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Foreword

Olefin polymerization has remarkably progressed over the last two decades,
mainly thanks to the contribution of organometallic chemistry to the design of
innovative ligand systems and metal complexes. The irreversible decrease of
fossil-resources requires continuous efforts to improve the selectivity and pro-
ductivity of the industrial processes as well as to reduce the environmental impact,
especially in terms of energy and waste. Due to the wealth of possible ligand
structures and metal combinations, organometallic-based catalysis can indeed
address many of the issues of the sustainable production of polymeric and com-
posite materials.

These two volumes edited by Giambastiani and Campora cover a hot research
subject such as that of post-metallocene nitrogen-containing complexes and their
use in homogeneous catalysis for the efficient and selective olefin upgrading.
These books cover the state-of-the-art of olefin polymerization by catalysts with
N-donor ligands as well as hybrid ligands in conjunction with a wide range of
metals across the periodic table. Particular attention has been devoted to important,
still unresolved issues such as the efficient insertion polymerization of polar
monomers. Advantages and limits of the known technologies have been discussed
and critically addressed in the light of the most relevant contributions of the many
thousand researchers active in the field.

Claudio Bianchini
Director ICCOM-CNR
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Preface

Millions of tons of polyolefin-based materials are produced yearly, in most cases
under relatively mild conditions mediated by transition-metal catalysts. Through a
simple insertion reaction, inexpensive and abundant olefins (such as ethylene and
propene) are transformed into polymeric materials for a wide range of applica-
tions, including plastics, fibers, and elastomers. The discovery of the Ziegler–Natta
catalysts and the seminal works at Phillips Petroleum in the 1950s not only
revolutionized polyolefin production, but also paved the way to the development
of modern organometallic chemistry. Despite its long history, the polyolefin
industry keeps growing steadily and remains technologically driven by the con-
tinuous discovery of new catalysts, processes, and applications.

Since Ziegler–Natta’s time, important milestones in the field of homogeneous
oligomerization/polymerization catalysis were set-up one after the other;
from nickel complexes with phosphine donors (SHOP-type catalysts) for the
highly selective and efficient production of a-olefins to Group IV metallocene
polymerization catalysts and their subsequent industrial exploitation (in the early
1980s) due to the discovery of partially hydrolyzed organoaluminum compounds
(MAOs) as co-catalysts/activators. All these scientific successes have shown how
discrete ‘‘single-site’’ molecular catalysts could offer unmatched opportunities,
compared with heterogeneous systems, towards the tailored synthesis of new
polymeric architectures as well as the in-depth understanding of complex reaction
mechanisms.

Until a few years ago there have been relatively few reports on late transition
metal complexes capable of catalyzing the polymerization of ethylene and
a-olefins efficiently. A distinct feature of the latter systems is a high rate of
chaintransfer which favors their application as oligomerization catalysts. The
discovery of new ligands and activators has been fundamental to fill the gap and
make late transition metal catalysts as efficient (and in some cases even more
versatile) as metallocene-based systems for the oligomerization and polymeriza-
tion catalysis.

In 1995, Brookhart and co-workers synthesized a new class of NiIIand PdII

complexes stabilized by bulky a-diimine ligands (Schiff bases) which represented
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a real breakthrough into the development of late transition metal catalysts for the
efficient olefin polymerization/oligomerization.

Since then, an almost infinite variety of imine-based ligands or, more generally,
nitrogen-containing ligands in combination with either d- and f- block metals have
been explored as efficient and selective oligomerization and polymerization
catalysts. The major advantages of this ligand class are represented by the facile
control of their stereoelectronic properties, their simple preparation from available
and cheap building blocks and their easy handling and storage. All these consid-
erations, together with the capability of most of their metal derivatives to impart
high activity and selectivity in olefin upgrading processes, have contributed to
make nitrogen-containing catalysts highly desirable for industry and academy.

The aim of these books is to provide an overview on the state-of-the-art and the
perspectives in the field of oligomerization/polymerization catalysis mediated by
metal complexes (spanning from early to late and lanthanide series) stabilized by
ligands containing nitrogen donor groups. Rather than a systematic revision of the
major breakthroughs achieved over the last decades, these two volumes offer to the
readership the critical point of view of researchers active in specific fields of
polymerization catalysis. The amplitude and rigor of each contribution also pro-
vide an exhaustive account on the topic: from the synthesis of ligands and related
complexes to mechanistic details, the investigation of the catalyst performance and
future perspectives. Although the chapters’ extension has made the book division
into two separate volumes necessary, this partition is merely due to editorial
reasons.

Finally, the editors are extremely grateful to all book co-authors for their
enthusiasm in participating to this editorial project and for writing up their con-
tribution at their best. A special thank is also due to Sonia Ojo, Claudia Culierat
and Ilaria Tassistro from the London Springer office, whose precious assistance in
facing technical and logistic details has been essential for the success of the
Editors’ efforts.

Giuliano Giambastiani
Juan Cámpora
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Chapter 1
Phenoxy–Imine Group 4 Metal Complexes
for Olefin (co)Polymerization Including
Polar Monomer Copolymerization

Akihiko Iwashita, Haruyuki Makio, and Terunori Fujita

Abstract About 50 years after the discovery of Ziegler–Natta catalysts, phenoxy–
imine-based group 4 transition metal complexes (FI catalysts) emerged as the next
frontier catalysts for the controlled (co)polymerization of olefinic monomers.
FI catalysts are highly versatile catalysts capable of producing a wide range of
novel polymer architectures. The inherent electronic and structural features of
FI catalysts and the accessibility and variability of the phenoxy–imine ligands offer
precise control over olefin polymerization. This chapter deals with the key features
of FI catalysts, homopolymerization and copolymerization by FI catalysts, and the
value-added olefin-based materials that can be produced with FI catalysts.

1.1 Introduction

With the discovery of the Ziegler–Natta catalyst in the 1950s, the polyolefin
industry was launched into a period of unprecedented growth [1]. One reason for
this growth lies in the fact that polyolefins are the most versatile of polymers in
that they possess superior mechanical and physical properties, excellent chemical
inertness, good processability, and easy recyclability. Another reason lies with the
development of new catalysts that helped initiate new production processes and
new product lineups. As a result, polyolefin resin is the most produced resin today,
and polyolefinic materials are ubiquitous in everyday life (Fig. 1.1).

While the majority of commercially available polyolefins are still produced
with the heterogeneous, multi-site Ziegler–Natta catalysts (as represented by

A. Iwashita � H. Makio � T. Fujita (&)
Research Center, Mitsui Chemicals, Inc., 580-32 Nagaura,
Sodegaura, Chiba 299-0265, Japan
e-mail: Terunori.Fujita@mitsui-chem.co.jp

G. Giambastiani and J. Cámpora (eds.), Olefin Upgrading Catalysis
by Nitrogen-based Metal Complexes II, Catalysis by Metal Complexes, 36,
DOI: 10.1007/978-94-007-0696-5_1, � Springer Science+Business Media B.V. 2011
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MgCl2-supported TiCl4 catalysts), single-site metallocene catalysts have become
more prevalent in the polyolefin industry. Originally discovered by Kaminsky and
coworkers [2], single-site metallocene catalysts offered people a better under-
standing of reaction mechanisms, introduced new catalyst design possibilities
[3–5], and allowed for the production of differentiated materials such as high-
performance linear low-density polyethylenes (LLDPEs), isotactic polypropylenes
(iPPs), syndiotactic polypropylenes (sPPs), ethylene/1-butene amorphous copoly-
mers, and ethylene/propylene diene elastomers.

Following the development of metallocene catalysts, a lot of research has been
undertaken to develop novel molecular catalysts based on non-cyclopentadienyl-
based ligands, in other words, new post-metallocene catalysts based on both early
and late transition metals [6–12]. One of the earliest examples were the
bis(phenoxy–imine) group 4 metal complexes (now known as FI catalysts) that
were discovered [13–15] based on the ‘‘ligand oriented catalyst design concept’’, a
concept that is founded on the belief that the flexible electronic nature of a ligand
is a key requirement for achieving high activity [16]. And due to their extremely
high activity, unique selectivity, and remarkable versatility, it is not an exagger-
ation to say that FI catalysts represent one of the most successful post-metallocene
catalysts to date.

In this chapter, unique olefin polymerization with FI catalysts and the poly-
merization mechanisms involved will also be discussed, and the resulting value-
added polyolefin materials will be introduced.

1.2 Key Features of FI Catalysts

1.2.1 General Synthetic Schemes of FI Complexes

As shown in Scheme 1.1, a phenoxy–imine group 4 metal complex is generally
synthesized by reacting MCl4 (M = Ti, Zr, Hf) with a lithium or sodium salt of a

Fig. 1.1 Examples of the application of polyolefinic materials
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phenoxy–imine ligand precursor which is derived from the Schiff-base conden-
sation reaction of an ortho-hydroxy aromatic aldehyde or ketone and a primary
amine. The initial phenol and amine derivatives with various substituents are
easily synthesized and some of them are commercially available. This ease of
synthesis allows FI catalysts to possess a wide range of catalyst design possibil-
ities. Thus, catalyst efficiency and resulting polymer properties can be tuned by
efficiently and systematically examining diverse ligands, which have sterically and
electronically varied substituents, including O, S, N, P and halogen-based func-
tional groups at strategic positions. Substituents R1 to R4 are defined according to
Scheme 1.1 throughout this chapter.

1.2.2 Structural Features

In contrast to group 4 metallocenes that have a tetrahedral framework, bis(phen-
oxy–imine) group 4 complexes adopt an octahedral geometry around the metal
furnished with two imine nitrogens, two phenolic oxygens, and two non-spectator
ligands (X). Figure 1.2 depicts the theoretically possible five structural isomers
arising from the coordination modes of FI ligands in an octahedral configuration.

