Series Editors C. Bianchini · D.J. Cole-Hamilton P.W.N.M. van Leeuwen **Volume Editors** G. Giambastiani · J. Cámpora

Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes I

State-of-the-art and Perspectives

Catalysis by Metal Complexes

Volume 35

For further volumes: http://www.springer.com/series/5763

Catalysis by Metal Complexes

This book series covers topics of interest to a wide range of academic and industrial chemists, and biochemists. Catalysis by metal complexes plays a prominent role in many processes. Developments in analytical and synthetic techniques and instrumentation, particularly over the last 30 years, have resulted in an increasingly sophisticated understanding of catalytic processes.

Industrial applications include the production of petrochemicals, fine chemicals and pharmaceuticals (particularly through asymmetric catalysis), hydrometallurgy, and waste-treatment processes. Many life processes are based on metallo-enzyme systems that catalyze redox and acid-base reactions.

Catalysis by metal complexes is an exciting, fast developing and challenging interdisciplinary topic which spans and embraces the three areas of catalysis: heterogeneous, homogeneous, and metallo-enzyme.

Catalysis by Metal Complexes deals with all aspects of catalysis which involve metal complexes and seeks to publish authoritative, state-of-the-art volumes which serve to document the progress being made in this interdisciplinary area of science.

Series Editors

Prof. Claudio Bianchini
Institute of Chemistry of Organometallic
Compounds
Polo Scientific Area
Via Madonna del Piano 10
50019 Sesto Fiorentino
Italy

Prof. D. J. Cole-Hamilton School of Chemistry University of St Andrews North Haugh KY16 9ST St Andrews UK

Prof. Piet W. N. M. van Leeuwen Institute of Chemical Research of Catalonia Av. Paisos Catalans 16 43007 Tarragona Spain

Volume 35:

Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes I State-of-the-Art and Perspectives

Volume Editors

Giuliano Giambastiani ICCOM, Florence Research Area National Council of Research (CNR) Via Madonna del Piano 10 50019 Florence Italy Juan Cámpora Instituto de Investigaciones Químicas CSIC - Universidad de Sevilla C/ Americo Vespucio, 49 41092 Sevilla Spain Giuliano Giambastiani · Juan Cámpora Editors

Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes I

State-of-the-art and Perspectives

Editors
Giuliano Giambastiani
ICCOM, Florence Research Area
National Council of Research (CNR)
Via Madonna del Piano 10
50019 Florence
Italy

e-mail: giuliano.giambastiani@iccom.cnr.it

Juan Cámpora Instituto de Investigaciones Químicas CSIC - Universidad de Sevilla C/ Americo Vespucio, 49 41092 Sevilla Spain

e-mail: campora@iiq.csic.es

ISSN 0920-4652

ISBN 978-90-481-3814-2

e-ISBN 978-90-481-3815-9

DOI 10.1007/978-90-481-3815-9

Springer Dordrecht Heidelberg London New York

© Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar, Berlin/Figueres

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Olefin polymerization has remarkably progressed over the last two decades, mainly thanks to the contribution of organometallic chemistry to the design of innovative ligand systems and metal complexes. The irreversible decrease of fossil-resources requires continuous efforts to improve the selectivity and productivity of the industrial processes as well as to reduce the environmental impact, especially in terms of energy and waste. Due to the wealth of possible ligand structures and metal combinations, organometallic-based catalysis can indeed address many of the issues of the sustainable production of polymeric and composite materials.

These two volumes edited by Giambastiani and Cámpora cover a hot research subject such as that of post-metallocene nitrogen-containing complexes and their use in homogeneous catalysis for the efficient and selective olefin upgrading. These books cover the state-of-the-art of olefin polymerization by catalysts with N-donor ligands as well as hybrid ligands in conjunction with a wide range of metals across the periodic table. Particular attention has been devoted to important, still unresolved issues such as the efficient insertion polymerization of polar monomers. Advantages and limits of the known technologies have been discussed and critically addressed in the light of the most relevant contributions of the many thousand researchers active in the field.

Claudio Bianchini Director ICCOM-CNR

Preface

Millions of tons of polyolefin-based materials are produced yearly, in most cases under relatively mild conditions mediated by transition-metal catalysts. Through a simple insertion reaction, inexpensive and abundant olefins (such as ethylene and propene) are transformed into polymeric materials for a wide range of applications, including plastics, fibers, and elastomers. The discovery of the Ziegler–Natta catalysts and the seminal works at Phillips Petroleum in the 1950s not only revoluzionized polyolefin production, but also paved the way to the development of modern organometallic chemistry. Despite its long history, the polyolefin industry keeps growing steadily and remains technologically driven by the continuous discovery of new catalysts, processes, and applications.

Since Ziegler–Natta's time, important milestones in the field of homogeneous oligomerization/polymerization catalysis were set-up one after the other; from nickel complexes with phosphine donors (SHOP-type catalysts) for the highly selective and efficient production of α -olefins to Group IV metallocene polymerization catalysts and their subsequent industrial exploitation (in the early 1980s) due to the discovery of partially hydrolyzed organoaluminum compounds (MAOs) as co-catalysts/activators. All these scientific successes have shown how discrete "single-site" molecular catalysts could offer unmatched opportunities, compared with heterogeneous systems, towards the tailored synthesis of new polymeric architectures as well as the in-depth understanding of complex reaction mechanisms.

Until a few years ago there have been relatively few reports on late transition metal complexes capable of catalyzing the polymerization of ethylene and α -olefins efficiently. A distinct feature of the latter systems is a high rate of chain transfer which favors their application as oligomerization catalysts. The discovery of new ligands and activators has been fundamental to fill the gap and make late transition metal catalysts as efficient (and in some cases even more versatile) as metallocene-based systems for the oligomerization and polymerization catalysis.

In 1995, Brookhart and co-workers synthesized a new class of Ni^{II} and Pd^{II} complexes stabilized by bulky α -diimine ligands (Schiff bases) which represented

viii Preface

a real breakthrough into the development of late transition metal catalysts for the efficient olefin polymerization/oligomerization.

Since then, an almost infinite variety of imine-based ligands or, more generally, nitrogen-containing ligands in combination with either d- and f- block metals have been explored as efficient and selective oligomerization and polymerization catalysts. The major advantages of this ligand class are represented by the facile control of their stereoelectronic properties, their simple preparation from available and cheap building blocks and their easy handling and storage. All these considerations, together with the capability of most of their metal derivatives to impart high activity and selectivity in olefin upgrading processes, have contributed to make nitrogen-containing catalysts highly desirable for industry and academy.

The aim of these books is to provide an overview on the state-of-the-art and the perspectives in the field of oligomerization/polymerization catalysis mediated by metal complexes (spanning from early to late and lanthanide series) stabilized by ligands containing nitrogen donor groups. Rather than a systematic revision of the major break throughs achieved over the last decades, these two volumes offer to the readership the critical point of view of researchers active in specific fields of polymerization catalysis. The amplitude and rigor of each contribution also provide an exhaustive account on the topic: from the synthesis of ligands and related complexes to mechanistic details, the investigation of the catalyst performance and future perspectives. Although the chapters' extension has made the book division into two separate volumes necessary, this partition is merely due to editorial reasons.

Finally, the editors are extremely grateful to all book co-authors for their enthusiasm in participating to this editorial project and for writing up their contribution at their best. A special thank is also due to Sonia Ojo, Claudia Culierat and Ilaria Tassistro from the London Springer office, whose precious assistance in facing technical and logistic details has been essential for the success of the Editors' efforts.

Giuliano Giambastiani Juan Cámpora

Contents

1	and Polymerisation	n 1
2	Late-Transition Metal Complexes with Mixed N ^O , N ^S , N ^P Chelating Ligands for Olefin Polymerization Catalysis	27
3	Rare-Earth Metal Complexes Supported by Nitrogen-Containing Ligands in Olefin Polymerization	119
4	Imine-Based Vanadium Catalysts for $\alpha\text{-Olefin Polymerization}\dots$ Carl Redshaw	153
5	Imino- and Amido-Pyridinate d-Block Metal Complexes in Polymerization/Oligomerization Catalysis	197
In	dex	283

List of Contributors

Laura Boggioni

Istituto per lo Studio delle Macromolecole (ISMAC), Consiglio Nazionale delle Ricerche (CNR), Via E. Bassini 15, 20133 Milano, Italy.

Giuliano Giambastiani

Institute of Chemistry of OrganoMetallic Compounds–ICCOM-CNR, Via Madonna del Piano, 10-Sesto Fiorentino, 50019 Florence, Italy.

Phillip D. Hustad

The Dow Chemical Company, 2301 N. Brazosport Blvd.-B-1603, Freeport, TX, 77541, USA.

Roger L. Kuhlman

The Dow Chemical Company, 2301 N. Brazosport Blvd.-B-1603, Freeport, TX, 77541, USA.

Lapo Luconi

Institute of Chemistry of OrganoMetallic Compounds–ICCOM-CNR, Via Madonna del Piano, 10-Sesto Fiorentino, 50019, Florence, Italy.

David S. McGuinness

School of Chemistry, University of Tasmania, Private Bag 75, Hobart 7000, Australia.

Andrea Ravasio

Istituto per lo Studio delle Macromolecole (ISMAC), Consiglio Nazionale delle Ricerche (CNR), Via E. Bassini 15, 20133 Milano, Italy.

Carl Redshaw

School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.

xii List of Contributors

Alexander A. Trifonov

G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia.

Incoronata Tritto

Istituto per lo Studio delle Macromolecole (ISMAC), Consiglio Nazionale delle Ricerche (CNR), Via E. Bassini 15, 20133 Milano, Italy.

Chapter 1 Cr Complexes of Nitrogen Donor Ligands for Olefin Oligomerisation and Polymerisation

David S. McGuinness

Abstract Chromium complexes continue to play an important role as catalysts for olefin oligomerisation and polymerisation, with many of these catalysts supported by N-donor containing ligation. A number of highly active catalysts for ethylene polymerisation have been developed in recent years, as well as new catalysts for highly selective ethylene oligomerisation. New developments in this area since 2003, in which chromium complexes of N-donor ligands are utilized, are discussed in subsequent sections.

1.1 Introduction

The oligomerisation and polymerisation of olefins to higher oligomers and polymer continues to receive a high level of research interest, both within industry and academia [1, 2]. The most important industrial products resulting from these processes are ethylene oligomers (linear α -olefins) and polyethylene plastics, so it is of no surprise that the vast majority of studies detailed below make use of ethylene as the monomer. Chromium catalysts occupy an important position in this field. The heterogeneous Phillips catalyst (Cr/SiO₂) is used to produce a large proportion of global polyethylene supplies [3], while homogenous chromium catalysts have been utilized for selective production of 1-hexene and 1-octene from ethylene [4]. As such, there has been much interest in the development of new chromium based catalysts for oligomerisation and polymerisation, with many of these new systems supported by N-donor ligation. As can be seen below, the most common linkage is an imine donor, although examples of amine and amido donors are also detailed.

School of Chemistry, University of Tasmania, Private Bag 75, Hobart 7000, Australia e-mail: David.mcguinness@utas.edu.au

1

D. S. McGuinness (⋈)

Non-metallocene polymerisation catalysts, including chromium systems, were reviewed in 2003 [1], while selective oligomerisation with chromium catalysts was reviewed in 2004 [4]. As such, the coverage herein focuses on developments which occurred after this period. Nonetheless, some reference to the older literature is made where required to provide a background to new work. The vast majority of systems described below are precatalysts which require activation with a cocatalyst; this is almost always MAO or another alkylaluminium reagent [5]. Wherever possible, activities for ethylene polymerisation have been calculated in terms of kg(product) mol(cat)⁻¹ bar(ethylene)⁻¹ h⁻¹ (kg mol⁻¹ bar⁻¹ h⁻¹). In keeping with previous reviews [1, 6], the following descriptors of activity have been used, bearing in mind the limitations of comparing different systems under different conditions and differing degrees of optimisation: very high (>1,000); high (1,000–100); moderate (100–10); low (10–1); very low (<1).

The catalysts have been grouped into two major divisions. Systems which produce a mathematical distribution of oligomer or polymer molecular weights (unselective catalysts) are detailed in Sects. 1.2–1.6. In most of these cases a Cossee mechanism is assumed (linear chain growth via migratory insertion), although this is rarely investigated and caution is warranted where the mechanism has not been studied. Recently the metallacycle mechanism of oligomerisation has been exploited for its selectivity benefits, and such systems are discussed in Sect. 1.7.

1.2 Cr Complexes of Cyclopentadienyl Ligands Containing Pendant N-donors

Much of the interest in chromium based polymerisation catalysts has revolved around constrained geometry systems, in which the Cp-based unit is bridged to an additional nitrogen donor group. The interest in these catalysts can be traced back to the work of Jolly, who demonstrated that complexes such as 1 and 2 give rise to highly active catalysts [7], and Enders, who introduced complexes such as 3 and 4 in combination with MAO [8–10]. Most of this work predates 2003 and had been covered in past reviews [1], so will not be discussed further here.

Various modifications of this theme have been investigated in the years since. Huang et al. prepared and tested complexes of general structure $\bf 5$ and $\bf 6$ for ethylene polymerisation in combination with MAO [11]. The effect of different bridge substitution and steric bulk on the Cp group was explored. Complex $\bf 5$ with RCp = indenyl was the most active, and activities up to 2,000 kg mol $\rm Cr^{-1}$ bar $^{-1}$ h $^{-1}$ were reported. Complexes of structure $\bf 6$ displayed a much lower activity (ca. 200 kg mol $\rm Cr^{-1}$ bar $^{-1}$ h $^{-1}$). Ethylene/1-hexene copolymerization was also studied, and some incorporation of the 1-hexene into the polymer was noted. Other researchers [12] subsequently also studied ethylene polymerization with complexes of structure $\bf 5$, with similar results to those of the original report. A structurally similar complex was disclosed in a patent from the Sumitomo Chemical Company, structure $\bf 7$ [13]. Activation with MAO or AlR₃/fluorinated boranes led to ethylene polymerisation with very high activities up to 22, 000 kg mol $\rm Cr^{-1}$ bar $^{-1}$ h $^{-1}$.

A broad range of related complexes, in which different pendant imine donors are bridged to cyclopentadienyl or indenyl groups, have been reported in a series of patents from Basell Polyolefine. In these patents structures **8** [14], **9** [15], **10** [16], **11** [17] and **12** [18] were evaluated for ethylene homopolymerisation and ethylene/1-hexene copolymerisation after MAO activation. The activities of these complexes range up to around 2,600 kg mol Cr⁻¹ bar⁻¹ h⁻¹ for complex **11**. Recently Derlin and Kaminsky evaluated a range of these catalysts for propylene polymerisation [19]. Interestingly, chain walking was observed to occur, which effectively results in 3,1 incorporation of propylene. This 'chain straightening' process, which removes methyl branching from a proportion of the polymer, give rise to a polyethylene like structure to much of the polymer. As such, the polymer produced had a structure more like ethylene/propylene copolymer. The most recent new Cp-imine system reported seems to be **13**, as prepared by Enders et al. [20]. The activity of this system for ethylene polymerisation (330 kg mol Cr⁻¹ bar⁻¹ h⁻¹) appears much lower than the original quinolyl functionalized complex **3**; however.

Following on from the development of group 4 cyclopentadienyl-amido constrained geometry catalysts, in 1996 Theopold et al. evaluated Cr analogues such as **14** for ethylene polymerisation [21]. The activities achieved with these complexes were very low; however. Tamm et al. have recently prepared a number of chromium complexes with amido-like donor coordination, structures **15** and **16** [22]. These complexes are regarded as closer analogues to group 4 Cp-amido catalysts. Complex **15**, after activation with MAO, leads to low molecular weight, polydisperse polyethylene with moderate activity (<50 kg mol Cr⁻¹ bar⁻¹ h⁻¹). Catalyst decomposition is suggested to occur, leading to more than one active site. The indenyl complex **16** is more active (730 kg mol Cr⁻¹ bar⁻¹ h⁻¹), but also suffers from catalyst deactivation.

It has been shown that a nitrogen donor bridged to cyclopentadiene leads to more active catalysts than is the case when an unbridged donor is present [23], hence the investigations detailed above. Nonetheless a number of cyclopentadienyl chromium complexes with an unbridged nitrogen donor have been studied with interesting results. Gabbaï showed that complex 17, in the presence of AlEt₃, leads to a Poisson distribution of ethylene oligomers centered on aluminium [24]. The process probably involves an equilibrium of chain growth at chromium followed by rapid chain transfer with AlEt₃ (catalysed Aufbau reaction, Fig. 1.1). Complex 18, with a chelated phenoxy-imine ligand, is also activated with AlR₃ but gives rise to linear polyethylene [25]. The attraction of this catalyst is the low levels of AlR₃ required for activation (as opposed to more expensive MAO); an activity of 810 kg mol Cr⁻¹ bar⁻¹ h⁻¹ was achieved with only 25 equivalents of AlMe₃. The activity is around half this with the more attractive activator AlEt₃, however. Complex 19 has also been reported to polymerise ethylene after treatment with AlEt₃, with activities up to 168 kg mol Cr⁻¹ bar⁻¹ h⁻¹ with 25 equivalents of AlEt₃ [26]. Closely related complexes 20 and 21 were reported by the same authors [27]. Both are inactive in the presence of MAO but lead to high molecular weight polyethylene with 25 equivalents of AlEt₃ (up to 153 kg mol Cr⁻¹ bar⁻¹ h⁻¹). Finally, activation of unbridged complexes with MAO has also been investigated. Complex 22 produced a bimodal distribution of polyethylene with an activity of around 40 kg mol Cr⁻¹ bar⁻¹ h⁻¹ [28].

$$\begin{array}{c|c} Et_2AI & \xrightarrow{}_{x}Et \\ \hline \\ Et & \xrightarrow{}_{y}AI & \xrightarrow{}_{x}Et \\ \hline \\ Et & \xrightarrow{}_{y}AI & \xrightarrow{}_{x}Et \\ \hline \\ AIEt_3 & \xrightarrow{}_{L_nCr} & \xrightarrow{}_{x}Et \\ \hline \\ Et & \xrightarrow{}_{y}Et & \xrightarrow{}_{x}Et & \xrightarrow{}_{x}Et \\ \hline \\ Et & \xrightarrow{}_{y}Et & \xrightarrow{}_{x}Et & \xrightarrow{}_{x}Et & \xrightarrow{}_{x}Et \\ \hline \\ Et & \xrightarrow{}_{y}Et & \xrightarrow{}_{x}Et &$$

Fig. 1.1 Mechanism of catalysed chain growth at aluminium with complex 17

1.3 Chromium Complexes of β -diketiminate (NacNac) and β -ketoiminate (NacAc) Type Ligands

Chromium complexes of β -diketiminate (NacNac) ligands, both mono- and bisligand, were introduced by Theopold [29] and Gibson [30]. These complexes led to moderate activities for ethylene polymerisation upon activation with Et₂AlCl or MAO (with Et₂AlCl generally superior) [1]. More recently, Theopold has prepared the Cr-alkyl cation **23** which is active in the absence of co-catalyst [31]. Polyethylene is produced with an activity of around 20 kg mol Cr⁻¹ bar⁻¹ h⁻¹ and has a low polydispersity, indicative of a single site catalytic species. Copolymerisation with 1-hexene is also catalysed, and the complex is suggested to be a model for the heterogeneous Phillips catalyst. These complexes are also activated by MAO, with activities up to 40 kg mol Cr⁻¹ bar⁻¹ h⁻¹ [32]. Complexes in which the NacNac ligand is backbone substituted with a pendant pyridyl donor have also been disclosed in the patent literature, structure **24** [33]. Again MAO activation was employed, leading to a catalyst with low activity for ethylene polymerisation (ca. 6 kg mol Cr⁻¹ bar⁻¹ h⁻¹).

$$\begin{array}{c|c}
Ar \\
N \\
OEt_2 \\
N \\
SiMe_3
\end{array}$$

$$\begin{array}{c}
\Theta \\
B[C_6H_3(CF_3)_2]_4 \\
Ar \\
Ar
\end{array}$$

$$\begin{array}{c}
Ar \\
N \\
Cr \\
Cl \\
Ar
\end{array}$$

$$\begin{array}{c}
Ar \\
Ar
\end{array}$$

$$\begin{array}{c}
Ar
\end{array}$$

Phenoxy-imine based chromium catalysts were again introduced by Gibson et al. [1], and have been developed into highly active systems. A high throughput screening approach was employed to optimize catalysts of general structure 25 in combination with MAO [34]. Catalysts in which the phenoxy substituent (R¹ in 25) is an anthracenyl group lead to high molecular weight polyethylene with activities up to around 3,000 kg mol Cr⁻¹ bar⁻¹ h⁻¹. With even greater steric bulk at this position and a further pendant donor tethered to the imine, as in complex 26, linear α -olefins and low molecular weight polyethylene is formed with activities up to $10,000 \text{ kg mol Cr}^{-1} \text{ bar}^{-1} \text{ h}^{-1}$. In the case of complex 26, a metallacycle mechanism for oligomerisation has been established, see Sect. 1.7.4 [35]. Recently it was shown that substitution of the ligand with a bulky –SiPh₃ group is also effective [36]. Complex 27 also leads to oligomers and low molecular weight polyethylene $(M_{\rm p} = 600-1,600 \text{ g mol}^{-1})$ with activities up to 2,500 kg mol Cr⁻¹ bar⁻¹ h⁻¹. The catalyst was reported to be tolerant to excess (4 equivalents) of additional donor ligands (MeCN, THF, pyridine). More unusual alterations to these catalysts include ferrocenyl substitution of the imine nitrogen (28, 130 kg mol Cr⁻¹ bar⁻¹ h⁻¹) [37], and imidazolium functionalisation as in complex 29 with two chelate ligands per chromium (ca. 1 kg mol Cr^{-1} bar⁻¹ h⁻¹) [38].

1.4 Chromium Complexes of Imidazole and Pyrazole Based Ligands

Chromium complexes containing multidenate ligands incorporating imidazole N-donors have been known for some time in olefin polymerisation [1]. Rüther and Cavell have prepared complexes of bidentate diimidazole ligands, general structure 30, and tested these for ethylene oligomerisation following treatment with MMAO [39]. A mixture of both α -olefins and alkanes are formed, indicating a degree of chain transfer with AlR₃ (analogous to that shown in Fig. 1.1). The activities obtained range from low to moderate (1-10 kg mol Cr⁻¹ bar⁻¹ h⁻¹). In one instance these ligands have been shown to lead to polymer formation; complex 31, albeit poorly characterized, appears in a patent from Exxon Mobil [40]. Bimodal distributions of polyethylene form after MAO activation, again with low to moderate activities. A tridentate tris(imidazole)phosphine complex, 32, has also been tested for ethylene polymerisation, leading to low activity (2.7 kg mol Cr⁻¹ bar⁻¹ h⁻¹) [39]. A later patent; however, details very similar complexes but lacking the bulky tert-butyl substitution of 32. This change leads to high activities (up to 400 kg mol Cr⁻¹ bar⁻¹ h⁻¹) for ethylene polymerisation [41].

Structurally similar complexes featuring tris(pyrazolyl)methane ligands have also been employed for olefin polymerisation. Complexes of structure 33 lead to very high activities, up to 2.500 kg mol Cr⁻¹ bar⁻¹ h⁻¹, following MAO activation [42]. A bimodal distribution of polyethylene is normally formed in which a low molecular weight fraction $(M_n = 1,500 \text{ g mol}^{-1})$ is predominant. This led the authors to propose two different active species. The molecular weight of the main fraction decreases with increasing loadings of MAO. This, together with the absence of terminal double bonds in the polymer, suggests that the main chain transfer process is alkyl exchange with MAO. Chromium complexes of this ligand have also been employed for selective ethylene trimerisation, see Sect. 1.7.2. A tris(pyrazolyl)borate complex, 34, has also been evaluated, but leads only to moderate activity (to 18 kg mol Cr⁻¹ bar⁻¹ h⁻¹) after MAO activation [43]. Other researchers investigated tridenate pyrazolecontaining ligands with an N, O or S central donor, general structure 35 [44]. With a central NH group high molecular weight polymer is formed (MAO activation); all other complexes led to distributions of linear α -olefin oligomers. The NON and NSN complexes displayed the highest activities, up to 97 kg mol Cr⁻¹ bar⁻¹ h⁻¹. A similar complex with flanking pyrazole groups is 36, which was briefly reported to polymerise ethylene with activities up to 150 kg mol Cr^{-1} bar⁻¹ h⁻¹ [45].

1.5 Chromium Complexes of Bis(imino)pyridine and Structurally Related Ligands

Transition metal complexes of bis(imino)pyridine ligands have attracted much interest over the past decade following the discovery that Fe, Co, V and Cr complexes of these ligands form very effective catalysts for olefin polymerisation [1]. Esteruelas [46] and Small [47] independently reported, and patented [48, 49], complexes of structure 37. In combination with MAO these lead to very high activity for ethylene oligomerisation or polymerisation (Esteruelas reported an activity of 41,000 kg mol Cr^{-1} bar $^{-1}$ h $^{-1}$). The steric bulk of the N-substitution has a controlling influence on both activity and product molecular weight. Bulky *ortho*-aryl substitution leads to higher molecular weight polymer at the expense of activity [46], while lower steric bulk on nitrogen leads to 1-butene or a distribution of α -olefins and wax [47]. Both groups noted the active catalysts were robust with respect to temperature, and also found evidence for chain transfer with aluminium. These catalysts also copolymerize

1-hexene and ethylene to afford branched polymers. Ethyl-branched polymer is also produced by aryl-fluorinated analogues of **37** [50]. In this case this was thought to be due to ethylene/1-butene copolymerisation, with the 1-butene formed by a second active site. A comparison of Fe, Co, V and Cr bis(imino)pyridines under the same conditions has been made, which allows direct comparison of the catalysts [51]. This work reveals that the chromium based system is one of the most active and thermally robust catalysts.

A wide range of alterations to the general ligand structure have been investigated for this class of catalyst. Bis(benzimidazolyl)pyridine complexes (structure **38**, R = H) lead to a Schulz–Flory distribution of ethylene oligomers following MAO activation, with an activity of over 5,000 kg mol Cr⁻¹ bar⁻¹ h⁻¹ being demonstrated [35, 52]. In one report it was conclusively demonstrated that ethylene oligomerization with this catalyst proceeds via a metallacycle mechanism, see Sect. 1.7.4 [53]. When the N substituent, R on **38**, is an alkyl group the activity is lower and 1-butene is the major product [52]. Sun et al. have studied a wide range of similar complexes in a series of reports, structures **39** [54], **40** [55], **41** [56, 57], **42** [58], and **43** [59]. The behavior of all of these complexes is similar following activation with MAO or MMAO. A Schulz–Flory distribution of ethylene oligomers along with some polyethylene is formed with activities ranging from 200 to 1,600 kg mol Cr⁻¹ bar⁻¹ h⁻¹.

Chromium complexes based upon two very similar bis(oxazoline)pyridine ligands seem to lead to starkly different products to one another. Complex **44** in which $R = {}^{i}Pr$ yields linear high molecular weight polyethylene with only moderate activity (6 kg mol Cr^{-1} bar $^{-1}$ h $^{-1}$) [60]. The authors noted; however, that the catalyst is very stable, with a 16 h run showing no deactivation. A more recent patent reports that ethylene is dimerised to 1-butene with very high activity (ca. 1,900 kg mol Cr^{-1} bar $^{-1}$ h $^{-1}$) when R = Ph, although the precatalyst was not characterized in this work [61].

A number of researchers have also replaced the imino group or central pyridine in these ligands with alternate donor groups. The ONN chromium complexes **45** also lead to high activity in ethylene oligomerisation once activated with MAO [47, 62]. Polyethylene is produced when this complex is activated with Et₂AlCl (66 kg mol Cr⁻¹ bar⁻¹ h⁻¹) [62]. Complexes such as **46** and **47** have also been reported recently, leading to mixtures of polyethylene and soluble oligomers with activities up to 2,600 kg mol Cr⁻¹ bar⁻¹ h⁻¹ [63]. Again, a metallacycle mechanism (Sect. 1.7.4) for oligomerisation was proposed for complex **46**.

Gambarotta et al. have studied the reaction chemistry of Cr(II) and Cr(III) catalyst precursors, and have prepared the formally Cr(I) complex **48** through reduction and alkylation of a Cr(II) precursor [64]. Upon treatment with MAO, complex **48** is highly active for ethylene polymerization, suggesting that activation of the typical Cr(III) precursors involves metal reduction to Cr(I). The identity of the active species still remains unknown however.

1.6 Chromium Complexes of Other N-donor Ligands

A number of complexes have been trialled which do not easily fit within the above classifications. The ligands in these are typically mixed-donor multidentates, in which the nitrogen donor is either neutral (imine-type) or anionic (amido). Carney et al. have prepared and tested complexes of structure **49**, which display either *fac* or *mer* geometry depending on the pyridyl substituents ($R^1 = H$ *fac*; $R^1 = Me$ *mer*) [65]. It was demonstrated that the precatalysts with a *fac* geometry are approximately 30–40 times more active (24 kg mol Cr^{-1} bar⁻¹ h⁻¹) than *mer* complexes following MAO activation. The *fac* complexes also produce mainly low molecular weight polyethylene, while the *mer* complexes yield a higher molecular weight polymer. The same authors also tested the tetradenate ligand in complex **50** and derivatives [66]. A similar activity in ethylene polymerisation was observed, ca 10–20 kg mol Cr^{-1} bar⁻¹ h⁻¹. A complex containing a tetradentate N_2P_2 ligand has also been reported to oligomerise ethylene with

around the same activity, complex **51** [67]. Higher activities have been reported for complexes containing tridenate ligands, for instance **52** (190 kg mol Cr^{-1} bar⁻¹ h⁻¹) [68] and **53** (80 kg mol Cr^{-1} bar⁻¹ h⁻¹) [69].

Functionalised pyrrole ligands have also received some attention (see also Sect. 1.7.1). Complex **54**, containing a π -bound neutral pyrrole as well as σ -bound anionic pyrroles, leads to moderate activity for ethylene oligomerisation with MAO and polymerisation with isobutylaluminoxane [70]. Complex **55** was reported by Theopold to lead to low activity for ethylene polymerisation (7 kg mol Cr⁻¹ bar⁻¹ h⁻¹, EtAlCl₂ activation) and a bimodal polymer distribution [71]. In contrast, a recent report shows that addition of a soft phosphine donor to a similar ligand, as shown in structure **56**, leads to very high activity to produce low molecular weight polyethylene (5,800 kg mol Cr⁻¹ bar⁻¹ h⁻¹) [72].

While the vast majority of chromium precatalysts are based upon Cr(II) or Cr(III) in combination with multidenate ligands, simple Cr(IV) amido complexes such as **57** have also been evaluated. Activation of this complex with MAO or Et₂AlCl led to ethylene polymerisation with an activity of around 50 kg mol Cr⁻¹ bar⁻¹ h⁻¹ [73].

1.7 Selective Oligomerisation via Metallacycle Intermediates

A generalised mechanism for ethylene oligomerisation via metallacycles is shown in Fig. 1.2. The process begins with oxidative (with respect to the metal) coupling of two ethylene units to produce a metallacyclopentane complex. From here, insertion of further ethylene into the metallacyclopentane produces larger ring metallacycles, while decomposition of the metallacycle at any point can produce

Fig. 1.2 Metallacycle mechanism for ethylene oligomerisation

linear α -olefins. The selectivity of the process is thus controlled by the relative stability of the different sized metallacycles, in particular their propensity to either decompose or grow via ethylene insertion. The ability of certain catalysts, particularly those based on chromium, to selectively produce ethylene trimer (1-hexene) via this process has been extensively studied, due to the high demand for 1-hexene as a polyethylene comonomer [4]. Selective trimerisation can result when olefin insertion (metallacycle growth) into the metallacyclopentane is more facile than elimination of 1-butene, according to Fig. 1.2. This is normally the case due to the stability of metallacyclopentanes, while the instability of metallacyclopentanes leads to selectivity to 1-hexene (as opposed to further metallacycle growth). A range of trimerisation systems incorporating N-donor ligands have been developed, and are discussed in the following sections.

1.7.1 The Phillips Trimerisation Catalyst

The Phillips trimerisation catalyst (not to be confused with the Phillips catalyst for ethylene polymerisation, Sect. 1.1) is thus far the only ethylene trimerisation system to be commercialised. A detailed background to this catalyst is provided in a published review [4]. The system is employed by Chevron–Phillips to produce ca. 47,000 ton per annum of 1-hexene. The catalyst is composed of a chromium source, 2,5-dimethylpyrrole and an alkylating agent such at AlEt₃, and has been proposed to operate via a Cr(II)/Cr(IV) mechanism starting from a chromium complex such as 58 [74]. The pyrrole ligand is thought to flip between η^1 and η^5 coordination throughout the catalytic cycle, effectively compensating for changes in the coordination environment at chromium. Recent reports from Gambarotta et al. provide good evidence for a Cr(I)/Cr(III) mechanism however [75, 76]. By utilizing more bulky pyrrole ligands, single site self activating catalaysts such as 59 could be isolated. This chromium(I) complex behaves similarly to the Phillips trimerisation catalyst, and a catalytic cycle proceeding through an intermediate such as 60 was proposed, in which the chloro group acts in a hemilabile fashion. It is noteworthy that

the proposed interaction between chromium and a chloro group is in general agreement with the known ability of chloro compounds to improve both activity and selectivity in this system [4, 77]. Armed with these experimental insights, Budzelaar has revisited the theoretical treatment of the Phillips system and found that such a Cr(I)/Cr(II) mechanism is quite feasible [78]. As such, the mechanistic details surrounding this catalyst remain uncertain, despite its importance to the field.

1.7.2 Trimerisation Catalysts Based on Chromium Complexes of Tridentate Ligands

McGuinness and Wasserscheid prepared precatalysts of structure **61**, which upon activation with MAO, formed highly selective catalysts for 1-hexene production [79]. Second-generation catalysts of structure **62** were later reported which represented an improvement in terms of ease of ligand preparation and cost [80]. Optimisation of catalysts **62** by researchers at Sasol Technology showed that they could be operated with very low levels of MAO (30–100 equivalents), and that very high overall 1-hexene selectivities (>97%) were achievable. Activities up to around 280 kg mol Cr⁻¹ bar⁻¹ h⁻¹ were reported.

Recent studies on these systems have focused on elucidating the structure and oxidation state of the active catalyst, and the precise role of MAO. Precatalysts 61 and 62 contain N–H functionality, and there is interest in ascertaining whether or not this is preserved in the active species. Direct analogues of 61 containing N-alkyl functionality (63) were prepared and tested following activation with MAO [81]. These complexes displayed very low activity and 1-hexene selectivity, instead generating between 30 and 70% polyethylene. The authors concluded that N–H functionality is essential for high activity and selectivity with this ligand class. This led to speculation that the N–H group is deprotonated during activation, leading to a monoanionic tridentate ligand.

Follow up studies concentrated again on the N–H functionality, as well as the Cr oxidation state and role of MAO [82]. Chromium(II) complexes **64** and **65** were prepared and it was found that activities and selectivities to 1-hexene were broadly similar to the original Cr(III) complexes. This led to the conclusion that Cr(III) precursors are reduced to Cr(II) or lower upon activation

with MAO, assuming that MAO is not able to oxidize Cr(II) back up to a higher oxidation state (it was subsequently found by other researchers that this is not always a safe assumption, below). Deprotonation of complex **64** with the organic base DABCO (1,4-diazabicyclo(2.2.2)octane) led to the amido complex **66**, while reaction of LiN(CH₂CH₂S'Bu)₂ with CrCl₂(thf)₂ led to complex **67**. Both dimer complexes feature N–H deprotonated ligands, and importantly both were active catalysts for ethylene trimerization. The activity of **67** was greatly attenuated relative to monomeric precursors; however, the catalytic relevance of such a structure is uncertain. Its formation may result more from the absence of other ligating compounds (ethylene, MAO, AlMe₃), and under catalytic conditions it may not form. Nonetheless, the fact that both deprotonated complexes, particularly **66**, were active for ethylene trimerisation was taken as significant evidence that these ligands are deprotonated under the conditions of catalysis.

Independent but closely related studies of Gambarotta and Duchateau [83, 84] led to somewhat different conclusions on the issue of ligand deprotonation. When complex 62 with R = cyclohexyl was reacted with AlMe₃, the Cr(III) cationic dimer 68 was isolated [83]. When MAO was employed an undefined complex was formed, thought also to be a Cr(III) cation of similar structure. When isobutylalumoxane was employed, instead a Cr(II) dimer was isolated (the same structure as 68 but without Cr–Me groups). In each case the N–H group remains intact, and the authors suggested this as proof that deprotonation does not occur during catalysis. A potential problem here; however, is that these model reactions are done at room temperature, whereas this class of catalysts are not active for trimerisation under these conditions, requiring temperatures of 80–110 °C before good activity and selectivity result [79, 80]. Furthermore,

the complexes are not effectively activated with the amounts of AlMe $_3$ or MAO utilised in these studies (ca. 5 equivalents). It is thus difficult to draw concrete conclusions from studies that are not conducted under catalytically relevant conditions, particularly when elevated temperature and the amount of cocatalyst are so crucial to the operation of these catalysts. The authors also prepared an analogue of complex **67** with cyclohexyl substitution at sulfur, and found this to be inactive in combination with MAO. This was interpreted as further evidence that the N–H group is not deprotonated, but here again caution is required as the temperature of catalysis may be responsible for this observation. As discussed above, complexes **66** and **67** are in fact active at 80 °C, whereas the cyclohexyl analogue of **67** was tested at 50 °C. It was demonstrated in the original reports of these systems that at 50 °C the catalysts produce a high percentage of polymer and the activities are over an order of magnitude lower than at 80 °C.

Similarly to the work discussed above [82], these authors also compared Cr(III) and Cr(II) precatalysts (including complex **69**), and again found that both oxidation states behave similarly once activated with MAO [83]. This was again taken as evidence for reduction to Cr(II) or lower during catalysis. Later work by the same authors; however, raises some doubt over this [84]. When the Cr(II) precursor CrCl₂(thf)₂, SNS ligand and 10 equivalents of AlMe₃ were reacted, the Cr(III) dimer **68** was again isolated, along with Cr(0) resulting from a disproportionation reaction. This result clearly shows that the action of AlMe₃ on Cr(II) precursors can result in oxidation of the Cr center, and thus a Cr(III) active species remains a possibility.

The work of both research groups supports the notion of a cationic active species, as might be expected from MAO activation. McGuinness showed that more well defined perfluoroborane activators, known to generate cationic metal centers, are effective cocatalysts [82]. Gamborotta and Duchateau showed that reaction with alkyl aluminium reagents almost invariably led to cationic complexes [83, 84]. Given this conclusion, two possible mechanistic cycles can be proposed (Fig. 1.3). That shown in Fig. 1.3a involves a Cr(II)/Cr(IV) redox couple and a monoanionic ligand resulting from deprotonation. The alternative in Fig. 1.3b involves a Cr(I)/Cr(III) couple in which the ligand remains neutral. It is clear that further work is required to definitively elucidate which of these mechanisms, or another, is operating.

Fig. 1.3 Possible mechanisms for ethylene trimerisation with Cr-SNS and Cr-PNP complexes

The development of SNS-Cr catalysts spawned interest in alternative sulfurbased tridentates; however, thus far none of these seem to have matched the original bis(sulfanyl)amine catalysts in terms of activity or selectivity. The effect of chelate ring size in these systems was explored through preparation of complex 70, in which an extra methylene spacer group has been added to one side of the ligand [81]. While this complex did give rise to an active trimerisation catalyst (MAO activation), the productivity was around half that of the symmetrical analogue 62 and the selectivity to 1-hexene lower. Bluhm et al. [85] tested a large range of tridentates with central imine or amine donors. The best catalysts from a trimerisation perspective were those of structure 71. When activated with MAO and run at 24-30 °C, around 82-86% 1-hexene was formed with the remainder being polyethylene (productivities up to ca. 5 kg mol Cr⁻¹ bar⁻¹ h⁻¹). Increasing the temperature seemed to shift the selectivity more toward polymer. A wide variety of other complexes, of general structure 72, were also tested. Most of these gave mainly polyethylene (60 + %), but the only other significant product in the majority of cases was 1-hexene, indicating high selectivity within the oligomeric products. Also tested were the amine complexes of structure 73. These similarly produced 60–70% polyethylene with the remainder being 1-hexene.

Somewhat related Cr–SNS complexes with a central pyridine donor, **74**, were later prepared and tested [86]. Activation with MAO produced catalysts with activities up to 8 kg mol Cr⁻¹ bar⁻¹ h⁻¹ and liquid product selectivities of 99% 1-hexene. The amount of polyethylene produced relative to 1-hexene was not explicitly given, but can be estimated as 5–22% from the data provided. A number of Cr(II) complexes of the ligand were also tested and found to produce more higher α-olefins at the expense of 1-hexene. The authors therefore suggested the possibility of a number of catalytic active species; Cr(II) leading to a Schulz–Flory distribution and Cr(III) generating 1-hexene. A Cr(I)/Cr(III) cycle analogous to that shown in Fig. 1.3b can be envisaged for these systems, along with the other neutral tridentate ligands discussed above; however, this has hitherto not been studied (although has been for Cr–triazacyclohexane catalysts, see below).

While the tridentate ligands hitherto discussed display *mer* coordination (at least in the precatalysts), a number of systems are known which force a *fac* coordination geometry. Around a decade ago, the Tosoh Corporation developed catalysts based upon chromium in combination with the ubiquitous tris(pyrazolyl) methane ligands [4]. These are covered in a past review [4]; however, in more recent studies Hor et al. have investigated related heteroscorpionate systems [87–89]. Complexes in which the third donor is oxygen or sulfur, of general structure 75, were the first to be prepared and tested [87]. Both the thioether and ether complexes were selective for ethylene trimerisation in combination with MAO. The ether analogues were; however, superior, and the best catalyst (L = O, R = hexyl, R'= Me) led to an overall 1-hexene selectivity of 97.6% at 44 kg mol Cr^{-1} bar⁻¹ h⁻¹. In recent follow up studies, a broad range of complexes, 76, were investigated in which the third donor group altered between pyrazolyl

(Tosoh system), imidazolyl, pyridyl and amine [88, 89]. All of these systems trimerise ethylene upon MAO activation. The complex with an imidazolyl moiety (R = H) was most active and selective (92 kg mol Cr^{-1} bar $^{-1}$ h $^{-1}$; 97.6% 1-hexene), while the amine group was the worst performer.

Köhn et al. developed chromium complexes of triazacyclohexane ligands, and showed that these convert ethylene to mixtures of 1-hexene and polyethylene when activated with MAO or $[Me_2PhNH][B(C_6F_5)_4]/Al^iBu_3$ [4, 90]. When higher α -olefin monomers were employed, the catalyst was highly selective for trimers, and mechanistic studies supported a Cr(I)/Cr(III) metallacycle mechanism [91]. These researchers have subsequently studied the activation process with [Me₂PhNH][B(C₆F₅)₄]/ Al'Bu₃ in more detail, and their observations provide insight into the likely mode of catalyst deactivation [92]. Treatment of the triazacyclohexane complex 77 with $[Me_2PhNH][B(C_6F_5)_4]/Al^tBu_3$ firstly produces a more soluble anilinium adduct (Fig. 1.4). Treatment of this complex with triisobutylaluminium results in formation of a Cr(III) dialkyl cation. Reductive elimination from here is thought to produce a Cr(I) triazacyclohexane cation which is active for α -olefin trimerisation. However, reduction also leads to [(arene)₂Cr]⁺ and an aluminium-triazacyclohexane complex, which represent products of catalyst deactivation. The arene here is sourced from the solvent, and both the bis(benzene) and bis(toluene) complexes were characterised by X-ray crystallography.

Fig. 1.4 Activation and decomposition of Cr-triazacyclohexane catalysts

1.7.3 Chromium Complexes of Bidentate Ligands

A large range of N,N-, N,O-, N,P- and N,S-bidentates have been disclosed in a series of patents from Exxon-Mobil. High throughput screening of ligands of general structure 78 and 79 [93], 80 and 81 [94], 82 [95], 83 [96], 84 [97] and 85 [98], in combination with various chromium sources and MAO, led to mixed results for ethylene trimerisation and tetramerisation. The α -olefin selectivities presented in these patents are somewhat misleading, as polyethylene formation is not factored into these numbers. In some cases for instance, 1-hexene selectivity is reported as 98 + % while well over 50% of the formed product constitutes polyethylene. The most active catalysts are formed when ligands 78 and 79 are employed (up to ca. 2,900 kg mol Cr⁻¹ bar⁻¹ h⁻¹), and there is no doubt in this case that the catalysts are truly selective towards 1-hexene (up to ca. 98% 1-hexene inclusive of polymer). Ligands of structure 80 and 81 produced 1-hexene and 1-octene (upto ca. 50% 1-octene), but displayed a much lower activity. The results with the remaining ligands 82-85 seemed much less impressive. 1-Hexene is formed with very low activities (<500 turnovers) and the product is in most cases mainly polyethylene.

Gambarotta et al. have prepared Cr(II) complexes of NPN monoanionic ligands (structure **86**) and found these to be selective ethylene trimerisation catalysts after activation with excess Al^iBu_3 [99–101]. Activities up to around 20 kg mol Cr^{-1} bar $^{-1}$ h $^{-1}$ were achieved. Addition of MAO led to unselective oligomerisation and polymerisation. It was shown that the ligand in **86** is not innocent and that alkylaluminium reagents result in alkylation of the phosphorus atom and aluminium coordination. One of the intermediates isolated and which shows the final(?) ligand assembly is **87**, which resulted when **86** was treated with 10 equivalents of Al^iBu_3 . The final identity of the active catalyst remains unclear; however, further addition of excess Al^iBu_3 is required before **87** becomes selective for trimerisation.

1.7.4 Oligomerisation and Polymerisation via Extended Metallacycles

Selective oligomerisation via metallacycles occurs when metallacycle decomposition (α-olefin formation) is more facile than further ethylene insertion at various metallacycle ring sizes. When this condition breaks down the growth of large ring metallacycles can be envisaged, which can be termed an extended metallacycle mechanism. The question then becomes how far can this process progress, and is it possible for high molecular weight polyethylene to form via metallacycles? This question is of fundamental importance, as such a process has long been proposed as one model for polyethylene formation with the commercial Phillips catalyst (Cr on silica) [3, 102]. This catalyst has been used on great industrial scale for over half a century; however, despite this the mechanism of chain growth is still uncertain. There is no doubt some evidence for a metallacycle mechanism [3, 103–105]. There seems to be no obvious reason why large ring metallacycles could not grow to high molecular weight polymer. Following the formation of the metallacyclopentane, the subsequent steps involve only migratory insertion of ethylene. As such, the growth process differs little from a conventional Cossee mechanism.

Over recent years a number of reports have appeared which unequivocally demonstrate an extended metallacycle mechanism for the formation of higher α -olefins. All of these involve chromium catalysts. In the first such study, Gibson et al. described ethylene oligomerisation and polymerisation with catalysts 26 (Sect. 1.3) and 38 (R = H, Sect. 1.5) in combination with MAO [35, 53]. A Schulz-Flory distribution of α -olefins and low molecular weight polymer is formed, and deuterium labeling experiments (CH₂CH₂/CD₂CD₂ copolymerization) indicate a metallacycle mechanism. Gibson's group later reported the catalyst system composed of 88/MAO, which converts ethylene to higher α -olefins and low molecular weight polyethylene ($M_n = 800-900$) with exceptional activity (in excess of 100,000 kg mol Cr^{-1} bar $^{-1}$ h $^{-1}$) [106]. An unprecedented α -olefin distribution was observed in which the C_{4n} products (C_8 , C_{12} , C_{16} , etc.) were more abundant than the C_{4n+2} products (C₁₀, C₁₄, C₁₈, etc.). This was explained by a metallacycle mechanism in which the metallacycle can occupy two distinct sites, arising from the non-planarity of the central nitrogen donor. In the proposed model the metallacycle prefers one of these sites, and elimination occurs preferentially from one of the two sites. More recently, researchers from Sasol have reported a similar catalyst (46, Sect. 1.5) which behaves likewise [63]. Again a model involving two different metallacycle sites provided the best explanation.

A further example of higher olefins and low polymer being produced by metallacycles is provided by complex **89** [107]. In this instance the distribution of α -olefins showed another type of deviation from Schulz–Flory behavior. Depending upon the ligand substitution, the distribution was depleted in 1-butene or both 1-butene and 1-hexene. This revealed that metallacycle decomposition is retarded relative to further growth at the Cr–C₄ (\pm Cr–C₆) stage. This represents a qualitatively similar bias to that which must exist for ethylene tetramerisation catalysts [108], except in this case higher metallacycle formation is competitive with Cr–C₈ product release. Again these catalysts displayed exceptional activities, in excess of 40,000 kg mol Cr⁻¹ bar⁻¹ h⁻¹ [109, 110].

1.8 Summary and Outlook

Chromium is one of the most intensively studied metals for the development of new olefin polymerisation and oligomerisation catalysts. This is due to the use of this metal for commercial production of both polyethylene and liner α -olefins. Homogenous catalysts ligated by N-donor ligands account for a large proportion of

new generation catalysts, and represent some of the most active systems know to date. The development of new chromium-based catalysts in general, and those containing N-donor ligands specifically, is likely to continue to be an area of rapid development going forward.

References

- Gibson VC, Spitzmesser SK (2003) Advances in non-metallocene olefin polymerization catalysis. Chem Rev 103:283–315
- Forestière A, Olivier-Bourbigou H, Saussine L (2009) Oligomerization of monoolefins by homogeneous catalysts. Oil Gas Sci Tech Rev IFP 64:649–667
- Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2005) The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO₂ catalyst: A frontier for the characterization methods. Chem Rev 105:115–183
- 4. Dixon JT, Green MJ, Hess FM, Morgan DH (2004) Advances in selective ethylene trimerisation—a critical overview. J Organomet Chem 689:3641–3669
- Chen EY-X, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activator, activation processes, and structure–activity relationships. Chem Rev 100: 1391–1434
- 6. Britovsek GJP, Gibson VC, Wass DF (1999) The search for new-generation olefin polymerization catalysts: life beyond metallocenes. Angew Chem Int Ed 38:428–447
- Döhring A, Göhre J, Jolly PW, Kryger B, Rust J, Verhovnik GPJ (2000) Donor-ligandsubstituted cyclopentadienylchromium(III) complexes: a new class of alkene polymerization catalysts. 1. Amino-substituted systems. Organometallics 19:388–402
- 8. Enders M, Fernández P, Ludwig G, Pritzkow H (2001) New chromium(III) complexes as highly active catalysts for olefin polymerization. Organometallics 20:5005–5007
- Enders M, Fernández P, Mihan S, Pritzkow H (2003) Quinolyl-functionalised Cp-chromium polymerisation catalysts: synthesis and crystal structures of alkylation products. J Organomet Chem 687:125–130
- Enders M, Kohl G, Pritzkow H (2004) Synthesis of main group and transition metal complexes with the (8-quinolyl)cyclopentadienyl ligand and their application in the polymerization of ethylene. Organometallics 23:3832–3839
- Zhang H, Ma J, Qian Y, Huang J (2004) Synthesis and characterization of nitrogenfunctionalized cyclopentadienylchromium complexes and their use as catalysts for olefin polymerization. Organometallics 23:5681–5688
- 12. Cheng Z, Sun J, Li Y, Xu S, Wang B (2006) Synthesis and characterization of novel chromium catalyst and polyethylene with high molecular weight. J Wuhan Univ Technol Mater Sci Ed 21:50–55
- Yoshikawa E, Hanaoka H (2004) Transition metal complexes as catalysts for olefin polymerization and production of polyolefins using them. JP 2004189690 (Sumitomo Chem Co)
- Mihan S, Enders M, Nifant'ev I, Nicoara C (2004) Monocyclopentadienyl complexes. WO 2004/056481 (Basell Polyolefine)
- Mihan S, Nifant'ev I (2004) Monocyclopentadienyl complexes. WO 2004/056482 (Basell Polyolefine)
- Mihan S, Enders M, Fernandez P (2005) Monocyclopentadienyl complexes. WO 2005/ 058983 (Basell Polyolefine)
- 17. Mihan S (2006) Monocyclopentadienyl complexes. WO 2006/063826 (Basell Polyolefine)
- Mihan S, Bildstein B, Steiner G (2006) Monocyclopentadienyl complexes. WO 2006/ 100004 (Basell Polyolefine)

 Derlin S, Kaminsky W (2008) Chain-walking olefin polymerizations with donor-substituted halfsandwich chromium complexes: ethylene/propylene copolymer look-alikes by polymerization of propylene. Macromolecules 41:6280–6288

- Schuhen K, Sieb D, Wadepohl H, Enders M (2009) New donor-functionalized Cp ligands: synthesis and complexation behaviour of quinoxalyl and benzothiadiazolyl systems. Z Anorg Allg Chem 635:1560–1567
- 21. Liang Y, Yap GPA, Rheingold AL, Theopold KH (1996) Constrained geometry chromium catalysts for olefin polymerization. Organometallics 15:5284–5286
- 22. Randoll S, Jones PG, Tamm M (2008) Chromium complexes with Me₂Si-bridged cyclopentadienyl-imidazolin-2-imine ligands: synthesis, structure, and use in ethylene polymerization catalysis. Organometallics 27:3232–3239
- Jensen VR, Angermund K, Jolly PW, Børve KJ (2000) Activity of homogeneous chromium(III)-based alkene polymerization catalysts: lack of importance of the barrier to ethylene insertion. Organometallics 19:403

 –410
- 24. Ganesan M, Gabbaï FP (2004) [Cp*Cr(C₆F₅)(Me)(py)] as a living chromium(III) catalyst for the 'Aufbaureaktion'. Organometallics 23:4608–4613
- Xu T, Mu Y, Gao W, Ni J, Ye L, Tao Y (2007) Highly active half-metallocene chromium(III) catalysts for ethylene polymerization activated by trialkylaluminum. J Am Chem Soc 129:2236–2237
- Huang Y-B, Yu W-B, Jin G-X (2009) Half-sandwich chromium(III) catalysts bearing hydroxyindanimine ligands for ethylene polymerization. Organometallics 28:4170–4174
- 27. Huang Y-B, Jin G-X (2009) Half-sandwich chromium(III) complexes bearing β -diketiminate ligands as catalysts for ethylene polymerization. Dalton Trans 767–769
- Rojas R, Valderrama M, Garland MT (2004) Substituted cyclopentadienylchromium(III) complexes containing neutral donor ligands. Synthesis, crystal structures and reactivity in ethylene polymerization. J Organomet Chem 293–301
- 29. Kim W-K, Fevola MJ, Liable-Sands LM, Rheingold AL, Theopold KH (1998) $[(Ph)_2 \text{nacnac}]MCl_2(thf)_2$ (M = Ti, V, Cr): a new class of homogeneous olefin polymerization catalysts featuring β -diiminate ligands. Organometallics 17:4541–4543
- 30. Gibson VC, Newton C, Redshaw C, Solan GA, White AJP, Williams DJ (2001) Synthesis, structures and ethylene polymerisation behaviour of low valent β -diketiminato chromium complexes. Eur J Inorg Chem 2001:1895–1903
- MacAdams LA, Buffone GP, Incarvito CD, Rheingold AL, Theopold KH (2005) A chromium catalyst for the polymerization of ethylene as a homogenous model for the Phillips catalyst. J Am Chem Soc 127:1082–1083
- 32. Theopold KH, Kim W-K, MacAdams LA, Power JM, Mora JM, Masino AP (2003) Catalyst compounds with β -diiminate anionic ligands and processes for polymerizing olefins. US 6511936 (Chevron Chem Co)
- 33. Michaud G, Hillairet C, Sirol S (2008) Polymerisation of ethylene and alpha olefins with single site catalysts having an anionic scorpion-like ligand. EP 1925620 (Total Petrochemicals)
- 34. Jones DJ, Gibson VC, Green SM, Maddox PJ, White AJP, Williams DJ (2005) Discovery and optimization of new chromium catalysts for ethylene oligomerization and polymerization aided by high-throughput screening. J Am Chem Soc 127:11037–11046
- Tomov AK, Chirinos JJ, Jones DJ, Long RJ, Gibson VC (2005) Experimental evidence for large ring metallacycle intermediates in polyethylene chain growth using homogeneous chromium catalysts. J Am Chem Soc 127:10166–10167
- 36. Kirillov E, Roisnel T, Razavi A, Carpentier J-F (2009) Chromium(III) complexes of sterically crowded bidentate ON^R and tridentate ONN^R naphthoxy-imine ligands: Synthesis, structures, and use in ethylene oligomerization. Organometallics 28:2401–2409
- 37. Gibson VC, Gregson CKA, Halliwell CM, Long NJ, Oxford PJ, White AJP, Williams DJ (2005) The synthesis, coordination chemistry and ethylene polymerisation activity of ferrocenediyl nitrogen-substituted ligand and their metal complexes. J Organomet Chem 609:6271–6283

- 38. Houghton J, Simonovic S, Whitwood AC, Douthwaite RE, Carabineiro SA, Yuan J-C, Marques MM, Gomes PT (2008) Transition-metal complexes of phenoxy-imine ligands modified with pendant imidazolium salts: synthesis, characterisation and testing as ethylene polymerisation catalysts. J Organomet Chem 693:717–724
- 39. Rüther T, Cavell KJ, Braussaud NC, Skelton BW, White AH (2002) Synthesis, characterisation and catalytic behaviour of a novel class of chromium(III) and vanadium(III) complexes containing bi- and tri-denate imidazole chelating ligands: a comparative study. J Chem Soc Dalton Trans 4684–4693
- 40. Kacker S, Berluche E, Stibrany RT, Sissano JA, Baugh LS (2006) Chromium complexes and their use in olefin polymerization. WO 2006/012327 (Exxon-Mobil)
- 41. Mihan S, Enders M, Fritz O (2004) Transition-metal complexes with tridenate, nitrogen-containing ligands. WO 2004/104052 (Basell Polyolefine)
- García-Orozco I, Quijada R, Vera K, Valderrama M (2006) Tris(pyrazolyl)methanechromium(III) complexes as highly active catalysts for ethylene polymerization. J Molec Catal A Chem 260:70–76
- 43. Rojas R, Valderrama M, Wu G (2004) Synthesis, structural characterization and ethylene polymerization behavior of complex [Ph₄P][CrCl₃{HB(pz)₃}] [HB(pz)₃ = hydrotris (1-pyrazolyl)borate]. Inorg Chem Commun 7:1295–1297
- 44. Junges F, Kuhn MCA, dos Santos AHDP, Rabello CRK, Thomas CM, Carpentier J-F, Casagrande OL (2007) Chromium catalysts based on tridentate pyrozolyl ligands for ethylene oligomerization. Organometallics 26:4010–4014
- 45. Hurtado J, MacLeod Carey D, Muñoz-Castro A, Arratia-Pérez R, Quijada R, Wu G, Rojas R, Valderrama M (2009) Chromium(III) complexes with terdenate 2, 6-bis(azolylmethyl)pyridine ligands: synthesis, structures and ethylene polymerization behavior. J Organomet Chem 694:2636–2641
- 46. Esteruelas MA, López AM, Méndez L, Oliván M, Oñate E (2003) Preparation, structure, and ethylene polymerization behavior of bis(imino)pyridyl chromium(III) complexes. Organometallics 22:395–406
- 47. Small BL, Carney MJ, Holman DM, O'Rourke CE, Halfen JA (2004) New chromium complexes for ethylene olgomerization: extended use of tridenate ligands in metal-catalyzed olefin polymerization. Macromolecules 37:4375–4386
- 48. Mendez L, Sanz E, Sancho J, Esteruelas MA, Olivan M, Onate E (2004) Chromium catalysts active in olefin polymerization. US 2004/0087434
- Small BL, Marcucci AJ (2003) Catalyst composition and olefin polymerization using same.
 WO 03/054038 (Chevron Phillips)
- Nakayama Y, Sogo K, Yasuda H, Shiono T (2005) Unique catalytic behavior of chromium complexes having halogenated bis(imino)pyridine ligands for ethylene polymerization. J Polym Sci A 43:3368–3375
- 51. Semikolenova NV, Zakharov VA, Echevskaja LG, Matsko MA, Bryliakov KP, Talsi EP (2009) Homogeneous catalysts for ethylene polymerization based on bis(imino)pyridine complexes of iron, cobalt, vanadium and chromium. Catal Today 144:334–340
- 52. Zhang W, Sun W-H, Zhang S, Hou J, Wedeking K, Schultz S, Fröhlich R, Song H (2006) Synthesis, characterization, and ethylene oliogomerization and polymerization of [2, 6-bis(2-benzimidazolyl)pyridyl)chromium chlorides. Organometallics 25:1961–1969
- 53. Tomov AK, Gibson VC, Britovsek GJP, Long RJ, van Meurs M, Jones DJ, Tellmann KP, Chirinos JJ (2009) Distinguishing chain growth mechanisms in metal-catalyzed olefin oligomerization and polymerization systems: C₂H₄/C₂D₄ co-oligomerization/polymerization experiments using chromium, iron, and cobalt catalysts. Organometallics 28:7033–7040
- 54. Zhang S, Ji S, Shi Q, Sun W-H (2007) Chromium(III) complexes bearing 2-imino-1, 10-phenanthrolines: synthesis, molecular structures and ethylene oligomerization and polymerization. J Mol Catal A Chem 276:174–183
- 55. Amolegbe SA, Asma M, Zhang M, Li G, Sun W-H (2008) Synthesis, characterization, and ethylene oligomerization and polymerization by 2-quinoxalinyl-6-iminopyridine chromium chlorides. Aust J Chem 61:397–403

56. Chen Y, Zuo W, Hao P, Zhang S, Gao K, Sun W-H (2008) Chromium(III) complexes ligated by 2-(1-isopropyl-2-benzimidazolyl)-6-(1-(arylimino)ethyl)pyridines: synthesis, characterization and their ethylene oligomerization and polymerization. J Organomet Chem 693:750–762

- Xiao L, Zhang M, Sun W-H (2010) Synthesis, characterization and ethylene oligomerization and polymerization of 2-(1H–2-benzimidazolyl)-6-(1(arylimino)ethyl)pyridinechromium chlorides. Polyhedron 29:142–147
- Zhang M, Wang K, Sun W-H (2009) Chromium(III) complexes bearing 2-benzazole-1,10-phenanthrolines: synthesis, molecular structures and ethylene oligomerization and polymerization. Dalton Trans 6354–6363
- Gao R, Liang T, Wang F, Sun W-H (2009) Chromium(III) complexes bearing 2-benzoxazolyl-6-arylimino-pyridines: synthesis and their ethylene reactivity. J Organomet Chem 694: 3701–3707
- Esteruelas MA, López AM, Méndez L, Oliván M, Oñate E (2002) Synthesis, X-ray structure, and polymerisation activity of a bis(oxazolinyl)pyridine chromium(III) complex. New J Chem 26:1542–1544
- Ackerman LJ, Diamond GM, Hall KA, Longmire JM, Micklatcher M (2008) Chromium complexes of pyridine bis (oxazoline)-ligands for ethylene dimerization. WO 2008/085657 (Exxon-Mobil)
- 62. Zhang W, Sun W-H, Tang X, Gao T, Zhang S, Hao P, Chen J (2007) Chromium complexes ligated by 2-carbethoxy-6-iminopyridines: synthesis, characterization and their catalytic behavior toward ethylene polymerization. J Mol Catal A Chem 265:159–166
- Tenza K, Hanton MJ, Slawin AMZ (2009) Ethylene oligomerization using first-row transition metal complexes featuring heterocyclic variants of bis(imino)pyridine ligands. Organometallics 28:4852–4867
- 64. Vidyaratne I, Scott J, Gambarotta S, Duchateau R (2007) Reactivity of chromium complexes of a bis(imino)pyridine ligand: highly active ethylene polymerization catalysts carrying the metal in a formally low oxidation state. Organometallics 26:3201–3211
- 65. Carney MJ, Robertson NJ, Halfen JA, Zakharov LN, Rheingold AL (2004) Octahedral chromium(III) complexes supported by bis(2-pyridylmethyl)amines: ligand influence on coordination geometry and ethylene polymerization activity. Organometallics 23:6184–6190
- Robertson NJ, Carney MJ, Halfen JA (2003) Chromium(II) and chromium(III) complexes supported by tris(2-pyridylmethyl)amine: synthesis, structures, and reactivity. Inorg Chem 42:6876–6885
- 67. Rozenel SS, Chomitz WA, Arnold J (2009) Chromium complexes supported by the multidentate monoanionic N_2P_2 ligand: reduction chemistry and reactivity with ethylene. Organometallics 28:6243-6253
- Liu J-Y, Li Y-S, Liu J-Y, Li Z-S (2006) Synthesis and chromium(III) complexes with schiffbase ligands and their catalytic behaviors for ethylene polymerization. J Mol Catal A Chem 244:99–104
- Lansalot-Matras C, Lavastre O, Sirol S (2009) Catalysts systems based on carbonylamino fulvenes. WO 2009/013196 (Total Petrochemicals)
- Crewdson P, Gambarotta S, Djoman M-C, Korobkov I, Duchateau R (2005) Switchable chromium(II) ethylene oligomerization/polymerization catalyst. Organometallics 24: 5214–5216
- 71. Salisbury BA, Young JF, Yap GPA, Theopold KH (2007) Synthesis and reactivity of pyrrolide-diimine complexes of chromium. Collect Czech Chem Commun 72:637–648
- He L-P, Liu J-Y, Pan L, Wu J-Q, Xu B-C, Li Y-S (2009) Ethylene polymerization by the new chromium catalysts based on amino-pyrrolide ligands. J Polym Sci A Polym Chem 47:713–721
- 73. Ballem KHD, Shetty V, Etkin N, Patrick BO, Smith KM (2004) Chromium(III) and chromium(IV) bis(trimethylsilyl)amido complexes as ethylene polymerisation catalysts. Dalton Trans 3431–3433

- Janse van Rensburg W, Grove C, Steynberg JP, Stark KB, Huyser JJ, Steynberg PJ (2004) A DFT study toward the mechanism of chromium-catalyzed ethylene trimerization. Organometallics 23:1207
- Jabri A, Mason CB, Sim Y, Gambarotta S, Burchell TJ, Duchateau R (2008) Isolation of single-component trimerization and polymerization chromium catalysts: the role of the metal oxidation state. Angew Chem Int Ed 47:9717–9721
- Vidyaratne I, Nikiforov GB, Gorelsky SI, Gambarotta S, Duchateau R, Korobkov I (2009) Isolation of a self activating ethylene trimerisation catalyst. Angew Chem Int Ed 2009:6552–6556
- Luo H-K, Li D-G, Li S (2004) The effect of halide and the coordination geometry of chromium center in homogeneous catalyst system for ethylene trimerization. J Mol Catal A Chem 221:9–17
- Budzelaar PHM (2009) Ethene trimerization at Cr^I/Cr^{III}—a density functional theory study. Can J Chem 87:832–837
- McGuinness DS, Wasserscheid P, Keim W, Hu C, Englert U, Dixon JT, Grove C (2003) Novel Cr-PNP complexes as catalysts for the trimerisation of ethylene. Chem Commun 334–335
- 80. McGuinness DS, Wasserscheid P, Keim W, Morgan DH, Dixon JT, Bollmann A, Maumela H, Hess F, Englert U (2003) First Cr(III)-SNS complexes and their use as highly efficient catalysts for the trimerization of ethylene to 1-hexene. J Am Chem Soc 125:5272–5273
- 81. McGuinness DS, Wasserscheid P, Morgan DH, Dixon JT (2005) Ethylene trimerization with mixed-donor ligand (N, P, S) chromium complexes: effect of ligand structure on activity and selectivity. Organometallics 24:552–556
- 82. McGuinness DS, Brown DB, Tooze RP, Hess FM, Dixon JT, Slawin AMZ (2006) Ethylene trimerization with Cr-PNP and Cr-SNS complexes: effect of ligand structure, metal oxidation state, and role of activator on catalysis. Organometallics 25:3605–3610
- 83. Jabri A, Temple C, Crewdson P, Gambarotta S, Korobkov I, Duchateau R (2006) Role of the metal oxidation state in the SNS-Cr catalyst for ethylene trimerization: isolation of di- and trivalent cationic intermediates. J Am Chem Soc 128:9238–9247
- 84. Temple C, Jabri A, Crewdson P, Gambarotta S, Korobkov I, Duchateau R (2006) The question of the Cr oxidation state in the Cr(SNS) catalyst for selective ethylene trimerization: an unanticipated re-oxidation pathway. Angew Chem 118:7208–7211
- 85. Bluhm ME, Walter O, Döring M (2005) Chromium imine and amine complexes as homogeneous catalysts for the trimerisation and polymerisation of ethylene. J Organomet Chem 690:713–721
- Temple CN, Gambarotta S, Korobkov I, Duchateau R (2007) New insight into the role of the metal oxidation state in controlling the selectivity of the Cr-(SNS) ethylene trimerization catalyst. Organometallics 26:4598–4603
- 87. Zhang J, Braunstein P, Hor TSA (2008) Highly selective chromium(III) ethylene trimerization catalysts with [NON] and [NSN] heteroscorpionate ligands. Organometallics 27:4277–4280
- 88. Zhang J, Li A, Hor TSA (2009) Crystallographic revelation of the role of AlMe₃ (in MAO) in Cr [NNN] pyrozolyl catalyzed ethylene trimerization. Organometallics 28:2935–2937
- Zhang J, Li A, Hor TSA (2009) Ligand effect on ethylene trimerisation with [NNN]heteroscorpionate pyrazolyl Cr(III) catalysts. Dalton Trans 9327–9333
- 90. Köhn RD, Haufe M, Mihan S, Lilge D (2000) Triazacyclohexane complexes of chromium as highly active homogeneous model systems for the Phillips catalyst. Chem Comm 1927–1928
- 91. Köhn RD, Haufe M, Kociok-Köhn G, Grimm S, Wasserscheid P, Keim W (2000) Selective trimerization of alpha-olefins with triazacyclohexane complexes of chromium as catalysts. Angew Chem Int Ed 39:4337–4339
- 92. Köhn RD, Smith D, Mahon MF, Prinz M, Mihan S, Kociok-Köhn G (2003) Coordination chemistry of the activation of [(triazacyclohexane)CrCl3] with [PhNMe2H][B(C₆F₅)₄] and AlR₃. J Organomet Chem 683:200

D. S. McGuinness

93. Ackerman LJ, Bei X, Boussie TR, Diamond GM, Hall KA, Lapointe AM, Longmire JM, Murphy VJ, Sun P, Verdugo D, Schofer S, Dias E, McConville DH, Li RT, Walzer J, Rix F, Kuchta M (2006) Methods for oligomerizing olefins. WO 2006/096881 (Exxon-Mobil)

- 94. McConville DH, Ackerman LJ, Li RT, Bei X, Kuchta M, Boussie TR, Walzer JF, Diamond GM, Rix FC, Hall KA, La Pointe AM, Longmire JM, Murphy VJ, Sun P, Verdugo D, Schofer S, Dias E (2006) Methods for oligomerizing olefins. WO 2006/099053 (Exxon-Mobil)
- Ackerman LJ, Diamond GM, Hall KA, Longmire JM, Murphy VJ, Verdugo D (2008) Methods for oligomerizing olefins with chromium pyridine ether catalysts. WO 2008/ 085659 (Exxon-Mobil)
- Ackerman LJ, Diamond GM, Hall KA, Longmire JM, Murphy VJ, Nava-Salgado VO (2008) Methods for oligomerizing olefins with chromium pyridine phosphino catalysts. WO 2008/085653 (Exxon-Mobil)
- Ackerman LJ, Diamond GM, Hall KA, Longmire JM, Micklatcher M (2008) Methods for oligomerizing olefins with chromium pyridine mono-oxazoline catalysts. WO 2008/085655 (Exxon-Mobil)
- Ackerman LJ, Diamond GM, Hall KA, Longmire JM, Murphy VJ, Verdugo D (2008) Methods for oligomerizing olefins with chromium pyridine thioether catalysts. WO 2008/ 085658 (Exxon-Mobil)
- 99. Albahily K, Koç E, Al-Baldawi D, Savard D, Gambarotta S, Burchell TJ, Duchateau R (2008) Chromium catalysts supported by a nonspectator NPN ligand: isolation of single-component chromium polymerization catalysts. Angew Chem Int Ed 47:5816–5819
- Albahily K, Al-Baldawi D, Gambarotta S, Duchateau R, Koç E, Burchell TJ (2008)
 Preparation and characterization of a switchable single-component chromium trimerization catalyst. Organometallics 27:5708–5711
- 101. Albahily K, Al-Baldawi D, Gambarotta S, Koç E, Duchateau R (2008) Isolation of a chromium hydride single-component ethylene polymerization catalyst. Organometallics 27:5943–5947
- McDaniel MP (1985) Supported chromium catalysts for ethylene polymerization. Adv Catal 33:47–98
- 103. Ruddick VJ, Badyal JPS (1998) Early stages of ethylene polymerization using the phillips CrO_x/silica catalyst. J Phys Chem B 102:2991–2994
- 104. Espelid Ø, Børve KJ (2002) Molecular-level insight into Cr/silica Phillips-type catalysts: polymerization-active dinuclear chromium sites. J Catal 206:331–338
- 105. Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2006) In situ FTIR spectroscopy of key intermediates in the first stages of ethylene polymerization on the Cr/SiO₂ phillips catalyst: solving the puzzle of the initiation mechanism? J Catal 240:172–181
- 106. Tomov AK, Chirinos JJ, Long RJ, Gibson VC, Elsegood MRJ (2006) An unprecedented α -olefin distribution arising from a homogeneous ethylene oligomerization catalyst. J Am Chem Soc 128:7704–7705
- 107. McGuinness DS, Suttil JA, Gardiner MG, Davies NW (2008) Ethylene oligomerization with Cr-NHC catalysts: further insights into the extended metallacycle mechanism of chain growth. Organometallics 27:4238–4247
- 108. Bollmann A, Blann K, Dixon JT, Hess FM, Killian E, Maumela H, McGuinness DS, Morgan DH, Neveling A, Otto S, Overett M, Slawin AMZ, Wasserscheid P, Kuhlmann S (2004) Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities. J Am Chem Soc 126:14712–14713
- 109. McGuinness DS, Gibson VC, Steed JW (2004) Bis(cabene)pyridine complexes of the early to middle transition metals: survey of ethylene oligomerization and polymerization capability. Organometallics 23:6288–6292
- 110. McGuinness DS, Gibson VC, Wass DF, Steed JW (2003) Bis(carbene)pyridine complexes of Cr(III): exceptionally active catalysts for the oligomerization of ethylene. J Am Chem Soc 125:12716–12717

Chapter 2 Late-Transition Metal Complexes with Mixed N^O, N^S, N^P Chelating Ligands for Olefin Polymerization Catalysis

Andrea Ravasio, Laura Boggioni and Incoronata Tritto

Abstract Mixed chelating ligands which contain a nitrogen donor atom in combination with P, O, or S are a novel class of frameworks for generating complexes of unusual reactivity. Complexes of group X metals (Ni and Pd) supported by these ligands are currently exploited as homogeneous catalysts for: olefin polymerization, copolymerization of olefins with functionalized monomers, olefin polymerization in uncommon solvent such as water. This chapter covers the literature on the subject.

2.1 Introduction

Polyolefins, namely produced by heterogenous early transition metal catalysts, are a multibillion dollar a year industry [1]. It has been more than half a century since polyethylene's commercialization, still enormous progresses have been made in the past 30 years in the polymerization with homogeneous and well defined catalysts, which lead to well controlled polymer architectures and to novel materials [2–6]. Despite these successes, the controlled copolymerization of simple olefins with polar functional monomers via the coordination–insertion mechanism has remained a challenge in the polyolefin field [7, 8]. The high oxophilicity of early transition metal catalysts (titanium, zirconium, or chromium) causes them to be poisoned by polar comonomers. Thus, great interest in late transition metal catalysts arises from their tolerance to polar molecules, which can lead to the

A. Ravasio · L. Boggioni · I. Tritto (⊠)
Istituto per lo Studio delle Macromolecole (ISMAC), Consiglio Nazionale delle Ricerche (CNR), Via E. Bassini 15, 20133 Milano, Italy e-mail: tritto@ismac.cnr.it

copolymerization of polar vinyl monomers with non polar olefins and the copolymerization of olefins with carbon monoxide [9–13].

In the mid-1990s the first example of copolymerization of ethylene with methylacrylate by cationic Pd(II) α-diimine complexes was reported by Brookhart [14–20]. This constituted a major breakthrough that generated a great interest in this field. Now, organometallic complexes of group X metals (Ni and Pd) used as catalyst precursors in homogeneous olefin (co)polymerization are conventionally supported by nitrogen containing chelating ligands. Noteworthy are the cationic Ni- and Pdbased diimine catalysts which serve as catalysts for the polymerization of ethylene and α-olefins to high molar mass materials, with turnover frequencies (TOFs) as high as those of traditional homogeneous metallocene catalysts based on early transition metals. The key features of these systems are: (1) the highly electrophilic and cationic Ni and Pd metal centers; (2) the use of sterically encumbered diimine ligands; (3) the use of noncoordinating counterions or the use of reagents thought to produce noncoordinating counterions. Nevertheless and exactly for the same features α -diimine Ni and Pd catalysts suffer from some shortcomings in copolymerization of α -olefins with polar vinyl monomers. The cationic nature of metal center favours the coordination of polar vinyl monomers by polar functional group rather than by double bond. In addition, activators such as AlR₃ or methylaluminoxane (MAO) can react with the polar vinyl comonomers, leading to protected and high encumbered species or starting their homopolymerization by other mechanisms than coordination polymerization [21]. A relevant review appeared describing late transition metal catalysts containing N-N ligands [9].

Neutral hydrocarbyl Ni and Pd active species, which bear anionic chelating ancillary ligands, are proving to be the effective candidates for copolymerization reactions of olefins with polar vinyl monomers for both electronic and structural reasons which result in high functional group tolerance and easy activation. Attempts to introduce negative charge in N–N ligands resulted in poor activity and prompted the interest in the mixed ligand concept. Mixed ligands which have different chemical donor functions, such as hard and soft donor atoms or groups, find increasing use in chemistry, mainly because they often exhibit a hemilabile character in the coordination sphere of a metal complex. First and successfully applied in olefin oligomerization the mixed ligand concept is the base of Shell higher olefin process (SHOP) which exploits Ni and Pd complexes with anionic P–O ligands to produce linear olefins (C_6 – C_{20}) [22–24].

Herein, we focus on nitrogen containing mixed ligands as building blocks of catalysts for olefin polymerization. We particularly focus on some notable developments on mixed N–O, N–P, and N–S supporting ligands and their uses in late transition-metal-catalyzed polymerization. Thus, this review covers families of catalysts based on mixed chelating ligands, containing nitrogen, that are active for the homopolymerization of ethylene and the copolymerization of ethylene with α -olefins and polar comonomers. Late metal catalysts not active for ethylene polymerization are not included. Catalyst syntheses, activities, and chain-growth mechanisms and the influence of these factors on the structures of the resulting polymers are discussed.

2.2 Mixed Ligand Concept

Mixed ligands are bi- or polydentate ligands that contain at least two different types of chemical functionality capable of binding to metal centers. There is an increasing interest in the development of these ligands, as the different features associated with each donor atom confer unique reactivity to their metal complexes [25–32]. In homogeneous catalysis these functionalities are often chosen to be very different from each other to increase the differentiation between their interactions with the metal center(s). In turn, these functionalities will influence the bonding/reactivity of the other ligands bound to the metal. Ligands containing both hard and soft donors have often been synthesized, the hope being that different and contrasting reactivity associated within the same molecule would lead to novel and unprecedented properties for the resulting metal complexes.

The greater the σ -donor ability is, the greater the π -acceptor (π -back donation from metal to ligand) capacity is in the metal complexes and thus hard in the HSAB Pearson's scale [33]. When coordinated to transition metal ions, N-ligands are generally strong σ -donors, while the π -character depends on the frameworks. Also oxygen ligands are hard while P- and S-ligands are soft. The sulfur donor ligands, which are poor σ -donor and poor π -acceptor ligands, are the softest. Phosphine ligands are generally regarded as σ -donors and π -acceptors. Mixed N-O, N-P, or N-S ligands can display quite different coordination modes compared to N-N ligands. Of particular interest is that modification of the steric and electronic properties of either the phosphine or the nitrogen donor function is expected to influence the coordination chemistry and catalysis with these systems.

Over the past 15 years, much effort has been dedicated to the development of mixed donor ligands for Ni and Pd complexes as olefin polymerization catalysts [6–10]. This class of ligands is particularly interesting because of the different trans-effect, as a result of different donor and acceptor properties of the two coordinating groups in the ligand. The differences of these donor atoms would offer an effective tool in targeting particular catalytic activity and comonomer discrimination even though the influence of a ligand on catalytic properties of a transition metal complex is still hard to predict. For example, complexes with P-N ligands can have the advantage of improved thermal stability in catalysis with respect to those with N-N ligands, as nickel complexes with P-N ligands showed much higher thermal stability than related diimime complexes [34, 35]. This might overcome the problem of fast catalyst deactivation at high temperatures that diimine-based catalysts suffer [36]. Alternating the donor atom on the ligand scaffold to adjust the catalyst activity, selectivity, and reactivity towards different monomers can play an important role in achieving polymers with high molar masses and novel architectures. This kind of versatility is of interest both in basic research and for catalytic applications.

Nickel and palladium complexes with mixed ligands have been used in the oligomerization [37] and polymerization of ethylene [9–11]. We will limit ourselves to the presentation of ligands which form complexes that after activation

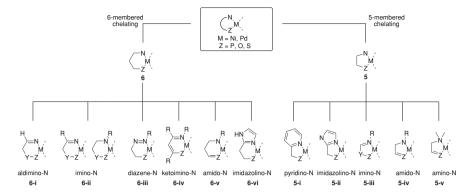


Fig. 2.1 Organization of Ni and Pd complexes with nitrogen-based mixed ligands according to the number of terms involved in metallacycle and the nature of nitrogen donor

give polymers with relatively high molar masses. We anticipate that great part of this chapter will regard Ni and Pd transition-metal complexes with N–O ligands and their catalytic properties since those with N–P and especially with N–S mixed donor ligands have been relatively unexplored for olefin polymerization. This review organizes ligands in two main categories according to the number of terms involved in the forming metallacycles, 5- and 6-membered (Fig. 2.1), in general 4-membered rings are strained, whereas 7- or longer membered rings are not so much geometrically favoured.

2.2.1 N-O Ligands

Imino nitrogen is the most common donor function involved in 6-membered ring complexes especially for the high versatility as well as the simple synthesis that exploits conventional Schiff-base chemistry; both aldimino- (6-i) and imino-based (6-ii) complexes are of interest.

The most popular types are salicylaldimines (Fig. 2.2) on which N-aryl groups are installed via condensation reaction of proper aniline with aldehyde affording the corresponding bidentate ligand A1–43.

As carbonyl building blocks, the most studied are the salicylaldehydes [38–51], though also salicylketones appeared [52]. These scaffolds possess many sites of substitution allowing for the evaluation of both electronic and steric effects. Generally, electronic effects are investigated by introducing electron-withdrawing groups (NO₂, CF₃), electron-donating groups (OMe, tBu), or halogen atoms in both o- and p-position (R¹⁻²). In addition, the o-position (R¹) allows to take into account the steric effect of introducing bulky substituents such as anthracene or phenanthrene near to oxygen donor. In principle, basicity of imino-N can be directly tuned through imine backbone or indirectly by substitutes (R³⁻⁴⁻⁵) on N-aryl moiety. These groups also play a crucial role by their steric hindrance.

Fig. 2.2 Salicylaldimine ligands reported in academic articles

A22: $R^1 = R^2 = I$; $R^3 = 4$ - $CF_3C_6H_4$; $R^4 = R^5 = H$

Recently, another possible way to influence electronic properties of oxygen donor was introduced by replacing the anionic aryloxide moiety by a neutral pyridine N-oxide fragment affording ligands **B1-6** [53] (Fig. 2.3).

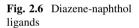
In addition, different approaches were proposed to incorporate two phenoxyimine chelating units affording binucleating ligands. Properly designed spacing units such as bisamines or bisaldehydes can be used for the purpose. Several bisamines were prepared and used as building blocks to prepare ditopic ligands [54–60]. A first class (C1–12) bears two amino moieties onto the same phenyl ring [54, 55]. Other spacers bearing two amino groups onto different phenyl rings were designed onto biphenyl (C13–14, C17), benzylphenyl (C15–16, C18–20), and terphenyl fragments (C21–22) [56]. In the bis-salicylaldimine ligand C23 [59], which derives from the 3,3'-bisalicylaldimine scaffold, the two *o*-positions of oxygen donors are mutually hindered allowing for skipping synthetic steps to introduce bulky groups in such a crucial position. Ideally, naphthyloxy dialdehyde can be considered as constituted by two condensed salicylaldehydes. The corresponding N-aryl naphthyloxydiimine ligand C24 possesses the unique feature of having two adjacent crabs [60] (Fig. 2.4).

Another strategy for generating imino groups in conjugation with an oxygen donor, specifically a carboxylic group, consists in reacting anthranilic acid with ketones yielding iminocarboxylato ligands **D1–3** [61] (Fig. 2.5).

Fig. 2.3 Selected 2-iminopyridine *N*-oxides ligands

$$\begin{array}{c} \text{B1: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{H; R}^4 = \text{Me} \\ \text{B2: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{H; R}^4 = \text{He} \\ \text{B2: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{H; R}^4 = \text{He} \\ \text{B3: R}^1, R^2 = C_0 H_4; R^3 = \text{H; R}^4 = \text{He} \\ \text{B4: R}^1 = \text{Ph; R}^2 = \text{H; R}^3 = \text{H; R}^4 = \text{He} \\ \text{B5: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{NO}_2; R^4 = \text{He} \\ \text{B6: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{MeO}; R^4 = \text{He} \\ \text{B6: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{MeO}; R^4 = \text{He} \\ \text{B6: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{MeO}; R^4 = \text{He} \\ \text{B6: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{MeO}; R^4 = \text{He} \\ \text{B6: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{MeO}; R^4 = \text{He} \\ \text{B6: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{MeO}; R^4 = \text{He} \\ \text{B6: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{He} \\ \text{B6: R}^1 = \text{H; R}^2 = \text{H; R}^3 = \text{He} \\ \text{B7: R}^1 = \text{He} \\ \text{B9: R}^2 = \text{He} \\ \text{B9: R}^3 = \text{He} \\ \text{B9: R}^3 = \text{He} \\ \text{B9: R}^4 = \text{He} \\ \text{B9: R}^3 = \text$$

Fig. 2.4 Ditopic aldimine ligands


Alternatively, in ligands **E1–3** the imine fragment is replaced by a diazene (-N=N-) donor function. This family of ligands can be prepared via azo coupling of aniline with aromatic alcohols. Though little explored, these scaffolds offer, at least in principle, the same versatility and availability of substitution sites of salicylaldehydes [62] (Fig. 2.6).

Also enamines, which are the tautomeric form of imines, can be considered as practical building blocks in N–O ligand synthesis. Stabilization offered by conjugated ketones affords β -ketoimines **F1–17**, that is the conjugated acid of the monoanionic chelating β -ketoiminato ligand (6-iv). Similarly to salicylaldimine,

these strong π ligands allow for selectively tuning electronic properties and steric demand. Electron-withdrawing substituents such as CF₃, and CF₃C=O are commonly added to the ketoimino backbone to reduce π -donation and enhance π -accepting abilities of the ligand, in order to increase the electrophilicity of the chelated metal. Steric bulk of the ligand can be amplified through both N-aryl moiety and R¹ fragment. According to the chemistry of enamines, methods of synthesis are somewhat more sophisticated than the usual Schiff condensation exploited in imine preparation and harsh conditions or activated synthones are required, especially when electron poor reagents are involved [63–68] (Fig. 2.7).

Other rare examples of 6-membered chelating ligands bear: (1) amino nitrogen in combination with an aldheyde oxygen donor (G1) [69]; (2) imidazole-based nitrogen donor in combination with a charged phenolate donor (G2) [70] (Fig. 2.8).

The length of the connecting bridge between two donor atoms in bidentate ligands plays a pivotal role in catalysis and it is tightly connected with the preferential coordination mode. The flexibility (elsewhere referred as plasticity) of a ligand can influence a catalytic reaction by stabilizing or destabilizing initial, transition, or final states and different coordination modes. In catalytic polymerization side reactions such as chain transfers, chain releasing, and displacements

F1:
$$R^1 = Ph$$
; $R^2 = H$; $R^3 = CF_3$; $R^4 = {}^{l}Pr$
F2: $R^1 = Ph$; $R^2 = H$; $R^3 = Me$; $R^4 = {}^{l}Pr$
F3: $R^1 = CF_3$; $R^2 = H$; $R^3 = Me$; $R^4 = {}^{l}Pr$
F4: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = H$; $R^4 = {}^{l}Pr$
F5: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = H$; $R^4 = {}^{l}Pr$
F6: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = Me$; $R^4 = {}^{l}Pr$
F7: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = Me$; $R^4 = {}^{l}Pr$
F7: $R^1 = CF_3$; $R^2 = H$; $R^3 = Me$; $R^4 = {}^{l}Pr$
F7: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = H$; $R^4 = {}^{l}Pr$
F9: $R^1 = 2 - PhC_6H_4$; $R^2 = H$; $R^3 = H$; $R^4 = {}^{l}Pr$
F11: $R^1 = 2 - PhC_6H_4$; $R^2 = H$; $R^3 = Me$; $R^4 = {}^{l}Pr$
F12: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = M$; $R^4 = {}^{l}Pr$
F13: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = M$; $R^4 = {}^{l}Pr$
F13: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = M$; $R^4 = {}^{l}Pr$
F13: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = M$; $R^4 = {}^{l}Pr$
F13: $R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = M$; $R^4 = {}^{l}Pr$
F14: $R^1 = Me$; $R^2 = COCF_3$; $R^3 = M$; $R^4 = {}^{l}Pr$

Fig. 2.7 Selected β -ketoimine ligands

can involve changes in catalyst geometry. Hence a limited flexibility in chelating ligand can in principle prevent side reactions and in turn increase TOF.

As a general rule, 5-membered chelated complexes are significantly more stable than the 6-membered homologs, especially for square-planar and octahedral complexes. The shorter spacer between the two donor atoms in pro-5-membered chelating ligands best meets the L-M-L angle of 90° preferred by square-planar (and octahedral) complexes. A higher thermodynamical stability prevents ligand displacement involved in catalyst deactivation pathways. Therefore, there is a strong interest in developing catalysts with N–O mixed ligands which possess a 5-membered chelate ring.

Indeed, early research on mixed N–O chelating ligands as components in polymerization catalysts refer to the very simple pyridine carboxylate ligands **H1–4** (5-i) [71, 72]. By introducing electron withdrawing or donating group onto aryl unit of ancillary chelating ligands electronic effects were considered. In any case, both the simple scaffold and the not modifiable carboxylato ligand did not allow an evaluation of steric effects. Other heterocycle-based ligands involve imidazole in combination with carboxylic (**H5–6**) and alcoholic (**H7**) donors [70] (Fig. 2.9).

While imine nitrogen donors dominate the field of 6-membered chelating ligands there are only few cases of the smaller 5-membered ring ligands involving imine as donor. A special case is represented by α -iminocarboxamide ligand **I1–9** [73–75] in which the imine donor is supported by an amide fragment. A number of these ligands was prepared by combining pyruvamides or other 2-oxo-substituted amides analogous with proper aniline. Binding mode of the ligand (N–N or N–O) depends upon the steric hindrance of aryl moieties and tends to N–O when it is sufficiently large (Fig. 2.10).

