G38, and 
CM in cell G40 as E$37*G$37*C38-2*C$37*G$37*E38  +  C$37*E$37*G38. 
The coeffi cients AF, BF, and CF for force equilibrium in row 41 can be 
obtained by copying cell C40 into C41, cell E40 into E41, and cell G40 into 
G41. Angle  δ  in cell D42 can be determined from Eq.  (8-31)  and typed as 
0.5*(E40-E41  +  SQRT((E41-E40) ∧ 2-4*(C41-C40)*(G41-G40)))/(C41-C40). 
The factor of safety in cell G42 can be computed by Eq.  (8-32)  and typed 
as (C40*D42 ∧ 2  +  E40*D42  +  G40)/0.18. The factor of safety that satisfi es 
both moment and force equilibrium is 2.127, which checks with the 2.126 
obtained by LEAME.    

  8.5     Spencer Method 

 The Spencer method (Spencer  1973 ; Chugh  1981 ), designated as method 4, is the 
most refi ned method, because it satisfi es all the equations of equilibrium. Fig.  8-9  
shows the most general case with normal force,  E , and shear force,  S , at the right 
side of the slice. The differences in normal and shear forces between the left and 
right sides are  Δ  E  and  Δ  S . The assumption of  S   =   E  tan  δ  in this method is the 
same as in the original Spencer method but the moment is taken at the midpoint 
of the base of each slice. The general procedure is fi rst to assume  S   =  0, and, 
based on the force equilibrium, determine the normal forces,  E  and  N   , the 
tangential force,  T , and the factor of safety,  F . Then, based on the moment equi-
librium, determine the angle of inclination,  δ , and a new set of the shear forces, 
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Method of Slices 249

  Fig. 8-9.      General case of forces on a slice    

 S . Using the  F  and the new set of  S  thus obtained, the process is repeated until 
the factor of safety converges. 

  The Spencer method is similar to the well-known Morgenstern-Price method 
(Morgenstern and Price  1965 ), which assumes that the shear forces,  S , between 
the slices not only vary with the normal forces,  E , but also change from slice to 
slice according to a function  f ( x ), or

  S f x E= λ ( )       (8-33)  

in which  λ  is an unknown constant to be determined, and  f ( x ) can be a constant, 
a linear function, a sine curve, or a numerical value at each vertical side. It can 
be seen that the Spencer method is a special case of Morgenstern-Price with  λ   =  
tan  δ  and  f ( x )  =  1. The major difference between the two methods is that the 
Morgenstern-Price method provides more fl exibility in the assumptions of the 
inclinations of interslice forces. However, the assumptions generally appear to 
have very little effect on the computed factor of safety when the static equilib-
rium is satisfi ed. Although the solution techniques used in the Spencer method 
can also be applied to the Morgenstern-Price method, the Morgenstern-Price 
method is not used in LEAME. 

  8.5.1     Force Equilibrium of Each Slice 

 Based on the equilibrium of forces in the vertical direction,

  

′ + + + − − =
′ = − −( ) − +

N T ub S W L

N W ub S T L

cos sin sin
sec tan sin

θ θ α
θ θ α

Δ
Δ

0
or ssec

sec tan sin sec
θ

θ θ α θand ′ = ′ −( ) − +N W S T LΔ       (8-34)  
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250 Slope Stability Analysis by the Limit Equilibrium Method

in which  W     =   W   −   ub . Without subscript  i , Eq.  (8-2)  can be rewritten as

  T
c b N

F
= ′ + ′ ′sec tanθ φ

      (8-35)   

 Substituting Eq.  (8-34)  into  (8-35) ,

  T
c b W S T L

F
= ′ + ′ −( ) − +[ ] ′sec sec tan sin sec tanθ θ θ α θ φΔ

      (8-36)   

 From Eq.  (8-36) , the shear force,  T , can be determined by

  T
c b W S L

F
= ′ + ′ −( ) +[ ] ′

+ ′
sec sec sin sec tan

tan tan
θ θ α θ φ

θ φ
Δ

      (8-37)   

 Based on the equilibrium of forces in the horizontal direction,

  ΔE N ub C W L Ts= ′ + + + −sin tan cos cosθ θ α θ       (8-38)   

 Substituting Eq.  (8-34)  into Eq.  (8-38) ,

  Δ ΔE W S T C W Ls= −( ) − + + +( )tan sec sin tan cosθ θ α θ α       (8-39)   

 Since the overall horizontal force equilibrium must be satisfi ed,

  ΔE P P∑ = −2 1       (8-40)   

 or

 T W S C W L P Pssec ( )tan (sin tan cos ) ( )θ θ α θ α∑ ∑ ∑ ∑= − + + + − −Δ 2 1       (8-41)   

 Note that  P  1  and  P  2  may be zero if there is no water pressure at both ends. 
 Combining Eqs.  (8-36)  and  (8-41) ,

  F
c b W S T L

W S
=

′ + ′ −( ) − +[ ] ′{ }
−( )

∑ sec sec tan sin sec tan sec

t

θ θ θ α θ φ θΔ
Δ aan sin tan cos ( )θ α θ α∑ ∑ ∑+ + +( ) − −C W L P Ps 2 1

      (8-42)   

 Eq.  (8-37)  in conjunction with Eq.  (8-42)  can be used in the Spencer method 
for determining the factor of safety. Note that both equations contain the unknown 
 Δ  S , which must be evaluated from the moment equilibrium. The value of  T  
obtained from Eq.  (8-37)  must not be negative. If  T   <  0, then tan  ϕ    in Eqs.  (8-37)  
and  (8-42)  must be assigned 0.  

  8.5.2     Moment Equilibrium of Each Slice 

 Fig.  8-10  shows the forces involved in moment equilibrium. Assuming that the 
side forces,  Z  1  and  Z  2 , are applied at  h  1  and  h  2  above the base, and taking the 
moment at the midpoint of the base, the following equation is obtained:
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  Fig. 8-10.      Forces for moment equilibrium based on the Spencer method    
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2
0cos tanδ θ

       

  Moving  h  2  to one side and replacing  Z  1  by  E  1 /cos  δ  and  Z  2  by  E  2 /cos  δ ,

  
h

E
E

h
b E

E
C W y y

E
L

s c m
2

1

2
1

1

2 22
1= ⎛

⎝⎜
⎞
⎠⎟ + +⎛

⎝⎜
⎞
⎠⎟ − −

−( )

+

(tan tan )

si

δ θ

nn cosα αx x y y
E

L m L m−( ) − −( )[ ]
2

      (8-43)   

 Eq.  (8-43)  can be used for all intermediate slices to determine  h  2  based on the 
known or computed value of  h  1 . For the fi rst slice shown in Fig.  8-11 (a), Eq.  (8-43)  
should be modifi ed to

  
h

P
E

h
b P

E
b C W y y

E
L

s c m
2

1

2
1

1

2 22
1

2
= ⎛

⎝⎜
⎞
⎠⎟ − +⎛

⎝⎜
⎞
⎠⎟ + −

−( )

+

tan tan

si

θ δ

nn cosα αx x y y
E

L m L m−( ) − −( )[ ]
2

      (8-44)   

  In most cases when there is no pounding of water on the slope surface,  P  1  
and  h  1  are both zero. If water is pounded on the slope surface,  h  1   =   d  1 /3, where 
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252 Slope Stability Analysis by the Limit Equilibrium Method

 d  1  is the water table above the failure surface for the fi rst slice. For the last slice 
shown in Fig.  8-11 (b),

  
h

E
P

h
b E

P
b E

P
C W ys c

2
1

2
1

1

2

1

22
1

2
= ⎛

⎝⎜
⎞
⎠⎟ − +⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟ −

−
tan tanθ δ

yy
P

L x x y y
P

m

L m L m

( )

+
−( ) − −( )[ ]

2

2

sin cosα α
      (8-45)   

 Starting from the fi rst slice with given values of  P  1  and  h  1 , Eqs.  (8-44) ,  (8-43) , 
and  (8-45)  are applied successively until  h  2  of the last slice is obtained. The value 
of  δ  can be adjusted gradually by trial and error until  h  2   =   d  2 /3, where  d  2  is the 
water table above the failure surface for the last slice. A subroutine called RTMI, 
originally developed by IBM (1970), is used in LEAME to solve a general non-
linear equation of the form Function( δ )  =  0 by means of Mueller ’ s iteration 
scheme of successive bisection and inverse parabolic interpolation. When  P  2   =  0, 
 h  1  for the last slice can be determined by

 h
b b C W y y

E
L x x y y

E
s c m L m L m

1
1 12 2

= − +
−( ) −

−( ) − −( )[ ]
tan tan

sin cos
θ δ

α
      (8-46)   

 The value of  δ  is so selected that  h  2  of the next to the last slice, as obtained 
from Eq.  (8-43) , is equal to  h  1  of the last slice, as obtained from Eq.  (8-46) . The 
number of equations and unknowns are tabulated as follows:

Eqs. Unknowns

Description No. Description No.

 Σ  forces in horizontal direction  =  0 n Normal forces between slices, E n  −  1

 Σ  forces in vertical direction  =  0 n Height of forces between slices, h n  −  1

 Σ  moments at base of each slice  =  0 n Effective normal forces, N  n

Angle of interslice forces,  δ 1

Factor of safety,  F 1

Total 3n Total 3n

  Fig. 8-11.      Forces for moment equilibrium of fi rst and last slices    
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 The Spencer method can be summarized as follows:

   1.      Based on an initial  F  by the normal method and  δ   =  0, which is the same 
as  S   =   Δ  S   =  0, determine  T  from Eq.  (8-37)  and a new value of  F  from 
Eq.  (8-42) . Using the new  F  as the assumed  F , repeat the process until  F 
 converges.  

  2.      Based on  Δ  S   =  0 and the value of  F  obtained in step 1, compute  T  by Eq. 
 (8-37)  and  Δ  E  by Eq.  (8-39) . Starting from the left side of the fi rst slice 
where  E  1   =  0 or  P  1 , compute  E  2  on the right side of the fi rst slice by  E  2   =   E  1  
 −   Δ  E . Apply this procedure recursively, slice by slice, until the last slice is 
reached. Because the factor of safety is obtained through Eq.  (8-40) ,  E  2  at 
the right side of the last slice automatically should be equal to 0 or  P  2 .  

  3.      Based on  Δ  S   =  0, the given  P  1  and  h  1  of the fi rst slice, and the values of  E  
obtained in step 2, apply Eq.  (8-43)  recursively to determine  h  2  of the last 
slice. Instead of Eq.  (8-43) , Eq.  (8-44)  should be used for the fi rst slice and 
Eq.  (8-45)  for the last slice. Vary  δ  until  h  2  of the last slice is equal to  d  2 /3. 
If  P  2   =  0, vary  δ  until  h  2  of the next-to-last slice obtained from Eq.  (8-43)  is 
equal to  h  1  of the last slice obtained from Eq.  (8-46) .  

  4.      Based on the values of  E  obtained in step 2 and  δ  in step 3, compute the 
shear force between slices by  S   =   E  tan  δ  and  Δ  S  by difference, that is,  Δ  S  
 =   S  1   −   S  2 . This completes the fi rst cycle of iteration for  Δ  S   =  0.  

  5.      Based on the factor of safety obtained in step 1 and the value of  Δ  S  in step 
4, repeat steps 1 to 4 and fi nd new values of  F  and  Δ  S . This completes the 
second cycle of iteration.  

  6.      Continue the cycles until  F  converges.    

  Example 8.5            Based on the information provided by Example  8.2 , determine the 
factor of safety by the Spencer method, or method 4.  

  Solution     The Spencer method applies the force equilibrium to evaluate the fac-
tor of safety,  F , and the moment equilibrium to evaluate the angle of inclination, 
 δ . Table  8-5  is the spreadsheet, the details of which are as follows:

   1.      After assuming a factor of safety in cell E12, the cells in row 14 from col-
umns B to F should be fi lled out fi rst. For the fi rst iteration,  Δ  S  in cell B14 
should be assumed 0. The driving force in cell C14 is the denominator of 
Eq.  (8-42)  and can be expressed as  W   ×  tan  θ . The tangential force,  T , in 
cell D14 can be computed by Eq.  (8-37)  and expressed as ( c   ×   b  +  W   ×  tan  ϕ ) 
 ×  sec  θ /( F   +  tan  θ   ×  tan  ϕ   ). The resisting force in cell E14 is the numerator 
of Eq.  (8-42)  and can be expressed as ( c   ×   b   ×  sec  θ   +  ( W   ×  sec  θ   −   T   ×  tan  θ )
tan  ϕ )  ×  sec  θ .  Δ  E  in cell F14 can be computed by Eq.  (8-39)  and expressed 
as  W   ×  tan  θ   −   T   ×  sec  θ . Before copying row 14 from columns B to F into 
rows 15 to 18, be sure that  c  in cell G5 is typed as $G$5, tan  ϕ  in cell G7 
as $G$7, and the assumed factor of safety in cell E12 as E$12. The driv-
ing forces are summed in cell C19 and the resisting forces in cell E19. 
Dividing the sum of resisting forces by the sum of driving forces gives the 
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254 Slope Stability Analysis by the Limit Equilibrium Method

 Table 8-5.      Spreadsheet for Noncircular Failure Surface by Spencer Method  

A B C D E F G H I J

 3 Data input          

 4 Slice b W  θ  in 
radian

 5 1 40 40,000 0.0995 c  =  500 psf

 6 2 40 120,000 0.0995  ϕ   =  18 deg

 7 3 40 200,000 0.0995 tan  ϕ   =  0.325

 8 4 40 220,000 0.1972

 9 5 40 100,000 0.7854

 10 

 11 Iteration no. 1

 12 Assumed factor of safety 1.991 Computed  δ 0.291 0.292

 13 Slice  Δ S Driving 
F.

T Resisting 
F.

 Δ E E h2 h2 S

 14 1 0 3,993 16,388 32,791  − 12,477 12,477 3.993 4.015 3,750

 15 2 0 11,980 29,298 58,623  − 17,465 29,941 7.322 7.362 9,000

 16 3 0 19,966 42,209 84,455  − 22,452 52,394 10.460 10.517 15,749

 17 4 0 43,955 45,377 92,130  − 2,318 54,712 13.920 14.018 16,446

 18 5 0 100,000 32,054 90,255 54,669 43 *14.010 *13.988 13

 19 Sum 179,894 358,255  − 43  Δ h  − 0.090 0.029

 20 Computing factor of safety 1.991

 21 

 22 Iteration no. 2

 23 Assumed factor of safety 2.153 Computed  δ 0.285 0.284

 24 Slice  Δ S Driving 
F.

T Resisting 
F.

 Δ E E h2 h2 S

 25 1  − 3,750 4,368 15,734 34,043  − 11,445 11,445 3.863 3.841 3,341

 26 2  − 5,250 12,504 27,911 60,391  − 15,546 26,991 7.139 7.099 7,878

 27 3  − 6,749 20,640 40,088 86,739  − 19,648 46,638 10.230 10.172 13,613

 28 4  − 697 44,094 42,166 92,578 1,095 45,544 14.248 14.145 13,294

 29 5 16,433 83,567 26,911 81,940 45,509 35 *14.141 *14.162 10

 30 Sum 165,173 355,691  − 35  Δ h 0.107  − 0.017

 31 Computing factor of safety 2.153

c08.indd   254c08.indd   254 12/16/2013   1:38:26 PM12/16/2013   1:38:26 PM



Method of Slices 255

computed factor of safety. By trial and error, the factor of safety converges 
to 1.991. Note that the sum of  Δ  E  is  − 43, which is nearly equal to 0 com-
pared with other  Δ  E  ’ s, as is expected.  

  2.      Next compute  E  in column G by  E i    =   E i    −   1   −   Δ  E . For the fi rst slice,  E i    −   1  is 0, 
so  E   =   −  Δ  E ; for the last slice,  E  should be 0 or negligibly small. Then as-
sume  δ  in cell H12 as H$12 and compute  h  2  in the fi rst slice by Eq.  (8-44)  
expressed as 0.5  ×   b   ×  (tan  δ   −  tan  θ ) and those for the intermediate slices 
by Eq.  (8-43)  expressed as  E i    −   1   ×   h i    −   1 / E i    +  0.5  ×   b   ×  (1  +   E i    −   1 / E i  )  ×  (tan  δ   −  
tan  θ ). Because  h  2  for the last slice is 0, the value shown for the last slice is 
actually  h  1  computed by Eq.  (8-46)  and expressed as 0.5  ×   b   ×  (tan  θ   −  
tan  δ ). The difference between  h  2  of slice 4 and  h  1  of slice 5 is  Δ  h , as shown 

Table 8-5. (Continued)

A B C D E F G H I J

 To save space, iterations no. 3 to no. 5 are not shown. 

Iteration no. 6

Assumed factor of safety 2.127 Computed   δ 0.285 0.286

Slice  Δ S Driving 
F.

T Resisting 
F.

 Δ E E h2 h2 S

1  − 3,418 4,334 15,873 33,930  − 11,618 11,618 3.863 3.885 3,416

2  − 4,665 12,445 28,159 60,191  − 15,853 27,471 7.130 7.170 8,078

3  − 5,913 20,556 40,444 86,453  − 20,089 47,560 10.213 10.270 13,986

4 155 43,924 42,538 92,266 546 47,014 14.080 14.182 13,825

5 13,836 86,164 27,683 83,272 47,014 0 *14.141 *14.119 0

Sum 167,424 356,112 0  Δ h  − 0.061 0.063

Computing factor of safety 2.127

Iteration no. 7

Assumed factor of safety 2.127 Computed  δ 0.285 0.286

Slice  Δ S Driving 
F.

T Resisting 
F.

 Δ E E h2 h2 S

1  − 3,416 4,334 15,873 33,929  − 11,617 11,617 3.863 3.885 3,416

2  − 4,662 12,445 28,158 60,190  − 15,853 27,471 7.130 7.170 8,078

3  − 5,907 20,556 40,444 86,451  − 20,089 47,560 10.213 10.270 13,985

4 161 43,923 42,537 92,264 546 47,014 14.080 14.182 13,825

5 13,825 86,175 27,685 83,279 47,022  − 8 *14.141 *14.119  − 2

Sum 167,433 356,113 8  Δ h  − 0.061 0.063

Computing factor of safety 2.127

   Note:   *indicates that the value is h1 of slice 5 and h2 of slice 5 is 0.   
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on the line beneath slice 5. Finally, copy column H from rows 12 to 19 into 
column I. Theoretically,  Δ  h  should be equal to 0 but, practically, a value of 
 δ  can be found by trial and error that makes  Δ  h  as close to 0 as possible. 
For example, when  δ   =  0.291,  Δ  h   =   − 0.090 and when  δ   =  0.292,  Δ  h   =  0.029. 
It is apparent that  Δ  h   =  0 lies between  δ   =  0.291 and 0.292, so the one clos-
est to 0 is placed in column I. After  δ  is determined,  S  in column J can be 
computed by  E  tan  δ .  

  3.      Before copying iteration 1 from rows 11 to 20 to form iteration 2 from 
rows 22 to 31, change all variables with a row number less than 10, such 
as B5 and D9, to B$5 and D$9, the assumed factor of safety from E$12 to 
E12, and the assumed  δ  from H$12 and I$12 to H12 and I12. After copy-
ing, iteration 2 should be exactly the same as iteration 1. If not, something 
must be wrong in the spreadsheet and should be corrected. In iteration 2, 
change  Δ  S  in column B from 0 to  S i    −   1   −   S i  . Then adjust the assumed factor 
of safety in cell E23 until it converges to 2.153 and the assumed  δ  in cells 
H23 and H24 until a value of 0.284 is obtained.  

  4.      Iteration 2 from rows 22 to 31 can be copied repeatedly for the remaining 
iterations. Adjust the factor of safety and the  δ  angle until they converge. 
The factor of safety converges to 1.127 and the  δ  angle to 0.286 at the sev-
enth iteration. The factor of safety obtained by LEAME is 2.125, which 
checks closely with the 2.127 by the spreadsheet.  

  5.      In this example, the use of the computed  Δ  S  as the assumed  Δ  S  does not 
cause any problem on convergence. If the factor of safety does not con-
verge, a relaxation factor to reduce the amount of change in  Δ  S  between 
two iterations must be used, as described in Section 8.6.2. If  Δ  S    is the 
previously assumed value and  Δ  S , or  S i    −   1   −   S i  , is the newly computed 
value, instead of using  Δ  S  directly as the assumed  Δ  S , the assumed  Δ  S  is 
modifi ed as  Δ  S   =   Δ  S     +   R f  ( Δ  S   −   Δ  S   ), where  R f   is the relaxation factor.         

  8.6     Special Solution Techniques 

 Except for the normal method, all the methods require some kinds of iterations. 
To speed up convergence, Newton ’ s method of tangent can be applied to the 
simplifi ed Bishop and the original Spencer methods and a relaxation factor can 
be used in the Spencer method. 

  8.6.1     Newton ’ s Method of Tangent 

 A very effi cient method to solve a nonlinear equation  f ( F )  =  0 is by Newton ’ s 
method of tangent, as shown in Fig.  8-12 . The relationship between the factor of 
safety,  F , and the function  f ( F ) is represented by the smooth curve. The intersec-
tion of the curve with the  F -axis gives the solution for  f ( F )  =  0. To obtain the 
solution graphically, a factor of safety,  F , is assumed, and the function  f ( F ) is 
determined, as shown by point 1 in Fig.  8-12 . A tangent to the curve is drawn at 
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  Fig. 8-12.      Newton ’ s method of tangent    

point 1 and its intersection with the  F -axis gives a new factor of safety,  F . Repeat 
the process for point 2 and then point 3 until the two successive factors of safety, 
 F m    + 1  and  F m  , converge to a specifi ed tolerance. The new  F  can be determined from 
the previous  F  by

  F F
f F
f F

m m
m

m
+ = −

′( )1
( )

      (8-47)  

in which  f    ( F m  ) is the slope of the tangent or the fi rst derivative of  f ( F ) at 
point  m . 

  According to Eq.  (8-8)  for noncircular failure surfaces, the factor of safety can 
be reduced to the following simplifi ed form:

  F
a a N

b b N
=

+ ′( )
− ′( )

∑
∑

1 2

1 2

      (8-48)  

in which the constants  a  1 ,  a  2 ,  b  1 , and  b  2  are independent of  F  and can be deter-
mined directly from the geometry of each slice, the soil parameters, and the 
seepage and loading conditions. Eq.  (8-22)  for the force equilibrium in the origi-
nal Spencer method can be expressed in the same form except that the negative 
sign before  b  2  must be replaced by a positive sign. Note that the effective normal 
force,  N   , is a function of  F . 

 Eq.  (8-48)  can also be applied to circular failure surfaces by assigning  b  2  to 0. 
Eq.  (8-48)  can be written as

  f F F b b N a a N( ) = − ′( ) − + ′( )∑ ∑1 2 1 2       (8-49)   
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 The fi rst derivative of  f ( F ) is

  ′ ( ) = − ′( ) − ′⎛
⎝

⎞
⎠ − ′⎛

⎝
⎞
⎠∑ ∑ ∑f F b b N F b

dN
dF

a
dN
dF

1 2 2 2       (8-50)   

 As indicated by Eq. (8-19) for the simplifi ed Bishop method and Eq.  (8-21)  
for the original Spencer method, the effective normal forces can be expressed as

  ′ = −
+

N
a F a
b F b

3 4

3 4
      (8-51)   

 Note that the constants  a  3 ,  a  4 ,  b  3 , and  b  4  are different for each slice and, for 
the original Spencer method, also depend on the assumed value of  δ . The fi rst 
derivative of  N    with respect to  F  is

  
dN
dF

a b a b
b F b

′ = +
+( )

3 4 4 3

3 4
2       (8-52)  

 f    ( F ) can be evaluated by substituting Eqs.  (8-51)  and  (8-52)  into Eq.  (8-50) . 
 The iterative procedure proceeds as follows. First assume  F   =   F m   and deter-

mine  f ( F m  ) from Eqs.  (8-49)  and  (8-51) , then compute  f    ( F ) from Eqs.  (8-50) ,  (8-51) , 
and  (8-52) , and fi nally obtain a new  F m    + 1  from Eq.  (8-47) . The process is repeated 
until the difference between  F m    + 1  and  F m   becomes negligibly small. 

 Because the simplifi ed Bishop method with circular failure surfaces is 
employed most frequently and is repeated many times, a more concise iterative 
equation is developed here to save computer time. After substituting Eq.  (8-19)  
into Eq.  (8-7) , the factor of safety can be computed directly by

  F
R

c b W L
F

W C W L Pw s s L

=

′ + ′ +( ) ′
+ ′

+ + −

∑
∑ ∑ ∑

sin tan
cos sin tan /

α φ
θ θ φ

λ λ λ 1λλ λ1 2 2+ P
      (8-53)   

 To make the following equations shorter, name the overturning moment in 
the denominator of Eq.  (8-53) , which is independent of  F , as  M o  :

  f F FM R
c b W L

F
o( )

sin tan
cos sin tan /

= − ′ + ′ +( ) ′
+ ′∑ α φ

θ θ φ
      (8-54)  

  ′ = − ′ + ′ +( ) ′[ ] ′
+ ′( )

f F M R
c b W L

F
o( )

sin tan sin tan
cos sin tan

α φ θ φ
θ θ φ 2∑∑       (8-55)   

 From Eq.  (8-47) ,

  F F
M R

c b W L
F

M R
c bm m

o
m

o

+ = −
− ′ + ′ +( ) ′

+ ′

− ′ + ′

∑
1 1

sin tan
cos sin tan

α φ
θ θ φ

WW L
Fm

+( ) ′[ ] ′
+ ′( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
∑ sin tan sin tan

cos sin tan
α φ θ φ

θ θ φ 2
⎪⎪
⎪

      (8-56)   

 Eq.  (8-56)  can be used directly to compute  F m    + 1  based on the value of  F m  . 
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  Example 8.6            Based on the information provided by Example  8.1 , determine the 
factor of safety by the simplifi ed Bishop method using Eq.  (8-56) .  

  Solution     To use the spreadsheet, Eq.  (8-56)  can be simplifi ed to

  F F
M R M

M R M
m m

o

o
+ = −

−
−

⎛

⎝⎜
⎞

⎠⎟
∑
∑1

1

2

1       (8-57)  

in which  M o    =  44,659,000 ft-lb (see Table  8-3 ),  R   =  200 ft,  M  1   =  ( c    b   +   W tan  ϕ   )/( F m-

  cos  θ   +  sin  θ  tan  ϕ   ), and  M  2   =  [( c    b   +   W tan  ϕ   )sin  θ  tan  ϕ   ]/( F m   cos  θ   +  sin  θ  tan  ϕ   ) 2 . 
Table  8-6  is the spreadsheet for computing the factor of safety. 

  In Table  8-6 , items  W  and  θ  can be obtained from Table  8-1 . An initial safety 
factor of 1.618 by the normal method is assumed as  F m   and a new safety factor, 
 F m    + 1 , of 1.750 is computed by Eq.  (8-57) . Using the new  F m    + 1  as the assumed  F m  , 
the process is repeated until the factor of safety converges to 1.693 at the third 
iteration, instead of the fourth iteration in Example  8.3 .    

 Table 8-6.      Spreadsheet for Computing Factor of Safety Using Newton ’ s Method  

Slice 
No.

Assumed F m 1.618 1.750 1.693

W  θ  in deg M1 M2 M1 M2 M1 M2

1 71,000  − 8.9 27,818  − 903 25,654  − 768 26,552  − 823

2 182,000 2.6 48,517 438 44,884 375 46,394 401

3 252,500 14.2 61,909 2,994 57,443 2,577 59,302 2,747

4 228,500 26.4 66,585 5,360 55,045 4,645 56,751 4,937

5 97,000 40.2 35,639 5,171 33,312 4,518 34,285 4,785

SUM 240,468 13,060 216,340 11,347 223,283 12,047

Mo  =  44,659,000 Computed F m + 1 1.750 1.693 1.693

  8.6.2     Use of a Relaxation Factor 

 To enhance convergence, a relaxation factor can be used in the Spencer method. 
In the Spencer method, a set of  Δ  S  is assumed and the values of  F  and  δ  are 
determined. Instead of using  δ  directly to determine the new set of  Δ  S , the actual 
 δ  to be used for the next iteration is

  δ δ δ δa fR= ′ + − ′( )       (8-58)  

in which  δ   a   is the assumed angle for the next iteration,  δ    is the previously 
assumed angle,  δ  is the newly computed angle, and  R f   is the relaxation factor. To 
start iterations by LEAME, a relaxation factor of 1 initially is assumed. A relax-
ation factor of 1, or  δ   a    =   δ , indicates that no relaxation factor actually is applied, 
because the newly computed  δ  is used directly as the assumed  δ  for the next 
iteration. If the factor of safety does not converge, the relaxation factor is reduced 
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to 0.5 and the iteration is started from the very beginning. A relaxation factor of 
0.5 implies that the assumed  δ   a   for the next iteration is the average of the previ-
ous  δ   , and the newly computed  δ . Eq.  (8-58)  reduces the amount of change in  δ  
between two iterations and prevents  δ  from oscillating back and forth, which 
may cause diffi culty in convergence. If the factor of safety still does not converge, 
the relaxation factor will be reduced to 0.25 and then 0.125. When the relaxation 
factor has been reduced to 0.125 but the factor of safety still diverges, the factor 
of safety just before divergence is taken as the fi nal factor of safety, and the fact 
that the factor of safety does not converge will be noted. If the factor of safety of 
the most critical failure surface diverges, LEAME will reanalyze the most critical 
failure surface by the original Spencer method. Because the original Spencer 
method usually does not have the convergence problem, the factor of safety it 
provides should be considered reliable. In the simplifi ed Bishop and the original 
Spencer methods, Newton ’ s method of tangent is used and no relaxation factor 
is applied.   