Crystallographically determined structures of phenoxy–imine group 4 metal
complexes (catalyst precursors) have revealed that in the solid state the complexes
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Scheme 1.1 General synthetic scheme of phenoxy–imine group 4 metal complexes
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Fig. 1.2 Possible structural isomers for the FI catalyst
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most often exist as isomer (a) in a cis-N/trans-O/cis-X arrangement and thus
possess C2 symmetry [17, 18]. The crystal structures of prototypical complexes 1
and 2 are shown in Fig. 1.3. Because of the steric repulsions of the substituents on
the imine nitrogen (R1) of the FI ligands, two nitrogens and two oxygens cannot
exist on a plane including the metal center unlike isomers (d) and (e), and this
inevitably results in one of those cis-X geometries (isomers (a)–(c)), among which
isomer (a) is most commonly found. It is important to note that the cis-X geom-
etry, which is similarly observed in metallocenes or any other high-performance
olefin polymerization catalyst, is considered to be essential for the efficient olefin
insertion reaction [3–5, 19–21]. When schematically looking at the ordinary C2

symmetric phenoxy–imine complexes (isomer (a)), the imine nitrogens are located
at the backside of the X–M–X moiety, whereas phenoxy-oxygens are situated
above and below the X–M–X moiety. Therefore, the R1 substituents on the imine
nitrogen and the R2 substituents ortho to the phenoxy–oxygen are located at
specific positions near the X ligands. Since the X–M–X moiety becomes an olefin
polymerization site upon activation, these R1 and R2 substituents located in close
proximity to the X ligands heavily influence the polymerization behavior of the FI
catalysts in specific ways relative to each substituent (Fig. 1.4).

NMR studies of FI catalysts in solution sometimes exhibit a minor isomer with
C1 symmetry (the two FI ligands are chemically non-equivalent, most likely a
cis-N/cis-O/cis-X isomer in Fig. 1.2) in addition to the major C2 symmetric isomer
[22–27]. These isomers are often fluxional and interchangeable with each other on

Fig. 1.3 Molecular structures of Ti– and Zr–FI complexes 1 and 2. All hydrogens are omitted for
clarity. Selected bond lengths (Å) and angles (�): a Ti–O1 1.852(4), Ti–N1 2.236(4), Ti–Cl1
2.305(2), O1–Ti–O2 171.6(2), N1–Ti–N2 76.4(2), Cl1–Ti–Cl2 103.10(8); b Zr–O1 1.985(2),
Zr–N1 2.355(2), Zr–Cl1 2.4234(9), O1–Zr–O2 165.5(1), N1–Zr–N2 74.0(1), Cl1–Zr–Cl2
100.38(5)
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an NMR time scale [18, 23, 28]. Some of the unique polymerization characteristics
of FI catalysts may stem from this structurally dynamic behavior between these
possible isomers. For example, for the C2 symmetric FI catalysts, fluxional
isomerization between two enantiomers (K/D racemization) was proposed by
calculations for a syndioselective propylene polymerization with Ti–FI catalysts
(see Sect. 1.3.2.1) [29], and has been suggested by low temperature VT-NMR
experiments for a cationic monobenzyl Hf–FI catalyst [30] and other related
complexes [31]. Thus, the fluxionality of FI catalysts will be an important feature
in understanding their polymerization characteristics, and it is believed that the
fluxional isomerization probably takes place via M–N bond dissociation due to the
labile nature of the imine-N donors.

The labile and dynamic nature of the phenoxy–imine ligands, (especially of the
imine-N donors) was also supported by DFT calculations, which demonstrated that
the bond distances of the Zr metal center and the imine-N’s of a methyl cationic FI
catalyst derived from complex 2 were lengthened significantly (0.02–0.1 Å) by the
coordination of an ethylene molecule, while the Zr–O bond lengths remained
virtually unchanged [32].

1.2.3 Electronic Features

Another distinctive feature of FI catalysts vis-à-vis metallocene catalysts is their
heteroatom ligation when compared to the sp2-hybridized carbon-based cyclo-
pentadienyl (Cp) anion of metallocene compounds. The Mulliken charge at the
metal center calculated by DFT methods for three cationic monomethyl titanium
species clearly shows the trend between these two types of catalyst. The cationic
properties of the metal center increase in the following order: (C5H5)2TiMe+

(1.417 au) \ Me2Si(C5Me4)(tBu–N)TiMe+ (1.599 au) \ (Ph–N=CH–C6H3–2-O–
3-tBu)2TiMe+ (1.741 au), implying that the presence of the heteroatom-coordi-
nating FI ligands makes the complex more electrophilic [33]. In general, one of the
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Fig. 1.4 Schematic image of
a C2 symmetric FI catalyst
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reasons for the high activity of the FI catalysts is believed to be this high elec-
trophilicity. In addition, heteroatom ligation renders the M–L bonding properties
of the FI catalysts more ionic or polarized relative to that of metallocenes, which
may cause the stronger affinity to inorganic surfaces and the higher tolerance to
polar functionalities of the FI catalysts (vide infra).

1.2.4 Activation Methods and Active Species

Similar to metallocene catalysts, upon appropriate activation, neutral FI complexes
(L02MX2, L0: a generic form of an FI ligand) are transformed into coordinatively
unsaturated, highly electrophilic monoalkyl cationic complexes, (L02M+–R) (R:
alkyl group), which mediate olefin polymerizations via a coordination-insertion
mechanism. The monoalkyl cationic species of some Ti–FI catalysts (and related
complexes [31, 34]) were actually observed by NMR upon activation of L02TiCl2
with MAO [24, 35], L02TiMe2 [36] or L02Hf(benzyl)2 [30] with B(C6F5)3 or
Ph3CB(C6F5)4, and L02ZrCl2 with AlMe3/Ph3CB(C6F5)4 [35, 37]. Since these
cationic species of FI catalysts exhibited only one set of ligand signals, the species
still possess C2 symmetric structures in solution at room temperature within an
NMR time scale.

Activation of metallocene (Cp0MX2, Cp0: a generic form of a cyclopentadienyl
ligand) by triisobutylaluminum (iBu3Al) and Ph3CB(C6F5)4 generated a cationic
alkyl species, and thus this activation method is considered to be chemically
equivalent to the activation with MAO. However, when FI catalysts are activated
by iBu3Al and Ph3CB(C6F5)4, the imine moiety is reduced to an amine by iBu3Al
(or contaminant iBu2AlH) accompanied by isobutene formation, (FI catalysts and
iBu3Al are mixed for 10 min before polymerization) [32, 38, 39], resulting in
phenoxy–amine complexes. The reduced species exhibited a number of interesting
polymerization characteristics owing to their unusual N donors, iBu2Al–N, which
will be bulkier and weaker as a coordinating donor than the imine-N0s (See Sects.
1.3.1.2, 1.3.2.2, and 1.3.3).

Meanwhile, it was demonstrated that AlMe3 included in MAO can cause
deactivation of FI catalysts [24, 35]. The deactivation is probably initiated by an
attack of AlMe3 on a phenoxy-O group. Subsequent C–H bond activation in
AlMe3 by a cationic L02M+–Me species yields an Al–FI complex (L0AlMe2)

M
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CH3

+

AlMe3

M

O

O
N

N
H3
C+

AlMe2

CH2
H

N

O
AlMe2
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Scheme 1.2 A deactivation path of FI catalysts caused by AlMe3
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together with a methane molecule and a paramagnetic group 4 metal compound
(Scheme 1.2). As another deactivation pathway, the formation of dinuclear l-
complexes [40, 41] or heterodinuclear complexes with alkyl aluminums [37] have
also been proposed.

As described above, FI catalysts have distinctive features derived from a pair of
non-symmetric phenoxy–imine ligands, which inevitably results in; (a) enormous
structural diversity stemming from ligand accessibility and amenability to modi-
fication; (b) isomers arising from ligand coordination arrangements in an octa-
hedral framework, among which cis-X configurations are favored; and (c) potential
fluxionality among these isomers. The phenoxy–imine ligands also make FI cat-
alysts highly electrophilic, chemically absorbable (possible chemisorption on a
solid surface), and functional-group tolerant, presumably due to the heteroatoms
that are present and their M–L bonding characteristics. Additionally, the high
reactivity of the imine moieties allows in situ ligand modification by the choice of
activation methods. The following sections reveal the basic polymerization
behavior of FI catalysts and how they are able to upgrade olefins.

1.3 Homopolymerization by FI Catalysts

1.3.1 Ethylene Polymerization and Oligomerization

1.3.1.1 Exploration of High Activity

The catalytic activity of polymerization is generally measured by weight of
polymers per a specific catalyst (metal) amount, time, and sometimes monomer
concentration and stated in, for example, g-polymer/(mmol-M h) or g-polymer/
(mmol-M h atm). Activity is one of the most important performance parameters of
any catalyst. The group 4 metallocene catalysts were once known as the most
active catalysts among olefin polymerization catalysts (101–102 kg-polymer/
(mmol-M h)), until FI catalysts eclipsed them with an activity of the order of 103

kg-polymer/(mmol-M h) [15]. Even the prototypical zirconium FI catalyst 2
showed a strikingly high ethylene polymerization activity of 519 kg-polymer/
(mmol-M h), which is one of the highest activities among known olefin poly-
merization catalysts including metallocenes.

Taking advantage of the straightforward synthesis and modular property of
phenoxy–imine ligands (Sect. 1.2), systematic studies on catalyst efficiency have
been carried out by introducing substituents with different steric and electronic
properties [32, 42–44]. As summarized in Table 1.1, a keen relationship between
the ethylene polymerization activity and the steric bulkiness of the R2 substituents
can be observed for a series of Zr–FI catalysts 2–11. When a particularly bulky
tertiary R2 group, CPh2Me, is introduced, the activity of complex 11 reaches an
unprecedented level, 6552 kg-polymer/(mmol-M h). This activity corresponds to a

1 Phenoxy–Imine Group 4 Metal Complexes 7



TOF of 64,900 s-1 atm-1, standing as one of the most efficient catalysts not only
for olefin polymerization but also for any catalytic reaction. The complexes having
methyl at para to the phenolic oxygen (R3 substituents) consistently show slightly
lower activity than the unsubstituted complexes (R3 = H) (complex 5 vs. 2),
although the reason is not clear.

The introduction of an electron-donating methoxy group at the R3 position (para
to the phenoxy-O0s) was found to increase the thermal stability of the FI catalysts,
making them available for polymerizations in an industrially practical higher
temperature range (e.g., 12: 7224 kg-polymer/(mmol-M h), 75 �C, 0.9 MPa
ethylene pressure) [45].