A rare neutral example of imino-based ligands is designed on the backbone of O-alkyl ester of iminohydroxamic acid. By iminoacylation of N,O-bisalkyl-hydroxylamines the corresponding bidentate ligands **L1–4** can be readily obtained [76] (Fig. 2.11).

Fig. 2.8 Aminoketone (**G1**) and 2-imidazolinophenol (**G2**) ligands

Fig. 2.9 5-membered chelating ligands containing N-heterocycles

Fig. 2.10 α -iminocarboxamide ligands

Fig. 2.11 Bisalkylhydroxylamines ligands

More frequent are the ligands that bear vinylogous amido nitrogen donors (5-iii). This family includes 2-anilinotropone-based ligands **M1–14** whose synthesis exploits the palladium catalyzed cross-coupling of aniline with 2-triflatotropone [77–79]. Several variations can be introduced by using hindered or electron poor N-aryl group and modified tropone skeleton. A similar synthetic approach was reported for the preparation of anilinoperinaphthenone-based ligands **N1-2** [80]. These ligands possess as additional feature the impossibility of delocalizing a negative charge onto oxygen donor upon deprotonation (Fig. 2.12).

Similar ligands can be prepared by using hydroxyquinones as carbonyl building blocks. Reaction with proper amine by vinylogous nucleophilic substitution readily affords the mono O1–4 [81, 82] or binucleating P1–5 ligands [83]. Also classical α -amino carboxylates can be in principle used as N–O-chelate ligands Q1–4 (Fig. 2.13).

2.2.2 N-P and N-S Ligands

Imino groups can be tethered to a phosphine-based donor function affording bidentate iminophosphine ligands **R1–9**. They constitute important chiral P–N bidentate ligands for asymmetric catalysis by metal complexes [37] and appear in patents regarding olefin polymerization [85, 86]. These ligands are readily prepared by Schiff condensation of the corresponding amine and the aldehyde bearing the phosphine group. Besides sites of substitution on aromatic scaffold of the ligand also substituents at the phosphorus atom are accessible [87–89]. Alternatively the P donor can be combined with an amide fragment affording the diphenylphosphanylbenzamide ligand **S1–5** [90] (Fig. 2.14).

Pyridine-based 5-membered chelating ligands T1-2 were prepared by Suzuki coupling of chloropicoline with mesitylboronic acid followed by diarylphospinylation at the α -position (Fig. 2.15).

Fig. 2.12 Vinylogous amido-based ligands

Fig. 2.13 α-aminoacids investigated as ligands for catalysts for ethylene polymerization

Fig. 2.15 Selected pyridinophosphine ligands

Fig. 2.16 R-phosphine enamines (U1-3) and phosphinoimine (V1-5) ligands

Imino nitrogen can be also tethered to a phosphine moiety through a bridging group in 5-membered chelating ligands. A family of ligands, which exists as R-phosphine enamines before complexation to Ni(II) or Pd(II) and affords phosphine imine by tautomerization, was successfully prepared by nucleophilic substitution of bisalkylchlorophosphine by imine anions [91]. Monocyclic (U1) and bicyclic (U2–3) backbones were used to enhance the conformational rigidity and prevent ligand displacement [34]. Both bulky *ortho* substituents on the aniline moieties and bulky phosphines were introduced to supply the steric requirement that is crucial for obtaining high molar mass polymers.

Nonenolizable bulky phosphine imine bidentate ligands V1–5 [35] can be prepared by installing a *gem*-dimethyl group α to phosphorus. Ligands can be obtained by direct nucleophilic attack of the azaenolate to the phosphorus electrophiles R₂PCl (R = Me, Ph). In the case of higher hindered mesityl-substituted-P compounds the azaenolate was reacted with MesPCl₂ followed by the Grignard reagent MeMgBr to introduce other substituents on phosphorous. Otherwise, reaction occurred at both carbon and nitrogen of the azaenolate, yielding a mixture of isomers. The purity and yield of the ligands can be estimated from the ³¹P NMR spectra (Fig. 2.16).

Ideally, the most straightforward modification of diimine ligands consists in replacing one imine moiety with a phosphinidine. Nucleophilic attack of deprotonated imine to mesityl-PCl $_2$ followed by elimination of HCl affords ligands **W1–2** (Fig. 2.17) [92] .

Fig. 2.17 Phosphinidine-imine-based ligands

Fig. 2.18 Imidazole-2thione (X1-2) and iminesulfide (Y1) ligands

Despite the intensive research on catalysts with hard-and-soft mixed ligands for olefin oligomerization or polymerization, examples of N–S ligands remain scarce (Fig. 2.18. A family of 6-membered chelating ligands combines pyridine donor with imidazole-2-thione moieties affording the corresponding bidentate N–S ligands **X1–2** [93].

The single case of a 5-membered chelating ligand refers to the imine-sulfide ligand Y1, which is prepared from the condensation of the corresponding α -thioaldehyde with 2,6-diisopropylaniline [92].

2.3 Group X Metal Complexes

Ni and Pd compounds with mixed ligands (N–Z) exploited as catalysts for olefin (co)polymerization are generally 16 electron square planar complexes. Asymmetry of the chelating mixed ligand as well as diversity of the ligands completing the coordination sphere of the metal cause distortion of complexes from ideal square planar geometry (D_{4h}). Definitely, one of the key features of these complexes is *trans*-effect, and in turn *trans*-influence. The former drives their synthesis and final structure, the latter deeply influences their reactivity. Different synthetic approaches are used to prepare Ni and Pd complexes with mixed ligands depending on the nature of the ligand as well as the features of the final complex (Fig. 2.19).

Even dihalide complexes are seldom achieved by direct ligand addition to dihalide metal salt (I). They are in general synthesized by ligand displacement reaction between the chelating ligand and a proper metal precursor, containing an isoelectronic labile bidentate ligand such as dme or tmeda (IIa). The major driving force is the higher stability furnished by π -accepting frameworks in chelating ligand with respect to the pure σ -donors in the ligand precursors.

Hydrocarbyl complexes are generally prepared by using alkyl-containing metal sources rather than converting the dihalo-compounds into the corresponding metal

Fig. 2.19 General synthetic routes to Ni and Pd complexes with N–Z ligands

alkyls by nucleophilic attack. This avoids the partial reduction of metal with consequent loss of mixed chelating ligand or undesired reactions of mixed ligand with the alkylating agent.

The selection of the metal precursor depends on the charge of mixed chelating ligand, which influences the method of synthesis employed. Thus, neutral mixed ligands can be installed by ligand exchange on metal precursors (IIb) built with an alkyl fragment (R), an anionic donor such as halide (X), and a leaving neutral chelating ligand (L–L). In the resulting hydrocarbyl complexes the alkyl fragment will possess a *cis*-anionic donor.

Most commonly, the installing mixed ligands are anionic (N–Z⁻) and synthesis occurs via salt metathesis (III) or protonolysis (IV).

Salt metathesis (III) between precursor and the salt of anionic ligand, which is commonly obtained by deprotonation with alkali hydride, is the most used synthesis for complexes containing mixed ligands, one alkyl group, and a Lewis base. In this case the precursor should be able to lose one anionic ligand (X^-), which is eliminated as salt, commonly an alkaline halide salt, and a neutral ligand that is replaced by the mixed chelating ligand. Trans labilizing effect of the alkyl group drives the synthesis and the resulting complex contains the nitrogen ligand trans to the Lewis base, with few exceptions, due to high steric hindrance.

Alternatively, the protonolysis approach uses acid ligands and bis-hydrocarbyl precursors affording the desired organometallic complexes by sacrificing one hydrocarbyl ligand. This strategy is frequently accomplished by a concomitant ligand exchange to substitute a bidentate Lewis base with a monodentate ligand

(IVa). Otherwise, Lewis bases can be already present in the precursor and displaced by the neutral fragment of the mixed ligand (IVb). Again, trans effect affords complexes with nitrogen ligands trans to the Lewis bases.

The reported methods for the synthesis of Ni and Pd complexes are summarized in Fig. 2.19 and they will be referred with the corresponding keys in Table 2.1.

2.4 Application in Homogeneous Catalyzed Polymerization

2.4.1 Activation

The Ni and Pd complexes with mixed N–O, N–S, and N–P chelating ligands listed in Table 2.1 are catalyst precursors which need to be activated to yield the species active for the polymerization. Such N–Z ligands must be coordinated to the metal also in the active species to effectively control catalyst selectivity and activity via steric and electronic interactions.

In general, it is the cationic form of organometallic complexes that is of interest in polymerizations, generated from catalyst precursors by activation with a cocatalyst. The most frequently used cocatalysts are aluminoxanes such as MAO or derivatives (MMAO) [94, 95]. The role of MAO includes alkylation of dihalides, subsequent abstraction of a ligand to form the cationic complex, and the scavenging of impurities. Other important cocatalysts for precursors containing alkyl or aryl ligands are perfluorinated boranes, such as $B(C_6F_5)_3$ and $[Ph_3C][B(C_6F_5)_4]$. Often aluminum alkyls (AlR₃ with $R={}^iBu$, n- C_6H_{13}) are employed together with the cocatalyst.

All Ni and Pd dihalide catalyst precursors with neutral N–Z ligands and in some case even the more sophisticated precursors bearing anionic N–Z ligands, which are already alkylated, can be activated by aluminum-based cocatalysts (Fig. 2.20). Discrete cationic alkyl complexes of palladium and nickel are synthesized by reaction with a variety of salts of noncoordinating anions to yield cationic organometallic species.

In the general structure the 'stabilizing' ligands L allows for facile removal from the metal center, e.g. by displacement by coordination of olefin monomer; L is most often neutral, while the ligand R bound to the metal via a carbon atom enables facile entry into the catalytic cycle. When the cationic species is generated in situ in the presence of the olefin, the L' may also be a solvent molecule or the olefin monomer. Y¯ is very weakly or non-coordinating to avoid interactions with the metal center, leading e.g. to displacement of labile ligands L' or to strong coordination blocking the sites during catalysis. As alkyl complexes of late transition metals easily give β -hydride elimination, often R alkyl substituents do not have β -H atoms, or for steric reasons do not allow β -H eliminations. Anyhow, among the listed precursors halo and alkyl complexes activated as metallocenes and diimine catalysts are rare.

Table 2.1 Synthetic routes to Ni and Pd complexes with N-O, N-P, and N-S ligands

Metal precursor	Ligand	Method Catalyst	alyst	No. References
6-membered chelated complexes with N-O ligands	with N–O ligands			
	R4 R5		R ⁴ R ⁵	
	, , , , , , , , , , , , , , , , , , ,		***************************************	
	N. S.		R ³ 1.	
	$=$ N \mathbb{R}^3		= N L R3	
	R ² — OH	20	×	
	Ĭ	Ľ	¥ 0	
	-Œ.		<u>_</u> x	
$[NiCl(Ph)(PPh_3)_2]$	A1 $R^1 = R^2 = R^4 = R^5 = H; R^3 = {}^{i}Pr$	Z H	$Ni(A1)Ph(PPh_3)$	1 [38]
	\mathbf{R}^{1}	Z	$[Ni(A2)Ph(PPh_3)]$	7
	A3 $R^1 = Ph; R^2 = R^4 = R^5 = H; R^3 = {}^{i}Pr$	Z	$Ni(A3)Ph(PPh_3)$	3
	A4 $R^1 = 9$ -phen; $R^2 = R^4 = R^5 = H$;	Ż	$Ni(A4)Ph(PPh_3)$	4
	$\mathbb{R}^3 = {}^i \mathrm{Pr}$			
	A5 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$;	Z	$[Ni(A5)Ph(PPh_3)]$	S
	$R^3 = {}^tPr$			
	\mathbb{R}^{1}	Z	$[Ni(\mathbf{A6})Ph(PPh_3)]$	9
	A7 $R^1 = R^4 = R^5 = H$; $R^2 = NO_2$; $R^3 = {}^{i}Pr$	Z	$[Ni(A7)Ph(PPh_3)]$	7
$[Ni(tmeda)Me_2]$	A5 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$;	IVa [Nj	Ni(A5)Me(MeCN)]	8 [39]
	$R^3 = {}^iPr$			
	A8 $R^1 = \text{trityl}; R^2 = R^4 = R^5 = H; R^3 = {}^{i}\text{Pr}$	Z	[Ni(A8)Me(MeCN)]	6
	A9 $R^1 = m$ -terp; $R^2 = R^4 = R^5 = H$;	Z	[Ni(A9)Me(MeCN)]	10
	$R^3 = {}^i$ Pr			
$[NiCl(Ph)(PPh_3)_2]$	A10 $R^1 = R^2 = I$; $R^3 = {}^{i}Pr$; $R^4 = R^5 = H$	Ξ I	$[Ni(\mathbf{A10})Ph(PPh_3)]$	11 [40]
$[Ni(tmeda)Me_2]$	A10	IVa [Nj	[Ni(A10)Me(py)]	12
				(continued)

$\overline{}$
_
ರ
47
ĭ
=
▭
+
п
0
ನ
_
_
_
Ξ.
_
- -
- 7:1
7.7
e
e
e
ple
ple
able
ple

Table 7.1 (confined)				
Metal precursor	Ligand	Method	Method Catalyst	No. References
$[\mathrm{Ni}(\eta^3\text{-}\mathrm{C}_3\mathrm{H}_5)\mathrm{Br}]_2$	A11 $R^1 = {}^tBu; R^2 = Me; R^3 = {}^tPr;$ $R^4 = R^5 = H$	а	$[\mathrm{Ni}_2(\mathbf{A11})_2(\mu\text{-OH})_2]$	13 [41]
$NiBr_2*6H_2O$	A11	Ι	$[\mathrm{Ni}_2(\mathbf{A11})_2(\mu\text{-OH})_2]$	13
$[Ni(acac)_2]$	A11	Па	[Ni(A11)(acac)]	14
$[Ni(dme)Br_2]$	A11	þ	$[Ni(\mathbf{A11})_2]$	15
$[Ni(dme)Cl_2]$	A11	c	$[Ni(A11)Me]^+$ (in situ)	16
$[Ni(cod)_2]$	A3 $R^1 = Ph; R^2 = R^4 = R^5 = H; R^3 = {}^{i}Pr$	p	[Ni(A3)(cod)]	17 [42]
	A7 $R^1 = R^4 = R^5 = H$; $R^2 = NO_2$; $R^3 = {}^{i}Pr$	<u>۲</u>	[Ni(A7)(cod)]	18
	A12 $R^1 = R^2 = NO_2$; $R^3 = {}^iPr$; $R^4 = R^5 = 1$	Н	[Ni(A12)(cod)]	19
	A13 $R^1 = R^2 = NO_2$; $R^3 = R^4 = R^5 = H$		[Ni(A13)(cod)]	20
$[Ni(tmeda)Me_2]$	A14 $R^1 = R^2 = I$; $R^3 = 3.5$ -(CF ₃) ₂ C ₆ H ₃ ; $R^4 = R^5 = H$	IVa	[Ni(A14)Me(py)]	21 [44]
	A15 $R^1 = R^2 = I$; $R^3 = 3 \cdot NO_2C_6H_4$; $R^4 = R^5 = H$		[Ni(A15)Me(py)]	22
	A16 $R^1 = R^2 = I$; $R^3 = Ph$; $R^4 = R^5 = H$		$[Ni(\mathbf{A16})Me(py)]$	23
	A17 $R^1 = R^2 = I$; $R^3 = 3.5$ -Me ₂ C ₆ H ₃ ; $R^4 = R^5 = H$		[Ni(A17)Me(py)]	24
	A18 $R^1 = R^2 = I$; $R^3 = 3.5$ -(MeO) ₂ C ₆ H ₃ ; $R^4 = R^5 = H$		[Ni(A18)Me(py)]	25
$[NiCl(Ph)(PPh_3)_2]$	A19 $R^1 = Cy$; $R^2 = Me$; $R^3 = {}^iPr$; $R^4 = R^5 = H$	II	$[\mathrm{Ni}(\mathrm{A19})\mathrm{Ph}(\mathrm{PPh}_3)]$	26 [45]
$[NiCl(Ph)(PPh_3)_2]$	A20 $R^1 = Cy$; $R^2 = Cl$; $R^3 = {}^{i}Pr$; $R^4 = R^5 = H$	Ħ	$[Ni(\mathbf{A20})Ph(PPh_3)]$	27 [46]
$[\mathrm{Ni}(\mathrm{tmeda})\mathrm{Me}_2]$	A21 $R^1 = R^2 = I$; $R^3 = 4 \cdot C_8 F_{17} C_6 H_4$; $R^4 = R^5 = H$	IVa	[Ni(A21)Me(py)]	28 [47]
				(Possijaco)

$\overline{}$
ned
ntir
્ઇ
_
e 2.1

Table 4.1 (Collettaca)			
Metal precursor	Ligand	Method Catalyst N	No. References
	A22 $R^1 = R^2 = I$; $R^3 = 4 \cdot CF_3C_6H_4$; $R^4 = R^5 = H$	[Ni(A22)Me(py)] 29	
	A23 $R^1 = R^2 = R^3 = 3.5 \cdot Me_2 C_6 H_3;$ $R^4 = R^5 = H$	[Ni(A23)Me(py)] 30	
	A24 $R^1 = R^2 = 3.5 \text{-Me}_2 \text{C}_6 \text{H}_3$; $R^3 = 4 \text{-}$ $\text{C}_8 \text{F}_7 \text{C}_6 \text{H}_4$; $R^4 = R^5 = H$	[Ni(A24)Me(py)] 31	
$[Ni(tmeda)Me_2]$	A5 $R^{1} = 9$ -anth; $R^{2} = R^{4} = R^{5} = H$; $R^{3} = {}^{i}Pr$	IVa [Ni(A5)Me(py)] 32	[48]
	A25 $R^1 = R^2 = I$; $R^3 = 3.5$ -'Bu ₂ C ₆ H ₃ ; $R^4 = R^5 = H$	[Ni(A25)Me(py)] 33	
	A26 $R^1 = R^2 = I$; $R^3 = 3.5^{-4}Bu_2-4-OHC_6H_2$; $R^4 = R^5 = H$	[Ni(A26)Me(py)] 34	-
	A27 $R^1 = R^2 = I$; $R^3 = 3.5 \text{-Me}_2 \text{-} 4 \text{-MeOC}_6 H_2$; $R^4 = R^5 = H$	[Ni(A27)Me(py)] 35	10
	A28 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5 \cdot (CF_3)_2 C_6 H_3$	[Ni(A28)Me(py)] 36	,
	A29 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ -'Bu ₂ C ₆ H ₃	[Ni(A29)Me(py)] 37	_
	A30 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ -'Bu ₂ -4-OHC ₆ H ₂	[Ni(A30)Me(py)] 38	~
	A31 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ -Me ₂ C ₆ H ₃	[Ni(A31)Me(py)] 39	2
	A32 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ -Me ₂ -4-MeOC ₆ H ₂	[Ni(A32)Me(py)] 40	
			•

continued)

_	
Dellantho	
C	٥
	•
d	١
ć	5
G	3
	(Delinithon) Carde

(======================================			
Metal precursor	Ligand Metho	Method Catalyst	No. References
	A33 R ¹ = 9-anth; R ² = R ⁴ = R ⁵ = H; R ³ = 3.5-(MeO) ₂ C ₆ H ₃	[Ni(A33)Me(py)]	41
	A34 R ¹ = 9-anth; R ² = R ⁴ = R ⁵ = H; R ³ = 3.4.5-(MeO), C ₆ H,	[Ni(A34)Me(py)]	42
	A35 $R^1 = R^4 = R^5 = H; R^2 = NO_2;$ $R^3 = 3.5 \cdot (CF_2)_2 C_5 H_3$	[Ni(A35)Me(py)]	43
	A36 $R^1 = {}^{t}Bu; R^2 = R^4 = R^5 = H; R^3 = 3.5$ $(CF_3)C_5H_3$	[Ni(A36)Me(py)]	4
$[\mathrm{Ni}(\mathrm{py})_2\mathrm{Me}_2]$	A25 $R^{1} = R^{2} = I$; $R^{3} = 3.5^{-1}Bu_{2}C_{6}H_{3}$; IVb $R^{4} = R^{5} = H$	[Ni(A25)Me(py)]	33
	A26 R ¹ = R ² = I; R ³ = 3,5-'Bu ₂ -4-OHC ₆ H ₂ ; R ⁴ = R ⁵ = H	[Ni(A26)Me(py)]	34
	A27 $R^1 = R^2 = I$; $R^3 = 3.5$ -Me ₂ -4-MeOC ₆ H ₂ ; $R^4 = R^5 = H$	[Ni(A27)Me(py)]	35
	A28 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ - $(CF_3)_2C_6H_3$	[Ni(A28)Me(py)]	36
	A29 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ - Bu_2C_6H ;	[Ni(A29)Me(py)]	37
	A30 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ - Bu , A -OHC ₆ H ,	[Ni(A30)Me(py)]	38
	A32 R ¹ = 9-anth; R ² = R ⁴ = R ⁵ = H; R ³ = 3.5-Me ₂ -4-MeOC ₆ H ₂	[Ni(A32)Me(py)]	40

ned
ontin
<u>3</u>
7
a)
apj

Table 2.1 (collinated)				
Metal precursor	Ligand	Method	Method Catalyst	No. References
	A33 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ -(MeO), C_cH_2		[Ni(A33)Me(py)]	41
	A34 $R^{1} = 9$ -anti; $R^{2} = R^{3} = H$; $R^{3} = A \xi_{2} M \theta(0) \xi(2) H$;		[Ni(A34)Me(py)]	42
$[\mathrm{Ni}(\mathrm{tmeda})\mathrm{Me}_2]$	A37 $R^1 = R^2 = 1$; $R^3 = 4 + FC_6H_4$; $R^4 - R^5 - H$	IVa	[Ni(A37)Me(py)]	45 [49]
	A38 $R^1 = R^2 = I$; $R^3 = 4 \cdot MeC_6H_4$; $R^4 - R^5 - H$	IVa	[Ni(A38)Me(py)]	46
	A39 $R^1 = R^2 = I$; $R^3 = 4 - MeOC_6H_4$; $R^4 = R^5 - H$		[Ni(A39)Me(py)]	47
	A40 $R^1 = R^2 = I$; $R^3 = 4^2 BuC_6 H_4$; $R^4 = R^5 - H$		[Ni(A40)Me(py)]	48
	A41 $R^1 = R^2 = I$; $R^3 = 4 \cdot Me_2 NC_6 H_4$; $P^4 = P^5 - H$		[Ni(A41)Me(py)]	49
$[\mathrm{Ni}(\mathrm{tmeda})\mathrm{Me}_2]$	A42 $R^1 = R^2 = R^3 = R^5 = 3.5 \cdot (CF_3)_2 C_6 H_3;$ $P^4 = R$	IVa	[Ni(A42)Me(py)]	50 [50]
$[Ni(tmeda)Me_2]$	A5 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $n^3 = i_n$.	IVb	[Ni(A5)Me(tmeda)]	51
	A14 $R^1 = R^2 = I$; $R^3 = 3.5 \cdot (CF_3)_2 C_6 H_3$; $R^4 = R^5 = I$		[Ni(A14)Me(tmeda)]	52
	A23 $R^1 = R^2 = R$ $D^4 = D^5 = R$		[Ni(A23)Me(tmeda)]	53
	A42 $R^1 = R^2 = R^3 = 3.5 \text{-Me}_2 C_6 H_3;$ $\mathbf{p}^4 = \mathbf{p}^5 = \mathbf{u}$		[Ni(A42)Me(tmeda)]	54
$[\mathrm{NiCl}(\mathrm{Ph})(\mathrm{PPh}_3)_2]$ $[\mathrm{NiCl}(\eta^1\mathrm{-CH}_2\mathrm{Ph})(\mathrm{PMe}_3)_2]$	A43 $R^1 = NO_2$; $R^2 = R^4 = R^5 = H$; $R^3 = ^4Pr$ A5 $R^1 = 9$ -anti; $R^2 = R^4 = R^5 = H$; $R^3 = ^4Pr$		$[Ni(\mathbf{A43})Ph(PPh_3)]$ $[Ni(\mathbf{A5})(\eta^1\text{-}CH_2Ph)(PMe_3)]$	55 [51]56 [58]
$[NiCl(Me)(PMe_3)_2]$	$^{2} = R^{4} = R^{5} = H; R^{3} = {}^{i}Pr$	Ш	$[\mathrm{Ni}(\mathbf{A2})(\mathrm{Me})(\mathrm{PMe}_3)]$	57 [60]

(continued)

(continued)

	001111100		
		_	
•		4	
۲		•	
1		;	
•		•	
•		•	
		1	
		1	
		1	
		1	
		7.7	
		7.7	
		7.7	
		1.7 2101	
		and a vit	
		anic 4:1	
		Table 7.1	

Metal precursor	Ligand	Method	Method Catalyst	No. I	No. References
$[NiCl(1-naph)(PPh_3)_2]$	A2	III	$[Ni(\mathbf{A2})(1-naph)(PPh_3)]$	28	
$[Ni(tmeda)Me_2]$	A14 $R^1 = R^2 = I$; $R^3 = 3.5 \cdot (CF_3)_2 C_6 H_3$; $R^4 = R^5 = H$	IVa	[Ni(A14)Me(tppts)]	59	[103]
	A14		[Ni(A14)Me(tppds)]	99	
	A14		[Ni(A14)Me(H2N-PEG-OMe)]	61	
	A26 $R^1 = R^2 = I$; $R^3 = 3.5$ -'Bu ₂ -4-OHC ₆ H ₂ ; $R^4 = R^5 = H$		[Ni(A26)Me(tppts)]	61	
	A26		[Ni(A26)Me(tppds)]	62	
	A28 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ -(CF ₃) ₂ C ₆ H ₃		[Ni(A28)Me(tppts)]	63	
	A28		$[Ni(A28)Me(H_2N-PEG-OMe)]$	2	
	A30 $R^1 = 9$ -anth; $R^2 = R^4 = R^5 = H$; $R^3 = 3.5$ - Bu_2 - 4 -OHC ₆ H_2		[Ni(A30)Me(tppts)]	65	
	A30		$[Ni(A30)Me(H_2N-PEG-OMe)]$	99	
[Ni(tmeda)Me ₂]	A14 $R^1 = R^2 = I$; $R^3 = 3.5 \cdot (CF_3)_2 C_6 H_3$; $R^4 = R^5 = H$	IVa	[Ni(A14)Me(pta)]		[104]
	A14		[Ni(A14)Me(hmta)]	89	
	A14		$[Ni(\mathbf{A14})Me(3-Et_4NO_3S-C_5H_4N)]$	69	
$[\mathrm{Ni}(\mathrm{tmeda})\mathrm{Me}_2]$	A14 $R^1 = R^2 = I$; $R^3 = 3.5 \cdot (CF_3)_2 C_6 H_3$; $R^4 = R^5 = H$	IVa	[Ni(A14)Me(dmso)]	20	[107]
$[Ni(A14)Cl(PMe_3)]$	A14	e	$[Ni(A14)H(PMe_3)]$	71	

$\overline{}$
ned
itin
cor
_
_
2.1
e
e
ple

Table 2.1 (Collellaca)				
Metal precursor	Ligand	Metho	Method Catalyst	No. References
[Ni(A14)Me(dmso)]	A14	f	$[Ni(\mathbf{A14})Et(dmso)]$	72
	√ V. i.d.		ipri 🌾	
	R4		R4	
	Z			
	R3 X-01		$R^3 \left(\begin{array}{c} M \\ N-O \end{array}\right)$ Br	
	R ² K ¹		\mathbb{R}^2	
$[Ni(dme)Br_2]$	B1 $R^1 = R^2 = R^3 = H$; $R^4 = Me$	Па	$\overline{\Xi}$	73 [53]
	B2 $R^1 = R^2 = R^3 = R^4 = H$		$[\mathrm{Ni}(\mathbf{B2})\mathrm{Br}_2]$	74
	B3 $R^1, R^2 = C_6 H_4$; $R^3 = R^4 = H$		$[\mathrm{Ni}(\mathbf{B3})\mathrm{Br}_2]$	75
	B4 $R^1 = Ph; R^2 = R^3 = R^4 = H$		$[\mathrm{Ni}(\mathbf{B4})\mathrm{Br}_2]$	92
	B5 $R^1 = R^2 = R^4 = H$; $R^3 = NO_2$		$[\mathrm{Ni}(\mathbf{B5})\mathrm{Br}_2]$	77
	B6 $R^1 = R^2 = R^4 = H$; $R^3 = MeO$		$[Ni(\mathbf{B6})Br_2]$	78
PdBr ₂	B4 $R^1 = Ph; R^2 = R^3 = R^4 = H$	Ι	$[\mathrm{Pd}(\mathbf{B4})\mathrm{Br}_2]$	79 [53]
	R R		R	
	R3 NN		R ³ / N / N / N / N / N / N / N / N / N /	
	- <u>_</u> ⊏		C. Na Hay	
	- % - %		R^2 PPh ₃ Ph ₃ R^2	
$[NiCl(Ph)(PPh_3)_2]$	C1 $R^1 = Me; R^2 = 'Bu; R^3 = Me$	Ш	$[\mathrm{Ni}_2(\mathbf{C1})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	80 [54]

continued)

_	
$\overline{}$	
╗	
72	
\simeq	
=	
\vdash	
Ξ.	
$\overline{}$	
=	
0	
ပ	
$\overline{}$	
_	
ri	
(4	
d)	
~	
은	
್ಡ	
Γ,	

Metal precursor	Ligand	Method	Method Catalyst	No. Re	No. References
	C2 $R^1 = Me; R^2 = Ph; R^3 = H$		$[\mathrm{Ni}_2(\mathbf{C2})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	81	
$[NiCl(Ph)(PPh_3)_2]$	C3 $R^1 = Me; R^2 = Me; R^3 = H$	Ш	$[\mathrm{Ni}_2(\mathbf{C3})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	82 [55]	2]
	C4 $R^1 = Me; R^2 = {}^{1}Bu; R^3 = H$		$[\mathrm{Ni}_2(\mathbf{C4})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	83	
	\mathbb{R}^{1}		$[\mathrm{Ni}_2(\mathbf{C5})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	84	
	$R^1 =$		$[\mathrm{Ni}_2(\mathbf{C6})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	82	
	C7 $R^1 = {}^{i}Pr$; $R^2 = R^3 = H$		$[\mathrm{Ni}_2(\mathbf{C7})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	98	
	C8 $R^1 = {}^{i}Pr; R^2 = Me; R^3 = H$		$[\mathrm{Ni}_2(\mathbf{C8})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	87	
	$\mathbb{R}^1 =$		$[\mathrm{Ni}_2(\mathbf{C9})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	88	
	C10 $R^1 = {}^iPr$; $R^2 = Ph$; $R^3 = H$		$[\mathrm{Ni}_2(\mathbf{C10})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	68	
	C11 $R^1 = {}^{i}Pr$; $R^2 = R^3 = NO_2$		$[\mathrm{Ni}_2(\mathbf{C11})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	8	
	C12 $R^1 = {}^{i}Pr; R^2 = H; R^3 = NO_2$		$[\mathrm{Ni}_2(\mathbf{C12})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	91	
	X		R1 (X) R1		
	R N N N N N N N N N N N N N N N N N N N	\mathbb{R}^3	<u> </u>		
	OH R¹ R¹ HO		N R1 R1 N O C C C C C C C C C C C C C C C C C C	<u></u>	
$[\mathrm{Ni}(\mathrm{py})_2\mathrm{Me}_2]$		IVb	$[N_{12}(C13)Me_2(py)_2]$	92 [56]	9]
	C14 $n = 0$; $R^1 = 3.5 \cdot (CF_3)_2 C_6 H_3$; $P_2^2 - P_3^3 - 1$		$[\mathrm{Ni}_2(\mathbf{C14})\mathrm{Me}_2(\mathrm{py})_2]$	93	
	C15 n = 1; X = CH ₂ ; R ¹ = 'Pr; R ² = R ³ = 1	I	$[\mathrm{Ni}_2(\mathbf{C15})\mathrm{Me}_2(\mathrm{py})_2]$	94	
	C16 $n = 1$; $X = CH_2$; $R^1 = 3,5 \cdot (CF_3)_2 C_6 H_3$; $R^2 = R^3 = I$	• •	$[\mathrm{Ni}_2(\mathbf{C16})\mathrm{Me}_2(\mathrm{py})_2]$	95	
				(00)	(continued)

_	
_	
ď٦,	
=	
▭	
=	
_	
$\overline{}$	
\vdash	
$\mathbf{\circ}$	
()	
٠.	,
_	
_ :	
e 2	
le 2.	
le 2.	
e 2	
ble 2.	
able 2.	
able 2.	
able 2.	
able 2.	
able 2.	

Table 2.1 (commuca)				
Metal precursor	Ligand	Method	Method Catalyst	No. References
$[\mathrm{Ni}(\mathrm{tmeda})\mathrm{Me}_2]$	C14 n = 0; $R^1 = 3.5 - (CF_3)_2 C_6 H_3$; $R^2 = R^3 = I$	IVb	$[\mathrm{Ni}_2(\mathbf{C14})\mathrm{Me}_2(\mathrm{tmeda})_2]$	[95] 96
$[Ni(py)_2Me_2]$	$CF_3)C_6H_3$	IVb	$[\mathrm{Ni}_2(\mathbf{C17})\mathrm{Me}_2(\mathrm{py})_2]$	97 [57]
	C18 n = 1; $X = CH_2$; $R^1 = R^2 = R^3 = 3.5$ - $(CF_3)_2C_6H_3$		$[\mathrm{Ni}_2(\mathbf{C18})\mathrm{Me}_2(\mathrm{py})_2]$	86
	C19 $n = 1; X = C(CF_3)_2;$ $R^1 = R^2 = R^3 = 3.5 \cdot (CF_3)_2 C_6H_3$		$[\mathrm{Ni}_2(\mathbf{C19})\mathrm{Me}_2(\mathrm{py})_2]$	66
$[\mathrm{Ni}(\eta^3\text{-}\mathrm{CH}_2\mathrm{Ph})\mathrm{Cl}(\mathrm{PMe}_3)]$	rnth;	H	$[{ m Ni}_2({ m C20})(\eta^1{ m -CH}_2{ m Ph})({ m PMe}_3)_2]$	100 [58]
	C21 n = 1; $X = o-C_6H_4$; $R^1 = {}^iP_i$; $R^2 = 9-Anth$; $R^3 = H$		$[\mathrm{Ni}_2(\mathbf{C21})(\eta^1\text{-}\mathrm{CH}_2\mathrm{Ph})(\mathrm{PMe}_3)_2]$	101
	C22 n = 1; X = o-C ₆ H ₄ (C ₆ H ₄) ₂ ; R ¹ = ⁱ Pr; R ² = 9-Anth; R ³ = H		$[\mathrm{Ni}_2(\mathrm{C22})(\eta^1\text{-}\mathrm{CH}_2\mathrm{Ph})(\mathrm{PMe}_3)_2]$	102
[NiCl(Ph)(PPh ₃) ₂]	C23 $Ar = 2.6^{-1} PrC_6 H_3$ $Pr N \times OH N$ $Pr N \times OH N$ $Pr N \times OH N$	Ħ	Ph ₃ P Ph ₃ P Ph ₃ P Ar N INi ₂ (C23)(Ph) ₂ (PPh ₃) ₂] Ph ₂ (Ph ₃) ₂ Ph ₃ P Ph ₃	103 [59]
				(benning)

(continued)

_
ð
ine
Ξ
Ξ
ont
૭
_
_
તં
e
š
$_{ m Tab}$

50

Table 2.1 (continued)				
Metal precursor	Ligand	Metho	Method Catalyst	No. References
[NiClMe(PMe ₃) ₂]	C24 $X = OH$	Ш	$[Ni_2(C24)Me_2(PMe_3)_2]$	104 [60]
$[NiCIMe(PPh_3)_2]$	C24 X = OH		$[\mathrm{Ni}_2(\mathbf{C24})\mathrm{Me}_2(\mathrm{PPh}_3)_2]$	105
$[NiCl(1-naph)(PPh_3)_2]$	C24 X = OH		$[Ni_2(C24)(1-naph)_2(PPh_3)_2]$	106
	C25 $X = OTMS$		$[Ni(C25)(1-naph)(PPh_3)]$	107
	α. Z		α. Z	
	<u>:</u>		N-113-R	
	HO LO			
$[Ni(\eta^3-CH_2CMeCH_2)CI]_2$	$\mathbf{D1} \mathbf{R} = \mathbf{cyclohexylidene}$	Ш	$[Ni(\mathbf{D1})(\eta^3-CH_2CMeCH_2)]$	108 [61]
$[Ni(\eta^3-CH_2Ph)Cl(PMe_3)]$			$[Ni(\mathbf{D1})(\eta_3^3-CH_2Ph)]$	109
	$\mathbf{D2} \mathbf{R} = \mathbf{CEt}_2$		$[\mathrm{Ni}(\mathbf{D2})(\eta^3\text{-}\mathrm{CH}_2\mathrm{Ph})]$	110
	River		River	
	N=N R		N=N Me'R	
	HO		Ad O	
$[Ni(tmeda)Me_2]$	E1 R = H	IVa	$[N_i(E1)Me(py)]$	111 [62]
	$\mathbf{E2} \mathbf{R} = \mathbf{Me}$		[Ni(E2)Me(py)]	112
	E3 $R = ^{i}Pr$		[Ni(E3)Me(py)]	113
	R ⁴ , (R ⁴¹ (
	AN AN		X = X A A A	
	² ² OH		$R^2 \longrightarrow Ni$	
[NiCl(Ph)(PPh ₂),]	R^1 F1 $R^1 = Ph$: $R^2 = H$: $R^3 = CF_3$: $R^4 = {}^{i}Pr$	H	R ¹ [Ni(F1)(Ph)(PPh ₃)]	114 [63]
	F2 $R^1 = Ph$; $R^2 = H$; $R^3 = Me$; $R^4 = {}^iPr$		$[Ni(\mathbf{F2})(Ph)(PPh_3)]$	115

$\overline{}$	
ם	
O	
Ž	
п	
Ξ	
cont	
0	
္ပ	
$\overline{}$	
_	
7.7	
2.1	
Ġ	
Ġ	
<u>ੇ</u>	
<u>ੇ</u>	
Ġ	
<u>ੇ</u>	

Table 2.1 (continued)					
Metal precursor		Ligand	Method Catalyst	No. Re	No. References
	F3	$R^1 = CF_3$; $R^2 = H$; $R^3 = Me$; $R^4 = {}^iPr$	$[Ni(\mathbf{F3})(Ph)(PPh_3)]$)] 116	
$[NiCl(Ph)(PPh_3)_2]$	F4	$R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = H$; $R^4 = {}^{i}Pr$ III	$[Ni(\mathbf{F4})(Ph)(PPh_3)]$	117	[64]
	FS	$R^{1} = CF_{3}$; $R^{2} = COCF_{3}$; $R^{3} = Me$; $R^{4} = {}^{i}Pr$	$[\mathrm{Ni}(\mathbf{F5})(\mathrm{Ph})(\mathrm{PPh}_3)]$	[118	
	F6	$R^1 = CF_3$; $R^2 = H$; $R^3 = Me$; $R^4 = {}^{i}Pr$	$[Ni(\mathbf{F6})(Ph)(PPh_3)]$	[119	
	F7	$R^{1} = CF_{3}; R^{2} = COCF_{3}; R^{3} = Me;$ $R^{4} = Me$	$[Ni(F7)(Ph)(PPh_3)]$] 120	
$[NiCl(Ph)(PPh_3)_2]$	F.	$R^1 = Ph; R^2 = H; R^3 = H; R^4 = {}^iPr$ III	$[Ni(F8)(Ph)(PPh_3)]$	121 [65]	55]
	F3	$R^{1} = 2$ -PhC ₆ H ₄ ; $R^{2} = H$; $R^{3} = H$; $R^{4} = {}^{i}$ Pr	$[Ni(\mathbf{F9})(Ph)(PPh_3)]$	122	
	F10	\mathbb{R}^1	$[\mathrm{Ni}(\mathbf{F10})(\mathrm{Ph})(\mathrm{PPh}_3)]$	3)] 123	
	F11	$R^{1} = 2$ -PhC ₆ H ₄ ; $R^{2} = H$; $R^{3} = Me$; $R^{4} = {}^{i}$ Pr	$\left[Ni(F11)(Ph)(PPh_3)\right]$	3)] 124	
	F12	$R^{1} = 2$ -PhC ₆ H ₄ ; $R^{2} = H$; $R^{3} = CF_{3}$; $R^{4} = {}^{i}$ Pr	$[\mathrm{Ni}(\mathrm{F12})(\mathrm{Ph})(\mathrm{PPh}_3)]$	3)] 125	
[Ni(tmeda)Me ₂]	F 4	$R^{1} = CF_3$; $R^{2} = COCF_3$; $R^{3} = H$; IVa $R^{4} = {}^{1}Pr$	a [Ni(F4)Me(py)]	126 [66]	[99]
	F13	$R^1 = CF_3$; $R^2 = COCF_3$; $R^3 = H$; $R^4 = 3.5 \cdot (CF_3)_2 C_6 H_3$	[Ni(F13)Me(py)]	127	
[Ni(F13)Me(py)]	F13		$[Ni(F13)Me(PPh_3)_2]$		
$[\mathrm{Ni}(\eta^1\text{-}\mathrm{CH}_2\mathrm{Ph})\mathrm{Cl}(\mathrm{PMe}_3)_2]$	F14	$R^{1} = Me; R^{2} = CN; R^{3} = Me; R^{4} = {}^{i}Pr$ III	$[\mathrm{Ni}_2(\mathrm{F1}_2)]$	129	[29]
		di la	N. N. N.		
		J.d. N. HO	à L		
		, u			

(continued)

52

Table 2.1 (collulated)				
Metal precursor	Ligand	Metho	Method Catalyst	No. References
$[NiCl(Ph)(PPh_3)_2]$	F15 $n = 0$	III	$[Ni(F15)(Ph)(PPh_3)]$	130 [68]
	F16 $n = 1$	П	$[Ni(\mathbf{F16})(Ph)(PPh_3)]$	131
	F17 $n = 2$		$[Ni(\mathbf{F17})(Ph)(PPh_3)]$	132
$[Ni(py)_2Me_2]$	F15 $n = 0$	IVb	[Ni(F15)Me(py)]	133 [68]
	F16 $n = 1$		[Ni(F16)Me(py)]	134
	F17 $n = 2$		[Ni(F17)Me(py)]	135
	A. A.		Ar Ar CHIMS 3	
	EN .		N. C674 Me-X	
	0=		/=o´ ÞPh₃	
$[\mathrm{NiCl}(2\text{-MeC}_6\mathrm{H}_4)(\mathrm{PPh}_3)_2]$	G1 Ar = $2,4,6^{-i}$ Pr ₃ C ₆ H ₂	Ш	$[\mathrm{Ni}(\mathbf{G1})(2\text{-}\mathrm{MeC}_6\mathrm{H}_4)(\mathrm{PPh}_3)]$	136 [69]
	N		C ₆ H ₄ Me-2	
			Z Z X	
	HO—		√ V→O PPh₃	
$[NiBr(2-MeC_6H_4)(PPh_3)_2]$	G2	П	$[Ni(\mathbf{G2})(2-MeC_6H_4)(PPh_3)]$	137 [70]
5-membered chelated complexes with N-O ligands	ces with N-O ligands			
	НО		7 0 0	
			Z	
	Z- //		\Z- \X	
			=×	
$[\mathrm{NiX}(2\text{-MeC}_6\mathrm{H}_4)(\mathrm{PPh}_3)_2]$	$\mathbf{H1} \mathbf{X} = \mathbf{H}$	Ш	$[\mathrm{Ni}(\mathbf{H1})(2\mathrm{-MeC}_6\mathrm{H}_4)(\mathrm{PPh}_3)]$	138 [71]

(continued)	
Table 2.1	

Table 7.1 (collulated)					
Metal precursor		Ligand	Method	Method Catalyst	No. References
$[NiX(2-MeC_6H_4)(P\{CH_2Ph\}_3)_2]$	H1			$[Ni(\mathbf{H1})(2-MeC_6H_4)(P\{CH_2Ph\}_3)]$	139
$[NiX(2-MeC_6H_4)(PMePh_2)_2]$	H1			$[Ni(\mathbf{H1})(2-MeC_6H_4)(PMePh_2)]$	140
$[NiX(2-MeC_6H_4)(PMe_2Ph)_2]$	H1			$[Ni(\mathbf{H1})(2\text{-MeC}_6H_4)(PMe_2Ph)]$	141
$[NiX(2-MeC_6H_4)(PCy_3)_2]$	H1			$[\mathrm{Ni}(\mathbf{H1})(2\mathrm{-MeC}_6\mathrm{H}_4)(\mathrm{PCy}_3)]$	142
$[NiX(4-MeC_6H_4)(PPh_3)_2]$	H1			$[\mathrm{Ni}(\mathbf{H1})(4\mathrm{-MeC}_6\mathrm{H}_4)(\mathrm{PPh}_3)]$	143
$[NiX(Ph)(PPh_3)_2]$	H1			$[\mathrm{Ni}(\mathbf{H1})(\mathrm{Ph})(\mathrm{PPh}_3)]$	144
$[NiX(2,4,6-Me_3C_6H_4)(PPh_3)_2]$	H1			$[\mathrm{Ni}(\mathbf{H1})(2\mathrm{-MeC}_6\mathrm{H}_4)(\mathrm{PPh}_3)]$	145
$[NiX(2-MeC_6H_4)(PPh_3)_2]$	H2	X = C(OMe)	Ш	$[Ni(\mathbf{H2})(2\text{-MeC}_6H_4)(PPh_3)]$	146 [72]
$[NiX(2-MeC_6H_4)(PPh_3)_2]$	H3	$X = C(NO_2)$		$[\mathrm{Ni}(\mathbf{H3})(2\mathrm{-MeC}_6\mathrm{H}_4)(\mathrm{PPh}_3)]$	147
$[NiX(2-MeC_6H_4)(PPh_3)_2]$	H4	X = N		$[\mathrm{Ni}(\mathbf{H4})(2\mathrm{-MeC}_6\mathrm{H}_4)(\mathrm{PPh}_3)]$	148
		HÓ		PPh ₃	
		\bigvee_{0}		0 - Ni, C, H, Me-2	
		N		10:14:00 X	
		R-N		R-N	
$[NiBr(2-MeC_6H_4)(PPh_3)_2]$	H5	R = Me	Ш	$[Ni(H5)(2-MeC_6H_4)(PPh_3)]$	149 [70]
	9H	R = Bn		$[Ni(\mathbf{H6})(2\text{-MeC}_{6}H_{4})(PPh_{3})]$	150
		НО		PPh ₃	
				Ni CoH Me-2	
		Z Z		Z = 1	
		N N		N Z	

continued)

-	_
Continued	Communica
_	_ -
C	i
2	2
2	2
É	7

Table 2.1 (confined)					
Metal precursor		Ligand	Meth	Method Catalyst	No. References
$[NiBr(2-MeC_6H_4)(PPh_3)_2]$	H7		Π	$[\mathrm{Ni}(\mathbf{H7})(2\text{-}\mathrm{MeC}_6\mathrm{H}_4)(\mathrm{PPh}_3)]$	151 [70]
		R ³ R ³		R3 R3	
		R ² N		RZ X	
		H_N_O		N O L	
		R1		R1	
$[Ni(\eta^1-CH_2Ph)Cl(PMe_3)_2]$	Π	$R^1 = R^3 = {}^{i}Pr; R^2 = Me$	H	$[\mathrm{Ni}(\mathbf{II})(\eta^1\mathrm{-CH}_2\mathrm{Ph})(\mathrm{PMe}_3)]$	152 [73]
$[Ni(\eta^1-CH_2Ph)Cl(PMe_3)_2]$	12	$R^1 = R^3 = 2^{-i}Pr,6-Me; R^2 = Me$	H	$[\mathrm{Ni}(\mathbf{I2})(\eta^1\mathrm{-CH}_2\mathrm{Ph})(\mathrm{PMe}_3)]$	153 [74]
	13	$R^1 = R^3 = Et; R^2 = Me$		$[Ni(\mathbf{I3})(\eta^1-CH_2Ph)(PMe_3)]$	154
$[Ni(\eta^1-CH_2Ph)CI(py)_2]$	11	$R^1 = R^3 = 'Pr; R^2 = Me$	Ш	$[\mathrm{Ni}(\mathbf{II})(\eta^1\mathrm{-CH}_2\mathrm{Ph})(\mathrm{py})]$	155 [96]
$[Ni(\eta^1-CH_2Ph)Cl(2,6-lu))_2]$	Π			$[\mathrm{Ni}(\mathbf{II})(\eta^{1}\mathrm{-CH}_{2}\mathrm{Ph})(2,6\mathrm{-lu})]$	156
$[Ni(\eta^1-C=OPh)Cl(py)_2]$	11			$[Ni(\mathbf{II})(\eta^1-C=OPh)(py)]$	157
$[Ni(\eta^1-CH_2Ph)Cl(PMe_3)_2]$	14	$R^1 = R^3 = 'Pr; R^2 = Et$	H	$[\mathrm{Ni}(\mathbf{I4})(\eta^1\mathrm{-CH}_2\mathrm{Ph})(\mathrm{PMe}_3)]$	158 [75]
	15	$R^1 = R^3 = {}^{i}Pr; R^2 = CH_2{}^{i}Pr$		$[Ni(\mathbf{I5})(\eta^1\text{-}CH_2\text{Ph})(PMe_3)]$	159
	9I	$R^1 = R^2 = R^3 = {}^tPr$		$[\mathrm{Ni}(\mathbf{I6})(\eta^{1}\mathrm{-CH}_{2}\mathrm{Ph})(\mathrm{PMe}_{3})]$	160
	17	$R^1 = R^3 = 'Pr; R^2 = Ph$		$[\mathrm{Ni}(\mathbf{I7})(\eta^1\mathrm{-CH}_2\mathrm{Ph})(\mathrm{PMe}_3)]$	161
	8I	$R^1 = R^3 = {}^iPr; R^2 = 4 \cdot CF_3C_6H_4$		$[\mathrm{Ni}(18)(\eta^1\text{-}\mathrm{CH}_2\mathrm{Ph})(\mathrm{PMe}_3)]$	162
					(continued)

ned)
(contir
2.1
Table

Table 2.1 (confined)				
Metal precursor	Ligand	Metho	Method Catalyst	No. References
	19 $R^1 = R^3 = {}^{1}Pr; R^2 = 4 - MeOC_6H_4$		$[Ni(\mathbf{I9})(\eta^1\text{-}CH_2\text{Ph})(\text{PMe}_3)]$	163
	, R		R.3.	
	Ph N		Ph N Br	
	R.2.'. -O.		R ^{2.} N . O Br	
$[Ni(dme)Br_2]$	L1 $R^1 = R^2 = Me; R^3 = R^4 = H$	IIa	$ extsf{R}^1$ $ extsf{[Ni(L1)Br}_2 extsf{]}$	164 [76]
	L2 $R^1 = R^2 = R^3 = R^4 = Me$		$[\mathrm{Ni}(\mathbf{L2})\mathrm{Br}_2]$	165
	L3 $R^1 = R^2 = Me; R^3 = R^4 = {}^{t}Pr$		$[\mathrm{Ni}(\mathbf{L3})\mathrm{Br}_2]$	166
	\mathbb{R}^{1}		$[\mathrm{Ni}(\mathbf{L4})\mathrm{Br}_2]$	167
	- 75		چر–	
	4. N.		R. ⁴	
	, č o		, , , , , , , , , , , , , , , , , , ,	
	— <u>독</u>			
			Z Z	
) L	
$[NiCl(Ph)(PPh_3)_2]$	M1 $R^1 = R^4 = R^5 = H$; $R^2 = R^3 = Me$	Ш	$[\mathrm{Ni}(\mathbf{M1})(\mathrm{Ph})(\mathrm{PPh}_3)]$	168 [79]
	\mathbf{R}^{1}		$[Ni(\mathbf{M2})(Ph)(PPh_3)]$	169 [78]
	M3 $R^1 = R^4 = R^5 = H$; $R^2 = R^3 = 'Bu$		$[Ni(\mathbf{M3})(Ph)(PPh_3)]$	
	M4 $R^1 = R^4 = R^5 = H$; $R^2 = Me$; $R^3 = 'Bu$	3u	$[\mathrm{Ni}(\mathbf{M4})(\mathrm{Ph})(\mathrm{PPh}_3)]$	171
				(continued)

$\overline{}$
7
a)
=
$\overline{}$
_
Ξ.
=
0
0
、
$\overline{}$
_
∹
7
2.1
e
e
e
e
ple
aple
ple
aple
aple
aple

(20000000000000000000000000000000000000			
Metal precursor	Ligand	Method Catalyst	No. References
	M5 $R^1 = R^4 = R^5 = H$; $R^2 = R^3 = Ph$	$[\mathrm{Ni}(\mathbf{M5})(\mathrm{Ph})(\mathrm{PPh}_3)]$	172
	M6 $R^1 = R^4 = R^5 = H$; $R^2 = R^3 = CI$	$[Ni(\mathbf{M6})(Ph)(PPh_3)]$	173
	M7 $R^1 = R^4 = R^5 = H$; $R^2 = R^3 = Br$	$[Ni(\mathbf{M7})(Ph)(PPh_3)]$	174
	M8 $R^1 = H$; $R^2 = R^3 = R^4 = R^5 = F$	$[Ni(\mathbf{M8})(Ph)(PPh_3)]$	175
	M9 $R^1 = R^2 = R^3 = R^5 = H$; $R^4 = CF_3$	$[Ni(M9)(Ph)(PPh_3)]$	176
	M10 $R^1 = R^3 = R^4 = R^5 = H$; $R^2 = Me$	$[Ni(\mathbf{M10})(Ph)(PPh_3)]$	177
	M11 $R^1 = R^4 = R^5 = H$; $R^2 = Me$; $R^3 = CF_3$	$[Ni(\mathbf{M11})(Ph)(PPh_3)]$	178
	M12 $R^1 = R^4 = R^5 = H$; $R^2 = R^3 = F$	$[\mathrm{Ni}(\mathbf{M12})(\mathrm{Ph})(\mathrm{PPh}_3)]$	179
	M13 $R^1 = Ph; R^2 = R^3 = {}^{i}Pr; R^4 = R^5 = H$	$[Ni(\mathbf{M13})(Ph)(PPh_3)]$	180
	M14 $R^1 = 1$ -naph; $R^2 = R^3 = ^i$ Pr;	$[\mathrm{Ni}(\mathbf{M14})(\mathrm{Ph})(\mathrm{PPh_3})]$	181
$[Ni(M2)Cl(PPh_3)]$	R' = R' = H M2 $R^1 = R^4 = R^5 = H$; $R^2 = R^3 = ^i Pr$	h $[Ni(M2)(\eta^1-C_6H_{13})(PPh_3)]$	182 [107]
	— ± ±	z ξ.	
		N PPh ₃	
$[NiCl(Ph)(PPh_3)_2]$	$\begin{array}{cccc} \mathbf{N1} & \mathbf{R} & \mathbf{Me} \\ \mathbf{N2} & \mathbf{R} & \mathbf{Pr} \\ \mathbf{R} & \mathbf{Pr} \\ \mathbf{R} & \mathbf{R}^2 \end{array}$	III $[Ni(N1)(PPh)(PPh_3)]$ $[Ni(N2)(Ph)(PPh_3)]$ $\stackrel{R^2}{\underset{R^{1}}{\bigcap}}$	183 [80] 184

_
_
continued
2.1
α
CA.
C 1
نه
e
ple
e
ple

Table 2.1 (continued)					
Metal precursor		Ligand	Method	Method Catalyst	No. References
$[NiCl(Ph)(PPh_3)_2]$	01	$R^1 = {}^i Pr; R^2 = H$	III	$[Ni(\mathbf{O1})(Ph)(PPh_3)]$	185 [81]
$[NiCl(Ph)(PPh_3)_2]$	05	$R^1 = Me; R^2 = H$	Ш	$[Ni(\mathbf{O2})(Ph)(PPh_3)]$	186 [82]
	03	$R^1 = R^2 = Me$		$[Ni(\mathbf{O3})(Ph)(PPh_3)]$	187
	9	$R^1 = Et; R^2 = H$		$[Ni(\mathbf{O4})(Ph)(PPh_3)]$	188
		α-		୯ -	
		HN H		Ph ₃ P ₂ O ₂ P ₂ Ph	
		O NH		N N N N N N N N N N N N N N N N N N N	
				–∝	
$[NiCl(Ph)(PPh_3)_2]$	Ы	$R = 2.6^{-i} Pr_2 C_6 H_3$	Ш	$[\mathrm{Ni}_2(\mathbf{P1})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	189 [83]
	P2	$R = 2.6 \cdot Me2C6H3$		$[Ni_2(P2)(Ph)_2(PPh_3)_2]$	190
	P3	R = 1-naph		$[Ni_2(\textbf{P3})(Ph)_2(PPh_3)_2]$	191
	P 4	R = Ph		$[Ni_2(P4)(Ph)_2(PPh_3)_2]$	192
	P5	R = Cy		$[\mathrm{Ni}_2(\mathbf{P5})(\mathrm{Ph})_2(\mathrm{PPh}_3)_2]$	193
		$R \sim NH_2$		T:	
				R ∕ N C ₆ H₄Me-2	
		НО		O PPh ₃	
$[NiBr(2-MeC_6H_4)(PPh_3)_2]$	01	R = H	H	$[Ni(\mathbf{Q1})(2-MeC_6H_4)(PPh_3)]$	194 [84]
	Q 2	R = 'Bu		$[Ni(\mathbf{Q2})(2\text{-MeC}_6H_4)(PPh_3)]$	195
	63	R = Ph		$[Ni(\mathbf{Q3})(2\text{-MeC}_6H_4)(PPh_3)]$	196
	\$	$R = CH_2(3-Indoly1)$		$[Ni(\mathbf{Q4})(2\text{-MeC}_6H_4)(PPh_3)]$	197

ı	_		
	7	ì	
	∺	3	
	2	5	
	Ξ	2	
	۲	Ξ	
•	Ξ	3	
	c	=	
	Ö		
	č	5	
•	_	ン	
1	_		
	_	۰	
	_		
		i	
		1	
	1	1	
	7 0 0	1	
	0 0 0	1	
	0	1	

Table 2.1 (continued)				
Metal precursor	Ligand	Metho	Method Catalyst	No. References
6-membered chelated complexes with N-P ligands	ith N–P ligands			
•	°C (ΣΥ.	
	R ²¹ ·		R ²¹ ·	
	$=$ N \mathbb{R}^2		$=$ N $_{\star}$ R 2	
			Pd TsO-	
	R1 R1		K1 K1	
$Pd(OAc)_2$ F	R1 $R^1 = Ph; R^2 = R^3 = H$		[Pd(R1)H(TsO)] (in situ)	198 [89]
	R2 $R^1 = Ph; R^2 = Me; R^3 = H$		[Pd(R2)H(TsO)] (in situ)	199
±	R3 $R^1 = Ph; R^2 = {}^iPr; R^3 = H$		[Pd(R3)H(TsO)] (in situ)	200
ř	R4 $R^1 = 4$ -MeOC ₆ H ₄ ; $R^2 = {}^iPr$; $R^3 = H$		$[Pd(\mathbf{R4})H(TsO)]$ (in situ)	201
_	R5 $R^1 = 3$ -MeOC ₆ H ₄ ; $R^2 = ^i$ Pr; $R^3 = H$		[Pd(R5)H(TsO)] (in situ)	202
–	R6 $R^1 = 2$ -MeOC ₆ H ₄ ; $R^2 = H$; $R^3 = CI$		[Pd(R6)H(TsO)] (in situ)	203
–	R7 $R^1 = 2$ -MeOC ₆ H ₄ ; $R^2 = H$; $R^3 = H$		[Pd(R7)H(TsO)] (in situ)	204
<u> </u>	R8 $R^1 = 2$ -MeOC ₆ H ₄ ; $R^2 = H$; $R^3 = OMe$		[Pd(R8)H(TsO)] (in situ)	205
<u> </u>	R9 $R^1 = 2$ -MeOC ₆ H ₄ ; $R^2 = {}^i$ Pr; $R^3 = H$		[Pd(R9)H(TsO)] (in situ)	206
[Pd(cod)MeCl] F	R9 $R^1 = 2$ -MeOC ₆ H ₄ ; $R^2 = {}^{i}$ Pr; $R^3 = H$	III	[Pd(R9)MeCI]	207 [89]
	œ′ 0°		۵′ ۵	
	HN		N PMe ₃	
			Z Z	
	hg hd		Ph Ph	
				(bennitaco)

_
7
Ų
e)
\sim
.=
-
=
\vdash
ನ
~
$^{\circ}$
$\overline{}$
2.1
e 2.
le 2.
e 2.
le 2.
able 2.
rble 2.

Table 2.1 (continued)			
Metal precursor	Ligand	Method Catalyst	No. References
$[Ni(\eta^1-CH_2Ph)CI(PMe_3)_2]$	S1 R = Ph	III $[Ni(S1)(\eta^1-CH_2Ph)(PMe_3)]$	
	S2 R = 'Bu	$[Ni(S2)(\eta^{1}\text{-}CH_{2}Ph)(PMe_{3})]$	
	S3 R = H	$[\mathrm{Ni}(\mathbf{S3})(\eta^{1}\text{-}\mathrm{CH}_{2}\mathrm{Ph})(\mathrm{PMe}_{3})]$	(PMe_3) 210
	S4 R = Pr	$[Ni(\mathbf{S4})(\eta^1\text{-}CH_2Ph)(PMe_3)]$	
	$SS R = {}^{i}Pr$	$[Ni(S5)(\eta^1-CH_2Ph)(PMe_3)]$	
5-membered chelated complexes with N-P ligands	xes with N-P ligands		
	Ar, Ar	Ar, Ar	
		MX ₂	
	z	Z	
	J	T	
$[Ni(dme)Br_2]$	T1 Ar = $2,4,6$ -Me ₃ C ₆ H ₂	$N_{\rm I} = N_{\rm I} (T1) Br_2$	213 [91]
	T2 Ar = 2-MeC ₆ H ₄	$[Ni(T2)Br_2]$	214
[Pd(cod)MeCl]	T1 Ar = $2,4,6$ -Me ₃ C ₆ H ₂	IIb [Pd(T1)MeCl]	215 [91]
	$T2 Ar = 2 \cdot MeC_6H_4$	[Pd(T2)MeCI]	216
), , , d), , d d j	
	i	ā a a a a a a a a a a a a a a a a a a a	
	t Bu t Bu	ng, ng,	

(continued)

$\overline{}$
7
<u>e</u>
Ξ
.≡
Ħ
S
\ddot{a}
$\overline{}$
_
` •
તં
e 2.
તં
le 2.
ble 2.
able 2.

(1	
Metal precursor	Ligand		Method	Method Catalyst	No. References
$[Ni(dme)Br_2]$	UI		Ha	$[\mathrm{Ni}(\mathrm{U1})\mathrm{Br}_2]$	217 [34]
	'pr',			, br'',	
	HN			I I	
	م ال			ž Ž	
[Ni(dme)Br ₂]	$\begin{array}{ccc} R & R & R & R & R & R & R & R & R & R $		112	Ni(II2)Br2]	218 [34]
[7()]	$\mathbf{U}3$ $\mathbf{R} = \mathbf{P}\mathbf{h}$			[Ni(U3)Br ₂]	219
[Pd(cod)Cl ₂]			IIa	$[Pd(U1)Cl_2]$	220 [34]
	$U2 R = ^{\prime}Bu$			$[Pd(U2)Cl_2]$	221
	$\mathbf{U3} \mathbf{R} = \mathbf{Ph}$			$[\mathrm{Pd}(\mathbf{U3})\mathrm{Cl}_2]$	222
				Z ~	
		-03		SA-Q.	
	R ² R	Ľ		X X K2	
$[Ni(dme)Br_2]$	$V1 R^1 = Ph; R^2 = R^3$		IIa	$[\mathrm{Ni}(\mathbf{V1})\mathrm{Br}_2]$	223 [35]
	$V2 R^1 = R^2 = R^3 = Ph$	h'		$[\mathrm{Ni}(\mathbf{V2})\mathrm{Br}_2]$	224
	$V3 R^1 = H; R^2 = Me;$	= H; R^2 = Me; R^3 = 2,4,5-Me ₃ C ₆ H ₂		$[\mathrm{Ni}(\mathbf{V3})\mathrm{Br}_2]$	225
	\mathbb{R}^{1}	= Ph; R^2 = Me; R^3 = 2,4,5-Me ₃ C ₆ H ₂		$[\mathrm{Ni}(\mathbf{V4})\mathrm{Br_2}]$	226
	$V5 R^1 = Ph; R^2 = R^3 = 2 \cdot MeC_6H_4$	$= 2\text{-MeC}_6\text{H}_4$		$[\mathrm{Ni}(\mathbf{V5})\mathrm{Br}_2]$	227
[Pd(cod)MeCl]	V1 $R^1 = Ph; R^2 = R^3$	$R^3 = Me$	IIb	[Pd(V1)MeC1]	228 [35]
[Pd(cod)MeCl]	$V2 R^1 = R^2 = R^3 = Ph$	'h		[Pd(V2)MeCI]	229

$\overline{}$
g
Е.
ij
ટ
_
તં
ē
aþ
Ε

Table 2.1 (continued)				
Metal precursor	Ligand	Metho	Method Catalyst	No. References
[Pd(cod)MeCl]	$V3$ $R^1 = H$; $R^2 = Me$; $R^3 = 2,4,5$ -Me ₃ C ₆ H ₂		[Pd(V3)MeCI]	230
[Pd(cod)MeCl]	V4 $R^1 = Ph; R^2 = Me; R^3 = 2,4,5-Me_3C_6H_2$. 2	[Pd(V4)MeCI]	231
	Me		Me	
	A N A		Ar N - NA MacN - N - N - N - N - N - N - N - N - N -	
			B(CeF5)4	
[Pd(cod)MeCl]	W1 Ar = 2.6^{-1} Pr ₂ C ₆ H ₃	IIP	$[Pd(W1)Me(MeCN)][B(C_6F_5)_4]$	232
	W2 Ar = $2,4.6 \cdot \text{Me}_3 \text{C}_6 \text{H}_2$		$[Pd(W2)Me(MeCN)][B(C_6F_5)_4]$	233
6-membered chelated c	6-membered chelated complexes with N-S ligands			
	N-R		N-R	
	T'Z		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	en Z		0, <u></u> Z	
			P.Br	
$[Ni(dme)Br_2]$	X1 R = 'Bu	IIa	$[Ni(X1)Br_2]$	234 [93]
	$X2 R = 2.6^{-1} Pr_2 C_6 H_3$		$[Ni(X2)Br_2]$	235

continued)

_	
\tilde{a}	
Ĭ	
nnec	
conti	
0	
ō	
$\overline{}$	
_	
∼i	
•	
<u>و</u>	
g	
٠,	

Metal precursor	Ligand	Method Catalyst	No. References
5-membered chelated complexes wt	olexes wth N–S ligands		
	rd, Ner	Pr N	
	'Pr 'Pr	Pr Apr	
[Pd(cod)MeCl]	Y1	IIb [Pd(Y1)MeCl]	236 [92]

Abbreviations 9-phen 9-phenantrenyl; 9-anth 9-anthryl; m-terp m-terphenyl; tmeda tetramethyletylendiamine; acac acetylacetonate; dme dimethoxyethane; cod cyclooctadiene; 1-naph 1-naphthyl; tppts tri(m-sulfonylphenyl)phosphine; tppds di(m-sulfonylphenyl)phenylphosphine; H2N-PEG-OMe, amino-terminated poly(ethylene glycol)monomethoxy ether; pta 1,3,5-triaza-7-phosphaadamantane; hmta hexamethylenetetramine; dmso dimethylsolfoxide; 2,6-lu 2,6-lutidine

^aUnspecified mechanism

^bMultiple ligand exchange

^cIn situ alkylation with MeLi

^dCod displacement followed by oxidative addition ^eReaction with NaHB(OMe),

From catalytic process involving: (i) E insertion in Ni-Me; (ii) β -H elimination with propylene releasing and Ni-H formation; (iii) insertion of E into Ni-H

^gLigand exchange between py and PPh₃

^hAlkylation with *n*-hexyl magnesium bromide

¹In situ generation of catalyst by addition of TsOH probably involving oxidative addition

^jFollowed by reaction with NaB (C₆F₅)₄

The novelty and the interest in these Ni and Pd complexes with mixed N–O, N–P, and N–S chelating ligands resides in that most bear anionic ligands and thus catalysts are neutral. They include primarily alkyl and aryl nickel complexes with salicylaldimine, anilinotropone, enolatoimine derivatives, and others developed afterwards. Besides the hydrocarbyl ligands, which effectively trigger the polymerization, they are also characterized by the presence of bulky groups on the ancillary ligand, and a neutral monodentate ligand such as PR₃ or more labile ligands, such as MeCN, pyridine, lutidine, etc. Their activation requires the removal of the neutral ligand (L) to form the coordination vacancy for the incoming olefin. Depending on the relative binding strength of L to the metal center the activation can require or not a scavenger, such as [Ni(cod)₂] or B(C₆F₅). The strength of the interaction is connected with structural and electronic features of the complex as well as with steric and electronic properties of L.

Relating to Ni-salicylaldimine (Fig. 2.21) the need to use a scavenger to extract L can be avoided by selective introduction of bulky groups in *ortho*-position (R¹) to O-donor, by introducing EWGs in *para*-position (R²) to O-donor, and by using more labile L such as py or MeCN. All these modifications on original catalyst skeleton promote activation by simple thermal dissociation by decreasing the strength of phosphine-nickel bond.

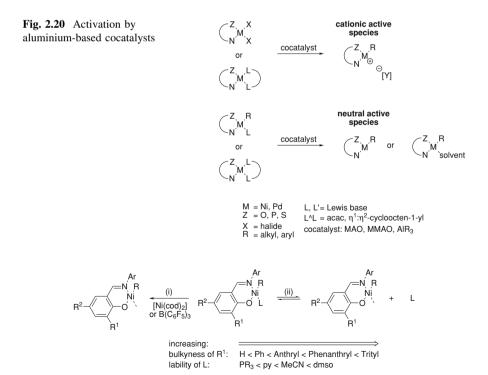


Fig. 2.21 Examples of the effect of ligands on activation of salicylaldiminato Ni complexes

Fig. 2.22 Examples of remote activation generating zwitterionic catalysts

Interestingly, what influences activation has also a strong impact on the whole catalytic process. Indeed, the decreasing energy in Ni–L bond is effective also in intermediates involved in propagation, such as metal-growing chain and hydrido species, demonstrated to be resting states. Moreover, the presence of a bulky group in R^1 position prevents the formation of bischelate complexes $[Ni(\kappa^2-N,O)_2]$, recognized as deactivation route for these systems.

Differently, anilinotropone- and anilinoperinaphtenone-based systems with the strong σ -donor PPh₃ and a scaffold without EWGs or particularly bulky substituents act as single component catalysts. The easy removal of the phosphine donor can be explained in terms of trans-influence of amido ligand. Nevertheless, *ortho*-aryl effect has an influence on productivity, catalyst lifetime, and polymer properties also in these systems.

Similarly, the family of complexes with enolatoimine ligands behave as single component catalysts thanks to the highly negative nitrogen, which enhances the rate of dissociation of phosphine or pyridine. As a general rule, the substitution of phosphine with more labile ligands, such as pyridine or lutidine ligands prevents the use of activators. This is true for a variety of catalysts including diazene- and α -iminocarboxamide-based systems.

A novel activation concept, sometimes referred as remote activation, was reported in the frame of zwitterionic catalysts. This type of activation places the Lewis acid away from the trajectory of monomer insertion and eliminates the complexities associated with the use of MAO derivatives and the equilibria of complexes where anion decoordination or displacement required for monomer insertion. Essentially, remote activation requires a ligand with an available basic functionality for the Lewis acid attachment, often a carbonyl group, which acts as an electronically delocalized canal towards the metal center. Generation of zwitterionic species is often accomplished by reorganization of the coordination sphere surrounding the metal. Examples of this activation are reported in Fig. 2.22 for iminobenzoato- and ketoimino-based ligands containing catalysts 108 and 128.

2.4.2 Ethylene Polymerization

The development of electron-rich catalyst systems compatible with polar functionality would satisfy the desire to include polar functionalities into linear

(Fig. 2.23) polyolefins with precise control over polymer characteristics such as mechanical toughness, rheology, and surface functionalization properties, as well as avoid the need for rigorous drying of monomers and polymerization solvents. Such interest turned the attention towards the cationic (N–N) group 10 systems pioneered by Brookhart and to cationic and neutrally charged (N–Z) group 10 systems reviewed in this chapter. The need to reach a rational design of catalysts which allows to control activity, molar masses, and branching, in addition to tolerance to functional groups led to much research studies on α -olefin polymerization pioneered by Grubbs [38] and Johnson [85]. New families of complexes were introduced, the main results in ethylene polymerization are reviewed following the ligand organization in Fig. 2.1. Selected polymerization data of the main (N–Z)Ni catalysts are reported in Table 2.2.

Independently Grubbs at Caltech [38] and Johnson at Dupont [85] rationalized to replace the P–O chelate of the neutral SHOP system [24] with a ligand based on the harder nitrogen and a scaffold containing increased steric demand to have polymers with high molecular weight; both selected salicylaldimine complexes. The DuPont group reported use of allyl complexes, while the Caltech group used the phosphine complexes. Grubbs reported that neutral Ni(II) salicylaldiminato complexes are highly active catalysts for the polymerization of ethylene to high molecular weight polymers under moderate conditions [38]. The introduction of bulkier substituents on the imine nitrogen and the phenolic ring blocks the axial faces of the metal center, retarding the rate of associative displacement (Fig. 2.23). Moreover, bulky groups might decrease the rate of catalyst deactivation, which was shown to occur by ligand disproportionation and dimerization as in the analogous SHOP system.

The polymerization of ethylene by complexes 1-7 were performed in toluene by injection of a toluene solution of the appropriate phosphine scavenger ($[Ni(cod)_2]$ or $B(C_6F_5)_3$) to the catalyst solution. Attempts to polymerize ethylene without the phosphine scavenger did not yield polyethylene [38]. However, when the catalyst 1 was combined with a phosphine scavenger, after a 5-8 min induction period, there was a rapid ethylene uptake. Increasing the ethylene pressure yields polyethylene with higher M_w . Bulky substituents in the *ortho*-position to O donor suppress the chain migratory process and also the chain termination reactions. In fact, catalysts 2-5 produced higher molecular weight than 1 and a slight decrease of total number of branches. Moreover, no induction period was observed. Best results were obtained with an electron deficient system (7), bearing the NO_2 substituent in p-position to O donor (R^2) of the salicylaldiminato, while catalyst

Fig. 2.23 Examples of the effect of substituent variation in salicylaldiminato catalysts

(continued)

Table 2.2 Selected ethylene polymerization data of the main (N-Z) Ni catalysts

6-membered chel	ated com	olexes	6-membered chelated complexes with N-O ligands											
	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^5	Г	Cat. no.	pE (bar)	(°C)	${ m TOF}^a$	$M_{\rm w}$ (kg mol ⁻¹)	$M_{\rm w}^{\prime}$	Br/1000 C	References
R. ⁴ , R. ⁵	Н	Н	'Pr	Н	Н	PPh ₃	$1/Ni(cod)_2$	14.18	50	48	10.0	1.4	20	[38]
	, 'Bu	Η	'Pr	Н	Н	PPh_3	$2/Ni(cod)_2$	68.9	20	71	11.4	1.8	55	[38]
	Ph	Η	$^{\prime}\mathrm{Pr}$	Η	Н	PPh_3	3	68.9	50	100	207.0	2.2	10	[39]
N N N N N N N N N N N N N N N N N N N	9-phen	Η	$^{\prime}\mathrm{Pr}$	Н	Н	PPh_3	4	68.9	50	300	207.0	2.4	~	[39]
$R^2 \left(\begin{array}{c} \\ \\ \end{array} \right) = 0$ R	9-anth	Η	$^{\prime}\mathrm{Pr}$	Н	Н	PPh_3	r.	68.9	50	940	236.0	2.2	5	[39]
<u>_</u>	Ph	Η	Pr	Η	Н	PPh_3	$3/Ni(cod)_2$	14.18	50	198	242.0	2.1	5	[38]
	Н	NO_2	.~	Н	Н	PPh_3	$7/Ni(cod)_2$	14.18	50	380	360.0	12.4	22	[38]
	9-anth	Н	'Pr	Н	Н	MeCN	8	17.23	50	6,400	120.0	3.0	20	[39]
	m-terp	Н	Pr	Н	Н	MeCN	10	68.9	50	096	532.0	2.1	7	[39]
	Ι	П	Pr	Η	Н	Py	12	40	50	210	30.0	2.5	5	[44]
	Ι	Ι	$3.5-(CF_3)_2C_6H_3$	Н	Н	Py	21	40	50	1,170	6.96	5.1	10	[44]
	I	Ι	$3-NO_2C_6H_4$	Н	Н	Py	22	40	50	150	28.6	2.6	26	[44]
	I	Ι	Ph	Η	Н	Py	23	40	50	450		2.3	52	[44]
	I	Ι	3.5 -Me $_2$ C $_6$ H $_3$	Η	Н	Py	24	40	50	1,200	2.3	2.1	92	[44]
	I	П	$3.5-(MeO)_2C_6H_3$	Н	Н	Py	25	40	50	1,250	4.7	2.5	62	[44]
	I	Ι	3.5^{-1} Bu $_2$ C $_6$ H $_3$	Н	Н	Py	33	40	50	1,411	29.7	2.7	38	[48]
	н	ı	$3,5^{-1}$ Bu ₂ -4- OHC ₆ H ₂	Н	н	Py	34	40	50	1,477	28.0	2.0	32	[48]
	ı	Ι	$3.5\text{-Me}_2\text{-}4$ - MeOC ₆ H ₂	Н	H	Py	35	40	50	671	1.7	2.1	81	[48]
	9-anth	Н	$3.5-(CF_3)_2C_6H_3$	Н	Н	Py	36	40	50	1,195	129.0	3.0	13	[48]
	9-anth	Η	$3,5$ - t Bu $_{2}$ C $_{6}$ H $_{3}$	Н	Н	Py	37	40	20	1,860	30.8	2.8	31	[48]

 Table 2.2 continued

 6-membered chelated complexes with N=O ligands

	\mathbb{R}^{1}	\mathbb{R}^2	\mathbb{R}^3	\mathbf{R}^4	\mathbb{R}^{5}	Г	\mathbb{R}^4 \mathbb{R}^5 L Cat.	pE	Τ	${ m TOF}^{ m a}$	TOF^a $M_w(kg mol^{-1})$ $M_w/$	$M_{ m w}/$	Br/1000	References
							no.	(bar)	(°C)			$M_{ m n}$	C	
RR	9-anth	Н	$3,5^{-1}$ Bu ₂ - 4 -OHC ₆ H ₂	Н	н н Ру	Py	38	40	50	1,242 44.8	44.8	2.8	30	[48]
N=N Me R	9-anth	Н	3.5-Me ₂ C ₆ H ₃	Η	Η	Py	39	40	50	1,374 12.5	12.5	3.9	92	[48]
Z, o	9-anth	Н	3,5-Me ₂ -4- MeOC ₆ H ₂	Н	Н	Py	4	40	50	707	2.4	2.7	88	[48]
	9-anth	Н	$3.5-(MeO)_2C_6H_3$	Η	Η	Py	41	40	50	538	17.2	4.3	80	[48]
	9-anth	Н	$3,4,5-(MeO)_3C_6H_2$	Η	Н	Py	42	40	50	641	53.0	5.3	78	[48]
	Н	NO_2	$3,5-(CF_3)_2C_6H_3$	Н	Н	Py	43	40	50	750	20.4	2.4	15	[48]
	tBu	Н	$3,5-(CF_3)_2C_6H_3$	Η	Η	Py	4	40	50	100	21.1	2.2	14	[48]

ligands
0
$\stackrel{>}{\sim}$
with
complexes
\boldsymbol{q}
ate
chel
7
ıberec
be
2
пе
5-1
\sim

	\mathbb{R}^1	\mathbb{R}^2	$\mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^4 \mathbb{L}$	\mathbb{R}^4		Cat. no. pE (bar) T ($^{\circ}$ C) TOF ^a $M_{\rm w}$	pE (bar)	(°C)	TOF^a	$M_{\rm w}$	$M_{ m w}/M_{ m n}$	Br/1000	M _w /M _n Br/1000 References
										(kg mol^{-1})		C	
	Н	Н	Н Н	Me	1	73/MMAO	5		929	3.0	1.7		[53]
) i i di	Н	Н	Н	Н	1	74/MIMAO	5		836	1.7	1.7	65	[53]
N=V Pr	Ph	Н	Н	Н	ı	76/MMAO 5	5	30	3,084 57.2	57.2	2.8		[53]
R3 N-O Br	Н	Н	MeO	Н	ı	78/MMAO	5		476	2.8	1.2	70	[53]
∑ _™													
α: ^Δ	cyclohexylidene	ı	ı	ı	η^3 -CH ₂ CMeCH ₂ 108	108	3.4	50	1,700	7.3		43	[61]
Ni 113-R	CEt_2	ı	ı	ı	η^3 -CH ₂ Ph	110	5.2		4,100	12.0	2.3	47	[61]

(continued)

_
▽ -
₽.
=
contin
=
≒
\sim
O
N
?
. 1
بە
=
=
್ಷ
٠,

\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	Г	Cat. no.	p E (bar)	(°C)	TOF	$p\mathrm{E}~(\mathrm{bar})~\mathrm{T}~(^{\circ}\mathrm{C})~\mathrm{TOF}~M_{\mathrm{w}}(\mathrm{kg~mol}^{-1})~M_{\mathrm{w}}/M_{\mathrm{n}}~\mathrm{Br}/1,000$	$M_{\rm w}/M_{\rm n}$	Br/1,000	References
								ಕ			C	
$/$ \mathbb{R}^{2} \wedge \mathbb{R}^{2} \mathbb{R}^{2}	Ι	Ι	ı	py	92	40	50	170	381.6	5.3	4	[56]
	П	Ι	ı	py	93	40	50	3,400	3,400 236.8	3.2	4	[56]
$\begin{pmatrix} \begin{pmatrix} \mathbf{r}^{c} & \mathbf{r} \\ \mathbf{r}^{c} & \mathbf{r} \end{pmatrix} & \mathbf{r} \\ \begin{pmatrix} \mathbf{r} \\ \mathbf{r} \end{pmatrix} & \mathbf{r} \end{pmatrix} \begin{pmatrix} \mathbf{C} \mathbf{F}_{3} \\ \mathbf{r} \end{pmatrix} \mathbf{C} \mathbf{G} \mathbf{H}_{3} \\ \mathbf{n} & \mathbf{n} = 1; \ \mathbf{X} = \mathbf{C} \mathbf{H}_{2}; \\ \mathbf{r} \end{pmatrix}$. I	Ι	I	py	94	40	50	480	437.0	4.6	4	[56]
$n = 1; X = CH_2;$ $n = 1; CE_1 \cap CH_2;$	I ;	Н	I	py	95	40	50	5,040 249.0	249.0	3.0	4	[99]
$0.5 - (-0.5)^2 C_6 \Gamma$ $0.5 - (-0.5)^2 C_6 \Gamma$	13 I	Ι		tmeda 96	96	40	50	9,520 920	920	3.3	2	[56]
Ar X = 0	I	I	I	PMe_3 104/	104/	7	25	66	10.3	2.6	80	[09]
O = X	I	I	ı	PPh_3	106/ Ni(cod) ₂	7	25	102	10.1	2.6	93	[09]
۳. <u>- ۱</u>												
=N'L Ar												
6-membered chelated complexes with N-O ligands	with N	-0 li	gands									
R ¹ R ² F	\mathbb{R}^3	${f R}^4$	\mathbb{R}^5	Г	Cat. no.	pE (bar)	T (°C)	TOF^a	$M_{\rm w}$ (kg mol ⁻¹)		$M_{\rm w}/M_{\rm n}$ Br/1000	00 References
							11/		0		,	

(continued) 80 70 50 py

continued	
7.7	
Table	

6-membere	6-membered chelated complexes with N=O ligands	mplexes	with	N–O ligana	rs,									
	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^5	Г	Cat. no.	pE (bar)	T(°C)	${ m TOF}^{ m a}$	T(°C) TOF ^a $M_{\rm w}$ (kg mol ⁻¹) $M_{\rm n}$	$M_{ m w}/M_{ m n}$	Br/1000 C	Br/1000 References C
	CF ₃	$COCF_3$	Н	'Pr	ı	PPh_3	117	13.78	09	14,168		3.7	41	[64]
R4.	CF_3	$COCF_3$		'Pr	1	PPh_3	118	13.78		2,968	27.0	3.3	58	[64]
N N N	$^{^4}$ CF ₃	Н	Me		1	PPh_3	119	13.78	50	968		1	ı	[64]
R. 0 . ≥	Ph	Н	Η	'Pr	1	PPh_3	121/	25	09	345		2.2	25	[65]
<u>ر</u>							$B(C_6F_5)_3$							
	$2\text{-PhC}_6\mathrm{H}_4$	Н	Η	$^{\prime}\mathrm{Pr}$	I	PPh_3	12	25	09	3,420	17.0	1.8	22	[65]
							$\mathrm{B}(\mathrm{C}_6\mathrm{F}_5)_3$							
	2-Naph-	Н	Η	$^{'}\mathrm{Pr}$	1	PPh_3	12	25	09	2,625	9.0	2.0	39	[65]
	C_6H_4						$B(C_6F_5)_3$							
	CF_3	$COCF_3$	Η	'Pr	ı	py	126	40	09	3,864	24.0	3.0	ı	[99]
	CF_3	$COCF_3$	Η	$3.5-(CF_3)_2C_6H_3$	₂ C ₆ H ₃ -	py	127	40	09	289	38.0	2.3	ı	[99]
	CF_3	$COCF_3$	Η	$3.5-(CF_3)_2C_6H_3$	₂ C ₆ H ₃ -	PPh_3	128	40	70	2,280	32.0	2.1	ı	[99]
	CF_3	$COCF_3$	Η	$3,5-(CF_3)_2C_6H_3$	₂ C ₆ H ₃ -	PPh_3	$128/Ni(cod)_2$	40	70/100	4,680	21.0	5.1	ı	[99]
L B B	n = 0	ı	1	ı	I	PPh_3	130	50	63	1,760	8.6	1.9	54	[89]
V-d N-D	n = 1	ı	1	ı	I	PPh_3	131	50	63	1,875	46.8	2.0	26	[89]
*	n = 2	ı	1	ı	I	PPh_3	132	20	63	3,570	46.5	2.1	27	[89]
	$\mathbf{n} = 0$	ı	ı	ı	I	py	133	25	63	1,005	8.2	2.1	77	[89]
	n = 1	I	I	ı	I	py	134	20	63	1,791	56.9	1.9	28	[89]
	n = 2	ı	I	ı	I	py	135	25	63	096	41.6	2.1	47	[89]

(continued)

5-membered ι	helat	5-membered chelated complexes with N-O ligands	vith N	-O ligands									
	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R	Г	Cat. no.	pE (bar) T (°C)	T (°C)	$ m TOF^a$	$M_{\rm w}$ $({\rm kgmol}^{-1})$	$M_{ m w}/M_{ m n}$	$M_{\rm w}/M_{\rm n}$ Br/1000 C	References
<	Pr	Me	${\rm Pr}^{\prime}$	η^1 -CH ₂ Ph	PMe ₃	$152/B(C_6F_5)_3$	68.9	20	350	349.0	2.3	104	[73]
R3 R3	$^{'}\mathrm{Pr}$	Me	$^{'}$ Pr	η^1 -CH ₂ Ph	Py	155	68.9	20	09	63.0	1.8	ı	[96]
χ Σ Σ, <u>Σ</u>	'Pr	Me	${\rm 'Pr}$	η^1 -CH ₂ Ph	2,6-	156	68.9	40	304	143.0	2.2	ı	[96]
N \\ \\					η								
-R	'n	Me	'Pr	η^1 -C=OPh	Py	157	27.57	50	301	160.0	2.0	ı	[96]
_>	'Pr	Et	'Pr	η^1 -CH ₂ Ph	PMe ₃	$158/Ni(cod)_2$	68.9	20	255	1111.8	1.3	ı	[75]
	'n	$\mathrm{CH}_2^i\mathrm{Pr}$	'Pr	η^1 -CH ₂ Ph	PMe ₃	159/Ni(cod) ₂	68.9	20	420	169.4	1.4	I	[75]
	$^{'}$ Pr	$^{\prime}\mathrm{Pr}$	$^{'}$ Pr	η^1 -CH ₂ Ph	PMe ₃	$160/Ni(cod)_2$	68.9	20	534	218.4	1.2	I	[75]
	$^{'}$ Pr	Ph	$^{'}$ Pr	η^1 -CH ₂ Ph	PMe ₃	$161/Ni(cod)_2$	68.9	20	259	122.4	1.2	I	[75]
	'Pr	$4-\mathrm{CF}_3\mathrm{C}_6\mathrm{H}_4$	'Pr	η^1 -CH ₂ Ph	PMe ₃	$162/Ni(cod)_2$	68.9	20	280	124.3	1.1	I	[75]
	'Pr	$4\text{-MeOC}_6\text{H}_4$	'Pr	η^1 -CH ₂ Ph	PMe_3	$163/Ni(cod)_2$	68.9	20	180	109.2	1.2	1	[72]
	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	R ⁵	No.	pE (bar) T (°C)	(°C)	TOF^a	M	M/M.	Br /1000	References
								· ·		$(kg \text{ mol}^{-1})$:		
₹. ₹. \$T.	Н	Me	Me	Н	Н	168	13.78	80	5,424 ^b		1.7	61	[62]
	Н	$^{\prime}\mathrm{Pr}$	'Pr	Н	Н	169	13.78	80	$8,800^{b}$		1.8	61	[62]
$\stackrel{\mathbb{R}^{2^{i}}}{\longrightarrow} \mathbb{R}^{3}$	Η	Me	'Bu	Н	Н	171	13.78	80	$1,014^{b}$	230.0	2.0	73	[62]
ā. z	Н	Ph	Ph	Н	Н	172	13.78	80	$10,038^{b}$		1.8	53	[42]
FPPh3	Н	C	ひ	Н	Н	173	13.78	80	3,924 b	20.0	2.0	53	[42]
<u>.</u>	Н	Br	Br	Н	Н	174	13.78	80	4,152 ^b	41.8	1.9	56	[42]

continued)

$\overline{}$	
ntinued)	
(CO)	
le 2.	
쿋	
Ë	

-	R¹ R²		2					-					000	Dotomono
			¥	¥	¥	S	pe (bar)	(°C)	J.	(kg mol^{-1})	ol^{-1})	$M_{\rm w}/M_{\rm n}$	DI/1000 C	Neterellences
	H F	江		F	H	175	13.78	80	1,152 ^b	4.8		3.0	49	[62]
$R^3 \longrightarrow R^3$ I	W E		_	H F	Н	176	13.78	80	$636^{\rm p}$	112.8		2.4	57	[62]
R ² N R	W E	Me C	CF_3		Н	178	13.78	80	$6,924^{b}$	167.2		1.9	59	[62]
1 ,,o z	Ph h		, L		Н	180	13.78	80	2,338	184.8		2.1	63	[62]
	l-Naph 'P		J.	Н	Н	181	13.78	80	2,461	151.2		2.7	62	[62]
5-membered chelated complexes with N-O ligands	ated complexa	es with	O-N	ligands										
•	R¹	R	\mathbb{R}^2 (Cat. no.	pE	pE (bar)	(°C)	TOF^a	$M_{\rm w}~({\rm kg~mol}^{-1})$		$M_{ m w}/M_{ m n}$	Br/1000 C	References	sa
<u></u>	$^{'}$ Pr	_	. ,	184	13.78	28	08	1,749	144.0		1.6	44	[80]	
- £ £														
? :: :: :: :: :: :: :: :: :: :: :: :: ::														
Α2	$^{'}\mathrm{Pr}$	H		185	1.0]	_	40	1,460	150.9		3.3	22	[81]	
~(Me	H		186	1.01	_	40	363	11.4		2.2	41	[82]	
	Me	H		186	1.0]	_	20	39	105.0		2.2	5	[82]	
_π _π	Me	2	Me 1	187	1.0]	_	20	176	255.0		2.4	6	[82]	
A N N N N N N N N N N N N N N N N N N N	Ēţ	Н		188	1.0]	_	40	394	185.6		2.0	12	[82]	
α-:	$2,6$ - i PrC $_{6}$ H $_{3}$	I ₃ –		681	4		40	104	43.1		3.5	I	[82]	
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	2,6-MeC ₆ H ₃	Н3 –		190	4		80	4	53.5		8.2	ı	[83]	

(continued)

_
_
continued
$\underline{\mathbf{u}}$
=
₽
=
≂
=
\sim
Ο,
$\overline{}$
~
•
7.7
o.
=
_
lable
. '

5-membered chelated complexes with N-O ligands	elated com	ıplexes	with N-O	ligands									
	\mathbb{R}^1 \mathbb{R}	\mathbb{R}^2	Cat. no.	pE(bar)	$T(^{\circ}C)$	${ m TOF}^{ m a}$	$M_{\rm w}({\rm kg}$	$M_{\rm w}({\rm kg~mol}^{-1})$		$M_{\rm w}/M_{\rm n}$ B	$\mathrm{Br/1000~C}$		References
R H C ₆ H ₄ Me-2	- Н	,	194	40	100	1,756	900.0		I	1.	1.8		[84]
6-membered chelated complexes with N-P ligands	selated com	ıplexes	with N-P	ligands									
	R ¹	M.	\mathbb{R}^2	\mathbb{R}^3	Cat. no.	·	$\begin{array}{cc} p \mathbf{E} & \mathbf{T} \\ (\text{bar}) & (^{\circ}\mathbf{C}) \end{array}$	T To (°C)	TOF ^a $M_{\rm w}$ (kg r	$M_{\rm w}$ $M_{\rm w}/$ $({\rm kg~mol^{-1}})$ $M_{\rm n}$	$M_{\rm w}/$ Br/ $M_{\rm n}$ 100	Br/ 1000 C	References
O R PMe ₃	'Pr	1		1	212		6.89	50 5,	300 1	5,300 1,070.0	3.7	09	[06]
A. N. N. N. P. Y.	2,4,6- Me ₃ C _e	- °CH ₂		1	213/MAO	IAO	34.47 30	30 15		9.2	2.1	76	[91]
- EX	Ph	2	Me	Me	223/M	223/ MMAO-3A 27.57 35	27.57		1,000 2.8	∞.	ı	99	[35]
N N N N N N N N N N N N N N N N N N N	Ph	Ь	Ph	Ph	224/M	224/MMAO-3A 27.57		29 66	667 1	140.0	1.9	49	[35]
B Br	Н	2	Me	2,4,5-		225/MMAO-3A 27.57 60	27.57		960 3	37.0	n.d.	57	[35]
	Ph	2	-MeC ₆ H ₄	Me ₃ C ₆ H ₂ 2-MeC ₆ H ₄ 2-MeC ₆ H ₄ 226 /MMAO-3A 27.57 29 1,386 75.0	H ₂ 226/M	IMAO-3A	27.57	29 1,	386 7.	5.0	1.8	29	[35]

 a Kg PE mol cat⁻¹ h⁻¹ b Polymerization time = 10 min

activity diminishes with electron rich catalyst such as **6**. However, complex **7**, with greatest activity, gave a broad molecular weight distribution ($M_{\rm w}/M_{\rm n} > 12.4$) [38]. Salicylaldimines with sufficient bulk in the *ortho*-position to O donor constitute a new family of neutral, single component catalysts [39]. In the absence of cocatalysts, catalysts **3–5** have an indefinite lifetime and are capable of producing TOFs from 0.5×10^3 to 3.0×10^3 kg PE mol Ni⁻¹ h⁻¹ at low temperatures and pressures. Grubbs did not observe a dissociated phosphine in NMR spectroscopic studies of the polymerization reaction suggesting that the resting state of these systems is the phosphine complex. Activity of the catalysts containing phosphine was reduced by additional amounts of phosphine and increased with temperature up to 80 °C.