  Summary 

   1.      Of the four limit equilibrium methods discussed in this chapter, the nor-
mal, simplifi ed Bishop, and original Spencer methods consider the over-
all moment equilibrium by taking moments at the center of the circle, or, 
in the case of a noncircular failure surface, at an arbitrarily selected point. 
The factor of safety based on overall moment equilibrium depends on 
the effective normal force,  N   , at the bottom of each slice. The diffi culty 
in determining  N    is because of the presence of the unknown interslice 
forces. Each method applies a different procedure to eliminate the effect 
of interslice forces. The normal and simplifi ed Bishop methods are not 
suitable for noncircular failure surfaces, because they do not consider the 
overall force equilibrium, and the location of the moment center will have 
some effect on the factor of safety obtained. The original Spencer method 
considers not only the overall moment equilibrium but also the overall 
force equilibrium, so any reasonable moment centers may be selected and 
should yield about the same factor of safety.  

  2.      The normal method is similar to the well-known Fellenius method in 
which the forces between two slices are assumed to be zero. By summing 
the forces on each slice in a direction normal to the failure surface,  N    can 
be determined directly and the factor of safety computed. The difference 
between the normal and Fellenius methods lies in the determination of 
pore water pressure normal to the failure surface. To avoid the occurrence 
of negative pore pressure on steeply inclined failure surfaces, the normal 
method invokes the concept of submerged weight, so the neutral force 
normal to the failure surface can be assumed equal to  ub cos  θ  instead of 
 ub sec  θ , where  u  is the pore pressure,  b  is the width of slice, and  θ  is the 
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angle of inclination of the failure surface. The normal method computes 
the factor of safety directly without iterations, whereas all the other meth-
ods require some kinds of iterations, or trial and error, until the factor of 
safety converges to a specifi ed tolerance. The normal method usually 
gives a factor of safety somewhat smaller than the other methods and can 
be used to provide an initial factor of safety for all the other methods.  

  3.      The simplifi ed Bishop method is the most widely used method recog-
nized by the engineering profession. It is recommended by LEAME as a 
standard method for use with circular failure surfaces, and it should yield 
a factor of safety very close to the more refi ned methods. By assuming the 
forces between two slices as horizontal, and considering the vertical equi-
librium of each slice, the effective normal force,  N   , can be determined 
even without knowing the magnitude of the horizontal interslice forces. 
Unlike in the normal method, the  N    thus determined depends on the fac-
tor of safety and the factor of safety depends on  N   , so an iteration method 
must be used to solve the factor of safety.  

  4.      The original Spencer method assumes parallel interslice forces, all mak-
ing an angle of  δ  with the horizontal. It considers the force equilibrium of 
each slice in the direction perpendicular to  δ  to determine  N   , the overall 
force equilibrium in the  δ  direction to determine the factor of safety with 
respect to force equilibrium, and the overall moment equilibrium to de-
termine the factor of safety with respect to moment equilibrium. Because 
these two factors of safety are not equal and vary with the value of  δ  as-
sumed, the value of  δ  must be adjusted by trial and error until the two 
factors of safety become the same. Instead of trial and error, a graphical 
method also can be used. The original Spencer method considers the 
overall force and moment equilibrium but not the force and moment 
equilibrium for each slice and is not as refi ned as the Spencer method, 
which satisfi es all equations of equilibrium. However, the difference in 
the factor of safety between the two methods is usually quite small. The 
original Spencer method has the advantage in that it always converges, 
whereas the Spencer method sometimes may have convergence 
problems.  

  5.      The Spencer method is a special case of the well-known Morgenstern-
Price method by assigning the function  f ( x )  =  1, thus avoiding the sophis-
tication of a user-defi ned function, as required by the Morgenstern-Price 
method. Similar to the original Spencer method, it also assumes that all 
the interslice forces incline at an angle  δ  with the horizontal. It considers 
both the force and the moment equilibrium of each slice. If each slice is in 
equilibrium, the overall force and moment equilibrium automatically is 
satisfi ed. The force equilibrium equations are used to determine the fac-
tor of safety,  F , and the moment equilibrium equations are used to deter-
mine the angle  δ . The determination of  F  and  δ  requires two separate 
iterations. Because  F  depends on  δ  and  δ  depends on  F , a third iteration is 
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needed to solve  F  and  δ . The Spencer method is the most refi ned method 
and is recommended by LEAME as a standard method for use with non-
circular and composite failure surfaces.  

  6.      All the methods presented in this chapter, except for the normal method, 
require some kinds of iterations. To speed up convergence, Newton ’ s 
method of tangent can be applied to the simplifi ed Bishop and original 
Spencer methods. The application of this technique is described and an 
equation applicable to the simplifi ed Bishop method with circular failure 
surfaces is presented. For the Spencer method, a relaxation factor should 
be applied to avoid oscillations and ensure convergence.  

  7.      For a given failure surface, spreadsheets can be applied easily to compute 
the factor of safety. The use of a trial-and-error method by a spreadsheet 
to fi nd a factor of safety is so easy that it is really not necessary to change 
the factor of safety gradually until it converges, as is done by LEAME. A 
few trials and errors will be suffi cient to fi nd a computed factor of safety 
that is equal or nearly equal to the assumed factor of safety. It should be 
noted that the spreadsheet only solves one of the hundreds of trial failure 
surfaces and cannot be used as a substitute for a computer program. The 
factors of safety obtained by the spreadsheets were compared with those 
by the LEAME computer program and found to be in good agreement.    

  Problems 

   8.1      Fig.  P8-1  shows a 3:1 slope and the location of a circular failure surface. 
The failure mass is fi rst divided evenly into three slices, as shown by the 
solid lines, and then subdivided at the two break points of the ground 
line, as shown by the dashed lines, so there are a total of fi ve slices. If 
the soil has a cohesion of 500 psf, a friction angle of 10°, and a total unit 
weight of 125 pcf, determine the factor of safety by the normal method.
   [Answer: 1.445]     

  Fig. P8-1.        
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  8.2      Same as Problem 8.1, but determine the factor of safety by the simplifi ed 
Bishop method.
   [Answer: 1.625]     

  8.3      Same as Problem 8.1, but determine the factor of safety by the original 
Spencer method.
   [Answer: 1.624]     

  8.4      Same as Problem 8.1, but determine the factor of safety by the Spencer 
method.
   [Answer: 1.654]     

  8.5      Fig.  P8-5  shows a 2:1 slope and the location of the noncircular failure sur-
face. The failure mass is fi rst divided evenly into four slices, as shown by 
the solid lines, and then subdivided at the break point of the failure sur-
face, as shown by the dashed lines, so there are a total of fi ve slices. The 
soil has a cohesion of 400 psf, a friction angle of 15°, and a total unit weight 
of 125 pcf. By assuming an arbitrary moment center at (100, 200), deter-
mine the factor of safety by the normal method.
   [Answer: 1.250]     

  Fig. P8-5.        

  8.6      Same as Problem 8.5, but determine the factor of safety by the original 
Spencer method.
   [Answer: 1.393]     

  8.7      Same as Problem 8.5, but determine the factor of safety by the Spencer 
method.
   [Answer: 1.393]     
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  8.8      Also considered in the LEAME computer program but not presented in 
this chapter is a special case where the center of the circle is located below 
the top of embankment, as shown by a vertical cut in Fig.  P8-8 . Because 
part of the circular arc is replaced by a vertical line, an additional resisting 
force of  c    λ / F  over the vertical line segment must be taken into considera-
tion, where  c    is the effective cohesion of soil,  λ  is the length of the vertical 
line, and  F  is the factor of safety. First, modify Eqs.  (8-7)  and  (8-19)  for 
the fi rst slice to include this additional resisting force. Then, by the use of 
spreadsheets, divide the failure mass into fi ve slices and solve the follow-
ing two cases: (a) if the soil has an undrained shear strength of 1,050 psf 
and a total unit weight of 125 pcf, determine the factors of safety by the 
normal method, and (b) if the soil has a cohesion of 500 psf, a friction an-
gle of 20°, and a total unit weight of 125 pcf, determine the factor of safety 
by the simplifi ed Bishop method.
   [Answer: 1.397, 1.089]          

   

  Fig. P8-8.        
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265

    Chapter 9 

  Methods for Three-
Dimensional Analysis    

       This chapter presents theoretical background for three-dimensional (3D) analysis 
and extends the method of slices to the method of columns. To simplify the 
analysis, only the normal, simplifi ed Bishop, and original Spencer methods will 
be used. The simplifi ed Bishop method is recommended for circular failure sur-
faces and the original Spencer method for noncircular and composite failure 
surfaces. The purpose of 3D analysis is to include the end effects, so the same 
cross section for 2D analysis will be used for 3D analysis. Two types of failures 
will be discussed, one with ellipsoidal ends and the other with planar ends. 
Major equations incorporated in LEAME will be derived and the use of spread-
sheets to solve these equations will be demonstrated. Details on the application 
of these two types of failures and their practical implications are discussed in 
Chapter 3 of the companion volume to this book,  Slope Stability by Limited Equi-
librium Analysis: LEAME Software and User ’ s Manual.  

  9.1     Failure Surfaces with Ellipsoidal Ends 

 This type of 3D failure surface consists of a cylinder formed by circles of constant 
radius at the central part and two half ellipsoids formed by circles of decreasing 
radius at each end. The failure mass is divided into columns and the method of 
slices used in 2D analysis can be extended easily to 3D analysis. Instead of the 
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266 Slope Stability Analysis by the Limit Equilibrium Method

  Fig. 9-1.      Intersection of cylinder and ellipsoid with slope surface    

four methods for 2D analysis, only the fi rst three methods (normal, simplifi ed 
Bishop, and original Spencer) can be used for 3D analysis. As indicated in the 
2D analysis, the original Spencer method always can yield a factor of safety very 
close to the more refi ned Spencer method. 

  9.1.1     Dimensions of Failure Mass 

 Fig.  9-1 (b) shows a 3D failure mass and the Cartesian coordinates,  x ,  y , and  z . 
Because of symmetry, only one-half of the slope is shown, so some of the length 
is referred to as half length. The failure mass is formed by rotating the rectangle 
and the ellipse, as shown in Fig.  9-1 (a), until they intersect with the slope below. 
The rectangle has a half length of  λ   c   and the ellipse has a half length of  λ   e  . Because 
the axis of rotation, which is the center ( x o  ,  z o  ) for 2D analysis, is located 
above the slope surface, the half length of the failure mass,  λ   c    +   λ , is always 
shorter than  λ   c    +   λ   e  . The failure mass is divided arbitrarily into 10 slices in the  x  
direction and 10 columns in the  y  direction. Note that the entire length of the 
cylinder,  λ   c  , in the  y  direction is considered as one column, whereas the ellipsoi-
dal part of the failure mass is divided into nine columns. The radius of rotation 
is  R  for the cylinder and reduces gradually, as indicated by  r  in Fig.  9-1 (a). If a 
weak soil layer intercepts the cylinder or ellipsoid, a composite failure surface 
through the bottom of the weak layer also may be formed. 
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  In the stability analysis,  λ   c   and  λ   e   must be assumed or determined by trial 
and error. If  λ   c   is given, such as a uniform load distributed over a short distance 
or a steep slope with a short length, one basic assumption is that the half ellip-
soidal length,  λ   e  , must be equal to or greater than half the height of the tallest 
column, as explained in Sections 3.8.1 and 3.8.7 of the companion volume. If the 
length of embankment is given, the lengths of  λ   c   and  λ   e   must be proportioned 
so that the factor of safety is minimum when the half length of the failure mass 
is equal to the half length of the embankment, as discussed in Sections 3.7.1, 3.8.3 
and 3.8.6 of the companion volume. 

 The equation for an ellipse with semi-axes  R  and  λ   e  , as shown in Fig.  9-1 (a), 
can be expressed as

  
x
R

y c

e

2

2

2

2
1+

−
=

( )λ
λ

      (9-1)   

 The reason why the  y  coordinate is replaced by ( y   −   λ   c  ) is because the origin 
of the  y  axis starts at the plane of symmetry instead of from plane A-A. For any 
given  y , the radius of rotation,  r , is

  r x R
y c

e

= = −
−

1
2

2

( )λ
λ

      (9-2)   

 Knowing the radius,  r , and the center of rotation, ( x o  ,  z o  ), the intersection 
between the ellipse of revolution and the slope surface can be calculated. 

 The equation for a circle with radius,  r , can be written as

  
( ) ( )x x

r
z z

r
o o− + − =
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2

2

2
1       (9-3)   

 Substituting  r  from Eq.  (9-2)  into Eq.  (9-3) , the equation of ellipsoid becomes
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2
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      (9-4)  

in which  x o   and  z o   are the coordinates of the rotary center for 2D analysis,  λ   e    =  
half length of the ellipsoid in the  y  direction,  λ   c    =  half length of the cylinder, and 
 R   =  radius of the cylinder. 

 For any given values of  x  and  z  on the surface of the slope, the coordinate  y 
 where the ellipsoid intersects the slope surface can be computed by Eq.  (9-4) , 
which can be rewritten as

  y
R

R x x z zc
e

o o= + − −( ) − −( )λ λ 2 2 2       (9-5)   

 In Fig.  9-1 (b),  x m   is the  x  coordinate at the center of a slice. Point A ( x m  , 0,  z ) 
is located on the slope surface at the plane of symmetry, where  x m   and  z  can be 
determined from the given cross section. Point B ( x m  ,  y ,  z ) is located on the slope 
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268 Slope Stability Analysis by the Limit Equilibrium Method

surface where it intersects with the failure surface, and  y  can be determined by 
Eq.  (9-5) . After comparing these  y  coordinates at several slices, the maximum 
value of  y , which is the half length of the failure mass, can be found. Dividing 
the half length of the failure mass into a number of columns, the  y m   coordinate 
at the center of each column, such as point C ( x m  ,  y m  ,  z m  ), can be found, where  z m   
is the  z  coordinate at the bottom of the column and can be determined by

  z z R
x x

R
y

m o
m o m c

e

= − − −( ) −
−

1
2

2

2

2

( )λ
λ

      (9-6)   

 The height of each column is the difference in  z  coordinates between the slope 
surface and the bottom of the column. 

  Example 9.1            Fig.  9-2  shows the cross section of the failure mass on the plane of 
symmetry with  x o    =  40 ft (12.2 m), z  o    =  100 ft (30.5 m), and  R   =  107.7 ft (32.8 m). The 
failure mass is divided into 10 slices in the  x  direction and 10 columns in the  y 
 direction, including the fi rst column. The fi rst column has a length  λ   c  , while the 
remaining nine columns are divided evenly. If the failure mass has a half cylindri-
cal length,  λ   c  , of 100 ft (30.5 m), and a half ellipsoidal length,  λ   e  , of 200 ft (61.0 m), 
determine the half length of the failure mass. What is the height of the sixth col-
umn in the fi fth slice?   

  Solution     From Eq.  (9-5) ,  y x z= + − − − −100 1 857 107 7 40 1002 2 2. ( . ) ( ) ( )    . It is esti-
mated that the half length of the failure mass is maximum near the middle of the 
cross section, so the  y  coordinates at three different centers of slices is computed 
and compared as follows:

  Fig. 9-2.      Example  9.1  

 Note:   1 ft  =  0.305 m    

c09.indd   268c09.indd   268 12/16/2013   1:38:52 PM12/16/2013   1:38:52 PM



Methods for Three-Dimensional Analysis  269

 x  in ft 63 77 91

 z  on slope surface in ft 31.5 38.5 45.5

 y  in ft 248.3 249.1 237.1

 The maximum  y  occurs at  x   =  77 ft, so the half length of the failure mass is 
249.1 ft. At the center of slice 5,  x   =  63 ft, at the center of column 6,  y   =  100  +  4.5  ×  
(249.1  −  100)/9  =  174.6 ft, and from Eq.  (9-6) ,

  
zm = − − − − − =100 107 7 1

63 40
107 7

174 6 100
200

2 8
2

2

2

2
.

( )
( . )

( . )
( )

. ,ft

or HHeight of column  ft= − =31 5 2 8 28 7. . . .
          

  9.1.2     Orientation and Area of Failure Surface 

 The failure surface at the bottom of each column is tilted in two different direc-
tions, as shown in Fig.  9-3 . Given the  x o   and z  o   coordinates of the rotary center 
and the  x m   and z  m   coordinates at the bottom of the column, as shown in Fig. 
 9-3 (a), the angle of inclination,  θ   xz  , on the  xz  plane can be determined by

  tanθxz
m o

o m

x x
z z

= −
−

      (9-7)   

  The inclination,  θ   yz  , on the  yz  plane is shown in Fig.  9-3 (b) and can be 
obtained from Eq.  (9-4)  by taking partial derivative of  z  with respect to  y  and 
assuming  θ   yz   as positive, or

  ∂
∂

= =
−
−

⎛
⎝⎜

⎞
⎠⎟

z
y

y
z z

R
yz

m c

o m e

tanθ
λ

λ

2

      (9-8)   

  Fig. 9-3.      Projection of normal forces on two different planes    
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270 Slope Stability Analysis by the Limit Equilibrium Method

 In 3D analysis, the movement of the failure mass is assumed parallel to the  
xz  plane, so all forces involved in force and moment equilibrium must be pro-
jected onto the  xz  plane. The only forces that are not parallel to the  xz  plane are 
the effective normal force and the pore water pressure, which act in a direction 
perpendicular to the failure surface. Therefore, it is necessary to determine the 
dip angle,  θ   d  , between the normal force and the vertical,  z , axis so the normal 
force and water pressure on the failure surface can be projected to the  xz  plane. 
Eqs.  (9-11)  and  (9-17)  for computing the dip angle,  θ   d  , and the surface area,  S , 
were presented originally by Hovland (1997) and is derived following. 

 Fig.  9-4 (a) shows the 3D view of a soil column. On the horizontal, or  xy , 
plane, the area of the column is a rectangle with a width  Δ  x  and a length  Δ  y , 
whereas the actual surface area is a parallelogram with a width of  a , a length of 
 b , and an angle of  θ  between them. Also shown in the fi gure are the terms strike 
and dip, which indicate the orientation of the failure surface. According to the 
usual geological defi nition, the intersection between the failure surface and the 
horizontal, or  xy , plane is called a strike, and the intersection of the failure surface 
with a vertical plane perpendicular to the strike is called a dip. The directions of 
the strike and dip also are shown in Fig.  9-4 (b). 

  Fig.  9-4 (b) shows the dimensions of the failure surface on different planes. 
Area ABC is a portion of the failure surface. Area ACD is the projection of the 
failure surface on the  xz  plane, area ABD on the  yz  plane, and area BCD on the  
xy  plane. The angle between the strike and the  x  axis is  θ   s   and the angle between 

  Fig. 9-4.      Three-dimensional view of failure surface    
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the dip and the horizontal is  θ   d  , which is the same as the angle between the 
normal force,  N , and the vertical axis. The dimensions d  , e  , and g   are measured 
on the failure surface, while those without the prime are measured on the three 
orthogonal planes. In  Δ BCD,  ∠ BDC is a right angle, so
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 Similarly, a general expression can be derived for cos  θ   d  :

  
cos

sin

sin

tan
sin

sin

sin sinθ θ

θ

θ
θ

θ

θ θ
d

s

d

xz
s

d

d sg
g

d
c

c

c
=

′
= =

⎛
⎝⎜

⎞
⎠⎟

=
ttan

cos
( cos )sin

tan

θ

θ θ θ
θ

xz

d
d s

xz

or 2
2

2

1= −

      (9-10)   

 After substituting Eq.  (9-9)  into Eq.  (9-10)  and simplifying,

  cos
tan tan

θ
θ θ

d

yz xz

=
+ +

1

1 2 2
      (9-11)  

in which  θ   d    =  angle between the normal to the failure plane and the vertical, 
 z , axis. 

 The normal force on the  xz  plane always makes an angle,  θ   xz  , with the  z  axis, 
but the angle between the force,  N , normal to the failure plane and the  z  axis is 
 θ   d  . To project  N  onto the  xz  plane,  N  must be multiplied by cos ( θ   d    −   θ   xz  ). For 
example, when the failure surface is cylindrical,  θ   yz    =  0, and, from Eq.  (9-11) , cos  θ   d   
 =  cos  θ   xz  , or cos ( θ   d    −   θ   xz  )  =  1, so the normal force actually lies on the  xz  plane. 
When the failure surface is ellipsoidal or planar, with  θ   xz    =  0, then cos  θ   d    =  cos  θ   yz  , 
so cos ( θ   d    −   θ   xz  )  =  cos  θ   yz  , or the normal force makes an angle of  θ   yz   with the  xz  
plane and therefore should be multiplied by cos  θ   yz   to project onto the  xz  plane. 

 From the parallelogram shown in Fig.  9-4 (a), the area of the failure surface 
can be computed by

  S ab
x y

xz yz
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⎝⎜

⎞
⎠⎟
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⎝⎜

⎞
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θΔ Δ
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 From  Δ ABC and the law of cosine,
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in which

  ′ = ′ = = + = +e c d c f e d c cyz xz yz yz/ / / /sin , sin , ( tan ) ( tan )θ θ θ θ2 2 2 2 2       (9-14)   

 Substituting Eq.  (9-14)  into Eq.  (9-13)  and simplifying,

  cos sin sinθ θ θ= yz xz       (9-15)  

  or sin sin sinθ θ θ= −1 2 2
yz xz       (9-16)   

 From Eqs.  (9-12)  and  (9-16) ,
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 For cylindrical failure surfaces,  θ   yz    =  0, so the surface area at the bottom of 
the cylinder is  S   =   Δ  x  Δ  y /cos  θ   xz  , which is as expected. 

  Example 9.2            In Example  9.1 , determine cos ( θ   d    −   θ   xz  ) for column 6 in slice 5. If 
the soil has a unit weight of 125 pcf (19.7 kN/m 3 ), determine the weight of the 
column. What is the surface area at the bottom of this column?  

  Solution     From Example  9.1 , the coordinates at the bottom of column 6 in slice 
5 are  x   =  63 ft,  y   =  174.6 ft,  z   =  2.8 ft. From Eq.  (9-7) , tan  θ   xz    =  (63  −  40)/(100  −  2.8)  =  
0.237, or  θ   xz    =  13.2°. From Eq.  (9-8) ,
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 From Eq.  (9-11) ,
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 From Example  9.1 ,  Δ  x   =  14 ft,  Δ  y   =  (249.1  −  100)/9  =  16.6 ft, height of the col-
umn  =  28.7 ft, so the weight of the column  =  14  ×  16.6  ×  28.7  ×  125  =  834,000 lb. 
From Eq.  (9-17) , the surface area at the bottom is
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  9.2     Failure Surfaces with Planar Ends 

 Instead of ellipsoids, this type of failure surface is cut short by two symmetrical 
planes called the end planes, each with a given slope and oriented at a given 
direction. A simple way to visualize this type of failure surface is an embankment 
between two banks, and the surfaces of the bank are considered as the end 
planes. These two end planes may not be parallel and can rotate at a given angle 
apart. The failure surface between the end planes can be circular, composite, or 
noncircular. When the failure surface intersects the end plane, it will follow the 
end plane until the top of the fi ll is reached. In other words, the end planes also 
form part of the failure surfaces. 

 Fig.  9-5  shows a 3D failure mass with an end plane. Due to symmetry, only 
one-half of the failure mass is shown in (a) and (d). Section A-A at the central 
part near the plane of symmetry, as shown in (b), is usually the most critical 
section for 2D analysis. In 2D analysis, this section is assumed to be infi nitely 
long, whereas in 3D analysis the length is limited at each end by an end plane. 
The intersection of the end plane and the failure surface is indicated by the 
dashed line in (a). For any given cross section, such as B-B, the failure surface 
inside the dashed line is the same as Section A-A, and that outside the dashed 
line has a uniform slope, because the failure surface is on the end plane. Depend-
ing on the inclination of the end plane, this uniform slope may become quite 
steep. Consequently, Section B-B may be more critical than Section A-A, thus 
resulting in a lower factor of safety based on 3D analysis. 

  Fig.  9-6  shows how the end plane is defi ned and how the dimensions of the 
failure mass are determined. The location of the end plane depends on the half 
width of fi ll,  W t  , at a given point A, the angle of end plane,  α , and the slope of 
end plane,  g . Note that  g  is a dimensionless parameter; for example,  g   =  0.5 if the 
slope is 2:1. First, a horizontal plane is passed through point A with coordinates 
( x t  ,,  w t  ,,  z t  ). Next, on this horizontal plane, a line with an angle  α  with the  x  axis 
is drawn through point A. Finally, using this line as the axis, the horizontal plane 

  Fig. 9-5.      Geometry of 3D failure surfaces with planar ends    
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is rotated to incline at a slope of  g , measured in a direction perpendicular to the 
axis of rotation. This inclined plane is the end plane for 3D analysis. 

  In Fig.  9-6 (a), ABCDE is the intersection of the slope surface with the end 
plane, where A to E are the breaking points on the slope surface. Because these 
breaking points are not located on the centerline of each slice, they are not used 
to defi ne  y s   for the length of the failure mass. Note also that the slope of the end 
plane in the  y  direction is  g  cos  α , so the half length of the failure mass,  y s  , at the 
centerline of each slice with coordinates ( x s  ,  z s  ) on the slope surface can be deter-
mined by

  y w x x
z z
g

s t t s
t s= + −( ) − −

tan
cos

α
α

      (9-18)   

 The half length of the failure mass is the maximum  y s   among all the slices. 
This maximum should occur on a slice next to one of the breaking points on the 
slope surface. 

 The distance,  y f  , to the end plane at the centerline of each slice with coordi-
nates ( x f  ,  z f  ) on the failure surface can be determined by

  y w x x
z z
g

f t t f
t f= + −( ) −
−

tan
cos

α
α

      (9-19)   

  Fig. 9-6.      Analysis of 3D failure surfaces with planar ends    
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 The minimum  y f   among all the slices is used as the length of the fi rst row of 
columns, similar to the half length of the cylinder,  λ   c  , in the ellipsoidal case. The 
minimum  y f   is not located at the breaking point,  F , but should occur on a slice 
next to one of the breaking points on the failure surface. 

 Based on the half length of the failure mass,  y s  , and the half length of the fi rst 
row of columns,  y f  , the remaining failure mass can be divided evenly into a 
number of columns, and the  y  coordinate at the center of each column,  y m  , can 
be determined. If y  m    <   y f  , the cross section shown in Fig.  9-6 (b) applies, so  θ   yz    =  
0. If y  m     >    y f  , the failure surface is on the end plane and the  z  coordinate at the 
center of the column can be determined as follows. 

 Similar to Eq.  (9-19) ,  y m   can be expressed as

  y w x x
z z
g

m t t m
t m= + −( ) − −

tan
cos

α
α

      (9-20)  

  or z z g w x x ym t t t m m= − + −( ) −[ ]cos tanα α       (9-21)   

 The orientation at the bottom of each column can be computed by

  θ αxz g= ( )−tan sin1       (9-22)  

  θ αyz g= ( )−tan cos1       (9-23)   

  Example 9.3            Fig.  9-7 (a) shows the upper half of the plan view for a 3D noncircu-
lar failure surface intercepted by an end plane. The end plane has an angle,  α , of 
30° and a slope,  g , of 0.5. The cross section of the fi ll is shown in Fig.  9-6 (b). The 
half top width,  w t  , is 150 ft (45.8 m). The cross section is divided into 10 slices in 
the  x  direction and then subdivided into 10 columns in the  y  direction, including 
the fi rst column. (1) Compute the half length of the failure mass,  y s  , at each break-
ing point of the slope surface, and determine the half length of the failure mass, 
which gives the largest  y s   measured along the centerline of the slice. (2) Compute 
 y f  , where the failure surface intersects with the end plane at each breaking point 
of the failure surface, and determine the half length of the fi rst column. (3) De-
termine  z m  ,  θ   xz  , and  θ   yz   at the center of columns 2 and 4, both located in slice 4. 
(4) Plot the intersection of the end plane with the slope surface and also that with 
the failure surface, and divide the failure mass into columns.   

  Solution     (1) Use Eq.  (9-18)  to determine  y s   at the four breaking points of the 
slope surface:

   When  x s    =  0,  z s    =  0,  y s    =  150  +  (400  −  0)tan 30°  −  (120  −  0)/(0.5 cos 30°)  =  103.8 ft.  
  When  x s    =  200 ft,  z s    =  80 ft,  y s    =  150  +  (400  −  200)tan 30°  −  (120  −  80)/(0.5 cos 30°) 

 =  173.1 ft.  
  When  x s    =  240 ft,  z s    =  80 ft,  y s    =  150  +  (400  −  240)tan 30°  −  (120  −  80)/(0.5 cos 30°) 

 =  150.0 ft.  
  When  x s    =  360 ft,  z s    =  120 ft,  y s    =  150  +  (400  −  360)tan 30°  −  (120  −  120)/

(0.5 cos 30°)  =  173.1 ft.    
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276 Slope Stability Analysis by the Limit Equilibrium Method

 The maximum is 173.1 ft, and it occurs when  x s    =  200 ft and  x s    =  360 ft. To compute 
the area of the end columns, the half length of the failure mass is measured 
along the centerline of the slices next to the breaking point, instead of at the 
breaking point, so the following four cases should be investigated:

   When  x s    =  180 ft,  z s    =  72 ft,  y s    =  150  +  (400  −  180)tan 30°  −  (120  −  72)/(0.5 cos 30°) 
 =  166.2 ft.  