With regard to Ti–FI catalysts, the activity enhancement by bulky R2 substit-
uents is rather modest, but the catalytic efficiency of Ti–FI catalysts can be
electronically increased by electron-withdrawing R1 substituents (Chart 1.1). The
activity increase from 3.58 kg-polymer/(mmol-M h) for prototypical Ti–FI cata-
lyst 1 to 34.8 kg-polymer/(mmol-M h) for 13 (R1 = 3,5-F2C6H3) has been dem-
onstrated. Likewise, activity values of 43.3 kg-polymer/(mmol-M h) for 14
(R1 = 3,4,5-F3C6H2) and 40.3 kg-PE/mmol-M h for 15 (R1 = 3,5-(CF3)2C6H3)
are the typical examples [46, 47].

Table 1.1 Effects of the substituents of the Zr–FI complexes on ethylene polymerization activity

O

N

R1

ZrCl2

2

R2R3

Entry Complex R1 R2 R3 Activity
[kg-polymer/
(mmol-M h)]

1 3 Ph Me H 0.4
2 4 Ph iPr H 0.9
3 2 Ph tBu H 519
4 5 Ph tBu Me 331
5 6 Ph 1-adamantyl Me 714
6 7 Ph cumyl Me 2096
7 8 Cy tBu Me 82
8 9 Cy 1-adamantyl Me 434
9 10 Cy cumyl Me 4315
10 11 Cy CPh2Me H 6552
11a 12 Cy cumyl OMe 7224

Polymerization conditions toluene 250 mL, MAO 1.25 mmol, Al/Zr = 250–625,000, ethylene
0.1 MPa, 25 �C, 5 or 10 min
a Polymerization conditions: n-heptane 500 mL, complex 0.005 lmol, MAO 1.25 mmol,
ethylene pressure 0.9 MPa, 75 �C, 15 min
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1.3.1.2 Control of Molecular Weight

The controllability of the molecular weight of polymers is one of the most
important requirements for a catalyst vis-à-vis the end uses of polyolefin materials.
Profound understanding of chain transfer reactions is necessary to gain the con-
trollability, which may also result in gaining a control of the chain-end structures.
FI catalysts permit an exceptionally wide range of molecular weight from 103 to 106

as a result of varying catalyst structures or changing activation methods (vide infra).
As will be seen in Sect. 1.3.1.3, controllability of chain transfer reactions of
FI catalysts can lead to living polymerizations with practically no chain-terminating
processes taking place.

With regard to the molecular weight control with FI catalysts, activation
methods and the size of the R1 substituents are important. As discussed above,
activation of FI catalysts with iBu3Al and Ph3CB(C6F5)4 causes formation of
phenoxy–amine complexes, which consistently shows lower activities but fur-
nishes higher molecular weight polymers than the phenoxy–imine complexes
irrespective of the Ti or Zr complexes.

When R1 substituents were varied in a series pertaining to Zr–FI catalysts as
shown in Table 1.2, the molecular weights of polyethylenes (PEs) show a clear
dependence on the size of the R1, that is, Mw = 2000 g/mol with 16
(R1 = cyclobutyl), Mw = 3600 g/mol with 17 (R1 = cyclopentyl), Mw = 14,000
g/mol with 18 (R1 = cyclohexyl), and Mw = 290,000 g/mol with 19 (R1 = 2-
methylcyclohexyl) [44, 48]. The terminating chain-end structures were revealed to
be almost exclusively a vinyl group for the low molecular weight PEs
([90 mol%), suggesting that the main chain transfer reaction of these FI catalysts
is a b-hydrogen elimination.

Further studies have shown that the molecular weights were apparently inde-
pendent of the monomer concentration, while the activities increased linearly at
higher monomer concentration, showing that both propagation and b-H trans-
fer are first order in monomer concentration. Therefore, the chain transfer involved
in these polymerizations is the b-H transfer to a coordinating ethylene.

tBu

O

N TiCl2

2

F F

tBu

O

N TiCl2

2

F F
F

tBu

O

N TiCl2

2

F3C CF3

13 14 15

Chart 1.1 Structures of complexes 13–15
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This bimolecular b-H transfer reaction is known to proceed via a six-centered
transition state, which is sterically more encumbered than the compact four-centered
transition state for the propagation (ethylene insertion) reaction or the unimolecular
b-hydrogen transfer to a metal. Within a framework of isomer (a), cis-N/trans-O/
cis-X in Fig. 1.2, it is quite possible that the R1 substituents on the imine nitrogens
have a non-bonding interaction with the X ligands (see Fig. 1.4). This was confirmed
by the X-ray structures of Zr–FI catalysts, which demonstrated that the Cl–Zr–Cl
bond angles were narrowed as R1 substituents became larger (R1 = cyclobutyl (16:
100.64(3)8), cyclohexyl (18: 99.8(2)8), 2-methylcyclohexyl (19: 98.00(6)8)) [48].
The narrower bond angles observed for the bulkier R1 groups probably destabilize
the six-centered transition state of the chain transfer more than the four-centered
transition state of the propagation, and the higher rate of the propagation relative to
the chain transfer results in higher molecular weight polymers. DFT calculations
have confirmed this scenario, as well as the extremely unstable nature of the Zr
hydrides, which means that b-H transfer to a metal is disfavored. These vinyl-
terminated polymers can be used as a distinctive precursor for the chain-end func-
tionalized polymers (see Sect. 1.3.1.6).

The relationship between the R1 and the polymer molecular weight holds true for
a series of Zr–FI complexes bearing N-aryl groups. The molecular weights of PE
increase dependently upon the ortho-substituent in the order of H \ Me \ iPr at the
expense of activity, which decreases in the same order. However, even though the
large R1 substituents virtually shut down the bimolecular b-hydrogen transfer path,
a chain transfer with main group metal alkyls via transmetallation seems to be still

Table 1.2 Effects of the R1 substituents of the phenoxy–imine Zr complexes on ethylene
polymerization behavior

O

N ZrCl2

2

tBu

O

N ZrCl2

2

tBu

O

N ZrCl2

2

tBu

O

N ZrCl2

2

tBu

16 17 18 19

Entry Complex Activity [kg-polymer/
(mmol-M h)]

Mw
a (g/mol) Mw/Mn

a Vinyl terminated chain
endb (mol%)

1 16 31.6 2000 2.0 91
2 17 67.2 3600 2.1 95
3 18 87.7 14,000 1.7 96
4 19 93.0 290,000 4.9 71

Polymerization conditions toluene 250 mL, complex 0.5 lmol, dried MAO 0.625 mmol, ethyl-
ene feed 100 L/h, 25 �C, 5 min
a Determined by GPC (PE calibration)
b Determined by 1 H NMR
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available [42]. Upon activation with MAO or MAO/trimethylaluminum, a Zr–FI
complex that has bulky 2-isopropyl phenyl groups as R1 substituents afforded Al-
terminated PEs (Mw = 10–720 kg/mol, Mw/Mn = 2.0–2.6), demonstrating that the
chain transfer to alkylaluminums predominantly takes place [49]. The exclusive
formation of the Al-terminated PE was confirmed by the 13C NMR study of the PE
obtained with deuterolytic quenching. The Al-terminated PEs are expected to serve
as useful intermediates for functionalized polyolefins.

FI catalysts can also produce ultra-high-molecular-weight PE (UHMWPE).
UHMWPE in general refers to PE that possesses the molecular weights higher than
1.5 million. UHMWPE possesses excellent tribological property, abrasion resis-
tance, impact resistance, and chemical resistance, and has a number of material
applications.

As described above, Zr–FI catalysts bearing bulky R1 substituents can produce
PEs with a high molecular weight of over 106 g/mol. When Zr–FI catalyst 2 was
activated with iBu3Al/Ph3CB(C6F5)4, the molecular weight of the obtained poly-
mer reached 5 9 106 g/mol under atmospheric ethylene at 50 �C [32]. The
UHMWPE can be produced with supported FI catalysts in an industrially practical
manner, which will be discussed in Sect. 1.3.1.5.

Molecular weight distribution is another important parameter particularly rel-
evant to processability as well as properties (strength and modulus) of the poly-
mers. Single-site catalysts like metallocene and post-metallocene catalysts usually
afford the most probable molecular weight distributions of around Mw/Mn = 2,
contrary to conventional heterogeneous Ziegler–Natta catalysts, which are multi-
site catalysts consisting of complex mixtures of multiple components and produce
polymers with broader molecular weight distributions (Mw/Mn 4–10).

As discussed in Sect. 1.2.2, FI catalysts potentially possess five isomers
stemming from the coordination modes of ligands in the octahedral geometry,
among which isomer (a), cis-N/trans-O/cis-X, is the most thermodynamically
stable in most cases. However, 15N NMR of Zr–FI catalyst 20 having 15N
enriched imine functions (–C=15N–Ph) unexpectedly revealed that 20 existed
almost exclusively as a C1 symmetric isomer in solution (isomer (b)), and that
the two chemically non-equivalent imine-N0s rapidly interchanged with each
other above room temperature [23]. Interestingly, 20 activated with MAO pro-
duced PEs with temperature-dependent trimodal molecular weight distributions,
which appeared to be formed with three chemically-distinctive active species
(Fig. 1.5). Due to the fluxionality of FI catalysts, each isomer can generate
multiple single-site active species, which may be the reason for this well-defined
multimodality of 20/MAO.

1.3.1.3 Monodisperse Polymers

An extreme end of the spectrum with regard to control of chain transfer and chain
termination reactions is a living polymerization that has no chain transfer or chain
termination reactions by definition. Living polymerizations are a tool to regulate
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the molecular weight and the molecular weight distribution of polymers, and
sometimes the means to produce block copolymers, and chain-end functionalized
polymers. Living olefin polymerizations via a coordination-insertion mechanism
have been achieved in the past but with significant limitations in terms of poly-
merization conditions, polymerization activity, applicable monomers, and the
achievable molecular weight of living polymers. In 2000, scientists at Mitsui
Chemicals discovered unprecedented living olefin polymerizations with Ti–FI
catalysts that exhibit robust livingness even at temperatures much higher than
room temperature [50–54]. The living Ti–FI catalysts possess at least one ortho-
fluorine in the aryl groups on the imine nitrogens (R1 substituent). As shown in
Table 1.3, the molecular weight distributions (Mw/Mn) are extremely narrow for
complexes 21, 22, 23, and 24 that have the ortho-Fs, whereas the other complexes
14, 13, and 25 without the ortho-Fs show ordinary Mw/Mn values of around 2.