In order to further enhance the activity of the catalyst, Grubbs et al. [39] prepared complexes containing the acetonitrile ligand, more labile than triphen-ylphosphine. This family of catalysts (8–10) exhibits a 2- to 3-fold increase in catalytic activity as compared with catalysts 3–5. Complexes 13–16, easily prepared from readily available Ni complexes and salts, were synthesized by Chen [41] and activated by near-stoichiometric amounts of almost any metal-alkyl or hydride (BuLi, MAO, BH₃·THF, or MeLi) for the polymerization of ethylene (at 1–75 bars of ethylene). Catalyst productivity was found to depend on ethylene pressure and similar for all three complexes with all the activators except for complex 13 that shows at pE = 75 bar a turnover number (TON = mol PE mol Ni⁻¹) of over 10⁵. The catalyst showed a long lifetime and the polymer produced was highly linear.

Carlini et al. [42] reported the synthesis of monochelate nickel (II) catalysts 17-20, obtained by in situ oxidative addition of salicylaldimine ligands to $[Ni(cod)_2]$, for the polymerization of ethylene. Almost stoichiometric amounts of MAO as cocatalyst are necessary to activate these systems, the productivity being dependent on the Al/Ni molar ratio. Both activity and molecular weight of the resulting PE are influenced by the nature of the substituent on both the phenolate moiety and on the N-aryl ring. In particular, when two nitro groups are present on the 3,5-positions of phenolate moiety (19, 20) activities are higher than 120 (kg PE mol Ni⁻¹ h⁻¹). The PE obtained showed a high linearity and M_w was in the 100-500 kg mol⁻¹ range.

Further studies on the effect of free trimethylaluminum (TMA) content in MAO on performances of catalyst 19 [43] led to conclude that TMA alone is not able to activate the catalyst in the polymerization of ethylene and MAO appears necessary. When a large excess of TMA with respect to the amount of catalyst was used, independently of the relative amount of MAO and hence of the Al_{tot}/Ni molar ratio, a significant detrimental effect on both the activity and PE molecular weight was generally obtained. For TMA/Ni molar ratio = 15 high molecular weight linear PE was obtained with the maximum of activity (1,920 kg PE mol Ni⁻¹ h⁻¹) when a proper amount of MAO was also present ($Al_{tot}/Ni = 150$).

The interest in the synthesis of latexes of high-molecular-weight polyethylene prompted Mecking et al. to design novel Ni(II) salicylaldiminato complexes. Based on the interesting results with 11 they reasoned that an R³ aryl substituent

with strongly electron-withdrawing groups could provide steric bulk and electron withdrawing properties at the same time [44]. A series of salicylaldimine ligands with systematically varied electronic properties were synthesized and employed as precursors for ethylene polymerization (21–25). They are characterized from having a nickel bound methyl group in the trans position to the O donor, a pyridine as labile ligand, and a strong steric shielding of the apical positions of the metal center by the R³ aryl groups of the N-aryl moiety. This series of well-defined catalyst precursors with a systematically varied substitution pattern revealed a surprising and unprecedent effect of remote substituents on polymer branching and molecular weight, despite their spatial remoteness from the catalytically active center.

Performances of complexes **21–25** were compared with those of complex **12**. The activity of all catalysts with 3,5-substituted aryl moieties ($R^3=3,5-(CF_3)_2C_6H_3$ (**21**), 3,5-(Me) $_2C_6H_3$ (**24**) and 3,5-(OMe) $_2C_6H_3$ (**25**) is much higher than that of **12** with the isopropyl substitution pattern. Catalysts which do not bear substituents in the 3,5-position ($R^3=Ph$ (**23**)) or are only monosubstituted ($R^3=3-NO_2C_6H_4$ (**22**)) appeared much less active. Studies of catalyst stability over time revealed that **21**, **24**, **25**, and **12** remain active for hours at 60 °C and 10 bar ethylene pressure, **22** and **23** are deactivated completely within 20 min.

Surprisingly, despite their spatial distance from the metal center the nature of the substituents on the aryl moiety has a dramatic effect on branching and thus crystallinity, and on polymer molecular weight. With $R^3=3.5$ -(CF₃)₂C₆H₃ (21) a semicrystalline (50% crystalline) stiff polymer was obtained. Complexes with $R^3=3$ -NO₂C₆H₄ (22) and $R^3=3.5$ -(CF₃)₂C₆H₃ (21) afford polyethylenes with a considerably higher degree of branching, and correspondingly low crystallinities (18 and < 10%, respectively), and from those with $R^3=3.5$ -(Me)₂C₆H₃ (24) and $R^3=3.5$ -(OMe)₂C₆H₃ (25) an entirely amorphous material is obtained. At the same time, the molecular weight of the polymer decreases by more than an order of magnitude going from 21 to 25. Given the similar intrinsic activities of all catalysts, the lower molecular weight obtained must indeed result from a higher rate of chain transfer rather than from a lower rate of chain growth.

The methyl branching originates from a β -H transfer and a subsequent 2,1-reinsertion of the resulting metal-bound 1-olefin. Whereas the steric requirements of the substituents are similar in 21, 24 and 25 (R³ = 3,5-(CF₃)₂C₀H₃ (21), R³ = 3,5-(Me)₂C₀H₃ (24), and R³ = 3,5-(OMe)₂C₀H₃ (25)) and higher than in 23 (R³ = C₀H₅), their electron withdrawing character increases in the sequence 25 ~ 24 < 23 < 22 ~ 21. Both the molecular weights and the branching of the polymers obtained with these different catalyst precursors vary systematically with the electronic nature of R rather than their steric requirements. This indicates that the effect of these remote substituents is related to their electronic properties.

Catalytic performances of complexes 21, 24, and 25 were compared to those of two other series of (κ^2 -N,O)-salicylaldiminato Ni(II)-methyl pyridine complexes 33–35 and 36–42 [48], the former have two iodine substituents in *ortho*- and *para*-positions of the phenolate moiety, the latter and 32 have an anthryl substituent in *ortho* and triphenyl with different substitutions in 3 and 5 ($R^3 = 3.5$ -(CF_3)₂C₆H₃

(36), $R^3 = 3.5^{-1}Bu_2C_6H_3$ (37), $R^3 = 3.5^{-1}Bu_2-4$ -OHC₆H₂ (38) etc.) [47]. All behave as single component ethylene polymerization catalysts at temperatures above 15 °C, reaching their highest productivities in the range between 40 and 75 °C. The anthryl-substituted complex 37 is the most active precatalyst under these polymerization conditions (1,860 kg PE mol Ni⁻¹ h⁻¹), while all diiodo-substituted complexes 21, 24, 25, and 33–35 perform similarly well when compared to the respective anthryl-substituted complexes 32, 36–42. Further, the anthryl versus diiodo substitution does not exert a major influence on the degree of branching of the obtained polyethylenes.

As already found for complexes 21, 24, and 25, [44] the degree of branching of obtained polyethylenes is highly sensitive to the 3,5-substitution pattern of the terminal arene rings of the terphenyl moieties in both diiodo- and anthryl-substituted complexes. More electron-deficient N-aryl substituents result in higher molecular weights and lower degrees of branching probably by suppressing chain walking and chain transfer relative to ethylene insertion.

At 50 °C all catalysts are quite stable. In more detail, complexes 32, 21, and 44 derived from 2,6-diisopropylaniline or terphenylamine appeared to exhibit constant polymerization activities over time and polymer yields in 40 and 60 min (for 21: 120 min) polymerization runs. Further, complexes 33, 34, 37, and 38 showed a slight decrease in polymerization activity over time reaching one-half of the initial activity after ca. 1.5–2.0 h, while one-half of the initial activities after ca. 1 h were observed with complexes 24, 25, 39, and 43. At 70 °C, the decrease in polymerization activities over time is more pronounced with precatalysts 37 and 38. It was concluded that the positive effect on the stability of the anthryl substituent in 5 observed by Grubbs [38] is not valid when anthryl and terphenyl substituents are combined in the same catalyst. Probably deactivation mechanisms are different.

Moreover, Mecking [49] synthesized another series of (k^2-N,O) salicylaldiminato nickel methyl pyridine complexes as precatalysts varying the remote substituents of 2,6-di-(4-R-phenyl)phenyl groups on the imine nitrogen [R = C_8F_{17} (28), CF₃ (29), F (48), H (23), Me (46), tBu (48), OMe (47), and NMe₂ (49)] to complete the studies on the electronic effects of remote substituents.

Also these complexes behave as single component catalysts but catalyze the polymerization of ethylene to low molecular weight polyethylene. Decreasing molecular weight and increasing degrees of branching are observed in the order $R=C_8F_{17}\sim CF_3>F>H>Me>MeO>{}^tBu>NMe_2.$ They are less active and decompose faster, under the polymerization conditions employed, than complexes 2,6-di-(3,5- R_2' -phenyl)phenyl substituted. X-ray diffraction analysis of complex 45 ($R^2=I;\,R^3=4$ - FC_6H_4) and polymerization results indicated that it is not the sterics but the electronics of the R' group that controls the polymer microstructure.

The cyclohexyl-substituted salicylaldiminato-Ni(II) complex **26** was tested by Sun et al. [45] in the ethylene polymerization. As a single component catalyst, complex **26** shows no activity in the polymerization of ethylene. Then, [Ni(cod)₂] was used as cocatalyst to trap the triphenylphosphine. The catalytic activity of **26** and the molecular weight of PE are in relation to the amount of [Ni(cod)₂] added

as a cocatalyst. The catalytic activity increases as the $[Ni(cod)_2]/26$ molar ratio increases and 3 or 4 equiv. of the cocatalyst are sufficient for the whole polymerization time. The activity increases with increasing temperature during the initial stage and reaches the maximum values at 45–55 °C. A polymerization activity of 3.62×10^2 kg PE mol Ni⁻¹ h⁻¹ and a M_n of 57.3 kg mol⁻¹ have been found for 10 µmol of 26 and a $[Ni(cod)_2]/26$ ratio of 3 at 45 °C and 12 bar of ethylene. The polydispersity index of the resulting polyethylene is 2.04. Moreover, the aluminum alkyls AlEt₃ and AlⁱBu₃ were tested as cocatalyst. The activity of the catalyst and M_n of PE are lower than those produced with $[Ni(cod)_2]$.

There is an increasing interest in the field of single-site bimetallic olefin polymerization catalysis since these systems may exhibit increased activity, branch formation, and comonomer enchainment versus their mononuclear analogues. The origin of these bimetallic cooperativity effects is proposed to include non-negligible comonomer secondary binding to weakly basic groups on the olefin which modifies relative chain transfer rates and facilitates comonomer enchainment at the second, proximate metal center.

The first example of neutral binuclear nickel(II) catalysts are the bimetallic salicylaldimine–nickel complexes with *tert*-butyl (**80**) or Ph (**81**) substituents in R² were prepared by Zhang [54]. At 10 atm of ethylene pressure complex **80** was catalytically less active toward ethylene polymerization with ca. 2–3 equiv. of [Ni(cod)₂] as phosphine scavenging agent, while complex **81** comprising a phenyl group was demonstrated to have high potential for ethylene polymerization without any cocatalyst. Although 'Bu groups are generally considered to be bulkier than unsubstituted phenyl group, phenyl is more electron-withdrawing than 'Bu. Complex **81** (R² = Ph), therefore, revealed a marked increase from 37 kg PE mol Ni⁻¹ h⁻¹ for **80** (R² = 'Bu) to 110 kg PE mol Ni⁻¹ h⁻¹. This electron-deficient effect is consistent with the electronic effect of mononuclear Grubbs catalysts. It is notable that the polymerization temperature greatly influences the activity of the binuclear nickel catalyst. For **81**, lower temperature (30 °C) represents the optimum and at an increased temperature of 50 °C or 70 °C, catalytic performance quickly decreased from 290 kg PE mol Ni⁻¹ h⁻¹ to be 64 and 21 kg PE mol Ni⁻¹ h⁻¹, respectively.

Polyethylene obtained employing binuclear **81** revealed higher $M_{\rm w}=141~{\rm kg}~{\rm mol}^{-1}$ and relatively broader molecular weight distribution ($M_{\rm w}/M_{\rm n}=6.1$) than PE from the mononuclear one ($M_{\rm w}=18.6~{\rm kg~mol}^{-1},~M_{\rm w}/M_{\rm n}=2.8$). The broad polydispersity was supposed to arise from the interactions of the metal centers, electronically coupled through the ligand, which may create more than one active species. ¹³C NMR showed that the polymers produced by **81** are moderately branched, with methyl branches predominating (ca. 20 methyl branches per 1,000 carbon atoms).

High catalytic activities for ethylene polymerization with a series of novel m-arene-bridged salicylaldimine-based binuclear neutral nickel(II) complexes (82–91) in the presence or absence of the phosphine scavenger [Ni(cod)₂] were also obtained by Huang et al. [55]. The introduction of an electron-withdrawing group to the ligand framework improves the catalytic activity significantly.

Highly branched polyethylenes (46–127 branches per 1,000 carbon atoms) with moderate molecular weights ($M_{\eta}=10$ –169 kg mol⁻¹) and narrow molecular weight distributions ($M_{\rm w}/M_{\rm n}=2.3$ –2.4) were obtained. In the presence of a polar solvent such as THF or Et₂O, complex **89** polymerizes ethylene as a single-component catalyst. The variation of substituents on the *ortho*-positions of the phenyl rings and arene bridge of the ligand dramatically influences the polymerization behavior of these binuclear nickel complexes. The introduction of an electron-withdrawing group to the ligand framework improves the catalytic activity significantly, and very high molecular weight polyethylenes can be obtained by complexes **90** and **91** with nitro groups. In comparison to the corresponding mononuclear Ni catalysts, the binuclear Ni catalysts showed higher thermal stability, and complexes **82**, **84**, **86**, and **87**, which feature small R² substituents, are capable of acting as single-component ethylene polymerization catalysts showing much higher thermal stability and can tolerate polar functional groups.

Recently, novel binuclear Ni(II) methylpyridine complexes (92-95) of di (salicylaldimines) bridged in the p-position of the N-aryl moiety were prepared and characterized by Mecking [56], and studied for ethylene polymerization. No activators were used with the pyridine complexes. They are active between 20 and 70 °C as single-component catalyst precursors. Maximum productivities were observed at 50 °C, while at higher temperatures some deactivation occurs. Mecking compared the performances of pyridine complexes to those of the complex with the less strongly coordinating tertiary amine tmeda (96). A high activity was observed at low polymerization temperature (20 °C). In both cases the substitution in the 2, 2′, 6, and 6′ positions of the N-aryl moieties with 3,5-bis(trifluoromethyl)phenyl groups results in more active catalysts than isopropyl substitution.

Polymerization activities of all binuclear complexes are substantially higher than those of mononuclear analogues. A maximum activity of 9,520 kg PE mol Ni⁻¹ h⁻¹ was observed for **96**, with formation of high molecular weight polymers of $M_{\rm w}$ 920 kg mol⁻¹ and $M_{\rm n}$ 280 kg mol⁻¹. The increase in polymerization activity of the binuclear complexes, compared to the mononuclear analogues, appears to be due to an intrinsically higher rate of chain growth rather than to a more efficient dissociation of pyridine as activator of the catalyst precursors. Polymer microstructure is affected by chain walking only to a small extent. Linear polyethylenes with, for example, two methyl branches per 1,000 carbon atoms (polymerization temperature 30 °C) have been obtained.

Binuclear neutral nickel(II) complex (103) based on the 3,3'-bisalicylaldimine ligand, was synthesized in high yield by Li [63]. Interestingly, this complex, which may be treated as the product of the two 1 molecules coupled at the *ortho* position of the phenoxy group, is capable of polymerizing ethylene without any cocatalyst with an activity of up to 455 kg PE mol Ni⁻¹ h⁻¹ and with $M_{\rm w}$ up to 487.7 kg mol⁻¹ and relatively broad molecular weight distribution ($M_{\rm w}/M_{\rm n}=2.8-3.8$) were produced. In contrast in the absence of other added activators, complex 1 exhibited no activity for ethylene polymerization. Even when [Ni(cod)₂] or B(C₆F₅)₃ was used as a phosphine acceptor, only a low catalytic activity was observed.

Fig. 2.24 Ethylene homopolymerization by iminopyridine *N*-oxidesbased catalysts

Marks [60] reported the synthesis and characterization of novel bimetallic, neutrally charged dinickel 2,7-diimino-1,8-dioxynaphthalene polymerization catalysts. Room-temperature ethylene homopolymerizations were carried out in the presence of the phosphine scavenger/cocatalyst [Ni(cod)₂]. Bimetallic **104**, **105**, and **106** afforded polyethylenes with molecular weights comparable to those produced by the mononuclear analogue **107** and with polydispersities consistent with single-site processes ($M_{\rm w} \sim 10~{\rm kg~mol}^{-1}$, $M_{\rm w}/M_{\rm n} = 2.5$). Moreover, the bimetallic catalysts exhibit a 2-fold greater polymerization activity along with increased methyl branching.

In addition to the nature of the copolymer microstructures produced, the mechanism by which the cooperative effects take place was investigated. Low temperature 1 and 2D 1H NMR spectroscopy of the thermally labile $[\mathrm{Ni}_2(C24)-\mathrm{Bu}_2(\mathrm{PPh}_3)_2]$ derivative provides evidence for agostic species in the bimetallic complex. Results evidenced also an agostic interaction of an alkyl group coordinated to one Ni communicating with the second Ni. Such agostic interactions which span both metal centers contribute to Ni \cdots Ni cooperation. Thus, bimetallic catalysts evidence significant active center-active center cooperative effects in ethylene homopolymerization versus their mononuclear analogues. This cooperativity doubtless arises from the rigidity of the ligands that binds the two Ni centers in close enough proximity (Fig. 2.24).

Recently, Campora devised to replace the anionic aryloxide of salicylaldiminate systems with a neutral pyridine N-oxide to attain highly active catalysts. Nickel catalysts with 2-iminopyridine N-oxides (PymNox) as ligand constitute a promising class of complexes that lead to cationic equivalent of the well-known salicylaldiminate system. The electrically neutral N-oxide fragment effectively delocalizes the positive charge on the ligand. A series of nickel PymNox complexes with different substitution patterns in the ligand were synthesized [53]. They (73–79) are active catalysts for the ethylene polymerization or oligomerization when activated with alumoxanes or diethylaluminum chloride (DEAC). Actually, PymNox nickel catalysts are more active than their neutral salicylaldiminato-based analogues, but the two systems give rise to similar polymers in terms of both molecular weights and branching degree. Electronic effects modulate the activity. An electron-donor group $(R^3 = OMe)$ in the remote position 4 of the pyridine ring causes a modest decrease of the catalytic activity and increase of the polyethylene molecular weight, a strong electron-withdrawing group (NO₂) in the same position shifts the catalyst selectivity from ethylene polymerization to oligomerization. More importantly, the introduction of a phenyl substituent in *ortho*-position causes a significant increase of the catalytic activity and the polymer molecular weight. Thus, performances of PymNox catalytic systems are strongly reminiscent of those of nickel salicylaldiminates.

The η^3 -benzyl (2-(alkylideneamino)benzoato)nickel complexes in the presence of B(C_6F_5)₃ give the zwitterionic η^3 -benzyl complexes active in the polymerization of ethylene (Fig. 2.25). NMR studies with a methallyl complex 108 [61] showed no consumption of ethylene. However, after the mixture standed overnight, the appearance of polymer particles along with the disappearance of the ethylene signal was observed, but signals of the end vinyl group were not detected. which implies that even the molecular weight of the soluble part of the obtained poly(ethylene) was fairly high. In contrast the η^3 -benzyl analogue 109, which displays faster initiation rates, gave high activity (3,200 kg PE mol Ni⁻¹ h⁻¹) when the polymerization was initiated at 50 °C, while the activity of the zwitterionic species of **110** is 4,100 kg PE mol Ni⁻¹ h⁻¹ under the same conditions. The obtained polyethylenes are branched in the range of 35-50 branches/1,000 carbons. The branch number decreases slightly with increase of the pressure. Molecular weights of polyethylene are rather low $(M_w \sim 10 \text{ kg mol}^{-1})$ while the molecular weight distribution is narrow $(M_w/M_p = 2.0-2.7)$, indicating that a single active species is present in the polymerization solution. Even though molecular weights are rather low this result is interesting when considering that the corresponding (2-(diphenylphosphino)benzoato)- and (2-(diphenylamino)benzoato)nickel complexes give mainly butene by a rapid chain transfer reaction.

The chain transfer process is usually reduced by an increase of steric bulkiness on the axial sites, but no increase of the steric bulkiness on the axial sites is observed when the solid structure of the (2-(cyclohexylideneamino)benzoato)nickel complex is compared with that of the (2-(diphenylamino)benzoato)nickel complex. Thus, reduction of the chain transfer process in (2-(alkylideneamino)benzoato)nickel complexes might be explained by a change of electronic effect.

Fig. 2.25 Ethylene homopolymerization by η^3 -R (2-(alkylideneamino)benzoato)nickel catalysts

The search for new ligand structures with other donor functions, empirical to a large extent, though developments had provided some guidelines for catalyst design lead to the synthesis of another class of neutral nickel(II) complexes with chelating diazene ligands [62] as ethylene polymerization catalysts (Fig. 2.26). Well-defined complexes are available as precursors to activator-free catalysts. All complexes 111–113 are moderately active for ethylene oligo- or polymerization, depending on the steric bulk of the substituent on the arvl group. The catalyst bearing the bulky substituted aryl group ($R = {}^{i}Pr$) (113) bound to the diazene function give polymeric materials while a reduction in steric bulk results in a marked decrease in product molecular weight (oligomers). This dependence of the catalytic behavior on the ligand substitution pattern clearly demonstrates coordination of the diazene moiety to the metal center throughout the catalytic reaction. Polymerization requires somewhat elevated temperatures (70–80 °C). The temperature stability is increased by bulky substituents (113 > 112 > 111), the catalyst with the less sterically demanding R = H (111) decomposing to a significant extent already at temperatures above 50 °C. The polyethylenes obtained by the complex with the bulky substituted diazene ligand (113) has typically $M_{\rm w} > 50 \text{ kg mol}^{-1}$ and $M_{\rm w}/$ $M_{\rm n} = 1.8-2.3$, indicative of a well-behaved single site catalyst.

Brookhart [64] to further enhance the activity of neutral Ni(II) catalysts synthesized new neutral (N-O) chelated Ni(II) complexes, derived from anilinosubstituted enone ligands bearing strongly electron withdrawing -CF₃ and -C(O)CF₃ [51] in the ligand backbone, and utilized in ethylene polymerization in the presence of an activator as $[Ni(cod)_2]$ or $B(C_6F_5)_3$ (Fig. 2.27). Polymerizations were generally carried out at ethylene pressures between 7.09 and 28.37 bar and temperatures from 25 to 80 °C. Without the addition of an activator to sequester PPh₃, that drives the equilibrium toward the Ni(ethylene)(alkyl) complex, low productivities were observed for complexes 117, 118 and no polymer was obtained for 119, 120 even at 14.18 bar of ethylene. This implies, that even at high ethylene pressures the equilibrium lies in favor of the PPh₃ complexes. The productivity under standard conditions (13.78 bar, 60 °C, [Ni(cod)₂] activator) follows the order $117 > 118 > 119 \sim 120$. The spread in productivities was modest but significant (14,168 kg PE mol Ni⁻¹ h⁻¹ for 117 to 840 kg PE mol Ni⁻¹ h⁻¹ for 120). Moderately branched polyethylenes, generally in the range of 35–55 branches per 1,000 carbons, were produced, consistent with expectations based on the presence of *ortho*-disubstituted aryl groups on nitrogen. It is worth noting that 117, the most productive and with long lifetime catalyst, is the only one which bears no methyl substituent R³ to nitrogen.

Fig. 2.27 Catalysts with β -ketoimine frameworks

Neutral β -ketoiminato nickel complexes 121–125, bearing a bulky substituent at the R¹ position of the ligand, were designed by Li [63–65] et al. This design was based on Grubbs's results that introduction of a bulky substituent at the ortho position of the phenoxy group not only blocks the axial faces of the nickel center and retards the rate of chain termination but also enhances the catalytic activity by accelerating triphenylphosphine dissociation and decreases the rate of catalyst deactivation. Neutral nickel complexes 121–125 were investigated as the catalysts for ethylene polymerization in toluene. The ligand structure significantly affects catalytic activity and polymer microstructure along with properties. Catalyst 121 shows an activity of 13.86 kg PE mol Ni⁻¹ h⁻¹ bar⁻¹ using B(C₆F₅)₃ as phosphine scavenger (T = 60 °C, pE = 25.33 bar, and B/Ni molar ratio = 1). It is noteworthy that catalyst 122 shows a much higher activity of up to 135.6 kg PE mol Ni⁻¹ h⁻¹ bar⁻¹ under the same conditions, which is about 10 times more than the unsubstituted catalyst 121. Under the same conditions, a comparable catalytic activity of 106 kg PE mol Ni⁻¹ h⁻¹ atm⁻¹ was observed for catalyst **123**. These results confirmed that an aryl group in the R¹ position greatly enhances the catalytic activity for ethylene polymerization of the β -ketoiminato neutral nickel catalyst, just like salicylaldiminato neutral nickel catalysts. Probably also with these systems the aryl in the R¹ position plays a key role in protecting the active nickel species from the formation of bis-ligated analogues, proven in salicylaldiminato nickel catalysis to be inactive toward ethylene polymerization. 124 is the catalyst with intrinsically low activity toward ethylene polymerization 5.54 kg PE mol Ni⁻¹ h⁻¹ bar⁻¹ while catalyst **125** showed a higher activity of 21.38 kg PE mol Ni⁻¹ h⁻¹ bar⁻¹ relative to catalyst **124**, but the activity is still much lower than that of 122.

The variation of the R² group also had a remarkable influence on the branch content and microstructure of the polymer produced, allowing access to the polyethylene whose structure varies from a relatively linear semicrystalline material (with catalyst 122) to a highly branched (with catalyst 125) and completely amorphous material.

Moreover, Li [68] succeeded in the synthesis of easily accessible complexes, which are highly active catalysts (130–135) for ethylene polymerization without an activator. Under the optimized conditions (pE = 50.66 bar, T = 63 °C) an activity of 70.69 kg of PE mol Ni⁻¹ h⁻¹ bar⁻¹ and $M_{\rm w}$ of 46.5 kg mol⁻¹ were observed using 132 as a catalyst. Particularly, it is of great interest that a bulky substituent proximate to the oxygen atom of the β -ketiminato complex is no longer a prerequisite to attain high catalytic efficiency, which is much different from the case for salicylaldiminato neutral nickel catalysts. Moreover, the degree of conjugation between the phenylene ring and the corresponding nickel chelate of the complex can be tuned via changes in the ligand structure, which remarkably influences the molecular weights and the microstructures of the resulting polyethylenes. The less conjugated complexes 131, 132 and 134, 135 produced polyethylenes with much higher molecular weights and lower branching numbers relative to those from the rigid, highly conjugated complexes 130 and 133.

DFT methods gave a rationale of the main difference between these and the salicylaldiminato complexes, that is the high catalytic efficiency of complexes without a bulky substituent at the close position of the coordinating oxygen atom originates from the lower activation energies of these complexes relative to the typical salicylaldiminato complexes.

The synthesis of a new organometallic nickel complexes supported by the 3-cyano-4-(2,6-diisopropylphenylimino)pent-2-en-2-olate ligand 129 [67] allowed for the investigation of remote activation through an exocyclic CN functionality. The binding of $B(C_6F_5)_3$ to the carbonitrile nitrogen results in a redistribution of electron density within the electronically delocalized ligand framework and initiates the homopolymerization of ethylene. The resulting polymers are described by monomodal molecular weight distributions. This complex, activated via an exocyclic CN functionality, opens new ways to design of appropriate ligands for zwitterionic ethylene polymerization initiators.

Aryl nickel phosphine complexes containing pyridine carboxylate ligands represent the first example of single component catalysts for oligo- or polymerization of ethylene [71, 72]. Electronic effects on nickel-catalyzed oligomerizations/polymerizations were delineated through the use of a series of substituted pyridine carboxylate complexes (138–145). Lower basicity of the substituted pyca ligand facilitated migratory insertion and therefore chain growth. At 80 °C and 40 bar, the electron-rich methoxy substituted catalyst (146) gave mostly linear olefins (56%) with only 10–20 % of the product consisting of higher molecular weight polyethylene. The electron deficient nitro-substituted catalyst (147) produced between 80 and 100% of high molecular weight PE under similar conditions. In addition, the nitro-substituted catalyst gave the highest activities of all these complexes.

The α -iminocarboxamide ligands were selected by Bazan who first thought that metal activation by formation of carbonyl adducts could form the basis of a new strategy for designing novel nickel olefin polymerization catalysts (Fig. 2.28) [73]. It was disclosed that the activation of **152** with [Ni(cod)₂] results in an active olefin polymerization catalyst which is capable of catalyzing the quasi-living homopolymerization of ethylene. Polymerizations were conducted at 7.09 bar, 20 °C and for 20 min. No polyethylene was formed when **152** was used alone. There is a sharp increase in reactivity when the [Ni(cod)₂]/**152** ratio increases from 1 to ca. 2.5, followed by a slower increase in activity as this ratio approaches. NMR spectroscopy showed that the polyethylene has a relatively low branching content

Fig. 2.28 Ethylene homopolymerization by α-iminocarboxamide nickel catalysts

(10–20 Me branches per 1,000 C). The molecular weight distributions are monomodal but not as narrow as those of a truly living system; the authors proposed this results from an initiation step considerably slower than the propagation and from the precipitation of the polymer.

The α -iminocarboxamide species **155** and **156**, [96] that take advantage of pyridine ligand instead of PMe₃ as **152**, are single-component initiators for the polymerization of ethylene. There is no need to use [Ni(cod)₂] for activation, as is the case for the PMe₃ analogues. However, the thermal activation required for dissociation of py or 2,6-lu probably reduces the control over the polymer structure; that is, it was not possible to find polymerization conditions with quasi-living characteristics. The polymerizations with **156** can be accomplished under milder reaction conditions, relative to **155**. Best results in activity (304 kg PE mol Ni⁻¹ h⁻¹) and molecular weight ($M_{\rm w}$ 143 kg mol⁻¹, $M_{\rm w}/M_{\rm n} = 2.2$) were obtained in the presence of **156** at pE = 6.89 bar and T = 40 °C.

More recently, neutral nickel complexes containing α -iminocarboxamide, η^1 -CH₂Ph, and PMe₃ ligands were synthesized by Bazan [75] and used in the homopolymerization of ethylene. In particular, the effect of steric and electronic variations at the site adjacent to the imine functionality was studied. Ethylene homopolymerization reactions were performed using complexes **154**, **158–163** and [Ni(cod)₂] as activator. Polymerizations were carried in toluene at an ethylene pressure of 7.09 bar at 20 °C. The polymerization activity increases as the bulk on the ligand framework increases i.e. **154** < **158** ~ **161** < **159** < **160**. The isopropyl derivative **160** exhibits an activity > 2-fold as compared to the parent methyl species **152**. The M_n of the polymer products also increases proportionally with the increase in activity. Compound **160** exhibits the lowest molecular weight distribution ($M_w/M_n \sim 1.2$) when compared to the other alkyl variants.

In the case of 161, the activity and molecular weight observed are higher than those obtained with the parent species 152. The molecular weight and activity are higher for compound 162 and lower for 163 relative to 161. This trend suggests that as electron density is removed from the metal center, the catalytic species becomes more active in ethylene polymerization reactions (i.e., reactivity: 162 > 161 > 163). Polyethylene made with compounds 161-163 exhibits the narrowest polydispersities, between 1.1 and 1.2 in all cases.

A new family of ligands based iminohydroxamate backbone and their transition metal halide complexes were proposed by Bildstein [76] as new precatalysts for MAO activated olefin polymerizations. Ethylene polymerizations were performed in toluene, at a temperature of 70 °C at pE of 40 bar. In terms of activity, only compound **164** truly stands out as a precatalyst with a high activity of 302.8 kg PE mol Ni⁻¹ h⁻¹ bar⁻¹ but in short polymerization time. Indeed, the stability of the [N,O]NiBr₂ complexes **164-167** in their MAO-activated form has not yet been optimized, indicating fast deactivation pathways. PE samples obtained from nickel complexes **164-167** were of the HDPE type with no detectable branches and molar masses (M_v) of 1.0 to 250 kg mol⁻¹.

Brookhart [77, 78] designed a ligand which incorporated the key elements of the six-membered chelate salicylaldimine ligand but which would lead instead to a

five-membered chelate. He chose for this purpose the 2-anilinotropone moiety because it contained the desired anionic N,O chelate, a hindered N-aryl group, and complete conjugation between the N and O. The corresponding highly neutral nickel catalyst is active in ethylene polymerization and it does not require an activator (Fig. 2.29).

Under optimized conditions, catalyst **169** can produce PE, without the addition of a cocatalyst, with a TOF of 8.8×10^3 kg of PE mol Ni⁻¹ h⁻¹ in a 10 min run. Additionally, **169** produced PE with a substantially higher M_n when compared with the salicylaldimino type bearing the anthryl substituent in the *ortho* position (89.6 vs. 54 kg mol⁻¹). Nevertheless **169** shows a short lifetime when compared to 2-salicylaldimino type bearing the anthryl substituent. Ethylene pressure has also been shown to have dramatic effects on the resultant PE. Increasing the pressure from 1.01 to 40.53 bar at 80 °C causes a decrease in the branching number from 113 to 41 branches per 1,000 C.

Moreover, a series of anilinotropone ligands and corresponding nickel complexes was synthesized in an effort to determine the effects of varying the *ortho*-aryl substituents on ethylene polymerization. Catalysts incorporating alkyl substituents at the 2- and 6-positions of the N-aryl ring generated high-molecular-weight polyethylenes with monomodal molecular weight distributions of ca. 2 (or less at low temperatures). Total turnover numbers of ca. 60,000 were observed in 10 min at 80 °C, but catalyst lifetimes are short at this temperature. Branching increases with increasing temperature and decreasing pressure, consistent with earlier observations using aryl-substituted diimine catalysts.

Replacement of the standard 2,6-diisopropyl substituents on the aryl group with 2,6-dimethyl (168), 2,6-dichloro (173), 2,6-dibromo (174), and 2-methyl-6-trifluoromethyl (178) substituents had little effect on productivity. A slight increase in TON was observed for the 2,6-diphenyl-substituted catalyst (172). Significant reduction in TON was observed for the 2-methyl-6-tert-butyl-(171), 2-methyl-(177), 2-tert-butyl-(170), and 2,3,4,5,6-pentafluoro-substituted (175) catalysts. Molecular weights generally increase with increasing steric bulk of the *ortho* substituents.

Substitution of the 2-(2,6-diisopropylanilino)tropone ligand with either phenyl (**180**) or naphthyl (**181**) groups resulted in a small increase in productivities and lifetimes at 80 °C and 14.18 bar. However, at 40 °C these catalysts exhibited much longer lifetimes ($t_{1/2} > 1$ h) and higher total turnover numbers

Fig. 2.29 Anilinotropone-based catalysts for ethylene polymerization

168-181

could be achieved relative to 80 °C polymerizations. Molecular weights of the polyethylenes increased with pressure, which suggests that chain transfer at least in part occurs through classical β -H elimination rather than chain transfer to monomer. The catalyst decay product is the Ni(II) bis-ligand complex, whose formation must be initiated by reductive elimination of the ligand from a Ni(II) species.

The anilinoperinaphthenone nickel complexes **183**, **184** [80] are active ethylene polymerization catalysts and **184** is significantly more reactive than **183** with turnover numbers of 47,000 and 8,000, respectively, under identical reaction conditions (14 atm ethylene, 80 °C). The number average molecular weight under these conditions is 99,000 with a $M_{\rm w}/M_{\rm n}=1.9$ and significantly increases with ethylene pressure (e.g., $M_{\rm n}=37$ kg mol⁻¹ at 3.04 bar, 80 °C; 54 kg mol⁻¹ at 7.09 bar, 80 °C) suggesting that chain transfer to monomer is not the major chain transfer mechanism. As temperature increased from 40 to 100 °C, with pressure held constant at 14 atm ethylene, the number average molecular weight of the polymer decreased and the branching number increased from 17 to 66 branches per 1,000 carbon atoms. The catalyst half-life is ca. 20–30 min. In conclusion, these catalysts have an activity that is similar to the previously reported anilinotropone based neutral nickel(II) ethylene polymerization catalysts. The similarity in overall activity suggests that the lack of delocalization of electron density onto the oxygen atom has little effect on catalyst performance.

A novel nickel complex ligated with 2-(2,6-diisopropylanilino)-1,4-naphthoquinone (185) was synthesized by Shiono [81]. This complex polymerized ethylene at 40 °C to give linear polyethylene in low yield. On the other hand, 185 when activated with 4 eq of $B(C_6F_5)_3$ was highly active for ethylene polymerization and gave a polymer possessing short methyl, ethyl, and propyl chain branches formed by a chain walking mechanism, as well as long chain branches, the content of long chain branches was almost the same as that of all short chain branches. Thus, the macromonomer formed via β -H elimination were effectively copolymerized with ethylene to give the long chain branches.

Later on, a series of nickel complexes (186–188) bearing anilinonaphthoquinone derivatives possessing different substituents were synthesized [82]. Decreasing the bulkiness of 2,6-substitution on anilines lowered the polymerization activity as well as the molecular weight of the polymer produced. In contrast, the methyl substitution at 4-position of aniline increased the polymerization activity and the molecular weight of the products. This indicates that polymerization activity and molecular weight depended on the electronic state of the metal center as well as the bulkiness of 2,6-substitution on anilines. The molecular weight of the obtained polymer increased lowering the temperature, indicating that the β -H elimination is more suppressed than propagation at low temperature. This trend is more notable with the complex with the less bulky substituent on aniline 2,6-position. These complexes produce short chain branches such as methyl, ethyl, and propyl as well as long chain branches. The branching amounts decreased in the more bulky systems, indicating that chain migration was suppressed by introducing bulky substituent at 2,6-position of aniline.

New, neutral binuclear nickel(II) complexes with bridging ligands comprising 2,5-disubstituted amino-p-benzoquinones (189–193) have been synthesized and tested in the ethylene polymerization without any cocatalysts [83]. The complexes are catalytically active in ethylene polymerization. Particularly, complex 189, comprising a bulky substituted aryl group bound to the anilino function, has activity comparable to that of the Grubbs catalyst 3 under the same conditions. A reduction in steric bulk resulted in a marked activity decrease while the optimum polymerization temperature seems to be 80 °C. Polyethylene obtained employing complexes 189–191 revealed molecular weights of $M_{\rm w}=4.31$, 535, and 60.3 kg mol⁻¹, respectively. The molecular weight distribution is quite wide (3.21–48.24) and quite different from those of well-behaved single-site catalysts. Methyl branches predominate with ca. 10 methyl branches per 1,000 carbon atoms but additional higher branches, such as butyl, are also present.

In the course of their studies on metal complexes of amino acids and their derivatives Beck et al. [84] reported the synthesis of aryl complexes of nickel and palladium with the "classical" α -amino carboxylates as N–O-chelate ligands which may have catalytic activity. The complex **194** is, in the presence of AlEt₃, a highly active catalyst for the polymerization of ethylene (up to 1,800 kg PE mol Ni⁻¹ h⁻¹). The polymerization started with a high activity peak. Polymers with high molecular weights (up to 900 kg mol⁻¹) were obtained. In comparison with the related nickel complexes by Cavell (**147**), Keim and Grubbs (**1–10**) and their co-workers complex **194** affords polymers with remarkably high molecular weights and with much less branching.

The quest for identifying novel Ni(II) and Pd(II) catalysts bearing bulky bidentate ligands which would expand the scope of utility of such catalysts encouraged considerable efforts. The interest to have catalysts with higher thermal stability than bisimine Ni(II) and Pd(II) catalysts which decompose rapidly at about 70 and 50 °C, respectively prompted towards the synthesis of late transition metal complexes with various phosphine nitrogen (P–N) ligands (Fig. 2.30).

Ni(II) and Pd(II) complexes (217–219) with phosphine imine hybrid ligands were successfully synthesized by Guan [34]. The Ni(P-N) complexes assume a tetrahedral coordination geometry, while the Pd(P-N) complexes are all square planar. The Ni complexes, upon activation with MAO, were active for ethylene polymerization and significantly more stable than the corresponding Ni-diimine complexes, whereas the activities of these catalysts are lower than those of the Ni-diimine complexes. Complex 219 was much more active than 217-218 and this is presumably due to differences in the electronic structure. The phosphine in 217–218 is much more electron rich than the phosphine in 219 because the ^tBu group has stronger electron donating ability than the phenyl group. On the other hand, the lower molecular weight of polyethylene obtained with complex 219 is attributed to the decreased steric bulkiness of the diphenylphosphine as compared to the di-tert-butylphosphine in 217–218. In complex 217 the chain transfer process should be reduced by the orientation of both the ^tBu groups from phosphine and the isopropyl groups of aniline towards the axial positions. However, the asymmetry of the steric bulkiness for 217, the top axial face being much more

Fig. 2.30 Catalysts with N–P mixed chelating ligands

open than the bottom one, makes the metal center susceptible to chain transfer. This is presumably the cause for the formation of polyethylenes with relatively low molecular weight in the ethylene polymerization catalyzed by the Ni(P-N) complexes. Another remarkable feature of ethylene polymerization by the Ni(P-N) complexes is that the polyethylenes formed contain much more branches (50-60 total branches per 1,000 C) than the polyethylenes by diimine complexes under similar conditions. Significant amounts of relatively long branches (such as amyl and hexyl) are formed. The presence of ethyl in isobutyl groups reveals the existence of short branch on-branches. Thus, chain walking is more competitive with complexes 217-219 than in the Ni-diimine system. In contrast, all the Pd(P-N) complexes 220-222 upon activation with MAO were inactive to polymerize ethylene probably due to their electronic structure. The major fraction of the polyethylene obtained by Guan had low $M_{\rm w}$ in the range of a few thousands, but the minor fraction consisted of very high molecular weight polymer ($M_{\rm w}$ up to 10³ kg mol⁻¹). Brookhart hypothesized that at high temperatures used by Guan the catalyst backbone is easily enolizable which is partially chemically modified, and this modification is responsible for the low molecular weight fraction in the polymer.

Thus, bulky nonenolizable phosphineimine Ni(II) (223–227) and Pd(II) (228–231) complexes from bidentate ligands were prepared by Brookhart [35] with the hope of obtaining thermally stable polymerization catalysts which would produce high molecular weight, branched polyethylene. They did show improved temperature stability with respect to the corresponding diimine complexes.

At 80 °C the palladium catalysts oligomerize ethylene giving branched oligomers with M_n up to 0.66 kg mol⁻¹. Reaction of **229** with NaB(C₆F₅)₄ generates

the ion-pair $[Pd(\mathbf{V2})Me][B(C_6F_5)_4]$ that is unable to polymerize ethylene. In the iminephosphine palladium complexes the situation is unfavorable for migratory insertion since in the more stable isomer of $[Pd(\mathbf{V2})Me]^+$ the Pd–Me bond is expected to be stronger than the Pd–Me bond in diphosphine while the Pd–ethylene interaction is stronger than that in the diimine ligands. Thus, the stability of the methyl ethylene "unit" is greatest in $[Pd(\mathbf{V2})(h^2-C_2H_4)Me][B(C_6F_5)_4]$. The migratory insertion barrier of ethylene into the Pd–Me bond was shown to be 24.8(3) kcal mol^{-1} , which is ca. 8 kcal mol^{-1} higher than the corresponding barriers in diimine and diphosphine palladium complexes.

The nickel dimethyl-substituted complex **223** was used to screen the behavior and efficiency of several aluminum alkyl derived activators. The use of ethylaluminum dichloride led to the production of butenes with TO $h^{-1} > 10^6$ in an exothermic reaction. Activation with DEAC resulted in the production of butenes and only polymer traces. Polymethylaluminoxane (PMAO–IP) afforded both butenes and polymer while the use of MMAO-3A under 27.86 bar of ethylene at room temperature gave exclusively polymer with $M_n = 2.4 \text{ kg mol}^{-1}$ and 1,000 kg PE mol Ni⁻¹ h⁻¹.

Catalyst **225** would be more reactive than dimethyl-substituted complex **223** and give high molecular weight product. Unexpectedly, only a small amount of polymer with a bimodal molecular weight distribution ($M_p = 37.2$; 3.1 kg mol⁻¹) was obtained while diphenyl-substituted precatalyst **224** was found to be more effective producing an elastomeric material with $M_n = 72$ kg mol⁻¹ and $M_w = 133$ kg mol⁻¹. Increase of steric bulk at phosphorus, as in **227**, gives rise to lower molecular weight material ($M_w = 75$ vs. 140 kg mol⁻¹ for diphenyl-substituted precatalyst).

The polymer produced by **224** has almost exclusively methyl branches while that formed by **227** at 60 °C contains a great amount of higher branches. In general, polyethylenes obtained using catalysts **223–227** are substantially more branched than polymers obtained by Ni-diimine catalysts under similar conditions.

Finally, nickel imine-phosphine precatalysts containing gemdimethyl substituent α to phosphorus produce substantially higher molecular weight polyethylene compared to the corresponding enolizable complexes.

Pd(II) catalysts incorporating phosphinidine-imine ligands were also synthesized by Brookhart [92]. Complexes **232–233** proved to be ethylene oligomerization catalysts and were studied at 26 °C and 400 psi ethylene. They exhibit very low turnover rates, the more hindered catalyst **232** in a 3 h run yielded 23 kg PE mol Pd⁻¹. Higher turnover numbers (94 kg PE mol Pd⁻¹) were observed with decreased hindrance in **233** along with a drop of oligomer molecular weight from 0.67 to 0.3 kg mol⁻¹. The catalysts are more stable than Pd–diimine complexes at room temperature; they do not significantly deactivate in 15 h. Ethylene insertion barriers were measured for the less hindered mesitylimine system **233** by generating the cationic ethylene complex with NaB(C_6F_5)₄ under excess olefin (20 eq). Insertion of ethylene into Pd–alkyl bonds was measured 18.7 kcal mol⁻¹. For comparison, typical migratory insertion barriers in (diimine)palladium(methyl)(ethylene)

complexes are ca. 17 kcal mol⁻¹, that is 2 kcal higher than the insertion into barriers in Pd(diimine)Me(ethylene) complexes.

Ni and Pd complexes 213–216 [91] with P–N ligands linked by a nonenolizable rigid carbon framework were designed. The steric bulk was created by introducing substituents at the 6-position of pyridine and a mesityl or tolyl group on the phosphorus atom. The palladium complexes are inactive in the polymerization of ethylene. In fact, palladium black was obtained in most instances, indicating the instability of these palladium complexes under the reaction conditions. The behaviour of nickel complexes in oligo- or polymerization of ethylene is quite different from that of the palladium species. With a molar ratio of MAO to complex of 150:1, complex 213 catalyzed the polymerization of ethylene to form PE in poor yields with a bimodal molecular weight distribution. Butenes and hexenes were obtained in high conversions when a larger quantity of MAO (Al/ Ni = 500) is used. The nickel(II) dibromo complexes were highly active in the presence of MAO. With a lower Al/Ni ratio, the nickel complexes catalyzed the polymerization of ethylene, yielding an orthorhombic form.

Zwitterionic 2-diphenylphosphanylbenzamido nickel(II) complexes [Ph₂PC₆-H₄C(O)NR- κ^2 -N,P]Ni(η^3 -CH₂Ph) (R = C₆H₅, (**208**); R = I Bu, (**209**); R = H, (**210**); R = Pr, (**211**); R = i Pr, (**212**) were prepared by Lee [73] and tested in the ethylene polymerization. Generally, in both N–N and N–O late transition metal complexes, steric factors regulate the balance between the chain propagation and the chain transfers. High molecular-weight polyethylene is obtained by sterically congested complexes. However, there are some examples showing that electronic effects of the ligand also may play an important role in determining polymer molecular weight.

Slight changes in the ligand frame of complexes **208–212** result in big differences on the products [90]. Phenylamido complex **208** is unable to oligomerize ethylene under the pressure of 6.89 bar, at room temperature and gives 1-butene. Additions of ethylene gas to complexes **209–212** give mainly butene with relatively low activities (230–300 kg PE mol Ni⁻¹ h⁻¹). However, isopropylamido complex **212** gives excellent activity at room temperature (2,300 kg PE mol Ni⁻¹ h⁻¹). When the polymerization temperature is raised to 50 °C, the activity increases to 5,200 kg PE mol Ni⁻¹ h⁻¹, which is a quite high value among the activities observed for similar-type zwitterionic nickel complexes. The molecular weight of the polymers is considerably high ($M_{\rm w} \sim 1,300$ kg mol⁻¹) but rather broad molecular weight distributions ($M_{\rm w}/M_{\rm n} \sim 2.8$ –3.7) were observed, most probably for the difficulty to keep the polymerization under control for the very high activity.

The enormous differences in molar masses could not be easily explained since the two solid structures of **208** and **212** are quite similar. Since a big difference is observed on the angles between the square plane and the benzamide benzene ring it was suggested that, probably, when the angle is steep as observed for **212**, there is a shielding of the other axial site by π -electrons on the benzamide ring.

Only very few reports are in the literature of attempts to substitute one imine with sulphide groups. The results reported below explain such scarcity.

Fig. 2.31 Rare examples of catalysts with N-S ligands

Brookhart prepared the imine-sulfide palladium(II) complex 236 [92] in an effort to increase the molecular weight of the oligomer/polymer produced with a phosphinidine-imine catalysts (see above). It was expected that geminal dimethyl groups on the chelate backbone of 236 should impart a more restricted conformation to the S-aryl group, thus leading to more effective blocking of the axial sites.

In an NMR experiment **236** activated with NaB(C_6F_5)₄ completely consumed ethylene, but in a preparative run under 1.01 bar of ethylene afforded small amount of polyethylene with $M_n = 2.8 \text{ kg mol}^{-1}$ in 44 h. Under 27.86 bar of ethylene, only a small amount (54 mg/3 h; 72 mg/15 h) of polyethylene with $M_n = 1.8 \text{ kg mol}^{-1}$ was obtained. Since the high pressure experiment afforded less polyethylene than the 1 atm run, probably under high pressure of ethylene the ligand is displaced from the palladium and thus the catalyst decomposes as confirmed by the precipitation of palladium black (Fig. 2.31).

More recently, the nickel complexes **234–235** [93] bearing bulky N-substituents were synthesized, they possess potentially reactive sites for the ethylene polymerization. However, unfortunately, after activation with MAO, nickel complex **235** with the bulkier N-2,6-diisopropylphenyl substituent catalyzed ethylene to waxes with low activity at atmosphere pressure. By increasing ethylene pressure to 7 bar only small amount of high molecular weight PE was obtained, while the complex **235** bearing N- t butyl substituent gave only waxes under the same condition. The catalyst activity of **235** to high molecular weight PE was lower than those of the pyridylimine nickel complexes and α -diimine nickel catalysts. Probably steric bulky at only one arm side (imidazole N-substituent) resulted in chain propagation slower than chain transfer in contrast to the α -diimine nickel catalysts with two bulky arm sides. Additional possible reasons for the low activity to high molecular weight PE are in non square planar arrangement of the pyridine and the imidazole rings which lead to deviation of the steric bulk introduced from the axial sites.

2.4.3 Copolymerization of Ethylene with Monomers with Functional Groups

The selective introduction of functional groups into aliphatic poyolefin backbones represents a pivotal and overdue issue in polyolefin technology. Since they can

significantly control surface material properties, such as adhesion, wettability, dyeability, and printability as well as compatibility. Despite the tremendous advances in organometallic-catalyzed olefin polymerization, industrial incorporation of polar monomers in polyolefins still exploits radical polymerization. Radical polymerization provides branched polymers and highly-functionalized copolymers having physical properties not comparable to those of linear polyolefins.

Catalysts based on Ni and Pd, with respect to those based on early transition metals employed in industry, are intrinsically less sensitive to functional groups, as a result of their less oxophilic nature. Certainly they are well far away to be unfailing and any functionalized monomer represents a specific issue in terms of productivity, degree of functionalization, molar mass, etc. Specifically, for any monomer the possible interactions between the main-group functionality and the metal center before and after insertion should be considered. The recent advances in olefin-polymerization catalysts based on late transition metals allow for incorporating most of polar functionalities. For example, N–N Pd-based systems tolerate acrylates, vinyl ketones, and silyl vinyl ethers, they fail with others such as vinyl acetate, vinyl chloride, and acrylonitrile; in any case they afford hyperbranched copolymers with functionalities located mainly at the end of ramifications. Differently, Ni-based systems were reported to afford linear copolymers of ethylene and MA but with extremely low productivity.

Some promising results were reported by catalysts with nitrogen-based mixed chelating ligands. The functionalized monomers so far copolymerized with ethylene by Ni and Pd catalysts bearing nitrogen-based mixed ligands are listed in Fig. 2.32. The monomers are namely functionalized norbornenes, functionalized α -olefins, and polar vinyl monomers, whose C–C double bond is directly substituted by polar functional groups. The norbornene derivatives have the functional group distant from the double bond and are more easily incorporated than functionalized α -olefins. Incorporation of 2–4 mol% of functionalized norbornenes would be enough for depressing the polyethylene melting point and serves as a

Fig. 2.32 Functionalized norbornenes, functionalized α-olefins, and polar vinyl monomers copolymerized with ethylene by N–Z-containing catalysts

starting point for testing comonomers that can be incorporated and to what extent. Their features will be discussed in detail in the text along with the behavior with catalysts involved.

Copolymerization reactions of ethylene with functionalized monomers catalyzed by nickel (salicylaldiminato)-based catalysts are summarized in Fig. 2.33.

Complexes **5** and **8** were early reported as single-component catalysts for the copolymerization of ethylene with functionalized norbornene derivatives N_{OH} and N_{COOMe} affording $P(E-co-N_{OH})$ with the N_{OH} incorporation of 22 wt%, $M_{w} = 17.2$ kg mol⁻¹, and $M_{w}/M_{n} = 1.6$ and $P(E-co-N_{COOMe})$ with the N_{COOMe} incorporation of 12 wt% and $M_{w} = 73.8$ kg mol⁻¹, respectively [2]. In the pioneer report the authors pointed out polar group tolerance and effective incorporation of functionalized monomers while neither activities nor difference in catalytic behaviour were discussed. A more exhaustive investigation revealed that acetonitrile-containing catalyst **8** demonstrated a higher activity than the phosphine-containing analogous **5** due to the easier activation, in analogy with ethylene homopolymerization [97].

Copolymerization of ethylene with functionalized norbornene derivatives was extended to monomers $N_{\rm CH2OH}$ and $N_{\rm OAc}$. As expected monomers $N_{\rm COOMe}$ and $N_{\rm OAc}$ bearing ester groups resulted less poisoning than the protic $N_{\rm CH2OH}$ as showed by productivities and molar masses. In addition, the higher the steric demand of substituent onto the comonomer the lower the incorporation (in the

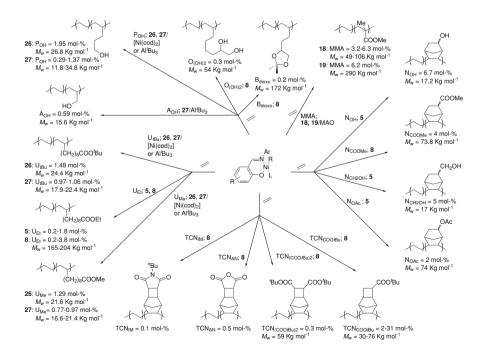


Fig. 2.33 Functionalized ethylene copolymers obtained by salicylaldiminato complexes

order $N_{COOMe} < N_{OAc} < N_{CH2OH}$). Since starting monomers were used as isomer mixture, this trend is ascribable to *endo* isomers, which after insertion are prone to give chelated intermediates, that block the vacant coordination site of catalyst. In this regard, tricyclononene-based functionalized monomers (TCN_{COO_fBu} , $TCN_{(COO_fBu)}$, TCN_{AN} , TCN_{IM}) were expected to be more readily incorporated than bicyclic analogues for the higher distance of polar functionality from olefin double bond. Indeed, catalyst **8** showed a 3.5-fold higher TON in copolymerization of ethylene with monomer TCN_{COO_fBu} than with the monomer N_{COOMe} in similar experiment. Interestingly, incorporation of monomer TCN_{COO_fBu} could be tuned from 2 to 31 mol% through TCN_{COO_fBu} /E feed ratio, though productivity dropped down with decreasing E concentration. Other interesting aspects of these uncommon tricyclic monomers were discussed on the basis of their chemical diversity.

Functionalized α -olefins such as alkyl undecylenoate esters U_{Me} , U_{Et} , and U_{tBu} were successfully copolymerized with ethylene by catalysts **5**, **8** [39, 97], **26** [45], and **27** [46]. Activities of these reactions are approximately one order of magnitude lower than in E homopolymerization in non-coordinating medium (toluene, benzene) but resemble those obtained in more coordinating solvents (ether, esters) [2]. Again, acetonitrile-containing catalyst **8** exhibited higher activities than phosphine-containing **5**, **26**, and **27**. Though to some extent less active, catalyst **26** bearing the cyclohexyl substituent at the ortho position of the phenoxy group showed a slightly higher incorporation of functionalized monomers than anthracenyl-substituted analogous **5** and **8**.

A series of copolymers containing monomer $U_{\rm Et}$ in different concentration was prepared by catalysts **5** and **8**. The resulting materials moved from HDPE to LLDPE domain ($U_{\rm Et}=10~{\rm mol\%}$). $T_{\rm m}$ values reflected the composition and decrease with comonomer incorporation as expected.

Interestingly, the ester-functionalized olefins significantly reduce the formation of short alkyl branches (Me, Et, Pr, and Bu) compared to those in ethylene homopolymerization and copolymerization with α -olefins such as 1-octene. This suggests that coordination of polar functionalities competes with β -H agostic interaction, preventing elimination side reactions.

More problematical was the copolymerization of ethylene with free alcoholic monomers A_{OH} and P_{OH} that can hydrolyze Ni-polymeryl bond, protonate the N–O ligand, and favor the displacement. The approach of protecting the alcoholic monomer with Al^iBu_3 was exploited for the copolymerization of ethylene with monomers A_{OH} and P_{OH} by catalyst **26–27** that furnished P(E-co- A_{OH}) in good yield ($M_w = 26.8$ kg mol⁻¹, $M_w/M_n = 2.29$, $A_{OH} = 1.95$ mol%). On the other hand, catalyst **8** gave a poor yield and a polymer with low M_w without protecting the diol-containing monomer $O_{(OH)2}$ whereas furnished activity and M_w values as good as in the reactions involving the ester-based monomer U_{Et} when the similar dioxolane B_{dioxo} was copolymerized.

A different and challenging task is represented by (co)polymerization of electron-deficient vinyl monomers such as acrylates. Modification of the energy of frontier orbitals as well as proximity of polar functionality to olefinic double bond

had made the coordination polymerization of these monomers elusive for a long time. A prerequisite for the incorporation of polar vinyl monomers is that π -coordination of the olefin double bond is competitive with the heteroatom σ -coordination.

Indeed, attempts to copolymerize ethylene with MA, VAC, and VE by catalyst 5 and 8 failed. An in-depth NMR investigation of organometallic species and decomposition product originating from interaction of more sophisticated salicylaldimino-based catalysts and MA revealed that after the first insertion of MA no further E or MA insertion occurs; VA behaves similarly [97].

MMA is definitely one of the most challenging functionalized monomer to be copolymerized with ethylene because besides the aforementioned features of electron-deficient vinyl monomers it possesses a *gem*-disubstituted olefinic carbon.

Preliminary trials, which exploited bischelated complexes activated by MAO, produced high MMA content materials (61 < MMA < 81 mol%) but molar masses, polydispersities, and microstructure of MMA sequences suggest the cooperation of radical and coordinative mechanism [99]. Conversely, copolymerization by complexes **18** and **19**, which contain nitro groups onto phenoxy ring, activated by MAO (Al/Ni = 15/1) in the presence of ethylene atmosphere (pE = 50 atm) afforded high molar mass P(E-co-MMA) with an incorporation of MMA of 3–7 mol% and $T_{\rm m}$ values of about 130 °C, indicating the high linearity of the products.

Iminopyridine *N*-oxide-based complexes **73–78** activated by MMAO were investigated as catalysts for the copolymerization of ethylene with MA (Fig. 2.34). Except for **73**, which effectively furnished P(E-co-MA) in low yield and molar mass ($M_n = 1.9 \text{ kg mol}^{-1}$) with low incorporation of comonomer (0.7 mol%), the addition of MA resulted in a complete deactivation of the catalysts.

Copolymerization of ethylene with polar monomers by bimetallic catalysts, which are generally and intrinsically more active than their monometallic analogous, can profit from cooperative effects arising from the close proximity of two metal centers [100].

Indeed, a clear and positive effect of dinuclearity was demonstrated by catalysts $100-102/B(C_6F_5)_3$ in copolymerization of ethylene with functionalized norbornene derivatives N_{COOMe} and N_{CH2OAc} (Fig. 2.35) [58].

A series of E-co-N_{CH2OAc} copolymerizations by the three catalysts revealed a 2-fold higher activity as well as higher incorporation of functionalized monomer than mononuclear **56** analogous in the same conditions. Complex **102**, which possesses the terphenyl o-C₆H₄(C₆H₄)₂ group as bridging unit between the two salicylaldimine cores, exhibited the highest incorporation (14–42 mol%). Effect of dinuclearity on activity, incorporation, and best performance of catalyst **102** was

Fig. 2.34 Linear ethylene copolymers with MA by iminopyridine *N*-oxidesbased catalysts

confirmed also for monomer $N_{\rm COOMe}$. Experimental evidence and theoretical calculations suggested the effective action of a cooperative effect between the two metal centers.

Binuclear naphthyloxydiiminato nickel catalysts **104** and **106** activated by [Ni(cod)₂] efficiently copolymerize a variety of functionalized monomers ranging from norbonene derivatives to acrylates (Fig. 2.36) [100].

The effective occurrence of eventual cooperative effects in copolymerization of ethylene with monomers N_{OH} , N_{COOMe} , N_{CH2OH} was demonstrated by comparing bimetallic systems with monometallic **57** and **58**. Activities as well as incorporation of functionalized monomers of bimetallic catalysts 3–4-fold higher than monometallic analogue in identical conditions confirmed the higher selectivity for the enchainment of polar components. Interestingly, molar masses of copolymers are similar to those of copolymers of ethylene with norbornene. Attempts to enchain N_{COOH} failed because the high acidity of the comonomer leads to catalyst deactivation by protonation of hydroxyl ligands with consequent ligand displacement as confirmed by 1H NMR experiments.

In addition to norbornene derivatives, catalysts **104** and **106** were also exploited for the copolymerization of ethylene with MA and MMA. Here, the effect of binuclearity is even more evident since monometallic analogous are only minimally responsive to these monomers. Indeed, both catalysts afforded in good yield

Fig. 2.35 Ethylene copolymers with functionalized norbornenes by binuclear bis-salicylaldiminato nickel catalysts

Fig. 2.36 Ethylene copolymers with MA, MMA, and functionalized norbornenes by naphthyloxydiiminato Ni(II) catalysts

P(E-co-MA) ($M_{\rm w}=6.3$ –6.7 kg mol⁻¹, $M_{\rm w}/M_{\rm n}=1.6$ –1.7, $T_{\rm m}=108$ °C) with an excellent incorporation of MA (11 mol%) and P(E-co-MMA) ($M_{\rm w}=7.9$ –8 kg mol⁻¹, $M_{\rm w}/M_{\rm n}=1.4$ –1.7, $T_{\rm m}=106$ °C) with MMA content of 8–9 mol%. The effective random copolymerization of E and (meth)acrylates was confirmed by fractionation, SEC, ¹³C NMR, FT-IR, and DSC data.

The neutral nickel complexes 114–116 with asymmetric β -ketoiminato ligands activated by MMAO were reported to efficiently copolymerize ethylene with MMA (Fig. 2.37), though they behave as ethylene oligomerization catalysts in absence of MMA. As for ethylene homopolymerization substituents on N–O ligand strongly affect catalytic behaviour. Specifically strong EWG such as CF₃ allow for preparing P(E-co-MMA) copolymers with considerably high incorporation of MMA (until 17 mol%). Conversely, activity resulted higher when ancillary ligand was less electron deficient (R¹ = Ph; R² = Me). These copolymers possessed interestingly high molar masses, although polydispersity resulted somewhat broad.

Five membered chelated complexes **146–148** were investigated as catalysts for the copolymerization of ethylene with carbon monoxide (Fig. 2.38). Interestingly, the presence of EWG on the pyridyl ring on the N–O chelate ligand not only converts oligomerization catalysts into polymerization catalysts but also allow for obtaining polyketon-based material.

Catalyst **147** with the strong EWG nitro afforded the perfectly alternating P(E-*al*-CO) whereas the pyrazine-containing complex **148** yielded the blocky PE-*b*-P(E-*alt*-CO). By contrast, a weak donor group such as MeO promoted E oligomerization rather than E-*co*-CO copolymerization.

Nickel complexes with α -iminocarboxamide ligands were intensively investigated in the copolymerization of ethylene with functionalized norbornene derivatives N_{OH} and N_{OAG} [101] (Fig. 2.39).

Fig. 2.37 P(E-co-MMA) copolymers by β -ketoiminato Ni(II) complexes

Fig. 2.38 Copolymerization of ethylene with carbon monoxide by pyridine carboxylato Ni(II) complexes

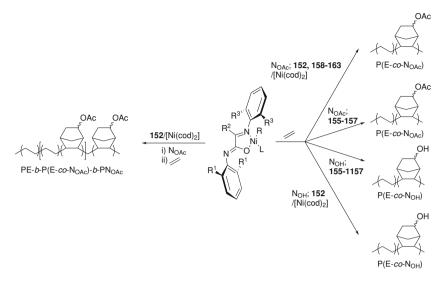


Fig. 2.39 Ethylene copolymerization with functionalized norbornenes by α -iminocarboxamide nickel catalysts

Complex 152 activated by [Ni(cod)₂] as scavenger of PMe₃ yielded P(E-co- N_{AC}) copolymers containing 4–17 mol% of N_{AC} with excellent molar masses ($M_n = 30$ –110 kg mol⁻¹). Very interestingly, catalyst 152 preserved the ability to promote the controlled polymerization of ethylene even in presence of N_{AC} as confirmed by linear time dependence of molar mass, that keep molar mass distribution somewhat narrow even after 90 min of reaction.

Also the hydroxyl-functionalized N_{OH} is readily incorporated in polyethylene backbone affording P(E-co- N_{OH}) copolymers with an incorporation of N_{OH} ranging from 5 to 18 mol% and possessing $M_n = 11$ –56 kg mol⁻¹. Since hydroxyl functionality resulted more poisoning than acetyl group molar masses and activities were lower than those observed in E-co- N_{AC} copolymerization. In addition controlled nature of copolymerization is absent, as revealed by the nonlinear increase of molar masses with increasing reaction time as well as by the broader molar mass distributions.

Very interestingly, catalyst $152/[\mathrm{Ni}(\mathrm{cod})_2]$ was exploited to prepare P(E-co-N_{AC}) copolymers with decreasing content of polar monomer. Thanks to the controlled nature of copolymerization and through complete conversion of N_{AC} "polar–apolar" block-copolymers that show microphase separation were prepared [102].

Complexes 152, 158–163/[Ni(cod)₂] were exploited as catalysts for the copolymerization of ethylene with N_{AC} to investigate eventual steric and perturbative effects of group adjacent to imine (R²), by keeping the same bulky 2,6-ⁱPrC₆H₄ as aryl frameworks. Interestingly both activity and incorporation of comonomer are sensitive to this modification. Productivity increased with the increasing of the

bulkyness of alkyl groups as i Pr (160) > i Bu (159) > Et (158) > Me, whereas incorporation behaved oppositely. In the series of aromatic substituents, that is complexes 161–163 the higher electron withdrawing power the lower activity. Incorporation was less influenced though lower than the alkyl-substituted analogous.

Also complexes 156–157 with 2,6-lutidine and pyridine as neutral ligand, were demonstrated to act as single component catalysts for the copolymerization of ethylene with N_{OH} and N_{AC} yielding comparable results to phosphine-based analogous apart from molar mass distribution which was evidently affected by a less efficient activation [96].

2.4.4 Aqueous Olefin Polymerization

Neutral late transition metal complexes are more tolerant toward polar media than their cationic counterparts. Soon after their introduction, Ni(II) polymerization catalysts 1 and 2 were noted to display a certain stability toward small amounts of added water [39]. The use of water as a dispersing medium offers a unique combination of features, such as effective transfer of the heat of reaction, high polarity and formation of micelles. Moreover, polymerizations that can be carried out in aqueous emulsion give dispersions of submicron polymer particles (Fig. 2.40).

In 2001 Mecking gave the first full account on aqueous coordination polymerization of ethylene by neutral nickel(II) complexes 11, 12 and by using $[Rh(C_2H_4)_2(acac)]$ as a phosphine scavenger [40]. A small amount of water or acetone was utilized to effectively add the water insoluble Ni(II) catalyst precursors or the phosphine scavenger, respectively. Polymer yields are lowered in water by comparison to conventional polymerization in organic solvents, while polymer molecular weights are noticeably higher compared to aqueous polymerization reactions with P–O chelate catalysts [103] (Table 2.3).

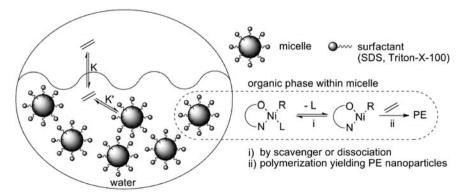


Fig. 2.40 Catalytic aqueous emulsion polymerization

Cat.	L	Reaction	pЕ	Solvent used for addition	T	TOF ^a	$M_{ m w}$	$M_{\rm w}$ /
no.		medium	(bar)	of cat.	(°C)		$(kg mol^{-1})$	$M_{\rm n}$
11	PPh ₃	H ₂ O	50	Pentane (10%)	70	50	410	4.1
11	PPh ₃	H ₂ O/acetone	50	/	50	40	18	1.5
		50:50						
11	PPh_3	pentane	50	/	70	144	410	3.7
11	PPh_3	Acetone	50	/	50	143	n.d.	n.d.
11	PPh_3	Toluene	8	1	50	11	43	2.3
11	PPh_3	Toluene	50	1	50	228	n.d.	n.d.
12	рy	H_2O	50	Acetone (5%)	50	36	310	2.6
		1 1		·				

Table 2.3 Aqueous polymerization by catalyst 11

Water soluble complexes suited as catalysts precursors, which simplify the dispersions by removing the organic solvent in the initial catalyst system, are desirable for studies of the processes and of particle formation [104]. Four Ni-salicylaldiminato methyl complexes [(N–O)NiMe(L)], **61** and **67–69**, with various P- and N-coordinating water soluble ligands L (Fig. 2.41) were prepared by Mecking [105].

All complexes are soluble in toluene whereas **67–69** are insoluble in water; however, **69** is soluble in 2-propanol. In contrast, **61** is soluble in water. Polymerizations in aqueous systems were carried out in the presence of sodium dodecylsulfate (SDS) as a surfactant to stabilize polymer particles formed. Complex **67** with the water-soluble alkylphosphine PTA was inactive in aqueous suspension as well as in toluene solution due to the strong coordination of phosphine. Exposure of suspensions of the water-insoluble **68** to ethylene pressure (in the presence of surfactant to potentially stabilize polymer particles formed)

Fig. 2.41 Effect of the stabilizing ligand on the efficiency and polymer particles in aqueous polymerization with salicylaldiminato nickel catalysts

^a Kg PE mol cat⁻¹ h⁻¹

afforded polymer suspensions. When **69** was introduced to an aqueous surfactant solution as a solution in 2-propanol, no visible precipitate was formed. Exposure to ethylene resulted in formation of polymer particles in the form of a latex, with large particle size.

These findings highlight that the size of polyethylene particles obtained by aqueous catalytic polymerization depends on the degree of dispersion of the catalyst in the initial reaction mixture. Catalyst **61** revealed to be a very performing catalyst producing in 3.5 h, at T = 20 °C and pE = 40 bar, 9.4 g of PE in form of latex ($M_n = 8.8$ kg mol⁻¹) with particle size of 230 nm.

Electron-withdrawing substituents in the bidentate N, O- or P, O-coordinating ligand, substantially increased the polymerization rates of Ni(II) complexes as shown by Brookhart et al. for enolatoimine complexes 117-120, while electronpoor phosphinoenolate complexes afforded higher molecular weight polymer. Even though with increasing electrophilicity of the metal center, an increased reactivity and sensitivity toward water was anticipated in 2007 Mecking synthesized a series of neutral Ni(II) complexes based on enolatoimine ligands with strongly electron-withdrawing trifluoromethyl and trifluoroacetyl groups that were studied as catalyst precursors for ethylene polymerization [66]. Despite the electron-deficient nature of the metal centers, which can enhance deactivation processes such as hydrolysis or coordination of water, they were very active in aqueous emulsions affording polyethylene dispersions. Studies of different catalyst precursors, [(N-O)NiMe(L)] with L = pyridine or PPh_3 , or in situ prepared catalysts [(tmeda)-NiMe₂]/ketoenamine, show that exchange of the coordinating ligand L is a critical step for the electron-poor Ni(II) complexes studied and likely is one limiting factor for catalyst activities.

The pyridine complexes 126 and 127 were dissolved in a small amount of toluene and the solution miniemulsified in aqueous SDS solution. Exposure to ethylene in a pressure reactor afforded stable dispersions. This demonstrates that in spite of the strongly electron-withdrawing nature of the enolatoimine ligands in the catalysts studied, catalyst stability toward water is sufficient to carry out polymerization in aqueous systems. Catalyst 127 at 70 °C gives an average activity of 1.9×10^4 mol C_2H_4 mol Ni⁻¹. This competes with the highest activities reported for neutral Ni(II) salicylaldiminato complexes, the only ones reported before to polyethylene dispersions of high molecular weight $(M_{\rm p} = 10 \text{ kg mol}^{-1})$ [106]. Also the phosphine complex 128 is suited for polymerization in aqueous medium by using [Ni(cod)₂] as a phosphine scavenger with a TOF of 9,500 mol C_2H_4 mol Ni^{-1} h⁻¹ and $M_w = 24$ kg mol⁻¹. The phosphine complex 128 is active in the absence of a phosphine scavenger in non aqueous systems. Thus, by comparison to polymerizations in nonaqueous systems, activity is reduced 5-10-fold probably due to the disactivation of a part of the catalyst precursor upon preparation of the miniemulsion or in the early stages of the polymerization experiment. TEM micrographs show the particles to be spherical with particle size ranging from 91 to 544 nm.

The substituents on the N-bound aryl group (N-C₆H₃R₂) affect the degree of branching of the polymer formed and in turn its crystallinity and melt temperature.

For R = i Pr a total degree of branching of 40–50 is observed ($T_{\rm m} \sim 97$ °C, crystallinity $\sim 35\%$), while for R = 3,5-($F_{3}C$)₂C₆H₃ ca. 25 branches/1,000 carbon atoms ($T_{\rm m} \sim 110$ °C, crystallinity $\sim 45\%$) are found.

There is a strong interest in developing more active neutral Ni(II) complexes, being catalyst activity an issue in polymerization with these systems in general and in aqueous systems in particular. Since binuclear complexes can afford greater activity, higher molar masses and comonomer incorporation than the mononuclear analogue Mecking tested the binuclear complexes 96-99 in the ethylene polymerization in aqueous emulsion obtaining polyethylene dispersions. These binuclear pyridine complexes are very robust, in fact they are active over the entire temperature range studied, 20-70 °C, as single-component catalyst precursors, without the necessity of an activator and with a maximum of productivities up to $184 \times 10^3 \,\mathrm{C_2H_4}$ mol Ni⁻¹ h⁻¹ at 50 °C and pE = 40 bar. A broad distribution of polymer particle size with approximately a circular circumference was obtained. In addition to the pyridine complexes, the complex 96 of the less strongly coordinating tertiary amine tmeda was studied. In this case an activity was observed at a low polymerization temperature of 25 °C with a productivity of 2,500 mol C₂H₄ mol Ni⁻¹ h⁻¹ and a very high $(M_n = 232 \text{ kg mol}^{-1})$ molecular weight and linear polyethylene. Polymer molecular weights and melting points are similar to those obtained in nonaqueous polymerizations under identical conditions. However, as for mononuclear complexes, productivities in aqueous emulsions are decreased by comparison to polymerization in organic solvents.

2.5 Mechanistic Aspects

2.5.1 Mechanism of Ethylene Homopolymerization

Fundamental steps involved in ethylene polymerization catalyzed by N–Z containing Ni and Pd catalysts are depicted in Fig. 2.42. Generation of the active species, previously discussed, yields the hydrocarbyl complex with a vacant coordination site for the incoming olefin. Polymerization propagates via chain migration through four-centered transition state and product of insertion resembles the starting active species with a new vacant coordination site available for the further olefin coordination and insertion. Frequent termination pathways involve β -H elimination and β -H transfer to the monomer. Both lead to chain releasing with generation of a new active species. A feature of these catalysts is the formation of chain branches as a result of consecutive β -H elimination, rotation, and reinsertion reactions; the longer the chain walks the longer the branches.

In-depth mechanistic and theoretical works were focused on the cationic diimine complexes of nickel and palladium. NMR studies revealed a unique feature of these systems, the catalyst resting state is the alkyl ethylene complex. This is in clear contrast with early transition metal catalysts whereby such species are

Fig. 2.42 Mechanism for ethylene polymerization and branch formation with $[M(N-Z)L_n]$ complexes

generally not detected. Thus, the turnover limiting step is the migratory insertion reaction of the alkyl ethylene complex. Other remarkable insights originate from determination of the barriers to migratory insertions measured by low temperature NMR spectroscopy. For the palladium catalysts barriers lie in the range of 17–18 kcal mol⁻¹; systems bearing the bulkiest ligands exhibit the lowest insertion barriers. Barriers for the insertions in the nickel complexes are substantially lower and in the range of 13–14 kcal mol⁻¹. Such expected difference between first-row and second-row insertion accounts for the much higher activities of the nickel complexes. Increase in steric bulk of aryl substituents of diimine ligands leads to an increase in the ground-state energy of the resting-state species relative to the migratory insertion transition state in nickel species As a consequence, lower migratory insertion barriers were expected with bulkier diimine substituents.

In contrast, neutral Ni complexes are less amenable to mechanistic studies via direct observation with NMR spectroscopy than cationic Pd complexes. Thus, there is relatively little mechanistic information available regarding neutral nickel ethylene polymerization systems.

A number of salicylaldiminato nickel complexes were studied at DFT level to gain insights into polymerization mechanism adopted by these systems as well as to clarify various experimental evidences [118]. The influence of substituents on the ligand scaffold on phosphine dissociation, that is on catalyst activation, was previously discussed. Very interesting was the detailed investigation of species involved in propagation. The reduced symmetry introduced by the mixed ligand is reflected in the doubling of the number of geometric isomers of π complexes, transition states, and insertion products (Fig. 2.43). As a result of trans-influence the barriers associated with the olefin insertion into sites having the alkyl located

trans to the nitrogen donor are lower. Since the insertion of an ethylene unit changes the configuration of the chain with respect to the salicylaldiminato ligand, isomerization occurs at the π -complex stage so that insertion could proceed through the lower energy transition state. Accordingly, the lowest energy pathway for insertion proposed is depicted here with continuous arrows.

Interestingly, the β -H transfer mechanism for the termination was found to be energetically more favorable than the β -H elimination mechanism. The termination barriers found were generally higher than the insertion barriers. A comparison of the results obtained by varying the substituents on the catalyst backbone led to the conclusion that while influence of electronics on catalyst activity could not be easily predicted the addition of bulky substituents on the catalyst backbone should enhance catalyst activity.

Subsequently, combined DFT/stochastic studies were undertaken on the mechanism of ethylene polymerization catalyzed by a neutral Ni-anilinotropone catalysts. Chain propagation and isomerization as well as influence of reaction conditions on the branching formation were investigated. Similarly to the case of nickel-salicylaldiminato catalysts the activation barriers for the insertion of ethylene in complexes with the alkyl group trans to the oxygen donor were found higher than those encountered in *cis/trans* isomerization. Interestingly, stochastic simulation allowed for establishing temperature and pressure dependence of the polymer microstructure. In agreement with experimental evidences the model predicts a decrease with the number of branches with the increase of pressure. Temperature dependence behaves oppositely as a result of an increase in secondary insertions with the temperature.

To get a full mechanistic picture of a typical neutral catalyst system an elegant and in-depth NMR study of ethylene polymerizations catalyzed by the anilinotropone complexes was reported by Jenkins and Brookhart [107]. Detailed information concerning the chain propagation process, the barrier to ethylene insertion, the nature, and dynamics of the intermediate Ni alkyl complexes, and the chain transfer and catalyst decay processes were obtained.

Fig. 2.43 The lowest (continuous) and highest (dashed) energy pathways for the insertion of ethylene at nickel center in salicylaldiminato catalysts calculated by DFT

The rate of insertion of ethylene into the Ni-phenyl bonds of both unsubstituted and aryl-substituted of anilinotropone nickel(II) complexes was monitored by low-temperature NMR spectroscopy. The ethylene chain growth to form, initially, the corresponding $[Ni(L)(PPh_3)(CH_2CH_2Ph)]$ (L = M2, M13-16) complexes, was determined by monitoring the change in concentrations of starting complexes. First-order rate constants were measured as a function of temperature and ethylene concentration.

Even at high ethylene concentrations, only PPh₃ complexes were observed (no ethylene complexes were detected). As expected, rates accelerate with temperature, increasing about an order of magnitude between -10 and 10 °C. Insertion is dramatically inhibited by phosphine concentration. Thus, it was concluded that for these systems, the catalyst resting state(s) are an equilibrium mixture of phosphine and ethylene complexes (Fig. 2.44). Nevertheless, at high ethylene pressures, the equilibrium is shifted nearly completely to the side of the ethylene complex and TOF becomes independent of ethylene pressure (saturation conditions).

The barriers to migratory insertion in (N–O)Ni(R)-(C₂H₄) complexes, from measurements of TOFs under saturation conditions, were determined to lie in the range of 16–17 kcal mol⁻¹, that is only about 2–3 kcal mol⁻¹ greater than those observed for cationic diimine complexes.

The intermediate alkyl complexes have α -agostic interactions with dynamic behavior similar to the cationic alkyl diimine complexes. The barrier to β -H elimination and reinsertion is estimated in ca. 17 kcal mol^{-1} . Free energy barrier to nickel–carbon bond rotation in these complexes occurs with a barrier of 11.1 kcal mol^{-1} . These isomerization processes account for branched polyethylenes generated from these catalysts and resemble those previously observed with diimine catalysts.

Thermolysis of hexyl complex 182 generates the nickel hydride complex and 1-hexene via β -H elimination, through two pathways, one (dominant) independent of phosphine concentration and one involving reversible loss of phosphine, and thus inhibited by PPh₃. This process is a model for chain transfer and clearly explains why polymer molecular weights decrease with increasing phosphine

Fig. 2.44 Ethylene polymerization catalyzed by Ni-anilinotropone catalysts

concentration. The rate of propagation is retarded by increasing [PPh₃], while the rate of chain transfer is unchanged, resulting in an increase in R_{ct}/R_{prop} . Since chain transfer to monomer would exhibit a rate inhibition equal to that for R_{prop} with added PPh₃ it was concluded that the major chain transfer route is a simple β -elimination process, and not chain transfer to monomer.

At much slower rates, reductive elimination of the free ligand occurred from the hydride complex, (Fig. 2.45) and is inhibited by added phosphine. Catalyst decay under polymerization conditions was shown to occur by a similar process to generate free ligand and a bis-ligand complex formed by reaction of free ligand with an active catalyst species (Fig. 2.46).

Recently, Mecking [108] reported in depth mechanistic studies of the novel (dmso)-coordinated complex 70. Such complex resulted to be a suitable precursor for mechanistic studies of deactivation routes of neutral Ni(II) catalysts. Activation of 70 could be directly observed using dmso as a solvent, by ¹H NMR spectroscopy. Interestingly, a minor but sufficient portion of 70 was transformed into the hydride containing active species by insertion of ethylene and subsequent elimination of propylene.

Fig. 2.45 Catalysts deactivation for anilinotropone nickel catalysts

Fig. 2.46 Mechanism for ethylene polymerization from NMR studies of neutral [Ni(A14)R(dmso)] species

Surprisingly, catalyst resting state is the ethyl complex **72** that can undergo two different processes: (1) *cis/trans* isomerization of alkyl and dmso in respect to the position of donors in salicylaldiminato ligand and (2) exchange of α - and β -carbon of ethyl group β -H, rotation, and reinsertion. Catalytic dimerization of ethylene to 1- (15%) and 2-butenes (85%) was observed. Isomer ratio suggests secondary butyl-Ni complex as thermodynamically favoured.

To get insights on how this system behaves in presence of polar reagents, the reactivity toward water was examined. Added D_2O revealed that water does not significantly coordinate to the metal center. Hydrolysis of the Ni–Me bond of the catalyst precursor is evidenced by the formation of CH_3D . Conversely, no hydrolysis of the higher $Ni-C_nH_{2n+1}$ (n>1) occurring during chain growth was observed, suggesting that hydrolysis of Ni-alkyl species is a minor decomposition pathway. More remarkably, the significant deactivation was found to be the reductive elimination of alkanes by reaction between alkyl and hydride containing species as well as by reaction of two Ni–Me catalyst precursors yielding ethane. This is in line with the previous Grubbs' suggestion that bulky substituted salicylaldiminato ligands hinder catalyst decomposition [109]. These studies demonstrated for the first time that bimolecular elimination of alkane from reaction of Ni-alkyl and Ni-hydride species is a possible deactivation route for neutral nickel catalysts. This provides a rationale for catalyst design and for an appropriate choice of reaction conditions that provide site isolation.

2.5.2 Mechanism of Copolymerization of Ethylene with Polar Monomers

Neutral nickel(II) catalysts are attractive for their functional group tolerance and potential in copolymerization of vinyl polar monomers. As already pointed out, cationic Pd-diimine catalysts pioneered by Brookhart, allow the coordinationinsertion copolymerization of ethylene with polar vinyl monomers such as MA and VA. Low-temperature NMR studies of reactions of cationic palladium R-diimine complexes with ethylene and methyl acrylate revealed all of the critical intermediates spectroscopically and allowed in depth mechanistic understanding. They are formed by chelating coordination of the carbonyl group of an inserted MA unit. Acrylate insertion occurs predominantly in a 2,1-fashion, yielding chelate species of general formula $[Pd(N-N)(\kappa^2-C,O-CHRC(=O)OMe]$ in which the carbonyl group of the inserted MA is coordinated to Pd yielding a strained four-membered chelate ring. Subsequent β -H eliminations and readditions expand the ring stepwise to the six membered chelate complex, which is the catalyst resting state. Opening of these chelates by coordination of incoming monomer to form the corresponding olefin complexes is the turnover-limiting step during copolymer chain-growth [110, 111].