  When  x s    =  220 ft,  z s    =  80 ft,  y s    =  150  +  (400  −  220)tan 30°  −  (120  −  80)/(0.5 cos 30°) 
 =  161.5 ft.  

  When  x s    =  340 ft,  z s    =  113.3 ft,  y s    =  150  +  (400  −  340)tan 30°  −  (120  −  113.3)/
(0.5 cos 30°)  =  169.2 ft.  

  When  x s    =  380 ft,  z s    =  120 ft,  y s    =  150  +  (400  −  380)tan 30°  −  (120  −  120)/
(0.5 cos 30°)  =  161.5 ft.    

 The maximum is 169.2 so the half length of the failure mass is 169.2 ft. 
 (2) Use Eq.  (9-19)  to determine  y f   at the four breaking points of the failure 

surface. 

  Fig. 9-7.      Example  9.3     
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 At point A, the coordinates of the failure and slope surfaces are the same, so 
 y f    =  103.8 ft.

   When  x f    =  160 ft,  z f    =  40 ft,  y f    =  150  +  (400  −  160)tan 30°  −  (120  −  20)/(0.5 cos 30°) 
 =  57.6 ft.  

  When  x f    =  320 ft,  z f    =  52 ft,  y f    =  150  +  (400  −  320)tan 30°  −  (120  −  52)/(0.5 cos 30°) 
 =  39.1 ft.    

 At point B, the coordinates of the failure and slope surfaces are the same, so 
 y f    =  150 ft. 

 The minimum is 39.1 ft, and it occurs when  x f    =  320 ft, so the following two 
cases should be investigated:

   When  x f    =  300 ft,  z f    =  48 ft,  y f    =  150  +  (400  −  300)tan 30°  −  (120  −  48)/(0.5 cos 30°) 
 =  41.5 ft.  

  When  x f    =  340 ft,  z f    =  69 ft,  y f    =  150  +  (400  −  340)tan 30°  −  (120  −  69)/(0.5 cos 30°) 
 =  66.9 ft.    

 The minimum is 41.5, so the half length of the fi rst column is 41.5 ft. 
 (3) At the fourth slice with  x f    =  140 ft and z  f    =  17.5 ft, from Eq.  (9-19) ,  y f    =  150 

 +  (400  −  140)tan 30°  −  (120  −  17.5)/(0.5cos 30°)  =  63.4 ft. The  y  coordinate at the 
center of the second column is  y m    =  41.5  +  0.5  ×  (169.2  −  41.5)/9  =  48.6 ft, which is 
smaller than  y f   of 63.4 ft, so z  m  ,  θ   xz  , and  θ   yz   are the same as column 1, or  z m    =  17.5 ft, 
 θ   xz    =  tan   − 1 (20/160)  =  7.1°, and  θ   yz    = 0. 

 At the fourth column,  y m    =  41.5  +  2.5  ×  (169.2  −  41.5)/9  =  77.0 ft, which is 
greater than  y f   of 63.4 ft, so the bottom is on the end plane. From Eq.  (9-21) ,  z m   
 =  120  −  0.5 cos 30°[150  +  (400  −  140)tan 30°  −  77.0]  =  23.4 ft. From Eq.  (9-22) ,  θ   xz    =  
tan   − 1 (0.5 sin 30°)  =  14.0°. From Eq.  (9-23) ,  θ   yz    =  tan   − 1 (0.5 cos 30°)  =  23.4°. 

 (4) The lines of intersection and the division into columns are shown in 
Fig.  9-7 (a).    

  9.3     Equation for Overall Moment Equilibrium 

 The equation for overall moment equilibrium is used in all three methods and 
is presented in this section. The equation for determining the 3D factor of safety 
is similar to that in 2D except that the summation of resisting and driving 
moments must be extended to all of the slices in the  x  direction and all of the 
columns in the  y  direction. Similar to Eq. (8-7) for the 2D case, the factor of safety 
for circular failure surfaces can be expressed as

  F
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278 Slope Stability Analysis by the Limit Equilibrium Method

in which  n   =  number of slices in the  x  direction,  m   =  number of columns in the  
y  direction, and  S   =  surface area computed by Eq.  (9-17) . For circular and com-
posite failure surfaces with ellipsoidal ends, the last term in the denominator of 
Eq. (8-7) does not appear in Eq.  (9-24) , because the water pond is considered a 
part of the failure mass, with a cohesion and friction angle equal to 0 and a unit 
weight equal to 62.4 pcf (9.8 kN/m 3 ), so there are no water pressures  P  1  and  P  2  
at both ends. The problem in using water pressures is that  P  1  and  P  2  change from 
the column to the column and are more diffi cult to evaluate. 

 In Eq.  (9-24) , all variables with a subscript  ij  indicate that they vary with both  
x  and  y  coordinates. The radius of rotation,  R , has a subscript  j , because it varies 
with the  y  coordinate only, whereas the line loads,  L  and  λ   L  , have a subscript  i , 
because they vary with the  x  coordinate only. If there is no line load on a column, 
 L  should be assigned 0. If there is more than one line load on a column, they 
should be superimposed to obtain the total effect. Note that the actual number 
of slices or columns,  n  or  m , in the  x  or  y  direction is not a fi xed entity but varies 
with the  x  or  y  coordinate. 

 For noncircular failure surfaces, similar to Eq. (8-8), the factor of safety can 
be written as

 
F

c S N

W C W yL N U
T

w s s L N d xz

=
′ + ′ ′( )

+ + − − ′ +
∑∑

∑∑
λ φ

λ λ λ λ θ θ
tan

[ cos( )( )]Δ −− −∑Δy P P( )2 2 1 1λ λ     
  (9-25)   

 Note that the subscript  ij  is not shown in Eq.  (9-25)  to save space. For a com-
posite failure surface, Eq.  (9-24)  can be used for the circular part and Eq.  (9-25)  
for the noncircular part. Eq.  (9-25)  is applicable to the simplifi ed and original 
Spencer methods and will be slightly modifi ed for the normal method, as will 
be discussed in the next section. In Eq.  (9-25) ,

  U uS=       (9-26)  

in which  u   =  pore pressure normal to the failure surface with a surface area  S . 
One expression for the overturning moment due to weight is  W  λ   w    =   W ( λ   T   sin  θ   xz   
 +   λ   N   cos  θ   xz  ). However, this expression is not as simple and direct as  W  λ   w    =   W ( x m   
 −   x o  ). In 3D analysis, it is assumed that the movement of the failure mass is paral-
lel to the  xz  plane. Because the effective normal force,  N   , and water pressure,  U , 
are the only two forces not parallel to the  xz  plane, they must be projected onto 
the  xz  plane by multiplying with cos ( θ   d    −   θ   xz  ).  

  9.4     Normal Method 

 Fig.  9-8  shows the forces on a slice. The solid lines with arrows are the directions 
of actual forces, and the dashed lines with arrows are the components normal to 
the failure surface. The normal method applies the concept of submerged weight 
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to determine the effective stress normal to the failure surface. Because the sub-
merged weight is applied in the vertical direction, no projection of the water 
pressure onto the  xz  plane is required. Similar to the 2D case in Fig. 8-3, the pore 
pressure,  U , on the failure surface is expressed as  u  Δ  x  Δ  y cos  θ   xz  , instead of 
 u  Δ  x  Δ  y sec  θ   xz  . 

  Consider the equilibrium of the forces in the normal direction:

 

′ − = − −
+

N W u x y C W

yL
d xz xz xz s xz

xz

cos( ) cos cos sin
(sin cos

θ θ θ θ θ
α θ

Δ Δ
Δ −−

′ =
′ − + −

cos sin )
cos sin sin cos cos sin

α θ
θ θ α θ α θ

xz

xz s xz xz xN
W C W yLΔ zz

d xz

( )
−cos( )θ θ

      (9-27)  

in which  W     =  submerged weight, or

  ′ = −W W u x yΔ Δ       (9-28)   

 Eq.  (9-27)  is very similar to Eq. (8-9) except that  θ  is replaced by  θ   xz  ,  L  
is replaced by  Δ  yL , and the expression in the right-hand side is divided by 
cos ( θ   d    −   θ   xz  ). Substituting Eq.  (9-27)  into Eq.  (9-24)  or  (9-25) , the factors of safety 
for circular or noncircular failure surfaces can be obtained. 

 In view of the fact that the normal method is used in both the simplifi ed 
Bishop and the original Spencer methods for determining the initial factor of 
safety, three examples, each using a different type of failure surface, are given to 
illustrate how the failure mass is divided into rectangular columns. All calcula-
tions were made by hand, and they checked well with the results obtained by 
LEAME, thus validating the correctness of the LEAME computer program. 

  Fig. 9-8.      Components of forces normal to failure surface    
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280 Slope Stability Analysis by the Limit Equilibrium Method

  Example 9.4            Fig.  9-9 (a) shows the central cross section and Fig.  9-9 (b) the plan 
view of a 3D circular failure surface. The failure mass consists of a half cylinder 
with  λ   c    =  90 ft (27.5 m) and a half ellipsoid with  λ   e    =  200 ft (61 m). The soil has a 
cohesion of 200 psf (`9.6 kN/m 2 ), a friction angle of 30°, and a total unit weight of 
125 pcf (19.7 kN/m 3 ). If the failure mass is divided into fi ve slices in the  x  direc-
tion and three columns in the  y  direction, determine the factor of safety by the 
normal method.   

  Fig. 9-9.      Example  9.4     

  Solution     The division of the failure mass into fi ve slices and three columns is 
not suffi cient but is used only to demonstrate how the failure mass is divided, es-
pecially how to handle the columns of irregular shape adjacent to the boundary. 

 Fig.  9-9 (a) shows the coordinates at the centerline of each slice. Given the  x  
coordinates, the  z  coordinates on the surface of the slope are equal to 0.5 x  and 
those on the failure surface can be determined by  z x= − − −165 167 7 302 2( . ) ( )    . 

 First, consider the dimensions in the  y  direction. Given the  x  and  z  coordi-
nates of points 1, 2, and 3, as shown in Fig.  9-9 (a), the corresponding  y  coordinate 
of the ellipsoid can be computed by Eq.  (9-5) , or

  y x z= + − − − −90
200

167 7
167 7 30 1652 2 2

.
( . ) ( ) ( )       (9-29)   

 Table  9-1  presents the  y  coordinates of the failure surface computed by Eq. 
 (9-29)  and the length of each column. The maximum  y  is 210 ft. Because the length 
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of the fi rst column should be equal to  λ   c  , or 90 ft, each of the remaining two col-
umns should be (210  −  90)/2  =  60 ft. The length of column 3 for slices 2 and 4 is 
200  −  150  =  50 ft, and that for slice 3 is 210  −  150  =  60 ft. 

  Next, consider the dimensions in the  x  direction. For any given  y  coord-
inate at the center of a column, the radius of circle,  r , can be computed by 
Eq.  (9-2) , or

  r
y

= −
−

167 7 1
90

40 000

2

.
( )

,
      (9-30)   

 The intersection of the circle with the slope surface can be determined as 
follows. 

 The equation of the circle is ( x   −  30) 2   +  ( z   −  165) 2   =   r  2 . Replacing  z  by 0.5 x  ( z   =  
0.5 x  is the equation for slope surface), the equation becomes 1.25 x  2   −  225 x   +  28125 
 −   r  2   =  0, or

  x
r= ± −225 5 90 000
2 5

2 ,
.

      (9-31)   

 Two values of  x  are obtained, depending on the sign before the square root. 
The small  x , designated as  x  1 , is applicable to the fi rst slice and the larger  x , desig-
nated as  x  2 , is applicable to the last slice. For the second column with  y   =  120 ft, it 
can be found from Eqs.  (9-30)  and  (9-31)  that  r   =  165.8 ft,  x  1   =  2.9 ft, and  x  2   =  177.1 ft. 
Except for the two shaded columns at the corner (to be discussed later), the area, 
the center, and the radius of each column for computing the factor of safety are 
shown in Fig.  9-9 (b). Also shown but in dashed lines are the actual boundaries 
of the failure mass. The factor of safety is based on the information provided by 
each rectangular column, instead of the actual boundaries. 

 To determine the dimensions of the shaded columns, it is necessary to know 
the  x m   and  y m   at its center. Because  x m   depends on  y m   and both are not known a 
priori, an iteration process must be used. First, assume  x m  , and the  y  coordinate of 
the boundary can be computed by Eq.  (9-29) , so  y m   can be determined. Knowing 

 Table 9-1.      Length of Each Column in  y  Direction  

Location 1 2 3

 x 54 90 126

 z 27 45 63

 y 200 210 200

1st column length 90 90 90

2nd column length 60 60 60

3rd column length 50 60 50

 y  coordinate at center of 3rd column 175 180 175

   Note:   All dimensions are in feet.   
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282 Slope Stability Analysis by the Limit Equilibrium Method

 Table 9-2.      Iteration Method to Determine Dimensions of Left Corner Column  

Iteration Assumed  x m  Boundary,  y Center,  y m  Radius,  r Boundary,  x Computed  x m  

1 27.0 175.7 162.9 156.2 18.5 27.2

2 27.2 176.0 163.0 156.1 18.6 27.3

3 27.3 176.1 163.1 156.1 18.6 27.3

   Note:   All dimensions are in feet.   

 y m  , the  x  coordinates of the boundary can be computed by Eqs.  (9-30)  and  (9-31) , 
so  x m   can be determined. Using the new  x m   as the assumed  x m  , the process is re-
peated until  x m   converges. Table  9-2  illustrates the iteration process for determin-
ing the dimensions of the column at the left upper corner. 

  Similar to the LEAME program, the width of the corner column is assumed 
as half of the regular width, so  x m   is initially assumed as 27 ft. After three itera-
tions, the computed  x m   is 27.3 ft, which is equal to the assumed  x m  . The results 
show that the  x  coordinate of the left boundary is 18.6 ft and that of the top 
boundary is 176.1 ft, so the area of the column on the  xy  plane is (36  −  18.6)  ×  
(176.1  −  150)  =  454.1 ft 2 , and its center is located at (27.3, 163.1). 

 The same procedure can be applied to the column at the right corner except 
that  x  is taken as  x  2 , instead of  x  1 . Because of symmetry, the area of the right 
corner column is the same as the left corner column, or 454.1 ft 2 , and its center is 
located at (152.7, 163.1). 

 Table  9-3  shows the information on each column and how the factor of safety 
can be calculated. The factor of safety is a ratio between the resisting moment and 
the overturning moment, or  F   =  9,353,195/6,387,903  =  1.464, which checks with 
the 1.469 obtained by LEAME. A slight discrepancy between the two is expected 
because the manual method carries the length to one decimal point and the angle 
to two decimal points, whereas the LEAME computer program carries the num-
bers to many more decimal points. 

  Each column of Table  9-3  is explained as follows:

   1.      The failure mass is divided into fi ve slices in the  x  direction.  
  2.      The failure mass is divided into three columns in the  y  direction.  
  3.      The radius corresponding to each column center is computed by Eq. 

 (9-30) .  
  4.      The area is obtained by multiplying the slice width with the column 

length. This is the area projected on a horizontal plane, not the surface 
area for computing the cohesion resistance.  

  5.      z  m   is the  z  coordinate at the center of the column bottom. These coordi-
nates at the cylindrical part are shown in Fig.  9-9 (a) and those at the el-
lipsoidal part can be computed by Eq.  (9-6) , or

  z
x y

m
m m= − − − −

−
165 167 7 1

30
28 123

90
40 000

2 2

.
( )

,
( )

,
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 Table 9-3.      Analysis of 3D Failure Surface with Ellipsoidal Ends by Normal Method  a    

Sl. 
(1)

Co. 
(2)

Radius 
ft 
(3)

Area 
ft 2  
(4)

 z m   
ft 
(5)

Weight 
10 3  lb 

(6)
sin  θ   xz    

(7)

 θ   xz   
deg 
(8)

 θ   yz   
deg 
(9)

cos 
( θ   d    −   θ   xz  ) 

(10)

 S  
ft 2  

(11)

 N  ′  
10 3  lb 
(12)

 M r   
10 3  ft-lb 

(13)

 M o   
10 3  ft-lb 

(14)

1 1 167.7 3,240  − 2.3 4,576  − 0.072  − 4.13 0.00 1.000 3,248 4,564 550,831  − 55,252

1 2 165.8 1,986  − 0.5 2,545  − 0.064  − 3.67 7.25 0.997 2,006 2,547 310,329  − 26,584

1 3 156.1 454 8.9 266  − 0.017  − 0.97 18.19 0.955 478 278 39,978  − 706

2 1 167.7 3,240  − 1.0 11,340 0.143 8.22 0.00 1.000 3,274 11,223 1,196,439 271,945

2 2 165.8 2,160 0.9 7,047 0.145 8.33 7.25 0.999 2,200 6,980 741,110 169,417

2 3 151.8 1,800 15.1 2,678 0.158 9.09 21.72 0.970 1,959 2,726 298,387 64,230

3 1 167.7 3,240 8.4 14,823 0.358 20.98 0.00 1.000 3,470 13,840 1,456,395 889,923

3 2 165.8 2,160 10.4 9,342 0.362 21.22 7.69 1.000 2,335 8,709 911,095 560,703

3 3 149.8 2,160 27.8 4,644 0.401 23.64 24.77 0.988 2,560 3,944 417,803 278,964

4 1 167.7 3,240 27.5 14,378 0.572 34.89 0.00 1.000 3,950 11,794 1,274,397 1,379,201

4 2 165.8 2,160 29.8 8,964 0.579 35.38 8.89 1.000 2,671 7,309 788,222 860,144

4 3 151.8 1,800 47.7 3,510 0.632 39.20 26.87 0.997 2,495 2,728 314,835 336,741

5 1 167.7 3,240 61.6 7,857 0.787 51.91 0.00 1.000 5,252 4,847 645,447 1,036,966

5 2 165.8 1,986 62.7 4,357 0.787 51.91 11.76 1.000 3,246 2,626 359,010 567,608

5 3 156.1 454 68.5 445 0.786 51.81 27.99 0.999 773 275 48,917 54,599

Sum 9,353,195 6,387,903

   Note:   Sl.  =  Slice; Co.  =  Column; cos ( θ   d    −   θ   xz  )  =  Projection from normal direction to xz plane;  S   =  Surface area at the bottom of each column;  N  ′   =  
Normal force at the bottom of each column;  M r     =   Resisting moment;  M o    =  Overturning Moment.  

   a   Factor of safety by normal method  =  9,353,195/6,387,903  =  1.464, which is about the same as 1.469 by LEAME.   
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284 Slope Stability Analysis by the Limit Equilibrium Method

 The  x m   and y  m   coordinates at each center are shown in Fig.  9-9 (b). The 
dashed lines in Fig.  9-9 (b) indicate the actual boundaries of the failure 
mass, which has nothing to do with the computation in Table  9-3 .  

  6.      The weight of each column  =  125  ×  Area  ×  (0.5 x m    −   z m  ).  
  7.      From Eq.  (9-7) , tan  θ   xz    =  ( x m    −  30)/(165  −   z m  ), so sin  θ   xz   can be determined.  
  8.       θ   xz    =  tan   − 1 (tan  θ   xz  ).  
  9.      For the fi rst column,  θ   yz    =  0; for the other columns, from Eq.  (9-8) ,

  tan . ( )/( ), tan (tan )θ θ θyz m m yz yzy z= − − = −0 703 90 165 1so         

  10.      From Eq.  (9-11) ,  θ   d    =  cos   − 1 [(1  +  tan  2  θ   xz    +  tan  2  θ   yz  )  − 0.5 ], so

  cos( ) cos{cos [( tan tan ) ] ]}.θ θ θ θ θd xz xz yz xz− = + + −− −1 2 2 0 51         

  11.      From Eq.  (9-17) , surface area

  S xz yz xz yz= × − × ×Area 1 2 2sin sin (cos cos )θ θ θ θ         

  12.      From Eq.  (9-27) , normal force  N     =  Weight  ×  cos  θ   xz  /cos ( θ   d    −   θ   xz  )  
  13.      The resisting moment is the numerator of Eq.  (9-24) ,

  M S Nr = × × + ′ ×Radius ( . . )0 2 0 57735         

  14.      The overturning moment is the denominator of Eq.  (9-24) , or

  Mo xz= × ×Radius Weight sinθ             

 The above method for treating the irregular columns at the boundary is used 
in LEAME and can be summarized as follows:

   1.      The failure mass is divided into a number of slices. The  y  coordinates 
through the centerline of each slice are computed by Eq.  (9-5)  and com-
pared. The one with the largest  y  is used to divide the failure mass into a 
number of columns, and all the other  y  ’ s are used to defi ne the boundary 
of the last column in each slice and the  y  coordinate of its center.  

  2.      Based on the  y  coordinate at the center of column, the radius of the circle 
can be determined from Eq.  (9-2)  and the  x  coordinates  x  1  and  x  2 , where 
the circle intersects with the slope surface and forms the left and right 
column boundaries, can be computed. Knowing the column boundaries, 
the  x  coordinate of the column center can be relocated as shown in 
Fig.  9-9 (b).  

  3.      The stated procedures for relocating the column center are applicable to 
those columns where one of the dimensions, either  x  or  y , is fi xed, and the 
other is to be determined. For the two corner columns where both dimen-
sions are not known, a trial-and-error method must be used to determine 
the column boundaries. First, the  x  coordinate,  x m  , at the center of the 
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Methods for Three-Dimensional Analysis  285

column is assumed, and the  y  coordinate can be computed by Eq.  (9-5) , 
thus the  y  coordinate,  y m  , at the center of the column can be determined. 
From  y m  , the radius of the circle,  r , can be obtained by Eq.  (9-2) , so the  x  
coordinate of the column boundary and a new  x m   can be computed. The 
process is repeated until  x m   converges.    

  Example 9.5            Fig.  9-10 (a) shows the central cross section, and 9-10(b) shows the 
plan view of an embankment with a 3D composite failure surface. The embank-
ment is placed on a soft soil layer, designated as soil 1, with a thickness of 5 ft, 
a cohesion of 100 psf (4.8 kN/m 2 ), and a friction angle of 20°. The soil in the em-
bankment, designated as soil 2, has a cohesion of 200 psf (9.6 kN/m 2 ) and a fric-
tion angle of 30°. To simplify the calculation, both soils are assumed to have the 

  Fig. 9-10.      Example  9.5     
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286 Slope Stability Analysis by the Limit Equilibrium Method

same total unit weight of 125 pcf (19.7 kN/m 3 ). Because a center at (42.2, 400) 
and a radius of 443.8 ft (135.4 m) are given, there is no need to generate other 
composite failure surfaces by placing an imaginary rock line below the weak soil 
layer. The failure mass consists of a half cylinder with  λ   c    =  50 ft (15.3 m) and a half 
ellipsoid with  λ   e    =  100 ft (30.5 m). If the failure mass is divided into four slices in 
the  x  direction and fi ve columns in the  y  direction, determine the factor of safety 
by the normal method.   

  Solution     Fig.  9-10 (a) shows the dimensions of the slope and the coordinates at 
the centerline of each slice. Given the  x  and  z  coordinates of points 1, 2, 3, and 4 
on the slope surface, as shown in Fig. 9-10(a), the corresponding  y  coordinate of 
the ellipsoid can be computed by Eq.  (9-5) . 

 For point 1 with  z   =  0,

  
y x

y

= + − − − −

= +

50 100 443 8 443 8 42 2 0 400

50 0 225 35

2 2 2( . ) ( . ) ( . ) ( ) ,

.

/

or ,, .178 84 4 2+ −x x
      (9-32)   

 For the other three points with  z   =  0.5 x ,

  
y x x

y

= + − − − −

= +

50 100 443 8 196 958 42 2 0 5 400

50 0 225

2 2( . ) , ( . ) ( . ) ,

.

/

or 335 177 484 4 1 25 2, . .+ −x x
      (9-33)   

 Table  9-4  presents the  y  coordinates of the failure surface and the division of 
the failure mass into columns. The maximum  y  is 114 ft. Because the length of the 
fi rst column should be equal to  λ   c  , or 50 ft, each of the remaining four columns 
should be (114  −  50)/4  =  16 ft. Next, consider the dimensions in the  x  direction. 
For any given  y m   coordinate at the center of a column, the radius of circle,  r , can 
be computed by Eq.  (9-2) , or

  r
y

= −
−

443 8 1
50

10 000

2

.
( )

,
      (9-34)   

 Table 9-4.      Division of Failure Mass into Columns in  y  
Direction  

Location 1 2 3 4

 x  − 75 75 225 375

 z 0 37.5 112.5 187.5

 y 84.3 107.1 114.0 95.6

Number of columns 4 5 5 4

Length of Column 5 — 9.1 16.0 —

   Note:   All dimensions are in feet; length of column 2 to 4 is 16 ft.   
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Methods for Three-Dimensional Analysis  287

  The intersection of the circle with the slope surface can be determined as 
follows: 

 The equation of circle is ( x   −  42.2) 2   +  ( z   −  400) 2   =   r  2 . At the left boundary  x   =   x  1  
and  z   =  0, so

  x r1
242 2 160 000= − −. ,       (9-35)   

 At the right boundary,  x   =   x  2  and  z   =  0.5 x  2 , so ( x  2   −  42.2) 2   +  (0.5 x  2   −  400) 2   =   r  2 , 
or  1 25 484 8 161 780 02

2
2

2. . ,x x r− + − =    . The solution of this quadratic equation is

  x
r

2

2484 8 5 573 869
2 5

= + −. ,
.

      (9-36)   

 The intersection of the circle with the bottom of the weak layer can be deter-
mined as follows: 

 The equation of circle is ( x   −  42.2) 2   +  ( z   −  400) 2   =   r  2 . With  z   =   − 25 ft (7.6 m),

  x
r= ± −84 4 4 722 500
2

2. ,       (9-37)   

 The use of the negative sign before the square root gives the  x a   coordinate 
of the left intersecting point, and the positive sign gives the  x b   coordinate of the 
right point. 

 Table  9-5  shows the radius,  r , and the boundaries,  x  1  and  x  2 , of the fi rst three 
columns. The procedures for determining the dimensions of the two corner col-
umns are described in the previous example and are presented in Table  9-6 . 

   The dimensions of each column and its radius and the coordinates at each 
center are shown in Fig  9-10 (b). For columns with the same  y  coordinate at the 
center, the radius is the same as that shown in slice 3 and is not repeated in 
the fi gure. The number of columns in slice 4 is based on the center at column 
1 with the  x  coordinate of 375 ft. When the center of column 4 is moved to 

 Table 9-5.      Radius and Boundaries of First Three 
Columns  

Column 1 2 3

 y m  25.0 58.0 74.0

 r 443.8 442.4 430.8

 x  1  − 150.0  − 146.8  − 117.8

 x  2 450.0 448.4 431.9

 x a   − 85.6  − 80.7  − 28.3

 x b  170.0 165.1 112.7

   Note:   All dimensions are in feet.   
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288 Slope Stability Analysis by the Limit Equilibrium Method

an  x  coordinate of 344.3 ft, there are actually fi ve columns in slice 4, so columns 
4 and 5 are combined to form a single column. 

 Table  9-7  shows the information on each column and how the factor of safety 
by the normal method can be calculated. Each column is explained as follows.

    1.      The failure mass is divided into four slices in the  x  direction.  
  2.      The failure mass is divided into fi ve columns in the  y  direction.  
  3.      The area is obtained by multiplying the slice width with the column 

length. This is the area projected on a horizontal plane, not the surface 
area for computing the cohesion resistance.  

  4.      z  m   is the  z  coordinate at the center of the column on the failure surface. 
These coordinates at the cylindrical part are shown in Fig.  9-10 (a), and 
those at the ellipsoidal part can be computed by Eq.  (9-6) , or

  z
x y

m
m m= − − − −

−
400 443 8 1

42 2
196 958

50
10 000

2 2

.
( . )

,
( )

,
       

 The  x m   and y  m   coordinates at each center are shown in Fig.  9-10 (b). If the 
computed z  m   is smaller than  − 25 ft, which is the elevation at the bottom of 
soil 1, the failure surface is along boundary line 1 with z  m    =   − 25 ft.  

  5.      For the columns in the fi rst slice, Weight  =  125  ×  Area  ×  (0  −  z  m  ), and for 
those in the other slices, Weight  =  125  ×  Area  ×  (0.5 x m    −   z m  ).  

  6.      If  z m    =   − 25 ft,  θ   xz    =  0. Otherwise, from Eq.  (9-7) ,  θ   xz    =  tan   − 1 [( x m    −  42.2)/(400 
 −   z m  )], which applies to both the cylindrical and the ellipsoidal surfaces.  

  7.      If  z m    =   − 25 ft,  θ   yz    =  0. Otherwise, from Eq.  (9-8) ,  θ   yz    =  tan   − 1 [19.79( y m    −  50)/
(400  −   z m  )].  

  8.      From Eq.  (9-11) ,  θ   d    =  cos   − 1 [(1  +  tan 2  θ   xz    +  tan 2  θ   yz  )  − 0.5 ], so cos ( θ   d    −   θ   xz  )  =  
cos {cos   − 1 [(1  +  tan 2  θ   xz    +  tan 2  θ   yz  )  − 0.5 ]  −   θ   xz  ]}.  

