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Preface

During the past 40 years,  have been engaged in a study on the stability analysis
of earth slopes. The study was initiated in 1973 when I received a research grant
from the Institute for Mining and Minerals Research, University of Kentucky.
When the research project was completed in 1977, the U.S. Congress passed the
Surface Mining Control and Reclamation Act, which requires stability analysis
for refuse dams, hollow fills, and spoil banks created by surface mining, thus
putting the research into practical use. The results of the research were published
in several journals and reports and also were presented in a number of short
courses. Both the simplified and the computerized methods of stability analysis,
as developed from this research, have been widely used by practicing engineers
throughout Kentucky for the application of mining permits. The large number
of out-of-state participants in the short courses indicates that the methods devel-
oped have widespread applications.

In 1983, my book Stability Analysis of Earth Slopes was published by the Van
Nostrand Reinhold Company. The book was well received by the engineering
profession and was reprinted quite a few times. It was recommended by the
Professional Civil Engineering Book Club as a feature selection and was trans-
lated into Chinese and Russian by foreign publishers. Two computer programs,
one called SWASE (Sliding Wedge Analysis of Sidehill Embankments) for analyz-
ing plane or noncircular failure surfaces, and the other called REAME (Rotational
Equilibrium Analysis of Multilayered Embankments) for cylindrical failure sur-
faces, written in both Fortran and Basic languages, were listed in the book. In
1994, the SWASE program was incorporated into the REAME program, and a
separate program for three-dimensional analysis, named REAME3D, was devel-
oped. In 1996, the first Windows version of REAME for both two- and three-
dimensional analyses was released and used widely by the mining industries.
The program has been continuously improved, and a new version has been
released every four years, culminating in the latest REAME2012. Because the
name REAME is a misnomer and the computer software associated with this
book is very similar to REAME2012 with only some minor changes, the name
REAME has been changed to LEAME (Limit Equilibrium Analysis of Multilay-
ered Earthworks) in this book to reflect the capabilities of the software better.

Further evolutions of the book and software have prompted their separation
into two separate products. Slope Stability Analysis by the Limit Equilibrium Method:
Fundamentals and Methods presents the basic principles at work in the analysis of
slope stability and common methods for analyzing slope stability in two and

ix
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three dimensions. A companion product, LEAME Software and User’s Manual:
Analyzing Slope Stability by the Limit Equilibrium Method provides both the soft-
ware program and the supporting documentation for its use. The software can
be obtained at http://dx.doi.org/10.1061/9780784477991.

Although some of the materials presented in this book, such as the five chap-
ters in Part 1 and Chapter 7 in Part 2, are essentially the same as the 1983 book,
this revised and updated volume is dramatically different in the following aspects:

1. Many new sections have been added, such as the back-calculation of
shear strength, undrained shear strength varying linearly with depth,
granular materials with curved strength envelope, unsteady-state seep-
age, and external and internal forces.

2. Some new stability charts have been added and some others have been
deleted, because they are too cumbersome for hand calculations. With the
availability of the LEAME software, no one likes to resort to stability
charts for preliminary analysis unless they are very simple to use.

3. Only the limit equilibrium method is covered here, and the section on fi-
nite element method is eliminated. Also, only the methods incorporated
in LEAME are presented in detail, while the sections on Janbu’s method
and Morgenstern’s and Price’s method are eliminated. The section on the
probabilistic method has been expanded greatly, and a new chapter on
reliability is presented.

4. The three-dimensional analysis, which was not even mentioned in the
previous book, is presented here in a full chapter. It covers the theoretical
aspect by showing how the failure mass is divided into columns and de-
riving the equations used for LEAME.

5. Spreadsheets have been added to solve many of the examples, and the
results are compared with the LEAME computer program. It is amazing
that many problems involving iterations or using trial-and-error can be
solved easily by spreadsheets. Although spreadsheets can be used to
check the correctness of a computer program, they cannot serve as a sub-
stitute, because they involve only a single failure surface; to determine
the minimum factor of safety, hundreds of failure surfaces need to be
analyzed.

6. Homework problems and more examples have been added so the book
can serve as a college text for senior and graduate courses in soil mechan-
ics and geotechnical engineering.

This volume is divided into two parts. Part 1 presents the fundamentals of
slope stability and consists of five chapters. Chapter 1 describes slope move-
ments and discusses some of the more well-known methods for stability analysis.
Chapter 2 explains the mechanics of slope failures and defines the factor of safety
for both cylindrical and plane failures. Chapter 3 discusses both the laboratory
and the field methods for determining the shear strength of soils used for
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stability analysis. Chapter 4 illustrates some methods for estimating the location
of the phreatic surface and determining the pore pressure ratio. Chapter 5 out-
lines remedial measures for correcting slides.

Part 2 presents methods of stability analysis and also consists of five chapters.
Chapter 6 derives some simple formulas for determining the factor of safety for
plane failures. Chapter 7 presents a number of stability charts for determining
the factor of safety for cylindrical failures, as well as the well-known friction
circle and logarithmic spiral methods. Chapter 8 discusses methods of slices for
two-dimensional analysis and derives the equations used in developing LEAME.
Chapter 9 discusses the three-dimensional analysis with both ellipsoidal and
planar ends and derives the equations used in LEAME. Chapter 10 discusses
various methods to determine the reliability of slope design, including the use
of Taylor’s expansion for closed-form solutions and the mean-value first order
second moment (MFOSM) method for computer solutions.

The Appendix provides an introduction to the LEAME software to encourage
readers to obtain the software. The LEAME computer software is completely
different from the REAME program listed in the 1983 book. It is an excellent and
well-tested software program to determine the factors of safety for both two- and
three-dimensional slopes and contains many new features not available else-
where. It can be downloaded and used right away to solve practical problems
in slope stability.

Finally, I want to thank ASCE Press for giving me the opportunity to
publish these books. It is my sincere hope that the books, especially the LEAME
computer software, will be helpful to civil engineers in their engineering practice
and to college professors in teaching courses in slope stability.

Yang H. Huang, Sc.D., P.E.
Professor Emeritus of Civil Engineering
University of Kentucky
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Chapter 1

Introduction

Problems associated with failures of natural and artificial slopes often pose for-
midable challenges in geotechnical engineering. In general, an exposed inclined
ground surface that is unrestrained may be prone to mass movement due to
gravitational forces. The resulting shear stresses, induced along a potential or
known failure surface, could exceed the shear strength of the soil and cause slope
failure. The ratio of available shear strength to induced shear stress on a potential
failure surface most commonly is referred to as the factor of safety. The intent of
any limit equilibrium stability analysis is to determine this factor, by which the
soil strength is divided or reduced, to bring the slope to the threshold of instabil-
ity. The types of slope movements and the use of various limit equilibrium
methods to determine the factor of safety for the sliding types of mass move-
ments are reviewed in this chapter.

1.1 Slope Movements

The stability analysis of slopes plays a very important role in civil engineering.
Stability analysis is used in the construction of transportation facilities such as
highways, railroads, airports, and canals; the development of natural resources
such as surface mining, refuse disposal, and earth dams; as well as many other
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human activities involving building construction and excavation. Failures of
slopes in these applications may be caused by movements within the human-
created cut or fill, in the natural slope, or a combination of both. These movement
phenomena usually are studied from two different points of view. Geologists
consider the movement phenomena as a natural process and study the crux of
their origin, their courses, and the resulting surface characteristics. Engineers,
however, investigate the safety of slopes based on the principles of soil mechan-
ics and develop methods for a reliable assessment of the stability of slopes, as
well as the controlling and corrective measures needed. The most viable stability
studies can be achieved only by the combination of both approaches. The quan-
titative assessment of the stability of slopes by the methods of soil mechanics
must be based on knowledge of the geological structure of the area, the detailed
composition and orientation of strata, and the geomorphological history of the
land surface. On the other hand, geologists may obtain a clearer picture of the
origin and character of the movement process by checking their considerations
against the results of engineering analyses based on soil mechanics. For example,
it is well known that one of the most favorable settings for landslides is where
permeable or soluble beds overlie or are interbedded with relatively impervious
beds. This geological phenomenon was explained by Henkel (1967) using the
principles of soil mechanics.

Slopes failures involve such a variety of processes and causative factors that
they afford unlimited possibilities of classification. For instance, they can be
divided according to the form of failures, the type of materials moved, the age,
the stage of development, or the cause of movements.

One of the most comprehensive references on landslides or slope failures is
a special report published by the Transportation Research Board (Turner and
Schuster 1996). According to this report, the type of slope movements is divided
into five main groups: falls, topples, slides, spreads, and flows (Varnes 1978). A
sixth group, complex slope movements, includes the combination of two or more
of these five types. The type of materials is divided into two classes: rock and
soil. Soil is further divided into debris and earth. Table 1-1 shows the classifica-
tion of slope movements.

Recognizing the types of slope movements is important because they dictate
the method of stability analysis and the remedial measures to be employed.
Varnes (1978) described the types of movements as follows:

* In falls, a mass of any size is detached from a steep slope or cliff, along
a surface on which little or no shear displacement takes place, and de-
scends mostly through the air by free fall, leaping, bouncing, or rolling.
Movements are very rapid and may or may not be preceded by minor
movements leading to progressive separation of the mass from its source.

¢ In topples, one or more units of mass rotate forward about some pivot
point, below or low in the unit, under the action of gravity and forces
exerted by adjacent units or by fluids in cracks. In fact, it is tilting without
collapse.
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Table 1-1. Classification of Slope Movements

TYPE OF MATERIAL
Engineering Soils
Predominantly Predominantly
TYPE OF MOVEMENT Bedrock Coarse Fine
Falls Rock fall Debris fall Earth fall
Topples Rock topple  Debris topple Earth topple
Slides |Rotational Few units |Rock slump  Debris slump Earth slump
Translational Rock block Debris block Earth block slide
slide slide
Many units | Rock slide Debris slide Earth slide
Lateral spreads Rock spread  Debris spread  Earth spread
Flows Rock flow Debris flow Earth flow (soil
(deep creep)  (soil creep) creep)
Complex combination of two or more principal types of
movement

(Varnes 1978, © National Academy of Sciences, Washington, DC. Reproduced with permission of
the Transportation Research Board, Washington, DC)

In slides, the movement consists of shear strain and displacement along
one or several surfaces that are visible or may reasonably be inferred, or
within a relatively narrow zone. The movement may be progressive; that
is, shear failure may not initially occur simultaneously over what eventu-
ally becomes a defined surface of rupture, but, rather, it may propagate
from an area of local failure. This displaced mass may slide beyond the
original surface of rupture onto what had been the original ground sur-
face, which then becomes a surface of separation. Slides are divided into
rotational slides and translational slides. This distinction is important
because it affects the methods of analysis and control. Furthermore, the
presence of a weak sublayer or boundary between weathered and un-
weathered strata reveals another type of slide known as the compound
slide (Cruden and Varnes 1996). These geological anomalies dictate the
location of the surface of rupture (Hutchinson 1988).

In spreads, the dominant form of movement is lateral extension accom-
panied by shear or tensile fractures. Movements may involve fracturing
and extension of coherent material, either bedrock or soil, owing to lig-
uefaction or plastic flow of subjacent material. The coherent upper units
may subside, translate, rotate, or disintegrate, or they may liquefy and
flow. The mechanism of failure can involve elements not only of rotation
and translation but also of flows; hence, some lateral spreading failures
may be regarded as complex. The sudden spreading of clay slopes was
discussed by Terzaghi and Peck (1967).
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* In flows, slope movements may appear in several different forms. In
unconsolidated materials, they generally take the form of fairly obvious
flows, fast or slow, wet or dry. In saturated soils, they are triggered when
the ground becomes completely saturated by infiltration, as a result of
intense rainfall or by the rise of the groundwater table. Thus, water is the
primary transport agent and the saturated soils resembling a viscous flu-
id possess no strength and result in shallow slope failures. In bedrock, the
movements are extremely slow and are distributed among many closely
spaced, noninterconnected fractures that result in folding, bending, or
bulging.

According to age, slope movements are divided into contemporary, dormant,
and fossil movements. Contemporary movements are generally active and are
relatively easily recognizable by their configuration, because the surface forms
produced by the mass movements are expressive and not affected by rainwash
and erosion. Dormant movements usually are covered by vegetation or are dis-
turbed by erosion so that the traces of their last movements are not easily dis-
cernible. However, the causes of their origin still remain and the movement may
be renewed. Fossil movements generally developed in the Pleistocene or earlier
periods, under different morphological and climate conditions, and cannot
repeat themselves at present.

According to stage, slope movements can be divided into initial, advanced,
and exhausted movements. At the initial stage, the first signs of the disturbance
of equilibrium appear and cracks in the upper part of the slope develop. In the
advanced stage, the loosened mass is propelled into motion and slides downslope.
In the exhausted stage, the accumulation of slide mass creates temporary equi-
librium conditions.

Chowdhury (1980) classified slides according to their causes: (1) exceptional
landslides arising from earthquake, intense precipitation, severe flooding, accel-
erated erosion from wave action, and liquefaction; (2) ordinary landslides result-
ing from known or usual causes that can be explained by traditional theories;
and (3) unexplainable landslides that occur without any apparent cause.

It should be evident from this discussion that the stability of slopes is a
complex problem, which may defy any theoretical analysis. In this book only the
slide type of mass movements will be discussed, not only because it is more
amenable to theoretical analysis but also because it is the predominant type of
failures, particularly in human-created slopes.

1.2 Limit Plastic Equilibrium

The primary purpose of most stability analyses is to determine the factor of
safety of the slope based on the concept of limit plastic equilibrium. First, a
failure surface is assumed. A state of limit equilibrium is said to exist when the
shear stress along the failure surface is expressed as
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T= f (1-1)

in which 1 = shear stress, s = shear strength, and F = factor of safety. According
to the Mohr-Coulomb failure theory, the shear strength can be expressed as

s=c+0,tan¢ (1-2)

in which c = cohesion, 6, = normal stress, and ¢ = angle of internal friction. Both
c and ¢ are known properties of the soil. Once the factor of safety is known, the
shear stress along the failure surface can be determined from Eq. (1-1).

In the limit equilibrium method, only the concept of static equilibrium is
applied. Unfortunately, except in the simplest cases, most problems in slope
stability are statically indeterminate, because the number of available equations
is not sufficient to solve the number of unknowns. In order to determine a unique
factor of safety, some simplifying assumptions must be made to increase the
number of equations and make it exactly equal to the number of unknowns.
Some examples of statically determinate and statically indeterminate problems
are discussed as follows.

1.2.1 Statically Determinate Problems

Two cases, one involving a plane failure and the other a cylindrical failure, will
be discussed here.

Fig. 1-1 shows a fill on a sloping ground. The failure surface is assumed to
be a plane at the bottom of the fill along the sloping ground. The weight of the
fill is W, the force normal to the failure plane is N, and the shear force, T, along
the failure plane can be expressed as

_C+Ntan¢
F

in which C = total cohesion resistance, which is equal to the unit cohesion, c,
multiplied by the area of failure surface. There are a total of three unknowns: the

T (1-3)

Fig. 1-1. Statically determinate plane failure
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factor of safety, F, the magnitude of N, and the point of application of N. Accord-
ing to statics, there are also three equilibrium equations; specifically, the sum of
forces in the normal direction is zero, the sum of forces in the tangential direction
is zero, and the sum of moments about any given point is zero. The moment
requirement implies that W, T, and N must intersect at the same point. Knowing
the magnitude and direction of W and the direction of N and T, the magnitude
of N and T can be determined from the force diagram shown in Fig. 1-1 and the
factor of safety from Eq. (1-3). This case is statically determinate, because all
forces applied to the failure mass, including their magnitude, direction, and
point of application, can be determined by statics. To find the factor of safety
algebraically, from Eq. (1-3),

_cL+Wcosatan¢
Wsino

F

(1-4)

in which L = length of failure surface, which is also the area of failure surface
(note that the width is equal to unity, thus the area and length are equivalent),
and o = angle of the sloping ground. It can be seen from Eq. (1-4) that, for stati-
cally determinate problems, the factor of safety is defined as the ratio between
the resisting force and the driving force, both applied on the failure surface.

Example 1.1 Fig. 1-2 shows a triangular fill placed on a sloping surface. It is
assumed that the plane failure is along the slope surface, because a thin layer
of weak material with a cohesion, ¢, of 250 psf (12kN/ m?) and a friction angle,
¢, of 15° exists at the bottom of the fill. If the fill has a unit weight, y, of 125 pcf
(19.7kN/m?), determine its factor of safety.

Solution The triangular fill has a height and a base of 50ft so, assuming the
width of fill as 1ft, the weight of the fill W = 0.5 x 125 x 50 x 50 = 156,2501b, and
the area of failure surface L = [(150)* + (50)°]° = 158.1 ft>. The angle of slope o =
tan™'(50/150) = 18.4°. From Eq. (1-4),

_ 250x158.1+156,250c0s18.4°tan15° 39,525+ 39,727

F : =1.607
156,250sin18.4° 49,320
Note: Coordinates in parentheses —50 ft—
are in feet {100.50)| (150.50)

Y
| 7 =125 pef

50 ft -

¢ =250 psf
00) =4 =15

Fig. 1-2. Example 1.1
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The second case involves a cylindrical surface cutting through a soil with ¢
=0, as shown in Fig. 1-3. When ¢ = 0, the shear resistance along the failure arc
is dependent on the cohesion only, independent of the normal force. By assuming
that the cohesion, c, is distributed uniformly along the failure arc, it can be seen
from Fig. 1-3(a) that the cohesion resistance along the failure surface can be
resolved into two components, one parallel to the chord and the other perpen-
dicular to the chord. The component parallel to the chord is in the same direction
and can be added together, while that perpendicular to the chord is in opposite
directions and neutralizes each other. Consequently, the resultant cohesion resis-
tance is parallel to the chord with a magnitude of cL,, where L. is the chord length,
and the shear force, T, is equal to

(1-5)

The distance, d, from the center of circle to the shear force, T, can be obtained
by taking moment about point O, i.e., cLd = cL,R or
_RL,

L.

d

(1-6)

in which L, = arc length. Given the exact location of weight, W, and shear force,
T, their intersection O’ can be found graphically, as shown in Fig. 1-3(b). To
satisfy the moment equilibrium, the normal force, N, must also pass through
point O’. Because each of the normal forces distributed over the failure arc passes
through point O, the resultant of all normal forces, N, must also pass through
point O, so the direction of N can be determined graphically by connecting the
two points O and O’. Knowing the magnitude and direction of W and the direc-
tion of T and N, the magnitude of T can be determined by the force diagram, as

A
‘ Slope
/Of‘\‘ ' Su'rfgce
Same _ /R/ Lot T
Direction A ;
4 )</ \RLa /, Failure W
= Circle N
- g >/
™ T T Opposite
Direction
(a) (b) (c)

Fig. 1-3. Statically determinate cylindrical failure with ¢ =0
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shown in Fig. 1-3(c), and the factor of safety obtained from Eq. (1-5). This case
is statically determinate, because the magnitude, direction, and point of applica-
tion of all the forces applied to the failure mass can be determined by statics
alone.

To solve the factor of safety algebraically, it is more convenient to take the
moment about point O:

Td=Wa (1-7)

Substituting Egs. (1-5) and (1-6) into Eq. (1-7), the following equation is
obtained:
_cL,R
Wa

F (1-8)

For statically determinate problems, Eq. (1-8) defines the factor of safety as
the ratio between the resisting moment and the overturning moment. The dif-
ficulty in applying Eq. (1-8) is how to determine the driving moment, Wa. Fig.
1-4 illustrates the method for computing the area of failure mass and the overall
driving moment by dividing the total area into several small areas, or

Area ABCG = Area OABC — AOFC — AOEF — AAGD + AAED (1-9)
Area OABC = nR?0/360, where R = radius, 8 = central angle, or the angle

between the two radii in degrees. The center of gravity of Area OABC is on the
dashed bisector of the central angle at a distance of b from the center, or

=—R| —*%2 (1-10)

- Center of gravity
T g e for Area OABC

Fig. 1-4. Computation of driving moment
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in which 8 = central angle in radians. The area of each triangle can be easily
computed, and the distance from its center of gravity to the vertical side of each
triangle is equal to one-third of the length of the horizontal side.

Example 1.2 Fig. 1-5 shows a circular failure surface. The coordinates at the cent-
er, O, and at three points, A, G, and C, on the slope surface are given. If the soil
has a unit weight of 125 pcf (19.7kN/m?), a cohesion of 1,600 psf (7.7kN/m?), and
a friction angle of 0°, determine the factor of safety.

Solution All dimensions shown in the figure are based on the four sets of coordi-
nates in parentheses. Radius: R = [(120 — 30)* + (90 — 60)°]*> = 94.9 ft. Chord length:
L. = [(120)* + (60)’]°° = 134.2ft. Central angle: From geometry, sin(6/2) = 0.5 x
134.2/94.9 = 0.707, or 8 = 2 x sin"!(0.707) = 90°. Distance EF: ~COF = tan(90/30)
=71.6°, or zZEOF =90 — 71.6 = 18.4°, so EF = 30 x tan 18.4° = 10ft.

The graphical method is more complex and will be discussed first. The weight
of failure mass can be determined from Area ABCG shown in Fig. 1-5 multiplied
by the unit weight of the soil. The area can be computed by Eq. (1-9), so W =
125 x [1(94.9)* x 90/360 — 30 X 90/2 — 30 x 10/2 — 60 x 90/2 + 60 x 20/2] = 125 x
(7,073 — 1,350 — 150 — 2,700 + 600) = 434,1251b. From Eq. (1.10), b = (4/3) x 94.9 x
sin 45°/(n/2) = 56.96 ft. The overturning moment is Wa = 125 x [7,073 x 56.96 x
sin 26.6° — 1,350 x 30 — 150 x (-3.333) — 2,700 x 0 + 600 x (—23.3)] = 15,464,034 ft-1b,

T=150,000 Ib

W = 434,000 Ib

Note: All dimensions are in feetJ

Fig. 1-5. Example 1.2
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or a = 15,464,034/434,125 = 35.6 ft. The arc length is L, = ©tR0/180 = 3.1416 x 94.9
% 90/180 = 149.1ft. From Eq. (1-6), d = 94.9 x 149.1/134.2 = 105.4 ft. With the dis-
tances a4 and d known, the exact location of W and T can be drawn on the figure,
and the direction of N, which must pass through points O and O’, can be deter-
mined. From the force diagram on the right side of the figure, T =150,0001b. From
Eq. (1-5), F =cL./T = 1,600 x 134.2/150,000 = 1.43. The purpose of this graphical
method is to show that the magnitude, direction, and line of application of all
three forces can be determined by statics. If only the factor of safety is required,
it is much quicker and more accurate by the algebraic method using Eq. (1-8),
or F =1,600 x 149.1 x 94.9/15,464,034 = 1.46, which checks with the 1.43 by the
graphical method.

1.2.2 Statically Indeterminate Problems

Except for the simple cases shown in Figs. 1-1 and 1-3, most problems encoun-
tered in engineering practice are statically indeterminate. Fig. 1-6(a) shows the
free-body diagram of a fill with weight, W, and the normal and shear forces on
the two failure planes at the bottom. If both moment and force equilibrium are
considered, there are five unknowns but only three equations. The five unknowns
are the factor of safety, F, the magnitude and point of application of N;, and the
magnitude and point of application of N,. The shear forces, T, and T,, on the
failure surface are known once the factor of safety is determined. This problem
is statically indeterminate, because the number of equations is less than the
number of unknowns.

If only force equilibrium is considered, there are three unknowns (factor of
safety and magnitudes of N; and N,) but only two equations. To make the
problem statically determinate, it is necessary to divide the fill into two sliding
blocks, as shown by Fig. 1-6(b), and arbitrarily assume the inclination of the force,
P, acting between the two blocks. Because each block can have two equilibrium
equations, the number of equations is four, which is equal to the number of
unknowns (factor of safety and magnitudes of P, N;, and N,). If P is assumed
horizontal, or there is no friction between the two blocks, the factor of safety is
the minimum. An increase in the inclination of P also will increase the factor of
safety. Therefore, a judicious selection of an inclination for P is needed to ensure

(2) FREE BODY DIAGRAM (b) DIVISION INTO TWO BLOCKS

Fig. 1-6. Statically indeterminate problem
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Forces on this
slice as
shown

S+ aS

. e
cc}\\‘—"r

2
S.Jf‘c"c'

Fig. 1-7. Method of slices

that a reasonable factor of safety can be obtained. Details about sliding block
analyses are presented in Sections 6.4 and 6.5.

A very powerful method, which can be applied to either circular or noncir-
cular failure surfaces, is the method of slices. Fig. 1-7 shows an arbitrary failure
mass divided into a number of slices. The forces applied on a slice are shown in
the free-body diagram. If the failure mass is divided into a sufficient number of
slices, the width, Ax, will be small, and it is reasonable to assume that the normal
force, N, is applied at the midpoint of the failure surface. In the free-body
diagram, the known forces are the weight, W, and the shear force, T, which
depends on the factor of safety, as indicated by Eq. (1-3). The unknowns are the
factor of safety, F, the shear force on the vertical side, S, the normal force on the
vertical side, E, the vertical distance, /;, and the normal force, N. If there are a
total of n slices, the number of unknowns is 4n — 2, as tabulated:

Unknown Total Number
F (related to T) 1

N n

E n-1

S n—1

hy n-1
Total 4n -2

Because each slice can have three equations by statics—two with respect to
force equilibrium and one with respect to moment equilibrium—the total number
of equations is 3n. Therefore, there is an indeterminacy of n — 2. The problem
can be solved statically only by making assumptions on the forces between two
slices.

1.3 Methods of Stability Analysis

The method presented in this book is called the limit equilibrium method,
because the factor of safety is based on statics by considering the force and/or
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moment equilibrium. Another procedure for stability analysis is the finite element
method, which is based on solid mechanics by considering not only the equa-
tions of equilibrium but also those of compatibility. The advantage of the finite
element method is its ability to determine not only the factor of safety but also
the displacements. However, the displacements depend strongly on the elastic
modulus, which is difficult to ascertain. The finite element method will not be
discussed in this book.

Due to the large number of limit equilibrium methods available, it is neither
possible nor desirable to review each of them. Therefore, only the most popular
and well-known methods will be discussed in this book. Hopkins et al. (1975)
and Duncan (1996) presented a review on several methods. The methods are
based on the method of slices and can be divided broadly into four categories,
depending on the number of equilibrium equations to be satisfied.

1.3.1 Methods that Satisfy Overall Moment Equilibrium

These methods are applicable only to circular failure surfaces and only consider
the overall moment equilibrium. The overall force equilibrium is neither consid-
ered at all nor satisfied in both directions. Included in this category are the
Fellenius method (Fellenius 1936), the normal method (Bailey and Christian
1969), and the simplified Bishop method (Bishop 1955).

The Fellenius method, usually referred to as the ordinary method of slices,
has been used extensively for many years, because it is applicable to nonhomo-
geneous slopes and is very amenable to hand calculations. When pore pressures
are present, a modified version of the Fellenius method—based on the concept
of submerged weight and hereafter called the normal method—can be used. In
both methods, the interslice forces are ignored. The Fellenius and normal methods
are used in this book to generate stability charts for practical use. The factor of
safety obtained by the normal method is usually smaller than that given by the
simplified Bishop method. Details about the normal method are presented
in Section 8.2 for two-dimensional (2D) analysis and Section 9.4 for three-
dimensional (3D) analysis.

In the simplified Bishop method, the interslice forces are assumed horizontal.
Although the overall moment equilibrium and the vertical force equilibrium are
satisfied, neither moment nor horizontal force equilibrium is satisfied for each
individual slice. Even though equilibrium conditions are not satisfied completely,
the method is, nevertheless, a satisfactory procedure and is recommended for
most routine work where the failure surface can be approximated by a circle.
Bishop compared the factor of safety obtained from his simplified method with
that from a more rigorous method in which all equilibrium equations are satis-
fied. He found that the vertical interslice force, S, could be assumed zero without
introducing significant error, typically less than 1%. The simplified Bishop
method cannot be used for noncircular failure surfaces, where an arbitrary
moment center is assumed, because it only considers the force equilibrium in the
vertical direction but not in the horizontal direction, so two moment centers at
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two different elevations will result in two different factors of safety. Details about
the simplified Bishop method are presented in Sections 8.3 and 9.5.

1.3.2 Methods that Satisfy Overall Moment and Overall
Force Equilibrium

Included in this category is the original Spencer method (Spencer 1967), which
assumes that all interslice forces are parallel and incline at an angle & with the
horizontal, where 3 is an unknown to be determined. It considers the overall
moment equilibrium, the overall force equilibrium in the 6 direction, and the
force equilibrium of each slice in the direction perpendicular to 6. Because
the overall force equilibrium in two perpendicular directions is satisfied fully,
the method also can be used for noncircular failure surfaces, where a moment
center must be selected arbitrarily. The original Spencer method was later refined
and is hereafter called the Spencer method (Spencer 1973), in which moment
equilibrium also is satisfied for each slice. The original Spencer method has the
advantage that the factor of safety always converges, whereas the Spencer
method sometimes may encounter convergence problems. Details about the
original Spencer method are presented in Sections 8.4 and 9.6.

1.3.3 Methods that Satisfy Force Equilibrium of Each Slice

These methods only consider the force equilibrium in each slice. Once the force
equilibrium is satisfied in each slice, the overall force equilibrium will be satisfied
automatically. Although moment equilibrium is not considered explicitly, these
methods may yield accurate results if the inclination of interslice forces is
assumed in such a manner that the moment equilibrium is satisfied implicitly.
Arbitrary assumptions on the inclination of interslice forces may have a large
influence on the factor of safety. Depending on the inclination of interslice
forces, a range of safety factors may be obtained in many problems. Force
equilibrium methods should be used cautiously, and the user should be well
aware of the particular interslice force assumptions employed. Included in
this category are the procedures suggested by Janbu (Janbu et al. 1956;
Janbu 1973), Lowe and Karafiath (1959), and the U.S. Army Corps of Engineers
(1970).

The force equilibrium method proposed by Janbu also is called the simplified
Janbu procedure, in contrast to his more rigorous method that also considers
moment equilibrium of each slice. In the simplified procedure, the interslice
forces are assumed horizontal, so the factor of safety thus obtained is always
smaller than that by the more rigorous methods. To increase the factor of safety,
Janbu et al. (1956) proposed the use of correction factors based on the depth-to-
length ratio of the sliding mass and the type of soils. These correction factors
are only approximate and were determined from a number of slope stability
calculations by comparing the factors of safety obtained from the simplified
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procedure with those from the more rigorous procedure. Lowe and Karafiath
(1959) suggested that the interslice forces act at the average of the inclination
of the slope surface and the failure surface, whereas the U.S. Army Corps of
Engineers (1970) recommended that the interslice forces be parallel to the slope
surface. Of the three discussed methods, it appears that Lowe’s and Karafiath’s
assumption on the inclination of the interslice forces is most reasonable and
generally yields factors of safety closest to those obtained by the more rigorous
methods where the moment equilibrium also is satisfied. Due to the negli-
gence of moment equilibrium, force equilibrium methods are not used in the
LEAME software presented in the companion volume to this book, LEAME
Software and User’s Manual: Analyzing Slope Stability by the Limit Equilibrium
Method.

1.3.4 Methods that Satisfy Moment and Force Equilibrium
of Each Slice

Included in this category are the Spencer method (Spencer 1973), the Janbu
method (Janbu 1954,1973), and the method by Morgenstern and Price (1965). All
these methods consider the moment and force equilibrium in each slice. If the
moment and force equilibrium is satisfied in each slice, the overall moment
and force equilibrium will be satisfied automatically. The basic concept in
these methods is the same; the difference lies in the assumption of the interslice
forces. If both moment and force equilibrium are satisfied, the assumption on
interslice forces should have only small effect on the factor of safety obtained.
All these methods can be applied to both circular and noncircular failure
surfaces.

Similar to the original Spencer method, the Spencer method also assumes
that the interslice forces are parallel and incline at an angle 6 with the horizontal.
However, instead of overall moment equilibrium, it considers the moment equi-
librium of each slice. Force equilibrium is used to compute the factor of safety,
F, and the moment equilibrium is used to compute 8. Because F and 9§ are inter-
dependent, both need continuous adjustments until the results converge. Details
about the Spencer method are presented in Section 8.5.

In the Janbu method, the location of interslice normal forces, or the line of
thrust, must be assumed arbitrarily. The method is easy to use and requires
less computer time than the Spencer method. Because the number of equa-
tions is one less than the number of unknowns and the factor of safety may be
difficult to converge to the required tolerance, the Janbu method is not used in
LEAME.

In the Morgenstern and Price method, an assumption is made regarding the
relationship between interslice shear and normal forces. After obtaining the
computer output based on this assumption, all the computed quantities, includ-
ing the interslice forces, must be examined to determine whether they seem
reasonable. If not, a new assumption must be made. Bishop (1955) indicated that
the range of equally correct values of safety factor might be quite narrow and
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that any assumption leading to reasonable stress distributions and magnitudes
would give practically the same factor of safety.

1.3.5 Methods Discussed in this Book and Incorporated in LEAME

The following four well-known methods are selected: normal, simplified Bishop,
original Spencer, and Spencer. The reasons for their selection are explained as
follows.

The normal method is exactly the same as the Fellenius method if there is
no seepage. If there is seepage, the normal method applies the concept of sub-
merged weight, instead of the pore water pressure at the bottom of slices, and
thus gives a greater factor of safety than the Fellenius method. For circular failure
surfaces, generally it is agreed that the simplified Bishop method gives a reason-
able factor of safety and the Fellenius method yields a factor of safety smaller
than that by the simplified Bishop method. The use of the normal method will
draw the factor of safety closer to that by the simplified Bishop method. Although
the normal method is not recommended for final design, it can be used to
develop stability charts for preliminary design. Because the factor of safety can
be determined easily without iterations only by the normal method, it can be
used as the first trial factor of safety in all other methods where iterations are
required.

The simplified Bishop method is recognized by the engineering profession
as a valid method for circular failure surfaces. Most computer programs have
included this method, which is also used by LEAME, for both 2D and 3D circular
failure surfaces.

The original Spencer method is used for 3D analysis, because it is much
simpler than the Spencer method. All the sample problems and examples for 2D
analysis presented in this book or on the computer screen indicate that the factors
of safety obtained by the original Spencer method check very closely with the
more refined Spencer method. Because the 3D analysis is a simple extension of
the 2D analysis with the same assumptions, the original Spencer method should
be applicable to 3D analysis as well. This can be proved by comparing the 3D
factors of safety obtained by LEAME with other available solutions, as reported
in Section 3.10 of the companion volume. An advantage of the original Spencer
method is that it always converges, whereas the Spencer method may have con-
vergence problems.

The Spencer method satisfies all equations of equilibrium by assuming that
the interslice forces in all slices incline at the same angle d. It is a special case of
the Morgenstern and Price method where the inclination of interslice forces can
vary from slice to slice. Duncan (1996) evaluated various methods for limit equi-
librium analysis of slopes and concluded that factors of safety for solutions with
reasonable and unreasonable interslice force distributions were not significantly
different. Because slope stability analyses are performed to calculate factors of
safety, and not interslice forces, it does not matter in the end whether the inter-
slice force distribution is reasonable, provided the method satisfies all equations
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of equilibrium. For this reason, the much simpler Spencer method is selected
instead of the Morgenstern-Price method.

Summary

1.

There exist a number of classification systems for mass movements. The
most widely used system was devised by Varnes (1978), who grouped
the movements into falls, topples, slides, spreads, and flows. In this
book only the slide type of movement will be discussed in detail, not
only because it is more amenable to theoretical analysis but also because
it is the predominant type of failures, particularly in human-created
slopes.

Slope movements also can be classified according to age as contemporary,
dormant, and fossil; according to stage as initial, advanced, and exhaust-
ed; and according to cause, as exceptional, ordinary, and unexplainable.

The most commonly used method for stability analysis is the limit equi-
librium method in which the shear stress along a failure surface is ex-
pressed as a quotient of the shear strength over an unknown factor of
safety, and then the factor of safety is solved by using the equilibrium
equations from statics.

For statically determinate problems, where the number of equilibrium
equations is equal to the number of unknowns, the factor of safety can be
expressed directly as a ratio between the shear resistance and the shear
force, both applied over the failure surface.

For statically indeterminate problems, where the number of equations is
less than the number of unknowns, some simplifying assumptions must
be made to reduce the number of unknowns.

A number of limit equilibrium methods that satisfy only overall moment
equilibrium, overall moment and overall force equilibrium, force equi-
librium of each slice, or both moment and force equilibrium of each slice
are described and the assumptions made in each method are briefly dis-
cussed.

Four well-known limit equilibrium methods (normal, simplified Bishop,
original Spencer, and Spencer) are discussed and incorporated in the
LEAME computer software. The reasons for their inclusion are explained.
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Problems

1.1

1.2

1.3

Derive Eq. (1-10).
[Hint: moment at center by integrating (2/3rcos 0)(1/2r°d)]

A triangular fill with the dimension shown in Fig. P1-2 is placed on a
natural slope of 20°. The fill has a total unit weight of 19.7kN/m?. If a thin
layer of weaker soil with a cohesion of 7.7kN/m? and a friction angle of
24° exists at the bottom of the fill, determine the factor of safety.
[Answer: 1.319]

i—- 70m '-|

60m—-~

20

Fig. P1-2.

An engineer needs to place a new fill onto an existing slope, as shown in
Fig. P1-3, to accommodate a roadway widening. The new fill is a granu-
lar material of high quality with a unit weight of 145 pcf. The natural soil
has a cohesion of 100 psf and a friction angle of 28°. It is assumed that a
surcharge load of 300 psf is placed on the new fill and that the most criti-
cal failure surface is a plane along the bottom of the new fill. What is the
factor of safety against sliding for the proposed widening?

[Answer: 2.073]
300 psf Surcharge Load /
aso,129[ 1111

(175, 125)
New Fill: ¥ = 145 pef
Natural Soil: ¢=100psf ¢ =28°
Note: Coordinates in feet and figure not to scale.

(100, 100)

Fig. P1-3.
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1.4 Fig. P1-4 shows the coordinates of a circular failure surface with ¢ = 0. If
the soil has a cohesion of 100kN/m? and a total unit weight of 18 kN/m?,
determine the factor of safety.

[Answer: 1.299]

(so 50)
/ ¢ = 100 kN/m?
(0.40) ¢ =18 kam-)’
(1*0 0)
Note: All coordinates are in meters
Fig. P1-4.
1.5 Fig. P1-5 shows the coordinates of a circular failure surface with ¢ = 0. If

the soil has a total unit weight of 19kN/m’, what should be the minimum
cohesion required to achieve a safety factor of 1.5?
[Answer: 150.7 kN /m?]

(80, 80)
"\ FS$=15
d=0
=19 kN/m®
(20, 40) c=7

Note: All coorcdinates are in meters

Fig. P1-5.
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1.6 Fig. P1-6 shows a circular failure surface. The soil has a cohesion of
1,300 psf, a friction angle of 0°, and a total unit weight of 120 pcf. Deter-
mine the factor of safety.

[Answer: 1.211]

(75,200)
R =250t (150,100)

1.7 Fig. P1-7 shows a 31.5-ft vertical cut in a clay with an unconfined com-
pressive strength of 2,100 psf, or ¢ = 1,050 psf, and a total unit weight of
120 pcf. For the circular failure surface shown in the figure, determine the
factor of safety.
[Answer: 1.151]

20.8 ft 134 ft ¢ = 1050 psf
Center ¢ =0
7 = 120 pef
315f 3151t
Failure”
Surface

Fig. P1-7.
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1.8 The slope is the same as in the previous problem, but the location of the
failure surface is shown in Fig. P1-8. Because the center of the circle is
14.9 ft below the ground level and, when the method of slices is used, the
circle cannot curve backward, LEAME assumes the failure surface to be a
circular arc and a vertical line. Determine the factor of safety.
[Answer: 1.586]

~—17.9—»
vz L T
¢ = 1050 psf 14.9
¢=0 |
T=120pcf | Center - 315f
Radius = 17.9 ft ‘
16.6
Fig. P1-8.

1.9 What is the factor of safety if the circle is allowed to curve back, as shown
in Fig. P1-9. Is this type of failure surface possible?
[Answer: 2.301]

¢ = 1050 psf 315 ft
s L

Y= 120 pef




Chapter 2

Mechanics of Slides

This chapter describes three types of failure surface: circular, noncircular, and
composite. The use of the method of slices and the sliding-block analysis for
determining the factor of safety is illustrated. The drawback of the well-known
Fellenius method is discussed, and the normal method based on the concept of
submerged weight is introduced. The differences between the total stress analy-
sis for short-term stability and the effective stress analysis for long-term stability
are delineated. The minimum factors of safety required under various conditions
are discussed.

2.1 Types of Failure Surface

The purpose of stability analysis is to determine the factor of safety of a potential
failure surface. The factor of safety is defined as a ratio between the resisting
force and the driving force, both applied along the failure surface, or

Resisting f 1 fail f
Factor of Safety = esisting force along failure surface

Driving force along failure surface

When the driving force due to the weight and loading is equal to the resisting
force due to the shear strength, the factor of safety is equal to 1 and failure is

23
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imminent. The shape of the failure surface may be quite irregular, depending
on the homogeneity of the materials in the slope. This is particularly true in
natural slopes, where the relic joints and fractures dictate the locus of the failure
surface. Fig. 2-1 shows three types of failure surface: circular, noncircular, and
composite.

The circular failure surface also is called the cylindrical failure surface,
because the actual failure surface is part of a cylinder. If the materials in the slope
are relatively homogeneous with no apparent weak layers, the most critical
failure surface will be cylindrical, because a cylindrical failure surface has the
least surface area per failure mass. Because the surface area is more related to
the resisting force and the failure mass is more related to the driving force, a
smaller resisting force and a larger driving force will result in a smaller factor of
safety. To find the minimum factor of safety, a large number of circles must be
tried to determine which is most critical.

The composite failure surface is principally circular, but when the circle cuts
a layer of weak material, the failure surface will follow the bottom of the weak
layer, so part of the circular failure surface is replaced by the plane failure surface.
Fig. 2-2 shows two types of composite failure surface. If the weak layer appears
on the surface of the slope, the circular arc is on one end, as shown in Fig. 2-2(a).
If the weak layer is buried inside the slope, the circular arc will appear on both
ends, as shown in Fig. 2-2(b). The composite failure surface can be analyzed by
the method of slices. The method used to generate composite failure surfaces
will be discussed in Section 2.16 of the companion volume.

The noncircular failure surface also is called the plane failure surface, because
the failure surface consists of a series of planes. The noncircular failure surface
may occur if there are weak layers or seams that start and end at or near the

Circular arc
\\

Segments of

straight line

= ~
Circular arc

Fig. 2-1. Three types of failure surface

- e
Circular: . Cﬁlar

-~

~
Weak Layer “Weak Layer

(a) Circular arc on one end (b) Circular arc on both ends

Fig. 2-2. Two types of composite failure surface
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slope surface, so the most critical failure surface will be located along the bottom
of the weak layers. Sliding-block analysis, which only satisfies force equilibrium,
can be used for simple cases of noncircular failures consisting of no more than
three failure planes. However, for more accurate results, the method of slices,
which satisfies both force and moment equilibrium, should be used.

2.2 Total Stress versus Effective Stress

There are two methods for analyzing the stability of slopes: total stress analysis
and effective stress analysis.

Total stress analysis is based on the undrained shear strength and also is
called c,, ¢,-analysis. If a saturated soil is undergoing undrained loading, ¢, can
be assumed 0, so a special case of total stress analysis, commonly called s,-
analysis, with an undrained shear strength, s,, equal to c,, can be used. In the
s, or ¢,, ,~analysis, pore pressure should be taken as 0 along any failure surface
where undrained strength is specified. This step does not imply that pore pres-
sures are actually zero, but, rather, is done to be consistent with the fact that the
undrained strength determined from tests already has included the effect of pore
pressure and needs not be considered again in the stability analysis.

Effective stress analysis is based on the drained shear strength and is called
c’, ¢’ analysis. In engineering practice, it is not necessary to perform both total
and effective stress analyses for every slope. In many cases, the total stress analy-
sis is not needed unless some wet, fine-grained soils with a degree of saturation
in the range of 70% or higher are encountered. At a low degree of saturation, the
difference between total and effective envelopes is insignificant, so only the effec-
tive stress analysis with steady-state seepage needs to be considered for long-
term stability.

The total stress analysis based on undrained shear strength usually is used
for determining short-term stability during or at the end of construction and the
effective stress analysis based on the drained shear strength for long-term stabil-
ity after the construction. The major difference between a total stress analysis
and an effective stress analysis is that the former does not require knowledge of
the pore pressure, whereas the latter does. In principle, short-term stability also
can be analyzed in terms of effective stress and long-term stability in terms of
total stress. However, this would require extra testing efforts and is therefore not
recommended. Depending on the type of soils, the following methods of analysis
are suggested:

1. For saturated soils, use s,-analysis with ¢ = 0 and ¢ = s, for short-term
stability; ¢/, ¢"-analysis with 0 or steady-state pore pressure for long-term
stability; and ¢’, ¢"-analysis with actual or estimated pore pressure for in-
termediate times.

2. For partially saturated soils, use c,, ¢,-analysis from undrained tests for
short-term stability; ¢’, ¢"-analysis with 0 or steady-state pore pressure for
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long-term stability; and ¢’, ¢"-analysis with actual or estimated pore pres-
sure for intermediate times.

3. For granular soils or soils with a degree of saturation less than 70%,
only the long-term ¢’, ¢’-analysis with 0 or steady-state pore pressure is
needed.

It should be pointed out that, in certain cases, a failure surface may pass
partly through a free-draining soil, where strength is expressed appropriately in
terms of effective stress, and partly through a clay-like soil, where undrained
strength should be used. In such cases, the parameters ¢” and ¢, together with
appropriate pore pressures, apply along one portion of the surface, and the
¢ =0 or c,, ¢,-analysis with zero pore pressure applies along the other part.

For fill slopes, the total stress analysis for short-term stability is more critical
than the effective stress analysis for long-term stability because of the increase
in effective stress with time, so the total stress analysis should be made before
the effective stress analysis. For cut slopes, the effective stress analysis for long-
term stability is more critical because, when the weight removes during excava-
tion, the soil expands and generates a negative pore pressure, which gradually
dissipates with time, so the effective stress analysis should be conducted first.
Another explanation, much easier to understand, is to relate the shear strength
to the void ratio; that is, the greater the void ratio, the smaller the shear strength.
For fill slopes, the soil consolidates, and void ratio decreases with time, so the
short-term stability is more critical. For cut slopes, the soil expands, and the void
ratio increases with time, so the long-term stability is more critical.

2.3 Total Stress Analysis

Two examples are given to illustrate the total stress analysis for circular and
noncircular failure surfaces. The circular failure surface is analyzed by the well-
known Fellenius method and the noncircular failure surface by the sliding-block
method.

2.3.1 Fellenius Method

This method was original formulated by Fellenius (1936), a professor of hydrau-
lics at the (Swedish) Royal Institute who was appointed as the chairman of the
Geotechnical Commission of Swedish State Railways to investigate the cause of
landslide problems. Fig. 2-3 shows one of the many circles for which the factor
of safety is to be determined. The sliding mass is divided into 7 slices. The ith
slice has a weight, W, a length of failure surface, L, an angle of inclination, 6,
and a normal force, N;. According to the Mohr-Coulomb theory, the resisting
force in slice i is ¢,L; + N;tan¢;. Note that N; depends on the forces on the two
sides of the slice and is statically indeterminate unless some simplifying assump-
tions are made. By assuming that there are no forces on the two sides of a slice,
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Fig. 2-3. Circular failure surface

the driving force is equal to W;sin®;, which is the component of weight along
the failure surface. The factor of safety is a ratio between the resisting force
and the driving force and can be determined by

Z(C,'L,' + Ni tan(bl-)
F== (2-1)

i(Wi sin®;)
i=1

When the failure surface is circular, the factor of safety also can be defined
as the ratio between two moments. Because both the numerator and the denomi-
nator in Eq. (2-1) can be multiplied by the same moment arm, which is the radius
of the circle, it makes no difference whether the force or moment is used. In the
Fellenius method, it is assumed that the forces on the two sides of a slice are
zero, so they have no effect on the force normal to the failure surface, or

N; =W, cosb; (2-2)
Thus Eq. (2-1) becomes

Z(cibi secO; + W, cos0; tan ¢;)
F=1H - (2-3)
> W;sin6;
i=1

The method presented here is called the total stress analysis, because no
phreatic surface or pore pressure is considered. Another method, called the effec-
tive stress analysis, which involves the application of pore pressure on the failure
surface, will be presented in Section 2.4.
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Example 2.1 Fig. 2-4 shows a circular failure surface with the coordinates of
three points indicated in parentheses. The circle has a radius of 100ft (30.5m)
and a center at (0, 100). The circle intercepts the slope surface at (0, 0) and (90,
56.4). The failure mass is divided into nine slices, each with a width of 10ft
(3.05m). The soil in the slope has a cohesion of 800psf (38.3kN/m?), a friction
angle of 10°, and a total unit weight of 125 pcf (19.6kN/m’). Compute the factor
of safety by the Fellenius method.

Solution The equation of the circle is x* + (100 — y)* = R? or y = 100 — (10,000 —
x%)*?. To determine 6, differentiate the above equation with respect to x as follows:
tan 6 = dy/dx = —0.5x(10,000 — x*)**(-2) = x/(10,000 — x*)** or 6 = tan"'[x /(10,000
— x%)%°]. The height of slice & = 0.627x + (10,000 — x*)** — 100 and the weight of slice
W = 1,250h. At the centerline of each slice, as indicated by the vertical dashed
line in the right figure, Table 2-1 presents the values of x, &, 6, and W tabulated in
columns (2) to (5) and other calculated values are in columns (6) to (9). The factor
of safety can be obtained by dividing the sum in column (9) with that in column
(6), or F=109,803/66,998 = 1.639.

p Y
(0,100)
Note: All dimensions are in feet.
R = 100
(90,56.4)
1
Yy
0.627
T M
X
(0,0)

Fig. 2-4. Example 2.1

In Table 2-1, all calculations were done by hand with a pocket calculator.
Because the calculations used for each slice are all the same, it is much easier
and more accurate to solve this problem by a spreadsheet. A sample spreadsheet
is presented in Table 2-2. The formulas used for computing columns C to H of
the first slice, cell F14, cell 114, and cell D15 are:
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Table 2-1. Computations of Safety Factor by Fellenius Method
No. X h 0 W Wsin 6 cbsecH WcosOBtan¢ |(7) + (8)
(¢Y) (2 3) @ )] 6 ) ® 9
1 5 3.1 29 3,875 196 8,010 682 8,693
2 15 8.3 8.6 10,375 1,551 8,091 1,809 9,900
3 25 12.5 14.5 15,625 3,912 8,263 2,667 10,930
4 3 | 156 | 205 | 19,500 6,829 8,541 3,221 11,762
5 45 17.5 26.7 21,875 9,829 8,955 3,446 12,401
6 55 17.9 334 22,500 12,386 9,583 3,312 12,895
7 65 16.7 | 40.5 21,000 13,638 10,521 2,816 13,337
8 75 13.1 48.6 16,375 12,283 12,097 1,909 14,006
9 85 6.0 | 582 7,500 6,374 15,182 697 15,879
Sum 66,998 109,803
Note: 0 is in degrees; b = 10ft; ¢ = 800 psf; ¢ =10°.
Table 2-2. Spreadsheet for Computing Factor of Safety by Fellenius Method
A B C D E F G H I
3 No. x h 0 in radian \%Y Wsin® | cbsec® | Wcos6Otan¢ ((7) + (8)
4 o @ 3 ) (5) (6) (7) (8) )
5 1 5| 3.010 0.050 3,762 188 | 8,010 663 8,673
6 2 15| 8274 0.151 10,342 | 1,551 8,092 1,803 9,894
7 3 25 12.500 0.253 15,624 | 3,906 8,262 2,668 10,930
8 4 35| 15.620 0.358 19,525 | 6,834 8,540 3,225 11,765
9 5 45| 17.518 0.467 21,897 | 9,854 8,958 3,448 12,406
10 6 55| 18.001 0.582 22,502 | 12,376 9,579 3,314 12,893
11 7 65| 16.748 0.708 20,936 | 13,608 | 10,527 2,805 13,333
12 8 75| 13.169 0.848 16,461 | 12,346 | 12,095 1,920 14,015
13 9 85| 5973 1.016 7467 | 6,347 | 15,187 694 15,880
14 Sum 67,010 109,788
15 | Factor of safety = 1.638

Cell C5: = 0.627*B5 + SQRT(10000 — B5"2)-100
Cell D5: = ATAN(B5/SQRT(10000 — B5"2))

Cell E5: = 1250*C5

Cell F5: = E5*SIN(D5)
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Cell G5: = 8000/COS(D5)

Cell H5: = E5*COS(D5)*TAN(RADIANS(10))
Cell F14: = SUM(F5:F13) Cell 114: =SUM(I5:113)
Cell. D15: = 114/F14

Because of round-off errors, the data computed by hand are somewhat dif-
ferent from those by the spreadsheet. However, the final factor of safety should
be nearly the same. It can be seen that the spreadsheet gives a safety factor of
1.638, which is nearly the same as the 1.639 by the manual method.

2.3.2 Sliding-Block Method

Fig. 2-5 shows the free-body diagram of plane failure at the bottom of a fill. The
sliding mass is divided into two blocks. Both the normal and the shear forces on
each failure plane depend on the interacting force, P, between the two blocks
and can be determined only by considering the two blocks jointly. The lower
block has a weight, W;, and a length of failure plane, L;; the upper block has a
weight, W,, and a length of failure plane, L,. Note that ¢, is the developed friction
angle, which must be assumed. When ¢, is assumed 0, or the side force is hori-
zontal, the factor of safety is minimum and the design is on the safe side. When
the frictional resistance is developed fully, or ¢, = ¢, the factor of safety is
maximum. These provide lower and upper bounds within which the factor of
safety based on any moment and force equilibrium should lie. As can be seen
from the free-body diagram, there are four unknowns: F, P, N;, and N, With four
force equilibrium equations, two for each block, these four unknowns can be
solved.

In the original Spencer method, the angle 8, which is the same as ¢,, is con-
sidered as an unknown to be solved. Several values of 9, ranging from 0 to 0.6
rad (35°), are assumed, and the factors of safety based on force equilibrium are

Fig. 2-5. Free-body diagram of sliding blocks
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checked against those based on overall moment equilibrium. The value of §,
which gives the same factor of safety for both force and moment equilibrium,
is the correct 8 to be used. The fact that the correct 6 mostly lies between 0 and
35° may indicate that the most reasonable assumption to be used is tan¢, =
(tano)/F, or

04 =tan™ (%) (2-4)

More about the sliding-block analysis is presented in Sections 6.4 and 6.5.

Example 2.2 Fig. 2-6 shows a fill with the coordinates indicated in parentheses.
The failure mass is divided into two sliding blocks. To be on the safe side, it is
assumed that the force between the two blocks is horizontal. If the soil has a
cohesion of 500 psf (23.9kN/m?), a friction angle of 15°, and a total unit weight
of 120 pcf (18.9kn/m’), determine the factor of safety.

Solution From the dimensions shown in the figure, W; = 0.5 x 45 x 90 x 120 =
243,0001b, L, = 90ft, W, = 0.5 x 45 x 65 x 120 = 175,5001b, L, = [(65)* + (45)*]>° =
79.1ft, and o = tan™(45/65) = 34.7°.

First consider the left block, or block 1. The equilibrium of forces in the ver-
tical direction requires N; = W; = 243,0001b. In the horizontal direction, P =T, =
(cL; + Nytan o) /F = (500 x 90 + 243,000 x tan15°)/F = 110,112/F.

Next, consider the right block, or block 2. The equilibrium of forces in the
normal direction requires N, = Psin o + W,cos o = 110,112 x sin34.7°/F + 175,500
X c0s34.7°, or

_ 62,685

N, +144,286 (2-5)

In the tangential direction, Pcosa + T, = W,sina, or

110,112 X cos 34.7° N 500%x79.1+ N, tan15°
F F

=175,500 x sin 34.7° (2-6)

(90,45) (155,45) .
} P P “2D T»
' A I’Wl ;

(0,0) (20,0) VT N
0 NJ ’ :

Note: All coordinates are in feet.

Fig. 2-6. Example 2.2
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Substituting N, from Eq. (2-5) into Eq. (2-6) and simplifying, the following
quadratic equation is obtained:
F?-1.689F-0.168=0 (2-7)

or

 1.689+4/(1.689)2 + 4% 0.168 _ 1.689+1.877
- . -

F =1.783 or-0.094

A negative factor of safety of —0.094 is unreasonable and is therefore rejected,
so the factor of safety is 1.783.

2.4 Effective Stress Analysis

Eq. (2-1) is based on the total stress analysis, which does not include the effect
of pore pressures. In the effective stress analysis, three cases need to be consid-
ered: steady-state seepage, rapid drawdown, and earthquake.

2.4.1 Steady-State Seepage

Fig. 2-7 shows the slope with a phreatic surface. The effective normal force, N’;,
is equal to the total normal force, N;, minus the neutral force, or the force due to

- ___-ff—'-l——
" Ni\ N'i =N; - %hyib;seco;
\

_— 198\
Niy

\ Zwhuibjseco;

S

Fig. 2-7. Effect of phreatic surface
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water pressure, Y,h,bisecO;. The use of v,h;, as the pore pressure at the failure
surface is an approximation by assuming that the water is stationary with a water
level at a distance of h;, above the failure surface. The validity of this assumption
will be discussed in Section 4.1.3. In terms of effective stress, the Mohr-Coulomb
theory can be represented by

s=c'+0,tan¢’ (2-8)

in which ¢’ = effective cohesion, o; = effective normal stress, and ¢’ = effective
angle of internal friction. Therefore, Eq. (2-1) for a circular failure surface can be
written in terms of effective stress as

n

Z(C'L,- + N/tan¢’)
F=*= (2-9)

n

Y (W;sin®,)

i=1

and

N/ =W, cos0; — v, h,b; sech; (2-10)

in which h,; = height of phreatic surface above the base of the slice, and b; = width
of the slice. Eq. (2-10) is used in the Fellenius method and sometimes yields
unreasonable results, because when 0 is large, say greater than 45°, N/ may
become negative.

Example 2.3 Same as Example 2.1 except that the soil has an effective cohesion of
200 psf (9.6kN/m?) and an effective friction angle of 35°, and also that a phreatic
surface is parallel to the slope surface and located at a distance of 5ft (1.52m) be-
low, as shown in Fig. 2-8. Determine the factor of safety by the Fellenius method.

Solution The solution is presented in Table 2-3.

1
e

Fig. 2-8. Example 2.3
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Table 2-3. Effective Stress Analysis by Fellenius Method

No. X h 0 144 Wsin6 cbsecH N’tan¢ (7) + (8)
1) 2) ©) (4) Q) (6) ) 8) )
1 5 3.1 29 3,875 196 2,003 2,710 4,713
2 15 8.3 8.6 10,375 1,551 2,023 5,726 7,749
3 25 12.5 14.5 15,625 3,912 2,066 7,207 9,273
4 35 15.6 20.5 19,500 6,829 2,135 7,845 9,980
5 45 17.5 26.7 21,875 9,829 2,239 7,570 9,809
6 55 18.0 334 22,500 12,386 2,396 6,349 8,745
7 65 16.8 40.5 21,000 13,638 2,630 4,401 7,031
8 75 13.1 48.6 16,375 12,283 3,024 2,231 5,255
9 85 6.0 58.2 7,500 6,374 3,795 1,938 5,733

Sum 66,998 68,288
Note: b=10ft; c =200psf; § =35° W=1,250h

Except for columns (8) and (9), the table is the same as Table 2-1. The effective
normal force, N’, is determined by Eq. (2-10). If h < 5ft, N' = Wcos®. If h > 5ft,
N’ = Wcos0 — 624(h — 5)/cos6. The factor of safety can be obtained by divid-
ing the sum in column (9) with that in column (6), or F = 68,288/66,998 = 1.019.
Because the phreatic surface is 5ft below the slope surface, all values of N” are
positive. If the phreatic surface is on the slope surface, for slice 8 with 6 of 48.6°,
N’=16,375 x c0s48.6° — 624 x 13.1/c0s48.6° = —1,5321b. This clearly indicates the
difficulty of using the Fellenius method.

To avoid the negative effective normal stress, N’, many engineers have used
the more conventional concept of the submerged or effective weight, W/, by
considering

N/ =W/cos0; =(W; — ¥ ,h.b;)cos6; (2-11)

The use of Eq. (2-11) for stability analysis is called the normal method, because
the normal practice in soil mechanics for computing the effective stress under a
soil overburden is to use the total unit weight, v, if the soil is above the water
table, and the submerged unit weight, y — v, if the soil is below the water table.
Based on this concept, W/=b;(h; — hi )Y + bl (Y — Yo ) = W0ili = YV hwibi = Wi = ¥ hiwib;,
which is the same as expressed in Eq. (2-11). It can be seen that the normal
method is exactly the same as the Fellenius method when there is no pore pres-
sure. With pore pressures, the normal method generally yields a factor of safety
slightly greater than the Fellenius method.



Mechanics of Slides 35

Example 2.4 Same as Example 2.3 but determine the factor of safety by the
normal method.

Solution The solution is presented in Table 2-4, in which columns (1) to (7) are
the same as in Table 2-1. The effective weight, W’, is computed as follows: if
h<5ft, W =W;if h>5ft, W =5by+ b(h — 5)(y— V) = 6,250 + 626(h — 5). The factor
of safety can be obtained by dividing the sum in column (10) with that in column
(6), or F =78,905/66,998 = 1.178, which is slightly greater than the 1.019 by the
Fellenius method.

Table 2-4. Effective Stress Analysis by Normal Method

No. «x h 6 144 Wsin® cbsecH w’ W cosOtand’”  (7) +(9)
4)) 2 ) @ (5) (6) ?) 8 (L)) (10)
1 5 3.1 29 3,875 196 2,003 3,875 2,710 4,713
2 15 8.3 8.6 10,375 1,551 2,023 8,315 5,757 7,780
3 25 125 145 15,625 3912 2,066 10,945 7,420 9,486
4 35 156 205 19,500 6,829 2,135 12,886 8,451 10,586
5 45 175 267 21,875 9,829 2239 14,075 8,805 11,044
6 55 180 334 22500 12,386 2,396 14,388 8,411 10,807
7 65 168 405 21,000 13,638 2,630 13,637 7,261 9,891
8 75 131 486 16,375 12,283 3,024 11,321 5,242 8,266
9 85 6.0 582 7,500 6,374 3,795 6,876 2,537 6,332

Sum 66,998 78,905
Note: b=10ft; c =200psf; ¢ =35°; W=1,250h

2.4.2 Rapid Drawdown

Rapid drawdown is usually the most critical situation in the design of earth
dams. The downstream slope is controlled by the case of steady-state seepage,
but the upstream slope is controlled by the case of rapid drawdown. As shown
in Fig. 2-9, the phreatic surface under rapid drawdown is along the dashed line,
as well as along the surface of both slopes. The phreatic surface on the

water level before drawdown

water level after
drawdowmn =
‘&.._________,_..—-’

Fig. 2-9. Phreatic surface for rapid drawdown
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downstream side is used for steady-state seepage and on the upstream side for
rapid drawdown. Because more of the sliding mass is under water, the upstream
slope is more critical than the downstream slope.

It should be noted that rapid drawdown occurs only in earth dams with
permanent impoundment but not in road embankments subjected to occasional
flooding. For clayey soils, it takes many years to develop a steady-state phreatic
surface and, without such a phreatic surface inside the embankment, the condi-
tion of rapid drawdown never will occur. For granular soils, the phreatic surface
inside the embankment will recede as fast as the flood, and no rapid drawdown
need be considered.

This method of analyzing rapid drawdown for long-term stability is quite
conservative. It is based on the assumption that there is no change in the effective
stress during and after the drawdown. In fact, the effective stress will increase
because, first, the soils in an earth dam are supposed to be well compacted, so a
sudden change in stress because of the lowering of water level in the pond will
cause the soils to dilate, thus increasing the effective stress. Second, the soils are
located so close to the surface that some consolidation will occur during the
period of rapid drawdown.

If rapid drawdown takes place during or at the end of construction, the
undrained shear strength used for short-term stability analysis before drawdown
also can be used for that after drawdown.

2.4.3 Earthquake Consideration

In the case of earthquake, a horizontal seismic force is applied at the centroid of
each slice, as shown in Fig. 2-10. The seismic force is equal to C,W;, where C; is
the seismic coefficient and ranges from 0 to 0.4 or more, depending on the geo-
graphic location, and W; is the weight of the slice. With seismic force, Eq. (2-9)
can be written as

1~ |
|- “-“-‘_h‘-"‘--._

—_x%
T
|

|Wi
|

L —

Fig. 2-10. Driving force due to earthquake
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Z(C’bi secO; + Nitan¢’)
F=+£l (2-12)
> (W;sin®, +C.Wia;/R)

i=1

in which b; = width of the slice, 2; = moment arm, and R = radius of the circle.
By using the normal method,

Z[C’b,' secB; + W/cos9; tan ¢’]
F= =1 - (2-13)
. (W;sin®; + C.Wa,/R)

i=1

in which W/ = submerged weight of the slice.

In the lack of detailed local earthquake information, several maps can be
found in the literature to determine the seismic coefficients in the continental
United States. The earliest map was presented by Algermissen (1969), as shown
in Fig. 2-11.

3

LEGEND

Zone 0 - No damage g

Zone 1 - Distant earthquakes with fundamental periods greater than 1.0 seconds
may cause minor damage; corresponds to intensities V and VI on the
Modified Mercalli intensity scale.

Zone 2 - Moderate damage; corresponds to intensity VIl on the Modified Mercalli
intensity scale.

Zone 3 - Major damage; corresponds to intensity VIIl and higher on the Modified

Mercalli intensity scale.

Fig. 2-11. Seismic zone map of the continental United States (Algermissen 1969)
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The map is divided into four zones, Zone 0, Zone 1, Zone 2, and Zone 3, with
seismic coefficients, C,, from 0, 0.025, 0.05, to 0.10-0.15 for each zone. Neumann
(1954) modified these coefficients, based on an average epicenter of 15mi (24 km),
and used Eq. (2-14) to determine the seismic coefficients, as shown in Table 2-5.

_log™[0.267 + (MM —1)x 0.308]
980

in which MM is the Modified Mercalli intensity scale.

Fig. 2-12 is a newer map published by the Applied Technology Council
(1978). In this publication, a large map, including every county of the 50 states
and U.S. territories, is divided into seven areas, each with a different color so the
value of seismic coefficients can be found easily.

(@ (2-14)

Table 2-5. Seismic Coefficients Corresponding to Each Zone

INTENSITY OF MODIFIED AVERAGE SEISMIC
ZONE MERCALLI SCALE COEFFICIENT REMARK
0 — 0 No damage
1 Vand VI 0.03 to 0.07 Minor damage
2 VII 0.13 Moderate damage
3 VIII and higher 0.27 Major damage

Note: Number on contours is 3 Y
the seismic coefficient in terms of 2
effective peak acceleration. f

Fig. 2-12. Seismic coefficients of the continental United States (Applied Technology
Council 1978)
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An earthquake probability map was published recently by the U.S. Geologi-
cal Survey (Petersen et al. 2008). This map uses the seismic coefficient as an
indicator for earthquake with a 90% probability not likely to be exceeded in 50
years. The map was printed in color to show the seismic coefficients in different
parts of the continental United States, as presented in Section 1.7 of the compan-
ion volume.

The earthquake analysis presented here is called the psuedostatic method.
For high-risk dams in seismically active regions or with fine-grained soils sub-
jected to liquefaction, more sophisticated dynamic analyses, as suggested by
Seed et al. (1975a, 1975b), should be used.

The effective stress analysis is applicable only to granular materials or fine-
grained soils with a degree of saturation less than 70%, so there is no change in
pore pressure during an earthquake. If the seismic excitation causes a significant
change in pore pressure, total stress analysis should be used. Total stress analysis
should also be used if the earthquake takes place during or at the end of con-
struction. Following the findings of Makdisi and Seed (1978), most authorities
recommend that 80% of the static shear strength should be used for pseudostatic
analysis and that the minimum required seismic factor of safety might range
from 1 to 1.15.

2.5 Factors of Safety

In the stability analysis of slopes, many design factors cannot be determined with
certainty. Therefore, a degree of risk should be assessed in an adopted design.
The factor of safety fulfills this requirement. The factor should take into account
not only the uncertainties in the design parameters but also the consequence of
failure. Where the consequences of failure are slight, a greater risk of failure or
a lower factor of safety may be acceptable.

The potential seriousness of failure is related to many factors other than the
size of the project. A low dam located above or close to inhabited buildings can
pose a greater danger than a high dam in a remote location. Often, the most
potentially dangerous types of failure involve soils that undergo a sudden release
of energy without much warning. This is true for soils subjected to liquefaction
that have a low ratio between the residual and peak strength. For earth slopes
composed of intact homogeneous soils, when the strength parameters have been
chosen on the basis of good laboratory tests and a careful estimate of pore pres-
sure has been made, a safety factor of at least 1.5 is commonly employed (Lambe
and Whitman 1969). With fissured clays and for nonhomogeneous soils, larger
uncertainties generally will exist, and more caution is necessary.

The factors of safety suggested by the U.S. Army Corps of Engineers (USACE
1986) are listed in Table 2-6. The factors of safety presented in Table 2-6 may be
modified under the following conditions:

1. For slopes where either sliding or large deformations have occurred, and
back-analyses have been performed to establish design shear strengths,
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Table 2-6. Factors of Safety Recommended by U.S. Army Corps of Engineers
(USACE 1986)

End of Long-Term Rapid
Types of Slopes Construction Steady Seepage Drawdown®
Slopes of dams, levees, and dikes, and 1.3 15 1.0-1.2
other embankment and excavation
slopes

°F = 1.0 applies to drawdown from maximum surcharge pool, for conditions where these water
levels are unlikely to persist long enough to establish steady seepage. F = 1.2 applies to
maximum storage pool level, likely to persist for long periods prior to drawdown. For slopes
in pumped storage projects, where rapid drawdown is a normal operating condition, a higher
factor of safety (e.g., 1.3 to 1.4) should be used.

a lower factor of safety may be used. In such cases, probabilistic analyses
may be useful in supporting the use of lower factors of safety for design.
Lower factors of safety also may be justified when the consequences of
failure are small.

2. Temporary excavated slopes are sometimes designed only for short-term
stability, with knowledge that long-term stability would be inadequate.
Special care, and possibly higher factors of safety, should be used in such
cases.

3. The factors of safety are based on experience and are applicable only to
U.S. Army Corps of Engineers projects, where methods of exploration,
testing, and analysis are consistent and the degree of uncertainty does not
vary widely. For other situations involving different engineering prac-
tices, the factors of safety shown in Table 2-6 may not be appropriate.

Table 2-7 shows the factors of safety suggested by various sources for mining
operations (D" Appolonia Consulting Engineers 1975; Federal Register 1977; Mines
Branch, Canada 1972; National Coal Board 1970). All of these stipulations are
based on the assumptions that the most critical failure surface is used in the
analysis, that strength parameters are reasonably representative of the actual
case, and that sufficient construction control is ensured.

Summary

1. There are three types of failure surface: circular, noncircular, and compos-
ite. The composite failure surface is mainly circular, but when the circle
intercepts a weak soil layer, the failure surface will follow the bottom of
the weak layer, so part of the circular failure surface is replaced by one or
more plane failure surfaces. If the weak layer extends to the surface of the
slope, the failure surface also will appear on the slope surface.
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Table 2-7. Factors of Safety Suggested for Mining Operations

UNITED STATES (FEDERAL REGISTER, 1997) MINIMUM SAFETY FACTOR
I End of construction 1.3
I Partial pool with steady seepage saturation 1.5
I Steady seepage from spillway or decant crest 1.5
v Earthquake (cases II and III with seismic loading) 1.0
SUGGESTED MINIMUM
FACTORS OF SAFEY WITH

UNITED STATES (D’APPOLONIA CONSULTING HAZARD POTENTIAL

ENGINEERS, INC,, 1975) High Moderate Low

Designs based on shear strength parameters 15 14 1.3
measured in the laboratory

Designs that consider maximum seismic acceleration 1.2 1.1 1.0
expected at the site

FACTOR OF
SAFETY
BRITAIN (NATIONAL COAL BOARD, 1970) W
(1) For slip surfaces along which the peak shear stress is used. 1.5 1.25
(2) For slip sufaces passing through a foundation statum that is at its 135 115

residual shear strength (slip circles wholly within the bank should
satisfy (1))

(3) For slip surfaces passing along a deep vertical subsidence crack 135 115
where no shear strength is mobilized and that is filled with water
(slip surfaces wholly within intact zones of bank and foundations
should satisty (1)).

(4) for slip surfaces where both (2) and (3) supply. 1.2 1.1
FACTOR OF
SAFETY
CANADA (MINES BRANCH, CANADA, 1972) W
Design is based on peak shear strength parameters 1.5 1.3
Design is based on residual shear strength parameters 1.3 1.2
Analyses that include the predicted 100-year return period accelerations 1.2 1.1

applied to the potential failure mass

For horizontal sliding on base of dike in seismic areas asuming shear 1.3 1.3
strength of the fine refuse in impoundment reduced to zero

*where there is a risk of danger to persons or property
**where no risk of danger to persons or property is anticipated
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2. Examples are given to illustrate the Fellenius and normal methods for
determining the factor of safety, using the method of slices. Both methods
can be performed easily by hand calculations with a pocket calculator.
Because of the repeated applications of the same formula to each slice, it
is more convenient to solve a problem by the use of a spreadsheet.

3. The difference between the Fellenius and the normal methods lies in the
treatment of pore pressure for determining the effective normal stress on
the failure surface. When the failure surface inclines at a steep angle with
the horizontal, the effective normal stress obtained by the Fellenius meth-
od may become negative. To avoid this unreasonable occurrence, the nor-
mal method uses the submerged unit weight to compute the effective
stress, instead of the pore pressure. If there is no seepage, both methods
are identical. Otherwise, the factor of safety obtained by the normal meth-
od is slightly greater than that by the Fellenius method.

4. Sliding-block analysis, which only satisfies force equilibrium, can be used
for simple cases of noncircular failures consisting of no more than three
failure planes. The factor of safety depends on the angle of internal fric-
tion between the two blocks, and the greater the angle, the greater the
factor of safety. The assumption of no friction between the two blocks
gives the smallest factor of safety and the most conservative design.

5. Two types of analysis can be performed: total stress analysis for short-
term stability and effective stress analysis for long-term stability. The total
stress analysis is based on the undrained shear strength and includes s,-
analysis for saturated soils and c,, ¢,-analysis for partially saturated soils.
Because the effect of pore pressure has been considered already in deter-
mining the shear strength, no pore pressure should be used in the analy-
sis. The effective stress analysis is based on the drained shear strength
and also is called ¢/, ¢"-analysis. Instead of drained tests, the effective
shear strength parameters, ¢’ and ¢, usually are determined by consoli-
dated undrained tests with pore pressure measurements.

6. For fill slopes, the total stress analysis for short-term stability is more crit-
ical than the effective stress analysis for long-term stability, so the total
stress analysis should be undertaken before the effective stress analysis.
For cut slopes, the effective stress analysis for long-term stability is more
critical than the total stress analysis for short-term stability, so the effec-
tive stress analysis for long-term stability needs to be performed first. In
many cases, the total stress analysis is not needed unless some wet, fine-
grained soils with a degree of saturation in the range of 70% or higher are
encountered.

7. The pore pressure on the failure surface can be obtained by multiplying
the depth below the phreatic surface with the unit weight of water. Theo-
retically, this definition of pore pressure is not correct because the pore
pressure should represent the piezometric surface; that is, the water level
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in a piezometric tube located at the failure surface. However, because of
the gentle slope of the phreatic surface, the difference between the phreat-
ic and piezometric surfaces is quite small, and the use of the phreatic
surface is on the safe side.

The effective stress analysis can be used to analyze rapid drawdown by
assuming that there is no change in effective stress after the drawdown. If
rapid drawdown takes place during or at the end of construction, the
undrained shear strength used for short-term stability also can be used
for the analysis of rapid drawdown.

The seismic factor of safety is based on the psuedostatic method using a
seismic coefficient. For silty soils susceptible to liquefaction, or for high-
risk dams in seismically active regions, more sophisticated dynamic anal-
yses should be used. A lower shear strength, say 80% of the static shear
strength, and a lower acceptable factor of safety, say 1.1 to 1.15, may be
used for pseudostatic analysis.