One rationale for the robust livingness brought by the ortho-F was proposed
based on DFT calculations on the cationic species bearing an n-propyl group as a
model of a propagating alkyl group [43, 52, 55–57]. In the calculated structure of
the propagating model, one of the ortho-F(s) was observed in proximity to the
b-hydrogen atoms (*2.3 Å) of the growing chain (Van der Waals radii of H and F
are 1.20 and 1.47 Å, respectively) and weak attractive and electrostatic interac-
tions between the ortho-F and b-H were expected (the electrostatic energy
*30 kJ/mol), which can stabilize the chain-transfer-prone b-agostic state of the
cationic polymeryl-titanium and avert unwanted b-H transfer reactions. Such
hypothetical C–F���H–C interactions were experimentally observed by Chan and
coworkers for some phenoxy–pyridine Zr complexes (for example, 26) bearing a
cyclometallated aryl group by NMR spectroscopy and X-ray and neutron crys-
tallography (Fig. 1.6) [58–62]. Furthermore, Mecking and co-workers revealed
that a structurally related Ti enolatoimine complex bearing an ortho-F N-aryl
group was an excellent ethylene living polymerization catalyst, whereas the

2 3 4 5 6 7 2 3 4 5 6 7

log Mw log Mw

0 °C

75 °C

40 °C

25 °C

tBu

O

N ZrCl2

2
O

N ZrCl2

2

Ph

Ph

0222

(b)(a)

Fig. 1.5 GPC elution curves for the PEs formed by polymerization at 0–75 �C with FI catalysts
a 2 and b 20 with MAO
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corresponding complexes having ortho-methyl substituted or non-substituted
N-aryl groups were not [63, 64].

Even though the ortho-F effects must be further clarified experimentally, the
proposed concept may lead to the prospect of a new catalyst design strategy to
manipulate olefin polymerizations together with conventional steric/repulsive
interactions [51, 56, 57].

1.3.1.4 Selective Ethylene Trimerization

Oligomerization of ethylene to produce linear a-olefins (LAOs) is of great interest
because LAOs are widely used as polyethylene comonomers, detergent alcohols,
oil-field chemicals, and lubricant additives. The oligomerization catalysts employed
in industry produce a range of LAOs following a Schulz–Flory distribution. In order

Table 1.3 Effects of the R1 substituents of the phenoxy–imine Ti complexes on ethylene
polymerization behavior

O

N TiCl2

2

tBu

R1

F

F
F

F

F F

F

F FF F

F

R1 =

21 22 23 24 25

Entry Complex Activity [kg-polymer/(mmol-M h)] Mn
a (kg/mol) Mw/Mn

a

1 21 18.12 424 1.13
2 22 2.43 145 1.25
3 23 0.828 64 1.05
4 24 0.127 13 1.06
5 14 44.6 98 1.99
6 13 32.0 129 1.78
7 25 5.31 128 2.18

Polymerization conditions toluene 250 mL, MAO 1.25 mmol, complex 0.4–5.0 lmol, ethylene
0.1 MPa, 100 L/h, 1–5 min, 50 �C
a Determined by GPC (PE calibration)

Fig. 1.6 Molecular structure of 26 from the neutron diffraction study (50% probability
ellipsoids) showing selected hydrogen atoms. Reprinted with permission from [59]. Copyright
2006 Wiley–VCH Verlag GmbH & Co. KGaA
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to meet the fluctuating market demands among LAOs and to reduce the fractions of
unprofitable LAOs, investigation on the selective oligomerization catalysis to yield
the desired LAOs has been intense, particularly on ethylene trimerization to produce
1-hexene. Most of the catalysts studied are Cr-based, although there are a few
examples of Ti-, V-, or Ta-based catalysts.

Recently, scientists at Mitsui Chemicals developed tridentate phenoxy–imine
ligated titanium complexes, which served, upon activation with MAO, as selective
ethylene trimerization catalysts with extremely high activities [65]. The tridentate
ligands possessed the 20-alkoxybiphenyl-2-yl groups as the R1 substituent (com-
plexes 27, 28, and 29) and the tridentate ligands wrapped around the Ti center in a
facial fashion (Fig. 1.7). The oligomerization results are summarized in Table 1.4.
Complex 29 exhibited exceptionally high activities and selectivity, in which
branched decenes (cotrimerization products of 1-hexene and two molecules of
ethylene) and a small amount of PE were the only side products. The activities
were two orders of magnitude higher than commercial Cr-based catalysts (Phillips
catalyst) under comparable conditions.

A metallacyclic propagation mechanism was proposed for the selective for-
mation of 1-hexene as shown in Scheme 1.3, consisting of the oxidative addition
of two ethylene molecules to form a metallacyclopentane species, insertion of
another ethylene to form a metallacycloheptane intermediate, and subsequent
b-hydride elimination (and subsequent reductive elimination or 3,7-H transfer).
The pendant OMe donor was considered to stabilize the Ti(II) species as seen in
similar cyclopentadienyl-arene titanium complexes. However, the reaction
demonstrated second order dependence on ethylene pressure, indicating that
formation of the metallacyclopentane intermediate can be the rate-determining
step (RDS). This result contrasts with the cyclopentadienyl-arene titanium
complexes which showed apparent first order dependence on [ethylene] and
therefore ethylene insertion to the metallacyclopentane species is considered to
be the RDS [66].

Fig. 1.7 Molecular structure
of complex 29. Reprinted
with permission from [65].
Copyright 2010 American
Chemical Society
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1.3.1.5 Ultra-Fine Non-Coherent Polyethylene Particles

MgCl2 is widely used in industry as a support for Ziegler–Natta catalysts. It was
demonstrated that the introduction of MgCl2 increased the number of active sites
and that unexpectedly and significantly it also enhanced the rate of olefin inser-
tion reactions by about two orders of magnitude on average relative to classical
Ziegler–Natta catalysts.

Inspired by the active roles that MgCl2 plays in olefin polymerization, MgCl2
was examined in the polymerization catalyzed by FI catalysts. As discussed in
Sect. 1.2, FI catalysts have more ionic and polarized metal–ligand bonds compared
to metallocene catalysts, and probably due to this feature, FI catalysts are more
strongly adsorbed on Lewis acidic surfaces of inorganic compounds and generate
an active supported catalytic system in combination with, for example, MgCl2,
hetero-poly compounds, and clays [17, 67–75].

L' TiII L' TiIV TiIV
L'

L' TiIVL' TiII

+
C2H4

2 C2H4

+                                              +

+

+

oxidative
coupling

β-H elimination/
reductive elimination

or 
concerted 3,7-H transfer

Scheme 1.3 A plausible
mechanism for the selective
ethylene trimerization
catalyzed by the tridentate
Ti–FI catalysts

Table 1.4 Catalytic ethylene conversion with the tridentate phenoxy–imine Ti complexes

O

N

TiCl3

O
Ph

O

N

TiCl3

O
Me

O

N

TiCl3

O
Me

Ph Ph

27 28 29

Entry Complex C2H4 pressure (MPa) Activity [kg-hexene/
(mmol-M h)]

Selectivity (wt%)

C6 C10 PE

1 27 0.8 0.19 76.6 0 23.4
2 28 0.8 5.7 86.2 12.2 1.6
3 29 0.8 7.4 91.4 6.4 2.1
4a 29 5.0 315 92.3 7.3 0.4

Conditions cyclohexane 30 mL, complex 0.5 lmol, MAO 5.0 mmol, 30 �C, 1 h
a Cyclohexane 150 mL
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MgCl2 catalyst supports can be prepared from adducts of MgCl2 and alcohol
(e.g., 2-ethyl-1-hexanol), which are dissolved in n-decane. Upon addition of R03Al,
the MgCl2 supports are precipitated out via dealcoholysis as a mixture of MgCl2/
R0nAl(OR)3-n. The ethylene polymerization activities of Ti–FI catalysts supported
on the MgCl2/R0nAl(OR)3-n (R0: iBu, Et) were very high and roughly comparable
with those activated with MAO. With Zr–FI catalysts, ethylene polymerization
activity reached 1820 kg-polymer/(mmol-M h) at 0.9 MPa ethylene pressure
without using conventional MAO or boron-based activators, demonstrating that
the MgCl2/R0nAl(OR)3-n serves as a highly efficient activator in a similar way to
the classical Ziegler catalysts.

In addition, these FI catalysts supported on the MgCl2/R0nAl(OR)3-n keep the
single-site polymerization characteristics and afford polymers with good mor-
phology, demonstrating simultaneously the advantages of homogeneous and het-
erogeneous catalysts (high-performance heterogeneous single-site catalysts).

Under carefully controlled conditions, MgCl2/R0nAl(OR)3-n catalyst supports
can be prepared into nearly perfectly spherical particles free from agglomerations
having a wide range of controllable particle sizes (1–15 lm) and narrow size
distributions. On the other hand, FI catalysts can produce UHMWPE by intro-
ducing bulky R1 substituents as discussed in Sect. 1.3.1.2. By combining these two
technologies, Zr–FI complexes bearing sterically demanding R1 (= 2-meth-
ylcyclohexyl) with MgCl2/iBunAl(OR)3-n gave UHMWPE particulates (Mv

2–5 9 106 g/mol) at an extremely high activity of 750–1800 kg-polymer/(mmol-
M h) under industrially applicable conditions (50 �C, 0.9 MPa ethylene pressure)
[67–69]. Because the morphology of catalysts is replicated to that of the obtained
polymers, the obtained UHMWPE particulates possess noncoherent and uniform
spherical shapes. The obtained polymer shows a very high bulk density of up to
0.50 g/mL with variable diameters (Fig. 1.8).