 Table 9-6.      Iteration Method to Determine Dimensions of Corner Columns  

Iteration Assumed  x m  Boundary,  y Center,  y m  Radius,  r Boundary,  x Computed  x m  

Left Corner Column (Slice 1)  x  1 

1  − 37.5 89.4 85.7 414.6  − 66.9  − 33.5

2  − 33.5 89.8 85.9 414.2  − 65.3  − 32.7

3  − 32.7 89.8 85.9 414.2  − 65.3  − 32.7

Right Corner Column (Slice 4)  x  2 

1 337.5 103.4 92.7 401.3 386.3 343.2

2 343.2 102.4 92.2 402.3 388.0 344.0

3 344.0 102.2 92.1 402.6 388.5 344.2

4 344.2 102.2 92.1 402.6 388.5 344.2

   Note:   All dimensions are in feet.   
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 Table 9-7.      Analysis of 3D Composite Failure Surface by Normal Method  a    

Sl. 
(1)

Co. 
(2)

Area 
ft 2  
(3)

 z m  
 ft 
(4)

Weight 
10 3  lb 

(5)

 θ   xz   
deg 
(6)

 θ   yz   

deg 
(7)

cos 
( θ   d    −   θ   xz  ) 

(8)

 S  
ft 2  
(9)

 N  ′  
10 3  lb 
(10)

 λ   N   
ft 

(11)

 λ   T  
 ft 

(12)

 M r   
10 3  ft-lb 

(13)

 M o   
10 3  ft-lb 

(14)

1 1 7,500  − 25.0 23,438 0.00 0.00 1.000 7,500 23,438  − 117.2 425.0 3,944,312 0

1 2 2,349  − 25.0 7,340 0.00 0.00 1.000 2,349 7,340  − 115.6 425.0 1,235,238 0

1 3 1,885  − 18.8 4,429  − 13.53 48.47 0.813 2,879 5,297 0 430.8 1,565,538  − 446,388

1 4 516  − 7.2 464  − 10.43 60.59 0.639 1,055 714 0 414.2 258,141  − 34,793

2 1 7,500  − 25.0 58,594 0.00 0.00 1.000 7,500 58,594 32.8 425.0 9,382,501 0

2 2 2,400  − 25.0 18,750 0.00 0.00 1.000 2,400 18,750 32.8 425.0 3,002,388 0

2 3 2,400  − 25.0 18,750 0.00 0.00 1.000 2,400 18,750 32.8 425.0 3,002,388 0

2 4 2,400  − 5.4 12,870 4.65 62.74 0.528 5,244 24,295 0 406.7 6,131,216 424,332

2 5 1,365 24.0 2,303 4.99 70.06 0.421 4,004 5,450 0 377.4 1,489,733 75,600

3 1 7,500  − 4.4 109,594 24.33 0.00 1.000 8,231 99,861 0 443.8 26,317,773 20,038,368

3 2 2,400  − 2.8 34,590 24.39 21.41 0.993 2,798 31,725 0 442.4 8,350,759 6,319,146

3 3 2,400 9.9 30,780 25.09 50.43 0.889 3,932 31,359 0 430.8 8,138,470 5,622,799

3 4 2,400 36.6 22,770 26.68 65.23 0.776 5,345 26,219 0 406.7 6,591,203 4,158,057

3 5 2,400 81.0 9,450 29.87 73.86 0.717 8,742 11,429 0 367.7 3,069,168 1,730,550

4 1 7,500 106.4 76,031 48.59 0.00 1.000 11,339 50,289 0 443.8 13,891,902 25,306,771

4 2 2,374 107.9 23,503 48.68 28.36 0.999 3,817 15,534 0 442.4 4,305,419 7,809,044

4 3 2,110 115.8 17,724 48.76 59.00 0.966 4,751 12,059 0 430.8 3,408,691 5,741,551

4 4 1,788 133.9 8,549 48.59 72.18 0.909 6,184 6,221 0 402.6 1,943,953 2,581,356

Sum 106,028,793 79,326,393

   Note:   Sl.  =  Slice; Co.  =  Column; cos ( θ   d    −   θ   xz  )  =  Projection from normal direction to xz plane;  S   =  Surface area at the bottom of each column;  N  ′   =  
Normal force at the bottom of each column;  M r     =   Resisting moment;  M o    =  Overturning Moment.  

   a   The factor of safety by normal method  =  106,028,793/79,326,393  =  1.337, which checks with the 1.338 obtained by LEAME.   
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290 Slope Stability Analysis by the Limit Equilibrium Method

  9.      From Eq.  (9-17) , surface area  S xz yz= × − ×Area 1 2 2sin sinθ θ
    (cos cos )θ θxz yz×      

  10.      From Eq.  (9-27) , normal force  N     =  Weight  ×  cos  θ   xz  /cos ( θ   d    −   θ   xz  ).  
  11.      When the failure surface is along boundary line 1, or z  m    =   − 25 ft,  λ   N    =   x m   

 −  42.2 ft. Otherwise,  λ   N    =  0.  
  12.      When z  m    =   − 25 ft,  λ   T    =  425 ft. Otherwise,  λ   T   can be computed by Eq.  (9-41) .  
  13.      The resisting moment is the numerator of Eq.  (9-25) , or  M r    =   λ   T   ( cS   +  

 N   tan  ϕ ). Note that  c   =  0.1 ksf and  ϕ   =  20° when z  m    =   − 25 ft, and that  c   =  
0.2 ksf and  ϕ   =  30° when otherwise.  

  14.      When z  m    =   − 25 ft, or the failure surface is horizontal, the overturning mo-
ment,  M o  , is 0, because, according to the denominator of Eq.  (9-25) ,  M o    =  
 λ   w W   −   λ   N  cos ( θ   d    −   θ   xz  ) N   , where cos ( θ   d    −   θ   xz  )  =  1 and  N     =   W . If  z m   is greater 
than  − 25 ft, or the failure surface is circular with  R   =   λ   T  , from the denomi-
nator of Eq.  (9-24) ,  M o    =   λ   T    ×  Weight  ×  sin  θ   xz  .     

   Example 9.6            Fig.  9-11 (a) shows the cross section and 9-11(b) shows the plan view 
of a 3D noncircular failure surface. Because of symmetry, only one-half of the 
failure mass is shown on the plan view. The fi ll has a width,  w t  , of 200 ft (61 m) at 
the top. The end plane has an angle,  α , of 20° and a slope,  g , of 0.75. The soil has 
a cohesion of 200 psf (9.6 kN/m 2 ), a friction angle of 30°, and a total unit weight 
of 125 pcf (19.7 kN/m 3 ). If the failure mass is divided into three slices in the  x  
direction and three columns in the  y  direction, determine the factor of safety by 
the normal method.   

  Solution     To plot the boundary of the failure mass, it is only necessary to com-
pute the  y s   coordinate at the toe, because the intersection of the slope surface and 
the end plane is a straight line. With  x s    =  0,  z s    =  0,  x t    =  300 ft,  z t    =  150 ft,  w t    =  200 ft, 
 α   =  20°, and  g   =  0.75, from Eq.  (9-18) ,  y s    =  200  +  300  ×  tan 20°  −  150/(0.75  ×  cos 20°) 
 =  96.4 ft. 

  Fig. 9-11.      Example  9.6     
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Methods for Three-Dimensional Analysis  291

 To determine the area, weight, and center of the columns requires the values 
of  y s   through the centerline of each slice. These values for the three slices are 
113.6 ft, 148.2 ft, and 182.6 ft and, because of a straight-line boundary, can be com-
puted simply by  y s    =  96.4  +  0.345 x m  . The ( x m  ,  y m  ) coordinates at the center of each 
column are noted in Fig.  9-11 (b). The maximum  y s   is 182.6 ft, which is the half 
length of the failure mass. 

 To determine the length of the fi rst column, the intersection of the failure sur-
face and the end plane at the center of each slice must be found. From Eq.  (9-20) ,

   When  x m    =  50,  z m    =  0,  y f    =  200  +  (300  −  50)tan 20°  −  (150  −  0)/(0.75  ×  cos 20°) 
 =  78.2 ft.  

  When  x m    =  150,  z m    =  25,  y f    =  200  +  (300  −  150)tan 20°  −  (150  −  25)/(0.75  ×  cos 20°) 
 =  77.2 ft.  

  When  x m    =  250,  z m    =  100,  y f    =  200  +  (300  −  250)tan 20°  −  (150  −  100)/
(0.75  ×  cos 20°)  =  147.3 ft.    

 The minimum  y f   is 77.2 ft, which is the length of the fi rst column. The length 
of the other columns is (182.6  −  77.2)/2  =  52.7 ft. The division into three slices and 
three columns is shown in Fig.  9-11 (b). The intersection of the failure surface with 
the end plane is indicated in dashed lines. Any column with a center inside the 
dashed lines, hereafter referred to as case 1, has the cross section shown in Fig. 
 9-11 (a), whereas that outside the dashed lines, referred to as case 2, has a base 
resting on the end plane. 

 The determination of moment arms  λ   T   and  λ   N   is similar to the 2D case. The 
point of intersection ( x ,  y ) of two perpendicular lines, one tangent to the failure 
surface and the other passing through the moment center can be obtained from 
Eqs. (8-15) and (8-14), or

  x
z xm m xz

xz

xz
xz

=
− + +

+

200
50

1

tan
tan

tan
tan

θ
θ

θ
θ

      (9-38)  

  z
x

xz

= + −
200

50
tanθ

      (9-39)   

 Knowing the point of intersection ( x ,  z ),  λ   N   and  λ   T   can be computed by Eqs. 
(8-16) and (8-17), or

  λN m mx x z z= ± − + −( ) ( )2 2       (9-40)  

 λ   N   is positive if  x   <   x m   and negative if  x   >   x m  .

  λT o ox x z z= − + −( ) ( )2 2       (9-41)   

 In case 1, when the cross section in Fig.  9-11 (a) applies,  z m   at column 1 can be 
obtained by averaging the  z  coordinates at the two end points, and tan  θ   xz   is the 
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292 Slope Stability Analysis by the Limit Equilibrium Method

slope of the failure surface and can be computed from the coordinates of the two 
end points. In case 2, when the failure surface is along the end plane, from Eq. 
 (9-21) ,  z m    =  150  −  0.75 cos 20° [200  +  (300  −   x m  )tan 20°  −  y  m  ]  =  0.257  x m    +  0.705  y m   
 −  67.9; from Eq.  (9-22) ,  θ   xz    =  tan   − 1 (0.75  ×  sin 20°)  =  14.39°. 

 The computations of moment arms,  λ   N   and  λ   T  , for each column are shown in 
Table  9-8 . 

  Table  9-9  shows the information on each column and how the factor of safety 
can be calculated. The factor of safety by the normal method is  F   =  
17,413,418/12,083,234  =  1.441, which checks with the 1.442 obtained by LEAME. 
Each column in Table  9-9  is explained as follows.

    1.      The failure mass is divided into three slices in the  x  direction, each 100 ft 
wide.  

  2.      The failure mass is divided into three columns in the  y  direction. How-
ever, only two columns exist in slice 1, because the third column is cut off 
by the end plane.  

  3.      The area is the product of the slice width and the column length. All of the 
slices have the same width of 100 ft. The column lengths can be found 
from the dimensions shown in Fig.  9-11 (b).  

  4.      The vertical coordinate,  z m  , at the center of the column bottom can be ob-
tained from Table  9-8 .  

  5.      The weight  =  (0.5  x m    −   z m  )  ×  Area  ×  125.  
  6.      The values of tan  θ   xz   can be found in Table  9-8 , so  θ   xz    =  tan   − 1 (tan  θ   xz  ).  
  7.      In case 1,  θ   yz    =  0. In case 2, from Eq.  (9-23) ,  θ   yz    =  tan   − 1 (0.75  ×  cos 20°)  =  

35.18°.  
  8.      From Eq.  (9-11) ,  θ   d    =  cos   − 1 [(1  +  tan  2  θ   xz    +  tan  2  θ   yz  )  − 0.5 ], so cos ( θ   d    −   θ   xz  )  =  

cos {cos   − 1 [(1  +  tan  2  θ   xz    +  tan  2  θ   yz  )  − 0.5 ]  −   θ   xz  ]}.  
  9.      From Eq.  (9-17) ,

  S xz yz xz yz= × + + ×Area 1 2 2tan tan (cos cos )θ θ θ θ         

 Table 9-8.      Computations of Moment Arms for Noncircular Failure Surface  

Sl. Co.  x m   (ft)  y m   (ft)  z m   (ft) tan  θ   xz   x  (ft)  z  (ft)  λ   N   (ft)  λ   T   (ft)

1 1 50 38.6 0 0 50.0 0.0 0.0 200.0

1 2 50 95.4 12.2 0.257 95.3 23.7  − 46.7 181.9

2 1 150 38.6 25.0 0.500 140.0 20.0 11.2 201.2

2 2 150 103.6 43.7 0.257 93.9 29.2 57.9 176.4

2 3 150 139.1 68.7 0.257 87.9 52.5 64.2 152.3

3 1 250 38.6 100.0 1.000 200.0 50.0 70.7 212.1

3 2 250 103.6 100.0 1.000 200.0 50.0 70.7 212.1

3 3 250 156.3 106.5 0.257 84.9 64.2 170.4 140.2

c09.indd   292c09.indd   292 12/16/2013   1:38:56 PM12/16/2013   1:38:56 PM



M
eth

od
s for T

h
ree-D

im
en

sion
al A

n
alysis  

293

 Table 9-9.      Analysis of 3D Failure Surface with Planar Ends by Normal Method  a    

Sl. 
(1)

Co. 
(2)

Area 
(ft 2 ) (3)

 z m   (ft) 
(4)

Weight 
(10 3  lb) 

(5)

 θ   xz   
(deg) 

(6)

 θ   yz   
(deg) 

(7)

cos 
( θ   d    −   θ   xz  ) 

(8)
 S  (ft 2 ) 

(9)

 N  ′  
(10 3  lb) 

(10)

 λ   N   
(ft) 
(11)

 λ   T   
(ft) 
(12)

 M r   
(10 3  ft-lb) 

(13)

 M o   
(10 3  ft-lb) 

(14)

1 1 7,720 0.0 24,125 0.00 0.00 1.000 7,720 24,125 0.0 200.0 3,094,515 0

1 2 3,640 12.2 5,824 14.39 35.18 0.924 4,551 6,105  − 46.7 181.9 806,713 265,377

2 1 7,720 25.0 48,250 26.57 0.00 1.000 8,632 43,181 11.2 201.2 5,363,381 4,341,373

2 2 5,270 43.7 20,619 14.39 35.18 0.924 6,588 21,615 57.9 176.4 2,433,795 905,506

2 3 1,830 68.7 1,441 14.39 35.18 0.924 2,288 1,511 64.2 152.3 202,555 54,466

3 1 7,720 100.0 24,125 45.00 0.00 1.000 10,917 17,059 70.7 212.1 2,552,076 3,618,929

3 2 5,270 100.0 16,469 45.00 0.00 1.000 7,453 11,645 70.7 212.1 1,742,156 2,470,499

3 3 5,270 106.5 12,187 14.39 35.18 0.924 6,588 12,768 170.4 140.2 1,218,227 427,084

Sum 17,413,418 12,083,234

   Note:   Sl.  =  Slice; Co.  =  Column; cos ( θ   d    −   θ   xz  )  =  Projection from normal direction to xz plane;  S   =  Surface area at the bottom of each column;  N  ′   =  
Normal force at the bottom of each column;  M r     =   Resisting moment;  M o    =  Overturning Moment.  

   a   Factor of safety by Normal method  =  17,413,418/12,083,234  =  1.441, which checks with the 1.442 obtained by LEAME.   
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294 Slope Stability Analysis by the Limit Equilibrium Method

  10.      From Eq.  (9-27) , normal force  N     =  Weight  ×  cos  θ   xz  /cos ( θ   d    −   θ   xz  ).  
  11.      Values of  λ   N   can be obtained from Table  9-8 .  
  12.      Values of  λ   T   can be obtained from Table  9-8 .  
  13.      The resisting moment is the numerator of Eq.  (9-25) , or  M r    =   λ   T  (0.2 S   +  

 N   tan 30°).  
  14.      The overturning moment is the denominator of Eq.  (9-25) , or

  M x No m N d xz= × − − × × −Weight ( ) cos( )50 λ θ θ              

  9.5     Simplifi ed Bishop Method 

 Similar to Eq. (8-18) and summing the forces in the vertical direction to  z ero,

  
W

c S N
F

yL N

uS

xz d xz xz− ′ + ′ ′⎛
⎝

⎞
⎠ + − ′ −

−

tan
sin sin cos( )cos

cos

ϕ θ α θ θ θΔ

(( )cosθ θ θd xz xz− = 0
      (9-42)   

 Note that the fi rst  N    in parentheses is not multiplied by cos ( θ   d    −   θ   xz  ), because 
the terms in parentheses represent the shear force, which is parallel to the  xz  
plane. Only the second  N    term, which represents the normal force, has to be 
multiplied by cos ( θ   d    −   θ   xz  ). Eq.  (9-42)  can be simplifi ed to

  ′ =
+ − − − ′

−
N

F W yL uS c S
F

d xz xz xz

d xz

[ sin cos( )cos ] sin
cos( )c

Δ α θ θ θ θ
θ θ oos sin tanθ θ φxz xz+ ′

      (9-43)   

 By substituting Eq.  (9-43)  into Eq.  (9-24)  or  (9-25) , the factor of safety for 
circular or noncircular failure surfaces can be determined. Since  N    depends on  
F  and  F  depends on  N   , an iteration method must be applied. 

  Example 9.7            Same as Example  9.4 , determine the factor of safety by the simpli-
fi ed Bishop method using the column information presented in Table  9-3 .  

  Solution     Table  9-10  is a spreadsheet for computing the factor of safety by the 
simplifi ed Bishop method. Some explanations on the spreadsheet are in order:

   1.      Data on radius,  r , surface area,  S , weight,  W ,  θ   xz  , and cos ( θ   d    −   θ   xz  ) can be 
obtained from Table  9-3 . The normal force,  N , can be obtained from Eq. 
 (9-43)  and expressed as ( F   ×   W   −   c   ×   S   ×  sin  θ   xz  )/[ F   ×  cos ( θ   d    −   θ   xz  )  ×  cos  θ   xz   
 +  sin  θ   xz    ×  tan  ϕ ]. Because the unit of force is in kip, or 1,000 pounds, the 
cohesion,  c , should be 0.2 ksf. To start the iterations, a safety factor,  F , of 
1.464 obtained by the normal method is assumed.  

  2.      The resisting moment,  M r  , can be obtained from the numerator of Eq. 
 (9-24)  and expressed as R  ×  ( c   ×   S   +   N     ×  tan  ϕ ). The sum of the driving 
moment,  M o  , is shown at the bottom of the table and can be obtained from 
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 Table 9-10.      Spreadsheet for Ellipsoidal Ends Using Simplifi ed Bishop Method  a    

ASSUMED FACTOR OF SAFETY

 θ  xz  
radian 

cos 
( θ  d - θ  xz )

N 
kip

1.464

N 
kip

1.579

SI. Co.
R 
ft

S 
ft 2 

W 
kip

M r  
ft-kip

M r  
ft-kip

1 1 167.7 3,248 4,576  − 0.072 1.000 4,755 569,338 4,743 568,127

1 2 165.8 2,006 2,545  − 0.063 0.997 2,641 319,325 2,635 318,731

1 3 156.1 478 266  − 0.018 0.955 282 40,330 282 40,308

2 1 167.7 3,274 11,340 0.143 1.000 10,780 1,153,587 10,827 1,158,119

2 2 165.8 2,200 7,047 0.144 0.999 6,701 714,369 6,730 717,197

2 3 151.8 1,959 2,678 0.158 0.970 2,584 285,967 2,599 287,239

3 1 167.7 3,470 14,823 0.358 1.000 13,637 1,436,744 13,777 1,450,325

3 2 165.8 2,335 9,342 0.362 1.000 8,586 899,351 8,676 907,943

3 3 148.8 2,560 4,644 0.401 0.988 4,238 440,281 4,293 444,971

4 1 167.7 3,950 14,378 0.572 1.000 13,360 1,426,066 13,581 1,447,411

4 2 165.8 2,671 8,964 0.579 1.000 8,325 885,456 8,465 898,875

4 3 151.8 2,495 3,510 0.632 0.997 3,189 355,269 3,257 361,176

5 1 167.7 5,252 7,857 0.787 1.000 7,459 898,311 7,654 917,249

5 2 165.8 3,246 4,357 0.787 1.000 4,103 500,429 4,214 510,978

5 3 156.1 773 445 0.786 0.999 376 58,013 389 59,235

From Table  9.3 , M o  6,387,903 Sum of M r 9,982,835 10,087,884

Computed factor of safety 1.563 1.579

    a   Factor of safety by simplifi ed method is  F   =  10,087,884/6,387,903  =  1.579, which checks with the 1.595 obtained by LEAME.   
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296 Slope Stability Analysis by the Limit Equilibrium Method

Table  9-3 . The sum of the resisting moment divided by the sum of the 
driving moment gives the computed factor of safety.  

  3.      Using the computed  F  as the assumed  F , the process is repeated until 
the assumed  F  is equal to the computed  F . It was found that the factor of 
safety converges to 1.579 at the fourth iteration. The factor of safety ob-
tained by LEAME is 1.595. When a spreadsheet is used, it is not necessary 
to show all the intermediate results. By trial and error, an assumed factor 
of safety exactly equal to the computed factor of safety, or sometimes with 
a difference of only 0.001, can be obtained.      

  Similar to 2D analysis, Newton ’ s method of tangent, as described in Section 
8.6.1, can be used to solve  F  and speed up convergence. By substituting Eq.  (9-43)  
into  (9-24)  and simplifying, the factor of safety for a circular failure surface can 
be obtained by

 

F
R

c S W y uSd xz xz d xz xz

=

′ − + + − −[ ] ′cos( )cos sin cos( )cos tanθ θ θ α θ θ θΔ φφ
θ θ θ θ φ

θ λ λ
cos( )cos sin tan /

sin
d xz xz xz

xz s s L

F
RW C W yL

− + ′
+ +[ ]

∑∑
∑ Δ∑∑     

  (9-44)   

 By naming the overturning moment in the denominator of Eq.  (9-44)  as  M o   
and  W   −   uS cos ( θ   d    −   θ   xz  )cos  θ   xz   as  W o  , the following equation similar to Eq. (8-57) 
can be obtained:

  F F
M R

c S

W yL
F

m m

o

d xz xz

o

m
+ = −

−

′ −
+ + ′

1 1

cos( )cos
[ sin ]tan

cos(

θ θ θ
α φ

θ
Δ

dd xz xz xz

o

d xz xz

oM R

c S

W

− + ′

−

′ −
+ +

∑∑ θ θ θ φ
θ θ θ
)cos sin tan

[ cos( )cos
( ΔyyL

F
xz

m d xz xz xz

sin )tan ]sin tan
[ cos( )cos sin tan ]

α φ θ φ
θ θ θ θ φ

′ ′
− + ′ 22∑∑

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

      (9-45)   

  Example 9.8            Same as Example  9.7 , but determine the factor of safety by simpli-
fi ed Bishop method using Newton ’ s method of tangent or Eq.  (9-45) .  

  Solution     To use the spreadsheet, Eq.  (9-45)  can be expressed as

  F F
M M

M M
m m

o

o
+ = −

−
−

⎛

⎝⎜
⎞

⎠⎟
∑
∑1

1

2

1       (9-46)  

in which  M o    =  driving moment,  M  1   =   r   ×  [ c     ×   S   ×  cos ( θ   d    −   θ   xz  )  ×  cos  θ   xz    +   W   ×  
tan  ϕ   ]/[ F m    ×  cos ( θ   d    −   θ   xz  )  ×  cos  θ   xz    +  sin  θ   xz    ×  tan  ϕ ], and  M  2   =   r   ×  [ c     ×   S   ×  cos ( θ   d    −   θ   xz  ) 
 ×  cos  θ   xz    +   W   ×  tan  ϕ   ]  ×  sin  θ   xz    ×  tan  ϕ /[ F m    ×  cos ( θ   d    −   θ   xz  )  ×  cos  θ   xz    +  sin  θ   xz    ×  tan  ϕ ] 2 . 
Table  9-11  is the spreadsheet for computing the factor of safety. 
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 Table 9-11.      Spreadsheet for Example  9.7  Using Newton ’ s Method of Tangent  

ASSUMED FACTOR OF SAFETY

 θ  xz  
radian

cos 
( θ  d - θ  xz )

M 1  
ft-kip

1.464

M 1  
ft-kip

1.579

SI. Co.
R 
ft

S 
ft 2 

W 
kip

M 2  
ft-kip

M 2  
ft-kip

1 1 167.7 3,248 4,576  − 0.072 1.000 388,892  − 11,385 359,802  − 9,746

1 2 165.8 2,006 2,545  − 0.063 0.997 218,118  − 5,582 201,856  − 4,781

1 3 156.1 478 266  − 0.018 0.955 27,548  − 206 25,527  − 177

2 1 167.7 3,274 11,340 0.143 1.000 787,969 42,338 733,451 36,682

2 2 165.8 2,200 7,047 0.144 0.999 487,957 26,419 454,210 22,891

2 3 151.8 1,959 2,678 0.158 0.970 195,332 11,883 181,912 10,306

3 1 167.7 3,470 14,823 0.358 1.000 981,382 126,177 918,508 110,528

3 2 165.8 2,335 9,342 0.362 1.000 614,311 79,821 575,012 69,935

3 3 148.8 2,560 4,644 0.401 0.988 300,738 43,528 281,806 38,220

4 1 167.7 3,950 14,378 0.572 1.000 974,089 197,235 916,663 174,665

4 2 165.8 2,671 8,964 0.579 1.000 604,820 123,969 569,268 109,824

4 3 151.8 2,495 3,510 0.632 0.997 242,670 54,498 228,737 48,419

5 1 167.7 5,252 7,857 0.787 1.000 613,601 173,942 580,905 155,899

5 2 165.8 3,246 4,357 0.787 1.000 341,823 96,899 323,609 86,848

5 3 156.1 773 445 0.786 0.999 39,626 11,225 37,514 10,060

From Table  9.3 , Mo  =  6,387,903 6,818,877 970,762 6,388,780 859,575

Computed factor of safety 1.580 1.579

  In Table  9-11 , the fi rst fi ve items from  r  to cos ( θ   d    −   θ   xz  ) can be obtained from 
Table  9-10 , and the overturning moment,  M o  , from Table  9-3 . First, an initial safety 
factor of 1.464 by the normal method is assumed as  F m  , and a new safety factor, 
 F m    + 1 , of 1.580 is computed by Eq.  (9-45) . Using the new 1.580 as the assumed  F m  , 
the factor of safety rapidly converges to 1.579 at the second iteration. It can be 
seen that Newton ’ s method is very effi cient and reduces the number of iterations 
from four to two.    

  9.6     Original Spencer Method 

 The original Spencer method satisfi es the overall force equilibrium in two per-
pendicular directions and is particularly useful for noncircular failure surfaces, 
because any reasonable moment center can be selected and nearly the same 
factor of safety can be obtained. This is not true when the normal or simplifi ed 
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298 Slope Stability Analysis by the Limit Equilibrium Method

Bishop method is used for noncircular failure surfaces, because the location of 
the moment center has a signifi cant effect on the factor of safety obtained. 

 Summing all forces in a direction perpendicular to the side force, the follow-
ing equation similar to Eq. (8-20) is obtained:

 
′ −( ) − + −( ) −

+ ′ + ′ ′
N uS

c S N
d xz xz d xz xzcos cos( ) cos cos( )

tan
θ θ θ δ θ θ θ δ

φφ θ δ δ δ α δ
F

C W W yLxz ssin sin cos sin−( ) + − − −( ) =Δ 0
       

 After simplifi cation,

 ′ =

− − − − + −( )[ ]
− ′

N

F W uS C W yL

c
d xz xz scos cos( )cos( ) sin sinδ θ θ θ δ δ α δΔ

SS
F

xz

d xz xz xz

sin
cos cos( ) sin tan

θ δ
θ θ θ δ θ δ φ

−( )
−( ) − + −( ) ′

      (9-47)   

 To determine the factor of safety with respect to the moment equilibrium 
under a given value of  δ , the factor of safety is assumed fi rst, and  N    is computed 
by Eq.  (9-43) . Substituting the  N    thus determined into Eq.  (9-24)  or  (9-25) , a new 
factor of safety is obtained. Using the new factor of safety as the assumed factor 
of safety, the process is repeated until the factor of safety converges. 

 Similar to Eq. (8-22), the factor of safety with respect to force equilibrium can 
be determined by

 
F

c S N

W N U
xz

d xz xz

=
′ + ′ ′( ) −( )

+ ′ +( ) − −
∑∑ tan cos

sin cos( )sin

φ θ δ
δ θ θ θ δ(( ) + + −( )[ ]∑∑ C W yLs cos cosδ α δΔ     

  (9-48)  

in which  U  can be computed by Eq.  (9-26) . Eq.  (9-48)  in conjunction with Eq. 
 (9-47)  can be used to determine the factor of safety with respect to force equilib-
rium. After the factors of safety for both moment and force equilibrium at three 
different values of  δ  are determined by Newton ’ s method of tangent, as described 
in Section 8.6.1, the factor of safety that satisfi es both moment and force equilib-
rium can be found, as shown in Fig. 8-8 and described in Section 8.4.3. 