The factor of safety required for a given project should take into account
not only the uncertainties in design parameters but also the consequence
of failure. Where the consequences of failure are slight, a greater risk of
failure or a lower factor of safety may be acceptable. The minimum re-
quired factors of safety for several agencies are presented. The minimum
factor of safety established by one agency may be different from another
because of differences in engineering practices in exploration, testing,
and analysis.

Problems

2.1

Fig. P2-1 shows the cross section of a fill. Because a thin layer of weaker
material with a cohesion of 160 psf and a friction angle of 24° exists at the
bottom of the fill, the potential failure surface is noncircular along the bot-
tom of the fill. If the fill has a total unit weight of 125pcf and there is no
friction between the two sliding blocks, determine the factor of safety.
[Answer: 1.472]

(100.60) (160,60)

Mote: All coordinates
are in feet.

Fig. P2-1.
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2.2

2.3

24

2.5

Solve Example 2.3 by the use of a spreadsheet.
[Answer: 1.022]

Solve Example 2.4 by the use of a spreadsheet.
[Answer: 1.180]

Fig. P2-4 shows the dimensions of the slope and the location of the failure
circle and the phreatic surface. The soil has a cohesion of 200 psf, a friction
angle of 30°, and a total unit weight of 125pcf. If the failure mass is di-
vided into eight slices, determine the factor of safety by the Fellenius
method.

[Answer: 1.029]

(110.110)

Mote: All coordinates
are in feet.

surface

(160,0)

Fig. P2-4.

Same as Problem 2.4, but determine the factor of safety by the normal
method.

[Answer: 1.208]



Chapter 3

Shear Strength

Shear strength is one of the most important factors that affect the factor of safety.
A subsurface investigation is needed to determine the nature and extent of mate-
rials underground, the location of the sites for field tests, and the collection of
representative samples for laboratory tests. The use of field tests, such as stan-
dard penetration, Dutch cone, piezocone penetration, and vane shear—together
with laboratory direct shear and triaxial compression tests to determine the shear
strength of soils—is described. Also presented are the ranges of shear strength
for various materials, including municipal wastes, and correlations of effective
friction angle or undrained shear strength with other index properties, such as
plasticity index, liquid limit, and percent of clay. Other subjects include the shear
strength of granular soils with a curved strength envelope, and the back-
calculation of shear strength from failed slopes.

3.1 Subsurface Investigations

The shear strength of soils can be determined by field or laboratory tests. No
matter what tests are used, it is necessary to conduct an overall geologic appraisal
of the site, followed by a planned subsurface investigation. The purpose of the
subsurface investigation is to determine the nature and extent of each type of
material that may have an effect on the stability of the slope. For simple cases,

45
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a detailed knowledge of the slope from toe to crest is essential. For more complex
cases, knowledge outside of this zone also should be considered. Fills situated
over a deep layer of clays and silts may merit expensive drilling. Auger holes,
pits, or trenches will suffice for smaller fills or those with bedrock only a short
distance below the surface.

The log of boring forms the permanent record used for design. Either dis-
turbed or undisturbed samples can be taken while boring. To obtain reliable
results, the strength parameters should be determined from undisturbed or
remolded samples. However, the effective strength parameters of saturated gran-
ular soils and silt clays are not affected significantly by the moisture content
and density, so disturbed samples may be used for the direct shear test to deter-
mine the effective strength. It is difficult to generalize the appropriate number,
depth, and spacing of borings required for a project as these will depend
on a variety of factors, such as site conditions, size of the project, among others.
Often the final location of borings should be made in the field, and additions
must be made to the boring program based on the information from the boring
already completed. During boring, the depth to the groundwater table also
should be determined.

3.2 Field Tests

There are a variety of field tests for determining the shear strength of soils in the
tield. However, only the standard penetration test, the Dutch cone test, the piezo-
cone test, and the vane shear test will be discussed here. These tests are appli-
cable to soils free from substantial gravel or cobble-sized particles.

3.2.1 Standard Penetration Test

This test also is used to collect soil samples. When a borehole is extended to a
given depth, the drill tools are removed and a standard split-spoon sampler is
lowered to the bottom of the borehole. The sampler is driven into the soil by a
140-1Ib (623-N) hammer with a 30-in. (0.76-m) drop. The number of blows required
for the spoon to penetrate three 6-in. (152-mm) intervals is recorded. The stan-
dard penetration number, generally referred to as the N-value, is obtained by
adding the blow counts for the last two intervals. The sampler then is removed,
and the soil sample is recovered, placed in a glass jar, and shipped to the labora-
tory. The method is specified by ASTM D1586 “Standard Test Method for Pen-
etration Test and Split-Barrel Sampling of Soils” (ASTM 2010).

For sands, Fig. 3-1 gives a relationship between effective friction angle, ¢’,
and N-value based on the effective overburden pressure, 6;,, during the field
test. If there is no water table, the effective overburden pressure is equal to the
depth below the ground surface multiplied by the total unit weight of the soil.
If part of the overburden is below the water table, the submerged unit weight
should be used for the overburden below the water table.
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N-VA LU

SPT BLOWCOUNT,

EFFECTIVE OVERBURDEN, Ovo, isf

Fig. 3-1. Blow count versus effective friction angle for sand (Schmertmann 1975.
Reproduced with permission)
Note: 1tsf=95.8kN/m?

Example 3.1 A standard penetration test was performed on sand at a depth of
15ft (4.6m) below the ground surface. The water table is located 10ft (3.05m)
below the surface. The soil has a total unit weight of 125 pcf (19.6kN/m?). If the
N-value obtained from the test is 14, determine the effective friction angle of
the soil.

Solution Effective overburden pressure o7, =[10x125+5x (125 — 62.4)]/2,000
=0.78 tsf. From Fig. 3.1, ¢’ = 39°.

For clays, Fig. 3-2 shows the correlation between the standard penetration
test and the unconfined compressive strength. The undrained shear strength, s,,
is equal to one-half of the unconfined compressive strength, g,,.

If the clay normally is consolidated with N < depth in feet/5 (depth in
meters/1.5), Schmertmann (1975) suggests

su(tsf) =N /15 3-1)

su(kN/m?) > 6.AN (3-2)

in which s, = undrained shear strength and N = blow count per foot of
penetration.

It is worthy of note that blow count is not a reliable method for determining
the shear strength of clays. The use of this method should proceed with caution,
and check some samples with the laboratory unconfined compression tests.
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Fig. 3-2. Blow count versus unconfined compressive strength for clays
(U.S. Navy 1971)
Note: 1tsf=95.8kN/m’

Example 3.2 The standard penetration test on a silty clay gives a blow count of
8 at a depth of 50ft (15.3 m) from the ground surface. If the silty clay is of medium
plasticity, determine the undrained shear strength.

Solution Given N = 8 and clay of medium plasticity, from Fig. 3-2, unconfined
compressive strength g, = 1.3tsf. The undrained shear strength is equal to one-
half of the unconfined compressive strength, so s, = 0.5 x 1.3 = 0.65 tsf.

If Eq. (3-1) is used, the depth of the borehole must be greater than 5N, or 40 ft.
The actual depth is 50ft, so Eq. (3-1) is valid. From Eq. (3-1), s, = 8/15 = 0.53 tsf,
which compares with 0.65tsf from Fig. 3-2. The discrepancy is expected, because
these empirical correlations are approximate at best. As can be seen from Fig.
3-2, the unconfined compressive strength for clays of low plasticity is 3.3 times
greater than those of high plasticity, so a small change in plasticity will have a
large effect on the undrained shear strength.

3.2.2 Dutch Cone Test

This test, originally developed by the Dutch engineer P. Barentsen (Broms and
Flodin 1988), has been used for soil exploration since the early 1930s. A 60° cone
with a base area of 1.55in.? (10 cm?) is pushed into the ground at a steady rate of
about 0.8in./s (20mm/s). The resistance to the penetration of the cone and the
frictional resistance of the sleeve are measured. The test also is called the cone
penetration test (CPT) and does not require the drilling of a borehole. Electrical
versions were developed in late 1940s by the Delft Soil Mechanics Laboratory,
which offered continuous measurements of tip resistance and sleeve friction with
depth and direct strip chart plotting of the sounding record.
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Based on the CPT calibration tests from five sands, Robertson and Campan-
ella (1983) proposed the following expression for the peak friction angle of clean
quartz sand:

’
vo

¢’ =tan™ [0.1 +0.38 log( e H (3-3)

in which g. = cone resistance and 67, = effective overburden pressure. Eq. (3-3)
can be used to plot the chart shown in Fig. 3-3.

Another expression derived from calibration tests of 24 sands was proposed
by Kulhawy and Mayne (1990):

o' =17.6+ 11[1og(ij ~05 1og("”“ ﬂ (3-4)
Pa Pa

in which p, = atmospheric pressure, or 1.06 tsf.

g k\\\\\‘:\“

g - \\\\ B
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% 35 _\'\t\ \ \ \42
K 32‘3.:.\35. ).33' \\.:0__ ' \

Cone resistance. tsf

Fig. 3-3. Cone resistance versus effective friction angle for sands
(Robertson and Campanella 1983. Reproduced with permission from 10S Press)
Note: 1tsf=95.8kN/m’

Example 3.3 When the Dutch cone penetrates to a sand deposit at a depth of
35ft (10.7m) below the ground surface, the recorded cone resistance is 100 tsf
(9.6 MN/m?). If the total unit weight of sand is 130 pcf (20.5kN/m?) and the water
table is 10ft (3.1 m) below the ground surface, estimate the effective friction angle
of the sand.
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Solution The effective overburden pressure o7, =10x130+25x(130-62.5)
=2,987.5 psf or 1.49tsf. Given g, = 100tsf, from Fig. 3-3, ¢’ = 39°, which checks
with the 38.5° from Eq. (3-3), or ¢’ = tan™'[0.1 + 0.38 log(100/1.49)] =38.5°.

If Eq. (3-4) is used, ¢"=17.6 + 11 x[log(100/1.06) — 0.5 x log(1.49/1.06)] = 38.5°,
which is the same as from Eq. (3-3).

For clays, the correlation between the cone resistance and the undrained
shear strength depends on the overconsolidation ratio, which is the ratio between
the maximum precompression and the existing overburden pressure. An equa-
tion used by many engineers for clays that are not highly sensitive with an
overconsolidation ratio less than 2 and a plasticity index greater than 10 is
(Schmertmann 1975),

c Gz’m
S, = qT (3-5)

Drnevich et al. (1974) showed that

s, = 0.8 x friction sleeve resistance (3-6)

3.2.3 Piezocone Penetration Test

The curves presented in Fig. 3-3 are designed for cohesionless sand but are also
applicable to fine-grained soils with a small cohesion. However, it may not be
used for clayey soils because the penetration of the cone will generate consider-
able excess pore pressures, which affect significantly not only the load applied
to the cone but also the effective stress in the soil. The introduction of the piezo-
cone in the mid 1970s permits the simultaneous measurements of cone resistance,
q., sleeve friction, f,, and pore pressure, u;, and provides new possibilities for soil
identification and classification and the interpretation of soil parameters. This
type of CPT with pore pressure measurements is called CPTU and is specified
by ASTM D5778 “Standard Test Method for Performing Electric Friction Cone
and Piezocone Penetration Testing of Soils” (ASTM 2010).

Piezocones are normally available in two standard sizes: (1) a 35.7-mm (1.4-
in.) diameter version with cone area A. = 10cm? (1.55in.?) and sleeve area A, =
150cm? (23.3in.%), and (2) a 44-mm (1.75-in.) diameter version with A, = 15cm?
(2.33in.?) and sleeve area A, =200 to 300 cm? (31 to 46.5in.%). Although the 10-cm?
(1.55-in.%) version is the original standard size, many commercial firms have
found that the 15-cm? (2.33-in.?) version is stronger for routine profiling and is
more easily outfitted with additional sensors for specific needs. Because the rod
size is normally 35.7mm (1.4in.) in diameter, the 15-cm? (2.33-in.?) cone also tends
to open a larger hole and thus reduce side rod friction during pushing. Fig. 3-4
shows a schematic of a piezocone and its calibration. This figure actually is
divided into four parts and described as follows:
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In Fig. 3-4(a), when the rod is pushed downward, the cone and the friction
sleeve also will move down, so the direction of the reactive forces P, beneath
the cone and P;around the sleeve is upward. The two strain gauges at the lower
location are used to measure P. and the other two gauges at the higher loca-
tion to measure P, + P. Knowing P, and P. + P;, P; can be obtained by sub-
traction. Division of P, by the area of the cone, A, gives the cone resistance,
g, and the division of P; by the surface area of sleeve gives the sleeve friction,
f.. Note that pore pressure has not been considered in these definitions of 4.
and f,.

Fig. 3-4(b) illustrates the effect of pore pressure on g, and f,. Because the cone
and the friction sleeve are two different pieces separated by a small space, pore
pressures will exert on the top of the cone and the bottom of the sleeve, as indi-
cated by the two arrows identified by u; in the figure. The total pore pressure,
u;, consists of the hydrostatic pore pressure, 1, due to the phreatic surface and
the excess pore pressure, Au, due to penetration of the cone, or

Uy =U, +Au (3-7)
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Fig. 3-4. Schematic and calibration of a piezocone
Note: 1tsf=95.8kN/m’
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The downward pore pressure on the cone increases the cone resistance from
g. to gy, or

3: = qe +(ACI; A )ut =q, +(1—%juf =q.+1-a,)u, (3-8)

C C

in which A, = area of cone with a diameter of d., A; = area with a diameter of d,,
and a, = net area ratio.

The upward pore pressure on the friction sleeve decreases the frictional
resistance from f; to f;, or

a2 —d?
4d_ h

ft=fs—( )ut=fs—bnut (3-9)
in which &, = height of friction sleeve and b, = cross section and surface area ratio.
Although values of 4, and b, can be computed from the dimensions of the piezo-
cone, as shown in Egs. (3-8) and (3-9), it is more accurate and reliable to calibrate
them directly in a triaxial chamber.

Fig. 3-4(c) demonstrates the calibration of u; and 4. under various chamber
pressures, 6;. The u, registered by the pressure transducer should be equal to c;,
as expected. The plot of g, versus o; results in a straight line with a slope a, of
0.581, because the g. registered by the lower strain gauges represents the differ-
ence in pore pressure at the top of the cone relative to that at the bottom,
expressed as an area ratio A;/A..

Fig. 3-4(d) illustrates the calibration of f,. The slope of the straight line gives
a b, of 0.014. Given g, and f;, together with the calibrated 4, and b,, the corrected
g: and f, can be computed by Egs. (3-8) and (3-9), respectively.

The following procedures for determining the effective friction angle of both
granular and fine-grained soils were developed by the Norwegian Institute of
Technology, as reported by Senneset et al. (1989).

The effective shear strength of fine-grained soils can be approximated
by a straight line, as shown in Fig. 3-5. The negative intercept at the normal
stress axis is called the effective attraction, a’, which is related to the effective
cohesion by

¢’=a’tan ¢’ (3-10)

h

/

]

Fig. 3-5. Effective shear strength of fine-grained soils
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For a given type of soil, the effective friction angle, ¢’, depends on two dimen-
sionless parameters: cone resistance number, N,, and pore pressure ratio, B,,
defined as

l% — Oy

N, = 3-11
oL t+a’ ( )
and
U —Uu,
B =—t_~° 3-12
" —ouw (3-12)

in which g, = corrected cone resistance, 6,, = total overburden pressure, oy, =
effective overburden pressure, 1, = measured pore pressure, 1, i= initial pore
pressure due to phreatic surface, and a’ = effective attraction. The effective attrac-
tion can be obtained from the CPTU records by plotting 7, versus g; — G, as
indicated by Eq. (3-11) and Fig. 3-6. This method is applicable when relatively
homogeneous soil deposits or layers are encountered.

In cases where such estimates cannot be obtained, it is suggested that typical
values from triaxial tests on similar soils be used, as shown in Table 3-1. Table
3-1 also gives the typical ranges of shear strength parameters for some common
soil types and may be useful for evaluating the parameter values interpreted
from CPTU data. The soil type can be identified from g, and B, by Fig. 3-7.

Fig. 3-8 can be used to determine tan ¢’ for three different types of soil, based
on the values of N, and B,.

Mayne and Campanella (2005) indicated that the charts for most soils with
a small cohesion, as shown in Fig. 3-8(a), can be approximated by

o’(in degrees) = 29.5B'*'[0.256 + 0.336B, +log N ,.] (3-13)

Eq. (3-13) is applicable for 0.1 < B, < 1.0 and 20° < ¢’ < 45°.
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Fig. 3-6. Determination of effective attraction from CPTU data
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Table 3-1. Typical Values of Attraction, Friction Angle, and Other Parameters

consolidated, cement

Soil Type Consistency 4’ (psf) tan ¢’ o’ N, B,
Clay Soft 100-200 0.35-0.45 19-24 1-3 0.8-1.0
Medium 200400  0.40-0.55 1929 3-5 0.6-0.8
Stiff 400-1,000 0.50-0.60 27-31 5-8 0.3-0.6
Silt Soft 0-100  0.50-0.60 27-31 — —
Medium 100-300  0.55-0.65 29-33 5-30 0-0.4
Stiff 300-600  0.60-0.70 31-35 — —
Sand Loose 0 0.55-0.65 29-33 — —
Medium 200400  0.60-0.75 31-37 30-100 <0.1
Dense 400-1,000 0.70-0.90 35-42 — —
Hard, stiff soil, over- >1,000 0.8-1.0 3845 100 <0

Note: 1psf=0.048kN/m?

(Senneset et al. 1989, © National Academy of Sciences, Washington, DC. Reproduced with permis-
sion of the Transportation Research Board, Washington, DC)
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Fig. 3-7. Chart for classification of soil type by CPTU data (Senneset et al. 1989,
© National Academy of Sciences, Washington, DC. Reproduced with permission of
the Transportation Research Board, Washington, DC)
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Fig. 3-9. Comparison of effective friction angle based on Eq. (3-13) and Fig. 3-8(a)
(Mayne and Campanella 2005. Reproduced with permission from IOS Press)

Fig. 3-9 is a comparison of effective friction angles, ¢’, computed by Eq. (3-
13), as shown by the straight lines, versus those obtained from Fig. 3-8(a), as
shown by the individual points. It can be seen that, in the applicable ranges, both
check very closely. For granular soils with B, = 0, Eq. (3-13) does not work, so
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Eq. (3-3) is plotted instead. The comparison between using Eq. (3-3) and Fig.
3-8(a) indicates that the results check very well when ¢’ is smaller than 30°;
however, when ¢’ is greater than 40°, Eq. (3-3) gives a ¢’ value two to three
degrees lower than that obtained by Fig. 3-8(a). Because Eq. (3-3) is more con-
servative, it is suggested that Eq. (3-3) be used for granular material with B, = 0.

Example 3.4 Piezocone penetration tests were conducted on a site with the water
table 10£t (3.1 m) below the surface. At a depth of 20ft (6.1 m) below the ground
surface is a layer of medium clay with a cone resistance, g, of 7,500 psf (359kN/
m?) and a total pore pressure, u;, of 5,500 psf (263kN/m?). If the net area ratio,
a,, of the piezocone is 0.581 and the average unit weight of soil in the top 20ft
(6.1m) is 125 pcf (19.7kN/m’), estimate the effective cohesion and angle of inter-
nal friction of the clay.

Solution From Eq. (3-8), q;= 7,500 + (1 — 0.581) x 5,500 = 9,805 psf. &, = 125 x 20
= 2,500 psf. 67, =2,500-62.4x10=1,876 psf. Assuming a’ = 300 psf (average for
medium clay in Table 3-1), from Eq. (3-11), N,, = (9,805 — 2,500) /(1,876 + 300) =
3.357. From Eq. (3-12), B, = (5,500 — 624) /(9,805 — 2,500) = 0.667. From Fig. 3-8(a),
tan¢’ = 0.55, or ¢’ = 28.8°. From Eq. (3-10), ¢’ =300 x tan 28.8° = 164.9 psf. If Eq. (3-
13) is used, ¢ = 29.5 x (0.667)*'*'[0.256 + 0.336 x 0.667 + log 3.357] = 28.3°, which
compares with the 28.8° obtained from the chart. In this example, the soil type is
given as medium clay. If this information is not given, it can be found from Fig.
3-7 that, with g, = 4.9tsf and B, = 0.667, the soil is classified as medium clay.

It should be noted that, when the effective cohesion is small, the arbitrary as-
sumption of a” has very little effect on ¢’. For example, if " = 200 psf, N,, = (9,805
—-2,500)/(1,876 + 200) = 3.52 and, from Eq. (3-13), ¢’ = 29.3°% if a’ = 400 psf, N,, =
(9,805 —2,500)/(1,876 + 400) = 3.21 and, from Eq. (3-13), ¢’ = 27.7°. Even if the as-
sumed a’ is not correct, the use of a larger a’ will be compensated by a decrease in
¢’, so the net effect on shear strength may not be significant.

The relationship between undrained shear strength, s,, and cone resistance,
q:, can be expressed as

5= % (3-14)

in which N, = cone factor. The cone factor usually is determined from a reference
value for s, either from a field vane shear test or a laboratory triaxial compres-
sion test. Values of N, seem to range from 10 to 15 for normally consolidated
clays, and from about 15 to 19 for overconsolidated clays. Because of the large
scatter in values of N,, local correlations at the site are highly recommended.

3.2.4 Vane Shear Test

This test commonly is used for determining the undrained strength of clays in
situ. The test basically consists of placing a four-blade vane in the undisturbed
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Fig. 3-10. Correction factor for vane shear test (Bjerrum 1972. Reproduced
with permission)

soil and rotating it from the surface to determine the torsional force required to
cause a cylindrical surface to be sheared by the vane. This force then is converted
to the undrained shear strength. Both the peak and residual undrained strength
can be determined by measuring the maximum and post-maximum torsional
forces. The method is specified by ASTM D2573 “Standard Test Method for Field
Vane Shear Test in Cohesive Soils” (ASTM 2010). Because of the difference in
failure mode, the results of field vane tests do not always agree with other shear
tests. Bjerrum (1972) recommended that, depending on the plasticity index, PI,
of the soil, the undrained shear strength obtained from the field vane shear test
be multiplied by a correction factor, A, as shown in Fig. 3-10.

Example 3.5 In the previous example, field vane shear tests on the clay layer give
an undrained shear strength of 650 psf (31.1kN/m?). If the clay has a plasticity
index of 22, determine the cone factor, N, in Eq. (3-14).

Solution From Fig. 3-10, A = 0.9, so s, = 0.9 x 650 = 585 psf. From Example 3.4,
g: = 9,805 psf and o, = 2,500 psf. From Eq. (3-14), N. = (9,805 — 2,500) /585 = 12.5.

3.3 Laboratory Tests

Laboratory tests complement field tests to give a more complete picture of
the materials within the slope and their engineering properties. Furthermore, it
is possible in the laboratory to establish the changes in soil behavior due to
the changes in environment. For example, the construction of an embankment
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certainly will affect the shear strength in the foundation soils. Field tests before
construction cannot establish these changes, whereas laboratory tests can simu-
late these changes as they occur in the field.

The major laboratory tests for determining the shear strength of soils include
the direct shear test, the triaxial compression test, and the unconfined compres-
sion test. The direct shear test is very easy to conduct because of its simplicity.
Because of the thin specimen used, drained conditions exist for most materials
except for the highly plastic clays. Therefore, the direct shear test usually is used
to determine the effective shear srrength. The triaxial compression test can be
used for determining either the total strength or the effective strength. The
unconfined compression test is similar to the triaxial compression test but without
the confining pressure and can only be used to determine the undrained shear
strength.

3.3.1 Direct Shear Test

Fig. 3-11 shows a schematic of the direct shear box. The soil sample is placed
between two porous stones to facilitate drainage. The normal load is applied to
the sample by placing weights in a hanger system. The shear force is applied by
the piston driven by an electric motor. The horizontal displacement is measured
by a horizontal dial gauge and the shear force by a proving ring and load dial,
which are not shown in the figure. Instead of the dial gauge, proving ring, and
hanging weights, LVDT and load cell with automatic recording devices are
available, but the basic arrangement is the same. The method is specified by
ASTM D3080 “Direct Shear Test of Soils under Consolidated Drained Condition”
(ASTM 2010).

For silty clays and coal refuse, Huang (1978b) found that their effective shear
strength can be determined easily by the direct shear tests, which check closely
with the results of triaxial compression tests with pore pressure measurements.
His suggested procedure is as follows.
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Fig. 3-11. Schematic diagram of direct shear box assembly
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The soil is air-dried and sieved through a No. 4 sieve (4.75mm). The material
retained on the sieve is discarded, because the specimen is only 2.5in. (63.5mm)
in diameter and is not adequate for large particles. The material passing the sieve
is mixed with a large amount of water to make it very plastic, and then it is
placed in the direct shear box. To prevent the sample from squeezing out, a Teflon
ring is used to separate the two halves of the shear box.

After a given normal stress is applied for about 10min, the shear stress is
applied at a rate of 0.02in. (0.5 mm) per min until the specimen fails, as indicated
by a decrease in the reading of the proving ring dial. If the specimen does
not fail, the test is stopped at 20min or a horizontal deformation of 0.5in.
(12.7mm). At least three tests involving three different normal stresses must be
performed.

Fig. 3-12 shows the stress-displacement curves of a fine coal refuse under
three different normal stresses: 0.52, 1.55, and 2.58 tsf (49.8, 148.5, and 247.2kN/
m?). In all three curves, the shear stress increases with the horizontal displace-
ment up to a peak and then decreases until a nearly constant value is obtained.
The shear strength at the peak is called the peak shear strength, and that at the
constant value is called the residual shear strength. Because of progressive failure,
the average shear strength actually developed along a failure surface is some-
where between the peak and the residual strength. If the two strengths are not
significantly different, as is the case shown in Fig. 3-12, the peak strength can be
used for stability analysis.
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Fig. 3-12. Stress-displacement curves of fine refuse
Note: 1in.=25.4mm; 1tsf=95.8kN/m’
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Fig. 3-13. Strength of fine refuse by direct shear test
Note: 1tsf=95.8kN/m?

Fig. 3-13 shows a plot of peak shear stress versus normal stress for fine coal
refuse. A straight line passing through the three points is drawn. The vertical
intercept at zero normal stress is the effective cohesion, c’, and the angle of the
straight line with the horizontal is the effective friction angle, ¢". The figure shows
that the fine coal refuse has an effective cohesion of 0.1tsf (9.6kN/m?) and an
effective friction angle of 35.4°.

It is believed that the strength parameters determined from this procedure
are quite conservative because: (1) only the fraction passing through the No. 4
sieve is used in the test. If sufficient coarse materials are present, the shear
strength may be slightly greater; (2) no compaction is applied to the specimen
other than the normal load used in the test. If the material is compacted, a slightly
higher strength may be obtained; and (3) the specimen is very wet and com-
pletely saturated, which may not occur in the field.

It should be pointed out that this procedure for determining effective shear
strength is applicable only to silty clays and coal refuse. It may not be used for
highly plastic clays unless the rate of loading is kept exceedingly low.

3.3.2 Triaxial Compression Test

The triaxial compression test can be used to determine either the total strength
parameters or the effective strength parameters. Fig. 3-14 shows the schematic
of a triaxial chamber. The specimen is covered with a rubber membrane and
placed in the triaxial chamber. Water is introduced into the chamber and a given
confining pressure is applied. A vertical axial load then is applied gradually until
the specimen fails, as indicated by a decrease in reading of the applied load. The
deformation of the specimen and magnitude of the applied load can be measured
either by dial gauges or other electronic devices. If the specimen does not fail,
the test continues until a strain of 15% is obtained.
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Fig. 3-14. Schematic of a triaxial chamber

One simple way to determine the total strength parameters of unsaturated
soils is to prepare two identical specimens, and then subject one to the uncon-
fined compression test and the other to the triaxial compression test. The confin-
ing pressure used for the triaxial test should nearly equal the maximum
overburden pressure expected in the field. The procedure for the unconfined
compression test is similar to the triaxial test, except that the specimen is not
enclosed in the rubber membrane and no confining pressure is applied.

To prevent any drainage in the triaxial test, the drainage valves must be
closed. After both tests are completed, two Mohr’s circles are drawn, and a
straight line tangent to these two circles is the Mohr’s envelope. The vertical
intercept of the envelope at zero normal stress is the cohesion, and the angle of
the envelope with the horizontal is the friction angle, as shown in Fig. 3-15. The
total strength parameters generally exhibit a large cohesion and a small friction
angle. If the specimen is saturated completely, the envelope will be horizontal
with an angle of internal friction equal to zero. Procedures for undrained triaxial
test are specified by ASTM D2850 “Unconsolidated-Undrained Triaxial Com-
pression Test on Cohesive Soils” (ASTM 2010).
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The effective strength parameters can be determined by a consolidated
drained test or a consolidated undrained test with pore pressure measurements.
Instead of using the total normal stress as shown in Fig. 3-15, the shear stress is
plotted versus the effective normal stress, and a Mohr’s envelope in terms of
effective stress is obtained. The vertical intercept of the envelope at zero effective
normal stress is the effective cohesion, and the angle of the envelope with the
horizontal is the effective friction angle. The effective strength parameters always
exhibit a small effective cohesion and a large effective friction angle. The method
is specified by ASTM D4767 “Consolidated Undrained Triaxial Compression Test
for Cohesive Soils” (ASTM 2010).

Another procedure to obtain the effective strength parameters is by the use
of the stress path method (Lambe and Whitman 1969). Fig. 3-16 shows the p’
versus g diagram of the fine coal refuse used in the direct shear test shown in
Fig. 3-13.
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Fig. 3-15. Total strength parameters of a compacted specimen
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Note that

’

_01+0%

. (3-15)

6;—03; _©1—0j
2 2

q= (3-16)
in which 6; = major principal stress and 6; = minor principal stress. The corre-
sponding effective stresses, 67 and o5 can be determined by subtracting the
measured pore pressure from the total stresses, o, and o;.

Fig. 3-16 shows the effective stress path of triaxial compression tests with
pore pressure measurements using the same fine refuse for the direct shear test
shown in Fig. 13-13. Each point on the stress path is called the stress point. The
tests were made on two specimens, one subjected to an effective confining pres-
sure of 0.6tsf (58kN/m?) and the other to 1.4tsf (134kN/m?). To saturate the
specimens, filter strips were placed around the sample and a chamber pressure
was applied. The load was increased until the stress path approached a straight
line. A line tangent to the failure part of the stress path is called the Kline. The
angle of the Kr-line with the horizontal is called o, which is related to ¢’ by

sin¢’ =tano’ (3-17)

The intercept of the Kr-line with the g-axis is called a’, which is related to ¢’
by

al
= -1
cos®’ (3-18)

Fig. 3-16 shows that the fine coal refuse has an effective cohesion of 0.10 tsf
(7.7kN/m?) and an effective friction angle of 36.3°, which check closely with the
result of direct shear test.

An advantage of using the stress path method is that the effective cohesion
and the effective friction angle may be estimated from a single test by approxi-
mating a straight line through the stress points at the latter part of the test,
whereas two tests are required if the Mohr’s circle is used. Furthermore, if several
triaxial tests are run and only the 67 and 6% at the time of failure are measured,
it is much easier to approximate a straight line through all the stress points than
to plot a straight line tangent to all the circles.

Example 3.6 The principal stresses, 67 and 6%, of three triaxial shear tests at the
time of failure are tabulated as follows (where 1psi = 144 psf = 6.9kN/m?):

Test No. o7 (psi) o5 (psi) p’ (psi) q (psi)
1 46 14 30 16
2 89 29 59 30

3 137 45 91 46
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By the use of a p’ versus g diagram and the principle of least squares, deter-
mine the effective cohesion, ¢/, and the effective angle of internal friction, ¢’, of
the soil.

Solution From Egs. (3-15) and (3-16), values of p” and q are computed, as listed
in the preceeding table. The K¢line, which passes through the three points with
coordinates (p’, q), is supposed to be a straight line represented by the following
linear equation:

yy=a+bx (3-19)
in which y, = computed value of g obtained by substituting p” as the value of x

in Eq. (3-19), and a and b are constants to be determined by the principle of least
squares. The purpose herein is to obtain a line so that

Z (y - yq Z(y a—bx)* = minimum (3-20)

This can be achieved by taking the partial derivative of Eq. (3-20) with respect
to a and b and setting it to 0, or

—Z(y a-bx) =Y [2(y—a—bx)]=

(3-21)
or z y=na+ bz x
in which 17 = number of points, which is 3 in this example.
iZ(y —a- bx)2 = Z[—Z(y —a—bx)x]=0
ob (3-22)

or 2xy=a2x+b2x2

Egs. (3-21) and (3-22) can be used to solve a and b. In this example, substitut-
ing values of g as y and p” as x, Eq. (3-21) becomes

16 +30+46=3a+(30+59+91)b

(3-23)
or 92 =3a+180b

From Eq. (3-22),

30 x 16+ 59 x 30 + 91 x 46 = 180a +[(30)% + (59)* + (91)* ] (32
or 6,436 =180a +12,662b

From Egs. (3-23) and (3-24), a = 1.147 psi and b = 0.492. From Eq. (3-17), sin¢’
=0.492,0or ¢’ = sm‘l(O 492) =29.5°. From Eq. (3-18), ¢’ =1.147/c0s29.5° = 1.318 psi.
Fig. 3-17 is the p’ versus g diagram and the best fit least square line.
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Fig. 3-17. Example 3.6
Note: 1psi =144 psf = 6.9kN/m*

The discussed procedures for determining the cohesion and internal friction
may not be applicable to granular soils. Theoretically, granular materials are
cohesionless, and the cohesion should be zero. However, when two triaxial tests
under two different confining pressures are run, the failure envelope—which is
a line tangent to both circles—does not pass through the origin, because the
Mohr’s failure envelope is actually a curve, and the angle of internal friction
decreases with the increase in confining pressure due to the increasing break-
down of particles under higher stresses. Consequently, a line tangent to both
circles may result in a cohesion intercept, which does not exist in reality. To
approximate the failure envelope by a straight line, the line must be forced to
pass through the origin. When a cohesionless material is placed in an embank-
ment, the most critical failure surface obtained by LEAME is a very shallow
circle, which barely scratches the surface of the slope. This type of failure surface
is impossible, because the higher friction angle near the surface will prevent the
formation of a very shallow failure surface. As the depth increases, the friction
angle decreases, but the normal stress increases, and there is a critical depth at
which the factor of safety is minimum. A theoretical method for analyzing curved
envelope is presented in the next section.

3.4 Shear Strength of Granular Materials

In all the methods of stability analysis discussed so far, it is assumed that the
Mohr’s failure envelope is a straight line, as indicated by Eq. (1-2) or (2-8).
Because granular materials are cohesionless and fully drained, the shear strength
can be expressed in effective stress by

s=0’ tan¢’ (3-25)

in which ¢’ = effective normal stress on the failure plane at the time of failure.
Fig. 3-18 shows the Mohr’s circles for four triaxial tests on the rockfill materi-
als used for the shell of Oroville Dam in California, as reported by Marachi
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Fig. 3-18. Mohr’s circles and failure envelope for a rockfill material
Note: 1psi=6.9kN/m’

Table 3-2. Stresses at Time of Failure and Values of ¢’

Test o3 (psi) o7 (psi) ¢’ (deg) 05/ Pa
1 30 193 46.9 2.04
2 140 754 434 9.52
3 420 1,914 39.8 28.6

4 650 2,770 38.2 442
Note: 1psi=6.9kN/m?

et al. (1969). The principal stresses used to plot the Mohr’s circles are shown in
Table 3-2. The strength envelope tangent to the circles is a curve, and each point
on the curve represents the normal and shear stresses on a failure plane at the
time of failure. With no cohesion, a line passing through the origin and tangent
to each circle gives the value of ¢’ for each circle. The dashed line in the figure
is the tangent to the largest circle. It can be seen that the values of ¢’ decrease
with the increase in ¢%. Given the major principal stress, 67, and the minor
principal stress, 6%, the angle of internal friction can be computed by

¢’ =sin™! (ﬂj (3-26)
01+ 03

Experimental evidences show that the value of ¢’ for curved envelope can
be expressed by

s _A¢1og("3j (327)

a
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in which p, = atmospheric pressure, or 14.7 psi (101kN/m?), ¢, is the value of ¢’
when 6% = p,, and A¢ is the reduction in ¢’ for a 10-fold increase in 65. Eq. (3-27)
implies that a plot of ¢’ versus log(c%) should result in a straight line.

Table 3-2 is the numerical values of the principal stresses at the time of failure
and the computed ¢” and 6%/p, for the Oroville Dam shell. To determine ¢, and
A¢, values of ¢” are plotted versus log(c3/p.), as shown in Fig. 3-19.

In Fig. 3-19, a straight line is drawn through these four points and the value
of ¢" at 65/p, =1 is ¢, and the difference in ¢’ between 65/p, =1 and 10 is A¢.
The plot gives a ¢, of 49.5° and a A¢ of 6.5°.

In the method of slices, the shear strength is based on the normal stress,
which is the effective normal stress on the failure plane at the time of failure, 6.
It can be proved by geometry that

i

Oy=—7"—
1+sin¢

(3-28)

Values of ¢" may range from 30° to 50°, so the ratio 03/0% may range
from 0.667 to 0.566. With A¢ = 6.5°, the use of 0.667 as the 65/0% ratio will
increase ¢’ by —6.5 x 1og(0.667), or 1.14°, whereas the use of 0.566 will increase
by —6.5 x log(0.566), or 1.61°, so the difference is only 0.47°. It is therefore con-
cluded that the 05/6% ratio has very little effect on the computed ¢’ and that a
conservative ratio of 0.667 can be used regardless of ¢".

In stability analysis, ¢35 =0.667c;, where o} is the normal stress on the
failure plane at the bottom of the slice, so Eq. (3-27) can be written as

0=0,- A¢1og(%] (3-29)
Using English units with stress in psf, Eq. (3-29) becomes
0/
"=, — Aol L 3-30
0= 0, — A0 08(3,174j (3-30a)
S0 T ¢, =40.58
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Fig. 3-19. Effect of confining pressure on ¢’
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Using SI units with stress in kN/m?, Eq. (3-29) becomes

o =0, — A¢1og(1‘55;2j (3-30b)

Eq. (3-29) was incorporated in LEAME to determine the effective friction
angle at the bottom of each slice based on the effective force normal to the failure
surface.

It should be noted that the most critical failure surface for granular materials
is not a deep circle. Even though the Oroville Dam is more than 770ft (235m)
high, the tallest slice in the most critical circle is less than 200ft (61m). It really
is not necessary to use very high confining pressures to define the failure enve-
lope unless some extraordinary conditions dictate the formation of deep failure
surfaces. Assuming a unit weight of 150 pcf (23.7kN/m?), the second circle with
a confining pressure of 140psi (965kN/m?) is equivalent to a normal stress of
210psi or an overburden of not more than 200ft (61m).

Table 3-3 lists the typical values of ¢, and A¢, as reported by Wong and
Duncan (1974). In Table 3-3, RC is the relative compaction defined by

RC=—Te_ (3-31)

Ydmax

in which vy, = in situ dry density, and Ysm. = maximum dry density determined
in the laboratory according to ASTM D698 “Standard Test method for Laboratory

Table 3-3. Values of ¢ and A for Gravels and Sands

Unified Standard Relative
Classification Proctor, RC (%) Density, D, (%) 0, (deg) Ad (deg)
GW, SW 105 100 46 10
100 75 43 8
95 50 40 6
90 25 37 4
GP, SP 105 100 42 9
100 75 39 7
95 50 36 5
90 25 33 3
SM 100 — 36 8
95 — 34 6
90 — 32 4
85 — 30 2
(Wong and Duncan 1974)
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Fig. 3-20. Use of standard penetration test to determine relative density of sands
(USBR 1974)
Note: 1tsf=95.8kN/m’

Compaction Characteristics of Soil Using Standard Effort” (ASTM 2010). The
relative density, D,, is defined by

€max — €

D, = (3-32)

€max ~ €min

in which e,,,, = void ratio for minimum dry density in the loosest state, e, = void
ratio for maximum dry density in the densest state, and e = in situ void ratio. The
values of minimum dry density can be determined in the laboratory according to
ASTM D4257 “Standard Test Methods for Minimum Index Density and Unit
Weight of Soils and Calculation of Relative Density” (ASTM 2010).

For well-graded (SW) or poorly-graded (SP) sands, the most important factor
that affects the shear strength is the relative density. When the standard or cone
penetration tests are used for subsurface exploration, the blow count, N, of the
standard penetration test or the cone resistance, g, of the cone penetration test
can be used to determine the relative density, as shown in Figs. 3-20 and 3-21,
so the shear strength, ¢, and A¢ can be estimated from Table 3-3.

3.5 Shear Strength of Municipal Solid Waste

In the design of landfills, it is necessary to know the shear strength of solid waste.
The strength of solid waste varies considerably depending on the amount of soil



70 Slope Stability Analysis by the Limit Equilibrium Method

0.5 \\\\

A
NIINANAN
IR

25 z\\lo \ b3

| .040\ \ \
0

3.0 |_ll

0 100 200 300 400 500

Cone resistance . ., tsf

mﬂ
o
//

Effective overburden pressure G, tsf

Fig. 3-21. Use of cone penetration test to determine relative density of sands
(Schmertmann 1975. Reproduced with permission)
Note: 1tsf=95.8kN/m’

and sludge and the proportion of plastic and other materials that cause interlock
action and increase in shear strength. Although solid waste tends to decompose
and degrade with time, Kavazanjian (2001) indicated that the degradation did
not have significant effect on shear strength.

Kavazanjian et al. (1995) developed the lower-bound strength envelope of
municipal solid waste (MSW), using direct shear test data and back-analysis of
seven stable landfills, as shown in Fig. 3-22. When the normal stress is less than
0.39tsf (37kN/m?), the envelope is horizontal with ¢ = 0.25tsf (24kN/m?) and
¢ = 0. When the normal stress is greater than 0.39 tsf (37kN/m?), the envelope is
inclined at = 33° with ¢ = 0.

Based on the results of large-scale direct shear tests and back-analysis of a
few failed slopes, Eid et al. (2000) developed the range of strength envelopes for
MSW, as shown in Fig. 3-23. All three envelopes are inclined at a friction angle
of 35° The cohesion ranges from 0 to 0.52tsf (50kN/m?* with an average of
0.26tsf (25kN/m?).

Bray et al. (2009) conducted a comprehensive testing program using direct
shear, triaxial, and simple shear tests to determine the shear strength of MSW.
The results of their studies indicate that the direct shear test is appropriate to
evaluate the shear strength along the weakest orientation of the large fibrous
particles and, thus, gives the most conservative shear strength. More than 100
test results from their and other studies indicate that the static shear strength is
best characterized by a stress-dependent Mohr-Coulomb strength criterion with
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Fig. 3-22. Shear strength envelope for municipal solid waste (Kavazanjian et al. 1995.
Reproduced with permission)
Note: 1tsf=95.8kN/m’
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Fig. 3-23. Range of shear envelopes for municipal solid waste (Eid et al. 2000.
Reproduced with permission)
Note: 1tsf=95.8kN/m’

c=15kN/m?* (310psf), o, = 36°, and A = 5°. Without considering the undrained
behavior of saturated waste and strength loss due to pore pressure generation
resulting from cyclic loading, the dynamic shear strength of MSW can be esti-
mated to be a minimum of 20% greater than its static strength.
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The following two equations, similar to Egs. (3-25) and (3-29) based on tri-
axial tests, can be used to determine the shear strength of MSW by direct shear
tests:

s=c"+ 0o tan¢’ (3-33)

’

o' =0, —A¢log[""j (3-34)

a

For granular materials, ¢’ is equal to 0, and the input parameters, ¢, and A¢,
must be obtained from triaxial tests. For MSW, ¢’ is not 0, because of their fibrous
fragments, and the input parameters, ¢’, ¢,, and Ap, must be obtained from direct
shear tests.

3.6 Typical Ranges and Correlations

When actual test data are not available, empirical correlations between shear
strength and soil classification or index properties are available. However, these
correlations should be used cautiously, because there is substantial scatter in the
data to establish these correlations.

3.6.1 Effective Shear Strength

Kenney (1959) presented the relationship between sin¢” and the plasticity index,
PI, for normally consolidated soils, as shown in Fig. 3-24. Although there is con-
siderable scatter in the data, a definite trend toward decreasing ¢’ with increasing
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0.7
i 0.6 =] = = a
g [ e _;f-
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. = [ R = """"-_-...____
0.3 " =
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0.1 |
I05 6 g 10 15 20 30 40 50 60 80 100 150

Plasticity Index

Fig. 3-24. Plasticity index versus sin§’ for normally consolidated soils (Kenny 1959.
Reproduced with permission)
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plasticity is apparent. Note that normally consolidated soil is a soil that has not
been subjected to precompression or to a previous effective overburden pressure
greater than the present effective overburden pressure. If the soil has been pre-
compressed, the effective angle of internal friction should be slightly higher.

Bjerrum and Simons (1960) presented a similar relationship for both undis-
turbed and remolded soil, as shown in Fig. 3-25. The relationship by Kenney is
plotted in the dashed curve for comparison.

Skempton (1964) presented a correlation between the residual effective angle
of internal friction and percent of clay, as shown in Fig. 3-26. The friction angle
based on the residual stress is smaller than that based on the peak stress.
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Fig. 3-25. Plasticity index versus effective friction angle (Bjerrum and Simons 1960.
Reproduced with permission)
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Fig. 3-26. Percent clay versus residual effective friction angle (Skempton 1964.
Reproduced with permission from Geotechnique)
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Fig. 3-27. Relationship between effective friction angle and liquid limit in terms
of clay size friction and effective normal stress (Stark and Eid 1994. Reproduced
with permission)

There are many correlations available today for residual friction angle of
clayed soils. Stark and Eid (1994) found that the residual friction angle was
related to the liquid limit as an indicator of clay mineralogy, the percent of clay
size fraction (CF) smaller than 0.002mm, and the effective normal stress, as
shown in Fig. 3-27.

Table 3-4 shows the average effective shear strength of soils compacted to
the Proctor maximum dry density at optimum moisture content, as suggested
by the U.S. Bureau of Reclamation (1973).

If the soil is subject to saturation, then ¢’ = cy,. If the soil is at the optimum
moisture content and the maximum density, ¢’ = ¢,. The shear strength listed in
Table 3-4 is for compacted soils. For natural soils, the effective cohesion may be
larger or smaller than the listed values, depending on whether the soil is overly
or normally consolidated, but the effective angle of internal friction should be
affected to a much lesser degree.

Table 3-5 shows the typical ranges of effective friction angle for granular
materials and silts, as suggested by Bowles (1984).

Example 3.7 According to the plasticity chart of the Unified Soil Classification
system, the silty and clayey soil with the dual classification ML-CL should have
a plasticity index, PI, between 4 and 8 and a liquid limit, LL, between 12 and 30.
If such a soil is normally consolidated with an average plastic index of 6, an aver-
age liquid limit of 21, and a clay content of 5%, estimate its effective friction angle
by the various tables and figures presented in this section.



Table 3-4. Average Effective Shear Strength of Compacted Soils

PROCTOR COMPACTION
Maximum Optimum As Compacted Saturated Friction
Dry Density Moisture Cohesion ¢, Cohesion Angle ¢’
UNIFIED CLASSIFICATION SOIL TYPE pcf Content % tsf Coat tsf deg
GW well graded clean graves, >119 <133 * * >38
gravel-sand mixture
GP poorly graded clean gravels, >110 <124 * * >37
gravel sand mixture
GM silty gravels, poorly graded >114 <14.5 * * >34
gravel-sand-silt
GC clayed gravels, poorly >115 <14.7 * * >31
graded gravel-sand-clay
SW well graded clean sands, 119+5 13.3+25 0.41+0.04 * 38+1
gravelly sands
SP poorly graded clean sands, 1102 124+1.0 0.24 £0.06 * 371
sand-gravel mixture
SM silty sands, poorly graded 114 +1 145+0.4 0.53 £0.06 0.21+0.07 34+1
sand-silt mixture
SM-SC sand-silt-clay with slightly 119+1 128 +0.5 0.21£0.07 0.15+0.06 33+3

plastic fines

S/ PSuang reaysg



Table 3-4. (Continued)

PROCTOR COMPACTION
Maximum Optimum As Compacted Saturated Friction
Dry Density Moisture Cohesion ¢, Cohesion Angle ¢’
UNIFIED CLASSIFICATION SOIL TYPE pcf Content % tsf Cot tsf deg
SC clayey sands, poorly graded 115+1 14.7+0.4 0.78+£0.16 0.12£0.06 313
sand-clay mixture
ML inorganic silts and clayey 103 £1 19.2+0.7 0.70+0.10 0.09£* 32+3
silts
ML-CL mixtures of inorganic silts 109 £2 16.8+0.7 0.66 +£0.18 023+* 32+2
and clays
CL inorganic clays of low to 108 +1 17.3+3 091+0.11 0.14 £0.02 28+2
medium plasticity
OL organic silts and silty clays * * * * *
of low plasticity
MH inorganic clayed silts, elastic 8214 36.3+£3.2 0.76 £ 0.31 0.21 £0.09 2513
silts
CH inorganic clays of high 94 +2 255+1.2 1.07 £0.35 0.12+0.06 19+5
plasticity
OH organic clays and silty clays * * * * *

*denotes insufficient data, > is greater than, < is less than
(U.S. Bureau of Reclamation 1973; 1pef = 157.1N/ m?, 1tsf = 95.8kPa)

poydN wnuqimby jrury ayy 4q sisAreuy Aqiqeis adofs 9.
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Table 3-5. Typical Range of Effective Friction Angle for Soils Other than Clays

EFFECTIVE FRICTION ANGLE, deg
SOIL LOOSE DENSE
Sand, crushed (angular) 32-36 3545
Sand, bank run (subangular) 30-34 34-40
Sand, beach (well rounded) 28-32 32-38
Gravel, crushed 36-40 40-50
Gravel, bank run 34-38 38-42
Silty sand 25-35 30-36
Silt, inorganic 25-35 30-35
(Bowles 1984. Reproduced with permission from McGraw-Hill, Inc.)

Solution By Table 3-4: For the ML-CL classification, ¢’ = 32°, or ranging from
30° to 34°. Because the specimen is not subject to any precompression before the
strength test, other than the Proctor compactive effort, it is considered as a nor-
mally consolidated remolded soil.

By Table 3-5: There is no silty and clayey soil type in the table. The one closest
to it is the inorganic silt. If compacted, the soil should be dense with ¢’ ranging
from 30° to 35°, or an average of 32.5°. If some clay is added to the silt to fill the
voids, ¢’ should increase slightly.

By Fig. 3-24: With PI = 6, sin¢’ is outside the range of the chart. By extrapola-
tion, sin¢” = 0.63, or ¢’ = 39°, which certainly is too high. Note the two test points
in the figure, one with sin¢’ = 0.5 when PI = 8 and the other with sin¢” slightly
smaller when PI = 9. When PI = 6, by a straight-line extrapolation, sin¢” = 0.53,
or ¢’ =32°.

By Fig. 3-25: With PI = 6, ¢’= 35° if undisturbed and 32° if remolded. The
remolded case is the same as in Table 3-4 and yields the same average of 32°.

By Fig. 3-26: With 5% of clay, or particles smaller than 0.002mm, ¢’ = 29° to
33°, with an average of about 31°.

By Fig. 3-27: With LL = 21 and CF = 5% < 20%, ¢’ = 32° regardless of normal
stress.

It can be seen that most of the tables and charts give an effective friction angle
of 32°.

Table 3-6 shows the relationship among relative density, STP blow count,
CPT cone resistance, and effective friction angle for sands, as suggested by
Meyerhof (1956).

3.6.2 Undrained Shear Strength

For normally consolidated soils, Bjerrum and Simons (1960) show that the ratio
between the undrained shear strength and the effective overburden pressure,
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Table 3-6. Correlation of Effective Friction Angle to Relative Density, STP Blow
Count, and CPT Cone Resistance for Sand

Relative SPT blow CPT cone Effective friction
State of Packing  Density, D, (%) count, N resistance, g, (tsf) angle, ¢’ (deg)
Very loose <20 <4 <20 <30
Loose 20-40 4-10 20-40 30-35
Medium 40-60 10-30 40-120 35-40
Dense 60-80 30-50 120-200 40-45
Very dense >80 >50 >200 >45

(Meyerhof 1956. Reproduced with permission)
Note: 1tsf=95.8kN/m?
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Fig. 3-28. Plasticity index versus s, /p’ (Bjerrum and Simons 1960. Reproduced
with permission)
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Fig. 3-29. Liquid limit versus s, /p’ (Karlsson and Viberg 1967. Reproduced with
permission from Norwegian Geotechnical Institute)

Sufp'

s./p’, is related to the plasticity index, as shown in Fig. 3-28. Karlsson and Viberg
(1967) presented the relationship between s,/p” and liquid limit, as shown in
Fig. 3-29.

For overconsolidated soils, Ladd and Foott (1974) presented the relationship
between the overconsolidated ratio and the ratio between the overconsolidated
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Fig. 3-30. Relationship between overconsolidated and normally consolidated s, /p’
(Ladd and Foott 1974. Reproduced with permission)

Table 3-7. Undrained Shear Strength of Soils

CONSISTENCY UNDRAINED SHEAR STRENGTH, tsf FLELD TEST

Very soft 0-1 Squeezed between fingers when fist is
closed

Soft 12 Easily molded by fingers

Firm 24 Molded by strong pressure of fingers

Stiff 4-6 Dented by strong pressures of fingers

Very stiff 6-8 Dented only slightly by finger pressure

Hand 8" Dented only slightly by pencil point

(Adapted from Sowers 1979; 1 tsf = 95.8 kPa)

and normally consolidated s,/p’, as shown in Fig. 3-30. The overconsolidated
ratio is the ratio between the maximum effective overburden pressure, in which
the soil has ever been subjected to during the past, and the present effective
overburden pressure. The maximum effective overburden pressure can be deter-
mined from a consolidation test.

The undrained shear strength of soils varies a great deal depending on the
moisture content and density. Table 3-7 shows the range of undrained shear
strength of soils and a simple method of identification.

Example 3.8 The ML-CL soil in Example 3.7 with a plasticity index of 8 is nor-
mally consolidated and located at a distance of 40ft (12.2m) below the ground
surface. The groundwater table is 15ft (4.6 m) below the surface, or 25ft (7.6m)
above the soil. If the total wet unit weight of the soil is 130 pcf (20.4kN/m?), de-
termine the undrained shear strength of the soil. If the soil has an overconsolida-
tion ratio of 4, what should be its undrained shear strength?
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Solution To determine the effective overburden pressure, the total unit weight
should be used for the soil above the water table and the submerged unit weight
for the soil below the water table, so p” = 15 x 130 + 25 x (130 — 62.4) = 3,640 psf.
With PI =8, from Fig. 3-26, s,/p’ = 0.12, or s, = 0.12 x 3,640 = 436.8 psf = 0.218 tsf.
If the soil is overconsolidated with an overconsolidation ratio of 4, from Fig. 3-27,

M =29 or (s./p )e =2.9x0.218=0.632 tsf
(S” /p )nc

It was mentioned in the previous example that ML-CL soil has a liquid limit
between 12 and 30. From Fig. 3-26, a value of 0.12 for s,/p’ is equivalent to a lig-
uid limit of 25, which is within the given range of 12 to 30.

3.7 Back-Analysis of Shear Strength

When failure occurs in a simple slope involving only one type of soil, one way
to determine the shear strength of the soil is by back-calculation, using the failure
site as a large-scale model test. When a slope fails, the factor of safety should be
equal to 1. Based on the dimensions of the fill and the groundwater conditions
at the time of failure, the shear strength that results in a safety factor of 1 can be
back-calculated using stability charts or a computer program such as LEAME.
In view of the fact that the factor of safety depends on not only the shear strength
but also on so many other factors, which are difficult to evaluate, the use of the
back-calculation method should proceed with caution, preferably in collabora-
tion with other field or laboratory tests.

3.7.1 Total Stress Analysis with ¢ =0

If ¢ =0, the only shear strength parameter to be determined is the cohesion, c.
First, a value of c¢ is assumed and the factor of safety, F, is determined. Because
the factor of safety is proportional to c, the developed cohesion, ¢, that produces
a safety factor of 1 can be computed by

Ci=p (3-35)

3.7.2 Total Stress Analysis with both c and ¢

For total stress analysis with both cohesion and internal friction, a safety factor
of 1 can be produced by various combinations of ¢ and ¢. It is well known that
the depth of the failure surface for soils with a large cohesion is greater than that
with a small cohesion, so the depth of a failure surface can be used to determine
the amount of cohesion relative to the internal friction. The depth of the failure
surface is related to the dimensionless parameter, A, defined as
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__YHtan¢

A
ch c

(3-36)

in which H = height of a simple slope and 7y = total unit weight of the soil. Eq.
(3-36) indicates that, for a given slope, the relationship between tan¢ and c is
represented by the parameter . A smaller A, implies that the soil has a larger
cohesion and a smaller friction angle, so the depth of the failure surface is greater.
In the back-calculation, several values of A, and ¢ are assumed. For each pair of
c and ¢, the factor of safety, F, can be determined by LEAME. The developed
cohesion, c,, to produce a safety factor of 1 can be computed by Eq. (3-35), and
the developed angle of internal friction, ¢, by

04 =tan™ (%) (3-37)

The LEAME computer program also gives the height of tallest slice, which
is the same as the depth of the failure surface. The pair of c, and ¢, that gives a
height of the tallest slice nearly equal to the actual depth of the failure surface
is the back-calculated shear strength to produce a safety factor of 1.

Example 3.9 Fig. 3-31 shows a 2:1 fill slope with a height of 50ft (15.2m). The
fill and foundation are of the same soil, which is a partially saturated silty clay
with a total unit weight of 125pcf (19.7kN/m?). The slope failed immediately

Fig. 3-31. Example 3.9
Note: 1ft=0.305m
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after construction, and the depth of failure surface is 30ft (9.2m). Back-calculate
the soil parameters ¢ and ¢ at the time of failure.

Solution Procedures for determining the pair of ¢; and ¢, to produce a safety fac-
tor of 1 can be best illustrated by the following table:

Height of
Aeo ¢ (psf) ¢ (deg) F ¢ (psf) 04 (deg) tallest slice (ft)
(1) V) (3) @ (5) (6) )
1 1,000 9.1 1.613 620 5.7 45.8
5 700 29.2 2411 290 13.1 25.6
500 50 38.7 1.860 27 23.3 8.4

Each column is explained as follows:

(1) At least three values of A, must be assumed, starting from a small A, for
a deep circle to a large A, for a shallow circle.

(2) The assumed value of ¢ is immaterial. It is reasonable to assume a large c
for the smaller A, and a small c for the large A.,. However, any value of ¢
can be used. Even if the same c of 1,000 psf is assumed for all three cases,
the same results will be obtained.

(3) Compute ¢ from Eq. (3-36), or ¢ = tan™'(c),/6,250).

(4) Use LEAME to determine the minimum factor of safety, F.

(5) Compute ¢, by Eq. (3-38).

(6) Compute ¢, by Eq. (3-39).

(7) For each pair of ¢ and ¢, LEAME also gives the depth of the failure sur-
face, which is the same no matter whether ¢ and ¢ or ¢; and ¢, are used.

Finally, plot ¢; and ¢, versus the depth of the failure surface, as shown

in Fig. 3-32. When the depth of the failure surface is 30ft, the cohesion and
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Fig. 3-32. Total shear strength versus depth of failure surface
Note: 1ft=0.305m; 1psf=47.9N/m’
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friction angle to produce a safety factor of 1 are 360 psf and 11.3°, respectively, as
indicated by the dashed lines. A rerun of LEAME using the stated shear strength
resulted in a safety factor of 1.006 and a height of tallest slice of 29.151 ft, which
check with the expected values of 1 and 30ft.

3.7.3 Effective Stress Analysis with ¢’ and ¢’

The same procedures for total stress analysis can be applied to the effective stress
analysis, except that Egs. (3-35) and (3-37) be changed to

= % (3-38)
and
o= tan (202 (3-39)

Because the effective shear strength has a small cohesion and a large friction
angle, A, cannot be too small. Too small a A, such as A, = 1, may result in a
large cohesion and a small friction angle, which fall outside the range of the
effective shear strength.

Example 3.10 Fig. 3-33 shows a 1.5:1 slope with a height of 50ft (15.2m) and a
total unit weight of 125pcf (19.7kN/m?). The location of the phreatic surface at
the time of failure is indicated by the dashed line. If the slope fails and the depth
of the failure surface is 22ft (6.7m), what should be the effective cohesion and
friction angle at the time of failure?

Solutions The results are tabulated in the following table and plotted in
Fig. 3-34:

Fig. 3-33. Example 3.10
Note: 1ft=0.305m
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Ao c¢’(psf)  ¢’(deg) F ci (psf) 07 (deg) Height of tallest slice (ft)
(1) (2) (3) ) (5) (6) (7)
10 100 9.1 0.329 304 259 28.5
50 100 38.7 1.132 88 35.3 19.8
300 100 25.6 5.939 17 38.9 15.8
20 100 17.9 0.537 186 30.7 24.0
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Fig. 3-34. Effective shear strength versus depth of failure surface
Note: 1ft=0.305m; 1psf=47.9N/m’

Originally, three values of 10, 50, and 300 were assumed for A. It was later
found that the spacing between A, = 10 and A., = 50 was too far apart, so an ad-
ditional A, of 20 was added, as shown by the small triangles in the figure. With
a depth of the failure surface equal to 22ft, the effective cohesion at the time of
failure is 140 psf, and the effective friction angle is 33°. A rerun of LEAME using
the stated shear strength resulted in a safety factor of 1.007 and a height of the
tallest slice of 23.331 ft, which compare with the expected values of 1 and 22ft,
respectively.

The two examples shown indicate that the back-calculated shear strength
obtained from LEAME gives a factor of safety very close to 1, but the height of
the tallest slice may be somewhat different from the expected depth of the failure
surface, indicating that the height of the tallest slice obtained by LEAME might
not be very accurate. Two circles may produce the same minimum factor of
safety, but the height of the tallest slice may be quite different. As a result, the
depth of the failure surface may have two values depending on which circle is
selected as the most critical. It is therefore suggested that more than three points
be used to plot the curve relating c, or ¢, to the depth of the failure surface. If a
point is slightly out of line, the error can be minimized by smoothing out the
curve through all points.
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Summary

1. A subsurface investigation is needed to determine the nature and extent
of materials from toe to crest of the slope. The log of boring forms the
permanent record and should be kept as complete as possible. The final
location of borings should be made in the field, and additions must be
made to the boring program based on the information from the borings
already completed. During boring, the depth to the groundwater table
also should be recorded.

2. The charts relating the effective friction angle, ¢’, to the blow count, N, of
standard penetration tests or to the cone resistance, 4., of Dutch cone tests
are designed for cohesionless sands but are also applicable to fine-grained
soils with a small cohesion. However, if the soils are overconsolidated
with a large effective cohesion or the penetration causes a significant
change in pore pressure or effective stress, piezocone penetration tests,
which take into account the effect of effective cohesion and excess pore
pressure, should be used.

3. For clays, the correlation between the cone resistance and the undrained
shear strength can be evaluated by Eq. (3-14), where the empirical cone
factor, N,, can be determined by correlating the cone resistance with the
undrained shear strength obtained from field vane or laboratory triaxial
compression tests.

4. In both field and laboratory tests, it is generally assumed that the Mohr’s
failure envelope is a straight line with a slope equal to the angle of in-
ternal friction and an intercept at the origin equal to the cohesion. For
granular materials with no cohesion, the Mohr’s envelope should pass
through the origin. However, when two triaxial compression tests un-
der two different confining pressures are run, the failure envelope,
which is a line tangent to both circles, does not pass through the origin,
because the Mohr’s failure envelope is actually a curve with the angle
of internal friction decreasing with the increase in confining pressure
owing to the increasing breakdown of particles under higher stresses.
Consequently, a line tangent to both circles may result in a cohesion in-
tercept, which does not exist in reality. The current practice is to tilt the
envelope slightly and force it to pass through the origin. When a cohe-
sionless material is placed in an embankment, the most critical failure
surface obtained by LEAME is a very shallow circle, which barely
scratches the surface of the slope. This type of failure surface is impos-
sible, because the higher friction angle near to the surface will prevent
the formation of very shallow failure surfaces. As the depth increases,
the friction angle decreases, but the normal stress increases, and there is
a critical depth at which the factor of safety is at minimum. A theoreti-
cal method for analyzing a curved envelope is presented, in which the



86 Slope Stability Analysis by the Limit Equilibrium Method

conventional soil parameters, c and ¢, are replaced by a new pair of pa-
rameters, ¢, and Ao.

5. When actual test data are not available, empirical correlations between
shear strength and soil classification or index properties are available.
However, these correlations should be used cautiously, because there is
substantial scatter in the data to establish these correlations. Charts are
presented for normally consolidated clays showing the relationship be-
tween the effective friction angle and the plasticity index or the percent of
clay. There are also many correlations available today for relating the re-
sidual friction angle of clayey soils to the liquid limit, the percent of clay
size fraction smaller than 0.002mm, and the effective normal stress for
overconsolidated clays; the undrained shear strength depends on the
overconsolidation ratio.

6. In the design of landfills, it is necessary to know the shear strength of
solid waste. The strength of municipal solid wastes varies considerably
depending on the amount of soil and sludge and the proportion of plastic
and other materials that cause interlock action and increase in shear
strength. Based on the results of large-scale direct shear tests and the
back-analysis of some failed slopes, it was found that solid waste has an
effective cohesion from 0 to 0.52 tsf (49.8 kN /m?) and an effective friction
from 33° to 35°. The most recent studies indicate that the shear strength is
best characterized by a curved strength envelope with ¢ = 15kN/m?
(310psf), 0, = 36°, and Ap = 5°. These strength parameters can be deter-
mined more readily by the large-scale direct shear test than by the triaxial
text. Although solid waste tends to decompose and degrade with time, it
also was found that the degradation did not have significant effect on
shear strength.

7. When failure occurs in a simple slope involving only one type of soil, one
way to determine the shear strength of the soil is by back-calculation,
using the failure site as a large-scale model test. When a slope fails, the
factor of safety should be equal to 1. Based on the dimensions of the fill
and the groundwater conditions at the time of failure, the shear strength
that results in a safety factor of 1 can be back-calculated. It is well known
that the most critical failure surface for a soil with a large cohesion and
a small friction angle is a deep circle, whereas that with a small cohesion
and a large friction angle is a shallow circle. Based on the actual depth of
the failure surface, a method is presented to back-calculate the cohesion
and friction angle of the soil and results in a safety factor of 1. In view of
the fact that the factor of safety depends on not only the shear strength
but also on so many other factors, which may be difficult to evaluate, the
use of back-analysis should be done cautiously, preferably in collabora-
tion with other field or laboratory tests.
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Problems

3.1

3.2

3.3

3.4

3.5

3.6

3.7

A standard penetration test was performed on sand at a depth of 30 ft be-
low the ground surface. The water table is located 15 ft below the surface.
The soil has a total unit weight of 130 pcf. If the N-value obtained from
the test is 30, determine the effective friction angle of the soil. If the sand
is well graded, estimate its ¢, and A¢.

[Answer: 43°, 43°, 8°]

Based on Fig. 3-2, derive equations showing the relationship between un-
drained shear strength and blow count for clay of low plasticity and also
for clay of high plasticity. For the same blow count, what is the strength
ratio between the two soils?

[Answer: 3.3]

When a Dutch cone penetrates to a sand deposit at a depth of 20 ft below
the ground surface, the recorded cone resistance is 68 tsf. If the total unit
weight of the sand is 125 pcf and the water table is 10 ft below the ground
surface, estimate the effective friction angle of the sand using Fig. 3-3, Eq.
(3-3), and Eq. (3-4). If the sand is poorly graded, estimate its ¢, and A¢.
[Answer: 39°, 38.9°, 37.8°, 37°, 6°]

In Fig. 3-4, the standard size piezocone has a cone diameter, 4., of 35.7 mm
and a sleeve height, &, of 134 mm. Theoretically, what should be the di-
mension of d; to obtain a calibrated a,, of 0.581? What should be the di-
mension of d, for a calibrated b, of 0.014?

[Answer: 27.2mm, 31.7 mm]

The cone resistance, g, of a dense sand at a depth of 40 ft below the ground
is 300 tsf. The total unit weight of the sand is 130 pcf, and the groundwater
table is at a depth of 20 ft below the ground. If there is no excess pore pres-
sure, determine the effective angle of internal friction of the sand by Fig.
3-3, and compare with that by Fig. 3-8.

[Answer: 42.5°, 42°]

The piezocone data indicates that a loose silt with a total unit weight of
120 pcf has a cone resistance, g, of 6.6tsf, and a total pore pressure, u;, of
1.6tsf at a depth of 25ft below the ground surface. If the calibrated net
area ratio, a,, is 0.581 and the water table is 5 ft below the ground surface,
estimate the effective cohesion and the effective friction angle of the silt
by Fig. 3-8.

[Answer: 28 psf, 29.2°]

Derive Egs. (3-17) and (3-18).
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3.8

3.9

3.10

For the granular material with the four sets of principal stresses shown in
Table 3-2, plot the p’ versus q diagram and determine the K-line by the
principle of least squares. What are the effective cohesion and the effec-
tive friction angle of the material?

[Answer: 30.5psi, 37.7°]

If the Ki-line in Problem 3.8 is forced to pass through the origin, plot the p’
versus q diagram and the Ki-line. Determine the slope of the Kr-line by
least squares and the effective friction angle of the granular material.
[Answer: 0.629, 39°]

Derive Eq. (3-28).



Chapter 4

Phreatic Surfaces

Seepage in embankments and dams is one of the important factors affecting
stability, and many dam failures are caused by seepage. Seepage can be best
represented by a phreatic surface. Theoretically, the pore water pressure along
the failure surface should be determined from the piezometric surface rather
than the phreatic surface. However, unless the phreatic surface is steeply inclined,
the difference between the two surfaces is insignificant. Furthermore, the use of
the phreatic surface always gives a lower and more conservative factor of safety.
This chapter discusses various methods for determining the phreatic surface.
Once a phreatic surface is known, its coordinates can be read by a computer
program, and its effect on the factor of safety can be evaluated. A simplified but
approximate method to characterize seepage is by the use of a pore pressure
ratio. Pore pressure ratios also can be used for short-term stability analysis to
predict the excess water pressure because of consolidation. These applications
of pore pressure ratios also will be briefly described.

4.1 Flownets

In the stability analysis of slopes, particularly those related to earth dams, it is
necessary to estimate the location of the phreatic surface, or the line of seepage.

89
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In the case of an existing slope, the phreatic surface can be determined from
subsurface investigation by observing the water level in bore holes with adjust-
ments for seasonal changes. If the slope has not been constructed and is quite
complex in configuration, the phreatic surface can be obtained by drawing a
flownet or using a finite-element computer program. For simple cases, such as
a homogeneous dam, the phreatic surface can be obtained by simple charts. The
differences between phreatic and piezometric surfaces will be explained in
Section 4.1.3. In this section, only cases involving homogeneous cross sections
will be discussed. Details about flownets in nonhomogeneous cross sections
consisting of soils with different coefficients of permeability can be found in
Cedergren (1977).

4.1.1 Isotropic Cross Section

Fig. 4-1 shows several flownets for homogeneous and isotropic cross sections.
An isotropic soil has the same permeability in both the horizontal and vertical
directions. A flownet consists of a number of flow lines, as shown by the solid
curves in the figure, and a series of equipotential lines, as indicated by the dashed
curves. To construct the flownet, first a trial phreatic surface must be drawn. At

CHIMNEY
OUTLET

CHIMNEY DRAIN

%‘\\\\\& FILTER

INTERNAL DRAIN

Fig. 4-1. Construction of flownets for isotropic cross section
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equal intervals on the phreatic surface, as indicated by the short horizontal lines,
the equipotential lines can be drawn, followed by the flow lines. If the flow lines
and equipotential lines are perpendicular and form curvilinear squares, at which
the average distance between the two flow lines is equal to that between the two
equipotential lines, the assumed phreatic surface is correct; otherwise, the phre-
atic surface must be changed until a satisfactory flownet is obtained. The use of
squares is for convenience only. At the impervious boundary, rectangles also may
be used as long as they are all of the same shape. For example, the toe drain at
the top of Fig. 4-1 has only three flow lines, including the impervious boundary,
and two flow channels. The bottom channel should not be considered a full
channel but only a 0.6 channel, because it is formed by rectangles with the same
width-to-length ratio of 0.6.
If the rate of seepage is desired, the following equation can be used:

N
=kh—L 4-1
q N, 1)

in which g = rate of flow per unit width, k = coefficient of permeability, i =
total head loss, Ny= number of flow channels, and N,; = number of equipotential
drops.

4.1.2 Anisotropic Cross Section

An anisotropic soil has a coefficient of permeability in the horizontal direction
different from that in the vertical direction. When the fill is compacted in layers,
the coarse particles may be broken down under the high-contact pressure of the
roller, so a thin layer of fine materials may be formed at the top of each com-
pacted layer. These thin layers will reduce greatly the permeability in the vertical
direction, but the permeability in the horizontal direction will be affected to a
much lesser degree. To draw the flownet, an anisotropic cross section must be
transformed to an isotropic section by changing the x-coordinates while the
y-coordinates remain unchanged, or

X = ky 4-2
= EX (4-2)

in which X is the coordinate after transformation, x is the original coordinate
before transformation, k, is the coefficient of permeability in the x direction, and
k, is the coefficient of permeability in the y direction. Because k, is usually smaller
than k,, the horizontal distance is reduced. Once the section is transformed, a
flownet can be drawn and the location, or X-coordinates, of the phreatic surface
can be determined. The transformed X-coordinates of the phreatic surface then
can be transformed back to the original x-coordinates, which are the coordinates
to be used for stability analysis.
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Eq. (4-1) also can be used to determine the rate of seepage for the anisotropic
cross section. However, in the equation, k is an equivalent permeability
defined by

k=Jk.k, (4-3)

Example 4.1 Fig. 4-2(a) shows the original cross section of a refuse dam con-
structed of two different materials, silty clay and coarse coal refuse. The starter
dam was built of silty clay, which has a permeability several orders of magnitude
smaller than that of coarse coal refuse, so the surface of the starter dam can be
considered as an impervious boundary, or the bottom-most flow line. The coarse
coal refuse is anisotropic with a horizontal permeability of 3.28 x 107°ft/s (1 x
10*cm/s) and a vertical permeability of 8.2 x 107 ft/s (2.5 x 10°cm/s). A drain-
age blanket is provided under the coarse coal refuse to lower the phreatic surface.
Determine the coordinates of the phreatic surface and compute the rate of seep-
age through the dam.

-
Coarse Refuse

Starter Dam

(0.80)

/

|

v EL260 ——, (180.260)

(1105,0)

(a) Original Section

sls
515
=31
gla

(190.270)
(215.270)

(0.80)

(b) Transformed Section: unacceptable flownet  (c) Transformed Section: acceptable flownet

Fig. 4-2. Determination of phreatic surface for anisotropic cross section
Note: 1ft=0.305m
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Solution From Eq. (4-2), X = xv/8.2x107 /3.28x10° =0.5x, so the transformed
section can be drawn by reducing the x-coordinates by one-half, while the y-
coordinates remain the same. Fig. 4-2(b) is the transformed section with an unac-
ceptable flownet, because it is not formed by squares. Fig. 4-2(c) is an acceptable
flownet with the coordinates of the phreatic surface shown in parentheses. The
section is transformed back to the original by doubling the x-coordinates, and the
coordinates of the phreatic surface are shown in Fig. 4-2(a). To determine the rate

of seepage, first from Eq. (4-3), k =v/3.28 x8.2x107 =1.64 x10™ ft/s; then from
Eq. (4-1), g=1.64 x 10° x (260 — 33) x 2/8 =9.31 x 10 cfs per foot of dam.

If the flownet in the transformed section is transformed back to the original
section, the flownet will become rectangles instead of squares, and the equipo-
tential lines no longer will be perpendicular to the flow lines.