Fig. 1.8 a Photograph and b SEM images of the ultra-fine non-coherent PE particles formed
with MgCl2-supported Zr–FI catalyst. Average particle size: a 120 lm, b 10 lm. Reprinted with
permission from [33]. Copyright 2009 American Chemical Society
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These UHMWPE particulates are expected to have a wide array of applications
such as sintered sheets and filters, light diffusion films, high-performance resin
modifiers, and cosmetics.

1.3.1.6 End Functionalization of Polyethylenes

The addition of functionality to polyolefins that are otherwise non-polar can
greatly enhance the range of attainable properties (e.g., adhesion, wettability,
dyeability, printability, and compatibility). The functionalized polyolefins can also
be used as versatile precursors when preparing hybrid polyolefins with non-
polyolefinic materials possessing complementary functionalities. In the latter
context, chain-end functionalized (telechelic) polymers serve as a building block
for the hybrid polymers possessing well-defined architectures such as (multi-)
block, graft and polymer networks. In this section, chain-end functionalized
polyolefins prepared by FI-based catalysts are discussed.

We have already discussed in Sect. 1.3.1.2 that Zr–FI catalysts having relatively
small R1 groups afforded vinyl-terminated PE, which can be chemically modified
according to various methods.

The chain-end vinyl groups can be efficiently converted into epoxy groups by
treatment of the vinyl-terminated PE (Mw 2000 g/mol, Mw/Mn 2.4, vinyl func-
tionality 95%, Tm 122 �C) with hydrogen peroxide (30% water solution) in toluene
at 90 �C in the presence of Na2WO4 as an oxidation catalyst and methyl-tri-n-
octylammonium hydrogen sulfate as a phase transfer catalyst [76]. In fact, epoxy-
terminated PE (Mw 2000 g/mol, Mw/Mn 1.8, epoxy functionality 96%, Tm 121 �C)
was obtained in almost quantitative yield. The epoxy-terminated PEs were highly
reactive and could be transformed into a diol-terminated PE by the in situ
hydrolysis using aqueous 2-propanol or a triol-terminated PE via a reaction with
diethanolamine [44, 48, 77]. The obtained diol- or triol-terminated PEs can serve
as precursors for well defined hybrid materials of PE and polyethylene glycol
(PEG) having AB2 and AB3 type block structures (Scheme 1.4) [76, 77]. These
hybrid materials formed stable nano-scale dispersion in water (up to 40 wt% of the
hybrid materials) without adding any surface-active agents. The transmission
electron microscopy (TEM) revealed that the AB3 hybrid (PE, Mn 1100 g/mol;
PEG, average Mn 400 9 3 g/mol, Tm 120 �C) formed a semi-transparent disper-
sion, consisting of nanoparticles (*18 nm on average) with a narrow size dis-
tribution. The nanoparticles appeared to have very lipophilic PE cores with
hydrophilic shells of PEG because they can encapsulate large organic molecules
such as 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraazaporphyrinato copper (II)
(a water-insoluble dye) or 8-anilino-1-naphthalene sulfonic acid (a probe showing
no fluorescence in a hydrophilic environment) as shown in Fig. 1.9.

As the second example of chemical modification of the vinyl chain-end PE, the
Alder-ene reaction with maleic anhydride can give succinic anhydride-terminated
PE. The reaction of the vinyl terminated PE (Mw 1400 g/mol, Mw/Mn 2.0, vinyl
group 95%, Tm 116 �C) with maleic anhydride was carried out in the presence of
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2,6-di-tert-butyl-4-methylphenol as a radical quencher at 195 �C for 16 h, which
furnished the corresponding succinic anhydride-terminated PE (sa-t-PE: Mw

1700 g/mol, Mw/Mn 1.7, succinic anhydride functionality 102%, Tm 117 �C)
(Fig. 1.10) [78].

The sa-t-PE exhibited higher thermal stability than its parent vinyl-terminated
PE although the PE having epoxy-, diol-, triol-, and diamino-functionalities
introduced above displayed no such improvement regarding thermal stability. The
sa-t-PE also exhibited higher melt viscosity. The sa-t-PE possesses a high potential
as a dispersant of hydrophilic materials (e.g., pigment) and as a modifier for polar
polymers, in particular, engineering plastics.

Fig. 1.9 a 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraazaporphyrinato copper (II) (0.07 mmol) or
b 8-anilino-1-naphthalene sulfonic acid (0.01 mmol) with water (10 mL) in the absence (A, C) or
in the presence of AB3 nanoparticles (0.2 wt%; B, D)

Fig. 1.10 Synthetic scheme and TEM image of a Na2-s-t-PE water dispersion. Reprinted with
permission from [78]. Copyright 2009 American Chemical Society
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Interestingly, the Na salt of this succinic anhydride-terminated PE (Na2-s-t-PE)
are self-assembled into nano-sized particles (diameter 10–30 nm) and worm-like
aggregates in water (diameter 20–30 nm, length 60–270 nm) (Fig. 1.10).

The end-functionalized PEs introduced herein possess unique features and are
expected to be used in many applications (e.g., macromonomers, cationic sur-
factants, heat-resistant waxes and additives, film-surface modifiers, and anti-wear
agents for inks and coatings), depending on the functional groups that were
introduced.

A robust and highly active living Ti–FI catalyst 21 can be used for the synthesis
of chain-end functionalized polyolefins, including telechelic polymers
(Scheme 1.5) [79]. Activation of 21 with MAO furnishes monomethyl cationic
species 30, which reacts with x-functionalized a-olefins (e.g., H2C=CH(CH2)9

OSiMe3 (31)) to produce complex 32 in nearly quantitative yields, without
forming multiple insertion products. The reason for this strict stoichiometry is that
cationic species 30 exhibits high activity for the first monomer insertion, which is
primary in its regiochemistry, resulting in species 32 bearing higher b-branched
alkyls. The second monomer insertion to species 32, which tends to be secondary,
is extremely slow relative to the first insertion due to the steric repulsion. Species
32 can work as a highly active functionalized initiator for living polymerization of
ordinary olefins like ethylene or propylene. Upon termination, living propagating
species 33 can afford polyolefins 34 that have a functionality at the initiating chain
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Scheme 1.4 Chain-end functionalization of vinyl-terminated PEs produced by FI catalysts
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end. Chain-end capping at the terminating chain end can also be accomplished by
treatment of an excess amount of 31 with 33, resulting in the production of
telechelic polyolefins 35 after quenching. Again the functionalization is stoichi-
ometric and quantitative due to the slow consecutive insertions of 31. This method
is extendable to other functional groups if they have appropriate protecting groups.
Heterotelechelic polyolefins having different functional groups at each chain end
are also achievable simply using different monomers at initiating and terminating
steps.

1.3.2 Propylene Polymerization

Propylene polymerization involves the issues of regio- and stereochemistry for
monomer insertion, which is heavily dependent upon the catalysts employed. The
regio- and stereoregularity has decisive effects on the physical properties of the
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Scheme 1.5 Synthesis of mono- and difunctional telechelic polyolefins using a living Ti–FI
catalyst
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polypropylene (PP) obtained and therefore, control of regio- and stereoselectivity
of the catalysts is extremely important.

The ‘‘symmetry rule’’ established for metallocene-mediated propylene poly-
merization is well documented and understood, and it says that C2 symmetric
complexes that have homotopic reaction sites yield isotactic polypropylenes
(iPPs), while complexes with Cs symmetry whose active sites are enantiotopic
afford syndiotactic polypropylenes (sPPs) [5, 21]. In this scheme, each propylene
monomer inserts in a primary fashion, and the face selection of the prochiral
propylene monomer is believed to be made by the steric non-bonding interaction
between the methyl group of the propylene monomer and the b-carbon of the
metal-bound alkyl in the assumed four center metallacyclic transition state.
Therefore, the methyl group and the b-carbon are always anti across the plane of
the metallacycle, which is also assumed for the isotactic polymerization with
conventional heterogeneous Ziegler–Natta catalysts.

Interestingly, FI catalysts can polymerize propylene in a highly isoselective and
syndioselective manner by appropriate combinations of metal, ligands, and acti-
vators. These unique propylene polymerization characteristics have their base on
the unique features of the FI catalysts described in Sect. 1.2 and in the following
subsections we will discuss the propylene polymerization behavior with FI
catalysts.

1.3.2.1 Syndiotactic Polypropylene

As described, FI catalyst precursors generally adopt a C2-symmetric cis-N/trans-
O/cis-Cl configuration as a predominant isomer. Additionally, DFT calculations
suggest that catalytically active species favor a C2-symmetric configuration with a
cis-N/trans-O/cis-(polymer chain and coordinated olefin) disposition. If the sym-
metry rule is applied, FI catalysts are expected to work as catalysts capable of
forming iPPs via a site-control mechanism. However, Fujita and Coates inde-
pendently revealed that Ti–FI catalysts upon activation with MAO unexpectedly
displayed moderate to extremely high syndioselectivity toward propylene poly-
merizations, which is mediated via a chain-end control mechanism [50, 80].
Significantly, propylene polymerizations with Ti–FI catalysts having at least one
ortho-fluorine on the N-aryl R1 groups exhibit robust living polymerization
behavior in the same way as seen for ethylene polymerization with the same
catalysts. These ortho-F Ti–FI complexes consistently exhibit higher syndiose-
lectivity than the corresponding non-F complexes. Cavallo and coworkers pro-
posed that the difference in syndioselectivity can be explained by ‘‘buried volume
theory’’ based on the calculations, which can be applied to a wide range of
complexes in a unified manner [29].

Subsequent research has further revealed that the size of the R2 substituents of
living Ti–FI catalysts 21, 36, 37, 38, and 39 has a direct effect on syndioselectivity
(Table 1.5) [81–83]. Thus, the syndioselectivity is linearly correlated with the
volume of R2 substituents, meaning higher selectivity for larger R2. To this end,
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Ti–FI catalyst 39, which possesses a trimethylsilyl group as an R2 substituent, was
found to produce a highly syndiotactic PP (rr 93%, 25 �C polymerization) with a
very high Tm of 152 �C, representing one of the highest Tm’s for sPPs ever
synthesized.