The relative E/MA ratios of incorporation into the copolymers are governed by both the equilibrium ratio of the alkyl ethylene and alkyl MA complexes and their relative rates of migratory insertion. Even if the rate of migratory insertion of MA

is somewhat faster than that of ethylene at low temperature, there is a great preference for ethylene binding to the electrophilic Pd center is over that of the electron-deficient olefin, MA. This implies use of very large [MA]/[E] ratios to achieve significant incorporation of MA into the copolymer. As a consequence, the overall rate of polymerization decreases due to increased concentrations of the chelate complex.

Conversely, most attempts to copolymerize ethylene with MA with Ni-diimine catalysts were unsuccessful. Theoretical investigations by gradient-corrected DFT theory revealed that the main difference between Ni and Pd is that *O*-bonding mode of MA due to the higher oxophilicity of Ni, owed namely to steric reasons rather than to the orbital interaction [112]. They suggested that copolymerization would be possible under harsh conditions. Indeed some Ni-diimine-based systems were reported to effectively copolymerize E with MA at high temperatures (120 °C) and very high pressure (340 bar). These conditions appeared to favour the dissociation of the carbonyl coordination of MA from the electrophilic nickel centre. Very interestingly while ethylene-MA copolymers obtained with cationic Pd diimine catalysts are highly branched due to extensive chain walking, Ni complexes give linear ethylene-MA copolymers.

It was foreseen that to avoid problem of the O-binding of MA to oxophilic cationic Ni catalysts the use of anionic ligands would enhance the preference for the π -coordination and favour the ethylene MA copolymerization [112, 113].

These results encouraged extensive studies of novel neutral nickel(II) olefin polymerization catalysts [97, 114, 115]. They are much more stable to protic and aqueous media and the variety of catalysts developed with different ligands allows to vary the microstructures and crystallinities of resulting polymers in a controlled fashion over a wide range. However, although the numerous polymerization studies, copolymerization of ethylene (or 1-olefins) with polar vinyl monomers, like MA, to high-molecular-weight copolymers employing neutral Ni(II) precatalysts is limited from either low activity or rapid catalyst deactivation.

Recently, a comprehensive NMR study of two neutral nickel complexes **71** and **72** provided insights into the reactivity of active neutral Ni(II) species toward polymerization of polar vinyl monomers (Fig. 2.47). The two complexes were found to be well-defined model compounds for these studies and allowed direct observations of organometallic species and decomposition products originating from insertion of polar vinyl monomer into the key intermediates.

MA insertion into the Ni–H bond of **71** was monitored at $T \ge -40$ °C by NMR spectroscopy. MA readily inserts into Ni–H bond as well as into Ni-alkyl species with exclusively regiospecific 2,1-insertions even at low temperature (-30 °C). A weak, but distinct, chelating interaction of the O-atom of the carbonyl group with the metal center after insertion was demonstrated at low temperature, in agreement with a geometry-optimized structure calculated by DFT.

Exposure of the hydride **71** to equal amounts of ethylene and MA resulted in the formation of MA and ethylene insertion products in a 9:1 ratio, which demonstrated that both monomers can effectively compete with each other for coordination and insertion. Thus, a prerequisite for their copolymerization was fulfilled.

a)
$$\bigcap_{N} \bigcap_{N} \bigcap$$

Fig. 2.47 Reactions of complex 71 with ethylene and MA

However, although the product of insertion is stable in the absence of residual Ni–H species at low temperatures, it is subject to rapid bimolecular elimination of the functionalized alkyl moiety in the presence of free **71**. Moreover, at 0 °C β -H elimination occurs to such an extent and decomposition from solutions initially not containing the hydride takes place. Exposure of the higher Ni-alkyl complex to MA in the presence of excess ethylene results in the immediate formation of methyl pentanoate as the ultimate decomposition product.

Interestingly, while the Ni-Et species is practically stable toward hydrolysis at 55 °C [107, 108] the analogous R-carbonyl substituted metal alkyl originating from 2,1-insertion of MA is subject to rapid hydrolysis at room temperature in agreement with the previous studies on the organic decomposition products of the reaction of a Ni-phenyl complex 5 with MA [116].

VA inserts less readily than MA into the hydride complex **71**. Insertion occurs at 0 °C, yielding both the kinetic 1,2-insertion product and the thermodynamically favored 2,1-insertion product. NMR data and a theoretical study indicate an interaction of the carbonyl O-atom with the nickel atom, structurally similar to the MA insertion product. Decomposition occurs by β -acetate elimination even at low temperatures.

Qualitatively, the observed reactivity of VA toward the neutral hydride and alkyls complexes studied parallels observations with cationic Ni(II) diimine complexes [117].

2.6 Summary and Conclusions

Group 10 metal complexes with mixed ligands based on nitrogen (N–Z) for olefin polymerization catalysis in academic articles have been comprehensively reviewed. Olefin, namely ethylene, homopolymerization and copolymerization of

ethylene with functionalized norbornenes, functionalized α -olefins, and polar vinyl monomers have been considered. It is clear that while palladium and P–O ligands were discovered first and dominate ethylene copolymerization with CO and the SHOP process, nickel and N–O chelates prevail in the new classes of late-transition metal complexes with mixed chelating ligands for olefin polymerization catalysis. This is related to the higher insertion barrier in palladium diimine catalysts when compared to the analogous nickel complexes. The nickel P–N based catalysts reported so far reveal a greater stability and a greater tendency to chain walking (branches on branches) than diimine catalysts, but there is no clear tendency in the few examples since small changes in the substituents or subtle variations in the structure give dramatic differences in the catalytic behaviour. Palladium catalysts with P–N ligands are low active and tend to decompose, as they seem to do those with N–S ligands.

Most ligands in nickel complexes such as salicylaldimine, anilinotropone, enolatoimine, and other ligands are anionic and feature steric bulk to achieve high molecular weights. Thanks to the combination of steric and electronic factors on the substituents and the dissociation ability of the stabilizing ligand (dmso > MeCN > py > PR₃) most behave as single component catalysts. Addition of a cocatalyst or of a scavenger as $B(C_6F_5)_3$ or $[Ni(cod)_2]$ enhances the activity. In phosphine complexes insertion is inhibited by phosphine concentration since the resting state of these systems is the phosphine complex. In NMR studies of anilinotropone catalyst in the presence of ethylene the resting state(s) was demonstrated to be an equilibrium mixture of phosphine and ethylene complexes.

Regarding the olefin polymerization there is a temperature and pressure dependence of the polymer microstructure, namely the degree of branches. A decrease of branching occurs with the increase of pressure, while the temperature dependence is opposite, due to an increase in secondary insertions with the temperature.

More relevant for the design of catalysts is the selection of the substituent on the chelate scaffold. The salicylaldiminato complexes of Ni(II) are the best studied of these systems since, having many sites available for substitution, they allow appropriate tailoring of the catalyst. Depending on substituent variation it is possible to tune activities, molar masses, and branching. High activity can be reached.

The N-aryl ring lies roughly perpendicular to the square plane of the molecule, increasing the steric bulk of ortho substituents on this ring increases the catalyst productivity, $M_{\rm w}$, and linearity of PE. Electron withdrawing or donating substituents on N-terphenyl moieties have remote dramatic effects on branching, crystallinity and molar masses: linear, semicrystalline or highly branched, amorphous polymers can be prepared. Often branches increase at the expense of molecular weight. Electron withdrawing substituents on the phenoxide ring also increase the productivity. Thus, an increased electrophilicity of the Ni center, brought about by electron withdrawing groups in the N–O ligand increases the polymerization rates. Bulky substituents adjacent to the phenoxide group increase catalyst lifetime by slowing or preventing decomposition to the corresponding bis(salicylaldiminato)

Ni complexes. The design and synthesis of binuclear Ni(II) aldiminato complexes showed cooperativity effects leading to more linear PE with very high activity and molar masses.

Similar effects of substituents adjacent the oxygen of the chelate ring or on the N aryl groups are observable in other families of six membered ring ligands as PymNox and enolatoimine complexes, which are also very active for ethylene polymerization.

Steric and electronic effects have similar influence also in complexes with five membered ring ligands. In particular the anilinotropone complexes feature PE with highest activity and very high molar masses, while those based on α -iminocarboxamide allow to obtain living systems at 20 °C, when activated with [Ni(cod)₂].

Thus, these Ni catalyst systems are capable of introducing over 50 branches/ 1,000 C into the polymer chain, yielding polymers with lower melting points than those produced by their group 4 catalysts. A controlled degree of branching is desirable in polyolefins to depress the glass transition and melting temperatures, thus improving processability. However, they typically exhibit PE with lower molecular weight than catalysts industrially used.

The high activity of some of these neutral late transition metal catalysts, which are active in the presence of polar additives with only minor reduction in activity, makes them interesting for the synthesis of polymer dispersions by polymerization in aqueous systems. Although, with increasing electrophilicity of the metal center also reactivity and sensitivity toward water increase. Very interesting results were achieved with the most active complexes, especially those based on enolatoimine and ditopic salyciladimines. Very high TOF and molar masses were obtained even though productivities in aqueous emulsions are decreased by comparison to non aqueous polymerization.

The main interest in these systems arise from the need to incorporate small amount of monomers containing polar groups to endow polyolefins with additional physical and chemical characteristics. Indeed, the neutral salicylaldiminato based nickel catalysts copolymerize ethylene with a variety of functionalized norbornenes such as 5-norbornen-2-ol and 5-norbornene-2-yl acetate, and functionalized α -olefins, showing the functional-group tolerance of these neutral catalysts. Incorporation of functionalized norbornenes with bimetallic complexes is four times that with mononuclear analogues. Random and block copolymers between ethylene and functionalized norbornenes have been achieved with α -iminocarboxamide complexes.

More challenging still is copolymerization with polar vinyl monomers. There are few examples of linear copolymers with acrylates by mononuclear (N–O)Ni complexes. Recent studies have demonstrated that the challenging nature of these copolymerizations arises from the low reactivity towards olefin insertion of an α -carbonyl substituted metal alkyl combined to the particular susceptibility of functionalized olefin insertion products to specific bimolecular deactivation reactions and hydrolytic pathways. Site isolation (and strictly inert conditions), however, enhancing the reactivity of the functionalized olefin insertion product for following insertions seems to be necessary.

More interesting are the results with binuclear (N–O)Ni complexes. The cooperative bimetallic catalytic interactions lead to increased polar comonomer enchainment selectivity for functionalized monomers and especially for acrylates (ten, one hundred times that from monometallic complexes). The selectivity of the bimetallic systems for higher comonomer incorporation, as well as different branch content, affords substantially altered polymer microstructures, with lowered melting points and greater solubility. Furthermore, the bimetallic catalysts exhibit significantly higher activities than the monometallic catalysts in the presence of polar solvents, while concurrently achieving higher molecular weights. This feature permits using less rigorously dried media for polymerization while preserving the desired product microstructure. Finally, the cooperative effects between group 10 catalytic centers, not only substantially enhance the catalyst/polymer properties that have made the monometallic analogues of interest, but also expand the range of polymerizations possible.

In conclusions, progress in design and synthesis of neutral nickel catalysts and understanding of the factors that regulate the reactivity towards olefin and polar monomers give promise to address the issue of introducing functional groups into aliphatic polyolefin backbones. It is expected that even though modern palladium complexes based on P–O ligands give very attractive copolymers with polar monomers, economical and environmental concerns related to palladium catalysts will encourage further efforts in the design and developments of nickel and other more environmental friendly catalysts.

Acknowledgments Financial support from Regione Lombardia in the frame of the International Scientific Cooperation AQUA project (ID 17163 e Rif.n° EN-18) is acknowledged.

References

- Polyolefins Planning Service: Executive Report (2010) Global commercial analysis March 2010, Nexant, Inc, London
- Pino P, Mülhaupt R (1980) Stereospecific polymerization of propylene: an outlook 25 years after its discovery. Angew Chem Int Ed 19:857–875. doi:10.1002/anie.198008571
- Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth RM (1995) Stereospecific olefin polymerization with chiral metallocene catalysts. Angew Chem Int Ed 34:1143–1170. doi:10.1002/anie.199511431
- Coates GW (2000) Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem Rev 100:1223–1252. doi:10.1021/cr990286u
- 5. Resconi L, Cavallo L, Fait A, Piemontesi F (2000) Selectivity in propene polymerization with metallocene catalysts. Chem Rev 100:1253–1346. doi:10.1021/cr9804691
- Gibson VC, Spitzmesser SK (2003) Advances in non-metallocene olefin polymerization catalysis. Chem Rev 103:283–315. doi:10.1021/cr980461r
- 7. Boffa LS, Novak BM (2000) Copolymerization of polar monomers with olefins using transition-metal complexes. Chem Rev 100:1479–1494. doi:10.1021/cr990251u
- Nakamura A, Ito S, Nozaki K (2009) Coordination-insertion copolymerization of fundamental polar monomers. Chem Rev 109:5215–5244. doi:101021/cr900079r

- 9. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100:1169–1204. doi:10.1021/cr9804644
- 10. Rieger B, Saunders Baugh L, Kacker S, Striegler S (eds) (2003) Late transition metal polymerization catalysis. Wiley, Weinheim
- 11. Mecking S (2001) Olefin polymerization by late transition metal complexes. A root of Ziegler catalysts gains new ground. Angew Chem Int Ed 40:534–540. doi:10.1002/1521-3773(20010202)40:3<534:AID-ANIE534>3.0.CO;2-C
- 12. Drent E, Budzelaar PHM (1996) Palladium-catalyzed alternating copolymerization of alkenes and carbon monoxide. Chem Rev 96:663–682. doi:10.1021/cr940282j
- 13. Bianchini C, Meli A (2002) Alternating copolymerization of carbon monoxide and olefins by single-site metal catalysis. Coord Chem Rev 225:35–66. doi:10.1016/S0010-8545(01)00405-2
- 14. Johnson LK, Killian CM, Brookhart M (1995) New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α -olefins. J Am Chem Soc 117:6414–6415. doi: 10.1021/ja00128a054
- Johnson LK, Mecking S, Brookhart M (1996) Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J Am Chem Soc 118:267–268. doi:10.1021/ja953247i
- 16. Killian CM, Tempel DJ, Johnson LK, Brookhart M (1996) Living polymerization of α-olefins using Ni^{II}-α-diimine catalysts. Synthesis of new block polymers based on α-olefins. J Am Chem Soc 118:11664–11665. doi:10.1021/ja962516h
- 17. Killian CM, Johnson LK, Brookhart M (1997) Preparation of linear α-olefins using cationic nickel(II) α-diimine catalysts. Organometallics 16:2005–2007. doi:10.1021/om961057q
- 18. Mecking S, Johnson LK, Wang L, Brookhart M (1998) Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. J Am Chem Soc 120:888–899. doi:10.1021/ja964144i
- 19. Svejda SA, Johnson LK, Brookhart M (1999) Low-temperature spectroscopic observation of chain growth and migratory insertion barriers in (α-diimine)Ni(II) olefin polymerization catalysts. J Am Chem Soc 121:10634–10635. doi:10.1021/ja991931h
- 20. Gates DP, Svejda SA, Onate E, Killian CM, Johnson LK, White PS, Brookhart M (2000) Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules 33:2320–2334. doi:10.1021/ma991234+
- 21. Chen EYX (2009) Coordination polymerization of polar vinyl monomers by single-site metal catalysts. Chem Rev 109:5157–5214. doi:10.1021/cr9000258
- 22. Keim W, Kowaldt FH, Goddard R, Krüger C (1978) Novel coordination of (Benzoylmethylene) triphenylphosphorane in a nickel oligomerization catalyst. Angew Chem Int Ed 17:466–467. doi:10.1002/anie.197804661
- Keim W, Behr A, Gruber B, Hoffmann B, Kowaldt FH, Kuerschner U, Limbaecker B, Sistig FP (1986) Reactions of chelate ylides with nickel(0) complexes. Organometallics 5:2356–2359. doi:10.1021/om00142a031
- 24. Keim W (1990) Nickel: an element with wide application in industrial homogeneous catalysis. Angew Chem Int Ed 29:235–244. doi:10.1002/anie.199002351
- 25. Newkome GR (1993) Pyridylphosphines. Chem Rev 93:2067–2089. doi:10.1021/cr00022a006
- 26. Espinet P, Soulantica K (1999) Phosphine-pyridyl and related ligands in synthesis and catalysis. Coord Chem Rev 193–195:499–556. doi:10.1016/S0010-8545(99)00140-X
- 27. Gómeza M, Muller G, Rocamora M (1999) Coordination chemistry of oxazoline ligands. Coord Chem Rev 193–195:769–835. doi:10.1016/S0010-8545(99)00086-7
- Helmchen G, Pfaltz A (2000) Phosphinooxazolines a new class of versatile, modular P, N-ligands for asymmetric catalysis. Acc Chem Res 33:336–345. doi:10.1021/ar9900865
- Braunstein P, Naud F (2001) Hemilability of hybrid ligands and the coordination chemistry of oxazoline-based systems. Angew Chem Int Ed 40:680–699. doi:10.1002/1521-3773(20010216) 40:4<680:AID-ANIE6800>3.0.CO:2-0

- Chelucci G, Orru G, Pinna GA, Chiral P (2003) N-ligands with pyridine-nitrogen, phosphorus donor atoms. Syntheses, applications in asymmetric catalysis. Tetrahedron 59:9471–9515. doi:10.1016/j.tet.2003.09.066
- 31. Braunstein P (2004) Functional ligands and complexes for new structures, homogeneous catalysts, and nanomaterials. J Organomet Chem 689:3953–3967. doi:10.1016/j.jorganchem. 2004.06.024
- 32. Guiry PJ, Saunders CP (2004) The development of bidentate P, N ligands for asymmetric catalysis. Adv Synth Catal 346:497–537. doi:10.1002/adsc.200303138
- 33. Yamamoto A (1986) Organotransition metal chemistry. Wiley, New York
- 34. Guan Z, Marshall WJ (2002) Synthesis of new phosphine imine ligands and their effects on the thermal stability of late-transition-metal olefin polymerization catalysts. Organometallics 21:3580–3586. doi:10.1021/om020240i
- Brookhart M, Daugulis O (2002) Polymerization of ethylene with cationic palladium and nickel catalysts containing bulky nonenolizable imine-phosphine ligands. Organometallics 21:5926–5934. doi:10.1021/om0206305
- 36. Tempel DJ, Johnson LK, Huff RL, White PS, Brookhart M (2000) Mechanistic studies of Pd(II)-α-diimine catalyzed olefin polymerizations. J Am Chem Soc 122:6686–6700. doi: 10.1021/ja000893v
- Speiser F, Braunstein P, Saussine L (2005) Catalytic ethylene dimerization and oligomerization: recent developments with nickel complexes containing P, N-chelating ligands. Acc Chem Res 38:784–793. doi:10.1021/ar050040d
- 38. Wang C, Friedrich S, Younkin TR, Li RT, Grubbs RH, Bansleben DA, Day MW (1998) Neutral nickel(II)-based catalysts for ethylene polymerization. Organometallics 17:3149–3151. doi:10.1021/om980176y
- Younkin TR, Connor EF, Henderson JI, Friedrich SK, Grubbs RH, Bansleben DA (2000) Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms. Science 287:460–462. doi:10.1126/science.287.5452.460
- 40. Bauers FM, Mecking S (2001) Aqueous homo- and copolymerization of ethylene by neutral nickel(II) complexes. Macromolecules 34:1165–1171. doi:10.1021/ma001704w
- 41. Pickel M, Casper T, Rahm A, Dambouwy C, Chen P (2002) Facile preparation and activation of high-productivity single-site nickel catalysts for highly linear polyethylene. Helv Chim Acta 85:4337–4352
- 42. Carlini C, Raspolli Galletti AM, Sbrana G (2003) Ethylene homopolymerization by novel Ziegler Natta-type catalytic systems obtained by oxidative addition of salicylaldimine ligands to bis(1, 5-cyclooctadiene)nickel(0) and methylalumoxane. Polymer 44:1995–2003. doi:10.1016/S0032-3861(03)00078-8
- 43. Carlini C, De Luise V, Grillo Fernandes E, Martinelli M, Raspolli Galletti AM, Sbrana G (2005) Effect of free trimethylaluminum content in methylaluminoxane on performances of bis(salicylaldiminate)nickel(ii)-based catalysts for ethylene polymerization. Macromol Rapid Comm 26:808–812. doi:10.1002/marc.200500005
- 44. Zuideveld MA, Wehrmann P, Röhr C, Mecking S (2004) Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(ii) complexes. Angew Chem Int Ed 43:869–869. doi:10.1002/anie.200352062
- Sun JQ, Shan YH, Xu YJ, Cui YG, Schumann H, Hummert M (2004) Novel cyclohexylsubstituted salicylaldiminato—nickel(II) complex as a catalyst for ethylene homopolymerization and copolymerization. J Polym Sci Part A Polym Chem 42:6071–6080. doi:10.1002/pola.20458
- 46. Shan YH, Sun JQ, Xu YJ, Cui YG, Lin F (2005) Ethylene polymerization and copolymerization with polar monomers by a neutral nickel catalyst combined with co-catalyst of Ni(COD)₂ or Al(i-Bu)₃. Chin J Polym Sci 23:301–310. doi:10.1142/S0256767905000436
- Bastero A, Franciò G, Leitner W, Mecking S (2006) Catalytic ethylene polymerisation in carbon dioxide as a reaction medium with soluble nickel(II) catalysts. Chem Eur J 12:6110–6116. doi:10.1002/chem.200600499
- 48. Göttker-Schnetmann I, Wehrmann P, Röhr C, Mecking S (2007) Substituent effects in $[(\kappa^2-N, O)$ salicylaldiminato nickel(II)-methyl pyridine polymerization catalysts: terphenyls

- controlling polyethylene microstructures. Organometallics 26:2348–2362. doi: 10.1021/om0611498
- Bastero A, Göttker-Schnetmann I, Röhr C, Mecking S (2007) Polymer microstructure control in catalytic polymerization exclusively by electronic effects of remote substituents. Adv Sinth Catal 349:2307–2316
- 50. Guironnet D, Göttker-Schnetmann I, Mecking S (2009) Catalytic polymerization in dense CO_2 to controlled microstructure polyethylenes. Macromolecules 42:8157–8164. doi: 10.1021/ma901397q
- 51. Zhang D, Weng L, Jin GX (2010) Structural characterization of nitro-substituted phenoxyiminato nickel complexes; inter-molecular π-π interactions in the solid states and effect of the electron drawing groups on catalytic activity. J Organomet Chem 695:643–647. doi:10.1016/j.jorganchem.2009.11.033
- 52. Kettunen M, Abu-Surrah AS, Abdel-Halim HM, Repo T, Leskela M, Laine M, Mutikainen I, Ahlgren M (2004) Synthesis, spectroscopy and molecular structures of new salicylketiminato nickel(II) complexes. Polyhedron 23:1649–1656. doi:10.1016/j.poly.2004.03.018
- Brasse M, Campora J, Palma P, Alvarez E, Cruz V, Ramos J, Reyes ML (2008) Nickel 2-iminopyridine N-oxide (PymNox) complexes: cationic counterparts of salicylaldiminatebased neutral ethylene polymerization catalysts. Organometallics 27:4711–4723. doi: 10.1021/om800548y
- 54. Zhang D, Jin GX (2006) Bimetallic nickel complexes of trimethyl phenyl linked salicylaldimine ligands: synthesis, structure and their ethylene polymerization behaviors. Inorg Chem Commun 9:322–1325. doi:10.1016/j.inoche.2006.08.017
- 55. Chen Q, Yu J, Huang J (2007) Arene-bridged salicylaldimine-based binuclear neutral nickel(II) complexes: synthesis and ethylene polymerization activities. Organometallics 26:617–625. doi:10.1021/om060778e
- Wehrmann P, Mecking S (2008) Highly active binuclear neutral nickel(II) catalysts affording high molecular weight polyethylene. Organometallics 27:1399–1408. doi:10.1021/om700942z
- 57. Guironnet D, Friedberger T, Mecking S (2009) Ethylene polymerization in supercritical carbon dioxide with binuclear nickel(II) catalysts. Dalton Trans 8929–8934. doi: 10.1039/b912883b
- Sujith S, Dae JJ, Na SJ, Park YW, Choi JH, Lee BY (2005) Ethylene/polar norbornene copolymerizations by bimetallic salicylaldimine-nickel catalysts. Macromolecules 38:10027–10033. doi:10.1021/ma051344i
- 59. Hu T, Tang LM, Li XF, Li YS, Hu NH (2005) Synthesis and ethylene polymerization activity of a novel, highly active single-component binuclear neutral nickel(II) catalyst. Organometallics 24:2628–2632. doi:10.1021/om049223e
- Rodriguez BA, Del ferro M, Marks TJ (2008) Neutral bimetallic nickel(II) phenoxyiminato catalysts for highly branched polyethylenes and ethylene-norbornene copolymerizations. Organometallics 27:2166–2168. doi:10.1021/om800208f
- Shim CB, Kim YH, Lee BY, Dong Y, Yun H (2003) [2-(alkylideneamino)benzoato]nickel(II) complexes: active catalysts for ethylene polymerization. Organometallics 22:4272–4280. doi: 10.1021/om0303303
- 62. Schroder DL, Keim W, Zuideveld MA, Mecking S (2002) Ethylene polymerization by novel, easily accessible catalysts based on nickel(II) diazene complexes. Macromolecules 35:6071–6073. doi:10.1021/ma012171
- 63. Li XF, Li YG, Li YS, Chen YX, Hu NH (2005) Copolymerization of ethylene with methyl methacrylate with neutral nickel(II) complexes bearing α -ketoiminato chelate ligands. Organometallics 24:2502–2510. doi:10.1021/om049080w
- 64. Zhang L, Brookhart M, White PS (2006) Synthesis, characterization, and ethylene polymerization activities of neutral nickel(II) complexes derived from anilino-substituted enone ligands bearing trifluoromethyl and trifluoroacetyl substituents. Organometallics 25:1868–1874. doi:10.1021/om050931p
- 65. Song DP, Ye WP, Wang YX, Liu JY, Li YS (2009) Highly active neutral nickel(II) catalysts for ethylene polymerization bearing modified β -ketoiminato ligands. Organometallics 28:5697–5704. doi:10.1021/om900477k

- 66. Yu SM, Berkefeld A, Göttker-Schnetmann I, Mulller G, Mecking S (2007) Synthesis of aqueous polyethylene dispersions with electron-deficient neutral nickel(II) catalysts with enolatoimine ligands. Macromolecules 40:421–428. doi:10.1021/ma061804n
- 67. Boardman BM, Valderrama JM, Muñoz F, Wu G, Bazan GC, Rojas R (2008) Remote activation of nickel complexes by coordination of $B(C_6F_5)_3$ to an exocyclic carbonitrile functionality. Organometallics 27:1671-1674. doi:10.1021/om700933y
- 68. Song DP, Wu Jq, Ye WP, Mu HL, Li YS (2010) accessible, highly active single-component β-ketoiminato neutral nickel(II) catalysts for ethylene polymerization. Organometallics 29:2306–2314. doi:10.1021/om100075u
- Nodono M, Novak BM, Boyle PT (2004) Ethylene polymerization catalyzed by neutral nickel(II) complex with O–N-chelating ligand. Polymer J 36:140–145. doi:10.1295/ polymj.36.140
- Batten MP, Canty AJ, Cavell KJ, Ruther T, Skelton BW, White AH (2006) Synthesis of nickel(II) complexes containing neutral N, N- and anionic N, O- bidentate ligands, and their behaviour as chain-growth catalysts; structural characterization of complexes containing (mim)2CO, mimCO2-, and mimCPh2O- (mim = 1-methylimidazol-2-yl). Inorg Chim Acta 359:1710–1724. doi:10.1016/j.ica.2004.06.069
- Desjardins SY, Cavell KJ, Jin H, Skelton BW, White AH (1996) Insertion into the nickelcarbon bond of N-O chelated arylnickel(II) complexes. The development of single component catalysts for the oligomerisation of ethylene. J Organomet Chem 515:233–243. doi:10.1016/0022-328X(95)06105-6
- 72. Desjardins SY, Cavell KJ, Hoare JL, Skelton BW, Sobolev AN, White AH, Keim W (1997) Single component N-O chelated arylnickel(II) complexes as ethane polymerisation and CO/ ethene copolymerisation catalysts. Examples of ligand induced changes to the reaction pathway. J Organomet Chem 554:163–174. doi:10.1016/S0022-328X(96)06953-7
- 73. Lee BY, Bazan GC, Vela J, Komon ZJA, Bu X (2001) α-Iminocarboxamidato-nickel(II) ethylene polymerization catalysts. J Am Chem Soc 123:5352–5353. doi:10.1021/ja004191h
- Rojas RS, Wasilke JS, Wu G, Ziller JW, Bazan GC (2005) α-Iminocarboxamide nickel complexes: synthesis and uses in ethylene polymerization. Organometallics 24:5644–5653. doi:10.1021/om050640g
- 75. Azoulay JD, Itigaki K, Wu G, Bazan GC (2008) Influence of steric and electronic perturbations on the polymerization activities of α-iminocarboxamide nickel complexes. Organometallics 27:2273–2280. doi:101021/om8000263
- Krajete A, Steiner G, Kopacka H, Ongania KH, Wurst K, Kristen MO, Preishuber-Pflügl P, Bildstein B (2004) Iminohydroxamato early and late transition metal halide complexes new precatalysts for aluminoxane-cocatalyzed olefin insertion polymerization. Eur J Inorg Chem 1740–1752. doi: 10.1002/ejic.200300405
- 77. Hicks FA, Brookhart M (2000) Synthesis of 2-anilinotropones via palladium-catalyzed amination of 2-triflatotropone. Org Lett 2:219–221. doi:10.1021/ol991310t
- Hicks FA, Brookhart M (2001) A highly active anilinotropone-based neutral nickel(II) catalyst for ethylene polymerization. Organometallics 20:3217–3219. doi:10.1021/ om010211s
- 79. Hicks FA, Jenkins JC, Brookhart M (2003) Synthesis and ethylene polymerization activity of a series of 2-anilinotropone-based neutral nickel(II) catalysts. Organometallics 22:3533–3545. doi:10.1021/om030142c
- Jenkins JC, Brookhart M (2003) A highly active anilinoperinaphthenone-based neutral nickel(II) catalyst for ethylene polymerization. Organometallics 22:250–256. doi: 10.1021/om020648f
- Okada M, Nakayama Y, Ikeda T, Shiono T (2006) Synthesis of uniquely branched polyethylene by anilinonaphthoquinone ligated nickel complex activated with tris(penta-fluorophenyl)borane. Macromol Rapid Commun 27:1418–1423. doi:10.1002/marc.200600335

- 82. Okada M, Nakayama Y, Shiono T (2007) Synthesis of anilinonaphthoquinone-based nickel complexes and their application for olefin polymerization. J Organomet Chem 692:5183–5189. doi:10.1016/j.jorganchem.2007.07.049
- 83. Zhang D, Jin GX (2003) Novel, highly active binuclear 2, 5-disubstituted amino-p-benzoquinone-nickel(II) ethylene polymerization catalysts. Organometallics 22:2851–2854. doi:10.1021/om030068y
- 84. Ponikwar W, Mihan S, Sünkel K, Beck W (2006) Aryl Phosphine Nickel(II) and Palladium(II) Complexes with N, O-Aminocarboxylate Chelate Ligands [(Aryl)(R₃P)M(N, O-α-aminocarboxylate)] (M = Ni, Pd). Catalysts for the polymerization of olefins. Z Anorg Allg Chem 632:2299–2304. doi:10.1002/zaac.200600174
- Johnson LK, Bennett AMA, Ittel SD, Wang L, Parthasarathy A, Hauptman E, Simpson RD, Feldman J, Coughlin EB (1997) WO Patent Application 9830609 to DuPont, Priority date 4 January 1997
- 86. Killian CM, MacKenzie PB, McDevitt JP, Moody LS, Ponasik JA (1998) WO Patent Application 9840420 to Eastman, Priority date 10 December 1998
- 87. Drent E, Arnoldy P, Budzelaar PHM (1993) Efficient palladium catalysts for the carbonylation of alkynes. J Organomet Chem 455:247–253. doi:10.1016/0022-328X(93)80406-2
- 88. Dekker GPCM, Buijs A, Elsevier J, van Leeuwen PWNM, Smeets WJJ, Spek AL, Wang YF, Stam CH (1992) New neutral and ionic methyl and chloro palladium and platinum complexes containing hemilabile phosphorus-nitrogen ligands. Study of the insertion of carbon monoxide into the metal-methyl bond. Organometallics 11:1937–1948. doi: 10.1021/om00041a028
- van den Beuken EK, Smeets WJJ, Spek AL, Feringa BL (1998) Oligomerisation of ethene by new palladium iminophosphine catalysts. Chem Commun 2:223–224. doi: 10.1039/A707495F
- 90. Kwon HY, Lee SY, Lee BY, Shin DM, Chung YK (2004) Synthesis, characterization and ethylene reactivity of 2-diphenylphosphanylbenzamido nickel complexes. Dalton Trans 921–928. doi:10.1039/b317033k
- 91. Chen HP, Liu YH, Peng SM, Liu ST (2003) New bulky phosphino-pyridine ligands. Palladium and nickel complexes for the catalytic polymerization and oligomerization of ethylene. Organometallics 22:4893–4899. doi:10.1021/om030242i
- 92. Daugulis O, Brookhart M, White PS (2002) Phosphinidine-palladium complexes for the polymerization and oligomerization of ethylene. Organometallics 21:5935–5943. doi: 10.1021/om020631x
- 93. Huang YB, Jia WG, Jin GX (2009) Synthesis, characterization and olefin polymerization of the nickel catalysts supported by [N, S] ligands. J Organomet Chem 694:86–90. doi: 10.1016/j.jorganchem.2008.10.009
- 94. Tritto I, Donetti R, Sacchi MC, Locatelli P, Zannoni G (1997) Evidence of zircononium-polymeryl ion pairs from ¹³C NMR in situ ¹³C-₂H₄ polymerization with Cp₂Zr(¹³CH₃)₂-based catalysts. Macromolecules 32:264–269. doi:10.1021/ma981164r
- 95. Chen Y-X, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. Chem Rev 100:1391–1434. doi:10.1021/cr980462j
- Rojas RS, Galland GB, Wu G, Bazan GC (2007) Single-component α-iminocarboxamide nickel ethylene polymerization and copolymerization initiators. Organometallics 26:5339–5345. doi:10.1021/om070155g
- 97. Connor EF, Younkin TR, Henderson JI, Hwang S, Grubbs RH, Roberts WP, Litzau JJ (2002) Linear functionalized polyethylene prepared with highly active neutral Ni(II) complexes. J Polym Sci Part A Polym Chem 40:2842–2854. doi:10.1002/pola.10370
- 98. Berkefeld A, Drexler M, Möller HM, Mecking S (2009) Mechanistic insights on the copolymerization of polar vinyl monomers with neutral Ni(II) catalysts. J Am Chem Soc 131:12613–12622. doi:10.1021/ja901360b

- 99. Carlini C, Martinelli M, Raspolli Galletti AM, Sbrana G (2002) Copolymerization of ethylene with methacrylate by Ziegler-Natta-type catalysts based on nickel salicylaldiminate/methylalumoxane systems. Macromol Chem Phys 203:1606–1613
- 100. Li H, Marks TJ (2006) Nuclearity and cooperative effects in binuclear catalysts and cocatalysts for olefin polymerization. J Proc Natl Acad Sci USA 103:15295–15302. doi: 10.1073/pnas.0603396103
- 101. Diamanti SJ, Ghosh P, Shimizu F, Bazan GC (2003) Ethylene homopolymerization and copolymerization with functionalized 5-Norbornen-2-yl monomers by a novel nickel catalyst system. Macromolecules 36:9731–9735. doi:10.1021/ma035102z
- Diamanti SJ, Khanna V, Hotta A, Coffin RC, Yamakawa D, Kramer EJ, Fredrickson GH, Bazan GC (2006) Tapered block copolymers containing ethylene and a functionalized comonomer. Macromolecules 39:3270–3274. doi:10.1021/ma052456c
- Soula R, Novat C, Tomov A, Spitz R, Claverie J, Drujon X, Malinge J, Saudemont T (2001)
 Catalytic polymerization of ethylene in emulsion. Macromolecules 34:2022–2026. doi: 10.1021/ma0017135
- 104. Göttker-Schnetmann I, Korthals B, Mecking S (2006) Water-soluble salicylaldiminato Ni(II)-methyl complexes: enhanced dissociative activation for ethylene polymerization with unprecedented nanoparticle formation. J Am Chem Soc 128:7708–7709. doi:10.1021/ja0619962
- 105. Korthals B, Göttker-Schnetmann I, Mecking S (2007) Nickel(II)-methyl complexes with water-soluble ligands L [(salicylaldiminato- κ^2 N, O)NiMe(L)] and their catalytic properties in disperse aqueous systems. Organometallics 26:1311–1316. doi:10.1021/om0607191
- 106. Bastero A, Kolb L, Wehrmann P, Bauers F, Göttker-Schnetmann I, Monteil V, Thomann R, Chowdhry M, Mecking S (2004) Catalytic ethylene polymerization in aqueous emulsion: catalyst tailoring and synthesis of very small latex particles. Polym Mater Sci Eng 90:740–741
- 107. Jenkins JC, Brookhart M (2004) A mechanistic investigation of the polymerization of ethylene catalyzed by neutral Ni(II) complexes derived from bulky anilinotropone ligands. J Am Chem Soc 126:5827–5842. doi:10.1021/ja030634g
- 108. Berkefeld A, Mecking S (2009) Deactivation pathways of neutral Ni(II) polymerization catalysts. J Am Chem Soc 131:1565–1574. doi:10.1021/ja808855v
- 109. Connor EF, Younkin TR, Henderson JI, Waltman AW, Grubbs RH (2003) Synthesis of neutral nickel catalysts for ethylene polymerization—the influence of ligand size on catalyst stability. Chem Commun 2272–2273. doi:10.1039/b306701g
- 110. Braunstein P, Frison C, Morise X (2000) Stepwise ethene and/or methyl acrylate/CO insertions into the Pd-C bond of cationic palladium(II) complexes stabilized by a (P, O) chelate. Angew Chem Int Ed 39:2867-9870. doi:10.1002/1521-3773(20000818)39: 16<2867:AID-ANIE2867>3.0.CO;2-X
- 111. Braunstein P, Agostinho M (2007) Structurally characterized intermediates in the stepwise insertion of CO-ethylene or CO-methyl acrylate into the metal-carbon bond of Pd(II) complexes stabilized by (phosphinomethyl)oxazoline ligands. Chem Commun 58–60. doi: 10.1039/b613865a
- 112. Michalak A, Ziegler T (2003) Comparison of Ni- and Pd-diimine complexes as catalysts for ethylene/methyl acrylate copolymerization. A static and dynamic density functional theory study. Organometallics 22:2660–2669. doi:10.1021/om021044e
- 113. Michalak A, Ziegler T (2003) Polymerization of ethylene catalyzed by a nickel(+2) anilinotropone-based catalyst: DFT and stochastic studies on the elementary reactions and the mechanism of polyethylene branching. Organometallics 22:2069–2079. doi: 10.1021/om030072+
- 114. Rodriguez BA, Delferro M, Marks TJ (2009) Bimetallic effects for enhanced polar comonomer enchainment selectivity in catalytic ethylene polymerization. J Am Chem Soc 131:5902–5919. doi:10.1021/ja900257k
- 115. Gibson VC, Tomov A (2001) Functionalised polyolefin synthesis using [P,O]Ni catalysts. Chem Commun 1964–1965. doi:10.1039/B106475D

- 116. Waltman AW, Younkin TR, Grubbs RH (2004) Insights into the deactivation of neutral nickel ethylene polymerization catalysts in the presence of functionalized olefins. Organometallics 23:5121–5123. doi:10.1021/om049360b
- 117. Williams BS, Leatherman MD, White PS, Brookhart M (2005) Reactions of vinyl acetate and vinyl trifluoroacetate with cationic diimine Pd(II) and Ni(II) alkyl complexes: identification of problems connected with copolymerizations of these monomers with ethylene. J Am Chem Soc 127:5132–5146. doi:10.1021/ja045969s
- 118. Chan MSW, Deng L, Ziegler T (2000) Density functional study of neutral salicylaldiminato nickel(II) complexes as olefin polymerization catalysts. Organometallics 19:2741–2750. doi:10.1021/om000055+

Chapter 3 Rare-Earth Metal Complexes Supported by Nitrogen-Containing Ligands in Olefin Polymerization

Alexander A. Trifonov

Abstract In this review the recent developments in the synthesis of rare-earth metal complexes active in catalysis of olefin polymerization are summarized. Alkyl (neutral and ate), cationic alkyl and hydrido complexes supported by nitrogen-containing ligands are considered. The polymerization-active complexes are classified according to monomer (ethylene, α -olefin, styrene), type of compound (neutral alkyl, cationic alkyl, ate-alkyl, hydrido) and the number of nitrogen atoms in supporting ligands. The properties of obtained polyolefins are discussed.

3.1 Introduction

As isoelectronic analogues of the group 4 metallocenium alkyl and hydride cations, neutral rare-earth metallocene alkyls and hydrides have received much attention during past three decades as olefin polymerization catalysts [1–5]. The combination in one molecule of Lewis acidity and of high reactivity of M–H and M–C bonds which undergo facile multiple carbon–carbon bond insertions [6–14] sets up a basis for high potential of rare-earth alkyl and hydrido complexes in olefin polymerization. The main advantage of rare-earth metal complexes is the fact that neutral low-coordinate alkyl and hydrido species are highly reactive towards ethylene, and unlike the group 4 metal compounds are able to act as one-component catalytic systems in the absence of activator or co-catalyst.

A. A. Trifonov (⋈)

G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia

e-mail: trif@iomc.ras.ru

120 A. A. Trifonov

The absence of co-catalyst in polymerization system allows to diminish sideprocesses like chain-transfer or chain-termination and to run polymerization in a 'controlled-living' fashion and to obtain polyolefinic materials with narrow molecular weight distributions. Also the capability of complexes of rare-earth metals to initiate polymerization of polar monomers (methacrylates, lactones, lactides) enables the sequential diblock polymerization of olefins with these monomers and their functionalization. The remarkable activity (and selectivity) of lanthanide-based catalysts in diene polymerization makes them promising candidates for development of efficient catalysts for diene-olefin copolymerization and production of new high performance resins. Another important feature relevant to catalytic applications is gradual variation of the ionic radius within the rare-earth metals series in the range from 0.89E (Sc3+) to 1.17E (La3+) [15] when the redox and chemical properties remain substantially similar. This affords a unique opportunity for tuning the activity and selectivity of metal complex by designing the metal coordination sphere and selecting the central atom with appropriate radius according to specific requirements of the catalyzed reaction.

A significant breakthrough in development of olefin polymerization catalysts is related to the beginning of post-metallocene era, which allowed to establish correlations between catalyst structure and polymer microstructure [16]. A significant progress has been done in understanding of the factors that are crucial for stabilizing polymerization-active metal centres and controlling their activity and selectivity. The supporting ligands play an important role since they should provide control over the metal coordination number and coordination geometry, steric protection of the active site in order to influence over stereoselectivity. The development of new supporting ligand environments for rare-earth metals which would allow to overcome the limitations inherent to the cyclopentadienyl system and to extend the means for design of metal coordination sphere [17–19] is currently in focus.

According to the MLX scheme [20, 21] polymerization-active rare-earth metal complex should contain "actor" M–C (preferably alkyl) or M–H groups which easily undergo C=C bond insertion and "spectator" supporting coordination environment. Electropositivity of rare-earth metals, high energy of their d-orbitals [22] and predominantly ionic character of the metal–ligand interactions in their organic derivatives have favoured employment of supporting ligands forming stable anions like cyclopentadienyl [23–25]. The ancillary ligand destined for synthesis of polymerization-active "one-site" alkyl or hydrido species of rare-earth metals should be completely inert to nucleophilic attack, non-labile and bulky enough to provide steric saturation of the metal atom coordination sphere and therefore the kinetic stability of the metal complex. In order to prevent ligand redistribution process typical for rare-earth metal complexes multidentate ligands containing donor sites that do not tend to form bridging bonds are preferable.

In this review the recent developments in the synthesis and catalysis of olefin polymerization by alkyl, cationic alkyl and hydrido rare-earth complexes supported by nitrogen containing ligands will be considered. The polymerization-active complexes are classified according to monomer (ethylene, α -olefin, styrene), type of compound (neutral alkyl, cationic alkyl, ate-alkyl, hydrido) and the number of nitrogen atoms in supporting ligands.

Neutral dialkyl lanthanide complexes

 $R = Me(1), Ph(2), CMe_3(3), CH_2SiMe_3(4)$

R = Me (5), Et (6), CH₂SiMe₃ (7)

Cationic alkyl complexes

N_1

$$Me_{3}Si \xrightarrow{\qquad \qquad } P \\ F[Ph_{3}C][B(C_{6}F_{5})_{4}] \\ Me_{3}Si \xrightarrow{\qquad \qquad } SiMe_{3} \\ R = Ph \ (9)$$

$$\begin{array}{c} R \\ N \cdot Bu - t \\ + [Ph_3C]^+ [B(C_6F_5)_4]^- + Ali - Bu_3 \\ Ne_3Si \\ R = Ph \ (\mathbf{9}), \ N^i Pr_2 \ (\mathbf{10}), \ Me \ (\mathbf{11}) \end{array}$$

N_2

122 A. A. Trifonov

 N_2

$$R = SiMe_3; Ln = Sc (20); Y (21); Er (22); Yb (23); Lu (24), R = Ph; Sc (25); Y (26); Er (27); Lu (28)$$

$$R = SiMe_3; Ln = Sc (29); Y (30);$$

$$R = SiMe_3; Ln = Sc (29); Y (30);$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

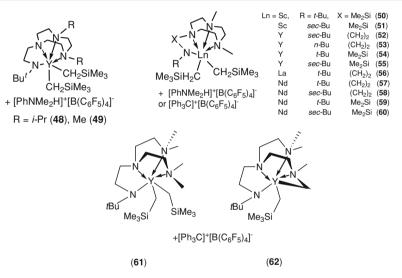
$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$

$$R = SiMe_3; Ln = Sc (31); Y (32)$$


$$R = SiMe_3; Ln = Sc (31); Y (32)$$

 N_3

N_3

+ $[Ph_3C]^+[B(C_6F_5)_4]^-$ or $[PhNMe_2H]^+[B(C_6F_5)_4]^-$ or N-[tris(pentafluorophenyl)borane]-3H-indole

N_4

N_5

$$\begin{array}{c} H \\ C \\ SiMe_2 \\ N \\ N \\ i \cdot Pr \\ Sc \\ CH_2SiMe_3 \\ + [Ph_3C]^+[B(C_6F_5)_4]^- \\ \\ (63) \end{array}$$

124 A. A. Trifonov

 N_6

$$Me_3C$$
 $+ MAO$
 $R = CH_2SiMe_2Ph$
 $Ln = Y, L = NEt_2 (67)$

CH₂SiMe₃

 $\begin{array}{l} R=CH_{2}SiMe_{3},\,Ln=Sc~(\textbf{68}),\,Y~(\textbf{69}),\\ Er~(\textbf{70}),\,Ho~(\textbf{71}),\,Dy~(\textbf{72}),\,Tm~(\textbf{73}),\,\,Lu~(\textbf{74})\\ R=CH_{2}SiMe_{2}Ph,\,Ln=Lu~(\textbf{75}) \end{array}$

[B(C₆F₅)₄]

Alkyl ate-complexes

$$(Me_3Si)_2N$$

$$i-Pr$$

$$i-Pr$$

$$N$$

$$i-Pr$$

$$Me$$

$$Me$$

$$Li(TMEDA)$$

$$(Me_3Si)_2N$$

$$Ln = Nd (76), Yb (77)$$

Hydrido complexes

$$R = SiMe_3$$
; $Ln = Y (78)$, $Sc (79)$

R = i-Pr, Ln = Y (80), Nd (81), Sm (82), Gd (83), Yb (84), Lu (85) R = Cy, Ln = Y (86), Lu (87)

Hydrido complexes

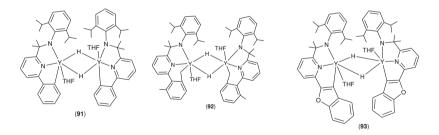


Chart 3.1 Rare-earth metal complexes supported by nitrogen-containing ligands

3.2 Ethylene Polymerization

3.2.1 Neutral Alkyl Rare-Earth Metal Complexes

The reports on catalytic activity of neutral alkyl rare-earth species in olefin polymerization still remain scarce. Bianconi et al. in 1996 reported on the

126 A. A. Trifonov

synthesis and in situ preparation of a series of bis(alkyl) yttrium complexes supported by monoanionic tris(pyrazolyl)borate ligands (Chart 3.1, 1-4). Complexes 2 and 4 were synthesized by the salt metathesis reactions of LYCl₂(THF) with two equivalents of the appropriate alkyl(aryl)lithium reagent and were isolated in 70% yield [26]. The di(methyl) derivative was found to be highly unstable even at low temperatures that is why 1 and tert-butyl species were generated in situ. All the alkyl complexes demonstrated catalytic activity in ethylene polymerization yielding highly linear polyethylene with $M_{\rm w}$ in some cases exceeding 2×10^6 . Unlike the metallocene-type rare-earth complexes even the species containing bulky Ph and CH₂SiMe₃ ligands and coordinated THF molecule turned out to be polymerization-active indicating the greater steric unsaturation in 1-4. The in situ generated di(tert-butyl) complex has shown the highest activity ($N_t = 1,932$; Table 3.1, entry 4). Dissociation of coordinated THF molecules appears to be a controlling factor in the initiation of polymerization since no reaction occurs in THF-solutions. Overall catalytic activity is rather low with N_t (mole of PE/mole of Y) 1,200–3,000. Molecular weights (M_w) of the obtained polymers range from 1.0×10^5 to $>2 \times 10^6$ with polydispersities ranging from 2.5 to 4.1.

Five-coordinate scandium dialkyl complexes containing amido diphospine ligand (Chart 3.1, 5–7) are able to initiate ethylene polymerization, but no data on their activity and polymer properties are available [27].

3.2.2 Cationic Alkyl Rare-Earth Metal Complexes

In the past decade an impressive progress has been done in the field of synthesis and characterization of organo rare-earth cationic species. In contrast to the neutral and anionic complexes which are known since 80th regular publications on this matter started to appear in the literature very recently [28–30]. Cationic species should possess an enhanced Lewis acidity compared to that of neutral alkyl complexes and provide stronger affinity of the metal centre to electron density of the C=C bond of olefin and also strongly bind main group alkyls.

3.2.3 Cationic Alkyl Rare-Earth Metal Complexes Supported by N₂-Ligands

Bulky amidinate ligands were successfully employed in the research of Teuben-Hessen group and allowed the synthesis and isolation of a new family of highly reactive cationic alkyl species of rare-earth metals with various ionic radii (Sc, Lu, Y, Gd, Nd, La) [31–33]. Neutral dialkyl species $LM(CH_2SiMe_3)_2(THF)_n$ were converted to their cationic monoalkyl derivatives $LM(CH_2SiMe_3)(THF)_n[BPh_4]$ (M = Sc, n = 2; M = Lu, Y, n = 3; M = Nd, La, n = 4) by protonolysis with

_
101
a
Z
ymen
且
g
ō
eı
⋋
t
o
Ξ
S
ğ
ਫ਼ੁ
56 =
ьn
ũ
aming
ਬ
<u></u>
၃
7.
Z >
S S
c
c
orted by N
ported
npported
ported
npported
exes supported
plexes supported
implexes supported
plexes supported
implexes supported
implexes supported
implexes supported
 implexes supported
implexes supported
implexes supported
Lanthanide complexes supported
Lanthanide complexes supported
3.1 Lanthanide complexes supported
3.1 Lanthanide complexes supported
Lanthanide complexes supported

type of catalyst	Entry	y Catalyst	T(°C) P	P t(h)) Activity ^a	$N_{\rm t}$	$M_{\rm w} \times 10^{-3} \ M_{\rm w} /$ $M_{\rm n}$	$M_{\mathrm{n}}^{\prime\prime}$	References
Neutral alkyl	1	1	25	120 psi 6	1	29.5	1	ı	[26]
complex	2	2	25	120 psi 6	1	1,096	100	2.50	[26]
	ε	2	25	120 psi 18	I	1,688	1,200	4.14	[26]
	4	3	25	120 psi 6	I	1,932	I	ı	[26]
	S	4	25	120 psi 6	1	15.1	I	ı	[26]
	9	w	ı	1	1	I	I	ı	[27]
	7	9	ı	I	I	I	I	ı	[27]
	∞	7	ı	1	I	I	ı	ı	[27]
Cationic alkyl	6	$12 + [PhNMe_2H]$	30	5 bar 0.	0.33 24	I	93	1.6	[32]
complexes		$H[B(C_6F_5)_4]^- + TIBAO$							
	10	$13 + [PhNMe_2H]$	30	5 bar 0.	0.33 3,006	I	1,666	2.0	[32]
		$H[B(C_6F_5)_4]^- + TIBAO$							
	11	$14 + [PhNMe_2H]$	30	5 bar 0.	0.33 2,848	I	1,753	2.1	[32]
		$H[B(C_6F_5)_4]^- + TIBAO$							
	12	$15 + [PhNMe_2H]$	30	5 bar 0.	0.33 342	I	496	1.4	[32]
		$H[B(C_6F_5)_4]^- + TIBAO$							
	13	$16 + [PhNMe_2H]$	30	5 bar 0.	0.33 14	I	470	2.5	[32]
		$H[B(C_6F_5)_4]^- + TIBAO$							
	14	$17 + [PhNMe_2H]$	30	5 bar 0.	0.33 1,988	I	1,596	2.2	[32]
		$H[B(C_6F_5)_4]^- + TIBAO$							
	15	$18 + [PhNMe_2H]^-$	50	5 bar 0.	0.25 59	ı	89.5	14.6	[33]
		$[\mathrm{B}(\mathrm{C_6F_5})_4]^- + \mathrm{TIBAO}$							
	16	18 + TIBAO	20	5 bar 0.	0.25 0	I	0		[33]
	17	19 + PMAO-IP	50	300 psi –	$1.2 \times 10^6 \text{ g(mol of}$	I	1,866	1.98	[34]
					catalyst) - h - i				

(continued)

	7
)
_	3
	=
	= .
	3
	=
	_
-	-
Ī	
_	_
_	
_	•
_	٠
-	
7	٠
7	•
7	٠
7	5
10 31	5
h 2	5
hlo 3.1	5
ohlo 31	5
ohlo 31	anic c
Fahla 3.1	anic c
Table 3.1	5

Table 3.1 (Collelluca)	manur)									
Type of catalyst	Entry	, Catalyst	T(°C) P	Ь	t(h)	Activity ^a	$N_{\rm t}$	$M_{ m w} imes 10^{-3}$	$M_{ m w}/M_{ m n}$	References
	18	$19 + B(C_6F_5)_3 + PMAO-IP$	50	300 psi	ı	3.0×10^5 g(mol of catalyst) ⁻¹ h ⁻¹	ı	1,051	1.7	[34]
	19	$19 + [Ph_3C]^+$ $R(C + 2) = \pm PMAO \cdot P$	50	300 nei	ı	4.8×10^5 g(mol of	ı	851	2.48	[34]
	20	$21 + [R_2NMeH]^-$ $R(C.F.).1^- + TRAO$	80	5 bar	0.25	1,0	1	66.5 bimodal	3.2	[35]
	21	30 + $[R_2NMeH]^-$ $[B(C_k F_k)_k]^-$ + TIBAO	80	5 bar	0.25	400	1	46.1(10.8) bimodal	4.3(1.5)	[35]
Cationic alkyl complexes	22	$32 + [R_2NMeH]^-$ $[B(C_6F_8)_4]^- + TIBAO$	80	5 bar	0.25	432	1	263.9(16.3) bimodal	28.8(2.4)	[35]
•	23	21 + $[R_2NMeH]^-$ $[B(C_6F_5)_4]^-$ + TIBAO	30	5 bar	0.25	40	I	67.9(1,950) bimodal	43.0(1.3)	[35]
	24	21 + $[R_2NMeH]^-$ $[B(C_6F_5)_4]^-$ + TIBAO	50	5 bar	0.25	200	ı	76.4	19.1	[35]
	25	$21 + [R_2NMeH]^-$ $[B(C_6F_5)_4]^- + TIBAO$	100	5 bar	0.25	808	ı	15.6	4.1	[35]
	26	22 + $[R_2NMeH]^-$ $[B(C_6F_5)_4]^-$ + TIBAO	80	5 bar	0.25	1,6	ı	$M_{\rm n} = 29.6$	2.0	[37]
	27	$23 + [\mathrm{R}_2\mathrm{NMeH}]^-$ $[\mathrm{B}(\mathrm{C}_6\mathrm{F}_4)_4]^- + \mathrm{TiBAO}$	80	5 bar	0.25	2 kg(mol of catalyst) ⁻¹ h ⁻¹	I	1	I	[37]
	28	24 + $[R_2NMeH]^-$ $[B(C_6F_5)_4]^-$ + TIBAO	80	5 bar	0.25	128	I	$M_{\rm n}=6$	1.5	[37]
	29	$20 + [R_2NMeH]^-$ $[B(C_6F_5)_4]^- + TIBAO$	80	5 bar	0.25	536	ı	607.1(13.1) bimodal	3.33(1.62)	[37]
	30	31 + $[R_2NMeH]^-$ $[B(C_6F_5)_4]^-$ + TIBAO	80	5 bar	0.25	384	ı	373.5(4.28) bimodal	16.1(1.56) [37]	[37]
	31	29 + $(R_2NMeH)^-$ $[B(C_6F_5)_4]^- + TIBAO$	80	5 bar	0.25	312	I	39.6	2.56	[37]
										(continued)

_	
	3
Contin	
9	3
_	-
_	
7	
_	

Table 3.1 (collulated)	n)									
Type of catalyst	Entry	Entry Catalyst	T(°C) P	Ь	t(h)	t(h) Activity ^a	$N_{\rm t}$	$M_{\rm w} \times 10^{-3}$	$M_{ m w}^{\prime\prime}$ $M_{ m n}$	References
	32	$45 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	25	150 psi	1	25 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	827.9	3.21	[38]
	33	$47 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	25	150 psi	1	15 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	434.8	2.04	[38]
Cationic alkyl complexes	34	$45 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	25	150 psi	-	33 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	822.6	3.69	[38]
•	35	$47 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	25	150 psi	-	13 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	325.2	1.97	[38]
	36	$40 + B(C_6F_5)_3 + Ali-Bu_3$	21	5 bar	-	220 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	847	I	[39]
	37	41 + B(C_6F_5) ₃ + Ali-Bu ₃	33	5 bar	1	240 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	353	I	[39]
	38	$66 + B(C_6F_5)_3 + Ali-Bu_3$	33	5 bar	1	290 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	192	I	[39]
	39	42 + [PhNMe ₂ H] ⁺ [B(C ₆ F ₅) ₄] ⁻	50	5 bar	0.16	0	1	0	0	[40]
	40	$43 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	50	5 bar	0.16	0	1	0	0	[40]
	41	44 + [PhNMe ₂ H] ⁺ $[B(C_6F_5)_4]^-$	50	5 bar	0.16	0.16 584 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	1,200	1.9	[40]
	42	48 + [PhNMe ₂ H] ⁺ [B(C_6F_5) ₄] ⁻	30	5 bar	0.16	96	1	ı	I	[41]
	43	49 + $[PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	30	5 bar	0.16	0.16 700 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	471	4.0	[41]
	4	49 + $[PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	50	5 bar	0.16	0.16 1,180 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	325	4.9	[41]
										(beautimes)

(continued)

(bentining)	communa)
) Le oldo	Table 3.1

Table 3.1 (commuca)										
Type of catalyst	Entry	Entry Catalyst	T(°C) P		t(h)	t(h) Activity ^a	N _t	$N_{\rm t} M_{\rm w} \times 10^{-3} M_{\rm w} $ $M_{\rm n}$	$M_{ m w}/M_{ m n}$	References
	45	49 + $[PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	08	5 bar	0.16	5 bar 0.16 1,790 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	86	0.9	[41]
	46	$50 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	50	5 bar	0.16	5 bar 0.16 75 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	069	2.2	[42]
Cationic alkyl complexes	47	$50 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	80	5 bar	0.16	5 bar 0.16 376 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	128	1.9	[42]
	48	50 [Ph ₃ C] ⁺ [B(C ₆ F ₅) ₄] ⁻	50	5 bar	0.16	5 bar 0.16 145 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	939	1.7	[42]
	49	${\bf 50} + [Ph_3C]^+ [B(C_6F_5)_4]^-$	80	5 bar	0.16	5 bar 0.16 541 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	138	2.1	[42]
	50	$54 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	50	5 bar 0.16	0.16	1,343 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	127	9.9	[42]
	51	$54 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	80	5 bar 0.16		1,132 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	72	6.2	[42]
	52	$54 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	50	5 bar	0.16	5 bar 0.16 1,280 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	139	10.5	[42]
	53	${\bf 54} + [Ph_3C]^+ [B(C_6F_5)_4]^-$	80	5 bar 0.16	0.16	1,571 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	09	5.1	[42]
	54	$59 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	50	5 bar	0.16	5 bar 0.16 743 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	358	2.4	[42]
	55	$59 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	80	5 bar	0.16	243 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	65	2.2	[42]
	99	$59 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	50	5 bar	0.16	5 bar 0.16 788 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	503	2.1	[42]
	57	$59 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	80	5 bar	0.16	5 bar 0.16 325 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	71	1.7	[42]
										(continued)

\leq	
. (Ų
Detruituo	J
-	٦
- 2	_
- 5	=
7	_
- 1	-
- 0	3
ē	7
	1
_	_
_	
_	
7	
7	
Toble 3.1	

Table 3.1 (collulated)	(nc									
Type of catalyst	Entry	Entry Catalyst	T(°C)	Ь	t(h)	t(h) Activity ^a	$N_{\rm t}$	$M_{\rm w} \times 10^{-3}$	$M_{ m w}/M_{ m n}$	References
	58	49 + $[PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	08	5 bar	0.16	5 bar 0.16 1,787 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	86	0.9	[42]
	59	$49 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	50	5 bar	0.16	5 bar 0.16 1,811 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	130	7.2	[42]
Cationic alkyl complexes	09	$49 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	80	5 bar	0.16	5 bar 0.16 2,200 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	72	3.8	[42]
	61	$57 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	50	5 bar 0.16		807 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	I	56	2.2	[42]
	62	$57 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	80	5 bar 0.16	0.16	625 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	35	1.8	[42]
	63	$57 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	50	5 bar 0.16		1,233 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	69	2.3	[42]
	64	$57 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	80	5 bar 0.16		482 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	38	1.9	[42]
	92	$\begin{aligned} 56 &+ [PhNMe_2H]^+ \\ [B(C_6F_5)_4]^- \\ \text{or} \ [Ph_3C]^+ \ [B(C_6F_5)_4]^- \end{aligned}$	50 or 80	5 bar 0.16		0	1	0	0	[42]
	99	$51 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	50	5 bar	0.16	5 bar 0.16 203 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	350	1.4	[42]
	29	$51 + [PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	80	5 bar	0.16	5 bar 0.16 245 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	157	3.5	[42]
	89	$51 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	50	5 bar 0.16		340 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	484	1.8	[42]
	69	${\bf 51} + [Ph_3C]^+ [B(C_6F_5)_4]^-$	80	5 bar	0.16	5 bar 0.16 362 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	132	2.7	[42]
	70	55 + $[PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	50	5 bar 0.16		562 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	778	2.0	[42]
										(bending)

(continued)

$\overline{}$
D.
5
=
·Ξ
Ξ
0
૭
_
_
÷
e
e

range at (command)			Í		í		;	10-3	
Type of catalyst	Entry	Entry Catalyst	T(°C) P		t(h)	t(h) Activity"	N _t	$N_{ m t}$ $M_{ m w} imes 10^{-5} \; M_{ m w}/$ $M_{ m n}$	Keterences
	71	$55 + [PhNMe_2H]^+ [B(C_6F_5)_4]^-$	80	5 bar	0.16	5 bar 0.16 1,067 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	91 3.6	[42]
Cationic alkyl complexes	72	$55 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	50	5 bar 0.16		1,278 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	547 1.6	[42]
	73	$55 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	80	5 bar 0.16		1,942 kg(mol of catalyst) ⁻¹ h^{-1} bar ⁻¹	1	53 2.6	[42]
	74	60 + $[PhNMe_2H]^+$ $[B(C_6F_5)_4]^-$	50	5 bar	0.16	287 kg(mol of $\text{catalyst})^{-1} \text{ h}^{-1} \text{ bar}^{-1}$	1	391 1.8	[42]
	75	60 + [PhNMe ₂ H] ⁺ $[B(C_6F_5)_4]^-$	80	5 bar	0.16	187 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	61 2.0	[42]
	92	$60 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	50	5 bar 0.16	0.16	145 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	293 2.0	[42]
	77	52 + [PhNMe ₂ H] ⁺ [B(C ₆ F ₅) ₄] ⁻	50	5 bar	0.16	1,331 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	ı	90 3.8	[42]
	78	$52 + [PhNMe2H]^+$ $[B(C_6F_5)_4]^-$	08	5 bar	0.16	5 bar 0.16 2,016 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	54 2.3	[42]
	79	$52 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	50	5 bar	0.16	1,3	1	135 4.3	[42]
	80	${\bf 52} + [Ph_3C]^+ [B(C_6F_5)_4]^-$	80	5 bar	0.16	5 bar 0.16 2,027 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	77 3.4	[42]
	81	53 + [PhNMe ₂ H] ⁺ [B(C_6F_5) ₄] ⁻	50	5 bar 0.16		285 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	294 2.6	[42]
	82	53 + [PhNMe ₂ H] ⁺ [B(C ₆ F ₅) ₄] ⁻	80	5 bar 0.16		488 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	1	92 1.8	[42]
	83	$53 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	50	5 bar 0.16		638 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	ı	703 2.4	[42]

uco) Tic arms	,									
Type of catalyst Entry	Entry	Catalyst	T(°C) P	Ь	t(h)	t(h) Activity ^a	$N_{\rm t}$	$N_{\rm t}$ $M_{\rm w} \times 10^{-3} M_{\rm w}/$ References $M_{\rm n}$	$M_{ m w}/M_{ m n}$	References
	84	${\bf 53} + [Ph_3C]^+ [B(C_6F_5)_4]^-$	80	5 bar	0.16	0.16 1,157 kg(mol of catalyst) ⁻¹ h ⁻¹ bar ⁻¹	ı	151	3.1	[42]
	85	61 + [PhNMe ₂ H] ⁺ [B(C_6F_5) ₄] ⁻	50	5 bar	0.25 0		ı	0	0	[43]
	98	61 + $[Ph_3C]^+$ $[B(C_6F_5)_4]^-$	50	5 bar	0.25	0.25 20 kg(mol Y) ⁻¹ desactivation in 4 min	1	55	2.2	[43]
Hydrido	87	$4 + \mathrm{H}_2$	25	120 psi	7	I	3,000	3,000 1,900	15.86	[26]
complexes	88	78	55	70 atm	1	4 g(mmol of catalyst) ⁻¹ h ⁻¹	1	I	1	[58]
	68	79	09	ı	ı	sluggishly	ı	I	1	[59]
	06	85	20	0.48 bar 72 h	72 h	83	I	ı	ı	[61]
						$catalyst)^{-1}h^{-1}atm^{-1}$				
	91	82	20	0.5 atm	I	1,268 g(mmol of catalyst) ⁻¹ h^{-1} atm ⁻¹	I	I	I	[61]
	92	80	20	0.5 atm	I	442 g(mmol of catalyst) $^{-1}$ h $^{-1}$ atm $^{-1}$				[61]
	93	84	20	0.5 atm	I	77 g(mmol of catalyst) ⁻¹ h^{-1} atm ⁻¹	1	ı	1	[61]
	94	98	20	0.5 atm	ı	65 g(mmol of catalyst) ⁻¹ h^{-1} atm ⁻¹	1	I	1	[62]
	95	87	20	0.5	I	76 g(mmol of catalyst) ⁻¹ h^{-1} atm ⁻¹	1	I	I	[62]
	96	68	20	0.5	ı	560 g(mmol of catalyst) ⁻¹ h ⁻¹ atm ⁻¹	1	I	I	[64]
	26	06	20	0.5	I	168 g(mmol of catalyst) ⁻¹ h^{-1} atm ⁻¹	1	I	ı	[64]

 $^{\rm a}$ Activity kg(mol of catalyst) $^{-1}$ h $^{-1}$ atm $^{-1}$, otherwise stated $^{\rm b}$ Overall turnover numbers moles of PE/moles of Ln

[PhNMe₂H][BPh₄] in THF. The complexes were isolated in good yields and crystal structures were established for the derivatives of Sc, Y, Gd, Nd, La [32]. Noteworthy the remaining alkyl group in all these complexes occupies an axial position relative to amidinate-metal plane. Ethylene polymerization tests were performed in toluene solvent (Chart 3.1, Table 3.1, entries 9–14), the catalytically active species were generated by reacting the dialkyls with an equimolar amount of the activator [PhNMe₂H][B(C₆F₅)₄] in the presence of 20 equivalents of isobutylalumoxane (TIBAO) scavenger. The catalytic activity was shown to be highly dependent on the metal ionic radius. The smallest (Sc) and the largest (La) metals in the series demonstrate very low activities, the metals of intermediate size (Y, Gd) allow to reach activities of 3,006 and 2,848 kg PE mol⁻¹ h⁻¹ bar⁻¹, respectively.

The values of molecular weight ($M_{\rm w} \approx 1.5 \times 10^6$) of polyethylene obtained in these experiments and low polydispersity ($M_{\rm w}/M_{\rm n}=2$) are indicative of a single-site catalyst behaviour. For the Y-containing system in the absence of scavenger the polymerization process was found to have living character ($M_{\rm w}/M_{\rm n}=1.1-1.2$). The authors conclude that the alkyl transfer to Al is the main chain transfer mechanism operating in this catalytic system. When LY(CH₂SiMe₃)₂(THF) activated in toluene by [PhNMe₂H][B(C₆F₅)₄] in the absence of alkylaluminium scavenger (50 °C) readily polymerises ethylene. The $M_{\rm w}$ of polymer increases from 430 × 10³ (5 min) to 1,211 × 10³ (30 min) with a remarkably low polydispersity $M_{\rm w}/M_{\rm n} \approx 1.2$, thus indicating living character of polymerization.

The catalyst productivity noticeably decreases with increasing run time from 1,037 kg PE mol⁻¹ h⁻¹ bar⁻¹ over 5 min to 400 over 30 min [31].

Dibenzyl lanthanum complex supported by bulky amidinate ligand 18 (Chart 3.1) was inactive in ethylene polymerization, but when treated with 1 equivalent of [PhNMe₂H][B(C₆F₅)₄] in the presence of TIBAO (La/Al = 1: 10) at 50 °C in toluene an activity of 59 kg PE mol⁻¹ h⁻¹ bar⁻¹ was reached (Table 3.1, entry 15) [33]. The activity of the cationic amidinate benzyl species is higher than that observed previously for the cation generated from LLa(CH₂SiMe₃)₂(THF)₂ [32] which may be attributed to the presence of one additional THF molecule coordinated to the metal centre.

Dimethyl scandium complex coordinated by β -diketiminato ligand 19 (Chart 3.1) reported by Piers et al. when activated with B(C₆F₅)₃, [Ph₃C][B(C₆F₅)₄] or PMAO-IP is active in catalysis of ethylene polymerization [34] (Table 3.1, entries 17–19). Molecular weights of the obtained polymers are relatively high and the polydispersities are in the range 1.7–2.48. The activities are quite high (3.0 \times 10⁵–1.2 \times 10⁶ g(mol of catalyst)⁻¹ h⁻¹) and approach those reported for metallocene group 4 based catalysts. When the dichloro precursor LScCl₂ was used under MAO activation activity was noticeably lower indicating slow rate of the scandium centre activation by organoaluminium reagent.

Catalytic behaviour of a series of organoyttrium cationic species supported by amidopyridinato ligands in the presence of aluminium trialkyls and aluminoxanes at various temperatures was described in [35–37]. Neutral dialkyl complexes 21, 30, 32 (Chart 3.1) were obtained using the alkane elimination reaction

of the parent aminopyridines (LH) with Y(CH₂SiMe₃)₂(THF)₂ and characterized by NMR spectroscopy. The reactions of the dialkyl species with ammonium borates lead to selective elimination of one alkyl group and afford alkyl cationic species. Treatment of complexes 21 and 32 with [PhNMe₂H][BPh₄] in THFmixture allowed isolation of cationic complexes [LY(CH2Si-Me₃)(THF)₃][BPh₄], whose structures were established by X-ray diffraction study [35]. The catalytic tests in ethylene polymerization were run at 80 °C in the presence of one equivalent of $[R_2NHMe][B(C_6F_5)_4]$ (R = C_{16} - H_{31} , $C_{18}H_{35}$] and 20 equivalents of TIBAO. The presence of aluminium alkyl was found to be essential for polymerization activity. To reach high activity very bulky amidopyridinato ligands should be used (Table 3.1, entries 20-22). Investigation of temperature dependence of catalytic activity of the system 21 -[R₃NHMe][B(C₆F₅)₄] $(R = C_{16} - H_{31}, C_{18} H_{35}]$ in the temperature range 30-80 °C showed an unusual increase in activity together with an increase in molecular weight. This observation was explained by the authors as a result of a reversible chain transfer between the organoyttrium cation responsible for chain growth and the aluminium centre responsible for the chain storage [35]. The stability of the organoyttrium cations in combination with a nearly suppressed β -hydrido elimination at T up to 100 °C allows for synthesis of long-chain polymers (up to 4,000 g mol⁻¹) with a polydispersity below 1.1. In the synthesis of higher molecular polyethylene (15,600 g mol⁻¹) some increase in polydispersity (1.4) is observed. Both alumoxanes and aluminium alkyls can be used in these catalytic systems, but alkyl aluminium compounds demonstrate lower activities.

Dialkyl and cationic alkyl species supported by amidopyridinato ligands of rareearth metals of various ionic radii (Sc, Er, Yb, Lu) 20, 22-29, 31 (Chart 3.1) were described in [37]. Dialkyl compounds were prepared by reacting Ln(CH₂Si- Me_3 ₃(THF)₂ (Ln = Er, Yb, Lu) and Ln(CH₂Ph)₃(THF)₃ (Ln = Y, Er, Lu) with an equimolar amount of aminopyridine. Protonolysis of dialkyl compounds with 1 equivalent of [PhNMe₂H][BPh₄] in THF affords cationic species [LLn(CH₂R) $(THF)_n$ [BPh₄] (R = SiMe₃, Ln = Sc, Y; R = Ph, Ln = Sc, Er; n = 2.3) [37]. Complexes 20, 22-24, 29, 31 were estimated as precatalysts for ethylene polymerization under activation with 1.1 equivalent of [R₂NHMe][B(C₆F₅)₄] $(R = C_{16}H_{31}, C_{18}H_{35})$ and in the presence of TIBAO (20-equiv) at 80 °C (15 min). Dialkyl complexes of Er and Lu demonstrated low to good activities $(40-1,616 \text{ kg(mol of catalyst)}^{-1} \text{ h}^{-1} \text{ bar}^{-1}$, Table 3.1, entries 26-31), while Yb-containing analogue showed very low activity (2 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹. The polymerization activities of Y and Er, which have similar values of ionic radii [15] are much higher compared to those of smaller Lu and Yb, thus indicating the influence of the metal ion radius. The average number molecular weight (Mn) of the polymer obtained with the erbium complex (29,600 and 14,500 g mol⁻¹) is higher compared to that of the polymer obtained with yttrium compound (20,800 and 3,610 g mol⁻¹). For lutetium compound the molecular weight of obtained polymer is 6,000 g mol⁻¹. The activities of Er and Lu compounds were found to decrease when the concentration of TIBAO increases. In the case of scandium compound 20 which has the smallest ionic radius in the family of rare-earth metals

good activity in ethylene polymerization was observed. In contrast to the derivatives of yttrium, erbium and lutetium no dependence of the activity and molecular weight on the TIBAO concentration was observed for scandium. The authors suppose that the scandium ion size is too small for the coordination of alkylaluminium compounds which is necessary for the polyethylene chain transfer. Reduction of the steric bulk of the amidopyridinato ligand coordinated to the scandium centre decreases the catalytic activity.

3.2.4 Cationic Alkyl Rare-Earth Metal Complexes Supported by N₃-Ligands

The synthesis and structures of amido-pyridine-supported dialkyl complexes of Sc, Lu and Y (45–47, Chart 3.1) were reported in [38]. Activation of these complexes by $[Ph_3C][B(C_6F_5)_4]$, $[PhNMe_2H][B(C_6F_5)_4]$ or N-[tris(pentafluorophenyl)borane]-3H-indole leads to formation of polymerization-active species (Table 3.1, entries 32–35). The highest activities were observed for scandium-containing complex (25 and 33 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹), while the lutetium analogue demonstrated lower activity (15 and 13 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹).

Neutral 1,4,7-trimethyl-1,4,7-triazacyclonane ligand was successfully employed for the synthesis of tris(alkyl) LLn(CH₂SiMe₃)₃ (Ln = Sc, Y) (**40**, **41**, Chart 3.1) complexes [39]. Activation of complexes **40** and **41** by B(C₆F₅)₃ in the presence of 250 equivalents of i-Bu₃Al allows ethylene polymerization (21 or 33 °C, 5 bar) with activities of 220–240 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹ for Sc, while for the Y compound the activity was much lower (10 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹) (Table 3.1, entries 36, 37).

Dialkyl scandium complexes $LSc(CH_2SiMe_3)(THF)n$ (n=0,1) coordinated by monoanionic fac- k^3 tridentate [6-RN-1,4,6-trimethyl-1,4-diazepine] (R=Me, PhMe₂Si) ligands (**42–44**, Chart 3.1) were synthesized by Hessen et al. using the alkane elimination approach [40]. In THF complexes readily react with [PhNMe₂H][BPh₄] to generate the ionic monoalkyl species [LSc(CH₂SiMe₃)(THF)₂][BPh₄]. Only the THF-free complex **44** after activation with [PhNMe₂H][B(C₆F₅)₄] in toluene afforded an active single-site ethylene polymerization catalyst (activity 584 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹, Table 3.1, entry 41). One THF molecule turned out to be sufficient to shut down the catalytic activity.

3.2.5 Cationic Alkyl Rare-Earth Metal Complexes Supported by N₄-Ligands

A series of dialkyl rare-earth metal (Sc, Y, La, Nd) complexes supported by monoanionic tetradentate linked 1,4,7-triazacyclononane (TACN) ligands bearing various substituents at the nitrogen atoms of the cycle (Me, *i*-Pr) and amido

nitrogen (n-Bu, sec-Bu, t-Bu) and having different length of backbone between neutral cyclic and monoanionic amido fragments ((CH₂)₂, SiMe₂) were described by Hessen et al. (48–60, Chart 3.1) [41, 42]. The complexes were synthesized by using alkane elimination approach. For the larger lanthanide metals such as La and Nd for which the neutral homoleptic trisalkyls M(CHY₂SiMe₃)₃(THF)_n are not available, in situ generated trisalkyl species were used. The X-ray diffraction studies were performed for complexes 48, 54, 55-57, 59 and proved their structures. The dialkyl complexes cleanly react with **Brønsted** acid $[PhNMe_2H][B(C_6F_5)_A]$ in C_6D_5Br to give cationic alkyl species. The cationic alkyl complexes coordinated by the ligand containing Me-substituents at the endocyclic nitrogen atoms are sufficiently stable at ambient temperature. This is in contrast to the cationic species with the i-Pr-substituted ligand which in the absence of coordinating solvent (THF) undergoes rapidly intramolecular metallation of the i-Pr-fragments. Activities of obtained dialkyl complexes as precatalysts of ethylene polymerization were evaluated in toluene solvent at the temperature range of 30–80 °C under 5 bar of ethylene pressure (Table 3.1, entries 42–83). $[PhNMe_2H][B(C_6F_5)_4]$ or $[CPh_3][B(C_6F_5)_4]$ were used as activators without additional use of alkylaluminium scavengers. The catalytic activity was demonstrated to be strongly influenced by the metal ionic radius, while the variations of the ligand backbone and substituents on nitrogen atoms do influence catalyst stability and polymer molecular weight. Catalysts based on rare-earth metals of intermediate size like Y showed higher activities, but some of these catalytic systems yield the polymer with broad molecular weight distribution, thus indicating multisite behaviour. The yttrium complexes 48 and 49 when activated with [PhNMe₂H][B(C₆F₅)₄] yield active polymerization catalysts with productivities 0.70×10^{3} -1.79 × 10³ kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹ [41]. The productivity of the system based on Y complex containing (CH₂)₂-linker is enhanced by increasing the reaction temperature, but the polydispersity of the polyethylene also increases noticeably (Table 3.1, entries 42-45). In the family of complexes supported by Me₂TACN-SiMe₂-Nt-Bu ligand strangely Sc complexes demonstrated modest activity, which increases with increasing temperature. The trityl counter ion appears to be slightly more effective as activator. The Y derivative 54 showed high activity 1,500 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹, but the obtained polymer had a broad polydispersity ($M_{\rm w}/M_{\rm n}=5$ –10). Molecular weights are significantly lower compared to those of polymers produced with Sc catalyst. The variations in ligand substitution pattern and ligand geometric constrain proved to be essential to effect on catalysts performance. Thus the Sc complex 51 containing SiMe₂-bridged ligand with sec-Bu substituent on amido nitrogen demonstrated enhanced activity compared to t-Bu-substituted analogue. For Y the catalyst 55 is highly active (activity up to 2,000 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹) and obtained polymer has lower polydispersity 2.5. For Nd (complexes **59** and **60**) the activity is lower than for t-Bu-substituted analogue obviously due to decrease of thermal stability of catalyst. The pronounced effect of the size of the substituent at amido nitrogen was observed in the Y systems, where the small n-Bu group caused a strong differentiation in performance for two activators, possibly due to reversible coordination

of aniline formed in the course of activation to the metal ion (Table 3.1, entries 81–84). Replacement of the SiMe₂-linker by longer (CH₂)₂ in the case of Y (Chart 3.1, 49 and 54) gives a catalyst with improved activity at higher temperature, but increase of polydispersity was also observed. For the largest Nd metal (Chart 3.1, 57) this more sterically demanding ligand gives the best activity especially when combined with trityl cation as activator (Table 3.1, entry 63; 1,233 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹). The analogous system based on La metal is absolutely inactive in ethylene polymerization, what on the authors' opinion can be associated with toluene coordination to the large metallic centre. Noteworthy that despite of the absence of alkylaluminium co-catalyst in the reaction system none of the obtained complexes allowed to perform living ethylene polymerization. The authors suggest that this is indicative of facile β -hydrogen elimination process in these complexes compared to the more electron-poor compounds supported by amidinate ligands.

Monoanionic tetradentate triamino-amido ligand based on linear triamine moiety and being less conformationally constrained was employed for the synthesis of yttrium dialkyl species (Chart 3.1, **61**) [43] using alkane elimination pathway. Upon standing in solution **61** cleanly undergoes intramolecular metallation with liberation of TMS and formation of **62** (Chart 3.1). The system **61**-[PhNMe₂H][B(C₆F₅)₄] did not show any activity in ethylene polymerization, while the combination of **61** with [Ph₃C][B(C₆F₅)₄] showed initial polymerization activity, but rapid catalyst deactivation took place (Table 3.1, entries 85–86).

3.2.6 Cationic Alkyl Rare-Earth Metal Complexes Supported by N₅-Ligands

The sole example of rare-earth metal cationic alkyl complex containing N_5 -ligand is presented by the five-coordinate Sc derivative coordinated by monoanionic tridentate heteroscorpionate ligand (Chart 3.1, 63) [44]. The dialkyl complex was obtained by reacting $Sc(CH_2SiMe_3)_3(THF)_2$ with protio ligand. Treatment of 63 with $[Ph_3C][B(C_6F_5)_4]$ in the presence of THF yields the stable monoalkyl species $[LSc(CH_2SiMe_3)(THF)][B(C_6F_5)_4]$, which was mentioned to be active in catalysis of ethylene polymerization. No details were provided.

3.2.7 Cationic Alkyl Rare-Earth Metal Complexes Supported by N_6 -Ligands

Neutral *fac*-k³ coordinated tris(pyrazolyl)methane ligand was used for stabilization of cationic scandium and yttrium species (Chart 3.1, **64**, **65**) which were generated by reacting LLn(CH₂SiMe₃)₃ with [Ph₃C][B(C₆F₅)₄] in CD₂Cl₂ or in the presence

of THF [39]. The catalytic tests were carried out in toluene under the pressure of ethylene of 5 bar in the presence of 250 equivalents of iBu_3Al . For the scandium catalyst an activity of 290 kg(mol of catalyst)⁻¹ h⁻¹ bar⁻¹ was reported, while in the case of the yttrium-containing analogue no solid polymer formation was observed.

3.2.8 Cationic Alkyl Complexes Supported by N,O-Ligands

The synthesis of dialkyl yttrium complex supported by monoanionic tetradentate aminophenolate ligand (Chart 3.1, 67) was reported by Bercawet al. [45]. Polymerization test upon activation with excess MAO showed very low activity.

3.3 Hydrido Rare-Earth Metal Complexes Supported by Nitrogen-Containing Ligands

Rare-earth metal hydrides demonstrate a variety of unique structural and chemical properties [46]. The impetuous development of this area, stimulated by promising catalytic activity of hydrido complexes, has considerably contributed in organolanthanide chemistry (For example see, hydrogenation: [47, 48]; polymerization: [49–52]; hydrosilylation: [53]; hydroboration: [54, 55]). Despite of the progress which has been done in this field until recently rare-earth metals hydrides were represented exclusively by sandwich- [46] and half-sandwich type ("constrained geometry") [24, 25] complexes and very few classes of their non-cyclopentadienyl analogues are known [18, 19, 56].

The first example of structurally characterized non-cyclopentadienyl rare-earth metal hydride, yttrium complex stabilized by benzamidinate ligands (78, Chart 3.1) was published by Teuben in 1996 [57]. Hydride **78** was prepared by the hydrogenolysis of the parent alkyl L₂YCH(SiMe₃)₂ at 3 atm of H₂ and 40 °C in benzene and was proved to have a dimeric structure in both crystalline state and in solutions in non-coordinating solvents. When heated at 55 °C and 70 atm of ethylene complex **78** showed activity of 4 g(mmol of catalyst)⁻¹ h⁻¹ (Table 3.1, entry 88). With propylene and 1-hexene complex **78** does not react [58]. The scandium analogue **79** (Chart 3.1) was also synthesized by the hydrogenolysis of alkyl complex L₂ScCH₂SiMe₃ but at milder conditions (ambient temperature, 1 atm) [59]. Complex **79** does not catalyze polymerizations of ethylene or propylene at room temperature; however, at 60 °C ethylene is sluggishly polymerized while propylene appeared to undergo multiple insertions.

A family of hydrido complexes of rare-earth metals of large (Nd, Sm), intermediate (Y, Gd) and small (Yb, Lu) ion size **80–87** (Chart 3.1) supported by guanidinate ligands of various steric bulk $[(Me_2Si)_2NC(NR)_2]^-$ (R = *i*-Pr, Cy) was described in articles [60–62]. The catalytic tests of complexes **80–87** in ethylene

polymerization were carried out at 20 °C, and ethylene pressure 0.5 atm. Even under such very mild conditions Sm complex **82**, containing isopropyl-substituted guanidinate ligands showed very high polymerization efficiency: 1,268 g(mmol of catalyst)⁻¹ h⁻¹ atm⁻¹. Noteworthy by the end of 24 h the complex was still active without loss of the reaction rate. In the case of the yttrium derivative **80** the catalyst activity was noticeably lower, but nevertheless high –442 g(mmol of catalyst)⁻¹ h⁻¹ atm⁻¹ and no loss of the reaction rate was observed during 3 days. The neodymium analogue **81** sluggishly polymerized ethylene and after 1 h the reaction stopped. Complexes of gadolinium, ytterbium and lutetium demonstrated modest activities (281, 77 and 83 g(mmol of catalyst)⁻¹ h⁻¹ atm⁻¹, respectively). Replacement of isopropyl fragments in guanidinate ligands by cyclohexyl ones resulted in considerable decrease of polymerization activity of yttrium complex **86** (65 g(mmol of catalyst)⁻¹ h⁻¹ atm⁻¹), while the activity of lutetium catalyst **87** (83 g(mmol of catalyst)⁻¹ h⁻¹ atm⁻¹) is close to the value observed for isopropyl-substituted analogue.

Don Tilley et al. reported on the synthesis and structure of yttrium hydride coordinated by dianionic C_2 -symmetric bis(silylamido)biphenyl ligand **88** (Chart 3.1). Complex **88** does not show noticeable activity in ethylene or 1-hexene polymerization (C_6D_6 , 80 °C, 5 psi, 2 h). The reaction resulted in the hydride decomposition and precipitation of a small amount of polyethylene [63]. When dissolved in THF at room temperature **88** undergoes rapid ethylene insertion into the Y–H bonds affording related ethyl complex. The insertion of the second ethylene molecule occurs slowly and is accompanied by the complex decomposition. No polyethylene formation was observed even at elevated ethylene pressure (80 psi, 48 h). The reaction of parent alkyl complex LYCH(SiMe₃)₂(Et₂O)₂ with ethylene (C_6D_6 , 5 psi) results in the very slow formation of small amounts of polyethylene.

The hydrogenolysis of dialkyl yttrium complex 4 (Chart 3.1) containing tris(pyrazolyl)borate ligand (8 atm, 0 °C, toluene) leads to generation of the hydrido species which was characterized spectroscopically and was found to be able to catalyze ethylene polymerization ($N_{\rm t}=3,000,~M_{\rm w}=1.9\times106,~M_{\rm w}/M_{\rm n}=15.86$) [26].

Trinuclear alkyl-hydrido clusters of yttrium and lutetium coordinated by bulky amidopyridinate ligands (Chart 3.1, 89, 90) and containing three μ^2 -bridging hydrido ligands situated in the equatorial plane and two μ^3 -hydrido ligands occupying the apical positions catalyze ethylene polymerization under very mild conditions (20 °C, 0.5 atm) [64]. The activity of yttrium complex 89 was found to be 560 g(mmol of catalyst)⁻¹ h⁻¹ atm⁻¹ but the catalyst was deactivated in 3 h. The lutetium derivative 90 showed lower activity (168 g(mmol of catalyst)⁻¹ h⁻¹ atm⁻¹) but no loss of the reaction rate was observed over 1 day (Table 3.1, entries 96, 97).

The catalytic performances of the dinuclear yttrium aryl-hydrido, benzyl-hydrido and benzofuryl-hydrido complexes **91–93** (Chart 3.1) have been systematically scrutinized for ethylene polymerization, but no polymerization activity has been observed [65, 66].