4.1.3 Phreatic Surface versus Piezometric Surface

Theoretically, the pore pressure along the failure surface under steady-state
seepage should be determined by drawing a flownet, or, more accurately, by
using a finite-element program for seepage analysis. Fig. 4-3 shows the phreatic
surface and the equipotential line passing through point A at the bottom of a
slice. If point B on the phreatic surface, which lies directly above point A, is at a
distance of h,, above point A, the pressure head at point A is &, cos*p, where B is
the slope of the phreatic surface at point B. When a piezometer is placed at point
A, the water table in the piezometric tube will rise to point C at a distance of
h,,cos*p above point A, so point C is on the piezometric surface. The pore pres-
sure at the bottom of slice can be written as

u="1y,h, cos’p (4-4)

in which v, = unit weight of water. A simplification is to consider the phreatic
surface as a piezometric surface, so if a piezometer is placed a point A, the water
level in the piezometer will rise to the elevation at point B. Thus, the pore pres-
sure at point A can be expressed simply as

U="Yoho (4-5)
by Plreatic Surface
& ™| (Flow Line)
e
B B
e s hycos?p  |h
Equipotential {—=, w03 w
Line Ay

~10

Fig. 4-3. Pore pressure at bottom of slice
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Compared to Eq. (4.4), Eq. (4-5) is a more conservative estimate of the pore
water pressure. However, the differences between the two representations of
pore water pressure are typically small because the slope angle, 3, for most
phreatic surfaces is quite small. Even if B is large in some local regions, the dif-
ference between the two surfaces occurs only over a limited area, and its effect
on the factor of safety is quite small. In view of the fact that the phreatic surface
is difficult to estimate and is at times unconservative, the use of Eq. (4-5) to rep-
resent the pore pressure at the bottom of the slice is just as suitable as Eq. (4-4).
The same conclusion was drawn by Duncan and Wright (2005). For this reason,
Eq. (4-4) is used to compute the pore water pressure throughout this book.

Based on B = 0, the Fellenius method assumes that the neutral force normal
to the failure surface is y,h,bsec8. It is more reasonable to assume B = 6, so the
neutral force by the Fellenius method should be multiplied by cos®8, which is
the same as 7,/1,b cos 0 by the normal method. Therefore, the use of the normal
method to replace the Fellenius method is theoretically sound.

4.2 Earth Dams without Filter Drains

Fig. 4-4 shows an earth dam on an impervious base. The downstream face of the
dam has a slope of S:1 (horizontal:vertical). If no drainage system is provided,
the downstream slope should be relatively flat, generally not steeper than 1.5:1,
or 30°. In such a case, Dupuit’s assumption that the hydraulic gradient in every
point on a vertical line is constant and equal to the slope, dy/dx, is valid. The
seepage through the dam can be expressed by Darcy’s law as

d
q:k(y—xtan(x)d—z (4-6)
& |
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Fig. 4-4. Earth dam on inclined ledge
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in which g = discharge per unit time, k = permeability, o. = angle of inclination
of the base, and x and y are the coordinates. At the point of exit,

_ ka(1-Stano) (4-7)
S
in which a is the y-coordinate of the exit point.
Equating Egs. (4-6) and (4-7) and integrating, an equation of the following
form is obtained:

Function(x, v, ¢;)=0 (4-8)

in which ¢, is a constant of integration.

Following the procedure originally suggested by Casagrande (1937), it is
assumed that the theoretical line of seepage starts from the pool level at a dis-
tance of 0.3A from the dam, where A is the horizontal distance shown in Fig. 4-4.
Therefore, when the toe of the downstream slope is used as the origin of coor-
dinates, one point on the line of seepage with x = d and y = h is known. Substi-
tuting this x, y pair into Eq. (4-8) allows the evaluation of the constant of
integration, c;. Assuming the x- and y-coordinates of the exit point as 4S5 and 4,
and substituting this x, y pair into Eq. (4-8), an equation of the following form
is obtained:

Function(a)=0 (4-9)

Eq. (4-9) was solved by Huang (1981) using a numerical method, and the
results are presented in Fig. 4-5.

Next, assume that the x- and y-coordinates of the midpoint are (aS + d)/2
and b, respectively. Substituting this x, y pair into Eq. (4-8) and bearing in mind
that the value of 2 has been determined by Eq. (4-9), an equation of the following
form is obtained:

Function(b)=0 (4-10)

The solution of Eq. (4-10) is presented in Fig. 4-6. Knowing the three points
on the phreatic surface, i.e., the starting point, the midpoint, and the exit point,
a curve can be drawn, which is the theoretical line of seepage. Because the
actual line of seepage must be perpendicular to the upstream slope and tangent
to the downstream slope, the theoretical line can be adjusted slightly to fulfill
these boundary requirements. This adjustment is not really necessary when the
phreatic surface is inputted into a computer program. The phreatic surface
within a dam can be represented simply by two straight lines: one from the
water entrance point (point of intersection between the upstream water table
and the upstream slope) to the midpoint, and the other from the midpoint to the
exit point. There is no need to draw a flownet or use a finite-element seepage
program.
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Fig. 4-5. Chart for determining point of exit (Huang 1981. Reproduced
with permission)

When the dam is constructed on a horizontal base, i.e., o0 = 0, the solution is
the same as that developed by Schaffernak and Iterson in 1916, as reported by

Casagrande (1937).

Example 4.2 Fig. 4-7(a) shows the cross section of a dam with all the necessary

dimensions given. Determine the location of the phreatic surface.

Solution From the given coordinates, o = tan™'(60/530) = 6.5%; A = 530 — 350 =

180 ft.
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Location of starting point: d = 350 + 0.3 x 180 = 404 ft, h = 150ft, so the coordi-
nates are (404, 150).

Location of exit point: From Fig. 4-5, with oo = 6.5° and d/h = 404/150 = 2.7,
when S=1.5,a/h=0.29; and when S=2,a/h =0.43. When S=1.75,a/h = (0.29 +
0.43)/2=0.36, ora=0.36 x 150 = 54 ft. aS = 1.75 x 54 = 94.5, so the coordinates are
(94.5, 54).

Location of midpoint: From Fig. 4-6, when S =1.5, b/h = 0.72; and when S =
2,b/h=0.76. When S=1.75,b/h=(0.72+ 0.76) /2 =0.74, or b = 0.74 x 150 = 111 ft.
x=(94.5 +404)/2 = 249.3ft, so the coordinates are (249.3, 111).

Knowing the three points, the line of seepage can be drawn, as shown in
Fig. 4-7(b).

4.3 Earth Dams with Filter Drains

If a drainage system is provided within the dam, such as the use of porous shells,
toe drains, or underdrains, the line of seepage becomes steeper and Dupuit’s
assumption is no longer valid, so the method presented in Section 4.2 for deter-
mining the location of phreatic surface cannot be used. Depending on the angle
B of the filter drain shown in Fig. 4-8, two methods can be used to determine the
point of exit, one for B < 60° and the other for 60° < § < 180°.

4.3.1 When B £60°

Based on the assumption that the hydraulic gradient is dy/d¥, instead of dy/dx
by Dupuit, where £ is the distance along the line of seepage, Gilboy (1933) devel-
oped a simple chart for a dam on a horizontal base, as shown in Fig. 4-9. The
insert in the figure shows only the more impervious part of the dam; the porous
shell, if any, is not shown. When f is less than 30°, the solutions check closely
with Fig. 4-5 for o = 0. The solutions by Fig. 4-9 are very satisfactory for slopes
up to 60°. If deviations of 25% are permitted, it may even be used up to 90°, i.e.,
for a vertical discharge face.

Example 4.3 Fig. 4-10 shows a zoned dam with the porous shells outside and
the clay core inside. The dimensions necessary to determine the exit point of the
phreatic surface are indicated by the coordinates in parentheses. Determine the
distance, 4, of the exit point.

TOE DRATN UNDERDRATN

Fig. 4-8. Measurement of angle B
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o 10 20 30 40 50 €0 70 80 20
in degrees

Fig. 4-9. Location of phreatic surface (Gilboy 1933. Reproduced with permission from
the International Commission on Large Dams)

—tm-w (260.130)
o Lh

h
1

(0,0) {400,6)

Note: All coordinates are in feet’.

Fig. 4-10. Example 4.3

Solution Because of the porous nature of the shells, the starting point of the
phreatic surface is at (120, 130). From the coordinates of the four given points, 1 =
130ft, A=120ft, d = 0.3 x 120 + (400 — 120) = 316 ft, and B = tan™' [150/(400 — 260)] =
47°. With d/h=316/130=2.43 and B =47°, from Fig. 4-9, m=0.28, or a=0.28 x 130
= 36.4ft. The location of the phreatic surface can be approximated by connecting
a straight line between the starting and exit points.



100 Slope Stability Analysis by the Limit Equilibrium Method

BASIC
PARABOLA

/
UNDERDRAIN

Fig. 4-11. Basic parabola for underdrain

4.3.2 When 60° < 3 <180°

Fig. 4-11 shows an earth dam with an underdrain, or = 180°. The equation for
the line of seepage was derived by Kozeny and can be expressed as a basic
parabola (Harr 1962)

2, (4-11)

Note that when x = 0, y =y, and that when y = 0, x = -0.5y,. The intercept y,
can be determined by letting x = d and y = h, which are the coordinates of one
known point on the line of seepage, and then solving y,, or

Yo =N 17 —d (4-12)

Example 4.4 Fig. 4-12 shows a dam with an underdrain. Given the coordinates
of the three points shown in parentheses, compute the x coordinates at every y
interval of 20ft (6.1 m) and sketch the line of seepage.

Solution Based on the given coordinates, i = 140ft, A = 400 — 120 = 280ft, and
d =120+ 84 =204 ft. From Eq. (4-12), y, = [(204)* + (140)*]°° — 204 = 43.4 ft. From Eq.
(4-11), the equation of the basic parabola is

2 —
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Note: All dimensions are in feet.

Fig. 4-12. Example 4.4

The x- and y-coordinates of eight points from y =0 ft to y = 140 ft are tabulated
as follows:

x (ft) y (ft) x (ft) y (ft)

-21.7 0 52.0 80

-17.1 20 93.5 100
-3.3 40 144.2 120
19.8 60 204.0 140

The basic parabola is plotted in the figure as indicated by the dashed curve.
Because the line of seepage is a flow line, which must be perpendicular to the
equipotential line or the upstream slope, the basic parabola must be adjusted at
the upstream side, as indicated by the solid curve.

When B < 180°, Casagrande (1937) developed a method for sketching the line
of seepage. By comparing the line of seepage obtained from the flownets for
various angles, B, he found the distance, AA, between point A on the basic
parabola and point B on the line of seepage, as shown in Fig. 4-13 for a toe drain
with 3 =135°. To adjust the basic parabola, a correction factor, c;, must be obtained
from Fig. 4-14. The correction factor is defined as

__m
VY

(4-14)

in which A + AA is the distance from the origin to the basic parabola along the
slope surface. Eq. (4-14) can be used to determine AA. Having plotted the basic
parabola and determined the discharge point by scaling a distance of AA from
the basic parabola, the entire line of seepage can be sketched in easily. The fol-
lowing rules are convenient for sketching the line of seepage:
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Fig. 4-14. Correction factor for phreatic surface (Casagrande 1937. Reproduced with
permission of Journal of the New England Water Works Association)

1. When 3 <90°, the line of seepage is tangent to the slope; when 8 > 90°, it
is tangent to a vertical line.

2. Wheny=0,x=-y,/2.

3. When x =0, y = y,, and the line of seepage makes an angle of 45° with
horizontal.

Example 4.5 Fig. 4-15(a) shows an earth dam with a toe drain. Sketch the line of
seepage using Casagrande’s procedure.

Solution Based on the given coordinates, it can be easily found that d =304 ft and
h =140 ft. From Eq. (4.12), y, = [(304)? + (140)2]°® — 304 = 30.7 ft. From Eq. (4-11), the
equation of the basic parabola is
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Fig. 4-15. Example 4.5

y? =942
614

The basic parabola is plotted in Fig. 4-15(a). Some adjustments must be made
at the entrance and exit ends. An exploded view of the line of seepage near the
toe is shown in Fig. 4-15(b). The intersection of the toe with the basic parabo-
la can be determined by substituting y = —x into the equation, and a quadratic
equation y> — 61.4y — 942 = 0 is obtained. The solution is y = 12.7ft, or A + AL
= 12.7/sin45° = 18.0ft. With B = 135°, from Fig. 4-14, ¢; = 0.15. From Eq. (4-14),
AL =0.15x 18 =2.7 ft. In Fig. 4-15(b), the basic parabola is shown in the solid curve
and the adjusted line of seepage in the dashed curve. Because of the large B, there
is not much adjustment at the exit end.

4.4 Unsteady-State Seepage

The phreatic surface discussed so far is concerned with the steady-state seepage.
In most cases, it is assumed that, after a period of time, a steady-state seepage
condition finally will develop, so the steady-state phreatic surface can be used
for stability analysis. However, the assumption of steady-state seepage for tem-
porary dams, such as those used for refuse disposal and sediment control, does
not appear to be reasonable, because the steady-state condition might not be
reached during the design life. In fact, many of the refuse dikes and silt dams
constructed in the Eastern Kentucky Coal Field would be considered unsafe
should a steady-state seepage condition be assumed. To achieve the required
factor of safety, the designer has to assume an unsteady-state phreatic surface
arbitrarily. Although unsteady-state seepage can be analyzed by numerical
methods or transient flownets, they are too complex to be of general use. The
uncertainty in determining the permeability and effective porosity of soils usually
precludes the use of more refined methods.
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Fig. 4-16. Relationship between dimensionless time and dimensionless distance
(Huang 1986. Reproduced with permission)

Based on the transient flownets presented by Cedergren (1977), Huang (1986)
developed a simple chart for estimating the unsteady-state seepage in an earth
dam, as shown in Fig. 4-16. The chart can be applied to an earth dam on a hori-
zontal impervious base with an upstream slope of 2:1. Given the dimensionless
time, T, the distance, x, traveled by the phreatic surface along the base of the
dam can be determined.

The dimensionless time is expressed as

T= L (4-15)
n.h
in which t = actual time for the phreatic surface to travel a distance x along the
base of the dam, k = permeability, 7, = effective porosity of the soil, and / = depth
of water in the pond.

It can be visualized that the phreatic surface progresses from upstream to
downstream, with the upper end fixed at the pool elevation and the lower end
moving along the impervious base. Although the phreatic surface is not a straight
line between these two ends, the assumption of a straight line is quite reasonable,
especially at the later stage. In the initial stage where the phreatic surface is
curved, the assumption of a straight line is on the safe side, because it results in
a higher phreatic surface.

Example 4.6 Fig. 4-17 shows a temporary dam with a horizontal impervious
base. The soil in the dam has a permeability of 3 x 107ft/s (2.7 x 10°cm/s) and
an effective porosity of 0.2. If the dam is used for only five years, determine the
location of the unsteady state phreatic surface at the end of the fifth year.
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Fig. 4-17. Example 4.6

Solution Given t =5 years, k = 3 x 107ft/s = 9.5 ft/year, n, = 0.2, and h = 50ft,
from Eq. (4-15), T=9.5x5/(0.2 x 50) =4.75. From Fig. 4-16, x/h =4.66, or x =4.66 x
50 =233 ft. The location of the phreatic surface at the end of the fifth year is shown
in Fig. 4-17 by the dashed line.

The chart presented in Fig. 4-16 is based on the results obtained by Cedergren
(1977) for dams with a horizontal impervious base and an upstream slope of 2:1.
For dams with other configurations, as shown in Fig. 4-18, the chart should give
a phreatic surface higher than reality, so using it for stability analysis is on the
safe side.

In Fig. 4-18, if the impervious base is not horizontal, as shown in (a), or the
dam is placed on a soil foundation, as shown in (b), an imaginary horizontal

\\\:\sted
[ X =~

I - 1 é.—\ctual
SR B AR AR AR A, PN NN

(b) Soil Foundation

Assumed

X

(c) Steerer Slope

Fig. 4-18. Applications to special cases
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base is assumed, and the method is applied as usual. The extra flow region below
the imaginary base will lower the phreatic surface, so the assumption of a hori-
zontal base is on the safe side. If the slope is steeper than 2:1, as shown in (c), a
2:1 slope can be drawn from the toe. Because the hatched portion of the dam is
considered as water instead of soil, the value of x for the 2:1 slope should be
greater than that for the steeper slope, so the use of the chart based on a 2:1 slope
is on the safe side. If the slope is flatter than 2:1, as shown in (d), a 2:1 slope can
be drawn from the pool elevation, and the consideration of the hatched portion
of the dam as a body of water will give a larger and more conservative value of
x. However, to measure the x distance from the toe of the actual slope, the dis-
tance d between the two toes must be added.

4.5 Pore Pressure Ratio

Pore pressure ratio can be used for two purposes: first, to replace the phreatic
surface for steady-state seepage, and second, to simulate the excess water pres-
sure due to consolidation during or immediately after construction. Both cases
will be discussed in this section.

4.5.1 Pore Pressure Ratio for Steady-State Seepage

When the location of the phreatic surface is unknown or unpredictable, it is
convenient to assume a pore pressure ratio so that the adverse effect of water
can be included in the stability analysis. Even if the location of the phreatic
surface is known a priori, the conversion of the phreatic surface to a pore pres-
sure ratio can simplify the use of equations and charts for determining the factor
of safety, as demonstrated in Chapters 6 and 7.

The pore pressure ratio is defined as a ratio between the water pressure and
the overburden pressure, or

fy = — =10 (4-16)

in which u = pore water pressure, v, = unit weight of water, 1, = depth of water
between the phreatic surface and the failure surface, y = total unit weight of soil,
and h = depth of soil between the ground surface and the failure surface. Because
the pore pressure ratio generally is not uniform throughout a slope, an average
pore pressure ratio should be used in stability analysis.

Fig. 4-19 shows the conversion of a phreatic surface to a pore pressure ratio
for both the plane and the cylindrical failure surfaces. As defined by Eq. (4-16),
the pore pressure ratio is a ratio between the pore pressure and the over-
burden pressure, or between the total upward force due to water pressure and
the total downward force due to the weight or overburden pressure. According
to the Archimedes principle, the upward force is equal to the weight of water
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Fig. 4-19. Determination of pore pressure ratio

displaced, or the volume of sliding mass under water multiplied by the unit
weight of water. The downward force is equal to the weight of the sliding mass.
Therefore, the pore pressure ratio can be determined by

_ Volume of sliding mass under water x unit weight of water

(4-17)

Ty

Volume of sliding mass x unit weight of soil

Since the unit weight of water is approximately equal to one-half the unit
weight of soil, the pore pressure ratio can be determined approximately by

_ area of the sliding mass under water

Ty

2 x area of the sliding mass (4-18)

If the location of the failure surface is known, the average pore pressure ratio
can be determined by Eq. (4-17) or (4-18), as shown in the figure. If the location
of the failure surface is not known, proper judgment or prior experience in esti-
mating its location is needed in order to determine the pore pressure ratio.

In applying their stability charts, as presented in Section 7.5.1, Bishop and
Morgenstern (1960) suggested the use of an average pore pressure ratio by
weighing the pore pressure ratio over the area through the entire slope, or

2 (Pore pressure ratio x area)
r, = (4-19)
Total area

Eq. (4-19) is useful when the pore pressure is determined from field measure-
ments or from the construction of flownets, because it is not necessary to know
the location of the most critical circle a priori. However, the use of Eq. (4-17)
based on the probable location of the most critical circle is more accurate and
should be used whenever possible. If the total area is used, Eq. (4-17) is still valid
except that the volume of the sliding mass is replaced by the volume of the entire
slope, as illustrated in Example 4.7.
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In an effective stress analysis, the pore pressure ratio is used to convert the
total weight of soil, W, to the effective weight, W', or

W’ =(1-1)W (4-20)

If there is no water table or no seepage in the slope, or r, = 0, then W= W.
If the entire soil mass in under water, or r, = 0.5, then W’ = 0.5W. The effective
weight is used to determine the shear resistance along the failure surface, and
the total weight is used to determine the driving force.

Example 4.7 Fig. 4-20 is an earth dam on a horizontal ledge with the location
of the phreatic surface shown by the dashed line. The most critical circle has a
radius of 115ft (35.1 m) and a central angle of 83°. The surface of the dam is along
afbcd and the chord of the circle is along abd. If the total unit weight of the soil is
130 pcf (20.4kN/m?’), determine the average pore pressure ratio based on the area
of the sliding mass and compare it to that based on the total area.

Solution
Based on area of sliding mass

Area of sliding mass = Area of the circular segment abde — Area abf + Area bcd.
The area of the circular segment can be computed by

nR? R’sin® _m(115)%(83) (115)sin(83°)

360 2 360 2
= 3,016 ft?

Area of circular segment =

Some other areas are based on the measurements from the figure and should
be considered as approximate only.

LA AN f-

T o

10120 100 20

Fig. 4-20. Example 4.7
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Area of sliding mass = 3,016 — % X81x5+ % X 72 x4 =2,958 ft2

The area of the sliding mass above the water table can be determined by di-
viding the area into two triangles and one trapezoid, or

Area above water table = % X 98 %22+ % x(25+16)x 12+ % x16x8=1,388 ft*

Area of the sliding mass under water = 2,958 — 1,388 = 1,570 ft*
From Eq. (4-17),

1,570x62.4

=———=0255
2,958 x130

u

Based on total area

It is estimated that the most critical circle will fall in a region within 20 ft beyond
the top edge and 10ft beyond the toe, as shown in Fig. 4-20. The total area con-
sists of two rectangles and one trapezoid, or

Total area=5><10+%><(5+65)><120+65><20 = 5,550 ft

The area under water includes one rectangle and two trapezoids:

Area under water =5x 10+ % x(5+15)x20+ % X (15+41)x 120 = 3,610 ft*

r, =3,610x62.4/(5,550 x130) = 0.312

If the width of the total area is reduced to 10ft from the top edge, instead of
the original 20ft, the pore pressure ratio is 0.315, which is about the same as the
original 0.312.

It can be seen that there is a significant difference between the two methods,
which is expected. In most cases, the use of the average over the total area is
more conservative and results in a higher pore pressure ratio and a lower factor
of safety.

4.5.2 Pore Pressure Ratio due to Consolidation

When a new overburden is placed above a layer of clay located below the phre-
atic surface, an excess pore pressure, other than that due to steady-state seepage,
will be developed in the clay layer. If the clay is completely saturated and the
new overburden is applied instantaneously, an excess pore pressure equal to the
new overburden pressure is developed instantaneously with a pore pressure
ratio equal to 1, but this excess pore pressure will dissipate gradually and finally
disappear after a long period of time. In the long-term stability analysis, it is
assumed that the soil above the phreatic surface has no pore pressure, and the
soil below the phreatic surface has a static pore pressure caused by the
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steady-state seepage. In the short-term stability analysis, the excess pore pressure
in the soil below the phreatic surface caused by a new overburden also should
be considered. The theory of consolidation so well known in soil mechanics can
be applied to determine the excess pore pressure in any clay layer at any time
after the load is applied. If a dam is built in stages, the short-term stability at the
end of each stage must be analyzed by taking the excess pore pressure into
account.

Fig. 4-21 shows the relationship between the consolidation ratio and the time
factor based on Terzaghi’s one-dimensional (1D) consolidation theory with a
drainage layer at the top and an impervious boundary at the bottom. In the
figure, z is the distance below the drainage layer, H is the length of drainage
path, which is the same as the thickness of clay layer, U, is the consolidation
ratio, and T is the time factor defined as

Gt

T—H2

(4-21)

in which ¢, = coefficient of consolidation, and ¢ = time since consolidation started.
The relationship between the consolidation ratio, U,, and pore pressure ratio,
7., 1S

ro=1-U, (4-22)

Fig. 4-21 clearly shows that the pore pressure ratio varies significantly with
depth. Because trial failure surfaces may cut through the clay layer at any depth,
unless the clay layer is thin, it may be necessary to divide it into several layers,
each represented by a pore pressure ratio at its midheight. Theoretically, a point
somewhat above the midheight gives a better representation of the average pore
pressure ratio. However, the use of midheight is recommended, because it gives
a higher pore pressure ratio than average, so the design is on the safe side. The
difference between the average pore pressure ratio and the pore pressure ratio
at the midheight decreases as the time increases.

Drainage Layer B
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Fig. 4-21. Relationship between consolidation ratio and time factor (Taylor 1948)
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It should be noted that Fig. 4-21 also could be applied to a clay layer with
drainage at both the top and bottom. In this case, the thickness of layer is 2H,
and an impervious boundary can be assumed at the midheight to separate the
clay layer into two halves. The water in the top half will drain to the top and
that in the bottom half drain to the bottom. Because both parts are symmetrical
with the same length of drainage path, H, Fig. 4-21 can be flipped down and
applied to the lower part as well.

Example 4.8 A new dam is to be constructed over a clay layer 20ft (12.2m)
thick, as shown in Fig. 4-22. The clay layer is located below the water table and is
completely saturated. The soil above the clay layer is sand and can serve as a
drainage layer. The clay layer on the downstream side is underlain by rock, which
can be considered as an impervious boundary, and that on the upstream side by
a thin layer of sand, which can provide adequate drainage. To obtain a better
representation of the pore pressures, the clay is divided into four sublayers. From
start to finish, it will take two years to complete the dam. If the clay has a coef-
ficient of consolidation of 1.4 x 10*in.?/s (5.4mm?/min), determine the excess
pore pressure ratio at the end of construction in each of the sublayers on both
sides.

Solution Given total construction time of two years, the average consolidation
time t =1 year.

Downstream side: With drainage on one side, H = 20ft. Given ¢, = 1.4 X
10*in.2/s = 30.66 ft*/ year, from Eq. (4-21), T = 30.66 x 1/(20)* = 0.077. From top
to bottom, the values of z/H at the midheights of the sublayers are 0.125, 0.375,
0.625, and 0.875. From Fig. 4-21, the pore pressure ratios are 0.25, 0.68, 0.89,
and 0.96.

Upstream side: With drainage on both sides, H = 10ft. Since T is inversely
proportional to H>, T = 4 x 0.077 = 0.31. From Fig. 4-21, the pore pressures for
z/H at 0.25 and 0.75 are 0.22 and 0.55. The pore pressure ratio for each sublayer
is shown in Fig. 4-22.

...... Y o+ T " e v . + % oa ot omg T

Downstream Upstream
New Dam

P TV FRT T T R
1 Iy =0.25 0.22 i
H= | oo 0.68 055 H=10ft
20 o 0.89 0.55
0.96 0.22

AW LTI L I L Y I T L T
- T TR GNIAT
Rock Sand ocl:

Fig. 4-22. Example 4.8
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Summary

1.

For homogeneous and isotropic cross sections, the location of the phreatic
surface can be determined easily by drawing a flownet. If the cross section
is anisotropic with permeability in the horizontal direction greater than
that in the vertical direction, it can be transformed into an isotropic cross
section by reducing the horizontal coordinates according to Eq. (4-2).

Charts are presented in Figs. 4-5 and 4-6 to determine the location of the
phreatic surface in earth dams on an impervious base. These charts are
based on Dupuit’s theory and are applicable when the downstream slope
is not greater than 30°. If the impervious base is horizontal and the down-
stream slope is >30° but <60°, Fig. 4-9 can be used. If the base is not imper-
vious, the phreatic surface will be lower and the use of the charts for
stability analysis is on the safe side.

For earth dams with filter drains, as shown in Fig. 4-8 for shell drains, toe
drains, and underdrains, the exit point varies with the angle 8. In the case
of an underdrain with B = 180°, the equation of the phreatic surface is a
basic parabola and can be plotted directly based on the distances & and d,
as shown in Fig. 4-11. When f > 60° but < 180°, the basic parabola must
be adjusted by moving the exit point down the slope a distance of AA,
using the correction chart developed by Casagrande (1937), as shown in
Fig. 4-14.

A simple chart is presented to determine the location of the unsteady-
state phreatic surface as a function of time. Although the chart is based on
a dam with a horizontal impervious base and an upstream slope of 2:1,
with slight modifications, it also can be applied to other configurations
with more conservative results.

When the location of the steady-state phreatic surface is unknown or un-
predictable, it is convenient to assume a pore pressure ratio, so the ad-
verse effect of water can be included in the stability analysis. Even if the
location of the phreatic surface is known a priori, the conversion of the
phreatic surface to a pore pressure ratio can simplify the use of equations
and charts for determining the factor of safety, as demonstrated in Chap-
ters 6 and 7. Given the location of both the phreatic and failure surfaces,
the pore pressure ratio can be computed by Eq. (4-17). If the location of
the failure surface is unknown and cannot be roughly estimated, the same
equation still can be applied by considering the entire slope as a failure
mass, instead of the mass above the failure surface.

Another use of the pore pressure ratio is to evaluate the effect of excess
pore pressure for short-term stability during or at the end of construction.
When a new overburden is placed above a layer of clay located below
the phreatic surface, an excess pore pressure, other than that due to
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steady-state seepage, will be developed in the clay layer. If the clay is
completely saturated and the new overburden is applied instantaneously,
an excess pore pressure equal to the new overburden pressure is devel-
oped instantaneously with a pore pressure ratio equal to 1, but this excess
pore pressure will dissipate gradually and finally disappear after a long
period of time. Because trial failure surfaces may cut through the clay
layer at any depth, unless the clay layer is thin, it may be necessary to
divide it into several layers, each represented by a pore pressure ratio at
its midheight. Methods for determining the excess pore pressure ratio
during or at the end of construction are presented.

Problems

4.1

4.2

Fig. P4-1 shows an earth dam with an underdrain. Using the information
provided, sketch the flownets for the following two cases: (a) the soil is
isotropic with the same permeability in both the horizontal and vertical
direction, and (b) the soil is anisotropic with the horizontal permeability
four times greater than the vertical permeability.

(180,265) (220,265)

10 ft

&

t
T

(0.175)

C e T ST _4_
(335,00  Underdram 3 10t
10% Slope
Fig. P4-1.
Same as Problem 4.1 except refer to Fig. P4-2.
(400,160) ¢

Coordinates are in ft.

510,119)

(290, 35)
(150,18)

_______

Underdrain

Fig. P4-2.
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4.3 Fig. P4-3 shows an earth dam with an underdrain. Using the coordi-
nates provided, sketch the flownet and determine the coordinates of the
phreatic surface. If the dam has a permeability of 2 x 10°cm/s, compute
the amount of seepage in cfs per ft of dam.

[Answer: 1.11 x 10~ cfs per ft]

655, 1330
Coordinates are in ft. { )

(283,1239) (400,1245)
A _,_._—.._'-':-_fsz-';t‘-f'ﬂj(émﬂﬂ 237) /7700. 1247)
(260,1230) et (550, 1225) (625, 1230)
Fig. P4-3.
4.4 Based on the dimensions shown in Fig. P4-4, determine the values of “a”

from Fig. 4-5 and “b” from Fig. 4-6 and sketch the phreatic surface.
[Answer: 72 ft, 144 ft]

10 ft
t

(680,200)~,  .(600,200)

(280,0) N (900,0)

Fig. P4-4.

4.5 Fig. P4-5 shows an earth dam on an inclined ledge. Locate the midpoint
and exit point and sketch the phreatic surface. If the dam has a perme-

ability of 5 x 10™*cm/s, what is the amount of seepage in cfs per foot
of dam?

[Answer: 1.36 x 107 cfs per ft]

» 270 ft -

Fig. P4-5.
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4.6 Same as Problem 4.5 except refer to Fig. P4-6.
[Answer: 7.87 x 107 cfs per ft]

Coordinates are in ft.

(0,0) R (255,0)

Fig. P4-6.
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4.7 Fig. P4-7 shows an earth dam with a chimney drain. Locate the exit point

of the phreatic surface by both Gilboy’s and Casagrende’s methods.

[Answer: 24.5 ft, 22.2 ft]

30 ft

\'\<—Chimney
-\ drain

5

TR R

4.8 For the dam shown in Fig. P4-8, sketch the location of the phreatic

surface.

Attt oA D At t o MA LT

5
Shell
s Underdrain
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4.9 For the dam shown in Fig. P4-9, sketch the location of the phreatic
surface.

410 Fig. P4-10 shows a new earth dam on bedrock. The permeability of the
dam is 5 x 10°cm/s and its effective porosity is 0.2. If the reservoir be-
hind the dam is filled up instantaneously to a height of 35ft, determine
the location of the phreatic surface at the end of 120 days, as indicated by
the distance x from the toe. If the face of the dam has a slope of 3:1, what
should be the most conservative values of x?

[Answer: 133 ft, 168 ft from toe]

7R
l X .

Fig. P4-10.
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A coal waste embankment is placed on top of a slurry pond consisting
of saturated fine refuse. The fine refuse is 30t thick with drainage layers
on both the top and bottom, as shown in Fig. P4-11. The fine refuse has a
coefficient of consolidation of 0.0035cm?/s and is divided into three lay-
ers for stability analysis. If the construction of the embankment takes one
year to complete, or the average consolidation time is 183 days, estimate
the pore pressure ratios at the end of construction for each layer.
[Answer: 0.33, 0.66, 0.33]

¥ s v.a Drainage layer

301'& Fine
} refuse

k2% Drainage layer

Fig. P4-11.
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Chapter 5

Remedial Measures for
Correcting Slides

Before planning and design of remedial measures, a field investigation must be
undertaken. The scope of field investigation is described in this chapter. Also
described are the various methods for correcting slides, including slope reduc-
tion or removal of weight, buttresses, surface drainage, subsurface drainage,
retaining walls, anchor systems, bridging or tunneling, soil reinforcements, pile
systems, vegetation and biotechnical stabilization, and hardening of soils. The
selection of methods for stabilization also is discussed.

5.1 Field Investigation

The scope of a field investigation should include topography, geology, water,
weather, and history of slope changes. If a slide has occurred, the shape of the
sliding surface also should be determined. After the field investigation, some
preliminary planning is needed before the start of the permanent remedial works.

5.1.1 Topography

The topography or geometry of the ground surface is an overt clue to past land-
slide activity and potential instability. More detail than that shown on existing
topographic or project design maps usually is required for landslide studies.

119
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Because the topography of a landslide is changing continually, the area must be
mapped at different times, if possible, from several years before construction to
several years after remedial measures are undertaken. Ultimately, the effective-
ness of corrective measures is indicated by whether there is further change in
the topography.

If a detailed survey of the area and the preparation of a contour map are not
possible because of the lack of time, at least several cross sections must be sur-
veyed from the accumulated masses at the toe of the slide to above the head
scarp. The cross section must be long enough to cover part of the undisturbed
area above and below the slide. The surface of the area should not be shown in
a simplified form but with as many topographic features as possible, such as all
marked edges, swells and depressions, scarps, cracks, and so on. The surveyed
sections are supplemented by the logs of borings.

Aerial photos are most useful for the investigation of landslides, because they
offer a perfect three-dimensional (3D) view of the area. From an aerial photo,
one can determine precisely the boundaries of a landslide, because the slope
surface below the scarp is irregularly undulated with ponded depressions. Also,
the character of vegetation on the slope affected by the slide differs from that of
the undisturbed adjacent slope. The amount of movement is determined easily
from the offset of linear features, such as highways, railroads, and alleys, as soon
as they continue to the undisturbed area.

5.1.2 Geology

Geologic structure is frequently a major factor in landslides. Although this topic
includes major large-scale structural features, such as folds and faults, the minor
structural details, including joints, small faults, and local shear zones, may be
even more important. The landslide and the surrounding area should be mapped
geologically in detail. On the map, the shape of the head scarp and the area of
accumulation, outcrops of beds, offsets in strata, changes in joint orientation,
dips, and strikes should be identified.

An important characteristic of the sliding slope is the shape of the cross
section. If the slope was sculpted by erosion and covered with waste deposited
by rainwash, the profile forms a gentle curve at its transition into the flood plain.
Even a very ancient landslide is recognized from the curved, bulged shape of
the toe.

5.1.3 Water

Water is a major factor in most slides. The plan for corrective measures requires
a good knowledge of the hydrological conditions of the slide itself and of its
surroundings. The first task is to determine the depth of the groundwater table
and its fluctuation and to map all streams, springs, seeps, wet grounds, un-
drained depressions, aquiferous pressures, and permeable strata.

The changes of slope relief produced by sliding alter the drainage conditions
of the surface water, as well as the regime of the groundwater. The seepage of
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groundwater has a significant effect on slope stability. Less pressure is built up
when water is seeping out of the ground than when the exits for groundwater
are blocked. For example, in one major slide area, landslide activity always was
preceded by the stoppage of spring discharge near the toe; the cessation of move-
ment was marked by an increase in spring discharge. Slip surfaces are generally
impervious, retaining both surface water and groundwater. When slip surfaces
approach the ground surface, new springs and wet grounds appear. In the boring
logs, the depth and fluctuation of groundwater must be recorded. However, the
pore pressure in clayey soils affected by sliding cannot be determined simply by
observing the water table in a borehole, because by filling the borehole, the water
loses the pressure in its vicinity. Therefore, the installation of piezometric instru-
ments for pore pressure measurements is needed.

5.1.4 Weather

The climate of the area, including rainfall, temperature, evaporation, wind,
snowfall, relative humidity, and barometric pressure, is the ultimate dynamic
factor influencing most landslides. The effects of these factors seldom can be
evaluated analytically, because the relations are too complex. Empirical correla-
tions of one or more of these factors, particularly rainfall, snow, and melting
temperatures, with episodes of movement or movement rates can point out their
influences that must be controlled to minimize movements.

5.1.5 History of Slope Changes

Many clues can alert an investigator to past landslides and future risks. Some of
these are hummocky ground, bulges, depressions, cracks, bowed and deformed
trees, slumps, and changes in vegetation. Large features can be determined from
large-scale maps and aerial photos; however, the evidence often is hidden by
vegetation or is so small that it can only be determined by direct observation.
Even then, only a person intimately familiar with the soils, geologic materials,
and conditions in that particular area can recognize the potential hazards.

Among the most difficult kinds of slides to recognize and guard against are
old slides that have been covered by glacial till or other, more recent sediments.
Recent and active landslides can be recognized easily by their fresh appearance
with steep and bared head scarps, open cracks, and strung tree roots. The state
of tree growth is indicative of the age of the movements. Trees on unstable
ground are tilted downslope but tend to return to a vertical position during the
period of rest, so that the trunks become conspicuously bent. From the younger,
vertically growing trunk segments, the date of the last sliding movement can be
inferred.

5.1.6 Shapes of Failure Surfaces

As noted in Section 1.1, slides are divided into two types: translational and
rotational. Translational slides are marked by lateral separation with very little
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vertical displacement, and by vertical cracks. Rotational slides are charac-
terized by the rotation of the block or blocks of which they are composed, and
by concave, rather than vertical, cracks. Fig. 5-1 is a schematic of these two
types of slides, which took place during the 1964 Alaska earthquake (Hansen
1965).

In translational slides, the mass progresses down and out along a more or
less planar or gently undulatory surface and has little of the rotational movement
or backward tilting characteristics. The moving mass commonly slides out on
the original ground surface.

The most common examples of rotational slides are slightly deformed
slumps, which are slides along a surface of rupture that is concave upward. The
exposed cracks are concentric in plan and concave toward the direction of
movement. In many rotational slides, the underlying surface of rupture, together
with the exposed scarps, is spoon-shaped. If the slide extends for a considerable
distance along the slope perpendicular to the direction of movement, much of
the rupture surface may approach the shape of a cylinder, the axis of which is
parallel to the slope. In the head area, the movement may be almost wholly
downward and have little apparent rotation. However, the top surface of each
unit commonly tilts backward toward the slope, although some blocks may tilt
forward. The classic purely rotational slide on a circular or cylindrical surface is
relatively uncommon in natural slopes because of their internal inhomogene-
ities and discontinuities. Because rotational slides occur most frequently in
fairly homogeneous materials, their incidence among constructed embankments
and fills, and hence their interest to engineers, has been high relative to other
types of failure.

The distinction between translational and rotational slides is useful in plan-
ning control measures. A translational slide may progress indefinitely if the
surface on which it rests is inclined sufficiently, as long as the shear resistance
along this surface remains lower than the more or less constant driving force.
The movement of translational slides commonly is controlled structurally by
surfaces of weakness, such as faults, joints, bedding planes, and variations in
shear strength between layers of bedded deposits, or by the contact between firm
bedrock and overlying detritus. The rotational slide, if the surface of rupture dips
into the hill at the foot of the slide, tends to restore equilibrium in the unstable
mass. The driving moment during movement decreases, and the slide may stop
moving.

The location of the slip surface can be determined by an inclinometer. The
inclinometer measures the change in inclination or tilt of a casing in a bore-
hole, and thus allows the distribution of lateral movements to be determined as
a function of depth below the ground surface and as a function of time. Incli-
nometers have undergone rapid development to improve reliability, provide
accuracy, reduce weight and bulk of instruments, lessen data acquisition and
reduction time, and improve versatility of operation under adverse conditions.
Automatic data-recording devices, power cable reels, and other features are now
available.
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Fig. 5-1. Translational and rotational slides (Hansen 1965)

5.2 Preliminary Planning

When a slide takes place, it is necessary to determine the cause of the slide so
that proper remedial measures can be taken to correct it. The processes involved



124 Slope Stability Analysis by the Limit Equilibrium Method

in slides comprise a continuous series of events from cause to effect. Seldom, if
ever, can a slide be attributed to a single definite cause. The detection of the
causes may require continuous observations, and a final decision cannot be made
within a short time. Because water is the major cause that may initiate a slide,
or intensify a slide after it has occurred, the following initial remedial measures
should be taken as soon as possible.

1. Capture and drain all the surface water that flows into the slide area;

2. Pump the groundwater out from all wells in the slide area and dewater
all the undrained depressions; and

3. Fill and tamp all open cracks to prevent the infiltration of surface water.

Only after the completion of the initial measures should other permanent
and more expensive measures based on a detailed investigation be undertaken.

Peck (1967) described the catastrophic slide in 1966 on the Baker River north
of Seattle, Washington, which may be titled, “The Death of a Power Plant.” He
claimed that the state of the art at that time was unable to make reliable assess-
ments of the stability of many, if not all, natural slopes under circumstances of
practical importance. After the destruction of the power plant by the slide, he
asked the following questions: “Was spending the time necessary to get informa-
tion about subsurface conditions and movements a tactical error? Could the
unfavorable developments have been prevented by providing extensive reslop-
ing, deep drainage, and other means rather than the use of the observational
methods?” Although these questions cannot be answered satisfactorily, they
clearly indicate the importance of prompt action in the correction of slides.

After the geometry of a slide, the location of the water table, and the soil
parameters of various layers are determined, the factor of safety can be calcu-
lated. The factor of safety at the time of failure should be close to 1. If not, some
of the parameters used in the analysis must be adjusted. If the soil is homoge-
neous and there is only one soil, the shear strength of the soil can be back-
calculated, as described in Section 3.6. This shear strength then can be used for
the redesign of the slope.

Based on the results of the investigation, a new slope is designed, and stabil-
ity analysis can be used to determine the factor of safety. If a strong retaining
structure is used, the stability or safety of the structure also should be separately
considered by the principles of soil and structural mechanics.

5.3 Corrective Methods

Corrective methods can be used either to decrease the driving forces or increase
the resisting forces. Because the factor of safety is a ratio between the resisting
forces and the driving forces, a reduction of the driving forces or an increase of
resisting forces will increase the factor of safety. Many of the practical examples
presented here to illustrate the different corrective methods were described in
a special report titled, “Landslides Analysis and Control” published by the
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Transportation Research Board (Schuster and Krizek 1978). A much-expanded
version of a special report titled, “Landslides: Investigation and Mitigation,”
which contains 25 chapters written by 30 authors covering a diversity of subjects,
also was issued by the Transportation Research Board and can serve as an excel-
lent reference for the study of landslides (Turner and Schuster 1996).

5.3.1 Slope Reduction or Removal of Weight

Fig. 5-2 shows three methods for slope reduction: direct reduction, flattening by
cutting berms, and flattening without hauling material away. Although the third
method is the most economical, care must be taken to ensure that the material
to be placed on the toe is of good quality. If necessary, a drainage blanket should
be placed to minimize the effect of water.

Fig. 5-3 shows the stabilization of the Cameo slide above a railroad in the
Colorado River Valley by partial removal of weight (Peck and Ireland 1953).
Stability analyses determined that the removal of volume B was more effective
than the removal of volume A, as expected.

sy S

(b) FLATTENING BY CUTTING BERMS

MATERIAL REMOVED FROM
TOP AND PLACED HERE

DRAIN IF REQUIRED

(c) FLATTENING OF SLOPE WITHOUT
HAULING MATERIAL AWAY

Fig. 5-2. Methods for slope reduction




126 Slope Stability Analysis by the Limit Equilibrium Method

FACTOR OF SAFETY

! Existing slope (assumed) 1.00
Volume A removed 1.01
Volume B removed 1.30
Volume A = Volume B

”Mesa Verde
sandstone

(| Colorado River

————

— Mancos shale 2
Dark gray, hard g 20n

Note: 1ft=0.305m

Fig. 5-3. Stabilization of the Cameo slide by partial removal of weight (Peck and
Ireland 1953. Reproduced with permission from AREMA)

Original ground ;
I

Note: 1ft=0.305m

Fig. 5-4. Typical section of Mulholland cut showing original and modified design
(Smith and Cedergren 1962, © ASTM International. Reproduced with permission)

Fig. 5-4 shows a slope flattening, which was used effectively on a 320-ft
(98-m) cut for a southern California freeway (Smith and Cedergren 1962). A
failure took place during construction on a 1:1 benched cut slope composed
predominately of sandstone and interbedded shale. After considerable study and
analysis, the slope was modified to 3h:1v, and the final roadway grade was raised
some 60ft (18 m) above the original elevation. Moreover, to provide additional
stability, earth buttresses were placed from roadway levels to a height of 70ft
(21 m).

5.3.2 Buttresses

There are two types of buttresses. The earth buttress, as shown in Fig. 5-4, is an
additional earth berm placed near the toe of the slope to reduce the overturning
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Fig. 5-5. Stabilization berm to correct landslide in shale on I-74 in Indiana (Haugen
and DiMillio 1974)

moment, thus increasing the factor of safety. Because the purpose of an earth
buttress is to serve as a counterweight to reduce the overturning moment, any
earthy materials can be used.

Another buttress of high-strength, well-compacted material is shown in
Fig. 5-5 for correcting a slide in a shale embankment on I-74 in southern Indiana
(Haugen and DiMillio 1974). The borrow material used in the embankment was
predominately local shale materials that were interbedded with limestone and
sandstone. These shale materials, after being placed in the embankment, deterio-
rated with time and finally caused the embankment to fail. Careful studies of the
in situ shear strength versus the original strength used in the design showed an
approximate reduction of one-half in shear strength. After considering various
alternatives, an earth and rock buttress design finally was selected. The use of a
high-strength buttress will reduce not only the overturning moment and increase
the resisting moment, thus enhancing the safety of the design, but also will
protect the slope surface from erosion.

5.3.3 Surface Drainage

Of all possible methods for correcting slides, proper drainage of water is prob-
ably the most important. Good surface drainage is strongly recommended as
part of the treatment for any slide. Every effort should be made to ensure that
surface waters are carried away from a slope by interception trenches and diver-
sion ditches. The surface of the area affected by sliding is generally uneven,
hummocky, and transversed by unnoticed cracks and deep fissures. Therefore,
reshaping the surface of a slide mass can be extremely beneficial in that cracks
and fissures are sealed and water-collecting surface depressions are eliminated.
This is particularly true for the cracks behind a scarp face where large volumes
of water can seep into the failure zone and result in serious consequences.
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Although surface drainage in itself is seldom sufficient for the stabilization of a
slope in motion, it can contribute substantially to the drying of the material in
the slope, thus controlling the slide.

5.3.4 Subsurface Drainage

Because groundwater is one of the major causes of slope instability, subsurface
drainage is a very effective remedial measure. Methods frequently used are the
installation of drainage layers, trench drains, horizontal drains, vertical drains,
drainage tunnels or galleries, and wellpoints.

Drainage layers, sometimes also called underdrains, can be placed at the
bottom of fills over the entire area to facilitate drainage. If the granular materials
used for the drainage layer do not satisfy the filter criteria, a filter fabric or
granular material that satisfies the filter criteria must be placed between the
drainage layer and the adjoining soils to prevent clogging.

Trench drains are excavated trenches filled with granular materials that
satisfy the filter criteria for the adjoining soils, or with rocks encased in filter
fabric. An underdrain pipe may be required to facilitate drainage. Trenches
usually are excavated at the steepest side slopes and should extend below the
water-bearing layer. For large areas, an extensive system of trenches in the form
of finger drains or a herringbone pattern may be needed.

Ahorizontal drain is a small-diameter well drilled into a slope on an approxi-
mately 5 to 10% grade and fitted with a perforated pipe. Pipes should be pro-
vided to carry the collected water to a safe point of disposal to prevent surface
erosion. Fig. 5-6 shows the use of both surface and subsurface drainage for
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Fig. 5-6. Corrective measures for Castaic-Alamos Creek slide (Fig. 8.8 in Gedney and
Weber 1978, © National Academy of Sciences, Washington, DC. Reproduced with
permission of the Transportation Research Board, Washington, DC)
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Fig. 5-7. Slide treatment consisting of horizontal and vertical drains (Root 1958, ©
National Academy of Sciences, Washington, DC. Reproduced with permission of the
Transportation Research Board, Washington, DC)

correcting the slide on the Castaic-Alamos Creek in California (Dennis and Allan
1941). The surface water is collected by the intercepting trench connected to the
perforated pipe and gravel underdrain, which are used also for subdrainage.

A vertical drainage well can be either a gravity drain or a pumped well,
depending on whether there is an outlet for the water to drain by gravity. In
many cases, a horizontal drain can be drilled to intercept the vertical drain at the
bottom. Fig. 5-7 shows the use of both vertical and horizontal drains for correct-
ing an active landslide that occurred at San Marcos Pass near Santa Barbara,
California (Root 1958). The vertical wells were about 3 ft (1 m) in diameter, 40 ft
(12m) long, and belled at the bottom so that they interconnected to form a some-
what continuous curtain. The drains had 8-in. (20-cm) perforated pipes in the
center for the full depth of the vertical drains and were backfilled with pervious
material. The horizontal drains then were drilled to intersect the vertical drains
at the belled portion of the vertical wells.

A drainage tunnel or gallery is a deep and large structure, usually about 3 ft
(1m) wide by 6ft (2m) high in cross section, constructed for the purpose of dis-
charging a large amount of water. The effectiveness of a drainage tunnel may be
increased by drilling short or long drainage borings in the wall, floor, or roof of
the tunnel to collect water from various locations.

Wellpoints are small-diameter wells that are driven or jetted into place.
Vacuum is applied to the top of the wellpoints through a header, or a horizontal
pipe that applies vacuum to suck water up the wellpoints. They work very well
in clean sands but not as well in fine-grained soils. Because the water is drawn
up the riser pipe by vacuum, their maximum effective lift is limited to 20 to 25ft
(6.1-7.6m). For greater lifts, pumped wells, each with its own pump to push
water to the top of the well, can be used.

5.3.5 Retaining Walls

Fig. 5-8 shows the use of a retaining wall to correct a cut slope failure on I-94 in
Minneapolis-St. Paul, Minnesota (Shannon and Wilson, Inc. 1968). The use of a
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Fig. 5-8. Retaining wall to correct slide on I-94 in Minnesota (Adapted from
Shannon and Wilson 1968. Reproduced with permission from Shannon and
Wilson, Inc.)

retaining wall is often occasioned by the lack of space necessary for the develop-
ment of the slope to a full length. Because retaining walls are subject to an unfa-
vorable system of loading, a large wall width is necessary to increase stability.
Although the methods of stability analysis can be applied to determine the factor
of safety of a slope with failure surfaces below the wall, the design of the wall
will require special considerations to ensure that the wall itself is stable against
sliding, overturning, and bearing capacity failure.

5.3.6 Anchor Systems

One type of anchor system is the tieback wall, which carries the backfill forces
on the wall by a “tie” system to transfer the imposed load to an area behind the
slide mass where satisfactory resistance can be established. The ties may consist
of pre- or post-tensioned cables, rods, or wires, and some form of deadmen or
other methods to develop adequate passive earth pressure. Fig. 5-9 shows a
section of tieback wall to correct the slide condition on New York Avenue in
Washington, DC (O’Colman and Trigo 1970).

5.3.7 Bridging or Tunneling

In particularly serious cases, the removal of steep, long, and narrow unstable
slopes may be too costly or dangerous, so a bridge can be constructed to span
the unstable area. The bridge must be supported by driven piles or drilled shafts
placed well below the foundation materials. Bridges are commonly applicable
only to small landslides or unstable areas. For large slides with bridges more
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Fig. 5-9. Tieback wall to correct slide on New York Avenue in Washington, DC
(O’Colman and Trigo 1970)
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Fig. 5-10. Tunnel to correct slide on Spaichingen-Nusplingen Railway line in
Germany (Zaruba and Mencl 1969, © Academia Publishing of the Czech Academy
of Sciences)

than 100 to 300ft (30 to 90m) long, this method usually is not economically justi-
fied when compared with other methods.

In mountainous areas with large slides, it may be necessary to construct a
tunnel, as shown in Fig. 5-10 for the slide on the Spaichingen-Nusplingen Railway
line in Germany (Zaruba and Mencl 1969).
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5.3.8 Soil Reinforcements

Soil reinforcements include mechanically stabilized earth (MSE) walls, reinforced
soil slopes (RSS), and soil nailing walls. One of the greatest advantages of using soil
reinforcements is their flexibility and capacity to absorb deformation due to poor
subsoil conditions in the foundation. Also, based on observations in seismically
active zones, these structures have demonstrated a higher resistance to seismic
loading than do rigid concrete structures. In addition to global stability to check the
factors of safety over the entire slope and the adequacy of the reinforcements pro-
vided, these reinforced soil structures also should be treated as retaining walls by
considering the external stability of the wall, including sliding, overturning, bearing
capacity, and the position of the resultant within the middle third of the base, as is
usually done for gravity retaining walls.

The majority of the MSE walls for permanent applications use a segmental
precast concrete facing and galvanized steel reinforcement, whereas geotextile-
faced MSE walls are used more frequently for temporary construction. Recently,
modular block facings with geosynthetic reinforcements, principally geogrids,
have gained acceptance because of their lower cost and nationwide availability.
Fig. 5-11 shows the use of a MSE wall to correct a large landslide on a section of
I-40 near Redwood, Tennessee (Royster 1974). The slope-forming materials were
essentially a thick surface deposit of colluvium underlain by residual clays and
clay shales. The groundwater table was seasonally variable but generally was
found to be above the colluvium and residuum interface. This particular slide
occurred within an embankment placed as a sidehill fill directly on a colluvium-
filled drainage ravine. Because of blocked subsurface drainage and weakened
foundation soils, the fill failed some four years after construction. Final design
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Fig. 5-11. Reinforced earth wall to correct slide on I-40 in Tennessee (Royster 1974.
Reproduced with permission from the Highway Geology Symposium)
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plans called for careful excavation of the failed portion of the fill to a firm,
unweathered shale base, installation of a highly permeable drainage course
below the wall area, placement of a MSE wall, and final backfill operations.

A major difference between a reinforced soil slope and a MSE wall is that the
former has a surface slope less than 70° and does not require a precast or block
facing, whereas the latter has a steep surface and requires such a facing to confine
the selected backfill and facilitate the compaction. Fig. 5-12 shows the widening
of a major highway to accommodate an additional 10-ft- (3-m-)wide paved
shoulder. A 45° cut was made into the existing slope, which allowed for the
construction of the reinforced soil slope. Primary geogrids usually are inter-
spersed with secondary geogrids, which aid in compaction at the face of the
slope and also tend to reduce surface erosion.

Soil nailing is an in situ soil reinforcement technique that has been used
during the past four decades. The main components of a soil nailed retaining
system are the in situ ground, the tension-resistant nails, and the facing element.
The nails are usually corrosion-resistant steel bars or other metallic elements that
can resist tensile stresses, shear stresses, and bending moments. They generally
are placed in drilled boreholes and grouted along their total length or driven
into the ground. The facing is not a major structural load-carrying element, but,
rather, ensures local stability of the soil between the nails and protects
the ground from surface erosion and weathering effects. It generally consists
of a thin layer of shotcrete about 4 to 6in. (100-150mm) thick with wire or steel
mesh between the nails. Prefabricated or cast-in-place concrete panels have
increasingly been used in the construction of permanent structures to satisfy
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specific needs and accommodate adequate drainage. Successive incremental
excavations with a height of 3 to 6 ft (0.9-1.8 m) are first made on the ground, the
nails are then installed, and the shotcrete is applied. The next excavation is made
and the process repeated until completion.

Soil nailing has most frequently been used in Europe for construction of
temporary retaining structures in excavation. In North America, the behavior of
a lateral support system similar to the European system was investigated by
Shen et al. (1978, 1981a, 1981b). Fig. 5-13 shows a typical section of this soil nailed
retaining system.

5.3.9 Pile Systems

Recorded attempts to use driven steel or wooden piles of nominal diameter to
retard or prevent landslides seldom have been successful. Unless the slide is
shallow, such piles are incapable of providing adequate shear resistance. Shallow
slides can be controlled by piling, because the piles can be driven to an adequate
depth. Otherwise, they may tilt from the vertical position, thus disturbing the
adjacent material and the material underneath the piles and causing the develop-
ment of a slip surface below the pile tip.

Fig. 5-14 shows the use of piles to correct a shallow slide in a railway cutting
at East Slovakie, Czechoslovakia (Zaruba and Mencl 1969). The cutting has a
slope of 4h:1v and was made in a fissured marly clay subjected to slaking. During
the rainy spring of 1965, a small sheet slide developed at the toe of the slope,
which extended to a length of 165 ft (50m) and reached up to the top of the slope.
Because the site was not accessible and the removal of a large volume of soil was
difficult, piles were employed to prevent the further spreading of the slide.
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Fig. 5-15. Cylinder pile to stabilize deep-seated slide on I-94 in Minnesota (Adapted
from Shannon and Wilson Inc. 1968. Reproduced with permission from Shannon and
Wilson, Inc.)

Forty-two piles, 20ft (6 m) long, were driven into prepared bore holes to a depth
of 13ft (4m). Reinforced concrete slabs were supported against the piles to
prevent movement of the soil between and around the piles. The pile spacing
was 3 to 5ft (1-1.5m). A sand drain was constructed along the slab, discharging
water to a ditch. After the treatment, the slope was flattened to 5h:1v.

Fig. 5-15 shows a cylinder pile wall system for stabilizing a deep-seated slope
failure in 1-94 in Minneapolis-St. Paul, Minnesota (Shannon and Wilson, Inc.
1968). The pile wall was placed as a restraining system, in which the forces
tending to cause movement were predicted carefully. The cast-in-place piles were
designed as cantilevers to resist the full earth thrust imposed by the soil.
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5.3.10 Vegetation and Biotechnical Stabilization

Slope movements generally disturb the vegetative cover, including both trees
and grass. The reforestation of the slope is an important task in corrective treat-
ment. This is done during the final stage, invariably after at least partial stabiliza-
tion of the slide. Forestation is most beneficial for shallow slides. Slides with
deep-lying failure surfaces cannot be detained by vegetation, although in this
case, too, vegetation can lessen the infiltration of surface water into the slope and
thus contribute indirectly to the stabilization of the slide.

It generally is accepted that forest growth has two functions: drying out of
the surface layers and consolidating them by a network of roots. Trees draw the
water necessary for their growth from the slope surface, so the most suitable
species will be those that have the largest consumption of water and the highest
evapotranspiration rate. Therefore, it is more advantageous to plant deciduous
trees than conifers.

Biotechnical stabilization combines the use of vegetation and other mechani-
cal reinforcement, such as live-cut stems and branches, to prevent surfacial
erosion and arrest shallow mass movement (Gray and Leiser 1982). In addition
to the immediate effect on stabilization, secondary stabilization will occur as the
result of rooting along the length of the buried stems. Gray and Leiser (1992,
1995) also found that alternate layers of earth and live brush can intercept water
and divert it to the slope surface, thus reducing pore pressures in the process.

5.3.11 Hardening of Soils

If the water in the slope cannot be drained by subsurface drainage methods,
foundation engineers may consider several methods of hardening of soils. These
methods can be divided into chemical treatments, cement grouting, electro-
osmosis, and thermal treatments.

Chemical treatments, which have been used with varying degrees of success,
include lime or lime-soil mixtures, and ion exchange. One successful treatment,
in which quicklime was placed in predrilled 0.5-ft- (0.2-m-)diameter holes on 5-ft
(1.5-m) centers throughout an extensive slide area, was reported by Handy and
Williams (1967). The ion exchange technique, which consists of treating the clay
minerals along the plane of potential movement with a concentrated chemical,
was reported by Smith and Forsyth (1971).

Cement grouting has been used in England for the stabilization of embank-
ments and cuttings (Zaruba and Mencl 1969). Experience shows that this method
yields fine results with rather shallow landslides in stiff materials such as clay-
shales, claystones, and stiff clays, which break into blocks separated by distinct
tissures. The method is actually a mechanical stabilization of the slope by filling
the fissures with cement grout rather than changing the consistency of soil mass,
because the cement mortar cannot enter into the soil mass. Cement grout was
also used for a 300-ft (90-m) benched cut slope on I-40 along the Pigeon River in
North Carolina (Schuster and Krizek 1978). Large volumes of cement grout were
injected into the voids of broken rubble and talus debris to stabilize the slope.
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The electro-osmosis technique has the same final effect as subsurface drain-
age but differs in that water is drained by an electric field rather than by gravity.
The loss of pore water causes consolidation of the soil and a subsequent increase
in shear strength. Casagrande et al. (1961) described the use of this method to
stabilize a cut slope during the construction of a bridge foundation on the Trans-
Canada Highway in Ontario. Casagrande et al. (1981) also reported on the use
of electro-osmosis to stabilize an excavation in British Columbia.

The use of thermal treatments for preventing slides was first reported by Hill
(1934). Since 1955, the Russians have experimented with and reported on the
success of thermal treatment on plastic loess soils. High temperatures cause a
permanent drying of the embankments and cut slopes. Beles and Stanculescu
(1958) described the use of thermal methods to reduce the in situ water contents
of heavy clay soils in Romania. Applications to highway landslides and unstable
railroad fills also were cited.

5.4 Selection of Methods for Stabilization

Not all stabilization methods as described are appropriate for every type of slope
failure. For instance, slope flattening and berms, in conjunction with surface
drainage, are often the first methods to be considered. However, if there is no
space to allow the use of a flatter slope, tieback walls or slope reinforcements by
soil nails or geosynthetics are often the solution to the stability problem. Although
retaining walls also can be used for small slides, they are not effective for large
slides. If the water table is high, subsurface drainage is a very effective and rapid
method for mitigating slides. There are no hard and fast rules for prescribing the
treatment of slides. Many slides result from the combination of several causes,
so the most economical and effective means of treating slopes consist of a com-
bination of several methods. In choosing the methods that are technically pos-
sible, the following factors need to be considered.

1. When a slide occurs, it is necessary to determine the purpose of stabiliz-
ing the slope: whether to prevent further movements or to restore the
load-carrying capacity. For example, an embankment may fail because of
poor compaction and the infiltration of surface water. If diversion ditches
are constructed to intercept surface water, the slope surface is graded and
compacted to facilitate drainage, and all the cracks and fissures are sealed
properly, the movements and the slope may become stable. Conversely,
the restoration of an embankment to support a pavement or structure will
be much more difficult, especially when the ground has been disrupted
by large movements already.

2. The time required to complete the repair work may dictate the stabilizing
methods to be used. If the work must be completed within a short time,
an expeditious method that can be undertaken without delay may be
considered as the most appropriate. If the repair work is not urgent and
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can be delayed, more studies should be made so that a less expensive
method may be devised. However, these long and laborious studies
should not delay the requisite measures that obviously must be taken, as
the treatment of active landslides is always a contest with time. In sched-
uling stability work, weather conditions always should be taken into ac-
count. In the northern part of the United States, extensive operations are
very difficult, or even impossible, in winter when the slide areas may be
frozen or covered by snow. It may be better to postpone some operations
until spring or more favorable weather conditions.

3. Site accessibility and conditions may limit the methods of stabilization. In
mountainous areas with only small roads, methods involving the use of
heavy equipment might not be employed. Limitation of the right of way
and adjacent facilities may require the use of retaining structures, soil re-
inforcements, or tieback walls.

4. The total cost of stabilization must be reasonable and within the limit of
financial resources. The total cost should include the stabilizing system
itself, right of way, temporary and permanent easements, disposal of un-
suitable materials, and drainage. If the total cost exceeds the benefits, less
expensive methods should be used.

5. Other factors to be considered include safety, availability of materials and
equipment, aesthetics, environmental impact, and political issues.

Summary

1. Before taking any remedial measures, a field investigation of the slide
area must be made. The scope of field investigation should include to-
pography, geology, water, weather, history of slope changes, and shape of
the sliding surface.

2. The distinction between translational and rotational slides is useful in
planning control measures. A translational slide may progress indefinite-
ly if the surface on which it rests is sufficiently inclined, as long as the
shear resistance along this surface remains lower than the more or less
constant driving force. A rotational slide, if the surface of rupture dips
into the hill at the foot of the slide, tends to restore equilibrium in the
unstable mass, so the driving moment during movement may decrease,
and the slide may stop moving.

3. When a slide takes place, it is necessary to determine the cause of the
slide so that proper remedial measures can be taken to correct it. The de-
tection of the cause may require continuous observations, and a final de-
cision cannot be made within a short time. Because water is the major
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cause that may initiate a slide or intensify a slide after it has occurred,
some initial remedial measures should be taken as soon as possible, such
as capturing and draining all the surface water that flows into the slide
area, pumping the groundwater out from all wells in the slide area, dewa-
tering all the undrained depressions, and filling and tamping all open
cracks to prevent the infiltration of surface water.

One of the simplest ways to stabilize a slope is to flatten it by removing
the weight from the top and placing it at the bottom. The placement of a
buttress as a counterweight near the toe will reduce the overturning mo-
ment and increase the factor of safety. The use of a high-strength buttress
will not only reduce the overturning moment and increase the resisting
moment but also protect the slope surface from erosion.

Of all the possible methods for correcting slides, proper drainage of water
is probably the most important. Good surface drainage is recommended
strongly as part of treatment for any slide. Every effort should be made to
ensure that surface waters are carried away from a slope by intercepting
trenches or division ditches. Because groundwater is one of the major
causes of slope instability, subsurface drainage is a very effective reme-
dial measure. Methods frequently used are the installation of drainage
layers, trench drains, horizontal drains, vertical drains, drainage tunnels
or galleries, and wellpoints.

The use of retaining walls to correct slides often is occasioned by the lack
of space necessary for the development of the slope to a full length. Al-
though the methods of stability analysis can be applied to determine the
global factor of safety for a slope with failure surfaces below and behind
a wall, the design of a wall requires special considerations to ensure that
the wall itself is stable against sliding, overturning, and bearing capacity
failures. A special type of retaining wall is the tieback wall, which carries
the backfill forces on the wall by a “tie” system to transfer the imposed
load to an area behind the slide mass where satisfactory resistance can be
established. In particularly serious cases, a retaining wall might not be
sufficient, making it necessary to construct a bridge or a tunnel to avoid
slides.

Soil reinforcements, which include mechanically stabilized earth (MSE)
walls, reinforced soil slope (RSS), and soil nailing walls, also can be
used as remedial measures. One of the greatest advantages of using soil
reinforcements is their flexibility and capability to absorb deformation
due to poor subsoil condition in the foundation. Also, based on observa-
tions in seismically active zones, these structures have demonstrated a
higher resistance to seismic loading than do rigid concrete structures. In
addition to global stability to check the factors of safety over the entire
slope and the adequacy of the reinforcements provided, these reinforced
soil structures also should be treated as gravity retaining walls and
designed by considering the external stability of the wall, including
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sliding, overturning, bearing capacity, and position of the resultant
within the middle third of the base.

Recorded attempts to use driven steel or wooden piles of nominal diam-
eter to retard or prevent landslides seldom have been successful. Unless
the slide is shallow, such piles are incapable of providing adequate shear
resistance. For large and deep-seated slides, a pile wall system consisting
of a retaining wall supported by large-cylinder piles can be used. The
cast-in-place cylinder piles are designed as cantilevers to resist the full
earth thrust imposed by the soil.

The reforestation of a slope is an important task in corrective treatment.
Forestation is most beneficial for shallow slides. Slides with deep-lying
failure surfaces cannot be detained by vegetation, although vegetation
can lessen the infiltration of surface water into the slope and thus contrib-
ute indirectly to the stabilization of the slide. Biotechnical stabilization
combines the use of vegetation and other mechanical reinforcements,
such as live-cut stems and branches, to prevent surfacial erosion and ar-
rest shallow mass movement. In addition to the immediate effect on sta-
bilization, secondary stabilization will occur as the result of rooting along
the length of the buried stems. It also was found that alternate layers of
earth and live brush could intercept water and divert it to the slope sur-
face, thus reducing pore pressures in the process.

If the water in the slope cannot be drained by subsurface drainage, meth-
ods used for hardening of soils may be considered. These methods in-
clude chemical treatments such as placing quicklime in predrilled holes,
using the ion exchange technique to treat the clay minerals along the
plane of potential movement with a concentrated chemical, cement grout-
ing by filling the fissures of stiff materials with cement grout, electro-
osmosis by applying an electric field to drain out the subsurface water,
and thermal treatment by heating in situ soils to reduce water content.

Not all stabilization methods are appropriate for every type of slope fail-
ure. There are no hard and fast rules for prescribing the treatment of slides.
Many slides result from a combination of several causes, so the most eco-
nomical and effective means of treating slopes consists of a combination
of several methods. In choosing the methods that are technically possible,
the major factors to be considered include the purpose of stabilization,
the time required to complete the work, site accessibility and conditions,
and total cost. Other factors to be considered include safety, availability of
materials and equipment, aesthetics, environmental impact, and political
issues.
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Chapter 6

Simplified Methods for
Plane Failure Surfaces

This chapter presents several simplified methods for the stability analysis of
plane failure surfaces. These methods are called simplified because of the fol-
lowing limitations: (1) only force equilibrium is satisfied and the requirement
for moment equilibrium is ignored; (2) the effect of seepage can be consid-
ered only approximately by using a pore pressure ratio rather than the more
precise phreatic surface; and (3) the number of failure planes is limited to three
so that solutions can be obtained without the service of a computer. To remove
these stated limitations, the method of slices described in Chapter 8 should be
used instead.

6.1 Infinite Slopes

Fig. 6-1 shows an infinite slope underlain by a rock surface with an angle of
inclination, . The slope is considered as infinite, because it has a length much
greater than the depth, d. If a free-body of width b is taken, the forces on the two
vertical sides are the same, because every plane, which has the same infinite
distances to both top and bottom, should be considered the same with the same
side force. Because the side forces neutralize each other, the only forces to be
considered are the weight, W, the seismic force, C;,\W (C, is the seismic coefficient),

143



144 Slope Stability Analysis by the Limit Equilibrium Method

\Weoss

cswsinﬂ _

s ‘;‘-d EO‘L‘C‘G 0% ﬁ
L R T v T
PEREES o W 1y Weos B
\,f,__-,inﬁ )

Fig. 6-1. Analysis of infinite slope

the effective normal force, N’, and the neutral force, r,Wcosf, where r, is the
pore pressure ratio. Note that the use of cosB to compute the neutral force,
instead of secf, is based on the normal method explained in Section 2.4.1. For
an infinite slope with both phreatic and failure surfaces inclined at the same
angle B, the use of r,WcosP as the neutral force theoretically is correct, as
explained in Section 4.1.3.

In all the derivations that follow, only the effective stress analysis will be
presented. The equations also can be applied to a total stress analysis by simply
replacing the effective strength parameters by the total strength parameters. It
will be shown that for a soil with a cohesion and a friction angle, the factor of
safety decreases with the increase in d, so the most critical failure surface is paral-
lel to the slope along the bottom of the soil overburden. The factor of safety is
defined as a ratio of the resistant force due to the shear strength of soil along the
failure surface to the driving force due to the weight of the sliding mass. The
resisting force is composed of two parts: one due to cohesion and equal to
c’bsecP, and the other due to friction and equal to N’tan ¢, where N”is the effec-
tive force normal to the failure plane. Consider force equilibrium normal to the
failure surface,

N’ =WJ[(1-r,)cosP—C,sinB]tan ¢’ (6-1)
The driving force is always equal to the components of weight and seismic

force parallel to the failure surface, or Wsinf + C;Wcosf. Therefore, the factor
of safety, F, can be written as

_ c’bsecB+W[(1-r,)cosP—C,sinB]tan¢’
B W(sinf + C, cos )

F

(6-2)
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Replacing W by ybd,

%secB+[(1—ru)cos[3—Cs sinB]tan ¢’

_ T -
F= (sinP + C, cosP) (63)

in which y = total unit weight of the soil and d = depth of the failure surface
below the slope surface.

Eq. (6-3) is applicable to an infinite slope possessing both a cohesion and an
angle of internal friction. Note that when there is no seepage, r, = 0, and when
water flows along the surface of the slope, r, = v,/y = 0.5. For the most general
case where water flows parallel to and at a depth of d,, below the slope surface,
from Eq. (4-17),

7, :M:ﬂ(l_d_w) (6-4)
vd Y d

It can be seen from Egs. (6-3) and (6-4) that F decreases with the increase in
d. For a cohesionless material not subjected to earthquake, or ¢’=0and C, =0,
Eq. (6-3) can be simplified to

tan ¢’

F={-n) tanP

(6-5)

Eq. (6-5) shows that the factor of safety for a cohesionless material is inde-
pendent of d, so every plane parallel to the slope is a critical plane and has the
same factor of safety. However, this statement is true only when r, =0 or 0.5, or
when a pore pressure ratio is assumed a priori, regardless of the location of the
failure surface. If there is a phreatic surface within the soil overburden, r, will
increase with the increase in d, as indicated by Eq. (6-4), so the most critical failure
plane is still at the bottom above the rock surface.

It is interesting to note that the failure of a cohesionless soil in an infinite
slope is similar to the dumping of sand from a dump truck. When sand is
dumped to form a pile, the particles on the surface will roll down the slope,
indicating a plane failure. This type of failure also can be considered as a cylin-
drical failure with a center at infinity. In an effective stress analysis, the effective
cohesion, c’, is usually quite small but should not be assigned 0. If ¢”= 0, the soil
is cohesionless and the most critical failure surface is a shallow circle with a very
large radius, which barely scratches the surface of the slope. To design a homo-
geneous embankment with zero cohesion, it is not necessary to use any computer
software to determine the minimum factor of safety, because the most critical
failure surface is a shallow circle and the minimum factor of safety simply can
be computed by Eq. (6-5).
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Example 6.1 Fig. 6-2 is an example of an infinite slope with a slope angle of 16°, a
soil overburden of 10ft (3.1m), and a phreatic surface as shown. Assuming a soil
unit weight of 125 pcf (19.7kN/m?) and a seismic coefficient of 0.1, determine both
the static and the seismic factors of safety for the following two cases: (a) the soil has
an effective cohesion of 200 psf (9.6 kPa) and an effective friction angle of 30°, and
(b) the soil is cohesionless with an effective friction angle of 30°.

Solution Because 50% of the sliding mass is under water, from Eq. (4-16),
r,=0.25.

(a) With ¢’=200pcf, ¢ =30°, y=125pcf, B =16°, and C, =0, from Eq. (6-3), the
static factor of safety with C;=01is

125 %10 _0.583

( 200 jsec 16° +(1—-0.25)cos 16° tan 30°
F= =
sin16° 0.276

=2.112

If C;=0.1, a term involving C, is added to both the numerator and denomina-
tor, so the seismic factor of safety is

_0.583-0.1xsin16°tan30°  0.567

= =1.524
0.276+0.1x cos16° 0.372

(b) With ¢’=0pcf, ¢’ =30°, y=125pcf, B = 16°, and C, =0, from Eq. (6-3), the
static factor of safety is

_ (1-0.25)cos16°tan30° 0.416

F =
sin16° 0.276

=1.507

If C;=0.1, from Eq. (6-3), the seismic factor of safety is

_0.416-0.1xsin16°tan30° _ 0.400

= =1.075
0.276 +0.1x cos 16° 0.372

Fig. 6-2. Example 6.1
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6.2 Triangular Cross Section

Fig. 6-3 shows a triangular fill on a sloping surface. It is assumed that the failure
plane is along the bottom of the fill. Good examples for this type of failure are
the spoil banks created by surface mining, where the original ground surface is
not properly scalped, and a weak layer exists at the bottom of the fill. In addition
to the vertical weight, a horizontal seismic force equal to C;W also is applied.