  Example 9.9            Same as Example  9.5 , but determine the factor of safety of a com-
posite failure surface by the original Spencer method using the column informa-
tion presented in Table  9-7 .  

  Solution     Table  9-12  is a spreadsheet for computing the factor of safety of a com-
posite failure surface by the original Spencer method. The factor of safety by 
the original Spencer method is 1.485, which checks with the 1.486 obtained by 
LEAME. 

  Most of the comments presented in Table 8-4 for 2D analysis are also 
applicable to 3D analysis and will not be repeated here. Some additional com-
ments are:
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 Table 9-12.      Spreadsheet for Composite Failure Surface by Original Spencer Method  

 DATA INPUT 

Slice Col.
S 
ft 2 

Weight 
kip

 θ  xz  
rad

cos 
( θ  d - θ  xz )

 λ  N  
ft

 λ  T  
ft

 λ  w  
ft

 θ  xz  
deg

1 1 7,500 23,438 0.000 1.000  − 117.2 425.0  − 117.2 0.00

1 2 2,349 7,340 0.000 1.000  − 115.6 425.0  − 115.6 0.00

1 3 2,879 4,429  − 0.236 0.813 0.0 430.8  − 101.1  − 13.53

1 4 1,055 464  − 0.182 0.639 0.0 414.2  − 74.9  − 10.43

2 1 7,500 58,594 0.000 1.000 32.8 425.0 32.8 0.00

2 2 2,400 18,750 0.000 1.000 32.8 425.0 32.8 0.00

2 3 2,400 18,750 0.000 1.000 32.8 425.0 32.8 0.00

2 4 5,244 12,870 0.081 0.528 0.0 406.7 32.8 4.65

2 5 4,004 2,303 0.087 0.421 0.0 377.4 32.8 4.99

3 1 8,231 109,594 0.425 1.000 0.0 443.8 182.8 24.33

3 2 2,798 34,590 0.426 0.993 0.0 442.4 182.8 24.39

3 3 3,932 30,780 0.438 0.889 0.0 430.8 182.8 25.09

3 4 5,345 22,770 0.466 0.776 0.0 406.7 182.8 26.68

3 5 8,742 9,450 0.521 0.717 0.0 367.7 182.8 29.87

4 1 11,339 76,031 0.848 1.000 0.0 443.8 332.8 48.59

4 2 3,817 23,503 0.850 0.999 0.0 442.4 332.0 48.68

4 3 4,751 17,724 0.851 0.966 0.0 430.8 323.8 48.76

4 4 6,184 8,549 0.848 0.909 0.0 402.6 302.1 48.59
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 DATA INPUT 

Slice Col.
S 
ft 2 

Weight 
kip

 θ  xz  
rad

cos 
( θ  d - θ  xz )

 λ  N  
ft

 λ  T  
ft

 λ  w  
ft

 θ  xz  
deg

Factor of safety based on moment equilibrium
Assumed angle  δ 0

N Driving M.

0.3

N Driving M.

0.6
Assumed Factor of safety 1.491 1.483 1.526

Slice Col. N Driving M. Resisting M. Resisting M. Resisting M.

kip ft-kip ft-kip kip ft-kip ft-kip kip ft-Kip ft-kip

1 1 23,438 0 3,944,310 25,533 245,522 4,268,363 28,410 582,725 4,713,423

1 2 7,340 0 1,235,237 7,996 75,840 1,336,721 8,897 180,000 1,476,100
1 3 6,458  − 447,772 1,854,216 8,858  − 447,772 2,451,258 14,894  − 447,772 3,952,575
1 4 877  − 34,754 297,101 1,320  − 34,754 403,121 2,573  − 34,754 702,627
2 1 58,594 0 9,382,495 63,577  − 163,449 10,153,334 70,421  − 387,933 11,212,017
2 2 18,750 0 3,002,386 20,345  − 52,304 3,249,054 22,535  − 124,138 3,587,831
2 3 18,750 0 3,002,386 20,345  − 52,304 3,249,054 22,535  − 124,138 3,587,831
2 4 22,977 422,136 5,821,636 28,891 422,136 7,210,364 40,468 422,136 9,928,795
2 5 4,980 75,538 1,387,283 7,029 75,538 1,833,834 11,913 75,538 2,897,963
3 1 101,931 20,033,783 26,848,038 100,478 20,033,783 26,475,774 98,666 20,033,783 26,011,534

2 32,355 6,323,052 8,512,298 31,914 6,323,052 8,399,536 31,361 6,323,052 8,258,420
3 3 31,524 5,626,584 8,179,417 31,402 5,626,584 8,149,283 31,223 5,626,584 8,104,668
3 4 25,884 4,162,356 6,512,630 26,079 4,162,356 6,558,241 26,292 4,162,356 6,608,455
3 5 10,884 1,727,460 2,953,431 11,171 1,727,460 3,014,441 11,517 1,727,460 3,087,774
4 1 78,678 25,303,117 21,165,932 68,004 25,303,117 18,431,029 58,728 25,303,117 16,054,331
4 2 24,324 7,802,996 6,550,668 21,023 7,802,996 5,707,474 18,158 7,802,996 4,975,523
4 3 18,583 5,739,031 5,031,411 16,163 5,739,031 4,429,434 14,056 5,739,031 3,905,407
4 4 8,890 2,582,653 2,564,324 7,901 2,582,653 2,334,418 7,039 2,582,653 2,134,171
Sum 79,316,181 118,245,198 79,369,486 117,654,734 79,442,696 121,199,444
Computed Factor of safety 1.491 1.482 1.526

Table 9-12. (Continued)
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Factor of safety based on force equilibrium
Assumed angle  δ 0

N Driving F.

0.3

N in kip Driving F.

0.6
Assumed Factor of safety 1.349 1.465 1.642

Slice Col. N Driving F. Resisting F. Resisting F. Resisting F.

kip kip kip kip kip kip kip kip kip

1 1 23,438 0 9,281 25,561  − 627 9,604 27,996  − 2,574 9,029
1 2 7,340 0 2,906 8,005  − 196 3,008 8,767  − 806 2,828
1 3 6,561  − 1,248 4,242 8,906  − 2,390 4,916 13,785  − 5,815 5,721
1 4 894  − 103 715 1,330  − 257 867 2,303  − 775 1,093
2 1 58,594 0 22,076 63,644  − 1,492 22,846 69,436  − 6,122 21,477
2 2 18,750 0 7,064 20,366  − 478 7,311 22,220  − 1,959 6,873
2 3 18,750 0 7,064 20,366  − 478 7,311 22,220  − 1,959 6,873
2 4 22,831 977 14,183 28,965 483 17,348 38,496  − 2,812 20,211
2 5 4,930 181 3,634 7,055 53 4,764 11,015  − 975 6,239
3 1 100,313 41,328 54,272 100,419 44,871 59,160 98,153 44,757 57,421
3 2 31,836 13,055 17,250 31,895 14,192 18,824 31,198 14,158 18,290
3 3 30,948 11,666 16,894 31,379 12,931 18,724 31,052 12,925 18,469
3 4 25,311 8,819 14,013 26,052 10,063 15,890 26,153 10,139 16,023
3 5 10,546 3,766 6,796 11,152 4,548 7,987 11,472 4,689 8,346
4 1 76,107 57,080 30,564 67,835 57,813 35,364 59,118 57,445 35,285
4 2 23,524 17,650 9,472 20,970 17,889 10,975 18,279 17,782 10,966
4 3 17,936 13,029 7,453 16,120 13,390 8,739 14,158 13,405 8,838
4 4 8,524 5,811 4,073 7,875 6,256 4,937 7,102 6,412 5,174
Sum 172,011 231,953 176,571 258,575 157,914 259,156
Computed Factor of safety 1.348 1.464 1.641

Table 9-12. (Continued)
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 DATA INPUT 

Slice Col.
S 
ft 2 

Weight 
kip

 θ  xz  
rad

cos 
( θ  d - θ  xz )

 λ  N  
ft

 λ  T  
ft

 λ  w  
ft

 θ  xz  
deg

Factor of safety and angle  δ  that satisfy both moment and force equilibrium

D1  =  0 D2  =  0.3 D3  =  0.6

FM1  =  1.491 FM2  =  1.482 FM3  =  1.526

FF1  =  1.348 FF2  =  1.464 FF3  =  1.641

AM  =  0.053 BM  =   − 0.021 CM  =  0.268

AF  =  0.061 BF  =  0.051 CF  =  0.243

Angle D or  δ   = 0.342 Factor of safety F  =  1.485

Table 9-12. (Continued)
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Methods for Three-Dimensional Analysis  303

   1.      All the necessary input data, except  λ   w  , can be obtained from Table  9-7 . 
The moment arm,  λ   w  , is the hori z ontal distance between the moment and 
the column centers, or  x o    −   x m  , and can be determined from Fig.  9-10 .  

  2.      For moment equilibrium, the normal force,  N   , can be computed by Eq. 
 (9-47)  and expressed as ( F   ×   W   ×  cos  δ   −   c     ×   S   ×  sin ( θ   xz    −   δ ))/( F   ×  cos ( θ   d    −  
 θ   xz  )  ×  cos ( θ   xz    −   δ )  +  sin ( θ   xz    −   δ )  ×  tan  ϕ   ). As explained in Example  9.5 , the 
resisting moment can be computed by the numerator of Eq.  (9-24) ). Note 
that  c   =  0.1 ksf and  ϕ   =  20° when the failure surface is hori z ontal and that 
 c   =  0.2 ksf and  ϕ   =  30° when the failure surface is circular. The driving mo-
ment is 0 when the failure surface is hori z ontal, with  θ   xz    =  0, and can be 
computed by the denominator of Eq.  (9-24)  when the failure surface is 
circular.  

  3.      For force equilibrium, the normal force is the same as that for moment 
equilibrium; the resisting force is the numerator of Eq.  (9-48)  expressed as 
( c     ×   S   +   N     ×  tan  ϕ   )  ×  cos ( θ   xz    −   δ ). The driving force is the denominator of 
Eq.  (9-48)  expressed as  W   ×  sin  δ   +   N     ×  cos ( θ   d    −   θ   xz  )  ×  sin ( θ   xz    −   δ ).  

  4.      The last stage of the spreadsheet for determining the factor of safety was 
explained in Example 8.4. The factor of safety is 1.485, which checks with 
the 1.486 obtained by LEAME.     

   Example 9.10            Same as Example  9.6 , but determine the factor of safety by the 
original Spencer method using the column information presented in Table  9-9 .  

  Solution     Table  9-13  is the spreadsheet for determining the factors of safety by 
the original Spencer method. The procedures are similar to Example  9.9 . All the 
necessary input data, except  x m  , can be obtained from Table  9-9 . The moment 
arm,  λ   w  , is the hori z ontal distance between the moment and the column centers, 
or  x o    −   x m  , and can be determined from Fig.  9-11 . For moment equilibrium, the 
normal force,  N   , can be computed by Eq.  (9-47)  and expressed as [ F   ×   W   ×  cos  δ  
 −   c     ×   S   ×  sin ( θ   xz    −   δ )]/[ F   ×  cos ( θ   d    −   δ )  +  sin ( θ   xz    −   δ )  ×  tan  ϕ   ]. The driving moment 
is the denominator of Eq.  (9-25)  expressed as  W   ×   λ   w    −   N     ×   λ   N    ×  cos ( θ   d    −   θ   xz  ), and 
the resisting moment is the numerator of Eq.  (9-25)  expressed as  λ   T    ×  ( c   ×   S   +   N    
 ×  tan  ϕ ). For force equilibrium, the normal force is the same as that for moment 
equilibrium, the driving force is the denominator of Eq.  (9-48)  expressed as  W   ×  
sin  δ   +   N     ×  cos ( θ   d    −   θ   xz  )  ×  sin ( θ   xz    −   δ ), and the resisting force is the numerator of 
Eq.  (9-48)  expressed as ( c     ×   S   +   N     ×  tan  ϕ   )  ×  cos ( θ   xz    −   δ ). The factor of safety ob-
tained from the spreadsheet is 1.623 compared with 1.625 obtained by LEAME.    

  Summary 

   1.      In 2D analysis, the slope is infi nitely long and is represented by a single 
cross section, or the most critical cross section. In 3D analysis, the slope 
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 Table 9-13.      Spreadsheet for Noncircular Failure by Original Spencer Method  

 INPUT DATA 

Slice Col.
S
ft 2 

W
kip

 θ  xz 
deg.

cos
( θ  d - θ  xz )

 λ  N 
ft

 λ  T 
ft

x m 
ft

1 1 7,720 24,125 0.00 1.000 0 200.0 50.0   

1 2 4,551 5,824 14.39 0.924  − 46.7 181.9 50.0

2 1 8,632 48,250 26.57 1.000 11.2 201.2 150.0

2 2 6,588 20,619 14.39 0.924 57.9 176.4 150.0

2 3 2,288 1,441 14.39 0.924 64.2 152.3 150.0

3 1 10,917 24,125 45.00 1.000 70.7 212.1 250.0

3 2 7,453 16,469 45.00 1.000 70.7 212.1 250.0

3 3 6,588 12,187 14.39 0.924 170.4 140.2 250.0
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Factor of safety based on moment equilibrium

Assumed angle  δ 0.0  0.3 0.6

Assumed factor of safety 1.687 1.630 1.629
Slice Col. N in kip D.M.in ft-kip R.M.in ft-kip N in kip D.M.in ft-kip R.M.in ft-kip N in kip D.M.in ft-kip R.M.in ft-kip

1 1 24,125 0 3,092,825 27,421 0 3,473,138 32,697 0 4,081,993

1 2 5,806 250,534 774,944 6,174 266,415 813,569 6,688 288,605 867,543

2 1 45,630 4,313,943 5,644,658 43,974 4,332,492 5,452,391 42,402 4,350,102 5,269,855

2 2 20,842 946,882 2,353,743 21,795 895,867 2,450,798 23,144 823,710 2,588,077

2 3 1,402 60,955 192,863 1,535 53,025 204,610 1,720 42,062 220,851

3 1 24,457 3,095,916 3,456,143 21,362 3,314,728 3,077,380 18,761 3,498,575 2,759,142

3 2 16,695 2,113,439 2,359,361 14,583 2,262,810 2,100,799 12,807 2,388,313 1,883,555

3 3 12,238 510,595 1,174,693 12,900 406,296 1,228,280 13,831 259,763 1,303,567

Sum 11,292,264 19,049,229 11,531,632 18,800,966 11,651,128 18,974,583

Computed Factor of safety 1.687 1.630 1.629

Table 9-13. (Continued)
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 INPUT DATA 

Slice Col.
S
ft 2 

W
kip

 θ  xz 
deg.

cos
( θ  d - θ  xz )

 λ  N 
ft

 λ  T 
ft

x m 
ft

Factor of safety based on force equilibrium

N in kip D.F. in kip

0.3

N in kip D.F. in kip

0.6Assumed angle  δ 0.0

Assumed factor of safety 1.487 1.581 1.705
Slice Col. N in kip D.F. in kip R.F. in kip R.F. in kip R.F. in kip

1 1 24,125 0 15,464 27,536  − 1,008 16,654 32,199  − 4,559 16,608

1 2 5,721 1,313 4,079 6,179 1,442 4,470 6,629 1,195 4,450

2 1 44,693 19,987 24,610 43,894 21,410 26,692 42,298 21,494 25,890

2 2 20,575 4,724 12,776 21,809 5,108 13,885 22,962 4,389 13,689

2 3 1,376 316 1,212 1,537 356 1,343 1,702 276 1,353

3 1 23,521 16,629 11,142 21,240 17,036 12,772 18,824 17,089 12,822

3 2 16,057 11,352 7,606 14,499 11,630 8,719 12,850 11,666 8,753

3 3 12,070 2,771 8,022 12,909 3,019 8,756 13,715 2,549 8,675

Sum 57,093 84,912 58,993 93,289 54,099 92,240

Computed Factor of safety 1.487 1.581 1.705

Factor of safety and angle  δ  that satisfy both moment and force equilibrium

D1  =  0 D2  = 0.3 D3  = 0.6

FM1  =  1.687 FM2  = 1.630 FM3  = 1.629

FF1  =  1.487 FF2  = 1.581 FF3  = 1.705

AM  =  0.056 BM  =  − 0.051 CM  = 0.304

AF  =  0.030 BF  = 0.047 CF  = 0.268

Angle D or  δ   =  0.410 Factor of safety F  =  1.623

Table 9-13. (Continued)
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Methods for Three-Dimensional Analysis  307

with the given cross section is cut short at each end, either by a half el-
lipsoid or by an end plane oriented at a certain direction. Within the el-
lipsoid or end plane, the cross section changes from one location to the 
other, so the slices must be subdivided into a number of columns, each 
representing a different cross section.  

  2.      For failure surfaces with ellipsoidal ends, in addition to the coordinates 
( x o  ,  z o  ) of the moment center and the radius,  R , of the cylindrical failure 
surface, as required in 2D analysis, the half length of the cylinder,  λ   c  , and 
the half length of the ellipsoid,  λ   e  , also must be specifi ed or obtained by 
trial and error. The  y  coordinates along the centers of the slices, where the 
ellipsoid intersects the slope surface, can be computed by Eq.  (9-5) , and 
the largest value of  y  is the half length of the failure mass. The length of 
the fi rst column is  λ   c  , and the length of all other columns is equal to (half 
length of the failure mass  −   λ   c  )/( m   −  1), where  m  is the number of columns 
specifi ed. Based on the  y  coordinates computed here for each slice, the 
length of the last column in each slice can be determined. Also, based on 
the intersection of the slope surface with the circle at the center of each 
column, the width of the column adjacent to the boundary of the failure 
mass can be computed. Knowing the width and length of each column, 
the  x  and  y  coordinates at its center can be located. Because the width and 
length at the two corner columns are interdependent, a trial-and-error 
process must be used to locate their centers.  

  3.      For failure surfaces with planar ends, the location of the end plane is de-
fi ned by the half top width,  w t  , the angle of the end plane,  α , and the slope 
of the end plane,  g . To determine the area, weight, and center of the col-
umns requires the values of  y s   through the center of each slice. These  y s   
coordinates can be computed by Eq.  (9-18) , and the largest  y s   is the half 
length of the failure mass. The coordinates,  y f  , for the intersection of the 
failure surface and the end plane through the center of each slice can be 
computed by Eq.  (9-19) , and the smallest  y f   is the length of the fi rst col-
umn. The length of all other columns is (maximum  y s    −  minimum  y f  )/
( m   −  1). However, the length of the last column in each slice must be re-
duced based on the  y s   through the center of each slice.  

  4.      In 3D analysis, it is assumed that the movement of the failure mass is in a 
direction parallel to the vertical, or  xz , plane. In considering the force or 
moment equilibrium, all forces, if not on the  xz  plane, must be projected 
onto the  xz  plane. Except for the effective normal force,  N   , and the neu-
tral force,  U , which are normal to the failure surface, all other forces, such 
as weight, seismic force, and external or internal loads, are parallel to the  
xz  plane. Therefore, all equations used for 2D analysis can be easily ex-
tended to 3D analysis by multiplying  N    and  U  with cos ( θ   d    −   θ   xz  ). How-
ever, the  N    and  U  used to compute the shear resistance should not be 
multiplied by cos ( θ   d    −   θ   xz  ), because the failure surface moves in the  x  
direction on the  xz  plane. Other changes in notation include the 
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308 Slope Stability Analysis by the Limit Equilibrium Method

replacements of  θ  by  θ   xz   and the single  Σ  by double  Σ   Σ  to cover both 
slices and columns.  

  5.      Three examples, each with a different type of failure surface (circular, 
composite, or noncircular), are presented to demonstrate the use of the 
normal method, especially the treatment of the partial columns adjacent 
to the boundary. The normal method assumes the absence of forces be-
tween two columns and uses the submerged weight to determine the 
combined effect of  N    and  U . Although the normal method is not recom-
mended for 3D analysis, the information provided by these examples can 
be used in other examples involving the simplifi ed Bishop and original 
Spencer methods.  

  6.      The simplifi ed Bishop method is recommended for circular failure sur-
faces with a cylinder at the center and a half ellipsoid at each end. The 
effective normal force,  N   , is obtained by assuming the side forces be-
tween the columns as hori z ontal and considering the force equilibrium of 
each column in the vertical direction. The method requires iterations, and 
Eq.  (9-45) , based on Newton ’ s method of tangent, can be used to reduce 
the number of iterations required.  

  7.      The original Spencer method is recommended for noncircular or compos-
ite failure surfaces. The side forces between two slices in the  x  direction 
are assumed to make an angle,  δ , with the hori z ontal and the forces be-
tween two columns in the  y  direction ignored. The effective normal force,  
N   , is obtained by considering the force equilibrium in a direction perpen-
dicular to the side forces. Two factors of safety are computed, one based 
on the overall moment equilibrium and the other on the force equilibrium 
in the  δ  direction. Because  N    depends on the factor of safety and the 
factor of safety depends on  N   , an iteration procedure is required to solve 
the factor of safety. Similar to 2D analysis, three different values of  δ  
must be assumed, and the factors of safety are plotted against  δ . Thus, 
two sets of curves are obtained, one based on force equilibrium and the 
other based on moment equilibrium. The intersection of these two curves 
gives an overall factor of safety which satisfi es both force and moment 
equilibrium.  

  8.      The use of spreadsheets to calculate the factors of safety based on the 
simplifi ed Bishop and the original Spencer methods are demonstrated. 
The use of the trial-and-error method by a spreadsheet to fi nd a factor of 
safety is so easy that it is really not necessary to change the factor of safety 
gradually until it converges, as is done by LEAME. A few trials and errors 
will be suffi cient to fi nd a computed factor of safety that is equal or nearly 
equal to the assumed factor of safety. It should be noted that the spread-
sheet only solves one of the hundreds of trial failure surfaces and can-
not be used as a substitute for a computer program. However, the close 
agreement in solutions between LEAME and the spreadsheets is a further 
confi rmation on the correctness of the LEAME computer program.    
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  Problems 

   9.1      Same as Example  9.4  except that the failure mass is divided into three 
slices and three columns. Determine the factor of safety by the normal 
method.
   [Answer: 1.449]     

  9.2      Same as Problem 9.1, but determine the factor of safety by the simplifi ed 
Bishop method.
   [Answer: 1.581]     

  9.3      Same as Problem 9.1, but determine the factor of safety by the simplifi ed 
Bishop method using Newton ’ s method of tangent, or Eq.  (9-45) .
   [Answer: 1.580]     

  9.4      A 3D failure surface consists of a cylinder with a half length,  λ   c  , of 100 ft, 
and a half ellipsoid with a half length,  λ   e  , of 50 ft. The cross section for the 
cylindrical part and the division of the failure mass into slices are the 
same as Problem 8.1 and are reproduced in Fig.  P9-4 . As in Problem 8.1, 
the soil is assumed to have a cohesion of 500 psf, a friction angle of 10°, 
and a total unit weight of 125 pcf. If the cylindrical part is considered as 
one column and the ellipsoidal part is divided evenly into two columns, 
plot a plan view of the failure mass showing the  x  and  y  coordinates at the 
center of each column and the hori z ontal area of each column.  

  Fig. P9-4.        

  9.5      Same as Problem 9.4, but determine the factor of safety by the normal 
method.
   [Answer: 1.507]     

  9.6      Same as Problem 9.4, but determine the factor of safety by the simplifi ed 
Bishop method.
   [Answer: 1.683]     
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310 Slope Stability Analysis by the Limit Equilibrium Method

  9.7      Same as Problem 9.4, but determine the factor of safety by the original 
Spencer method.
   [Answer: 1.683]     

  9.8      An embankment is placed between two parallel banks ( α   =  0°) with a 
slope of 2:1 ( g   =  0.5). The distance between the two banks, measured at the 
top of the embankment, is 600 ft ( W t    =  300 ft). The cross section of the non-
circular failure surface and the division of the failure mass into slices are 
the same as Problem 8.5 and are reproduced in Fig.  P9-8 . As in Problem 
8.5, the soil is assumed to have a cohesion of 400 psf, a friction angle of 
15°, and a total unit weight of 125 pcf. If the central part of the embank-
ment above the noncircular failure surface is considered as one column 
and that above the surface of the bank is divided evenly into two col-
umns, plot a plan view of the failure mass showing the  x  and  y  coordi-
nates at the center of each column and the hori z ontal area of each column.  

  Fig. P9-8.        

  9.9      Assuming an arbitrary moment center at (100, 200), determine the safety 
factor of Problem 9.8 by the normal method.
   [Answer: 1.382]     

  9.10      Same as Problem 9.9, but determine the safety factor by the simplifi ed 
Bishop method.
   [Answer: 1.558]     

  9.11      Same as Problem 9.9, but determine the safety factor by the original Spen-
cer method.
   [Answer: 1.571]             
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    Chapter 10 

  Reliability  

         Two methods can be used for stability analysis: deterministic and probabilistic. 
In the deterministic method, each input parameter has a fi xed value. If the 
parameter varies in time or location, the designer will select a more conservative 
value and use it for stability analysis. To ensure that the design is safe, a factor 
of safety much greater than 1, usually as high as 1.5, is required. A more realistic 
approach is the probabilistic method, in which each input parameter has a mean 
and a coeffi cient of variation, obtained from fi eld or laboratory tests or based on 
fi eld measurements or past experience. If these mean values are used and the 
factor of safety is equal to 1, the probability of failure is 50%, which is unaccept-
able. The design must be revised to increase the factor of safety so that the prob-
ability of failure is smaller than a specifi ed value, say less than 1%, or a reliability 
of more than 99%. This chapter presents some statistical concepts and equations, 
which are incorporated in LEAME to determine the reliability. 

  10.1     Some Statistical Terms 

 Two of the most useful properties of a random variable are its expectation, 
or mean, and its variance. From these two properties, the standard deviation 
and the coeffi cient of variation can be computed. If two variables are not 
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312 Slope Stability Analysis by the Limit Equilibrium Method

independent, the correlation coeffi cient also must be given so the covariance can 
be determined. 

 In LEAME, each input parameter must be given a mean and a coeffi cient of 
variation. If two parameters are correlated, their correlation coeffi cient also must 
be specifi ed. Although typical coeffi cients of variation for shear strength, seepage, 
and other sources are suggested, how they are determined is outside the scope 
of this book. Readers interested in this subject may refer to the book by Baecher 
and Christian ( 2003 ) and the papers by Christian et al. ( 1994 ), Christian and 
Baecher ( 2011 ), Oka and Wu ( 1990 ), and Wu et al. ( 1989 ). 

  10.1.1     Expectation 

 The expectation of a random variable  x  is defi ned as

  E x x f xi i
all xi

[ ] ( )= ∑       (10-1)  

in which  f ( x i  ) is the probability function of  x i  . One requirement for the probability 
function is that the sum of  f ( x i  ) over all  x i   must be equal to 1. If  n  independent 
observations of  x  are taken, each with the same probability 1/ n , the mean of the 
observations,  x   , can be obtained from Eq.  (10-1) , or

  
x

x

n

i
i

n

= =
∑

1       (10-2)   

 This value of  x     is called the sample mean and is the best estimate of the true 
or population mean. From the defi nition in Eq.  (10-1) , it can be proved easily 
that, if  c  is a constant, then  E [ c ]  =   c  and  E [ cx ]  =   cE [ x ].  

  10.1.2     Variance 

 The variance of a random variable  x  is defi ned as the expected value of the square 
of the deviation from its expectation, or

  V x E x E x[ ] [( [ ]) ]= − 2       (10-3)  

  or
all

V x x E x f xi i
xi

[ ] ( [ ]) ( )= −∑ 2
      (10-4)   

 If  n  independent observations of  x  are taken, the variance of  x  is determined 
from

  V x
x x
n
i

i

n

[ ]
( )= −

−=
∑

2

1 1
      (10-5)   

 The sum is divided by  n   −  1 rather than  n , because  x     is the sample mean 
rather than the true mean, so the degree of freedom is  n   −  1. If  a ,  b , and  c  are 
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constants, it can be proved easily that  V [c]  =  0,  V [ cx ]  =   c  2   V [ x ], and  V [ a   +   bx ]  =  
 b  2   V [ x ].  

  10.1.3     Standard Deviation 

 The standard deviation,  s , of a random variable  x  is defi ned as the square root 
of its variance, or

  s V x= [ ]       (10-6)    

  10.1.4     Coeffi cient of Variation 

 The coeffi cient of variation generally is used in percentile form, but, for conve-
nience, it can be expressed as a decimal by

  C x
s
x

[ ] =       (10-7)   

  Example 10.1            The undrained shear strengths,  x , obtained from 10 cone penetra-
tion tests are: 2,250, 2,140, 2,030, 1,920, 1,840, 1,630, 1,480, 1,270, 1,050, and 810 psf. 
Compute mean, variance, standard deviation, and coeffi cient of variation.  

  Solution     From Eq.  (10-2) ,  x = + + + + +( , , , , , ,2 250 2 140 2 030 1 920 1 840 1 630
    + + + + =1 480 1 270 1 050 810 10 1 642, , , ) ,/ psf    . From Eq.  (10-5) ,  V [ x ]  =  [(2,250  −  
1,642) 2   +  (2,140  −  1,642) 2   +  (2,030  −  1,642) 2   +  (1,920  −  1,642) 2   +  (1,840  −  1,642) 2  
 +  (1,630  −  1,642) 2   +  (1,480  −  1,642) 2   +  (1,270  −  1,642) 2   +  (1,050  −  1,642) 2   +  (810  −  
1,642) 2 ]/(10  −  1)  =  232,462. From Eq.  (10-6) ,  s = =232 462 482, p   . From Eq.  (10-7) , 
 C [ x ]  =  482/1,642  =  0.294, or 29.4%.  