3.4 α-Olefin Polymerization

3.4.1 Cationic Alkyl Complexes

Cationic alkyl amido complex of scandium in situ generated by reacting dialkyl scandium complex LSc(CH₂SiMe₃)₂(THF) (**8**, Chart 3.1) with an equimolar amount of [Ph₃C][B(C₆F₅)₄] (toluene, room temperature) is able to convert 650 equivalents of 1-hexene into atactic poly(1-hexene) with $M_n = 7,300$ and $M_w/M_n = 2.65$ (Table 3.2, entry 2). The Y, Ho and Lu analogues were found to be inreactive under the similar conditions [67].

Activation of scandium trimethyl complex coordinated by neutral 1,4,7-trimethyl-1,4,7-triazacyclononane ligand (Chart 3.1, 39) with $B(C_6F_5)_3$ or [PhNMe₂H][B(C₆F₅)₄] leads to formation of cationic alkyl species which catalyze polymerization of 1-pentene affording oligo(1-pentene) ($M_w = 4,000, M_w/M_p = 1.32$) [68].

In order to provide tacticity control of α-olefin polymerization scandium trisalkyl complex coordinated by C_3 -chiral trisoxazoline ligand binding the catalytically active site in facial manner 68 (Chart 3.1) was prepared by reacting free ligand with Sc(CH₂SiMe₃)₃(THF)₂ [69]. The reaction of 68 with one equivalent of [Ph₃C][B(C₆F₅)₄] in CD₂Cl₂ or C₆D₅Br resulted in the formation of monocationic species [LSc(CH₂SiMe₃)₂][B(C₆F₅)₄] which demonstrated low catalytic activity in polymerization of 1-hexene (30 kg(mol of catalyst)⁻¹ h⁻¹) and somewhat variable reproducibility with respect to tacticity control. GPC analysis of the polymer revealed bimodal molecular-mass distributions, indicating the presence of at least two catalytically active species. Dicationic compound [LSc(CH₂SiMe₃)] $[B(C_6F_5)_4]_2$ which was obtained in situ by reacting 68 with two equivalents of [Ph₃C][B(C₆F₅)₄] in contrast to monoanionic species turned out to be highly active in 1-hexene polymerization (21 °C). The activity (36,200 kg(mol of catalyst)⁻¹ h⁻¹) is greater by three orders of magnitude compared to that of the monocationic complex. However, the tacticity of the poly(1-hexene) was relatively low and GPC analysis revealed a bimodal molecular mass distribution with rather high value of PDI $(M_{\rm w}/M_{\rm n}=2.22)$. Decrease of the polymerization temperature resulted in the activity decrease (2,030 kg(mol of catalyst)⁻¹ h⁻¹) but provided high isotacticity (mmmm = 90%) and narrow molecular weight distribution $(M_{\rm w} = 750,000, M_{\rm w}/M_{\rm n} = 1.18)$ of the obtained poly(1-hexene) (Table 3.2, entries 8-11).

The effect of the ionic radius of the metal centre on the catalyst activity and ability of tacticity control was investigated for the series of dicationic alkyl complexes generated in situ by reacting LM(CH₂SiRMe₂)₃ (Chart 3.1, **69–75**) with two equivalents of [Ph₃C][B(C₆F₅)₄] [70, 71]. The obtained dicationic species are proved to be active catalysts for α -olefin polymerization (1-hexene, 1-heptene, 1-octene) which allow to obtain polyolefins with $M_{\rm w}/M_{\rm n}$ values in the range 1.58–12.08 and isotacticities of 80–95%. The polymerization activity increases from Lu to Tm and then subsequently decreases with increasing ionic radius of the

ion
merizat
oly
TI TI
ole
B E
g
ligai
gui
tain
-con
Ż
by N
orted by N
supported by N.
exes supported by N
complexes supported by N
ide complexes supported by N
hanide complexes supported by N
Lanthanide complexes supported by N
3.2 Lanthanide complexes supported by N
le 3.2 Lanthanide complexes supported by N.
Table 3.2 Lanthanide complexes supported by N.

type of catalyst	Entry	Monomer	Catalyst	T(°C)/pressure		Activity ^a	t(h) Activity ^a $M_{\rm n} \times 10^{-3} M_{\rm w}$	$M_{\rm w}'$	Tacticity	References
				of propylene				$M_{ m n}$		
Cationic alkyl	1	1-pentene	$39 + B(C_6F_5)_3$	rt	1	1	$M_{\rm w}=4$	1.32	1	[89]
complexes	2	1-hexene	$8 + [Ph_3C]^+$	н	0.5	I	7.3	2.65	atactic	[29]
	'n	1 hayona	$[D(C_6F_5)_4]$ 73 210b C1 ⁺	v	300	165	M = 126	1 05	isototio	[02]
)	יוויאטוורו	(S + 2[X = 3]) $[B(C_6F_5)_4]^-$	ì	C4:0	601	$M_{\rm n} = 120$ $M_{\rm w} = 246$	C.1	%mmmm = 90	5
	4	1-hexene	$74 + 2[Ph_3C]^+$	-5	0.25 137	137	$M_{\rm n} = 90.1$	1.65	isotactic	[71]
			$[B(C_6F_5)_4]^-$				$M_{\rm w} = 149$		% 2000000000000000000000000000000000000	
	S	1-hexene	$70 + 2[Ph_3C]^+$	-5	0.25	122	$M_{\rm n} = 102$	1.65	isotactic	[71]
			$[{ m B}({ m C}_6{ m F}_5)_4]^-$				$M_{\rm w} = 165$		% 2000000000000000000000000000000000000	
	9	1-hexene	$71 + 2[Ph_3C]^+$	-5	0.25	65.8	$M_{\rm n} = 81.8$	1.69	isotactic	[71]
			$[{ m B}({ m C}_6{ m F}_5)_4]^-$				$M_{\rm w}=138$		% 2000000000000000000000000000000000000	
	7	1-hexene	$72 + 2[Ph_3C]^+$	-5	0.25	99	$M_{\rm n} = 67.5$	1.58	isotactic	[71]
			$[\mathrm{B}(\mathrm{C}_6\mathrm{F}_5)_4]^-$				$M_{\rm w} = 10.7$		%mmmm = 85	
	∞	1-hexene	$68 + 2[Ph_3C]^+$	-30	0.05	2,030	$M_{\rm w} = 750$	1.18	isotactic	[69]
			$[B(C_6F_5)_4]^-$						% 2mmmm = 60	
	6	1-hexene	$68 + 2[Ph_3C]^+$	20	0.05	7,600	$M_{\rm w}=552$	1.87	ı	[69]
			$[{ m B}({ m C}_6{ m F}_5)_4]^-$							
	10	1-hexene	68 + $2[Ph_3C]^+$ $[B(C_6F_5)_4]^-$	0	0.05	0.05 13,080	$M_{\rm w}=354$	2.36	I	[69]
	11	1-hexene	$68 + 2[Ph_3C]^+$ $[B(C_6F_5)_4]^-$	21	0.05	36,230	$M_{\rm w} = 227$	2.22	1	[69]
	12	1-heptene	$73 + 2[Ph_3C]^+$ $[B(C_6F_5)_4]^-$	-5	0.25	120	$M_{\rm n} = 99$ $M_{\rm w} = 206$	2.06	isotactic $% \frac{\partial f}{\partial t} = $	[70]
	13	1-heptene	74 + $2[Ph_3C]^+$ [B(C,Fs),1]	-5	0.25	74.2	$M_{\rm n} = 99$ $M_{\rm n} = 206$	1.91	isotactic $\%$	[71]

Table 3.2	(continued)							
Type of	Entry Monomer C	atalyst	T(°C)/pressure	t(h)	Activity ^a	$M_{ m n} imes 10^{-3}$	M _w / Tacticity	R
catalyst			of propylene				$M_{ m n}$	

Type of	Entry	Entry Monomer Catalyst	Catalyst	T(°C)/pressure		t(h) Activity ^a	$M_{\rm n} \times 10^{-3}$	M _w / Tacticity	References
catalyst				of propylene				$M_{ m n}$	
	14	1-heptene	$70 + 2[Ph_3C]^+$	-5	0.25 49.4	49.4	$M_{\rm n} = 99 M_{\rm w} = 206$ 2.01 isotactic	2.01 isotactic	[71]
			$[B(C_6F_5)_4]^-$					% = 100	
	15	1-heptene	$71 + 2[Ph_3C]^+$	-5	0.25 33.3	33.3	$M_{\rm n} = 56.1$	1.95 isotactic	[71]
			$[B(C_6F_5)_4]^-$				$M_{\rm w} = 16{,}110$	%mmmm = 80	
	16	1-heptene	$72 + 2[Ph_3C]^+$	-5	0.25 48.4	48.4	$M_{\rm n} = 55.1$	1.61 isotactic	[71]
			$[B(C_6F_5)_4]^-$				$M_{\rm w} = 88.8$	%mmmm = 80	
	17	1-octene	$73 + 2[Ph_3C]^+$	-5	0.5	30	$M_{\rm n} = 103$	1.8 isotactic	[02]
			$[B(C_6F_5)_4]^-$				$M_{\rm w} = 208$	%mmmm = 95	
	18	1-octene	$74 + 2[Ph_3C]^+$	-5	0.5	38.9	$M_{\rm n} = 164$	1.69 isotactic	[71]
			$[B(C_6F_5)_4]^-$				$M_{\rm w} = 278$	%mmmm = 80	
	19	1-octene	$70 + 2[Ph_3C]^+$	-5	0.5	31.4	$M_{\rm n} = 165$	1.69 isotactic	[71]
			$[B(C_6F_5)_4]^-$				$M_{\rm w} = 102$	%mmmm = 90	
	20	1-octene	$71 + 2[Ph_3C]^+$	-5	0.5	30.9	$M_{\rm n} = 77.8$	1.90 isotactic	[71]
			$[B(C_6F_5)_4]^-$				$M_{\rm w} = 148$	%mmmm = 80	
	21	1-octene	$72 + 2[Ph_3C]^+$	-5	0.5	28.9	$M_{\rm n} = 72.2$	1.58 isotactic	[71]
			$[B(C_6F_5)_4]^-$				$M_{\rm w} = 114$	%mmmm = 80	
Hydrido 22	22	propylene	78	I	ı	0	ı	1	[28]
complexes	s 23	1-hexene	78			0	ı	1	[28]
	24	propylene	62	09	ı	ı	ı	1	[65]
	25	propylene	98	0/0.75 bar	_	3.9 g(mmol of	ı	1	[09]
						$\frac{\text{catalyst}}{r-1}$			
						n oar			

^akg(mol of catalyst)⁻¹ h⁻¹

metal (Table 3.2, entries 3–7 and 12–21); however, remains incomparable to the activity observed for the scandium complex **68**. At room temperature low activities were observed because of thermal decomposition of the cationic species. The decomposition was circumvented by carrying out the process at -5 °C. For all catalysts the polymerization activity decreases in the order 1-hexene > 1-heptene > 1-octene, which was explained by the increased steric demands imposed by the longer alkyl chain of the olefin. The difference in the activity was more pronounced between 1-hexene and 1-heptene whereas the difference between 1-heptene and 1-octene was less noticeable. The polymerization activities for 1-octene were in the range of 30–40 kg(mol of catalyst) $^{-1}$ h $^{-1}$. Generally higher molecular weights were obtained with the smaller lanthanides Lu and Tm.

3.4.2 Hydrido Complexes

Hydrido lutetium complex stabilized by bulky guanidinate ligands (Chart 3.1, 87) catalyzes propylene polymerization, but with low activity (3.9 g(mmol of catalyst)⁻¹ h⁻¹ atm⁻¹). The catalyst loses activity in 1 h [60].

3.5 Styrene Polymerization

Bisalkyl complex **8** (Chart 3.1) did not show activity for styrene polymerization, while when activated with $[Ph_3C][B(C_6F_5)_4]$ in toluene at room temperature was able to convert in 5 min 34% of monomer (Table 3.3, entry 3) in predominantly syndiotactic (*rrrr* > 99%) polystyrene ($M_n = 45.1 \times 103$, $M_w/M_n = 1.96$) [67].

Scandium bisalkyl complexes coordinated by 1,2-azaborolyl ligands bearing various substituents at the boron atom (Chart 3.1, 9-11) were synthesized by the salt metathesis reactions of cationic bisalkyl species [Sc(CH₂SiMe₃)₂(THF)₃]⁺ [BPh₄] with 1,2-azaborolyl lithium [72]. Activation of complexes 9–11 by 1 equivalent of $[Ph_3C]^+[B(C_6F_5)_4]^-$ in the presence of iBu_3Al afforded species active for the syndiospecific polymerization of styrene which allow to obtain exclusively syndiotactic polymers (Table 3.3, entries 4-10). Complexes 9 and 11 convert 2,000-3,000 equivalents of styrene in polystyrene quantitatively within 10 min, yielding polymers with $M_{\rm p}$ in the range 5.7–16.3 \times 10⁵ and moderate molecular weight distributions ($M_w/M_n = 1.5-3.5$). Under the similar conditions ([M]:[Sc] = 2,000), complex 10 showed lower activity and afforded polystyrene with a bimodal molecular weight distribution, suggesting the presence of two active species in this system. The Lu complex [i-Pr₂NBC₃(Me)Nt-Bu)]Lu(CH₂-SiMe₃)₂(THF) showed even lower activity. Its polymerization was unaffected by the monomer-catalyst ratio, but was significantly influenced by the amount of i-Bu₃Al added in the reaction mixture. For both complexes 9 and 11 the molecular weight of the resultant polymers has been significantly increased with decreased

	101	
	enzat	
	e la marc	1
	ă	
	tvrene	-
	n	
•	S	
•	and	
	6	0
	19	0
	Ξ	
	onta	
	ဒု	
۰	Ż	
	Ż 2	
	o p	
	o p	
	o p	
	o p	
	supported by	· · · · · · · · · · · · · · · · · · ·
	supported by	· · · · · · · · · · · · · · · · · · ·
	s supported by	· · · · · · · · · · · · · · · · · · ·
	supported by	· · · · · · · · · · · · · · · · · · ·
	supported by	· · · · · · · · · · · · · · · · · · ·
	supported by	· · · · · · · · · · · · · · · · · · ·
	thanide complexes supported by	
	thanide complexes supported by	
	Lanthanide complexes supported by	7
	Lanthanide complexes supported by	7
	Lanthanide complexes supported by	7
	Lanthanide complexes supported by	7
	thanide complexes supported by	7

Type of	Entry	Entry Catalyst	Monomer/ T(°C) t(h) Activity ^a Yield	(°C)	t(h)	Activity ^a	Yield $N_{\rm t}$	$M_{\rm n} \times 10^{-3}$	$M_{\rm w}$	Tacticity	$T_{ m m}$	References
catalyst	•		catalyst			•	(%)		$M_{ m n}$	•		
Alkyl ate-	1	92	470	100	0.16 197		19	20.2	1.84	rr 31%	1	[74]
complex	2	77	470	100	0.16 168		57	40.8	2.01	1	ı	[74]
Cationic alkyl 3 complexes	3	$8 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	1,000	ㅂ	0.08		34	45.1	1.96	syndiotactic rrrr > 99%	267	[67]
•	4	$egin{aligned} 9 + [\mathrm{Ph_3C}]^+ \ [\mathrm{B(C_6F_5)_4}]^- + \mathrm{Al}^i\mathrm{Bu_3} \end{aligned}$	2,000	25	0.16		100	089	2.2	syndiotactic 100%	270	[72]
	5	$9 + [Ph_3C]^+$ $[B(C_6F_5)_4]^- + Ali-Bu_3$	2,500	25	0.16		100	910	2.1	syndiotactic 100%	270	[72]
	9	$9 + [Ph_3C]^+$ $[B(C_6F_5)_4]^- + Ali-Bu_3$	3,000	25	0.16		94	1,350	1.9	syndiotactic 100%	270	[72]
	7	$\begin{aligned} & 10 + [Ph_3C]^+ \\ & [B(C_6F_5)_4]^- + Ali\text{-}Bu_3 \end{aligned}$	2,000	25	0.16		27	3,120/220	1.5/	syndiotactic 100%	271	[72]
	∞	$11 + [Ph_3C]^+$ $[B(C_6F_5)_4]^- + Ali \cdot Bu_3$	2,000	25	0.16		100	570	2.5	syndiotactic 100%	271	[72]
	6		2,500	25	0.16		100	1,050	1.7	syndiotactic 100%	271	[72]
	10	$ \begin{aligned} 11 + [Ph_3C]^+ \\ [B(C_6F_5)_4]^- + Ali\text{-}Bu_3 \end{aligned} $	3,000	25	0.16		95	1,630	1.5	syndiotactic 100%	271	[72]
	11	$33 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	500	25	0.5	104	ı	38	1.75	r = 0.72	ı	[73]
	12	$33 + [PhNMe_2H]$ $H[B(C_6F_5)_4]^-$	500	25	0.5	70	I	29	1.70	r = 0.71	ı	[73]
	13	$34 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	200	25		06	ı	35	1.68	r = 0.70	1	[73]
	14	$35 + [Ph_3C]^+ [B(C_6F_5)_4]^-$	200	25	0.5	80	ı	30	1.59	r = 0.68	ı	[73]

(continued)

(continued
Table 3.3

Table 3.3 (confined)	man										
Type of catalyst Entry	Entry	Catalyst	Monomer/ catalyst	T(°C)	t(h) }	Activity ^a	Yield 7 (%)	T(°C) t(h) Activity ^a Yield N_t $M_n \times 10^{-3}$ M_w / Tacticity T_m References (%)	$M_{ m w}/$ Ta $M_{ m n}$	cticity T ₁	n References
	15	$36 + [Ph_3C]^+ [B(C_6F_5)_4]^- 500$	500	25	25 0.5 46	9:	ı	23	1.61 r =	1.61 $r = 0.56 - [73]$	[73]
	16	$33 + [Ph_3C]^+$	500	25	0.5 1,560	,560	1	23	1.87 r =	$1.87 ext{ } r = 0.94 ext{ } -$	[73]
		$[B(C_6F_5)_4]^- + Ali-Bu_3$									
	17	$34 + [Ph_3C]^+$	500	25	0.5 624		1	20	2.06 r =	2.06 r = 0.93 -	[73]
		$[\mathrm{B}(\mathrm{C}_6\mathrm{F}_5)_4]^- + \mathrm{Al}i\text{-}\mathrm{Bu}_3$									
Cationic alkyl	17	$35 + [Ph_3C]^+$	500	25	0.5 624		1	15	1.96 r =	1.96 r = 0.93 -	[73]
complexes		$[\mathrm{B}(\mathrm{C}_6\mathrm{F}_5)_4]^- + \mathrm{Al}i\text{-}\mathrm{Bu}_3$									
Hydrido	19	85	neat styrene,	20	144		06	$M_n = 811 1.54$	1.54 -	I	[09]
complexes			2% of 86								
	20	28	neat styrene,	20	72 –	,	100	$M_n = 90$	2.6 –	I	[09]
			5% of 84								

a kg(mol of catalyst)⁻¹ h⁻¹

polydispersity as the monomer-to-catalyst ratio is raised. The ratio $Sc:i-Bu_3Al$ also influences both catalyst activity and polymer molecular mass distribution. For complex 11 in the presence of $[Ph_3C]^+[B(C_6F_5)_4]^-$, an increase of concentration of alkylaluminium led to a higher yield of polystyrene but also to lower molecular weight and broader molecular weight distribution.

New monoanionic bidentate quinolyl amido ligand system developed by Cui et al. allowed synthesis of a series of dialkyl scandium complexes 33-37 (Chart 3.1) [73]. Compounds 33-37 or their combinations with i-Bu₃Al do not initiate styrene polymerization, while the ternary systems based on complexes 33–35 after addition of $[Ph_3C][B(C_6F_5)_4]$ or $[PhMe_2NH][B(C_6F_5)_4]$ showed high activity at room temperature and allow to reach complete conversion within half an hour (Table 3.3, entries 11–18). The resultant polystyrenes have a relatively narrow polydispersity $(M_w/M_n = 1.59-1.75)$, indicative of the single-site nature of these systems. Complex 36, containing a ligand bearing bulky o-isopropyl groups at the N-aryl ring, demonstrated lower activity, what can be caused by excessive steric hindrance around the catalytic centre. Complex 37 coordinated by the less sterically demanding amido ligand was almost inert in polymerization due to its instability at room temperature. Catalytic activities proved to be dependent on the Sc:i-Bu₃Al ratio. The catalytic activity increased stepwise with the amount of i-Bu₃Al and reaches a peak value when five equivalents of i-Bu₃Al were loaded. The type of alkyl aluminium component was found to play a significant role in adjusting the activity. When Me₃Al was added the system 33-[Ph₃C][B(C_6F_5)₄] exhibited low activity, which might be attributed to the formation of less active aluminate species. When Et₃Al was used the activity of the corresponding system increased, and the highest activity was obtained in the case of i-Bu₃Al. The catalytic activity also turned out to be significantly influenced by fluorinated borate/borane component. It decreases in the order $[Ph_3C][B(C_6F_5)_4] > [PhMe_2NH][B(C_6F_5)_4] > B(C_6F_5)_3$. The system 33-i-Bu₃Al-[Ph₃C][B(C₆F₅)₄] allows to carry out the polymerization in a controllable rather than in a living manner. Cationic complex 38 in the presence of i-Bu₃Al intended to extrude the coordinated DME molecules from the scandium centre catalyzes the polymerization of styrene with moderate activity. The ternary systems exhibited high stereoselectivity to afford syndiotactic polystyrenes with r diad up to 0.94 in high yield.

Complexes **45–47** (Chart 3.1) activated with $[Ph_3C][B(C_6F_5)_4]$ were inactive neither in styrene homopolymerization nor in copolymerization of styrene and ethylene [38].

Ionic ate-complexes **76** and **77** (Chart 3.1) containing two methyl groups μ -bridging Ln (Nd, Yb) and Li ions demonstrated high catalytic activity for styrene polymerization at elevated temperatures (70–100 °C, 10 min), while MeLi under the similar conditions was found to be inert [74]. At 55 °C both complexes showed very low activity, whereas at 100 °C the polymer yield reached 67% for **76** and 57% for **77**. The polymers obtained have molecular weights in the range $1.72–5.89 \times 10^4$ and rather narrow molecular weight distribution $M_w/M_n < 2$ (Table 3.3, entries 1, 2). The molecular weight distribution becomes broader when polymerization temperature increases. The polystyrenes formed in the presence of

complexes **76** and **77** have atactic/syndiotactic-enriched structures. The syndiotacticity decreases with increase of polymerization temperature (For complex **77**: T = 70 °C, rr = 53%; T = 85 °C, rr = 28%).

In the family of bis(guanidinate) hydrido rare-earth complexes **80–87** (Chart 3.1) only derivatives of smallest Yb (**84**) and Lu (**85**) metals coordinated by isopropyl-substituted guanidinate ligands turned out to be active in styrene polymerization at ambient temperature. In the case of complex **85** 90% conversion was reached in 6 days. The polystyrene obtained has a high molecular weight ($M_n = 811,000 \text{ g} \text{ mol}^{-1}$, $M_w = 1,250,000 \text{ g mol}^{-1}$), narrow molecular weight distribution ($M_w/M_n = 1.54$), and melting temperature 255–260 °C. When complex **84** was used the reaction rate was higher and total conversion was reached in 3 days. The obtained polymer had higher molecular weight distribution $M_w/M_n = 2.6 (M_n = 90,000 \text{ g} \text{ mol}^{-1}, M_w = 237,700 \text{ g mol}^{-1}$; melting temperature 289–293 °C). The ¹³C NMR spectra of both polystyrenes indicated their high syndiotactisity [61].

3.6 Outlook

A remarkable progress has been done in the field of olefin polymerization catalysts based on rare-earth metal post-metallocene complexes in the past decade. The development of new types of supporting ligation systems (mainly nitrogen-containing) for rare-earth metals gave an impact on increased understanding of ligand structure-catalyst property relationships and overcoming the limitations inherent to the cyclopentadienyl ligand. The design of multidentate systems allowed to achieve new geometries, to increase stabilities of catalytic centres and in some cases to gain control over polymerization process. The synthesis of mono- and dicationic rare-earth species demonstrating catalytic activities comparable to those of the group 4 metal complexes and able to polymerize not only ethylene but also bulkier α -olefins has highlighted the direction for further development of efficient and selective catalysts. Unfortunately little is done so far in co-polymerization of olefins with dienes and polar monomers, the field where rare-earth metals especially are likely to demonstrate high catalytic potential due to their unique properties and provide production of materials with improved and novel properties. The rare-earth metals also offer the attractive prospect for controlled functionalization of polyolefins. Another challenge which still remains actual is development of systems capable of catalysing the living polymerization of olefinic monomers.

References

- 1. Watson PL, Parshall GW (1985) Organolanthanides in catalysis. Acc Chem Res 18:51-56
- Yasuda H (2000) Organo transition metal initiated living polymerizations. Prog Polym Sci 25:573–626

- 3. Hou Z, Wakatsuki Y (2002) Recent developments in organolanthanide polymerization catalysts. Coord Chem Rev 231:1–22
- Yasuda H (2002) Organo-rare-earth-metal initiated living polymerization of polar and nonpolar monomers. J Organomet Chem 647:128–138
- 5. Gromada J, Carpentier J-F, Mortreux A (2004) Group 3 metalcatalysts for ethylene and α-olefin polymerization. Coord Chem Rev 248:397–410
- 6. Evans WJ, Meadows JH, Hunter WE, Atwood JL (1984) Organolanthanide and organoyttrium hydride chemistry. 5. Improved synthesis of [(C₅H₄R)₂YH(THF)]₂ complexes and their reactivity with alkenes, alkynes, 1,2-propadiene, nitriles, and pyridine, including structural characterization of an alkylideneamido product. J Am Chem Soc 106:1291–1300
- 7. Stern D, Sabat M, Marks TJ (1990) Manipulation of organolanthanide coordinative unsaturation. Synthesis, structures, structural dynamics, comparative reactivity, and comparative thermochemistry of dinuclear μ -hydrides and μ -alkyls with [μ -R₂Si(Me₄C₅) (C₅H₄)]₂ supporting ligation. J Am Chem Soc 112:9558–9575
- 8. Shapiro PJ, Cotter WD, Schaefer WP, Labinger JA, Bercaw JE (1994) Model Ziegler-Natta α -olefin polymerization catalysts derived from[{(η^5 -C₅Me₄)SiMe₂(η^1 -NCMe₃)}(PMe₃) Sc(μ_2 -H)]₂ and[{(η^5 -C₅Me₄)SiMe₂(η^1 -NCMe₃)}Sc(μ^2 -CH₂CH₂CH₃)]₂. Synthesis, structures, and kinetic and equilibrium investigations of the catalytically active species in solution. J Am Chem Soc 116:4623–4640
- Hulzsch KC, Voth V, Beckerle K, Spaniol TP, Okuda J (2000) Single-component polymerization catalysts for ethylene and styrene: synthesis, characterization, and reactivity of alkyl and hydrido yttrium complexes containing a linked amido cyclopentadienyl ligand. Organometallics 19:228–243
- Trifonov AA, Spaniol TP, Okuda J (2001) Yttrium hydrido complexes that contain a less "constrained geometry" ligand: synthesis, structure, and efficient hydrosilylation catalysis. Organometallics 20:4869–4874
- 11. Casey CP, Tunge JA, Lee T-Y, Carpenetti DW (2002) Kinetics and mechanism of formation of yttrium alkyl complexes from (Cp*₂YH)₂ and alkenes. Organometallics 21:389–396
- Casey CP, Tunge JA, Lee TY, Fagan MA (2003) Structural dependence of thermodynamics of alkene binding to yttrium alkyl complexes and of kinetics of alkyl migration to coordinated alkenes. J Am Chem Soc 125:2641–2651
- Trifonov AA, Spaniol TP, Okuda J (2004) Hydrosilylation of dienes by yttrium hydrido complexes containing a linked amido-cyclopentadienyl ligand. Dalton Trans 2245–2250
- Luo Y, Hou Z (2007) Computational study of ethylene insertion into the metal—hydrogen bond of the tetranuclear yttrium polyhydrido complex [(η5–C5Me4SiMe3)YH2]4.
 Organometallics 26:2941–2944
- Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767
- Gibson VC, Spitzmesser SK (2003) Advances in non-metallocene olefin polymerization catalysis. Chem Rev 103:283–316
- Edelmann FT, Freckmann DMM, Schumann H (2002) Synthesis and structural chemistry of non-cyclopentadienyl organolanthanide complexes. Chem Rev 102:1851–1896
- 18. Piers WE, Emslie DJH (2002) Non-cyclopentadienyl ancillaries in organogroup 3 metal chemistry: a fine balance in ligand design. Coord Chem Rev 131:233–255
- Trifonov AA (2007) Non-metallocene rare-earth organometallic derivatives: synthesis, structure and application in the catalysis of transformations of unsaturated substrates. Russ Chem Rev 76:1051–1072
- Green MLH (1995) A new approach to the formal classification of covalent compounds of the elements. J Organomet Chem 500:127–148
- Parkin G (2007) Classification of organotransition metal compounds. In: Crabtree RH, Mingos MD (eds) Comprehensive organometallic chemistry 3rd edn vol 1. Elsevier, Amsterdam
- 22. Morss LR (1976) Thermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions. Chem Rev 76:827–841

 Schumann H, Meese-Marktscheffel JA, Esser L (1995) Synthesis, structure, and reactivity of organometallic π-complexes of the rare earths in the oxidation state Ln³⁺ with aromatic ligands. Chem Rev 95:865–986

- Arndt S, Okuda J (2002) Mono(cyclopentadienyl) complexes of the rare-earth metals. Chem Rev 102:1953–1976
- Okuda J (2003) Rare earth metal complexes that contain linked amido-cyclopentadienyl ligands: ansa-metallocene mimics and "constrained geometry" catalysts. Dalton Trans 2367–2378
- Long DP, Bianconi PA (1996) A catalytic system for ethylene polymerization based on group III and lanthanide complexes of tris(pyrazolyl)borate ligands. J Am Chem Soc 118:12453–12454
- 27. Fryzuk MD, Giesbrecht G, Rettig SJ (1996) Synthesis and characterization of the five-coordinate scandium dialkyl complexes ScR₂[N(SiMe₂CH₂PPri₂)₂] (R = Me, Et, CH₂SiMe₃). Organometallics 15:3329–3336
- Arndt S, Okuda J (2005) Cationic alkyl complexes of rare-earth metals: synthesis, structure, and reactivity. Adv Synth Catal 347:339–354
- Zeimentz PM, Arndt S, Elvidge BR, Okuda J (2006) Cationic organometallic complexes of scandium, yttrium, and the lanthanoids. Chem Rev 106:2404

 –2433
- 30. Hou Z, Luo Y, Li X (2006) Cationic rare earth metal alkyls as novel catalysts for olefin polymerization and copolymerization. J Organomet Chem 691:3114–3121
- 31. Bambirra S, Bouwkamp MW, Meetsma A, Hessen B (2004) One ligand fits all: cationic mono(amidinate) alkyl catalysts over the full size range of the group 3 and lanthanide metals. J Am Chem Soc 126:9182–9183
- 32. Bambirra S, Van Leusen D, Meetsma A, Hessen B, Teuben JH (2003) Yttrium alkyl complexes with a sterically demanding benzamidinate ligand: synthesis, structure and catalytic ethane polymerization. Chem Commun 522–523
- 33. Bambirra S, Meetsma A, Hessen B (2006) Lanthanum tribenzyl complexes as convenient starting materials for organolanthanum chemistry. Organometallics 25:3454–3462
- 34. Hayes PG, Piers WE (2002) Cationic scandium methyl complexes supported by a β -diketiminato ("nacnac") ligand framework. J Am Chem Soc 124:2132–2133
- 35. Kretschmer WP, Meetsma A, Hessen B, Schmalz T, Qayyum S, Kempe R (2006) Reversible chain transfer between organoyttrium cations and aluminium: synthesis of aluminiumterminated polyethylene with extremely narrow molecular-weight distribution. Chem Eur J 12:8969–8978
- 36. Kempe R (2007) Coordinative chain transfer polymerization (CCTP). Chem Eur J 13:2764–2773
- Döring C, Kretschmer WP, Kempe R (2010) Aminopyridinate-stabilized lanthanoid complexes: synthesis, structure and polymerization of ethylene and isoprene. Eur J Inorg Chem 2853–2860
- Zimmermann M, Törnroos KW, Waymouth RM, Anwander R (2008) Structure—reactivity relationships of amido-pyridine-supported rare-earth-metal alkyl complexes. Organometallics 27:4310–4317
- Lawrence SC, Ward BD, Dubberley SR, Kozak CM, Mountford P (2003) Chem Commun 2880–2881
- Ge S, Meetsma A, Hessen B (2007) Monoanionic fac-κ³ ligands derived from 6-amino-1, 4-diazepine: ligand dependence of stability and catalytic activity of their scandium alkyl derivatives. Organometallics 26:5278–5284
- 41. Bambirra S, Van Leusen D, Meetsma A, Hessen B, Teuben JH (2001) Neutral and cationic yttrium alkyl complexes with linked 1, 4, 7-triazacyclononane-amide monoanionic ancillary ligands: synthesis and catalytic ethene polymerization. Chem Comm 637–638
- 42. Bambirra S, Van Leusen D, Tazelaar CGJ, Meetsma A, Hessen B (2007) Rare earth metal alkyl complexes with methyl-substituted triazacyclononane-amide ligands: ligand variation and ethylene polymerization catalysis. Organometallics 26:1014–1023
- 43. Bambirra S, Boot SJ, Van Leusen D, Meetsma A, Hessen B (2004) Yttrium alkyl complexes with triamino—amide ligands. Organometallics 23:1891–1898

- 44. Howe RG, Tredget CS, Lawrence SC, Subongkoj S, Cowley AR, Mountford P (2006) A novel transformation of a zirconium imido compound and the development of a new class of N3 donor heteroscorpionate Ligand. Chem Commun: 223–225
- 45. Marinescu SC, Agapie T, Day MW, Bercaw JE (2007) Group 3 dialkyl complexes with tetradentate (L, L, N, O; L=N, O, S) monoanionic ligands: synthesis and reactivity. Organometallics 26:1178-1190
- 46. Ephritikhine M (1997) Synthesis, structure, and reactions of hydride, borohydride, and aluminohydride compounds of the f-elements. Chem Rev 97:2193–2242
- 47. Jeske G, Lauke H, Mauermann H, Schumann H, Marks TJ (1985) Highly reactive organolanthanides. A mechanistic study of catalytic olefin hydrogenation by bis(pentamethyl-cyclopentadienyl) and related 4f complexes. J Am Chem Soc 107:8111–8118
- Conticello VP, Brard L, Giardello MA, Tsyji Y, Sabat M, Stern CL, Marks TJ (1992) Chiral organolanthanide complexes for enantioselective olefin hydrogenation. J Am Chem Soc 114:2761–2762
- Jeske G, Lauke H, Mauermann H, Swepston PN, Schumann H, Marks TJ (1985) Highly reactive organolanthanides. Systematic routes to and olefin chemistry of early and late bis(pentamethylcyclopentadienyl) 4f hydrocarbyl and hydride complexes. J Am Chem Soc 107:8091–8103
- Mauermann H, Swepston PN, Marks TJ (1985) The 5f³ vs. 4f³. Routes to and properties of highly reactive neodymium(III) hydrocarbyl and hydride complexes. Organometallics 4:200–2002
- 51. Jeske G, Schock LE, Swepston PN, Schumann H, Marks TJ (1985) Highly reactive organolanthanides. Synthesis, chemistry, and structures of 4f hydrocarbyls and hydrides with chelating bis(polymethylcyclopentadienyl) ligands. J Am Chem Soc 107:8103–8110
- 52. Desurmont G, Li Y, Yasuda H, Maruo T, Kanehisha N, Kai Y (2000) Reaction pathway for the formation of binuclear samarocene hydride from monomeric alkyl samarocene derivative and the effective catalysis of samarocene hydride for the block copolymerization of ethylene with polar monomers. Organometallics 19:1811–1813
- 53. Molander GA, Romero JAC (2002) Lanthanocene catalysts in selective organic synthesis. Chem Rev 102:2161–2186
- Harrison KN, Marks TJ (1992) Organolanthanide-catalyzed hydroboration of olefins. J Am Chem Soc 114:9220–9221
- 55. Bijpost EA, Duchateau R, Teuben JH (1995) J Mol Catal 95:121
- Konkol M, Okuda J (2008) Non-metallocene hydride complexes of rare-earth metals. Coord Chem Rev 252:1577–1591
- 57. Duchateau R, van Wee CT, Meetsma A, van Duijnen PT, Teuben JH (1996) Ancillary ligand effects in organoyttrium chemistry: synthesis, characterization, and electronic structure of bis(benzamidinato)yttrium compounds. Organometallics 15:2279–2290
- 58. Duchateau R, van Wee CT, Teuben JH (1996) Insertion and C H bond activation of unsaturated substrates by bis(benzamidinato)yttrium alkyl, [PhC(NSiMe₃)₂]₂YR (R = CH₂ Ph·THF, CH(SiMe₃)₂), and hydrido, {[PhC(NSiMe₃)₂]₂Y(μ-H)}₂, compounds. Organometallics 15:2291–2302
- Hagadorn JR, Arnold J (1996) Preparation of scandium complexes with benzamidinate ligands: synthesis and reactivity of alkyl and hydrido derivatives. Organometallics 15:984–991
- 60. Trifonov AA, Fedorova EA, Fukin GK, Bochkarev MN (2004) Post-metallocene hydridolanthanide chemistry: [{Lu{(Me₃Si)₂NC(Ni-Pr)₂}₂(μ-H)}]—a novel lanthanide hydride in a non-cyclopentadienyl coordination environment; synthesis, structure and catalytic activity in olefin polymerization. Eur J Inorg Chem 4396–4401
- 61. Trifonov AA, Skvortsov GG, Lyubov DM, Skorodumova NA, Fukin GK, Baranov EV, Glushakova VN (2006) Post-metallocene lanthanide-hydrido chemistry: a new family of complexes [{Ln{(Me₃Si)₂NC(Ni-Pr)₂}₂(μ-H)}₂]. Chem Eur J 12:5320–5327
- 62. Lyubov DM, Bubnov AM, Fukin GK, Dolgushin FM, Yu Antipin M, Pelcé O, Schappacher M, Guillaume SM, Trifonov AA (2008) Hydrido complexes of yttrium and lutetium

- supported by bulky guanidinato ligands [$\{Ln(\mu-H)\{(Me_3Si)_2NC(Ni-Pr)_2\}_2\}_2$]. Eur J Inorg Chem 2090–2098
- 63. Gountchev TI, Don Tilley T (1999) Yttrium complexes of the chelating, C_2 -Symmetric, bis(silylamido)biphenyl ligand [DADMB]²⁻ (= {[6,6'-Me₂-(C₆H₃)₂](2,2'-NSiMe₂tBu)₂}²⁻). Organometallics 18:2896–2905
- 64. Lyubov DM, Döring C, Fukin GK, Cherkasov AV, Shavyrin AS, Kempe R, Trifonov AA (2008) Selective assembly of trinuclear rare-earth alkyl hydrido clusters supported by amidopyridinate ligands. Organometallics 27:2905–2907
- 65. Lyubov DM, Fukin GK, Cherkasov AV, Shavyrin AS, Trifonov AA, Luconi L, Bianchini C, Meli A, Giambastiani G (2009) Selective σ-bond metathesis in alkyl–Aryl and alkyl–benzyl yttrium complexes. New aryl–and benzyl–hydrido yttrium derivatives supported byamido-pyridinate ligands. Organometallics 28:1227–1232
- Luconi L, Lyubov DM, Bianchini C, Rossin A, Faggi C, Fukin GK, Cherkasov AV, Shavyrin AV, Trifonov AA, Giambastiani G (2010) Yttrium-amidopyridinate complexes: synthesis and characterization of yttrium-alkyl and yttrium-hydrido derivatives. Eur J Inorg Chem 608–620
- 67. Luo Y, Nishiura M, Hou Z (2007) Rare earth metal bis(alkyl) complexes bearing a monodentate arylamido ancillary ligand: Synthesis, structure, and Olefin polymerization catalysis. J Organomet Chem 692:536–544
- 68. Hajela S, Schaefer WP, Bercaw JE (1997) Highly electron deficient group 3 organometallic complexes based on the 1, 4, 7-trimethyl-1, 4, 7-triazacyclononane ligand system. J Organomet Chem 532:45–53
- 69. Ward BD, Bellemin-Laponnaz S, Gade LH (2005) C3 chirality in polymerization catalysis: a highly active dicationic scandium(III) catalyst for the isoselective polymerization of 1hexene. Angew Chem Int Ed 44:1668–1671
- 70. Lukešová L, Ward BD, Bellemin-Lapoonaz S, Wadepohl H, Gade LH (2007) High activity control in organolanthanide polymerization catalysis: formation of isotactic poly(α -oalkenes) with chiral C_3 -symmetric thullium complex. Dalton Trans 920–922
- Lukešová L, Ward BD, Bellemin-Lapoonaz S, Wadepohl H, Gade LH (2007) C3-Symmetric chiral organolanthanide complexes: synthesis, characterization, and stereospecific polymerization of α-olefins. Organometallics 26:4652–4657
- 72. Fang X, Li X, Hou Z, Assoud J, Zhao R (2009) 1, 2-Azaborolyl-ligated half-sandwich complexes of scandium(III) and lutetium(III): synthesis, structures, and syndiotactic polymerization of styrene. Organometallics 28:517–522
- 73. Liu D, Luo Y, Gao W, Cui D (2010) Stereoselective polymerization of styrene with cationic scandium precursors bearing quinolyl aniline ligands. Organometallics 29:1916–1923
- 74. Luo Y, Yao Y, Shen Q (2002) $[(Me_3Si)_2NC(Ni-Pr)_2]_2Ln(\mu-Me)_2Li(TMEDA)$ (Ln = Nd, Yb) as effective single-component initiators for styrene polymerization. Macromolecules 35:8670-8671

Chapter 4 Imine-Based Vanadium Catalysts for α-Olefin Polymerization

Carl Redshaw

Abstract Advances over the last decade in the development of vanadium-based pro-catalysts bearing ligands containing the imine functionality are discussed in terms of their synthesis, characterization and their ability to oligmerize/polymerize α -olefins. The chapter is organized by ligand type, considering initially ligands which chelate (bi- and tri-dentate) only through nitrogen centres, before discussing those binding via nitrogen and oxygen (bi-, tri- and tetra-dentate), those with nitrogen, oxygen and sulfur donors (penta- and hexa-dentate) and finally a number of ligand systems which are either mono-dentate or for which the term imine can be more loosely applied, such as the heterocycle pyridine.

List of Abbreviations

DMAC Dimethylaluminum chloride
DSC Differential scanning calorimetry
EPR Electron paramagnetic resonance

Et Ethyl

ETA Ethyltrichloroacetate
FTIR Fourier transform infrared

g/mmol h bar Grams per millimole (of pro-catalyst) per hour per bar

*i*Pr Isopropyl

MAO Methylaluminoxane

Me Methyl

School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK e-mail: carl.redshaw@uea.ac.uk

C. Redshaw (⊠)

MLCT Metal to ligand charge transfer

MMAO Modified or methylisobutylaluminoxane $M_{\rm n}$ Number average molecular weight $M_{\rm w}$ Weight average molecular weight

Nacnac 2,4-pentanediimine anion

NBE Norbornene

NMR Nuclear magnetic resonance

*n*Pr *n*-propyl

PDI Polydispersity index

Ph Phenyl Py Pyridine

THF Tetrahydrofuran
TIBA Triisobutylaluminum

TMEDA Tetramethylethylenediamine

TOF Turn over frequency

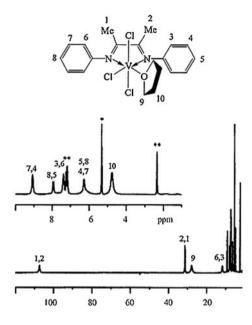
Tp' Tris(3,5-dimethylpyrazolyl)methane
Tp* Tris(3,5-dimethylpyrazolyl)borato
TTPB Trityl tetrakis(pentafluorophenyl)borate

UV-Vis Ultraviolet-visible XRF X-ray fluorescence

4.1 Introduction

Amongst the early transition metals deployed for α -olefin polymerization catalysis, the group 5 metals have existed very much in the shadows. To the left are the likes of titanium and zirconium, whilst to the right is chromium, all of which have formed the bedrock of the polyolefin industry for a number of years [1, 2]. Facile reduction to inactive, paramagnetic oxidation states and/or unfavourable olefin association/dissociation kinetics, have been at the centre of many of the problems associated with the use of the group 5 metals [3]. Only in the last decade has the use of vanadium-based catalytic systems for α -olefin polymerization (particularly ethylene) met with results which suggest it has the potential to compete with the more established metals [4]. Of particular note have been catalysts resulting from systems incorporating a vanadium pro-catalyst bearing a chelating ligand, a co-catalyst comprising a dialkylaluminum halide and a re-activator such as ethyltrichloroacetate [5]. This combination seems to overcome to some degree the problems associated with the ease of reduction of the metal centre to the inactive divalent state, and has led to a number of thermally robust, highly active systems. The results achieved to-date are even more impressive when one considers the polymerization behaviour of pro-catalysts based on the heavier congeners niobium and tantalum [3, 6]. In the case of imine-containing systems, it is clear from the systems described herein that the stabilization brought about by the coordination of an imino nitrogen at vanadium is highly beneficial to the polymerization catalysis. Other donors too, such as sulfur, have been shown to have an impressive impact on catalytic performance, and the combination of such functionality and the imine moiety will also be discussed in this chapter. Initially, we will consider ligands which chelate (bi- and tri-dentate) only through nitrogen centres, before discussing those binding via nitrogen and oxygen (bi-, tri- and tetra-dentate), via nitrogen, oxygen and sulfur (penta- and hexa-dentate) and finally a number of ligand systems which are either mono-dentate or for which the term imine can be more loosely applied, such as the heterocycle pyridine.

4.2 N,N-Bi-Dentate Ligands


4.2.1 α -Diimines

The α -dimine vanadium(III) complexes **1** and **2** (Fig. 4.1) are readily available in isolated yields of 60–70% from the ligand exchange reaction of [VCl₃(THF)₃] and one equivalent of the corresponding parent α -diimine ligand. In the FTIR, the ν (C = N) stretches are shifted somewhat to lower wave-numbers than those found in the free ligands, viz 1,590 cm⁻¹ in **1**, and 1,580 cm⁻¹ in **2**. Both EPR measurements and effective magnetic moments (as measured by Evans NMR method) were indicative of the additional presence of small amounts of vanadium(IV) species. Complex **1** produces a sharp, well-resolved ¹H NMR spectrum in CH₂Cl₂ in the range 0–110 ppm (Fig. 4.2). Variable temperature studies in tetrachloroethane-d₂ revealed reversible temperature dependence (up to 100 °C), with a linear relationship between the chemical shifts and the reciprocal of the temperature in accordance with the Curie law. By contrast, complex **2** exhibits a broad featureless spectrum.

When screened for ethylene polymerization at either -40 or 50 °C, using either MAO or Et₂AlCl as co-catalyst ([Al]:[V] = 5 or 20), only moderate activities (<40 g/mmol h bar) were observed. The productivity of **2** appeared to be independent of temperature, whereas that of **1** significantly increased with temperature,

Fig. 4.1 α -diimine vanadium(III) pro-catalysts 1 and 2

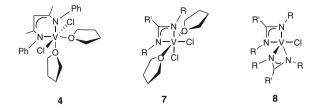
Fig. 4.2 ¹H NMR spectrum of **1**. Reproduced with permission from Ref [7]

and also with co-catalyst concentration. In both cases, activities were superior when using Et_2AlCl over MAO. The concentration of active species was roughly calculated to be 12 and 18% for the catalyst systems derived from 1 and 2, respectively [7].

4.2.2 Iminopyrrolide

The vanadium complexes **3a–e** (Fig. 4.3) were prepared in moderate to good yields (45–75%) by reaction of [VCl₃(THF)₃] with one equivalent of the lithium salt of the corresponding pyrrolide imine in THF [8]. These paramagnetic red or brown solids were screened for ethylene polymerization using a range of organoaluminum co-catalysts including MAO, Me₃Al, Et₃Al, *i*Bu₃Al and Et₂AlCl together with the re-activator ETA. Highest activities were obtained using the Et₂AlCl/ETA combination. Increases in the [Al]:[V] molar ratio (of up to 2,000:1) led to significant increases in activity, but decreases in the polymer molecular weight. At elevated temperatures, increases in the [Al]:[V] molar ratio (of up to 4,000:1) further decreased the molecular weight, whilst the associated PDIs became much narrower. Best activities were achievable at temperatures of about 50 °C. Use of [VCl₃(THF)₃] as a pro-catalyst standard revealed the beneficial role played by the iminopyrrolide ligand set in controlling the single-site behaviour, even at elevated temperatures. As is the case in most vanadium-based

Fig. 4.3 Iminopyrrolide vanadium(III) pro-catalysts **3a–e**


3: $R = C_6H_{11}$ (**a**), C_6H_5 (**b**), 2,6-*i*Pr₂C₆H₃ (**c**), 4-CF₃C₆H₄ (**d**), C_6F_5 (**e**).

systems, there was a considerable drop-off in activity over time. For example, over 30 min, there was an almost 60% reduction in activity, which occurred along with an increase in polymer molecular weight but with little change in associated PDIs. Increases in the steric bulk of the ancillary iminopyrrolide ligand or the use of electron withdrawing groups, led to enhanced activity, whereas the use of a nonconjugated cyclohexyl substituent over the similarly sized phenyl grouping led to a reduction in activity. In general, these vanadium(III) catalysts performed better (in terms of activity for ethylene polymerization) than related pro-catalysts of the type 31 (see Sect. 4.4.1.1, Fig. 4.19), bearing a single salicylaldiminato ligand. It also proved possible to co-polymerize ethylene and 10-undecen-1-ol, provided that the alcohol was pre-treated with an equimolar amount of an alkylaluminum reagent. Best results were obtained when using Et₂AlCl, yielding a co-monomer incorporation of 3.5 mol%. This incorporation could be increased by upward adjustment (ten-fold increase) of the co-monomer concentration in the feed; however, this occurred at the expense of activity (drops by ca. 90%). The microstructure of the co-polymer, as determined by ¹³C NMR, revealed the presence of UU and UUU sequences for co-polymers containing the higher mol% incorporation.

4.2.3 β-Diiminate/Amidinate

Theopold et al. isolated the octahedral vanadium(III) complex $\{VCl_2(THF)_2 [(Ph)_2 nacnac]\}$ (4, Fig. 4.4) from the reaction of $[VCl_3(THF)_3]$ and the lithium salt of N,N-diphenyl-2,4-pentanediimine in THF [9]. Ethylene polymerization was conducted in the presence of 130 equivalents of MAO, and led to the isolation of ultra-high molecular weight (M_w ca. 2,000,000) polymer. Polymerization was accompanied by an exotherm, but the use of ice-water kept temperatures below 60 °C. This system was also capable of the co-polymerization of ethylene with propylene, affording a polymer with M_w 1,659,000 and with 14.9 branches per 1,000 carbon atoms. 2H NMR experiments were consistent with retention of the $(Ph)_2$ nacnac ligand by vanadium, i.e there was no supporting ligand transfer to aluminum. Treatment of 4 with two equivalents of methyllithium led to the complex $[(Ph)_2$ nacnacVMe₂] (5), which on further treatment with $[H(Et_2O)_2]$ -BArf led to the salt $[(Ph)_2$ nacnacV(OEt₂)Me(THF)][B(3,5-(CF₃)₂C₆H₃)₄] (6).

Fig. 4.4 β-diiminate **4** and amidinate vanadium(III) pro-catalysts **7** and **8**

Salt **6**, presumably following loss of diethyl ether, was capable of ethylene polymerization in the absence of co-catalyst.

Amidinate vanadium(III) complexes of the type 7 (Fig. 4.4, middle; $R = CHMe_2$, $SiMe_3$) were readily accessible from $[VCl_3(THF)_3]$. Subsequent treatment with methyl Grignard reagent affords the corresponding mono-methyl complexes [10]. In the case of $R = SiMe_3$, NMR experiments at 80 °C revealed ethylene oligomerization with a Schultz–Flory distribution of linear 1- and 2-alkenes with $[C_n]/[C_{n-2}] = 0.6$. The ratio of 1-alkene:Z-2-alkene:Z-2-alkene was 1:0.38:0.14. Although the majority of metal centers were involved in the catalysis, the process was slow with typically only 24 equivalents of ethylene being consumed over 24 h.

The vanadium center can be made more reactive by the use of electron withdrawing fluorinated amidinate ligands. In view of this, Hessen et al. prepared the pentafluorobenzamidinate ligand set $[C_6F_5C(NSiMe_3)_2]^-$ [11], by addition of one equivalent of C_6F_5CN to $Li[N(SiMe_3)_2]$ in diethyl ether; the use of THF as solvent resulted in unwanted C–F activation of the nitrile [12]. Further reaction of the pentafluorobenzamidinate with $[VCl_3(THF)_3]$ led to the bis(amidinate) complex 8, which can be heated *in-vacuo* at 120 °C (5 h) to afford base-free 9. Both 8 and 9 can be readily reacted with methyl Grignard reagent in THF (8) or diethyl ether (9) to afford the methyl complexes $\{[C_6F_5C(NSiMe_3)_2]_2VMe(THF)\}$ (10) and $\{[C_6F_5C(NSiMe_3)_2]_2VMe\}$ (11), respectively. Autoclave screening (80 °C, 4 or 8 bar ethylene) of 11 and its non-fluorinated analogue revealed that 11 was more than five times more productive (8 g/mmol h) and formed a product of higher molecular weight ($M_n = 1,780$). One drawback of using such fluorinated ligation was that it appeared to promote deactivation to V(II), which presumably was one of the main factors accounting for the poor activities observed.

The vanadyl(V) amidinates 12 and 13 (Fig. 4.5), prepared via VOCl₃, are dimeric with Cl bridges. A crystal structure determination (Fig. 4.6) of 12 revealed the mono-dentate nature of the amidinate ligand, with the second nitrogen at a distance of 2.385(2) Å from the vanadium. The geometry at the metal can thus be either described as severely distorted octahedral or square-pyramidal. Both procatalysts behaved in a similar fashion towards propylene and 1,3-butadiene polymerization with a variety of co-catalysts. At -60 °C, 12 and 13 in the presence alkylaluminum chlorides, polymerized propylene to afford predominantly syndiotactic polymer. Use of Me₂AlCl rather than Et₂AlCl increased productivity with a slight reduction in syndiotacticity, whereas with the sesquichloride Me₃Al₂Cl₃, the increased productivity was achieved without loss of syndiotacticity. The use of

Fig. 4.5 Amidinate vanadium(V) pro-catalysts 12 and 13

MAO as co-catalyst, even at low temperatures, resulted in stereo-irregular polymer. At ambient temperature, use of Et_2AlCl with 13 resulted in a dramatic drop-off in activity and formation of a blue species thought to be due to decomposition; only trace amounts of polymer formed.

For the polymerization of 1,3-butadiene, use of Et_2AlCl resulted in highly 1,4-trans-butadiene regardless of temperature, whereas the MAO containing system results in 1,4-cis-butadiene polymer [13]. Polymerization yields were somewhat higher at 25 °C than at -60 °C. The behavior of 12 and 13 resembled that of [VOCl₃] (and other 'simple' vanadium-based pro-catalysts), and it was thought that the mono-dentate nature of the amidinate ligand allowed for its facile removal from the metal centre under the conditions employed during the polymerization catalysis. As a consequence, the active species was thought to contain two chlorines, a growing polymer chain, a vanadium centre in the +3 oxidation state, and was thought to resemble that resulting from the use of [VCl₄].

The (dimethylamino)ethyl functionalized benzamidinate ligand Li[Me₃. SiNC(Ph)NCH₂CH₂NMe₂] was prepared by reaction of Me₃SiCl and Et₃N with Me₂NCH₂CH₂NH₂, followed by subsequent treatment with nBuLi and benzonitrile. On reaction with an equimolar amount of [VCl₃(THF)₃], the green paramagnetic mono(amidinate) complex {Me₃SiNC(Ph)NCH₂CH₂NMe₂]VCl₂(THF)} (14, Fig. 4.7, left) was formed in ca 60% yield [14]. A structure determination revealed that the amidinate adopted a *facial* coordination mode at the distorted octahedral vanadium(III) centre. Using Et₂AlCl as co-catalyst, an activity of ca 450 g/mmol h bar was achievable at 30 °C, with M_w 760,000 and M_w/M_n 2.1.

Fig. 4.7 Benzamidinate vanadium pro-catalysts **14** and **15**

On increasing the temperature to 50 °C, the activity nearly halved, whilst at 80 °C, the activity fell below 50 g/mmol h bar, whilst the molecular weight distribution was found to be bimodal.

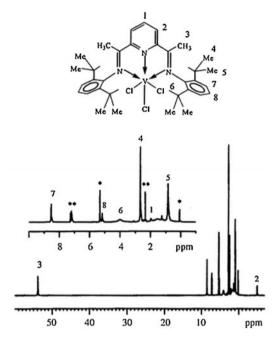
Immobilization of the vanadium(III) pro-catalysts **7** and **14** on magnesium chloride (Et₃Al/MgCl₂·2.1ethanol—spherical adduct) led to enhanced performance. Quantitative immobilization could be achieved at low catalyst loadings (ca. 10 µmol). Conducting polymerizations in light petroleum to which had been added a small amount of iBu_3Al led to activities as high as 31,200 and 14,200 g/mmol h bar for **7** and **14**, respectively. In the case of **7**, the activity at 1 h had fallen by around 50%, whereas **14** managed to maintain its' albeit lower activity over the same period. The polyethylene produced was linear (melting points 136–137 °C) with M_w/M_n ca. 2, and with retention of the spherical morphology (advantageous in terms of reactor fouling) [15].

Salt metathesis of vanadium(2,4-xylylimido)trichloride [V(2,4-Me₂C₆H₃N)Cl₃] with two equivalents of lithium *p*-ethylbenzamidinate (or the TMEDA complex thereof) afforded the dark brown bis(amidinate) complex {2,6-Me₂C₆H₃NVCl [*p*-EtC₆H₄C(NSiMe₃)₂]₂} (**15**, Fig. 4.7 right) in 80% yield [16]. In the solid-state structure, the chloride and the imido ligands are *cis*, and there was good evidence of a strong *trans* influence exerted by the imido group, which resulted in very different V–N(amidinate) bond lengths. Use of MAO ([Al]:[V] = 1:1,000) or a mixture comprising either MAO or TIBA (triisobutylaluminum) plus TTPB (trityl tetrakis(pentafluorophenyl)borate) ([V]:[Al]:[B] = 1:50:1), resulted in only negligible activity at 10 bar ethylene.

4.3 N,N,N-Tri-Dentate Ligands

4.3.1 Bis(imino)pyridines

Given the catalytic successes of this ligand set with a variety of metals [17], it is not surprising that a considerable amount of work on vanadium has and continues to be carried out by a number of research group active in the olefin polymerization area.


The sparingly soluble paramagnetic red complex $VCl_3\{2,6-bis[2,6-(iPr)_2C_6H_3N=C(Me)]_2C_5H_3N\}$ (16, Fig. 4.8) is available in yields of ca. 90% from the reaction of $[VCl_3(THF)_3]$ and 2,6-bis(2,6-diisopropylphenyl)ethylpyridine. Despite the paramagnetic nature of 16, the 1H NMR spectrum recorded in CD_2Cl_2 is well-resolved. Peaks are assignable in the 10–60 ppm region based on their integration and proximity to the paramagnetic vanadium centre (see Fig. 4.9) [7].

Complex 16 and its 2.6-Me₂ and 2.4.6-Me₃ analogues have been characterised by FTIR, and it was found that the imine peak shifts to 1,575 cm⁻¹ (from 1,640 cm⁻¹) upon complexation. In the UV-Vis spectra, there are two bands at 270 and 440 nm, due to ligand-based π - π * transitions, and a broad MLCT absorption in the visible region at 570 nm. When activated with MAO, an emerald-green coloration occurred, and the system was capable of rapid initial ethylene uptake, which occurred with a concomitant exotherm. For example, in a typical run at 50 °C, the temperature rises to 80 °C within 20 s. The catalyst remained active (a typical activity is 1,416 g/mmol h) for about 15 min, although ethylene uptake diminished somewhat after 2 min. At 140 °C, the catalyst was deactivated within a minute, whilst GPC traces at this temperature were bimodal, suggesting more than one active species. Experiments revealed that high temperatures and/or high [Al]/[V] ratios favoured the formation of the high molecular weight fragment, whereas in situ alkylation (by MAO) followed by addition of $B(C_6F_5)_3$ (co-catalyst) disfavoured formation of the high molecular weight product (and this was also detrimental to the overall observed catalytic activity). Lower productivity was also noted for co-polymerization runs involving ethylene and 1-octene, with the poorer performance here thought to be due to the result of unfavourable steric congestion. Higher temperatures and co-catalyst molar ratios also promoted higher activities when Et₂AlCl was employed as the co-catalyst. Activities observed at 50 °C were higher for deployment of Et₂AlCl than for MAO as co-catalyst; the reverse trend was observed at -40 °C.

The activity of this type of pro-catalyst can be increased if combined with $Et_3Al/[Ph_3C][Al(OtBu^f)_4]$ ($OtBu^f$ = fluorinated *tert*-butoxide) as co-catalyst. However, screening of the Ar = phenyl and *o*-tolyl derivatives for ethylene oligomerization revealed that the increase in activity comes at a cost to the productivity (based on vanadium), which is lower than when these pro-catalysts are screened using MMAO as co-catalyst (MMAO is a modified aluminoxane, which was obtained from Akzo Nobel and has the general formula [-Al(R)-O-]_n, where R = Me (75%) and *t*Bu (25%)) [18].

Fig. 4.8 Pro-catalyst 16

Fig. 4.9 ¹H NMR spectrum of pro-catalyst **16**. Reproduced with permission from Ref S[7]

Complex **16** has been screened with various co-catalysts, namely Et₂AlCl, Et₃Al₂Cl₃ and MAO, for butadiene polymerization and ethylene/butadiene co-polymerization. The Et₃Al₂Cl₃ activated system produced the highest activity (4,150 g/mmol h), particularly at [Al]:[V] ratios approaching 40:1, though after 1 h, the activity had fallen off dramatically. ¹³C NMR spectra were consistent with a predominantly *trans*-1,4 structure with 1–3 mol% isolated *cis*-1,4 units. Use of MAO as co-catalyst, led to lower activities as well as temperature dependent chemo-selectivity (decreasing *cis*-1,4 content with increasing temperature). Use of either of these co-catalysts led to PDIs in excess of 10 [19].

Interestingly, for ethylene/1,3-butadiene co-polymerization, the $\rm Et_3Al_2Cl_3$ activated system was ineffective, whereas with MAO, activities as high as 186 g/mmol h (with PDI ≈ 50) were achievable at 50 °C and 5 bar ethylene. Butadiene incorporation of up to 44 mol% was possible with a block distribution of the two monomers. Saturated co-polymers were accessible via hydrogenation with $\it cis$ -diimide.

The parent bis(imino)pyridine ligand has been shown to react with Et_2AlCl to afford organoaluminum complexes of the type 17 and 18 (Fig. 4.10) in yields of 44 and 56%, respectively [7]. However, under the conditions employed for the polymerization screening, it has been shown that the parent ligand can be retrieved after hydrolysis in near quantitative yield. In other words, the diimine nature of the ligand was preserved and no alkylation of the backbone had taken place.

Attempts were made to identify the nature of the species responsible for the emerald green color formed on addition of MAO [20]. On a preparative scale,

complex 16 was reacted with two equivalents of MAO, and following work-up, dark green crystals of $VCl_2\{2,6-bis[2,6-(iPr)_2C_6H_3N = C(Me)]_2(2-MeC_5H_3N)\}\cdot 0.5$ toluene (19, Fig. 4.11 left) formed in ca. 30% yield; further crops were obtainable from the mother-liquor (overall yield 65%). Spectroscopic studies (UV-Vis) suggested that this was the only vanadium-containing product present. Reaction of 16 with an equimolar amount of MeLi also led to the formation of 19 in similar yield. In both cases, the alkylating reagent had promoted alkylation of one of the ortho carbons of the pyridine ring, whilst also removing a chloride from the metal center. The overall result was the creation of a vacant site at the now 5-coordinate, trigonal bipyramidal vanadium center. Furthermore, the previously neutral bis(imino)pyridine had been converted to an anionic amide. Wavefunction calculations (generating the electron density distribution) revealed that the *ortho* carbon atom positions of the pyridine ring were associated with increased positive charge and were therefore most likely to be susceptible to nucleophilic attack. The shorter V-N $_{pyridine}$ distance [1.886(6) Å] in 19 versus that observed in 16 [2.067(3) Å] was indicative of an increase in the V-N π -bonding, which was thought to go someway towards off-setting the loss of aromaticity.

Interestingly, both 16 and 19 possessed the same observed catalytic activity (and resultant polymer properties), but only when using MAO as co-catalyst; use of MeLi or Me₃Al afforded no appreciable catalytic activity. Despite being unable to isolate species by interacting 19 with excess MAO under various conditions, it seemed reasonable to assume that 19 was the precursor to the catalytically active species. However, the need for the presence of further MAO to bring about the observed activity, discounted the involvement of a reversible alkylation of the pyridine ring and subsequent methyl transfer to the vanadium.

Fig. 4.10 Organoaluminium complexes 17 and 18

Fig. 4.11 Products resulting from the alkylation of 16

Interaction of excess MeLi (four equivalents) with 16 (or three equivalents with 19) led to a dark brown dialkyl complex V(CH₃)(μ -CH₃)Li(Et₂O)₃{2.6-bis $[2,6-(iPr)_2C_6H_3N = C(Me)]_2C_5H_3N$ (20, Fig. 4.11 middle) in ca. 50% yield. The methyl group bound to the *ortho* carbon of the pyridine in 19 was no longer present in 20, and the backbone of the tridentate ligand had reverted back to the bis(imino)pyridine form. The vanadium of 20 is further coordinated by two methyl groups, and given one of these is involved in bridging to a lithium cation, the oxidation state of the vanadium is now +1. Addition of TMEDA to the reaction mixture afforded the vanadium(I) complex $[V(CH_3)_2\{2,6-bis[2,6-(iPr)_2C_6H_3N=$ $C(Me)_{2}(2,3-Me_{2}C_{5}H_{3}N)$ [Li(THF)₂(TMEDA)₂]·0.5Et₂O (21, Fig. 4.11 right), which now contains a second methyl group at pyridine, this time in the meta position adjacent to the methylated ortho carbon. The role of the TMEDA here was thought to be one of promoting crystallization of 21 over 20, as both species were likely to be present in the reaction mixture. The lithium cation in 21 is not directly bound to the anion. Both 20 and 21 were inactive towards ethylene polymerization, with or without co-catalyst present. The isolation and structural characterization of species such as 19–21 provided a plausible reduction pathway; however, given that the tri-dentate ligand remained firmly bound to the metal centre throughout, ligand transfer to the aluminum co-catalyst and resultant deactivation, was improbable.

The family of type **16** pro-catalysts has been extended by Schmidt et al. to include the variations shown in Fig. 4.12 [21]. A series of screening experiments were conducted using MAO as co-catalyst, with variation of the substituents at positions R. \mathbb{R}^{l} , X, Y and Z. It was found that variation of the substituents around the aniline had a dramatic effect on the observed activity. Typically, on increasing the bulk of the alkyl group at the *ortho* (2-) position, there was a decrease in activity, which was accompanied by an increase (from 2 to 55 wt%) in the amount of solid product formed (at the expense of the oligomers). Indeed, the bulkiest procatalyst afforded the least amount of 1-hexene of all. Interestingly, the pro-catalyst derived from unsubstituted aniline PhNH₂, proved to be the exception. It is well documented that in the related iron(II) systems, such a ligand set results in the formation of the inactive bis(chelate) salt $[FeL_2][FeCl_4]$ [17]. In the case of vanadium; however this ligand set led to a pro-catalyst exhibiting an activity of 196 g/mmol h, which was somewhat higher than that observed for a number of other members of this pro-catalyst family, e.g. for R = iPr; R' = X = Y = X = H,

Fig. 4.12 Pro-catalyst **16** variations reported by Schmidt et al

16 R, R' = H, alkyl X, Y, Z = H, alkyl, Cl, Br

activity = 63 g/mmol h. Although the presence of a second substituent at the other *ortho*-(6-) position had little effect on activity, it had a pronounced effect on the product distribution, with a shift occurring from mostly oligomers to low molecular weight solids. Use of a methyl group at the *meta*-(5-) position also led to enhanced polymer formation. Solid formation could be suppressed by deployment of either a substituent at the *meta*-(3-) position or a chloro group at the *meta*-(5-) position. Both substituent patterns also produced enhanced α -olefin purity as well as favoring productivity. Of all the pro-catalysts screened, the highest observed activity was achieved when the substituents involved were *ortho*-(2-) methyl in combination with *meta*-(3-) chloro, i.e. R = Me; X = Cl; R' = Y = Z = H. By contrast, substitution patterns involving a combination of *ortho* (2-) and *para*-(4-) substituents proved to be unfavourable to the observed catalytic activity.

Using the pro-catalyst with R = methyl; R' = X = Y = Z = H, the influence of various reaction parameters, such as co-catalyst concentration, temperature, pressure and the presence of hydrogen, were investigated and their influence on activity studied [22]. Over the range 0-5,000 for the [Al]:[V] molar ratio, maximum activity was observed at a ratio of 300:1. The molar ratio also had an impact on the α -olefin purity in the C₆-C₁₀ range. Optimum purity was achieved at about the same molar ratio as that used for achieving the highest activity. The α -olefins produced followed a Schulz-Flory distribution independent of the [Al]/[V] molar ratio. The Schulz-Flory constant value α ranged between 0.36 and 0.40. At low molar ratios, low levels of solids (1-4 wt%) were evident. However, an increase in the molar ratio beyond 2,000:1, led to an escalation in the amounts of solids present (>20 wt%). In the case of temperature variation, productivity was inversely proportional to reactor temperature (at constant ethylene pressure). The loss of activity at higher temperature was not reversible, likely due to decomposition of the active species. Increasing the temperature was only slightly detrimental to the purity (>96% linear 1-hexene) of the α -olefins. Larger α -olefins were favored at higher temperatures as evidenced by a decrease in the slope of the Schulz-Flory plot. The amount of solid (polymer) in the product increased with temperature, and at 90 °C, the product was almost entirely solid. Increasing the pressure from 150 (10.34 bar) to 400 psig (27.58 bar) led to an increase in activity, although any further increase in pressure beyond this point had little impact. Over this pressure range, the amount of solid in the product remained constant at about 1.5 wt%. The addition of hydrogen had little influence on activity (a slight decrease only was noted) or product distribution/purity. Similarly, the presence of other α -olefins (co-monomers) did little to effect the product distribution.

It proved difficult to support this type of vanadium pro-catalyst, despite the use of the methodologies that had been successfully applied to the analogous iron(II) systems [23]. The resulting heterogenized systems displayed only negligible activity.

The final paper of this series by Schmidt et al. employed UV-Vis spectroscopy in an attempt to identify the products formed on the addition of MAO at various concentrations [24]. It was noted that the spectra showed a remarkable dependence on the time elapsed prior to the addition of MAO, as well as temperature and the

MAO concentration. Observations were best conducted using the 2,6-diisopropylphenyl derivative, primarily due to its favorable solubility. The observed spectra (λ_{max} 325 and 640 nm with a shoulder at 330 nm), using a low molar ratio of [V]:[Al] of the order of 1:10, were remarkably similar to that observed on addition of methyllithium to the vanadium precursor. Given that Rearden et al. had previously structurally characterized the product resulting from the addition of MeLi (see 20) [20], it was proposed that the MAO product, at such low molar ratios, was indeed 20. Scrutiny of the spectra also suggested that 20 was formed via an intermediate of unknown structure, but which possessed a prominent band at 370–460 nm. With excess MAO, 20 was thought to be rapidly converted to a dimethide complex related to 21, which over time converted into an active charge-separated species with an absorption max at 390 nm. In contrast to the analogous iron(II) system, the activity of this vanadium(III) pro-catalyst did not rapidly decrease with MAO mixing time.

More recent observations by Carrillo–Hermosilla and Antiñolo et al. described orange colorations (rather than emerald green) on addition of MAO ([Al]:[V] 100:1) in toluene to **16** and its 2,6-Me₂ and 2,4,6-Me₃ analogues [25]. The UV–Vis spectra for all three systems were similar, though in the case of **16**, there was an additional band at 830 nm. Higher [Al]:[V] ratios essentially led to identical spectra. As in earlier work, such pro-catalysts were highly active for ethylene polymerization when combined with MAO, but yielded only oily residues when TIBA was employed as co-catalyst. For the MAO runs, little variation of activity was observed when changes were made to the [Al]:[V] ratio (for values <500:1), but significant decreases in activity were evident with time. Results using different solvents for UV–Vis studies of pro-catalyst **16** (Ar = mesityl)/MAO at [Al]:[V] ratios of >100 led to shifts to higher wavelengths with increasing polarity, an observation which was consistent with the formation of an ion-pair of the type **22** (Fig. 4.13, left).

Partially dehydroxylated silica pre-treated with MAO could be used to support such vanadium complexes; however, additional MAO or TIBA was necessary to bring about catalytic activity. Typical results over 30 min using 500 equivalents of MAO and 100 mg of supported catalyst in toluene at 70 °C comprised an observed

Fig. 4.13 Proposed active species 22 and surface species 23

activity of 185 g/mmol h bar and a resultant polymer molecular weight (M_n) of 95.600.

These complexes could be directly supported on unmodified partially dehydroxylated silica, with loadings in the region of 1.5% as measured by adsorption isotherms. IR spectra for these supported systems possessed slight modifications to the stretching bands, and given this, a number of interactions have been proposed for the possible active species (see Fig. 4.13, right). Unlike the MAO-modified supported systems, the activities associated with the unmodified silica surface bound species showed a dependence of co-catalyst on the nature of the original vanadium complex.

The derivatives shown in Fig. 4.14 were screened, in the presence of MAO (500 equivalents), for the dimerization of propylene. Activities were in the range 95–215 g/mmol h, whilst the product was greatly influenced by the bulk associated with the *ortho* substituents on the aryl rings. Bulkier groups favored a 1,2-insertion as the initial step resulting in 2-methyl-1-pentene; smaller substituents afforded 4-methyl-1-pentene. The use of *para* halides led to increased selectivity for 4-methyl-1-pentene, whilst for *meta* halides, selectivity was enhanced in the order F > Cl > Br. Addition of PPh₃ (two equivalents) to the system improved dimer selectivity. Varying the amount of PPh₃ added influenced the product distribution [26].

4.3.2 2,6-Bis(aryliminophosphoranyl)pyridine

2,6-bis(aryliminophosphoranyl)pyridines formed red colored adducts of the type **24** (Fig. 4.15) when stirred with [VCl₃(THF)₃] at ambient temperature in dichloromethane, the product being isolated in yields of 69% (Ar = 2,4,6-Me₃C₆H₂) and 35% (Ar = 2,6-iPr₂C₆H₃). These octahedral pro-catalysts when activated with MAO ([Al]:[V] = 500–1,400:1) exhibited activities of up to 140 g/mmol h bar, affording high molecular weight polyethylene ($M_w \approx 1,300,000$) with wide polydispersity ($M_w/M_p = 9-15$) [27].

Fig. 4.14 Pro-catalyst **16** and the variations reported by Alt et al

4.3.3 Bis(pyrazolyl)pyridine

The bis(pyrazolyl)pyridine vanadium(III) complexes **25** and **26** (Fig. 4.16) were accessible via the reaction of VCl₃ with the parent bis(pyrazolyl)pyridine ligands in THF in yields of 57 and 89%, respectively. Screening with EtAlCl₂ (500 equivalents) as co-catalyst at 25 °C and 10 bar ethylene, led to observed activities of 580(**25**) and 940(**26**) g/mmol h, which fell to 160 (**25**) and 422(**26**) g/mmol h at 1 bar. At 50 °C, although higher molecular weight polyethylene was formed, there was a substantial drop-off in productivity. A reduction in the [Al]:[V] ratio down to 250:1, led at 50 °C to an improvement in productivity for **26**, but not for **25**. All polymers produced were essentially linear high density polyethylene [28].

4.3.4 Bis(benzimidazole)amine

The vanadium(III) procatalyst **27** and vanadium(V) pro-catalyst **28** (Fig. 4.17) are readily available from the parent ligand on reaction with [VCl₃(THF)₃] or [VO(OnPr)₃], respectively. Complex **27** containing the neutral tridentate donor ligand set is insoluble in common organic solvents, whereas **28**, which as a result of deprotonation of one of the benzimidazole nitrogen atoms contains a mono anionic tri-dentate ligand, is readily soluble in the likes of dichloromethane.

Screening of 27 for ethylene polymerization in the presence of Et₂AlCl/ETA was hampered by mass transport problems. Use of hydrogen (which lowered the resulting polymer molecular weights) and conducting the screening using sub-micromole concentrations of pro-catalyst enabled runs of up to 1 h to be conducted. The thermal stability was highlighted by kinetic profiles (ethylene uptake versus time), and activities in excess of 30,000 g/mmol h bar were achievable at 60 °C. The catalyst exhibits single-site behavior (PDIs 2.4–3.3), with

Fig. 4.15 Pro-catalyst 24

26

Fig. 4.16 Pro-catalysts **25** and **26**

polymer molecular weights in the range 248,300–992,900, for which ¹³C NMR spectroscopy indicated little branching.

Use of **28** led to similar activities and polymer properties consistent with the generation of the same active species as for **27**. Both **27** and **28** were also capable of co-polymerization of ethylene with propylene or norbornene. In the case of propylene, activities as high as 16,670 g/mmol h bar were recorded with 2.4 mol% propylene incorporation. For norbornene, incorporation levels reached 32.5 mol% [29].

4.4 N,O-Bi-Dentate Ligands

4.4.1 Salicylaldiminato/Phenoxyimines

4.4.1.1 Bi-Dentate

The use of Schiff-base functionalized phenoxides of the type [(2-PhN = CH) C_6R_4OH] (R = H, tBu) allowed access to the first highly active, thermally stable vanadium-based olefin polymerization catalysts, for example see **29** and **30** (Fig. 4.18). The catalyst group at the Mitsui Chemicals Corporation, having had great success with the group 4 metals, turned their attention to vanadium [30–32]. Use of MgCl₂ supports of the type MgCl₂/Et_mAl(OR)_n, synthesized via the de-alcoholysis of MgCl₂/2-ethyl-1-hexanol with Et₃Al, [33] led to the formation of well-defined polyethylene particles, which contrasts with the formation of a stringy product formed in the absence of the support. The polymer products formed by these supported catalysts were all of ultra-high molecular weight ($M_w > 5,000,000$). Analysis of this product proved to be troublesome, whereas

Fig. 4.17 Pro-catalysts 27 and 28

Fig. 4.18 Pro-catalysts 29 and 30

that formed in the presence of H_2 was shown to have a narrower molecular weight distribution $(M_w/M_n\ 2.3)$.

In the absence of the support, such phenoxyimine-based pro-catalysts proved to be poor at high temperature (75 °C), behaving in a similar fashion to VOCl₃-based systems. By contrast, in the presence of the support, these pro-catalysts proved to be thermally stable and highly active. For example, the system **29**/MgCl₂/Et_mAl (OR)_n showed a steady increase in activity from 18,700 g/mmol h bar at 25 °C rising to 65,100 g/mmol h bar at 75 °C. It is noteworthy that use of V(acac)₃ with the same support afforded a much lower activity at 75 cf. 25 °C, which highlighted the important stabilizing role imparted by the phenoxyimine ligands. For the **29**/MgCl₂/Et_mAl(OR)_n system, there was steady ethylene uptake with time, suggesting negligible catalyst deactivation. This is in stark contrast to VOCl₃-based systems, where there was rapid deactivation with or without the support present.

The system $29/\text{MgCl}_2/\text{Et}_m\text{Al}(\text{OR})_n$ was also shown to be capable of ethylene/propylene co-polymerization at 75 °C. The amorphous co-polymer formed was of high molecular weight (M_w 697,000) with M_w/M_n 4.72. It possessed a propylene content of 21.3 mol%, and a random distribution of monomeric units, namely PPP 1.75%, PPE 4.80%, EPE 14.16%, PEP 50.81%, EEP 24.10% and EEE 4.58%, plus 3.4% inverted propylene units. GPC-IR measurements showed that longer co-polymer chains possessed higher co-monomer content.

A number of complexes of the type **31** (Fig. 4.19, left) have been obtained via reaction of [VCl₃(THF)₃] in THF with one equivalent of the corresponding phenoxyimine ligand in the presence of triethylamine [34]. Depending on the steric requirements of the ligands present, similar use of only half an equivalent of [VCl₃(THF)₃] led to the vanadium(III) complexes **32** (Fig. 4.19, right) or the THF-free version of **32**. Ethylene polymerization screening using Et₂AlCl as co-catalyst gave highest activities when using 3,000–4,000 molar equivalents of co-catalyst. However, higher molar ratios led to decreases in polymer molecular weights. Procatalyst structure–activity studies revealed little variation in activity of resultant polymer molecular weight for those pro-catalysts derived from unsubstituted phenols, with only that bearing an *N*-bound cyclohexyl grouping behaving somewhat differently. This 'cyclohexyl' pro-catalyst displayed a much lower activity at 25 °C, yet the highest activity at 70 °C. For those systems where the phenolic part of the ligand contained bulky *tert*-butyl groups, activities were much lower. Further reduction in activity followed the introduction of bromo substituents.

The bis(phenoxyimine) complexes 32 were all less active than type 31 systems, but were able to maintain their activities over longer periods. More pronounced structure–activity relationships were also observed for these complexes.

Fig. 4.19 Pro-catalysts 31 and 32

In particular, higher activities were favored by the presence of electron-with-drawing substituents as well as by increased steric bulk at either the *N*- or *O*-bound function. However, when both the *O*- and *N*-bound moieties contained bulky substituents, this proved to be detrimental to ethylene insertion (or catalyst activation), and as a consequence lower activities resulted. Use of an *N*-bound cyclohexyl substituent was found to be more favorable to performance than an *N*-bound phenyl group. These bis(phenoxyimine) pro-catalysts in general displayed higher activities at higher temperatures, with little change to the polydispersity indices of the resulting polymers.

Using a similar synthetic procedure, N-bound heteroatom containing substituents can be incorporated, and a number (see 33a-d, Fig. 4.20) of these have been isolated in yields of 45-65%, and have also been screened for ethylene polymerization and ethylene/1-hexene co-polymerization using Et₂AlCl and ETA [35]. Screening results were compared against pro-catalyst 31 as standard, and it was found that at elevated temperatures (70 °C), those possessing the N-bound heterosubstituents exhibited higher activities; at room temperature (25 °C) 31 displayed a higher activity. The presence of bulky tert-butyl groups on the phenoxy part of the ligand frame was detrimental in terms of activity. Notable electronic effects were observed for the N-bound hetero groups. In particular, highest activities were achievable when using the 'c' motif. With these systems, polymer molecular weights decreased sharply with increasing temperature, whereas associated PDIs changed only slightly over the initial 5 min period. Optimum catalytic activity for type 'c' catalyst systems was achieved using an [Al]:[V] ratio of 4,000:1, and increases in co-catalyst concentration also led to decreases in the PDIs. Use of other co-catalysts such as MAO, Me₃Al or Et₃Al afforded only trace or no polymer. Use of Et₂AlCl in the absence of ETA also led to lower yields of polymer. Lifetime studies revealed that 'a' and 'c' (and the standard 31) maintained some productivity over the 30 min run time, whereas 'b' and 'd' were virtually inactive after 10 min. All of these systems yielded a bi-modal molecular weight distribution, attributed to the presence of two types of active species. For 'a' and 'c', high molecular weight fractions dominate, whereas for 'b' and 'd', low molecular weight fractions make up greater than 90% of the product. For 'c', whilst 5 min runs resulted in a uni-modal molecular weight distribution, at 15 or 30 min, bi-modal distributions are observed for which the molecular weight of the lower fraction is close to that observed at 5 min.

$$R_1$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_5
 R_5
 R_6
 R_7
 R_8
 R_9
 R_9

Fig. 4.20 Pro-catalysts of type 33a-d

For ethylene/1-hexene co-polymerizations, the observed catalytic activities followed the trend ${\bf c} > {\bf a} > {\bf b} \gg {\bf d}$. The resulting high molecular weight co-polymers possessed uni-modal molecular weight distributions, with the 1-hexene incorporation falling in the range 2.69–3.71 mol%. For 'c', increasing the 1-hexene feed led to decreased activity and molecular weights, but an increase in incorporation, for example 26.7 mol% at 2.70 mol/L 1-hexene. Again when using 'c', at 10 min, highest activities were achievable at 50 °C, whereas at 30 min, 25 °C was preferable. Molecular weights of the co-polymers decreased upon increasing temperature of the run, the PDIs remained unaffected, whilst the 1-hexene incorporation increased. Molecular weights also increased with time. Analysis of the microstructure using 13 C NMR revealed the presence of HEH and EHH triads for the 10.7 mol% 1-hexene incorporated co-polymer, and HHH triads in the copolymer with 26.7 mol% 1-hexene incorporation.

Imidazolium Bearing Phenoxyimines

The imidazolium salt **34** (Fig. 4.21) was isolated from the reaction of $[VCl_3(THF)_3]$ with the parent phenoxyimine in the presence of sodium bis(trimethylsilylamide) in 92% yield. In the presence of MAO, **34** exhibited low activity (0.18-6.20 g/mmol h bar) towards ethylene polymerization at temperatures \leq 75 °C; the system peaked at ambient temperature (22 °C), but was essentially inactive above 80 °C. The [Al]:[V] molar ratio was varied between 250 and 1,000:1, and the best activity at 22 °C was observed for 500 equivalents of co-catalyst. The system was multi-modal, with a narrow mono-modal low molecular oligomeric fraction ($M_n = 390-450$), and a multi-modal higher molecular weight fraction. MAO deprotonation of the imidazolium grouping to give an aluminum adduct, typically an imidazolium-aluminate zwitterionic species, was put forward as a possible reason for the multiple active species present [36].

Imido Phenoxyimines

Reaction of $[V(NC_6H_3Me_2-2,6)Cl_3]$ with the lithium salts of the phenoxyimines LiO-2-R-6- $[(2,6-iPr_2C_6H_3)N = CH]C_6H_3$ led to the imido complexes **35** (Fig. 4.22, left)

Fig. 4.21 Pro-catalyst 34

in yields of 64–78%. The imido group occupies the apical site of the distorted squaredbased pyramidal geometry at vanadium (see Fig. 4.23 for the tBu derivative); the imino nitrogen was also coordinated to the vanadium centre as a π donor. Screening (25 °C, 8 atm ethylene, 10 min) in the presence of MAO revealed that the ortho substituent in the aryloxo ligand had a strong affect on the ethylene polymerization activity, with an observed order of tBu (2,150) > Me (680) > H (380 g/mmol h). From analysis of the crystallographic data, in-particular the Cl-V-Cl bond angle, it was postulated that the ortho substituent affected the bond angle between the alkyl and the olefin in the proposed cationic alkyl active species. The overall result being more facile insertion. The beneficial affect of the presence of the imine could also be inferred from comparison with the aryloxide pro-catalyst 36 (Fig. 4.22, right). Screening under the same conditions as for 35 resulted in an activity somewhat lower (880 g/mmol h) than that observed for 35 (tBu). The enhanced electron donation from the imino nitrogen was assumed to stabilize the active species at temperatures below 50 °C. The resulting polymers were of high molecular weight and uni-modal molecular weight distributions $(M_w/M_p = 2.8-3.1)$. Above 50 °C, the active species is thought to decompose leading to less control and poorer activity [37].

'C-capped' Phenoxyimines

An arylimine arm can readily be appended to the parent formyl-bearing C-capped ligand system by using the method of Scott et al. (Fig. 4.24) yielding phenoxyimines of the type L^1H_3 [38]. Such an approach allowed for the facile introduction of a wide variety of aryl groups and as a consequence allows both the electronics and sterics of the system to be controlled by requisite choice of aniline. In our laboratory, the aryl derivatives C_6H_5 , C_6H_4Me-4 , $C_6H_2Me_3-2,4,6$ and $C_6H_3iPr_2-2,6$ were prepared, and subsequently treated with $[VO(OnPr)_3]$ to afford bis-chelate vanadium(IV) complexes of the form $[VO(L^1H_2)_2]$ (37, Fig. 4.25), in which each 'C-capped' ligand binds in phenoxyimine fashion [39].

Using such pro-catalysts for ethylene polymerization afforded little or no polymer when MAO or Me₃Al, with or without ETA present, were employed as

Fig. 4.22 Imido phenoxyimine pro-catalyst **35** and imido aryloxide **36**

Fig. 4.23 Crystal structures of pro-catalysts of type **35** (R = tBu). Reproduced with permission from Ref [37]

Fig. 4.24 Synthesis of 'Scott-imine' ligands (R = tert-butyl)

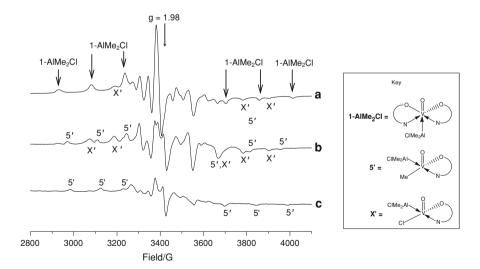

 L^1H_3

Fig. 4.25 Pro-catalysts of the type 37

co-catalysts. However, the use of DMAC did produce a system with appreciable activity. The catalytic system exhibited good thermal stability, whereby the activity was seen to increase over the temperature range 0–80 °C. The activity

increased from around about 2,000 to an activity in the region of 25,000 g/mmol h bar, but this was accompanied by a dramatic fall off in polymer molecular weight, down from 524,000 at 0 °C to 59,400 at 80 °C ($M_{\rm w}/M_{\rm n}$ remained relatively constant \leq 4.8). Increases in the [Al]:[V] ratio beyond 16,000 led to big increases in the $M_{\rm w}/M_{\rm n}$ value (\geq 10), suggesting that completing processes were taking place leading to loss of single-site catalysis. A value of [Al]:[V] of 8,000:1 was found to be optimum for catalytic performance. It proved important to maintain the value of the [Al]:[V] ratio above 2,000:1 presumably so that the co-catalyst was able to carrying out its function as a scavenger. Changing the aniline precursor had an effect upon the catalytic activity, with bulkier anilines producing higher observed activities.

EPR studies were conducted on pro-catalyst **37** (where Ar = 2,6- $iPr_2C_6H_3$) when mixed with AlR_3 or AlR_2Cl (R = Me, Et) with and without ETA present. Initially at temperatures around -60 to -70 °C, signals interpreted as adducts of the form $[(L')_2V(O)(AlR_3)]$ and $[(L')_2V(O)(AlR_2Cl)]$ were found (see for example Fig. 4.26). At 20 °C, it was proposed that with AlR_3 ($\pm ETA$), complexes of the form $[L'V(O)(R)(AlR_3)]$ (L'= modified 'C-capped' ligand) were formed. In the case of AlR_2Cl ($\pm ETA$), complexes of the form $[L'V(O)(R)(AlR_2Cl)]$ were proposed. It was shown that systems of the type **37**/ AlR_3/ETA were inactive, whereas **37**/ AlR_2Cl/ETA was moderately active, and there was a correlation between the concentration of vanadium(IV) alkyl halide present and the observed activity; however, most vanadium present was thought to exist as EPR silent vanadium(III) species. The observed drop in activity with time was accompanied by a loss in

Fig. 4.26 EPR spectra (-196 °C) of a sample of $37/\text{AlMe}_2\text{Cl/ETA}$ (1:100:100; [1] = $5 \times 10^{-3}\text{M}$) in toluene **a** 10 min after mixing at -60 °C; **b** a further 10 min at -20 °C; **c** a further 10 min at 20 °C. Reproduced with permission from Ref [40]

activity and reduction of V(IV) to V(III), which suggested V(IV) species were the active species. There was no evidence of the formation of V(II) complexes [40].