Since the syndioselectivity and the livingness are regulated independently by R1

and R2 substituents, living PPs with varied syndioselectivity are attainable.
Research on the chain-end structures of living and non-living polymers,

sequence distributions of propylene polymers with a small amount of (13C-labeled)
ethylene units, and cyclopolymerization of 1,6-heptadiene, all established the
peculiar regiochemistry involved in propylene polymerization mediated by Ti–FI
catalysts activated with MAO [84–88]. This can be described as: (1) exclusive 1,2-
insertion to Ti–H (assumed after the b-H transfer) and Ti–Me species; (2) pref-
erential 1,2-insertion to Ti–CH2CH2–R; (3) regio-random insertion to
Ti–CH2CH(R0)–R and (4) highly regulated 2,1-insertion to Ti–CH(R0)CH2–R.
This selectivity is consistent with the observed regio-block structures obtained by
this class of catalyst [83, 89].

Based on the theoretical calculations performed by Cavallo and coworkers, and
in association with our experimental results, the observed chain-end controlled
syndiospecificity could be explained by fluxional interconversion between D and K
isomers of the octahedral Ti–FI complexes [29, 85, 90]. In the model shown in
Scheme 1.6, re-chain/K isomer A is more stable than re-chain/D isomer D and
isomer A favors propylene coordination at si-face, where the chirality of a polymer

Table 1.5 Effects of the R2 substituents of the phenoxy–imine Ti complexes on propylene
polymerization behavior

O

N TiCl2

2

F

F
F

F

F

R2

Entry Complex R2 Activity [g-polymer/
(mmol-M h)]

Mn
a (kg/mol) Mw/Mn

a Tm
b (�C) [rr] (%)

1 36 H 30.7 189.0 1.51 n. d.c 43
2 37 Me 68.8 260.2 1.22 n. d.c 50
3 38 iPr 31.1 153.7 1.16 n. d.c 75
4 21 tBu 3.7 28.5 1.11 137 87
5 39 TMS 5.9 47.0 1.08 152 93

Polymerization conditions toluene 250 mL, complex 10 lmol, MAO 2.5 mmol, propylene
0.1 MPa, 25 �C, 5 h
a Determined by GPC (PP calibration)
b Determined by DSC
c Not detected
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chain end (a-carbon) is transferred to the coordinating face of a propylene
monomer (chain-end control) via migratory insertion. The resulting si-chain/K
isomer B isomerizes into more stable si-chain/D isomer C, which favors propylene
coordination at re-face, generating re-chain/D isomer D, which again isomerizes
into more stable re-chain/K isomer A, coming back right where the whole series of
events started. The repetitive cycle of isomerization/insertion certainly affords the
syndiotactic sequences of PP. Note that the face selection in this model is made by
steric repulsion between the methyl group of the propylene monomer and the R2

substituents, which is in accord with the R2-dependent syndioselectivity observed
experimentally.

The free energy barriers (DG�) for the K/D isomerization of related cationic Zr
or Hf benzyl complexes were experimentally estimated to be between 10 and
20 kcal/mol [30, 31]. The isomerization of Ti–FI catalysts can be further facili-
tated for the growing species of FI catalysts that have bulkier secondary alkyls as a
growing polymer chain.
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Scheme 1.6 Proposed mechanism for the syndioselective propylene polymerization promoted
by Ti–FI catalysts
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1.3.2.2 Atactic and Isotactic Polypropylene

When activated with iBu3Al/Ph3CB(C6F5)4, complex 1 gave ultra-high-molecular-
weight atactic PP (Mw 8,286,000 g/mol, no Tm) with a somewhat broad molecular
weight distribution (Mw/Mn 4.15) [91]. On the other hand, corresponding Zr– and
Hf–FI catalysts 2 and 40 with iBu3Al/Ph3CB(C6F5)4 at 25 �C provide isotactic-rich
PPs with high molecular weights (2: Mw 209 kg/mol, Mw/Mn 2.42, mm 46%, Tm

104 �C; 40: Mw 412 kg/mol, Mw/Mn 2.15, mm 69%, Tm 124 �C). The subsequent
optimization of the ligand substituents resulted in the discovery of Zr–FI and Hf
complexes 9 and 41 that afforded highly isotactic PPs (9 mmmm 97%, Tm 163 �C;
41 mmmm 97%, Tm 165 �C) that are comparable to those obtained with the best
heterogeneous Ziegler–Natta catalyst, although atactic PPs were also formed as a
byproduct (Table 1.6) [92]. The NMR study on the chain-end structures of the
obtained polymer suggests that the propylene monomers were isoselectively
enchained by repetitive 1,2-insertions via an enantiomorphic site-control mecha-
nism. This is in sharp contrast to that of highly syndiotactic PPs with Ti–FI
catalysts/MAO (active species: phenoxy–imine complexes, chain-end controlled
polymerization with 2,1-insertion).

Coates and coworkers demonstrated that certain Ti–FI complexes performed
moderately isoselective living propylene polymerization (mmmm 73%) [93, 94].
Furthermore, Mazzeo and coworkers reported that Ti–FI complexes bearing I, Br,
and Cl, as R2 (and R3) substituents afforded prevailingly isotactic PPs via an
enantiomorphic site-control mechanism in a non-living fashion (mm up to 73% at
-20 �C) [89]. Similarly, it was reported that the complex possessing a CF3 group
as R2 also provided iPP via a site-control mechanism [57].

Table 1.6 Propylene polymerization with FI catalysts using iBu3Al/Ph3CB(C6F5)4 as a
cocatalyst

O

N

R1

MCl2

2

R2R3

Entry Complex M R1 R2 R3 Activity [g-polymer/
(mmol-M h)]

Tm

(�C)
Mw

a

(kg/
mol)

Mw/Mn
a

1 2 Zr Ph tBu H 94 103.5 209 2.42
2 40 Hf Ph tBu H 6 123.8 412 2.15
3 9 Zr Cy 1-adamantyl Me 38 163.3 200 4.72b

4 41 Hf Cy 1-adamantyl Me 62 164.8 530 14.6b

Polymerization conditions toluene 250 mL, complex 5 lmol, i Bu3Al 0.15 mmol, Ph3CB(C6F5)4

0.01 mmol, propylene 0.1 MPa (100 L/h), 25 �C, 20 min
a Determined by GPC (PS calibration)
b Bimodal distribution
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1.3.3 Higher a-Olefins Polymerization

As described, the combination of an FI complex with iBu3Al/Ph3CB(C6F5)4

generates a phenoxy–amine ligated complex as a catalytically active species,
which can produce ultra-high-molecular-weight PEs or PPs. As for higher
a-olefins (e.g., 1-hexene, 1-octene, 1-decene, and 4-methyl-1-penene), the poly-
merization conducted by 1 with iBu3Al/Ph3CB(C6F5)4 afforded high molecular
weight poly(a-olefin)s with narrow polydispersity indexes as summarized in
Table 1.7 [95, 96]. Interestingly, the polymerization activities became higher in
the order of 4-methyl-1-pentene [ 1-decene [ 1-octene [ 1-hexene in contrast to
the completely opposite order for a typical ansa-metallocene, rac-(C2H4)(1-in-
denyl)2ZrCl2 (42).

The polymerization rate and the polymer molecular weights exhibited a zeroth
order dependence on the concentration of 1-hexene and the obtained polymers
were completely atactic with almost 50 mol% of regio-irregular units. DFT cal-
culations suggested that the methyl cationic species adopted a trigonal bipyramidal
geometry with two oxygen atoms trans to each other. However, upon coordination
of 1-hexene, one of the N donors was dissociated from the Ti metal and the species
adopted a square pyramidal geometry with the Ti-bound methyl at the apical site,
indicating the extremely labile nature of the amine donor derived via activation
with iBu3Al/Ph3CB(C6F5)4. In this framework, the larger monomer and the
resulting sterically encumbered polymer chains are considered to enhance the N
donor dissociation, which makes the active species sterically more open and more
electrophilic and this accelerates the polymerizations. The zeroth-order depen-
dence on the concentration of the monomer might be attributed either to a stable
olefin coordinated species or the N coordinating (olefin non-coordinating) species
as a resting state, where the insertion of the coordinated olefin or the dissociation
of the amine-N donor are the rate determining step, respectively.

Table 1.7 Higher a-olefin polymerization data for 1 and 42 with iBu3Al/Ph3CB(C6F5)4

Entry Complex Monomer TOF (min-1) Mw
a (kg/mol) Mw/Mn

a

1 1 1-hexene 257 846 1.65
2 1 1-octene 288 906 1.68
3 1 1-decene 308 850 1.75
4 1 4-methyl-1-pentene 595 1450 1.71
5 42 1-hexene 634 60 1.85
6 42 1-octene 345 49 1.59
7 42 1-decene 295 42 1.77
8 42 4-methyl-1-pentene 132 32 1.68

Polymerization conditions n-heptane 60 mL, monomer 0.211 mmol, complex 5 lmol, i Bu3Al
0.15 mmol, Ph3CB(C6F5)4 6 lmol, 25 �C, 20 min
a Determined by GPC (PS calibration)
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1.3.4 Styrene Polymerization

Styrene polymerization using Ti–FI complexes 1, 43, 21, and 39 revealed that
stereospecificity of the obtained polymers was drastically changed by R1 substit-
uents (Table 1.8) [97]. At 20 �C, non-fluorinated complexes 1 and 43 (R1 = Ph)
afforded syndiotactic polystyrene (sPS), while isotactic polystyrene (iPS) was
obtained from fluorinated complexes 21 and 39 (R1 = C6F5). The obtained sPS
and iPS showed high melting transition temperatures consistent with the reported
values (Tm * 270 �C for sPS, * 220 �C for iPS) and had virtually no stereo
errors, which precludes the possibility of elucidation of regiochemistry. According
to the generally accepted mechanism, syndiospecific styrene polymerization was
mediated by a Ti(III) species bearing a benzyl-type polymer chain derived from
the 2,1-insertion of styrene [98]. In the polymerization mediated by FI catalysts,
such species can be generated via the ligand transfer reaction from an initial
cationic Ti(IV) species [L02TiIV–Me]+ to Me3Al included in MAO, resulting in
mono(phenoxy–imine) Ti(III) species (See Sect. 1.2.4). Although the cationic
Ti(IV) species derived from complexes 1 and 43 seemed to be inactive toward
isospecific styrene polymerization, the fluorinated version of cationic species
derived from 21 and 39 were active due to higher electrophilicity from the C6F5

groups, furnishing highly isotactic polystyrene. Given the C2 symmetry of these FI
catalysts, and by comparison with the syndioselective propylene polymerizations
described above, it is pertinent to postulate that enantiomorphic site control and