  Table  10-1  shows the mean, standard deviation, and coeffi cient of variation 
of shear strength parameters from different sources as reported by Harr ( 1977 ). 
It can be seen that the variation of the friction angle in sand and gravel is much 
smaller than the variation of unconfi ned compressive strength in clay.   

  10.1.5     Covariance 

 The covariance of two random variables  x  and  y  is defi ned as the expected value 
of the product of the deviations of  x  and  y  from their expected values, or

  Cov[ , ] [( [ ])( [ ])]x y E x E x y E y= − −       (10-8)  

  or Cov[ , ] ( [ ])( [ ]) ( , )
,

x y x E x y E y f x yi i i i
all x yi i

= − −∑       (10-9)   
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 PARAMETER 

Material
Frictional 

Angle, Degrees

Tangent of 
Frictional 

Angle

Unconfi ned 
Compression 

Strength, ton/ft 2 

Number 
of 

Samples Mean
Standard 
Deviation

Coeffi cient of 
Variation, % Source

Gravel x 38 36.22 2.16 6.0 Private communication 
from Prof. R. D. Holtz 
of Purdue UniversitySand x 73 38.80 2.80 7.0

Sand x 136 36.40 4.05 11.0

Sand x 30 40.52 4.56 11.0

Gravelly sand x 81 37.33 1.97 5.3 Schultze ( 1972 )

Sand x 81 0.762 0.056 7.3 Schultze ( 1972 )

Sand x 50 0.717 0.093 13.0 Schultze ( 1975 )

Sand: loose x 14.0 Singh ( 1972 )

   dense x 12.0 Singh ( 1972 )

Silty sand x 82 0.692 0.096 13.8 Lumb ( 1966 )

Clay: depth, ft

5 x 279 2.08 1.02 49.1 Fredlund and Dahlman 
( 1972 )

10 x 295 1.68 0.69 40.9 Fredlund and Dahlman 
( 1972 )

15 x 187 1.49 0.59 39.6 Fredlund and Dahlman 
( 1972 )

20 x 53 1.30 0.62 47.7 Fredlund and Dahlman 
( 1972 )

 Table 10-1.      Variability of Shear Strength Parameters  
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Table 10-1 (Continued)

 PARAMETER 

Material
Frictional 

Angle, Degrees

Tangent of 
Frictional 

Angle

Unconfi ned 
Compression 

Strength, ton/ft 2 

Number 
of 

Samples Mean
Standard 
Deviation

Coeffi cient of 
Variation, % Source

Clay x 231 0.97 0.26 29.0 Matsuo and Kuroda 
( 1974 )

Clay x 97 30.0–40.0 Ladd, et al. ( 1972 )

Clay shale  †  x 37.0–51.0 Lumb ( 1972 )

   till  †  x 60.0–85.0 Lumb ( 1972 )

   till x 3.24 1.17 36.1 Morse (1972)

    †   Lumb notes these two materials are extremely variable and believes that these results are probably close to the upper possible limits of variability for 
any natural soils.  

  (Harr  1977 ). Reproduced with permission from McGraw-Hill, Inc.  

  Note:   1 tsf  =  95.8 kPa   

c10.indd   315
c10.indd   315

12/16/2013   1:39:15 PM
12/16/2013   1:39:15 PM



316 Slope Stability Analysis by the Limit Equilibrium Method

 From Eq.  (10-8) ,

  Cov[ , ] [ [ ] [ ] [ ] [ ]] [ ] [ ] [ ]x y E xy yE x xE y E x E y E xy E x E y= − − + = −       (10-10)   

 For actual computation of covariance, the use of Eq.  (10-10)  is more conve-
nient than Eq.  (10-8) . 

 If large positive deviations of  x  are associated with large positive deviations 
of  y , then the covariance will be positive. If positive deviations of  x  are associated 
with negative deviations of  y,  and vice versa, the covariance will be negative. 
Conversely, if positive and negative deviations of  x  occur as frequently as posi-
tive and negative deviations of  y,  then the covariance will tend to 0. Therefore, 
the covariance is a measure of correlation between two random variables. It 
should be noted that variance is a special case of covariance of a random variable 
with itself:

  Cov[ , ] [( [ ])( [ ])] [( [ ]) ] [ ]x x E x E x x E x E x E x V x= − − = − =2       (10-11)   

 If  x  and  y  are correlated, the variance of  x   +   y  can be expressed as

  

V x y E x y E x y E x E x y E y

E x E x E

[ ] [( [ ]) ] [( [ ] [ ]) ]

[( [ ]) ]

+ = + − + = − + −
= − +

2 2

2 [[( [ ]) ] [( [ ])( [ ])]
[ ] [ ] [ , ]

y E y E x E x y E y

V x V y x y

− + − −
= + +

2 2
Cov2

      (10-12)    

  10.1.6     Correlation Coeffi cient 

 The correlation coeffi cient between random variables  x  and  y  is defi ned as

  ρ( , )
[ , ]

[ ] [ ]
x y

Cov x y

V x V y
=       (10-13)   

 It can be shown that  − 1  ≤   ρ   ≤  1 and that  ρ   =  1 when  y   =   a   +   bx , and  ρ   =   − 1 
when  y   =   a   −   bx , where  a  and  b  are constants. For partially saturated soil under 
undrained conditions, a correlation coeffi cient may exist between  c  and  ϕ . 
However, for effective stress analysis,  c    is small and the correlation coeffi cient 
between  c    and  ϕ    can be assumed 0. 

  Example 10.2            Five sets of undrained triaxial tests were made on a partially satu-
rated soil. The pairs of cohesion and friction angle ( c  in psf,  ϕ  in deg) determined 
from the tests are (5,120, 10.3), (4,370, 12.2), (3,200, 15.5), (2,050, 17.8), and (1,140, 
20.3). Determine the coeffi cients of variation for  c  and  ϕ  and the correlation coef-
fi cient between them.  

  Solution     An inspection of the pairs clearly indicates that there is a strong cor-
relation between  c  and  ϕ . Because a larger  c  always is associated with a smaller  ϕ , 
a negative correlation coeffi cient is expected. 
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 From Eq.  (10-2) ,  E [ c ]  =  (5,120  +  4,370  +  3,200  +  2,050  +  1,140)/5  =  3,176 psf, and 
 E [ ϕ ]  =  (10.3  +  12.2  +  15.5  +  17.8  +  20.3)/5  =  15.22°. 

 From Eq.  (10-5) ,  V [ c ]  =  [(5,120  −  3,176) 2   +  (4,370  −  3,176) 2   +  (3,200  −  3,176) 2   +  
(2,050  −  3,176) 2   +  (1,140  −  3,176) 2 ]/(5  −  1)  =  2,654,630 and  V [ ϕ ]  =  [(10.3  −  15.22) 2   +  
(12.2  −  15.22) 2   +  (15.5  −  15.22) 2   +  (17.8  −  15.22) 2   +  (20.3  −  15.22) 2 ]/(5  −  1)  =  16.47. 

 From Eq.  (10-10) , Cov[ c ,  ϕ ]  =  (5,120  ×  10.3  +  4,370  ×  12.2  +  3,200  ×  15.5  +  2,050 
 ×  17.8  +  1,140  ×  20.3)/5  −  3,176  ×  15.22  =   − 5,282. 

 From Eq.  (10-7) ,  C c[ ] , , , .= =2 654 630 3 176 0 51    and  C[ ] . . .φ = =16 47 15 22 0 27   . 
 From Eq.  (10-13) ,  ρ φ[ , ] , , . .c = − × = −5282 2 654 630 16 47 0 80         

  10.2     Taylor ’ s Expansion 

 Taylor ’ s expansion for a function  f ( x, y ) about the point ( a, b ) can be 
expressed as

 
f x y f a b f a b x a f a b y b f a b x ax y xx( , ) ( , ) ( , )( ) ( , )( ) [ ( , )( )= + − + − + − 

1
2

2

++ − − + − +2 f a b x a y b f a b y bxy yy( , )( )( ) ( , )( ) ]2 …
      (10-14)  

in which the subscripts  x  and  y  indicate the partial differentiation with respect 
to  x  and y. As a fi rst approximation, the second-order terms in Eq.  (10-14)  may 
be neglected:

  f x y f a b f a b x a f a b y bx y( , ) ( , ) ( , )( ) ( , )( )= + − + −       (10-15)   

  10.2.1     Mean 

 If  a  and  b  are taken as the means of  x  and  y,  the expectation of  f ( x, y ) can be 
obtained from Eq.  (10-15)  by taking the expectation on both sides:

  E f x y E f a b f a b E x a f a b E y b E f ax y[ ( , )] [ ( , )] ( , )( ) ( , )( [ ] ) [ ( ,= + [ ] − + − = bb)]       (10-16)   

 If  g ( x  1 ,  x  2 , …  x  n ) is a function of  n  random variables  x i   and  μ   i   is the mean 
value for each of these random variable, then from Eq.  (10-16) ,

  E g g i[ ] ( )= μ       (10-17)   

 Eq.  (10-17)  indicates that the mean value of  g  can be obtained simply by 
substituting the mean value of each random variable into the function.  

  10.2.2     Variance 

 The variance of  f ( x, y ) can be obtained by taking the variance on both sides of 
Eq.  (10-15)  and applying Eq.  (10-12) , or
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318 Slope Stability Analysis by the Limit Equilibrium Method

 V f x y f a b V x f a b V y f a b f a bx y x y[ ( , )] { ( , )} [ ] { ( , )} [ ] { ( , )}{ ( , )= + +2 2 2 }} [ , ]Cov x y       (10-18)   

 Eq.  (10-18)  can be extended to  g ( x  1 ,  x  2 , …  x  n ) by

  V g
g
x

g
x

x x
ij

n

i

n

j
i j

i j

[ ] [ , ]=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟==

∑∑
μ μ11

Cov       (10-19)   

 If  x  1 ,  x  2 , …  x  n  are independent, there are no cross-product terms, and Eq. 
 (10-19)  becomes

  V g
g
x

V x
i

i
i

n

i

[ ] [ ]=
∂
∂

⎛
⎝⎜

⎞
⎠⎟=

∑
μ

2

1

      (10-20)   

  Example 10.3            A partially saturated soil is placed on an infi nite slope with an 
angle,  β , of 22° and a depth,  d , of 18 ft (5.5 m). Both  β  and  d  are considered as 
fi xed quantities with no variation. The cohesion, friction angle, and unit weight 
of the soil are considered as random variables with properties shown in the fol-
lowing table:  

 Determine the mean and variance of the factor of safety by Taylor ’ s 
expansion.  

  Solution     The static factor of safety for an infi nite slope with no seepage can be 
obtained from Eq. (6-3) by setting  C s   and  r u   to zero:

  
F

c
d=

⎛
⎝⎜

⎞
⎠⎟

+
γ

β β φ

β

sec cos tan

sin
      (10-21)   

 From Eq.  (10-17) ,

  

E F[ ]
sec cos tan

sin
.= ×

⎛
⎝

⎞
⎠ ° + ° °

°
=

800
120 18

22 22 12

22
1 592

       

 To determine  V [ F ], take partial derivative of  F  with respect to each of the vari-
ables in Eq.  (10-21) , or

  
∂
∂

= =
× ° °

=F
c d

1 1
120 18 22 22

0 001333
γ β βcos sin cos sin

.      

Variables  c  ϕ  γ 

Mean 800 psf 12° 120 pcf

Coeffi cient of variation 0.5 0.3 0.1

Correlation coeffi cient between  c  and  ϕ   =   − 0.4
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∂
∂

= = °
° °

=F
φ

β φ
β

cos sec
sin

cos
sin cos

.
2

2

22
22 12

2 5869       

  
∂

∂
= − = −

° °
= −F c

d( ) ( ) sin cos ( ) sin cos
.

γ γ β β2 2

800
120 18 22 22

0 008886        

 From Eq.  (10-19) ,

  

V F[ ] = × × + × × ×
+ ×
( . . ) ( . . )

( .

0 001333 0 5 800 2 5869 0 3 12 180

0 008886

2 2π/

00 1 120
2 0 001333 2 5869 0 5 800 0 3 12 180 0 4

0

2. )
( . . )( . )( . ) .

×
− × × × × ×

=
π/

.. . . .

.
2843 0 0264 0 0114 0 0693

0 2528
+ + −

=

           

  10.3     Mean-Value First Order Second Moment Method 

 Taylor ’ s expansion can be used for simple cases where the factor of safety can 
be expressed in a close-form formula. For complex cases involving computer 
programming, the mean-value fi rst order second moment method (MFOSM) can 
be used (Cornell  1971 ). This simplifi ed method is particularly useful in geotech-
nical engineering, where the coeffi cient of variation for each variable is based on 
past experience or engineering judgment rather than on site-specifi c testing or 
measurements. 

 In this method, two factors of safety are computed for each variable, one at 
one standard deviation above the mean and the other at one standard deviation 
below the mean, whereas the other variables do not change but remain at the 
same mean values. If the factor of safety is a function of  n  variables from  x  1  to 
 x n  , from Eq.  (10-20) , the variance of  F  can be written as

  

V F
F
x

V x
F
x

V x
F
xn

[ ] [ ] [ ] .= ∂
∂

⎛
⎝⎜

⎞
⎠⎟ + ∂

∂
⎛
⎝⎜

⎞
⎠⎟ + + ∂

∂
⎛
⎝⎜

⎞
⎠⎟1

2

1
2

2

2 …………
22

1 1

1

2

1
2 2

2

2

2 2

V x

F F

V x
V x

F F

V x

n

x x x x

[ ]

[ ]
[ ]

[ ]
= −⎛

⎝⎜
⎞
⎠⎟

+ −⎛
⎝⎜

⎞
⎠⎟

+ − + − VV x
F F

V x
V x

V F
F F

xn xn

n
n

x x

[ ]
[ ]

[ ]

[ ]

2

2

1 1

2

2

+ + −⎛
⎝⎜

⎞
⎠⎟

= −⎛
⎝

⎞
⎠

+ −

+ −

……

or
22

2 2
2 2

2 2
+ −⎛

⎝
⎞
⎠ + + −⎛

⎝
⎞
⎠

+ − + −F F F Fx x xn xn………..

     

  (10-22)  

in which  F xn +    and  F xn   −    are the values of  F  evaluated at one standard deviation 
above and below the mean, respectively. If any two variables, say  x  1  and  x  2 , are 
correlated, an additional term 2[(F  x   1 +    −  F  x   1 −  )/2][(F  x   2 +    −  F  x   2 −  )/2] ρ (x 1 ,  x  2 ) must be 
added to Eq.  (10-22) , as indicated by Eq.  (10-19) . If there are  n  random variables, 
the factor of safety must be evaluated repeatedly for 2 n  times to determine its 
variance. 
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320 Slope Stability Analysis by the Limit Equilibrium Method

  Example 10.4            Same as Example  10.3 , but determine the mean and variance of 
factor of safety by the MFOSM method.  

  Solution     The factor of safety is computed by

 
F

c
c=

⎛
⎝⎜

⎞
⎠⎟

° + °

°
= ⎛

⎝⎜
⎞
⎠⎟

+18
22 22

22
0 15995 2 475

γ
φ

γ

sec cos tan

sin
. . taan φ

       

 The three variables,  c ,  ϕ , and  γ  have the following values:  

 Table  10-2  shows the computation of variance by the MFOSM method. To 
compute the factor of safety, each variable is evaluated twice: one at mean plus 
one standard deviation and the other at mean minus one standard deviation, 
whereas the other variables keep the same mean values. 

  The factor of safety has a mean of 1.597 and a variance of 0.2533, which 
check closely with the 1.592 and 0.2528 computed by Taylor ’ s expansion in 
Example  10.3 .    

Variables  c  ϕ  γ 

Mean 800 psf 12° 120 pcf

Coeffi cient of variation 0.5 0.3 0.1

Standard deviation,  s 400 psf 3.6° 12 pcf

Mean  +   s 1,200 psf 15.6 132 pcf

Mean  −  s 400 psf 8.4 108 pcf

   Correlation coeffi cient between  c  and  ϕ   =   − 0.4   

Variable Values Factor of safety F  +    −  F  −  [(F  +    −  F  −  )/2] 2 

 c  at mean  +   s 1,200 2.126

   at mean  −   s 400 1.059 1.067 0.2846

 ϕ  at mean  +   s 15.6 1.757

   at mean  −   s 8.4 1.432 0.325 0.0264

 γ  at mean  +   s 132 1.495

   at mean  −   s 108 1.711  − 0.216 0.0117

Correlation between  c  and  ϕ   =  2(1.067/2)(0.325/2)( − 0.4)  − 0.0694

Mean 1.597 Variance 0.2533

   Note:   Reliability  =  1  −  probability of failure   

 Table 10-2.      Computation of Mean and Variance by MFOSM Method  
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  Fig. 10-1.      Normal distribution    

  10.4     Normal Distribution 

 The distribution function used most frequently as a probabilistic model is called 
the normal or Gaussian distribution. Although this symmetrical and bell-shaped 
distribution is very important, it is not the only type of distribution to be used 
in the probabilistic method. 

 The mathematical equation of a normal distribution expressing the frequency 
of occurrence of the random variable  x  is

  f x
s

x
s

( ) exp= − −⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

1
2

1
2

2

π
μ

      (10-23)  

in which  s   =  standard deviation and  μ   =  mean. 
 Fig.  10-1  shows a plot of a normal distribution with  s   =  1 and  μ   =  0 and 4, 

respectively. Note that the two curves are similar, except that the  x  coordinate is 
displaced by a constant distance. If the  x  at the peak is not equal to 0, it can be 
set to zero by a simple displacement. 

  The cumulative distribution function for a normally distributed random vari-
able  x  can be expressed as

  ϕ
π

μ
( ) expx

s

x
s

dx
x

= − −⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥−∞∫

1
2

1
2

2

      (10-24)   

 A simple way to eliminate  μ  and  s  in Eq.  (10-24)  is to introduce the normal 
deviate defi ned as

  u
x

s
= − μ

      (10-25)   

 Replacing  x  in Eq.  (10-24)  by  u  gives
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  ϕ
π

( ) expz
u

du
z

= −⎛
⎝⎜

⎞
⎠⎟∫

1
2 2

2

0
      (10-26)  

in which  φ ( z ) is the area under the standard normal distribution curve  f ( u ) 
between 0 and  z , and  z  is the value of  u  computed by Eq.  (10-25) , as shown in 
Fig.  10-2  and tabulated in Table  10-3 . 

   Using Eq.  (10-26)  and recognizing that the area under half of the standard-
ized normal curve is 0.5, the probability associated with the value of the random 
variable being less than any specifi ed value can be determined. 

 When applying Eq.  (10-25)  to slope stability,  x  is equal to 1, because it is the 
factor of safety when a slope fails;  μ  is the expectation of  F ,  E [ F ]; and  s  is the 
standard deviation of  F ,  s [ F ]. Because the value of  z  shown in Fig.  10-2  is nega-
tive, a positive term commonly used in slope stability analysis is the reliability 
index defi ned by

  β = −E F
s F
[ ]

[ ]
1

      (10-27)  

in which  F  is the computed factor of safety. Given  β , which is equivalent to  z  in 
Fig.  10-2 , the area under the normal curve,  φ ( β ), as indicated by the hatched lines 
in Fig.  10-3 , can be determined from Table  10-3 . The probability of failure is: 
Probability ( F   <  1)  =  0.5  −   φ ( β ) and reliability  =  1  −  probability of failure. 

   Example 10.5            Based on the mean and variance of the factor of safety in Example 
 10.4  and assuming the factor of safety as a normal distribution, determine the 
probability of failure.  

  Solution     From Example  10.4 ,  E [ F ]  =  1.597 and  V [ F ]  =  0.2533.  s = =0 2533 0 5033. .    . 
From Eq.  (10-27) ,  β   =  (1.597  −  1)/0.5033  =  1.186. From Table  10-3 ,  φ ( β )  =  0.382, so 
the probability of failure is: Probability ( F   <  1)  =  0.5  −  0.382  =  0.118, or 11.8%.    

  Fig. 10-2.      Area under normal curve for given  z     
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z or  β .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0 0 .003969 .007978 .011966 .015953 .019939 .023922 .027903 .031881 .035856

.1 .039828 .043795 .047758 .051717 .055670 .059618 .063559 .067495 .071424 .075345

.2 .079260 .083166 .087064 .090954 .094835 .098706 .102568 .106420 .110251 .114092

.3 .117911 .121720 .125516 .129300 .133072 .136831 .140576 .144309 .148027 .151732

.4 .155422 .159097 .162757 .166402 .170031 .173645 .177242 .180822 .184386 .187933

.5 .191462 .194974 .198466 .201944 .205401 .208840 .212260 .215661 .219043 .222405

.6 .225747 .229069 .232371 .235653 .234914 .242154 .245373 .248571 .251748 .254903

.7 .258036 .261148 .264238 .257305 .270350 .273373 .276373 .279350 .282305 .285236

.8 .288145 .291030 .293892 .296731 .299546 .302337 .305105 .307850 .310570 .313267

.9 .315940 .318589 .321214 .323814 .326391 .328944 .331472 .333977 .336457 .338913

1.0 .341345 .343752 .346136 .348495 .350830 .353141 .355428 .357690 .359929 .362143

1.1 .364334 .366500 .368643 .370762 .372857 .374928 .376976 .379000 .381000 .382977

1.2 .384930 .386861 .388768 .390651 .392512 .393350 .396165 .397958 .399727 .401475

1.3 .403200 .404902 .406582 .408241 .409877 .411492 .413085 .414657 .416207 .417736

1.4 .419243 .420730 .422196 .423641 .425066 .426471 .427855 .429219 .430563 .431888

1.5 .433193 .434476 .435745 .436992 .438220 .439429 .440620 .441792 .442947 .444083

1.6 .445201 .446301 .447384 .448449 .449497 .450529 .451543 .452540 .453521 .454486

1.7 .455435 .456367 .457284 .458185 .459070 .459941 .460796 .461636 .462462 .463273

1.8 .464070 .464852 .465620 .466375 .467116 .467843 .468557 .469258 .469946 .470621

1.9 .471283 .471933 .472571 .473197 .473610 .474412 .475002 .475581 .476148 .476705

 Table 10-3.      Area  φ ( β ) under Normal Curve  
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z or  β .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

2.0 .477250 .477784 .478308 .478822 .479325 .479818 .480301 .480774 .481237 .481691

2.1 .482136 .482571 .482997 .483414 .483823 .484222 .484614 .484997 .485371 .485738

2.2 .486097 .486447 .486791 .487126 .487455 .487776 .488089 .488396 .488696 .488989

2.3 .489276 .489556 .489830 .490097 .490358 .490613 .490863 .491106 .491344 .491576

2.4 .491802 .492024 .492240 .492451 .492656 .492857 .493053 .493244 .493431 493613

2.5 .493790 .493963 .494132 .494297 .494457 .494614 .494766 .494915 .495060 .495201

2.6 .495339 .495473 .495604 .495731 .495855 .495975 .496093 .496207 .496319 .496427

2.7 .496533 .496636 .496736 .496833 .496928 .497020 .497110 .497197 .497282 .497365

2.8 .497445 .497523 .497599 .497673 .497744 .497814 .497882 .497948 .498012 .498074

2.9 .498134 .498193 .498250 .498305 .498359 .498411 .498462 .498511 .498559 .498605

3.0 .498650 .498694 .498736 .498777 .498817 .498856 .598893 .498930 .498965 .498999

3.1 .499032 .499065 .499096 .499126 .499155 .499184 .499211 .499238 .499264 .499289

3.2 .499313 .499336 .499359 .499381 .499402 .499423 .499443 .499462 .499481 .499499

3.3 .499517 .499534 .499550 .499566 .499581 .499596 .499610 .499624 .499638 .499651

3.4 .499663 .499675 .499687 .499698 .499709 .499720 .499730 .499740 .499749 .499758

3.5 .499767 .499776 .499784 .499792 .499800 .499807 .499815 .499822 .499828 .499835

3.6 .499841 .499847 .499853 .499858 .499864 .499869 .499874 .499879 .499883 .499888

3.7 .499892 .499896 .499900 .400904 .499908 .499912 .499915 .499918 .499922 .499925

3.8 .499928 .499931 .499933 .499936 .499938 .499941 .499943 .499946 .499948 .499950

3.9 .499952 .499954 .499956 .499958 .499959 .499961 .499963 .499964 .499966 .499967

Table 10-3 (Continued)
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Reliability 325

  Fig. 10-3.      Area under normal curve for given  β     

  10.5     Lognormal Distribution 

 Another distribution used widely in geotechnical engineering is the lognormal 
distribution with a reliability index defi ned as

  βln
[ln ]
[ln ]

= E F
s F

      (10-28)  

in which  s [ln  F ] is the standard deviation based on the lognormal distribution of 
 F . From Eq.  (10-20) ,

  V F
V F

F
[ln ]

[ ]=
2

      (10-29)  

  s F
s F
F

C F[ln ]
[ ]

[ ]= =       (10-30)   

 Eq.  (10-30)  indicates that the standard deviation of ln  F  is the coeffi cient 
of variation of  F . Knowing  E [ln  F ] and  s [ln  F ],  β  ln  can be determined from 
Eq.  (10-28)  and the reliability from Table  10-3 . In the stated derivations, the dis-
tribution is assumed to be natural log with base e. The same reliability will be 
obtained if the base 10 log is used. 

  Example 10.6            Same as Example  10.5 , but assuming the factor of safety as a log-
normal distribution.  

  Solution     Given  F   =  1.597 and  s [ F ]  =  0.5033, from Eq.  (10-30) ,  s [ln  F ]  =  0.5033/1.597 
 =  0.315. From Eq. (10-28,)  β  ln   =  ln(1.597)/0.315  =  1.486. From Table  10-3 ,  φ ( β )  =  
0.431, so the probability of failure is: Probability ( F   <  1)  =  0.5  −  0.431  =  0.069, or 
6.9%. It can be seen that the probability of failure based on a normal distribution 
is greater than that based on a lognormal distribution, so the use of a normal dis-
tribution gives a smaller reliability and is on the safe side.  
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326 Slope Stability Analysis by the Limit Equilibrium Method

  Spreadsheets can be used conveniently to determine the reliability, as illus-
trated by the following example. 

  Example 10.7            A triangular fi ll is the same as that in Example 6.2, with  H   =  40 ft 
(12.2 m),  α   =  20°, and  β   =  36°. After substituting these values of  H ,  α , and  β  into 
Eq. (6-8), the following equation is obtained to solve the factor of safety,  F :

  F
c

ru= ′⎛
⎝⎜

⎞
⎠⎟

+ − ′0 312 2 747 1. . ( )tan
γ

φ       (10-31)   

 Values of  c   ,  ϕ   ,  γ , and  r u   and their coeffi cients of variation can be found in the 
fi rst two rows of Table  10-4 . Determine the reliability of the design based on both 
normal and lognormal distributions.   

  Solution     Table  10-4  is the spreadsheet for computing the factor of safety and the 
reliability. Details about the spreadsheet are as follows:

   1.      In cell B4, type Eq.  (10-31)  as 0.312*$B$1/$F$1  +  2.747*(1-$H$1)*TAN 
(RADIANS ($D$1)). Dollar signs are used, so when the equation is copied 
from one cell to another, these input parameters never will be changed. 
Copy this equation to B5 through B7.  

  2.      In column B, “F  +  ” is the factor of safety when one of the variables in Col-
umn A has a value one standard deviation greater than the given value. 
Therefore, in cell B4,  c    must be multiplied by (1  +   C [ c   ]), so the equation 
must be changed to 0.312*$B$1*(1  +  B2)/$F$1  +  2.747(1-$H$1)*TAN
(RADIANS($D$1)). The same should be applied to other variables, i.e., 
the value of the variable must be multiplied by (1  +  CV), where CV is the 
coeffi cient of variation of the variable.  

  3.      In column C, “ F   −  ” is the factor of safety when one of the variables in Col-
umn A has a value one standard deviation smaller than the given value. 
Copy rows 4 to 7 from column B to column C and change (1  +  CV) 
to (1  −  CV).  

A B C D E F G H

 1 c ′  in psf  =  160  ϕ  ′  in deg  =  24  γ  in pcf  =  125 ru  =  0.05

 2 C[c ′ ]  =  0.4 C[ ϕ  ′ ]  =  0.15 C[ γ ]  =  0.1 C[ru]  =  0.2

 3 Variable F  +  F  −  Variance Normal distribution

 4 c ′ 1.72100 1.40151 0.02552 E[F] s[F]  β Reliability

 5  ϕ  ′ 1.76365 1.36988 0.03876 1.56364 0.25702 2.19298 98.58%

 6  γ 1.52495 1.60562 0.00163 E[lnF] s[lnF]  β ln

 7 ru 1.54902 1.57348 0.00015 0.44702 0.16437 2.71952 99.67%

 8 Sum 6.55861 5.95049 0.06606

 Table 10-4.      Spreadsheet for Computing Factor of Safety and Reliability  
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  4.      In column D, variance is computed by Eq.  (10-22) . In cell D4, the equation 
is 0.25*(B4-C4) ∧ 2. Copy the equation from D4 to D5 through D7.  