Use of the imido precursor [V(Np-tolyl)(OnPr)₃] and the ligand $\mathbf{L^1H_3}$ bearing the aryl group $C_6H_3iPr_2$ -2,6 led, following work-up in acetonitrile, to the poorly soluble dimeric complex [{V(Np-tolyl)($\mathbf{L^1H}$)}₂(μ -OnPr)₂] (38, Fig. 4.27, left). Both vanadium centres are distorted trigonal bipyramidal with the '*C*-capped' ligand binding in chelating aryloxide fashion. The phenoxyimine motif is not part of the metal coordination sphere, but rather is involved in intramolecular hydrogen bonding. The activity of this pro-catalyst, in the presence of DMAC (5,000 equivalents) as co-catalyst and with ETA as re-activator, was found to be 6,800 g/mmol h bar; M_w 236,000 and poly-dispersity index 2.4.

It proved possible to isolate a second complex **39** from the acetonitrile mother liquor. This second complex turned out to be bi-metallic (Fig. 4.27, right) and possessed two very different vanadyl centres, each linked via a bridging oxo ligand. The coordination geometry at the near tetrahedral vanadyl centre was completed by mono-dentate aryloxo ligation from each of the 'C-capped' ligands present. In the case of the distorted octahedral centre, the coordination was completed by two phenoxyimine groups. Interestingly, whilst there were no p-tolyl groups present, an exchange had occurred such that the imine aryl groups were now p-tolyl as opposed to the original $C_6H_3iPr_2$ -2,6. Screening of the complex using DMAC/ETA led to an observed activity of 5,200 g/mmol h bar, with M_w 262,000 and M_w/M_p 2.5.

Use of an excess of diamine in the equation shown in Fig. 4.24 led to the formation of a C-capped ligand L^2H_3 bearing a pendant benzimidazolyl group (as in Fig. 4.28). On treatment with half an equivalent of $[VO(OnPr)_3]$, the bis(phenoxyimine) vanadium(IV) complex 40 (Fig. 4.29) was isolated. Screening of this

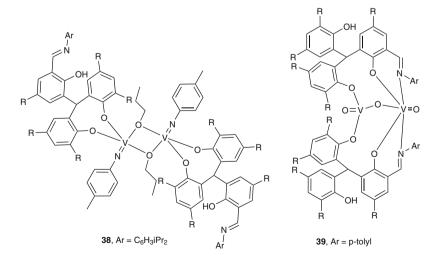


Fig. 4.27 Pro-catalysts 38 and 39

Fig. 4.28 Synthesis of the benzimidazolyl containing ligand L²H₃

pro-catalyst for ethylene polymerization using DMAC/ETA at 45 °C, produced an observed catalytic activity of 3,000 g/mmol h bar and polymer molecular weight $(M_{\rm w})$ of 230,000 $(M_{\rm w}/M_{\rm n}$ 2.3).

4.4.1.2 Tri-Dentate Salicylaldiminato/Phenoxyimines

A number of tri-dentate Schiff-base ligands were deprotonated using NaH and subsequently treated with [VCl₃(THF)₃] at room temperature to afford vanadium(III) complexes of type 41 (Fig. 4.30). Similar procedures were used to prepare the complexes 42 and 43 (Fig. 4.31). In all of these complexes, the tri-dentate ligand binds in *meridional* fashion, with the chlorides in mutually *trans* positions. In the presence of Et₂AlCl and ETA, these pro-catalysts proved to be thermally stable and highly active. Both the nature of the pendant donor group and the screening temperature had an influence on the observed catalytic activity. In the series of type 41, phosphorus, nitrogen or sulfur donors performed better than do oxygen donors. Within the nitrogen series, that bearing a pyridylmethyl function possessed the highest activity (15,600 g/mmol h bar). Overall the best activity was achieved using pro-catalyst 43 at 50 °C (20,640 g/mmol h bar). Increasing the temperature led to reductions in polymer molecular weight, but did little to affect the PDIs, which remained in the range 1.9–3.0. Such behavior is in stark contrast to that of the bi-dentate Schiff-base systems described previously (Sect. 4.4.1.1), which suggests that the donor groups are helping to stabilize the active species present. Lifetime studies revealed that whilst the systems containing O or N donors

Fig. 4.30 Pro-catalysts of the type 41

Fig. 4.31 Pro-catalysts of the type 42 and 43

lost in excess of 70% of their activity over 30 min, those containing the softer S or P donors lost only around 30% [41].

Co-polymerizations of ethylene with 1-hexene or with norbornene, in the presence of Et₂AlCl, were also investigated. As for the homo-polymerization of ethylene, high activity and a uni-modal molecular weight distribution of products was evident. Structure–activity relationships were also noted, for example, complexes bearing a nitrogen donor led to high molecular weight products ($M_{\rm w}$ up to 138,000) for ethylene/1-hexene co-polymerization. The ethylene/1-hexene co-polymer microstructure was determined using ¹³C NMR spectroscopy in o-C₆D₄Cl₂ at 135 °C. At 3 mol% co-monomer incorporation, the hexene units were isolated between ethylene units, whereas once the incorporation level reached 12.9 mol%, a block sequence of hexene (labeled $\alpha\alpha$) was present. In the case of ethylene/norbornene co-polymerization, the highest activity (17,280 g/mmol h bar) was observed for the type **41** system bearing the phosphorus donor. All ethylene/norbornene co-polymers were of high molecular weight ($M_{\rm w}$ up to 164,000), with the highest molecular weights obtained using those pro-catalysts bearing a soft donor atom.

4.4.1.3 Tetra-Dentate Salicylaldiminato/Phenoxyimines

The tetra-dentate [O,N,N,O] salen ligands $\mathbf{L^3H_2}$ (Fig. 4.32), for which the backbone was either ethylene ($-\mathrm{CH_2CH_2}$ -) or cyclohexylene ($-\mathrm{C_6H_{10}}$ -), suspended in dichloromethane, were treated with one equivalent of VCl₄ to afford dark green 6-coordinate vanadium(IV) dichloride products $[\mathrm{VCl_2}(\mathrm{L^3})]$ (44) [42]. Subsequent screening for ethylene polymerization of these *trans*-dichloride pro-catalysts using

the co-catalysts $EtAlCl_2$, Et_2AlCl , Et_3Al or MAO, revealed that the most efficient (activity $\leq 1,000$ g/mmol) systems were accessible when using $EtAlCl_2$ as co-catalyst, the proposed reasons (nature of the ion-pairing) for which were akin to those described by Wang and Nomura for their (arylimido)(aryloxo)vanadium systems (Fig. 4.33) [43].

The presence of a cyclohexylene bridge in the parent ligand set (46, Fig. 4.34, right) led to enhanced activity (cf. 45, 4.34, left), but made little difference to the polymer properties. In all cases, high molecular weight, linear polyethylene was obtained, with very broad molecular weight distribution (≤28.9), which was indicative of multiple active species. Variation of the *ortho* and *para* substituents on the phenolic ring of the ligand set also led to the observation of structure–activity relationships. In particular, the presence of electron withdrawing groups at the *para* position (e.g. Br or Cl) or electron donating substituents at the *ortho* position (e.g. *tert*-butyl, OMe) generally led to enhanced activity.

Comparison with the Fujita FI (phenoxyimine) systems revealed similar activities which suggested that the tetra-dentate-based systems must undergo a rearrangement of the *trans*-disposed chlorines to afford a system which is more catalytically favorable [44–46].

¹H NMR (and FTIR) analysis of the polymer produced from **45**/Et₂AlCl revealed only vinyl end groups, consistent with β -hydrogen transfer to the metal or monomer. For **46**/EtAlCl₂, there was also a small methylenoxy peak (δ 3.57 ppm), suggesting that the increased Lewis acidity of this co-catalyst was also allowing some chain transfer to aluminum to occur [47].

The salen-type complex ethylene(5-chlorosalicylideneiminato)vanadium dichloride **45** has been supported on MgCl₂(THF)₂ or MgCl₂(THF)₂/Et_nAlCl_{3-n} (n=1-3; [Mg]:[Al] molar ratio 1:2). Ethylene polymerization screening, conducted in the presence of a variety of organoaluminum co-catalysts, revealed that for the Mg-immobilized system, co-catalyst efficiency followed the order Et₂AlCl > MAO > EtAlCl₂. The Mg-supported system was six times more active in n-hexane than in toluene with either Et₂AlCl or MAO. The magnesium support was thought to improve the resistance of vanadium to reduction. In the case of the Mg/Al support,

Fig. 4.32 Salen ligands of the type L^3H_2

$$R_2$$
 OH R_2 R_1 = H, OMe, tBu , OEt R_2 R_2 = H, tBu , Cl, Br, F R_1 R_2 R_3 R_4 R_5 R_5 R_5 R_6 R_7 R_8 R_8 R_8 R_9 R_9

Fig. 4.33 Nature of the ion-pairing for different co-catalysts

$$(L)(L)V - Me \qquad XMAO \qquad (L)(L)V \qquad (L$$

Fig. 4.34 Pro-catalysts 45 and 46

MAO was the preferred co-catalyst. Despite being the most favored co-catalyst for the non-immobilized system, $EtAlCl_2$ proved to be the worst co-catalyst for both supported systems. Each type of support also had a different response to an increase in the temperature of the polymerization run. For the Mg-supported system, a decrease in activity was observed, whereas the Mg/Al-supported system showed an increase, peaking at 60 °C. Both an increase in the pressure and the [Al]:[V] molar ratio, led to improved activity, and both systems exhibited extended lifetimes, with activity being observed well beyond 2 h. The polyethylene product was linear (M. Pt > 135 °C), and had broad PDI (\geq 15). Particle size distribution was bi-modal for the Mg/Al-supported catalyst at 60 °C, with the majority of particle sizes at 0.3 (46%) and 0.6 mm (34%).

The related 1,2-cyclohexylene(5-chlorosalicylideneiminato)vanadium dichloride 46 when supported (via a co-milling procedure) on magnesium chloride (formed on addition of Et₂AlCl to the adduct MgCl₂·3.4ethanol) was highly active for ethylene polymerization and ethylene/1-octene co-polymerization at 50 °C. Highest activity was obtained using MAO as co-catalyst. As in the previously mentioned ethylene system 45, use of halogenated co-catalysts in conjunction with the supported system led to disappointing results. Both supported and unsupported systems yielded linear polyethylene, with a wider spread of molecular weights noted for the former. Polyethylene grain size for the supported system varied with co-catalyst. Over 70 wt% of the grains measured over 2 mm when trialkylaluminums were used, whereas grains of either 0.3 or 0.4 mm were in excess with MAO. As for 45, use of a support led to increased thermal stability and higher observed activity values, though these were at the expense of molecular weight, which followed the reverse trend.

This supported system was also shown to be capable of ethylene/1-octene co-polymerization, with a maximum of about 4.5 mol% co-monomer incorporation achieved at a co-monomer concentration of 1.82 mol/L Both the polymer molecular weight and the crystallinity thereof, decreased with increasing co-monomer concentration. SEM micrographs of the supported vanadium procatalyst particles revealed a regular, though not spherical structure, for which the particle surface was porous.

Use of 0.5 equivalents of the diamine (Fig. 4.35) led to a bis-imine bridged ligand set L^4H_6 , which on further reaction with an equimolar amount of $[VO(OnPr)_3]$ led to the complex $[VO(L^4H_4)]$ 47 (Fig. 4.36, left), possessing a

Fig. 4.35 Preparation of the bis-imine bridged ligand L^4H_6

Fig. 4.36 Pro-catalysts 47 and 48

square-based pyramidal vanadium(IV) centre. The phenoxyimine groups bind in a cis fashion due to the constraints imposed by the ligand, leaving four uncoordinated phenolic groups. The activity of this pro-catalyst (using DMAC/ETA) was about 2,500 g/mmol h bar, with a corresponding polymer molecular weight ($M_{\rm w}$) of 245,000 and an $M_{\rm w}/M_{\rm n}$ of 2.4.

If the amount of $[VO(OnPr)_3]$ was increased such that the reaction was now 1:2 (L^4H_6 :V), the product isolated contained two vanadyl centres, see **48** (Fig. 4.36, right). The second vanadyl group was bound to three of the previously uncoordinated phenolic groups affording a tetrahedral geometry at vanadium. Screening of this pro-catalyst under the same conditions as for **47** led to an activity of 4,200 g/mmol h bar (M_w 293,000; M_w/M_n of 2.2), which was suggestive of a possible cooperative effect (cf. **47**) [39].

4.4.2 β-Enaminoketonato

Reaction of $[VCl_3(THF)_3]$ with one equivalent of the lithium salt of the parent β -enaminoketonate ligand led to the isolation of the essentially octahedral

a) R1 = Ph, R2 = CF $_3$; b) R1 = tBu, R2 = CF $_3$; c) R1 = CF $_3$, R2 = CH $_3$; d) R1 = Ph, R2 = CH $_3$; e) R1 = Ph, R2 = H

complexes **49a–e** (Fig. 4.37, left). Ethylene polymerization screening conducted using Et₂AlCl as co-catalyst and ETA as re-activator led to activities in the order $\mathbf{b} > \mathbf{d} \approx \mathbf{a} > \mathbf{c} \approx \mathbf{e}$. All the polymers isolated were of high molecular weight with little branching and PDIs in the range 2.3–3.0. Varying the [Al]:[V] molar ratio affected the observed activity, with the peak activity attained at a ratio of ca. 4,000:1. The polymer molecular weight decreased almost linearly with increasing [Al]:[V] molar ratio. Similarly, increasing the temperature of the polymerization run led to a peak in activity at 50 °C, whilst polymer molecular weight decreased in an almost linear fashion [48].

These pro-catalysts are also capable of co-polymerizations. For ethylene/norbornene (NBE), pro-catalyst e exhibited the highest activity (6,840 g/mmol h), and c the lowest (2,760 g/mmol h); the NBE content remained constant. If the NBE level in the feed was raised; however, then the degree of incorporation increases and a maximum incorporation of 39.43% was observed. This increased incorporation though was at the expense of a decrease in activity. Variation of the [Al]:[V] molar ratio had little affect on the NBE incorporation, but did affect the activity. The temperature also affected activity with maximum observed activity at 50 °C, whilst slight decreases in NBE content were noted as the temperature was raised. Polymer analyses revealed a uni-modal distribution of molecular weight of high molecular weight products, for which the NBE was incorporated either in isolation or in alternation with ethylene units.

In the case of ethylene/1-hexene co-polymerization, the pro-catalyst **a** exhibited the highest activity (5,820 g/mmol h); however, this was lower than that observed for [VCl₃(THF)₃] (6,000 g/mmol) under the same conditions. Pro-catalysts **49a–e** showed no obvious differences in the degree of 1-hexene incorporation, though the incorporations (and the molecular weights) were far higher than that observed for [VCl₃(THF)₃]. Increasing the 1-hexene concentration in the feed led to an initial increase and then a dramatic decrease in activity, whilst the 1-hexene incorporation increased in an essentially linear fashion over the range studied. Variation of the [Al]:[V] molar ratio led to a maximum activity of 2,640 g/mmol h at an [Al]:[V] ratio of 3,000:1. The degree of 1-hexene incorporation, molecular weights and the molecular weight distributions remained constant. Polymer analysis revealed that no hexene block sequences were present.

4.4.3 Pyridine Alkoxide

The oxo and organomido pro-catalysts **50** and **51** (Fig. 4.37, right) were prepared by treatment of the appropriate vanadium(V) trihalide [V(X)Cl₃] (X = O, Np-tolyl) and the lithium salt of the pyridylalkoxide. ¹H NMR data suggested that for both **50** and **51**, the chelate ligand binds in η^2 -O,N fashion to the metal center. Ethylene polymerization screening was conducted (30 or 50 °C, 6 bar ethylene) using Et₂AlCl (20 equivalents) as co-catalyst. The oxo pro-catalyst **50** exhibited moderate activity (88 g/mmol h bar at 50 °C); however, this was somewhat lower than that observed under the same conditions for the chelate-free complex [VOCl₂(O*i*Pr)] (182 g/mmol h bar). It was suggested that the presence of the donor N either contributes to increased electron density at vanadium thereby stabilizing the complex or that it blocks/occupies a required coordination site [49]. The performance of the organoimido complex **51** was far poorer (<2 g/mmol h bar), which was ascribed to its inability to form a Lewis adduct with aluminum akin to that often postulated for oxo species.

4.5 *N,O,S*-Penta-/Hexa-Dentate Salicylaldiminato/ Phenoxyimines

The softer second row donor sulfur has proved beneficial when employed in the backbone of a number of chelate ligands for group IV systems [50–53]. Further, Miyatake and more recently Sabota et al. have reported the use of similar chelate ligands in vanadium-based systems [54, 55]. The combination of an imine and a sulfur donor within one ligand set was thus an attractive target. With this in mind, the ligand L^5H_2 (Fig. 4.38, left) was synthesized by an adaptation of the method of Rajeskhar et al. [56]. When L^5H_2 was treated with $[V(X)(OR)_3]$ (X = O,

Fig. 4.38 Ligand L⁵H₂ and pro-catalysts 52–57

R = nPr; X = Np-tolyl, R = Et), complexes of the form $[V(X)L^5]$ (52–55) were isolated (Fig. 4.38, middle). Crystallographic studies revealed octahedral coordination at vanadium, with the sixth site occupied by one of the bridging thioether groups. In the case of n = 2, carrying out the reaction in the presence of DMAC led to the formation of the vanadium(III) complex 56. Prolonged reaction of L^5H_2 with $[V(Np\text{-tolyl})(OEt)_3]$ led, via oxidative cleavage of the C–S bond, to the bimetallic complex 57 (Fig. 4.38, right). Complex 57 was also accessible, in higher yield, via use of the reduced form of L^5H_2 (i.e. a bis(phenoxyamine)) and $[VO(OnPr)_3]$ [57].

For comparative purposes, these pro-catalysts were screened alongside the Fujita type phenoxyimine-based pro-catalysts **29** and **30** (see Sect. 4.4.1.1, Fig. 4.18). Both **29** and [V(Cl)'L⁵] exhibited similar catalytic activity (ca. 11,000 g/mmol h bar), whereas comparison with **30** (8,000 g/mmol h bar) suggested the higher activity of [V(Cl)'L⁵] could be attributed to the additional π -donation from the bridging sulfur. Variation of n revealed a preference for a 1,3-propanediyl (i.e.n=3) bridge in terms of observed activity. Polymer molecular weights were in the range 160,000–206,000. The use of TMA or MAO as co-catalyst instead of DMAC proved to be ineffective. Rather surprisingly, the presence of ETA did not improve the performance of this catalyst system.

These pro-catalysts were also capable of ethylene/1-hexene co-polymerization with activities of up to 1,200 g/mmol h bar, and C₆ incorporation of between 5.1 and 13.6 mol%. In the case of pro-catalyst **52** (Fig. 4.38, middle), it was noted that a minimum of 3,200 equivalents of 1-hexene (to vanadium) was needed to simply prevent only polyethylene formation. Any increase in the amount of 1-hexene above the 3,200 equivalents level was found to be detrimental to polymer molecular weight, whilst at 8,000 equivalents, no material was recovered. Activity and molecular weight were also found to decrease by an order of magnitude on increasing the temperature from 25 to 45 °C. Co-polymer analysis by ¹³C NMR spectroscopy and microstructure assignment using the method of Hsieh and Randell, [58] was consistent with long chains of polyethylene with isolated hexane units (1 unit of hexane per 10 units of ethylene).

4.6 Other

4.6.1 Ketimide

1-Adamantylimido vanadium ketimide complexes, unlike their arylimido counterparts, can be readily isolated from VOCl₃, the isocyanate and the lithium salt of the ketimide. Evaluation of type **58** complexes (Fig. 4.39) as pro-catalysts for the polymerization of ethylene in the presence of MAO, led to an observed catalytic activity order of $N = CtBu_2$ (516 g/mmol h) > N = C(tBu)Ph (300 g/mmol h) > $N = CPh_2$ (105 g/mmol h) > $N = CtBu_2$ CtBu)CH₂SiMe₃ (70.8 g/mmol h). The general trend for these moderate activities suggested an influence from the electronic

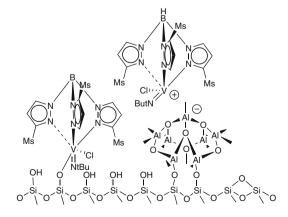
properties of the ketimide ligand. The polymer products possessed bi-modal molecular weight distributions [59].

A crystal structure determination (see Fig. 4.40) of the $N = CtBu_2$ analogue confirmed the distorted tetrahedral geometry at the metal. Purification of the $N = CPh_2$ derivative required extraction into dichloromethane, however this was accompanied by a gradual decomposition to the dimeric complex $[N(Ad)H_3]$ $[V_2(\mu_2\text{-Cl})_3Cl_2(NAd)_2(N=CPh_2)_2]$.

4.6.2 Tris(3,5-dimethylpyrazolyl)borato (Tp*)

The tris(3,5-dimethylpyrazolyl)borato (Tp*) arylimido complex [Tp*V(NAr)Cl₂] (**59**, Ar = 2,6-iPr₂C₆H₃), prepared via the addition of ArNCO to [VOCl₃] and subsequent treatment with KTp*, was characterized by X-ray crystallography. The Tp* ligand was bound *facially* to a distorted octahedral vanadium centre. The ligands *cis* to the bulky imido group were all found to bend away somewhat (towards N(7)) such that the vanadium centre was 0.1,871(3) Å out of the Cl(1), Cl(2), N(1) and N(6) plane. This pro-catalyst was active for ethylene as well as propylene polymerization. Screening using MAO (1,000 equivalents) at ambient temperature and 1 bar pressure led to an activity (for ethylene) of 14 g/mmol h, and a product with M_w 47,000 and M_w/M_n 3.0. In the case of propylene (7 bar),

Fig. 4.40 Crystal structure of pro-catalyst **58** (R = tBu). Reproduced with permission from Ref [59]


the product formed was mostly atatic, with a slight excess of r diads consisting of low molecular weight ($M_{\rm w}$ 3,800, $M_{\rm w}/M_{\rm n}$ 2.0) regio-regular chains. Isopropyl end groups were suggestive of 1–2 insertions of propylene into the V–Me groups. The activity for propylene polymerization though was low at 1 g/mmol h bar [60].

The bulky $(3\text{-Ms-pyrazolyl})_2(5\text{-Ms-pyrazolyl})$ borate *tert*-butylimido vanadium(V) complex **60** (Ms = 2,4,6-trimethylphenyl) has been immobilized on a number of different inorganic supports such as SiO₂, MAO modified SiO₂, MgO, MgCl₂, SiO₂–Al₂O₃ and MCM-41 (an aluminosilicate possessing weak acidity) [61]. The V-content in these supported systems was found to be in the range 0.054–0.098 mmolV/g.support, with the highest value observed when using the SiO₂–Al₂O₃ or MCM-41 support. Given that the MAO-modified support used still possessed unreacted silanol groups, immobilization of vanadium was possible at both silanol as well as MAO sites, for example as depicted in Fig. 4.41. Analysis by XRF showed that such an MAO-modified surface possessed a higher preference for type **60** complexes than did unmodified SiO₂.

Screening (30 °C in hexane) of these supported systems using MAO or MAO/ TiBA (1:1) ([AI]:[V] = 1,000:1) resulted in activities in the range 8–88 g/mmol h. In the case of MAO, the highest activity was achieved using SiO_2 . Use of MAO/ TiBA (1:1) further increased activity; the TiBA increases the aliphatic solvent polarity and enhances the solubility through modification of the MAO. In general, the use of acidic or basic supports led to less active systems. In all cases, the activities are far lower than those observed for their homogenous counterparts.

For example, pro-catalyst **60** and the 2,6-diisopropylphenylimido derivative **61** were screened for ethylene polymerization using MAO or MAO/TiBA as co-catalysts, using either hexane or toluene as solvent. Results in toluene were poor, which was ascribed to the competitive coordination of the toluene versus ethylene. In hexane, pro-catalyst **60** was most active (1,460 g/mmol h), with optimum conditions of 30 °C and 2,000 equivalents of MAO/TiBA as co-catalyst. The product as measured via viscosity-averaged molecular weights in decaline at 165 °C, was ultra high molecular weight polyethylene [62].

Fig. 4.41 Immobilization of 60 on MAO-modified silica

In the case of the supported systems, the lack of a favorable correlation between high activity and increased V content was thought to be due to likely bi-molecular deactivation when high concentrations of V are present. However, in the case of the SiO₂–Al₂O₃ support, X-ray emission spectra (used to measure the spatial distribution of V) depicted a non-uniform V distribution, which taken together with the XRF measurements (which showed a comparable V-content for the SiO₂/MAO-4.5 wt% Al and SiO₂–Al₂O₃ supports) suggested the acidic nature of the support was the likely culprit of the poor activity. Lower vanadium loadings, of the order of 0.05 wt%, also disfavored bi-molecular deactivation reactions. In situ immobilization resulted in activity values of up to five times higher (as high as 352 g/mmol h) when using SiO₂/MAO as support. No such increase was obtained when using only an SiO₂ support. DSC measurements gave melting points in the range 132–140 °C, whilst GPC data showed the polyethylene to be ultra-high molecular weight. Scanning electron microscopy (SEM) of the various supported systems showed near retention of the spherical particle morphology.

Tris(3,5-dimethylpyrazolyl)methane (Tp^{\prime}) vanadium(IV) complexes **62** (Fig. 4.42) are accessible via treatment of the imido precursors [V(NR)Cl₂(NHMe₂)₂] (R = 2,6-C₆H₃*i*Pr₂, 2-C₆H₄*t*Bu, 2-C₆H₄CF₃, *t*Bu, adamantyl) with Tp^{\prime} in benzene at 80 °C for 6 h. The products [Tp^{\prime} V(NR)Cl₂] are monomeric with *facially* bound Tp^{\prime} ligands and near linear imido groups.

Screening in the presence of MAO (1,500 equivalents) at ambient temperature afforded activities \leq 30 g/mmol h bar. There was no sign of activity when Et₂AlCl (1,000 equivalents) was employed as co-catalyst. Within the series, some structure–activity trends were observable, for example, those complexes bearing an arylimido substituent were three to five times more productive than the *tert*-butylimido derivative. The bulkiest 2-C₆H₄tBu derivative performed best, and the resulting polymer had a bi-modal molecular weight distribution. The majority (80 wt/mol%) was a low molecular weight fraction, which had a narrow distribution ($M_{\rm w}/M_{\rm n}$ 1.3), whereas that at higher molecular weight was broader ($M_{\rm w}/M_{\rm n}$ 5.3). ¹H NMR analysis of the low molecular weight fraction was consistent with an $M_{\rm n}$ of about 800. From this, and the observation that 35% of the chains were terminated by vinyl groups, it was concluded that whilst chain transfer to monomer is significant; transfer to aluminum is dominant [63].

Fig. 4.42 Tp pro-catalyst 62

4.6.3 Phthalocyanine

Vanadyl phthalocyanine and porphyrin complexes of the type **63** and **64** (Fig. 4.43) have been screened for α -olefin polymerization in the presence of either MAO or EtAlCl₂. The better performance of the napthalocyanine complex **63** compared with **64** was thought to be due to favorable solubility of the former in the polymerization medium. Although a number of alkenes were screened using **63**, it proved possible only to polymerize ethylene at room temperature. The product formed was linear polyethylene as evidenced by ¹H NMR and DSC. At higher reaction temperatures (120 °C) with MAO as co-catalyst, co-polymerization with propylene or 1-decene proved possible, with co-monomer incorporations of 13 and 7.4%, respectively. Other experiments suggested that complete dissociation of the phthalocyanine ligand does not occur in these polymerizations [64].

4.6.4 (2-Anilidomethyl)pyridine

Arylimidovanadium(V) dichlorides of the type **65** (Fig. 4.44, left) were shown to adopt a distorted trigonal bipyramidal geometry at vanadium with the nitrogen atoms of the pyridine and imido group occupying the axial positions. Screening at 25 °C in toluene using MAO (from which Me₃Al had been removed), revealed that the [Al]:[V] molar ratio played an important role in the observed catalytic activity. For the R = Me or iPr derivatives, activity was optimized at 300 equivalents of MAO, whereas for the R = F derivative, 1,000 equivalents was the preferred option. In the case of the R = F derivative, a lowering of the temperature to 0 °C also favored higher activity, whereas elevation of the temperature above 50 °C was detrimental in terms of activity and catalyst stability. Use of Et₂AlCl as

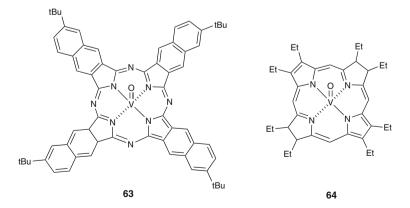


Fig. 4.43 Vanadyl phthalocyanine and porphyrin complexes of the type 63 and 64

co-catalyst at 0 °C produced a lower activity for the R = F derivative (156 g/mmol h) compared to the R = Me (840 g/mmol h) and R = iPr (3,780 g/mmol h) derivatives. The optimized activity (0 °C, 200 equivalents of co-catalyst) for the R = Me derivative was 6,000 g/mmol h [65].

In the case of MAO as co-catalyst, the polymer products possessed high molecular weights with $M_{\rm w}$ in the range 1,000,000–3,000,000 with mono-modal molecular weight distributions. The $M_{\rm w}$ values for the 2,6-F₂C₆H₃ derivative were found not to change on varying the [Al]:[V] molar ratio, but were affected by changing the anilide substituents. High molecular weight polymers also resulted from the use of Et₂AlCl as co-catalyst, with molecular weights in the range 1,720,000–3,520,000 at 0 °C.

The imidovanadium(V) complexes 66 (Fig. 4.44, right) bearing (2-anilidomethyl)pyridine ligation, are readily available via the reaction of [V(NL)Cl₃] with Li[2-ArNCH₂(C₅H₄N)]. Each adopts a distorted trigonal bipyramidal geometry at vanadium, for which the mutually trans pyridine and imido nitrogens are axial. In the presence of MAO, the adamantyl derivatives with R = Me or iPr exhibited excellent activities for ethylene dimerization, leading to 1-butene with high selectivity. Changes to the [Al]:[V] molar ratio impacted on the activity of the system as did the pressure, though variation of neither parameter significantly affected selectivity. The system performed best at near ambient temperatures, whereas activity decreased at either 0 or 50 °C. Under optimized conditions, an observed activity of 76,500 g/mmol h (TOF: 2,730,000 h⁻¹ or 758 s⁻¹) was achieved with a 97.0% selectivity for 1-butene. Use of methylisobutylaluminoxane (MMAO) as co-catalyst also led to appreciable activity and selectivity. The introduction of an ortho-methyl group on the arylimido substituent produced a system which, under the same conditions, only afforded trace amounts of products. For such a system, it proved necessary to increase the catalyst concentration, whereupon a mixture of 1-butene and polyethylene was isolated. Use of cyclohexyl- or phenylimido derivatives also led to high activity systems, affording predominantly 1-butene. The activity for this family of pro-catalyst followed the trend adamantyl > cyclohexyl > phenyl for the substituent at the imido group. By contrast, use of the 2,6-dimethylphenylimido derivative led to the isolation of only polyethylene [66].

Fig. 4.44 Pro-catalysts **65** and **66**

4.6.5 Quinolinolato

The reaction of imido trichlorides of the form $[V(NR)Cl_3]$ with 2-methyl-8-quinolinol (HÔN) afforded the black solids $[V(NR)(\hat{O}N)Cl_2]$ (67, Fig. 4.45, left), where R = n-hexyl (yield ca. 90%) or $R = C_6H_3iPr_2$ -2,6 (yield ca. 55%). Using MMAO as co-catalyst led to moderate activities (ca. 20 g/mmol h bar) for $R = C_6H_3iPr_2$ -2,6, producing polymer with a bi-modal distribution of molecular weight. Under similar conditions, for R = n-hexyl the observed activity was only ca. 7 g/mmol h bar, but the polymer had a higher molecular weight with a monomodal molecular weight distribution. The activity of the R = n-hexyl was increased by the use of MAO as co-catalyst, or even better by using dried MAO. An [Al]:[V] ratio of only 50:1 proved to be sufficient to bring about activation. Activities were lower when either Et_2AlCl or Me_3Al were employed as co-catalyst. Polymer melting points were in the range 142–147 °C, indicative of highly linear polyethylene [67].

The R = n-hexyl derivative also proved to be capable of polymerizing propylene in the presence of MAO or dried MAO, whereas Et₃Al or Me₃Al were ineffective. At ambient temperature, with a ratio of [Al]:[V] of 50:1, the activity was 0.24 g/mmol h bar with an M_n of 172,000 for the atactic polypropylene and M_w/M_n 1.4.

4.6.6 Lutidene

The bi-metallic complex **68** (Fig. 4.45, right), prepared from [VOCl₃] and the ligand [{calix[4]arene(OH)₂(μ -OpyO)}₂], possesses two trigonal bipyramidal vanadyl centres, for which both vanadyl groups are orientated in the same direction with respect to the lutidene bridge. In the presence of DMAC/ETA, an activity of 10,400 g/mmol h bar was achieved, producing polymer with $M_{\rm w}$ 113,000 and a narrow molecular weight distribution ($M_{\rm w}/M_{\rm n}$ 2.5) with a melting point (135 °C) typical of linear polyethylene [68].

Fig. 4.45 Pro-catalysts of the type 67 and 68

R =
$$C_6H_3/Pr_2$$
-2,6, n -hexyl

R = t -butyl

67

68

4.7 Concluding Remarks

Vanadium-based systems are now achieving the kind of catalytic activities at elevated temperatures which make them intriguing academic targets, though they still have some way to go before they can compete industrially with the more established Ziegler-Natta and Phillips catalysts The coordination environment about the vanadium plays a crucial role, and the ease of synthesis and tune-ability of many of the ligand sets allows for systematic studies on the effect of the steric and electronic properties of the ligands and their resulting effect on the reactivity of the corresponding pro-catalysts. From the many pro-catalysts described in this chapter, it is clear that imine-containing ligand sets play a central role, and impact on the polymerization catalysis principally by stabilizing the catalytically active metal centre. The products obtained cover a wide range, for example imidovanadium(V) complexes bearing (2-anilidomethyl)pyridine ligation show a selectivity for 1-butene (via ethylene dimerization), whereas other systems such as phenoxyimines supported on MgCl₂/Et_mAl(OR)_n led to ultra high molecular weight $(M_w > 5,000,000)$ polyethylene. Many of the systems are capable of co-polymerizations, and products resulting from the co-polymerization of ethylene with propylene, 1,3-butadiene, 1-hexene, 1-octene, norbornadiene amongst others have been reported. Quantitative immobilization at low catalyst loadings has also proved possible, and this together with the performances noted at high temperatures, suggests that vanadium-based systems are truly emerging as a promising class of catalysts for α -olefin polymerization.

Acknowledgments Dr Simon Lancaster (UEA) is thanked for useful discussions.

References

- Sinclair KB, Wilson RB (1994) Metallocene catalysts: a revolution in olefin polymerization. Chem Ind 21:857–862
- 2. McDaniel MP (1988) Controlling polymer properties with the Phillips chromium catalysts. Ind Eng Chem Res 27(9):1559–1564. doi:10.1021/ie00081a001
- 3. Hirsekorn KF, Hulley EB, Wolczanski PT, Cundari TR (2008) Olefin substitution in $(silox)_3M(olefin)$ ($silox = tBu_3SiO$; M = Nb, Ta): The role of density of states in second vs third row transition metal reactivity. J Am Chem Soc 130:1183–1196. doi:10.1021/ja074972j
- 4. Nomura K (2005) Design of new generation vanadium complex catalysts offering new possibilities for controlled olefin polymerization. In: Bevy LP (ed) New developments in catalysis research. Nova Science Publishers Inc 7:199–217. ISBN: 1-59454-440-9
- See for example, Redshaw C (2010) Vanadium procatalysts bearing chelating aryloxides: structure-activity trends in ethylene polymerization. Dalton Trans 5595–5604. doi:10.1039/ b924088h
- Raspolli Galletti AM, Pampaloni G (2010) Niobium complexes as catalytic precursors for the polymerization of olefins. Coord Chem Rev 254:525–536. doi:10.1016/j.ccr.2009.07.026
- 7. Milione S, Cavallo G, Tedesco C, Grassi A (2002) Synthesis of α -diimine V(III) complexes and their role as ethylene polymerisation catalysts. Dalton Trans 1839–1846. doi: 10.1039/b105931a

- 8. Xu, B-C, Hu T, Wu J-Q, Hu N-H, Li Y-S (2009) Novel vanadium(III) complexes with bidentate *N,N*-chelating iminopyrrolide ligands: synthesis, characterization and catalytic behaviour of ethylene polymerization and copolymerization with 10-undecen-1-ol. Dalton Trans 8854-8863. doi: 10.1039/b909495d
- 9. Kim W-K, Fevola MJ, Liable-Sands LM, Rheingold AL, Theopold KH (1998) [(Ph)₂nacnac] $MCl_2(THF)_2$ (M = Ti, V, Cr): A new class of homogeneous olefin polymerization catalysts featuring β -diiminate ligands. Organometallics 17:4541–4543. doi:10.1021/om9806545
- Brussee EAC, Meetsma A, Hessen B, Teuben JH (1998) Electron-deficient vanadium(III) alkyl and allyl complexes with amidinate ancillary ligands. Organometallics 17:4090–4095. doi:10.1021/om980431e
- Brussee EAC, Meetsma A, Hessen B, Teuben JH (2000) The N,N'-bis(trimethylsilyl)pentafluorobenzamidinate ligand: enhanced ethane oligomerisation with a neutral V(III) bis(benzamidinate) alkyl catalyst. Chem Commun 497–498. doi: 10.1039/b000397m
- 12. Shmulinson M, Pilz A, Eisen MS (1997) Carbon–fluorine bond activation in perfluorobenzonitrile by LiN(SiMe₃)₂. Synthesis of (Me₃Si)₂NC₆F₄CN-4 and crystal structure of LiN(C₆F₄CN-4)₂· 2C₄H₈O. Dalton Trans 2483–2486. doi:10.1039/a700682i
- Liguori D, Centore R, Csok Z, Tuzi A (2004) Polymerization of propene and 1, 3-butadiene with vanadyl(V) monoamidinate precatalysts and MAO or dialkylaluminium chloride cocatalysts. Macromol Chem Phys 205:1058–1063. doi:10.1002/macp.200300234
- Brandsma MJR, Brussee EAC, Meetsma A, Hessen B, Teuben JH (1998) An amidinate ligand with a pendant amine functionality: synthesis of a vanadium(III) complex and ethene polymerization catalysis. Eur J Inorg Chem 1867–1870. doi: 10.1002/(SICI)1099-0682 (199812)1998:12
- Severn JR, Duchateau R, Chadwick JC (2005) Immobilization and activation of vanadium(III) and titanium(III) single-site catalysts for ethylene polymerization using MgCl₂-based supports. Polym Int 54:837–841. doi:10.1002/pi.1779
- Aharonovich S, Botoshansky M, Tumanskii B, Nomura K, Waymouth RM, Eisen MS (2010) Mono- and bis-amidinate 2,6-xylylimido vanadium chlorides: synthesis, structure and reactivity. Dalton Trans 5643–5649. doi: 10.1039/b925974k
- 17. Gibson VC, Redshaw C, Solan GA (2007) Bis(imino)pyridines: surprisingly reactive ligands and a gateway to new families of catalysts. Chem Rev 107:1745–1776. doi:10.1021/cr068437y
- 18. Hanton MJ, Tenza K (2008) Bis(imino)pyridine complexes of the first-row transition metals: alternative methods of activation. Organometallics 27:5712–5716. doi:10.1021/om800744j
- Colamarco E, Milione S, Cuomo C, Grassi A (2004) Homo- and copolymerization of butadiene catalyzed by an bis(imino)pyridyl vanadium complex. Macromol Rapid Commun 25:450–454. doi:10.1002/marc.200300022
- 20. Reardon D, Conan F, Gambarotta S, Yap G, Wang Q (1999) Life and death of an active ethylene polymerization catalyst. Ligand involvement in catalyst activation and deactivation. Isolation and characterization of two unprecedented neutral and anionic vanadium(I) alkyls. J Am Chem Soc 121:9318–9325. doi:10.1021/ja990263x
- Schmidt R, Welch MB, Knudsen RD, Gottfried S, Alt HG (2004) N, N, N-Tridentate iron(II) and vanadium(III) complexes Part I. Synthesis and characterization. J Mol Catal 222:9–15. doi:10.1016/j.molcata.2004.07.014
- Schmidt R, Welch MB, Knudsen RD, Gottfried S, Alt HG (2004) N, N, N-Tridentate iron(II) and vanadium(III) complexes Part II. Catalytic behaviour for the oligomerization and polymerization of ethene and characterization of the resulting products. J Mol Catal 222:17–25. doi:10.1016/j.molcata.2004.07.015
- Schmidt R, Welch MB, Palackal SJ, Alt HG (2002) Heterogenized iron(II) complexes as highly active ethene polymerization catalysts. J Mol Catal 179:155–173. doi:10.1016/ \$1381-1169(01)00333-8
- Schmidt R, Welch MB, Knudsen RD, Gottfried S, Alt HG (2004) N, N, N-Tridentate iron(II) and vanadium(III) complexes Part III. UV–Vis spectroscopic studies of reactions of ethene-

- oligomerization and polymerization catalysts with methyl aluminoxane cocatalyst. J Mol Catal 222:27–45. doi:10.1016/j.molcata.2004.06.026
- Romero J, Carrillo-Hermosilla F, Antiñolo A, Otero A (2009) Homogeneous and supported bis(imino)pyridyl vanadium(III) catalysts. J Mol Catal A Chem 304:180–186. doi:10.1016/ j.molcata.2009.02.010
- Lang JRV, Denner CE, Alt HG (2010) Homogeneous catalytic dimerization of propylene with bis(imino)pyridine vanadium(III) complexes. J Mol Catal A Chem 222:45–49. doi: 10.1016/j.molcata.2010.02.013
- Al-Benna S, Sarsfield MJ, Thornton-Pett M, Ormsby DL, Maddox PJ, Brès P, Bochmann M (2000) Sterically hindered iminophosphorane complexes of vanadium, iron, cobalt and nickel: a synthetic and catalytic study. J Chem Soc Dalton Trans 4247–4257. doi: 10.1039/b006329k
- 28. Abbo HS, Mapolie SF, Darkwa J, Titinchi SJJ (2007) Bis(pyrazolyl)pyridine vanadium(III) complexes as highly active ethylene polymerization catalysts. J Organomet Chem 692: 5327–5330. doi:10.1016/j.organchem.2007.08.035
- Tomov AK, Gibson VC, Zaher D, Elsegood MRJ, Dale SH (2004) Bis(benzimidazole)amine vanadium catalysts for olefin polymerisation and co-polymerisation: thermally robust, singlesite catalysts activated by simple alkylaluminium reagents. Chem Commun 1956–1957. doi: 10.1039/b407065h
- Nakayama Y, Bando H, Sonobe Y, Suzuki Y, Fujita T (2003) Highly active, thermally robust v-based new olefin polymerization catalyst system. Chem Lett 32:766–767. doi:10.1246/ cl.2003.766
- 31. Nakayama Y, Bando H, Sonobe Y, Fujita T (2004) Development of single-site new olefin polymerization catalyst systems using mgcl₂-based activators: MAO-free MgCl₂-supported FI catalyst systems. Bull Chem Soc Jpn 77:617–625. doi:10.1246/bcsj.77.617
- 32. Nakayama Y, Bando H, Sonobe Y, Fujita T (2004) Olefin polymerization behavior of bis(phenoxy-imine) Zr, Ti and V complexes with MgCl₂-based cocatalysts. J Mol Catal A Chem 213:141–150. doi:10.1016/j.molcata.2003.11.025
- 33. Nakayama Y, Saito J, Bando H, Fujita T (2006) MgCl₂/R_n/Al(OR)_{3-n}: an excellent activator/ support for transition-metal complexes for olefin polymerization. Chem Eur J 12:7546–7556. doi:10.1002/chem.200600355
- 34. Wu J-Q, Pan L, Hu N-H, Li Y-S (2008) Synthesis, structural characterization and ethylene polymerization behavior of the vanadium(III) complexes bearing salicylaldiminato ligands. Organometallics 27:3840–3848. doi:10.1021/om8000097b
- 35. Wu J-Q, Pan L, Liu S-R, He L-P, Li Y-S (2009) Ethylene polymerization and ethylene/hexane copolymerization with vanadium(III) catalysts bearing heteroatom-containing salicylaldiminato ligands. Polym Sci A Polym Chem 47:3573–3582. doi:10.1002/pola.23441
- 36. Houghton J, Simonovic S, Whitwood AC, Douthwaite RE, Carabineiro SA, Yuan J-C, Marques MM, Gomes PT (2008) Transition-metal complexes of phenoxy-imine ligands modified with pendant imidazolium salts: synthesis, characterization and testing as ethylene polymerization catalysts. J Organomet Chem 693:717–724. doi:10.1016/j.organchem.2007. 11.060
- Onishi Y, Katao S, Fujiki M, Nomura K (2008) Synthesis and structural analysis of (arylimido)vanadium(V) complexes containing phenoxyimine ligands: new, efficient catalyst precursors for ethylene polymerization. Organometallics 27:2590–2596. doi:10.1021/om800177g
- 38. Scott MJ, Cottone A, Morales D, Lecuivre JL (2002) Synthesis and reactivity of bi-, tri-, and hexametallic and zwitterionic methyl aluminum complexes containing a phenoxide/imine ligand system. Organometallics 21:418–428. doi:10.1021/om010773b
- Homden D, Redshaw C, Wright JA, Hughes DL, Elsegood MRJ (2008) Early transition metal complexes bearing a C-capped tris(phenolate) ligand incorporating a pendant imine arm: synthesis, structure and ethylene polymerization behavior. Inorg Chem 47:5799–5814. doi: 10.1021/ic702506w
- 40. Soshnikov IE, Semikolenova NV, Bryliakov KP, Shubin AA, Zakharov VA, Redshaw C, Talsi EP (2009) An EPR study of the V(IV) species formed upon activation of a vanadyl

- phenoxyimine polymerization catalyst with AlR₃ and AlR₂Cl (R = Me, Et). Macromol Chem Phys 210:542–548. doi:10.1002/macp.200800556
- 41. Wu J-G, Pan L, Li Y-G, Liu S-R, Li Y-S (2009) Synthesis, structural characterization and olefin polymerization behavior of vanadium(III) complexes bearing tridentate Schiff base ligands. Organometallics 28:1817–1825. doi:10.1021/om801028g
- 42. Bialek M, Czaja K (2008) Dichlorovanadium(IV) complexes with Salen-type ligands for ethylene polymerization. Polym Sci A Polym Chem 46:6940–6949. doi:10.1002/pola.23003
- 43. Wang W, Nomura K (2006) Notable effects of aluminum alkyls and solvents for highly efficient ethylene (co)polymerizations catalyzed by (arylimido)-(aryloxo)vanadium complexes. Adv Synth Catal 348:743–750. doi:10.1002/adsc.200505446
- 44. Bialek M, Czaja K, Szydlo E (2009) Transition metal complexes of tetradentate and bidentate Schiff bases as catalysts for ethylene polymerization: effect of transition metal and cocatalyst. Polym Sci A Polym Chem 47:565–575. doi:10.1002/pola.23173
- 45. Bialek M, Pietuszka A (2009) Ethylene(5-chlorosalicylideneiminato)vanadium dichloride immobilized on MgCl₂-based supports as a highly effective precursor for ethylene polymerization. J Polym Sci A Polym Chem 47:3480–3489. doi:10.1002/pola.23426
- Bialek M, Liboska O (2010) Vanadium complex with tetradentate [O, N, N, O] ligand supported on magnesium type carrier for ethylene homopolymerization and copolymerization. J Polym Sci A Polym Chem 48:471–478. doi:10.1002/pola.23808
- 47. Bialek M (2010) Effect of catalyst composition on chain-end-group of polyethylene produced by salen-type complexes of titanium, zirconium and vanadium. J Polym Sci A Polym Chem 48:3209–3214. doi:10.1002/pola.24096
- 48. Tang L-M, Wu J-Q, Duan Y-Q, Pan L, Li Y-G, Li Y-S (2008) Ethylene polymerizations, and the copolymerizations of ethylene with hexene or norbornene with highly active mono (β-enaminoketonato) vanadium(III) catalysts. J Polym Sci A Polym Chem 46:2038–2048. doi:10.1002/pola.22538
- 49. Hagen H, Bezemer C, Boersma J, Kooijman H, Lutz M, Spek AL, van Koten G (2000) Vanadium(IV) and (V) complexes with O, N-chelating aminophenolate and pyridylalkoxide ligands. Inorg Chem 39:3970–3977. doi:10.1021/ic991415s
- 50. Mulhaupt R, Sernetz FG, Fokken S, Okuda J (1997) Copolymerization of ethene with styrene using methylaluminoxane-activated bis(phenolate) complexes. Macromolecules 30:1562–1569. doi:10.1021/ma961443j
- 51. Schaverien CJ, Vanderlinden A, Meijboom N, Ganter C, Orpen AG (1995) Polymerization of α-olefins and butadiene and catalytic cyclotrimerization of 1-alkynes by a new class of group IV catalysts. Control of molecular weight and polymer microstructure via ligand tuning in sterically hindered chelating phenoxide titanium and zirconium species. J Am Chem Soc 117:3008–3021. doi:10.1021/ja00116a006
- 52. Sobota P, Janas Z, Jerzykiewicz LB, Przybylak K, Szczegot K (2004) Titanium complexes stabilized by a sulfur-bridged chelating bis(aryloxo) ligand as active catalysts for olefin polymerization. Eur J Inorg Chem 1639–1645. doi: 10.1002/ejic.200300768
- Janas Z (2010) Well-defined single-site thiobis(phenolate) Group 4 metal catalysts for heterogeneous olefin polymerization. Coord Chem Rev. doi:10.1016/j.ccr.2010.05.008
- Takaoki K, Miyatake T (2000) Titanium and vanadium based non-metallocene catalysts for olefin polymerization. Macromol Symp 157:251–257. doi:10.1002/1521-3900(200007) 157:1<251
- 55. Janas Z, Wisniewska D, Jerzykiewicz LB, Sobota P, Drabent K, Szczegot, K. (2007) Synthesis, structural studies and reactivity of vanadium complexes with tridentate (OSO) ligand. Dalton Trans 2065–2069. doi: 10.1039/b616961a
- 56. Rajsekhar G, Rao CP, Saarenketo P, Nattinen K, Rissanen K (2004) Complexation behaviour of hexadentate ligands possessing N_2O_4 and $N_2O_2S_2$ cores: differential reactivity towards Co(II), Ni(II) and Zn(II) salts and structures of the products. New J Chem 28:75–84. doi: 10.1039/b305313j
- 57. Homden DM, Redshaw C, Hughes DL (2007) Vanadium complexes possessing $N_2O_2S_2$ -based ligands: highly active procatalysts for the homopolymerization of ethylene and

- copolymerization of ethylene/1-hexene. Inorg Chem 46:10827–10839. doi:10.1021/ic701461b
- 58. Hsieh ET, Randell JC (1982) Monomer sequence distributions in ethylene-1-hexene copolymers. Macromolecules 15:1402–1406. doi:10.1021/ma00233a036
- 59. Zhang W, Nomura K (2008) Synthesis of (1-adamantylimido)vanadium(V) complexes containing aryloxo, ketimide ligands: effect of ligand substituents in olefin insertion/metathesis polymerization. Inorg Chem 47:6482–6492. doi:10.1021/ic800347n
- Scheuer S, Fischer J, Kress J (1995) Synthesis, structure and olefin polymerization activity of vanadium(V) catalysts stabilized by Imido and Hydrotris(pyrazolyl)borato ligands. Organometallics 14:2627–2629. doi:10.1021/om00006a006
- 61. Casagrande ACA, Tavares TT da R, Kuhn MCA, Casagrande Jr OL, dos Santos JHZ, Teranishi T (2004) Tris(pyrazolyl)borate imido vanadium(V) compound immobilzed on inorganic supports and its use in ethylene polymerization. J Mol Cat A Chem 212:267–275. doi:10.1016/j.molcata.2003.11.005
- Casagrande ACA, Gil MP, Casagrande OL Jr (2005) Titanium and vanadium ethylene polymerization catalysts containing tris(pyrazolyl)borate ligand: effects of polymerization parameters on activity and polymer properties. J Braz Chem Soc 16:1283–1289. doi:10.1590/ S0103-50532005000700029
- 63. Bigmore HR, Zuideveld MA, Kowalczyk RM, Cowley AR, Kraenburg M, McInnes EJL, Mountford P (2006) Synthesis, structures and olefin polymerization capability of vanadium(4 +) imido compounds with *fac-*N₃ donor ligands. Inorg Chem 45:6411–6423. doi:10.1021/ic060454i
- 64. Long GS, Snedeker B, Bartosh K, Werner ML, Sen A (2001) Transition metal phthalocyanine and porphyrin complexes as catalysts for the polymerization of alkenes. Can J Chem 79:1026–1029. doi:10.1139/cjc-79-5/6-1026
- 65. Zhang S, Katao S, Sun W-H, Nomura K (2009) Synthesis of (arylimido)vanadium(V) complexes containing (2-anilidomethyl)pyridine ligands and their use as the catalyst precursors for olefin polymerization. Organometallics 28:5925–5933. doi:10.1021/om900633u
- 66. Zhang S, Normura K (2010) Highly efficient dimerization of ethylene by (imido)vanadium complexes containing (2-anilidomethyl)pyridine ligands: notable ligand effect toward activity and selectivity. J Am Chem Soc 132:4960–4965. doi:10.1021/ja100573d
- 67. Sato Y, Nakayama Y, Yasuda H (2005) Synthesis of pentavalent imidovanadium complexes and their catalyses for the polymerization of ethylene and propylene. J Appl Polym Sci 97:1008–1015. doi:10.1002/app.21826
- 68. Redshaw C, Rowan MA, Warford L, Homden DM, Arbaoui A, Elsegood MRJ, Dale SH, Yamato T, Casas CP, Matsui S, Matsuura S (2007) Oxo- and Imidovanadium complexes incorporating methylene- and dimethylene-bridged calix[3]- and -[4]arenes: synthesis, structures and ethylene polymerisation catalysis. Chem Eur J 13:1090-1107. doi:10.1002/chem.200600679

Chapter 5 Imino- and Amido-Pyridinate d-Block Metal Complexes in Polymerization/ Oligomerization Catalysis

Giuliano Giambastiani, Lapo Luconi, Roger L. Kuhlman and Phillip D. Hustad

Abstract This contribution is aimed at providing an overview of the oligomerization/polymerization catalysis mediated by early and late transition metal complexes stabilized by imino- and amidopyridinate ligands. While late metals are often coordinated by *imino*-pyridyl moieties, earlier metals are generally stabilized by *amido*-pyridyl systems. The ability of the complexes described within this chapter at catalytic olefin upgrading is quite remarkable, ranging from the well-controlled olefin oligomerization to the production of high molecular weight isotactic polypropylene in high polymerization temperature processes. Particular attention has been paid to the ligand and complex syntheses as well as to unveil the role of the ligand substituents on the catalyst activity and selectivity.

List of Abbreviations

AAC Azide-alkyne cycloaddition

acac Acetylacetonate Anth Anthracenyl

Ap N,6-dimesitylpyridin-2-amine

G. Giambastiani (🖂) · L. Luconi

Institute of Chemistry of OrganoMetallic Compounds – ICCOM-CNR,

10-Sesto F.no – 50019 Florence, Italy e-mail: giuliano.giambastiani@iccom.cnr.it

L. Luconi

e-mail: lapo.luconi@iccom.cnr.it

R. L. Kuhlman () · P. D. Hustad

The Dow Chemical Company, 2301 N. Brazosport Blvd.- B-1603 - Freeport,

TX 77541, USA

e-mail: kuhlmarl@dow.com

P. D. Hustad

e-mail: pdhustad@dow.com

G. Giambastiani and J. Cámpora (eds.), Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes I, Catalysis by Metal Complexes, 35 DOI: 10.1007/978-90-481-3815-9_5, © Springer Science+Business Media B.V. 2011

198 G. Giambastiani et al.

Ap' N-(2,6-diisopropylphenyl)-6-(2,6-dimethylphenyl)pyridin-2-amine

Ap+ N,6-bis(2,6-dimethylphenyl)pyridin-2-amine

Ap- N-mesityl-6-(2,4,6-triisopropylphenyl)pyridin-2-amine

Ap* N-(2,6-diisopropylphenyl)-6-(2,4,6-triisopropylphenyl)pyridin-

2-amine

ATRP Atom-transfer radical polymerization

BBF Butyl branching frequency BHE β-hydride elimination

BHT β -hydride transfer to monomer

BIMP Bis(imino)pyridine

Bip Biphenyl

BM Bohr magneton

CGC Constrained geometry catalyst CRP Controlled radical polymerization

dba Dibenzylideneacetone

DFT Differential Fourier transform

DIBAL Di-isobutylaluminum hydride, iBu₂AlH

dme 1,2-dimethoxyethane DMF N,N-dimethylformamide

DSC Differential scanning calorimetry
EPR Electron paramagnetic resonance
LLDPE Linear-low density polyethylene
LRP Living radical polymerization

MAO Methylaluminoxane MMA Methyl methacrylate

MMAO Modified methylaluminoxane MWCNT Multi-walled carbon nanotubes

Nap Naphthyl

NB Norbornene, bicyclo[2,2,1]hept-2-ene

NIR Near-infrared

NMR Nuclear magnetic resonance NP-acac 3-n-pentyl-acetylacetonate PDI Polydispersity index (M_w/M_p)

PE Polyethylene

PFT Polymerization filling technique

Phen Phenanthrenyl PIM (imino)pyridine

PMAO-IP Polymethylaluminoxane (available from AkzoNobel)

PMMA Polymethyl methacrylate

Py Pyridine

rds Rate determining step

SANS Small-angle neutron scattering SEC Size exclusion chromatography $T_{\rm g}$ Glass transition temperature

TS Transition state

TIBA Tri-isobutylaluminum, Al(*i*Bu)₃ TIBAO Tetraisobutylaluminoxane

TOF Turnover frequency

ULDPE Ultra-low density polyethylene

Xantphos (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphine)

 $\mu_{\rm eff}$ Effective magnetic moment

5.1 Introduction

The discovery and commercialization of new oligomerization/polymerization technologies based on single-site catalysts still represents one of the most dynamic areas of organometallic chemistry, homogeneous catalysis and polymer science. Through a simple insertion reaction, inexpensive and abundant olefins are transformed into polymeric materials for a wide range of applications, including plastics, fibers, and elastomers [1-3]. The extremely large number of tailored transition metal complexes (catalyst precursors) and main-group organometallic compounds (co-catalysts or activators) [4] has paved the way towards the development of new polymerization processes and properly tailored polymer architectures. The intense industrial activity in the field of polyolefins production and single-site catalysts commercialization (multibillion dollars per year) [5], have deeply stimulated fundamental academic research, in turn strengthened by new and fruitful collaborations between research groups coming from both industry and academia. Although heterogeneous polymerization systems traditionally represent the workhorse of the polymer industry, offering many important advantages over their homogeneous counterparts in commercial production, they suffer from a number of significant drawbacks. In particular, the control of either the polymer molecular weight distribution, comonomer incorporation, or the relative/absolute polymer stereochemistry is inevitably linked to the precise identity of the catalyst active species. In contrast to heterogeneous systems, the readily tunable metal center coordination environment of homogeneous catalysts facilitates the control over all these polymerization features. Homogeneous catalysts can be commercially employed in solution-phase polymerization or heterogenized on solid supports for gas-phase or slurry polymerization processes.

Early- and late- transition metal complexes based on nitrogen-containing ligands occupy an important position in the field of modern homogeneous catalysis applied to highly efficient and selective oligomerization/polymerization processes [3, 6, 7]. In particular, *N*,*N*-bidentate systems of the type discussed throughout this chapter have represented a real breakthrough in the field of olefin polymerization catalysis, as witnessed by the impressive number of papers and patents appearing in the last few years. The key feature of these organometallics is the facile tuning

200 G. Giambastiani et al.

of their polymerization/oligomerization activity and selectivity by means of simple modifications of their ligand architecture. All these systems are to be considered *pre*-catalysts, which require a preliminary activation with a co-catalyst, typically an organoaluminum or organoboron compound.

The catalysts described in this chapter are grouped into two major classes: (1) imino-pyridine ligands and related late-transition metals complexes and (2) amino-pyridinate ligands and related amido-pyridinate early-transition metal systems. This review will concentrate on the description of the state-of-the-art oligomerization/polymerization catalytic processes, focusing on Group 8–10 metals for imino-based systems and Group 3–4 metals for amido-based ones.

5.2 Synthesis of Iminopyridyl Ligands

Iminopyridyl ligands are commonly prepared by simple condensation reactions between 2-acetyl or 2-formyl-pyridine fragments with an equimolar amount of the proper amine [8–13] or aniline [11, 14–30], generally in the presence of an acid co-catalyst (Scheme 5.1). The synthesis of variably substituted iminopyridyl ligands, particularly those containing aryl or heteroaryl substituents on the 6-position of the pyridine ring, generally requires a more complex procedure which employs the Schiff-base condensation step at the end of the synthetic path. Although most of these ligands are prepared in multigram scale and typically purified by crystallization, iminopyridyl systems containing either keto or ester pendant arms, such as 2-keto-6-iminopyridyl and 2-alkylcarboxylate-6-iminopyridyl ligands, prepared from 2,6-diacetylpyridine [31] and 2-alkylcarboxylate-6-acetylpyridine [21, 22, 32], respectively, generally require a more careful purification step to remove 2,6-bis(imino)pyridine by-products or the 2,6-diacetylpyridine precursor.

Palladium catalyzed C–C bond coupling is a widely used approach for the introduction of aryl or heteroaryl moieties on the 6-position of the pyridine ring. A Suzuki reaction [33, 34] or a Stille protocol [34, 35] on α -Br-pyridine derivatives has been conveniently adopted for preparing 6-aryl [27–29, 36, 37] or

R

$$R^{2}$$
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 $R = H$, Me, acyl or ester

 $R^{1} = R^{3} = H$, Me

 $R^{2} = iPr$, Me, H

Scheme 5.1 Synthetic procedures to iminopyridyl ligands

heteroaryl-2-iminopyridyl ligands [27–30, 36, 37] under mild conditions from good to high yields (Scheme 5.2).

A number of sterically demanding and multidentate ligands have also been proposed as effective supports for the preparation of mononuclear or binuclear Fe^{II}, Co^{II}, Ni^{II} and Zn^{II}-based catalyst precursors. Forcing two different metal centers within the same molecular architecture is a topic of much current interest. Indeed, the possibility to accommodate two catalytic centers in close proximity to each other is expected to generate improved catalytic structures capable of (1) producing unconventional mixtures of PEs and/or α -olefins, (2) exhibiting increased activity due to favorable steric and electronic metal-metal interactions, and/or (3) producing tailored materials via chain transfer from one metal to the other with or without a shuttling agent. To date, however, the complexity of the ligand design and synthesis has allowed only marginal progress toward these goals. The majority of homo- or hetero-polynuclear catalyst precursors prepared so far present their active centers at the extremities of the manifold ligand, thus limiting any potential cooperative metal-metal interaction. Novel molecular architectures, coupling two iminopyridyl moieties (PIM) (Fig. 5.1a) [23] or combining an iminopyridyl fragment with a bis(imino)pyridine unit (BIMP) (Fig. 5.1b,c) [24, 25], have been recently proposed as effective scaffolds for the preparation of mono- and/or bi-nuclear oligomerization/polymerization catalysts. Redox-active ferrocenyl-based mono- and bis(iminopyridyl) ligands have been straightforwardly prepared by Gibson et al. (Fig. 5.1d) for the preparation of mono- and binuclear nickel pre-catalysts [10]. Redox-active ligands offer exciting potential within homogeneous transition metal catalysis, since the oxidation of a redox-active substituent induces a higher system electrophilicity ultimately perturbing the catalytic properties of the metal centers coordinated to the N₂ and N₄type frameworks [38, 39]. Finally, mono-, bis- and tetra(imino)pyridyl ligands containing long alkyl chain substituents at the imino nitrogens (Fig. 5.1e) have been proposed by Mapolie et al. [9, 40, 41]. All the free ligands reported in Fig. 5.1, are presented in their generally unfavorable s-cis configuration (or U-

"Suzuki coupling"
$$B(OH)_2$$
 1. $Pd(0)$: 2. aniline/amine, $[H^+], \Delta$

B "Stille coupling" 1. aniline/amine, $[H^+], \Delta$; $SnMe_3$ 2. $Pd(0)$: $Pd(0$

Scheme 5.2 Synthetic procedures to 6-aryl or heteroaryl-2-iminopyridyl ligands

202 G. Giambastiani et al.

Fig. 5.1 Typical iminopyridyl polydentate ligands. Chelating U-shaped configured arms are in bold

shaped configuration), experimentally observed in their metal complexes [6], with the arylimino moiety lying orthogonal to the N=C-C= N_{py} plane.

(Imino)pyridyl ligands can exhibit a rich chemistry on their own, particularly at the imine unit, leading to (1) vinylaniline derivatives in almost quantitative yields by ligand treatment with strong non-nucleophilic bases (Giambastiani G, Bianchini C, Guerrero Rios I, Meli A, unpublished results) or (2) reductive alkylation products by treatment of the keto- or aldoimine moiety with an excess of an aluminum alkyl (AlMe₃ or AlEt₃) [42]. Notably, the reaction of aminopyridine or α -diimino ligands with AlMe₃ in toluene at elevated temperatures has been found to generate highly crystalline aluminum pyridineamido complexes [43] whose molecular structures have been reported independently by Gibson [44] and Erker [45].

5.3 Synthesis of Iminopyridyl-Based Late Transition Metal Complexes

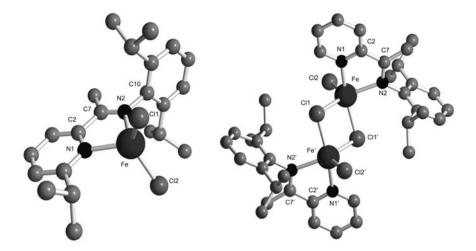
The preparation of metal catalyst precursors (basically from the first transition row) is straightforwardly achieved by addition of the solid ligands to a solution (*n*-BuOH, thf, toluene or CH₂Cl₂) of either anhydrous or hydrated metal dihalides (Scheme 5.3) [3, 6, 9, 10, 15–17, 21, 22, 32, 33, 42, 43, 46–53]. Improved solubility in aromatic hydrocarbons is generally exhibited by metal dihalide solvent

Scheme 5.3 General scheme for the synthesis of late transition metal dihalide complexes

adducts $MX_2(solv)_y$ [8, 54–56]. Complexes are generally obtained as microcrystalline air-stable solids, while decomposition occurs in solution when they are left to stand for prolonged times unless protected by an inert atmosphere. Depending on both metal halides and degree of substitution at the pyridine ring, they can be isolated as mononuclear complexes or centrosymmetric dimers [8, 16, 18, 24, 51, 57–59]. In all cases, their IR spectra show red shifts of v(C=N) by ca. 50–60 cm⁻¹ as compared with the corresponding free ligand, which reflects the coordination of the imine N atom to the metal center.

5.3.1 Fe^{II}-(imino)pyridinate Complexes

(Imino)pyridinate-Fe^{II} complexes are prepared by reacting anhydrous iron-dihalide with the proper ligand in either thf or an alcohol to give paramagnetic [23, 60] red to dark-brown microcrystalline solids with coordination geometries around the metal center ranging from tetrahedral to trigonal–bipyramidal with various degrees of distortion from the idealized geometries [8, 18, 20, 21, 23, 26, 31]. Less sterically demanding iminopyridyl ligands often result in the formation of halo-bridged dimers with each metal center lying within a distorted trigonal–bipyramidal structure [8, 18], while more sterically crowded ligands favor pseudo-tetrahedral coordination geometries [18] (Scheme 5.3). Table 5.1 lists a series of Fe^{II} dihalide complexes stabilized by variably substituted iminopyridyl ligands (Fig. 5.2).

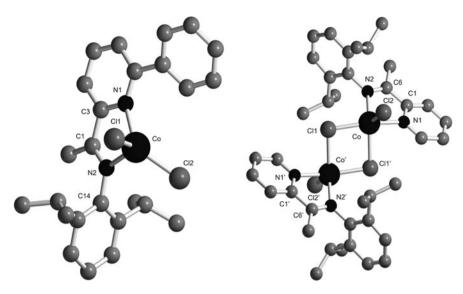

5.3.2 Co^{II}-(imino)pyridinate Complexes

Iminopyridinate Co^{II} complexes are prepared by reacting anhydrous Co^{II} dihalide with the proper ligand in ethers to give green microcrystalline paramagnetic solids with magnetic moment (μ_{eff}) values at room temperature ranging from 4.6 to 5.1 BM, consistent with d^7 high-spin Co^{II} configurations [21, 23–25, 27, 29, 60, 63]. The coordination geometry around the metal center is quite flexible, varying from tetrahedral to trigonal–bipyramidal with various distortions depending on the substitution degree at the pyridine unit. Similarly to Fe^{II} derivatives, less sterically demanding ligands result in the formation of chloro-bridged dimers with a

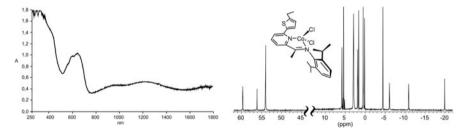
G. Giambastiani et al.

Table 5.1 Fe ^{II} complexes stabilized by (imino)pyridinate ligands					
R ³ R R R R C C C C C C C C C C C C C C C					
n	R	R^1	\mathbb{R}^2	R^3	References
2	Н	$2,6-i\Pr_2(C_6H_3)$	Н	Н	[8]
1	$COCH_3$	$2,6-i\Pr_2(C_6H_3)$	Me	Н	[31, 61]
1	$COCH_3$	$2,6-Me_2(C_6H_3)$	Me	Н	[61]
1	$COCH_3$	$3-CF_3(C_6H_4)$	Me	Н	[20]
1	CO ₂ Et	$2,6-Me_2(C_6H_3)$	Me	Н	[21, 62]
1	CO ₂ Et	$2,6-\text{Et}_2(\text{C}_6\text{H}_3)$	Me	Н	[21]
1	CO ₂ Et	$2,6-i\Pr_2(C_6H_3)$	Me	Н	[21]
1	CO ₂ Et	$2,6-F_2(C_6H_3)$	Me	Н	[21]
1	CO ₂ Et	$2,6-\text{Cl}_2(\text{C}_6\text{H}_3)$	Me	Н	[21]
1	CO ₂ Et	$2,6-Br_2(C_6H_3)$	Me	Н	[21]
1	C_6H_5	$2,6-i\Pr_2(C_6H_3)$	Me	Н	[27]
1	$2,6-Me_2(C_6H_3)$	$2,6-i\Pr_2(C_6H_3)$	Н	Н	[26]
1	$2,4,6-i\Pr_3(C_6H_2)$	$2,6-i\Pr_2(C_6H_3)$	Н	Н	[26]
1	Н	<i>n</i> -propyl	Н	Н	[8]
1	Н	c-C ₆ H ₁₁	Н	Н	[8]
1	Н	c-C ₁₂ H ₂₃	Н	Н	[8]
1	Me	<i>n</i> -propyl	Н	Н	[8]
1	Me	c-C ₁₂ H ₂₃	Н	Н	[8]
1	CI CI FE N R R R R R R R R R R R R R R R R R R	$2,6-i\Pr_2(C_6H_3)$	Me	Н	[23]
1	CI CI R'	2,4,6-Me ₃ (C ₆ H ₂)	Me	Н	[24]
1	CI (C) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R	2,4,6-Me ₃ (C ₆ H ₂)	Me	Н	[24]
1	H	$2,6-i\Pr_2(C_6H_3)$	Me	CI CI R	[25]

 $R' = 2.6 - i Pr_2(C_6H_3)$


Fig. 5.2 Left ball and stick drawing of the crystal structure of $FeCl_2\{2-(2,6-iPr_2C_6H_3N=CH)-6-(iPr)C_5H_3N\}$ (hydrogen atoms and a thf molecule omitted) [18]. Selected distances (Å) and angles (°): Fe-N1 2.108(3), Fe-N2 2.111(3), Fe-Cl1 2.209(1), Fe-Cl2 2.223(1), C2-C7 1.479(5), C7-N2 1.271(5), N1-Fe-N2 77.3(1), C11-Fe-Cl2 118.68(5). Right ball and stick drawing of the crystal structure of $[FeCl_2\{2-(2,6-iPr_2C_6H_3N=CMe)C_5H_3N\}]_2$ (hydrogen atoms omitted) [18]. Selected distances (Å) and angles (°): Fe-N1 2.126(7), Fe-N2 2.201(6), N1-Fe-N2 74.8(2), C11-Fe-Cl2 105.3(1), C11-Fe-Cl1' 84.9(1)

distorted trigonal–bipyramidal coordination geometry [18, 19], while 6-aryl substituted derivatives [29] show highly distorted tetrahedral coordination geometries (Fig. 5.3). Solution and solid state visible/NIR spectra of the mononuclear Co^{II} complexes display three d–d absorption bands at 1,800–1,640, 1,430–1,330, 1,050–990 nm, respectively, and two or three higher intensity bands in the region between 690 and 550 nm, typical for high-spin Co^{II} -ions in a tetrahedral coordination geometry (Fig. 5.4, left) [29, 60, 63]. With three unpaired electrons (S = 3/2), these Co^{II} complexes are EPR silent at room temperature in both the solid state and CH_2Cl_2 solution [64, 65]. In spite of their paramagnetic nature, Co^{II} bis-halide precursors have also been characterized via I H-NMR spectroscopy in a relatively large spectral window. Unambiguous signal assignment has been also achieved on the basis of the isotropic shifts, essentially attributable to a Fermi contact contribution [66–68]. Table 5.2 summarizes a series of Co^{II} dihalide complexes stabilized by variably substituted iminopyridyl ligands.


5.3.3 Ni^{II}- and Pd^{II}-(imino)pyridinate Complexes

 Ni^{II} -dihalide (imino)pyridinate complexes are generally prepared by reacting the ligand with $NiBr_2(dme)$ or $NiCl_2 \cdot xH_2O$ in an ether or alcohol, respectively, to give green to orange–yellow solids. Dialkyl Ni^{II} -iminopyridinate systems have also

206 G. Giambastiani et al.

Fig. 5.3 Left ball and stick drawing of the crystal structure of $CoCl_2\{2\text{-}(2,6\text{-}iPr_2C_6H_3N=CMe)\text{-}6\text{-}(C_6H_5)C_5H_3N\}$ (hydrogen atoms omitted) [29]. Selected distances (Å) and angles (°): Co-N1 2.084(4), Co-N2 2.049(4), Co-Cl1 2.206(2), Co-Cl2 2.205(2), N1-Co-N2 80.71, N1-Co-Cl2 129.78. Right ball and stick drawing of the crystal structure of $[CoCl_2\{2\text{-}(2,6\text{-}iPr_2C_6H_3N=CMe)C_5H_3N\}]_2$ (hydrogen atoms omitted) [18]. Selected distances (Å) and angles (°): C1-C6 1.482(2), C6-N2 1.290(2), Co1-N1 2.093(1), Co1-N2 2.123(1), Co1-Cl1 2.3419(5), Co1-Cl2 2.2878(6), Co1-Cl1 2.4589(5), N1-Co1-N2 76.64(5), C11-Co1-Cl2 103.42(2), C11-Co1-Cl1 86.01(2)

Fig. 5.4 *Left* Diffuse reflectance spectrum of $CoCl_2\{2-(2,6-iPr_2C_6H_3N=CMe)-6-(C_6H_5)C_5H_3N\}$. *Right* 1 H-NMR spectrum (CD_2Cl_2 , 22 $^{\circ}C$) of $CoCl_2\{2-(2,6-iPr_2C_6H_3N=CMe)-6-(2-C_4H_2S-5-C_2H_5)C_5H_3N\}$. Figures reprinted "in part" with permission from [27]. Copyright 2007 American Chemical Society

been prepared by ligand exchange reactions from NiR_2Py_2 adducts [76]. The coordination geometries around the metal centers vary from trigonal-bipyramidal to tetrahedral with various distortions from the idealized geometries depending on the substitution degree at the pyridine moiety, which ultimately influence their magnetic properties. While tetrahedral [10, 14–16, 23, 32] and trigonal-bipyramidal Ni^{II} complexes [18, 58, 59] have μ_{eff} values ranging from 2.8 to 3.4 BM,

Table 5.2 Co^{II} complexes stabilized by (imino)pyridyl ligands

R	\mathbb{R}^2				
	Co R ¹ X				
n	R	R^1	\mathbb{R}^2	X	References
2	Н	$2,6-i\Pr_2(C_6H_3)$	Н	Br	[58]
2	Br	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[27, 69]
1	CO ₂ Et	$2,6-Me_2(C_6H_3)$	Me	Cl	[21, 62]
1	CO ₂ Et	$2,6-Et_2(C_6H_3)$	Me	Cl	[21, 70]
1	CO ₂ Et	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[21]
1	CO ₂ Et	$2,6-F_2(C_6H_3)$	Me	Cl	[21]
1	CO ₂ Et	$2,6-Cl_2(C_6H_3)$	Me	Cl	[21]
1	CO ₂ Et	$2,6-Br_2(C_6H_3)$	Me	Cl	[21]
1	$(CH_2)O_2CCH=CH_2$	$2,6-i\Pr_2(C_6H_3)$	H	Cl	[50]
1	Ph	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[27–29, 36, 37, 47, 71–73]
1	Ph	$2,6-Me_2(C_6H_3)$	Me	Cl	[37]
1	Ph	$2\text{-Me}_2(\text{C}_6\text{H}_4)$	Me	Cl	[37]
1	$2,6-Me_2(C_6H_3)$	$2,6-i\Pr_2(C_6H_3)$	H	Cl	[26]
1	$2,4,6-i\Pr_3(C_6H_2)$	$2,6-i\Pr_2(C_6H_3)$	H	Cl	[26]
1	2-naph	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[27, 28]
1	s	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[27–30, 36, 37, 47, 74, 75]
1	S	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[27, 47]
1	Et	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[27–30, 72, 73]
1		$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[27–29, 37]
1	9-anth S	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[30, 69]
1	()	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[27, 28, 30, 36, 37, 46, 72, 73]
1		$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[27]
1		$2,6-i\Pr_2(C_6H_3)$	$(CH_2)_3OH$	Cl	[30]
1	CI CI CI R'	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[23]
	$R' = 2,6-iPr_2(C_6H_3)$				

Table 5.2 (continued)

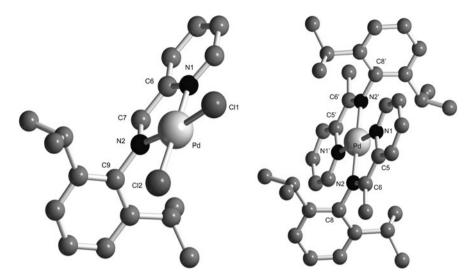

n	R	\mathbb{R}^1	R^2	X	References
1	CI CI R' R'	2,4,6-Me ₃ (C ₆ H ₂)	Me	Cl	[24]
1	R' = 2,4,6-Me ₃ (C ₆ H ₂) Br Br R'	2,4,6-Me ₃ (C ₆ H ₂)	Me	Br	[24]
1	$H = 2,4,6-Me_3(C_6H_2)$ H	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	[25]

Fig. 5.5 Left ball and stick drawing of crystal structure of NiBr₂{2-(2,6-iPr₂C₆H₃N=CMe)-6-(iPr)C₅H₃N} (hydrogen atoms omitted) [18]. Selected distances (Å) and angles (°): Ni-N2 1.995(2), Ni-N1 1.994(2), Ni-Br1 2.3577(5), Ni-Br2 2.3169(5), N1-Co-N2 81.7(1), Br1-Ni-Br2 123.64(2). Right ball and stick drawing of the crystal structure of [NiBr₂{2-(2,6-iPr₂C₆H₃N=C-Me)C₅H₃N}]₂ (hydrogen atoms omitted) [59]. Selected distances (Å) and angles (°): C5-C6 1.452(8), Ni'-N1 2.069(5), Ni-N2 2.042(5), Ni-Br1 2.4759(12), Ni'-Br2 2.4139(18), Ni-Br1 2.5479(12), N1-Ni'-N2 79.4(2), Br1-Ni'-Br2 132.06(6), Br1-Ni'-Br1' 86.63(4)

typical for paramagnetic d⁸ high-spin species [23, 60], the square-planar Ni^{II} derivatives [27, 60] are diamagnetic [16, 27] (Fig. 5.5).

Pd^{II}-dihalide complexes stabilized by (imino)pyridine ligands are generally mononuclear, diamagnetic yellow-orange solids with square-planar coordination geometry around the metal center [9, 10, 19, 22, 26, 40, 41, 51, 59, 76–78]

Fig. 5.6 Left ball and stick drawing of the crystal structure of $PdCl_2\{2-(2,6-iPr_2C_6H_3N=CH)\ C_5H_3N\}$ (hydrogen atoms omitted) [19]. Selected distances (Å) and angles (°): $Pd-N1\ 2.028(3)$, $Pd-N2\ 2.022(3)$, $Pd-Cl1\ 2.2809(11)$, $Pd-Cl2\ 2.2768(10)$, $C6-C7\ 1.457(5)$, $C7-N2\ 1.279(4)$, $N1-Pd-N2\ 80.08(11)$, $N1-Pd-Cl1\ 94.33(9)$, $N1-Pd-Cl2\ 174.51(9)$. Right ball and stick drawing of the crystal structure of $Pd\{2-(2,6-iPr_2C_6H_3N=CMe)C_5H_3N\}_2$ (hydrogen atoms and $2(BAr_4)^-$ omitted) [51]. Selected distances (Å) and angles (°): $Pd-N1\ 2.054(4)$, $Pd-N2\ 2.052(4)$, $N1-Pd-N2\ 78.3(2)$, $N1-Pd-N1'=N2-Pd-N2'\ 180.00$

(Fig. 5.6, left). Asymmetric Pd^{II}-haloalkyl complexes maintain distorted square-planar geometries around the metal center and a favorable *cis* orientation of the alkyl group with respect to the imino nitrogen atom [51, 77]. Dicationic derivatives of the type [Pd(N-N)₂]X₂ (2X⁻=2BF₄⁻, 2BAr₄⁻ or 2Bar₄^F) can accommodate up to two iminopyridyl units with a mutually *trans* arrangement of the two imino and pyridyl nitrogen atoms, with the palladium ion lying on a crystallographic center of symmetry [51]. Table 5.3 lists a series of Ni^{II} and Pd^{II} complexes stabilized by variably substituted iminopyridyl ligands.

5.4 Principal Activators and Mechanistic Considerations

Many (imino)pyridine Co^{II}, Fe^{II}, Ni^{II} and Pd^{II} dihalides can be converted into active olefin polymerization/oligomerization catalyst systems by treatment of toluene solutions/suspensions of the pre-catalysts with an excess of co-catalyst such as methylaluminoxane (MAO) or modified methylaluminoxane (MMAO) [MMAO, MAO containing 20–25% Al(*i*Bu)₃] and exposure of the activated species to olefin solutions/atmosphere. Some proposed structures for MAO include one-dimensional linear chains and cyclic rings containing three-coordinate Al

Table 5.3 Ni^{II} and Pd^{II} complexes stabilized by (imino)pyridyl ligands

R	\mathbb{R}^2 \mathbb{N} \mathbb{R}^2 \mathbb{N} \mathbb{R}^2						
	χΫ́						
n	⊐n R	R^1	\mathbb{R}^2	X	Y	(z)	References
2	Н	2,6- <i>i</i> Pr ₂ (C ₆ H ₃)	Н	Cl	Cl	(<i>L</i>)	[58]
2	Н	$2,6-i\Pr_2(C_6H_3)$ $2,6-i\Pr_2(C_6H_3)$	Н	Br	Br	_	[52, 58]
2	Н	$2,6-Me_2(C_6H_3)$	Н	Br	Br	_	[59]
2	Me	$2,6-i\Pr_2(C_6H_3)$	Н	Br	Br	_	[59]
2	Н	$2,6-i\Pr_2(C_6H_3)$	Me	Br	Br	_	[59]
2	Н	$2,6-i\Pr_2(C_6H_3)$	Ph	Br	Br	_	[59]
1	Н	$2,6-Me_2(C_6H_3)$	Н	Br	Br	_	[14]
1	Н	$2,6-Me_2(C_6H_3)$	Me	Br	Br	_	[14]
1	Н	$2-i\Pr(C_6H_3)$	Н	Br	Br	_	[14]
1	Н	$2-i\Pr(C_6H_3)$	Me	Br	Br	_	[14]
1	Н	$2,6-i\Pr_2(C_6H_3)$	Н	Br	Br	_	[14]
1	Н	$2,6-i\Pr_2(C_6H_3)$	Me	Br	Br	_	[14]
1	Н	$2,6-i\Pr_2(C_6H_3)$	Н	Br	Br	_	[15]
1	Me	$2,6-i\Pr_2(C_6H_3)$	Н	Br	Br	_	[15]
1	Н	$2,6-i\Pr_2(C_6H_3)$	Н	Et_2O	Me	(BAr_4^F)	[15]
1	Н	4-OSiMe ₃ (C ₆ H ₄)	Н	Br	Br	_	[16]
1	Н	$2,5-Me_2-4-$ OSiMe ₃ (C ₆ H ₂)	Н	Br	Br	_	[16]
1	Me	$2,5-Me_2-4-$ OSiMe ₃ (C ₆ H ₂)	Н	Br	Br	-	[16]
2	Н	$4\text{-OH}(C_6H_4)$	H	½Br	$\frac{1}{2}Br$	_	[16]
_	Н	$2,6-i\Pr_2(C_6H_3)$	H	Allyl	-	(BAr_4^F)	[17]
1	CO ₂ Et	$2,6-Me_2(C_6H_3)$	Me	Cl	Cl	_	[32]
1	CO ₂ Et	$2,6-\text{Et}_2(\text{C}_6\text{H}_3)$	Me	Cl	Cl	-	[32]
1	CO ₂ Et	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	Cl	-	[32]
1	CO ₂ Et	$2,6-F_2(C_6H_3)$	Me	Br	Br	-	[32]
1	CO ₂ Et	$2,6-Cl_2(C_6H_3)$	Me	Br	Br	-	[32]
1	CO ₂ Et	$2,6-Br_2(C_6H_3)$	Me	Br	Br	-	[32]
1	$(CH_2)O_2CCH=CH_2$	$2,6-i\Pr_2(C_6H_3)$	H	Br	Br	-	[50]
1	Ph	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	Cl	-	[27]
1	$2,6-Me_2(C_6H_3)$	$2,6-i\Pr_2(C_6H_3)$	H	Cl	Cl	-	[26]
1	$2,4,6-i\Pr_3(C_6H_2)$	$2,6-i\Pr_2(C_6H_3)$	H	Cl	Cl	-	[26]
1	Н	1-naph	Н	Br	Br	_	[14]
1	Н	1-naph	Me	Br	Br	_	[14]
1	Н	Fe	Н	Br	Br	-	[10]
1	Me	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Br	Br	-	[10]

Table 5.3 (continued)

n	R	R^1			R^2	X	Y	(z)	References
1	Br Br Ni N Pr Pr Ni N Pr Ni N Pr Pr Ni N Pr Ni	2,6- <i>i</i> I	Pr ₂ (C ₆ H	I ₃)	Me	Br	Br	-	[23]
1	CI CI N P'	2,4,6	-Me ₃ (C	C ₆ H ₂)	Me	Br	Br	-	[24]
	A Complex A Superior But		complex B	N Br	N N Br/n	complex C	R	R ² N R ² N R ¹	
	1	n	R			R ¹		R ²	References
A A		_	H Me				$r_2(C_6H)$ $r_2(C_6H)$		[14] [14]
A		_	Н				$r_2(C_6H)$		[14]
A		_	Me				$r_2(C_6H)$		[14]
Α		_	Н				$r_2(C_6H$		[14, 15]
A		_	Me				$r_2(C_6H$		[14]
A		_	i-Pr			2,6- <i>i</i> F	$r_2(C_6H$	[3) –	[14]
В		1	-			2,6- <i>i</i> F	$r_2(C_6H$	[3) –	[15]
В		1	-			F		_	[10]
В		2	-			\F		-	[10]
C		2	Н			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Н	[10]
С		2	Me					Н	[10]
R´	N R ² N R ¹ X Y								
R	R^1		R^2	X		Y	(z)		References
Н	$2,6-i\Pr_2(C_6H_3)$		Н	Br		Br	-	E.	[15]
Me	$2,6-i\Pr_2(C_6H_3)$		Н	Et ₂ C)	Br	(BA	.r ₄ ^r)	[15]

Table 5.3 (continued)

n	R	R^1	\mathbb{R}^2	X	Y	(z)	References
1	Н	2,6- <i>i</i> Pr ₂ (C ₆ H ₃)	Me	Cl	Me	-	[51]
1	Н	$2,6-i\Pr_2(C_6H_3)$	Me	CH ₃ CN	Me	(BAr_4)	[51]
2	Н	$2,6-i\Pr_2(C_6H_3)$	Me	_	_	$(BAr_4)_2$	[51]
1	Н	$2,6-i\Pr_2(C_6H_3)$	Η	Cl	Cl	_	[59]
1	Н	$2,6-Me_2(C_6H_3)$	H	Cl	Cl	_	[5 9]
1	Me	$2,6-i\Pr_2(C_6H_3)$	Η	Cl	Cl	_	[59]
1	Н	$2,6-i\Pr_2(C_6H_3)$	Η	CH ₃ CN	CH_3CN	$(BF_4)_2$	[59]
1	Me	$2,6-i\Pr_2(C_6H_3)$	Η	CH ₃ CN	CH ₃ CN	$(BF_4)_2$	[59]
1	CO ₂ Et	$2,6-Me_2(C_6H_3)$	Me	Cl	Cl	_	[22]
1	CO ₂ Et	$2,6-Et_2(C_6H_3)$	Me	Cl	Cl	_	[22]
1	CO ₂ Et	$2,6-i\Pr_2(C_6H_3)$	Me	Cl	Cl	_	[22]
1	CO ₂ Et	$2,4,6-Me_3(C_6H_2)$	Me	Cl	Cl	-	[22]
1	CO ₂ Et	$2,6-F_2(C_6H_3)$	Me	Br	Br	_	[22]
1	CO ₂ Et	$2,6-Cl_2(C_6H_3)$	Me	Br	Br	_	[22]
1	CO ₂ Et	2,6-Br ₂ -4-	Me	Br	Br	_	[22]
		$Me(C_6H_2)$					
1	$(CH_2)O_2CCH=CH_2$	$2,6-i\Pr_2(C_6H_3)$	Η	Cl	Cl	-	[50]
1	$2,6-Me_2(C_6H_3)$	$2,6-i\Pr_2(C_6H_3)$	H	Cl	Cl	-	[26]
1	$2,4,6-i\Pr_3(C_6H_2)$	$2,6-i\Pr_2(C_6H_3)$	Н	Cl	Cl	-	[26]

complex A

complex B

complex	n R	R^1	References
A	1 H	$(CH_2)_2CH_3$	[11]
A	1 H	(CH2)4CH3	[12]
A	1 H	$(CH_2)_7CH_3$	[12]
A	1 H	$(CH_2)_{11}CH_3$	[9, 12]
A	1 H	(CH ₂)CH=CH ₂	[11]
A	1 H	(C_6H_4) -4-CH=CH ₂	[11]
A	1 H	Ph	[11]
A	1 H	(C_6H_4) -4-OH	[11]
A	1 H	(C_6H_4) -4-OH	[10]
A	1 H	(C_6H_4) -4-OH	[10]
A	1 Me	(C_6H_4) -4-OH	[10]
A	2 H	(C_6H_4) -4-OH	[10]

complex R References 2 Н $(C_6H_4)-4-OH$ Α [10] Α 2 H [9] -(CH₂)₁₂-Н $(CH_2)_3 - [41]$ Α N(CH₂)₄N (CH₂)₃-В [10] В 2 -[10] В 2 -[10]

Table 5.3 (continued)

Fig. 5.7 Principal structures proposed for aluminoxanes

centers, two-dimensional structures, and three-dimensional clusters, all formed from methyl aluminoxane subunits during the controlled hydrolysis of trimethyl aluminum [79–81] (Fig. 5.7). A three-dimensional structure has been proposed by Sinn on the basis of structural similarities with *tert*-butylaluminoxanes [82], which form isolable cage structures [83]. Although its effective structure is still a matter of debate [84], for the sake of simplicity, it is often considered as a linear chain of general formula $[-Al(Me)-O-]_n$.