Table 1.8 Effects of the substituents of the phenoxy–imine Ti complexes on styrene polymer-
ization behavior

R2

O

N

R1

TiCl2

2

Entry Complex R1 R2 Activity [g-polymer/
(mmol-M h)]

Mn
a

(kg/mol)
Mw/Mn

a Tm
b (�C) Tacticityc

1 1 Ph tBu 0.56 215 7.5 275 syn
2d 1 Ph tBu 0.12 779 2.4 275 syn
3 43 Ph TMS 0.64 132 9.0 279 syn
4 21 C6F5

tBu 5.21 10 4.4 224 iso
5 39 C6F5 TMS 10.15 8 2.3 213 iso
6d 39 C6F5 TMS 1.37 10 2.4 217 iso

Polymerization conditions toluene 30 mL, styrene 100 mL, complex 0.2 mmol, dried MAO
50 mmol, 20 �C, 60 min. Results are based on 2-butanone-insoluble polymers
a Determined by GPC (PS calibration)
b Determined by DSC
c Determined by 13 C NMR (syn: syndiotactic, iso: isotactic)
d 0 �C, 360 min
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slow or no K/D isomerization may result in iPS. The decomposition to Ti(III)
appeared to be suppressed at least below 20 �C for the fluorinated complexes.
Consistent with this scenario, raising polymerization temperature or premixing of
the fluorinated complexes with MAO gave mixtures of iPS and sPS, presumably
because the formation of the assumed Ti(III) species are facilitated under such
conditions.

1.4 Copolymerization by FI Catalysts

1.4.1 Ethylene/a-Olefin Copolymers

Copolymerization of olefinic monomers results in a broad range of polyolefin
products possessing a wide spectrum of physical and mechanical properties that
are tunable according to the types of comonomer, the comonomer composition,
and the sequence distribution of the comonomers. The property tuning is a delicate
operation that requires production processes and catalyst performance to act in
harmony, therefore, a lot of research has gone into developing highly active cat-
alysts capable of producing copolymers with the desired molecular weights and the
efficient incorporation of a wide variety of comonomers.

As mentioned in Sect. 1.2, FI catalysts are widely tunable in their steric and
electronic properties, and hence systematic studies on the relationship between the
polymerization characteristics and the diverse ligand structures have been
conducted.

Ethylene/propylene copolymerizations were carried out using Ti–FI complexes
1, 44–49 bearing a variety of R2 substituents of various sizes, and the results are
summarized in Table 1.9 [99]. Complexes 44–47 bearing secondary alkyl R2

groups show almost constant propylene uptake (ca. 26 mol%), which was much
higher than that for complexes 1 and 48 having tertiary alkyl R2 groups (6.3 and
4.2 mol%, respectively). These copolymerization results imply that steric con-
gestion near the a-carbon of the R2 substituents determines propylene uptake rather
than the entire volume of the R2 substituents. On the other hand, the activities
among the secondary alkyl R2 became higher in proportion to the volume of the
substituents, that is, cyclododecyl [ cyclooctyl [ cyclohexyl [ iPr, although
complexes 1 and 48 (tertiary R2) deviated from the relationship. This activity trend,
at least among the secondary R2 groups, is consistent with the results on Zr–FI
catalysts discussed in Sect. 1.3.1.1, that is, the larger R2 substituents furnish cata-
lysts with higher activity. Interestingly, the trade-off between activity and como-
nomer uptake induced by the size of the R2 substituents is not the case for complex
49 having a phenyl group as R2, which demonstrates much higher activity and
propylene uptake than any of the other complexes. The X-ray crystal structures of
complexes 1, 45, and 49 (Fig. 1.11a–c) suggest that complex 49 is not really less
crowded around the reaction sites than complex 45 (R2 = cyclohexyl), or rather
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comparably crowded relative to complex 1 (R2 = tBu), judging from the distances
between the chlorine and the nearest carbon in the ligands (1: 3.97 Å/4.00 Å, 45:
4.53 Å/4.64 Å, 49: 3.76 Å/3.91 Å).

In copolymerization of ethylene with higher a-olefins (Table 1.10), the como-
nomer uptake shows dependency on the size of the cycloalkyl R2 substituents:
cyclododecyl C Ph [ cyclooctyl [ cyclohexyl � tBu for both 1-hexene and
1-decene. The activities also follow the order of Ph � cyclododecyl [ cyclooc-
tyl [ cyclohexyl � tBu. Again, complex 49 (R2 = Ph) supports excellent
comonomer uptake and copolymerization activities at the same time.

Table 1.9 Ethylene/propylene copolymerization using complexes 1, 44–49 with dried MAO

O

N TiCl2

2

O

N TiCl2

2

O

N TiCl2

2
O

N TiCl2

2

O

N TiCl2

2

44 45 46

47 Ph
Ph

O

N TiCl2

2

48 49

Entry Complex Yield
(g)

Activity [kg-
polymer/
(mmol-M h)]

Mw
a

(kg/mol)
Mw/
Mn

a
Propylene
contentb

(mol%)

TOF for
ethylene
(min-1)

TOF for
propylene
(min-1)

1 44 0.147 0.18 20.4 1.30 26.4 68 24
2 45 0.380 0.45 57.3 1.36 26.0 177 62
3 46 0.728 0.88 83.2 1.65 26.2 339 120
4 47 0.911 1.09 78.2 1.72 25.5 429 147
5 1 0.541 0.68 69.1 1.88 6.3 350 24
6 48 0.320 0.38 12.7 1.95 4.2 214 9
7 49 2.93 3.42 42.1 1.82 38.8 1071 679

Polymerization conditions toluene 250 mL, complex 5.0 lmol, dried MAO 1.25 mmol, ethylene
feed 50 L/h, propylene feed 150 L/h, 50 �C, 10 min
a Determined by GPC (PE calibration)
b Determined by 13C NMR
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The origin of this unusual behavior for complex 49 is not clear but DFT
calculations on a cationic ethylene p-complex having a Ti-bound n-propyl group
suggested that the phenyl groups can easily release the steric constraints by
rotation and that the species is sterically the most open (Fig. 1.11d).

R2 effect on comonomer uptake in the copolymerization of ethylene and pro-
pylene was also investigated for Zr–FI catalysts, 50–53 [100]. The monomer
reactivity ratios in Table 1.11 again demonstrated that the ability of comonomer
incorporation is basically attributable to the size of the R2 substituents. The
monomer reactivity ratios (r1 and r2, monomer 1 = ethylene, monomer 2 = pro-
pylene) represent relative reactivity of an active species to ethylene and propylene.

Fig. 1.11 Steric crowdedness of Ti–FI complexes measured by the distances from the Cl to the
nearest carbon (a–c determined based on the X-ray structures, d a hypothetical structure that has
the most open coordination sphere)

Table 1.10 Ethylene/1-hexene and ethylene/1-decene copolymerizations using complexes 1,
45–47 and 49 with dried MAO

Entry Complex Comonomer Activity [kg-polymer/
(mmol-M h)]

Mw
a (kg/

mol)
Mw/
Mn

a
Comonomer
contentb (mol%)

1 45 1-hexene 0.85 48.3 1.16 5.6
2 46 1-hexene 1.05 56.1 1.18 8.4
3 47 1-hexene 1.34 42.8 1.27 12.6
4 1 1-hexene 0.71 41.7 1.29 1.5
5 49 1-hexene 8.42 125.7 1.92 12.0
6 45 1-decene 1.60 55.9 1.17 4.0
7 46 1-decene 2.41 65.3 1.26 7.2
8 47 1-decene 2.96 56.6 1.39 9.6
9 1 1-decene 0.79 55.3 1.32 1.0
10 49 1-decene 10.90 145.2 1.97 8.7

Polymerization conditions toluene 200 mL, complex 2.5 lmol, dried MAO 1.25 mmol, ethylene
feed 100 L/h, 1-hexene or 1-decene 50 mL, 25 �C, 5 min
a Determined by GPC (PE calibration)
b Determined by 1 H NMR
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For example, the r1 values are defined as k11/k12, where k11 is the rate constant of
ethylene insertion to the ethylene last inserted species, L02Zr–CH2CH2–R, and k12

is the rate constant of propylene insertion to the same species. The r1 for complex
50 bearing cyclooctyl groups as R2 is 16, meaning that ethylene is 16 times more
reactive than propylene in this copolymerization at 100 �C (ethylene selectivity).
The ethylene selectivity of the CMe2Ph group as R2 becomes extremely high at
r1 = 152, despite the difference of only one carbon in the substrates and a high
polymerization temperature of 100 �C. The r1 values for complexes 51 and 52
having R2 = tBu fall in between 50 and 53. DFT calculations on the transition
states of ethylene or propylene insertion to the cationic L02Zr–CH2CH2CH3 species
suggested that one of the methyl groups of CMe2Ph was forced to direct to the
metal and immobilized in the conformation due to the higher rotational barrier of
the CMe2Ph group compared to that of the tBu group. Therefore, the substrate
selection of the Zr–FI catalysts seems to be made based on the size and shape of
the reaction sites as if they were a molecular zeolite.