Similar to Eq. (6-2) for an infinite slope, except for the change of notation
from B to o and the replacement of bsec} by Hcsca, the factor of safety can be
written as

_ ¢’Hesco+W[(1-1,)cosa—C, sinotan’
W(sino + C, cosat)

F

(6-6)

and W = %VHZ cscBescasin(B—o) (6-7)

in which y = unit weight of soil and B = angle of the outslope. Substituting W
from Eq. (6-7) into Eq. (6-6),

’

2sinBesc(B— (x)( CH) +[(1-r,)cosa—C, sina]tan ¢’
F= dis! (6-8)
sino+ C, cosol
If the fill width, W, is given instead of the height, H,
¢’We sinBesc(B— o)+ W[(1—r,)cosa —C, sino]tan ¢’
F=—" (6-9)
W(sino + C, cosot)
in which
W= %waz sinasinBesc( — o) (6-10)
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Fig. 6-3. Plane failure of triangular fill
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Substituting W from Eq. (6-10) into Eq. (6-9),

¢ j +[(1-r,)cosa —C, sinoJtand’
YWy

2CSCOL[

F= (6-11)

sino + C, cos o

Eq. (6-11) shows that the factor of safety is independent of the angle of out-
slope, B, when the fill width, W, is given, because when 3 changes, both the
resisting force and the driving force change in the same proportion.

Example 6.2 In Fig. 6-3, given H = 40ft (12.2m), o = 20°, B = 36°, v = 125pcf
(19.7kN/m’), ¢c’=160psf (7.7kPa), ¢’ = 24°, and r, = 0.05, determine both the static
factor of safety with C, =0 and the seismic factor of safety with C, = 0.1.

Solution From Eq. (6-8) with C, =0, the static factor of safety is

2sin 36° csc(36° — 200)( 160 ) +(1—10.05)cos 20° tan 24°
_ 125 x40 0534
F= = =1.561
sin 20° 0.342

For C;=0.1, a term involving C; is added to both the numerator and denomi-
nator, so the seismic factor of safety is
_ 0.534-0.1xsin20°tan24° 0.519

= =1.190
0.342 + 0.1 x cos20° 0.436

6.3 Trapezoidal Cross Section

Fig. 6-4(a) shows the forces acting on a trapezoidal fill. An example of this type
is a hollow fill where the top part of the fill is placed on a natural slope and the

H

(a) TWO BLLOCKS (b) LOWER BLOCK (e) UPPER BIL.OCK

Fig. 6-4. Plane failure along bottom of trapezoidal fill
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bottom part on a horizontal ground. If the natural slope and original ground
surfaces are not properly scalped, plane failures will occur along the bottom of
the fill.

The factor of safety with respect to failure along the bottom of the fill can be
determined by dividing the fill into two sliding blocks. Assuming that the force,
P, acting between the two blocks is horizontal, and that the shear force has a
factor of safety, F, four equations (two from each block) can be determined from
statics to solve the four unknowns, P, F, N, and N3, where N7, and N are the
effective forces normal to the failure planes. It has been found that the assump-
tion of a horizontal P, or neglecting the friction between the two blocks, always
results in a smaller factor of safety and is therefore on the safe side.

From the equilibrium of forces on the lower block in both the vertical and
horizontal directions, as shown in Fig. 6-4(b),

Ni=(1-r)W (6-12)
P+CSWI=CBH+?I1tan¢ (6-13)

in which W; = weight of the lower block and B is the ratio between the base
width and height. Substituting Eq. (6-12) into Eq. (6-13),

P ¢’'BH + (1-r,)W,; tan¢’

-CW, 6-14
E i (6-14)

The equilibrium of forces on the upper block in both normal and tangential
to the failure plane gives
N3 =Psino+ W,[(1-7,)coso.—C, sina] (6-15)

¢’Hcsca+ Nj tan ¢’
F

W, [sino+ C, cosa] = Pcoso + (6-16)

in which W, = weight of the upper block. Substituting Eqgs. (6-14) and (6-15)
into Eq. (6-16), a quadratic equation can be obtained to solve the factor of
safety, F:

ale + azF +as; = 0 (6'17)
in which

a = aysino+ C(ay +as)coso (6-18)

azz—{c (Bcosoc+ .1 )+[(1—1q,)cosoc—Cssinoc](a4+a5)tan¢’} (6-19)
H sino

4

. c
a; = —Bsmoctanq)’[

as ’
H +(1-r, )Etanq) } (6-20)
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For an irregular slope with W; and W, given,

W,
= 6-21
ay YHZ ( )
as = le (6-22)
YH
For type I fill, as shown in Fig. 6-5(a),
10 1 1-Bt ’
a =—[ _(-Btanf) } (6-23)
2| tano tanf3
1 2
as = EB tanP (6-24)
For type II fill, as shown in Fig. 6-5(b),
L (6-25)
2tanq
a5 =B— L (6-26)
’ 2tanf

Note that in using Egs. (6-21) and (6-22) for irregular slopes, the weights W,
and W, must be calculated from measurements on the cross section. If the slope
is uniform, as shown in Fig. 6-5, either Egs. (6-23) and (6-24) or Egs. (6-25) and
(6-26) may be used, depending on whether the fill is type I or type IL. The type
I fill, in which B < cotp, has a triangular lower block, whereas the type II fill, in
which B > cotf3, has a trapezoidal lower block.

8
BH BH
(a) TYPE I (b) TYPE 0

Fig. 6-5. Two types of trapezoidal fills
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Example 6.3 A trapezoidal fill, with the dimensions shown in Fig. 6-6, has a
total unit weight, vy, of 125pcf (19.7kN/m’) and subjected to seepage with a pore
pressure ratio, r,, of 0.05, and earthquake with a seismic coefficient, C,, of 0.1.
Assuming plane failures along the bottom of the fill, where the soil has an effec-
tive cohesion, ¢’, of 160 psf (7.7kN/m?) and an effective friction angle, ¢’, of 24°,
determine the seismic factor of safety.

Solution The fill is type I, because it has a triangular cross section at the bottom.
The base width is 460 ft and the height, H, is 230ft, or B =460/230 = 2. With =
24°, 00 =37°,and B =2, from Egs. (6-23) and (6-24),

_ 0)2
a4=1 1 _(1 2 tan 24°) — 0,650
2| tan37° tan 24°

as = %(2)2 tan24°=0.890
From Egs. (6-18) to (6-20),

a; =0.65sin37° + 0.1 % (0.65 + 0.89)cos 37° = 0.514

_ { 160
=

—(ZCOS 37°+
125 %230

- L O) +[(1-0.05)cos37°

sin 37
—0.1sin 37°](0.65 + 0.89) tan 24°}
=-0.497
160 0.89

a; =—2sin 37 tan24° [— +(1-0.05)——tan 240} =-0.104
120x 230 2

Thus, the quadratic equation becomes

0.514F* —0.497F - 0.104=0

£ 0497+ J(0.497)% + 4 x0.514 x 0.104
B 2x0.514

Disregarding the negative value, the seismic factor of safety is 1.144.

=1.144 or -0.182

230 1t

460 ft

Fig. 6-6. Example 6.3
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6.4 Two Sliding Blocks

Fig. 6-7 shows a plane failure surface consisting of two sliding blocks. This type
of failure rarely occurs unless a weak layer exists at the bottom of each block.
There are a total of four unknowns (P, Ni, N3, and F), which can be solved by
four equilibrium equations, two for each block. As in the normal method
described previously, the total weight is used to compute the driving force and
the submerged weight for the shear resistance. By resolving the forces in two
directions, one parallel to and the other perpendicular to the failure plane at the
bottom of each block, the following two equations are obtained for the lower
block, or block 1:

¢’L; + N{tan¢’
F

Ni{ =W [(1-r,)cosa; —C,sinoy, ]+ Psin(d; — o) (6-28)

=W[sino, + C, cosol ]+ Pcos(os — o) (6-27)

in which L = length of the failure plane, o = angle of inclination of the failure
plane, and ¢, = developed angle of internal friction between the two blocks. The
subscript 1 refers to the lower block. Substituting Eq. (6-28) into (6-27) and
solving for P,

pe c’Ly + Wi[(1=1,)cosa, —Cssinoy Jtan ¢’ — FW, [sin oy + C, cos o]
Fcos(dy —oty) —sin(d,; — o) tan ¢’

(6-29)

Similar to block 1, P for the upper block, or block 2, can be obtained by
changing the subscript from 1 to 2 and changing the sign, because P in block 2
is opposite in direction to that in block 1, or

'Ly + Wh[(1 -1, )cosa, — Cssina, Jtan ¢’ — FW3[sin o, + C; cos o]
Fcos(¢y —0ty) —sin(dy — o, ) tan ¢’

P=

(6-30)

{(a) Two Blocks (b) Forces on Each Block

Fig. 6-7. Plane failure with two sliding blocks
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Table 6-1. Coefficients of Quadratic Equation for Two Sliding Blocks

a; =Ly + Wi[(1 — r)cos oy — C;sin oy Jtan ¢
a, = Wy(sina; + C,cos o)

az = cos(dg — 01y) a=a,b; +bra,

a, = sin(¢q — oy)tan ¢’

b, =L, + W,[(1 — r)cos o, — C,sin o, Jtan ¢ b =—(a;b; + bia; + ab, +b,ay)
b, = W,(sin o, + C,cos o)

b; = cos(hg — o) c=a;bs+bjay

b, = sin(¢4 — op)tan ¢’ aFP+bF+c=0

Changing Egs. (6-29) and (6-30) to simplified forms and setting them equal,
a; —a,F =_b1 —b,F
asF —ay bs;F —b,
Solving Eq. (6-31) for F, the following quadratic equation is obtained:
aF* +bF+c=0 (6-32)

(6-31)

For ease of reference, expressions leading to the coefficients a, b, and ¢ are shown
in Table 6-1.

Example 6.4 Fig. 6-8 shows a fill divided into two sliding blocks. The soil at the
bottom of the fill has an effective cohesion of 100 psf (4.8 kPa), an effective friction
angle of 25°, and a unit weight of 125 pcf (19.7kN/m’). Given a pore pressure ra-
tio of 0.05 and a seismic coefficient of 0.1, determine the seismic factors of safety
for ¢, of 0°,17.2° (0.3 rad), and 34.4° (0.6 rad), respectively.

Solution From the coordinates in Fig. 6-8,

B = tan"'(250/150) = 31°

o, = tan"'(50/300) = 9.5°

0, = tan"[(150 — 50)/(470 — 300)] = 30.5°
L, = [(300)2 + (50)]°° = 304.1 ft

L, = [(470 — 300)% + (150 — 50)2]°° = 197.2 ft

(230.130) (470,150)

(300.50)

Note: All coordinates are in feet

Fig. 6-8. Example 6.4
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Block 1 is divided into two triangles:

AB =[(150)* + (250)*]> = 291.5 ft
Area of AABC=0.5x ABx L, xsin(B o) =0.5x291.5x 304.1x sin(31° - 9.5°)

=16,244 ft*
Wi =125 x (16,244 + 0.5 x 100 x 50) = 2,343,0001b

Block 2 is a right triang]le:
W, =0.5x 100 x 170 x 125 = 1,062,5001b
From Table 6-1,

a; =100 x 304.1 + 2,343,000[(1 — 0.05)c0s 9.5° — 0.1 x sin9.5°]tan 25° = 1,036,074
a, = 2,343,000[sin9.5° + 0.1 X c0s9.5°] = 617,793

b; =100 x 197.2 + 1,062,500[(1 — 0.05)c0s 30.5° — 0.1 x sin 30.5°]tan 25° = 400,125
b, =1,062,500[sin 30.5° + 0.1 x cos 30.5°] = 630,808

When ¢; =0,

a; = cos(—9.5°) = 0.986

a, = sin(-9.5%)tan 25° = —-0.077

bs = cos(-30.5°) = 0.862

b, = sin(-30.5°)tan 25° = —0.237

a=617,793 x 0.862 + 630,808 x 0.986 = 1,154,506

b = —[1,036,074 x 0.862 + 400,125 x 0.986 + 617,793 x (—0.237) + 630,808 x
(-0.077)] = -1,092,630

¢ =1,036,074 x (—0.237) + 400,125 x (-0.077) = —276,359

The quadratic equation is 1,154,506 F>—1,092,630 F — 276,359 =0, or F>—0.946
F —-0.239 =0, so the solution is F = 1.153.

When ¢,; = 17.2°,

as = cos(17.2° - 9.5°) = 0.991

a, = sin(17.2° — 9.5°)tan 25° = 0.0625

by = cos(17.2° — 30.5°) = 0.973

b, = sin(17.2° — 30.5°)tan 25° = —0.107

a=617,793 x 0.973 + 630,808 x 0.991 = 1,226,243

b =-[1,036,074 x 0.973 + 400,125 x 0.991 + 617,793 x (-0.107) + 630,808 x
0.0625] = -1,377,946

¢ =1,036,074 x (-0.107) + 400,125 x 0.0625 = —85,852

The quadratic equation is 1,226,243 F>—1,377,946 F — 85,852 =0, or F>—1.124
F —-0.070 =0, so the solution is F =1.183.

When ¢, = 34.4°,

a; = cos(34.4° — 9.5°) = 0.907
a, = sin(34.4° — 9.5°)tan 25° = 0.196
bs = cos(34.4° — 30.5°) = 0.998

. = sin(34.4° — 30.5°)tan 25° = 0.0317
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a=617,793 x 0.998 + 630,808 x 0.907 = 1,188,700

b =-[1,036,074 x 0.998 + 400,125 x 0.907 + 617,793 x 0.0317 + 630,808 x 0.196]
=-1,540,138

¢ =1,036,074 x 0.0317 + 400,125 x 0.196 = 111,268

The quadratic equation is 1,188,700 F> — 1,540,138 F + 111,268 = 0, or F>— 1.296

F +0.094 =0, so the solution is F =1.219.

It can be seen that the factor of safety increases with the increase in ¢, which
is as expected. These three ¢, angles of 0°, 17.2°, and 34.4° were selected because
they are recommended by LEAME for use in the original Spencer method, as
described in Section 8.4.

Example 6.5 If the fill in Example 6.4 has a friction angle of 32°, which is much
greater than the 25° at the bottom, determine the factor of safety when tan¢, =
tan32°/F, that is, the same factor of safety is applied to the vertical interface be-
tween the two blocks as to the failure planes at the bottom.

Solution The results of Example 6.5 are plotted in Fig. 6-9, as indicated by the
curve with three small circles. Based on the given relationship tan ¢, = tan32°/F,
the values of tan ¢, for F values of 1.1, 1.2, and 1.3 are computed and plotted as
the curve with three crosses. The intersection of these two curves gives a safety
factor of 1.203.
1.3 ( [
1.25 \

1.203 /
s

\D_

Fig. 6-9. Example 6.5

Factor of Safety, F
N
|

-
-
)]

-
=

0.2 04
tan ¢4

6 0.8

It can be seen that the assumption of ¢; = 0 is more conservative and results
in a safety factor of 1.153, which is smaller than the more theoretically correct
value of 1.203. In view of the fact that the sliding block analysis only considers
the force equilibrium while neglecting the moment equilibrium completely, it is
better to be more conservative by using a lower factor of safety. Furthermore,
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the use of ¢, = 0 eliminates the necessity of plotting the two curves shown in Fig.
6-9 and is more amenable to hand calculation.

Example 6.4 is repetitive and requires the computation of safety factors three
times, one for each ¢, After these tedious computations, Example 6.5 uses a
graphical method, which is neither convenient nor accurate. It is much more
efficient to solve the same problems by a spreadsheet, as illustrated by the fol-
lowing example.

Example 6.6 Solve both Examples 6.4 and 6.5 by using a spreadsheet.

Solution Table 6-2 is the spreadsheet for both Examples 6.4 and 6.5. All the
equations used for the spreadsheet are presented in Table 6-1. Details about the
spreadsheet are as follows:

1. The first three rows include all the input parameters. For convenience, all
angles in degrees are converted to radians in row 4 before calling any of
the trigonometric functions. For example, ¢ in cell B4 is converted from
degrees to radians by the expression RADIANS(D1). Row 5 contains the
four parameters not affected by ¢, or the factor of safety.

2. Rows 6 to 18 give the solutions to Example 6.4, and rows 19 to 23 to Ex-
ample 6.5. The most important part, which requires much time to work
out, is rows 7 to 10. Once these rows are completed, they can be copied
and pasted repeatedly three times with only slight changes, if needed.

3. Cell D7 is the angle of internal friction between the two blocks, which
may not be equal to that along the failure surface at the bottom of the fill.
The expression for ¢, in cell A9 is ATAN(TAN(RADIANS(D?))/H?7) so, if
the assumed factor of safety in cell H7 is 1, D7 is the given developed
angle of internal friction between the two blocks, such as the given 0,
17.2°, and 34.4° in Example 6.4, but expressed in terms of radians. After
A9 is determined, a; in cell B9 can be determined by COS(A9-D$4). Be-
cause cell B9 will be copied to different rows but not to different columns,
a $ sign must be placed before row 4 so that row 4 will not be changed
when copied. The same should be applied to other variables, such as var-
iable a in cell F9 can be expressed as H$2*D9+H$3*B9. Any variables with
a row number of less than 6 must have a $ sign on the row number. The
computed factor of safety in cell H10 is the solution for Example 6.4 with
¢s=0.

4. To find the factors of safety in Example 6.4 for other values of ¢,, simply
change the value in cell D11 to 17.2 and that in cell D15 to 34.4, and the
computed factor of safety will appear automatically.

5. To find the factor of safety for Example 6.5, change the value in cell D20
to 32, which is the given angle of internal friction of the fill. By trial and
error, an assumed safety factor of 1.203, exactly equal to the computed
factor of safety, can be easily obtained.
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Table 6-2. Spreadsheet for Solving Examples 6.4 and 6.5

A B C D E F G H
1 cinpsf=|100 ¢ in deg =|25 Cs=[0.1 ru=0.05
2 W1inlb=|2343000 | L1 in ft=[304.1 ol in deg =(9.5
3 W2inib=[1062500 | L2in ft=[197.2 02 in deg =|30.5
4 ¢inrad=[0.436332 |ol in rad =[0.165806 |02 in rad =|0.532325
5 a; =[1036074 a, =(617793 b, =|400125 b, = [630808
6 Example 6.4
7 ¢ between blocks in deg =0 Assumed factor of safety, F =|1.000
8 Oq a3 ay bs b, a b C
9 0 0.986286 | —0.07696 | 0.861629 | —0.236669 | 1154465 | ~1092588 |-276001
10 Computed factor of safety, F=|1.154
11 ¢ between blocks in deg =|17.2 Assumed factor of safety, F =|1.000
12 0q as ay bs b, a b C
13 0.300197 | 0.990983 | 0.062479 | 0.973179 | —0.107274 | 1226343 | -1377941 | —86144
14 Computed factor of safety, F=|1.183
15 ¢ between blocks in deg =|34.4 Assumed factor of safety, F =|1.000
16 Og as ay bs b, a b C
17 0.600393 | 0.907044 | 0.196332 | 0.997684 | 0.031716 | 1188533 | -1540047 | 111418
18 Computed factor of safety, F=|1.219
19 Example 6.5
20 ¢ between blocks in deg =| 32 Assumed factor of safety, F=|1.203
21 0g as ay bs b, a b C
22 0.479067 | 0.951334 | 0.143699 | 0.998582 | —0.024823 | 1217026 | 1490568 | 31779
23 Computed factor of safety, F =|1.203

6.5 Three Sliding Blocks

Fig. 6-10 shows a plane failure surface consisting of three sliding blocks. There
are a total of six unknowns (P;, P,, N7, N;, N3, and factor of safety, F), which
can be solved by six equilibrium equations, two for each block. Blocks 1 and 2
are the same as the two sliding blocks shown in Fig. 6-7, except that P is replaced
by P; or P,, so Eq. (6-29) can still be applied and written in the following simpli-
fied forms:

P =

_ m —aF

113F — Oy

(6-33)
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o | Lo +Ntond

N, F
L11
r‘u'\‘i.-' 1 cos o4

Fig. 6-10. Plane failure with three sliding blocks

_ bl - sz
b3F_b4

P, (6-34)

The resultant of the forces on both sides of block 3 is P; and can be obtained
from Eq. (6-29) by simply changing all the subscripts to 3:

_ 'Ly + W;[(1-17,)coso; — C, sinos Jtan ¢” — FW;(sinos + C, cosolz)

B Fcos(¢y — 0t3) —sin(¢, — o3 )tand” (6-35)
To satisfy force equilibrium P, + P; + P; = 0, or in simplified forms,
R 36
After simplification, the following cubic equation is obtained:
aF3 +bF* +cF+d=0 (6-37)

Expressions for these coefficients are shown in Table 6-3. Eq. (6-37) can be
solved by trial and error, as illustrated by the following example.

Example 6.7 Fig. 6-11 shows a fill consisting of three sliding blocks. The soil at
the bottom of the fill has a cohesion of 160psf (7.7kPa) and a friction angle of
24°. Assuming that the unit weight of the fill is 125pcf (19.7kN/m’), the forces
between blocks are horizontal, and there is no seepage, determine the static factor
of safety for plane failure.
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Table 6-3. Coefficients of Cubic Equation for Three Sliding Blocks

159

a; =Ly + Wi[(1 — r)cos oy — C;sin oy ]tan ¢

a, = Wy(sina; + Cscos o)

a3 = cos(dg — 0y)

ay = sin(¢q — oy)tan ¢’

by =Ly + W,[(1 — rp)cos o, — Cgsin op]tan ¢’

b, = Wy(sina, + Ccos o)

bs = cos(dg — o)

b, = sin(¢q — 0)tan ¢’

¢ =L+ W5[(1 — r,)cos o — Csin oz ]tan ¢

¢, = Wi(sin o + Ccos o)

C3 = CO8(Qg — 0)

¢y = sin(pg — o) tan ¢’

a= azb3C3 + a3b2C3 + a3b3C2

b= —(alb3C3 + azb3C4 + azb4C3 + a3b1C3 + a3sz4 + agb3C1 + a3b4C2 + a4b2C3 + a4b3C2)

c= a1b3C4 + a1b4C3 + a2b4C4 + agb1C4 + a3b4C1 + a4b1C3 + a4b2C4 + a4b3C1 + a4b4C2

d = —(a1b4C4 + a4b1C4 + a4b4C1)

aFF+bF+cF+d=0

(4400.200) (350.200)

(300.150)

(300.40)

o,y Mote: All coordinates are in feet.
(0.0)

Fig. 6-11. Example 6.7

Solution From the coordinates shown in the figure,

o, = tan~'(40/300) = 7.6° L,
0, = tan"'(120/150) = 38.7° L,
03 = tan'(40/100) = 21.8° L
W, = 0.5 x 300 x 110 x 125 = 2,062,500 1b

W, = 0.5 x 150 x 120 x 125 = 1,125,0001b

W, = 0.5 x 100 x (110 + 120) x 125 = 1,437,500 1b

[(40)% + (300)2]%5 = 302.7 ft
[(120)2 + (150)2]°5 = 192.1 ft
[(40)? + (100)°]°° = 107.7 ft
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From Table 6-3,

a; =160 x 302.7 + 2,062,500 x cos7.6° x tan24° = 958,650

b, =160 x 192.1 + 1,125,000 x cos38.7° x tan24° = 421,640

¢ =160 x 107.7 + 1,437,500 X cos21.8° X tan24° = 611,478

a, = 2,062,500 x sin7.6° = 272,779

b, = 1,125,000 x sin38.7° = 703,398

¢, = 1,437,500 x sin21.8° = 533,841

a3 = cos(0 — 7.6°) = 0.991

b; = cos(0 — 38.7°) = 0.780

c3 = cos(0 — 21.8°) = 0.928

a, = sin(0 — 7.6°) x tan24° = —0.059

b, = sin(0 — 38.7°) x tan24° = —-0.278

¢y = sin(0 — 21.8°) x tan24° = -0.165

a=272,779 x 0.780 x 0.928 + 0.991 x 703,398 x 0.928 + 0.991 x 0.780 x 533,841
= 1,256,975

b =—(958,650 x 0.780 x 0.928 — 272,779 x 0.780 x 0.165 — 272,779 x 0.278 x 0.928
+0.991 x 421,640 % 0.928 — 0.991 x 703,398 x 0.165 + 0.991 x 0.780 x 611,478
—0.991 x 0.278 x 533,841 — 0.059 x 703,398 x 0.928 — 0.059 x 0.780 x
533,841) = -1,123,683

¢ =-958,650 x 0.780 x 0.165 — 958,650 x 0.278 x 0.928 + 272,779 x 0.278 x 0.165
—0.991 x 421,640 x 0.165 — 0.991 x 0.278 x 611,478 — 0.059 x 421,640 x
0.928 + 0.059 x 703,398 x 0.165 — 0.059 x 0.780 x 611,478 + 0.059 x 0.278
x 533,841 = —-631,210

d=—-(958,650 x 0.278 x 0.165 + 0.059 x 421,640 x 0.165 + 0.059 x 0.278 x 611,478)
=-58,107

The cubic equation is 1,256,975 F*—1,123,683 F2 — 631,210 F — 58,107 = 0, or
Function(F) = F* — 0.894F2 — 0.502F — 0.0462 =0 (6-38)

Eq. (6-38) can be solved by trial and error:

Assume F = 1.25, Function(F) = -0.1175
Assume F = 1.30, Function(F) = -0.0127
Assume F = 1.305, Function(F) = —-0.00137
Assume F = 1.306, Function(F) = 0.00091

The factor of safety is between 1.305 and 1.306 and Function(1.306) is closer to
0, so the factor of safety accurate to three decimal points is F = 1.306.

The same graphical method can be used to determine the factor of safety for
tan¢, = tan¢/F. However, to do this by hand is very hectic and prone to error.
It is much easier to solve the problem using a spreadsheet.

Example 6.8 Check the results of Example 6.7 using a spreadsheet. If the angle of
internal friction between the two blocks is 30° and the developed friction angle,
4, between the two blocks is ¢, = tan™ (tan30°/F), determine the factor of safety.
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Solution The top part of Table 6-4 is the spreadsheet for checking Example 6.6
with ¢ between blocks = 0°, or ¢, = 0°. All the computed values in the spreadsheet
check very well with those in Example 6.7. The factor of safety can be obtained by
solving the following cubic equation, Function(F) = aF® + bF* + cF + d = 0. By trial
and error, it was found that when F is changed from 1.305 to 1.306, Function(F)
changes from negative to positive. Because Function(F) is closer to 0 when F =
1.306, the factor of safety is 1.306, which checks exactly with Example 6.6.

The bottom part of Table 6-4 is the spreadsheet for this example with ¢
between blocks = 30° and ¢, = tan!(tan30°/F). When the assumed F is 1.369,
Function(F) is negative and, when the assumed F is 1.370, Function(F) is positive.
Because the positive value is closer to 0 than the negative, the factor of safety is
1.370.

Table 6-4. Spreadsheet Solution for Examples 6.6 and 6.7

cin psf =160 ¢ in deg =|24 Cs=|0 ru=|0
W1inlb={2062500 | Llinft=|302.7 |oalindeg=|7.6
W2inib=|1125000 | L2inft=|192.1 |o2indeg=|38.7
W3in b = 1437500 | L3inft=|107.7 |03 indeg=|21.8
¢ in rad =(0.418879 |al in rad =|0.132645| 02 in rad =(0.675442 |3 in rad =|0.380482

a; =|958649.5 b, ={421639.8 ¢ =(611478
a, =(272778.8 b, =|703398 ¢, =|533841.3
¢ between blocks in deg =0 Assumed factor of safety, F =|1.000
g as ay bs b, C3 Cy
0 0.991216 | —0.05888 | 0.78043 | —0.278376 | 0.928486 |-0.165344
a b c d F Function(F) F Function(F)

1257985  |-1124449| -632310.7 |-58252.9| 1.305 —2578.578 1.306 285.2384
When ¢ between blocks =0, F =[{1.306

¢ between blocks in deg =30 Assumed factor of safety, F =|1.369
d a ay bs b, G oA
0.399099 | 0.964711 | 0.085635 [0.962059| —0.088733 | 0.999827 | 0.006054
a b c d
1436305  |-1936331| —46707.36 |4942.825| Function(F) = aF3 + bF2 +cF + d =|-2830.108
¢ between blocks in deg =30 Assumed factor of safety, F =|1.370
Oa as ay bs b, s 4
0.398837 | 0.96478 | 0.08549 [0.961988| -0.08875 | 0.999832 | 0.005965
a b c d

1436337  |-1936017| —47003.95 |4931.959| Function(F) = aF3 + bF2 +cF + d =|155.583
When ¢ between blocks =30, F =|1.370
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The factor of safety for any slopes with three sliding blocks can be found by
simply changing the input parameters on the first four lines. In Fig. 6-11, the fail-
ure surface at the bottom of block 1 is uphill, so o, is positive. If the failure surface
is downhill, o,; should be entered as negative.

6.6 Earth Pressure Method

The application of earth pressure theory can be illustrated by the simple example
shown in Fig 6-12. By assuming the active force, P,, and the passive force, Py, as
horizontal, it can be proved easily by Rankine’s or Coulomb’s theory that the
failure plane inclines at an angle of 45° + ¢/2 for the active wedge and 45° — ¢/2
for the passive wedge. From basic soil mechanics,

P, = l\(H,Z; tan? (450 - 9) —2cH, tan(45° - 9) (6-39)
2 2 2
_ 1 2 2 o 9 o 9

P = > YHp tan®| 45° + > +2cHp tan| 45° + ) (6-40)

in which H, and H; are the heights of the active and passive wedges, respectively.
The factor of safety can be determined by

_cL+Wtan¢
Py —Pp

F (6-41)

in which L = length of failure surface at the middle wedge, and W = weight of
the middle wedge.

Although this case is very similar to the case of three sliding blocks, the factor
of safety defined by Eq. (6-41) applies only to the middle wedge, whereas in the
three-block analysis the factor of safety applies to all three blocks. Without the

c = 160 pst
40’ ®=24" H
A
v = 125P¢f lw | Pa
10'] H Po—y
el _Fr 7~ T SI7 TS I o B
as- 2 | - | a5 e
2 | L= 80 j

Fig. 6-12. Active and passive earth pressures, simple case
Note: 1ft = 0.305m; 1psf=47.9kN/m’; 1pcf = 157.1 N/m’
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reduction of shear strength by a factor of safety, the shear resistance is greater
and so is the factor of safety. Consequently, the factors of safety computed by
Eq. (6-41) are much larger than those by the limit equilibrium method.

Example 6.9 For the case shown in Fig. 6-12 with ¢ = 160 psf (7.7kPa), ¢ =24°, y=
125pcf (19.6kN/m?), Hy = 501t (15.2m), Hp = 10ft (3.0m), and L = 80ft (24.4m),
determine the factor of safety by Eq. (6-41).

Solution From the dimensions shown in Fig. 6-12, W=0.5x 80 x (10 + 50) x 125 =
300,0001b. From Eq. (6-39), P, = 0.5 x 125 x (50)* X (tan33°)* — 2 x 160 x 50 x tan 33°
=55,5051b. From Eq. (6-40), P»= 0.5 x 125 % (10)* x (tan57°)*+ 2 x 160 x 10 X tan 57°
=19,7471b. From Eq. (6-41),

_160x80+300,000tan24° 146,369

= =4.093
55,505 19,747 35,758

The factor of safety obtained from the three-block analysis based on ¢, =0 is
1.880, which is much smaller than the 4.093 obtained in this example.

This concept was employed also by Mendez (1971) for solving a more com-
plex case, as shown in Fig. 6-13. A computer program was developed in which
the inclination of the failure planes, 6, and 6y, and the inclination of earth pres-
sures, 0, and o, can be varied. The wedge ABC is used to determine the active
force, Py, in soil 1. The wedge CDF, together with the weight of BCDE and the
active force Py, is used to determine the active force Py, in soil 2. The same pro-
cedure is applied to the passive wedge, as shown by Py, Pry, and o, in the figure.
The factor of safety is determined by

_ cL+[Wcos8+ P, sin(as —0)+ Ppsin(0—op)]tand
Wsin® + P, cos(oi, —0)— Py cos(0—op)

F (6-42)

Fig. 6-13. Active and passive earth pressures, complex case
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in which Py = Py + Py, Pp = Ppi+ Ppy, and 0 is the angle of inclination of failure
surface at middle block. It was found that the factor of safety is a minimum when
o, =0p=0.

The U.S. Navy (1971) also suggests the use of active and passive earth pres-
sures for stability analysis but in a different way. Fig. 6-14(a) shows a slope
composed of three different soils. It is assumed that the earth pressures are hori-
zontal and the inclinations of failure planes in the active wedges are 45° + ¢/2
and those in the passive wedges are 45° — ¢/2.

In this method, P, and Pp are not considered as the driving force, because
they include the shear resistance along the failure planes in the active and passive
wedges. The factor of safety is defined as the ratio between the resisting force
and the driving force. The driving force is caused only by the soil weight, exclud-
ing any shear resistance, which should be included in the resisting force. As
shown by the force diagram in Fig. 6-14(b), the active earth pressure applied
to the central wedge is equal to P, when the shear resistance along the failure
plane is considered, and is equal to D, when only the weight, W,, and the normal
force, R, are considered without the shear resistance. Therefore, D, should be
taken as the driving force and the shear resistance, R4, as D4, — P,. For each
passive wedge, as shown in Fig. 6-14(c), Rp = P» — Dp. The factor of safety is
determined by

_ ZRA +ZRP +C3L+Wtan¢3

2.D4=2Dr

in which X is the summation over all wedges. For the case shown in Fig. 6-14(a),
there are three active wedges and two passive wedges.

F (6-43)

Example 6.10 Solve Example 6.9 by the U.S. Navy’s method using Eq. (6-43).

W, =0.5,50 x50 x tan(45° — 12°) x 125 =101,4701b
D, =101,470 x tan(45° + 12°) = 156,2501b
Wp=0.5,10 x 10 x tan(45° + 12°) x 125 = 9,6241b
Dp = 9624 x tan(45° — 12°) = 6,2501b

As determined in Example 6.9, P, =55,5051b and P =19,7471b, so R, = 156,250
— 55,505 =100,745, and Rp = 19,747 — 6250 = 13,497 Ib. From Eq. (6-43),

100,745+ 13,497 +160 x 80 + 300,000 x tan 24° _ 260,611
- 156,250 — 6,250 150,000

F =1.737

A safety factor of 1.737 by the U.S. Navy’s method checks better with the 1.880 by
the three-block analysis.
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|' i Active wedges
| Ea l
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45 %& | Soil2 {yf
e | 1 gﬁ ]
45 .,-é-‘s ' Soii 3 r?\ 1 4
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(@) Cross Section

R=0,-P. R w| R

] ~ |
D W.tan(43%+2) N
-7 2 45% 2L

. c‘-‘15-1- 5 I A
P=W.tan(45™- =)~ 2clacos(45™+ £

(b) Forces on Each Active Wedge

R.= P. -D,
D= Wctﬂn(t:S:—-?-)

P, = W.tan(45%2)

+2cLpcos(45> <)

(c) Forces on Each Passive Wedge

Fig. 6-14. U.S. Navy's method for plane failure (U.S. Navy 1971)
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Summary

nite slope where a thin soil overburden is laid above a rock slope of con-
siderable length. The factor of safety for such a slope can be determined
by Eq. (6-3) with the pore pressure ratio computed by Eq. (6-4). The most
critical failure surface is located at the bottom of the overburden along the
rock surface. For a homogeneous embankment with zero cohesion, it is
not necessary to use any computer software to determine the minimum

A case of practical interest, which occurs frequently in nature, is the infi-
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factor of safety, because the most critical failure surface is a shallow circle
with a center at infinity, which is similar to an infinite slope, so the mini-
mum factor of safety simply can be computed by Eq. (6-5).

2. When soils or rocks are pushed and placed over a hillside, the new fill
will form a triangular cross section. If the natural slope surface is not
properly scalped and a layer of weak materials exists at the bottom of the
new fill, the most critical failure surface will be a plane through the bot-
tom of the weak layer. The factor of safety for such a fill can be deter-
mined by Eq. (6-8) or (6-11), depending on whether the fill height, H, or
the fill width, W, is given.

3. If a fill is placed partially on a natural slope and partially on horizontal
ground, a trapezoidal cross section will be formed. This is a special case
of the two-block analysis discussed in Section 6.4. By assuming that the
lower block has a horizontal base and the force between the two blocks is
horizontal, a simple quadratic equation amenable to hand calculations
can be obtained.

4. Sliding-block analysis may be used when a layer of weak material exists
at the bottom of each block. In the case of two sliding blocks, a quadratic
equation is available to determine the factor of safety for a given ¢,, which
is the developed friction angle between the two blocks. The coefficients of
the quadratic equation can be found in Table 6-1. It is shown that the fac-
tor of safety increases with the increase in ¢,. The case of ¢, = 0 implies
that there is no friction between the two blocks, so the factor of safety is
minimum. When ¢, = ¢, where ¢ is the friction angle of the material in the
blocks, the factor of safety is maximum. The most correct solution is to
find a ¢, between 0 and ¢ such that tan ¢, = tan¢/F, where F is the factor
of safety. However, this solution requires the use of a graphical method
by determining the factor of safety at three different values of ¢,. This
problem can be solved easily by trial and error using a spreadsheet. In
view of the fact that the sliding-block analysis only considers the force
equilibrium while neglecting the moment equilibrium completely, it is
better to be more conservative by assuming ¢, = 0.

5. For three sliding blocks, a cubic equation is presented to determine the
factor of safety for any given ¢,. The coefficients of the cubic equation can
be found in Table 6-3. The summary presented here for the two sliding
blocks also applies to the three sliding blocks. Although manual solutions
of three sliding blocks with ¢, = 0 are possible, as illustrated by Example
6.7, it is more convenient to use a spreadsheet, especially when tan¢, =
tan¢/F is assumed, as demonstrated by Example 6.8.

6. The active and passive earth pressure theory also has been used for the
stability analysis of earth slopes. One method uses the central block as
a free body with an active force, P4, on one side and a passive force, P,
on the other. Due to the difference in definition, the factor of safety ob-
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tained by this method is unreasonably high when compared to the three-
block analysis. Another method, as proposed by the U.S. Navy, also uses
the active and passive earth pressures but in a different way and results
in a factor of safety more comparable to that based on the three-block
analysis.

Problems

6.1

6.2

6.3

6.4

Consider an infinite slope consisting of 20 ft of soil underlain by bedrock,
oriented at 10° from horizontal. The soil has a cohesion of 500 psf, an an-
gle of internal friction of 18°, and a unit weight of 110 pcf. Determine the
factor of safety.
[Answer: 3.167]

If there is seepage in Problem 6.1 and the line of seepage is parallel to the
bedrock at a distance of 8ft below the surface, determine the factor of
safety. If there is an earthquake with a seismic coefficient of 0.1 in addi-
tion to the seepage, what is the seismic factor of safety?

[Answer: 2.540, 1.603]

Fig. P6-3 shows a sidehill bench having a total unit weight of 125pcf
and subjected to a pore pressure ratio of 0.05. If the failure surface is a
plane along the bottom of the fill where the soil has an effective cohesion
of 160 psf and an effective friction angle of 24°, determine the factor of
safety.

[Answer: 1.708]

Fig. P6-3.

Same as Problem 6.3 except that that the degree of the natural slope, o, is
steeper than 20°. What is the degree of the natural slope, o, when failure
is imminent or the factor of safety is reduced to 1?

[Answer: 29.7°]
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6.5

6.6

6.7

6.8

Fig. P6-5 is a trapezoidal fill on a stiff ground. The soil in the fill has a
cohesion of 400 psf, an internal friction of 24°, and a total unit weight of
120 pcf. If the fill is divided into two blocks and the force between them is
horizontal, determine the factor of safety.

[Answer: 2.784]

! 2
l 1
30 ft
l 45°
e -
l 69 ft !
Fig. P6-5.

Same as Problem 6.5 except that the force between the two blocks inclines
at an angle of 30° with the horizontal.
[Answer: 3.562]

Fig. P6-7 shows a sidehill fill. The soil in the fill has an effective cohesion
of 160psf, an effective friction angle of 24°, and a total unit weight of
125pcf. It is assumed that the force between the two blocks inclined at
an angle, ¢,, of 20° with the horizontal and that the fill is subjected to a
pore pressure ratio of 0.05 and a seismic coefficient of 0.1. Determine the
seismic factor of safety.

[Answer: 1.579]

Same as Problem 6.7 except that the soil parameters are changed as fol-
lows: ¢’=300psf, ¢’ =25°, and y=120pcf.
[Answer: 1.918]



6.9

6.10

6.11

6.12

6.13
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Fig. P6-9 shows the dimensions of the fill. The soil at the bottom of the fill
has a cohesion of 500 psf, a friction angle of 20°, and a total unit weight
of 125pcf. By dividing the fill into three blocks and assuming no friction
between the blocks, determine the factor of safety.

[Answer: 2.354]

(200,100) (400,100)

(230.30) (300,30)

(0,0) Note: All coordinates are in ft

Fig. P6-9.

Same as Problem 6.9 except that the friction angle developed between
two blocks is ¢, where ¢, = tan'(tan20°/F) and F is the factor of safety to
be determined.
[Answer: 2.390]

Fig. P6-11 shows a slope divided into three blocks. The soil has a cohesion
of 500 psf, a friction angle of 20°, and a total unit weight of 125 pcf. By as-
suming the forces between two blocks as horizontal, determine the factor
of safety by the conventional three-block analysis.

[Answer: 1.767]

| —
3 | : 150t
60 ft ; ya l
4 35 : / \55
160 f
Fig. P6-11.

Same as Problem 6.11, except that the friction angle developed between
two blocks is ¢,, where ¢, = tan'(tan20°/F).
[Answer: 1.987]

Same as Problem 6.11, but determine the factor of safety by using the
earth pressure method and considering the central block as a free body.
[Answer: 21.193]
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6.14

6.15

6.16

6.17

6.18

Same as Problem 6.11, but determine the factor of safety by the U.S.
Navy’s method.
[Answer: 1.682]

Fig. P6-15 shows a slope divided into three blocks. The soil has a cohesion
of 500 psf, a friction angle of 20°, and a total unit weight of 125pcf. By as-
suming the forces between two blocks as horizontal, determine the factor
of safety by the conventional three-block analysis.

[Answer: 1.651]

e
I
| |
E 120 ft
]
i : i /N\65°
60 ft ; ‘
¥ 38" : 10° ‘
160 ft l
Fig. P6-15.

Same as Problem 6.15 except that the friction angle developed between
two blocks is ¢, where ¢, = tan'(tan20°/F).
[Answer: 1.848]

Based on Rankine’s theory and Mohr’s envelope, derive Egs. (6-39) and
(6-40).

Based on Coulomb’s theory and the force diagrams presented in Fig. 6-14,
prove the following equations:

Py =W, tan(45° — ¢/2) — 2cL 4 cos(45° + ¢/2)

Pp = Wp tan(45° + ¢/2) + 2cLp cos(45° — 6/2)



Chapter 7

Stability Charts and
Other Solutions

Since Taylor (1937) first published his stability charts, various charts have been
presented by Bishop and Morgenstern (1960), Morgenstern (1963), and Spencer
(1967). These charts are applicable only for cylindrical failure surfaces and will
be discussed in this chapter. Also included are the charts developed by Huang
for triangular and trapezoidal fills on rock or stiff slopes (1977a), triangular fills
on soil slopes (1978b), and earth dams and embankments (1975), and some new
charts for the effective stress analysis of nonhomogeneous dams. With simple
calculations, these charts can provide a quick answer to the safety factor of a
proposed slope and are therefore particularly useful for preliminary design and
estimating purposes. The well-known friction circle and logarithmic-spiral
methods originally developed by Taylor (1937) also are presented.

7.1 Homogeneous Slopes with ¢ =0

Fig. 7-1 shows the stability chart for ¢ = 0 analysis of a simple slope (Taylor, 1937,
1948). The slope has an angle, B, a height, H, and a ledge at a depth of DH below
the toe, where D is a depth ratio, the depth to bedrock divided by the height of
the slope.

The chart can be used to determine not only the developed cohesion, ¢, as
shown by the solid curves but also nH, which is the distance from the toe to the

171
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Fig. 7-1. Stability chart for soils with zero friction angle (Taylor 1937, 1948)

failure circle, as indicated by the short dashed curves. When ¢ = 0, the most criti-
cal circle is always tangent to the rock. If there is no loading outside the toe, the
most critical circle is a midpoint circle with its center on a vertical line through
the midpoint of the slope, as indicated by case A in the figure. If there are load-
ings outside the toe, the most critical circle is a toe circle, as shown by case B,
and the long dashed curves should be used. If the curve falls on the left side of
the n = 0 line, the most critical circle is a slope circle, which intersects the slope
surface and does not pass below the toe, so the loading outside the toe has no
effect on the developed cohesion. A slope circle occurs only when the ledge is at
the same elevation as or closely below the toe.

Given B and D, a stability number defined as c,/yH, where 7y is the total unit
weight and H is the height of the slope, can be found from the chart, so the
amount of cohesion actually developed can be determined. The factor of safety
can be obtained by dividing the allowable cohesion, or the shear strength, with
the developed cohesion. Note that the greater the stability number, the smaller
the factor of safety.
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Example 7.1 Fig. 7-2 shows a simple slope with a height, H, of 40ft (12.2m), a
slope angle, B, of 22.5°, and a ledge 60 ft (18.3m) below the toe. If the soil has a co-
hesion, ¢, of 1,200 psf (57.5kPa), and a total unit weight, y, of 120 pcf (18.9kN/m’),
determine the factor of safety and the distance from the toe to the point where the
most critical circle appears on the ground surface. What is the factor of safety if
there are heavy loadings outside the toe?

Fig. 7-2. Example 7.1

Solution For D = 60/40 = 1.5 and 3 = 22.5°, from the solid curve in Fig. 7-1,
cs/YH =0.1715, or c; = 0.1715 x 120 x 40 = 823.2 psf. The factor of safety is F = c/c, =
1,200/823.2 =1.46. From the short dashed curve, n = 1.85, or the distance between
the toe and the failure circle nH = 1.85 x 40 = 74 ft.

When there are loadings outside the toe, the point falls on the horizontal
portion of the long dashed curve with c;/yH = 0.1495, or ¢, = 0.1495 x 120 x 40 =
717.6 psf. The factor of safety is F = 1,200/717.6 = 1.67.

7.2 Homogeneous Slopes with Both c and ¢

By the use of the friction circle method, as described in Section 7.9, Taylor (1937,
1948) determined the developed cohesion, ¢, for a given developed friction
angle, ¢,, and plotted a series of curves shown in Fig. 7-3. When the friction angle
is not zero, the most critical circle is a shallow circle. If the ledge lies at a consid-
erable depth below the toe, the location of the ledge, as indicated by the depth
ratio, D, should have no effect on the developed cohesion.

In Fig. 7-3, the most critical circle may pass through the toe, designated as
case 1 and shown by the solid curves, or pass below the toe, designated as case
2 and shown by the long dashed curves. However, if D =0, the most critical circle
will lie above the toe, designated as case 3 and shown by the short dashed curves.
The figure can be used to determine the factor of safety with respect to cohesion,
F,, by assuming that the angle of internal friction is developed fully, or to deter-
mine the factor of safety with respect to internal friction, F,, by assuming that
the cohesion is developed fully. To find the factor of safety with respect to shear
strength, F, a trial-and-error or graphical method is required, as illustrated in
Example 7.2.
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Fig. 7-3. Stability chart for soils with friction angle (Taylor 1937, 1948)

Example 7.2 Given H =40ft (12.2m) and 3 = 30° and the ledge is far away from
the surface. If the soil has a cohesion, ¢, of 800 psf (38.3kPa), a friction angle, ¢,
of 10°, and a total unit weight, v, of 100 pcf (15.7kN/m?), determine F, F,, and F.

Solution Assume that the angle of internal friction is developed fully, or ¢, =10°.
From Fig. 7-3, for B = 30°, c,/yH = 0.075, or c¢; = 0.075 x 100 x 40 = 300 psf, so
F.=c/c;=800/300 =2.67.

Next, assume that the cohesion is developed fully, or c¢;,/yH =800/(100 x 40) =
0.2. It can be seen from Fig. 7-3 that when c,;/yH = 0.2 and B = 30°, the developed
friction angle is less than zero, or the factor of safety with respect to internal fric-
tion is infinity. This situation occurs when the resisting moment because of cohe-
sion is greater than the driving moment.
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To determine the factor of safety with respect to shear strength, the same fac-
tor of safety should be applied to both cohesion and internal friction. A value of
F.is assumed, and a value of F,, which is equal to tan ¢/tan ¢,, is determined from
the chart. By trial and error, the factor of safety with respect to shear strength is
obtained when F, = F,. Instead of trial and error, a graphical method may be used
by plotting F, versus F, and finding its intersection with a 45° line, as shown in
Fig. 7-4.

Fig. 7-4. Factor of safety with respect to shear strength

In the figure, one point on the F, versus F, curve was determined previously
as F. = 2.67 and F, = 1. It is necessary to have two more points in order to plot
the curve. First, assume F, = ¢/c; =2, or ¢, = 800/2 = 400 psf. For c;/yH =400/ (100
x 40) = 0.1, from Fig. 7-3, ¢, = 7°, or F, = tan10°/tan7° = 1.44. Next, assume F, =
1.8, or ¢; = 800/1.8 = 444 psf. For ¢,/yH = 444/(100 x 40) = 0.111 from Fig. 7-3,
¢s=>5 or F,=tan10°/tan5° = 2.02. Fig. 7-4 shows the plot of the three points. The
factor of safety with respect to shear strength is 1.82.

A variational limiting equilibrium approach was used by Leshchinski and
San (1994) to develop seismic stability charts for a simple slope, as shown in Fig.
7-5. This case is similar to Taylor’s but includes the seismic coefficient, C;, as a
variable. Because most of their charts are concerned with slopes steeper than 1:1,
only two charts with slopes of 1:1 and 2:1 are of practical interest to earth slopes
and therefore presented here.

A particular feature of the chart is the dimensionless parameter, A, defined
as

1 c
YH tan¢

(7-1)
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Fig. 7-5. Seismic stability charts for a simple slope (Leshchinski and San 1994.
Reproduced with permission)

Without the use of A, the chart is similar to Taylor’s by assuming a value of
¢4 and finding a corresponding value of c,. Because the factors of safety, F, and
F,, are not equal, an iteration or graphical method must be used to determine the
factor of safety with respect to shear strength. With the use of A, the factor of
safety with respect to shear strength can be determined directly without the need
of iterations. Given the values of A and C,, a vertical line can be drawn from their
point of intersection to determine ¢,;, and a horizontal line to determine c,. The
two factors of safety, one based on F, and the other based on F,, are automatically
equal, so either one can be used to determine the factor of safety with respect to
shear strength.

Example 7.3 Given a 2:1 slope with H = 100t (30.5m), ¢ = 1000 psf (48kN/m?),
¢ =182, and y=125pcf (19.7kN/m°), determine the factor of safety with respect
to shear strength for C;=0and C,=0.2.

Solution From Eq. (7-1), A=1,000/(125 x 100 x tan 18°) = 0.25.

When C,=0: From Fig. 7-5, read vertically ¢, =12°, or F=tan18°/tan 12° =1.53.
If read horizontally, c,/YyH = 0.051, or ¢; = 0.051 x 125 x 100 = 637.5psf.
F =1,000/637.5 = 1.56, which checks with the 1.53 based on ¢,.

When C; = 0.2: From Fig. 7-5, read vertically ¢,=17.4°, or F =tan18°/tan17.4°
= 1.04. If read horizontally, c,/YH = 0.078, or ¢; = 0.078 x 125 x 100 = 975psf.
F =1,000/975 = 1.03, which checks with the 1.04 based on ¢,.
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7.3 Triangular Fills on Rock or Stiff Slopes

Fig. 7-6 shows a triangular fill on a rock or stiff slope. The fill has a height, H,
an angle of outslope, B, and a degree of natural slope, o. The natural slope is
assumed to be much stiffer than the fill, so the failure surface will lie entirely
within the fill. When o = 0, the fill is placed on a level ground.

Based on the Fellenius or normal method, the factor of safety can be com-
puted by Eq. (2-3). By dividing the equation into two parts, one due to cohesion
and the other due to internal friction, Eq. (2-3) can be written as

icbi secO; iW,- cos6; tano
F=-L +-1— (7-2)
Y Wisin®;, > W;sin6,
i 1

Because W, is proportional to yH, Eq. (7-2) can be simplified as

cN,
F= H + (tan o)N (7-3)

in which N. and N are functions of geometry, independent of soil parameters. To
apply Eq. (7-3), the location of the most critical circle must be known a priori.
By assuming that the soil has cohesion, ¢, but no angle of internal friction, ¢, the
location of the most critical circle can be determined and used to evaluate N, and
N. This assumption is correct for total stress analysis with ¢ = 0 but gives a
slightly larger factor of safety for effective stress analysis with both ¢’ and ¢/,
because the most critical circle for soils with both cohesion and friction is differ-
ent from that with cohesion only.

Values of N, can be computed by LEAME or any other computer programs
by assuming H = 10, y = 100, ¢ = 1,000, and ¢ = 0. The factor of safety obtained
by LEAME is actually the value of N, as can be seen by substituting these param-
eters into Eq. (7-3). Similarly, by assuming c = 0 and ¢ = 45°, the factor of safety

'i{n ck or SHff Stratun

Fig. 7-6. Triangular fill on rock slope
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is equal to N. Instead of using Eq. (7-3) directly, Huang (1977a, 1978b) used the
following equation to determine F:

F=N. £ + ﬂ (7-4)
vH Ny
in which N, = cohesion factor and N = friction factor defined as
N
N,=— 7-5
TN (7-5)

Values of N. and N;for various combinations of a.and P are presented in Figs.
7-7 and 7-8, respectively. Knowing N, and Ny, the factor of safety can be computed
by Eq. (7-4). For effective stress analysis with a pore pressure ratio, r,, Eq. (7-4)
becomes

B c’ _\fan¢’ :
F_NC[VH+(1 1) N, } (7-6)

Example 7.4 Given a triangular fill with H=30ft (9.1m), c =800 psf (38.3kN/m?),
¢ =0, y=125pcf (19.7kN/ m?®), o= 15°, and B = 30°, determine the factor of safety.
If the degree of natural slope, o, is 0, determine the factor of safety and compare
with that obtained by Fig. 7-1.

Solution With o = 15°, and B = 30°, from Fig. 7-7, N. = 10.6. With H = 30ft,
c=800psf, and y =125 pcf, from Eq. (7-4), F =800 x 10.6/(125 x 30) = 2.261.
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Fig. 7-7. Cohesion number for triangular fills (Huang 1977a. Reproduced
with permission)
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Fig. 7-8. Friction number for triangular fills (Huang 1977a. Reproduced with
permission)

If o =0and B =30°, from Fig. 7-7, N.=7.5. From Eq. (7-4), F =800 x 7.5/(125 x
30) =1.6. With D =0 and B = 30°, from Fig. 7-1, ¢,/ (yH) = 0.134, so ¢, = 0.134 x 125
x 30 =502.5, and F = 800/502.5 = 1.592, which checks with the 1.6 obtained from
Fig. 7-7.

When ¢ = 0, Eq. (7-4) in conjunction with Fig. 7-7 should give a factor of
safety very close to the minimum factor of safety obtained by LEAME, because
the most critical circle actually is used to determine N.. However, the use of the
same circle to evaluate Ny is not theoretically correct and results in a factor of
safety that is too high. Although a slightly higher factor of safety may be desir-
able and closer to the simplified Bishop method, to obtain more accurate and
conservative results, a correction factor may be applied to the factor of safety
obtained from Eq. (7-4).

Fig. 7-9 gives the correction factor, C; for the factor of safety computed
by Eq. (7-4). The correction factor depends on the angle of outslope, B, the
degree of natural slope, o, and the percent of cohesion resistance, P,, which is
defined as

’

c

P
+(1-r) ano
Ny

(7-7)

The curves in Fig. 7-9 were obtained from a series of analyses by comparing
the factor of safety from Eq. (7-6) with that from the LEAME computer program.
The corrected factor of safety is the product of the correction factor and the factor
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Fig. 7-10. Approximating of hollow fill by triangular fill

of safety from Eq. (7-6). Although Fig. 7-9 only gives the correction factor for
three values of B, that is, 37°, 27°, and 17°, the correction factor for other values
of B can be obtained by a straight-line interpolation.

Although the method presented here is based on the triangular cross section
shown in Fig. 7-6, it also can be applied to the effective stress analysis of the
slope shown in Fig. 7-10, where the rock slope is quite irregular. In such a case,
o is the degree of natural slope at the toe. Because of the small cohesion used in
effective stress analysis, the failure surface will be a shallow circle close to the
surface of the slope near the toe and is independent of all slopes behind the toe.



Stability Charts and Other Solutions 181

Example 7.5 Fig. 7-11 shows the cross section of a triangular fill and the
coordinates of boundary lines in parentheses. The soil has a cohesion of 200 psf
(9.6kN/m?), a friction angle of 30°, and a total unit weight of 125 pcf (19.7kN/m?).
If there is no seepage, determine the factor of safety by the normal method.

(100,50) (250,50)

ST

Note: All coordinates are in feet.

Fig. 7-11. Example 7.5

Solution From the coordinates, H = 50ft (15.2m), B = tan'(50/100) = 26.6°, and
o= tan!(50/250) = 11.3°. From Fig. 7-7, N.=10.7 and, from Fig. 7-8, N;= 4. From
Eq. (7-4), F = 10.7[200/(125 x 50) + (tan30°)/4] =10.7(0.032 + 0.144) = 1.88. From
Eq. (7-7), P. = 0.032/(0.032 + 0.144) = 0.18, or 18%. With B = 26.6° and o = 11.3°,
from Fig. 7-9, C;= 0.89. F = 0.89 x 1.88 = 1.67. The factor of safety obtained by
LEAME using the normal method is 1.663, which checks with the 1.67 obtained
from the charts.

7.4 Trapezoidal Fills on Rock or Stiff Slopes

Fig. 7-12 shows the cross section of a trapezoidal fill with a height, H, an outslope
S:1, an angle of natural slope, o, and a base width BH, where B is a ratio between
base width and height. The triangular fill is a special case of trapezoidal fill when
B = 0. By using the same procedure as in triangular fills, values of N. and N for
various combinations of S, B, and o are computed and presented in Figs. 7-13
and 7-14, respectively. Knowing N, and Nj, the factor of safety can be computed

by Eq. (7-6).
s
H 1
1 a

s

Fig. 7-12. Trapezoidal fill on rock slope
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Example 7.6 Given a trapezoidal fill with S =2, H=30ft (9.1m), B=0.4, o. = 15°,
¢ = 800psf (38.3kN/m?), and y = 125pcf (19.7kN/m’), determine the factor of
safety. Determine the factor of safety if oo = 0 and compare with that obtained by
Fig. 7-1.

Solution With S =2, H = 30ft, B=0.4, o = 15°, from Fig. 7-13, N. = 10.4. From
Eq. (7-4), F = (800 x 10.4) /(125 x 30) = 2.22.

If oo =0, from Fig. 7-13, N, = 8.1. From Eq. (7-4), F = 800 x 8.1/(125 x 30) =
1.73. From Fig. 7-1, with D = 0 and B = tan™'0.5 = 26.6°, ¢;/(yH) = 0.124, so
c; = 0.124 x 125 x 30 = 465 and F = 800/465 = 1.72, which checks with the 1.73
obtained from Fig. 7-13.

The friction number, N, is based on the circle with a center and radius the
same as the most critical circle for ¢’ = 0. In other words, the same circle is used
for determining N, and N If o or ¢’ is very small, the most critical circle for
¢' = 0 may be quite different from that for ¢’ # 0, so a trial-and error procedure,
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as described in the following examples, should be used to determine the minimum
factor of safety.

Example 7.7 Fig. 7-15 shows the cross section of a trapezoidal fill and the coor-
dinates of boundary lines in parentheses. The soil has an effective cohesion of
200 psf (9.6kN/m?), an effective friction angle of 30°, and a total unit weight of
125 pcf (19.7kN/m?). If there is no seepage, determine the factor of safety.

Solution With S=2, B=60/50 =1.2, and o = tan™(50/90) = 29°, from Fig. 7-13,
N, = 8.5 and, from Fig. 7-14, N; = 3.25. From Eq. (7-6), F = 8.5[200/(125 x 50) +
(tan30°)/3.25 = 1.78. This factor of safety is based on the assumption that the
most critical circle is tangent to the rock surface. For the effective stress analysis
with a small cohesion and a large friction angle, the most critical circle may be a
shallow circle, so several different locations of rock surfaces must be assumed to
determine which gives the minimum factor of safety.
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(100,50) (150,50)

S 4
O.0|gg-20ed 2 3 4 [(60,0)
Pt
E 4 BH=601t
B=121t

Fig. 7-15. Example 7.7

Four different values of B, that is, 0.4, 0.6, 0.8, and 1.0, are assumed. For each
B, select the largest o that can be obtained from the charts, as shown in the fol-
lowing table:

Trial No. B o N. Ny F

1 0.4 22.5° 13.9 6.25 1.73
2 0.6 27.5° 13.3 6.4 1.63
3 0.8 35° 134 6.25 1.66
4 1.0 45° 13.7 5.9 1.77

It can be seen that the minimum factor of safety is 1.63 and occurs at trial
No. 2. The factors of safety obtained by LEAME are 1.690 based on the simplified
Bishop method and 1.625 based on the normal method.

Example 7.8 Fig. 7-16 shows an embankment on a horizontal ledge. The em-
bankment is 50 ft (15.3m) high with a side slope of 1.5:1. The soil has an effective
cohesion of 300psf (14.4kN/m?), an effective friction angle of 30°, and a total
unit weight of 120 pcf (18.8kN/m?). The pore pressure ratio is assumed to be 0.1.
Determine the factor of safety (a) using Figs. 7-7, 7-8, and 7-9, and (b) by a trial-
and-error method using Figs. 7-13 and 7-14.

(75, 50) 3 2 4 1 (150,50)

(150,0)

Fig. 7-16. Example 7.8
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Solution (a) With a=0and p=tan'(1/1.5)=33.7°, from Fig.7-7, N.=7.1 and from
Fig. 7-8, Ny=2.9. From Eq. (7-6), F = 7.1 x [300/(120 x 50) + (1 — 0.1)(tan30°) /2.9]
=7.1x(0.05 + 0.179) = 1.626. From Eq. (7-7), P. = 0.05/(0.05 + 0.179) = 0.218, or
21.8%. From Fig. 7-9, when 3 =27°, C;= 0.87 and, when 3 =37°, C;=0.82. When B =
33.7°,C;=0.87 — (33.7 — 27)(0.87 — 0.82) /10 = 0.837. The factor of safety is F = 0.837
% 1.626 = 1.36. The factor of safety by LEAME is 1.359 by the normal method.

(b) Starting from B = 0 and ending at B = 1.2, four values of B are tried, each
with the largest possible o as can be obtained from the charts. Values of N. are
obtained from Fig. 7-13, N; from Fig. 7-14, and F from Eq. (7-6). The results are
presented in the following table:

Trial No. B o N. N F

1 0 22.5° 12.3 5.8 1.72
2 14 32.5° 12.0 6.7 1.53
3 0.8 50° 10.7 6.6 1.38
4 1.2 50° 74 3.6 1.44

It can be seen that the minimum factor of safety is 1.38, which checks with the
1.359 obtained from LEAME based on the normal method.

7.5 Effective Stress Analysis of Homogeneous Dams

Four sets of charts are presented in this section, each having their own advan-
tages and limitations. A typical cross section of a dam is shown in Fig. 7-17. The
dam has a height H and a ledge at a depth of DH below the toe, where D is the
depth ratio.

Bishop’s and Morgenstern’s charts can be used to find the factors of safety
at different D’s and determine which is the minimum. Morgenstern’s charts
assume D = 0, whereas both Spencer’s and Huang’s charts assume D = oo,
Because the most critical failure surface in an effective stress analysis is usually
a very shallow circle, the effect of D is not very significant. The use of D = <
always gives a slightly lower factor of safety and is therefore on the safe side.
The slope of the dam is expressed as S:1, except in Spencer’s charts where the
slope angle B is used.

4 S
H 1
: P
DHJ
TR Ledge

Fig. 7-17. Typical cross section of dams
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7.5.1 Bishop’s and Morgenstern’s Charts

Fig. 7-18 shows the stability charts for effective stress analysis when ¢'/yH = 0
and 0.025, and Fig. 7-19 shows those when c'/yH = 0.05. The factor of safety is
based on the simplified Bishop method (Bishop 1955) and can be expressed as

F=m-nn (7-8)
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Fig. 7-19. Stability charts for ¢’/yH = 0.05 (Bishop and Morgenstern 1960. Reproduced
with permission from ICE Publishing)

in which m and n are the stability coefficients determined from the charts. The
values of m and n depend on the depth ratio, D. When ¢'/yH = 0.05, the charts
show three different depth ratios of 0, 0.25, and 0.5. When ¢'/yH = 0.025, only
two depth ratios of 0 and 0.25 are needed. The most critical circle is supposed
to be a shallow circle and expected to fall within these depths. The charts for
¢'/YH =0 can be used to interpolate the factors of safety when ¢’'/yH lies between
0 and 0.025. When ¢'/yH = 0, it is not really necessary to use the charts because,
similar to an infinite slope, the factor of safety can be computed by Eq. (6-5).
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Example 7.9 Given the dam shown in Fig. 7-17 with ¢'/yH = 0, ¢’ = 30°, and
S =3 (B = 18.4°), determine the factors of safety for r, =0 and r, = 0.2, using Fig.
7-18 and comparing with Eq. (6-5).

Solution When r, =0: With ¢'/YH =0, ¢' =30°, and S = 3, from Fig. 7-18, F=m =
1.74. With ¢’ =30° and 3 = 18.4°, from Eq. (6-5), F = tan30°/tan 18.4° = 1.73, which
checks closely with the 1.74 obtained from Fig. 7-18.

When r, = 0.2: From Fig. 7-18, m = 1.74 and n = 1.95; and from Eq. (7-8), F =
1.74 - 0.2 x1.95 = 1.35. From Eq. (6-5), F = (1 - 0.2) x tan30°/tan 18.4° = 1.38. The
difference between Fig. 7-18 and Eq. (6-5) is because of the difference in the defi-
nition of r,.. Eq. (6-5) is based on the normal method by reducing the normal force
by r,Wcosp, as shown in Fig. 6-1, whereas Fig. 7-18 is based on the simplified
Bishop method by reducing the normal force by r,Wsec, as shown in Fig. 8-6. If
r, is defined by the simplified Bishop method, the r, used in Eq. (6-5) should be
multiplied by cos?B, or F =1.74 — 0.2 x (cos 18.4°)* x 1.95 = 1.38, which is exactly
the same as that obtained from Fig. 7-18.

If the ledge is far from the surface, it is necessary to determine which depth
ratio is most critical. This determination can be facilitated by using the line of
equal pore pressure ratio, r,,, on the chart defined as

N — 1M

rLlé‘ = (7-9)

Ny —1y

If the given value of r, is greater than r,, for the given section and strength
parameters, the factor of safety determined with the greater depth ratio has a
smaller value than the factor of safety determined with the smaller depth ratio
because 7, is greater than n;. With the help of the lines of equal pore pressure
ratio, the most critical depth ratio with the lowest factor of safety can be identi-
fied without having to compute the factor of safety for every depth ratio and
determine which is most critical.

Example 7.10 Given S=4, H=64ft(19.5m), DH=30£t (9.2m), ¢'=200 psf (9.6 kPa),
¢'=30°, y=125pcf (19.6kN/m?), and r, = 0.5, determine the factor of safety.

Solution Because c'/YH =200/(125 x 64) = 0.025, the chart in Fig. 7-18 should be
used. The depth ratio is D = 30/64 = 0.47, which is greater than 0.25, so the chart
with D = 0.25 can be used to replace D = 0.47. Any circle with a D greater than
0.25 is expected to have a factor of safety equal to that with D = 0.25. The use
of the lines of equal pore pressure ratio, as indicated by the dashed lines, gives
7. = 0.42. Since r, > r,,, D = 0.25 is more critical than D = 0. When D =0.25, S =4,
and ¢’ =30°, from Fig. 7-18, m =2.95 and n =2.78, or F =2.95 - 0.5 x 2.78 = 1.56.

It is interesting to compare the factors of safety between D = 0 and D = 0.25.
When D =0, from Fig. 7-18, m = 2.89 and n = 2.63, or F =2.89 — 0.5 x 2.63 = 1.58,
which is only slightly greater than the 1.56 for D = 0.25. It can be seen that the
effect of D on the factor of safety is quite small.
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In this example, ¢’/YH is exactly equal to 0.025. If ¢’/yH is smaller than 0.025,
the factor of safety for ¢’/yH = 0 should also be determined. The factor of safety
can be computed by a straight-line interpolation between the two.

In Fig. 7-19, the case of D = 0.5 also applies to D > 0.5. If the given D is greater
than 0.5, the lines of equal pore pressure ratio for D = 0.25 should be used to
determine whether the case of D = 0.5 is more critical than D = 0.25. If so, the
factor of safety for D = 0.5 gives the solution required. Otherwise, the line of
equal pore pressure ratio for D = 0 should be used to determine whether D = 0
or D = 0.5 is the most critical.

Example 7.11 Same as Example 7.10 except that ¢’/yH is increased to 0.05; deter-
mine the factor of safety.

Solution With §=4, ¢’ =30°, and D = 0.25, from the lines of equal pore pressure
ratio in Fig. 7-19, r,, = 0.72, which is greater than the given 0.5, so D = 0.25 is more
critical than D = 0.5. Next, from the lines of equal pore pressure ratio for D =0,
it can be found that r,, = 0, which is smaller than the given 0.5, so D = 0.25 is the
most critical among the three. For D = 0.25, from Fig. 7-19, m = 3.25 and n = 2.83,
or F=325-0.5x2.83=1.84.

If the lines of equal pore pressure ratio are not used, it will be necessary to
compute the factors of safety for all three depth ratios to determine which is the
most critical. To check that D = 0.25 does give the lowest factor of safety, the
factors of safety at D =0 and D = 0.5 are computed as follows: When D = 0, from
Fig. 7-19, m = 3.27 and n = 2.76, or F = 3.27 — 0.5 x 2.76 = 1.89. When D = 0.5,
m =345 and n = 3.12, or F = 3.45 — 0.5 x 3.12 = 1.89. It can be seen that the
minimum factor of safety does occur at D = 0.25 but the difference in factors of
safety among the three depth ratios is not very significant.

7.5.2 Morgenstern’s Charts

Morgenstern’s charts (1963) can be used only to determine the factor of safety of
a dam after a rapid drawdown. Fig. 7-20 shows the case considered. By assuming
horizontal flow lines and vertical equipotential lines, the phreatic surface and
the piezometric surface are identical.

Equipotential lines
Flow S ,]/
L lines 1 1 1
. —H >\
R AN
| 1

Fig. 7-20. Slope subject to rapid drawdown
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It is assumed that an earth dam is placed on an impervious base. The original
water level is at the same elevation as the top of the dam. Then the water level
suddenly is lowered a distance L below the top of the dam to simulate rapid
drawdown. The factor of safety is determined by the simplified Bishop method
by assuming that the critical circle is tangent to the impervious base, that the
flow lines are horizontal and the equipotential lines are vertical after rapid draw-
down, and that the weight of the soil is twice the weight of water. The assump-
tion of vertical equipotential lines indicates that the phreatic surface after the
rapid drawdown is located along the surface of the slope.

Figs. 7-21, 7-22, and 7-23 show the factors of safety under rapid drawdown
for ¢'/yH of 0.0125, 0.025, and 0.05, respectively. The factor of safety is plotted
against the drawdown ratio, L/H, for various S and ¢". When the drawdown ratio
is equal to 1, the circle tangent to the impervious base is the most critical. When
the drawdown ratio is less than 1, several circles must be tried by assuming the
impervious base at different elevations so that the one with the lowest factor of
safety can be determined.
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Fig. 7-21. Drawdown stability chart for ¢’/yH = 0.0125 (Morgenstern 1963.
Reproduced with permission from ICE Publishing)
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Fig. 7-22. Drawdown stability chart for ¢’/yH = 0.025 (Morgenstern 1963. Reproduced
with permission from ICE Publishing)

Example 7.12 Given S =3, H=65ft (19.8m), ¢'=200psf (9.6kPa), ¢'=30° and y=
124.8 psf (19.6 kN /m?), determine the factors of safety when L/H=1and L/H=0.5.

Solutions When L/H=1,¢'/yH=200/(124.8 x 65) =0.025, S =3, and ¢’ =30°, from
Fig. 7-22, the factor of safety F =1.2.

When L/H = 0.5, three different trials are needed to determine the minimum
factor of safety, as shown in Fig. 7-24.

(a) Assume the circle tangent to the base with H = 65ft and L = 32.5ft. For
c'/yH =0.025, L/H = 0.5, from Fig. 7-22, F = 1.52.

(b) Move the base up to the pool level and assume the circle tangent to the
base with H =L =32.5. For ¢'/YH = 0.05, L/H =1, from Fig. 7-23, F = 1.48.

(c) Place the base between (a) and (b) with H =48.75ft, L=32.5ft, ¢’ /yH =200/
(124.8 x 48.75) = 0.033, and L/H = 32.5/48.75 = 0.67. The factor of safety can be de-
termined by a straight-line interpolation of c¢'/yH between 0.025 and 0.05. From
Fig. 7-22, with c¢'/yH = 0.025, F = 1.37. From Fig. 7-23 with ¢'/yH = 0.05, F = 1.66.
By interpolation, F = 1.37 + (1.66 — 1.37) x 0.008/0.025 = 1.46.
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Fig. 7-23. Drawdown stability chart for ¢’/yH = 0.05 (Morgenstern 1963. Reproduced
with permission from ICE Publishing)

The minimum factor of safety is 1.46. Although a slightly lower value could
perhaps be found, further refinements are unwarranted. This example demon-
strates that for partial drawdown, the critical circle often may lie above the base
of the dam, and it is important to investigate several levels of tangency.

H=651t L=3251t H=325ft L=325ft H=4875ft L=325ft

¥ ¥
H +—" == H L —~

(a) First Trial (b) Second Trial (c) Third Trial

Fig. 7-24. Example 7.12
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7.5.3 Spencer’s Charts

Fig. 7-25 shows the Spencer’s charts (1967) for determining the required slope
angle when the factor of safety is given. This type of charts is very useful for
preliminary design purposes, because the required factor of safety is always
known a priori and the required slope angle is the answer to be sought. If the
angle of slope is given, it is more convenient to use other charts, because the
application of Spencer’s charts requires the use of a trial-and-error procedure.

Spencer’s charts are based on the original Spencer method, which assumes
parallel interslice forces and satisfies both overall force and moment equilibrium.
It checks well with the simplified Bishop method, which only satisfies the overall
moment equilibrium, because the factor of safety based on moment equilibrium
is insensitive to the direction of interslice forces. The charts use three different
pore pressure ratios, that is, 0, 0.25, and 0.5, and assume that the ledge or firm
stratum is at a great depth below the surface. In using the charts, it is necessary
to find the developed friction angle defined as

¢4 =tan"'(tan¢’ / F) (7-10)

Spencer (1967) also developed charts for locating the critical surface, which
are not reproduced here. If the ledge is very close to the surface, the design based
on Fig. 7-25 is somewhat conservative.
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Fig. 7-25. Stability chart for different pore pressure ratios (Spencer 1967. Reproduced
with permission from ICE Publishing)
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Example 7.13 Same as Example 7.10 except that, instead of giving S =4, a safety
factor of 1.56 is given. Find the required S.

Solution With H = 64ft, c'=200psf, y=125pcf, and F = 1.56, ¢’/ FyH =200/ (1.56
x 125 x 64) =0.016. With ¢’ = 30°, ¢, = tan '(tan30°/1.56) =20.3°, and r, = 0.5, from
Fig. 7-25, slope angle =13.8°, or S =1/tan 13.8° = 4.07, which checks well with the
given S =4 in Example 7.10.

Note that the factor of safety obtained in Example 7.10 is based on the circle
with a depth ratio, D, of 0.25, whereas the factor of safety used in Fig. 7-25 is the
minimum among various depth ratios. If the minimum factor of safety in Example
7.10 is slightly smaller than 1.56, as it should be, the value of S will be slightly
decreased and a better agreement between Examples 7.10 and 7.13 will be
obtained.