The generally accepted mechanism by which MAO can activate late-metal halide complexes for alkene insertion is outlined in Scheme 5.4. MAO is expected to replace halide ligands with methyl groups and ultimately create an ion pair made of a coordinatively unsaturated complex cation and anions derived from MAO [4].

Heterogeneous co-catalysts such as silica gel supported partially hydrolyzed trimethylaluminum (PHT) [14] or physico-chemical supported methylaluminoxanes

Scheme 5.4 Proposed mechanism for the activation of [M]-dihalide catalyst precursors

[74, 75] (s-MAO or s-MMAO) have also been proposed as activators for imino-pyridyl dihalide complexes. However, MAO and MMAO remain the most commonly reported co-catalysts in ethylene polymerization/oligomerization for this class of catalysts.

In general, there are several similarities between cobalt and iron bis(imino) pyridine-based complexes and their unsymmetrical mono(imino)pyridine (PIM) counterparts, both in their activation pathways and in the nature of the propagating species. Previous studies on Co^{II} and Fe^{II} bis(imino)pyridine complexes demonstrate that cobalt complexes usually display much lower productivity than their iron counterparts [21, 85–87]. On the contrary, unsymmetrical bidentate Co^{II}-(imino)pyridine-based systems exhibit remarkably higher olefin oligomerization activities than their ferrous analogues [7, 21, 27, 88]. Moreover, in contrast to the high molecular weight polymer formed by either sterically demanding α -diimine or bis(imino)pyridine catalysts, (imino)pyridine (PIM) systems provide only half of the axial steric protection and tend to generate low molecular weight branched polyethylenes or light oligomers [7]. The reduced axial steric hindrance generally leads to a higher catalyst activity and a reduced activation barrier in the chain transfer process, in line with previous reports regarding bis(imino)pyridyl iron catalysts [6, 7, 89, 90]. However, the reduction of the steric protection of the metal center also leads to a more rapid active species decomposition [15, 21].

Product analysis and studies on the dependence of the activity and Schulz-Flory α values on the ethylene pressure have been used to elucidate the propagation and chain transfer mechanisms operating in 6-aryl-substituted Co^{II} (imino)pyridine oligomerization catalysts [27, 37]. It has been established that propagation occurs via a classical Cossee-Arlman mechanism and chain transfer proceeds by β -H elimination to the metal (BHE), although the concomitant occurrence of alternative termination processes [such as β -H transfer to the monomer (BHT)] cannot be ruled out by the authors. Scheme 5.5 illustrates the overall reaction path for ethylene oligomerization by a series of N₂^{Ar}CoCl₂/MAO systems. Ethylene oligomerization experiments have shown a linear dependence of activity with monomer pressure while the α factor is independent from the pressure, indicating that the propagation and chain transfer rates are first order in ethylene concentration [29].

The authors therefore propose that the catalyst resting state is a cobalt alkyl species, and the rate determining step (rds) is the monomer coordination to the

 $\begin{array}{lll} \textbf{Scheme 5.5} & \text{Reaction mechanism for ethylene oligomerization catalyzed by $N_2^{Ar}CoCl_2/MAO$ systems } \end{array}$

metal center. In situ and *operando* electron paramagnetic resonance (EPR) experiments have provided useful insights on the nature of the propagating alkyl Co^{II} species involved in the oligomerization process. All high-spin Co^{II} precursors of this series undergo a spin state changeover with formation of paramagnetic square-planar low-spin Co^{II} propagating alkyls of the general formula [CoN₂^{AT}(alkyl)], where the aryl or heteroaryl group on the 6-position of the pyridine ring is expected to regulate both activity and selectivity of the active species acting as an hemilabile ligand. Density functional theory (DFT) calculations carried out on the latter compounds are consistent with the experimental results, highlighting the importance of the ligand hemilability in assisting olefin insertion by cobalt catalysis [27, 91] and, more generally, stressing the significant influence of the ligand environment on catalyst activity and selectivity.

Other relevant roles of MAO, such as reducing agent, hydrogen abstractor, C-alkylating agent and O-ligand, have also been reported in the literature [4, 92]; nonetheless, we are not aware of any published reports describing these functions on these Co^{II}-iminopyridinate systems.

Similar arguments regarding chain growth/chain termination paths and the role of the ligand environment apply to Pd^{II} and Ni^{II} iminopyridinate catalyst precursors

as well. Like α -diimine systems, the catalyst resting state in the catalytic cycle of Pd^{II} iminopyridinate complexes is an alkyl-olefin complex [9, 15, 93], and the rate determining step is represented by the olefin migratory insertion into the metal alkyl bond. Therefore, the rate of propagation for Pd^{II} iminopyridine catalyst systems shows a zero order dependence on ethylene concentration. The same resting state applies in the Ni^{II} systems at low temperature [94]. Metal migration (chain running) along the growing alkyl chain can occur in these species via β -H elimination/readdition reactions without chain transfer (Scheme 5.6). While successive ethylene migratory insertions lead to a linear polymer, insertion following chain running leads to the introduction of branching in the polymer chain (chain propagation/ chain running competition). As a result, a fine tuning of the ethylene pressure, reaction temperature, and ligand framework [10–12, 14, 16, 40, 41, 59] allows access to ethylene homopolymers and oligomers, whose structures vary from highly branched to linear semicrystalline materials [88, 95].

5.4.1 Olefin Polymerization by 8–10 Group Metal (imino)pyridyl-Based Catalysts

Unlike sterically demanding α -diimine or bis(imino)pyridine catalysts for the production of high molecular weight polymers, less axially crowded (imino)pyridine

Scheme 5.6 Proposed mechanism of chain propagation/chain running for the production of branched polymers using Ni^{II} or Pd^{II} iminopyridinate systems

systems (PIM), upon activation with the proper co-catalysts, generate, with rare exceptions, low molecular weight, branched polymeric materials. The production of low molecular weight polymers is generally ascribed to the reduced axial steric protection of these unsymmetrical bidentate systems, which translates into a reduction of the activation barrier for the chain transfer process (see Sect. 5.4).

Mono- and di-nuclear Ni^{II} dihalide (imino)pyridine complexes of the type shown in Scheme 5.7 exhibit, upon activation by MAO, from moderate to fairly good productivity in ethylene polymerization [up to $1.57 \times 10^3 \text{ kg}_{PE}$ (mol_{Ni} h bar)⁻¹], leading to predominantly methyl-branched waxy polymeric materials [15, 17, 58, 59]. Polymer molecular weights as well as type and degree of branching in the polymer depend on several factors, including: (1) ethylene pressure, (2) reaction temperature and (3) ligand environment. Although highly dependent on the polymerization temperature (most of the catalysts of this type undergo irreversible decomposition over 40 °C in toluene), the molecular weights of the materials produced by these Ni^{II} complexes ($M_{\rm w}$ in the range 300–45,000) remain remarkably lower than those obtained with analogous α -diimine systems under similar conditions [96]. Complex mixtures of olefins in a Schulz-Flory distribution in combination with hyper-branched low molecular weight PEs are often obtained with productivity from low to moderate [16]. Although the origin of this dual activity still remains unclear, it is most likely ascribable to the unsymmetrical nature of the catalyst precursors [97].

Ni^{II} complexes containing quinoline fragments or alkyl arms at the 6-position of the pyridine ring lying on the N_2 plane only show very modest activities or, in some cases, complete inactivity for olefin upgrading [14, 16, 59]. Tuning the steric bulk at either the *ortho* positions of the iminoaryl ring or at the imino carbon atom generally translates into differently branched materials. Similarly to α -diimine catalysts [98], a decreased steric bulk at the iminoaryl moiety (isopropyl groups vs. methyl groups) generally produces more linear polymers, while bulky groups (H vs. Me vs. Ph) at the imino carbon atom lead to higher branching degrees [14, 59] (predominantly methyl branching, 9–237 branches per 1,000 carbon atoms). Reported polymerization activities by Co^{II}-analogues are fairly negligible and clearly lower than those observed for the corresponding Ni^{II}-based systems [58, 96].

$$R^{2} = N$$

$$R^{1} = Me, \ \textit{iPr}; \ R^{2} = \text{alkyl, aryl, H}$$

$$R^{3} = Me, \ \textit{H, CO}_{2}\text{Alk, COAlk, (-C}_{Ar}\text{H-})$$

$$Y = CH, \ N; \ n = 1, 2$$

$$\text{activators: MAO or AgBF}_{4}$$

$$\text{olefin} \qquad \text{toluene (-10/40 °C)}$$

Scheme 5.7 Polymerization by Ni^{II}, Co^{II}, Fe^{II} and Pd^{II} (imino)pyridyl/activator catalysis

Upon MAO activation, mononuclear (imino)pyridyl Pd^{II} dihalide complexes of the type shown in Scheme 5.7 form active species for the bicyclo[2,2,1]hept-2-ene (norbornene, NB) polymerization, whereas their dicationic counterparts, prepared from neutral palladium species by treatment with $AgBF_4$, generate polymerization systems with low activity [59]. Like Ni^{II} congeners, activity and selectivity of Pd^{II} (imino)pyridyl systems is sensitive to the ligand environment. Mono-, bi- and tetra-nuclear Pd^{II} complexes with medium-long alkyl chain substituents at the imino nitrogen atom have been prepared and evaluated for ethylene polymerization to linear high molecular weight polyethylenes with moderate productivity [up to $44 \text{ kg}_{PE} \text{ (mol}_{Pd} \text{ h bar})^{-1}$] [9, 12, 40, 41]. Higher polymerization activities [up to $134 \text{ kg}_{PE} \text{ (mol}_{Pd} \text{ h bar})^{-1}$] have been reported for Pd^{II} iminopyridine systems containing 4-phenol groups at the imino nitrogen atom [11].

Ni^{II} [32], Pd^{II} [22] and Co^{II} dihalide [21] complexes stabilized by 2-alkoxy-carbonyl-6-(imino)pyridyl ligands generate rather modest ethylene polymerization catalysts, in most cases providing complex mixtures of light olefins and polyethylene materials. Iron(II) congeners exhibit the highest activities in ethylene polymerization, with productivity up to 95 kg_{PE} (mol_{Fe} h bar)⁻¹ and always provide complex mixtures of low molecular weight polyethylenes and short chain α -olefins in a Schulz–Flory distribution [21, 62]. The bonding versatility of the alkoxycarbonyl substituent makes the final coordination geometry around the metal center quite unpredictable. As a result, clear-cut structure/selectivity relationships can be only roughly outlined. Curiously, switching from Fe^{II} 2-alkoxycarbonyl-6-iminopyridyl to 2-acetyl-6-iminopyridyl systems results in an impressive increase of the catalyst productivity for ethylene polymerization [31, 61, 99] [up to 13 × 10³ kg_{PE} (mol_{Fe} h bar)⁻¹]. The improved productivity in the latter case is most likely the result of contamination with traces of Fe^{II} 2,6-bis(imino)pyridyl complexes.

5.4.2 Olefin Oligomerization by Group 8–10 Metal (imino)pyridinato Catalysts

Oligomers are produced as a consequence of a highly competitive chain transfer process relative to chain propagation [100]. It is generally established that the chain transfer activation barrier is increased in the presence of axially crowded systems, thus favoring the production of high molecular weight oligomers or polymers. Unlike bis(arylimino)pyridyl or α -diimino complexes, unsymmetrical (imino)pyridine systems (PIM), which provide only half of the axial steric protection at the metal center, constitute excellent and to some extent unique candidates for the efficient production of light oligomers. Ligand stereo-electronic features and reaction temperature are the key factors controlling catalyst activity and selectivity.

Cationic Pd^{II} complexes of the type shown in Scheme 5.8 have been reported to catalyze the oligomerization of ethylene with productivity in light hyper-branched

$$\begin{array}{c} \text{BAr}_4 \\ \hline \\ \text{MeCN} \\ \text{Me} \\ \hline \\ \text{1,2-dichloroethane, (30 °C)} \\ \end{array} \\ \begin{array}{c} \text{Branched oligomers (C}_4\text{-C}_{20}) \\ \text{TOFs (up to 17 Kg (mol_{Pd} \text{ h bar})}^{-1}) \\ \hline \\ \text{R}^2 \\ \hline \\ \text{Ni} \\ \\ \text{Ni} \\ \hline \\ \text{Ni} \\ \\ \text{Ni} \\ \hline \\ \text{Ni} \\ \hline \\ \text{Ni} \\ \\ \text$$

Scheme 5.8 Oligomerization catalysis by Ni^{II} and Pd^{II} iminopyridine complexes

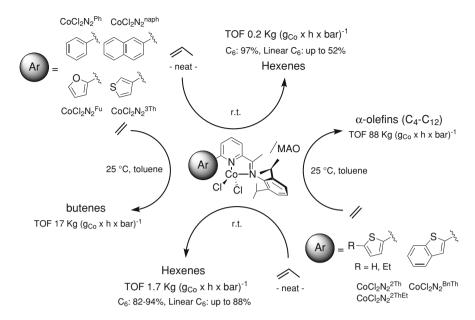
internal olefins (C_4-C_{20}) up to 18 kg $(\text{mol}_{Pd} \text{ h bar})^{-1}$ [51]. Aldimine Ni^{II} complexes from the same series [16] (Scheme 5.8), although less active than their ketimine Pd congeners, still produce branched olefins together with small portions of insoluble PE fractions. Carbosilane dendritic compounds containing up to 16 terminal pyridylimine Ni^{II} complexes of this type have also been evaluated, in combination with MAO, for the production of mixtures of branched oligomers that follow a Schulz–Flory distribution and highly branched low molecular weight PEs $(M_W = 2,000-177,000)$ [16].

2-Alkoxycarbonyl-6-(imino)pyridyl ligands in combination with Fe^{II}, Pd^{II}, Ni^{II} or Co^{II} ions have been reported to oligomerize ethylene with moderate to fairly good productivity (Fig. 5.8a). Pd^{II} dihalide complexes of this type, upon activation with MAO, generate ethylene dimers with TOFs up to 19 kg (mol_{Pd} h bar)⁻¹ and a small fraction of PE materials [22]. Mixtures of branched light oligomers (C₄–C₈) in a non-Schulz–Flory distribution and insoluble PE materials have been obtained with the 2,6-dihaloaryl-substituted Ni^{II} congeners too, with productivity in the oligomeric fraction up to 213 kg (mol_{Ni} h bar)⁻¹ [32]. Significantly improved activity [TOFs over 797 kg (mol_{Ni} h bar)⁻¹] and selectivity towards ethylene oligomerization (i.e., when light olefins are produced without traces of PE) have been obtained with the latter Ni^{II} compound when PPh₃ is employed as an auxiliary ligand. Although the role of PPh₃ has not been definitively addressed, the authors suggest that the temporary coordination of the PPh₃ to the vacant coordination site at the metal center improves the active species lifetime [32].

Simultaneous ethylene oligomerization and polymerization have also been documented for 2-alkoxycarbonyl Fe^{II} and Co^{II}-dihalo complexes [21, 62, 70]; while ferrous complexes exhibit higher activity towards ethylene polymerization, under similar reaction conditions, their cobalt counterparts present higher activity towards light oligomers [from C_4 – C_8 α -olefins in a Schulz–Flory distribution with

Fig. 5.8 a 2-Alkoxycarbonyl iminopyridyl Pd^{II}, Ni^{II}, Fe^{II} and Co^{II} oligomerization catalysts; b Mono- or di-nuclear Ni^{II}-dibromo complexes containing ferrocenyl N,N ligands

RO₂C
$$\stackrel{N}{N}$$
 $\stackrel{R^1}{N}$ $\stackrel{R^1}{N}$ $\stackrel{R^2}{N}$ $\stackrel{R^1}{N}$ $\stackrel{R^2}{N}$ $\stackrel{R^1}{N}$ $\stackrel{R^2}{N}$ $\stackrel{R^1}{N}$ $\stackrel{R^2}{N}$ $\stackrel{R^2}{N}$


productivity up to 72 kg $(\text{mol}_{\text{Fe}} \text{ h bar})^{-1}$ to almost exclusively 1-butenes with TOFs over 1.35×10^3 kg $(\text{mol}_{\text{Co}} \text{ h bar})^{-1}$].

Relatively modest productivity in light oligomers (mainly butenes and hexenes) with a Schulz–Flory distribution [up to 30 kg $(mol_{Fe} \ h \ bar)^{-1}$] have also been reported for 2-acetyl-6-(imino)pyridyl Fe^{II}-complex bearing electron withdrawing groups (e.g., m-CF₃) at the arylimino fragment [20]. Compared to Ni^{II} systems containing bulky *ortho*-substituted aryl groups at the imino nitrogen atom that produce branched oligomers and PEs or mixture thereof [14–16, 58, 59], monoand/or di-nuclear Ni^{II} dibromo complexes stabilized by iminopyridyl ligands containing a ferrocenyl substituent at the imino moiety (Fig. 5.8b) have been found to generate almost exclusively ethylene dimers with TOFs up to 536 kg $(mol_{Ni} \ h \ bar)^{-1}$ [10].

Iminopyridine ligands bearing aryl or heteroaryl substituents on the 6-position of the pyridine ring have been used to develop a new class of highly active and selective tetrahedral Co^{II} -dihalide complexes for ethylene, propylene and norbornene oligomerization and co-oligomerization. On activation with MAO, these Co^{II} catalyst precursors generate active species for ethylene conversion into shortchain α -olefins in a Schulz–Flory distribution with turnover frequencies as high as 5.2×10^3 kg $(\text{mol}_{\text{Co}} \text{ h bar})^{-1}$ and selectivity in 1-olefins up to 95% [27–29].

A crucial role in controlling both activity and selectivity for these Co^{II} -systems is played by the nature of the substituent on the 6-position of the pyridine ring. Among the various systems investigated, Co^{II} precursors bearing 2-thienyl fragments show higher activity leading to α -olefins with a Schulz–Flory distribution in the C_4 – C_{12} range. Notably, catalysis by Co^{II} complexes containing 6-aryl or 6-heteroaryl groups of comparable steric size but with no pendant 2-thienyl arms (furanyl, phenyl, naphthyl or 3-thiophenyl) leads almost exclusively to ethylene dimers with slightly lower productivity (Scheme 5.9) [27–29].

In situ and in *operando* EPR experiments conducted on the MAO-activated complexes have highlighted the central role exerted by the 6-organyl group in steering ethylene oligomerization activity and selectivity [27] (see Sect. 5.4). The higher activity observed for the 2-thienyl-substituted catalysts is ascribed to the sulfur atom coordination/detachment at the cobalt center in the activated species, which is expected to stabilize the transition state for migratory insertion and, at the same time, retard the chain transfer process [27].

Scheme 5.9 Ethylene and propylene oligomerization catalysis by $\mathrm{Co^{II}}$ 6-aryl substituted iminopyridine complexes

Similar activity and selectivity arguments on these MAO-activated 6-aryl substituted Co^{II} -iminopyridinate systems have been reported for propylene oligomerization [36]. While the $\text{CoCl}_2\text{N}_2^{\text{2Th}}/\text{MAO}$ system promotes the highly regioselective and efficient formation of linear propylene dimers in the presence of a small amount of higher oligomers (trimers and tetramers), a higher selectivity towards dimers (up to 97%), and a lower productivity and regioselectivity (linear hexenes and methyl branched pentenes are produced in comparable yields) is obtained with the $\text{CoCl}_2\text{N}_2^{\text{Ph}}/\text{MAO}$ system (Scheme 5.9). The latter system has also been found to generate active species that catalyze the unprecedented diastereoselective enchainment of one norbornene molecule (NB) with two ethylene molecules to give exo-2,exo-3 ethyl-vinyl norbornane with extremely high activity [up to $6.3 \times 10^3 \text{ kg}_{\text{NB conv.}}$ (mol $_{\text{Co}}$ h bar) $^{-1}$] and selectivity (Scheme 5.10, top) [37, 71].

Although the thien-2-yl Co^{II}-complex generates a more efficient system for the NB conversion into the ethyl-vinylated derivative than the phenyl substituted one, it suffers from a lower selectivity. Indeed, its greater ability to generate ethylene oligomers higher than 1-butene results in complex mixtures of ethyl-vinyl norbornane, C_6 - C_{12} α -olefins, and detectable amounts of hetero-tetramers and pentamers (Scheme 5.10, top) [37]. Notably, the hetero-trimerization protocol has also been accomplished by the same authors with NB monomers containing polar functional groups, such as norbornene-methanol and norbornene-carboxylic acid, with activities up to 17 kg (mol_{Co} h bar)⁻¹ and complete diastereoselectivity. To this purpose, polar monomers are previously protected in situ by treatment with

pre-catalyst	R	R'	(±) 1	(±) 2	(±) 3	(±) 4	(±) 5	(±) 6
Ar = Ph	<i>i</i> Pr	-	97% d.e.> 99%	2%	1%	-	-	-
Ar = Th	<i>i</i> Pr	-	82% d.e.> 99%	3%	9%	6%	-	-
Ar = Ph	Me	CH₂OH	-	-	-	-	94% d.e.> 99%	6%
Ar = Ph	Me	CO₂H	-	-	-	-	92% d.e.> 99%	8%

Scheme 5.10 Co-oligomerization catalysis by Co^{II} -iminopyridinato/MAO systems; ethylenenorbornene hetero-trimerization protocol (top) and hetero-trimerization protocol on norbornenes containing polar functionalities (bottom)

triisobutyl aluminum (TIBA) [101–104] to avoid both catalyst poisoning effects and undesired side-reactions with MAO. A less sterically demanding complex ($CoCl_2N_2^{Ph/Me2}$) has also been found to provide better activity and selectivity in the hetero-trimerization process (Scheme 5.10, bottom) [37].

Cobaltous systems of this type bearing 6-heteroaryl groups capable of a stronger σ -ligating character to the metal center (as for 2-pyridyl groups) result in the formation of completely inactive oligomerization/co-oligomerization catalysts [27]. In spite of that, pentacoordinate $\mathrm{Co^{II}}$ -dihalide complexes bearing a quinoxalinyl fragment on the 6-position of the pyridine ring are found to generate, upon activation with MMAO, relatively active systems for ethylene dimerization [167 kg ($\mathrm{mol_{Co}}$ h bar) $^{-1}$] [105]. Finally, neither the tetrahedral high-spin d^6 Fe catalysts ($\mathrm{FeCl_2N_2^{Ph}}$ and $\mathrm{FeCl_2N_2^{2Th}}$) nor the square-planar diamagnetic d^8 Ni $^{\mathrm{II}}$ congeners ($\mathrm{NiCl_2N_2^{Ph}}$ and $\mathrm{NiCl_2N_2^{2Th}}$) generate active oligomerization/polymerization catalysts upon treatment with MAO [27].

Related Co^{II} and Ni^{II}-iminopyridinate complexes bearing more sterically demanding arvl groups on the 6-position of the pyridine ring [xylyl or 2,4,6iPr₃(C₆H₂)] have also been proposed as efficient precursors for ethylene oligomerization to light α-olefins (mainly butenes) with productivity up to 472 kg (mol_{Co} h bar)⁻¹ [26]. Bulkier ligands of this type are not found to affect the selectivity of the resulting Co^{II} and Ni^{II}-iminopyridinate systems significantly. Short-chain α-olefins are produced almost exclusively, although small amounts of polymeric materials are somehow generated depending on the catalyst activator employed (AlEt₃ vs. MAO). While Fe^{II} catalysts of this type turn out to be virtually inactive towards ethylene oligomerization/polymerization, Pd^{II} congeners provide only polymeric materials with productivity comparable to those reported for the less sterically hindered Pd^{II}-iminopyridinate systems [9, 12, 40, 41]. Two Co^{II} and Ni^{II}-dihalo iminopyridinate fragments have been combined within a unique molecular structure by means of an aryl linker fixed at the 6-position of the respective pyridine rings to give novel homo-dinuclear catalyst precursors (Scheme 5.11) [23]. Both complexes, once activated with MAO, show fairly low activity [up to 20 kg $(\text{mol}_{\text{Ni}} \text{ h bar})^{-1}$ and 1 kg $(\text{mol}_{\text{Co}} \text{ h bar})^{-1}$] in ethylene oligomerization with no apparent M-M cooperative effect, providing mixtures of linear α -olefins and internal isomers (Co) or methyl branched ethylene oligomers (Ni).

Pentadentate ligands joining 2-iminopyridyl and 2,6-bis(imino)pyridyl moieties capable of accommodating one or two metal centers with different coordination geometries have been used to prepare mono- and homodi-nuclear Fe^{II} and Co^{II} -dihalo complexes (Scheme 5.12) [25]. On activation by MAO in toluene, all these systems have been found to generate effective catalysts for ethylene oligomerization to α -olefins with productivity and Schulz–Flory parameters depending on the type and number of coordinated metals. Although only negligible M–M magnetic interactions have been measured in the dinuclear systems, the occurrence of some M–M cooperative effect is invoked by the authors to explain why the dinuclear derivative $CyAr_2N_5Co_2Cl_4$ is four times more active than its mononuclear analogue $CyAr_2N_5CoCl_2$ [25].

Scheme 5.11 Ni^{II} and Co^{II} catalysis by homodinuclear iminopyridinate complexes

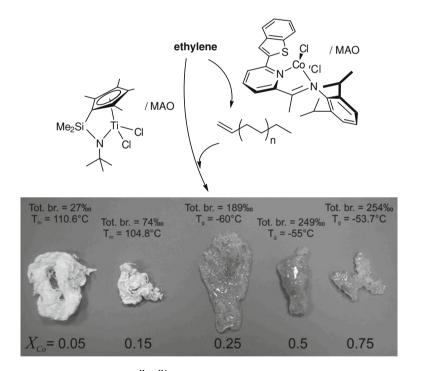
$$N = Fe, \frac{CyAr_2N_5FeCl_2}{M = Co, \frac{CyAr_2N_5Fe_2Cl_4}{M}}$$

$$M = Fe, \frac{CyAr_2N_5FeCl_2}{M} = Co, \frac{CyAr_2N_5Co_2Cl_4}{M}$$

Scheme 5.12 Fe^{II} and Co^{II} catalysis by mono- and homodi-nuclear complexes

5.4.3 Ni^{II} and Co^{II}-iminopyridine Systems in Tandem Co-polymerization Catalysis

Short-chain branched linear low-density polyethylenes (LLDPEs) are traditionally produced on industrial scale by ethylene/ α -olefin co-polymerization catalyzed by either heterogeneous Ziegler–Natta type or homogeneous single-site catalysts [106–108]. Catalytic systems based on homogeneous Group 4 constrained-geometry catalysts (CGCs) offer the possibility of incorporating higher α -olefins in the PE microstructure and thus can produce long-chain branched polyethylenes [109–111].


Tandem co-polymerization catalysis is a relatively recent technique for the production of branched PE from ethylene feedstock [112–114]. Since an early report by Bazan and Barnhart in 1998 [112], a great variety of combinations of early and late transition metal catalyst precursors have been successfully employed to prepare a variety of PEs spanning from LLDPE up to completely amorphous, ultra-low density polyethylenes (ULDPE).

The ability of iminopyridinate late transion metal complexes to act as oligomerization systems in *tandem* co-polymerization protocols, together with their excellent compatibility towards a wide range of polymerization systems and activators, is well documented in a number of contributions appearing on iminopyridinate-based *tandem* co-polymerization processes for the production of variably branched PEs and composites. Silica-supported co-polymerization $\mathrm{Ti}^{\mathrm{IV}}$ CGC/MMAO systems, in combination with a $\mathrm{Ni}^{\mathrm{II}}$ -dibromo iminopyridine/MMAO oligomerization system, have been reported by Okuda and co-workers as a *tandem* approach to ethylene/ α -olefin co-polymerization for the production of moderately branched PEs (up to 21 br/1,000 C) with a good control on the polymer microstructure (Scheme 5.13) [52].

6-Aryl-substituted Co^{II} iminopyridinate oligomerization catalysts for the production of highly linear α -olefins with a Schulz-Flory distribution, in combination with the CGC, TiCl₂[(η^5 -C₅Me₄)SiMe₂(tBuN)], have been found to generate, upon activation with MAO, a class of homogeneous *tandem* systems for the effective conversion of ethylene into variably branched PE materials [46, 72, 73]. An appropriate choice of both Co/Ti molar ratio (χ_{Co}) and experimental conditions,

leads to polymers ranging from slightly branched semicrystalline LLDPEs (C_2 br. 83%; C_4 br. 17%; tot. br. 27 per 1,000 C_{atoms}) to hyper-branched, amorphous PEs (C_2 br. 85%; C_4 br. 13%; C_6 br. \geq 2% tot. br. 254 per 1,000 C_{atoms}) with T_g as low as -60 °C and productivity up to 1.5×10^3 kg (mol $_{T_i}$ h bar) $^{-1}$ (Scheme 5.14) [46].

Scheme 5.13 Ni^{II}-iminopyridinate/supported-Ti^{IV}-CGC *tandem* co-polymerization catalysis

Scheme 5.14 Homogeneous Co^{II}/Ti^{IV} *tandem* co-polymerization protocol for producing polymers ranging from LLDPEs to amorphous PEs [46]. (Picture under copyright Wiley–VCH Verlag GmbH & Co. KGaA. Reproduced with permission)

A metallocene (Cp_2ZrCl_2) as co-polymerization catalyst has also been employed by the same authors to set up, in combination with Co^{II} -iminopyridinate oligomerization systems from the same series, a novel *tandem* protocol for the production of almost exclusively ethyl-branched (tot. br. up to 56‰) materials. In spite of a higher productivity compared with Ti^{IV} -CGC [over 12.7 \times 10³ Kg_{LLDPE} (mol_{Zr} h bar) $^{-1}$], only semicrystalline off-white solids exhibiting melting points between 87 and 121 °C were obtained with this *tandem* protocol [47].

Lower polymer branching degrees and different α -olefin incorporation kinetics, as a function of the α -olefin length, highlight the superior ability of CGCs at incorporating higher α -olefins than metallocenes. The combination of these copolymerization *tandem* protocols with the *polymerization filling technique* (PFT) has recently enabled a procedure for the textured surface coating of multi-walled carbon nanotubes (MWCNTs) with moderately branched LLDPEs (from 3.5 br to 34.5 br/1,000 C) (Scheme 5.15) [74, 75]. This approach to the preparation of structurally tailored composite materials using homogeneous single-site oligomerization/co-polymerization catalysts activated at the surface of a heterogeneous co-catalyst provides an effective and original way to control PE branching and morphology at the nanofiller surface.

In order to increase the catalytic efficiency of *tandem* systems [115–118] as to improve the comonomer enchainment efficiency into the PE microstructures, Osakada and co-workers have proposed an efficient and clean method to prepare new heterodinuclear early-late transition metal catalysts accommodating the two

Scheme 5.15 *Tandem* co-polymerization catalysis/polymerization filling technique for the preparation of structurally tailored MWCNTs/LLDPEs composites. Figure partially reprinted with permission from [75]. Copyright 2008 American Chemical Society

active centers in close proximity to each other. (Scheme 5.16) [50, 119]. Activity and selectivity of the new heterobinuclear early-late precursors have been compared with those observed for the separate mononuclear complexes, thus highlighting the occurrence of a positive synergic effect between the two metal centers (Scheme 5.16).

5.4.4 Atom Transfer Radical Polymerization by Cu^I and Fe^{II} Iminopyridinate Catalysts

Atom transfer radical polymerization (ATRP) is an exceptionally robust way to uniformly and precisely control the chemical composition and architecture of polymers, as well as the uniform growth of every polymer chain, while employing a broad range of monomers. Since its discovery in the mid-1990s, this controlled radical polymerization (CRP) method has allowed scientists to form structurally tailored polymers comprising vinyl monomers (styrenic, methacrylic, acrylic, just to mention a few) in a controlled, piece-by-piece fashion, thus leading to polymeric materials with well-defined $M_{\rm n}$ and narrow molecular weight distributions [120–123].

Bidentate pyridyl-2-aldimino ligands in combination with Cu^I-ions generate very efficient catalysts for ATRP because of their ability to stabilize the metal ions in low oxidation states [124] and produce soluble Cu^I species for homogeneous processes. Pyridyl-2-(*N*-propyl-aldimine) Cu^I complexes of the type shown in Scheme 5.17a have been used as efficient catalyst precursors, in conjunction with ethyl 2-bromoisobutyrate as initiator, for ATRP of methyl methacrylate (MMA) in either a homogeneous [125–127] or heterogeneous phase (silica or polystyrene supported catalysts) [13]. Cu^I-complexes of this type bearing *n*-alkyl substituents at the imine nitrogen atom have shown superior catalytic performance towards polymerization of MMA compared with those containing branched N-alkyl groups, which exhibit slow reaction rates and broad polydispersity indexes (PDIs) [128]. It is generally demonstrated that longer alkyl arms at the imine nitrogen atom (from propyl to octyl) generate more soluble ATRP catalysts, resulting in more controlled polymerizations as evidenced by the narrow molecular weight distributions [128, 129].

$$MX_2 = CoCl_2$$

$$MX_2 = CoCl_2$$

$$MX_2 = NiBr_2 + I_2 O$$

$$MX_3 = CoCl_2$$

$$MX_4 = CoCl_2$$

$$MX_5 = CoCl_2$$

$$MX_6 = CoCl_2$$

$$MX_7 = CoCl_2$$

$$MX_8 = CoCl_2$$

$$MX_8 = CoCl_2$$

$$MX_9 = CoCl_3$$

$$MX_9$$

Scheme 5.16 Homogeneous Ni^{II}/Zr^{IV} and Co^{II}/Zr^{IV} intramolecular *tandem* co-polymerization protocols for the production of highly branched PEs

CO₂Me

(a)

Me Me Me Me Me CH₂
$$\xrightarrow{}_{X}$$
CH₂ $\xrightarrow{}_{B}$ Br CO₂Me

(b)

Me Me CH₂ $\xrightarrow{}_{X}$ CH₂ $\xrightarrow{}_{B}$ Br CO₂Me

 $M_n = \text{up to } 18700; \text{ PDI} = 1.1 - 1.7}$

Me Me Me CH₂ $\xrightarrow{}_{X}$ CH₂ $\xrightarrow{}_{B}$ CO₂Me

 $M_n = \text{up to } 18700; \text{ PDI} = 1.1 - 1.3}$

Scheme 5.17 a and **b** ATRP by Cu^I-iminopyridinate complexes; **c** Sequential one-pot CuAAC/LRP by Cu^I-iminopyridinate catalysis

 α -Hydroxy functionalized PMMAs have also been prepared using the same Cu^I-catalysts in combination with an hydroxyl alkyl bromide as initiator with no apparent effect on the control of the molecular weights (M_n) and PDI of the monohydroxy terminated PMMAs (Scheme 5.17b) [57]. Furthermore, the Cu^IBr/iminopyridine catalytic system has been reported to promote the sequential, one-pot azide-alkyne cycloaddition [CuAAC -Huisgens type reaction)/living radical polymerization (LRP) process, providing a novel and original synthetic tool for the production of functional molecular materials (Scheme 5.17c) [130, 131].

Relatively fast and controlled ATRP of styrene and MMA by mono- and di-nuclear Fe^{II} iminopyridyl catalysis have been reported by Gibson et al. [8]. Mononuclear species obtained with bulky imine substituents and a methyl group on the pyridine 6-position generate relatively active catalysts for the controlled polymerization of styrene and MMA. On the contrary, a reduced steric hindrance on the N atom, which favors dinuclear derivatives formation, produces less efficient catalytic systems.

5.5 Synthesis of Group(IV) Metal Amidoalkylpyridinate Complexes

While iminopyridyl ligands are well suited for stabilizing late transition metal complexes, early metals are much more electrophilic and prone to react at the imine moiety. Thus, the chemistry of early- and some mid-transition metals is

Table 5.4 Amidoalkylpyridinato Group IV metal complexes

more widely described by amidoalkylpyridyl ligation. Group IV amidopyridinate complexes are one of the first reported classes of soluble high-activity post-metallocene polymerization catalysts. Many of these complexes have demonstrated success as olefin oligomerization and/or polymerization catalysts, and some have played essential roles in the development of new polyolefin materials. The complexes discussed in this section are summarized in Table 5.4.

Olefin polymerization using these catalysts was first reported by Murray in 1999 [132]. At least three methods for generating catalytically active complexes of this type are reported. One approach involves a simple reaction of an iminopyridyl ligand precursor with $Zr(CH_2Ph)_4$, generating a zirconium-amido linkage in situ via reductive imine benzylation (Scheme 5.18a). Alternatively, the imine ligand can be reductively alkylated in advance with Me_3Al and quenched with aqueous base to generate an aminoalkylpyridyl ligand; the subsequent reaction with $Zr(CH_2Ph)_4$ generates the expected $\{N, N^*\}$ -ligated complex via protonolysis of a benzyl fragment (Scheme 5.18b). In a third method, a catalyst solution can be generated by adding ether-free benzyl Grignard to a slurry of $ZrCl_4$ and the iminopyridyl ligand precursor (Scheme 5.18c).

(b)
$$N-Ar$$
 $\frac{1. \text{ Me}_3 \text{Al}}{2. \text{ KOH (aq)}}$ $N-Ar$ $\frac{Zr(CH_2Ph)_4}{N}$ $N-Ar$ $\frac{Zr(CH_2Ph)_4}{N}$ $N-Ar$ $\frac{Zr^2r^2}{N}$ $N-Ar$ $\frac{Zr^2}{N}$ $N-Ar$ $\frac{Zr^2}{N}$ $N-Ar$ $\frac{Zr^2}{N}$ $\frac{Zr}{N}$ $\frac{Zr}{$

(c)
$$\frac{ZrCl_4}{N-Ar} \xrightarrow{ZrCl_4} \frac{4 \text{ PhCH}_2\text{MgCl}}{\text{toluene}}$$
 catalyst solution

Scheme 5.18 Synthetic methods for the preparation of Group IV amidoalkylpyridinato complexes

Scheme 5.19 Synthesis of an iminopyridine ligand comprising an N-2,5-dimethylpyrrole substituent

While the most widely reported substituent at either the imino or amino N-atom is 2,6-*i*Pr₂C₆H₃, Murray has also reported the use of N-heterocycles in this position, such as 2,5-dimethylpyrrole or 2,6-dimethylpiperidine. The imine intermediates in the ligand syntheses can be prepared either by direct condensation of an acetyl-substituted pyridine compound with an N-amino-heterocycle, or by condensation of hexane-2,5-dione with 2-(1-hydrazonoethyl)pyridine, as shown in Scheme 5.19.

Further elaboration of this ligand family has been reported by Erker et al. [45] focusing primarily on the introduction of alkyl substituents on the pyridine ring (Table 5.5). The acetyl-substituted pyridine precursors containing an alkyl substituent at the 6-position of the pyridine ring have been prepared following a relatively complex synthetic procedure outlined in Scheme 5.20a. 2-Isopropyl-and 2-tBu-pyridine are prepared by successive α -methylations of 2-ethylpyridine. Subsequent conversion to 2-acetyl derivatives is accomplished by ortho-cyanation followed by reductive alkylation with MeLi. An entirely different approach is used to prepare the 4,6-tBu₂-disubstituted 2-formylpyridine derivative, involving a pyrylium intermediate of the type shown in Scheme 5.20b. Selenium dioxide

$\mathbb{R}^1\mathbb{R}^2$		
R ³ N HN-Ar	R^2	R^3
H	Н	Н
Н	Н	4,6- <i>t</i> Bu ₂
Me	Н	Н
Me	Н	Benzo[e]
Me	Me	Н
Н	Me	6- <i>i</i> Pr
Н	Me	6- <i>t</i> Bu
Me	Me	6- <i>i</i> Pr
Me	Me	6- <i>t</i> Bu

Table 5.5 Structural variants of aminoalkylpyridyl ligands [45]

Scheme 5.20 Key synthetic steps for aminoalkylpyridyl ligands with bulky substituents at the pyridine ring

oxidation is ultimately used to convert the 2-hydroxymethylpyridine into 2-formylpyridine intermediate.

The same authors report the synthesis of Zr^{IV} and Hf^{IV} complexes generated via protonolysis reaction with either $M(NMe_2)_4$ or $M(Bn)_4$ to give the corresponding tris(dimethylamido) or tris(benzyl) complexes, respectively (see also Scheme 5.18b). An AI^{III} -dimethyl complex has also been isolated and characterized while reducing the iminopyridine ligands with $Al(Me)_3$ (imine reductive alkylation; see also Scheme 5.18a). However, the authors have been able to synthesize only a limited number of zirconium and hafnium variants bearing the very bulky *tert*-butyl group in the 6-position of the pyridine ring (only when $R^1 = R^2 = H$).

Scheme 5.21 Synthesis of a pyridyl-enamide Zr^{IV} complex

 $\begin{array}{lll} \textbf{Scheme 5.22} & \text{Net reaction of a perfluor ophenyl-substituted aminomethyl pyridyl ligand with} \\ Zr(NMe_2)_4 & \end{array}$

An unusual example of a ligand having an unsaturated group bridging the pyridine and the amido moieties was reported by Murray [132] (Scheme 5.21). The silyl enamine is isolated after deprotonation of the methyl group of the ketoimine fragment with MeLi followed by $ClSiMe_3$ quench. The synthesis of the enamido-pyridinato Zr^{IV} complex is then accomplished by reaction with $ZrCl_4$ followed by treatment with BnMgCl, similar to the procedure outlined in Scheme 5.18c.

Pellecchia et al. have reported the synthesis of a zirconium complex derived from an aminomethylpyridyl ligand containing a perfluorophenyl substituent at the amine nitrogen atom [134]. The ligand is prepared by condensation of the formyl-substituted pyridine with the perfluorophenyl aniline followed by NaBH₃CN reduction. The relatively small (e.g., compared with *i*Pr groups) arylamido substituents allow two ligand units to bind to the zirconium certer, yielding L₂ZrCl₂ complexes in reaction with ZrCl₄. Reaction with Zr(NMe₂)₄ yields a complex with two amidopyridyl ligands as well, but the product undergoes further modification by reactions with a pentafluoroaryl group. More specifically, a fluorine atom migrates to the metal center, and is replaced by a dimethylamido group, the latter mantaining the N-coordination to the metal center as shown in Scheme 5.22.

5.5.1 Olefin Polymerization Behavior of Group(IV) Metal Amidoalkylpyridinate Complexes

Results for ethylene-hexene copolymerizations are summarized in Table 5.6 [132]. Catalysts have been generated in situ prior to activation by combining the

Table 5.6 Ethylene-hexene co-polymerization data [132] for amidoalkylpyridinato complexes

Bn Bn			1011 4444 [102] 101		17	1
Bn Zr R						
R^3 N R^2 R^1						
R	\mathbb{R}^1	\mathbb{R}^2	R^3	Acta	I_{21}^b	BBF^{c}
Су	Me	Bn	Н	5		
Ph	Me	Bn	Н	1		
$2,6-Me_2C_6H_3$	Me	Bn	H	23	0.511	9.23
2 - i Pr- 6 -MeC $_6$ H $_3$	Me	Bn	H	68	Slow	6.85
$2-tBuC_6H_4$	Me	Bn	H	26	9.83	10.51
2 - t Bu- 6 -MeC $_6$ H $_3$	Me	Bn	H	25	0.897	4.37
$2,4,6-tBu_3C_6H_2$	Н	Bn	H	2		
$2,6-i\Pr_2C_6H_3$	Н	Н	H	23	5.39	13.64
$2,6-i\Pr_2C_6H_3$	Me	Me	H	183	Slow	8.68
$2,6-i\Pr_2C_6H_3$	Н	Bn	H	39	1.04	12.49
$2,6-i\Pr_2C_6H_3$	Me	Bn	H	115		7.16
2 - i Pr- 6 -MeC $_6$ H $_3$	Me	Bn	Benzo[e]	10		5.86
$2,6-i\Pr_2C_6H_3$	Me	Bn	Benzo[e]	41	2.42	13.36
2 - t Bu- 6 -MeC $_6$ H $_3$	Н	Bn	Benzo[e]	6		
$2,6-i\Pr_2C_6H_3$	Н	Bn	Me	16		5.96
$2,6-i$ Pr $_2$ C $_6$ H $_3$	=C	H_2	Н	28	0.512	12.26

Conditions 85 °C, 600 mL hexane, 43 mL 1-hexene, MMAO Al/Zr = 1,000, 85 psi ethylene ^a Activity in units kg_{pol} (mol_{Zr} h 100 psig)⁻¹

appropriate ligand or ligand precursor with ZrBn₄. More specifically, catalysts may be generated either via benzyl alkylation of the C=N moiety of an iminopyridyl precursor or via protonolysis of a benzyl group by an aminopyridyl ligand. Within the data set reported in Table 5.6, the catalysts bearing $2,6-iPr_2C_6H_3$ substituents on nitrogen (R-position) provide the best catalytic performances, and higher efficiencies are obtained for catalysts that are further substituted with non-hydrogen groups at both the R¹ and R² positions. Ethylene-hexene polymerization results obtained with systems containing N-heterocycle substituents (R), are shown in Table 5.7 [135]. Erker et al. report ethylene homopolymerization data (Table 5.8), which demonstrate the effects of the larger alkyl substituents at the 6-position of the pyridine ring on the final catalyst performance [45]. Indeed, the 6-iPr-substituted catalyst makes polymer with a relatively low melting point, which the authors attribute to very low molecular weight. Ethylene polymerization data are reported for the perfluorophenyl-derived complexes as well (Table 5.9), with very high molecular weight polyethylenes produced. Very little or no polymer is produced with these complexes in propylene or hexene polymerization tests.

^b I₂₁ is the flow index (dg/min) at 190 °C

^c BBF = butyl branch frequency, butyl branches/1,000 main chain carbon atoms

Table 5.7 Ethylene-hexene polymerization data [135] for amidoalkylpyridinato complexes with R = N-heterocycle

\mathbb{R}^1	\mathbb{R}^2	μmol	Acta	I_{21}^b	BBF^{c}
Me	Bn	1	8	4.16	15.08
Me	Me	0.5	31	0.839	17.38
Me	Bn	0.5	18	27.79	4.06
Me	Me	0.5	34	4.49	3.22
	Me Me Me	Me Bn Me Me Me Bn	Me Bn 1 Me Me 0.5 Me Bn 0.5	Me Bn 1 8 Me Me 0.5 31 Me Bn 0.5 18	Me Bn 1 8 4.16 Me Me 0.5 31 0.839 Me Bn 0.5 18 27.79

Conditions: 65 °C, 600 mL hexane, 43 mL 1-hexene, MMAO Al/Zr = 1000, 85 psi ethylene

:Dv

Table 5.8 Ethylene polymerization data [45] for amidoalkylpyridinato complexes containing bulky alkyl substituent at the pyridine ring

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
R ³ R ¹	\mathbb{R}^2	R^3	X	Act ^a	Tm^b			
Н	Н	Н	Bn	438	122			
Me	Me	Н	Bn	1,905	121			
Н	Н	$4,6-tBu_2$	NMe_2	_	_			
Me	Н	Н	NMe_2	42	120			
Me	H	Benzo[e]	NMe_2	77	122			
Me	Me	Н	NMe_2	170	122			
Me	Н	6- <i>i</i> Pr	NMe_2	70	117			

Conditions Toluene, 25 °C, 2 bar ethylene, MAO activator with Al/Zr > 1,000

5.6 Synthesis of 6-Aryl(heteroaryl)-substituted Aminoalkylpyridyl Ligands

Aminoalkylpyridyl ligands bearing aryl or heteroaryl substituents at the 6-position of the pyridine ring are prepared by simple reduction or reductive alkylation of the corresponding imines (Scheme 5.23). While imine reduction can be conveniently conducted using LiAlH₄ or NaBH₃CN [136–141], substituents at the bridging methylene fragment are generally introduced by reductive alkylation of the imine fragment with either an organolithium, organomagnesium or organoaluminum

^a Activity in units Kg_{pol} (mol_{Zr} h 100 psig)⁻¹

b I₂₁ is the flow index (dg/min) at 190 °C

^c BBF = butyl branch frequency, butyl branches/1,000 main chain carbon atoms

^a Activity in units kg_{pol} (mol_{Zr} h bar)⁻

b Melting points measured by DSC

Table 5.9 Ethylene polymerization data [134] for amidoalkylpyridinato complexes derived from perfluoroaniline

Conditions 90 mL toluene solvent, T=50 °C, 6 atm ethylene, 20 μ mol cat, DIBAL/Zr = 30, MAO activator with Al/Zr = 1,000, t=60 min

Scheme 5.23 General synthetic procedures for 6-aryl or heteroaryl-2-aminoalkylpyridyl ligands

compound, or by treatment of the iminopyridyl ligand with a tetrabenzyl Group IV metal precursor [42, 136–146] (Scheme 5.23). A simplified synthesis of an aminoalkylpyridyl ligand has been proposed recently by Hagadorn et al. The authors use a pyridyllithium reagent to alkylate an imine fragment and generate the corresponding alkylamino ligand in one step (Scheme 5.24) [146]. Most ligands are conveniently prepared on a multigram scale and are generally purified by crystallization.

Most examples of 6-aryl substituted aminoalkylpyridyl ligands incorporate simple aryl functionalities such as phenyl or naphthyl, but a few examples bearing more complex heteroaryl systems have also been reported (Fig. 5.9). Examples bearing thiophenes and benzofurans have been prepared using a Suzuki-type coupling, [27, 30, 42, 143, 144, 147] and ligands bearing ferrocene substituents in the 6-position of the pyridine ring have also been prepared using this synthetic

^a Activity in units kg_{pol} (mol_{Zr} h atm)⁻¹

^b Melting points measured by DSC

^c Molecular weight data measured by GPC

d Not determined

Scheme 5.24 Synthesis of aminoalkylpyridyl ligands via a pyridyllithium intermediate

Fig. 5.9 Selected examples of 6-heteroaryl-2-aminoalkylpyridyl ligands

Scheme 5.25 Key synthetic step in the synthesis of carbazole- or indole-functionalized amidopyridyl ligands

approach [141]. The synthesis of ligands bearing either carbazole or indole fragments at the same position of the pyridine moiety have also been prepared by a Buchwald–Hartwig amination protocol [148, 149] (Scheme 5.25), followed by reductive amination as described above (see Scheme 5.18) [144, 146].

The majority of aminoalkylpyridyl ligands are either unsubstituted or monosubstituted at the bridging carbon between the pyridine and the amine, but a few examples of α , α '-disubstituted versions have also been reported [42, 142]. These ligands have been prepared by condensation of an aniline with a pyridylketone, followed by reductive alkylation of the resulting ketimine with Me₃Al (Scheme 5.26).

Compared to the ligands described above having secondary amine substitution, a smaller number of aminoalkylpyridyl ligands containing tertiary amino groups have also been reported (Scheme 5.27) [141, 146]. These compounds have been prepared by condensation of the aldehyde with a dialkylamine using benzotriazole to generate a stabilized iminium salt which undergoes nucleophilic attack by a

 $Ar = Ph, 2,6-Me_2C_6H_3, 2-(5-Et-thiophene), 2-Benzofuran, 2-Thiophene, 2-Vinylnaphthyl$

Scheme 5.26 Synthesis of α,α '-disubstituted 6-aryl-aminoalkylpyridyl ligands

Scheme 5.27 Synthetic routes to 6-aryl-aminoalkylpyridyl ligands containing tertiary amine groups

Grignard reagent [146]. Alternatively, alkylation of an aminium iodide by a lithiated pyridine also can provide the desired ligands [146]. These compounds can optionally be further elaborated to α , α '-disubstituted compounds by deprotonation with nBuLi and quenching with CH₃I [146]. Additionally, aminoalkylpyridyl ligands bearing silicon bridges in place of the usual carbon atom bridges have been reported by Hagadorn (Scheme 5.28) [141]. These ligands are prepared by 2-bromo-6-ferrocenylpyridine metallation with nBuLi followed by reaction with SiMe₂Cl(NMe₂).

5.6.1 Synthesis of 6-Aryl(heteroaryl)-substituted Amidoalkylpyridinato Group IV Metal Complexes

Several examples of amido, alkyl, and halo Group IV metal complexes stabilized with 6-aryl(heteroaryl) aminoalkylpyridyl ligands have been isolated and investigated with respect to their catalytic performance in olefin polymerization under different conditions. A representative series of Hf^{IV} complexes is listed in Table 5.10, and the various synthetic methods applied to their preparation are summarized below.

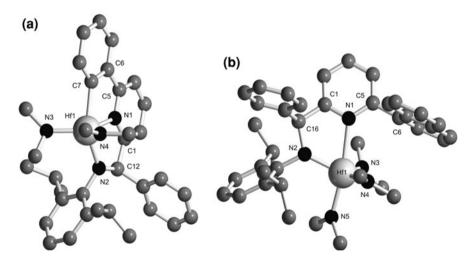
Most of these complexes are generated by transamination/protonolysis reactions leading to either mono-anionic bidentate $\{N^-,N\}$ - or di-anionic tridentate $\{N^-,N,C^-\}$ -ligated complexes (Scheme 5.29) [137–140, 147, 150]. For ligands bearing an unsubstituted phenyl substituent at the 6-position of the pyridine ring (Scheme 5.29 top), the reactions with $Hf(NMe_2)_4$ liberate two equivalents of $NHMe_2$. The first equivalent is released by a transamination reaction and the second by *ortho*-metallation at the phenyl group, the latter producing a M–C(aryl) σ -bond. The X-ray structure in Fig. 5.10a reveals a C_1 -symmetric complex with highly distorted trigonal—bipyramidal geometry at the metal center. The pyridine and activated phenyl group are almost coplanar, and the dimethylamido ligands occupy diastereotopic equatorial sites.

Under the same conditions, ligands bearing bulkier 6-aryl substituents, such as 1-naphthyl, liberate only one equivalent of NHMe₂ to give a bidentate monoanionic $\{N^-,N\}$ -tris-dimethylamido complex (Scheme 5.29 bottom). The crystal structure of the latter complex (Fig. 5.10b) reveals a much less distorted trigonal-bipyramidal geometry with the bidentate ligand occupying two of the axial positions. The naphthyl group is twisted away from the pyridine at a dihedral angle of nearly $\sim 90^\circ$. The tris-dimethylamido complex is presumably stabilized toward amine elimination due to unfavorable steric interactions hindering naphthyl/pyridine coplanarity.

Giambastiani et al. have recently reported the synthesis of Zr- and Hf-dimethylamido complexes bearing variably 6-aryl(heteroaryl) substituted aminomethylpyridyl ligands (Scheme 5.30) [147]. A careful variable-temperature ^{1}H NMR analysis of all prepared Zr^{IV} and Hf^{IV} complexes has revealed a dramatic change occurring at the metal coordination sphere upon temperature variations. Indeed, the initially-formed *tris*-dimethylamido complexes undergo completely reversible temperature-controlled σ -bond metathesis/protonolysis reactions that complicate solution characterization of the complexes. The cyclometallated *bis*-dimethylamido complexes are finally isolated after prolonged heating to completely remove the NHMe₂ from the metal coordination sphere (Scheme 5.30).

Dialkyl Group IV metal complexes have been prepared by a number of methods, which are summarized in Schemes 5.29 and 5.31. The *bis*-dimethylamido complexes can be converted to dimethyl species by treatment with excess Me₃Al [137–140, 150]. As shown in Scheme 5.29, *tris*-dimethylamido monoanionic {N⁻,N}-ligated complexes are converted to dimethyl species bearing a

 Table 5.10
 6-Aryl-substituted amidoalkylpyridinato Hf^{IV} complexes


$$\begin{array}{c|c} X & X \\ \hline \\ R^1 & \\ \end{matrix} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{matrix} \\ R^2 \end{array}$$

		2		
R	R^1	R ²	X	References
Bn	1-Nap	Н	NMe ₂ , Bn	[137–140, 150]
$4-i\Pr(C_6H_4)$	Ph	Н	NMe ₂ , Bn	[137–140, 150]
$4-i\Pr(C_6H_4)$	Ph	Bn	NMe ₂ , Bn	[137–140, 150]
$4-i\Pr(C_6H_4)$	Ph	Ph	NMe ₂ , Bn	[137–140, 150]
$4-i\Pr(C_6H_4)$	Ph	2-Bip	NMe ₂ , Bn	[137–140, 150]
$4-i\Pr(C_6H_4)$	Ph	1-Anth	NMe ₂ , Bn	[137–140, 150]
$4-i\Pr(C_6H_4)$	1-Nap	Н	NMe ₂ , Bn	[137–140, 150]
$4-i\Pr(C_6H_4)$	1-Nap	Ph	NMe ₂ , Bn	[137–140, 150]
$4-i\Pr(C_6H_4)$	1-Nap	2-Bip	NMe ₂ , Bn	[137–140, 150]
1-Nap	Ph	Bn	NMe ₂ , Bn	[137–140, 150]
1-Nap	Ph	Ph	NMe ₂ , Bn	[137–140, 150]
1-Nap	1-Nap	Ph	NMe ₂ , Bn	[137–140, 150]
2-Me-naphthyl	Ph	Н	NMe ₂ , Bn	[137–140, 150]
2-Me-naphthyl	Ph	Ph	NMe ₂ , Bn	[137–140, 150]
2-Me-naphthyl	1-Nap	Н	NMe ₂ , Bn	[137–140, 150]
2-Me-naphthyl	1-Nap	Ph	NMe ₂ , Bn	[137–140, 150]
2-Me-naphthyl	1-Nap	1-Anth	NMe ₂ , Bn	[137–140, 150]
$3,5-(CF_3)_2C_6H_3$	Ph	2-Bip	NMe ₂ , Bn	[137–140, 150]
$3,5-(CF_3)_2C_6H_3$	1-Nap	2-Bip	NMe ₂ , Bn	[137–140, 150]
2-Bip	Ph	Н	NMe ₂ , Bn	[137–140, 150]
2-Bip	Ph	Ph	NMe ₂ , Bn	[137–140, 150]
$2\text{-Me-}4\text{-(MeO)}C_6H_3$	Ph	Ph	NMe ₂ , Bn	[137–140, 150]
$2,6-Me_2C_6H_3$	Ph	Н	NMe ₂ , Bn	[137–140, 150]
$2,6-Me_2C_6H_3$	Ph	Bn	NMe ₂ , Bn	[137–140, 150]
$2,6-Me_2C_6H_3$	Ph	1-Anth	NMe ₂ , Bn	[137–140, 150]
$2,6-Me_2C_6H_3$	1-Nap	Н	NMe ₂ , Bn	[137–140, 150]
$2,6-Me_2C_6H_3$	1-Nap	Bn	NMe ₂ , Bn	[137–140, 150]
$2,6-Me_2C_6H_3$	1-Nap	Ph	NMe ₂ , Bn	[137–140, 150]
$2,6-Me_2C_6H_3$	1-Nap	1-Nap	NMe ₂ , Bn	[137–140, 150]
$2,6-i\Pr_2C_6H_3$	Ph	Н	NMe ₂ , Bn, Me	[136–140, 150, 151]
$2,6-i\Pr_{2}C_{6}H_{3}$	Ph	Ph	NMe ₂ , Bn, Me	[136–140, 150]
$2,6$ - i Pr $_2$ C $_6$ H $_3$	1-Nap	H	Me	[151]
$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	Ph	NMe ₂ , Bn, Me	[137–140, 150]
$2,6-i\Pr_2C_6H_3$	1-Nap	2 - i PrC $_6$ H $_4$	Me, Cl,	[145]
2.6 :D., C. H.	1 NT	2 (C II) C II	CH ₂ SiMe ₃	F1.453
2,6- <i>i</i> Pr ₂ C ₆ H ₃	1-Nap	$2-(C_6H_{11})C_6H_4$	Me	[145]
2,6- <i>i</i> Pr ₂ C ₆ H ₃	1-Nap	2-tBuC ₆ H ₄	Me	[145]
$2,6$ - i Pr $_2$ 4-Cl-C $_6$ H $_2$	4-Cl- C ₆ H ₄	$2-(C_6H_{11})C_6H_4$	Me	[145]
	-0-14			

TT 1 1	F 10	/ · · · 1\
Table	5.10	(continued)

R	\mathbb{R}^1	R^2	X	References
2,6- <i>i</i> Pr ₂ 4-Cl-C ₆ H ₂	1-Nap	2 - i PrC $_6$ H $_4$	Me	[145]
$2,6$ - i Pr $_2$ 4-Cl-C $_6$ H $_2$	1-Nap	$2-(C_6H_{11})C_6H_4$	Me	[145]
$2,6-\{CHMe(4-tBuC_6H_4)\}_2-4-MeC_6H_2$	Ph	Н	Me	[136]

Scheme 5.29 Synthesis of dimethylamido- and dimethyl Hf^{IV} complexes stabilized by mono-anionic bidentate $\{N^-, N\}$ - or di-anionic tridentate $\{N^-, N, C^-\}$ ligands

Fig. 5.10 a *Ball and stick* drawing of the crystal structure of $\{\eta^3\text{-}(N^-,N,C^-)\text{-}L\}\text{Hf}(NMe_2)_2\}$ (hydrogen atoms omitted) [150]. Selected distances (Å) and angles (°): Hf1-N1 2.340(5), Hf1-N2 2.130(4), Hf1-C7 2.298(6), Hf1-N4 2.028(5), Hf1-N3 2.008(5), N1-Hf1-N2 69.68(17), N1-Hf1-C7 70.1(2), N1-C5-C6-C7 -5.23. **b** *Ball and stick* drawing of the crystal structure of $\{\eta^2\text{-}(N^-,N,L)\text{-}L\}\text{Hf}(NMe_2)_3\}$ (hydrogen atoms omitted) [150]. Selected distances (Å) and angles (°): Hf1-N1 2.472(5), Hf1-N2 2.113(5), Hf1-N3 2.021(5), Hf1-N4 2.073(5), Hf1-N5 2.050(6), N1-Hf1-N2 71.87(17)

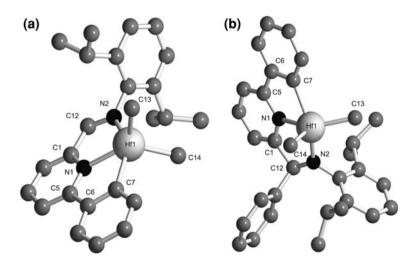
Scheme 5.30 Synthesis of tautomeric mixtures of
$$Hf^{IV}$$
 and Zr^{IV} complexes stabilized by 6-aryl(heteroaryl) amidomethylpyridinate ligands

with the substitute of
$$H^{rV}$$
 and Z^{rV} complexes stabilized by 6-aryl(heteroaryl) midomethylpyridinate gands
$$\begin{array}{c} X = CH; \ n = 2 \\ X = S, \ O; \ n = 1 \end{array} \qquad \begin{array}{c} M(NMe_2)_4 \\ N-M-NMe_2 \\ N-M$$

(a)
$$\begin{array}{c} MBn_4 \\ -PhCH_3 \end{array}$$

$$\begin{array}{c} MBn_4 \\ -PhCH_3 \end{array}$$

$$\begin{array}{c} MBn_4 \\ -PhCH_3 \end{array}$$


$$\begin{array}{c} Bn & Bn \\$$

Scheme 5.31 Synthetic approaches to the preparation of tridentate dianionic 6-aryl(heteroaryl) amidoalkylpyridinato metal-alkyl complexes

dianionic {N⁻,N,C⁻} ligand, which indicates that the driving force for liberating one further equivalent of methane is enough to overcome the steric crowding (eclipsing hydrogens) of coplanar naphthyl and pyridine rings.

A simple method for the preparation of dialkyl complexes involves alkylation of an imine ligand precursor with MBn₄ (M = Zr, Hf) with the concomitant liberation of one molecule of toluene to give the L-MBn₂ complexes (Scheme 5.31a) [137–141, 150]. Likewise, the reaction of a free aminopyridyl compound with MBn₄ gives L-MBn₂ complexes with release of two toluene molecules (Scheme 5.31b) [137–141, 150]. L-MR₂ complexes have also been synthesized by reaction of a lithiated ligand with MCl₄ (salt metathesis) to give the trichloride intermediates, which undergo alkylation upon treatment with organolithium or organomagnesium compounds (Scheme 5.31c) [136, 145, 151]. Similarly, Hagadorn has reported the synthesis of a L-ZrMe₂ complex by treating the L-ZrCl₂ species with Me₂Mg (Scheme 5.31d) [141]. Trialkyl complexes, potential intermediates in these reactions, are typically not observed, as the electrophilic metal readily activates a C-H group of the aryl substituent on the pyridine ring.

Representative crystal structures of the achiral and chiral (racemic) L-HfMe₂ complexes are shown in Fig. 5.11. The complex bearing the achiral ligand in Fig. 5.11a is C_2 -symmetric with a mirror plane defined by the pyridine and phenyl rings and a trigonal–bipyramidal geometry around the metal center. The structural features of the chiral racemic species in Fig. 5.11b are nearly identical to those of the dimethylamido complex bearing the same ligand (see Fig. 5.10a).

Fig. 5.11 a *Ball and stick* drawing of the crystal structure of $\{\eta^3\text{-}(N^-,N,C^-)\text{-}L_{\text{achiral}}\}$ Hf(Me)₂} (hydrogen atoms and a toluene molecule are omitted) [136]. Selected distances (Å) and angles (°): Hf1-N1 2.2985(13), Hf1-N2 2.0830(11), Hf1-C7 2.2693(15), Hf1-C13 2.1986(16), Hf1-C14 2.2116(17), N1-Hf1-N2 70.96(4), N1-Hf1-C7 70.11(5), N1-C5-C6-C7 -0.29. **b** *Ball and stick* drawing of the crystal structure of $\{\eta^3\text{-}(N^-,N,C^-)\text{-}L_{\text{chiral}}\}$ Hf(Me)₂} (hydrogen atoms omitted) [136]. Selected distances (Å) and angles (°): Hf1-N1 2.3039(10), Hf1-N2 2.0826(10), Hf1-C7 2.2725(13), Hf1-C13 2.2067(14), Hf1-C14 2.2038(15), N1-Hf1-N2 70.72(4), N1-Hf1-C7 69.88(4), N1-C5-C6-C7-4.47

2,6-iPr₂C₆H₃

Me

 R^1 R M X 2,4,6-Me₃C₆H₂ Zr. Hf Bn Η $2,4,6-Me_3C_6H_2$ CH2SiMe3 Zr Bn $2,6-iPr_2C_6H_3$ Η Zr Cl. Bn Zr, Hf $2,6-iPr_2C_6H_3$ Bn 2-MeC₆H₄ $2,6-iPr_2C_6H_3$ Zr Me

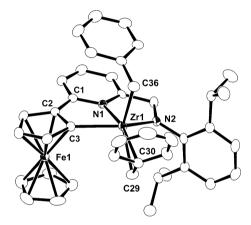
2-iPrC₆H₄

Table 5.11 Zr^{IV} and Hf^{IV} 6-ferrocenyl substituted amidoalkylpyridinate complexes [141]

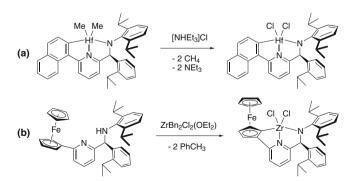
Hagadorn has described the synthesis of Zr^{IV} and Hf^{IV} complexes bearing a ferrocenyl unit in place of the typical phenyl or naphthyl groups at the 6-position of the pyridine ring [141]. Details of these Group IV metal complexes are collected in Table 5.11. These species also undergo C–H activation at the ferrocene fragment to give complexes stabilized by dianionic tridentate $\{N^-,N,C^-\}$ ligands. A representative X-ray structure of a dibenzyl Zr^{IV} -complex is shown in Fig. 5.12. The complex is C_1 -symmetric due to the cyclometallated ferrocene substituent. Again, the geometry at the metal center is trigonal–bipyramidal, and one of the benzyl groups is η^2 -coordinated to the Zr atom.

Zr

A few examples of Hf^{IV} and Zr^{IV}-dihalo complexes have been reported in the literture, and their synthetic paths are outlined in Scheme 5.32. A L-HfCl₂ complex is synthesized by treatment of the corresponding L-HfMe₂ intermediate with [HNEt₃]Cl (Scheme 5.32a) [145, 152, 153]. Hagadorn has also reported a L-ZrCl₂ species formed by reaction of a ferrocenyl-substituted aminopyridyl ligand with ZrBn₂Cl₂(OEt₂) (Scheme 5.32b) [141].


Kuhlman and Whiteker have recently described "snap shut" catalysts containing an insertable pendant arm on the aryl substituent at the 6-position of the pyridine ring [154]. In the example shown in Scheme 5.33, the ligand is designed to direct metallation to the C–H bond *ortho* to the tethered vinyl fragment. The Hf^{IV} complex has been synthesized by salt metathesis/alkylation. ¹H NMR analysis of the reaction mixture prior to heating at 70 °C shows a mixture of products with signals for vinylic hydrogens, the latter disappearing in the ¹H NMR spectrum of the final product. This behavior can be explained by the complex undergoing a "snap shut" reaction, the insertion of the vinyl group into the Hf–aryl bond to give the cyclometallated dianionic Hf^{IV}–dimethyl complex shown in Scheme 5.33. Notably, the product is a metal complex supported by a {N⁻, N, C⁻} ligand with an sp³-hybridized carbon bound to hafnium. This catalyst shows a negligible induction period in octene polymerization, which bears on the mechanism discussed in Sect. 5.7.4.

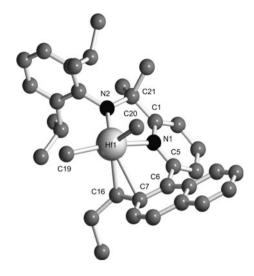
Coates et al. have described the synthesis of a Hf^{IV}-dimethyl complex bearing a ligand with a 2-vinylnaphthyl substituent (Scheme 5.34) [155]. Treatment of the trichloro species with MeMgBr at room temperature produces the corresponding


trimethyl complex. Upon heating to 80 °C, the latter complex undergoes an intramolecular insertion of the appended vinyl moiety into the Hf–alkyl bond to give a new metal complex supported by a tridentate dianionic ligand containing an sp³-C donor. The X-ray structure of this unusual Hf^{IV} complex is depicted in Fig. 5.13.

5.7 Olefin Polymerization Using 6-Aryl(heteroaryl)-substituted Amidoalkylpyridinato Group IV Metal Complexes

These complexes have shown tremendous versatility in olefin polymerization catalysis, setting the way for the synthesis of new polymer classes. In this section,

Fig. 5.12 Crystal structure of $\{\eta^3\text{-}(N^-,N,C^-)\text{-}L_{ferrocenyl}\}\text{Zr}(Bn)_2\}$ [141]. Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted. Selected distances (Å) and angles (°): Zr1-N1 2.332(3), Zr1-N2 2.091(4), Zr1-C3 2.300(4), Zr1-C29 2.273(5), Zr1-C30 2.653(4), Zr1-C36 2.264(5), N1-Zr1-N2 69.93(14), N1-Zr1-C3 70.65(14), N1-C1-C2-C3 7.4(6). (reproduced with permission)


Scheme 5.32 Synthesis of Hf^{IV} and Zr^{IV}-dihalo complexes

some of these polymerization results are tabulated and discussed, although it is not intended to be an exhaustive review of every reported polymerization reaction. Series of experiments that demonstrate relationships between catalyst structure and polymerization performance are generally included, while those that are more focused on the usage of different catalyst activators and/or polymerization conditions are only partially outlined. While an effort has been made to create tables for which polymerization experiments are performed under identical or very similar conditions, there are some exceptions which must be carefully interpreted. Many different units have been used for reporting polymerization efficiencies in the literature, and there is currently no standardized unit of measure. Herein, units used in the original literature are maintained, and they can vary from table to table. For this reason and because different laboratories generally perform polymerization tests under different conditions, table-to-table comparisons of catalyst efficiencies are generally not useful.

Scheme 5.33 Synthesis of a "snap shut" catalyst

Scheme 5.34 Synthesis of a Hf^{IV} -dimethyl complex bearing a $\{N^-,N,C^-\}$ -ligand with an sp^3 -carbon donor

Fig. 5.13 Ball and stick drawing of the crystal structure of $\{\eta^3\text{-}(N^-,N,C^-_{sp3})\text{-L}\}\$ Hf(Me)₂} (hydrogen atoms and a toluene molecule are omitted) [155]. Selected distances (Å) and angles (°): Hf1-N1 2.292(5), Hf1-N2 2.050(6), Hf1-C7 2.684(7), Hf1-C16 2.329(7), Hf1-C19 2.261(6), Hf1-C20 2.238(8), N1-Hf1-N2 71.35(19), N1-Hf1-C16 74.5(2), N1-C5-C6-C7 57.07

5.7.1 Polymerization of Propylene

High-throughput experimentation has played a significant role in the development of this catalyst class for propylene polymerization. Due to the relative ease of handling liquids, octene polymerization screens have been initially used to identify promising candidates for high-efficiency polymerization of α-olefins. These candidates were further tested for propylene polymerization using Symyx parallel pressure reactor (PPR) technology. As the program developed, the focus centered on three key ligand substituents, labeled R, R¹ and R² as in the figure of Table 5.12. Of the dozens of variants tested, most of them produce amorphous (stereoirregular) polymers, but the combination of $R = 2.6 - i Pr_2 C_6 H_3$; $R^1 =$ phenyl or 1-naphthyl; and R^2 = aryl was found to produce crystalline polypropylenes. Subsequently, complexes of this sub-class received the most extensive study. Using high-throughput synthesis and screening, [156] this family of catalysts was developed to find candidates with high polymerization efficiency, high molecular weight, and high melting point (indicative of tacticity) [150]. This combination of capabilities was unprecedented, and led to commercialization of a new product in less than four years after the launch of the catalyst discovery program [157] (Table 5.12).

Boussie et al. [150] have compared the polymerization capabilities of two amidopyridinate complexes with the more conventional C₂-symmetric metallocene rac-[Me₂Si(2-Me-4-Ph-1-indenyl)₂Zr(η^4 -1,4-Ph₂-1,3-butadiene)] (see Table 5.12). Although the new complexes show lower catalytic activity, they produce polypropylene with a similar melting point (indicator of isotacticity), and much higher molecular weight. It is this remarkable capability to make high

Table 5.12 Propylene polymerization [150] using either the C₂-symmetric metallocene rac-[Me₂Si(2-Me-4-Ph-1-indenyl)₂Zr(η^4 -1,4-Ph₂-1,3-butadiene)] or { η^3 -(N⁻,N,C⁻)-L}Hf(Me)₂} catalysts

	Me Me R R R R R R R R R R R R R R R R R		complex B		Ph Ph Ph		
Complex	R	R^1	\mathbb{R}^2	Acta	$M_{\rm w}$ (kg/mol)	$M_{\rm w}/M_{\rm n}$	$T_{\rm m}$
A	2,6- <i>i</i> Pr ₂ C ₆ H ₃	Ph	Ph	1.9	300	2.1	127
A	$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	Ph	0.3	710	3.2	141
В	_	-	_	9.2	95	2.0	142

Conditions 90 °C, toluene solvent, 1.1 equivalent $[PhNMe_2H][B(C_6F_5)_4]$, 10–30 equivalents DIBAL, 100 psi propylene

molecular weight polypropylenes, even at high polymerization temperatures, that has created new opportunities for propylene-based polymers made in a solution process.

An extensive series of propylene polymerization experiments has been reported by Boussie et al. [137–140, 150] and a subset of the results are given below. These results were obtained using parallel pressure reactor (PPR TM) technology in glass reaction vessels of approximately 7 mL size. The table is not a complete reproduction of all achieved results but it is rather an attempt to report the effects of ligand variations on the catalyst performance in analytical way to facilitate a rapid examination to the readership. The two favored methods for catalyst preparation in the high-throughput studies are protonolysis reaction with $M(CH_2Ph)_4$ (Scheme 5.31b) or protonolysis with $M(NMe_2)_4$ followed by treatment with AlMe₃ (Scheme 5.29). Groups labeled R, R¹ and R² in the figure of Table 5.13 are varied extensively and polymerization results are reported hereafter.

In a set of experiments with the hafnium catalyst derived from the ligand with $R/R^1/R^2 = 2,6$ - $iPr_2C_6H_3/1$ -Nap/Ph, the effects of the catalyst activation on the catalyst polymerization performance and polymer properties have been examined. Either the *tris*-dimethylamide complex LHf(NMe₂)₃ or the dimethyl complex LHfMe₂ has been activated with [PhNMe₂H][B(C₆F₅)₄] and either a mixture of DIBAL/BEt₃ or Me₃Al. Activities are high in all cases using Me₃Al, but the crystallinity index (as measured by *infrared* spectroscopy) is relatively invariant and shows no clearly discernable trends, ranging from 0.74 to 0.81. The molecular weights are consistently lower for Me₃Al-activated catalyst systems. Temperature effects on the polymerization reactions are also investigated, with the expected trend observed that higher polymerization temperature produces lower activity, molecular weight and crystallinity index.

^a Activity is reported as kg_{pol} (mmol_M min)⁻¹

Table 5.13 Propylene polymerization data [137–140, 150] for $\{\eta^3$ -(N^-,N,C^-)-L $\}$ Hf(Me)₂ $\}$ catalysts

Me Me								
\mathbb{R}^1 \mathbb{R}^2								
R	\mathbb{R}^1	\mathbb{R}^2	Acta	Cryst index ^b	$M_{\rm w}$ (kg/mol)			
$2,6-i\Pr_2C_6H_3$	$4-FC_6H_4$	Ph	41	0.72	90			
$2,6-i\Pr_{2}C_{6}H_{3}$	$4-(CF_3)C_6H_4$	Ph	43	0.66	109			
$2,6-i\Pr_{2}C_{6}H_{3}$	$2-(CF_3)C_6H_4$	Ph	67	0.70	93			
$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	Ph	41	0.79	106			
$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	2-MeC_6H_4	320^{c}	0.84	161			
$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	3,5-	348 ^c	0.84	218			
		$Me_2C_6H_3$						
$2,6-i\Pr_2C_6H_3$	1-Nap	9-Phen	624 ^c	0.86	177			
$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	Nap	518 ^c	0.86	154			
$2,6-i\Pr_2C_6H_3$	1-Nap	nBu	3	n.d.	n.d.			
$2,6-i\Pr_2C_6H_3$	1-Nap	sBu	2	n.d.	n.d.			
$2,6-i\Pr_2C_6H_3$	1-Nap	<i>t</i> Bu	1	n.d.	n.d.			
$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	Bn	6	n.d.	n.d.			
$2,6-i\Pr_2C_6H_3$	1-Nap	3,5-	158	0.84	165			
		$Me_2C_6H_3$						
$2,6-i\Pr_2C_6H_3$	1-Nap	$2\text{-MeC}_6\text{H}_4$	50	0.84	106			
$2,6-i\Pr_2C_6H_3$	1-Nap	1-Nap	191	0.87	124			
$2,6-i\Pr_2C_6H_3$	1-Nap	9-Phen	258	0.86	124			
$2,6-Et_2C_6H_3$	Ph	9-Anth	230 ^{c,d}	0.38	64			
$2,6-Et_2C_6H_3$	1-Nap	9-Anth	716 ^{c,d}	0.56	94			
$2,6-Et_2C_6H_3$	Ph	9-Phen	79 ^{c,d}	0.53	67			
$2,6-Et_2C_6H_3$	$4-FC_6H_4$	9-Phen	47 ^{c,d}	0.30	76			
$2,6-i\Pr_{2}C_{6}H_{3}$	Ph	9-Phen	2511 ^{c,d}	0.92	86			
$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	9-Phen	825 ^{c,d}	0.91	100			
$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	Ph	779 ^{c,d}	0.88	90			
$2,6-i\Pr_{2}C_{6}H_{3}$	Ph	Ph	1466 ^{c,d}	0.88	89			
2 - t BuC $_6$ H $_4$	1-Nap	Ph	1	n.d.	n.d.			
$2,5-tBu_2C_6H_3$	1-Nap	Ph	2	n.d.	n.d.			
2 - i Pr- 6 -MeC $_6$ H $_3$	1-Nap	Ph	188	0.52	97			
2- <i>t</i> Bu-6-	1-Nap	Ph	1	n.d.	n.d.			
MeC_6H_3								
$2,6-Et_2C_6H_3$	1-Nap	Ph	33	0.56	62			
2-s-Bu-6-	1-Nap	Ph	21	0.63	46			
EtC ₆ H ₃								

n.d. = not determined

Conditions 0.1 $\mu mol~Hf(NMe_2)_4,~Ligand/Hf=1/1,~DIBAL/Hf=30/1,~octene/Hf=20/1,~[PhNMe_2H][B(C_6F_5)_4]/Hf=1.1/1,~100~psi~propylene,~110~°C$

^a Activity is reported as kg polymer (mol_M min)

^b Height ratio of IR bands at 995 and 972 cm⁻¹

^c 0.060 μmol of LHf(NMe₂)₃ complex with no 1-octene

 $^{^{}d}$ Me₃Al (Al/M = 30/1) instead of DIBAL

Additional propylene polymerization data have been reported by Frazier et al. [145] for complexes containing bulkier (relative to 2-MeC₆H₄) R² substituents, such as 2-*i*PrC₆H₄, 2-CyC₆H₄ or 2-*t*BuC₆H₄ groups (Table 5.14). These highefficiency catalysts produce high molecular weight, high- $T_{\rm m}$ polypropylenes. The highest melting point is observed for the *t*Bu-substituted version, albeit with a significant decline of both catalyst efficiency and polymer molecular weight. An increase in the polymer molecular weight is observed when a 4-Cl-2,6-*i*Pr₂C₆H₂ substituent is incorporated at the R position, although the catalyst efficiency is slightly reduced. One zirconium example is also reported; it shows lower performance by all three metrics when compared to its Hf analog.

While the polypropylene produced is predominantly isotactic, these catalysts sometimes generate slightly more regioerrors than typically found with the highest-performing C₂-symmetric metallocene systems. Furthermore, the stereochemistry of the former regioerrors is found to be the opposite of that generally observed in polypropylenes generated by C₂-symmetric metallocenes (Fig. 5.14). The unique microstructure is confirmed and further elaborated [158] using the 2D-NMR INADEQUATE pulse sequences enabled by an NMR instrument equipped with a cryoprobe [159].

Table 5.14 Propylene polymerization [145] using 6-aryl-amidomethylpyridinato Hf^{IV} and Zr^{IV} { η^3 -(N⁻,N,C⁻)-L}M(Me)₂} catalysts containing bulky R^2 substituents

\mathbb{R}^1	Me Me R						
M	R	\mathbb{R}^1	R^2	Acta	$T_{\rm m}$	$M_{ m w}$ (kg/mol)	$M_{ m w}/M_{ m n}$
Hf	2,6- <i>i</i> Pr ₂ C ₆ H ₃	1-Nap	2-iPrC ₆ H ₄	294	153.2	229	2.22
Hf	$2,6-i\Pr_2C_6H_3$	1-Nap	2-CyC ₆ H ₄	293	151.8	234	2.20
Hf	4-Cl-2,6- <i>i</i> Pr ₂ C ₆ H ₂	4-ClC ₆ H ₅	2-CyC ₆ H ₄	190	150	558	2.78
Hf	4-Cl-2,6- <i>i</i> Pr ₂ C ₆ H ₂	1-Nap	2 - i PrC $_6$ H $_4$	194	153.2	281	2.14
Hf	4-Cl-2,6- <i>i</i> Pr ₂ C ₆ H ₂	1-Nap	2-CyC ₆ H ₄	201	151.8	296	2.21
Zr	4-Cl-2,6- <i>i</i> Pr ₂ C ₆ H ₂	1-Nap	2- i PrC ₆ H ₄	77	147.5	52	2.12
Hf	$2,6-i\Pr_{2}C_{6}H_{3}$	1-Nap	$2-tBuC_6H_4$	85	155.4	77	n.d.
Hf ^b	$2,6-i\Pr_2C_6H_3$	1-Nap	2 - i PrC $_6$ H $_4$	379	150.3	n.d.	n.d.

n.d. = not determined

Conditions 90 °C, 1.8 L reaction volume, 667 g mixed alkanes solvent, 286 g propylene, 1.0 μ mol catalyst, 1.2 equivalent of an ammonium borate with approximate molecular formula $[(C_{18}H_{37})_2NMeH][B(C_6F_5)_4]$, 30 equivalents of PMAO-IP, 10 min run time

^a Activity is reported as $kg_{poly}(g_M)^{-1}$

^b bis-Trimethylsilylmethyl (not dimethyl) hafnium complex

Propylene–ethylene copolymers (those that have crystallinity derived from polypropylene sequences interrupted by ethylene monomers) have also been prepared [160, 161] using Hf^{IV} -dimethyl complexes with ligands having the following substitution pattern: $R/R^1/R^2 = 2.6 \cdot i Pr_2 C_6 H_3/1$ -Nap/Ph or $2.6 \cdot i Pr_2 C_6 H_3/1$ -Nap/9-Phen. The use of Hf^{IV} dimethyl or dichloro complexes stabilized with a similarly substituted ligand ($R/R^1/R^2 = 2.6 \cdot i Pr_2 C_6 H_3/1$ -Nap/2-MeC₆H₄) supported on inorganic materials such as MAO-modified silica have also been reported for the gas-phase propylene polymerization [162].

5.7.2 Ethylene/\archi-Olefin Copolymerization

These complexes can be very highly active catalysts for ethylene-co- α -olefin polymer synthesis, using a variety of α -olefins. Polymerization data for ethylene-co-octene polymers have been reported in Symyx patents using the Hf(NMe₂)₃ complex having R/R¹/R² = 2-MeNap/1-Nap/9-Anth as ligand substituents [137–140]. Froese et al. have reported data for a Hf^{IV}-dimethyl complex bearing a ligand with R/R¹/ R² = 2,6-iPr₂C₆H₃/1-Nap/2-iPrC₆H₄ substituents at different octene molar fractions (f_{oct} = [octene]/([ethylene] + [octene]) [163] (Table 5.15). The GPC traces have been deconvoluted into high and low molecular weight fractions. The authors

Fig. 5.14 Regioerrors typically observed for: **a** $\{\eta^3-(N^-,N,C^-)-L\}M(Me)_2\}$ catalysts; **b** C_2 -symmetric metallocenes

Table 5.15 Ethylene-octene copolymerization at variable octene molar fractions using a $\{\eta^3-(N^-,N,C^-)-L\}Hf(Me)_2\}$ catalyst

Conditions Isopar-E solvent, 120 °C, 450 psi ethylene, 1.2 equivalent of an ammonium borate with approximate molecular formula $[(C_{18}H_{37})_2NMeH][B(C_6F_5)_4]$, MMAO with Al/Hf = 5, hydrogen, 10 min run time

^a Activity is reported as kg_{poly}(mol_M h bar)⁻¹

note that the higher molecular weight fraction becomes dominant for higher octene molar fractions (f_{oct}). These results are explained in detail in Sect. 5.7.4.

Hagadorn has reported ethylene-octene polymerization results for amid-oalkylpyridinato complexes containing a ferrocenyl substituent [141]. The results are summarized in Table 5.16.

Ethylene–styrene copolymerizations have been reported by Boussie et al. [138] and the results are summarized in Tables 5.17 and 5.18. Hafnium catalysts consistently make ethylene–styrene copolymers with both higher polymerization efficiencies and more styrene incorporated into the polymer microstructure, relative to the zirconium analogs.

Symyx also has reported the copolymerization of ethylene and the relatively unreactive comonomer isobutylene [137–140]. Only one example is mentioned, which is performed using a $\mathrm{Hf^{IV}}$ complex prepared by mixing $\mathrm{HfBn_4}$ with a ligand characterized by the substituents $\mathrm{R/R^1/R^2} = 2.4\text{-Me}_2\mathrm{C}_6\mathrm{H_3/H/H}$.

5.7.3 Chain Shuttling Polymerization

One of the most outstanding properties of these catalysts is their ability to participate in chain shuttling polymerization processes. Chain shuttling is the

 $\textbf{Table 5.16} \ \, \textbf{Ethylene-octene copolymerization results for ferrocenyl-substituted amidoalkylpy-ridinato } \textbf{Zr}^{IV} \ \, \textbf{and} \ \, \textbf{Hf}^{IV} \ \, \textbf{complexes}$

Conditions Toluene solvent, 5 mL, 80 nmol catalyst, 200 psig ethylene

^a Activity is reported as kg polymer (mol_M h bar)⁻¹

^b One equivalent of activator and 0.1 mL Oct₃Al

 $^{^{}c}$ Al/M = 500

Table 5.17 Ethylene–styrene copolymerization using Hf^{IV} and Zr^{IV} { η^3 -(N^-,N,C^-)-L} $M(Bn)_2$ } catalysts

R	\mathbb{R}^1	\mathbb{R}^2	M	Yielda	wt% Sty ^b
p-Cumyl	1-Nap	1-Bip	Zr	152	6
p-Cumyl	1-Nap	1-Bip	Hf	469	14
p-Cumyl	Ph	Ph	Zr	209	7
p-Cumyl	Ph	Ph	Hf	326	15
p-Cumyl	Ph	1-Bip	Zr	138	7
p-Cumyl	Ph	1-Bip	Hf	295	15
p-Cumyl	Ph	Bn	Zr	163	7
p-Cumyl	Ph	Bn	Hf	278	10
$3,5-(CF_3)_2C_6H_3$	1-Nap	Н	Zr	134	6
$3,5-(CF_3)_2C_6H_3$	1-Nap	Н	Hf	153	15

Conditions 15 μ mol TIBA, catalyst prepared from 1.5 μ mol ligand + 1.5 μ mol MBn₄ + 30 μ mol 1-octene, 100 psi ethylene, 0.5 mL styrene

rapid and reversible exchange of a polymeryl chain among active catalyst sites, mediated by a chain shuttling agent (CSA), typically a main group metal alkyl. This process enables the production of olefin block copolymers mediated by coordination polymerization catalysts without stoichiometric limitations, and it has been the subject of a recent review [164]. The $\{\eta^3\text{-}(N^-,N,C^-)\text{-}L\}\text{Hf}(Me)_2\}$ catalyst with $R/R_1/R_2 = iPr_2C_6H_3/1\text{-Nap/2-}iPrC_6H_4$ ligand substituents (see Fig. 5.15) has been shown to exhibit chain shuttling behavior in the presence of diethylzinc as CSA. [165, 166] This capability has been employed in the production of linear multi-block [165–167] and linear di-block [168, 169] copolymers.