  5.      For a normal distribution,  E [ F ] is the average of all  F  ’ s and is expressed as 
(B8  +  C8)/8;  s [ F ] can be obtained from Eq.  (10-6)  and expressed as 
SQRT(D8);  β  can be obtained from Eq.  (10-27)  and expressed as ((E5-1)/
F5; and reliability can be obtained from Table  10-4 .  

  6.      For a lognormal distribution,  E [ln F ] is expressed as ln(E5);  s [ln F ] can be 
obtained from Eq.  (10-30)  and expressed as F5/E5;  β  ln  can be obtained 
from Eq.  (10-28)  and expressed as E7/F7, and reliability can be obtained 
from Table  10-4 .       

  Summary   

 1.      Because of the large variations in site conditions, the probabilistic method 
of stability analysis has gained popularity in recent years. The major dis-
advantage of the method is that a large number of measurements or tests 
is required to ascertain the variability of those parameters that affect the 
factor of safety. It is only after the variability of each parameter is evalu-
ated or assumed that the probability of failure can be determined.  

  2.      The probabilistic method is a complement to the conventional determin-
istic methods by considering some input parameters as random variables 
with a mean and a variance. The requirement for the deterministic meth-
od is the factor of safety that the design must exceed, whereas the require-
ment for the probabilistic method is the reliability that the design can 
accept. It is more reasonable to use the probabilistic method, because the 
required factor of safety in the deterministic method should depend on 
the variability of the data. If the data are unreliable with a large variance, 
a higher factor of safety should be required.  

  3.      If the factor of safety can be expressed in closed-form formulas, the mean 
factor of safety can be obtained by simply substituting the mean value of 
each input parameter into the formulas. The variance of the factor of safe-
ty can be computed from Taylor ’ s expansion, as indicated by Eq.  (10-19) .  

  4.      If the factor of safety is determined by complex computer programs and 
cannot be expressed in closed form, then the mean-value fi rst order sec-
ond moment method (MFOSM) can be used. For each random variable, 
the factor of safety must be computed twice, one with a value at one 
standard deviation above the mean and the other at one standard devia-
tion below the mean, whereas the mean values are used for all other var-
iables. If there are  n  variables, the factor of safety must be computed 2 n  
times. The mean factor of safety is the average of these 2 n  factors of safety, 
and the variance of the factor of safety can be computed by Eq.  (10-22) .  
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328 Slope Stability Analysis by the Limit Equilibrium Method

  5.      By assuming the factor of safety as a normal or lognormal distribution 
with a mean and a variance, the reliability of the design can be evaluated. 
The reliability based on a lognormal distribution is usually greater than 
that based on a normal distribution, so the use of normal distribution is 
on the safe side.    

  Problems 

   10.1      A very useful equation to determine variance from the mean is  V [ x ]   =  
E [ x  2 ]  −  ( E [ x ]) 2  Prove this equation.  

  10.2      Given the following eight values of total unit weight in pcf: 124.6, 126.2, 
121.6, 117.3, 115.8, 135.6, 130.7, and 125.3, calculate the mean, variance, 
standard deviation, and coeffi cient of variation.
   [Answer: 124.6 pcf, 42.999, 6.56 pcf, 5.26%]     

  10.3      Prove that  ρ ( x, y )  =  1 when  y   =   a  +  bx  and  ρ ( x, y )  =   − 1 when  y   =   a   −   bx , 
where  a  and  b  are constants. [Hint: Use the equation in Problem 10.1 in 
the fi nal step of derivation.]  

  10.4      The following pairs of effective cohesion in psf and effective friction angle 
in deg, ( c   ,  ϕ   ), were obtained from piezocone penetration tests: (120, 
26.8°), (260, 34.5°), (280, 32.6°), (230, 33.7°), (180, 29.3°), (200, 28.2°), and 
(150,30.6°). Calculate the mean, the coeffi cient of variation of both  c    and 
 ϕ   , and the correlation coeffi cient between  c    and  ϕ   .
   [Answer: 202.9 psf, 28.6%, 30.81°, 9.4%, 0.689]     

  10.5      Fig.  P10-5  shows an infi nite slope with  β   =  15°,  d   =  30 ft, and  d w    =  10 ft. The 
soil is sand with an effective friction angle of 30° and a coeffi cient of vari-
ation of 0.15, and the coeffi cient of variation of  d w   is 0.25. Determine the 
mean and variance of factor of safety by Taylor ’ s expansion and then 
compare them with the MFOSM method.

  Fig. P10-5.        

   [Answer: 1.437, 0.07600, 1.443, 0.07683]     

c10.indd   328c10.indd   328 12/16/2013   1:39:16 PM12/16/2013   1:39:16 PM



Reliability 329

  Fig. P10-6.        

  Fig. P10-8.        

 Determine the factor of safety and its variance by Taylor ’ s expansion.

   [Answer: 1.708, 0.08963]     

  10.7      Same as Problem 10.5, but determine the factor of safety and the reliabil-
ity based on both normal and lognormal distributions by the MFOSM 
method.
   [Answer: 1.711, 91.97%, 99.89%]     

  10.8      Same as Problem 6.5 with the cross section reproduced and shown in Fig. 
 P10-8 . The mean and coeffi cient of variation of the three random vari-
ables and the correlation coeffi cient between  c  and  ϕ  are as follows:  

 Determine the factor of safety and the reliability based on both normal and log-
normal distribution by the MFOSM method.

   [Answer: 2.803, 99.18%, 99.99%]             

Variable Cohesion Friction Angle Total Unit Weight Pore Pressure ratio

Mean 160 psf 24° 125 pcf 0.05

Coef. of variation 0.4 0.15 0.1 0.2

Variable Cohesion Friction Angle Total Unit Weight Correlation Coef.

Mean 400 psf 24° 125 pcf  − 0.5

Coef. of variation 0.4 0.4 0.1 (between c and  ϕ )

  10.6      Same as Problem 6.3 with the cross section reproduced and shown in 
Fig.  P10-6 . The mean and coeffi cient of variation of the four random vari-
ables are as follows:  
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331

  Appendix 

 Preview of LEAME 
Computer Software 

    Thus far, this book has focused on the fundamental principles and methods for 
analyzing slope stability using the limit equilibrium method. The computer 
software—known as LEAME, or Limit Equilibrium Analysis of Multilayered 
Earthworks—which was developed specifi cally for this purpose is available as 
a companion product.  LEAME Software and User ’ s Manual: Analyzing Slope Stabil-
ity by the Limit Equilibrium Method  can be purchased through the ASCE online 
bookstore or the ASCE Library at  http://dx.doi.org/10.1061/9780784477991 . 
The LEAME software can be installed on any computer with a Windows operat-
ing system of Windows 95 or later, including the latest Windows 8. The  User ’ s 
Manual  provides detailed instructions for installing and operating the software 
to solve a variety of two-dimensional (2D) and three-dimensional (3D) slope 
stability analyses. The  User ’ s Manual  also contains a chapter demonstrating the 
use of LEAME software for surface mining operations. 

 This appendix offers a sampling of typical problems that can be solved using 
the LEAME software.  

  LEAME for Two-Dimensional Analysis 

 To illustrate the capability of LEAME software for 2D analysis, 10 examples are 
presented here. Detailed solutions using the LEAME software are available, with 
commentary, in the  User ’ s Manual . 
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332 Slope Stability Analysis by the Limit Equilibrium Method

  2D Example 1: Refuse Dam Constructed by the Upstream Method 

 This example illustrates the stability analysis of a refuse dam constructed by the 
upstream method. This type of analysis has widespread applications for analyz-
ing short-term stability during or immediately after construction when the excess 
pore water pressure in some soils, due to the placement of an overburden, has 
not been completely dissipated. 

 Fig.  A-1  shows the upstream method of refuse disposal, which is very popular 
in rugged terrain. First, a starter dam is built by coarse refuse or other earthen 
materials and the fi ne refuse in the form of slurry is pumped into the back of the 
dam. Then the dam is extended upstream in stages, with part of the dam being 
placed on the settled fi ne refuse. The dam has a downstream slope of 2.5:1 and 
an upstream slope of 2:1. The construction is divided into three stages. The fi rst 
stage involves the construction of the starter dam, the second stage of the lower 
refuse dam, and the third stage of the upper refuse dam. Both the short-term and 
long-term stability analyses can be made at the end of each stage. Only the most 
critical case of short-term stability at the end of stage 3 will be considered. The 
long-term stability can be obtained by simply assigning the excess pore pressure 
ratios to 0.   

  2D Example 2: Steep Slope Reinforced by Geogrids 

 This example illustrates the use of geogrids to stabilize a steep slope. This type 
of construction is useful in urban or other built-up areas where space is so limited 
that a fl atter slope just cannot be used. 

 Fig.  A-2  shows a fi ll slope reinforced by geogrids and placed directly on a 
rock surface. The fi ll has a height of 14.4 m (47.2 ft) and a slope of 1:1. A surcharge 
load of 15 kN/m 2  (310 psf) is applied on top, as simulated by 0.3 m (1 ft) of soil 
with a cohesion and friction angle of zero and a total unit weight of 50 kN/m 3  
(320 pcf). The soil in the fi ll has a cohesion of zero, a friction angle of 35°, and a 

  Fig. A-1.      Refuse dam constructed by upstream method 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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total unit weight of 18.9 kN/m 3  (120 pcf), and there is no seepage. The location 
of the geogrids is shown in the fi gure. The left end of the geogrids is the actual 
end point. Because the resistance of geogrids depends on the overburden pres-
sure, it is assumed ANC (type of forces)  =  4, MFO (magnitude of each force)  =  
17.5 kN/m (1,200 lb/ft), and SAI (soil-anchor interaction)  =  3.2 kN/m 3  (20.3 pcf). 
Determine the factor of safety.   

  2D Example 3: Soil Nails for a Shotcrete Wall 

 This example illustrates the use of soil nails to stabilize a vertical wall. Because 
these nails have the same length and capacity and their resistance does not 
depend on the depth of the overburden, it is more reasonable to assume that 
ANC  =  2. 

 Fig.  A-3  shows a shotcrete wall and the location of the nails. First, a 3.1-m 
(10.2-ft) vertical cut is made, then the soil nails are installed, and fi nally a surfac-
ing consisting of steel fi ber-reinforced shotcrete is placed on the surface. The soil 
has an effective cohesion of 9.6 kN/m 2  (200 psf), an effective friction angle of 25°, 
and a total unit weight of 18.9 kN/m 3  (120 pcf). The applied internal force (MFO) 
on each row of nails is 65.7 kN/m (4,500 lb/ft). Determine the factor of safety. 

  

  2D Example 4: Composite Failure Surfaces 

 When there is a thin layer of weak material within a slope, part of the failure 
surfaces most probably will follow the bottom of the weak layer. One of the most 

  Fig. A-2.      Slope reinforced by geogrids 
 Note:   1 m  =  3.28 ft; 1 kN/m  =  68.5 lb/ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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effective ways is to assume the failure surfaces as composite so that the grid and 
search can be applied to locate the most critical failure surface. 

 Fig.  A-4  shows an embankment, 30.5 m (100 ft) high, with a side slope of 3:1. 
The soil in the embankment has an effective cohesion of 9.6 kN/m 2  (200 psf), an 
effective friction angle of 35°, and a total unit weight of 19.7 kN/m 3  (125 pcf). The 
embankment is placed on a foundation soil 6.1 m (20 ft) thick, with an effective 
cohesion of 4.8 kN/m 2  (100 psf), an effective friction angle of 30°, and a total unit 
weight of 18.9 kN/m 3  (120 pcf). The water table is on the top of the foundation 
soil. Below the foundation soil is a thin layer of very weak soil, only 0.3 m (1 ft) 
in thickness, with a cohesion of zero, an effective friction angle of 10°, and a total 
unit weight of 17.4 kN/m 3  (110 pcf). Due to the presence of the weak soil, the 
failure surfaces will follow the bottom of the weak layer instead of cutting into 
soil 1. Determine the factor of safety.   

  Fig. A-4.      Composite failure surfaces 
 Note:   1 m  =  3.28 ft; 1 kN/m  =  68.5 lb/ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    

  Fig. A-3.      Soil nails for shotcrete wall 
 Note:   1 m  =  3.28 ft; 1 kN/m  =  68.5 lb/ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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  2D Example 5: Noncircular Failure Surfaces 

 Fig.  A-5  shows a fi ll placed on a series of rock benches. The fi ll material has an 
effective cohesion of 9.6 kN/m 2  (200 psf), an effective friction angle of 30°, and a 
total unit weight of 19.7 kN/m 3  (125 pcf). Two noncircular failure surfaces are 
assumed. The much shorter and smoother failure surface 1, as indicated by the 
dashed line, is believed to be more critical than failure surface 2, which zigzags 
along the surface of the benches by following boundary line 1. Compute the static 
and seismic (seismic coeffi cient  =  0.1) factors of safety for both failure surfaces 
and determine which surface is more critical.   

  2D Example 6: Cut Slope with a Tension Crack 

 This example consists of two different cases: (1) Fig.  A-6 (a) shows an existing cut 
slope 12 m (40 ft) high with the depth and location of a tension crack as given. 
The soil has a cohesion of 60 kN/m 2  (1,250 psf), a friction angle of 0°, and a total 

  Fig. A-5.      Noncircular failure surfaces 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    

  Fig. A-6.      Cut slope with tension crack 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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unit weight of 19.7 kN/m 3  (125 pcf). If the circular failure surface passes through 
the bottom of the tension crack, determine the factor of safety when the tension 
crack is dry and also when the tension crack is fi lled with water; (2) Fig.  A-6 (b) 
shows a proposed cut slope with the same soil and outside confi guration as those 
shown in Fig.  A-6 (a) but the rock is located at 7 m (23 ft) below the toe. The pre-
dicted depth of the tension crack is 4 m (13 ft), but the slope has not been con-
structed, and the location of the tension crack is unknown. Determine the factor 
of safety and the location of the tension crack. 

  

  2D Example 7: Undrained Strength Increasing Linearly with Depth 

 An embankment is placed on a foundation consisting of two layers of clay. The 
dimensions of the cross section, together with the undrained shear strength and 
the unit weight of the soils, are shown in Fig.  A-7 (a). The results of Dutch cone 
tests indicate that the undrained shear strength of each clay layer varies linearly 
with depth, as shown by the trapezoidal distribution in the fi gure. The undrained 
shear strengths for soil 1 are 35.9 kN/m 2  (750 psf) at the top and 59.9 kN/m 2  
(1250 psf) at the bottom, and those for soil 2 are 14.4 kN/m 2  (300 psf) at the top 
and 44.5 kN/m 2  (930 psf) at the bottom. Determine the factor of safety (1) using 
the direct method by considering the foundation as two layers, and (2) using the 
approximate method by dividing each clay layer into four sublayers, as shown 
in Fig.  A-7 (b).   

  2D Example 8: Embankment with Cohesionless Granular Materials 

 Fig.  A-8 (a) shows an embankment placed directly on a rock foundation. The soil 
in the embankment is cohesionless with  φ  o   =  39°,  Δ  φ   =  7°, and  γ   =  22.1 kN/m 3  

  Fig. A-7.      Undrained shear strength increasing linearly with depth 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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(140 pcf). The dimensions of the embankment are shown in the fi gure. Determine 
the factor of safety (1) using the direct method by considering the entire embank-
ment as one soil, and (2) using the approximate method by dividing the soil near 
to the slope surface into a number of sublayers, as shown in Fig.  A-8 (b).   

  2D Example 9: Analysis of Submerged Slope 

 If a slope is submerged under water, as in the case of underwater excavations, a 
general practice is to ignore the water table and use the submerged weight. 
Another method, as used in LEAME to solve seepage problems, is to consider 
the water table as a phreatic surface and use the total weight. The purpose of 
this example is to determine the factors of safety in both cases. If both cases check 
closely, the correctness of LEAME in analyzing seepage is further validated. 

 Fig.  A-9 (a) shows the cross section of a submerged embankment with a 
height of 12.2 m (40 ft) and a slope of 1.5:1. The top of the embankment is 6.1 m 

  Fig. A-8.      Embankment with cohesionless materials 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    

  Fig. A-9.      Analysis of submerged slope 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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(20 ft) below the water table, and the soil parameters are shown in the fi gure. 
Determine the factor of safety for the following two cases: (1) using the sub-
merged weight and ignoring the water table, and (2) using the total weight and 
boundary neutral forces.   

  2D Example 10: Example on Reliability Analysis 

 Although reliability can be determined in all the previous examples by simply 
specifying PROB as 1, 2, or 3 (1 for high variability, 2 for medium variability, and 
3 for low variability), this capability has not been utilized so far. Because of the 
lack of experience and dependable data, it is anticipated that the users of LEAME 
will be more interested in the factor of safety than in reliability. This example is 
the only one in which reliability will be discussed. 

 Fig.  A-10  shows a slope with a phreatic surface and fi ve different soils. Soil 
1 is a granular soil with a curved envelope; soil 2 is a clayey soil with an und-
rained shear strength increasing linearly with depth; soils 3 and 4 are conven-
tional soils with a straight-line envelope; and soil 5 is water with neither cohesion 
nor internal friction. The parameters for soils 1 and 3 are in terms of effective 
stress and those for soils 2 and 4 in terms of total stress. The inclusion of all pos-
sible types of soil in the same site may not be realistic but is helpful for illustrative 
purposes. All soil parameters, including the coeffi cients of variation, are shown 
in the fi gure. Determine the factor of safety and the reliability of the design.    

  LEAME for Three-Dimensional Analysis 

 To illustrate the capability of LEAME software for 3D analysis, seven examples 
are presented here. Detailed solutions using the LEAME software are available, 
with commentary, in the  User ’ s Manual . 

  Fig. A-10.      Example on reliability analysis 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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  3D Example 1: Heavy Surcharge Loads of Limited Length 

 This example illustrates the application of 3D analysis with ellipsoidal ends to a 
slope subjected to a heavy load over a limited area. A case in view is the safety 
to pass extraordinary heavy equipment over an embankment. In 2D analysis, it 
is assumed that the load and the failure surfaces are infi nitely long in the longi-
tudinal direction. This assumption is very conservative and may result in an 
unsatisfactory factor of safety. If the embankment fails under the load, the failure 
mass must be spoon-shaped with a limited length. Therefore, the use of 3D 
analysis is more realistic. 

 Fig.  A-11  shows an embankment subjected to two heavy surcharge loads, 
each 1.2 m (4 ft) wide with a length of 3 m (9.8 ft) and an intensity of 480 kN/m 2  
(10,000 psf). Soil 1 for the fi ll has an effective cohesion of 9.6 kN/m 2  (200 psf), an 
effective friction angle of 30°, and a total unit weight of 19.7 kN/m 3  (125 pcf). 
Soils 2 and 3 for the surcharge loads are assumed to have a thickness of 0.3 m 
(1 ft) and a unit weight of 1,600 kN/m 3  (10,000 pcf), which is equivalent to a sur-
charge load of 480 kN/m 2  (10,000 psf). If the embankment is 18 m (59 ft) long, by 
the use of LEAME, determine the factors of safety for both 2D and 3D analyses 
in the same run. 

  The results of the analysis based on the simplifi ed Bishop method show that 
the factor of safety is 0.949 for 2D analysis and 1.121 for 3D analysis.  

  3D Example 2: Failure Surfaces with Planar Ends 

 If failures occur in a high embankment across a narrow valley with parallel rock 
banks, two possible types of 3D failures may take place, depending on the inter-
facial shear strength between the embankment and the rock bank. If the interfa-
cial strength is low, failures will occur along the interface, as well as within the 
embankment, so the case of 3D analysis with planar ends applies. If the interfa-
cial strength is high, failures will not occur along the interface but will be 

  Fig. A-11.      Heavy surcharge loads of limited length 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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confi ned within the embankment only, so the case of 3D analysis with ellipsoidal 
ends prevails. The former case is illustrated in this example, whereas the latter 
is in the next example. 

 Fig.  A-12  shows the cross section of an embankment across a narrow valley 
with steep rock banks. Below the embankment is a thin layer of soft soil, or soil 
2. To generate composite failure surfaces, an imaginary rock line, as indicated by 
the dashed line, is assumed arbitrarily. Because no circles are allowed to pass 
below the weak layer, all the soil parameters for soil 1 can be assumed 0. However, 
to avoid the accidental cutting through soil 1 due to improper centers, LEAME 
will change the cohesion of soil 1 to a large value, say 10,000. This change has 
no effect on the computed results but will give those circles cutting through soil 
1 a very large factor of safety and thus eliminate them from further consideration. 
The soil parameters are shown in the fi gure. 

  The input parameters for end planes are HTW (half length of top width)  =  
210 m (689 ft), PNTW (point number on ground line for defi ning top width)  =  4, 
ANEP (angle of end plane)  =  0, and SLEP (slope of end plane)  =  3. Note that 
SLEP is the ratio between vertical and horizontal (not between horizontal and 
vertical), and a value of 3 is a steep slope and should not be confused with the 
much fl atter slope of 3:1. Because the factor of safety depends strongly on the 
shear strength at the end plane, two different values of SSEP (Shear Strength at 
End Plane) are assumed: a rough soil-rock interface with SSEP  =  1 and a smooth 
soil-rock interface with SSEP  =  0.67. The use of SSEP  =  1 indicates that the shear 
strength of the soils in direct contact with the end plane is considered as the shear 
strength at the end plane, whereas the use of SSEP  =  0.67 implies that only two-
thirds of the shear strength of the soils above the end plane is used, as in the 
design of retaining walls by assuming the wall friction equal to two-thirds of the 
soil friction. Determine the factors of safety for SSEP of 1 and 0.67. 

 The factors of safety based on the original Spencer method with SSEP of 1 
and 0.67 are 1.640 and 1.569, respectively. The factor of safety for 2D analysis 
based on the original Spencer method is 1.384. It can be seen that the factor of 
safety for 3D analysis is much greater than the 2D analysis.  

  Fig. A-12.      Cross section of an embankment across a narrow valley 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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  3D Example 3: Failure Surfaces with Ellipsoidal Ends 

 The previous example assumes that the failure surface occurs on the end planes. 
A question immediately arises: Is the factor of safety based on planar ends lower 
than that based on ellipsoidal ends? In other words, will the failure occur on the 
end plane rather than inside the embankment? This example will shed some light 
on this question. 

 The cross section and soil parameters used for this example are the same as 
those in the previous example. If the failure surface is cylindrical with ellipsoidal 
ends, determine the factor of safety. The result of analysis shows that the factor 
of safety based on the original Spencer method is 1.430, which is smaller than in 
the previous example.  

  3D Example 4: Landfi ll with Geotextiles and Noncircular 
Failure Surface 

 This example illustrates the application of 3D analysis with planar ends to a 
landfi ll having a weak layer at the bottom. The use of geosynthetic materials, 
such as geotextiles, geomembranes, or geosynthetic clay liners at the bottom has 
posed new problems to the stability of landfi lls. These materials have a very low 
friction angle and can cause failures to occur through these weaker materials. 
When such fi lls are placed in a hollow with steep slopes on three sides, the factor 
of safety based on 3D analysis may be smaller than that based on the conven-
tional 2D analysis using the most critical cross section at the center. The ability 
to analyze landfi lls in three dimensions is an outstanding and important feature 
of LEAME. 

 Fig.  A-13  shows a landfi ll with three different materials. The rock toe is con-
structed of granular materials with an effective cohesion of 4.8 kN/m 2  (100 psf), 
an effective friction angle of 32°, and a total unit weight of 18.9 kN/m 3  (120 pcf). 
Layers of geotextiles are placed at the bottom of the fi ll above a clay liner to 
facilitate construction and provide drainage. To simulate the very small friction 
angle between geotextiles, a thin layer of material, say 0.1 m (4 in.) thick with a 
friction angle of only 9° and a unit weight of 17.4 kN/m 3  (110 pcf), is placed above 
the clay liner. Because a weak layer exists at the bottom of the fi ll, all failure 
surfaces will lie along the bottom of the weak layer, so all the materials below 
the weak layer, including the clay liner, are immaterial and need not be consid-
ered in the stability analysis. The waste material, or soil 3, above the geotextiles 
has a cohesion of 9.6 kN/m 2  (200 psf), an effective friction angle of 22°, and a total 
unit weight of 17.4 kN/m 3  (110 pcf). The end plane is defi ned by the following 
parameters: HTW  =  61 m (200 ft), PNTW  =  4, SLEP  =  0.5, and ANEP  =  20°. 

  Two potential failure surfaces are assumed. The fi rst failure surface assumes 
that the failure is along the bottom of the fi ll, starting from (22.9, 38.1) and ending 
at (201.2, 59.5), as shown in Fig.  A-13 . The coordinates of the failure surface are 
the same as those of boundary line 2, so only the shear strength of soil 2 with a 
friction angle of 9° and the total unit weight of 17.4 kN/m 3  (110 pcf) for soils 2 
and 3 are used in the analysis. 
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 To be sure that the failure surface does not cut horizontally through the rock 
toe, a second failure surface is assumed, starting from (7.6, 30.5), passing through 
(30.5, 30.5), and following boundary line 2 to (201.2, 59.5). Both failure surfaces 
can be analyzed by LEAME at the same time. The results of the analysis based 
on the original Spencer method show that failure surface 1 has a safety factor of 
1.376, which is more critical than the 1.455 for failure surface 2. The factor of 
safety for 2D analysis is 1.541, which is much greater than the 3D analysis.  

  3D Example 5: Landfi ll with Geotextiles and Composite 
Failure Surfaces 

 In the previous example, it is quite possible that the most critical failure surface 
is a composite surface consisting of a noncircular surface near the toe and a 
circular surface in the interior, rather than a noncircular surface throughout the 
entire fi ll. The factor of safety obtained by the composite failure surface in this 
example will compare with the noncircular failure surface in the previous 
example to see which is more critical. 

 To generate a large number of composite surfaces, an imaginary boundary 
line 1 is added, and the ground line is extended, as shown by the dashed lines 
in Fig.  A-14 . The analysis by LEAME reveals that the minimum factor of safety 
based on the original Spencer method is 1.373 for composite failure surfaces, 
which is only slightly smaller than the 1.376 for the noncircular failure 
surfaces.   

  Fig. A-13.      Landfi ll with noncircular failure surfaces 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    

  Fig. A-14.      Cross section for analyzing composite failure surfaces 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    

bapp.indd   342bapp.indd   342 12/17/2013   4:28:51 PM12/17/2013   4:28:51 PM



Preview of LEAME Computer Software  343

  3D Example 6: Effect of Embankment Length on Factor of Safety 

 When an embankment is placed across a deep valley, such as an earth dam or a 
valley fi ll, the most probable failure surface will be spoon-shaped with a cylinder 
at the center and a half ellipsoid at each end. This type of failure surface can be 
analyzed by LEAME with ellipsoidal ends, as illustrated in 3D Example 3. The 
current practice of using the conventional 2D analysis to solve this 3D problem 
is unrealistic. In the 2D analysis, two assumptions are made. First, the most criti-
cal cross section at the center of the valley is used to represent all the cross sec-
tions along the length of the embankment. This assumption may not be true, 
because the height of the embankment usually decreases as the cross section 
becomes closer to the bank. The consideration of this variation in cross sections 
requires the provision of different cross sections along the length of the embank-
ment and is too cumbersome and diffi cult to perform. This assumption, even 
though unreasonable, is still used in LEAME for 3D analysis, because it will give 
a more conservative factor of safety. 

 The second assumption is that the embankment and the failure surface are 
infi nitely long, so a unit length of the embankment can be used to represent the 
entire embankment. In other words, a unit length of the embankment can slip 
out freely with no reaction or resistance from the adjacent fi ll. This complete 
ignorance of the end effect may be quite signifi cant if the embankment is rela-
tively short. The LEAME program with ellipsoidal ends is designed to consider 
this end effect. The purpose of this example is to illustrate how the length of the 
embankment affects the factor of safety obtained. 

 Fig.  A-15  is the cross section of an earth embankment showing the coordi-
nates of the boundary lines, location of the phreatic surface, and soil parameters 
used for analysis. The minimum factor of safety based on 2D analysis using the 
simplifi ed Bishop method is 1.470, which is lower than the 1.5 required. If the 
total length of the embankment is 60 m (196.8 ft), determine the minimum factor 
of safety. 

  By varying the length of embankment, it was found that the factor of safety 
decreased as the length of embankment increased. Therefore, the assumption 
that the failure surface is most critical when the length of the failure mass is equal 
to the length of the embankment is valid.  

  Fig. A-15.      Cross section for analysis of end effects 
 Note:   1 m  =  3.28 ft; 1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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  3D Example 7: Effect of Bench Length on Factor of Safety 

 In 2D analysis, not only the failure surface but also the loading must be infi nitely 
long. If a load is applied over a limited area, the 3D analysis with ellipsoidal 
ends can be used, as illustrated in 3D Example 1. The same principle can be 
applied to a short section of steep slope changing gradually to a much fl atter 
slope. The section of steep slope can be considered as a heavy load with a HCL 
(half cylindrical length) equal to the half length of the steeper section. However, 
there are two major differences between 3D Example 1 and this case: (1) The half 
length of the failure mass (HLFM) is defi ned clearly as the half length of the 
embankment in 3D Example 1 but not in this case. Because the fl atter slope is 
very stable with a high factor of safety, HLFM should be confi ned within the 
transitional and steep sections and not extended into the fl atter section; and 
(2) In 3D Example 1, the cross section is the same throughout the embankment, 
whereas in this example the half ellipsoid is located in the transitional section 
with a gradually decreasing slope, so the assumption of the same steep slope for 
the transitional section is on the safe side with a lower factor of safety. 