7.5.4 Huang’s Charts

Fig. 7-26 shows the stability charts for a homogeneous dam, as developed by
Huang (1975). The factor of safety is based on the simplified Bishop method.
Similar to Spencer’s charts, it is assumed that the ledge is located at a great depth
below the surface.

The left upper corner of Fig. 7-26 shows an earth embankment with a height,
H, and an outslope of S:1. In the effective stress analysis, the soil has a small
cohesion relative to the angle of internal friction, so the most critical failure
surface may be a toe circle or a circle slightly below the toe. As long as the
bedrock is at a considerable distance from the surface, the location of bedrock
has no effect on the factor of safety.

In Fig. 7-26, the solid curves indicate zero pore pressure and the dashed
curves indicate a pore pressure ratio of 0.5. The factor of safety for other pore
pressure ratios can be obtained by a straight-line interpolation between the solid
and dashed curves. The number on each curve is the cohesion factor (C.E) in
percent, which is equal to 100 ¢’/yH.

For a given effective friction angle and a given cohesion factor, the factor of
safety for a given slope can be determined directly from the charts. These charts
cannot be applied to total stress analysis because, when ¢ = 0, the most critical
circle will be a deep circle tangent to the bedrock. Because the depth to bedrock
is not given, the factor of safety cannot be determined. This is why all curves
stop at ¢’ = 5° and should not be extended to ¢' = 0.

Fig. 7-27 presents a practical example for the application of stability charts.
This dam, which provides the water supply to Springfield, Kentucky, failed by
sliding away some of the material on the downstream face. The location of the
failure surface is very close to the most critical circle obtained by LEAME, as
indicated in the figure. This provides a good opportunity to back-calculate the
shear strength of the soil in the field. The failure can be considered as a full-scale
model test. When the dam failed, the factor of safety should have decreased
to L.
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1. Solid curves indicate zero pore pressure and dashed
curves indicate a pore pressure ratio of 0.5. The
factor of safety for cther pore pressure ratios can be
cbtained by a straight line interpolation between the
solid and the dashed curves,

2. Numerals on curves indicate conesion factor, C.F. =

The most critical failure
surface may be a toe
circle or a circle stightly

below the toe. 100¢’

3 3
CF. | CF. L~ . |
= —=115=1.0 7T 1S=2
40 = ‘—ﬁ=“ 30F rd = —
] Tt L~ L~
2}s0 ] /I/ 2 e — L P P
=] | 20 = il
1 I 20— = 2k -;‘V‘
- —] = o C. Tl
20 (—— 71?’- _— A A ]
. = = o= . [0oE “1 = —25
—10 = = F Z= 5 ,4' _:}—- - ,(g"‘ﬁ
25 S ———":-'r'—” 253 2.5’/,./" . B il
B Y e y.o) o2 =
>_
|._
3 3
w B -~ | E D dc_
{ij7 40 A IS'—'1.5 30 = ,fIS-BO
< CF. //" == C.F, // ’/ b o —
- - -t 1
09} 30 o= Ty = 1A
2 ke 220 A & =
B —= =T 2 L A ]
LL 20 — ] 1 s s - -
O A P = C o - |~ L~ 25
1 = =T 1 A J‘,‘: -~ - e
o 0 == [ sl A =
B — it —_
P 25 ——oF== = —
U ) oF E=T—T o
<
b 3 7 3 7 N VA V|
oA 1S=20 CE A4 =4.0
o
30 7 A AV4 R N T
4 . = N i1 S 4 4 Vi N v
— Y LS5 [~
o F — B P A //////’ 25_
= =1 A & - =
p — — -52 10 ,//r// ’//“, =L o<
— =4 -
il B e i L i Y 7 7 i e 2
5 = = Y o S, il P ks
[ 25 ==T =0 fascd sl B
& [ ———_ | (%)
& o] L { 5
[o] 10 20 30 40 o] 10 20 30 40

ANGLE OF INTERNAL FRICTION ¢'

Fig. 7-26. Stability charts for effective stress analysis of earth dam (Huang 1975,
© National Academy of Sciences, Washington, DC. Reproduced with permission of
the Transportation Research Board, Washington, DC)

As shown in the figure, the original downstream slope is not uniform, being
flatter at the toe than at the top. However, it can be changed to a uniform slope
by approximating the slope at the toe with a horizontal line and an inclined line,
so that the cut is equal to the fill. The downstream slope is 1.75:1, and the height
is 37ft (11.3m). The phreatic surface is determined theoretically by drawing a
flownet, as described in Section 4.1.1. By using LEAME and assuming an effec-
tive cohesion of 200 psf (9.6kPa) and an effective friction angle of 25°, a safety
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Fig. 7-27. Stability of Springfield Dam in Kentucky
Note: 1ft=0.395m; 1psf=47.9 Pa; 1pcf=157.1N/m’

factor of 0.97 was obtained. This indicates that the assumed shear strength is
reasonable, because it yields a factor of safety close to 1. Therefore, this shear
strength can be used for the redesign of the dam. Unfortunately, there was an
office building not far from the dam, so the downstream slope could not be flat-
tened. Finally, a rock berm at a slope of 1:1 was constructed to increase the factor
of safety.

Example 7.14 For the dam shown in Fig. 7-27 with H = 37ft (11.3m), S = 1.75,
¢’ =200psf (9.6kPa), ¢' = 25°, y = 125pcf (19.7kN/m?’), and the given phreatic
surface, determine the factor of safety.

Solution Cohesion factor = 100 x 200/(125 x 37) = 4.32. To determine the pore
pressure ratio, it is necessary to know the percentage of fill under water. It is
estimated that 75% of the area is below and 25% is above the water table. The
detailed calculations are presented in Fig. 7-28.

For an outslope of 1.5:1, a cohesion factor of 4.32, and a friction angle of 25°,
as indicated by the chart on the left of Fig. 7-28, the factor of safety is 1.3 from
the solid curves, where no fill is under water, and 0.7 from the dashed curves,
where the entire fill is under water, so the factor of safety is F = 0.75 x 0.7 + 0.25
x 1.3 =0.85.
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Fig. 7-28. Example 7.14
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For an outslope of 2:1, as indicated by the chart on the right of Fig. 7-28, the
factor of safety is 1.6 from the solid curves and 0.9 from the dashed curves, so
the factor of safety is F = 0.75 x 0.9 + 0.25 x 1.6 = 1.07.

The actual outslope is 1.75:1, which is the average of 1.5:1 and 2:1, so the
average factor of safety is F = (0.85 + 1.07) /2 = 0.96.

7.5.5 Comparison of Charts

The advantages and limitations of the various charts are as follows:

1.

Bishop’s and Morgenstern’s charts are applicable no matter whether the
ledge is on, near to, or far below the toe. The factors of safety for differ-
ent depth ratios, D, can be determined from the charts. With the help of
the lines of equal pore pressure ratio, the most critical depth ratio with
the lowest factor of safety can be identified easily without needing to
compute the safety factor of every depth ratio and determining which
is most critical. The charts can be applied to the case of full rapid draw-
down by assuming r, = 0.5. Due to the limitation of ¢’/yH to 0.05, the
charts cannot be used for total stress analysis with relatively high cohe-
sion. If ¢'/yH is not exactly equal to 0.025 or 0.05, some kind of interpola-
tion is needed.

Morgenstern’s charts can be used only to analyze full or partial draw-
down. Although the charts assume that the dam is placed directly on a
ledge with D =0, it can give an approximate but slightly higher factor of
safety even when the ledge is at great depth below the toe. To determine
the lowest factor of safety for partial drawdown, at least three circles,
each with the ledge at a different height, must be tried. The charts can be
used only when ¢’/yH is not greater than 0.05, and need interpolations if
c'/vH is not exactly equal to 0.0125, 0.025, or 0.05.

Spencer’s charts assume a ledge far below the toe but can give conserva-
tive results if the ledge is at or close to the toe. Instead of checking the
factor of safety for a given slope, the required slope angle for a given fac-
tor of safety can be read directly from the charts. This feature makes the
charts particularly useful for preliminary design, because the required
factor of safety is usually known before the slope angle is determined. If
the slope angle is given, the factor of safety can be determined by a trial-
and-error procedure, which is quite cumbersome. The charts can be used
for the case of full rapid drawdown by assuming r, = 0.5.

Similar to Spencer’s charts, Huang’s charts also assume a ledge far below
the toe and will give a lower and more conservative factor of safety if
the ledge is at or close to the toe. Given the slope S, the friction angle, ¢’,
and the cohesion factor, 100 ¢’/yH, the factor of safety can be read direct-
ly from the charts with no further calculations needed. These charts are
good supplements to Bishop’s and Morgenstern’s charts by adding a case
of D = oo, 50 if D is great than 0.25 or 0.5, the minimum factor of safety can



198 Slope Stability Analysis by the Limit Equilibrium Method

be determined right away and no comparison of different depth ratios is
needed. The curves for 7, =0 and r, = 0.5 and those for different cohesion
factors are all placed on the same chart, so the factor of safety for any
given r, and cohesion factor can be interpolated visually. The charts can
be used for full rapid drawdown by assuming r, = 0.5. The extension of
the charts to very large cohesion factors allows the use of the charts for
total stress analysis with a large cohesion and a relatively small friction
angle.

It is interesting to compare the results obtained by different methods, as
illustrated by the following example.

Example 7.15 Given H =48ft (14.6m), D=0, S =3, ¢’ =300psf (14.4kPa), ¢' = 30°,
and y=125pcf (19.7kN/m?), compare the factors of safety after full rapid draw-
down, as obtained by all four methods.

Solution

¢’/yH =300/(125x 48) = 0.05

Bishop’s and Morgenstern’s charts: With D =0, S =3, and ¢’ = 30°, from Fig.
7-19, m =257 and n = 2.17. For r, = 0.5, F = 2.57 — 0.5 x 2.17 = 1.49.

Morgenstern’s charts: With S = 3, L/H = 1, and ¢' = 30°, from Fig. 7-23,
F = 1.49, which checks with Bishop’s and Morgenstern’s charts, because both
assume D = 0.

Huang’s charts: With S = 3, cohesion factor C.F. = 100c’/(yH) = 100 x 300/
(125 x48) =5, and ¢’ = 30°, from the dashed curves in Fig. 7-26, F = 1.46, which is
slightly smaller than 1.49, because Huang's charts assume D = e instead of D = 0.

Spencer’s charts: tan¢’ = tan30° = 0.577 and B = tan(0.333) = 18.4°. The fac-
tor of safety can be determined by trial and error. Several values of F are tried to
make [ as close to 18.4° as possible.

Assume F = 1.5, with ¢'/FyH = 0.05/1.5 = 0.0333, ¢, = tan"'(0.577/1.5) = 21°,
and r, = 0.5, from Fig. 7-25, B = 18.0°.

Assume F = 145, with ¢'/FyH = 0.05/1.45 = 0.0345, ¢, = tan(0.577/1.45) =
21.7°,and r, = 0.5, from Fig. 7-25, = 18.8°.

Assume F = 147, with ¢'/FyH = 0.05/1.47 = 0.034, ¢, = tan"'(0.577/1.47) =
21.4°,and r, =0.5, from Fig. 7-25, f = 18.4°.

The factor of safety by Spencer’s charts is 1.47, which is slightly smaller than
1.49, because Spencer’s charts are also based on D = co.

Due to the small scale of the charts, it is difficult to read them to two decimal
points. However, this example does indicate that all four charts yield about the
same result, and the location of the ledge has very little effect on the factor of
safety obtained.
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7.6 Effective Stress Analysis of
Nonhomogeneous Dams

All the charts presented in the previous section are based on the assumption that
the dam and foundation have the same soil parameters. This is usually not true
in reality, so the case shown in Fig. 7-29, where the dam and foundation have
different effective cohesions, c’, effective friction angles, ¢’, and pore pressure
ratios, r,, is of practical interest.

For a given circle, similar to Eq. (2-13), the static factor of safety based on the
normal method can be expressed as

z [c’D; sec®; +(1—1,)W; cos, tan ¢’]
F=i _ (7-11)
D Wi;sin6;

i=1

The three soil parameters, c¢’, ¢, and r,, are shown clearly in the equation,
whereas all the remaining terms, other than the unit weight, are related to geom-
etry, independent of the soil properties. Because the soil unit weight does not
change significantly, an average unit weight can be assumed. Note that W; is
proportional to the soil unit weight, v, and height, H. By dividing both the
numerator and denominator by yH, Eq. (7-11) can be written as

4 4

c c
F= y_ll-INd + Y_;INCZ +(1=74)(tan61)N s + (1-17,2)(tand3)N 4, (7-12)

in which subscripts 1 and 2 refer to soils 1 and soil 2, respectively, N. = cohesion
number, and N;= friction number. These numbers are the collection of geometric
terms, such as b; and 6,, and can be determined by LEAME or any other computer
programs using the Fellenius or normal method.

To determine N, input ¢; =0, 01 =0, ¢7 =0, ¢f =12,500, y= 125, and H = 100.
The factor of safety thus obtained is equal to N, as can be seen by substituting
the stated values into Eq. (7-12). To determine Nj, input ¢{ =0, c; =0, ¢1 =45°,
ta =0, and 07 =0, so F = Nj. The same procedure can be applied to soil 2 by
exchanging the subscripts.

S '
H 177 C2 ¢, T soil2
Y 2 !
DH | Cct1 &% Ty Soil1
S Ledge

Fig. 7-29. Soil parameters for a nonhomogeneous dam
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(145, 250)

(90, 190)

Note: coordinates in
parentheses are in ft.

eofelll 7 e

Fig. 7-30. Location of critical circles
Note: 1ft=0.305m

For a given slope, S, and depth ratio, D, it is necessary to know the location
of the most critical circle. Unfortunately, the location of the most critical circle
depends on the shear strength of the two soils. Fig. 7-30 shows two extreme cases,
one with ¢ = 0 and the other with ¢ = 0. By using LEAME and assuming that
soils 1 and 2 are identical, the most critical center for ¢ = 0, as indicated by the
solid curve, is always located at (90, 190), regardless of the magnitude of ¢; that
for ¢ =0, as indicated by the dashed curve, is always located at (145, 250), regard-
less of the magnitude of c. The use of these two circles for a given set of soil
parameters may result in two widely different factors of safety. For example, the
critical center for ¢ = 0 and ¢ = 30° should be at (90, 190), and the factor of safety
should be 2.111; however, if the center at (145, 250) were used, the factor of safety
would be 2.412. Fortunately, in the effective stress analysis, the shear strength
contributed by the effective cohesion is very small and, therefore, has very little
effect on the location of the most critical circle. A comparison between ¢ = 0 and
¢ = 30° and the most general case of ¢ = 200psf (9.6kPa) and ¢ = 30° shows that
the most critical center is the same and the factor of safety is increased only
slightly, from 2.111 to 2.248. To be more realistic, the case of ¢] = c; =200 psf (9.6 kPa)
and ¢7 =65 =30° was used to locate the most critical center.

Fig. 7-31 shows the charts for N. and Nj, as determined by LEAME. When
D >0, the factor of safety is determined by Eq. (7-12). When D = 0, there is only
one soil and the factor of safety is determined by

c

F= v N, +(1-7,)(tan®")N; (7-13)

Eq. (7-13) also can be applied to a homogeneous dams, where N, = N,; + N,
and Nf = Nfl + Nﬂ.

It should be mentioned that theoretically there is a slight variation in N4
among the various depth ratios, D. Because the variation is small and has very
little effect on the factor of safety, the average of the six depth ratios was used
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Fig. 7-31. Cohesion and friction numbers for various depth ratios

to plot N.. The coordinates for N, N4, and N,, are not finely divided, because
their contribution to the factor of safety is quite small, so an estimate of their
values to one decimal point is sufficient.

Example 7.16 In Fig. 7-29, given S = 3.5, D = 0.4, H = 100ft (30.5m), y =
125 pcf (19.7kN.m?), ¢{ =100 psf (4.8 kPa), ¢1 =25°, r,;, =04, c; =200 psf (9.6 kPa),
¢7 = 35° r,, = 0.2, determine the factor of safety.

Solution c¢i/YH =100/(125x100)=0.008, ¢;/yH =0.016, (1-r,)tand; =(1-0.4)
tan25°=0.28, (1-r,;)tan¢, = (1-0.2)tan 35° = 0.56.

When D = 0.4, from Fig. 7-31, Ny =6.1, No = 2.8, Np=3.34, N, =0.66, from Eq.
(7-12), F =0.008 x 6.1 + 0.016 x 2.8 + 0.28 x 3.34 + 0.56 x 0.66 = 1.398.

To be sure that D = 0.4 is the most critical circle, the factor of safety for D =
0.3 also must be determined. When D = 0.3, from Fig. 7-31, N, = 6.1, N, = 3.5,
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N; =295, N, =0.9, from Eq. (7-12), F =0.008 x 6.1 + 0.016 x 3.5 + 0.28 X 2.95 + 0.56
x 0.9 = 1.43, which is greater than the 1.398 for D = 0.4.

The minimum factor of safety is 1.398, which checks with the 1.420 obtained
by LEAME, using the normal method. If the simplified Bishop method is used,
the factory of safety is 1.574, so the use of normal method is more conservative.

A major difference between this section and Sections 7.3 and 7.4 lies in the
soil used to evaluate these cohesion and friction numbers. In the previous sec-
tions, a soil with ¢ =0 is used to determine the location of the most critical circle,
so the charts are quite accurate for total stress analysis with ¢ = 0. For effective
stress analysis with ¢ # 0, a correction factor or a trial-and-error procedure must
be applied to determine the minimum factor of safety. In this section, a soil with
¢’ =200psf (9.6kN/m?) and ¢ = 30° is used to determine the location of the most
critical circle, so Fig. 7-31 can be used for effective stress analysis but not for total
stress analysis. For total stress analysis, Fig. 7-35 based on ¢ = 0, as presented in
Section 7.8, should be used.

Huang (1979, 1980) also presented a method and a series of charts for deter-
mining both the static and the seismic factors of safety of nonhomogeneous dams
consisting of a large number of soil layers. This information was included in the
previous book (Huang 1983) but was purposely deleted from this volume because
the method is too cumbersome to use. With the LEAME computer program
readily available, it is no longer necessary to use any stability charts for prelimi-
nary design and estimating purposes unless they are very simple and easy
to use.

7.7 Total Stress Analysis of Dams with ¢ =0

For a homogeneous dam with ¢ = 0, Eq. (7-6) can be simplified to

r=—SnN. (7-14)
YyH

in which N. is a cohesion number. By definition, the factor of safety can be
expressed as

F=— (7-15)
Cq

in which ¢ = cohesion of the soil and ¢, = developed cohesion, or the cohesion
actually developed. Equating Egs. (7-14) and (7-15),
_YH

Cq

N. (7-16)

It can be seen that the cohesion number, N,, is the reciprocal of the stability
number shown in Figs. 7-1 and 7-3.
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Fig. 7-32 shows the charts for total stress analysis of dams with ¢ =0 (Huang
1975). These charts are based on a homogeneous simple slope, as shown in the
upper left corner of the figure. The dam has a height, H, and an outslope S:1. A
ledge is located at a depth of DH below the toe, where D is the depth ratio. The
center of the circle is at a horizontal distance XH and a vertical distance YH from
the top edge of the dam. When the critical circle passes below the toe, it can be
proved easily that the center of the critical circle lies on a vertical line intersecting
the slope at midheight, or X = 0.5S. This type of failure surface is called a mid-
point circle, the results of which are shown by the solid curves in Fig. 7-32. If the

Center of circle Note:
*H 1. Solid curves represent failure by midpoint
YH circles and dashed curves represent failure
by slope or toe circles.
H 1 2. X =055 unless indicated otnerwise.
Wé 3. Numerals on curves indicate values of D.
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Fig. 7-32. Stability charts for total stress analysis of earth dams (Huang 1975,
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depth ratio, D, is small, the failure surface may intersect the slope at or above
the toe. This type of failure surface is called a toe or slope circle, the results of
which are shown by the dashed curves. It can be seen from the figure that in
most cases the most critical circle occurs when X = 0.55 except for D = 0 and
S <2, where the value of X specially is noted.

It can be seen from the figure that the deeper the circle, the smaller the cohe-
sion number and the smaller the factor of safety. Therefore, the critical circle is
always tangent to the ledge. The charts are different from Taylor’s in that the
cohesion numbers for various circles with centers at different coordinates (XH,
YH) are shown, whereas Taylor’s only shows the stability number for the most
critical circle. Given the location of the circle, the chart can be applied to both
homogeneous and nonhomogeneous dams, as illustrated by the following
examples.

Example 7.17 The homogeneous slope is the same as in Example 7.1, with H =
40ft (12.2m), B = 22.5° (§ =2.5), D = 1.5, c = 1,200 psf (57.5kPa), and v = 120 pcf
(18.9kN/m?). Determine the factor of safety.

Solution With S =2.5 and D = 1.5, from Fig. 7-32, the minimum factor of safety
occurs at Y = 1.2 with N, = 5.8. From Eq. (7-14), F = 1,200 x 5.8/(120 x 40) = 1.45,
which checks with the 1.46 obtained from Taylor’s chart.

Example 7.18 Fig. 7-33 shows the cross section of a nonhomogeneous dam. The
dam is 20ft (6.1 m) high and has an outslope of 3:1 and a cohesion of 1,500 psf
(71.9kPa). The foundation consists of one 40-ft (12.2-m) soil layer having a co-
hesion of 800psf (38.3kPa) and one 20-ft (6.1m) soil layer having a cohesion
of 100psf (4.8kPa), which is underlain by a ledge. Although the unit weights
for different soils are generally not the same, an average unit weight of 130 pcf
(20.4kN/m’) is assumed. Determine the factor of safety.

Note: All distances
are in ft.

Fig. 7-33. Example 7.18
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Solution With S=3 and D =60/20 = 3, from Fig. 7-32 the most critical circle for
a homogeneous dam is a midpoint circle with a center located at YH =2 x 20 =
40ft above the top of the dam, and a minimum cohesion number of 5.7 is ob-
tained. The average cohesion can be determined by measuring the length of the
arc through each soil layer, or

. 241,500 +2 x57 800 +142 x 100
B 24 +2 %57 +142

From Eq. (7-14), F =505 x 5.7 /(130 x 20) = 1.11.
If a circle with a larger radius, say Y = 6 or YH = 6 x 20 = 120ft, is used, from
Fig. 7-32, N. = 6.05. The average cohesion is

=505 psf

. 281,500 +2x70 x800 +180 x 100
B 28 +2x70+180

The factor of safety is F =494 x 6.05/(130 x 20) = 1.15, which is slightly greater
than the 1.11 obtained previously, so the minimum factor of safety is 1.11. It can
be seen that the use of the critical center based on a homogeneous dam still yields
a smaller factor of safety. This is usually the case, so only one or two circles need
to be tried. The factor of safety obtained by LEAME is 1.077.

=494 psf

In the previous example, the weaker layer lies at the bottom directly above
the ledge, so it is apparent that the most critical circle should be tangent to the
ledge. If the bottom layer is stronger than the top layer, the factors of safety at
two different depth ratios, one tangent to the bottom of each layer, must be tried
to determine which is more critical.

7.8 Total Stress Analysis of Triangular Fills on
Soil Slopes

Fig. 7-34 shows a triangular fill having a height, H, an angle of outslope, 3, and
a degree of natural slope, o. The fill is built of soil 2 with an undrained shear

Fig. 7-34. Triangular fill on soil slope
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strength, or cohesion, of ¢,, whereas the natural slope is formed by soil 1 with
an undrained shear strength of c;. Below soil 1 lies the bedrock or stiff material.
It is assumed that soils 1 and 2 have the same unit weight, v. If the two unit
weights are different, an average unit weight should be used.

In Fig. 7-34, the thickness of soil 1 is DH, where D is the depth ratio and H
is the height of the fill. When D = 0, the circle is tangent to the natural slope and
the case of triangular fills on rock or stiff slopes applies. For D > 0, unless soil 2
is much weaker than soil 1, the most critical circle with the lowest factor of safety
is always tangent to the rock.

The factor of safety for frictionless material also can be expressed in the fol-
lowing form (Huang 1977b):

PzN{;—;{(l—LfH;—;Lf} (7-17)

in which L; = length factor defined as

L
Lf: 2
Li+L,

(7-18)

in which L, = length of the failure arc in soil 1 and L, = length of the failure arc
in soil 2.

Values of N, and L for various combinations of o. and B are presented in Fig.
7-35 with D values of 0.2, 0.4, and 0.6. When D = 0, Eq. (7-6) in conjunction with
Fig. 7-7 can be used instead.

Example 7.19 For the slope shown in Fig. 7-34 with o = 15°, § = 35°, y = 125pcf
(19.6kN/m?), ¢; = 1,200 psf (57.5kN/m?), and ¢, = 1,500 psf (71.8kN/m?), deter-
mine the factor of safety.

Solution ¢;/yH =1,200/(125 x 50) = 0.192; ¢,/yH = 1,500/ (125 x 50) = 0.24; when
D = 0.6, from Fig. 7-35, N. = 5.4 and L;= 0.11; from Eq. (7-17), F = 5.4 x [0.192 X
(1-0.11) + 0.24 x 0.11] = 1.065, which checks with the 1.067 obtained by LEAME.

In the previous book (Huang 1983), charts for N and and Nj, similar to Eq.
(7-12), were presented for the effective stress analysis of triangular fills on soil
slopes. Because the location of most critical circle is based on soils with ¢ =0 and
the actual soils have both c and ¢, the factor of safety thus obtained is inaccurate,
so those charts for effective stress analysis are not presented here.

Huang (1977b) also presented stability coefficients for sidehill benches in a
series of tables with D ranging from 0 to 1, o from 0° to 30°, and B from 5° to
40°. Each combination consists of three cases: case 1 for soils with ¢ = 0, case 2
for soils with ¢ = 30° and c¢/yH = 0.025, and case 3 for soils with ¢ = 0. Depending
on the shear strength of the actual soils, one of these cases can be selected to
compute the factor of safety.
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Fig. 7-35. Charts for total stress analysis of triangular fills on soil slopes
(Huang 1978b)

7.9 Friction Circle Method

It was shown in Fig. 1-3 that a circular failure surface with ¢ = 0 is statically
determinate, because the three forces due to weight, cohesion, and normal reac-
tion can be determined by considering both force and moment equilibrium. If
the soil in the slope has both cohesion and internal friction, the problem becomes
statically indeterminate and the friction circle method, originally proposed by
Taylor (1937), can be used. Although this method can be applied only to a homo-
geneous slope and is of limited utility, an understanding of the method will give
insight into the problems of slope stability.

Fig. 7-36 shows the forces in a stability analysis by the friction circle method.
A circular failure surface of radius R and a concentric circle of radius Rsin ¢, are
shown, where ¢, is the developed friction angle. Any line tangent to the inner
circle must intercept the failure circle at an obliquity ¢,. This inner circle is called
the friction circle. The forces considered in this analysis include the driving force,
D, which consists of weight, seismic force, and neutral force; the resultant force
owing to cohesion, T; and the resultant of normal and frictional forces along the
failure arc, P. The magnitude and the line of application of D are known. The
magnitude of T is cL./F, where L, is the chord length, and F is the unknown factor
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Fig. 7-36. Forces in friction circle method

of safety. As explained in Section 1.2.1, the line of application of T is parallel to
chord AB at a distance of RL,/L. from the center of circle, where L, is the arc
length. To satisfy moment equilibrium, the three forces, D, T, and P, must meet
at the same point. The problem now at hand is how to determine the direction
of P. Once the direction of P is known, a parallelogram can be drawn, and the
magnitude of T, as well as P, can be determined. The direction of P cannot be
determined from statics unless a distribution of the normal stress along the
failure arc is assumed.

One possible, although somewhat trivial, assumption is that all of the normal
stress is concentrated at a single point along the failure arc. In such a case, P is
tangent to the friction circle, and a lower bound of F is obtained. Another
assumption is that the normal stress is concentrated entirely at the two end
points of the failure arc. In this case, the resultant of these two end forces is
tangent to a circle slightly larger than the friction circle with a radius of KRsin ¢,,
where K is a coefficient greater than unity, and an upper bound of F is obtained.
Taylor (1937) computed the factor of safety by assuming the normal stress is
distributed uniformly or as a half sine curve. He found that the coefficient K
depends on the central angle, as shown in Fig. 7-37. Intuitively, the use of a half
sine curve with a maximum normal stress at center and zero stress at both ends
should provide a quite realistic value for the factor of safety. The direction of P
shown in Fig. 7-36 is based on the assumption that the forces are concentrated
at the two end points, so their resultant should pass through the intersection of
the two tangents to the friction circle.

Whitman and Moore (1963) applied different normal stress assumptions to
determine the factor of safety of the slope shown in Fig. 7-38 by the friction circle
method. By assuming that the soil has an effective cohesion of 90 psf (4.3kPa),
an effective friction angle of 32°, and a total unit weight of 125 pcf (19.7kN/m’),
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they found that the upper and lower bounds for the factor of safety are 1.60 and
1.27, respectively. Assuming that the normal effective stresses are distributed as
a half sine curve, the factor of safety is 1.34.

To use the method, a safety factor with respect to the friction angle, F,, is
assumed and the developed friction angle determined by

¢g =tan™! (taFﬂ) (7-19)

o

Based on the central angle, a friction circle with a radius of KRsin ¢, can be
constructed and the magnitude of T determined. The factor of safety with respect
to cohesion is

F = (7-20)
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As explained in Section 1.2.1, cL. is the resisting force due to cohesion along
the failure arc and T is the driving force along the failure arc to keep
equilibrium.

To determine the factor of safety with respect to shear strength, three friction
circles must be drawn to obtain three pairs of F, and F.. A graphical method then
can be used so that F, = F,, as illustrated by the following example.

Example 7.20 Fig. 7-39(a) shows a slope to be analyzed by the friction circle
method. The soil has a cohesion of 400 psf (19.2kPa), a friction angle of 20°, and
a total unit weight of 125pcf (19.7kN/m’). Assuming the normal stress as a half
sine distribution, determine the factor of safety.

(126, 134)

15.1°
"\ (1352, 100)
D .

E

A

W = 722,000 1b

o 130 A ]

F
(160,8)

W
Note: All dimensions and coordinates are in feet.

5,

(a) (b)

Fig. 7-39. Example 7.20

Solution First, determine the magnitude and line of application of weight, W.
From Fig. 7-39(a), the area of failure mass = OAF — OAC — OCD - BEF + DEF =
7(130.5)*/4 - 0.5% 34 x 126 —0.5%x34x 9.2 - 0.5x 92 x 140 + 0.5 x 92 x 24.8 = 13,376
— 2142 - 156 — 6440 + 1141 = 5779 f*. W =5,779 x 125 = 722,375 b.
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The center of gravity of area OAF is on the bisector of the central angle at a
distance of b from the center. From Eq. (1-10),

p=2s 130.5[sin(900) / (“ﬂ — 7833 ft
3 2 )/ 2

Take the moment at center M = 125 x [13,376 x 78.33 x sin29.9 — 2142 x 126/3
— 156 x(-9.3)/3 — 6440 x (126 — 113.3) + 1141 x (-9.2 — 2 x 24.8 /3)] = 125 x (522,286
— 89,964 + 484 — 81,788 — 29,362) = 40,207,000 ft-Ib. The distance from W to the
center of the circle is a = 40,207,000/722,375 = 55.7 ft.

The resultant force due to cohesion, T, is parallel to chord BF at a distance of
RL,/L. from the center. With L, = 2w x 130.5/4 = 204.99 ft (62.5m) and L. = [(160)* +
(100 — 8)*]°° = 184.56 ft (56.3m), d = 130.5 x 204.99/184.56 = 1449 ft.

The location of W and T is plotted in Fig. 7-39(a). The resultant of normal and
frictional forces, P, must pass through the intersection point of W and T and be
tangent to the friction circle.

By assuming F, of 1, 1.4, and 2, respectively, three friction circles can be
drawn. With a central angle of 90°, from Fig. 7-37, K = 1.062. The radii, R;, of the
friction circles are computed as follows:

When F; =1, from Eq. (7-19), ¢,= ¢ =20°, Ry=1.062 x 130.5 x (sin20°) = 47 .4 ft.

When F, =14, ¢; = tan"'(tan20°/1.4) = 14.6°, R, = 1.062 x 130.5 x (sin14.6°) =
34.9ft.

When F, = 2, ¢, = tan"'(tan20°/2) = 10.3°, Ry =1.062 x 130.5 x (sin10.3°) =
24.8 ft.

Next, draw the force diagram shown in Fig. 7-39(b). With the magnitude of W
known, draw P and T parallel to those in Fig. 7-39(a). The magnitudes of T for the
three values of F, can be scaled from the diagram and are noted in the figure. The
factors of safety with respect to cohesion, F., are computed as follows:

When F, =1, T1 = 51,0001b, from Eq. (7-20), F. = 400 x 184.56/51,000 = 1.45.
When F, = 1.4, T2 = 114,0001b, F. = 400 x 184.56/114,000 = 0.65.
When F, = 2, T2 = 164,0001b, F. = 400 x 184.56/164,000 = 0.45.

Finally, plot F, versus F,, as shown in Fig. 7-39(c), and draw a smooth curve
through the three points. The intersection of the 45° line with the curve gives
F=F,=F.=1.10.

7.10 Logarithmic-Spiral Method

In using the friction circle method or the method of slices, the distribution of
forces along the failure arc or on both sides of a slice must be assumed arbitrarily.
This difficulty can be overcome if a logarithmic spiral is used as a failure surface.
No matter what the magnitude of normal forces on the failure surface may be,
the property of the logarithmic spiral is such that the resultant of the normal and



212 Slope Stability Analysis by the Limit Equilibrium Method

. _ .. =Zatand
I _'10{:

[ = 1o e Otant

=T, eﬂtmld}

Normal (El) (b)

Resultant Force
Force

Force

Fig. 7-40. Characteristics of a logarithmic spiral

frictional forces always will pass through the origin of the spiral. Consequently,
when a moment is taken about the origin, the combined effect of normal and
frictional forces is nil, and only the weight and cohesion moments need to be
considered. This logarithmic-spiral method was first suggested by Taylor (1937)
for stability analysis.

7.10.1 Factor of Safety with Respect to Cohesion

Fig. 7-40(a) illustrates the construction of a logarithmic spiral. The equation of a
logarithmic spiral in polar coordinates can be expressed as

r = r,edtne (7-21)

in which r = radius from origin to logarithmic spiral, r, = initial radius, 6 = angle
between the initial radius and radius r, in radians, and ¢ = angle of internal fric-
tion of the soil. Starting from the center O, a number of radial lines can be drawn.
The first line has a length 7, and all the other lines, each making a different angle
0 with the first line, have a length computed by Eq. (7-21). The shape of the loga-
rithmic spiral is controlled by the friction angle, ¢. The larger the ¢, the more
weight is placed near the toe, and the smaller the overturning moment. The
figure is based on a ¢ of 20°. Note that a line normal to the logarithmic spiral
always makes an angle of 20° with the radial line. Any radial line can be assigned
as 1,, as shown in Fig. 7-40(b). Eq. (7-21) applies if 8 is measured clockwise, or
the length of the radial lines increases with the increase in 0. If 6 is measured
counterclockwise, or the length of the radial lines decreases with the increase in
0, 6 is considered negative, so a negative sign should be placed before 6 in
Eq. (7-21).

Fig. 7-41 shows a logarithmic spiral passing through the toe of a simple slope
with an angle, i, and a height, H. The origin, O, of the logarithmic spiral is located
by two arbitrary angles t and z, in which z is the angle between the initial radius,
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o~ LOG-SPIRAL
FAILURE SURFACE

Fig. 7-41. Logarithmic spiral passing through toe

gH, and the final radius, mgH. The following equations were presented by Taylor
(1937):

m= eztancb (7_22)
in which z = central angle in radians.

1

= 7-23
sint~1+ m? — 2mcosz (7-23)
j=t+sin™ Sz (7-24)
J1+m? —2mcosz
g=m—j—z (7-25)

in which t, z, j, and g are angles in radians or in degrees, whichever is more
convenient. If in degrees, the m in Eq. (7-25) should be changed to 180°. The
moment, M,, about the origin due to the weight of soil mass is

Mw = (7_26)

YH3g® [ m®sin j — sing — 3tan ¢ (m® cos j + cosq)
3 9tan®¢p+1

3
- %[;ﬁ sin® g(cot® g — cot? j) + cot® i — 3mg cos j(coti — cot j) — cot? j]

in which y = unit weight of soil. The moment, M., due to the cohesion along the
logarithmic spiral is

_«g’H?

<= wng (m> -1) (7-27)
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in which ¢, is the developed cohesion, or the cohesion actually developed over
the failure surface. Let M,, = M,, the developed cohesion, c,;, can be determined.
The factor of safety with respect to cohesion is

F=— (7-28)
Cq

Example 7.21 Egs. (7-23), (7-24), (7-26), and (7-27) were presented by Taylor
(1937). Prove that these equations are theoretically correct.

Solution Based on the law of cosine, or the well-known trigonometry formula
a*=b*+ ¢* — 2bc cos A, from AOAB in Fig. 7-42(a),

2
(it) =(gH)* + (mgH)* —2m(gH)’ cosz or
sin

=¢*(1+m* - 2mcosz)
(7-29)

sin?t

sog=
sintV1+m? - 2mcosz

Based on the law of sine, a/sin A = b/sin B, from AOAB in Fig. 7-42(a),

H

8 =sint sin(j—t)=gsinzsint or sin(j—t)= Sm2

J1+m? —2mcosz
sinz (7-30)

sin(j—t) sinz

so j=t+sin™

J1+m? —2mcosz

JgHsinqcotj
| gHcosq

|F /|G C

Fig. 7-42. Example 7.21
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To determine M,, Eq. (7-26) is divided into two parts. The first part is the
moment due to area OABC, as shown in Fig. 7-42(b), and the second part is the
moments due to several triangular areas, as shown in Fig. 7-42(c). The moment of
the failure mass is the difference between the two parts.

In the first part, area OABC is divided into two areas, OAB and OBC, by a
vertical line with a length ;. From Eq. (7-21), r, = gHe™?~ 7%, The moment due
to OBC causes the mass to overturn and is positive, whereas that due to OAB is
negative.

First, consider the moment due to the weight of area OBC. The hatched trian-
gle shown in Fig. 7-42(b) has an area of r’d0/2 and a moment arm of 27 sin6/3, so
the moment due to weight of area OBC can be obtained by integration:

r_ 3 T
Mogc = %J.OZ q7’3 sinBdd = W?IJOZ qe-39tan¢ sin 640

[ 3™ ean g—e
_18°H’ e3(2 q)t ¢e’3°‘a“¢(—3 tan ¢sin 0 — cos )
3 9tan® ¢+ 1
L 0
_18°H’ | -3tan¢cosq—sing+ es(i_q)tm
-3 9tan’ ¢+ 1

Next, consider the moment due to weight of area OAB:

T 3 m .
Mouy =% [ sind = L [27 ¢ sin ode

[ 52 an 2
_18°H’ 63(2 q)t ¢e3°ta““’(3tan¢sin9—cose)
3 9tan’ ¢ +1

L 0

v¢’H® | m*(3tan¢cosj—sinj)+ eS(E_thanq)

3 9tan? ¢ +1

H3¢® [ m®sinj —sing — 3 tan ¢ (m®> cos j + cos
MOABC = MOBC _MOAB = Y g |: ] q q)( ] Q)j|

3 9tan® ¢ +1

which checks with the first part of Eq. (7-26).
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In the second part of Eq. (7-26), the moments due to the weights of the trian-
gular areas are

: H
Morc + Mogr + Mapc — Mape = %[(gH sing)(gH cos Q)(g gosqj

+ (gH sing)(gH singcot j)

(— —gHsur;qcot]) + H(H cot i)(H;Otl - mchosj)

- H(Hcotj)(@ -mgH cosj)

3
= %[Qf singcos® g— g° sin® gcot® j + cot® i
— 3mg coticos j— cot® j+ 3mg cot jcos ]

3
= YIZ [¢® sin® g(cot® g — cot® j) + cot? i

— 3mg cos j(coti— cot j) — cot? j]

which checks with the second part of Eq. (7-26).

Eq. (7-27) is much easier to derive. The shear resistance along the failure sur-
face for a small incremental length rd6 is c¢,;7d6. The moment about the center is
ca°d0, where r = gHe**"®. The moment due to cohesion can be determined by
integration:

cag*H?

Mc 2_[0 Cd(gHeetanq))Zde — CngHZJ.O eZetantbde — Ztanq)

[ezetan¢ ]Z
0

_ Cdg2H2 (eZZtanq) _ 1) — Cdg2H2 (mz _1)
2tan¢ 2tan ¢

which checks with Eq. (7-27).

Taylor’s method assumes that the angle of internal friction, ¢, although fully
mobilized, is still not sufficient to resist the overturning moment, so part of the
shear resistance is carried by the cohesion. If the angle of internal friction of the
soil exceeds the angle of the slope, the developed cohesion, c;, becomes negative,
and a usable factor of safety cannot be obtained. Thus, the method is applicable
only to relatively steep slopes or to moderate slopes with weak soils.

Example 7.22 Fig. 7-43 shows a 1.5:1 slope. The soil in the slope has a cohesion
of 600psf (28.7kPa), a friction angle of 20°, and a total unit weight of 125pcf
(19.7kN/m’). A logarithmic spiral passing through the toe is defined by an angle,
t, of 29.9° and a central angle, z, of 90°, or /2. If the angle of internal friction is
developed fully, determine the factor of safety with respect to cohesion.
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92 ft

H=

Fig. 7-43. Example 7.22

Solution From Eq. (7-22), m = *™*"* =1.771 and m’ = 5.555. From Eq. (7-23),

1 1

g= = =0.987
sin 29.9°\/1 +(1.771)> =2x1.771x cos90°  0.498 x2.034

From Eq. (7-24), j = 29.9° + sin(sin90°/2.034) = 59.3°. From Eq. (7-25),
g =180°—-59.3° - 90° = 30.7°. From Eq. (7-26),
5.5555in 59.3° — sin 30.7°

_125(92)°(0.987)° | — 3tan 20°(5.555¢0859.3° + 08 30.7°)
- 3 9tan? 20°+ 1

Mw

3
1250271 0,987 sin® 30.7°(cot? 30.7° - cot? 59.3%) + cot? 33.7°

—3x1.771x0.987 c0s59.3°(cot 33.7° — cot 59.3°) — cot? 59.3°)]
=31,196,344 x (0.230) / 2.192 — 16,222, 667[0.128(2.836 — 0.353)
+2.248 - 2.677(1.499 — 0.594) — 0.353]
=3,273,339 + 3,404,505 = 6,677,844 ft-1b

From Eq. (7-27),

_Cy (0.987)2(92)*
2tan 20°

Let M, = M,, c, = 6,677,844/24,199 = 275psf, so the factor of safety = 600/275
=2.182.

[(1.771)? —1] = 24,199,

C
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Fig. 7-44. Logarithmic spiral passing below toe

The logarithmic spiral passing through the toe may not have the lowest factor
of safety. It is therefore necessary to examine a failure surface passing below the
toe, as shown in Fig. 7-44. It can be seen easily that the most dangerous situation
occurs when the origin of the logarithmic spiral lies vertically above the mid-
height of the slope, because the removal of area ABCD reduces the counterweight
and decreases the factor of safety. However, further removal of area CDEF
reduces the overturning moment and increases the factor of safety. From geom-
etry, the distance nH, from the failure surface to the toe, is

nH =mgH cosj— %coti (7-31)

The increase in overturning moment, M;, due to the removal of area
ABCD is

M, = %H(nH)2 = %H%mg cosj— %cot i) (7-32)

Let M, + M, = M,; the developed cohesion, c;, can be determined and the
factor of safety obtained.

Example 7.23 The logarithmic spiral in Example 7.22 passes through the toe and
is not the most critical, because its origin does not lie vertically above the mid-
height of the slope. Determine the most critical location of the logarithmic spiral
and the minimum factor of safety with respect to cohesion.

Solution The dashed line in Fig. 7-45 is the location of the original slope surface.
To obtain a lower factor of safety, the origin of the logarithmic spiral must move
outward toward the toe, or the slope surface moves inward a distance of nH.
From Eq. (7-31), nH =1.771 x 0.987 X 92 x c0s59.3° — 0.5 X 92 X cot33.7° = 13.1ft, so
the logarithmic spiral must move horizontally toward the toe a distance of 13.1 ft.
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j=359.3°

nH =131 ft

Fig. 7-45. Example 7.23

From Eq. (7-32), M, =0.5x125%92x(13.1)*> =986,758 ft-Ib. From Example
7.22, M,, = 6,677,844 ft-Ib and M, = 24,199¢,. Let M, + M., =M,, or 6,677,844 +
986,758 = 24,199c,, so c¢; = 7,664,602/24,199 = 316psf. The factor of safety =
600/316 = 1.899.

7.10.2 Factor of Safety with Respect to Shear Strength

The factor of safety determined by Taylor, as described, is that with respect to
cohesion, instead of that with respect to shear strength (i.e., both cohesion and
angle of internal friction). In view of the fact that the design and evaluation of
slopes by most engineering organizations are based on the factor of safety with
respect to shear strength, a modification of Taylor’s method is needed. Further-
more, modern construction usually requires greater safety with the angle of slope
generally smaller than the angle of internal friction of the soil, thus making
Taylor’s method inapplicable. This problem can be overcome if a factor of safety
greater than 1 is applied to both cohesion and internal friction.

To determine the factor of safety with respect to strength, all the equations
derived by Taylor are still valid, except that any terms involving tan¢$ must be
divided by F and the term ¢, in Eq. (7-27) must be replaced by c/F. Thus, Egs.
(7-22), (7-26), and (7-27) become

()
m=e* F (7-33)
HC o3 m3sinj—sinq—m(m3cosj+cosq)
M, =18 £ 7-34
¢ 3 9tan’ ¢ (7-34)

+1

PZ
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2 HZ

L= (2 1) (7-35)

2tan¢

Similar to the previous procedure, by letting M, + M;, = M., the factor of
safety, F, can be determined by trial and error using a spreadsheet.

Example 7.24 Same as Example 7.23, but determine the factor of safety with re-
spect to shear strength.

Solution Table 7-1 is the spreadsheet for computing the factor of safety by trial
and error. The first two rows are the input parameters. The variables to be evalu-
ated are listed in the first column, and the equations to be used are listed in the
last column. Several factors of safety were assumed. The purpose herein is to find
a factor of safety that gives the value of M,, + M;, — M, as close to 0 as possible. It
was found that when F = 1.303, Value = —12,766; when F = 1.304, Value = 16,382.
Because —12,766 is closer to 0 than is 16,382, the factor of safety is 1.303.

Table 7-1. Spreadsheet for Analyzing Logarithmic-Spiral Failure Surface

cin psf =750 tan¢ = 0.364 vin pcf =125 Hin ft=92
tin rad = 0.522 zinrad =1.571 iin rad =0.588
Assumed F 1.200 1.300 1.302 1.303 1.304
m 1.610 1.553 1.551 1.551 1.550 Eq.7-22
g 1.058 1.086 1.086 1.087 1.087 Eq.7-23
j 1.078 1.094 1.094 1.095 1.095 Eq.7-24
q 0.493 0.476 0.476 0.476 0.476 Eq.7-25
M, 12,210,214 14,374,447 14,414,633 14,434,684 14,454,706 Eq.7-26
M. 15,550,916 14,501,651 14,482,003 14,472,197 14,462,403 Eq.7-27
M, 155,734 26,808 25,424 24,747 24,080 Eq.7-32
Value=M,, +M, -M. -3,184,968 -100,396 —41,946 -12,766 16,382

F=1.303

Huang and Avery (1976) developed a computer program using a logarithmic
spiral to determine the factor of safety of homogeneous slopes. Let M,, + M/, = M,,
anda quadratic equation in the following general form is obtained:

AF*+BF+C=0 (7-36)

in which the coefficients, A, B, and C, are functions of not only vy, H, ¢, ¢, t, and
z but also of F itself. Eq. (7-36) can be solved by an iterative method. First, a value
of F was assumed and a new F was computed by

F= /M (7-37)
A
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By using the new F as the assumed F, another new F was obtained. The
process was repeated until the difference between the new F and the assumed F
became negligible.

The program consists of three do loops: one for angle ¢, one for angle z, and
another for F. Angle t starts from large to small at a specified interval, with the
first angle slightly smaller than the angle of the slope. After a starting angle, z,
and a specified interval are assigned, the factor of safety for the starting z and
the next decreasing z will be computed. If the latter is smaller than the former,
the factor of safety for each successive decreasing z will be determined until a
lowest value is obtained. If greater, the movement will be in the opposite direc-
tion until a lowest factor of safety is found. Using the t and z with the lowest
factor of safety as a new starting angle and an interval one-fourth of the original,
the process is repeated until a new lowest factor of safety is obtained.

The result of the study by Huang and Avery shows that the factor of safety
for a simple slope can be determined effectively by the logarithmic-spiral method.
The disadvantage of this method lies in the requirement that the angle of internal
friction of the soils be constant throughout the slope. However, the simple fact
that the method satisfies moment equilibrium with no further assumptions other
than the logarithmic-spiral failure surfaces makes possible the use of the method
as a yardstick to check the accuracy of the other methods.

Summary

1. Given the slope angle, B, and the depth ratio, D, Taylor’s chart for homo-
geneous slope with ¢ = 0 can be used to find the stability number, ¢,/ YH.
By dividing the allowable cohesion, ¢, with the developed cohesion, c,,
the factor of safety can be found. The chart also identifies three types of
failure circles: midpoint circle, toe circle, and slope circle. For a midpoint
circle, the chart can give the distance, nH, from the toe to the point where
the failure circle appears on the ground surface. If loads are placed adja-
cent to the toe to prevent failure by the midpoint circle, the failure surface
will be changed to a toe circle and a reduced stability number can be read
from the chart.

2. Similar to the case of ¢ =0, Taylor’s chart for homogeneous slopes with
both c and ¢ also identifies three types of failure circles. Given a devel-
oped friction angle, ¢,, a corresponding stability number, ¢,/yH, can be
read from the chart. By assuming that the friction angle be fully devel-
oped, or ¢, = ¢, the developed cohesion, ¢;, can be found, and the factor of
safety with respect to cohesion, F,, can be computed by c¢/c;. By assuming
that the cohesion is developed fully, or ¢, = c, the developed friction angle,
¢4 can be found, and the factor of safety with respect to friction angle, F,,
can be determined by tan ¢/tan ¢,. To determine the factor of safety with
respect to shear strength, a trial-and-error or graphical procedure can
be used.
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3. Charts based on the Fellenius or normal method are presented to deter-
mine the factor of safety of triangular fills on rock or stiff slopes. The rock
surface or natural ground is assumed to be much stiffer than the fill, so all
circular failure surfaces will lie entirely within the fill. Based on the di-
mensions of the fill, a cohesion number, N, and a friction number, N;, can
be found from the charts, and the factor of safety can be computed. Be-
cause the most critical circle used for developing these charts is based on
¢ = 0, the charts give an accurate factor of safety for total stress analysis
with ¢ = 0 but may result in a factor of safety that is too high for effective
stress analysis with both ¢’ and ¢'. To obtain more accurate results, a cor-
rection factor must be applied.

4. Similar charts are presented for trapezoidal fills on rock or stiff ground
surfaces. The charts give an accurate factor of safety for total stress analy-
sis with ¢ = 0 but a slightly larger factor of safety for effective stress analy-
sis with both ¢’ and ¢'. A factor of safety slightly higher than that by the
normal method is desirable, because it checks more closely with the
well-recognized simplified Bishop method. To obtain more accurate re-
sults, a trial-and-error process must be used to locate the minimum factor
of safety.

5. Four sets of charts are presented for the effective stress analysis of homo-
geneous dams. The charts by Bishop and Morgenstern (1960) can be used
for dams with D =0, 0.25, and 0.5, where D is the depth ratio or the depth
to bedrock divided by the height of the dam. By comparing the factors of
safety with different depth ratios, the minimum factor of safety can be
determined. The charts by Huang (1975) supplement Bishop’s and
Morgenstern’s by adding a case of D = o, s0 if D is greater than 0.25 or 0.5,
the minimum factor of safety can be determined right away and no com-
parison of different depth ratios is needed. The charts by Spencer (1967)
also assume D = oo and can be used to determine the slope angle, B, if the
factor of safety is given. This feature is different from all the other charts
where the slope angle is given and the factor of safety is to be found. The
charts by Morgenstern (1963) are different from the others, because they
can be used only to determine the factor of safety due to rapid draw-
down. Although all these charts can be used for full drawdown by as-
suming a pore pressure ratio of 0.5, Morgenstern’s charts are the only
ones suitable for analyzing the case of partial drawdown. In spite of the
difference in the assumed location of the ledge (some at or near to the bot-
tom of the dam and some at a great depth), Example 7.15 clearly shows
that they all yield about the same factor of safety. In view of the prelimi-
nary nature of the charts, the difficulty in reading them accurately, and
the insensitivity of the safety factor to the location of the ledge, it appears
reasonable to assume that the ledge is located at a great depth, such as in
the charts by Spencer and Huang, so a lowest and most conservative fac-
tor of safety can be obtained.
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A new method is presented for determining the factor of safety of earth
dams with two sets of soil parameters, one for the foundation and one for
the embankment. Based on the normal method, the factor of safety can be
expressed by Eq. (7-12), which contains two cohesion numbers, N,; and
N, and two friction numbers, N and Np. Note that subscripts 1 and 2
refer to the foundation and the embankment, respectively. Charts for de-
termining these numbers in terms of slope, S, and depth ratio, D, are pre-
sented in Fig. 7-31. Similar to the use of Bishop’s and Morgenstern’s
charts, the factors of safety at several depth ratios must be computed to
determine which is minimum. This new method is different from the
previous method in determining the location of the most critical circle.
The new method assumes that the soils have an effective cohesion
cf =c; =200 psf (9.6 kPa) and an effective friction angle ¢7=¢;=30°,
whereas the previous method assumes ¢7 = 07 = 0. As a result, these new
charts are more accurate for effective stress analysis with a small cohesion
and large friction angle, and the previous charts are more accurate for
total stress analysis with a large cohesion and a small friction angle.

For the total stress analysis of earth dams with ¢ =0, the charts developed
by Huang (1975) can be used. Given the slope, S, and the depth ratio, D,
the cohesion number, N,, which is the reciprocal of the stability number
by Taylor’s chart, can be found from the charts. The charts are different
from Taylor’s in that the cohesion numbers for various circles with cent-
ers at different coordinates (XH, YH) are shown, whereas Taylor’s only
shows the stability number for the most critical circle. Knowing the loca-
tion of the circle, it is possible to apply the charts to nonhomogeneous
dams consisting of several different soil layers. For a given circle, N. can
be found from Fig. 7-32, and the average cohesion, ¢, can be determined
by measuring the length of the arc through each layer and finding the
weighted average, so the factor of safety can be computed by Eq. (7-14).
Theoretically, several circles, each with a center at a different YH, should
be tried to determine which is most critical. Fortunately, the most critical
circle for a nonhomogeneous dam is usually the same as that for a homo-
geneous dam, so only one or two circles need to be tried to determine
which is most critical.

Charts are presented for the total stress analysis of sidehill benches with
the soil in the bench being different from the soil in the natural ground.
By assuming the natural ground as horizontal, the charts also can be used
for the total stress analysis of earth dams and embankments.

The friction circle method is basically a graphical method for determining
the safety factor of a homogeneous slope with both a cohesion and a fric-
tion angle. To make the problem statically determinate, an assumption of
a normal stress distribution along the failure arc must be made. The most
reasonable assumption is that the normal stress is distributed as a half
sine curve with its maximum at the center and zero at both ends. Given
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10.

the developed friction angle, ¢,, the developed cohesion, c;, can be deter-
mined. To determine the factor of safety with respect to shear strength,
three different friction circles, each with a different ¢,, must be construct-
ed, and the corresponding c, is determined. The method is cumbersome
to use and is of little utility. However, this method is of historical signifi-
cance, because it was the earliest method suggested by Taylor (1937) in
developing the stability charts presented in Figs. 7-1 and 7-3.

Similar to the friction circle method, the logarithmic-spiral method can be
used to determine the safety factor of a homogeneous slope with both a
cohesion and an angle of internal friction. However, the method is alge-
braic and can be programmed for a computer. The equations used in the
method are derived, and the procedures to obtain the factor of safety are
illustrated. Although the method is of limited applications and only can
be applied to a simple embankment composed of one soil and not subject-
ed to any pore pressure, the simple fact that it satisfies moment equilibri-
um with no further assumptions other than the logarithmic-spiral failure
surfaces makes it possible to use this method as a yardstick to check the
accuracy of the other methods.

Problems

7.1

7.2

An embankment with a height of 50 ft and a slope of 2:1 is placed on a 40-
ft soil foundation underlain by rock, as shown in Fig. P7-1. If the embank-
ment and the foundation consist of the same soil with a total unit weight
of 125 pcf and the embankment fails immediately after construction, what
should be the undrained shear strength of the soil? Where should the
failure surface appear at the ground, as indicated by the distance, x, from
the toe?

[Answer: 1,038 psf, 45 ft]

! 50 ft
— |
¥

/ Location of failure surface  4q g

}

PSS
Fig. P7-1.

The cross section is the same as that shown in Fig. P7-1. If the soil has a
cohesion of 500psf, a friction angle of 20°, and a total unit weight of
125 pcf, determine the factor of safety with respect to shear strength using
Fig. 7-3.

[Answer: 1.62]
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Same as Problem 7.2, but determine the factor of safety using Fig. 7-5.
[Answer: 1.62]

Fig. P7-4 shows the dimensions of an embankment on a horizontal ledge.
If the soil in the embankment has an undrained shear strength of 1,800 psf
and a total unit weight of 120 pcf, determine the factor of safety using Fig.
7-7 and compare it with that by Fig. 7-1.

[Answer: 1.42, 1.40]

I
80 ft

30° 1

Fig. P7-4.

Fig. P7-5 shows the dimensions of a trapezoidal fill on rock. If the fill has
an undrained shear strength of 1,800 psf and a total unit weight of 120 pcf,
determine the factor of safety.

[Answer: 2.10]

The cross section of the fill is shown in Fig. P7-4. If the soil has a cohesion
of 800 psf, a friction angle of 25°, and a total unit weight of 120 pcf, deter-
mine the factor of safety by Figs. 7-7, 7-8, and 7-9.

[Answer: 1.73]

The cross section of a trapezoidal fill is shown in Fig. P7-5. If the soil has
a cohesion of 800psf, a friction angle of 25°, and a total unit weight of
120 pcf, determine the factor of safety by Figs. 7-13 and 7-14 using several
combinations of B and o

[Answer: 1.90]
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7.8

7.9

7.10

Fig. P7-8 shows the dimensions of an embankment placed directly on a
ledge and the soil parameters for stability analysis. Determine the factor
of safety using Fig. 7-31.

[Answer: 1.51]

=025

¢' = 250 psf
80 ft § =320
l Y =130 pcf
TS
Fig. P7-8.

Fig. P7-9 shows the cross section of an earth dam placed directly on a soil
foundation underlain by rock. The dam and foundation are formed by
the same material with the soil parameters shown in the figure. Deter-
mine the factor of safety using (a) Fig. 7-18, (b) Fig. 7-25, and (c) Fig. 7-26.
[Answer: 1.22,1.23, 1.21]

} J ra=0.26
1208 c' =400 psf
| ¢ =20°

t
GOft 7 =130 pef
1

Fig. P7-9.

Fig. P7-10 shows the cross section of an earth dam and the soil parame-
ters. The original pool elevation was at the top of the dam and was rap-
idly lowered 30ft. Determine the factor of safety immediately after the
drawdown.

[Answer: 1.30]

Qriginal pool level

3
T Drawdown 30 ft 1 ¢' =100 psf
50ft gy ¢ =32°
| - = 7 =130 pef
Frae s T

Fig. P7-10.
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7.12

7.13

Stability Charts and Other Solutions 227

Fig. P7-11 shows the cross section of an embankment on a soil foundation.
The shear strength and pore pressure ratio of the embankment are differ-
ent from those of the foundation soil, as indicated in the figure. Deter-
mine the factor of safety using Fig. 7-31.

[Answer: 1.11]

2 b
100 ft 1 b e
¢ =32°
T =128 pef
40f| 44=03 ¢4 =200psf ¢; =25°7 =128 pef
PTE
Fig. P7-11.

Fig. P7-12 shows the cross section of an earth dam and the soil parameters
for total stress analysis. Determine the factor of safety using (a) Fig. 7-31,
(b) Fig. 7-32, and (c) Fig. 7-35. Comment on the accuracy of each chart by
pointing out which is most accurate and which is least accurate. Why?
[Answer: 1.80, 1.76, 1.72]

2
50 ft /1L7§= 2500 psf Y= 125 pef

30ft) c1= 1500 psf 7 =125 pef
- i ey

Fig. P7-12.

Fig. P7-13 shows the dimensions of a slope and the location of the circular
failure surface. If the soil has a cohesion of 1,000 psf, a friction angle of
15°, and a total unit weight of 125 pcf, determine the factor of safety with
respect to shear strength by the friction circle method.

[Answer: 1.37]

(50,200)

Fig. P7-13.



228 Slope Stability Analysis by the Limit Equilibrium Method

7.14  Fig. P7-14 shows the dimensions of a slope, the location of the logarithmic
spiral, and the shear strength parameters of the soil. Determine the factor
of safety with respect to cohesion.

[Answer: 29.237]

Fig. P7-14.

715  Thelogarithmic spiral is the same as Problem 7.14, but the origin is moved
forward above the midpoint of the slope, as shown in Fig. P7-15. Deter-
mine the factor of safety with respect to cohesion.

[Answer: 3.003]

Origin of log spiral

Mid point

Fig. P7-15.

7.16  Same as Problem 7.15, but determine the factor of safety with respect to
shear strength.

[Answer: 1.434]



Chapter 8

Method of Slices

The method of slices is a very powerful tool that can be used to analyze slopes
of any configuration consisting of different soils and groundwater conditions.
The problem is statically indeterminate and, to solve it statically, some simplify-
ing assumptions must be made. In this chapter, four different limit equilibrium
methods will be discussed: normal, simplified Bishop, original Spencer, and
Spencer. All of these methods are incorporated in the LEAME computer software
described in the companion volume to this book. The simplified Bishop method
can be used for circular failure surfaces, and the Spencer method is recom-
mended for noncircular and composite failure surfaces. The original Spencer
method can be used as a check by simply changing an input parameter. The
important equations used in LEAME will be derived, and some special tech-
niques to solve these equations also will be discussed. The use of spreadsheets
to compute the factors of safety will be demonstrated.

8.1 Overall Moment Equilibrium

Because the equations of overall moment equilibrium are used in the first three
methods (normal, simplified Bishop, and original Spencer), they will be derived
in this section before each method is discussed. Furthermore, an analysis of
overall moment equilibrium will display all the external forces involved.

229
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Fig. 8-1 shows the cross section of a circular failure surface. The failure mass
is divided into a number of slices, one of which is designated as slice i. This slice
has a width, b, a total weight, W, and an angle, 6;, at the bottom. The slice is
subjected to a horizontal seismic force, C;WW, at the midheight of the slice, a
normal force due to water pressure, U,, on the failure surface, and a line load, L,
on the surface of the slope. Note that C; is the seismic coefficient and that slice i
is only one of the many slices in a given slope. By changing the subscript i, these
forces and weights can be applied to other slices as well. Because the failure
surface cuts through bodies of water on both sides of the slope, a horizontal force,
Py, due to water pressure is applied on the left side and P, on the right side. The
moment arms from the center to each of the forces are shown in the figure.

According to Mohr-Coulomb theory, the shear strength, s, of a soil can be
expressed as

s=c"+(c, —u)tano’ (8-1)

in which ¢’ = effective cohesion, ¢, = total normal stress on the failure surface, u
= pore water pressure on the failure surface, and ¢’ = effective angle of internal
friction. After reducing the shear strength by a factor of safety and multiplying
by the area of the failure surface, the shear force, T, at the bottom of slice i can
be written as

_ c/b;sec; + N tan ¢;

T
F

(8-2)

U; = Il‘viywbise(‘ei (by Fellenius method)  }

Ui = Dy, b;€056; (ynormalmethod) Ui

Fig. 8-1. External forces on a slope with a circular failure surface
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in which N7 is the effective force normal to the failure surface. The force normal
to the failure surface due to pore water pressure is U; and can be computed by

U; = u;b; sec®; (8-3)

The pore water pressure, u;, at the bottom of slice i can be determined from
the location of the phreatic surface. By drawing a vertical line through the middle
of the slice, the height of the phreatic surface above the bottom of slice, h,,, can
be determined and the pore water pressure computed by

Ui = YZUhIUi (8_4)

in which v, = unit weight of water. In the normal method, sec9; in Eq. (8-3) must
be changed to cos®; to avoid the possibility of negative N/, as discussed in
Section 2.4.1.

If a pore pressure ratio, r,, is specified,

u, = T’u'yhl‘ (8-5)

in which y = average unit weight of slice and h; = height of the slice. If, in addi-
tion to the phreatic surface, an excess pore pressure is generated during construc-
tion by the weight of new fill only, then £, in Eq. (8-5) should be the height of the
slice in the new fill rather than the total height of the slice. The sum of N; and
U; is the total force normal to the failure surface.

Referring to Fig. 8-1 for a circular failure surface and summing the moments
about point O for all slices results in the following equilibrium equation:

ibi sec®; + N{tan ¢/
S RW;sing, - RY "2 ; MO S WA+ Ly — Py + Pk, =0
(8-6)

in which R = radius of the circle. Because the normal forces, N/ and U, pass
through the moment center, they do not contribute to the overall moment. Also,
the forces on both sides of each slice are internal forces and do not enter into the
equation, because whenever there is a force on one slice, there is an equal but
opposite force on the adjoining slice, thus neutralizing their effect. A rearrange-
ment of terms in Eq. (8-6) yields

r Rz (c/b; secH; + N/ tan ¢7)
Y RWsin®; +C, Y Wik + 3, Liky; — PAy + Py,

(87)

With the exception of the effective normal force, N/, all terms in Eq. (8-7)
are either given or can be calculated from geometry. Because N/ depends on the
forces between two slices and is statically indeterminate, some simplifying
assumptions must be made to solve N/. For example, the Fellenius or normal
method assumes that there is no force between two slices, so N/ can be deter-
mined simply by considering the equilibrium of all forces in the normal or N/
direction. The simplified Bishop method assumes that the force between two
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slices is horizontal, so N/ can be determined directly by considering the equi-
librium of all forces in the vertical direction. The original Spencer method
assumes that all the interslice forces make an angle § with the horizontal, so N/
can be determined by summing all forces in a direction perpendicular to 8. Eq.
(8-7) can be used in the normal, simplified Bishop, and original Spencer methods
to determine the factor of safety for circular failure surfaces.

For noncircular failure surfaces, an arbitrary point, O, must be selected as a
moment center, as shown in Fig. 8-2. Since there is no fixed radius, R, and the
normal forces, N/ and U,;, may not pass through the moment center, R must be
replaced by Ay, and a term (N7+U;)Ay; must be added to the overturning
moment. Thus, Eq. (8-7) should be modified as

P ZKT,»(c{b,- secO; + N/tan ¢;)
Y Wikii +Co Y Wik + 3, Lk = PAy + Pohg — 3 (N7 + U A

(8-8)

For composite failure surfaces, Eq. (8-7) applies to the circular part and Eq.
(8-8) to the noncircular part.

To ensure that the arbitrary selection of a moment center has no effect on the
factor of safety, one basic requirement is that the overall force equilibrium must
be satisfied in two perpendicular directions. The normal method considers the
force equilibrium of each slice in a direction normal to the failure surface, but
the direction changes from slice to slice, so there is not a single direction in which
the force equilibrium is satisfied. The simplified Bishop method considers the
force equilibrium of each slice in the vertical direction. If the force equilibrium
in the vertical direction is satisfied for each slice, the overall force equilibrium in

" cib;sec; +N'itand;
0; F

Fig. 8-2. Moments due to normal and shear forces on a noncircular failure surface
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the vertical direction is satisfied automatically. Because the horizontal force equi-
librium is not satisfied for each slice, two moment centers with different y coor-
dinates may yield two different factors of safety, although the factor of safety is
not affected by the difference in x coordinates. Therefore, neither the normal nor
the simplified Bishop methods is suitable for analyzing noncircular and compos-
ite failure surfaces, and the use of Spencer’s method, which satisfied all equa-
tions of equilibrium, is recommended.

8.2 Normal Method

The normal method (Bailey and Christian 1969), designated as method 1, is
similar to the well-known Fellenius method in which the forces between two
slices are assumed to be zero. Fig. 8-3 shows one of the slices for a noncircular
failure surface. Theoretically, many of the variables should have a subscript i.
For simplicity, the subscript purposely is omitted hereafter for all the equations
that follow. The case of a noncircular failure surface is illustrated, because it is
more complex than a circular failure surface. By assuming Ay =0 and Ar =R, the
equations derived from the noncircular failure surface can be applied to a circular
surface as well.
Summing the forces in a direction normal to the failure surface,

N’ =W’cos®—-C,Wsin0+ Lsinocos0 — Lcososin 6 (8-9)

il

Fig. 8-3. Forces on a slice based on the normal method

U = ubcos@
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in which o = angle of inclination of the line load, L, and W' = submerged weight,
or

W’ =W —ub (8-10)

If N/ obtained from Eq. (8-9) is negative, the frictional resistance no longer
exists, and tan ¢’ in Eq. (8-7) or (8-8) should be assigned 0. Knowing N/, Eq. (8-7)
can be used to determine the factor of safety for circular failure surfaces and Eq.
(8-8) for noncircular failure surfaces. In Eq. (8-8), WA, = ArWisin8; + AyW,cos 6;
and N/+U; =W, cosb;, so Eq. (8-8) is exactly the same as Eq. (8-7). Therefore, for
the normal method, Eq. (8-7) also can be applied to noncircular failure surfaces
by simply replacing R by Ar;.

To obtain a unique factor of safety, the total number of equations must be
equal to the total number of unknowns. With a total of # slices, the number of
equations and unknowns are tabulated as follows:

Egs. Unknowns
Description No. Description No.
Y forces normal to failure surface =0 n Effective normal forces, N’ n
Overall moment equilibrium 1 Factor of safety, F 1
Total n+1 Total n+1

The application of the normal method is quite straightforward. First, deter-
mine N’ by Eq. (8-9) and then compute F by Eq. (8-7) or (8-8). Every term in the
equations is given or can be computed from geometry, and no iterations are
needed. No matter what method is specified, LEAME always uses the normal
method to determine the initial factor of safety for the first iteration.

Example 8.1 Fig. 8-4 shows the dimensions of a slope with a circular failure sur-
face. The failure mass is divided into five slices of equal width. The centerlines of
slices are shown in dashed lines with the coordinates (x,, y,,) in parentheses at the
lower end points. The soil has a cohesion, ¢, of 500 psf (23.9kPa), a friction angle,
o, of 18°, and a total unit weight, vy, of 125 pcf (19.7kN/m?). Determine the factor
of safety by the normal method, or method 1.

Solution The solution is presented in Table 8-1. Each column is explained here:

1. To simplify the calculations, especially later by the more complex meth-
ods, only five slices are used. The same problem was solved by LEAME
using both five and 10 slices. The factor of safety with five slices is 1.617,
which is not too much different from the 1.630 by 10 slices.

2. Each slice has a width, b, of 40 ft. This does not occur in real cases because,
to obtain more accurate results, a slice must be subdivided at each break
point on the slope surface. This example is so designed that the break
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(X5 o) )
Note: All coordinates are in feet.
The coordinates at the bottom
of each slice are the midpoint
coordinates (X, ¥n).
Xo=51ft R
R
Vo=193.4 fi
R =200 ft
(120,60) (200,60)
i ©
: $
| ,_\ =3
(0,0); ' 9 <
g% = %
g & g °
< D, =
Fig. 8-4. Example 8.1
Table 8-1. Analysis of Circular Failure Surface by Normal Method
Slice Widthb  Heighth  Weight W  Angle®  Driving M, Resisting M,
No. ft ft 1b deg ft-1b ft-1b ft-1b
@ (2) 3) @) (5) (6) 7)
1 40 14.2 71,000 -8.9 -2,196,887 8,607,000
2 40 36.4 182,000 2.6 1,651,213 15,819,000
3 40 50.5 252,500 14.2 12,388,023 20,033,200
4 40 45.7 228,500 26.4 20,319,828 17,766,000
5 40 19.4 97,000 40.2 12,521,879 10,051,500
Sum 44,684,056 72,276,700

point (120, 60) is located exactly on the boundary between two slices, so
no subdivision of the slice is needed.

3. The height, h, of each slice is the length of the dashed line, or the differ-
ence in the y coordinates between the two end points. With an outslope of
2:1, the y coordinates at the upper end point is y = 0.5x and those at the
lower end point are shown in the figure.

4. The weight, W, of each slice is equal to bhy.

5. The angle, 6, at the bottom of each slice can be determined from geome-
try. It can be proved easily that 6 = tan ™" [(x,, — X,)/ (Yo — Yu)-
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6. The driving moment, M, = RWsin6. The values of W, 6, and M, listed in
columns 4 to 6 can be used later in other examples.
7. The resisting moment, M,, is computed by M, = R(cb sec® + Wcos 0 tan¢)

The factor of safety by the normal method is F = 72,276,700/44,684,056 =
1.618, which checks with the 1.617 obtained by LEAME.

The next example involves the use of the normal method to determine the
factor of safety for a noncircular failure surface. Although the normal method is
not applicable to noncircular failure surfaces, some of the information provided
by the example can be used later in other examples where more refined methods
are involved.

Example 8.2 Fig. 8-5 shows the dimensions of a slope with a noncircular failure
surface. Similar to Example 8.1, the failure mass is divided into five slices, as
shown by the solid lines. The centerline of each slice is shown in dashed lines
with the coordinates (x,, y,,) at the lower end points. The soil parameters are the
same as Example 8.1. Determine the factor of safety by the normal method, or
method 1.

(X1 Yo Xo=30ft (120,60) (200.60)
Vo=065 fi T v
Moment '
o 2\ 180.40)

Fig. 8-5. Example 8.2

Solution The differences between noncircular and circular failure surfaces are
that the normal force, N, on the noncircular surface does not pass through the
moment center and that the moment arm for the shear force, T, is not a constant.
If a moment center is selected arbitrarily at (30, 65), it is necessary to compute
the moment arms Ay and Ar by determining the point of intersection of two per-
pendicular lines, one passing through (x,, y,,) with a slope of tan 8, and the other
passing through (x,, y,) with a slope of —1/tan 8. The general equation for a line
with a slope of tan 0 is

y—xtan@=c (8-11)

If the line passes through point (x,, v,,), the constant, ¢, can be obtained by
substituting x = x,, and y = y,, into Eq. (8-11), or

y—xtan®=y, —x, tan® (8-12)
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Similarly, the equation for a line passing through (x,, y,) with a slope of -1/
tan® is

+ =y, +—2 8-13
Y tan®© 4 tan® ( )
X, — X
T =1, —+ o 8'14
or Y=Y+ o (8-14)
Substituting Eq. (8-14) into Eq. (8-12),
xO
Yo —Ym + Xy tanO+
x= tan® (8-15)
tan®+
tan

Given the value of x, y can be obtained by substituting x into Eq. (8-14).
Knowing the point of intersection (x, y), Ay and Ar can be computed by

N = (X = X) + (Y = Y ) (8-16)
where Ay is positive if x < x,, and negative if x > x,,.
Ar = (x—x, P +(y—1,) (8-17)

The solution is presented in Table 8-2.

The factor of safety is F = 23,556,000/13,919,692 = 1.692, which checks with
the 1.686 obtained by LEAME. Note that column 6 is computed by Eq. (8-15),
column 7 by Eq. (8-14), column 8 by Eq. (8-16), and column 9 by Eq. (8-17); and
that the column 10 overturning moment M, = W(x,, — x,) — AyWcos6, and the
column 11 resisting moment M, = Ar(cbsec® + Wcos 0 tan ).