To make linear multi-block copolymers, the amidopyridinato complex is used in tandem with a second catalyst having different ethylene-octene selectivity (Fig. 5.15). A single reactor is used, but different block types are generated because of the different monomer selectivities of the two catalysts. The CSA transports chains among different catalyst types on the timescale of the lifetime of the polymer chain, creating an alternating linear block copolymer with a distribution of block lengths and number of blocks per chain.

The same amidopyridinato complex (Fig. 5.15) has been used to produce di-block copolymers. Unlike the single-reactor/multi-catalyst approach to making multiblocks, production of diblock copolymers by chain shuttling employs a two-reactor/single catalyst system. The two reactors are controlled at different relative monomer concentrations to generate the different block types.

^a Polymer yield in mg

^b Weight % of styrene in the polymer determined by IR

{ catalysts	
$Hf(NMe_2)_3$	
(N_,N)-L	
or $\{\eta^2$	
L Hf(Bn) ₂ }	
N_,N,C_)-l	
η ³ -(
g either {	
n using	
olymerization usin	
rene cop	
lene-sty	
Ethy	
5.18	1
Table 5.18	

oric orang	and real sequence seed and	mean and	1 () () () () () ()	$\frac{1}{2}$	one frame (c/2 arms)	
	complex A	Z-A		complex B	۲- ۳- 2-	
Complex	X = Bn R	n R ¹	\mathbb{R}^2	$X = NM\Theta_2$ Act ^a	Θ ₂ wt% Sty ^b	$M_{\rm w}~({ m kg/mol})$
Ą	p-Cumyl	Ph	Ph	23 ^d	3.3	42
A	p-Cumyl	Ph	o-Bip	23 ^d	3.6	34
A	p-Cumyl	1-Nap	o-Bip	61^{d}	3.3	49
A	$2,4,6-\mathrm{Me_3C_6H_2}$	1-Nap	Н	44 ^d	4.7	259
В	$2,6-iPr_2C_6H_3$	1-Nap	$2-MeC_6H_4$	180	4.5	571
В	$2,6-iPr_2C_6H_3$	1-Nap	$3.5\text{-Me}_2\text{C}_6\text{H}_3$	155	3.6	384
В	$2,6-iPr_2C_6H_3$	1-Nap	9-Phen	139	4.6	652
В	$2.6-i\mathrm{Pr}_2\mathrm{C}_6\mathrm{H}_3$	1-Nap	1-Nap	144	4.8	512

Conditions 0.50 μ mol catalyst, DIBAL/Hf = 10/1, [PhNMe₂H][B(C₆F₅)₄]/Hf = 1.1/1, 100 psi ethylene, 0.10 mL styrene, 110 °C ^a Activity is reported as Kg_{poly} (mol_M min)⁻¹ ^b Weight % of styrene in the polymer determined by IR

 $^{\rm c}$ TIBA/Hf = 10/1 instead of DIBAL, and 0.25 mL of styrene

Fig. 5.15 Combination of catalysts and chain shuttling agent utilized for preparing linear olefin block copolymers

The ethylene-octene diblock copolymers reported have soft (high octene content) blocks attached to hard (low octene content) blocks. When no CSA is used, a blend is produced since each catalyst center generally produces hundreds of polymer chains. However, when a CSA is employed, the CSA transfers live polymer chains from the first reactor to the second, creating a diblock architecture.

This same catalyst has been used with AlOct₃ as a CSA in ethylene–hexene copolymerizations and quenched with D₂O [170]. The ²H label is shown to be attached almost exclusively to the linear endgroups of the polymer, indicating that chain shuttling occurs faster after ethylene insertion than after α -olefin insertion. Additionally, the experiments reveal a significant decrease in molecular weight distribution ($M_{\rm w}/M_{\rm n}$) even though less than half of the available aluminum valences are occupied by polymeryl chains.

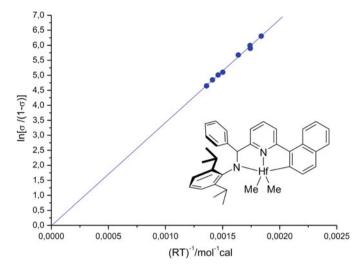
Busico and Stevens et al. have recently reported on the polypropylene chain shuttling polymerization using the same Hf^{IV} catalyst shown in Fig. 5.15, and comparing it with its enantiopure form [171, 172]. As reported above, the predominant type of stereoerror observed for C2-symmetric metallocenes operating under site control is $m_x(r)(r)m_y$, indicative of an isolated methyl group of opposite stereochemistry (see Fig. 5.14). On the contrary, the rac-Hf^{IV} catalyst shown in Fig. 5.15 generates stereoblock isotactic polypropylenes joined by a $m_{\rm x}({\rm r})m_{\rm y}$ stereoerror in which methyl groups along the backbone instantly switch from one alignment to the other [173, 174]. Notably, this stereoerror is absent when an enantiopure catalyst is employed. These results are reasonably explained by a chain shuttling process. Chain shuttling produces the stereoerror when a chain is shuttled from one enantiomeric catalyst center to the other. Of course, chain shuttling among enantiopure catalyst centers does not produce any error. The authors also have found a significant enhancement in shuttling rate when a polar solvent such as difluorobenzene is employed rather than the less polar toluene.

5.7.4 Olefin Polymerization Mechanism

When Ziegler and Natta first started at it, They never could have foreseen The storied legacy and subtle treachery Of this wicked polymer machine.

Shuttling effective, it's isoselective!
The polymer straight as an arrow.
But we must not forget the best feature yet:
The new stereoregioerror.

The metal is tight, the aryl quite right, But between them the normalcy stops. Is there a bond? First off then it's on, Next...in the monomer pops.


The naphthyl swings the electrons it brings From the front, or the side, or the back. And the metal may find an amine to bind, Or a ligand C-H to attack.

If ever one thinks he is on the brink
Of placing the clinching piece,
The final test does not match with the rest,
And the puzzle's depth is increased.

The catalyst is magic; to study it, tragic, And the mania won't be denied: Wizened gray chemists, fists raised to the heavens, Wail "Curse you, pyridyl-amide!"

The conventional approach to the design of new catalysts active for the highly isotactic propylene polymerization has been dominated for a long time by C₂-symmetric metallocene catalysts [175]. However, high-throughput screening methods have enabled the development of a new class of C₁-symmetric postmetallocene systems of the type described above (amidoalkylpyridinato complexes, see Sects. 5.7.1 and 5.7.2). This new class of complexes has been found to produce highly isotactic polymers with high efficiency and molecular weight, even at high reaction temperatures. Initial efforts can be described as serendipity by design, maximizing chances for unexpected discovery. The remarkable performance of this new class of catalysts challenges the field for mechanistic description. If the unconventional catalyst structure portended mechanistic complexity or originality, the field of investigation has not been disappointed.

The mechanistic groundwork has been laid by Murphy, Stevens and Busico et al. [150]. The authors analyzed the variable-temperature propylene polymerization for the Hf^{IV} dimethyl catalyst inset in Fig. 5.16, by plotting $\ln[\sigma/(1-\sigma)]$ versus 1/RT (Fig. 5.16). The straight line and zero intercept resemble typical behavior for C₂-symmetric metallocene catalysts, and therefore reasonably imply

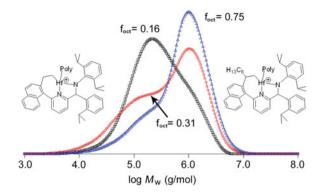


Fig. 5.16 Plot of variable-temperature propylene polymerization for the catalyst shown in figure using $Ph_3C[B(C_6F_5)_4]$ as catalyst activator. $\sigma =$ probability of propylene insertion in one enantioface, $1-\sigma =$ probability for insertion at the other enantioface. It is reasoned that one diastereotopic "side" of the catalyst is highly favored for insertions

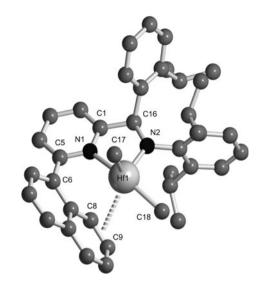
highly selective insertions at one of the two possible diastereomeric faces. Furthermore, the authors have observed the isoselectivity to be insensitive to propylene concentration, indicating very high epimerization rate relative to propagation rate. Density functional theory (DFT) calculations also are reported, and they are found to be consistent with the experimental observations. However, the authors point out that in situ ligand modification by monomer may also affect the mechanistic path.

A mechanism involving ligand modification by monomer was presented in significant detail by Froese [163]. While investigating ethylene-octene copolymerizations, the authors noted a multi-modal molecular weight distribution of the produced polymeric materials that shifts toward the higher molecular weight fraction(s) as the reactor composition becomes richer in octene (Fig. 5.17). This highly unusual behavior is explained according to a mechanism involving the first monomer insertion into the Hf-naphthyl bond, which permanently modifies the catalyst structure. In a simplistic view, the polymer composition can be considered as bimodal, with one fraction derived from an ethylene-modified catalyst and the other obtained by an octene-modified catalyst. This idea is supported by DFT calculations, which show a lower barrier for the Hf-naphthyl bond insertion by about 0.4–2.2 kcal/mol relative to the insertion into the Hf-alkyl bond. While this energy difference is about the same as the error in calculation, a simple kinetic consideration discounts this unconventional insertion as a deactivation mechanism, because the catalyst performs several hundred thousand conventional insertions during polymer generation. Therefore, this ligand modification reaction must occur

Fig. 5.17 GPC traces for copolymers prepared at variable f_{oct} and interpreted in terms of ligand modification by monomer. $f_{oct} = [C_8H_{16}]/([C_2H_4] + [C_8H_{16}])$

in a reaction step prior to the start of polymerization. The driving forces for the insertion are relief of an eclipsing H–H interaction of the naphthalene and pyridine rings, and formation of a stabilizing interaction between the metal center and the naphthalene π cloud. No α - or β -agostic interactions are found by DFT calculations for the olefin-modified complex (facilitating chain epimerization), olefin binding is relatively weak, and transition state energies for polymerization differ by more than 4 kcal/mol for the diastereotopic faces. This energetic profile is generally consistent with the observations and inferences outlined in Ref. [150] for insertions at a single side of the catalyst and a stereospecificity in the olefin insertion which is independent of propylene concentration.

A thorough NMR investigation of the activation path for amidopyridinate Hf^{IV}dimethyl complexes containing $R = 2.6 - i Pr_2 C_6 H_3$, $R^1 = 1$ -Nap or Ph, and $R^2 = 2 - i Pr C_6 H_4$ ligand substituents, has been reported by Macchioni et al. [176]. While activation of the naphthyl complex with $B(C_6F_5)_3$ leads to abstraction of a methyl group and formation of a single inner-sphere diastereoisomeric ion pair (with a bridging methyl group), activation with Ph₃C[B(C₆F₅)₄] yields a 1:1 mixture of the two possible outer-sphere diastereomeric ion pairs. When the Brønsted acid [PhNMe₂H][B(C_6F_5)₄] is used as activator instead of a Lewis acid, the complex activation path is remarkably sensitive to the nature of the R¹ substituent (Scheme 5.35). In either case (phenyl or naphthyl), the cyclometallated aryl group is initially protonolyzed to generate a bidentate {N-,N}-chelated complex. The phenyl ring re-metallates to release methane and regenerate the tridentate {N, N, C}-chelated complex, which then binds PhNMe₂. In contrast, the naphthyl congener does not immediately re-metallate under the conditions tested, but can participate in reactions involving dimethylaniline as shown in Scheme 5.35. An X-ray crystal structure of the protonolyzed naphthyl [{N⁻,N}- $Hf(Me_2)][B(C_6F_5)_4]$ complex is provided in Fig. 5.18. The latter species is found to undergo different reaction paths: (a) it can react with a second equivalent of the Brønsted acid activator to form the dicationic complex [{N-,N}-Hf(Me)N- $Me_2C_6H_4$ [B(C_6F_5)₄]₂; (b) it can bind and *ortho*-metallate the formed N,N-dimethyl aniline with methane elimination ultimately re-arranging, over time, into an aniline-bound complex cation stabilized by a tetradentate trianionic ligand,


Scheme 5.35 Possible catalyst activation paths resulting from the treatment of $\{\eta^3\text{-}(N^-,N,C^-)\text{-}L\}$ Hf(Me)₂} pre-catalysts with either Brønsted or Lewis acid activators [176]. Possible permanent catalyst modifications by propylene insertion into the Hf-C_{Nap} bond are highlighted, with numbers reported below each propylene-modified cation structure representing relative energies (kcal/mol) for transition states (TS) according to DFT calculations [163]

[$\{N^-,N,C^-,C^-\}$ -Hf (NMe_2Ph)][B $(C_6F_5)_4$] (a similar result is observed for the phenyl substituted complex); (c) it can re-metallate the naphthyl ring upon treatment with one equivalent of $CH_3N(C_{18}H_{37})_2$, liberating a further methane equivalent.

This difference in reactivity between the phenyl- and naphthyl-substituted systems can be explained by the η^2 -coordination of the cationic metal center to the naphthyl ring at the 8- and 9-carbons, an interaction which is clearly not possible when R^1 = Ph. This metastable intermediate is proposed to cause an induction period that is observed in octene polymerization tests with naphthyl-containing Hf^{IV}-complexes once activated by protic co-catalysts. On the contrary, no appreciable induction period is observed for the same catalyst when activated by Lewis acids or the phenyl congener when activated by either co-catalyst types.

Hustad et al. have reported a mechanistic evaluation of the propylene polymerization with a catalyst having a symmetrically-substituted backbone ($R^3 = H$) [151]. These C_s -symmetric catalysts simplify the consideration of olefin insertion into the Hf–aryl bond since there are only four possible isomers rather than eight.

Fig. 5.18 Ball and stick drawing of the crystal structure of $\{\eta^2 - (N^-, N) - L\}$ Hff(Me)₂} (hydrogen atoms and B(C₆F₅)₄ anion are omitted) [176]. Selected distances (Å) and angles (°): Hf1-N1 2.2983(17), Hf1-N2 2.0108(18), Hf1-C8 2.612(2), Hf1-C9 2.737(2), Hf1-C17 2.190(2), Hf1-C18 2.297(2), N1-Hf1-N2 72.70(7), N1-C5-C6-C7 -43.45

Fig. 5.19 Possible propylene insertion products into the Hf-C_{aryl} bond and relative transition state energies (kcal/mol) for systems containing an aryl = phenyl or naphthyl, respectively

Remarkably, even with this more symmetric system, polypropylene GPC traces are well described by a trimodal distribution. The authors hypothesize that this result can be explained by assuming a catalyst mixture comprising three of the four potential propylene-modified catalytic species. This hypothesis is consistent with DFT calculations, which place one transition state significantly higher than the other three (Fig. 5.19). The polymer obtained is moderately isotactic, consistent with polymerization by asymmetric (not C_s -symmetric) catalysts. Polyethylene made with this catalyst has narrow molecular weight distribution, as expected.

Allgaier et al. have reported the in situ and/or time-resolved investigation of octene polymerization by hafnium dimethyl catalyst with $R/R^1/R^2 = 2,6$ - $iPr_2C_6H_3/Ph/H$ [177]. The authors deconvolute the molecular weight distribution of GPC traces with refractive index detection into two peaks. A small amount of a third, higher molecular weight fraction becomes more apparent when light

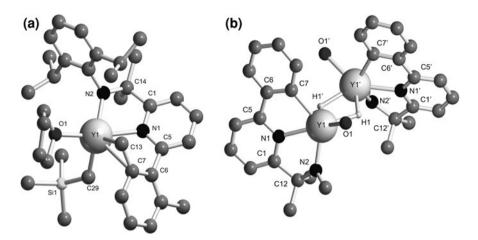
scattering detection is used. The authors' conclusions are that three catalyst species are operative, at least, in the polymerization process, one of them being present in low concentration but responsible for the higher polymerization rate. They observe first order disappearance of octene by 1H NMR analysis when the polymerization is conducted in an NMR tube from -10 to 20 °C. Only single, non-aggregated chains are observed by SANS measurements.

Coates et al. have obtained isoenriched poly-(1-hexene)s from polymerization using a C_s -symmetric pre-catalysts of the same type [136]. They report very narrow molecular weight distributions, and characterize the polymerization behavior as living.

Further direct and indirect evidence for the first insertion of these catalysts occurring at the metal–aryl bond is reported by Zuccaccia et al. [178]. Reactions of activated catalyst with 2-vinylpyridine or 3-ethoxy-1-propylene lead to products derived from insertion of the olefinic portion into the Hf– C_{aryl} bond. Furthermore, low-temperature treatment of activated catalyst with 173 equivalent of hexene enables direct NMR detection of a catalyst modified by hexene insertion at the expected Hf– C_{aryl} reactive site.

The mechanistic investigations are summarized graphically in Scheme 5.35. Possible permanent catalyst modifications from the regio- and stereo-insertion of propylene into the Hf– C_{Nap} bond are shown, with energies calculated for each TS reported under each structure [163]. More recently, Zuccaccia et al. have revisited these DFT calculations with an additional level of complexity, including the complex counterion [178]. Including the counterion in the calculations generally leads to higher (more realistic) energy barriers to insertion. With or without including anion, energy differences for transition states and for the products of various Hf– C_{aryl} insertions are relatively small, and multiple olefin-modified catalyst species are expected.

5.7.5 6-Aryl(heteroaryl)-substituted Amidoalkylpyridinato Yttrium Complexes


Giambastiani, Trifonov et al. have prepared a series of Y^{III} -alkyl or hydrido complexes stabilized by 6-aryl- or heteroaryl-substituted amidoalkylpyridyl ligands [42, 143]. Metal alkyl complexes are prepared by reactions of an equimolar amount of the ligand with $[Y(CH_2SiMe_3)_3(thf)_2]$, which proceed cleanly at 0 °C with the release of two equivalents of Me_4Si , to give the corresponding $\{N^-,N,C^-\}$ -ligated monoalkyl complexes (Scheme 5.36). *ortho*-Metallation of the aryl or heteroayl group rapidly occurs at a C_{sp2} -H bond, while for the 2,6-dimethylphenyl-substituted ligand, the activation unexpectedly occurs at the C_{sp3} -H bond of one methyl fragment. Complexes with simple aryl substituents form mono-thf adducts, while those bearing activated heteroaryl groups bind two equivalents of thf. Addition of PhSiH₃ to these monoalkyl complexes results in the

Scheme 5.36 Synthesis of amidopyridinate Y^{III} complexes

highly selective protonolysis of the Y-alkyl bond to give a series of hydride-bridged dinuclear Y^{III}-complexes with unconventional structures (Scheme 5.36).

Representative crystal structures of selected $Y^{\rm III}$ -alkyl and hydrido complexes are shown in Fig. 5.20 [42]. The alkyl complex in Fig. 5.20a reveals a coordination environment including a tridentate dianionic amidoalkylpyridyl ligand $\{N^-,N,C^-_{\rm sp3}\}$, one further sp³ carbon atom from the residual "benzylic" group, and one oxygen atom from a thf molecule. Moreover, a close contact between the metal center and the *ipso* carbon on the "benzylic" residue is observed, which increases the coordination number to six. The structure of a binuclear $Y^{\rm III}$ -H species is shown in Fig. 5.20b. This complex contains two six-coordinate yttrium atoms, each coordinated by a thf molecule; two bridging hydrido atoms; and a nearly planar dianionic tridentate amidoalkylpyridinate ligand $\{N^-,N,C^-_{\rm sp2}\}$.

These Y^{III}-alkyl and -hydrido complexes have been investigated in ethylene polymerization under a variety of reaction conditions [143]. The complexes are inactive in the absence of a cocatalyst/activator, but addition of MAO (excess) generates active polymerization species with activity as high as 3.1 kg_{PE} (mol_Y bar h)⁻¹. Complexes containing sp³-carbon donors at the ligand framework show much lower activity, producing only 0.3 kg_{PE} (mol_Y bar h)⁻¹. Activation with [PhNMe₂H][B(C₆F₅)₄] and iBu₃Al at 65 °C also results in formation of PE, but with rather modest activities (0.8 and 0.4 kg_{PE} (mol_Y bar h)⁻¹).

Fig. 5.20 a *Ball and stick* drawing of the crystal structure of $\{\eta^3\text{-}(N^-,N,C^-_{sp3})\text{-L}\}Y(CH_2Si-Me_3)(THF)\}$ (hydrogen atoms are omitted) [42]. Selected distances (Å) and angles (°): Y1-N1 2.4200(14), Y1-N2 2.2015(14), Y1-C7 2.9421(17), Y1-C13 2.4520(18), Y1-C29 2.4139(17), N1-Y1-N2 70.00(5), N1-C5-C6-C7 -52.57. **b** *Ball and stick* drawing of the crystal structure of $\{(\eta^3\text{-}(N^-,N,C^-_{sp2})\text{-L}\}YH(thf))_2\}$ (hydrogen atoms omitted) [42]. Selected distances (Å) and angles (°): Y1-N1 2.4252(17), Y1-N2 2.2205(18), Y1-C7 2.469(2), Y1-H 2.15(2), Y1-Y1' 3.5780(4), N1-Y1-N2 68.24(6), N1-Y1-C7 68.43(7), N1-C5-C6-C7-7.52

5.7.6 6-Aryl(heteroaryl)-substituted Aminoalkylpyridinato Chromium Complexes

In addition to stabilizing Group IV metals as amido ligands, 6-(hetero)aryl aminopyridinate compounds have also been used to form chromium complexes containing monoanionic tridentate ligating systems. Selected chromium complexes of this type are listed in Table 5.19 [144] and Table 5.20 [141]. The dichloride complexes are formed by reaction of the amino ligand with $CrMeCl_2(thf)_3$ at 60 °C (Scheme 5.37). The reactions proceed by release of one methane equivalent through the C_{sp2} -H activation of the ligand aryl group to give a monoanionic tridentate $\{N,N,C^-\}$ complex. Select examples of these complexes have been diversified by metathesis reactions with Li[acetylacetonate] (Li-acac), K[3- nC_5H_{11} -acetylacetonate] (K-NP-acac), or $Ag(O_2CCF_3)_2$, respectively (Scheme 5.37).

Representative structures of L-CrCl₂ and L-CrCl(acac) complexes are shown in Fig. 5.21. Both species possess octahedral coordination geometry around the chromium centers, and the L-CrCl₂ species is coordinated by *trans* chloride atoms and a thf molecule O-coordinated *trans* to the pyridine ring.

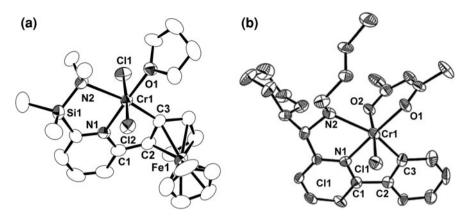
These Cr^{III} complexes have been found to be active and selective catalysts for ethylene oligomerization [141, 144]. Oligomerizations were initially conducted in a 48-well parallel polymerization reactor [179, 180]. The chromium precatalysts

(continued)

Table 5.19 Select examples of CrIII complexes stabilized by 6-aryl-aminoalkylpiridyl ligands [144]

X						
Complex	R	\mathbb{R}^{1}	\mathbb{R}^2	\mathbb{R}^3	X^{a}	$ m Y^a$
Cr-1	Н	4-iPrC ₆ H ₄	Ph	Ph	CI	CI
Cr-2	Н	$4-(nC_{12}H_{25})C_6H_4$	Ph	4 - n BuC $_6$ H $_4$	CI	C
Cr-3	Н	$4-(nC_{12}H_{25})C_6H_4$	Ph	Bn	CI	C
Cr-4	Н	nBu	Ph	C_6H_{11}	CI	C
Cr-5	Н	nBu	Ph	C_6H_{11}	Cl	acac
Cr-6	Н	nBu	Ph	C_6H_{11}	O_2CCF_3	O_2CCF_3
Cr-7	Н	nBu	Ph	C_6H_{11}	Cl	NP-acac
Cr-8	Н	nBu	Ph	C_6H_{11}	NP-acac	NP-acac
Cr-9	Н	4 - n BuC $_6$ H $_4$	Ph	$4-n\mathrm{BuC_6H_4}$	Cl	C
Cr-10	Н	nBu	3-benzothiophene	C_6H_{11}	Cl	C
Cr-11	Н	nBu	3.5-Me ₂ C ₆ H ₃	C_6H_{11}	CI	acac
Cr-12	Me	Me	Ph	nBu	CI	C
Cr-13	Me	Me	Ph	nBu	Cl	acac
Cr-14	Me	Me	Ph	nBu	Cl	NP-acac
Cr-15	Me	Me	Ph	nBu	NP-acac	NP-acac
Cr-16	Me	Me	Ph	2-EtBu	Cl	acac
Cr-17	Me	Me	4 - t BuC $_6$ H $_4$	nBu	CI	C
Cr-18	Me	Me	4- t BuC _o H ₄	nBu	Cl	acac
Cr-19	Me	Me	4 - t BuC $_{ m o}$ H $_{ m 4}$	nBu	NP-acac	NP-acac
Cr-20	Me	C_6H_{11}	Ph	Н	CI	acac
Cr-21	Me	Me	Ph	Me	Cl	acac
Cr-22	$-(CH_2)_4$ -		Ph	Bn	CI	acac

Table 5.19 (continued)


Complex	ĸ	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	X^{a}	$ m Y^a$
Cr-23	-(CH ₂) ₄ -		Ph	C_6H_{11}	CI	acac
Cr-24	Me	Me	$4-(\mathrm{NMe_2})\mathrm{C_6H_4}$	nBu	Ü	acac
Cr-25	Me	Bn	Ph	Bn	C	acac
Cr-26	Me	C_6H_{11}	Ph	Н	C	acac
Cr-27	Me	C_6H_{11}	Ph	Н	NP-acac	NP-acac
Cr-28	Me	Me	Ph	Bn	C	acac
Cr-29	Me	Me	4 - t BuC $_6$ H $_4$	2-EtBu	Ü	acac
Cr-30	$-(CH_2)_{4}$		4 - t BuC $_6$ H $_4$	nBu	C	acac
Cr-31	Me	Me	Ph	C_6H_{11}	Ü	acac
Cr-32	Me	Me	$3,4,5-({ m MeO})_3{ m C}_6{ m H}_2$	nBu	C	acac
Cr-33	Me	Εţ	Ph	nBu	C	acac
Cr-34	Me	Me	$4-(\mathrm{SiMe_3})\mathrm{C_6H_4}$	2-EtBu	Cl	acac
Cr-35	Me	Me	$4-(BnO)C_6H_4$	nBu	C	Ü
Cr-36	Me	Me	$4-(BnO)C_6H_4$	nBu	C	acac
Cr-37	Me	Me	$4-(\mathrm{BnO})\mathrm{C_6H_4}$	nBu	NP-acac	NP-acac
Cr-38	Me	Me	$3.4-(MeO)_2C_6H_2$	nBu	C	acac

 a acac = acetylacetonate, NP-acac = 3-n-pentyl-acetylacetonate

Table 5.20 6-Ferrocenyl-substituted aminopyridinate Cr^{III} complexes [141]

Scheme 5.37 Synthesis of chromium complexes supported by amidoalkylpyridyl ligands. Refer to Table 5.18 for $R/R^{1}/R^{2}/R^{3}$ substituent codes

were activated with a combination of MMAO and either iBu_2AlH or Me_3Al . Representative results captured in Table 5.21 were obtained from tests conducted at 80 °C and 400 psi of ethylene using heptane as solvent. Complexes bearing simple aryl substituents in the 6-position of the pyridine ring display high 1-hexene selectivities (>99.9% in one case) and turnover frequencies higher than 5×10^5 (h) $^{-1}$. Precatalyst Cr-20 shows the highest 1-hexene selectivity (>99.9%), while Cr-16 has the highest turnover frequency (5.84 \times 10 5 (h) $^{-1}$). In all presented examples, some fractions of PE are produced although the 1-hexene/PE ratio always remains relatively high (>130 g of 1-hexene/g PE). In comparison, complexes bearing 6-ferrocenyl-pyridyl ligands are much less active and selective, although a direct comparison between the two systems is complicated by other differences in the ligand substituents [141].

Fig. 5.21 a Crystal structure of $\{\eta^3\text{-}(N,N,C^-)\text{-}L_{ferrocenyl}\}\text{CrCl}_2(thf)\}$ [141] (see also entry Cr-42 in Table 5.19). Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted. Selected distances (Å) and angles (°): Cr1-N1 2.061(3), Cr1-N2 2.415(3), Cr1-C3 2.054(3), Cr1-C11 2.342(1), Cr1-C12 2.337(1), N1-Cr1-N2 85.98(12), N1-Cr1-C3 81.36(14), N1-C1-C2-C3 4.9(5). **b** Crystal structure of $\{\eta^3\text{-}(N,N,C^-)\text{-}L\}\text{CrCl}(acac)\}$ [144] (see also entry Cr-5 in Table 5.17). Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted. Selected distances (Å) and angles (°): Cr1-N1 2.025(2), Cr1-N2 2.237(2), Cr1-C3 2.045(2), Cr1-C11 2.3409(5), Cr1-O1 1.972(1), Cr1-O2 1.964(1), N1-Cr1-N2 78.12(6), N1-Cr1-C3 80.42(7), N1-C1-C2-C3 3.6(5). (reproduced with permission)

Table 5.21 Ethylene oligomerization by either 6-aryl- or 6-ferrocenyl-substituted Cr^{III} aminoalkylpiridinate complexes

ourn		сопіріскев				
Cat.	µmol Cr	MMAO (Al/Cr)	1-Hex TOF c (10 3 h $^{-1}$)	1-Hex Sel ^d	PE (g)	1-Hex/PE ^e (g/g)
Cr-5	0.05	300 ^a	571	97.9	2.4	259
Cr-6	0.05	300 ^a	318	97.5	2.4	152
Cr-7	0.05	500 ^a	306	98.0	2.3	211
Cr-8	0.05	500 ^a	312	97.7	2.0	233
Cr-13	0.05	300 ^a	531	98.3	0.8	700
Cr-14	0.05	500 ^a	281	98.7	3.0	158
Cr-15	0.05	500 ^a	219	98.8	2.5	191
Cr-16	0.05	300 ^a	584	98.3	2.1	297
Cr-17	0.1	300 ^a	192	97.9	2.7	162
Cr-20	0.2	550 ^b	99.9	>99.9	1.3	136
Cr-39	0.04	600	9.21	>80	1.6	n.r. ^f
Cr-40	0.04	600	0.246	Low	4.1	n.r. ^f
Cr-41	0.04	600	0.085	Low	1.4	n.r. ^f

Conditions 48-well parallel polymerization reactor, T=80 °C, 400 psi ethylene, heptane solvent

^a 10 equivalents of *i*Bu₂AlH

^b 10 equivalents of Me₃Al

^c 1-hexene turnover frequency (TOF) = [μmol hexene]/([μmol Cr] [time]/60)

 $^{^{\}rm d}$ 1-hexene selectivity = 100 [µmol hexene]/[sum of µmol C₆–C₁₆ olefins]

^e 1-hexene/PE mass ratio

f Insufficient data to determine

5.8 Aminopyridyl Ligands and Related Group III–IV Metal Complexes

5.8.1 Synthesis of 6-Aryl-Aminopyridyl Ligands

A related class of ligands without a carbon or silicon bridging atom between the pyridine and amine unit have been extensively explored by the group of Kempe [181]. Initial reports on these aminopyridyl (Ap) ligands describe plain amidopyridinato species, [182, 183] but the majority of examples refer to Ap systems bearing aryl substituents at the pyridine 6-position. These ligands are generally synthesized in a two-step procedure involving a Kumada–Corriu nickel-catalyzed Grignard coupling [184, 185] followed by a palladium-catalyzed Buchwald–Hartwig amination [148, 149] (Scheme 5.38). The ligands are generally prepared in high yields and purified via crystallization.

5.8.2 Synthesis of 6-Aryl-Amidopyridinato Complexes

5.8.2.1 Group III and Rare Earth Metal Complexes

Several examples of Group III and Lanthanide complexes bearing sterically hindered Ap-ligands (for Ap nomenclature refer to the ligand table in Scheme 5.38) have been reported by the group of Kempe. Metal-alkyl complexes have been prepared by reaction of the free Ap ligands with either $[M(CH_2SiMe_3)_3(thf)_2]$ or $[MBn_3(thf)_3]$ metal precursors (Scheme 5.39) [186-189]. Amido complexes of scandium and rare earth metals have also been prepared by reaction of the proper Ap-ligand with $[M\{N(SiHMe_2)_2\}_3(thf)]$ [186]. Finally, metal-halide complexes can be obtained by reaction of the ligand potassium salt with $MX_3(thf)_x$ (M = Y, Sm, Nd), and for different sterically-demanding ligands, either mono- or bisligated complexes may be obtained [190, 191].

Scheme 5.38 Synthesis of bulky 6-aryl-substituted amidopyridyl ligands. Readers are asked to refer to the above mentioned **Ap** nomenclature, while reading the following sections

A representative structure of Ap*ScBn₂(thf) shown in Fig. 5.22a reveals a coordination number of five with the η^2 -{N⁻,N}-coordinated Ap* ligand, two benzyl groups, and one thf molecule filling the metal coordination sphere.

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

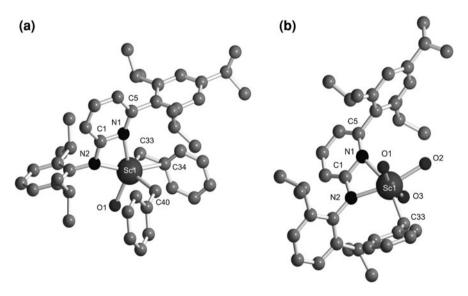
$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{6}$$


$$R^{6}$$

$$R^{6}$$

$$R^{7}$$

$$R^{7$$

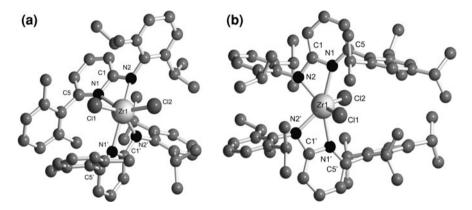
Scheme 5.39 Synthesis of neutral and cationic Group III and lanthanide complexes bearing Ap-ligands

Fig. 5.22 a *Ball and stick* drawing of the crystal structure of $\{\eta^2\text{-}(N^-,N)\text{-}Ap^*\}\text{Sc}(Bn)_2(thf)\}$ (hydrogen atoms and a molecule of pentane are omitted) [186]. Selected distances (Å) and angles (°): Sc1-N1 2.286(2), Sc1-N2 2.129(19), Sc1-C33 2.256(3), Sc1-C34 2.657(2), Sc1-C40 2.245(3), N1-Sc1-N2 61.31(7). **b** *Ball and stick* drawing of the crystal structure of $\{\eta^2\text{-}(N^-,N,-Ap^*\}\text{ScBn}(thf)_3\}^+$ (hydrogen atoms and B(C₆F₅) $_4$ are omitted) [186]. Selected distances (Å) and angles (°): Sc1-N1 2.358(4), Sc1-N2 2.188(4) Sc1-C33 2.234(6), Sc1-O1 2.192(3), Sc1-O2 2.217(3), Sc1-O3 2.177(3), N1-Sc1-N2 59.77

One benzyl shows η^1 -coordination while the other is bound in η^2 -fashion. Select examples of these alkyl complexes were also transformed to hydrido species by addition of PhSiH₃ or H₂ [192]. Aluminum alkyl complexes have also been generated by reaction of Ap ligands with either iBu_3Al [189] or Me₃Al [193].

Yttrium-alkyl complexes bearing two Ap' ligands can be prepared by a salt metathesis reactions of a halide precursor with LiCH₂SiMe₃ (Scheme 5.40) [191]. An (Ap')₂YCH₂SiMe₃(thf) complex undergoes, over time, an intramolecular C–H bond activation at the methyl group of one of the Ap'-ligands. The reaction proceeds slowly with first-order kinetics but it is dramatically accelerated by conversion of the alkyl species into a Y^{III} -hydride derivative upon addition of PhSiH₃. Comparative kinetic experiments indicate that activation of the transient Y^{III} -H bond is roughly 500 times faster than that of the alkyl congener. Interestingly, the (Ap⁺)₂ScCH₂SiMe₃(thf) species shows no signs of C–H activation even in the presence of PhSiH₃ [194].

Ap-scandium complexes have also been activated with anilinium borates to give stable ion pairs, several of which have been crystallographically characterized [186, 188]. A representative structure of an Ap*-scandium ion is shown in Fig. 5.22b [186]. The metal center shows a distorted octahedral geometry with three coordinated thf molecules and one benzyl with η^1 -coordination. For further details on related lanthanide complexes, the reader is referred to Chap. 3 of this book.

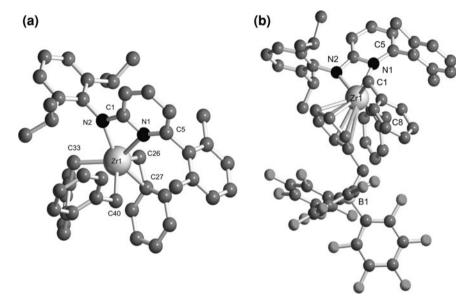

5.8.2.2 Group IV Metal Complexes

Zr^{IV} and Hf^{IV} complexes bearing bulky Ap-ligands have also been reported, including both mono- and bis-ligated species [193, 195]. *Bis*-ligated (Ap)₂ZrCl₂ complexes are formed by reaction of the Ap-ligand potassium salt with ZrCl₄ (Scheme 5.41, top). Representative structures of (Ap')₂ZrCl₂ and (Ap*)₂ZrCl₂ complexes are shown in Fig. 5.23. Both Zr^{IV} species present distorted octahedral coordination geometries aound the metal center with the chlorine atoms *cis* in the less sterically crowded (Ap')₂ZrCl₂ system yet closer to *trans* in the bulkier (Ap*)₂ZrCl₂ species. The treatment of the dichloride complexes with MeLi produces the (Ap)₂ZrMe₂ species [193]. Despite their asymmetry, ¹H and ¹³C NMR spectra for these (Ap)₂Zr^{IV} complexes show only one set of ligand resonances at

Scheme 5.40 Intramolecular C–H activation of a *bis*-Ap'-yttrium alkyl complex, accelerated by conversion to the transient hydrido species by PhSiH₃ addition

$$\begin{array}{c} 1) \ ZrCl_4 \\ R \\ R \\ Ap-K, \ Ap^*-K \end{array}$$

Scheme 5.41 Synthesis of neutral and cationic $(Ap)_2$ - Zr^{IV} amidopyridinate complexes (top) and proposed mechanism for a dissociative ligand interconversion (bottom)


Fig. 5.23 a *Ball and stick* drawing of the crystal structure of $\{\eta^2-(N^-,N)-Ap'\}_2ZrCl_2$ (hydrogen atoms and two molecule of benzene are omitted) [193]. Selected distances (Å) and angles (°): Zr1-N1 2.348(3), Zr1-N1' 2.355(3), Zr1-N2' 2.145(3), Zr1-N2 2.123(3), N1-Zr1-N2 60.04(11), N1'-Zr1-N2' 59.44(11), Cl1-Zr1-Cl2 96.47(4). **b** *Ball and stick* drawing of the crystal structure of $\{\eta^2-(N^-,N),-Ap^*\}_2ZrCl_2$ (hydrogen atoms and one molecule of hexane are omitted) [193]. Selected distances (Å) and angles (°): Zr1-N1 2.358(4), Zr1-N1' 2.338(4), Zr1-N2' 2.184(4), Zr1-N2 2.154(4), N1-Zr1-N2 59.52(14), N1'-Zr1-N2' 59.40(14), Cl1-Zr1-Cl2 123.08(6)

room temperature, indicative of a fast ligand interconversion on the NMR timescale that the authors propose to occur via pyridine dissociation (Scheme 5.41, bottom) [193].

The syntheses of several mono-ligated (Ap)Zr^{IV} and Hf^{IV} benzyl complexes have also been accomplished by reacting one Ap ligand equivalent with M(Bn)₄ to give the desired mono-ligated complexes in almost quantitative yields [195] (Scheme 5.42). Their treatment with B(C₆F₅)₃ generates Zwitterionic complexes as reflected in the ¹⁹F NMR spectra, by the large $\Delta\delta[(p-F)-(m-F)]$ values

$$R^{1}$$
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

Scheme 5.42 Synthesis of neutral and cationic Ap-Zr^{IV} and Hf^{IV} benzyl complexes stabilized by Ap', Ap⁻ and Ap* ligands [195]

Fig. 5.24 a *Ball and stick* drawing of the crystal structure of $\{\eta^2\text{-}(N^-,N)\text{-}Ap'Zr(Bn)_3\}$ (hydrogen atoms and one molecule of benzene are omitted) [195]. Selected distances (Å) and angles (°): Zr1-N1 2.359(11), Zr1-N2 2.180(12), Zr1-C26 2.268(16), Zr1-C27 2.629(15), Zr1-C33 2.260(16), Zr1-C40 2.273(15), N1-Zr1-N2 58.70(4). b *Ball and stick* drawing of the crystal structure of $\{\eta^2\text{-}(N^-,N)\text{-}Ap'Zr(Bn)_2\}\{\eta^6\text{-}Bn[B(C_6F_5)_3]\}$ (hydrogen atoms and one molecule of toluene are omitted) [195]. Selected distances (Å) and angles (°): Zr1-C1 2.258(5), Zr1-C8 2.267(5), N1-Zr1-N2 59.00(14)

[196–201] (Scheme 5.42). A representative structure of (Ap')ZrBn₃, shown in Fig. 5.24a, reveals two η^1 -benzyl groups with the third benzyl substituent coordinated in η^2 -fashion. A crystal structure of the Zwitterionic [(Ap')ZrBn₂] [BnB(C₆F₅)₃] complex is also shown in Fig. 5.24b. The latter species displays a [Ap'ZrBn₂]⁺ cation and a π -coordinated Bn-moiety from the [BnB(C₆F₅)₃]⁻ anion. The two residual benzyl groups remaining on the cation are η^1 -coordinated.

5.8.3 Polymerization Activity of 6-Aryl-substituted Amidopyridyl (Ap) Complexes

5.8.3.1 Polymerization by Group III and Rare Earth Metal Complexes

Kempe et al. have tested various Ap-supported scandium, yttrium, and rare earth complexes for ethylene and isoprene polymerization. (Ap)Y(CH₂SiMe₃)₂ systems have been found to be active for ethylene polymerization upon activation with ammonium borates in the presence of aluminum alkyls; select polymerization results are summarized in Table 5.22 [189]. As shown in entries 1–3, the bulkier Ap* complex presents higher activity compared to Ap' and Ap⁻ species. All of these systems produce bimodal polyethylenes at 80 °C.

Further studies with the Ap* organoyttrium compound have revealed an interesting temperature dependence on the molecular weight distribution, with an increase in the $M_{\rm w}$ at higher temperatures and uncharacteristically narrow polydispersities, with $M_{\rm w}/M_{\rm n}$ values as low as 1.3 [189]. These results indicate that a coordinative chain transfer polymerization (CCTP) mechanism might be operating in the system [202]. This hypothesis has been validated by varying the Al/Y ratio in the polymerization tests, as shown in Table 5.22 (entries 1 and 4–7). Increasing the Al/Y ratio leads to a decrease in the polyethylene $M_{\rm w}$ and narrower polydispersities (Fig. 5.25). A linear relationship of $M_{\rm n}$ versus monomer conversion was also observed up to $M_{\rm n}$ values of ca. 4,000 g/mol, which is the $M_{\rm n}$ at which the HDPE begins to precipitate from the solution. Similar rare earth metal complexes are discussed in Chap. 3 of this book.

Ap-supported scandium and rare earth cations generated by reaction of the alkyl complexes with anilinium borates have also been found to generate active species for isoprene polymerization [186, 188]. Ap*-scandium cations have been reported to polymerize isoprene in a controlled fashion with high 3,4-selectivity [186]. Among the polymerization conditions examined, the (Ap)*ScBn₂(thf)/

		Al/M			M (leader al)	M /M
Entry	Ligand	Al/IVI	T (°C)	Activity ^a	$M_{\rm w}$ (kg/mol)	$M_{\rm w}/M_{\rm n}$
1	Ap*	20	80	1,070	66.5 ^b	3.2
2	Ap'	20	80	400	46.1 ^b (10.8)	4.3 (1.5)
3	Ap^-	20	80	432	264 ^b (16.3)	28.8 (2.4)
4	Ap*	0	80	0	n.d.	n.d.
5	Ap*	5	80	1,080	88.1	2.3
6	Ap*	50	80	376	3.94	1.09
7	Ap*	100	80	168	1.46	1.05

Table 5.22 Ethylene polymerization with select (Ap)Y(CH₂SiMe₃)₂ complexes

General conditions 260 mL toluene, 5 bar ethylene, t=15 min, 10 μ mol M, 1.1 equivalent [R₂NMeH][B(C₆F₅)₄], where $R=C_{16}H_{33}$ – $C_{18}H_{37}$, 20 equivalents tetraisobutylalumoxane (TIBAO) as scavenger

^a Activity reported in units of kg_{PE} (mol_{ca} h bar)⁻¹

^b Bimodal $M_{\rm w}$ distribution, $M_{\rm w}$ and $M_{\rm w}/M_{\rm n}$ of the main peak (>90%) are reported in parentheses

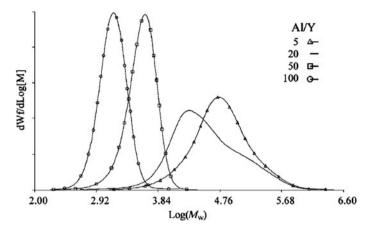


Fig. 5.25 Molecular weight distributions (SEC) for PEs prepared with the $\{\eta^2\text{-}(N^-,N),-Ap^*Y(CH_2SiMe_3)_2\}/[R_2NMeH][B(C_6F_5)_4]/TIBAO$ catalyst system at different Al/Y ratio. (Copyright Wiley–VCH Verlag GmbH & Co. KGaA. Reproduced with permission)

 $[Ph_3C][B(C_6F_5)_4]$ catalyst system has shown the most regio- and stereoselective performance, producing a polyisoprene with 95% 3,4-content and [mm] = 100%. The addition of alkylaluminum species modifies the catalyst reactivity and selectivity in the isoprene polymerization. An increase in size of the rare earth metals also results in a shift toward cis-1,4-selectivity [188].

5.8.3.2 Polymerization by Group IV Metal Complexes

(Ap)Zr^{IV} and Hf^{IV} benzyl complexes have been reported as catalyst precursors for olefin homo- and copolymerizations [195]. Selected ethylene polymerization results using (Ap)MBn₃ complexes are summarized in Table 5.23. Activation of (Ap*)ZrBn₃ with B(C₆F₅)₃ generates from low to moderately active systems capable of producing PEs with narrow polydispersities, indicative of single polymerization sites. The low activity is likely the result of formation of the aforementioned Zwitterionic complex (see Fig. 5.24b) blocking the active coordination site. Alternatively, the activation of the same catalyst precursor with an ammonium borate cocatalyst leads to a more active catalyst system at the expense of the single site behavior, producing a PE with a trimodal molecular weight distribution [195]. The corresponding Hf^{IV} complex shows lower activity but produces PE with much higher $M_{\rm w}$ than the ${\rm Zr^{IV}}$ analog. Zirconium complexes supported by less bulky Ap' and Ap ligands show similar activities and broad multimodal molecular weight distributions. Both (Ap*)ZrBn₃ and (Ap*)HfBn₃ show very low activity in propylene polymerization but are active in ethylene/ propylene copolymerizations, with the (Ap*)ZrBn₃/borate system displaying activities up to 6,200 kg_{poly} (mol_{cat} bar h)⁻¹. Under the reaction conditions

employed, the Hf^{IV} species produces a highly alternating ethylene/propylene copolymer with no evidence of consecutive propylene insertions.

Kempe et al. have also demonstrated ethylene polymerization with $(Ap)_2ZrX_2$ complexes [193]. Select results from ethylene polymerizations conducted at 80 °C are summarized in Table 5.24. The $(Ap)_2ZrCl_2$ complexes were activated by treatment with an excess of MAO, while an ammonium borate cocatalyst was employed to activate the $(Ap)_2ZrMe_2$ species. The ligand's steric bulk stabilizes the complexes to ligand redistribution processes but causes induction periods with the dichloro species, presumably due to slow alkylation paths. Nevertheless, all species examined generate highly active polymerization catalysts under proper activation conditions. Interesting activator/co-catalyst effects are observed for the different species; $(Ap')_2ZrCl_2/MAO$ produces a high molecular weight PE, while the $(Ap')_2ZrMe_2/borate$ system gives low molecular weight α -olefins. In contrast, both $(Ap^*)_2ZrX_2$ species (X=Cl,Me) produce high molecular weight PEs, often with multimodal molecular weight distributions. The authors attribute the broad molecular weight distributions to precipitation of the PE

Table 5.23 Ethylene polymerization with select (Ap)MBn₃ complexes

Run	Cat.	Co-cat.a	T (°C)	Act.b	M _w (kg/mol)	$M_{\rm w}/M_{\rm n}$
1	(Ap*)ZrBn ₃	Borane	50	20	n.r. ^c	n.r.°
2	(Ap*)ZrBn ₃	Borane	80	120	1,130	1.9
3	(Ap*)ZrBn ₃	Borate	50	920	72.9	21.1
4	(Ap*)ZrBn ₃	Borate	80	1,120	71.8	21.6
5	(Ap*)HfBn ₃	Borate	80	533	212	5.5
6	(Ap')ZrBn ₃	Borate	50	640	328	62.3
7	$(Ap^{-})ZrBn_{3}$	Borate	50	480	45.2	14.2

General conditions 260 mL toluene, 5 bar ethylene, t=15 min, 1.1 equivalent cocatalyst, 50 μ mol TIBAO scavenger

Table 5.24 Ethylene polymerization with select (Ap)₂ZrX₂ complexes

Run	Cat.	Cocat.	Act.a	$M_{\rm w}$ (kg/mol)	$M_{\rm w}/M_{\rm n}$
1	(Ap') ₂ ZrCl ₂	MAO^b	320	675	14.6
2	$(Ap*)_2ZrCl_2$	MAO^{b}	2,760	536	2.0
3	$(Ap')_2ZrMe_2$	Borate ^{c,d}	4,440	9.67	1.9
4	$(Ap*)_2ZrMe_2$	Borate ^{c,d}	3,160	1,063	394

General conditions 2 μ mol Zr, 260 mL toluene, 5 bar ethylene, T=80 °C, t=15 min, 1.1 equivalent cocatalyst

^a Co-catalysts: Borane = $B(C_6F_5)_3$, Borate = $[R_2NMeH][B(C_6F_5)_4]$, where $R = C_{16}H_{33} - C_{18}H_{37}$ b Activity reported in units of kg_{PE} (mol_{cat} h bar)⁻¹

c n.r. = not reported

^a Activity units kg_{PE} (mol_{Zr} h bar)⁻¹

 $^{^{}b}$ Al/Zr = 500

 $[^]c$ Borate = [R2NMeH][B(C6F5)4], where R = C16H33-C18H37, B/Zr = 1.1, mixed prior to injection

^d 50 equivalent TIBAO scavenger added

during chain growth, which generates a heterogeneous diffusion-controlled polymerization environment.

The *bis*-ligated (Ap) complexes are reported to be almost inactive for propylene polymerization, likely due to the sterically-hindered nature of the active site which makes them highly ethylene selective in mixtures of ethylene and propylene. Even at relatively high partial pressure of propylene, the catalysts produce polymers containing less than 1 mol% of propylene. Finally, the (Ap*)₂ZrMe₂ species shows characteristics of living polymerization at 50 °C when polymerizations are conducted in the absence of additional chain transfer agents.

5.9 Conclusions

Despite its long history, the polyolefin industry keeps growing steadily and remains technologically driven because of new discoveries of catalysts, processes, and applications. In this respect, one of the major challenges of modern organometallic chemistry deals with the development of highly efficient, selective and stable oligomerization/polymerization systems. Imino- and amino-pyridinate ligands, in combination with late and early-transition metals, respectively, have provided excellent and to some extent unique results in the field of olefin polymerization catalysis, and constitute some of the most active systems known in the market to date. This chapter is intended to provide the readership with a comprehensive review of the most important developments in olefin catalysis based on imino- and amido-pyridinate d-block metal complexes in recent years. To this purpose, the authors' effort was to bring together the academic and industrial point-of-view on a highly fascinating and attracting research topic. Reading through this chapter, it seems that the number of possible ways through which a metal-alkyl fragment can be engaged in consecutive C-C bond formation for olefin upgrading to oligomers and polymers is only limited by the chemist's imagination. This leads us to believe that more and more efficient and selective transformations are still to come!

References

- 1. Alt HG, Köppl A (2000) Chem Rev 100:1205
- 2. Coates GW (2000) Chem Rev 100:1223
- 3. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169
- 4. Chen EY, Marks TJ (2000) Chem Rev 100:1391
- Polyolefins planning service: executive report global commercial analysis (2010) Nexant, Inc, London
- Bianchini C, Giambastiani G, Guerrero Rios I, Mantovani G, Meli A, Segarra AM (2006)
 Coord Chem Rev 250:1391
- 7. Bianchini C, Giambastiani G, Luconi L, Meli A (2010) Coord Chem Rev 254:431

- 8. Gibson VC, O'Reilly RK, Wass DF, White AJP, Williams DJ (2003) Dalton Trans 2824
- 9. Chen R, Mapolie SF (2003) J Mol Catal A Chem 193:33
- Gibson VC, Halliwell CM, Long NJ, Oxford PJ, Smith AM, White AJP, Williams DJ (2003)
 Dalton Trans 918
- 11. Cloete J, Mapolie SF (2006) J Mol Catal A Chem 243:221
- 12. Chen R, Bacsa J, Mapolie SF (2003) Polyhedron 22:2855
- 13. Haddleton DM, Kukuli D, Radigue AP (1999) Chem Commun 99
- 14. Köppl A, Alt HG (2000) J Mol Catal A Chem 154:45
- Britovsek GJP, Baugh SPD, Hoarau O, Gibson VC, Wass D, White AJP, Williams DJ (2003) Inorg Chim Acta 345:279
- Benito JM, de Jesús E, de la Mata JF, Flores JC, Gómez R, Gómez-Sal P (2006) Organometallics 25:3876
- Johnson L, Feldman J, Kreutzer KA, McLain SJ, Bennett AMA, Coughlin EB, Donald DS, Nelson JLT, Parthasarathy A, Shen X, Tam W, Wang Y (1998) US Patent Publication 5,714,556
- 18. Nienkemper K, Kotov VV, Kehr G, Erker G, Fröhlich R (2006) Eur J Inorg Chem 366-379
- 19. Laine TV, Klinga M, Leskelä M (1999) Eur J Inorg Chem 6:959-964
- 20. Bluhm ME, Folli C, Döring M (2004) J Mol Catal A Chem 212:13
- 21. Sun W-H, Tang X, Gao T, Wu B, Zhang W, Ma H (2004) Organometallics 23:5037
- 22. Zhang W, Sun W-H, Wu B, Zhang S, Ma H, Li Y, Chen J, Hao P (2006) J Organomet Chem 691:4759
- 23. Champouret YDM, Fawcett J, Nodes WJ, Sing K, Solan GA (2006) Inorg Chem 45:9890
- Barbaro P, Bianchini C, Giambastiani G, Guerrero Rios I, Meli A, Oberhauser W, Segarra AM, Sorace L, Toti A (2007) Organometallics 26:4639
- Bianchini C, Giambastiani G, Guerrero Rios I, Meli A, Oberhauser W, Sorace L, Toti A (2007) Organometallics 26:5066
- 26. Irrgang T, Keller S, Maisel H, Kretschmer W, Kempe R (2007) Eur J Inorg Chem 4221
- Bianchini C, Gatteschi D, Giambastiani G, Guerrero Rios I, Ienco A, Laschi F, Mealli C, Meli A, Sorace L, Toti A, Vizza F (2007) Organometallics 26:726
- 28. Bianchini C, Giambastiani G, Mantovani G, Meli A, Mimeau D (2004) J Organomet Chem 689:1356
- 29. Bianchini C, Mantovani G, Meli A, Migliacci F (2003) Organometallics 22:2545
- 30. Bianchini C, Sommazzi A, Mantovani G, Santi R, Masi F (2005) US Patent Publication 6.916.931 B2
- Fernandes S, Bellabarba RM, Ribeiro AFG, Gomes PT, Ascenso JR, Mano JF, Dias AR, Marques MM (2002) Polym Int 51:1301
- 32. Tang X, Sun W-H, Gao T, Hou J, Chen J, Chen W (2005) J Organomet Chem 690:1570
- 33. Espinet P, Echavarren AM (2004) Angew Chem Int Ed 43:4704
- Tsuji J (1996) Palladium reagents and catalysts: innovation in organic synthesis. Wiley, New York
- 35. Miyaura N, Suzuki A (1995) Chem Rev 95:2457
- 36. Bianchini C, Giambastiani G, Guerrero Rios I, Meli A, Segarra AM, Toti A, Vizza F (2007) J Mol Catal A Chem 277:40
- 37. Toti A, Giambastiani G, Bianchini C, Meli A, Luconi L (2008) Adv Synth Catal 350:1855
- 38. Allgeier AM, Mirkin CA (1998) Angew Chem Int Ed 37:894
- 39. Lorkovic IM, Duff JRR, Wrighton (1995) J Am Chem Soc 117:3617
- 40. Chen R, Bacsa J, Mapolie SF (2002) Inorg Chem Commun 5:724
- 41. Smith G, Chen R, Mapolie SF (2003) J Organomet Chem 673:111
- Lyubov DM, Fukin GK, Cherkasov AV, Shavyrin AS, Trifonov AA, Luconi L, Bianchini C, Meli A, Giambastiani G (2009) Organometallics 28:1227
- 43. van Koten G, Jastrzebski JTBH, Vrieze K (1983) J Organomet Chem 250:49
- 44. Gibson VC, Redshaw C, White AJP, Williams DJ (1998) J Organomet Chem 550:453
- 45. Nienkemper K, Kehr G, Kehr S, Fröhlich R, Erker G (2008) J Organomet Chem 693:1572

- Bianchini C, Frediani M, Giambastiani G, Kaminsky W, Meli A, Passaglia E (2005)
 Macromol Rapid Commun 26:1218
- 47. Bianchini C, Giambastiani G, Meli A, Guerrero Rios I, Toti A, Passaglia E, Frediani M (2008) Top Catal 48:107
- 48. Gibson VC, Wass DF (1999) Angew Chem Int Ed 38:419
- Gómez J, Garcia-Herbosa G, Cuevas JV, Arnáiz A, Carbayo A, Muñoz A, Falvello L, Fanwick PE (2006) Inorg Chem 45:2483
- 50. Kuwabara J, Takeuchi D, Osakada K (2006) Chem Commun 3815
- 51. Meneghetti SP, Lutz PJ, Kress J (1999) Organometallics 18:2734
- 52. Musikabhumma K, Spaniol TP, Okuda J (2003) J Polym Sci Part A Polym Chem 41:528
- 53. Small BL, Brookhart M (1999) Macromolecules 32:2120
- 54. Kern RJ (1962) J Inorg Nucl Chem 24:1105
- 55. Vallarino LM, Hill WE, Quagliano JV (1965) Inorg Chem 4:1598
- 56. Cotton FA, Luck RL, Son K-A (1991) Inorg Chim Acta 179:11
- Haddleton DM, Waterson C, Derrick PJ, Jasieczek CB, Shooter AJ (1997) Chem Commun 683
- Laine TV, Lappalainen K, Liimatta J, Aitola E, Löfgren B, Leskelä M (1999) Macromol Rapid Commun 20:487
- Laine TV, Piironen U, Lappalainen K, Klinga M, Aitola E, Leskelä M (2000) J Organomet Chem 606:112
- Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York
- 61. Jiang T, Ning Y, Hu W, Wang L, Huang Z, Liu X (2006) Chin Sci Bull 51:2197
- 62. Su B-Y, Zhao J-S (2006) Polyhedron 25:3289
- 63. Morassi R, Sacconi L (1971) J Chem Soc A 492
- 64. Bencini A, Gatteschi D (1982) Transition metal chemistry, M Dekker, New York
- 65. Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Clarendon Press, Oxford
- Holm RH, Phillips WD, Averill BA, Mayerle JJ, Herskovitz JJ (1974) J Am Chem Soc 96:2109
- 67. Jesson JP (1973) NMR of paramagnetic molecules: principles and applications. Academic Press, New York
- 68. McConnell HM (1972) Proc Natl Acad Sci USA 69:335
- 69. Mantovani G (2000) ICCOM, PhD dissertation, Florence, Italy
- 70. Su B-Y, Zhao J-S, Gao Q-C (2007) Chin J Chem 25:121
- 71. Bianchini C, Giambastiani G, Meli A, Toti A (2007) Organometallics 26:1303
- 72. Frediani M, Bianchini C, Kaminsky W (2006) Kinet Catal 47:207
- 73. Frediani M, Piel C, Kaminsky W, Bianchini C, Rosi L (2006) Macromol Symp 236:124
- Bredeau S, Bonduel D, Alexandre M, Boggioni L, Tritto I, Giambastiani G, Toti A, Meli A, Bianchini C, Dubois P (2008) Polymer Preprints 49:289
- Toti A, Giambastiani G, Bianchini C, Meli A, Bredeau S, Dubois P, Bonduel D, Claes M (2008) Chem Mater 20:3092
- Cámpora J, del Mar Conejo M, Mereiter K, Palma P, Pérez C, Reyes ML, Ruiz C (2003) J Organomet Chem 683:220
- Rülke RE, Delis JGP, Groot AM, Elsevier CJ, van Leeuwen PWNM, Vrieze K, Goubitz K, Schenk H (1996) J Organomet Chem 508:109
- Bacchi A, Carcelli M, Pelizzi C, Pelizzi G, Pelagatti P, Ugolotti S (2002) Eur J Inorg Chem 2179
- Bryant PL, Harwell CR, Mrse AA, Emery EF, Gan Z, Caldwell T, Reyes AP, Kuhns P, Hoyt DW, Simeral LS, Hall RW, Butler LG (2001) J Am Chem Soc 123:12009
- 80. Reddy SS, Sivaran S (1995) Prog Polym Sci 20:309
- 81. Sinn H, Kaminsky W, Hoker (1995) Alumoxanes; Macromolecular Symposia 97. Hutig & Wepf, Heidelberg, Germany
- 82. Sinn H (1995) Macromol Symp 97:27
- 83. Mason MR, Smith JM, Bott SG, Barron AR (1993) J Am Chem Soc 115:4971

- 84. Hackmann M, Rieger B (1997) CATTECH 1:79
- 85. Bianchini C, Mantovani G, Meli A, Migliacci F, Zanobini F, Laschi F, Sommazzi A (2003) Eur J Inorg Chem 1620
- Britovsek GJP, Mastroianni S, Solan GA, Baugh SPD, Redshaw C, Gibson VC, White AJP, Williams DJ, Elsegood MRJ (2000) Chem Eur J 6:2221
- 87. Chen YF, Chen RF, Qian CT, Dong XC, Sun J (2003) Organometallics 22:4312
- 88. Giambastiani G, Bianchini C, Luconi L (2010) Late transition metal complexes in olefin oligomerization. In: Seminars in organic synthesis. Società Chimica Italiana, Gargnano (BS), Italy, p 199
- Britovsek GJP, Bruce M, Gibson VC, Kimberley BS, Maddox PJ, Mastroianni S, McTavish SJ, Redshaw C, Solan GA, Strömberg S, White AJP, Williams DJ (1999) J Am Chem Soc 121:8728
- 90. Deng L, Margl P, Ziegler T (1999) J Am Chem Soc 121:6479
- 91. Daugulis O, Brookhart M, White PS (2003) Organometallics 22:4699
- 92. Humphries MJ, Tellmann KP, Gibson VC, White AJP, Williams DJ (2005) Organometallics 24:2039
- 93. Gates DP, Svejda SA, Oñate E, Killian CM, Johnson LK, White PS, Brookhart M (2000) Macromolecules 33:2320
- 94. Svejda SA, Johnson LK, Brookhart M (1999) J Am Chem Soc 121:10634
- 95. Guan Z, Cotts PM, McCord EF, McLain SJ (1999) Science 283:2059
- 96. Laine TV, Klinga M, Maaninen A, Aitola E, Leskelä M (1999) Acta Chem Scand 53:968
- 97. Bianchini C, Giambastiani G, Guerrero Rios I, Meli A, Passaglia E, Gragnoli E (2004) Organometallics 23:6087
- 98. Johnson LK, Killian CM, Brookhart M (1995) J Am Chem Soc 117:6414
- 99. Sommazzi A, Milani B, Proto A, Corso G, Mestroni G, Masi F (2001) WO Patent 0110875
- 100. Skupinska J (1991) Chem Rev 91:613
- 101. Goretzki R, Fink G (1999) Macromol Chem Phys 200:881
- 102. Turunen J, Pakkanen TT, Löfgren B (1997) J Mol Catal A: Chemical 123:35
- 103. Wendt RA, Fink G (2000) Macromol Chem Phys 201:1365
- 104. Wendt RA, Fink G (2002) Macromol Chem Phys 203:1071
- 105. Sun W-H, Hao P, Li G, Zhang S, Wang W, Yi J, Asma M, Tang N (2007) J Organomet Chem 692:4506
- James DE (1985) Encyclopedia of polymer science and engineering. Wiley-Interscience, New York
- 107. Stevens JC (1996) Studies in surface science and catalysis. Elsevier Science, Amsterdam
- 108. Weckhuysen BM, Schoonheydt RA (1999) Catal Today 51:215
- 109. Lai SY, Wilson JR, Knight GW, Stevens JC (1997) US Patent Publication 5,665,800
- 110. Lai SY, Wilson JR, Knight GW, Stevens JC, Chum PWS (1993) US Patent Publication 5,272,236
- 111. Wang WJ, Yahn D, Zhu S, Hamielec AE (1998) Macromolecules 31:8677
- 112. Barnhard RW, Bazan GC (1998) J Am Chem Soc 120:1082
- 113. Komon ZJA, Bazan GC (2001) Macromol Rapid Commun 22:467
- 114. Bianchini C, Miller H, Ciardelli F (2004) Combinations of Transition Metal Catalysts for Reactor Blending. Kluwer, The Netherlands
- 115. Abramo GP, Li L, Marks TJ (2002) J Am Chem Soc 124:13966
- Li H, Li L, Schwartz DJ, Metz MV, Marks TJ, Liable-Sands L, Rheingold AL (2005) J Am Chem Soc 127:14756
- 117. Li L, Metz MV, Li H, Chen M-C, Marks TJ, Liable-Sands L, Rheingold AL (2002) J Am Chem Soc 124:12725
- 118. Wang J, Li H, Guo N, Li L, Stern CL, Marks TJ (2004) Organometallics 23:5112
- 119. Bianchini C, Giambastiani G, Toti A (2007) ChemTracts Inorg Chem 20:107
- 120. Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Macromolecules 28:1721
- 121. Matyjaszewski K, Wang J-S (1995) Macromolecules 28:7901

- 122. Perced V, Barboui B (1995) Macromolecules 28:7970
- 123. Perced V, Barboui B, Neumann A, Ronda JC, Zhao M (1996) Macromolecules 29:3665
- 124. van Koten G, Vrieze K (1982) Adv Organomet Chem 21:157
- 125. Haddleton DM, Jasieczek CB, Hannon MJ, Shooter AJ (1997) Macromolecules 30:2190
- 126. Haddleton DM (1997) WO Patent 9747661 A1
- 127. Perrier S, Jackson SG, Haddleton DM, Améduri B, Boutevin B (2003) Macromolecules 36:9042
- 128. Haddleton DM, Duncalf DJ, Kukulj D, Crossman MC, Jackson SG, Bon SAF, Clark AJ, Shooter AJ (1998) Eur J Inorg Chem 1799
- 129. Amass AJ, Wyres CA, Colclough E, Marcia Hohn I (2000) Polymer 41:1697
- 130. Geng J, Lindqvist J, Mantovani G, Haddleton DM (2008) Angew Chem Int Ed 47:4180
- 131. Mantovani G, Ladmiral V, Tao L, Haddleton DM (2005) Chem Commun 2089
- 132. Murray RE (1999) WO Patent Application 99/01460
- 133. Murray RE (2003) US Patent Application 20030166454
- 134. Annunziata L, Pappalardo D, Tedesco C, Pellecchia C (2009) Organometallics 28:688
- 135. Annunziata L, Pappalardo D, Tedesco C, Pellecchia C (2009) Macromolecules 42:5572
- 136. Domski GJ, Lobkovsky EB, Coates GW (2007) Macromolecules 40:3510
- 137. Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc MK, Lund C, Murphy V (2002) PCT Int Appl WO 046249; PCT Int Appl WO 038628
- 138. Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc MK, Lund C, Murphy V (2004) US Patent 6,706,829; US Patent Publication 6,713,577
- 139. Boussie TR, Diamond GM, Goh C, LaPointe AM, Hall KA, Leclerc MK, Lund C, Murphy V (2006) US Patent Publication 7,157,400
- 140. Boussie TR, Diamond GM, Goh C, LaPointe AM, Leclerc MK, Lund C, Murphy V (2004) US Patent Publication 6,750,345
- 141. Hagadorn JR (2009) PCT Int Appl WO 114209
- 142. Domski GJ, Edson JB, Keresztes I, Lobkovsky EB, Coates GW (2008) Chem Commun 6137
- 143. Luconi L, Lyubov DM, Bianchini C, Rossin A, Faggi C, Fukin GK, Cherkasov AV, Shavyrin AS, Trifonov AA, Giambastiani G (2010) Eur J Inorg Chem 2010:608
- 144. McConville DH, Ackerman LJ, Li RT, Bei X, Kuchta MC, Boussie TR, Walzer JF Jr, Diamond GM, Rix FC, Hall KA, La PAM, Longmire JM, Murphy VJ, Sun P, Verdugo D, Schofer S, Dias E (2008) US Patent 7,425,661 B2
- 145. Frazier KA, Boone H, Vosejpka PC, Stevens JC (2004) US Patent Publication 6,953,764
- 146. Hagadorn JR, Boller TM, Brown SD, Diamond GM, Hall KA, Longmire JM, Ackerman LJ, Schofer SJ, Dias ELK, Cottone A, III, Whittle CE (2009) US Patent Publication 0082573
- 147. Luconi L, Giambastiani G, Rossin A, Bianchini C, Lledós A (2010) Inorg Chem 49:6811
- 148. Wolfe JP, Buchwald SL (2004) Org Synth 10:423
- 149. Paul F, Patt J, Hartwig JF (1994) J Am Chem Soc 116:5969
- 150. Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc MK, Murphy V, Shoemaker JAW, Turner H, Rosen RK, Stevens JC, Alfano F, Busico V, Cipullo R, Talarico G (2006) Angew Chem Int Ed 45:3278
- Busico V, Cipullo R, Pellecchia R, Rongo L, Talarico G, Macchioni A, Zuccaccia C, Froese RDJ, Hustad PD (2009) Macromolecules 42:4369
- 152. Coalter JN, III, Van Egmond JW, Fouts LJ Jr, Painter RB, Vosejpka PC (2004) US Patent 7,115,689
- 153. Coalter JN, III, Van Egmond JW, Fouts LJ Jr, Painter RB, Vosejpka PC (2006) US Patent 7,598,328
- 154. Kuhlman RL, Whiteker GT (2010) US Patent Application 0227990
- 155. Domski GJ, Edson JB, Keresztes I, Lobkovsky EB, Coates GW (2008) Chem Commun 46:6137
- 156. Boussie TR, Diamond GM, Goh C, Hall KA, LaPointe AM, Leclerc M, Lund C, Murphy V, Shoemaker JAW, Tracht U, Turner H, Zhang J, Uno T, Rosen RK, Stevens JC (2003) J Am Chem Soc 125:4306

- 157. For details see: http://www.dow.com/versify
- 158. Zhou Z, Stevens JC, Klosin J, Kümmerle R, Qiu X, Redwine D, Cong R, Taha A, Mason J, Winniford B, Chauvel P, Montañez N (2009) Macromolecules 42:2291
- 159. Zhou Z, Kümmerle R, Stevens JC, Redwine D, He Y, Qiu X, Cong R, Klosin J, Montañez N, Roof G (2009) J Magn Reson 200:328
- 160. Tau L-M, Cheung YW, Diehl CF, Hazlitt LG (2004) US Patent Publication 10/429651
- 161. Stevens JC, Vanderlende DD (2003) WO Patent Publication 2003/040201
- 162. Coalter JN, III, Van Egmond JW, Painter RB, Fouts LJ Jr, Vosejpka PC (2003) WO Patent Publication 040195
- 163. Froese RDJ, Hustad PD, Kuhlman RL, Wenzel TT (2007) J Am Chem Soc 129:7831
- 164. Wenzel TT, Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL (2009) Chain shuttling catalysis and olefin block copolymers (OBCs). In: Metal catalysts in olefin polymerization. Topics in organometallic chemistry. Springer, Berlin, p 65
- 165. Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT (2006) Science 312:714
- 166. Arriola DJ, Carnahan EM, Cheung YW, Devore DD, Graf DD, Hustad PD, Kuhlman RL, Li Pi Shan C, Poon BC, Roof GR, Stevens JC, Stirn PJ, Wenzel TT (2005) US Patent Publication 090427
- 167. Kuhlman RL, Klosin J (2010) Macromolecules 43:7903
- Hustad PD, Kuhlman RL, Arriola DJ, Carnahan EM, Wenzel TT (2007) Macromolecules 40:7061
- 169. Hustad PD, Marchand GR, Garcia-Meitin EI, Roberts PL, Weinhold JD (2009) Macromolecules 42:3788
- 170. Kuhlman RL, Wenzel TT (2008) Macromolecules 41:4090
- 171. Alfano F, Boone HW, Busico V, Cipullo R, Stevens JC (2007) Macromolecules 40:7736
- 172. Busico V, Boone HW, Stevens JC, Alfano F, Cipullo R (2008) US Patent Publication 137524
- 173. Busico V, Cipullo R (2001) Prog Polym Sci 26:443
- 174. Busico V, Cipullo R, Talarico G, Van Axel Castelli V (2002) Isr J Chem 42:295
- 175. Resconi L, Cavallo L, Fait A, Piemontesi F (2000) Chem Rev 100:1253
- 176. Zuccaccia C, Macchioni A, Busico V, Cipullo R, Talarico G, Alfano F, Boone HW, Frazier KA, Hustad PD, Stevens JC, Vosejpka PC, Abboud KA (2008) J Am Chem Soc 130:10354
- 177. Niu A, Stellbrink Jr, Allgaier Jr, Richter D, Hartmann R, Domski GJ, Coates GW, Fetters LJ (2009) Macromolecules 42:1083
- 178. Zuccaccia C, Busico V, Cipullo R, Talarico G, Froese RDJ, Vosejpka PC, Hustad PD, Macchioni A (2009) Organometallics 28:5445
- 179. Dales GC, Diamond G, Frank TG, Freitag JC, Higashihara KS, Huffman D, Troth JR (2005) US Patent 6,913,934 B2
- Dales GC, Troth JR, Higashihara KS, Diamond G, Murphy V, Chandler WHJ, Frank TG, Freitag JC (2004) US Patent 6,759,014 B2
- 181. Kempe R (2010) Z Anorg Allg Chem 636:2135
- 182. Noor A, Kretschmer W, Kempe R (2006) Eur J Inorg Chem 2683
- 183. Polamo MT, Talja M, Piironen AJ (2005) Z Kristallogr NCS 220:41
- 184. Corriu RJP, Masse JP (1972) J Chem Soc Chem Commun 144
- 185. Tamao K, Sumitani K, Kumada M (1972) J Am Chem Soc 94:4374
- 186. Döring C, Kretschmer WP, Bauer T, Kempe R (2009) Eur J Inorg Chem 4255
- 187. Döring C, Kempe R (2009) Eur J Inorg Chem 412
- 188. Döring C, Kretschmer WP, Kempe R (2010) Eur J Inorg Chem 2853
- Kretschmer WP, Meetsma A, Hessen B, Schmalz T, Qayyum S, Kempe R (2006) Chem Eur J 12:8969
- 190. Scott NM, Kempe R (2005) Eur J Inorg Chem 1319
- 191. Skvortsov GG, Fukin GK, Trifonov AA, Noor A, Döring C, Kempe R (2007) Organometallics 26:5770
- 192. Lyubov DM, Döring C, Fukin GK, Cherkasov AV, Shavyrin AS, Kempe R, Trifonov AA (2008) Organometallics 27:2905

- 193. Kretschmer WP, Hessen B, Noor A, Scott NM, Kempe R (2007) J Organomet Chem 692:4569
- 194. Qayyum S, Skvortsov GG, Fukin GK, Trifonov AA, Kretschmer WP, Döring C, Kempe R (2010) Eur J Inorg Chem 248
- 195. Noor A, Kretschmer WP, Glatz G, Meetsma A, Kempe R (2008) Eur J Inorg Chem 5088
- 196. Horton AD, de With J (1996) Chem Commun 1375
- 197. Horton AD, de With J, van der Linden AJ, van de Weg H (1996) Organometallics 15:2672
- 198. Pellecchia C, Grassi A, Immirzi A (1993) J Am Chem Soc 115:1160
- 199. Pellecchia C, Grassi A, Zambelli A (1993) J Mol Catal 82:57
- 200. Pellecchia C, Immirzi A, Grassi A, Zambelli A (1993) Organometallics 12:4473
- 201. Pellecchia C, Immirzi A, Pappalardo D, Peluso A (1994) Organometallics 13:3773
- 202. Kempe R (2007) Chem Eur J 13:2764

C
Catalysts deactivation, 105
Chain running, 216
Chain shuttling agent, 252
Chain Shuttling Polymerization, 251
Chain transfer mechanism, 214
Chain walking, 3, 77
Chain-growth mechanism, 28
Chelating ancillary ligands, 28
Chelating ligands containing N-heterocycles,
34
Cis/trans isomerization, 103, 106
Co complexes, 197, 199, 205–210
in (co)oligomerization of norbornene
monomers, 253
in ethylene oligomerization, 221, 223
in ethylene/norbornene oligomerization,
221
in olefin oligomerization, 220
in olefin polymerization, 217
in propene oligomerization, 221
main catalyst activators, 209
with iminopyridine ligands, 202, 204
Cossee-Arlman mechanism, 214
Cr complexes, 1–3, 6, 7, 9–11, 14, 16–19, 254,
255, 257
catalyst activation with
$[Me_2PhNH][B(C_6F_5)_4]/Al^iBu_3, 17$
Cr(I)/Cr(III) mechanism, 12, 17
ethylene trimerization
mechanism, 15
in 1-butene production, 9, 21
in 1-hexene production, 1, 16, 21
in 1-octene production, 1
in ethylene oligomerization, 9, 223
in ethylene polymerization, 3, 9
in olefin oligomerization, 1

in olefin polymerization, 1	Group IV metal complexes, 228–230
with bidentate ligands (N,N; N,O), 18	in ethylene polymerization, 261
with 6-aryl amidoalkylpyridine ligands,	in olefin polymerization, 238
262	with 6-aryl(heteroaryl) amidoalkylpyridine
with 6-aryl(heteroaryl) amidoalkylpyridine	ligands, 238
ligands, 263	with amidoalkylpyridine ligands, 229, 230
with β -diketiminate ligands, 5	
with bis(imino)pyridine ligands, 8	
with β -ketoiminate ligands, 5	Н
with Cp ligands containing pendant N-	HDPE, 93
donors, 2	Hf complexes, 231, 238, 240, 243, 247–250,
with imidazole ligands, 6	252
with <i>N</i> -donor ligands, 1	catalyst activation with
with pyrazole ligands, 6	$[(C_{18}H_{37})_2NMeH][B(C_6F_5)_4], 257$
with tridentate ligands, 13	catalyst activation with
with tris(pyrazolyl)methan ligands, 17	$[PhNMe_2H][B(C_6F_5)_4], 257$
with variuos N-donor ligands, 10	catalyst activation with $B(C_6F_5)_3$, 257
Cu complexes, 257	catalyst activation with $Ph_3C[B(C_6F_5)_4]$,
with iminopyridine ligands, 257	257
with minopyriame rigarias, 257	in ethylene/1-octene copolymerization, 250
	in ethylene/styrene copolymerization, 251
D	in propene polymerization, 246, 247
Density functional theory, 215	with 6-aryl amidoalkylpyridine ligands,
DFT calculations, 256	268
DFT methods, 82	with 6-ferrocenyl amidoalkylpyridine
Diazene-naphthol ligands, 33	ligands, 243
Ditopic aldimine ligands, 32	with amidoalkylpyridine ligands, 230, 239
Diffuse reflectance spectrum, 206	Highly isotactic propylene polymerization,
Direct metallation, 243	255
Direct inctaliation, 243	High-throughput technique, 246, 255
	Homogeneous catalysts, 119
E	
	Hyper-branched polyethylenes, 225
Early-transition metals, 200	
Electronic effects, 18	I
on the oligomerization/polymeriza-	
tionc activity, 78	Iminocarboxylic ligands, 32
Electron-withdrawing substituent, 100	Iminophosphine ligands, 35
Enolatoimine ligands, 64	Iminopyridine ligands, 200, 201
EPR studies, 175	polydentate systems, 201
EtAlCl ₂ , 11	synthesis of, 202
Evans NMR method, 155	Internal isomers, 223
	Ionic radius, 135
T.	Isobutylaluminoxane, 11
F	Isotactic polypropylene, 197
Fe complexes, 203, 204, 214, 219	
main catalyst activators, 209	
with iminopyridine ligands, 202, 204, 227	K
Fermi contact contribution, 205	Ketoenamine, 100
Functionalized olefins, 108	
	L
G	Lanthanide complexes, 121
GPC traces, 250, 257	in α -olefin polymerization, 142
GPC-IR measurements, 170	in ethylene polymerization, 126

in styrene polymerization, 145	main catalyst activators, 209
with nitrogen-containing ligands, 126, 142,	mechanism of ethylene polymerization,
145	101
Lanthanum complexes, 134	mechanism of ethylene/polar monomers
catalyst activation with	copolymerization, 107
[PhNMe ₂ H][B(C_6F_5) ₄], 134	with mixed ligands (N,P; N,O), 32
Late transition metal complexes, 202	in olefin (co)polymerization, 38
with iminopyridine ligands, 202	synthesis with mixed ligands, 39
Linear α -olefins, 223	synthesis with mixed N–O and N–S
LLDPE, 93, 224	ligands, 41
Low-temperature NMR studies, 106	with β -ketoimine ligands, 80, 81
Lutetium complexes, 135	with iminopyridine ligands, 202, 204
hydrido species, 139	with mixed N-P ligands, 86
with guanidinate ligands, 139	with salicylaldiminato ligands, 73
Lutidene, 190	NMR spectroscopy, 82, 102
	Noncoordinating counterions, 28
3.6	
M Magnetic magnet 202	0
Magnetic moment, 203	0
Metallacycle growth, 12	Olefin Polymerization Mechanism, 255
Methyl branches, 86	Oligomerization, 18, 20
Migratory insertion, 102	metallacycle intermediates, 11
Mixed chelating ligands, 27	via extended metallacyles, 19
Mixed ligands, 29	Ortho-metallation, 238, 260
Molecular weight distribution, 79	
MMA, 227	
Molecular weight distribution, 79, 86, 170,	P
272	Palladium black, 90
MWCNTs, 226	Pd complexes, 27, 29, 39–41, 86, 91, 101, 106 205, 218
	catalyst activation with [Ph ₃ C][B(C ₆ F ₅) ₄],
N	40
N-O ligands, 52	catalyst activation with B(C ₆ F ₅) ₃ , 40
Ni complexes, 27, 28, 40, 41, 60, 63, 65, 66,	catalyst activation with MAO, 40
74, 76, 77, 82–84, 87, 91, 93–96,	catalyst activation with MMAO, 40
98, 201, 205, 210, 212, 215	in ethylene/polar monomers copolymeri-
catalyst activation with [Ph ₃ C][B(C ₆ F ₅) ₄],	zation, 91
40	in olefin (co)polymerization, 28
catalyst activation with $B(C_6F_5)_3$, 40	in olefin oligomerization, 218
catalyst activation with DEAC, 88	in olefin polymerization, 217
catalyst activation with MAO, 40, 87	main catalyst activators, 209
catalyst activation with MMAO, 40	mechanism of ethylene polymerization,
in aqueous olefin polymerization, 98	101
in ethylene oligomerization, 221	mechanism of ethylene/polar monomer
in ethylene polymerization, 65, 76, 77, 86	copolymerization, 106
in ethylene/acrylates copolymerization, 94	with mixed ligands (N,P; N,O), 27
in ethylene/CO copolymerization, 96	in olefin (co)polymerization, 38
in ethylene/functionalized norbornenes	synthesis with mixed ligands, 40
copolymerization, 95, 97	synthesis with mixed N=O and N=S
in ethylene/polar monomers copolymeri-	ligands, 41
zation, 91	
in olefin (co)polymerization, 28	with iminopyridine ligands, 203 with mixed N-P ligands, 86
	PE microstructures, 226
in olefin oligomerization, 218	
in olefin polymerization, 216	Phillips catalyst, 1, 5, 19

P (cont.) Phillips trimerisation catalyst, 12 Phosphinidine-imine-based ligands, 38 Polyketon, 96 Polymer analyses, 182 Polymer molecular weight, 101 Polymerization, 19 via extended metallacylces, 19 Polymerization filling technique, 226 Polyolefins production, 199 Protonolysis, 238 PymNox complexes, 78 Pyridinophosphine ligands, 37	in 1-pentene oligomerization, 141 in ethylene polymerization, 136 with β -diketiminato ligands, 134 with C3-chiral trisoxazoline ligand, 141 with quinolyl amido ligand, 147 in styrene polymerization, 144 Schulz-Flory distribution, 20, 158, 165, 214, 219, 220, 223, 224 Shell Higher Olefin Process (SHOP), 28 Snap shut catalyst, 245 Stille reaction, 200 Styrene polymerization, 144 Suzuki-type coupling, 200, 235
Q	
Quinolinolato, 190	T
	Tandem co-polymerization, 224 Tautomeric mixtures, 241
R	Thermally robust catalyst, 9
Rare-earth complexes, 119, 120, 125, 126,	Trans-effect, 29, 38
135, 136, 138, 148	Trimethylaluminum, 73
bis(guanidinate) hydrido species, 148	Turnover frequency, 34
catalyst activation with	
$[PhNMe_2H][B(C_6F_5)_4], 126$	*T
cationic alkyl systems, 126	U
hydrido species, 139	ULDPE, 224 Ultra high malacular weight 160
in diene-olefin copolymerization, 119 in ethylene polymerization, 125	Ultra-high molecular weight, 169
neutral alkyl systems, 125	
with amidopyridinato ligands, 134	v
with guanidinate ligands, 139	Vanadium complexes, 154–161, 164–170,
with N3 ligands, 136	173, 175–177, 180–181, 183–185,
with N4 ligands, 136	187–188
with N5 ligands, 138	catalyst activation with B(C ₆ F ₅) ₃ , 161
with N6 ligands, 138	catalyst activation with DMAC, 175
with nitrogen containing ligands, 139	catalyst activation with Et ₂ AlCl, 156, 161
Reductive imine benzylation, 229	catalyst activation with Et ₃ Al ₂ Cl ₃ , 161
Regioerrors, 250	catalyst activation with iBu ₃ Al, 156
	catalyst activation with MAO, 156, 161,
E	165
S Salan tuna complay 170	catalyst activation with Me ₃ Al, 156
Salen-type complex, 179 Salt metathesis, 39, 160, 243	catalyst activation with MMAO, 161 dialkyl species, 164
Salycilaldimine ligands, 31	in 1,3-butadiene polymerization, 159
SANS measurements, 260	in α -olefin polymerization, 154
Scandium complexes, 134, 136, 141, 144, 268	in ethylene polymerization, 157, 158, 170
with 6-aryl amidopyridine ligands, 268	176
catalyst activation with	in ethylene/1,3-butadiene copolymeriza-
$[PhNMe_2H][B(C_6F_5)_4], 134$	tion, 161
catalyst activation with [PhNMe ₂ H][BPh ₄],	in ethylene/1-hexene copolymerization,
134	170, 177
cationic alkyl amido species, 141	in ethylene/1-octene copolymerization,
in 1-hexene polymerization, 141	161, 180

in ethylene/norbornene copolymerization,	Y
168, 177	Yttrium complexes, 134, 139, 140, 260, 261,
in ethylene/propene copolymerization, 168	269
in the presence of PPh ₃ , 167	hydrido species, 261
influence of various reaction parameters,	with 6-aryl amidopyridine ligands, 268
164	with 6-aryl(heteroaryl) amidoalkylpyridine
supported systems, 166, 185	ligands, 260
with (2-anilidomethyl)pyridine ligand, 188	alkyl-hydrido clusters, 140
with 2,6-bis(aryliminophosphoranyl)pyri-	catalyst activation with [PhNMe ₂ H][BPh ₄],
dine ligand, 167	134
with α -diimine ligands, 155	catalyst activation with
with amidinate ligand, 157	$[R_2NHMe][B(C_6F_5)_4], 134$
with β -diiminate ligand, 157	in ethylene polymerization, 134
with β -enaminoketonato ligand, 181	with amidopyridinato ligands, 134
with benzamidinate ligands, 160	with bis(silylamido)biphenyl ligand, 140
with bis(amidinate) ligands, 159	with N,O ligands, 139
with bis(benzimidazole)amine ligand, 168	
with bis(imino)pyridinate ligands, 161	
with bis(phenoxyimine) ligands, 170	${f Z}$
with bis(pyrazolyl)pyridine ligand, 168	Zr complexes, 215, 232–234, 238, 243, 246,
with imido phenoxyimine ligands, 172	248, 250
with iminopyrrolide ligand, 156, 157	catalyst activation with
with ketimide ligands, 184	$[(C_{18}H_{37})_2NMeH][B(C_6F_5)_4], 248$
with phenoxyimine ligands, 169, 177, 178,	catalyst activation with
183	$[PhNMe_2H][B(C_6F_5)_4], 246$
with pyridine alkoxide ligands, 183	in ethylene polymerization, 234
with salicylaldiminato ligands, 169, 177,	in ethylene/1-hexene co-polymerization,
178	233
with Scott-imine ligands, 73, 183	in ethylene/1-octene
with tris(3,5-dimethylpyrazolyl)borato	copolymerization, 250
ligand, 185	in ethylene/styrene
with tris(3,5-dimethylpyrazolyl)methane	copolymerization, 251
ligand, 185	in olefin polymerization, 233
Vanadyl complexes, 188	in propene polymerization, 246, 248
in ethylene/1-decene copolymerization,	perfluorurated ligands, 232
188	with 6-aryl amidopyridine ligands, 268
in ethylene/propene copolymerization, 188	with 6-ferrocenyl amidoalkylpyridine
with phthalocyanine ligands, 188	ligands, 243
with porphyrin ligands, 188	with amidoalkylpyridine
Vanadyl(V) amidinates, 158	ligands, 239
Vinylogous amido-based ligands, 36	with pyridyl-enamide ligands, 232
	Zwitterionic complexes, 270
***	Zwitterionic species, 172
W	α-amino carboxylates, 35
Wavefunction calculations, 163	σ -bond metathesis, 238