 This method can be applied to the stability analysis of bench fi lls. In surface 
mining, a cut is made on a hillside to expose the coal seam, resulting in a bench 
and a highwall. The Surface Mining Control and Reclamation Act of 1977 requires 
the return of disturbed land to its original contours. Therefore, the bench created 
by surface mining must be backfi lled to the original slope. If the original slope 
is quite steep, it may be diffi cult to achieve the required factor of safety. The 
factor of safety can be increased by 3D analysis. 

 Fig.  A-16  shows the cross section of a bench fi ll together with the coordinates 
of boundary lines and soil parameters. The highwall and bench are mostly of 
rocky materials, so any failure, if ever present, will be limited within the backfi ll. 
The area is well drained, and there is no seepage. If the bench with the steepest 
section is only 30 m (98 ft) long, determine the factor of safety based on both 2D 
and 3D analyses. 

  The results of the analysis based on the simplifi ed Bishop method show that 
the factor of safety is 1.474 for 2D analysis and 1.504 for 3D analysis.   

  Fig. A-16.      Cross section of a bench fi ll 
 Note:   1 kN/m 2   =  20.9 psf; 1 kN/m 3   =  6.36 pcf    
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  Applications for Surface Mining 

 As mentioned in the Preface to this book, the original REAME software (Rota-
tional Equilibrium Analysis of Multilayered Embankments) was developed in 
response to the Surface Mining Control and Reclamation Act of 1977, which 
requires the stability analysis of spoil banks, hollow fi lls, and refuse dams created 
by surface mining. In Chapter 4 of the LEAME  User ’ s Manual , 10 cases involving 
various methods of spoil and waste disposal from surface mining are presented 
to illustrate the practical applications of LEAME. Data fi les for these cases are 
included with the software and can be used to run LEAME and obtain the 
printed results. These examples are real cases that were analyzed by REAME and 
submitted to the regulatory agencies for the application of mining permits. 
Because the LEAME presented in this book is quite different from the original 
REAME, the stability analyses reported herein are not exactly the same as those 
in the original reports. However, the general procedures and conclusions are 
about the same.   
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methods for slides    136  

 ellipsoidal ends, failure surfaces with 
 LEAME software example    340  
 3D analysis of    265–272  

 dimensions of failure mass    266–
269, 266 f , 267 e , 268 e , 268 f   

 orientation and area of failure 
surface    269–272, 269 e , 269 f , 
270 f , 271 e , 272 e   

 embankment length, LEAME software 
example    342, 342 f   

 exceptional landslides    6  
 exhausted stage movements    6  
 expectation, of random variable    312, 

312 e   

  F  

 factors of safety, defi ned    3, 23  
 failure surface shapes, remedial measure 

fi eld investigation    120–122, 122 f   
 failure surface types    23–25, 24 f   
 falls    4, 5 t   
 Fellenius method of analysis    14, 17.  see 

also  normal method of analysis  
 effective stress analysis    33–34, 33 e , 

33 f , 34 t   
 total stress analysis    26–28, 27 e , 27 f , 

28 f , 29 t , 30  
 fi eld investigation, prior to 

remediation    118–121  
 failure surface shapes    120–122, 122 f   
 geology    119  
 history of slope change    120  
 topography    118–119  
 water    119–120  
 weather    120  
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 fi ll slopes, stress analysis    26  
 fi nite element analysis    14  
 fl ownets, phreatic surfaces and    89–94  

 anisotropic cross section    91–93, 91 e , 
92 e , 92 f   

 isotropic cross section    90–91, 90 f , 91 e   
 piezometric surfaces and    93–94, 93 e , 

93 f   
 fl ows    5 t , 6  
 force equilibrium, method of slices and 

factors of safety    242–243, 243 e , 
249–250, 249 e , 250 e   

 forestation.  see  trees 
 fossil movements    6  
 friction circle method of analysis    208–

211, 208 f , 209 e , 209 f , 210 f   

  G  

 geogrids, steep slope reinforced by, 
LEAME software example    331–
332, 332 f   

 geology, remedial measure fi eld 
investigation    119  

 geotextiles, landfi lls with, LEAME 
software example 

 composite failure surfaces    341, 341 f   
 noncircular failure surfaces    340–341, 

341 f   
 granular materials, shear strength 

of    65–69, 65 e , 66 e , 66 f , 66 t , 67 e , 67 f , 
68 e , 68 t , 69 f , 70 f   

  H  

 history of slope change, remedial 
measure fi eld investigation    120  

 homogeneous dams, effective stress 
on    185–198, 185 f   

 Bishop ’ s and Morgenstern ’ s 
charts    185, 186–189, 186 f , 187 f , 
188 e , 197  

 comparison of charts    197–198  
 Huang ’ s charts    185, 194–198, 195 f , 

196 f   
 Morgenstern ’ s charts    185, 189–192, 

189 f , 190 f , 191 f , 192 f , 197  
 Spencer ’ s charts    185, 193–194, 193 e , 

193 f , 197  
 homogenous slopes with  ϕ   =  0, stability 

charts    171–173, 172 f , 173 f   

 homogenous slopes with  c  and  ϕ , 
stability charts    173–176, 174 f , 175 e , 
175 f , 176 f   

 horizontal drains, corrective methods for 
slides    127–128, 127 f   

 Huang ’ s charts, effective stress analysis 
of homogenous dams    185, 
194–198, 195 f , 196 f   

  I  

 inclinometers, fi eld investigation for 
remedial measures    121  

 infi nite slopes, simplifi ed plane surface 
failure analysis    143–146, 144 e , 
144 f , 145 e , 146 f   

 initial stage movements    6  
 ion exchange technique, corrective 

methods for slides    135  
 isotropic cross section, fl ownets for 

phreatic surfaces    90–91, 90 f , 91 e   

  J  

 Janbu rigorous method of analysis    15  

  K  

 Karafi ath, L.    15, 16  

  L  

 Lagrange interpolation formula    243–244, 
243 e   

 landfi lls 
 shear strength of municipal solid 

waste    69–72, 71 f , 72 e   
 3D analysis examples 

 geotextiles and composite 
failure surface    341, 341 f   

 geotextiles and noncircular 
failure surface    340–341, 341 f   

 LEAME (Limit Equilibrium Analysis of 
Multilayered Earthworks) 
software    ix–xi, 17  

 back analysis of shear strength 
and    80–84, 80 e , 81 e , 81 f , 82 f , 83 e , 
83 f , 84 f   

 reliability and    312  
 stability analysis methods 

incorporated into    17–18  
 surface mining applications    344  

bindex.indd   357bindex.indd   357 12/17/2013   4:28:52 PM12/17/2013   4:28:52 PM



358 Index

 3D analysis examples    337–343  
 effect of bench length on factor 

of safety    343, 343 f   
 effect of embankment length on 

factor of safety    342, 342 f   
 failure surfaces with ellipsoidal 

ends    340  
 failure surfaces with planar 

ends    338–339, 339 f   
 heavy surcharge loads of limited 

length    338, 338 f   
 landfi ll with geotextiles and 

composite failure surface    341  
 landfi ll with geotextiles and 

noncircular failure surface    
340–341, 341 f   

 two-dimensional analysis 
examples    330–337  

 composite failure surfaces    332–
333, 333 f   

 cut slope with tension crack    
334–335, 334 f   

 embankment with cohesionless 
granular materials    335–336, 
336 f   

 noncircular failure surfaces    334, 
334 f   

 refuse dam constructed by 
upstream method    331, 331 f   

 reliability analysis    337, 337 f   
 soil nails for shotcrete wall    332, 

333 f   
 steep slope reinforced by 

geogrids    331–332, 332 f   
 submerged slope    336–337, 336 f   
 undrained strength increasing 

linearly with depth    335, 335 f   
  User ’ s Manual , generally    330  

 limit plastic equilibrium    6–7, 7 e   
 statistically determinate 

problems    7–12, 7 e , 7 f , 8 e , 8 f , 9 e , 9 f , 
10 e , 10 f , 11 f   

 statistically indeterminate 
problems    12–13, 12 f , 13 f   

 logarithmic-spiral method of 
analysis    211–221  

 factor of safety with respect to 
cohesion    212–219, 212 e , 212 f , 213 e , 
213 f , 214 e , 214 f , 217 f , 218 e , 218 f , 
219 f   

 factor of safety with respect to shear 
strength    219–221, 219 e , 220 e , 
220 t   

 lognormal distribution, reliability    
325–327, 325 e , 326 e , 326 t   

 Lowe, J.    15, 16  

  M  

 mean, reliability and    314–315 t   
 Taylor ’ s expansion    317, 317 e   

 mean-valued fi rst order second moment 
(MFOSM) method    319–320, 319 e , 
320 t   

 mechanically stabilized earth (MSE) 
walls, corrective methods for 
slides    131–132, 131 f   

 mechanics of slides    23–44  
 effective stress analysis 

 earthquake consideration    36–39, 
36 f , 37 e , 37 f , 38 f , 38 t   

 rapid drawdown    35–36, 35 f   
 steady-state seepage    32–35, 32 f , 

33 e , 33 f , 34 e , 34 t , 35 t   
 factors of safety    39–40, 40 t , 41 t   
 failure surface types    23–25, 24 f   
 total stress analysis 

 Fellenius method    26–28, 27 e , 
27 f , 28 f , 29 t , 30  

 sliding-block method    30–32, 30 f , 
31 e , 31 f , 32 e   

 total versus effective stress    25–26  
 method of slices    229–264  

 normal method    231–233, 233 e , 233 f , 
234 e , 235 f , 235 t , 236 e , 236 f , 237 e , 
237 t   

 original Spencer method    232–238, 
240–248  

 factors of safety based on force 
equilibrium    242–243, 243 e   

 factors of safety based on 
moment equilibrium    241–242, 
241 e , 242 e , 242 f   

 overall factors of safety    237 t , 
243–245, 243 e , 244 e , 244 f , 245 e , 
246–247 t , 248  

 overall moment equilibrium    229–
233, 230 e , 230 f , 231 e , 232 e , 232 f   

 simplifi ed Bishop method    231–233, 
238–239, 238 e , 238 f , 240 t , 241  
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 special solution techniques 
 Newton ’ s method of tangent    

256–259, 257 e , 257 f , 258 e , 259 e , 
259 t   

 relaxation factor use    259–260, 
259 e   

 Spencer method    248–256, 249 e , 
249 f   

 force of equilibrium of each 
slice    249–250, 249 e , 250 e   

 moment equilibrium of each 
slide    250–253, 251 e , 251 f , 252 e , 
252 f , 254–255 t , 255–256  

 mining operations 
 factors of safety    40, 41 t   
 surface mining, LEAME software 

example    344  
 Mohr-Coulomb failure theory    7, 7 e   

 effective stress analysis    33, 33 e   
 overall moment equilibrium    230, 

230 e   
 total stress analysis    26  

 moment equilibrium, method of slices 
and factors of safety    241–242, 
241 e , 242 e , 242 f , 250–253, 251 e , 
251 f , 252 e , 252 f , 254–255 t , 255–256  

 Morgenstern and Price method of 
analysis    16–18, 249, 249 e   

 Morgenstern ’ s charts, effective stress 
analysis of homogenous 
dams    185, 189–192, 189 f , 190 f , 
191 f , 192 f , 197  

 movement phenomena, study of slope 
movements and    4  

 municipal solid waste.  see  landfi lls 

  N  

 Newton ’ s method of tangent 
 method of slices    256–259, 257 e , 257 f , 

258 e , 259 e , 259 t , 260  
 3D analysis methods    296, 296 e , 297 t   

 noncircular failure surfaces.  see  plane 
failure surfaces 

 nonhomogeneous dams, effective stress 
on    199–202, 199 e , 199 f , 200 e , 200 f , 
201 f   

 normal distribution, reliability    321–322, 
321 e , 321 f , 322 e , 322 f , 323–324 t , 
325 f   

 normal method of analysis 
 effective stress analysis    34–35, 34 e , 

35 t   
 method of slices    231–238, 233 e , 233 f , 

234 e , 235 f , 235 t , 236 e , 236 f , 237 e , 
237 t   

 phreatic surfaces and    94  
 seepage and    17  
 3D analysis methods    278–282, 279 e , 

279 f , 280 e , 280 f , 281 e , 282 t , 283 t , 
284–288, 285 f , 286 e , 286 f , 287 e , 
287 t , 288 t , 289 t , 290–292, 290 f , 
291 e , 292 t , 293 t   

  O  

 ordinary landslides    6  
 original Spencer method of analysis    15, 

17.  see also  Spencer ’ s charts  
 method of slices    232–238, 240–248  

 factors of safety    244 f   
 factors of safety based on force 

equilibrium    242–243, 243 e   
 factors of safety based on 

moment equilibrium    241–242, 
241 e , 242 e , 242 f   

 Newton ’ s method of 
tangent    257–258, 257 e , 258 e   

 overall factors of safety    237 t , 
243–245, 243 e , 244 e , 244 f , 245 e , 
246–247 t , 248  

 relaxation factor    260  
 3D analysis methods    265, 297–298, 

298 e , 299–302 t , 303, 304–306 t   
 total stress analysis    30–31  

 overall moment equilibrium 
 method of slices    229–233, 230 e , 230 f , 

231 e , 232 e , 232 f   
 3D analysis methods    277–278, 277 e , 

278 e   

  P  

 phreatic surfaces    89–117  
 earth dams with fi lter drains    98–103, 

98 f   
 when 60°  <  ß  ≤  180°    100–103, 

100 e , 100 f , 101 e , 101 f , 102 f , 103 f   
 when ß  ≤  60°    98–99, 99 f   

 earth dams without fi lter drains    
94–96, 94 e , 94 f , 95 e , 96 f , 97 f , 98  
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 fl ownets    89–94  
 anisotropic cross section    91–93, 

91 e , 92 e , 92 f   
 isotropic cross section    90–91, 

90 f , 
91 e   

 piezometric surfaces and    93–94, 
93 e , 93 f   

 pore pressure ratio 
 due to consolidation    109–111, 

110 e , 110 f , 111 f   
 for steady-state seepage    106–

109, 106 e , 107 e , 107 f , 108 e , 108 f   
 unsteady-state seepage    103–106, 

104 e , 104 f , 105 f   
 piezocone penetration test, shear strength 

and    50–53, 51 e , 51 f , 52 e , 52 f , 53 e , 
53 f , 54 f , 54 t , 55–56, 55 f , 56 e   

 piezocones, remedial measures to correct 
slides    120  

 piezometric surfaces, fl ownets for 
phreatic surfaces    93–94, 93 e , 93 f   

 pile systems, corrective methods for 
slides    133–134, 134 f   

 planar ends, failure surfaces with 
 LEAME software example    338–339, 

339 f   
 3D analysis of    273–277, 273 f , 274 e , 

274 f , 275 e , 276 f   
 plane failure surfaces    24, 24 f   

 LEAME software example    334, 334 f , 
340–341, 341 f   

 simplifi ed methods of 
analysis    143–170  

 earth pressure    162–164, 162 e , 
162 f , 163 e , 163 f , 164 e , 165 f   

 infi nite slopes    143–146, 144 e , 
144 f , 145 e , 146 f   

 limitations of    143  
 three sliding blocks    157–158, 

157 e , 158 e , 158 f , 159 f , 159 t , 
160–162, 161 t   

 trapezoidal cross section    
148–151, 148 f , 149 e , 150 e , 150 f , 
151 f   

 triangular cross section    147–148, 
147 e , 147 f , 148 e   

 two sliding blocks    152–156, 
152 e , 152 f , 153 e , 153 f , 153 t , 
155 f , 157 t   

 statistically determinate 
problems    7–8, 7 e , 7 f , 8 e , 8 f   

 pore pressure ratio 
 defi ned    106, 106 e   
 due to consolidation    109–111, 110 e , 

110 f , 111 f   
 for steady-state seepage    106–109, 

106 e , 107 e , 107 f , 108 e , 108 f   
 probabilistic method, reliability and    311  

  R  

 Rankine ’ s theory    162  
 rapid drawdown, effective stress 

analysis    35–36, 35 f   
 REAME (Rotational Equilibrium Analysis 

of Multilayered Embankments) 
software    344  

 refuse dam constructed by upstream 
method, LEAME software 
example    331, 331 f   

 reinforces soil slopes (RSS), corrective 
methods for slides    131, 132, 
132 f   

 relaxation factor, method of slices    
259–260, 259 e   

 reliability    311–329  
 LEAME software example    337, 

337 f   
 lognormal distribution    325–327, 

325 e , 326 e , 326 t   
 mean-valued fi rst order second 

moment (MFOSM) method    
319–320, 319 e , 320 t   

 normal distribution    321–322, 321 e , 
321 f , 322 e , 322 f , 323–324 t , 325 f   

 statistical terms    311–317  
 coeffi cient of variation    313, 

313 e , 314–315 t   
 correlation coeffi cient    316–317, 

316 e   
 covariance    313, 313 e , 316, 

316 e   
 expectation    312, 312 e   
 standard deviation    313, 313 e , 

314–315 t   
 variance    312–313, 312 e   

 Taylor ’ s expansion    317–319  
 mean    314–315 t , 317, 317 e   
 variance    317–319, 318 e   
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 remedial measures, to correct 
slides    118–139  

 corrective methods    123–136  
 anchor systems    129, 130 f   
 bridging or tunneling    129–130, 

130 f   
 buttresses    125–126, 125 f , 126 f   
 pile systems    133–134, 134 f   
 retaining walls    128–129, 129 f   
 soil hardening    135–136  
 soil reinforcements    131–133, 

131 f , 132 f , 133 f   
 subsurface drainage    127–128, 

127 f , 128 f   
 surface drainage    126–127  
 vegetation and biotechnical 

stabilization    135  
 weight removal    124–125, 124 f , 

125 f   
 fi eld investigation    118–121  

 failure surface shapes    120–122, 
122 f   

 geology    119  
 history of slope change    120  
 topography    118–119  
 water    119–120  
 weather    120  

 preliminary planning    122–123  
 selection of methods    136–137  

 retaining walls, corrective methods for 
slides    128–129, 129 f   

 rock or stiff slopes, stability charts 
 trapezoidal fi lls    181–185, 181 f , 182 f , 

183 f , 184 f   
 triangular fi lls    177 e , 177 f , 178 e , 178 f , 

179 e , 179 f , 180 f , 181 f   
 rotational slides    5, 5 t   

 fi eld investigation for remedial 
measures    120–121, 122 f   

  S  

 seepage 
 normal method of analysis    17  
 steady-state seepage 

 effective stress analysis    32–35, 
32 f , 33 e , 33 f , 34 e , 34 t , 35 t   

 pore pressure ratio for phreatic 
surfaces    106–109, 106 e , 107 e , 
107 f , 108 e , 108 f   

 unsteady-state seepage, phreatic 
surfaces    103–106, 104 e , 104 f , 105 f   

 seismic zones, in United States    37–38, 
37 f , 38 f , 38 t   

 shear strength    45–88  
 back analysis of    80–84  

 effective stress analysis with  c    
and  ϕ       83–84, 83 e , 83 f , 84 f   

 remedial measures    123  
 total stress analysis with  ϕ   =  

0    80, 80 e   
 total stress analysis with both  c  

and  ϕ     80–83, 81 e , 81 f , 82 f   
 fi eld tests    46–57  

 Dutch cone test    48–50, 49 e , 49 f , 
50 e   

 piezocone penetration test    
50–53, 51 e , 51 f , 52 e , 52 f , 53 e , 
53 f , 54 f , 54 t , 55–56, 55 f , 56 e   

 standard penetration test    46–48, 
47 e , 47 f , 48 f   

 vane shear test    56–57, 57 f   
 of granular materials    65–69, 65 e , 66 e , 

66 f , 66 t , 67 e , 67 f , 68 e , 68 t , 69 f , 70 f   
 laboratory tests    57–65  

 direct shear test    58–60, 58 f , 59 f , 
60 f   

 triaxial compression test    60–65, 
61 f , 62 f , 63 e , 64 e , 65 f   

 logarithmic-spiral method    219–221, 
219 e , 220 e , 220 t   

 of municipal solid waste    69–72, 71 f , 
72 e   

 subsurface investigations    45–46  
 typical ranges and 

correlations    72–80  
 effective shear strength    72–73, 

72 f , 73 f , 74 f , 75–76 t , 77, 77 t , 78 t   
 undrained shear strength    77–80, 

78 f , 79 f , 79 t   
 shear stress    6–7, 7 e   
 shotcrete wall, soil nails for, LEAME 

software example    332, 333 f   
 simplifi ed Bishop method of 

analysis    14–15, 17  
 method of slices    231–233, 238–239, 

238 e , 238 f , 240 t , 241  
 Newton ’ s method of 

tangent    258–259, 258 e , 259 e   
 relaxation factor    260  
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 3D analysis methods    294, 294 e , 295, 
295 t , 296–297, 296 e , 297 t   

 simplifi ed Janbu procedure    15  
 slides    5, 5 t   
 sliding-block method, total stress 

analysis    30–32, 30 f , 31 e , 31 f , 32 e   
 slope movements    3–6  

 ages, stages, and causes of    6  
 classifi cation of    4–6, 5 t   
 history of, and fi eld investigation    

120  
 soil hardening, corrective methods for 

slides    135–136  
 soil mechanics, study of slope 

movements and    4  
 soil nailing walls, corrective methods for 

slides    131–133, 133 f   
 soil nails for shotcrete wall, LEAME 

software example    332, 333 f   
 soil reinforcements, corrective methods 

for slides    131–133, 131 f , 132 f , 
133 f   

 solid waste.  see  landfi lls 
 Spencer method of analysis    15, 16, 17  

 method of slices    248–256, 249 e , 
249 f   

 force of equilibrium of each 
slice    249–250, 249 e , 250 e   

 moment equilibrium of each 
slide    250–253, 251 e , 251 f , 252 e , 
252 f , 254–255 t , 255–256  

 relaxation factor    259–260, 259 e   
 Spencer ’ s charts, effective stress analysis 

of homogenous dams    185, 
193–194, 193 e , 193 f , 197  

 spreads    5, 5 t   
 stability analysis methods    13–18  

 incorporated into LEAME    17–18  
 satisfying force equilibrium of each 

slice    15–16  
 satisfying moment and force 

equilibrium of each slice    16–17  
 satisfying overall moment and 

overall force equilibrium    15  
 satisfying overall moment 

equilibrium    14–15  
 stability charts and other 

solutions    171–228  
 effective stress on homogeneous 

dams    185–198, 185 f   

 Bishop ’ s and Morgenstern ’ s 
charts    185–189, 186 f , 187 f , 
188 e , 197  

 comparison of charts    197–198  
 Huang ’ s charts    185, 194–198, 

195 f , 196 f   
 Morgenstern ’ s charts    185, 

189–192, 189 f , 190 f , 191 f , 192 f , 
197  

 Spencer ’ s charts    185, 193–194, 
193 e , 193 f , 197  

 effective stress on nonhomogeneous 
dams    199–202, 199 e , 199 f , 200 e , 
200 f , 201 f   

 friction circle method    208–211, 208 f , 
209 e , 209 f , 210 f   

 homogenous slopes with  ϕ   =  0    171–
173, 172 f , 173 f   

 homogenous slopes with  c  and 
 ϕ     173–176, 174 f , 175 e , 175 f , 176 f   

 logarithmic-spiral method    211–221  
 factor of safety with respect to 

cohesion    212–219, 212 e , 212 f , 
213 e , 213 f , 214 e , 214 f , 217 f , 
218 e , 218 f , 219 f   

 factor of safety with respect to 
shear strength    219–221, 219 e , 
220 e , 220 t   

 total stress analysis of dams with  ϕ   =  
0    202–205, 202 e , 203 f , 204 f   

 total stress analysis of triangular fi lls 
on soil slopes    205–206, 205 f , 206 e , 
207 t   

 trapezoidal fi lls on rock or stiff 
slopes    181–185, 181 f , 182 f , 183 f , 
184 f   

 triangular fi lls on rock or stiff slopes    
177–181, 177 e , 177 f , 178 e , 178 f , 
179 e , 179 f , 180 f , 181 f   

 standard deviation, of random 
variable    313, 313 e , 314–315 t   

 standard penetration test, shear strength 
and    46–48, 47 e , 47 f , 48 f   

 statistically determinate problems    7–12, 
7 e , 7 f , 8 e , 8 f , 9 e , 9 f , 10 e , 10 f , 11 f   

 statistically indeterminate 
problems    12–13, 12 f , 13 f   

 steady-state seepage 
 effective stress analysis    32–35, 32 f , 

33 e , 33 f , 34 e , 34 t , 35 t   
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 pore pressure ratio for phreatic 
surfaces    106–109, 106 e , 107 e , 107 f , 
108 e , 108 f   

 steep slope reinforced by geogrids, 
LEAME software example    331–
332, 332 f   

 submerged slope, LEAME software 
example    336–337, 336 f   

 subsurface drainage, corrective methods 
for slides    127–128, 127 f , 128 f   

 subsurface investigations, shear strength 
and    45–46  

 surcharge loads of limited length, 
LEAME software example    338, 
338 f   

 surface drainage, corrective methods for 
slides    126–127  

 surface mining, LEAME software 
and    344  

  T  

 Taylor ’ s expansion, reliability 
and    317–319  

 mean    314–315 t , 317, 317 e   
 variance    317–319, 318 e   

 tension crack in cut slope, LEAME 
software example    334–335, 334 f   

 Terzaghi ’ s one-dimensional consolidation 
theory    110, 110 e   

 thermal treatments, corrective methods 
for slides    136  

 three sliding blocks, simplifi ed plane 
surface failure analysis    157–158, 
157 e , 158 e , 158 f , 159 f , 159 t , 160–
162, 161 t   

 three-dimensional (3D) analysis 
methods    265–310  

 failure surfaces with ellipsoidal 
ends    265–272  

 dimensions of failure mass    266–
269, 266 f , 267 e , 268 e , 268 f   

 orientation and area of failure 
surface    269–272, 269 e , 269 f , 
270 f , 271 e , 272 e   

 failure surfaces with planar ends    
273–277, 273 f , 274 e , 274 f , 275 e , 276 f   

 LEAME software examples    337–343  
 effect of bench length on factor 

of safety    343, 343 f   

 effect of embankment length on 
factor of safety    342, 342 f   

 failure surfaces with ellipsoidal 
ends    340  

 failure surfaces with planar 
ends    338–339, 339 f   

 heavy surcharge loads of limited 
length    338, 338 f   

 landfi ll with geotextiles and 
composite failure surface    341  

 landfi ll with geotextiles and 
noncircular failure surface    
340–341, 341 f   

 normal method    278–282, 279 e , 279 f , 
280 e , 280 f , 281 e , 282 t , 283 t , 
284–288, 285 f , 286 e , 286 f , 287 e , 
287 t , 288 t , 289 t , 290–292, 290 f , 
291 e , 292 t , 293 t   

 original Spencer method    265, 
297–298, 298 e , 299–302 t , 303, 
304–306 t   

 overall moment equilibrium 
equation    277–278, 277 e , 278 e   

 simplifi ed Bishop method    294, 
294 e , 295, 295 t , 296–297, 296 e , 
297 t   

 ties.  see  anchor systems 
 topography, remedial measure fi eld 

investigation    118–119  
 topples    4, 5 t   
 total stress analysis 

 back analysis of shear strength 
 with  ϕ   =  0    80, 80 e   
 with both  c  and  ϕ     80–83, 81 e , 

81 f , 82 f   
 dams with  ϕ   =  0    202–205, 202 e , 203 f , 

204 f   
 effective stress analysis 

contrasted    25–26  
 Fellenius method    26–28, 27 e , 27 f , 28 f , 

29 t , 30  
 sliding-block method    30–32, 30 f , 31 e , 

31 f , 32 e   
 triangular fi lls on soil slopes    205–

206, 205 f , 206 e , 207 t   
 translational slides    5, 5 t   

 fi eld investigation for remedial 
measures    120–121, 122 f   

 Transportation Research Board 
resources    123–124  
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 trapezoidal cross section, simplifi ed 
plane surface failure analysis    
148–151, 148 f , 149 e , 150 e , 150 f , 
151 f   

 trapezoidal fi lls on rock or stiff slopes, 
stability charts    181–185, 181 f , 182 f , 
183 f , 184 f   

 trees 
 corrective methods for slides    135  
 history of slope change    120  

 trench drains, corrective methods for 
slides    127  

 triangular cross section, simplifi ed plane 
surface failure analysis    147–148, 
147 e , 147 f , 148 e   

 triangular fi lls 
 on rock or stiff slopes, stability 

charts    177 e , 177 f , 178 e , 178 f , 179 e , 
179 f , 180 f , 181 f   

 on soil slopes, total stress analysis    
205–206, 205 f , 206 e , 207 t   

 triaxial compression test, shear strength 
and    60–65, 61 f , 62 f , 63 e , 64 e , 
65 f   

 tunneling, corrective methods for 
slides    130, 130 f   

 two sliding blocks, simplifi ed plane 
surface failure analysis    152–156, 
152 e , 152 f , 153 e , 153 f , 153 t , 155 f , 
157 t   

 two-dimensional analysis, LEAME 
software examples 

 embankment with cohesionless 
granular materials    335–336, 
336 f   

 reliability analysis    337, 337 f   
 submerged slope    336–337, 336 f   

  U  

 undrained shear strength 
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