Table 8-2. Analysis of Noncircular Failure Surface by Normal Method

Slice b h w 0 x y A Ar M, M,

No. ft ft Ib deg ft ft ft ft ft-1b ft-1b

@m @ @ 4) (5) (6) () (8) 9 (10) (Vh W)
1 40 8.0 40,000 57 36.14 3.60 -16.22 61.71 245,592 2,037,100
2 40 24.0 120,000 57 36.14 3.60 2398 61.71 728,100 3,638,000
3 40 40.0 200,000 57 36.14 3.60 64.18 61.71 1,227,500 5,238,900
4 40 44.0 220,000 113 4364 -3.26 98.27  69.61 2,999,700 6,299,100
5 40 20.0 100,000 45.0 117.50 -22.50 88.39 123.74 8,718,800 6,342,900
Sum 13,919,692 23,556,000
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In the example, it is really not necessary to compute Ay because W can be
resolved at (x,, y,) into Wsin® and Wcos6. Because W(x, — x,) = ArWsin6 +
AvWcos 6, a simpler equation M, = A:Wsin® may be used. However, this is not
true if there are seismic or other forces or if the simplified Bishop or the original
Spencer method is employed. The values of Ay and Ar listed in the table can be
used later in Example 8.4.

8.3 Simplified Bishop Method

The simplified Bishop method (Bishop 1955), designated as method 2, is the most
widely used method recognized by the engineering profession. It is recom-
mended for use with circular failure surfaces and should yield a factor of safety
very close to the more refined methods. By assuming the forces between two
slices as horizontal and considering the vertical equilibrium of each slice, the
effective normal force, N, can be determined even without knowing the magni-
tude of the horizontal forces on both sides of the slice.

Fig. 8-6 shows one of the slices to be analyzed by the simplified Bishop
method. Based on the equilibrium of all forces in the vertical direction,

c’bsecO+ N’tan¢’
F

W— sin®+ Lsinot— N"cos®—ub=0 (8-18)

_ F(W’+Lsino)-c’btan®
Fcos6 +sinBtan ¢’

or N’

(8-19)

0

o (xo-yo) r
i
1
I

Fig. 8-6. Forces on a slice based on the simplified Bishop method
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in which W' = W — ub. Knowing N’, the factor of safety can be determined from
Eq. (8-7) for circular failure surfaces and from Eq. (8-8) for noncircular failure
surfaces. If N’ is negative, tan ¢’ in Egs. (8-7), (8-8), and (8-19) should be changed
to 0. The number of equations and unknowns are tabulated as follows:

EQS. UNKNOWNS

Description No. Description No.
2 forces in vertical direction =0 n Effective normal forces, N’ n
Overall moment equilibrium 1 Factor of safety, F 1
Total n+1 Total n+1

It can be seen from Eq. (8-7) or (8-8) and (8-19) that F depends on N’, whereas
N’ depends on F. Thus, an iteration method must be used to solve F. First, N' is
computed by Eq. (8-19), using the factor of safety determined by the normal
method as the first trial. Based on the N’ thus determined, a new F is computed
by Eq. (8-7) or (8-8). The process is repeated until the difference between the
assumed F and the new F is reduced to a specified tolerance. By using Newton's
method of tangent, as described in Section 8.6.1, the factor of safety converges
very rapidly, usually within two or three iterations.

Example 8.3 Based on the information provided by Example 8.1, determine the
factor of safety by the simplified Bishop method, or method 2.

Solution The simplified Bishop method requires iterations and is much easier to
solve by a spreadsheet, such as that in Table 8-3.

Items W, 6, and the driving moment, which are needed to compute the factor
of safety, F, by the simplified Bishop method, are provided in Example 8.1. The
normal force, N, is obtained from Eq. (8-19) by assuming an initial F of 1.618, as
determined by the normal method. The resisting moment is the numerator of Eq.
(8-7) and can be expressed as R(c xb x sec® + N x tan¢’). Dividing the sum of the
resisting moment by the sum of the driving moment gives a new F of 1.688. Us-
ing the new F as the assumed F, the process is repeated until the factor of safety
converges to 1.693 at the fourth iteration, which checks with the 1.692 obtained
by LEAME. Special techniques are available to speed up the convergence, as il-
lustrated by Example 8.6.

The iterative procedures illustrated by Table 8-3 are similar to those pro-
grammed in LEAME. When spreadsheets are used, it is really not necessary to
use four sets of normal force, N, and resisting moment to determine the four
factors of safety. By use of trial and error, only one set of data will be sufficient.
Any factor of safety can be assumed, and a new factor of safety is computed.
Using the computed factor of safety as the assumed factor of safety, the process
is repeated until the factor of safety converges to 1.693, as shown by the last
column in the table. If the factor of safety does not converge but oscillates back



Table 8-3. Spreadsheet for Circular Failure Surface by Simplified Bishop Method

ASSUMED FACTOR OF SAFETY 1.618 1.688 1.692 1.693
No. w 6  Driving M. N’ Resisting M. N’ Resisting M. N’ Resisting M. N’ Resisting M.
1 71,000 -8.9 -2,201,000 76,221 9,001,918 76,034 8,989,740 76,024 8,989,086 76,023 8,989,050
2 182,000 2.6 1,638,000 | 179,984 15,700,217 | 180,076 15,706,138 | 180,080 15,706,457 | 180,081 15,706,474
3 252,500 14.2 12,372,500 | 244,793 20,033,677 | 245416 20,074,178 | 245,450 20,076,362 | 245452 20,076,480
4 228,500 26.4 20,336,500 | 225,750 19,135,840 | 226,868 19,208,483 | 226,928 19,212,414 | 226,932 19,212,626
5 97,003 40.2 12,513,000 | 96,880 11,532,662 97,961 11,602,896 98,020 11,606,701 98,023 11,606,906

Sum 44,659,000 75,404,313 75,581,441 75,591,020 75,591,537
Computed factor of safety 1.688 1.692 1.693 1.693

poydN wnuqimbyg jrury ayy £q sisAreuy Aiqeis adogs o
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and forth, instead of using the computed factor of safety as the assumed factor
of safety, a slightly smaller value midway between the computed and assumed
factors of safety should be used to ensure convergence.

8.4 Original Spencer Method

The original Spencer method, designated as method 3, assumes parallel interslice
forces making an angle of & with the horizontal and considers the force equilib-
rium of each slice in the direction perpendicular to §, the overall force equilib-
rium in the § direction, and the overall moment equilibrium (Spencer 1967).
If the force equilibrium of each slice in the direction perpendicular to § is satis-
fied, the overall force equilibrium in the direction perpendicular to 6 is automati-
cally satisfied. Later on, Spencer (1973) improved the method by considering
both the moment and force equilibrium of each slice. This improved method now
generally is called the Spencer method and will be presented in Section 8.5.
However, the difference in the factor of safety between these two methods is
usually quite small. The original Spencer method has the advantage that it
always converges, whereas the Spencer method sometimes may have conver-
gence problems.

It should be noted that all equations of equilibrium are based on total forces,
including the neutral forces, if any. When assuming the direction of interslice
forces, the forces due to soil and water pressures are considered as an entity and
act in the same direction. The soil pressure is separated from the water pressure
only when the shear strength is to be evaluated.

8.4.1 Factors of Safety Based on Moment Equilibrium

The equation for computing the factor of safety based on overall moment equi-
librium is the same as Eq. (8-7) or (8-8) used in the normal and simplified Bishop
methods. However, the forces between two slices are assumed to incline at an
angle 6 with the horizontal. Consequently, the normal force, N, depends not only
on F but also on 8. To determine the factor of safety by the original Spencer
method, three different values of § must be assumed, and the factor of safety for
each & is then determined.

Fig. 8-7 shows all the forces considered in the original Spencer method,
including the two interslice forces, Z; and Z,, which make an angle of § with the
horizontal, and the forces, P; and P,, due to the water pressure. By considering
the equilibrium of all forces on a slice in a direction perpendicular to §,

N’cos(0—98)+ubsecOcos(0—9)+ ¢ bsecO-;N tan¢ sin(6—29) (8-20)

+ C,Wsind—W cosd—Lsin(a—8)=0
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ol
U = ubsecH

Fig. 8-7. Resolution of forces based on the original Spencer method

After simplification,

F[W’cosd—ubtan0sind— C,Wsind + Lsin(o.— )] — ¢’bsecOsin(0 —0)
Fcos(0—0)+sin(6—3)tan¢’

N (8-21)

To determine the factor of safety with respect to moment equilibrium for a
given value of §, a factor of safety is first assumed, and the value of N’ is com-
puted by Eq. (8-21). Substituting the N’ thus determined into Eq. (8-7) or (8-8), a
new factor of safety is obtained. Using the new factor of safety as the assumed
factor of safety, the process is repeated until the factor of safety converges. It is
interesting to note that when 8 = 0, the factor of safety is the same as that by the
simplified Bishop method.

8.4.2 Factors of Safety Based on Force Equilibrium

The factor of safety with respect to force equilibrium can be obtained by summing
the forces in the 6 direction:

Plc055+2(c bsece-;N tan¢ jcos(@—&)—Pz cosS—ZWsinS

- ZCSWCOSS—chos(oc—8)—2(N’+U)sin(9—6)=0
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Note that the interslice forces, Z; and Z,, do not appear in the equation,
because they are internal forces. Moving F to one side results in

Z(C’bsece + N’tan¢’)cos(6—9)
Y Wsind+ ) (N’+U)sin(6-3)
+ CSZWCOSS+ 2LC05(0¢—8)+(P2 —P,)cosd

F=

(8-22)

in which U can be computed by Eq. (8-3). Eq. (8-22) in conjunction with Eq. (8-
21) can be used to determine the factor of safety with respect to force equilibrium.
In both force and moment equilibrium, the factor of safety obtained by the
normal method is used as the initial trial value. If N" obtained by Eq. (8-21) for
any given slice is negative, tan¢’ in Egs. (8-21) and (8-22) for that particular slice
must be changed to 0.

8.4.3 Overall Factor of Safety

To determine the factor of safety that satisfies both moment and force equilib-
rium, three different values of 9, 0, 0.3, and 0.6 rad, are assumed. For each §, the
factors of safety with respect to moment and force equilibrium are determined,
both by Newton’s method of tangent described in Section 8.6.1. These factors of
safety always converge when & = 0. However, if the actual value of 8 is small,
the factor of safety at & of 0.3 or 0.6 may not converge. If the factor of safety at
0 of 0.3 does not converge, then the factors of safety at 0.1125 and 0.225 are
determined, so the three values of 6 to be used are 0, 0.1125, and 0.225. If the
factor of safety at 6 of 0.6 does not converge, then the factor of safety at & of 0.15
is determined, so the three values of § to be used are 0, 0.15, and 0.3. If the factor
of safety still does not converge even after the stated adjustment, further reduc-
tion of 6 should be made until the factor of safety converges. After the factors of
safety at the three values of § are determined, a parabola relating F to 6 is devel-
oped for both moment and force equilibrium. The intersection of these two
parabolas, as shown in Fig. 8-8, gives the final values of F and 6 desired. If the
final value of & thus determined is greater than 0.6 but smaller than 0.7, the
extrapolated value is considered acceptable. If the extrapolated value of 8 is
greater than 0.7, § values of 0, 0.45, and 0.9 will be used for interpolation.

Although the values of 6 and F can be determined manually by the graphical
method shown in Fig. 8-8, a numerical method by converting each curve into an
equation and then finding their intersection is needed for machine computations.
The well-known Lagrange interpolation formula, or Eq. (8-23), can be used for
this purpose.

o (B-8)(-8) , (-3)(6-8) . (-3)(6-5)
(B:1=82)@1=85) | (8:-8)(82-03) * (85 81)(8s=32)

F (8-23)

The curve represented by Eq. (8-23) apparently passes through the three
points (8, F1), (8, F»), and (s, F;), because when & = §,, F = F;, whereas the other
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Factor of Safety F

Fig. 8-8. Factor of safety by the original Spencer method

two terms are 0. The same is true when 6 = §,, F = F, and when 6 = 9;, F = F,. If
the three points are spaced equally, Eq. (8-23) can be written as

(2s2)F = A8* + B8 +C (8-24)

in which s = spacing between &, and §,, which is the same as between §, and 3,

B=2(8, +83)E — (8, + 03)F — (0, +8,)F; (8-26)
C = 8263P1 - 28183F2 + 61621:3 (8—27)

Let A,, B, and C,, be the coefficients when the three factors of safety based
on moment equilibrium are substituted into Egs. (8-25), (8-26), and (8-27). With
8:=0,06,=0.3, and 6; = 0.6, or s = 0.3, Eq. (8-24) can be written as

0.18F=A,,8* +B,,0+C,, (8-28)
Similarly, let A;, B;, and C; be the coefficients for force equilibrium, or
018F=Af62 +Bf8+Cf (8-29)

Subtracting Eq. (8-28) from Eq. (8-29), the following quadratic equation is
obtained for solving &:

(A; = A,)8 +(B; =B,)8+C; —C, =0 (8-30)

~(Bs = B,)+(Bf —B,.)* —4(A; — A,)(C; ~C.,,)
2(Af - Am)

or 6= (8-31)
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Substituting 6 into Eq. (8-28), the factor of safety, F, can be obtained by

F=(A,8 +B,8+C,)/0.18 (8-32)

The number of equations and unknowns for the original Spencer method are
tabulated as follows:

EQS. UNKNOWNS
Description No. Description No.
Y forces in 6 direction =0 1 Effective normal forces, N’ n
Y forces on slice L to 6=0 n Angle of interslice force, & 1
Overall moment equilibrium 1 Factor of safety, F
Total n+2 Total n+2

Example 8.4 Based on the information provided by Example 8.2, determine the
factor of safety by the original Spencer method, or method 3.

Solution To determine the factor of safety by the original Spence method, six
factors of safety at three different values of 6 must be computed. Table 8-4 is the
spreadsheet for computing these six factors of safety, three based on moment
equilibrium and three based on force equilibrium, and a factor of safety of 2.127,
which satisfies both moment and force equilibrium. Details about the spread-
sheet are as follows:

Rows 5 to 9 are the input data obtained from Table 8-2. Rows 12 to 21
compute the three factors of safety for moment equilibrium and rows 24
to 33 compute those for force equilibrium. Based on the six factors of safe-
ty, rows 37 to 42 determine the factor of safety that satisfies both moment
and force equilibrium.

For moment equilibrium with & = 0, a factor of safety must first be as-
sumed and then the normal force in cell B15, the driving moment in cell
C15, and the resisting moment in cell D15 must be filled out. When typing
an equation, be sure that the symbol for c is $I$5, for tan ¢ is $I$7, the as-
sumed angle & is D$12, the assumed factor of safety is D$13, and all input
data from rows 5 to 9 (e.g., B5 and G9) are $B5 and $G9. Once these three
cells (B15, C15, and D15) are filled, they can be copied vertically to the
cells from rows 16 to 19. Row 20 sums up the driving moment and the
resisting moment. Dividing the sum of the resisting moment by the sum
of the driving moment gives the computed factor of safety. Using the
computed factor of safety as the assumed factor of safety, the process is
repeated until the factor of safety converges to 2.544. After completing &
=0, cells in columns B to D and rows 12 to 21 can be copied as a group to
cell E12 and then again to cell H12. If there are no mistakes in the spread-
sheet, the three sets of data all should be identical. Then change the



Table 8-4. Spreadsheet for Noncircular Failure Surface by Original Spencer Method

A | B | C D | E F G H I ]
3 Data input
4 Slice b W 0 in radian AN AT Aw
5 1 40 40,000 0.0995 -16.22 61.71 -10 c=[500 psf
6 2 40 120,000 0.0995 23.98 61.71 30 =18 deg
7 3 40 200,000 0.0995 64.18 61.71 70 tan =|0.32492
8 4 40 220,000 0.1972 98.27 69.61 110
9 5 40 100,000 0.7854 88.39 123.74 150
10
11 Factor of safety based on moment equilibrium
12 Assumed angle & 0 0.3 0.6
13 Assumed Factor of Safety 2.544 2.117 2.015
14 | Slice | Normal N” | Driving M | Resisting M | Normal N’ | Driving M | Resisting M | Normal N’ | Driving M |Resisting M
15 1 38,914 231,184 2,020,590 42,242 285,162 2,087,316 47,252 366,430 | 2,187,777
16 2 118,299 763,180 3,612,332 122,742 656,647 3,701,410 129,789 487,651 | 3,842,715
17 3 197,685 1,312,585 5,204,073 203,242 955,912 5,315,503 212,327 372,879 | 5,497,652
18 4 217,204 2,855,392 6,332,355 215,699 3,003,292 6,298,315 216,562 2,918,408 | 6,317,851
19 5 115,546 4,786,894 8,145,492 93,401 6,744,313 7,255,130 78,952 8,021,415 | 6,674,220
20 Sum 9,949,236 25,314,842 Sum 11,645,325 | 24,657,673 Sum 12,166,782 | 24,520,215
21 2.544 2.117 2.015

poydN wnuqimbyg jrury ayy £q sishreuy Aiqeis adofs 9



Table 8-4. (Continued)

A B C D E F G H I J
22
23 Factor of safety based on force equilibrium
24 Assumed angle & 0 0.3 0.6
25 Assumed Factor of Safety 1.992 2.133 2.278
26 | Slice | Normal N” | Driving F Resisting F | Normal N” | Driving F | Resisting F | Normal N” | Driving F | Resisting F
27 1 38,564 3,831 32,468 42,217 3,413 33,139 46,047 489 30,761
28 2 117,673 11,689 58,045 122,697 11,026 58,765 127,673 6,491 54,029
29 3 196,783 19,548 83,622 203,178 18,639 84,391 209,298 12,494 77,298
30 4 215,286 42,180 88,595 215,665 42,883 89,991 214,203 40,255 82,792
31 5 109,381 77,344 45,131 93,502 73,177 51,889 79,517 71,122 53,193
32 Sum 154,592 307,861 Sum 149,138 318,175 Sum 130,851 298,073
33 1.991 2.133 2.278
34
35 |Factor of safety and angle § that satisfy both moment and force equilibrium
36
37 D1=|0 D2=|0.3 D3=|0.6
38 FM1 =|2.544 FM2=|2.117 FM3 =(2.015
39 FF1=|1.991 FF2=|2.133 FF3 =|2.278
40 AM=0.325 BM =|-0.354 CM =|0.458
41 AF =|0.003 BF =|0.084 CF=|0.358
42 Angle D or 6| 0.288 Factor of safety F=|2.127

LYC S9OIIS JO POYPPIN
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assumed angle & to 0.3 and 0.6 and determine the factor of safety by trial
and error in the same way as when 8 = 0.

3. The normal force, N, in cell B15 can be obtained from Eq. (8-21) and
typed as (D$13*$C5*COS(D$12)-$1$5*$B5*SIN($D5-D$12)/COS($D5))/
(D$13*COS($D5-D$12) + SIN($D5-D$12)*$1$7). The driving moment in
cell C15 can be obtained from the denominator of Eq. (8-8) and typed as
$C5*$G5-B15*$ES. The resisting moment in cell D15 is the numerator of
Eq. (8-8) and can be typed as $F5*($1$5*$B5/COS($D5) + B15*$1$7).

4. The same procedures can be applied for force equilibrium. The normal
force in cell B27 is the same as that in cell C15 except that D$12 and D$13
must be changed to D$24 and D$25, respectively. The driving force in cell
C27 can be obtained from the denominator of Eq. (8-22) and typed as
$C5*SIN(D$24) + B27*SIN($D5-D$24). The resisting force in cell D27 is
the numerator of Eq. (8-22) and can be typed as ($I1$5*$B5/COS($D5) +
B27*$1$7)*COS ($D5-D$24).

5. The input parameters for determining the factor of safety that satisfies
both moment and force equilibrium are the three § angles in row 37, the
three factors of safety for moment equilibrium in row 38, and the three
factors of safety for force equilibrium in row 39. The coefficients of Eq.
(8-24) for moment equilibrium can be obtained from Egs. (8-25), (8-26),
and (8-27), with AM in cell C40 typed as C38-2*E38 + G38, BM in cell
E40 as 2*(C$37 + G$37)*E38-(E$37 + G$37)*C38-(C$37 + E$37)*G38, and
CM in cell G40 as E$37*G$37*C38-2*C$37*G$37*E38 + C$37*E$37*G38.
The coefficients AF, BF, and CF for force equilibrium in row 41 can be
obtained by copying cell C40 into C41, cell E40 into E41, and cell G40 into
G41. Angle 6 in cell D42 can be determined from Eq. (8-31) and typed as
0.5*(E40-E41 + SQRT((E41-E40) A2-4*(C41-C40)*(G41-G40))) / (C41-C40).
The factor of safety in cell G42 can be computed by Eq. (8-32) and typed
as (C40*D42 A2 + E40*D42 + G40)/0.18. The factor of safety that satisfies
both moment and force equilibrium is 2.127, which checks with the 2.126
obtained by LEAME.

8.5 Spencer Method

The Spencer method (Spencer 1973; Chugh 1981), designated as method 4, is the
most refined method, because it satisfies all the equations of equilibrium. Fig. 8-9
shows the most general case with normal force, E, and shear force, S, at the right
side of the slice. The differences in normal and shear forces between the left and
right sides are AE and AS. The assumption of S = E tand in this method is the
same as in the original Spencer method but the moment is taken at the midpoint
of the base of each slice. The general procedure is first to assume S = 0, and,
based on the force equilibrium, determine the normal forces, E and N’, the
tangential force, T, and the factor of safety, F. Then, based on the moment equi-
librium, determine the angle of inclination, §, and a new set of the shear forces,
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E
E+AE lw 1-

S+AS

U = ubsecH

Fig. 8-9. General case of forces on a slice

S. Using the F and the new set of S thus obtained, the process is repeated until
the factor of safety converges.

The Spencer method is similar to the well-known Morgenstern-Price method
(Morgenstern and Price 1965), which assumes that the shear forces, S, between
the slices not only vary with the normal forces, E, but also change from slice to
slice according to a function f(x), or

S=M(x)E (8-33)

in which A is an unknown constant to be determined, and f(x) can be a constant,
a linear function, a sine curve, or a numerical value at each vertical side. It can
be seen that the Spencer method is a special case of Morgenstern-Price with A =
tand and f(x) = 1. The major difference between the two methods is that the
Morgenstern-Price method provides more flexibility in the assumptions of the
inclinations of interslice forces. However, the assumptions generally appear to
have very little effect on the computed factor of safety when the static equilib-
rium is satisfied. Although the solution techniques used in the Spencer method
can also be applied to the Morgenstern-Price method, the Morgenstern-Price
method is not used in LEAME.

8.5.1 Force Equilibrium of Each Slice

Based on the equilibrium of forces in the vertical direction,

N’cosO+TsinO+ub+AS—W —Lsina=0
or N'=(W-ub-AS)secO—Ttan6+ Lsino.secO
and N’=(W’-AS)secO—Ttan6+ Lsincsec6 (8-34)
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in which W' = W — ub. Without subscript i, Eq. (8-2) can be rewritten as

T=cbsec6+N tan ¢ (8-35)
F
Substituting Eq. (8-34) into (8-35),
T_°¢ bsecO+[(W’—AS)secd—T tan0 + LsinosecO]tan ¢ (8-36)
F
From Eq. (8-36), the shear force, T, can be determined by
T c’bsecO+[(W’ —AS)sec6 + L?inasec 0]tan¢’ (8.37)
F+tanBtano
Based on the equilibrium of forces in the horizontal direction,
AE=N’sin0+ubtan®+ C,W + Lcoso.— T cos© (8-38)
Substituting Eq. (8-34) into Eq. (8-38),
AE=(W — AS)tan® — T'sec® + C,W + L(sino tan® + cos o) (8-39)
Since the overall horizontal force equilibrium must be satisfied,
M AE=P,-P, (8-40)

or
ZTsece = 2(W—AS)tan6+C52W+2L(sin0ctan9+cosa)—(Pz -P) (8-41)

Note that P; and P, may be zero if there is no water pressure at both ends.
Combining Egs. (8-36) and (8-41),

B Z{c’bsece +[(W’—AS)sec6—Ttan 0 + LsinosecO]tan ¢’} secd
- Y (W-AS)tan6+C, > W+ > L(sinatan+coso)— (P — P)

(8-42)

Eq. (8-37) in conjunction with Eq. (8-42) can be used in the Spencer method
for determining the factor of safety. Note that both equations contain the unknown
AS, which must be evaluated from the moment equilibrium. The value of T
obtained from Eq. (8-37) must not be negative. If T <0, then tan¢’ in Egs. (8-37)
and (8-42) must be assigned 0.

8.5.2 Moment Equilibrium of Each Slice

Fig. 8-10 shows the forces involved in moment equilibrium. Assuming that the
side forces, Z, and Z,, are applied at h; and h, above the base, and taking the
moment at the midpoint of the base, the following equation is obtained:
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i Moment Center

S1=2;sind btan®
(Xm, Ym)

0

Fig. 8-10. Forces for moment equilibrium based on the Spencer method

Z; Cos8(h1 —gtan6)+%(zl sind + Z, sind) + Lsino(x; — x,,)
—Lcos(yr = Yu)—CW (Y —ym)— 2> cosf)(hz +%tan6) =0

Moving h, to one side and replacing Z; by E;/cosd and Z, by E,/cos$,

h, = (E)hl +k(1+E)(’canﬁ—’cane)——cs'w(yC ~Yn)
E 2 E

2 2 E
8-43
+L[SiHOC(XL—an)_cosa(yL_ym)] ( )

E,

Eq. (8-43) can be used for all intermediate slices to determine /, based on the
known or computed value of h;. For the first slice shown in Fig. 8-11(a), Eq. (8-43)
should be modified to

h, = (ﬁ)hl —E(1+ﬂ)tan6+gtan8——csw(yc ~Yn)
E, 2 E, 2 E,

N L[sino(x; — x,,) — cosot (Y — Y]
E,

(8-44)

In most cases when there is no pounding of water on the slope surface, P,
and h; are both zero. If water is pounded on the slope surface, h; = d;/3, where
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CW P |
=Z1G058 (xc' yc) |h2= dzfsl
Wl\ﬂomem Center
L ﬂ
} Z,sind Xm. Ym)

(a) First Slice (b) Last Slice

Fig. 8-11. Forces for moment equilibrium of first and last slices

d; is the water table above the failure surface for the first slice. For the last slice
shown in Fig. 8-11(b),

h, =(E)h1 —é(1+ﬂ)tan6+E(E]taHS——CSW(yC ~Yn)
P2 2 P2 2 P2 P2

N L[sinou(x; —x,,) — cos oy — Y]
1)

(8-45)

Starting from the first slice with given values of P; and h,, Egs. (8-44), (8-43),
and (8-45) are applied successively until i, of the last slice is obtained. The value
of & can be adjusted gradually by trial and error until i, = d,/3, where d, is the
water table above the failure surface for the last slice. A subroutine called RTMI,
originally developed by IBM (1970), is used in LEAME to solve a general non-
linear equation of the form Function(d) = 0 by means of Mueller’s iteration
scheme of successive bisection and inverse parabolic interpolation. When P, =0,
hy for the last slice can be determined by

h =Etan9—étan8+ CW(Ye = yn) _ Llsin(x = xn) = cosoys = yn)] (8-46)
2 2 E, E

The value of § is so selected that /1, of the next to the last slice, as obtained
from Eq. (8-43), is equal to h; of the last slice, as obtained from Eq. (8-46). The
number of equations and unknowns are tabulated as follows:

Egs. Unknowns
Description No. Description No.
¥ forces in horizontal direction =0 n Normal forces between slices, E n-1
X forces in vertical direction =0 n Height of forces between slices,h  n-1
Y moments at base of each slice =0 n Effective normal forces, N’ n
Angle of interslice forces, 6 1
Factor of safety, F 1

Total 3n Total 3n
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The Spencer method can be summarized as follows:

1.

Based on an initial F by the normal method and 6 = 0, which is the same
as S = AS = 0, determine T from Eq. (8-37) and a new value of F from
Eq. (8-42). Using the new F as the assumed F, repeat the process until F
converges.

Based on AS = 0 and the value of F obtained in step 1, compute T by Eq.
(8-37) and AE by Eq. (8-39). Starting from the left side of the first slice
where E, =0 or P,, compute E, on the right side of the first slice by E, = E;
— AE. Apply this procedure recursively, slice by slice, until the last slice is
reached. Because the factor of safety is obtained through Eq. (8-40), E, at
the right side of the last slice automatically should be equal to 0 or P,.
Based on AS =0, the given P; and h; of the first slice, and the values of E
obtained in step 2, apply Eq. (8-43) recursively to determine h, of the last
slice. Instead of Eq. (8-43), Eq. (8-44) should be used for the first slice and
Eq. (8-45) for the last slice. Vary 6 until &, of the last slice is equal to d,/3.
If P, =0, vary & until , of the next-to-last slice obtained from Eq. (8-43) is
equal to h; of the last slice obtained from Eq. (8-46).

Based on the values of E obtained in step 2 and 6 in step 3, compute the
shear force between slices by S = E tan 6 and AS by difference, that is, AS
=5, — S,. This completes the first cycle of iteration for AS = 0.

Based on the factor of safety obtained in step 1 and the value of AS in step
4, repeat steps 1 to 4 and find new values of F and AS. This completes the
second cycle of iteration.

Continue the cycles until F converges.

Example 8.5 Based on the information provided by Example 8.2, determine the
factor of safety by the Spencer method, or method 4.

Solution The Spencer method applies the force equilibrium to evaluate the fac-
tor of safety, F, and the moment equilibrium to evaluate the angle of inclination,
0. Table 8-5 is the spreadsheet, the details of which are as follows:

After assuming a factor of safety in cell E12, the cells in row 14 from col-
umns B to F should be filled out first. For the first iteration, AS in cell B14
should be assumed 0. The driving force in cell C14 is the denominator of
Eq. (8-42) and can be expressed as W x tan®. The tangential force, T, in
cell D14 can be computed by Eq. (8-37) and expressed as (¢ x b+W x tan ¢)
x secO/(F + tan® x tan ¢’). The resisting force in cell E14 is the numerator
of Eq. (8-42) and can be expressed as (c X b x sec6 + (W x sec6 — T X tan 0)
tan ) x secO. AE in cell F14 can be computed by Eq. (8-39) and expressed
as W x tan® — T x sec6. Before copying row 14 from columns B to F into
rows 15 to 18, be sure that ¢ in cell G5 is typed as $G$5, tan¢ in cell G7
as $G$7, and the assumed factor of safety in cell E12 as E$12. The driv-
ing forces are summed in cell C19 and the resisting forces in cell E19.
Dividing the sum of resisting forces by the sum of driving forces gives the
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Table 8-5. Spreadsheet for Noncircular Failure Surface by Spencer Method

A B C D E F G H I J
Data input
4 | Slice b W 6in
radian
5 1 40 40,000 | 0.0995 ¢ =|500 psf
6 2 40 | 120,000 | 0.0995 =[18deg
7 3 40 | 200,000 | 0.0995 tan¢ =(0.325
8 4 40 | 220,000 | 0.1972
9 5 40 | 100,000 | 0.7854
10
11 | Iteration no. 1
12 Assumed factor of safety | 1.991 Computed & 0.291 | 0.292
13 | Slice| AS | Driving T Resisting AE E h2 h2 S
E. E.
14| 1 0 3,993 | 16,388 | 32,791 | -12,477| 12,477 | 3.993 | 4.015| 3,750
15| 2 0 11,980 | 29,298 | 58,623 | -17,465|29,941 | 7.322| 7.362| 9,000
16 | 3 0 19,966 | 42,209 | 84,455 | —22,452 52,394 | 10.460 | 10.517 |15,749
17 | 4 0 43,955 | 45,377 | 92,130 | -2,318| 54,712 | 13.920 | 14.018 (16,446
18| 5 0 100,000 | 32,054 | 90,255 | 54,669 43 | *14.010 | *13.988 13
19 Sum | 179,894 358,255 —43| Ah -0.090 | 0.029
20 Computing factor of safety| 1.991
21
22 | Iteration no. 2
23 Assumed factor of safety | 2.153 Computed & 0.285 | 0.284
24 | Slice| AS | Driving T Resisting | AE E h2 h2 S
E. E.

25| 1 |-3,750 | 4,368 | 15734 | 34,043 |-11,445| 11,445 | 3.863| 3.841| 3,341
26 | 2 |-5250| 12,504 | 27,911 | 60,391 |-15,546 | 26991 | 7.139| 7.099| 7,878
27 | 3 |-6,749 | 20,640 | 40,088 | 86,739 |-19,648 | 46,638 | 10.230 | 10.172|13,613
28 | 4 —697 | 44,094 | 42,166 | 92,578 1,095 | 45,544 | 14.248 | 14.145 (13,294
29 | 5 |16433 | 83567 | 26911 | 81,940 | 45,509 35 | *14.141 | *14.162 10
30 Sum | 165,173 355,691 -35| Ah 0.107 | -0.017
31 Computing factor of safety| 2.153
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Table 8-5. (Continued)

Al B[] c|Dp] E |F]G|]H ][]

To save space, iterations no. 3 to no. 5 are not shown.

Iteration no. 6

Assumed factor of safety 2.127 Computed & 0.285 | 0.286
Slice | AS | Driving T Resisting AE E h2 h2 S
E E
1 |-3,418 4,334 | 15,873 33930 |-11,618 | 11,618 | 3.863 | 3.885| 3,416
2 | —-4,665 | 12,445 | 28,159 60,191 |-15,853 | 27,471 7.130 7.170 | 8,078
3 |-5913 | 20,556 | 40,444 86,453 |-20,089 | 47,560 | 10.213 | 10.270|13,986
4 155 | 43,924 | 42,538 92,266 546 | 47,014 | 14.080 | 14.18213,825
5 13,836 | 86,164 | 27,683 83,272 47,014 0 | *14.141 | *14.119 0
Sum | 167,424 356,112 0 Ah —-0.061 0.063

Computing factor of safety| 2.127

Iteration no. 7

Assumed factor of safety 2.127 Computed & 0.285 | 0.286
Slice | AS | Driving T Resisting | AE E h2 h2 S
E E
1 |-3416 | 4,334 | 15873 | 33,929 |-11,617 | 11,617 | 3.863 | 3.885| 3,416
2 | 4,662 | 12,445 | 28,158 | 60,190 |-15,853 | 27,471 | 7.130| 7.170| 8,078
3 |-5907 | 20,556 | 40,444 86,451 |-20,089 | 47,560 | 10.213 | 10.270 |13,985
4 161 | 43,923 | 42,537 92,264 546 | 47,014 | 14.080 | 14.182 (13,825
5 |13,825 | 86,175 | 27,685 83,279 | 47,022 -8 | *14.141 | *14.119 -2
Sum | 167,433 356,113 8 Ah -0.061 0.063

Computing factor of safety| 2.127

Note:

*indicates that the value is h1 of slice 5 and h2 of slice 5 is 0.

computed factor of safety. By trial and error, the factor of safety converges
to 1.991. Note that the sum of AE is —43, which is nearly equal to 0 com-
pared with other AE’s, as is expected.

Next compute E in column G by E; = E;; — AE. For the first slice, E;; is 0,
so E = —AE; for the last slice, E should be 0 or negligibly small. Then as-
sume d in cell H12 as H$12 and compute h, in the first slice by Eq. (8-44)
expressed as 0.5 x b x (tand — tan8) and those for the intermediate slices
by Eq. (8-43) expressed as E;_; X hi41/E; + 0.5 x b x (1 + E_;/E;) X (tand —
tan 0). Because F, for the last slice is 0, the value shown for the last slice is
actually h; computed by Eq. (8-46) and expressed as 0.5 x b x (tan6 —
tan d). The difference between h, of slice 4 and h; of slice 5 is Ah, as shown



256 Slope Stability Analysis by the Limit Equilibrium Method

on the line beneath slice 5. Finally, copy column H from rows 12 to 19 into
column I. Theoretically, Al should be equal to 0 but, practically, a value of
d can be found by trial and error that makes Ah as close to 0 as possible.
For example, when 8 = 0.291, Ah = —0.090 and when & = 0.292, Al = 0.029.
It is apparent that Ah =0 lies between & =0.291 and 0.292, so the one clos-
est to 0 is placed in column I. After § is determined, S in column J can be
computed by E tand.

3. Before copying iteration 1 from rows 11 to 20 to form iteration 2 from
rows 22 to 31, change all variables with a row number less than 10, such
as B5 and D9, to B$5 and D$9, the assumed factor of safety from E$12 to
E12, and the assumed 6 from H$12 and 1$12 to H12 and I12. After copy-
ing, iteration 2 should be exactly the same as iteration 1. If not, something
must be wrong in the spreadsheet and should be corrected. In iteration 2,
change AS in column B from 0 to S, — S;. Then adjust the assumed factor
of safety in cell E23 until it converges to 2.153 and the assumed & in cells
H23 and H24 until a value of 0.284 is obtained.

4. Tteration 2 from rows 22 to 31 can be copied repeatedly for the remaining
iterations. Adjust the factor of safety and the & angle until they converge.
The factor of safety converges to 1.127 and the & angle to 0.286 at the sev-
enth iteration. The factor of safety obtained by LEAME is 2.125, which
checks closely with the 2.127 by the spreadsheet.

5. In this example, the use of the computed AS as the assumed AS does not
cause any problem on convergence. If the factor of safety does not con-
verge, a relaxation factor to reduce the amount of change in AS between
two iterations must be used, as described in Section 8.6.2. If AS’ is the
previously assumed value and AS, or S.; — S, is the newly computed
value, instead of using AS directly as the assumed AS, the assumed AS is
modified as AS = AS’ + R{AS — AS'), where Ry is the relaxation factor.

8.6 Special Solution Techniques

Except for the normal method, all the methods require some kinds of iterations.
To speed up convergence, Newton’s method of tangent can be applied to the
simplified Bishop and the original Spencer methods and a relaxation factor can
be used in the Spencer method.

8.6.1 Newton’s Method of Tangent

A very efficient method to solve a nonlinear equation f(F) = 0 is by Newton’s
method of tangent, as shown in Fig. 8-12. The relationship between the factor of
safety, F, and the function f(F) is represented by the smooth curve. The intersec-
tion of the curve with the F-axis gives the solution for f(F) = 0. To obtain the
solution graphically, a factor of safety, F, is assumed, and the function f(F) is
determined, as shown by point 1 in Fig. 8-12. A tangent to the curve is drawn at



Method of Slices 257

KF) J/

f{Fl)
2
r(F,)
1
3
0 F
s Fo Fy
. «(F,) XF,)

Fig. 8-12. Newton’s method of tangent

point 1 and its intersection with the F-axis gives a new factor of safety, F. Repeat
the process for point 2 and then point 3 until the two successive factors of safety,
F,.: and F,,, converge to a specified tolerance. The new F can be determined from
the previous F by

f(En)
m+1 = Lm =, 8-47
" FR) 47
in which f'(F,) is the slope of the tangent or the first derivative of f(F) at

point m.
According to Eq. (8-8) for noncircular failure surfaces, the factor of safety can
be reduced to the following simplified form:

_ Z(ﬂl +a;,N’)

= (8-48)
> (b1 =bN")
in which the constants 4, a,, b;, and b, are independent of F and can be deter-
mined directly from the geometry of each slice, the soil parameters, and the
seepage and loading conditions. Eq. (8-22) for the force equilibrium in the origi-
nal Spencer method can be expressed in the same form except that the negative
sign before b, must be replaced by a positive sign. Note that the effective normal
force, N', is a function of F.

Eq. (8-48) can also be applied to circular failure surfaces by assigning b, to 0.
Eq. (8-48) can be written as

f(F)=FY (by—=bN")= (a1 +a,N’) (8-49)
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The first derivative of f(F) is

F/(F)=3 (b ~b:N") - szz(dN') zaz[dN'j (8-50)

As indicated by Eq. (8-19) for the simplified Bishop method and Eq. (8-21)
for the original Spencer method, the effective normal forces can be expressed as

’r_ ﬂ3F—ﬂ4
b;F + b,

Note that the constants as;, a4, b;, and b, are different for each slice and, for
the original Spencer method, also depend on the assumed value of &. The first
derivative of N' with respect to F is

AN’ asb, +asb;
dF (bsF+b,)

f'(F) can be evaluated by substituting Egs. (8-51) and (8-52) into Eq. (8-50).

The iterative procedure proceeds as follows. First assume F = F,, and deter-
mine f(F,,) from Egs. (8-49) and (8-51), then compute f'(F) from Egs. (8-50), (8-51),
and (8-52), and finally obtain a new F,,,; from Eq. (8-47). The process is repeated
until the difference between F,.,; and F,, becomes negligibly small.

Because the simplified Bishop method with circular failure surfaces is
employed most frequently and is repeated many times, a more concise iterative
equation is developed here to save computer time. After substituting Eq. (8-19)
into Eq. (8-7), the factor of safety can be computed directly by

(8-51)

(8-52)

RZ ¢’b+ (W’ + Lsina)tan ¢’
cosO+sinftan¢’ / F (8-53)
waw+c Y WA, + 3 LA — P + Py

To make the following equations shorter, name the overturning moment in
the denominator of Eq. (8-53), which is independent of F, as M,:

¢’b+ (W’ +Lsina)tan ¢’

f(F)=FM, - RZ cosO+sinftan¢’/ F (8-54)
FU(F)= M, - RZ [¢’b+ (W’ +Lsin oc')tanq)']sirzletan o’ (8-55)
(Fcos6 +sinftan¢”)
From Eq. (8-47),
MR e embtang
Fpo=E,i1- (8-56)

M _RZ [¢’b+ (W’ + Lsino)tan¢’]sin® tan ¢’
’ (F, cos®+sinOtan¢’)’

Eq. (8-56) can be used directly to compute F,,,; based on the value of F,.
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Table 8-6. Spreadsheet for Computing Factor of Safety Using Newton’s Method

Slice Assumed F,, 1.618 1.750 1.693
No. \ 6in deg M1 M2 M1 M2 M1 M2

1 71,000 -8.9 27,818 —903| 25,654 -768| 26,552 | —823

2 182,000 2.6 48,517 438| 44,884 375| 46,394 401

3 252,500 14.2 61,909 2,994 57,443 2,577| 59,302| 2,747

4 228,500 26.4 66,585| 5,360 55,045| 4,645| 56,751 4,937

5 97,000 40.2 35,639 5,171 33,312 4,518| 34,285| 4,785

SUM 240,468 | 13,060| 216,340| 11,347| 223,283 (12,047

Mo =| 44,659,000 Computed F,..1 1.750 1.693 1.693

Example 8.6 Based on the information provided by Example 8.1, determine the
factor of safety by the simplified Bishop method using Eq. (8-56).

Solution To use the spreadsheet, Eq. (8-56) can be simplified to

[ M,-RY M1]

Fm+1 :Fm 1-—— (8'57)
M, —RY M,

in which M, = 44,659,000 ft-1b (see Table 8-3), R = 200ft, M, = (c'b + Wtan ')/ (F,,..

cos0 + sin® tan¢’), and M, = [(c'b + Wtan ¢')sin® tan¢']/(F,, cos® + sin® tan¢’)>

Table 8-6 is the spreadsheet for computing the factor of safety.

In Table 8-6, items W and 6 can be obtained from Table 8-1. An initial safety
factor of 1.618 by the normal method is assumed as F,, and a new safety factor,
F,u1, of 1.750 is computed by Eq. (8-57). Using the new F,,,; as the assumed F,,
the process is repeated until the factor of safety converges to 1.693 at the third
iteration, instead of the fourth iteration in Example 8.3.

8.6.2 Use of a Relaxation Factor

To enhance convergence, a relaxation factor can be used in the Spencer method.
In the Spencer method, a set of AS is assumed and the values of F and & are
determined. Instead of using & directly to determine the new set of AS, the actual
d to be used for the next iteration is

3, =8 +R; (3-8 (8-58)

in which §, is the assumed angle for the next iteration, ¢’ is the previously
assumed angle, 3 is the newly computed angle, and Ry is the relaxation factor. To
start iterations by LEAME, a relaxation factor of 1 initially is assumed. A relax-
ation factor of 1, or §, = §, indicates that no relaxation factor actually is applied,
because the newly computed § is used directly as the assumed & for the next
iteration. If the factor of safety does not converge, the relaxation factor is reduced
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to 0.5 and the iteration is started from the very beginning. A relaxation factor of
0.5 implies that the assumed 9, for the next iteration is the average of the previ-
ous ¢, and the newly computed §. Eq. (8-58) reduces the amount of change in &
between two iterations and prevents 6 from oscillating back and forth, which
may cause difficulty in convergence. If the factor of safety still does not converge,
the relaxation factor will be reduced to 0.25 and then 0.125. When the relaxation
factor has been reduced to 0.125 but the factor of safety still diverges, the factor
of safety just before divergence is taken as the final factor of safety, and the fact
that the factor of safety does not converge will be noted. If the factor of safety of
the most critical failure surface diverges, LEAME will reanalyze the most critical
failure surface by the original Spencer method. Because the original Spencer
method usually does not have the convergence problem, the factor of safety it
provides should be considered reliable. In the simplified Bishop and the original
Spencer methods, Newton’s method of tangent is used and no relaxation factor
is applied.

Summary

1. Of the four limit equilibrium methods discussed in this chapter, the nor-
mal, simplified Bishop, and original Spencer methods consider the over-
all moment equilibrium by taking moments at the center of the circle, or,
in the case of a noncircular failure surface, at an arbitrarily selected point.
The factor of safety based on overall moment equilibrium depends on
the effective normal force, N, at the bottom of each slice. The difficulty
in determining N’ is because of the presence of the unknown interslice
forces. Each method applies a different procedure to eliminate the effect
of interslice forces. The normal and simplified Bishop methods are not
suitable for noncircular failure surfaces, because they do not consider the
overall force equilibrium, and the location of the moment center will have
some effect on the factor of safety obtained. The original Spencer method
considers not only the overall moment equilibrium but also the overall
force equilibrium, so any reasonable moment centers may be selected and
should yield about the same factor of safety.

2. The normal method is similar to the well-known Fellenius method in
which the forces between two slices are assumed to be zero. By summing
the forces on each slice in a direction normal to the failure surface, N’ can
be determined directly and the factor of safety computed. The difference
between the normal and Fellenius methods lies in the determination of
pore water pressure normal to the failure surface. To avoid the occurrence
of negative pore pressure on steeply inclined failure surfaces, the normal
method invokes the concept of submerged weight, so the neutral force
normal to the failure surface can be assumed equal to ubcos6 instead of
ubsec®, where u is the pore pressure, b is the width of slice, and 6 is the
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angle of inclination of the failure surface. The normal method computes
the factor of safety directly without iterations, whereas all the other meth-
ods require some kinds of iterations, or trial and error, until the factor of
safety converges to a specified tolerance. The normal method usually
gives a factor of safety somewhat smaller than the other methods and can
be used to provide an initial factor of safety for all the other methods.

The simplified Bishop method is the most widely used method recog-
nized by the engineering profession. It is recommended by LEAME as a
standard method for use with circular failure surfaces, and it should yield
a factor of safety very close to the more refined methods. By assuming the
forces between two slices as horizontal, and considering the vertical equi-
librium of each slice, the effective normal force, N’, can be determined
even without knowing the magnitude of the horizontal interslice forces.
Unlike in the normal method, the N’ thus determined depends on the fac-
tor of safety and the factor of safety depends on N, so an iteration method
must be used to solve the factor of safety.

The original Spencer method assumes parallel interslice forces, all mak-
ing an angle of 8 with the horizontal. It considers the force equilibrium of
each slice in the direction perpendicular to 6 to determine N’, the overall
force equilibrium in the & direction to determine the factor of safety with
respect to force equilibrium, and the overall moment equilibrium to de-
termine the factor of safety with respect to moment equilibrium. Because
these two factors of safety are not equal and vary with the value of § as-
sumed, the value of & must be adjusted by trial and error until the two
factors of safety become the same. Instead of trial and error, a graphical
method also can be used. The original Spencer method considers the
overall force and moment equilibrium but not the force and moment
equilibrium for each slice and is not as refined as the Spencer method,
which satisfies all equations of equilibrium. However, the difference in
the factor of safety between the two methods is usually quite small. The
original Spencer method has the advantage in that it always converges,
whereas the Spencer method sometimes may have convergence
problems.

The Spencer method is a special case of the well-known Morgenstern-
Price method by assigning the function f(x) = 1, thus avoiding the sophis-
tication of a user-defined function, as required by the Morgenstern-Price
method. Similar to the original Spencer method, it also assumes that all
the interslice forces incline at an angle & with the horizontal. It considers
both the force and the moment equilibrium of each slice. If each slice is in
equilibrium, the overall force and moment equilibrium automatically is
satisfied. The force equilibrium equations are used to determine the fac-
tor of safety, F, and the moment equilibrium equations are used to deter-
mine the angle 6. The determination of F and § requires two separate
iterations. Because F depends on § and 6 depends on F, a third iteration is
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needed to solve F and 8. The Spencer method is the most refined method
and is recommended by LEAME as a standard method for use with non-
circular and composite failure surfaces.

All the methods presented in this chapter, except for the normal method,
require some kinds of iterations. To speed up convergence, Newton’s
method of tangent can be applied to the simplified Bishop and original
Spencer methods. The application of this technique is described and an
equation applicable to the simplified Bishop method with circular failure
surfaces is presented. For the Spencer method, a relaxation factor should
be applied to avoid oscillations and ensure convergence.

For a given failure surface, spreadsheets can be applied easily to compute
the factor of safety. The use of a trial-and-error method by a spreadsheet
to find a factor of safety is so easy that it is really not necessary to change
the factor of safety gradually until it converges, as is done by LEAME. A
few trials and errors will be sufficient to find a computed factor of safety
that is equal or nearly equal to the assumed factor of safety. It should be
noted that the spreadsheet only solves one of the hundreds of trial failure
surfaces and cannot be used as a substitute for a computer program. The
factors of safety obtained by the spreadsheets were compared with those
by the LEAME computer program and found to be in good agreement.

Problems

8.1

Fig. P8-1 shows a 3:1 slope and the location of a circular failure surface.
The failure mass is first divided evenly into three slices, as shown by the
solid lines, and then subdivided at the two break points of the ground
line, as shown by the dashed lines, so there are a total of five slices. If
the soil has a cohesion of 500 psf, a friction angle of 10°, and a total unit
weight of 125pcf, determine the factor of safety by the normal method.
[Answer: 1.445]

(65,575
(140,40)
R = 86.783 ft
0.0 /20,0

|

50f | 50R 1 BOR
Fig. P8-1.
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Same as Problem 8.1, but determine the factor of safety by the simplified
Bishop method.
[Answer: 1.625]

Same as Problem 8.1, but determine the factor of safety by the original
Spencer method.
[Answer: 1.624]

Same as Problem 8.1, but determine the factor of safety by the Spencer
method.
[Answer: 1.654]

Fig. P8-5 shows a 2:1 slope and the location of the noncircular failure sur-
face. The failure mass is first divided evenly into four slices, as shown by
the solid lines, and then subdivided at the break point of the failure sur-
face, as shown by the dashed lines, so there are a total of five slices. The
soil has a cohesion of 400 psf, a friction angle of 15°, and a total unit weight
of 125pcf. By assuming an arbitrary moment center at (100, 200), deter-
mine the factor of safety by the normal method.

[Answer: 1.250]

(200,100) (400,100)

/

(150,-20) 100 ft

Fig. P8-5.

Same as Problem 8.5, but determine the factor of safety by the original
Spencer method.
[Answer: 1.393]

Same as Problem 8.5, but determine the factor of safety by the Spencer
method.
[Answer: 1.393]
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8.8

Also considered in the LEAME computer program but not presented in
this chapter is a special case where the center of the circle is located below
the top of embankment, as shown by a vertical cut in Fig. P8-8. Because
part of the circular arc is replaced by a vertical line, an additional resisting
force of c'A/F over the vertical line segment must be taken into considera-
tion, where ¢’ is the effective cohesion of soil, A is the length of the vertical
line, and F is the factor of safety. First, modify Egs. (8-7) and (8-19) for
the first slice to include this additional resisting force. Then, by the use of
spreadsheets, divide the failure mass into five slices and solve the follow-
ing two cases: (a) if the soil has an undrained shear strength of 1,050 psf
and a total unit weight of 125pcf, determine the factors of safety by the
normal method, and (b) if the soil has a cohesion of 500 psf, a friction an-
gle of 20°, and a total unit weight of 125 pcf, determine the factor of safety
by the simplified Bishop method.

[Answer: 1.397, 1.089]

[t—17.9—»
1 6.7 [y
Circular arc 112 | 6.7, |
replaced by —* : A=149
avertical line Failure ‘
Mass
Center I- 315f
Radius=17.9 ft ‘
16.6

Fig. P8-8.



Chapter 9

Methods for Three-
Dimensional Analysis

This chapter presents theoretical background for three-dimensional (3D) analysis
and extends the method of slices to the method of columns. To simplify the
analysis, only the normal, simplified Bishop, and original Spencer methods will
be used. The simplified Bishop method is recommended for circular failure sur-
faces and the original Spencer method for noncircular and composite failure
surfaces. The purpose of 3D analysis is to include the end effects, so the same
cross section for 2D analysis will be used for 3D analysis. Two types of failures
will be discussed, one with ellipsoidal ends and the other with planar ends.
Major equations incorporated in LEAME will be derived and the use of spread-
sheets to solve these equations will be demonstrated. Details on the application
of these two types of failures and their practical implications are discussed in
Chapter 3 of the companion volume to this book, Slope Stability by Limited Equi-
librium Analysis: LEAME Software and User’s Manual.

9.1 Failure Surfaces with Ellipsoidal Ends

This type of 3D failure surface consists of a cylinder formed by circles of constant
radius at the central part and two half ellipsoids formed by circles of decreasing
radius at each end. The failure mass is divided into columns and the method of
slices used in 2D analysis can be extended easily to 3D analysis. Instead of the

265
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four methods for 2D analysis, only the first three methods (normal, simplified
Bishop, and original Spencer) can be used for 3D analysis. As indicated in the
2D analysis, the original Spencer method always can yield a factor of safety very
close to the more refined Spencer method.

9.1.1 Dimensions of Failure Mass

Fig. 9-1(b) shows a 3D failure mass and the Cartesian coordinates, x, y, and z.
Because of symmetry, only one-half of the slope is shown, so some of the length
is referred to as half length. The failure mass is formed by rotating the rectangle
and the ellipse, as shown in Fig. 9-1(a), until they intersect with the slope below.
The rectangle has a half length of A. and the ellipse has a half length of A.. Because
the axis of rotation, which is the center (x, z,) for 2D analysis, is located
above the slope surface, the half length of the failure mass, A. + A, is always
shorter than A + A.. The failure mass is divided arbitrarily into 10 slices in the x
direction and 10 columns in the y direction. Note that the entire length of the
cylinder, A, in the y direction is considered as one column, whereas the ellipsoi-
dal part of the failure mass is divided into nine columns. The radius of rotation
is R for the cylinder and reduces gradually, as indicated by r in Fig. 9-1(a). If a
weak soil layer intercepts the cylinder or ellipsoid, a composite failure surface
through the bottom of the weak layer also may be formed.

Ac = half length of cylinder
Ae = half length of ellipse

Ac + A = lalf length of failwe mass

B ( Xm.¥.2)
on slope surface

on failure
surface
at bottom

on slope surface

(b)

Fig. 9-1. Intersection of cylinder and ellipsoid with slope surface
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In the stability analysis, A. and A, must be assumed or determined by trial
and error. If A. is given, such as a uniform load distributed over a short distance
or a steep slope with a short length, one basic assumption is that the half ellip-
soidal length, A,, must be equal to or greater than half the height of the tallest
column, as explained in Sections 3.8.1 and 3.8.7 of the companion volume. If the
length of embankment is given, the lengths of A. and A, must be proportioned
so that the factor of safety is minimum when the half length of the failure mass
is equal to the half length of the embankment, as discussed in Sections 3.7.1, 3.8.3
and 3.8.6 of the companion volume.

The equation for an ellipse with semi-axes R and A,, as shown in Fig. 9-1(a),
can be expressed as

xz (y_A'C)z
R e

=1 (9-1)

The reason why the y coordinate is replaced by (y — A.) is because the origin
of the y axis starts at the plane of symmetry instead of from plane A-A. For any
given y, the radius of rotation, 7, is

_ 2
r=x=R 1—% (9-2)

Knowing the radius, r, and the center of rotation, (x,, z,), the intersection
between the ellipse of revolution and the slope surface can be calculated.
The equation for a circle with radius, r, can be written as

(x—x,)* N (z—2,)?

1,.2 1,.2

=1 (9-3)
Substituting r from Eq. (9-2) into Eq. (9-3), the equation of ellipsoid becomes

(x_xa)z (y—kc)z (Z_Zo)2
e + e + O 1 (9-4)

in which x, and z, are the coordinates of the rotary center for 2D analysis, A, =
half length of the ellipsoid in the y direction, A. = half length of the cylinder, and
R = radius of the cylinder.

For any given values of x and z on the surface of the slope, the coordinate y
where the ellipsoid intersects the slope surface can be computed by Eq. (9-4),
which can be rewritten as

y=7bc+%\/R2—(x—xo)z—(z—zo)2 (9-5)

In Fig. 9-1(b), x,, is the x coordinate at the center of a slice. Point A (x,, 0, z)
is located on the slope surface at the plane of symmetry, where x,, and z can be
determined from the given cross section. Point B (x,, y, z) is located on the slope
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surface where it intersects with the failure surface, and y can be determined by
Eq. (9-5). After comparing these y coordinates at several slices, the maximum
value of y, which is the half length of the failure mass, can be found. Dividing
the half length of the failure mass into a number of columns, the y,, coordinate
at the center of each column, such as point C (x,,, ¥, z,,), can be found, where z,,
is the z coordinate at the bottom of the column and can be determined by

Zm — Zg _ R\/l_ (xm sza) _ (ym 7\‘2%6) (9'6)

The height of each column is the difference in z coordinates between the slope
surface and the bottom of the column.

Example 9.1 Fig. 9-2 shows the cross section of the failure mass on the plane of
symmetry with x, =40ft (12.2m), z, = 100ft (30.5m), and R = 107.7 ft (32.8 m). The
failure mass is divided into 10 slices in the x direction and 10 columns in the y
direction, including the first column. The first column has a length A., while the
remaining nine columns are divided evenly. If the failure mass has a half cylindri-
cal length, A., of 100ft (30.5m), and a half ellipsoidal length, A., of 200ft (61.0m),
determine the half length of the failure mass. What is the height of the sixth col-
umn in the fifth slice?

Solution From Eq. (9-5), y =100 +1.857/(107.7)2 — (x — 40)> — (z— 100)*. It is esti-
mated that the half length of the failure mass is maximum near the middle of the
cross section, so the y coordinates at three different centers of slices is computed
and compared as follows:

Note: Numbers in (40,100)

parentheses are

in feet.

R =107.7 ft
@
Q
2 y 5]

i e
o

Fig. 9-2. Example 9.1
Note: 1ft=0.305m
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xin ft 63 77 91
z on slope surface in ft 31.5 38.5 455
yin ft 248.3 249.1 237.1

The maximum y occurs at x = 77 ft, so the half length of the failure mass is
249.1ft. At the center of slice 5, x = 63 ft, at the center of column 6, y = 100 + 4.5 x
(249.1 - 100)/9 = 174.6 ft, and from Eq. (9-6),

_(63-40)" (174.6-100)*
(107.7)? (200)
or Height of column =31.5-2.8=28.7 ft.

Z,, =100 - 107.7\/1 =2.8ft,

9.1.2 Orientation and Area of Failure Surface

The failure surface at the bottom of each column is tilted in two different direc-
tions, as shown in Fig. 9-3. Given the x, and z, coordinates of the rotary center
and the x,, and z,, coordinates at the bottom of the column, as shown in Fig.
9-3(a), the angle of inclination, .., on the xz plane can be determined by

tan0,, = In=Xo 9-7)
20— Zn,

The inclination, 0,,, on the yz plane is shown in Fig. 9-3(b) and can be
obtained from Eq. (9-4) by taking partial derivative of z with respect to y and
assuming 0, as positive, or

2
%:tane = Yn A (Bj (9-8)
ay Zo = Zpy 7\’6

(a) XZPLANE (b) YZ PLANE

Fig. 9-3. Projection of normal forces on two different planes
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In 3D analysis, the movement of the failure mass is assumed parallel to the
xz plane, so all forces involved in force and moment equilibrium must be pro-
jected onto the xz plane. The only forces that are not parallel to the xz plane are
the effective normal force and the pore water pressure, which act in a direction
perpendicular to the failure surface. Therefore, it is necessary to determine the
dip angle, 6,, between the normal force and the vertical, z, axis so the normal
force and water pressure on the failure surface can be projected to the xz plane.
Egs. (9-11) and (9-17) for computing the dip angle, 6,, and the surface area, S,
were presented originally by Hovland (1997) and is derived following.

Fig. 9-4(a) shows the 3D view of a soil column. On the horizontal, or xy,
plane, the area of the column is a rectangle with a width Ax and a length Ay,
whereas the actual surface area is a parallelogram with a width of 4, a length of
b, and an angle of 6 between them. Also shown in the figure are the terms strike
and dip, which indicate the orientation of the failure surface. According to the
usual geological definition, the intersection between the failure surface and the
horizontal, or xy, plane is called a strike, and the intersection of the failure surface
with a vertical plane perpendicular to the strike is called a dip. The directions of
the strike and dip also are shown in Fig. 9-4(b).

Fig. 9-4(b) shows the dimensions of the failure surface on different planes.
Area ABC is a portion of the failure surface. Area ACD is the projection of the
failure surface on the xz plane, area ABD on the yz plane, and area BCD on the
xy plane. The angle between the strike and the x axis is 6; and the angle between

-Z ¢ W
N
6, 7
y - B
center of 4
lop surface /
-y pl 4
g o _~
coordinales) portion of /S -
failure surface Y
z
. c
—ae s e Y b
strike _| a —C=- ol & __ /. ]
di ry RN y
ip — o
Lo d
KA 0,
normal view of C
failure surface X / z

(a) Dimemsions of a Soil Column  (b) Dimensions of Failure Surface

Fig. 9-4. Three-dimensional view of failure surface
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the dip and the horizontal is 6,;, which is the same as the angle between the
normal force, N, and the vertical axis. The dimensions d’, €', and g’ are measured
on the failure surface, while those without the prime are measured on the three
orthogonal planes. In ABCD, #BDC is a right angle, so

c c
cing, = o t00e _ _ tand,
foJer+d c . ( c )2
tan®,, tano,, (9-9)
or sinf, = ;
( tan’6,, ]
1+ 5
tan“9,,

Similarly, a general expression can be derived for cos 6,

c
in®; . .
g dsin®, (tanexz )sm _ sin0,sin 6,

cos; === E c tan®
g an®,,
sin®, sin @, (9-10)
— 1 2
or 05’6, = (1-cos ezd)sm 0,
tan“ 0.,
After substituting Eq. (9-9) into Eq. (9-10) and simplifying,
1
cosB, = (9-11)

\/ 1+tan’@,, +tan’0,,

in which 6, = angle between the normal to the failure plane and the vertical,
z, axis.

The normal force on the xz plane always makes an angle, 8,., with the z axis,
but the angle between the force, N, normal to the failure plane and the z axis is
0,. To project N onto the xz plane, N must be multiplied by cos(6, — 8,.). For
example, when the failure surface is cylindrical, 6,, = 0, and, from Eq. (9-11), cos 6,
= c0s0,,, or cos(0; — 0,,) = 1, so the normal force actually lies on the xz plane.
When the failure surface is ellipsoidal or planar, with 8,, =0, then cos6, = cos6,,,
so cos (8, — 6,,) = cos6,,, or the normal force makes an angle of 6,, with the xz
plane and therefore should be multiplied by cos6,. to project onto the xz plane.

From the parallelogram shown in Fig. 9-4(a), the area of the failure surface
can be computed by

A
S=absin® = ( Ax j Y lsin® (9-12)
cosO,. /\ cos0,.



272 Slope Stability Analysis by the Limit Equilibrium Method

From AABC and the law of cosine,
fr=e”+d"”—2e'd" cos®
E, d/ f2 J

1
or cosO=—|—+—-—
Z(d’ e’ e'd

in which

(9-13)

e’=c/sinB,,, d’=c/sinb,,, f> =e*+d* =(c/tanb,,)* +(c/tanB,.)* (9-14)

Substituting Eq. (9-14) into Eq. (9-13) and simplifying,

cosO=sin6,, sin6,,

. _ . 2 . 2
or sme—\/l—sm 0,.sin”0,.

From Egs. (9-12) and (9-16),

S:( Ax )( Ay )Jl—sinzeyzsinzexz

cosO,, /\ cos6,.

(9-15)
(9-16)

(9-17)

For cylindrical failure surfaces, 8,. = 0, so the surface area at the bottom of

the cylinder is S = AxAy/cos©,., which is as expected.

Example 9.2 In Example 9.1, determine cos (8, — 6,.) for column 6 in slice 5. If
the soil has a unit weight of 125pcf (19.7kN/m’), determine the weight of the

column. What is the surface area at the bottom of this column?

Solution From Example 9.1, the coordinates at the bottom of column 6 in slice
5 are x = 63 ft, y = 174.6 ft, z = 2.8 ft. From Eq. (9-7), tan6,, = (63 — 40) /(100 — 2.8) =

0.237, or 0,, =13.2°. From Eq. (9-8),

2
tan,. = 174.6 — 100 (107.7) 0223,
100-2.8 \ 200
or 0, =12.6°

From Eq. (9-11),

cos8, = (1+tan’12.6° + tan®13.2°) /2 = 0.951, s0 8, = 18.0°,
or cos(0; —0,,)=cos(18.0°-13.2°)=0.996

From Example 9.1, Ax = 14ft, Ay = (249.1 — 100) /9 = 16.6 ft, height of the col-
umn = 28.7ft, so the weight of the column = 14 x 16.6 x 28.7 x 125 = 834,0001b.

From Eq. (9-17), the surface area at the bottom is

S=( i )( = )Jl—sin212.6°sin213.2°=244.3 ft

c0s13.2° J\ cos12.6°
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9.2 Failure Surfaces with Planar Ends

Instead of ellipsoids, this type of failure surface is cut short by two symmetrical
planes called the end planes, each with a given slope and oriented at a given
direction. A simple way to visualize this type of failure surface is an embankment
between two banks, and the surfaces of the bank are considered as the end
planes. These two end planes may not be parallel and can rotate at a given angle
apart. The failure surface between the end planes can be circular, composite, or
noncircular. When the failure surface intersects the end plane, it will follow the
end plane until the top of the fill is reached. In other words, the end planes also
form part of the failure surfaces.

Fig. 9-5 shows a 3D failure mass with an end plane. Due to symmetry, only
one-half of the failure mass is shown in (a) and (d). Section A-A at the central
part near the plane of symmetry, as shown in (b), is usually the most critical
section for 2D analysis. In 2D analysis, this section is assumed to be infinitely
long, whereas in 3D analysis the length is limited at each end by an end plane.
The intersection of the end plane and the failure surface is indicated by the
dashed line in (a). For any given cross section, such as B-B, the failure surface
inside the dashed line is the same as Section A-A, and that outside the dashed
line has a uniform slope, because the failure surface is on the end plane. Depend-
ing on the inclination of the end plane, this uniform slope may become quite
steep. Consequently, Section B-B may be more critical than Section A-A, thus
resulting in a lower factor of safety based on 3D analysis.

Fig. 9-6 shows how the end plane is defined and how the dimensions of the
failure mass are determined. The location of the end plane depends on the half
width of fill, W, at a given point A, the angle of end plane, 0, and the slope of
end plane, g. Note that g is a dimensionless parameter; for example, g = 0.5 if the
slope is 2:1. First, a horizontal plane is passed through point A with coordinates
(x4, Wy, z;). Next, on this horizontal plane, a line with an angle o with the x axis
is drawn through point A. Finally, using this line as the axis, the horizontal plane
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Fig. 9-5. Geometry of 3D failure surfaces with planar ends
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is rotated to incline at a slope of g, measured in a direction perpendicular to the
axis of rotation. This inclined plane is the end plane for 3D analysis.

In Fig. 9-6(a), ABCDE is the intersection of the slope surface with the end
plane, where A to E are the breaking points on the slope surface. Because these
breaking points are not located on the centerline of each slice, they are not used
to define y;, for the length of the failure mass. Note also that the slope of the end
plane in the y direction is g cos o, so the half length of the failure mass, v, at the
centerline of each slice with coordinates (x,, z;) on the slope surface can be deter-
mined by

Zy — Zg
gcosao

Ys =w; +(x; — x,)tano —

(9-18)

The half length of the failure mass is the maximum y, among all the slices.
This maximum should occur on a slice next to one of the breaking points on the
slope surface.

The distance, y;, to the end plane at the centerline of each slice with coordi-
nates (x; z) on the failure surface can be determined by

Z—2Z
Yr=w+ (xt - xf)tanoc— gtcost (9-19)
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The minimum y; among all the slices is used as the length of the first row of
columns, similar to the half length of the cylinder, A, in the ellipsoidal case. The
minimum y; is not located at the breaking point, F, but should occur on a slice
next to one of the breaking points on the failure surface.

Based on the half length of the failure mass, y,, and the half length of the first
row of columns, y;, the remaining failure mass can be divided evenly into a
number of columns, and the y coordinate at the center of each column, y,, can
be determined. If y,, <y, the cross section shown in Fig. 9-6(b) applies, so 6,. =
0. If y,. - y5 the failure surface is on the end plane and the z coordinate at the
center of the column can be determined as follows.

Similar to Eq. (9-19), y,, can be expressed as

Y =W + (X — x, ) tan o — ;tc:)sz(n; (9-20)
or z,=2z —gcoso|w; +(x; —x,)tano -y, | (9-21)
The orientation at the bottom of each column can be computed by
0,. =tan'(gsina) (9-22)
0,. =tan™' (gcosa) (9-23)

Example 9.3 Fig. 9-7(a) shows the upper half of the plan view for a 3D noncircu-
lar failure surface intercepted by an end plane. The end plane has an angle, o, of
30° and a slope, g, of 0.5. The cross section of the fill is shown in Fig. 9-6(b). The
half top width, w,, is 150ft (45.8 m). The cross section is divided into 10 slices in
the x direction and then subdivided into 10 columns in the y direction, including
the first column. (1) Compute the half length of the failure mass, y,, at each break-
ing point of the slope surface, and determine the half length of the failure mass,
which gives the largest y, measured along the centerline of the slice. (2) Compute
yp, where the failure surface intersects with the end plane at each breaking point
of the failure surface, and determine the half length of the first column. (3) De-
termine z,, 0,,, and 0,, at the center of columns 2 and 4, both located in slice 4.
(4) Plot the intersection of the end plane with the slope surface and also that with
the failure surface, and divide the failure mass into columns.

Solution (1) Use Eq. (9-18) to determine vy, at the four breaking points of the
slope surface:

When x, =0, z, =0, y, = 150 + (400 — O)tan 30° — (120 — 0) /(0.5 cos 30°) = 103.8 t.

When x, =200ft, z, = 80 ft, y, = 150 + (400 — 200)tan 30° — (120 — 80) /(0.5 cos 30°)
=173.11t.

When x, =240ft, z, = 80 ft, y, = 150 + (400 — 240)tan 30° — (120 — 80) /(0.5 cos 30°)
= 150.0 ft.

When x, = 360ft, z, = 120ft, y, = 150 + (400 — 360)tan30° — (120 — 120)/
(0.5 cos30°) = 173.1 ft.
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Fig. 9-7. Example 9.3

The maximum is 173.1ft, and it occurs when x, = 200 ft and x, = 360 ft. To compute
the area of the end columns, the half length of the failure mass is measured
along the centerline of the slices next to the breaking point, instead of at the
breaking point, so the following four cases should be investigated:

When x, =180 ft, z, = 72 ft, y, = 150 + (400 — 180)tan 30° — (120 — 72) /(0.5 cos 30°)
= 166.2ft.

When x, =220ft, z, =80 ft, y, = 150 + (400 — 220)tan 30° — (120 — 80) /(0.5 cos 30°)
= 161.5ft.

When x, = 340ft, z, = 113.3ft, y, = 150 + (400 — 340)tan30° — (120 — 113.3)/
(0.5 c0s30°) = 169.2 ft.

When x, = 380ft, z, = 120ft, y. = 150 + (400 — 380)tan30° — (120 — 120)/
(0.5 c0s30°) = 161.5t.

The maximum is 169.2 so the half length of the failure mass is 169.2 ft.
(2) Use Eq. (9-19) to determine y; at the four breaking points of the failure
surface.
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At point A, the coordinates of the failure and slope surfaces are the same, so
yr=103.8ft.

When x,= 160 ft, z,= 40 ft, ;= 150 + (400 — 160)tan 30° — (120 — 20) /(0.5 cos 30°)
= 57.6t.

When x;= 320 ft, z,= 52 ft, ;= 150 + (400 — 320)tan 30° — (120 — 52) /(0.5 cos 30°)
= 39.1t.

At point B, the coordinates of the failure and slope surfaces are the same, so
yr=150ft.

The minimum is 39.1ft, and it occurs when x; = 320ft, so the following two
cases should be investigated:

When x,= 300 ft, z,= 48 ft, y,= 150 + (400 — 300)tan 30° — (120 — 48) /(0.5 cos 30°)
= 41.5ft.

When x,= 340 ft, z,= 69 ft, ;= 150 + (400 — 340)tan 30° — (120 — 69) /(0.5 cos 30°)
= 66.9ft.

The minimum is 41.5, so the half length of the first column is 41.5 ft.

(3) At the fourth slice with x;=140ft and z,= 17.5ft, from Eq. (9-19), y,= 150
+ (400 — 140)tan30° — (120 — 17.5)/(0.5c0s 30°) = 63.4ft. The y coordinate at the
center of the second column is y,, =41.5 + 0.5 x (169.2 — 41.5) /9 = 48.6 ft, which is
smaller than y; of 63.4ft, so z,, 0., and 0, are the same as column 1, or z,, = 17.5ft,
0., =tan'(20/160) =7.1°, and 6,, =0.

At the fourth column, vy, = 41.5 + 2.5 x (169.2 — 41.5)/9 = 77.0ft, which is
greater than y; of 63.4ft, so the bottom is on the end plane. From Eq. (9-21), z,
=120 - 0.5 cos 30°[150 + (400 — 140)tan30° — 77.0] = 23.4ft. From Eq. (9-22), 6,. =
tan (0.5 sin30°) = 14.0°. From Eq. (9-23), 6, = tan (0.5 cos 30°) = 23.4°.

(4) The lines of intersection and the division into columns are shown in
Fig. 9-7(a).

9.3 Equation for Overall Moment Equilibrium

The equation for overall moment equilibrium is used in all three methods and
is presented in this section. The equation for determining the 3D factor of safety
is similar to that in 2D except that the summation of resisting and driving
moments must be extended to all of the slices in the x direction and all of the
columns in the y direction. Similar to Eq. (8-7) for the 2D case, the factor of safety
for circular failure surfaces can be expressed as

Z[RE(C&S@ +Nj fan%)}

F= j=1 i=1

m |:R] ivvl] Slne,] } + Cbi EH:VV,]XSL + i Ay] i L,’)\,L,‘
i=1 j=1 i=1

=1 j=1 i=1

(9-24)
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in which n = number of slices in the x direction, m = number of columns in the
y direction, and S = surface area computed by Eq. (9-17). For circular and com-
posite failure surfaces with ellipsoidal ends, the last term in the denominator of
Eq. (8-7) does not appear in Eq. (9-24), because the water pond is considered a
part of the failure mass, with a cohesion and friction angle equal to 0 and a unit
weight equal to 62.4pcf (9.8kN/m?), so there are no water pressures P, and P,
at both ends. The problem in using water pressures is that P, and P, change from
the column to the column and are more difficult to evaluate.

In Eq. (9-24), all variables with a subscript ij indicate that they vary with both
x and y coordinates. The radius of rotation, R, has a subscript j, because it varies
with the y coordinate only, whereas the line loads, L and A;, have a subscript i,
because they vary with the x coordinate only. If there is no line load on a column,
L should be assigned 0. If there is more than one line load on a column, they
should be superimposed to obtain the total effect. Note that the actual number
of slices or columns, 1 or m, in the x or y direction is not a fixed entity but varies
with the x or y coordinate.

For noncircular failure surfaces, similar to Eq. (8-8), the factor of safety can
be written as

ZZM(C’S + N’tan¢’)
2 N [Whoy + CWA, + AyLAL — Ay cos(8; =0, )(N” +U)] - Y Ay(Poh, — PAy)
(9-25)

Note that the subscript ij is not shown in Eq. (9-25) to save space. For a com-
posite failure surface, Eq. (9-24) can be used for the circular part and Eq. (9-25)
for the noncircular part. Eq. (9-25) is applicable to the simplified and original
Spencer methods and will be slightly modified for the normal method, as will
be discussed in the next section. In Eq. (9-25),

U=uS (9-26)

in which u = pore pressure normal to the failure surface with a surface area S.
One expression for the overturning moment due to weight is WA, = W(Ar sin6,,
+ Ay cos6,,). However, this expression is not as simple and direct as WA, = W(x,,
—X,). In 3D analysis, it is assumed that the movement of the failure mass is paral-
lel to the xz plane. Because the effective normal force, N’, and water pressure, U,
are the only two forces not parallel to the xz plane, they must be projected onto
the xz plane by multiplying with cos (6, — 6,.).

9.4 Normal Method

Fig. 9-8 shows the forces on a slice. The solid lines with arrows are the directions
of actual forces, and the dashed lines with arrows are the components normal to
the failure surface. The normal method applies the concept of submerged weight
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—5 Oxz N'cos(0 - 0ycz)

U=uAxAycos0y,

Fig. 9-8. Components of forces normal to failure surface

to determine the effective stress normal to the failure surface. Because the sub-
merged weight is applied in the vertical direction, no projection of the water
pressure onto the xz plane is required. Similar to the 2D case in Fig. 8-3, the pore
pressure, U, on the failure surface is expressed as uAxAycos®,, instead of
uAxAysec0,,.

Consider the equilibrium of the forces in the normal direction:

N’cos(6; —0,,) =W cos8,, —uAxAy cos6,, —C;Wsin6,,
+ AyL(sina.cos®,, —cososin®,.)

9-27
N’ = W’cos8,, —C,Wsin8,, + AyL(sina.cos6,, —cososin6,, ) ( )
cos(9,; —0..)
in which W' = submerged weight, or
W’ =W —ulAxAy (9-28)

Eq. (9-27) is very similar to Eq. (8-9) except that 6 is replaced by 6., L
is replaced by AyL, and the expression in the right-hand side is divided by
cos (6, — 0,.). Substituting Eq. (9-27) into Eq. (9-24) or (9-25), the factors of safety
for circular or noncircular failure surfaces can be obtained.

In view of the fact that the normal method is used in both the simplified
Bishop and the original Spencer methods for determining the initial factor of
safety, three examples, each using a different type of failure surface, are given to
illustrate how the failure mass is divided into rectangular columns. All calcula-
tions were made by hand, and they checked well with the results obtained by
LEAME, thus validating the correctness of the LEAME computer program.
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Example 9.4 Fig. 9-9(a) shows the central cross section and Fig. 9-9(b) the plan
view of a 3D circular failure surface. The failure mass consists of a half cylinder
with A, = 90ft (27.5m) and a half ellipsoid with A, = 200ft (61 m). The soil has a
cohesion of 200 psf ("9.6kN/ m?), a friction angle of 30°, and a total unit weight of
125pcf (19.7kN/m?). If the failure mass is divided into five slices in the x direc-
tion and three columns in the y direction, determine the factor of safety by the
normal method.

Solution The division of the failure mass into five slices and three columns is
not sufficient but is used only to demonstrate how the failure mass is divided, es-
pecially how to handle the columns of irregular shape adjacent to the boundary.

Fig. 9-9(a) shows the coordinates at the centerline of each slice. Given the x
coordinates, the z coordinates on the surface of the slope are equal to 0.5x and

those on the failure surface can be determined by z =165 - \/ (167.7)* — (x — 30)* .

First, consider the dimensions in the y direction. Given the x and z coordi-
nates of points 1, 2, and 3, as shown in Fig. 9-9(a), the corresponding y coordinate
of the ellipsoid can be computed by Eq. (9-5), or

2‘:[ 2 2 2

Table 9-1 presents the y coordinates of the failure surface computed by Eq.
(9-29) and the length of each column. The maximum y is 210 ft. Because the length
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Fig. 9-9. Example 9.4
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Table 9-1. Length of Each Column in y Direction

Location 1 2 3
x 54 90 126
z 27 45 63
y 200 210 200
1st column length 90 90 90
2nd column length 60 60 60
3rd column length 50 60 50
y coordinate at center of 3rd column 175 180 175
Note: All dimensions are in feet.

of the first column should be equal to A, or 90ft, each of the remaining two col-
umns should be (210 — 90)/2 = 60 ft. The length of column 3 for slices 2 and 4 is
200 — 150 = 50ft, and that for slice 3 is 210 — 150 = 60 ft.

Next, consider the dimensions in the x direction. For any given y coord-
inate at the center of a column, the radius of circle, r, can be computed by

Eq. (9-2), or
_ 2
r=167.7.1- Y =90 (9-30)
\" 40,000

The intersection of the circle with the slope surface can be determined as
follows.

The equation of the circle is (x — 30)* + (z — 165)* = 1. Replacing z by 0.5x (z =
0.5x is the equation for slope surface), the equation becomes 1.25x* — 225x + 28125
—-72=0,0r

+/5r2 -
x=225_ 5r*-90,000 (9-31)

25

Two values of x are obtained, depending on the sign before the square root.
The small x, designated as x;, is applicable to the first slice and the larger x, desig-
nated as x,, is applicable to the last slice. For the second column with y = 120ft, it
can be found from Egs. (9-30) and (9-31) that r =165.8ft, x; =2.9ft, and x, = 177.1 ft.
Except for the two shaded columns at the corner (to be discussed later), the area,
the center, and the radius of each column for computing the factor of safety are
shown in Fig. 9-9(b). Also shown but in dashed lines are the actual boundaries
of the failure mass. The factor of safety is based on the information provided by
each rectangular column, instead of the actual boundaries.

To determine the dimensions of the shaded columns, it is necessary to know
the x,, and y,, at its center. Because x,, depends on y,, and both are not known a
priori, an iteration process must be used. First, assume x,,, and the y coordinate of
the boundary can be computed by Eq. (9-29), so y,, can be determined. Knowing
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Table 9-2. Iteration Method to Determine Dimensions of Left Corner Column

Iteration Assumedx, Boundary,y Center,y, Radius,r Boundary,x Computed x,,

1 27.0 175.7 162.9 156.2 18.5 27.2
2 27.2 176.0 163.0 156.1 18.6 27.3
3 27.3 176.1 163.1 156.1 18.6 27.3

Note: All dimensions are in feet.

Y, the x coordinates of the boundary can be computed by Egs. (9-30) and (9-31),
so x,, can be determined. Using the new x,, as the assumed x,, the process is re-
peated until x,, converges. Table 9-2 illustrates the iteration process for determin-
ing the dimensions of the column at the left upper corner.

Similar to the LEAME program, the width of the corner column is assumed
as half of the regular width, so x,, is initially assumed as 27 ft. After three itera-
tions, the computed x,, is 27.3ft, which is equal to the assumed x,,. The results
show that the x coordinate of the left boundary is 18.6ft and that of the top
boundary is 176.1ft, so the area of the column on the xy plane is (36 — 18.6) X
(176.1 — 150) = 454.1ft%, and its center is located at (27.3, 163.1).

The same procedure can be applied to the column at the right corner except
that x is taken as x,, instead of x;. Because of symmetry, the area of the right
corner column is the same as the left corner column, or 454.1ft?>, and its center is
located at (152.7, 163.1).

Table 9-3 shows the information on each column and how the factor of safety
can be calculated. The factor of safety is a ratio between the resisting moment and
the overturning moment, or F = 9,353,195/6,387,903 = 1.464, which checks with
the 1.469 obtained by LEAME. A slight discrepancy between the two is expected
because the manual method carries the length to one decimal point and the angle
to two decimal points, whereas the LEAME computer program carries the num-
bers to many more decimal points.

Each column of Table 9-3 is explained as follows:

1. The failure mass is divided into five slices in the x direction.

2. The failure mass is divided into three columns in the y direction.

3. The radius corresponding to each column center is computed by Eq.
(9-30).

4. The area is obtained by multiplying the slice width with the column
length. This is the area projected on a horizontal plane, not the surface
area for computing the cohesion resistance.

5. z,is the z coordinate at the center of the column bottom. These coordi-
nates at the cylindrical part are shown in Fig. 9-9(a) and those at the el-
lipsoidal part can be computed by Eq. (9-6), or

28,123 40,000

_ 2 _ 2
Zm=165—167.7\/1_(xm 30> (Yw—90)



Table 9-3. Analysis of 3D Failure Surface with Ellipsoidal Ends by Normal Method"

Radius Area Zn Weight 0,. 0, cos S N M, M,
Sl.  Co. ft ft* ft 10°1b sin6,. deg deg ©6,-6..) ft* 10°1b 10%ft-1b 10%ft-1b

@ 2) 3) @ (5) (6) () (8) 9 (10) (11 (12) (13) (14)
1 1 167.7 3,240 -2.3 4,576 -0.072 -4.13 0.00 1.000 3,248 4,564 550,831 —-55,252
1 2 165.8 1,986 -0.5 2,545 -0.064 -3.67 7.25 0.997 2,006 2,547 310,329 —26,584
1 3 156.1 454 8.9 266 -0.017 -097 18.19 0.955 478 278 39,978 -706
2 1 167.7 3,240 -1.0 11,340 0.143 8.22 0.00 1.000 3,274 11,223 1,196,439 271,945
2 2 165.8 2,160 0.9 7,047 0.145 8.33 7.25 0.999 2,200 6,980 741,110 169,417
2 3 151.8 1,800 15.1 2,678 0.158 9.09 21.72 0.970 1,959 2,726 298,387 64,230
3 1 167.7 3,240 8.4 14,823 0.358  20.98 0.00 1.000 3470 13,840 1,456,395 889,923
3 2 165.8 2,160 10.4 9,342 0362  21.22 7.69 1.000 2,335 8,709 911,095 560,703
3 3 149.8 2,160 27.8 4,644 0401 23.64 2477 0.988 2,560 3,944 417,803 278,964
4 1 167.7 3,240 27.5 14,378 0572  34.89 0.00 1.000 3950 11,794 1,274,397 1,379,201
4 2 165.8 2,160 29.8 8,964 0579  35.38 8.89 1.000 2,671 7,309 788,222 860,144
4 3 151.8 1,800 47.7 3,510 0.632 3920 26.87 0.997 2,495 2,728 314,835 336,741
5 1 167.7 3,240 61.6 7,857 0.787 5191 0.00 1.000 5,252 4,847 645,447 1,036,966
5 2 165.8 1,986 62.7 4,357 0787 5191 11.76 1.000 3,246 2,626 359,010 567,608
5 3 156.1 454 68.5 445 0786  51.81 2799 0.999 773 275 48,917 54,599
Sum 9,353,195 6,387,903

Note: Sl. =Slice; Co. = Column; cos (6, — 6,.) = Projection from normal direction to xz plane; S = Surface area at the bottom of each column; N’ =
Normal force at the bottom of each column; M, = Resisting moment; M, = Overturning Moment.

*Factor of safety by normal method = 9,353,195/6,387,903 = 1.464, which is about the same as 1.469 by LEAME.
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o XD

10.

11.

12.
13.

14.

The x,, and y,, coordinates at each center are shown in Fig. 9-9(b). The
dashed lines in Fig. 9-9(b) indicate the actual boundaries of the failure
mass, which has nothing to do with the computation in Table 9-3.

The weight of each column =125 x Area x (0.5x,, — z,,).

From Eq. (9-7), tan®,. = (x,, — 30) /(165 — z,,), so sin6,, can be determined.
0,.=tan'(tan®,.).

For the first column, 6,. = 0; for the other columns, from Eq. (9-8),

tan®,, =0.703(y,, —90) / (165 -z,,), s0 6, = tan"(tan 6.
From Eq. (9-11), 8, = cos '[(1 + tan’0,, + tan’,.) *’], so
cos(8; —6,,) = cosf{cos'[(1+ tan® B,, + tan’6,,) *°] - 0..]}

From Eq. (9-17), surface area

S = Area x \/1 —sin®6,, Xsin’0,, /(cos 0. X cosH,.)

From Eq. (9-27), normal force N' = Weight x cos0,./cos (6, — 6..)
The resisting moment is the numerator of Eq. (9-24),

M, =Radius x(0.2x S+ N’ x 0.57735)

The overturning moment is the denominator of Eq. (9-24), or

M, =Radius x Weight x sin8,.

The above method for treating the irregular columns at the boundary is used
in LEAME and can be summarized as follows:

1.

The failure mass is divided into a number of slices. The y coordinates
through the centerline of each slice are computed by Eq. (9-5) and com-
pared. The one with the largest y is used to divide the failure mass into a
number of columns, and all the other y’s are used to define the boundary
of the last column in each slice and the y coordinate of its center.

Based on the y coordinate at the center of column, the radius of the circle
can be determined from Eq. (9-2) and the x coordinates x, and x,, where
the circle intersects with the slope surface and forms the left and right
column boundaries, can be computed. Knowing the column boundaries,
the x coordinate of the column center can be relocated as shown in
Fig. 9-9(b).

The stated procedures for relocating the column center are applicable to
those columns where one of the dimensions, either x or y, is fixed, and the
other is to be determined. For the two corner columns where both dimen-
sions are not known, a trial-and-error method must be used to determine
the column boundaries. First, the x coordinate, x,, at the center of the
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column is assumed, and the y coordinate can be computed by Eq. (9-5),
thus the y coordinate, y,, at the center of the column can be determined.
From y,, the radius of the circle, r, can be obtained by Eq. (9-2), so the x
coordinate of the column boundary and a new x,, can be computed. The
process is repeated until x,, converges.

Example 9.5 Fig. 9-10(a) shows the central cross section, and 9-10(b) shows the
plan view of an embankment with a 3D composite failure surface. The embank-
ment is placed on a soft soil layer, designated as soil 1, with a thickness of 5ft,
a cohesion of 100 psf (4.8kN/m?), and a friction angle of 20°. The soil in the em-
bankment, designated as soil 2, has a cohesion of 200 psf (9.6kN/m?) and a fric-
tion angle of 30°. To simplify the calculation, both soils are assumed to have the

(42.2.400)
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Fig. 9-10. Example 9.5
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same total unit weight of 125pcf (19.7kN/m?’). Because a center at (42.2, 400)
and a radius of 443.8ft (135.4m) are given, there is no need to generate other
composite failure surfaces by placing an imaginary rock line below the weak soil
layer. The failure mass consists of a half cylinder with A, =50ft (15.3m) and a half
ellipsoid with A, = 100t (30.5m). If the failure mass is divided into four slices in
the x direction and five columns in the y direction, determine the factor of safety
by the normal method.

Solution Fig. 9-10(a) shows the dimensions of the slope and the coordinates at
the centerline of each slice. Given the x and z coordinates of points 1, 2, 3, and 4
on the slope surface, as shown in Fig. 9-10(a), the corresponding y coordinate of
the ellipsoid can be computed by Eq. (9-5).

For point 1 withz=0,

y =50+ (100/443.8)\/(443.8)2 — (x — 42.2)2 — (0 — 400)?,

(9-32)
or y=50+0.225/35,178 + 84.4x — x*
For the other three points with z = 0.5x,
y =50+ (100/443.8)\[196,958 — (x — 42.2)? — (0.5x — 400)? 033)

or y=50+ 0.2254/35,177 + 484.4x —1.25x2

Table 9-4 presents the y coordinates of the failure surface and the division of
the failure mass into columns. The maximum y is 114 ft. Because the length of the
first column should be equal to A, or 50ft, each of the remaining four columns
should be (114 — 50) /4 = 16 ft. Next, consider the dimensions in the x direction.
For any given y,, coordinate at the center of a column, the radius of circle, 7, can
be computed by Eq. (9-2), or

=2
r=4438[1- % (9-34)

Table 9-4. Division of Failure Mass into Columns in y

Direction

Location 1 2 3 4
x =75 75 225 375

z 0 37.5 112.5 187.5
y 84.3 107.1 114.0 95.6
Number of columns 4 5 5 4
Length of Column 5 — 9.1 16.0 —
Note: All dimensions are in feet; length of column 2 to 4 is 16 ft.
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The intersection of the circle with the slope surface can be determined as
follows:

The equation of circle is (x —42.2)> + (z — 400)* = . At the left boundary x = x,
andz=0, so

x, =42.2—/r* =160,000 (9-35)

At the right boundary, x = x, and z = 0.5x,, so (x, — 42.2)* + (0.5x, — 400)* = 72,
or 1.25x3 —484.8x, + 161,780 — r> = 0. The solution of this quadratic equation is

2 —_—
_ 484.8 ++/5r° = 573,869 (9-36)

25

X2

The intersection of the circle with the bottom of the weak layer can be deter-
mined as follows:
The equation of circle is (x —42.2)* + (z — 400)> = r*. With z = -25ft (7.6 m),

2
‘= 84.4++/4r--722,500 (9-37)

2

The use of the negative sign before the square root gives the x, coordinate
of the left intersecting point, and the positive sign gives the x, coordinate of the
right point.

Table 9-5 shows the radius, r, and the boundaries, x; and x,, of the first three
columns. The procedures for determining the dimensions of the two corner col-
umns are described in the previous example and are presented in Table 9-6.

The dimensions of each column and its radius and the coordinates at each
center are shown in Fig 9-10(b). For columns with the same y coordinate at the
center, the radius is the same as that shown in slice 3 and is not repeated in
the figure. The number of columns in slice 4 is based on the center at column
1 with the x coordinate of 375ft. When the center of column 4 is moved to

Table 9-5. Radius and Boundaries of First Three

Columns

Column 1 2 3
Y 25.0 58.0 74.0
r 443.8 4424 430.8
X1 -150.0 -146.8 -117.8
X, 450.0 448.4 4319
X, —85.6 -80.7 -28.3
X 170.0 165.1 112.7
Note: All dimensions are in feet.
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Table 9-6. Iteration Method to Determine Dimensions of Corner Columns

Iteration Assumedx, Boundary,y Center,y, Radius,r Boundary,x Computed x,,
Left Corner Column (Slice 1) X,
1 -37.5 89.4 85.7 414.6 —66.9 -33.5
-33.5 89.8 85.9 414.2 —-65.3 -32.7
-32.7 89.8 85.9 414.2 —65.3 -32.7
Right Corner Column (Slice 4) Xa
1 337.5 103.4 92.7 401.3 386.3 343.2
2 343.2 102.4 92.2 402.3 388.0 344.0
3 344.0 102.2 92.1 402.6 388.5 344.2
4 344.2 102.2 92.1 402.6 388.5 344.2
Note: All dimensions are in feet.

an x coordinate of 344.3 ft, there are actually five columns in slice 4, so columns
4 and 5 are combined to form a single column.

Table 9-7 shows the information on each column and how the factor of safety
by the normal method can be calculated. Each column is explained as follows.

1.
2.
3.

The failure mass is divided into four slices in the x direction.

The failure mass is divided into five columns in the y direction.

The area is obtained by multiplying the slice width with the column
length. This is the area projected on a horizontal plane, not the surface
area for computing the cohesion resistance.

Z,, is the z coordinate at the center of the column on the failure surface.
These coordinates at the cylindrical part are shown in Fig. 9-10(a), and
those at the ellipsoidal part can be computed by Eq. (9-6), or

— 2 _ 2
Zy = 400—443.8\/1— (X, —422)°  (yw—50)
196,958 10,000

The x,, and y,, coordinates at each center are shown in Fig. 9-10(b). If the
computed z,, is smaller than —25 ft, which is the elevation at the bottom of
soil 1, the failure surface is along boundary line 1 with z,, = -25ft.

For the columns in the first slice, Weight = 125 x Area x (0 — z,,), and for
those in the other slices, Weight = 125 x Area X (0.5x,, — z,,).

If z,, = -25ft, 0., = 0. Otherwise, from Eq. (9-7), 0., = tan"[(x,, — 42.2) /(400
- z,,)], which applies to both the cylindrical and the ellipsoidal surfaces.
If z,, = —25ft, 8,, = 0. Otherwise, from Eq. (9-8), 6,, = tan"'[19.79(y,, — 50)/
(400 - z,)].

From Eq. (9-11), 6, = cos'[(1 + tan’0,, + tan’0,,)*’], so cos(6; — 0.,) =
cos f{cos '[(1 + tan’0,, + tan’0,,) ] — 0,.]}.



Table 9-7. Analysis of 3D Composite Failure Surface by Normal Method"

Area Zm Weight 0., 0,. cos S N A M M, M,

Sl.  Co. ft? ft 10°1b deg deg ©,-6,) ft* 10°1b ft ft 10%ft-1b 10°ft-1b

o @ 3) @ (5) (6) (7) 8) 9 (10) (11) (12) (13) (14)

1 1 7,500 -25.0 23,438 0.00 0.00 1.000 7,500 23,438 -117.2 425.0 3,944,312 0

1 2 2,349 -25.0 7,340 0.00 0.00 1.000 2,349 7,340 -1156 425.0 1,235,238 0

1 3 1,885 -18.8 4429 1353 4847 0.813 2,879 5,297 0 430.8 1,565,538 —446,388

1 4 516 -7.2 464 -1043 60.59 0.639 1,055 714 0 414.2 258,141 —34,793

2 1 7,500 -25.0 58,594 0.00 0.00 1.000 7,500 58,594 32.8 4250 9,382,501 0

2 2 2,400 -25.0 18,750 0.00 0.00 1.000 2400 18,750 32.8 4250 3,002,388 0

2 3 2400 -25.0 18,750 0.00 0.00 1.000 2,400 18,750 32.8 4250 3,002,388 0

2 4 2,400 -5.4 12,870 465 6274 0.528 5,244 24,295 0 406.7 6,131,216 424,332

2 5 1,365 24.0 2,303 499  70.06 0.421 4,004 5,450 0 3774 1,489,733 75,600

3 1 7,500 —-4.4 109,594 24.33 0.00 1.000 8,231 99,861 0 443.8 26,317,773 20,038,368

3 2 2,400 -2.8 34,590 2439 2141 0.993 2,798 31,725 0 442.4 8,350,759 6,319,146

3 3 2,400 9.9 30,780 25.09 5043 0.889 3932 31,359 0 430.8 8,138,470 5,622,799

3 4 2,400 36.6 22,770 26.68  65.23 0.776 5345 26,219 0 406.7 6,591,203 4,158,057

3 5 2,400 81.0 9,450 29.87  73.86 0.717 8,742 11,429 0 367.7 3,069,168 1,730,550

4 1 7,500 106.4 76,031 48.59 0.00 1.000 11,339 50,289 0 443.8 13,891,902 25,306,771

4 2 2,374 1079 23,503 48.68  28.36 0.999 3,817 15,534 0 4424 4,305,419 7,809,044

4 3 2,110 1158 17,724 48.76  59.00 0.966 4,751 12,059 0 430.8 3,408,691 5,741,551

4 4 1,788 1339 8,549 4859  72.18 0.909 6,184 6,221 0 402.6 1,943,953 2,581,356
Sum 106,028,793 79,326,393

Note: Sl. = Slice; Co. = Column; cos (8, — 6,.) = Projection from normal direction to xz plane; S = Surface area at the bottom of each column; N’ =

Normal force at the bottom of each column; M, =Resisting moment; M, = Overturning Moment.
*The factor of safety by normal method = 106,028,793 /79,326,393 = 1.337, which checks with the 1.338 obtained by LEAME.
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9. From Eq. (9-17), surface area S=Areax \/ 1-sin*0,, xsin’0,, /
(cos®,, Xcos0,,)

10. From Eq. (9-27), normal force N’ = Weight X cos 6.,/ cos (6, — 6..).

11. When the failure surface is along boundary line 1, or z,, = -25ft, Ay = x,,
—42.2 ft. Otherwise, Ay =0.

12. When z,, = -25ft, Ar = 425 ft. Otherwise, Ar can be computed by Eq. (9-41).

13. The resisting moment is the numerator of Eq. (9-25), or M, = Ar (cS +
N'tan¢). Note that ¢ = 0.1ksf and ¢ = 20° when z, = -25ft, and that ¢ =
0.2ksf and ¢ = 30° when otherwise.

14. When z,, = -25ft, or the failure surface is horizontal, the overturning mo-
ment, M,, is 0, because, according to the denominator of Eq. (9-25), M, =
AW = Aycos (8, — 6.,)N', where cos (0, — 0,.) =1 and N' = W. If z,, is greater
than —25ft, or the failure surface is circular with R = Ay, from the denomi-
nator of Eq. (9-24), M, = A+ x Weight X sin,..

Example 9.6 Fig. 9-11(a) shows the cross section and 9-11(b) shows the plan view
of a 3D noncircular failure surface. Because of symmetry, only one-half of the
failure mass is shown on the plan view. The fill has a width, w,, of 200 ft (61 m) at
the top. The end plane has an angle, o, of 20° and a slope, g, of 0.75. The soil has
a cohesion of 200 psf (9.6kN/m?), a friction angle of 30°, and a total unit weight
of 125pcf (19.7kN/m?). If the failure mass is divided into three slices in the x
direction and three columns in the y direction, determine the factor of safety by
the normal method.

Solution To plot the boundary of the failure mass, it is only necessary to com-
pute the y, coordinate at the toe, because the intersection of the slope surface and
the end plane is a straight line. With x; =0, z, =0, x; = 300ft, z, = 150 ft, w, = 200{t,
o.=20° and ¢ =0.75, from Eq. (9-18), y; =200 + 300 x tan20° — 150/(0.75 x cos 20°)
=96.41t.

Moment Center

=
5 _ &
(50,200) 9=075/ ¥
vl plane
Note: Coordinates in parentheses (300,150) 2007 Lt P = _A -
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Fig. 9-11. Example 9.6
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To determine the area, weight, and center of the columns requires the values
of y, through the centerline of each slice. These values for the three slices are
113.6ft, 148.2 ft, and 182.6 ft and, because of a straight-line boundary, can be com-
puted simply by y, = 96.4 + 0.345x,,. The (x,,, y.,) coordinates at the center of each
column are noted in Fig. 9-11(b). The maximum y, is 182.6 ft, which is the half
length of the failure mass.

To determine the length of the first column, the intersection of the failure sur-
face and the end plane at the center of each slice must be found. From Eq. (9-20),

When x,, = 50, z, = 0, y; = 200 + (300 — 50)tan 20° — (150 — 0)/(0.75 X c0s20°)
= 78.2ft.

When x,, = 150, z,, = 25, ;= 200 + (300 — 150)tan 20° — (150 — 25) /(0.75 X c0s 20°)
= 77.21t.

When x,, = 250, z, = 100, y; = 200 + (300 — 250)tan20° — (150 — 100)/
(0.75 x c0s20°) = 147.3 ft.

The minimum y;is 77.2 ft, which is the length of the first column. The length
of the other columns is (182.6 — 77.2) /2 = 52.7 ft. The division into three slices and
three columns is shown in Fig. 9-11(b). The intersection of the failure surface with
the end plane is indicated in dashed lines. Any column with a center inside the
dashed lines, hereafter referred to as case 1, has the cross section shown in Fig.
9-11(a), whereas that outside the dashed lines, referred to as case 2, has a base
resting on the end plane.

The determination of moment arms A; and Ay is similar to the 2D case. The
point of intersection (x, ) of two perpendicular lines, one tangent to the failure
surface and the other passing through the moment center can be obtained from
Egs. (8-15) and (8-14), or

200 -z, + x,, tan0,, + 57%
x= —2nte (9-38)
tan6,, +
tan®.,
22200+ 20"% (9-39)
tan©.,

Knowing the point of intersection (x, z), Ay and Ar can be computed by Egs.
(8-16) and (8-17), or

Ay =t (x = x0)? + (2= 200 (9-40)

Ay is positive if x < x,, and negative if x > x,,.

Ar =X =2, ) +(z-2,) (9-41)

In case 1, when the cross section in Fig. 9-11(a) applies, z,, at column 1 can be
obtained by averaging the z coordinates at the two end points, and tan®,, is the
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slope of the failure surface and can be computed from the coordinates of the two
end points. In case 2, when the failure surface is along the end plane, from Eq.
(9-21), z,, = 150 — 0.75 cos20° [200 + (300 - x,,)tan20° - y,,] = 0.257 x,, + 0.705 y,,
—-67.9; from Eq. (9-22), 6., = tan (0.75 x sin20°) = 14.39°.

The computations of moment arms, Ay and Ar, for each column are shown in
Table 9-8.

Table 9-9 shows the information on each column and how the factor of safety
can be calculated. The factor of safety by the normal method is F =
17,413,418/12,083,234 = 1.441, which checks with the 1.442 obtained by LEAME.
Each column in Table 9-9 is explained as follows.

1.

2.

The failure mass is divided into three slices in the x direction, each 100 ft
wide.

The failure mass is divided into three columns in the y direction. How-
ever, only two columns exist in slice 1, because the third column is cut off
by the end plane.

The area is the product of the slice width and the column length. All of the
slices have the same width of 100ft. The column lengths can be found
from the dimensions shown in Fig. 9-11(b).

The vertical coordinate, z,, at the center of the column bottom can be ob-
tained from Table 9-8.

The weight = (0.5 x,, — z,,) X Area x 125.

The values of tan8,, can be found in Table 9-8, so 6,, = tan '(tan6..).

In case 1, 0,, = 0. In case 2, from Eq. (9-23), 6,, = tan™'(0.75 x c0s20°) =
35.18°.

From Eq. (9-11), 8; = cos '[(1 + tan’6,, + tan’8,,)*’], so cos(6; — 6..) =
cos {cos '[(1 + tan’0,, + tan’6,,) *°] — 0,.]}.

From Eq. (9-17),

S = Areax \/1 +tan’0,, +tan’0,, /(cos 0. X cosH,,)

Table 9-8. Computations of Moment Arms for Noncircular Failure Surface

SL Co xXn (F)  y,, (D) Z, (ft) tan@,,  x (ft) z (ft) Ay () Ap(fD)
1 1 50 38.6 0 0 50.0 0.0 0.0 200.0
1 2 50 95.4 12.2 0.257 95.3 23.7 —46.7 181.9
2 1 150 38.6 25.0 0.500 140.0  20.0 11.2 201.2
2 2 150 103.6 43.7 0.257 93.9 29.2 57.9 176.4
2 3 150 139.1 68.7 0.257 87.9 52.5 64.2 152.3
3 1 250 38.6 100.0 1.000 200.0 500 70.7 212.1
3 2 250 103.6 100.0 1.000 200.0  50.0 70.7 212.1
3 3 250 156.3 106.5 0.257 84.9 64.2 170.4 140.2




Table 9-9. Analysis of 3D Failure Surface with Planar Ends by Normal Method"

Weight 0,. 0,. cos N A Ar M, M,
Sl.  Co. Area z,(f)  (10°1b)  (deg) (deg) (0,—6.) S(f)  (10°Ib) (ft) (ft) (10°ft-1b) (10%ft-1b)

@ @ () 3) @) (5) (6) ] ®) ()] (10) (k) (12) (13) (14)
1 1 7,720 0.0 24,125 0.00 0.00 1.000 7,720 24,125 0.0 200.0 3,094,515 0
1 2 3,640 12.2 5,824 1439  35.18 0.924 4,551 6,105 -46.7 1819 806,713 265,377
2 1 7,720 25.0 48,250 26.57 0.00 1.000 8,632 43,181 112 201.2 5,363,381 4,341,373
2 2 5,270 43.7 20,619 14.39  35.18 0.924 6,588 21,615 579 1764 2,433,795 905,506
2 3 1,830 68.7 1,441 1439 35.18 0.924 2,288 1,511 642 1523 202,555 54,466
3 1 7,720 100.0 24,125 45.00 0.00 1.000 10,917 17,059 70.7 2121 2,552,076 3,618,929
3 2 5,270 100.0 16,469 45.00 0.00 1.000 7453 11,645 70.7 2121 1,742,156 2,470,499
3 3 5,270 106.5 12,187 1439  35.18 0.924 6,588 12,768 1704  140.2 1,218,227 427,084
Sum 17,413,418 12,083,234

Note: Sl. =Slice; Co. = Column; cos (8, — 6,.) = Projection from normal direction to xz plane; S = Surface area at the bottom of each column; N’ =

Normal force at the bottom of each column; M, = Resisting moment; M, = Overturning Moment.

*Factor of safety by Normal method =17,413,418/12,083,234 = 1.441, which checks with the 1.442 obtained by LEAME.
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10. From Eq. (9-27), normal force N’ = Weight X cos 6,,/cos (6, — 6..).

11. Values of Ay can be obtained from Table 9-8.

12. Values of Ar can be obtained from Table 9-8.

13. The resisting moment is the numerator of Eq. (9-25), or M, = A+(0.25 +
N'tan 30°).

14. The overturning moment is the denominator of Eq. (9-25), or

M, = Weight x(x,, —50) — Ay X N X cos(6,; —6,.)

9.5 Simplified Bishop Method

Similar to Eq. (8-18) and summing the forces in the vertical direction to zero,

W _(C'S + N’tan¢@’
F
—uScos(6; —6,,)cos0,, =0

)sin 0.. + AyLsino.— N’ cos(0; —0,.)cos 0., 9-42)

Note that the first N’ in parentheses is not multiplied by cos (6, — 8..), because
the terms in parentheses represent the shear force, which is parallel to the xz
plane. Only the second N' term, which represents the normal force, has to be
multiplied by cos (6, — 6..). Eq. (9-42) can be simplified to

_ F[W + AyLsino.— uScos(8,; —0,.)cos8..] - c’Ssin6,.
B Fcos(6; —6,,)cosO,, +sinb,, tan ¢’

Nl

(9-43)

By substituting Eq. (9-43) into Eq. (9-24) or (9-25), the factor of safety for
circular or noncircular failure surfaces can be determined. Since N’ depends on
F and F depends on N’, an iteration method must be applied.

Example 9.7 Same as Example 9.4, determine the factor of safety by the simpli-
fied Bishop method using the column information presented in Table 9-3.

Solution Table 9-10 is a spreadsheet for computing the factor of safety by the
simplified Bishop method. Some explanations on the spreadsheet are in order:

1. Data on radius, r, surface area, S, weight, W, 8,,, and cos (6, — 6,,) can be
obtained from Table 9-3. The normal force, N, can be obtained from Eq.
(9-43) and expressed as (F x W —c x S x sin®,,)/[F x cos (8, — 0,.) X cos0,.
+ sin@,, x tan ¢]. Because the unit of force is in kip, or 1,000 pounds, the
cohesion, ¢, should be 0.2ksf. To start the iterations, a safety factor, F, of
1.464 obtained by the normal method is assumed.

2. The resisting moment, M,, can be obtained from the numerator of Eq.
(9-24) and expressed as R x (¢ X S + N’ x tan¢). The sum of the driving
moment, M,, is shown at the bottom of the table and can be obtained from



Table 9-10. Spreadsheet for Ellipsoidal Ends Using Simplified Bishop Method"

ASSUMED FACTOR OF SAFETY 1.464 1.579
R S A2 0,, cos N M, N M,

SI Co. ft ft* kip radian (04-6,) kip ft-kip kip ft-kip

1 1 167.7 3,248 4,576 -0.072 1.000 4,755 569,338 4,743 568,127
1 2 165.8 2,006 2,545 —0.063 0.997 2,641 319,325 2,635 318,731
1 3 156.1 478 266 -0.018 0.955 282 40,330 282 40,308
2 1 167.7 3,274 11,340 0.143 1.000 10,780 1,153,587 10,827 1,158,119
2 2 165.8 2,200 7,047 0.144 0.999 6,701 714,369 6,730 717,197
2 3 151.8 1,959 2,678 0.158 0.970 2,584 285,967 2,599 287,239
3 1 167.7 3,470 14,823 0.358 1.000 13,637 1,436,744 13,777 1,450,325
3 2 165.8 2,335 9,342 0.362 1.000 8,586 899,351 8,676 907,943
3 3 148.8 2,560 4,644 0.401 0.988 4,238 440,281 4,293 444,971
4 1 167.7 3,950 14,378 0.572 1.000 13,360 1,426,066 13,581 1,447,411
4 2 165.8 2,671 8,964 0.579 1.000 8,325 885,456 8,465 898,875
4 3 151.8 2,495 3,510 0.632 0.997 3,189 355,269 3,257 361,176
5 1 167.7 5,252 7,857 0.787 1.000 7,459 898,311 7,654 917,249
5 2 165.8 3,246 4,357 0.787 1.000 4,103 500,429 4,214 510,978
5 3 156.1 773 445 0.786 0.999 376 58,013 389 59,235
From Table 9.3, M, 6,387,903 Sum of M, 9,982,835 10,087,884
Computed factor of safety 1.563 1.579

*Factor of safety by simplified method is F = 10,087,884 /6,387,903 = 1.579, which checks with the 1.595 obtained by LEAME.
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Table 9-3. The sum of the resisting moment divided by the sum of the
driving moment gives the computed factor of safety.

3. Using the computed F as the assumed F, the process is repeated until
the assumed F is equal to the computed F. It was found that the factor of
safety converges to 1.579 at the fourth iteration. The factor of safety ob-
tained by LEAME is 1.595. When a spreadsheet is used, it is not necessary
to show all the intermediate results. By trial and error, an assumed factor
of safety exactly equal to the computed factor of safety, or sometimes with
a difference of only 0.001, can be obtained.

Similar to 2D analysis, Newton’s method of tangent, as described in Section
8.6.1, can be used to solve F and speed up convergence. By substituting Eq. (9-43)
into (9-24) and simplifying, the factor of safety for a circular failure surface can
be obtained by

RZ Z ¢’Scos(0; —0,.)cos8,, +[W + Ay sina.— uScos(0; —6,.)cos6,, |tan ¢’
cos(0; —0,,)cos0,, +sin0,, tan¢’ / F
Y. > [RWsin6,. + A.CW + A, AyL]

F=

(9-44)

By naming the overturning moment in the denominator of Eq. (9-44) as M,
and W — uScos (6, — 8,,)cos 0,, as W,, the following equation similar to Eq. (8-57)
can be obtained:

¢’Scos(6; —6,.)cosO,,

M — RZZ +[W, + AyLsina]tan ¢’
F, cos(6; —0,,)cos0,, +sinf,, tan¢’

[¢’Scos(6; —6,,)cosH,,
M, RZZ + (W, + AyLsino) tan ¢’]sin 6., tan ¢”
[E, cos(8, —0,.)cos0,, +sin0,, tand’]*

Fpi =F,{1- (9-45)

Example 9.8 Same as Example 9.7, but determine the factor of safety by simpli-
tied Bishop method using Newton’s method of tangent or Eq. (9-45).

Solution To use the spreadsheet, Eq. (9-45) can be expressed as

Fm+1 = En (1 - M_—ZM\] (9—46)
M,-Y M,

in which M, = driving moment, M; =r x [¢' X § X cos(0; — 0,,) X cos6,, + W x
tano']/[F,, X cos(6;— 0,,) X cos0,, +sin 0., X tan¢p], and M, =7 x [¢' x S X cos (0, — 6,.)
X cos 0. + W X tan ¢'] x sin@,. x tan¢/[F,, X cos (6, — 0,.) X cos 0, + sin0,, X tan ¢]*.
Table 9-11 is the spreadsheet for computing the factor of safety.
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Table 9-11. Spreadsheet for Example 9.7 Using Newton’s Method of Tangent

ASSUMED FACTOR OF SAFETY 1.464 1.579
R S W 0,, cos M, M, M, M,
SI. |Co.| ft ft* kip radian| (84-6,,) | ft-kip | ft-kip | ft-kip | ft-kip

167.7 | 3,248 4,576 |-0.072| 1.000 388,892 | -11,385| 359,802 | —9,746
165.8 2,006 2,545 | -0.063| 0.997 218,118 | -5,582| 201,856 | —4,781
156.1| 478 266 |-0.018| 0.955 27,548 —206| 25,527 -177
167.7 |3,274 11,340 | 0.143| 1.000 787,969 | 42,338| 733,451 | 36,682
165.8 12,200 7,047 | 0.144| 0.999 487957 | 26,419| 454,210 22,891
151.8 {1,959 2,678 | 0.158| 0.970 195,332 | 11,883| 181,912| 10,306
167.7 13,470 14,823 | 0.358| 1.000 981,382 | 126,177 | 918,508 | 110,528
165.8 |2,335 9,342 | 0.362| 1.000 614,311 | 79,821| 575,012| 69,935
148.8 2,560 4,644 | 0.401| 0.988 300,738 | 43,528| 281,806 | 38,220
167.7 13,950 14,378 | 0.572| 1.000 974,089 |197,235| 916,663 |174,665
165.8 (2,671 8,964 | 0.579| 1.000 604,820 | 123,969 | 569,268 |109,824
151.82,495 3,510 | 0.632| 0.997 242,670 | 54,498 | 228,737 | 48,419
167.7 |5,252 7,857 | 0.787| 1.000 613,601 |173,942| 580,905 155,899
165.8 3,246 4,357 | 0.787| 1.000 341,823 | 96,899| 323,609 | 86,848

Q1L [O1|Ol | [ R [Q|WWIN[IN[(N|=|=] =
NP WQINRP|WIN[RP|W[IN[RP[W[N]|~

3 [156.1| 773 445 | 0.786| 0.999 39,626 | 11,225| 37,514| 10,060
From Table 9.3, Mo = | 6,387,903 6,818,877 | 970,762 6,388,780 | 859,575
Computed factor of safety 1.580 1.579

In Table 9-11, the first five items from r to cos (6, — 0,.) can be obtained from
Table 9-10, and the overturning moment, M,, from Table 9-3. First, an initial safety
factor of 1.464 by the normal method is assumed as F,,, and a new safety factor,
F,u1, of 1.580 is computed by Eq. (9-45). Using the new 1.580 as the assumed F,,
the factor of safety rapidly converges to 1.579 at the second iteration. It can be
seen that Newton’s method is very efficient and reduces the number of iterations
from four to two.

9.6 Original Spencer Method

The original Spencer method satisfies the overall force equilibrium in two per-
pendicular directions and is particularly useful for noncircular failure surfaces,
because any reasonable moment center can be selected and nearly the same
factor of safety can be obtained. This is not true when the normal or simplified
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Bishop method is used for noncircular failure surfaces, because the location of
the moment center has a significant effect on the factor of safety obtained.

Summing all forces in a direction perpendicular to the side force, the follow-
ing equation similar to Eq. (8-20) is obtained:

N’cos(0,; —0,,)cos(0,. —8)+ uScos(6, —0,.)cos(0,, —d)
+ CS-‘_menq)sin(exZ —-38)+C,Wsind —Wcosd— AyLsin(a.—8) =0

After simplification,

F[W cosd—uScos(6, —6,,)cos(6,, — ) — C;Wsind + AyLsin (o — 8)]
—¢’Ssin(0,, —9)

N’ =
Fcos(0; —0,.)cos(0,. — ) +sin(0,, —d)tan ¢’

(9-47)

To determine the factor of safety with respect to the moment equilibrium
under a given value of 9, the factor of safety is assumed first, and N’ is computed
by Eq. (9-43). Substituting the N’ thus determined into Eq. (9-24) or (9-25), a new
factor of safety is obtained. Using the new factor of safety as the assumed factor
of safety, the process is repeated until the factor of safety converges.

Similar to Eq. (8-22), the factor of safety with respect to force equilibrium can
be determined by

ZZ(C’S + N’tan¢)cos(0,, — )
Zz [Wsind+ (N’ +U)cos(0, —6,.)sin(0,, —8)+ C;W cosd + AyLcos (o — 8)]
(9-48)

in which U can be computed by Eq. (9-26). Eq. (9-48) in conjunction with Eq.
(9-47) can be used to determine the factor of safety with respect to force equilib-
rium. After the factors of safety for both moment and force equilibrium at three
different values of § are determined by Newton’s method of tangent, as described
in Section 8.6.1, the factor of safety that satisfies both moment and force equilib-
rium can be found, as shown in Fig. 8-8 and described in Section 8.4.3.

Example 9.9 Same as Example 9.5, but determine the factor of safety of a com-
posite failure surface by the original Spencer method using the column informa-
tion presented in Table 9-7.

Solution Table 9-12 is a spreadsheet for computing the factor of safety of a com-
posite failure surface by the original Spencer method. The factor of safety by
the original Spencer method is 1.485, which checks with the 1.486 obtained by
LEAME.

Most of the comments presented in Table 8-4 for 2D analysis are also
applicable to 3D analysis and will not be repeated here. Some additional com-
ments are:



Table 9-12. Spreadsheet for Composite Failure Surface by Original Spencer Method

DATA INPUT

S Weight 0., cos An Ar Aw 0.

Slice Col. ft? kip rad (04-6,,) ft ft ft deg

1 7,500 23,438 0.000 1.000 -117.2 425.0 -117.2 0.00
1 2 2,349 7,340 0.000 1.000 -115.6 425.0 -115.6 0.00
1 3 2,879 4,429 -0.236 0.813 0.0 430.8 -101.1 -13.53
1 4 1,055 464 -0.182 0.639 0.0 414.2 -74.9 -10.43
2 1 7,500 58,594 0.000 1.000 32.8 425.0 32.8 0.00
2 2 2,400 18,750 0.000 1.000 328 425.0 32.8 0.00
2 3 2,400 18,750 0.000 1.000 32.8 425.0 32.8 0.00
2 4 5,244 12,870 0.081 0.528 0.0 406.7 32.8 4.65
2 5 4,004 2,303 0.087 0.421 0.0 377.4 32.8 4.99
3 1 8,231 109,594 0.425 1.000 0.0 443.8 182.8 24.33
3 2 2,798 34,590 0.426 0.993 0.0 4424 182.8 24.39
3 3 3,932 30,780 0.438 0.889 0.0 430.8 182.8 25.09
3 4 5,345 22,770 0.466 0.776 0.0 406.7 182.8 26.68
3 5 8,742 9,450 0.521 0.717 0.0 367.7 182.8 29.87
4 1 11,339 76,031 0.848 1.000 0.0 443.8 332.8 48.59
4 2 3,817 23,503 0.850 0.999 0.0 442 4 332.0 48.68
4 3 4,751 17,724 0.851 0.966 0.0 430.8 323.8 48.76
4 4 6,184 8,549 0.848 0.909 0.0 402.6 302.1 48.59
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Table 9-12. (Continued)

Factor of safety based on moment equilibrium

Assumed angle & 0 0.3 0.6

Assumed Factor of safety 1.491 1.483 1.526

Slice Col. N Driving M. | Resisting M. N Driving M. | Resisting M. N Driving M. Resisting M.

kip ft-kip ft-Kip kip ft-kip ft-kip kip ft-Kip ft-kip

1 1 23,438 0 3,944,310 25,533 245,522 4,268,363 28,410 582,725 4,713,423
1 2 7,340 0 1,235,237 7,996 75,840 1,336,721 8,897 180,000 1,476,100
1 3 6,458 —447,772 1,854,216 8,858 —447,772 2,451,258 14,894 —447,772 3,952,575
1 4 877 —34,754 297,101 1,320 —34,754 403,121 2,573 34,754 702,627
2 1 58,594 0 9,382,495 63,577 —-163,449 10,153,334 70,421 -387,933 | 11,212,017
2 2 18,750 0 3,002,386 20,345 52,304 3,249,054 22,535 —124,138 3,587,831
2 3 18,750 0 3,002,386 20,345 -52,304 3,249,054 22,535 —-124,138 3,587,831
2 4 22,977 422,136 5,821,636 28,891 422,136 7,210,364 40,468 422,136 9,928,795
2 5 4,980 75,538 1,387,283 7,029 75,538 1,833,834 11,913 75,538 2,897,963
3 1 101,931 | 20,033,783 26,848,038 | 100,478 | 20,033,783 26,475,774 98,666 20,033,783 | 26,011,534
2 32,355 6,323,052 8,512,298 31,914 6,323,052 8,399,536 31,361 6,323,052 8,258,420

3 3 31,524 5,626,584 8,179,417 31,402 5,626,584 8,149,283 31,223 5,626,584 8,104,668
3 4 25,884 4,162,356 6,512,630 26,079 4,162,356 6,558,241 26,292 4,162,356 6,608,455
3 5 10,884 1,727,460 2,953,431 11,171 1,727,460 3,014,441 11,517 1,727,460 3,087,774
4 1 78,678 | 25,303,117 21,165,932 68,004 | 25,303,117 18,431,029 58,728 25,303,117 | 16,054,331
4 2 24,324 7,802,996 6,550,668 21,023 7,802,996 5,707,474 18,158 7,802,996 4,975,523
4 3 18,583 5,739,031 5,031,411 16,163 5,739,031 4,429,434 14,056 5,739,031 3,905,407
4 4 8,890 2,582,653 2,564,324 7,901 2,582,653 2,334,418 7,039 2,582,653 2,134,171
Sum 79,316,181 118,245,198 79,369,486 | 117,654,734 79,442,696 | 121,199,444
Computed Factor of safety 1.491 1.482 1.526
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Table 9-12. (Continued)

Factor of safety based on force equilibrium

Assumed angle 0 0.3 0.6

Assumed Factor of safety 1.349 1.465 1.642

Slice Col. N Driving F. Resisting F. N Driving E. Resisting F. | N in kip | DrivingE Resisting F.

kip kip kip kip kip kip kip kip kip

1 1 23,438 0 9,281 25,561 —627 9,604 27,996 —2,574 9,029
1 2 7,340 0 2,906 8,005 -196 3,008 8,767 —-806 2,828
1 3 6,561 -1,248 4,242 8,906 —2,390 4,916 13,785 -5,815 5,721
1 4 894 -103 715 1,330 —257 867 2,303 775 1,093
2 1 58,594 0 22,076 63,644 -1,492 22,846 69,436 —6,122 21,477
2 2 18,750 0 7,064 20,366 —478 7,311 22,220 -1,959 6,873
2 3 18,750 0 7,064 20,366 —478 7,311 22,220 -1,959 6,873
2 4 22,831 977 14,183 28,965 483 17,348 38,496 —2,812 20,211
2 5 4,930 181 3,634 7,055 53 4,764 11,015 —975 6,239
3 1 100,313 41,328 54,272 100,419 44,871 59,160 98,153 44,757 57,421
3 2 31,836 13,055 17,250 31,895 14,192 18,824 31,198 14,158 18,290
3 3 30,948 11,666 16,894 31,379 12,931 18,724 31,052 12,925 18,469
3 4 25,311 8,819 14,013 26,052 10,063 15,890 26,153 10,139 16,023
3 5 10,546 3,766 6,796 11,152 4,548 7,987 11,472 4,689 8,346
4 1 76,107 57,080 30,564 67,835 57,813 35,364 59,118 57,445 35,285
4 2 23,524 17,650 9,472 20,970 17,889 10,975 18,279 17,782 10,966
4 3 17,936 13,029 7,453 16,120 13,390 8,739 14,158 13,405 8,838
4 4 8,524 5,811 4,073 7,875 6,256 4,937 7,102 6,412 5174
Sum 172,011 231,953 176,571 258,575 157,914 259,156
Computed Factor of safety 1.348 1.464 1.641
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Table 9-12. (Continued)

Factor of safety and angle § that satisfy both moment and force equilibrium

D1=|0 D2=| 0.3 D3=|0.6
FM1 =|1.491 FM2=| 1.482 FM3 =| 1.526
FF1=|1.348 FF2=| 1.464 FF3 =|1.641
AM =|0.053 BM =|-0.021 CM =|0.268
AF =|0.061 BF=| 0.051 CF=|0.243
Angle D or 6={0.342 Factor of safety F =|1.485
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1. All the necessary input data, except A,, can be obtained from Table 9-7.
The moment arm, A, is the horizontal distance between the moment and
the column centers, or x, — x,,, and can be determined from Fig. 9-10.

2. For moment equilibrium, the normal force, N', can be computed by Eq.
(9-47) and expressed as (F x W x cosd — ¢’ x S x sin(8,, — 9))/(F X cos (6, —
0,.) X cos (0., — 8) + sin(0,, — d) X tan¢’). As explained in Example 9.5, the
resisting moment can be computed by the numerator of Eq. (9-24)). Note
that ¢ = 0.1ksf and ¢ = 20° when the failure surface is horizontal and that
c=0.2ksf and ¢ = 30° when the failure surface is circular. The driving mo-
ment is 0 when the failure surface is horizontal, with 0., = 0, and can be
computed by the denominator of Eq. (9-24) when the failure surface is
circular.

3. For force equilibrium, the normal force is the same as that for moment
equilibrium; the resisting force is the numerator of Eq. (9-48) expressed as
(c"x S+ N’ xtan¢’) x cos (0,, — 8). The driving force is the denominator of
Eq. (9-48) expressed as W x sind + N’ x cos (6, — 6,.) X sin(0,, — 0).

4. The last stage of the spreadsheet for determining the factor of safety was
explained in Example 8.4. The factor of safety is 1.485, which checks with
the 1.486 obtained by LEAME.

Example 9.10 Same as Example 9.6, but determine the factor of safety by the
original Spencer method using the column information presented in Table 9-9.

Solution Table 9-13 is the spreadsheet for determining the factors of safety by
the original Spencer method. The procedures are similar to Example 9.9. All the
necessary input data, except x,, can be obtained from Table 9-9. The moment
arm, A, is the horizontal distance between the moment and the column centers,
or x, — x,, and can be determined from Fig. 9-11. For moment equilibrium, the
normal force, N, can be computed by Eq. (9-47) and expressed as [F x W x cos 6
— ' x S xsin(0,, — 8)]/[F x cos (0; — 6) + sin (6., — ) X tan ¢']. The driving moment
is the denominator of Eq. (9-25) expressed as W x A, — N’ X Ay X cos (8; — 0,.), and
the resisting moment is the numerator of Eq. (9-25) expressed as Ar X (¢ x S + N’
x tan¢). For force equilibrium, the normal force is the same as that for moment
equilibrium, the driving force is the denominator of Eq. (9-48) expressed as W x
sind + N’ x cos (0, — 0,,) x sin (B, — 9), and the resisting force is the numerator of
Eq. (9-48) expressed as (¢’ x S + N’ x tan¢’) x cos (8., — 8). The factor of safety ob-
tained from the spreadsheet is 1.623 compared with 1.625 obtained by LEAME.

Summary

1. In 2D analysis, the slope is infinitely long and is represented by a single
cross section, or the most critical cross section. In 3D analysis, the slope



Table 9-13. Spreadsheet for Noncircular Failure by Original Spencer Method

INPUT DATA

S W 0,, cos A Ar Xm
Slice | Col. ft? kip deg. (04-6,,) ft ft ft
1 1 7,720 24,125 0.00 1.000 0 200.0 50.0
1 2 4,551 5,824 14.39 0.924 —46.7 181.9 50.0
2 1 8,632 48,250 26.57 1.000 11.2 201.2 150.0
2 2 6,588 20,619 14.39 0.924 57.9 176.4 150.0
2 3 2,288 1,441 14.39 0.924 64.2 152.3 150.0
3 1 10,917 24,125 45.00 1.000 70.7 212.1 250.0
3 2 7,453 16,469 45.00 1.000 70.7 212.1 250.0
3 3 6,588 12,187 14.39 0.924 170.4 140.2 250.0
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Table 9-13. (Continued)

Factor of safety based on moment equilibrium

Assumed angle & 0.0 0.3 0.6

Assumed factor of safety 1.687 1.630 1.629

Slice | Col. | Ninkip | D.M.in ft-kip | R.M.in ft-kip | N in kip | D.M.in ft-kip | R.M.in ft-kip | N in kip | D.M.in ft-kip |R.M.in ft-kip
1 1 24,125 0 3,092,825 | 27421 0 3,473,138 | 32,697 0 4,081,993
1 2 5,806 250,534 774,944 6,174 266,415 813,569 6,688 288,605 867,543
2 1 45,630 4,313,943 5,644,658 | 43,974 4,332,492 5,452,391 42,402 4,350,102 5,269,855
2 2 20,842 946,882 2,353,743 | 21,795 895,867 2,450,798 | 23,144 823,710 2,588,077
2 3 1,402 60,955 192,863 1,535 53,025 204,610 1,720 42,062 220,851
3 1 24,457 3,095,916 3,456,143 | 21,362 3,314,728 3,077,380 18,761 3,498,575 2,759,142
3 2 16,695 2,113,439 2,359,361 14,583 2,262,810 2,100,799 12,807 2,388,313 1,883,555
3 3 12,238 510,595 1,174,693 12,900 406,296 1,228,280 13,831 259,763 1,303,567
Sum 11,292,264 19,049,229 11,531,632 18,800,966 11,651,128 | 18,974,583
Computed Factor of safety 1.687 1.630 1.629
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Table 9-13. (Continued)

Factor of safety based on force equilibrium

Assumed angle & 0.0 0.3 0.6

Assumed factor of safety 1.487 1.581 1.705

Slice | Col. | Ninkip | D.FE inkip REinkip | Ninkip | D.E inkip REinkip |Ninkip | D.Finkip R.E in kip
1 1 24,125 0 15,464 27,536 -1,008 16,654 32,199 —4,559 16,608
1 2 5,721 1,313 4,079 6,179 1,442 4,470 6,629 1,195 4,450
2 1 44,693 19,987 24,610 43,894 21,410 26,692 42,298 21,494 25,890
2 2 20,575 4,724 12,776 21,809 5,108 13,885 22,962 4,389 13,689
2 3 1,376 316 1,212 1,537 356 1,343 1,702 276 1,353
3 1 23,521 16,629 11,142 21,240 17,036 12,772 18,824 17,089 12,822
3 2 16,057 11,352 7,606 14,499 11,630 8,719 12,850 11,666 8,753
3 3 12,070 2,771 8,022 12,909 3,019 8,756 13,715 2,549 8,675
Sum 57,093 84,912 58,993 93,289 54,099 92,240
Computed Factor of safety 1.487 1.581 1.705

Factor of safety and angle 8 that satisfy both moment a

nd force equilibrium

D1=|0 D2=| 03 D3=(0.6
FM1 =|1.687 FM2=| 1.630 FM3 =1.629
FF1=|1.487 FF2 =| 1.581 FF3 =|1.705
AM =|0.056 BM =|-0.051 CM=|0.304

AF=0.030 BF=| 0.047 CF={0.268

Angle D or $=0.410

Factor of safety F =1.623
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with the given cross section is cut short at each end, either by a half el-
lipsoid or by an end plane oriented at a certain direction. Within the el-
lipsoid or end plane, the cross section changes from one location to the
other, so the slices must be subdivided into a number of columns, each
representing a different cross section.

For failure surfaces with ellipsoidal ends, in addition to the coordinates
(xo, 2,) of the moment center and the radius, R, of the cylindrical failure
surface, as required in 2D analysis, the half length of the cylinder, A, and
the half length of the ellipsoid, A,, also must be specified or obtained by
trial and error. The y coordinates along the centers of the slices, where the
ellipsoid intersects the slope surface, can be computed by Eq. (9-5), and
the largest value of y is the half length of the failure mass. The length of
the first column is A, and the length of all other columns is equal to (half
length of the failure mass — A.)/ (m — 1), where m is the number of columns
specified. Based on the y coordinates computed here for each slice, the
length of the last column in each slice can be determined. Also, based on
the intersection of the slope surface with the circle at the center of each
column, the width of the column adjacent to the boundary of the failure
mass can be computed. Knowing the width and length of each column,
the x and y coordinates at its center can be located. Because the width and
length at the two corner columns are interdependent, a trial-and-error
process must be used to locate their centers.

For failure surfaces with planar ends, the location of the end plane is de-
fined by the half top width, w,, the angle of the end plane, o, and the slope
of the end plane, g. To determine the area, weight, and center of the col-
umns requires the values of y, through the center of each slice. These y;
coordinates can be computed by Eq. (9-18), and the largest v, is the half
length of the failure mass. The coordinates, y;, for the intersection of the
failure surface and the end plane through the center of each slice can be
computed by Eq. (9-19), and the smallest y; is the length of the first col-
umn. The length of all other columns is (maximum y, — minimum y;)/
(m — 1). However, the length of the last column in each slice must be re-
duced based on the y, through the center of each slice.

In 3D analysis, it is assumed that the movement of the failure mass is in a
direction parallel to the vertical, or xz, plane. In considering the force or
moment equilibrium, all forces, if not on the xz plane, must be projected
onto the xz plane. Except for the effective normal force, N’, and the neu-
tral force, U, which are normal to the failure surface, all other forces, such
as weight, seismic force, and external or internal loads, are parallel to the
xz plane. Therefore, all equations used for 2D analysis can be easily ex-
tended to 3D analysis by multiplying N" and U with cos (8, — 6,.). How-
ever, the N and U used to compute the shear resistance should not be
multiplied by cos (6, — 6..), because the failure surface moves in the x
direction on the xz plane. Other changes in notation include the
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replacements of 0 by 6., and the single X by double X X to cover both
slices and columns.

5. Three examples, each with a different type of failure surface (circular,
composite, or noncircular), are presented to demonstrate the use of the
normal method, especially the treatment of the partial columns adjacent
to the boundary. The normal method assumes the absence of forces be-
tween two columns and uses the submerged weight to determine the
combined effect of N' and U. Although the normal method is not recom-
mended for 3D analysis, the information provided by these examples can
be used in other examples involving the simplified Bishop and original
Spencer methods.

6. The simplified Bishop method is recommended for circular failure sur-
faces with a cylinder at the center and a half ellipsoid at each end. The
effective normal force, N', is obtained by assuming the side forces be-
tween the columns as horizontal and considering the force equilibrium of
each column in the vertical direction. The method requires iterations, and
Eq. (9-45), based on Newton’s method of tangent, can be used to reduce
the number of iterations required.

7. The original Spencer method is recommended for noncircular or compos-
ite failure surfaces. The side forces between two slices in the x direction
are assumed to make an angle, §, with the horizontal and the forces be-
tween two columns in the y direction ignored. The effective normal force,
N', is obtained by considering the force equilibrium in a direction perpen-
dicular to the side forces. Two factors of safety are computed, one based
on the overall moment equilibrium and the other on the force equilibrium
in the 8 direction. Because N' depends on the factor of safety and the
factor of safety depends on N’, an iteration procedure is required to solve
the factor of safety. Similar to 2D analysis, three different values of &
must be assumed, and the factors of safety are plotted against 8. Thus,
two sets of curves are obtained, one based on force equilibrium and the
other based on moment equilibrium. The intersection of these two curves
gives an overall factor of safety which satisfies both force and moment
equilibrium.

8. The use of spreadsheets to calculate the factors of safety based on the
simplified Bishop and the original Spencer methods are demonstrated.
The use of the trial-and-error method by a spreadsheet to find a factor of
safety is so easy that it is really not necessary to change the factor of safety
gradually until it converges, as is done by LEAME. A few trials and errors
will be sufficient to find a computed factor of safety that is equal or nearly
equal to the assumed factor of safety. It should be noted that the spread-
sheet only solves one of the hundreds of trial failure surfaces and can-
not be used as a substitute for a computer program. However, the close
agreement in solutions between LEAME and the spreadsheets is a further
confirmation on the correctness of the LEAME computer program.
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Problems

9.1

9.2

9.3

9.4

9.5

9.6

Same as Example 9.4 except that the failure mass is divided into three
slices and three columns. Determine the factor of safety by the normal
method.

[Answer: 1.449]

Same as Problem 9.1, but determine the factor of safety by the simplified
Bishop method.
[Answer: 1.581]

Same as Problem 9.1, but determine the factor of safety by the simplified
Bishop method using Newton’s method of tangent, or Eq. (9-45).
[Answer: 1.580]

A 3D failure surface consists of a cylinder with a half length, A, of 100ft,
and a half ellipsoid with a half length, A,, of 50 ft. The cross section for the
cylindrical part and the division of the failure mass into slices are the
same as Problem 8.1 and are reproduced in Fig. P9-4. As in Problem 8.1,
the soil is assumed to have a cohesion of 500 psf, a friction angle of 10°,
and a total unit weight of 125pcf. If the cylindrical part is considered as
one column and the ellipsoidal part is divided evenly into two columns,
plot a plan view of the failure mass showing the x and y coordinates at the
center of each column and the horizontal area of each column.

(65,57.5

(140,40)

R =86.783 ft 150,40)

e |

50 ft 50 ft

Fig. P9-4.

Same as Problem 9.4, but determine the factor of safety by the normal
method.
[Answer: 1.507]

Same as Problem 9.4, but determine the factor of safety by the simplified
Bishop method.
[Answer: 1.683]
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9.7

9.8

9.9

9.10

9.11

Same as Problem 9.4, but determine the factor of safety by the original
Spencer method.
[Answer: 1.683]

An embankment is placed between two parallel banks (o = 0°) with a
slope of 2:1 (g =0.5). The distance between the two banks, measured at the
top of the embankment, is 600 ft (W, = 300 ft). The cross section of the non-
circular failure surface and the division of the failure mass into slices are
the same as Problem 8.5 and are reproduced in Fig. P9-8. As in Problem
8.5, the soil is assumed to have a cohesion of 400psf, a friction angle of
15°, and a total unit weight of 125pcf. If the central part of the embank-
ment above the noncircular failure surface is considered as one column
and that above the surface of the bank is divided evenly into two col-
umns, plot a plan view of the failure mass showing the x and y coordi-
nates at the center of each column and the horizontal area of each column.

z y (200,100) (400,100)
0,0 |_‘_ ;
2 (150,-20) 100 ft

Fig. P9-8.

Assuming an arbitrary moment center at (100, 200), determine the safety
factor of Problem 9.8 by the normal method.
[Answer: 1.382]

Same as Problem 9.9, but determine the safety factor by the simplified
Bishop method.
[Answer: 1.558]

Same as Problem 9.9, but determine the safety factor by the original Spen-
cer method.
[Answer: 1.571]



Chapter 10

Reliability

Two methods can be used for stability analysis: deterministic and probabilistic.
In the deterministic method, each input parameter has a fixed value. If the
parameter varies in time or location, the designer will select a more conservative
value and use it for stability analysis. To ensure that the design is safe, a factor
of safety much greater than 1, usually as high as 1.5, is required. A more realistic
approach is the probabilistic method, in which each input parameter has a mean
and a coefficient of variation, obtained from field or laboratory tests or based on
field measurements or past experience. If these mean values are used and the
factor of safety is equal to 1, the probability of failure is 50%, which is unaccept-
able. The design must be revised to increase the factor of safety so that the prob-
ability of failure is smaller than a specified value, say less than 1%, or a reliability
of more than 99%. This chapter presents some statistical concepts and equations,
which are incorporated in LEAME to determine the reliability.

10.1 Some Statistical Terms

Two of the most useful properties of a random variable are its expectation,
or mean, and its variance. From these two properties, the standard deviation
and the coefficient of variation can be computed. If two variables are not
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independent, the correlation coefficient also must be given so the covariance can
be determined.

In LEAME, each input parameter must be given a mean and a coefficient of
variation. If two parameters are correlated, their correlation coefficient also must
be specified. Although typical coefficients of variation for shear strength, seepage,
and other sources are suggested, how they are determined is outside the scope
of this book. Readers interested in this subject may refer to the book by Baecher
and Christian (2003) and the papers by Christian et al. (1994), Christian and
Baecher (2011), Oka and Wu (1990), and Wu et al. (1989).

10.1.1 Expectation

The expectation of a random variable x is defined as

=2 % f(x) (10-1)

all xj

in which f(x;) is the probability function of x;. One requirement for the probability
function is that the sum of f(x;) over all x; must be equal to 1. If n independent
observations of x are taken, each with the same probability 1/, the mean of the
observations, X, can be obtained from Eq. (10-1), or

_ ;x" (10-2)
B n

This value of X is called the sample mean and is the best estimate of the true
or population mean. From the definition in Eq. (10-1), it can be proved easily
that, if ¢ is a constant, then E[c] = ¢ and E[cx] = cE[x].

10.1.2 Variance

The variance of a random variable x is defined as the expected value of the square
of the deviation from its expectation, or

VIx]=E[(x - E[x])’] (10-3)

or V[x]= Y, (x;—E[x]f(x:) (10-4)

all x;

If n independent observations of x are taken, the variance of x is determined
from

VIx]= 2 (x’ =) (10-5)

The sum is divided by n — 1 rather than n, because x is the sample mean
rather than the true mean, so the degree of freedom is n — 1. If a, b, and ¢ are
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constants, it can be proved easily that V[c] = 0, V[cx] = ¢* V[x], and V[a + bx] =
b V[x].

10.1.3 Standard Deviation

The standard deviation, s, of a random variable x is defined as the square root
of its variance, or

s=+V[x] (10-6)

10.1.4 Coefficient of Variation

The coefficient of variation generally is used in percentile form, but, for conve-
nience, it can be expressed as a decimal by

Clx] = (10-7)

Rl ®w

Example 10.1 The undrained shear strengths, x, obtained from 10 cone penetra-
tion tests are: 2,250, 2,140, 2,030, 1,920, 1,840, 1,630, 1,480, 1,270, 1,050, and 810 psf.
Compute mean, variance, standard deviation, and coefficient of variation.

Solution From Eq. (10-2), ¥=(2,250+2,140+2,030+1,920+1,840 +1,630
+1,480 +1,270 +1,050 +810)/10 = 1,642 psf . From Eq. (10-5), V[x] = [(2,250 —
1,642)* + (2,140 — 1,642)* + (2,030 — 1,642)> + (1,920 — 1,642)* + (1,840 — 1,642)
+ (1,630 — 1,642)2 + (1,480 — 1,642)? + (1,270 — 1,642)* + (1,050 — 1,642)* + (810 —
1,642)7] /(10 — 1) = 232,462. From Eq. (10-6), s = /232,462 = 482 ;. From Eq. (10-7),
Clx] = 482/1,642 = 0.294, or 29.4%.

Table 10-1 shows the mean, standard deviation, and coefficient of variation
of shear strength parameters from different sources as reported by Harr (1977).
It can be seen that the variation of the friction angle in sand and gravel is much
smaller than the variation of unconfined compressive strength in clay.

10.1.5 Covariance

The covariance of two random variables x and y is defined as the expected value
of the product of the deviations of x and y from their expected values, or

Covlx, y]= E[(x - E[x])(y - E[y])] (10-8)

or Covlx,yl= Y, (x;—ElxD)(y; — Ely)f(xi, i) (10-9)

all xi ,yi



Table 10-1.

Variability of Shear Strength Parameters

PARAMETER
Tangent of Unconfined Number
Frictional Frictional Compression of Standard Coefficient of
Material Angle, Degrees Angle Strength, ton/ft* Samples Mean Deviation Variation, % Source
Gravel X 38 36.22 2.16 6.0 Private communication
from Prof. R. D. Holtz
Sand X 73 38.80 2.80 7.0 of Purdue University
Sand X 136 36.40 4.05 11.0
Sand X 30 40.52 4.56 11.0
Gravelly sand X 81 37.33 1.97 5.3 Schultze (1972)
Sand X 81 0.762  0.056 7.3 Schultze (1972)
Sand X 50 0.717  0.093 13.0 Schultze (1975)
Sand: loose X 14.0 Singh (1972)
dense X 12.0 Singh (1972)
Silty sand X 82 0.692  0.096 13.8 Lumb (1966)
Clay: depth, ft
5 X 279 2.08 1.02 49.1 Fredlund and Dahlman
(1972)
10 X 295 1.68 0.69 40.9 Fredlund and Dahlman
(1972)
15 X 187 1.49 0.59 39.6 Fredlund and Dahlman
(1972)
20 X 53 1.30 0.62 47.7 Fredlund and Dahlman

(1972)
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Table 10-1 (Continued)

PARAMETER
Tangent of Unconfined Number
Frictional Frictional Compression of Standard Coefficient of
Material Angle, Degrees Angle Strength, ton/ft* Samples Mean Deviation Variation, % Source
Clay X 231 0.97 0.26 29.0 Matsuo and Kuroda
(1974)
Clay X 97 30.0-40.0 Ladd, et al. (1972)
Clay shale’ X 37.0-51.0 Lumb (1972)
till’ X 60.0-85.0 Lumb (1972)
till X 3.24 1.17 36.1 Morse (1972)

"Lumb notes these two materials are extremely variable and believes that these results are probably close to the upper possible limits of variability for
any natural soils.

(Harr 1977). Reproduced with permission from McGraw-Hill, Inc.
Note: 1tsf=95.8kPa
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From Eq. (10-8),
Covlx, y]= E[xy — yE[x] - xE[y]+ E[x]E[y]] = E[xy] - E[x]E[y] ~ (10-10)

For actual computation of covariance, the use of Eq. (10-10) is more conve-
nient than Eq. (10-8).

If large positive deviations of x are associated with large positive deviations
of y, then the covariance will be positive. If positive deviations of x are associated
with negative deviations of y, and vice versa, the covariance will be negative.
Conversely, if positive and negative deviations of x occur as frequently as posi-
tive and negative deviations of y, then the covariance will tend to 0. Therefore,
the covariance is a measure of correlation between two random variables. It
should be noted that variance is a special case of covariance of a random variable
with itself:

Covlx, x] = E[(x - E[x])(x - E[x])] = E[(x - E[x])*] = V[x] (10-11)
If x and y are correlated, the variance of x + y can be expressed as

V[x+y]l=E[(x+y — E[x + y])*]= E[(x — E[x] + y — E[y])’]
= E[(x - E[x])’]+ E[(y — E[y1)*]+ 2E[(x — E[x])(y — E[y]D] (10-12)
=V[x]+ V[y]+2Covlx, y]

10.1.6 Correlation Coefficient

The correlation coefficient between random variables x and y is defined as

_ Coolx, y]

P )= vy

It can be shown that -1 < p <1 and that p =1 wheny =4 + bx, and p = -1
when y = a — bx, where a and b are constants. For partially saturated soil under
undrained conditions, a correlation coefficient may exist between ¢ and ¢.
However, for effective stress analysis, ¢’ is small and the correlation coefficient
between ¢’ and ¢' can be assumed 0.

(10-13)

Example 10.2 Five sets of undrained triaxial tests were made on a partially satu-
rated soil. The pairs of cohesion and friction angle (c in psf, ¢ in deg) determined
from the tests are (5,120, 10.3), (4,370, 12.2), (3,200, 15.5), (2,050, 17.8), and (1,140,
20.3). Determine the coefficients of variation for ¢ and ¢ and the correlation coef-
ficient between them.

Solution An inspection of the pairs clearly indicates that there is a strong cor-
relation between c and ¢. Because a larger c always is associated with a smaller ¢,
a negative correlation coefficient is expected.
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From Eq. (10-2), E[c] = (5,120 + 4,370 + 3,200 + 2,050 + 1,140) /5 = 3,176 psf, and
E[¢] = (103 +12.2 + 15,5+ 17.8 + 20.3) /5 = 15.22°.

From Eq. (10-5), V[c] = [(5,120 — 3,176)* + (4,370 — 3,176)* + (3,200 — 3,176)* +
(2,050 — 3,176)2 + (1,140 — 3,176)2 /(5 — 1) = 2,654,630 and V[0] = [(10.3 — 15.22) +
(12.2 - 15.22)* + (15.5 — 15.22)* + (17.8 — 15.22)* + (20.3 — 15.22)*] /(5 — 1) = 16.47.

From Eq. (10-10), Cov[c, 0] = (5,120 X 10.3 + 4,370 x 12.2 + 3,200 x 15.5 + 2,050
x 17.8 + 1,140 x 20.3) /5 — 3,176 x 15.22 = -5,282.

From Eq. (10-7), C[c] = /2,654,630 /3,176 = 0.51 and C[0] = v/16.47/15.22 = 0.27.

From Eq. (10-13), p[c, ] = -5282/+/2, 654,630 x 16.47 =—0.80

10.2 Taylor’s Expansion

Taylor’s expansion for a function f(x, y) about the point (a4, b) can be
expressed as

£, )= F@,5)+ fu(a, D)k =)+ @, b)(y =)+ 21 fula, b= )
+2fy(a, b)(x—a)(y—b)+ f,,(a, b)(y - b)*]+...

in which the subscripts x and y indicate the partial differentiation with respect
to x and y. As a first approximation, the second-order terms in Eq. (10-14) may
be neglected:

(10-14)

f(xr y)=f(a, b)+fr(a/ b)(X—{l)"rfy(&l, b)(y_b) (10-15)

10.2.1 Mean

If a and b are taken as the means of x and y, the expectation of f(x, y) can be
obtained from Eq. (10-15) by taking the expectation on both sides:

E[f(x, Y]=E[f(a, b)]+ fi(a, b)(E[x]—-a)+ f,(a, b)(E[y]-b) = E[f(a,b)] ~ (10-16)

If g(x1, xo, ... x,) is a function of n random variables x; and |, is the mean
value for each of these random variable, then from Eq. (10-16),

Elg]=g(w:) (10-17)

Eq. (10-17) indicates that the mean value of g can be obtained simply by
substituting the mean value of each random variable into the function.

10.2.2 Variance

The variance of f(x, y) can be obtained by taking the variance on both sides of
Eq. (10-15) and applying Eq. (10-12), or
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VIf(x, Y= {fi(a, )P VIxI+{f,(a )P VIyl+2{f.(a, b)}i{f,(a, b)}Covlx, y] (10-18)

Eq. (10-18) can be extended to g(xi, x,, ... x,,) by

Vigl= Z Z (aa—i_) | (;—ij Covlx;, x;] (10-19)

i=1 j=1 W

If x;, x5, ... x, are independent, there are no cross-product terms, and Eq.
(10-19) becomes

Vigl= i(a—g) Vxi] (10-20)

i=1 ox; Wi

Example 10.3 A partially saturated soil is placed on an infinite slope with an
angle, B, of 22° and a depth, d, of 18ft (5.5m). Both  and d are considered as
fixed quantities with no variation. The cohesion, friction angle, and unit weight
of the soil are considered as random variables with properties shown in the fol-
lowing table:

Variables c [0} Y
Mean 800 psf 12° 120 pcf
Coefficient of variation 0.5 0.3 0.1

Correlation coefficient between ¢ and ¢ =-0.4

Determine the mean and variance of the factor of safety by Taylor’s
expansion.

Solution The static factor of safety for an infinite slope with no seepage can be
obtained from Eq. (6-3) by setting C; and r, to zero:

(C)secﬁ + cosPtan ¢
vd

sin3

e (10-21)

From Eq. (10-17),

( 800
E[F] = \120x18

) sec22°+ cos22°tan12°
=1.592

sin 22°

To determine V[F], take partial derivative of F with respect to each of the vari-
ables in Eq. (10-21), or

oF 1 1

oF _ - —__-0.001333
oc  ydcosPsinB 120 x18c0s22°sin 22°
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OF _cosPsec’¢ — cos22°

= = =2.5869
0 sinf3 sin22°cos?12°

oF __ < —— 800 — —0.008886
oY)  (y)*dsinBcosB  (120)*18sin22°cos22°

From Eq. (10-19),
V[F]=(0.001333 x 0.5 x 800)* +(2.5869 x 0.3 x 12 x 1t/180)?
+(0.008886 x 0.1 x 120)*
—2(0.001333 x 2.5869)(0.5 x 800)(0.3 x 12 x /180) x 0.4

=0.2843 + 0.0264 + 0.0114 - 0.0693
=0.2528

10.3 Mean-Value First Order Second Moment Method

Taylor’s expansion can be used for simple cases where the factor of safety can
be expressed in a close-form formula. For complex cases involving computer
programming, the mean-value first order second moment method (MFOSM) can
be used (Cornell 1971). This simplified method is particularly useful in geotech-
nical engineering, where the coefficient of variation for each variable is based on
past experience or engineering judgment rather than on site-specific testing or
measurements.

In this method, two factors of safety are computed for each variable, one at
one standard deviation above the mean and the other at one standard deviation
below the mean, whereas the other variables do not change but remain at the
same mean values. If the factor of safety is a function of n variables from x; to
x,, from Eq. (10-20), the variance of F can be written as

oF oF oF \’
V[F]= (Bxl) Vix 1]+(8x2) Vo] + oo, +(8x,,) Vix,]
Px1+_Fx1— ’ x2+ — Lx2- ’ Fxn+_Fxn— ’
(ij Vial (zwj Vil ( zmj Vi
or V[F]:(FxH;Fxlj +(sz+;szj o +(%) (10-22)

in which F,,, and F,,_ are the values of F evaluated at one standard deviation
above and below the mean, respectively. If any two variables, say x; and x,, are
correlated, an additional term 2[(F,i; — F.12)/2][(Froy — Fro)/2]p(x1, Xx,) must be
added to Eq. (10-22), as indicated by Eq. (10-19). If there are n random variables,
the factor of safety must be evaluated repeatedly for 2n times to determine its
variance.
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Example 10.4 Same as Example 10.3, but determine the mean and variance of
factor of safety by the MFOSM method.

Solution The factor of safety is computed by

(C sec22°+cos22°tan ¢
Fe 18y

. = 0.15995(5] +2.475tan o
sin 22° Y

The three variables, ¢, ¢, and v have the following values:

Variables c o Y
Mean 800 psf 12° 120 pcf
Coefficient of variation 0.5 0.3 0.1
Standard deviation, s 400 psf 3.6° 12 pcf
Mean + s 1,200 psf 15.6 132 pcf
Mean - s 400 psf 8.4 108 pcf

Correlation coefficient between ¢ and ¢ =-0.4

Table 10-2 shows the computation of variance by the MFOSM method. To
compute the factor of safety, each variable is evaluated twice: one at mean plus
one standard deviation and the other at mean minus one standard deviation,
whereas the other variables keep the same mean values.

The factor of safety has a mean of 1.597 and a variance of 0.2533, which
check closely with the 1.592 and 0.2528 computed by Taylor’s expansion in
Example 10.3.

Table 10-2. Computation of Mean and Variance by MFOSM Method

Variable Values Factor of safety F.—-F [(F, — F)/2]*
catmean +s 1,200 2.126
atmean —s 400 1.059 1.067 0.2846
¢ at mean + s 15.6 1.757
at mean —s 8.4 1.432 0.325 0.0264
Yat mean + s 132 1.495
atmean —s 108 1.711 -0.216 0.0117
Correlation between ¢ and ¢ =2(1.067/2)(0.325/2)(-0.4) —0.0694
Mean 1.597 Variance 0.2533
Note: Reliability =1 — probability of failure
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10.4 Normal Distribution

The distribution function used most frequently as a probabilistic model is called
the normal or Gaussian distribution. Although this symmetrical and bell-shaped
distribution is very important, it is not the only type of distribution to be used
in the probabilistic method.

The mathematical equation of a normal distribution expressing the frequency
of occurrence of the random variable x is

1 _1(x-u 2 :
f(x)—smexp[ 2( 5 )} (10-23)

in which s = standard deviation and | = mean.

Fig. 10-1 shows a plot of a normal distribution with s =1 and p = 0 and 4,
respectively. Note that the two curves are similar, except that the x coordinate is
displaced by a constant distance. If the x at the peak is not equal to 0, it can be
set to zero by a simple displacement.

The cumulative distribution function for a normally distributed random vari-
able x can be expressed as

o)=]" sz_n exp{—%( ad - “) }dx (10-24)

A simple way to eliminate p and s in Eq. (10-24) is to introduce the normal
deviate defined as

u=2"H (10-25)

4 -3-2-10 12 3 4 5 6 7 8
Fig. 10-1. Normal distribution

X
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1 ¢z 2
o(z)= EJO exp(—%) du (10-26)

in which ¢(z) is the area under the standard normal distribution curve f(u)
between 0 and z, and z is the value of u computed by Eq. (10-25), as shown in
Fig. 10-2 and tabulated in Table 10-3.

Using Eq. (10-26) and recognizing that the area under half of the standard-
ized normal curve is 0.5, the probability associated with the value of the random
variable being less than any specified value can be determined.

When applying Eq. (10-25) to slope stability, x is equal to 1, because it is the
factor of safety when a slope fails; u is the expectation of F, E[F]; and s is the
standard deviation of F, s[F]. Because the value of z shown in Fig. 10-2 is nega-
tive, a positive term commonly used in slope stability analysis is the reliability
index defined by

_E[F]-1
~ §[F]

B (10-27)

in which F is the computed factor of safety. Given B, which is equivalent to z in
Fig. 10-2, the area under the normal curve, ¢(B), as indicated by the hatched lines
in Fig. 10-3, can be determined from Table 10-3. The probability of failure is:
Probability (F < 1) = 0.5 — ¢(B) and reliability = 1 — probability of failure.

Example 10.5 Based on the mean and variance of the factor of safety in Example
10.4 and assuming the factor of safety as a normal distribution, determine the
probability of failure.

Solution From Example 10.4, E[F]=1.597 and V[F]=0.2533. s =+/0.2533 = 0.5033.
From Eq. (10-27), B = (1.597 — 1) /0.5033 = 1.186. From Table 10-3, ¢(B) = 0.382, so
the probability of failure is: Probability (F <1)=0.5-0.382 = 0.118, or 11.8%.

flu)

©(z) is area under curve
between 0 and z

u

] z
Fig. 10-2. Area under normal curve for given z



Table 10-3. Area ©(B) under Normal Curve

zorf .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0 0 .003969 .007978 .011966 .015953 .019939 023922 .027903 .031881 .035856
1 .039828 .043795 .047758 .051717 .055670 .059618 .063559 .067495 .071424 .075345
2 079260 .083166 .087064 .090954 .094835 .098706 102568 .106420 110251 114092
3 117911 121720 125516 129300 133072 136831 .140576 .144309 148027 151732
4 155422 .159097 162757 166402 .170031 173645 177242 .180822 .184386 187933
5 191462 194974 .198466 201944 .205401 .208840 212260 215661 .219043 .222405
.6 225747 .229069 232371 .235653 234914 242154 .245373 .248571 251748 .254903
7 .258036 261148 .264238 .257305 .270350 273373 276373 .279350 .282305 .285236
.8 .288145 .291030 .293892 296731 .299546 302337 305105 .307850 .310570 313267
9 .315940 .318589 321214 323814 326391 328944 331472 333977 336457  .338913
1.0 341345 .343752 .346136 .348495 .350830 353141 355428 357690 .359929 362143
1.1 364334 .366500 .368643 370762 .372857 .374928 376976 .379000 .381000 382977
1.2 .384930 .386861 .388768 .390651 392512 .393350 396165 .397958 399727 401475
1.3 403200 404902 406582 408241 409877 411492 413085 414657 416207 417736
1.4 419243 420730 422196 423641 425066 426471 427855 429219 430563 431888
1.5 433193 434476 435745 436992 438220 439429 440620 441792 442947 444083
1.6 445201 446301 447384 448449 449497 450529 451543 452540 453521 454486
1.7 455435 456367 457284 458185 459070 459941 460796 461636 462462 463273
1.8 464070 464852 465620 466375 467116 467843 468557 469258 469946 470621
1.9 471283 471933 472571 473197 473610 474412 475002 475581 476148 476705

€ze  Kyiqerey



Table 10-3 (Continued)

zorf .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
2.0 477250 477784 478308 478822 479325 479818 480301 480774 481237 481691
2.1 482136 482571 482997 483414 483823 484222 484614 484997 485371 485738
2.2 486097 486447 486791 487126 487455 487776 488089 488396 488696 488989
23 489276 489556 489830 490097 490358 490613 490863 491106 491344 491576
24 491802 492024 492240 492451 492656 492857 493053 493244 493431 493613
25 493790 493963 494132 494297 494457 494614 494766 494915 495060 495201
2.6 495339 495473 495604 495731 495855 495975 496093 496207 496319 496427
2.7 496533 496636 496736 496833 496928 497020 497110 497197 497282 497365
2.8 497445 497523 497599 497673 497744 497814 497882 497948 498012 498074
29 498134 498193 498250 498305 498359 498411 498462 498511 498559 498605
3.0 498650 498694 498736 498777 498817 498856 .598893 498930 498965 498999
3.1 499032 499065 499096 499126 499155 499184 499211 499238 499264 499289
3.2 499313 499336 499359 499381 499402 499423 499443 499462 499481 499499
3.3 499517 499534 499550 499566 499581 499596 499610 499624 499638 499651
34 499663 499675 499687 499698 499709 499720 499730 499740 499749 499758
3.5 499767 499776 499784 499792 499800 499807 499815 499822 499828 499835
3.6 499841 499847 499853 499858 499864 499869 499874 499879 499883 499888
3.7 499892 499896 499900 400904 499908 499912 499915 499918 499922 499925
3.8 499928 499931 499933 499936 499938 499941 499943 499946 499948 499950
3.9 499952 499954 499956 499958 499959 499961 499963 499964 499966 499967

poydN wnuqimbyg jrury ayy £q sishreuy Aiqeis adofs  pe



Reliability 325

f(u)
'}
® (B) is area under curve
between 1 and
Failwe region N

withF <1

llc—ﬁ—-“' u

Factor of Safety

Fig. 10-3. Area under normal curve for given 3

10.5 Lognormal Distribution

Another distribution used widely in geotechnical engineering is the lognormal
distribution with a reliability index defined as

_ElInF]

Pin = s[In F]

(10-28)

in which s[In F] is the standard deviation based on the lognormal distribution of
F. From Eq. (10-20),

VIF]

FZ

V[InF] =

(10-29)

s[InF]= % = C[F] (10-30)

Eq. (10-30) indicates that the standard deviation of In F is the coefficient
of variation of F. Knowing E[In F] and s[In F], B, can be determined from
Eq. (10-28) and the reliability from Table 10-3. In the stated derivations, the dis-
tribution is assumed to be natural log with base e. The same reliability will be
obtained if the base 10 log is used.

Example 10.6 Same as Example 10.5, but assuming the factor of safety as a log-
normal distribution.

Solution Given F=1.597 and s[F]=0.5033, from Eq. (10-30), s[In F] =0.5033/1.597
= 0.315. From Eq. (10-28,) By, = In(1.597)/0.315 = 1.486. From Table 10-3, ¢(8) =
0.431, so the probability of failure is: Probability (F < 1) = 0.5 — 0.431 = 0.069, or
6.9%. It can be seen that the probability of failure based on a normal distribution
is greater than that based on a lognormal distribution, so the use of a normal dis-
tribution gives a smaller reliability and is on the safe side.
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Spreadsheets can be used conveniently to determine the reliability, as illus-
trated by the following example.

Example 10.7 A triangular fill is the same as that in Example 6.2, with H = 40ft
(12.2m), oo = 20°, and B = 36°. After substituting these values of H, o, and f into
Eq. (6-8), the following equation is obtained to solve the factor of safety, F:

C,

F= 0.312( )+ 2.747(1-r,)tan ¢’ (10-31)
Y

Values of ¢/, ¢, v, and r, and their coefficients of variation can be found in the
first two rows of Table 10-4. Determine the reliability of the design based on both
normal and lognormal distributions.

Solution Table 10-4 is the spreadsheet for computing the factor of safety and the
reliability. Details about the spreadsheet are as follows:

1. In cell B4, type Eq. (10-31) as 0.312*$B$1/$F$1 + 2.747*(1-$H$1)*TAN
(RADIANS ($D$1)). Dollar signs are used, so when the equation is copied
from one cell to another, these input parameters never will be changed.
Copy this equation to B5 through B7.

2. Incolumn B, “F.” is the factor of safety when one of the variables in Col-
umn A has a value one standard deviation greater than the given value.
Therefore, in cell B4, ¢’ must be multiplied by (1 + C[c']), so the equation
must be changed to 0.312*$B$1*(1 + B2)/$F$1 + 2.747(1-$H$1)*TAN
(RADIANS($D$1)). The same should be applied to other variables, i.e.,
the value of the variable must be multiplied by (1 + CV), where CV is the
coefficient of variation of the variable.

3. Incolumn C, “F." is the factor of safety when one of the variables in Col-
umn A has a value one standard deviation smaller than the given value.

Copy rows 4 to 7 from column B to column C and change (1 + CV)
to (1 -CV).

Table 10-4. Spreadsheet for Computing Factor of Safety and Reliability

A B C D E F G H
¢’ in psf=|160 ¢’ in deg =24 vin pef=|125 ru=0.05
Clc'1=|04 Cl[¢']=0.15 Clyl=|0.1 C[ru]=|0.2
Variable F. E Variance Normal distribution
< 1.72100 | 1.40151 | 0.02552 E[F] s[F] B Reliability

o 1.76365 | 1.36988 | 0.03876 | 1.56364 |0.25702 [2.19298 | 98.58%
1.52495 | 1.60562 | 0.00163 | E[InF] | s[InF] | Bln
ru 1.54902 | 1.57348 | 0.00015 | 0.44702 |0.16437|2.71952| 99.67%
Sum | 6.55861 | 5.95049 | 0.06606

@I (DU | [WN| =
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In column D, variance is computed by Eq. (10-22). In cell D4, the equation
is 0.25*(B4-C4)"2. Copy the equation from D4 to D5 through D7.

For a normal distribution, E[F] is the average of all F’s and is expressed as
(B8 + C8)/8; s[F] can be obtained from Eq. (10-6) and expressed as
SQRT(DS); B can be obtained from Eq. (10-27) and expressed as ((E5-1)/
F5; and reliability can be obtained from Table 10-4.

For a lognormal distribution, E[InF] is expressed as In(E5); s[InF] can be
obtained from Eq. (10-30) and expressed as F5/E5; B, can be obtained
from Eq. (10-28) and expressed as E7/F7, and reliability can be obtained
from Table 10-4.

Summary

1.

Because of the large variations in site conditions, the probabilistic method
of stability analysis has gained popularity in recent years. The major dis-
advantage of the method is that a large number of measurements or tests
is required to ascertain the variability of those parameters that affect the
factor of safety. It is only after the variability of each parameter is evalu-
ated or assumed that the probability of failure can be determined.

The probabilistic method is a complement to the conventional determin-
istic methods by considering some input parameters as random variables
with a mean and a variance. The requirement for the deterministic meth-
od is the factor of safety that the design must exceed, whereas the require-
ment for the probabilistic method is the reliability that the design can
accept. It is more reasonable to use the probabilistic method, because the
required factor of safety in the deterministic method should depend on
the variability of the data. If the data are unreliable with a large variance,
a higher factor of safety should be required.

If the factor of safety can be expressed in closed-form formulas, the mean
factor of safety can be obtained by simply substituting the mean value of
each input parameter into the formulas. The variance of the factor of safe-
ty can be computed from Taylor’s expansion, as indicated by Eq. (10-19).

If the factor of safety is determined by complex computer programs and
cannot be expressed in closed form, then the mean-value first order sec-
ond moment method (MFOSM) can be used. For each random variable,
the factor of safety must be computed twice, one with a value at one
standard deviation above the mean and the other at one standard devia-
tion below the mean, whereas the mean values are used for all other var-
iables. If there are n variables, the factor of safety must be computed 2n
times. The mean factor of safety is the average of these 2n factors of safety,
and the variance of the factor of safety can be computed by Eq. (10-22).
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By assuming the factor of safety as a normal or lognormal distribution
with a mean and a variance, the reliability of the design can be evaluated.
The reliability based on a lognormal distribution is usually greater than
that based on a normal distribution, so the use of normal distribution is
on the safe side.

Problems

10.1

10.2

10.3

10.4

10.5

A very useful equation to determine variance from the mean is V[x] =
E[x*] — (E[x])* Prove this equation.

Given the following eight values of total unit weight in pcf: 124.6, 126.2,
121.6, 117.3, 115.8, 135.6, 130.7, and 125.3, calculate the mean, variance,
standard deviation, and coefficient of variation.

[Answer: 124.6 pcf, 42.999, 6.56 pcf, 5.26%]

Prove that p(x, y) =1 when y =a + bx and p(x, y) = -1 when y = a — bx,
where a and b are constants. [Hint: Use the equation in Problem 10.1 in
the final step of derivation.]

The following pairs of effective cohesion in psf and effective friction angle
in deg, (c’, ¢'), were obtained from piezocone penetration tests: (120,
26.8°), (260, 34.5°), (280, 32.6°), (230, 33.7°), (180, 29.3°), (200, 28.2°), and
(150,30.6°). Calculate the mean, the coefficient of variation of both ¢’ and
¢’, and the correlation coefficient between ¢' and ¢'.

[Answer: 202.9 psf, 28.6%, 30.81°, 9.4%, 0.689]

Fig. P10-5 shows an infinite slope with § =15°, d =30ft, and d,, = 10ft. The
soil is sand with an effective friction angle of 30° and a coefficient of vari-
ation of 0.15, and the coefficient of variation of d,, is 0.25. Determine the
mean and variance of factor of safety by Taylor’s expansion and then
compare them with the MFOSM method.

dw =108 Water
table
d=30ft .
| ) B =15°
Fig. P10-5.

[Answer: 1.437, 0.07600, 1.443, 0.07683]
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10.6  Same as Problem 6.3 with the cross section reproduced and shown in
Fig. P10-6. The mean and coefficient of variation of the four random vari-
ables are as follows:

Variable Cohesion Friction Angle Total Unit Weight  Pore Pressure ratio
Mean 160 psf 24° 125pcf 0.05
Coef. of variation 0.4 0.15 0.1 0.2

Determine the factor of safety and its variance by Taylor’s expansion.

Fig. P10-6.

[Answer: 1.708, 0.08963]

10.7  Same as Problem 10.5, but determine the factor of safety and the reliabil-
ity based on both normal and lognormal distributions by the MFOSM
method.

[Answer: 1.711, 91.97%, 99.89%]

10.8  Same as Problem 6.5 with the cross section reproduced and shown in Fig.
P10-8. The mean and coefficient of variation of the three random vari-
ables and the correlation coefficient between ¢ and ¢ are as follows:

Variable Cohesion  Friction Angle Total Unit Weight Correlation Coef.
Mean 400 psf 24° 125 pcf -0.5
Coef. of variation 04 04 0.1 (between c and ¢)

Determine the factor of safety and the reliability based on both normal and log-
normal distribution by the MFOSM method.

1 2
30 f !
j 45°
= 1|
I 69 ft !
Fig. P10-8.

[Answer: 2.803, 99.18%, 99.99%]
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Appendix

Preview of LEAME
Computer Software

Thus far, this book has focused on the fundamental principles and methods for
analyzing slope stability using the limit equilibrium method. The computer
software—known as LEAME, or Limit Equilibrium Analysis of Multilayered
Earthworks—which was developed specifically for this purpose is available as
a companion product. LEAME Software and User’s Manual: Analyzing Slope Stabil-
ity by the Limit Equilibrium Method can be purchased through the ASCE online
bookstore or the ASCE Library at http://dx.doi.org/10.1061/9780784477991.
The LEAME software can be installed on any computer with a Windows operat-
ing system of Windows 95 or later, including the latest Windows 8. The User’s
Manual provides detailed instructions for installing and operating the software
to solve a variety of two-dimensional (2D) and three-dimensional (3D) slope
stability analyses. The User’s Manual also contains a chapter demonstrating the
use of LEAME software for surface mining operations.

This appendix offers a sampling of typical problems that can be solved using
the LEAME software.

LEAME for Two-Dimensional Analysis
To illustrate the capability of LEAME software for 2D analysis, 10 examples are

presented here. Detailed solutions using the LEAME software are available, with
commentary, in the User’s Manual.

331


http://dx.doi.org/10.1061/9780784477991

332 Slope Stability Analysis by the Limit Equilibrium Method

T Te =
SOIL PARMMETERS _ & & &w E &
. @ « o . £ ]
Soil Yo [SkNin?)] 3" (deg) | vikNim3 & & 5 d T o g
) 96 34 197 ~= 5 S = & = vg = ]
2.8, 7| 48 35 18.1 5g 8 e g5 = = % = g
3,78, 6. 8 0 30 15.0 '§ g o 2 9 = 7 IT)
9 0 0 8 | 4o g == a---—" (244,471.2)
= R Ll 134.2,471.2) s [(174.8,471.2)
- Siarter =1~ (150.7.4636) | 1746 4636) "
@ > I g 109.8, 463. 15 i el 5 (244, 462.1)
] A
! [ -
3 - (129.3,453.8 244, 456
2 . 2 = (1507, 455.1) (1748.4568) A}
- — = (129.3,441.7) _
10,440.7) " Coordinates i = = = & G2 Note: Coordinates in
;r Fhr:atic g% § § § § E E E parentheses
urface : “ o e o o o < o are in meters.
EE8 & 8 = 5 5 8

Fig. A-1. Refuse dam constructed by upstream method
Note: 1m = 3.28ft; 1TkN/m* = 20.9psf; 1kN/m’ = 6.36 pcf

2D Example 1: Refuse Dam Constructed by the Upstream Method

This example illustrates the stability analysis of a refuse dam constructed by the
upstream method. This type of analysis has widespread applications for analyz-
ing short-term stability during or immediately after construction when the excess
pore water pressure in some soils, due to the placement of an overburden, has
not been completely dissipated.

Fig. A-1 shows the upstream method of refuse disposal, which is very popular
in rugged terrain. First, a starter dam is built by coarse refuse or other earthen
materials and the fine refuse in the form of slurry is pumped into the back of the
dam. Then the dam is extended upstream in stages, with part of the dam being
placed on the settled fine refuse. The dam has a downstream slope of 2.5:1 and
an upstream slope of 2:1. The construction is divided into three stages. The first
stage involves the construction of the starter dam, the second stage of the lower
refuse dam, and the third stage of the upper refuse dam. Both the short-term and
long-term stability analyses can be made at the end of each stage. Only the most
critical case of short-term stability at the end of stage 3 will be considered. The
long-term stability can be obtained by simply assigning the excess pore pressure
ratios to 0.

2D Example 2: Steep Slope Reinforced by Geogrids

This example illustrates the use of geogrids to stabilize a steep slope. This type
of construction is useful in urban or other built-up areas where space is so limited
that a flatter slope just cannot be used.

Fig. A-2 shows a fill slope reinforced by geogrids and placed directly on a
rock surface. The fill has a height of 14.4m (47.2ft) and a slope of 1:1. A surcharge
load of 15kN/m? (310psf) is applied on top, as simulated by 0.3m (1ft) of soil
with a cohesion and friction angle of zero and a total unit weight of 50kN/m’
(320 pcf). The soil in the fill has a cohesion of zero, a friction angle of 35°, and a
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Fig. A-2. Slope reinforced by geogrids
Note: 1m = 3.28ft; 1kN/m = 68.51b/ft; 1kN/m* = 20.9psf; 1kN/m’ = 6.36 pcf

total unit weight of 18.9kN/m?® (120 pcf), and there is no seepage. The location
of the geogrids is shown in the figure. The left end of the geogrids is the actual
end point. Because the resistance of geogrids depends on the overburden pres-
sure, it is assumed ANC (type of forces) = 4, MFO (magnitude of each force) =
17.5kN/m (1,2001b/ft), and SAI (soil-anchor interaction) = 3.2kN/m’ (20.3 pcf).
Determine the factor of safety.

2D Example 3: Soil Nails for a Shotcrete Wall

This example illustrates the use of soil nails to stabilize a vertical wall. Because
these nails have the same length and capacity and their resistance does not
depend on the depth of the overburden, it is more reasonable to assume that
ANC = 2.

Fig. A-3 shows a shotcrete wall and the location of the nails. First, a 3.1-m
(10.2-ft) vertical cut is made, then the soil nails are installed, and finally a surfac-
ing consisting of steel fiber-reinforced shotcrete is placed on the surface. The soil
has an effective cohesion of 9.6kN/m? (200 psf), an effective friction angle of 25°,
and a total unit weight of 18.9kN/m?® (120 pcf). The applied internal force (MFO)
on each row of nails is 65.7kN/m (4,5001b/ft). Determine the factor of safety.

2D Example 4: Composite Failure Surfaces

When there is a thin layer of weak material within a slope, part of the failure
surfaces most probably will follow the bottom of the weak layer. One of the most
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Fig. A-3. Soil nails for shotcrete wall
Note: 1m = 3.28ft; 1kN/m = 68.51b/ft; 1kN/m* = 20.9psf: 1kN/m’ = 6.36 pcf
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Fig. A-4. Composite failure surfaces
Note: 1m = 3.28ft; 1kN/m = 68.51b/ft; 1kN/m* = 20.9psf; 1kN/m’ = 6.36 pcf

effective ways is to assume the failure surfaces as composite so that the grid and
search can be applied to locate the most critical failure surface.

Fig. A-4 shows an embankment, 30.5m (100 ft) high, with a side slope of 3:1.
The soil in the embankment has an effective cohesion of 9.6kN/m? (200 psf), an
effective friction angle of 35°, and a total unit weight of 19.7kN/m? (125 pcf). The
embankment is placed on a foundation soil 6.1m (20£t) thick, with an effective
cohesion of 4.8kN/m? (100 psf), an effective friction angle of 30°, and a total unit
weight of 18.9kN/m?’ (120 pcf). The water table is on the top of the foundation
soil. Below the foundation soil is a thin layer of very weak soil, only 0.3m (1 ft)
in thickness, with a cohesion of zero, an effective friction angle of 10°, and a total
unit weight of 17.4kN/m’ (110pcf). Due to the presence of the weak soil, the
failure surfaces will follow the bottom of the weak layer instead of cutting into
soil 1. Determine the factor of safety.
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Fig. A-6. Cut slope with tension crack
Note: 1m = 3.28ft; 1kN/m? = 20.9psf; 1kN/m’ = 6.36 pcf

2D Example 5: Noncircular Failure Surfaces

Fig. A-5 shows a fill placed on a series of rock benches. The fill material has an
effective cohesion of 9.6kN/m? (200 psf), an effective friction angle of 30°, and a
total unit weight of 19.7kN/m?® (125pcf). Two noncircular failure surfaces are
assumed. The much shorter and smoother failure surface 1, as indicated by the
dashed line, is believed to be more critical than failure surface 2, which zigzags
along the surface of the benches by following boundary line 1. Compute the static
and seismic (seismic coefficient = 0.1) factors of safety for both failure surfaces
and determine which surface is more critical.

2D Example 6: Cut Slope with a Tension Crack

This example consists of two different cases: (1) Fig. A-6(a) shows an existing cut
slope 12m (40ft) high with the depth and location of a tension crack as given.
The soil has a cohesion of 60 kN/m? (1,250 psf), a friction angle of 0°, and a total
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Fig. A-7. Undrained shear strength increasing linearly with depth
Note: 1m = 3.28ft; 1TkN/m* = 20.9psf; 1kN/m’ = 6.36 pcf

unit weight of 19.7kN/m? (125 pcf). If the circular failure surface passes through
the bottom of the tension crack, determine the factor of safety when the tension
crack is dry and also when the tension crack is filled with water; (2) Fig. A-6(b)
shows a proposed cut slope with the same soil and outside configuration as those
shown in Fig. A-6(a) but the rock is located at 7m (23 ft) below the toe. The pre-
dicted depth of the tension crack is 4m (13ft), but the slope has not been con-
structed, and the location of the tension crack is unknown. Determine the factor
of safety and the location of the tension crack.

2D Example 7: Undrained Strength Increasing Linearly with Depth

An embankment is placed on a foundation consisting of two layers of clay. The
dimensions of the cross section, together with the undrained shear strength and
the unit weight of the soils, are shown in Fig. A-7(a). The results of Dutch cone
tests indicate that the undrained shear strength of each clay layer varies linearly
with depth, as shown by the trapezoidal distribution in the figure. The undrained
shear strengths for soil 1 are 35.9kN/m” (750 psf) at the top and 59.9kN/m’
(1250 psf) at the bottom, and those for soil 2 are 14.4kN/m? (300 psf) at the top
and 44.5kN/m? (930 psf) at the bottom. Determine the factor of safety (1) using
the direct method by considering the foundation as two layers, and (2) using the
approximate method by dividing each clay layer into four sublayers, as shown
in Fig. A-7(b).

2D Example 8: Embankment with Cohesionless Granular Materials

Fig. A-8(a) shows an embankment placed directly on a rock foundation. The soil
in the embankment is cohesionless with ¢, = 39°, Ap = 7°, and y = 22.1kN/m’



Preview of LEAME Computer Software 337

(22.9,15.2) (45.7,15.2)
(229,152) (€5.7,15.2) 739.19) Sell6 @5.7.14)
< LS~ o=139° 179.12.3) Soil 5 (45.7,12.8)
= 1 Adp=7° . -
o Ag=7 s 219116)  Soil4 (45.7,11.6)
= 7 =221 kNim 719104)  Soil3 (45.7,10.4)
©0) @5.70) 22992 Soil 2 (45.79.2)
(a) Direct Method

Soil 1
(45.7,0)
J L L1 .1 Rock Line
g @ & & § g
g 2 w9 = (b) Approximate Method
Fig. A-8. Embankment with cohesionless materials
Note: 1m = 3.28ft; 1kN/m* = 20.9psf: 1kN/m’ = 6.36 pcf
(-40, 18.2) < (40,18.3) -
I
(183,122) (40,122 f{i"‘ £ i
Water 2 l /—- Weight of water
1 7 Soil 2: c'= 9.6 kNad 122m S
$=28" v=19.7 kN —
(40,0)  (0,0) @,00l  f— / .
Soil 1: ¢'= 4.8 kN2 $'=125" ¥=189 kN 6?.1 m
i
(-40,-6.1) TTIEAE (40, -6.1) IR
(a) Cross Section of Slope (b) Total Weight and Neutral Forces

Fig. A-9. Analysis of submerged slope
Note: 1m = 3.28ft; 1kN/m’ = 20.9psf; 1kN/m’ = 6.36 pcf

(140 pcf). The dimensions of the embankment are shown in the figure. Determine
the factor of safety (1) using the direct method by considering the entire embank-
ment as one soil, and (2) using the approximate method by dividing the soil near
to the slope surface into a number of sublayers, as shown in Fig. A-8(b).

2D Example 9: Analysis of Submerged Slope

If a slope is submerged under water, as in the case of underwater excavations, a
general practice is to ignore the water table and use the submerged weight.
Another method, as used in LEAME to solve seepage problems, is to consider
the water table as a phreatic surface and use the total weight. The purpose of
this example is to determine the factors of safety in both cases. If both cases check
closely, the correctness of LEAME in analyzing seepage is further validated.
Fig. A-9(a) shows the cross section of a submerged embankment with a
height of 12.2m (40ft) and a slope of 1.5:1. The top of the embankment is 6.1 m
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Fig. A-10. Example on reliability analysis
Note: 1m = 3.28ft; 1TkN/m* = 20.9psf; 1kN/m’ = 6.36 pcf

(20ft) below the water table, and the soil parameters are shown in the figure.
Determine the factor of safety for the following two cases: (1) using the sub-
merged weight and ignoring the water table, and (2) using the total weight and
boundary neutral forces.

2D Example 10: Example on Reliability Analysis

Although reliability can be determined in all the previous examples by simply
specifying PROB as 1, 2, or 3 (1 for high variability, 2 for medium variability, and
3 for low variability), this capability has not been utilized so far. Because of the
lack of experience and dependable data, it is anticipated that the users of LEAME
will be more interested in the factor of safety than in reliability. This example is
the only one in which reliability will be discussed.

Fig. A-10 shows a slope with a phreatic surface and five different soils. Soil
1 is a granular soil with a curved envelope; soil 2 is a clayey soil with an und-
rained shear strength increasing linearly with depth; soils 3 and 4 are conven-
tional soils with a straight-line envelope; and soil 5 is water with neither cohesion
nor internal friction. The parameters for soils 1 and 3 are in terms of effective
stress and those for soils 2 and 4 in terms of total stress. The inclusion of all pos-
sible types of soil in the same site may not be realistic but is helpful for illustrative
purposes. All soil parameters, including the coefficients of variation, are shown
in the figure. Determine the factor of safety and the reliability of the design.

LEAME for Three-Dimensional Analysis

To illustrate the capability of LEAME software for 3D analysis, seven examples
are presented here. Detailed solutions using the LEAME software are available,
with commentary, in the User’s Manual.
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Fig. A-11. Heavy surcharge loads of limited length
Note: 1m = 3.28ft; 1kN/m* = 20.9psf: 1kN/m’ = 6.36 pcf

3D Example 1: Heavy Surcharge Loads of Limited Length

This example illustrates the application of 3D analysis with ellipsoidal ends to a
slope subjected to a heavy load over a limited area. A case in view is the safety
to pass extraordinary heavy equipment over an embankment. In 2D analysis, it
is assumed that the load and the failure surfaces are infinitely long in the longi-
tudinal direction. This assumption is very conservative and may result in an
unsatisfactory factor of safety. If the embankment fails under the load, the failure
mass must be spoon-shaped with a limited length. Therefore, the use of 3D
analysis is more realistic.

Fig. A-11 shows an embankment subjected to two heavy surcharge loads,
each 1.2m (4 ft) wide with a length of 3m (9.8ft) and an intensity of 480kN/m?
(10,000 psf). Soil 1 for the fill has an effective cohesion of 9.6 kN/m? (200 psf), an
effective friction angle of 30°, and a total unit weight of 19.7kN/m?’ (125 pcf).
Soils 2 and 3 for the surcharge loads are assumed to have a thickness of 0.3m
(1ft) and a unit weight of 1,600kN/ m? (10,000 pcf), which is equivalent to a sur-
charge load of 480kN/m? (10,000 psf). If the embankment is 18 m (59 ft) long, by
the use of LEAME, determine the factors of safety for both 2D and 3D analyses
in the same run.

The results of the analysis based on the simplified Bishop method show that
the factor of safety is 0.949 for 2D analysis and 1.121 for 3D analysis.

3D Example 2: Failure Surfaces with Planar Ends

If failures occur in a high embankment across a narrow valley with parallel rock
banks, two possible types of 3D failures may take place, depending on the inter-
facial shear strength between the embankment and the rock bank. If the interfa-
cial strength is low, failures will occur along the interface, as well as within the
embankment, so the case of 3D analysis with planar ends applies. If the interfa-
cial strength is high, failures will not occur along the interface but will be
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confined within the embankment only, so the case of 3D analysis with ellipsoidal
ends prevails. The former case is illustrated in this example, whereas the latter
is in the next example.

Fig. A-12 shows the cross section of an embankment across a narrow valley
with steep rock banks. Below the embankment is a thin layer of soft soil, or soil
2. To generate composite failure surfaces, an imaginary rock line, as indicated by
the dashed line, is assumed arbitrarily. Because no circles are allowed to pass
below the weak layer, all the soil parameters for soil 1 can be assumed 0. However,
to avoid the accidental cutting through soil 1 due to improper centers, LEAME
will change the cohesion of soil 1 to a large value, say 10,000. This change has
no effect on the computed results but will give those circles cutting through soil
1 a very large factor of safety and thus eliminate them from further consideration.
The soil parameters are shown in the figure.

The input parameters for end planes are HTW (half length of top width) =
210m (689 ft), PNTW (point number on ground line for defining top width) =4,
ANEP (angle of end plane) = 0, and SLEP (slope of end plane) = 3. Note that
SLEP is the ratio between vertical and horizontal (not between horizontal and
vertical), and a value of 3 is a steep slope and should not be confused with the
much flatter slope of 3:1. Because the factor of safety depends strongly on the
shear strength at the end plane, two different values of SSEP (Shear Strength at
End Plane) are assumed: a rough soil-rock interface with SSEP = 1 and a smooth
soil-rock interface with SSEP = 0.67. The use of SSEP = 1 indicates that the shear
strength of the soils in direct contact with the end plane is considered as the shear
strength at the end plane, whereas the use of SSEP = 0.67 implies that only two-
thirds of the shear strength of the soils above the end plane is used, as in the
design of retaining walls by assuming the wall friction equal to two-thirds of the
soil friction. Determine the factors of safety for SSEP of 1 and 0.67.

The factors of safety based on the original Spencer method with SSEP of 1
and 0.67 are 1.640 and 1.569, respectively. The factor of safety for 2D analysis
based on the original Spencer method is 1.384. It can be seen that the factor of
safety for 3D analysis is much greater than the 2D analysis.

Note: All coordinates in parentheses are in meter
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Fig. A-12. Cross section of an embankment across a narrow valley
Note: 1m = 3.28ft; 1kN/m’ = 20.9psf; 1kN/m’ = 6.36 pcf
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3D Example 3: Failure Surfaces with Ellipsoidal Ends

The previous example assumes that the failure surface occurs on the end planes.
A question immediately arises: Is the factor of safety based on planar ends lower
than that based on ellipsoidal ends? In other words, will the failure occur on the
end plane rather than inside the embankment? This example will shed some light
on this question.

The cross section and soil parameters used for this example are the same as
those in the previous example. If the failure surface is cylindrical with ellipsoidal
ends, determine the factor of safety. The result of analysis shows that the factor
of safety based on the original Spencer method is 1.430, which is smaller than in
the previous example.

3D Example 4: Landfill with Geotextiles and Noncircular
Failure Surface

This example illustrates the application of 3D analysis with planar ends to a
landfill having a weak layer at the bottom. The use of geosynthetic materials,
such as geotextiles, geomembranes, or geosynthetic clay liners at the bottom has
posed new problems to the stability of landfills. These materials have a very low
friction angle and can cause failures to occur through these weaker materials.
When such fills are placed in a hollow with steep slopes on three sides, the factor
of safety based on 3D analysis may be smaller than that based on the conven-
tional 2D analysis using the most critical cross section at the center. The ability
to analyze landfills in three dimensions is an outstanding and important feature
of LEAME.

Fig. A-13 shows a landfill with three different materials. The rock toe is con-
structed of granular materials with an effective cohesion of 4.8kN/m? (100 psf),
an effective friction angle of 32°, and a total unit weight of 18.9kN/m?® (120 pcf).
Layers of geotextiles are placed at the bottom of the fill above a clay liner to
facilitate construction and provide drainage. To simulate the very small friction
angle between geotextiles, a thin layer of material, say 0.1 m (4in.) thick with a
friction angle of only 9° and a unit weight of 17.4kN/m? (110 pcf), is placed above
the clay liner. Because a weak layer exists at the bottom of the fill, all failure
surfaces will lie along the bottom of the weak layer, so all the materials below
the weak layer, including the clay liner, are immaterial and need not be consid-
ered in the stability analysis. The waste material, or soil 3, above the geotextiles
has a cohesion of 9.6 kN /m? (200 psf), an effective friction angle of 22°, and a total
unit weight of 17.4kN/m’ (110pcf). The end plane is defined by the following
parameters: HTW = 61m (200 ft), PNTW = 4, SLEP = 0.5, and ANEP = 20°.

Two potential failure surfaces are assumed. The first failure surface assumes
that the failure is along the bottom of the fill, starting from (22.9, 38.1) and ending
at (201.2, 59.5), as shown in Fig. A-13. The coordinates of the failure surface are
the same as those of boundary line 2, so only the shear strength of soil 2 with a
friction angle of 9° and the total unit weight of 17.4kN/m’ (110 pcf) for soils 2
and 3 are used in the analysis.
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To be sure that the failure surface does not cut horizontally through the rock
toe, a second failure surface is assumed, starting from (7.6, 30.5), passing through
(30.5, 30.5), and following boundary line 2 to (201.2, 59.5). Both failure surfaces
can be analyzed by LEAME at the same time. The results of the analysis based
on the original Spencer method show that failure surface 1 has a safety factor of
1.376, which is more critical than the 1.455 for failure surface 2. The factor of
safety for 2D analysis is 1.541, which is much greater than the 3D analysis.

3D Example 5: Landfill with Geotextiles and Composite
Failure Surfaces

In the previous example, it is quite possible that the most critical failure surface
is a composite surface consisting of a noncircular surface near the toe and a
circular surface in the interior, rather than a noncircular surface throughout the
entire fill. The factor of safety obtained by the composite failure surface in this
example will compare with the noncircular failure surface in the previous
example to see which is more critical.

To generate a large number of composite surfaces, an imaginary boundary
line 1 is added, and the ground line is extended, as shown by the dashed lines
in Fig. A-14. The analysis by LEAME reveals that the minimum factor of safety
based on the original Spencer method is 1.373 for composite failure surfaces,
which is only slightly smaller than the 1.376 for the noncircular failure
surfaces.
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(91.5, 55.2)

Note: All coordinates are in meters,
Failure Swface 1

Soil 3 (¢'= 9.6 N> . ¢'=22°, 7 =174 kN/m?)

(22.9,38.1) S0l 2 (c'= 0. d'=9° 7 = 17.4 N/m 3
Roclk Toe 80]:-:5 (:: 390'14) i h‘?ll\f; I:] 13) 6) HTW =61 m
76.2, 29.1) 3 oL PNTW = 4
(7.6. 30.5) (76.2. 29) 2 (143.3,30.5)  SLEP=0.5
Soil 1 (¢'= 4.8 KN, ¢'= 32° 7=18.9 KN/m®) ANEP = 20°

Failure Swiface 2

Fig. A-13. Landfill with noncircular failure surfaces
Note: 1m = 3.28ft; 1TkN/m* = 20.9psf; 1kN/m’ = 6.36 pcf

b Y} 205
(91.5,55.2) 5 Ll

Note: All coordinates are in meters,

5

Soild (c'=0.6 kN ¢ =22, 7 =174 laym?

220, 3 soata o ' - ;
ek ,:([:‘Jég‘ 38.1) - Soil 3 (¢'=0, P'=9% 7 = 17.4KkN/m3) HTW =61 m
H (30.5, 30.6) (76.2, 29.1) 4 (143.3. 30.6) PNTW = 3
(100, 30.5) (7.6, 30.5) | (30.5, 30.5) (76.2. 29) 3 (143.3.30.5)  SLEP=0.5
Soil2(c'= 4.8 KNMP ¢'=3° 7 =189 kNmd) Soill1 (e=¢'=7 =0) ANEP = 20
(100,132 T TTTTTTTTTT rmmmmm T (2012, 15.2)

Fig. A-14. Cross section for analyzing composite failure surfaces
Note: 1m = 3.28ft; 1TkN/m* = 20.9psf: 1kN/m’ = 6.36 pcf
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3D Example 6: Effect of Embankment Length on Factor of Safety

When an embankment is placed across a deep valley, such as an earth dam or a
valley fill, the most probable failure surface will be spoon-shaped with a cylinder
at the center and a half ellipsoid at each end. This type of failure surface can be
analyzed by LEAME with ellipsoidal ends, as illustrated in 3D Example 3. The
current practice of using the conventional 2D analysis to solve this 3D problem
is unrealistic. In the 2D analysis, two assumptions are made. First, the most criti-
cal cross section at the center of the valley is used to represent all the cross sec-
tions along the length of the embankment. This assumption may not be true,
because the height of the embankment usually decreases as the cross section
becomes closer to the bank. The consideration of this variation in cross sections
requires the provision of different cross sections along the length of the embank-
ment and is too cumbersome and difficult to perform. This assumption, even
though unreasonable, is still used in LEAME for 3D analysis, because it will give
a more conservative factor of safety.

The second assumption is that the embankment and the failure surface are
infinitely long, so a unit length of the embankment can be used to represent the
entire embankment. In other words, a unit length of the embankment can slip
out freely with no reaction or resistance from the adjacent fill. This complete
ignorance of the end effect may be quite significant if the embankment is rela-
tively short. The LEAME program with ellipsoidal ends is designed to consider
this end effect. The purpose of this example is to illustrate how the length of the
embankment affects the factor of safety obtained.

Fig. A-15 is the cross section of an earth embankment showing the coordi-
nates of the boundary lines, location of the phreatic surface, and soil parameters
used for analysis. The minimum factor of safety based on 2D analysis using the
simplified Bishop method is 1.470, which is lower than the 1.5 required. If the
total length of the embankment is 60m (196.8 ft), determine the minimum factor
of safety.

By varying the length of embankment, it was found that the factor of safety
decreased as the length of embankment increased. Therefore, the assumption
that the failure surface is most critical when the length of the failure mass is equal
to the length of the embankment is valid.
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Fig. A-15. Cross section for analysis of end effects
Note: 1m = 3.28ft; 1kN/m’ = 20.9psf; 1kN/m’ = 6.36 pcf
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3D Example 7: Effect of Bench Length on Factor of Safety

In 2D analysis, not only the failure surface but also the loading must be infinitely
long. If a load is applied over a limited area, the 3D analysis with ellipsoidal
ends can be used, as illustrated in 3D Example 1. The same principle can be
applied to a short section of steep slope changing gradually to a much flatter
slope. The section of steep slope can be considered as a heavy load with a HCL
(half cylindrical length) equal to the half length of the steeper section. However,
there are two major differences between 3D Example 1 and this case: (1) The half
length of the failure mass (HLFM) is defined clearly as the half length of the
embankment in 3D Example 1 but not in this case. Because the flatter slope is
very stable with a high factor of safety, HLFM should be confined within the
transitional and steep sections and not extended into the flatter section; and
(2) In 3D Example 1, the cross section is the same throughout the embankment,
whereas in this example the half ellipsoid is located in the transitional section
with a gradually decreasing slope, so the assumption of the same steep slope for
the transitional section is on the safe side with a lower factor of safety.

This method can be applied to the stability analysis of bench fills. In surface
mining, a cut is made on a hillside to expose the coal seam, resulting in a bench
and a highwall. The Surface Mining Control and Reclamation Act of 1977 requires
the return of disturbed land to its original contours. Therefore, the bench created
by surface mining must be backfilled to the original slope. If the original slope
is quite steep, it may be difficult to achieve the required factor of safety. The
factor of safety can be increased by 3D analysis.

Fig. A-16 shows the cross section of a bench fill together with the coordinates
of boundary lines and soil parameters. The highwall and bench are mostly of
rocky materials, so any failure, if ever present, will be limited within the backfill.
The area is well drained, and there is no seepage. If the bench with the steepest
section is only 30m (98 ft) long, determine the factor of safety based on both 2D
and 3D analyses.

The results of the analysis based on the simplified Bishop method show that
the factor of safety is 1.474 for 2D analysis and 1.504 for 3D analysis.

0,12.2)

Highwall | Backfil

¢'= 9.6 kN/m?
¢I= 300
Y =19.7 kN/m3

(0,0) Bench (17.7,0)

Fig. A-16. Cross section of a bench fill
Note: 1kN/m* = 20.9psf; 1kN/m’ = 6.36 pcf
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Applications for Surface Mining

As mentioned in the Preface to this book, the original REAME software (Rota-
tional Equilibrium Analysis of Multilayered Embankments) was developed in
response to the Surface Mining Control and Reclamation Act of 1977, which
requires the stability analysis of spoil banks, hollow fills, and refuse dams created
by surface mining. In Chapter 4 of the LEAME User’s Manual, 10 cases involving
various methods of spoil and waste disposal from surface mining are presented
to illustrate the practical applications of LEAME. Data files for these cases are
included with the software and can be used to run LEAME and obtain the
printed results. These examples are real cases that were analyzed by REAME and
submitted to the regulatory agencies for the application of mining permits.
Because the LEAME presented in this book is quite different from the original
REAME, the stability analyses reported herein are not exactly the same as those
in the original reports. However, the general procedures and conclusions are
about the same.
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Page numbers followed by e, f, and t indicate equations, figures, and tables,

respectively.

A

advanced stage movements 6

anchor systems, corrective methods for
slides 129, 130f

anisotropic cross section, flownets for
phreatic surfaces 91-93, 91e, 92¢,
92f

B

back analysis, of shear strength 80-84
effective stress analysis with ¢’ and
¢’ 83-84, 83e, 83f, 84f
remedial measures and 123
total stress analysis with =0 80, 80¢
total stress analysis with both ¢ and
¢ 80-83, 81, 81f, 82f
bench length, LEAME software
example 343, 343f
biotechnical stabilization, corrective
methods for slides 135
Bishop’s and Morgenstern’s charts,
effective stress analysis of
homogenous dams 185, 186-189,
186f, 187f, 188e, 197
blow count, standard penetration
test 4648
boring, subsurface investigations 46
bridging, corrective methods for
slides 129-130, 130f
buttresses, corrective methods for
slides 125-126, 125f, 126f

C

cement grouting, corrective methods for
slides 135

355

chemical treatment of soil, corrective
methods for slides 135
circular failure surface. see cylindrical
failure surface
coefficient of variation 313, 313¢,
314-315¢
cohesion, logarithmic-spiral method of
analysis 212-219, 212e, 212f, 213e,
213f, 214e, 214f, 217, 218e, 218f,
219f
complex slope movements 4, 5, 5t
composite failure surfaces 24-25, 24f
LEAME software example 332-333,
333f, 341, 341f
compound slides 5
cone penetration test (CPT). see Dutch
cone test
consolidation, pore pressure ratio for
phreatic surfaces and 109-111,
110e, 110f, 111f
contemporary movements 6
correlation coefficient, between random
variables 316-317, 316¢
Coulomb’s theory 162
covariance, of two random variables 313,
313e, 316, 316e
cut slopes
stress analysis 26
with tension crack, LEAME software
example 334-335, 334f
cylindrical failure surface 9-12, 9, 9f,
10e, 10f, 11f, 24, 24f

D

Darcy’s law 94, 94e
deterministic method, reliability and 311
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direct shear test, shear strength
and 58-60, 58f, 59f, 60f
dormant movements 6
drainage layers (underdrains), corrective
methods for slides 127
drainage tunnel (gallery), corrective
methods for slides 128
Dupuit’s assumption 94, 98
Dutch cone test
shear strength and 48-50, 4%, 49f,
50e
undrained strength increasing
linearly with depth 335, 335f

E

earth buttresses, corrective methods for
slides 125-126, 125f, 126f
earth dams, phreatic surfaces and
earth dams with filter drains 98-103,
98f
when 60° < 8 < 180° 100-103,
100e, 100f, 101e, 101f, 102f,
103f
when 8 < 60° 98-99, 99f
earth dams without filter
drains 94-96, 94e, 94f, 95e, 96f, 97f,
98
earth pressure, simplified plane surface
failure analysis 162-164, 162e,
162f, 163e, 163f, 164e, 165f<
earthquake consideration, effective stress
analysis 36-39, 36f, 37e, 37f, 38f,
38t
effective shear strength, typical ranges
and correlations 72-73, 72f, 73f,
74f, 75-76t, 77, 77t, 78t
effective stress analysis 27
back analysis of shear strength, with
¢ and ¢’ 83-84, 83e¢, 83f, 84f
earthquake consideration 36-39, 36f,
37e, 37f, 38f, 38t
on homogeneous dams 185-198,
185f
Bishop’s and Morgenstern’s
charts 185, 186-189, 186f, 187f,
188e, 197
comparison of charts 197-198
Huang’s charts 185, 194-198,
195f, 196f

Morgenstern’s charts 185,
189-192, 189f, 190f, 191f, 192f,
197
Spencer’s charts 185, 193-194,
193¢, 193f, 197
on nonhomogeneous dams 199-202,
199, 199f, 200e, 200f, 201f
pore pressure ratio 108, 108e
rapid drawdown 35-36, 35f
steady-state seepage 32-35, 32f, 33f,
34f, 34t, 35t
total stress analysis contrasted 25-26
electro-osmosis technique, corrective
methods for slides 136
ellipsoidal ends, failure surfaces with
LEAME software example 340
3D analysis of 265-272
dimensions of failure mass 266—
269, 266f, 267¢, 268¢, 268f
orientation and area of failure
surface 269-272, 269, 269f,
270f, 271e, 272e
embankment length, LEAME software
example 342, 342f
exceptional landslides 6
exhausted stage movements 6
expectation, of random variable 312,
312e

F

factors of safety, defined 3, 23
failure surface shapes, remedial measure
field investigation 120-122, 122f
failure surface types 23-25, 24f
falls 4, 5t
Fellenius method of analysis 14, 17. see
also normal method of analysis
effective stress analysis 33-34, 33e,
33f, 34t
total stress analysis 26-28, 27¢, 27f,
28f, 29¢, 30
field investigation, prior to
remediation 118-121
failure surface shapes 120-122, 122f
geology 119
history of slope change 120
topography 118-119
water 119-120
weather 120



fill slopes, stress analysis 26
finite element analysis 14
flownets, phreatic surfaces and 89-94
anisotropic cross section 91-93, 91e,
92¢, 92f
isotropic cross section 90-91, 90f, 91e
piezometric surfaces and 93-94, 93¢,
93f
flows 5t, 6
force equilibrium, method of slices and
factors of safety 242-243, 243,
249-250, 249¢, 250e
forestation. see trees
fossil movements 6
friction circle method of analysis 208-
211, 208f, 209, 209f, 210f

G

geogrids, steep slope reinforced by,
LEAME software example 331-
332, 332f
geology, remedial measure field
investigation 119
geotextiles, landfills with, LEAME
software example
composite failure surfaces 341, 341f
noncircular failure surfaces 340-341,
341f
granular materials, shear strength
of 65-69, 65¢, 66¢, 66f, 66t, 67¢, 67f,
68e, 68t, 69f, 70f

H

history of slope change, remedial
measure field investigation 120
homogeneous dams, effective stress
on 185-198, 185f
Bishop’s and Morgenstern’s
charts 185, 186189, 186f, 187f,
188e, 197
comparison of charts 197-198
Huang’s charts 185, 194-198, 195f,
196f
Morgenstern’s charts 185, 189-192,
189f, 190f, 191f, 192f, 197
Spencer’s charts 185, 193-194, 193¢,
193f, 197
homogenous slopes with ¢ = 0, stability
charts 171-173, 172f, 173f
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homogenous slopes with ¢ and ¢,
stability charts 173-176, 174f, 175e,
175f, 176f

horizontal drains, corrective methods for
slides 127-128, 127f

Huang’s charts, effective stress analysis
of homogenous dams 185,
194-198, 195f, 196f

inclinometers, field investigation for
remedial measures 121

infinite slopes, simplified plane surface
failure analysis 143-146, 144e,
144f, 145¢, 146f

initial stage movements 6

ion exchange technique, corrective
methods for slides 135

isotropic cross section, flownets for
phreatic surfaces 90-91, 90f, 91e

J

Janbu rigorous method of analysis 15

K
Karafiath, L. 15, 16

L

Lagrange interpolation formula 243-244,
243e
landfills
shear strength of municipal solid
waste 69-72, 71f, 72e
3D analysis examples
geotextiles and composite
failure surface 341, 341f
geotextiles and noncircular
failure surface 340-341, 341f
LEAME (Limit Equilibrium Analysis of
Multilayered Earthworks)
software ix—xi, 17
back analysis of shear strength
and 80-84, 80e, 81e, 81f, 82f, 83e,
83f, 84f
reliability and 312
stability analysis methods
incorporated into 17-18
surface mining applications 344
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3D analysis examples 337-343
effect of bench length on factor
of safety 343, 343f
effect of embankment length on
factor of safety 342, 342f
failure surfaces with ellipsoidal
ends 340
failure surfaces with planar
ends 338-339, 339f
heavy surcharge loads of limited
length 338, 338f
landfill with geotextiles and
composite failure surface 341
landfill with geotextiles and
noncircular failure surface
340-341, 341f
two-dimensional analysis
examples 330-337
composite failure surfaces 332-
333, 333f
cut slope with tension crack
334-335, 334f
embankment with cohesionless
granular materials 335-336,
336f
noncircular failure surfaces 334,
334f
refuse dam constructed by
upstream method 331, 331f
reliability analysis 337, 337f
soil nails for shotcrete wall 332,
333f
steep slope reinforced by
geogrids 331-332, 332f
submerged slope 336-337, 336f
undrained strength increasing
linearly with depth 335, 335f
User’s Manual, generally 330
limit plastic equilibrium 6-7, 7e
statistically determinate
problems 7-12, 7e, 7f, 8e, 8f, 9e, 9,
10e, 10f, 11f
statistically indeterminate
problems 12-13, 12f, 13f
logarithmic-spiral method of
analysis 211-221
factor of safety with respect to
cohesion 212-219, 212¢, 212f, 213e,
213f, 214e, 214f, 217, 218e, 218f,
219f

factor of safety with respect to shear
strength 219-221, 219¢, 220e,
220t
lognormal distribution, reliability
325-327, 325e, 326¢, 326t
Lowe, J. 15, 16

M

mean, reliability and 314-315¢
Taylor’s expansion 317, 317e
mean-valued first order second moment
(MFOSM) method 319-320, 319,
320t
mechanically stabilized earth (MSE)
walls, corrective methods for
slides 131-132, 131f
mechanics of slides 23-44
effective stress analysis
earthquake consideration 36-39,
36f, 37e, 37f, 38f, 38t
rapid drawdown 35-36, 35f
steady-state seepage 32-35, 32f,
33e, 33f, 34e, 34t, 35t
factors of safety 39-40, 40¢, 41t
failure surface types 23-25, 24f
total stress analysis
Fellenius method 26-28, 27¢,
27f, 28f, 29¢, 30
sliding-block method 30-32, 30f,
3le, 31f, 32e
total versus effective stress 25-26
method of slices 229-264
normal method 231-233, 233e, 233f,
234e, 235f, 235¢, 236e¢, 236f, 237,
237t
original Spencer method 232-238,
240-248
factors of safety based on force
equilibrium 242-243, 243e
factors of safety based on
moment equilibrium 241-242,
241e, 242e, 242f
overall factors of safety 237t,
243-245, 243¢, 244e, 244f, 245e,
246-247t, 248
overall moment equilibrium 229-
233, 230e, 230f, 231e, 232¢, 232f
simplified Bishop method 231-233,
238-239, 238¢, 238f, 240t, 241



special solution techniques
Newton’s method of tangent
256-259, 257¢, 257f, 258e, 259,
259t
relaxation factor use 259-260,
259
Spencer method 248-256, 249,
249f
force of equilibrium of each
slice 249-250, 249, 250e
moment equilibrium of each
slide 250-253, 251¢, 251f, 252e,
252f, 254-255t, 255-256
mining operations
factors of safety 40, 41t
surface mining, LEAME software
example 344
Mohr-Coulomb failure theory 7, 7e
effective stress analysis 33, 33e
overall moment equilibrium 230,
230e
total stress analysis 26
moment equilibrium, method of slices
and factors of safety 241-242,
241e, 242¢, 242f, 250-253, 251e,
251f, 252¢, 252f, 254-255t, 255-256
Morgenstern and Price method of
analysis 16-18, 249, 249¢
Morgenstern’s charts, effective stress
analysis of homogenous
dams 185, 189-192, 189f, 190f,
191f, 192f, 197
movement phenomena, study of slope
movements and 4
municipal solid waste. see landfills

N

Newton’s method of tangent
method of slices 256-259, 257¢, 257f,
258e¢, 25%¢, 259t, 260
3D analysis methods 296, 296e, 297t
noncircular failure surfaces. see plane
failure surfaces
nonhomogeneous dams, effective stress
on 199-202, 199, 199f, 200e, 200f,
201f
normal distribution, reliability 321-322,
321e, 321f, 322¢, 322f, 323-324t,
325f
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normal method of analysis

effective stress analysis 34-35, 34e,
35¢

method of slices 231-238, 233¢, 233f,
234e, 235f, 235t, 236¢, 236f, 237e,
237t

phreatic surfaces and 94

seepage and 17

3D analysis methods 278-282, 279,
279f, 280e, 280f, 281e, 282t, 283,
284-288, 285f, 286e, 286f, 287¢,
287t, 288t, 289t, 290292, 290f,
291e, 292t, 293t

o

ordinary landslides 6
original Spencer method of analysis 15,
17. see also Spencetr’s charts
method of slices 232-238, 240-248
factors of safety 244f
factors of safety based on force
equilibrium 242-243, 243¢
factors of safety based on
moment equilibrium 241-242,
241e, 242e, 242f
Newton’s method of
tangent 257-258, 257¢, 258¢
overall factors of safety 237¢,
243-245, 243e, 244e, 244f, 245e,
246-247t, 248
relaxation factor 260
3D analysis methods 265, 297-298,
298¢, 299-302¢, 303, 304-306¢
total stress analysis 30-31
overall moment equilibrium
method of slices 229-233, 230¢, 230f,
231e, 232e, 232f
3D analysis methods 277-278, 277,
278e

P

phreatic surfaces 89-117
earth dams with filter drains 98-103,
98f
when 60° < £8 < 180° 100-103,
100e, 100f, 101e, 101f, 102f, 103f
when £ < 60° 98-99, 99f
earth dams without filter drains
94-96, 94e, 94f, 95e, 96f, 97f, 98
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flownets 89-94
anisotropic cross section 91-93,
91e, 92e, 92f
isotropic cross section 90-91,
90f,
91e
piezometric surfaces and 93-94,
93e, 93f
pore pressure ratio
due to consolidation 109-111,
110e, 110f, 111f
for steady-state seepage 106—
109, 106¢, 107¢, 107f, 108e, 108f
unsteady-state seepage 103-106,
104e, 104f, 105f
piezocone penetration test, shear strength
and 50-53, 51e, 51f, 52¢, 52f, 53e,
53f, 54f, 54t, 55-56, 55f, 56e
piezocones, remedial measures to correct
slides 120
piezometric surfaces, flownets for
phreatic surfaces 93-94, 93¢, 93f
pile systems, corrective methods for
slides 133-134, 134f
planar ends, failure surfaces with
LEAME software example 338-339,
339f
3D analysis of 273-277, 273f, 274e,
274f, 275e, 276f
plane failure surfaces 24, 24f
LEAME software example 334, 334f,
340-341, 341f
simplified methods of
analysis 143-170
earth pressure 162-164, 162,
162f, 163e, 163f, 164e, 165f
infinite slopes 143-146, 144e,
144f, 145¢, 146f
limitations of 143
three sliding blocks 157-158,
157e, 158e, 158f, 159f, 159t,
160-162, 161t
trapezoidal cross section
148-151, 148f, 149¢, 150e, 150f,
151f
triangular cross section 147-148,
147e, 147f, 148¢
two sliding blocks 152-156,
152e¢, 152f, 153e¢, 153f, 153t,
155f, 157t

statistically determinate
problems 7-8, 7e, 7f, 8e, 8f
pore pressure ratio
defined 106, 106e
due to consolidation 109-111, 110e,
110f, 111f
for steady-state seepage 106-109,
106¢, 107e, 107f, 108e, 108f
probabilistic method, reliability and 311

R

Rankine’s theory 162
rapid drawdown, effective stress
analysis 35-36, 35f
REAME (Rotational Equilibrium Analysis
of Multilayered Embankments)
software 344
refuse dam constructed by upstream
method, LEAME software
example 331, 331f
reinforces soil slopes (RSS), corrective
methods for slides 131, 132,
132f
relaxation factor, method of slices
259-260, 259
reliability 311-329
LEAME software example 337,
337f
lognormal distribution 325-327,
325e, 326¢, 326t
mean-valued first order second
moment (MFOSM) method
319-320, 319¢, 320t
normal distribution 321-322, 321e,
321f, 322¢, 322f, 323-324t, 325f
statistical terms 311-317
coefficient of variation 313,
313e¢, 314-315t
correlation coefficient 316-317,
316e
covariance 313, 313e, 316,
316e
expectation 312, 312¢
standard deviation 313, 313e,
314-315¢
variance 312-313, 312¢
Taylor’s expansion 317-319
mean 314-315¢t, 317, 317e
variance 317-319, 318e¢



remedial measures, to correct
slides 118-139
corrective methods 123-136
anchor systems 129, 130f
bridging or tunneling 129-130,
130f
buttresses 125-126, 125f, 126f
pile systems 133-134, 134f
retaining walls 128-129, 129f
soil hardening 135-136
soil reinforcements 131-133,
131f, 132f, 133f
subsurface drainage 127-128,
127f, 128f
surface drainage 126-127
vegetation and biotechnical
stabilization 135
weight removal 124-125, 124f,
125
field investigation 118-121
failure surface shapes 120-122,
122f
geology 119
history of slope change 120
topography 118-119
water 119-120
weather 120
preliminary planning 122-123
selection of methods 136-137
retaining walls, corrective methods for
slides 128-129, 129f
rock or stiff slopes, stability charts
trapezoidal fills 181-185, 181f, 182f,
183f, 184f
triangular fills 177¢, 177f, 178¢, 178f,
179, 179f, 180f, 181f
rotational slides 5, 5t
field investigation for remedial
measures 120-121, 122f

S

seepage
normal method of analysis 17
steady-state seepage
effective stress analysis 32-35,
32f, 33¢, 33f, 34e, 34t, 35t
pore pressure ratio for phreatic
surfaces 106-109, 106¢, 107¢,
107f, 108e, 108f
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unsteady-state seepage, phreatic
surfaces 103-106, 104e, 104f, 105f
seismic zones, in United States 37-38,
37f, 38f, 38t
shear strength 45-88
back analysis of 80-84
effective stress analysis with ¢’
and ¢’ 83-84, 83e, 83f, 84f
remedial measures 123
total stress analysis with ¢ =
0 80, 80e
total stress analysis with both ¢
and ¢ 80-83, 81e¢, 81f, 82f
field tests 46-57
Dutch cone test 48-50, 49¢, 49f,
50e
piezocone penetration test
50-53, 51e, 51f, 52¢, 52f, 53¢,
53f, 54f, 54t, 55-56, 55f, 56¢
standard penetration test 4648,
47e, 47f, 48f
vane shear test 56-57, 57f
of granular materials 65-69, 65¢, 66,
66f, 66t, 67¢, 67f, 68¢, 68t, 69f, 70f
laboratory tests 57-65
direct shear test 58-60, 58f, 59f,
60f
triaxial compression test 60-65,
61f, 62f, 63¢, 64e, 65f
logarithmic-spiral method 219-221,
219¢, 220e, 220t
of municipal solid waste 69-72, 71f,
72e
subsurface investigations 45-46
typical ranges and
correlations 72-80
effective shear strength 72-73,
72f, 73f, 74f, 75-76t, 77, 77t, 78t
undrained shear strength 77-80,
78f, 79f, 79t
shear stress 6-7, 7e
shotcrete wall, soil nails for, LEAME
software example 332, 333f
simplified Bishop method of
analysis 14-15, 17
method of slices 231-233, 238-239,
238e, 238f, 240t, 241
Newton’s method of
tangent 258-259, 258¢, 259¢
relaxation factor 260
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3D analysis methods 294, 294e, 295,
295t, 296297, 296¢, 297t
simplified Janbu procedure 15
slides 5, 5¢
sliding-block method, total stress
analysis 30-32, 30f, 31e, 31f, 32¢
slope movements 3-6
ages, stages, and causes of 6
classification of 4-6, 5¢
history of, and field investigation
120
soil hardening, corrective methods for
slides 135-136
soil mechanics, study of slope
movements and 4
soil nailing walls, corrective methods for
slides 131-133, 133f
soil nails for shotcrete wall, LEAME
software example 332, 333f
soil reinforcements, corrective methods
for slides 131-133, 131f, 132f,
133f
solid waste. see landfills
Spencer method of analysis 15, 16, 17
method of slices 248-256, 249¢,
249f
force of equilibrium of each
slice 249-250, 249, 250e
moment equilibrium of each
slide 250-253, 251e, 251f, 252¢,
252f, 254-255¢, 255-256
relaxation factor 259-260, 259¢
Spencer’s charts, effective stress analysis
of homogenous dams 185,
193-194, 193e, 193f, 197
spreads 5, 5t
stability analysis methods 13-18
incorporated into LEAME 17-18
satisfying force equilibrium of each
slice 15-16
satisfying moment and force
equilibrium of each slice 16-17
satisfying overall moment and
overall force equilibrium 15
satisfying overall moment
equilibrium 14-15
stability charts and other
solutions 171-228
effective stress on homogeneous
dams 185-198, 185f

Bishop’s and Morgenstern’s
charts 185-189, 186f, 187f,
188e, 197
comparison of charts 197-198
Huang’s charts 185, 194-198,
195f, 196f
Morgenstern’s charts 185,
189-192, 189f, 190f, 191f, 192f,
197
Spencer’s charts 185, 193-194,
193¢, 193f, 197
effective stress on nonhomogeneous
dams 199-202, 199, 199f, 200e,
200f, 201f
friction circle method 208-211, 208f,
209, 209f, 210f
homogenous slopes with ¢ =0 171-
173, 172f, 173f
homogenous slopes with ¢ and
¢ 173-176, 174f, 175e, 175f, 176f
logarithmic-spiral method 211-221
factor of safety with respect to
cohesion 212-219, 212e, 212f,
213e, 213f, 214, 214f, 217f,
218e, 218f, 219f
factor of safety with respect to
shear strength 219-221, 219,
220e, 220t
total stress analysis of dams with ¢ =
0 202-205, 202e, 203f, 204f
total stress analysis of triangular fills
on soil slopes 205-206, 205f, 206e,
207t
trapezoidal fills on rock or stiff
slopes 181-185, 181f, 182f, 183f,
184f
triangular fills on rock or stiff slopes
177-181, 177¢, 177f, 178e, 178f,
179, 179f, 180f, 181f
standard deviation, of random
variable 313, 313¢, 314-315¢
standard penetration test, shear strength
and 46-48, 47¢, 47f, 48f
statistically determinate problems 7-12,
7e, 7f, 8e, 8f, 9e, 9f, 10¢, 10f, 11f
statistically indeterminate
problems 12-13, 12f, 13f
steady-state seepage
effective stress analysis 32-35, 32f,
33e, 33f, 34e, 34t, 35t



pore pressure ratio for phreatic

surfaces 106-109, 106e, 107¢, 107f,
108e, 108f

steep slope reinforced by geogrids,
LEAME software example 331-
332, 332f

submerged slope, LEAME software
example 336-337, 336f

subsurface drainage, corrective methods
for slides 127-128, 127f, 128f

subsurface investigations, shear strength
and 45-46

surcharge loads of limited length,
LEAME software example 338,
338f

surface drainage, corrective methods for
slides 126-127

surface mining, LEAME software
and 344

T

Taylor’s expansion, reliability
and 317-319
mean 314-315t¢, 317, 317¢
variance 317-319, 318e
tension crack in cut slope, LEAME
software example 334-335, 334f
Terzaghi’s one-dimensional consolidation
theory 110, 110e
thermal treatments, corrective methods
for slides 136
three sliding blocks, simplified plane
surface failure analysis 157-158,
157e, 158¢, 158f, 159f, 159¢, 160—
162, 161t
three-dimensional (3D) analysis
methods 265-310
failure surfaces with ellipsoidal
ends 265-272
dimensions of failure mass 266—
269, 266f, 267¢, 268¢, 268f
orientation and area of failure
surface 269-272, 269, 269f,
270f, 271e, 272e
failure surfaces with planar ends
273-277, 273f, 274e, 274f, 275e, 276f
LEAME software examples 337-343
effect of bench length on factor
of safety 343, 343f
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effect of embankment length on
factor of safety 342, 342f
failure surfaces with ellipsoidal
ends 340
failure surfaces with planar
ends 338-339, 339f
heavy surcharge loads of limited
length 338, 338f
landfill with geotextiles and
composite failure surface 341
landfill with geotextiles and
noncircular failure surface
340-341, 341f
normal method 278-282, 279, 279f,
280e, 280f, 281e, 282t, 283t,
284-288, 285f, 286e, 286f, 287¢,
287t, 288t, 289t, 290292, 290f,
291e, 292t, 293t
original Spencer method 265,
297-298, 298¢, 299-302t, 303,
304-306t
overall moment equilibrium
equation 277-278, 277¢, 278e
simplified Bishop method 294,
294e, 295, 295¢, 296297, 296e,
297t
ties. see anchor systems
topography, remedial measure field
investigation 118-119
topples 4, 5t
total stress analysis
back analysis of shear strength
with ¢ =0 80, 80e
with both ¢ and ¢ 80-83, 81e,
81f, 82f
dams with ¢ =0 202-205, 202¢, 203f,
204f
effective stress analysis
contrasted 25-26
Fellenius method 26-28, 27¢, 27f, 28f,
29t, 30
sliding-block method 30-32, 30f, 31e,
31f, 32¢
triangular fills on soil slopes 205-
206, 205f, 206¢, 207t
translational slides 5, 5t
field investigation for remedial
measures 120-121, 122f
Transportation Research Board
resources 123-124
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trapezoidal cross section, simplified
plane surface failure analysis
148-151, 148f, 149¢, 150¢, 150f,
151f
trapezoidal fills on rock or stiff slopes,
stability charts 181-185, 181f, 182f,
183f, 184f
trees
corrective methods for slides 135
history of slope change 120
trench drains, corrective methods for
slides 127
triangular cross section, simplified plane
surface failure analysis 147-148,
147e, 147f, 148e
triangular fills
on rock or stiff slopes, stability
charts 177e, 177f, 178e, 178f, 179,
179f, 180f, 181f
on soil slopes, total stress analysis
205-206, 205f, 206e, 207t
triaxial compression test, shear strength
and 60-65, 61f, 62f, 63¢, 64e,
65f
tunneling, corrective methods for
slides 130, 130f
two sliding blocks, simplified plane
surface failure analysis 152-156,
152e, 152f, 153e, 153f, 153t, 155f,
157t
two-dimensional analysis, LEAME
software examples
embankment with cohesionless
granular materials 335-336,
336f
reliability analysis 337, 337f
submerged slope 336-337, 336f

U

undrained shear strength
LEAME software example 335, 335
typical ranges and
correlations 77-80, 78f, 79f, 79t
unexplainable landslides 6
unsteady-state seepage, phreatic
surfaces 103-106, 104e, 104f, 105f
upstream methods, refuse dam
constructed by upstream method,
LEAME software example 331,
331f
U.S. Army Corps of Engineers
factors of safety 39-40, 40t
methods of analysis 15, 16

\

vane shear test 56-57, 57f
variance
of random variable 312-313, 312¢
Taylor’s expansion 317-319, 318e
vegetation and biotechnical stabilization,
corrective methods for slides 135
vertical drains, corrective methods for
slides 128, 128f
void ratio, shear strength and 26

W

water, remedial measures and 119-120,
123

weather, remedial measures and 120

weight removal, corrective methods for
slides 124-125, 124f, 125f

wellpoints, corrective methods for slides
128
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