1.4.2 Ethylene/Cyclic Olefin Copolymers

Ethylene/cyclic olefin copolymers (COCs) represented by ethylene/norbornene
(NBE) copolymers display, in general, high thermal stability (high Tg) and useful
optical properties such as high transparency and low birefringence. Because COCs

Table 1.11 Effects of the substituents of the phenoxy–imine Zr complexes on monomer
reactivity ratios in ethylene/propylene copolymerizations

O

N ZrBn2

2

50

tBu

O

N ZrBn2

2

51

tBu

O

N ZrBn2

2

52

O

N ZrBn2

2

53
Ph

Entry Complex Propylene in feeda

(mol%)
Propylene conversion
(%)

Propylene contentb

(mol%)
r1

1 50 32.25 8.6 2.39 16
2 51 58.84 7.6 2.59 45
3 52 58.84 7.7 1.79 69
4 53 58.84 0.42 0.88 152

Polymerization conditions hexane 5.0 mL, dried MAO Al/Zr = 300, 100 �C, 10 min, 7.0 atm
gauge pressure maintained by continuous ethylene supply
a Calculated initial monomer composition
b Determined either by IR or 13 C NMR
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are heteroatom-free hydrocarbon polymers, they are lightweight and possess high
stability to acids and alkalis, and also high moisture barrier properties. Accordingly,
COC products are used in food and pharmaceutical packaging, medical appliances,
plastic lenses, filters, and optical storage media. Because cyclic olefins used for
COCs are mostly bicyclic olefins, they are sterically encumbered and more nucleo-
philic than ethylene or a-olefins (HOMO energy level, NBE: -7.25 eV, ethylene:
-8.15 eV, propylene: -7.66 eV by DFT calculations) due to ring strain [101].

Copolymerization of ethylene and NBE was examined using Ti–FI catalysts as
a comparison to typical metallocene catalysts (rac-(C2H4)(1-indenyl)2ZrCl2 (42)
and Me2C(9-fluorenyl)(Cp)ZrCl2 (56)), which are well-known for achieving the
high incorporation of NBE [101]. The results compiled in Table 1.12 demonstrate
that Ti–FI catalysts can achieve strikingly high NBE incorporation relative to
high-performance group 4 metallocene catalysts. While complex 54 (R2 = Me)
combined with MAO was a poor catalyst in terms of activity, complexes 49 and 55
(bearing the phenyl group at the R2 position) with MAO activation formed
copolymers of very high Tg’s and NBE contents (49: Tg 120 �C, NBE content
45.7 mol%; 55: Tg 126 �C, NBE content 46.1 mol%) and with high efficiency
under the given conditions. These results indicate that the phenyl group as R2

substituents are again advantageous when incorporating comonomers.
Microstructural analysis by 13C NMR demonstrated that the obtained copoly-

mers were nearly perfectly alternating and consecutive NBE insertions were strictly
prohibitive (49: –NBE–E–NBE–E–NBE– 96.1%, –E–NBE–(E)n– 3.9%; 55: –NBE–
E–NBE–E–NBE– 96.0%, –E–NBE–(E)n– 4.0%, E stands for an ethylene unit).
As implied by the extremely narrow molecular weight distributions, 49/MAO
mediates living ethylene/NBE copolymerization under the conditions examined.
Living ethylene/cyclic olefin copolymerization was often observed for several other
related catalysts. The living nature observed for these copolymerizations is con-
sidered to stem from several factors or a combination of them such as: (1) a certain
level of living nature for ethylene homopolymerization; (2) nearly impossible b-H

Table 1.12 Results of ethylene/NBE copolymerization with the phenoxy–imine Ti and typical
metallocene-based complexes

Entry Complex R1 R2 Activity [kg-polymer/
(mmol-M h)]

NBE contenta

(mol%)
Tg

b

(�C)
Mw

c (kg/
mol)

Mw/
Mn

c

1 54 Ph Me 0.65 48.7 120 186 1.09
2 49 Ph Ph 3.27 45.7 120 573 1.21
3d 55 Pyrrolyl Ph 6.98 46.1 126 215 1.91
4 42 – – 1.75 27.7 49 476 1.74
5 56 – – 1.40 28.0 49 259 1.58

Polymerization conditions toluene 250 mL, complex 1.0 lmol, charged norbornene 5 g,
ethylene 0.1 MPa, dried MAO 1.25 mmol, 25 �C, 10 min
a Determined by 13 C NMR
b Measured by DSC
c Determined by GPC (PS calibration)
d Complex 0.5 lmol
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transfer for the NBE-inserted chain end due to ring strain; (3) highly electrophilic
NBE to form a stable NBE-coordinated p-complex as a possible dormant species.

1.4.3 Ethylene/Polar Functional Monomer Copolymers

Copolymerization of non-polar olefins with polar functional olefins is one of the
long-standing challenges in the field of transition metal catalyzed olefin polymer-
ization. Polyolefins having polar functional groups are believed to add useful
material properties to unless otherwise non-polar olefinic materials and copoly-
merization provides a direct and straightforward way to afford such polymers unlike
the energy-demanding, less controllable, post-polymerization radical grafting.

Although late-transition metal complexes have made a lot of progress in this field
by taking advantage of their high tolerance to functional groups, examples for early
transition metal catalysts have been limited to polymerization in the presence of a
large excess of Lewis acids and/or using polar comonomers whose functionalities are
masked by innocuous protecting groups to prevent poisoning. Nevertheless, activities
are significantly depressed and the comonomer uptake is generally very low. A recent
study has revealed that Ti–FI catalysts exhibited significant functional tolerance,
much higher than that shown by group 4 metallocene catalysts.

Copolymerization of ethylene with 5-hexen-1-yl acetate (HA) was examined
with Ti–FI catalysts activated with MAO [102]. Under the conditions at 4.0 mmol/
L of HA, where metallocene compounds, Cp2MCl2 (M: Ti, Zr) and Me2Si(C5Me4)
(tBu–N)TiCl2 (CGC), were completely inactive, Ti–FI catalysts 1, 49, 57–61
demonstrated appreciable activities and comonomer uptake (Table 1.13).

The R2 effects on comonomer uptake appear to hold true also for these copo-
lymerizations, that is, the phenyl group as R2 established higher activities and
higher comonomer uptake than the R2 = tBu group as discussed in Sect. 1.4.2
[99]. Significantly, complexes 49 and 57 remained active even at [HA] =

21.0 mmol/L, which is higher than the concentration of MAO (20.0 mmol/L),
indicating the remarkable tolerance of the Ti–FI complexes to the polar groups. In
order to shed light on the observed tolerance, the calculations on the methyl
cationic species coordinated by ethylene and by the carbonyl group of HA were
carried out, showing that the energy differences between these two species
(DE) for the Ti–FI complexes were much smaller (37–61 kJ/mol) than those of the
metallocenes and CGC ([100 kJ/mol), indicating that the Ti–FI catalysts were
significantly more tolerant to the functional group. These differences in DE appear
to come from the electronic properties of these two classes of catalyst, probably
stemming from the bonding properties between the metal and the ancillary spec-
tator ligands (see Sect. 1.2.3).

As a way of verification that the electronic properties can affect the copoly-
merization behavior, R1 substituents were varied in electronic nature. The results
revealed that electron withdrawing groups significantly decreased the copoly-
merization activities (complexes 60 and 61), which is opposite to the ethylene
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homopolymerization, probably because of stronger coordination of the carbonyl
group to the more electrophilic species. These results suggest that the nature of
metals can be electronically tuned by ligands to tolerate the functional groups to
some significant extent even with early metals.

1.4.4 Block Copolymers

One of the most promising applications that take advantage of the highly con-
trolled living nature of Ti–FI catalysts possessing ortho-fluorinated aryl R1 is the
production of ethylene- and propylene-based block copolymers consisting of
multiple segments bearing different properties (crystalline/amorphous, high Tg/low
Tg, etc.). The first examples of the synthesis of olefin block copolymers were
disclosed by scientists at Mitsui Chemicals in 2000 [50], in which diblock and
triblock copolymers such as PE-b-sPP, PE-b-EPR, PE-b-EPR-b-sPP, PE-b-EPR1-
b-EPR2, PE-b-EBR (EBR: poly(ethylene-co-but-1-ene)), sPP-b-EPR, sPP-b-EPR-
b-PE, EPR1-b-EPR2-b-PE were prepared (EPR1 and EPR2 stand for EPR having

Table 1.13 Results of ethylene/HA copolymerization with the Ti–FI complexes

Ph

O

N

R1

TiCl2

2 R1 =

57

tBu

58

tBu tBu

59

OMe

60

CF3

61

F3C CF3

Entry Complex Comonomer
(mmol)

Activity [g-polymer/
(mmol-M h)]

Comonomer
contenta (mol%)

Mw
b (kg/

mol)
Mw/
Mn

b

1 1 1.00 86 0.13 497 2.1
2 49 1.00 337 0.81 269 2.2
3 57 1.00 341 0.90 273 2.2
4 58 1.00 515 0.74 387 2.4
5 59 1.00 353 0.66 252 2.2
6 60 1.00 178 0.50 190 2.4
7 61 1.00 28 –c –c –c

8 49 2.00 68 1.97 59 1.8
9 57 2.00 71 1.90 69 1.7
19 58 2.00 61 1.82 67 2.2
11 59 2.00 56 1.98 55 1.8
12 60 2.00 17 –c –c –c

13 49 5.25 11 2.45 20 1.8
14 57 5.25 15 3.20 23 1.6

Polymerization conditions toluene 250 mL, complex 20 lmol, dried MAO 5.00 mmol, ethylene
0.1 MPa, 25 �C, 10 min
a Determined by 1 H NMR
b Determined by GPC (PS calibration)
c Not determined
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different compositions) by sequentially adding different monomers or monomer
mixtures of different compositions. After that, synthesis and characterization of
various block copolymers using living FI catalysts were investigated by many
groups [51–53, 93, 94, 103–113] and in some instances evaluation of the block
copolymers on physical, thermal, morphological, mechanical, and optical prop-
erties were also carried out to assess their properties as novel materials.

Linear block copolymers possessing covalently linked multiple segments hav-
ing different and contrasting properties (e.g., crystalline and amorphous) are
known to show higher order structures through microphase separation [114].
Several groups have reported that block copolymers, including sPP-b-EPR [53,
107, 109], sPP-b-PE [109], and sPP-b-EPR-b-sPP [115], can have a variety of
ordered or disordered (random) morphologies observed by transmission electron
microscopic [53, 109, 110, 115] or small angle neutron scattering analysis [107].
A single molecule of PE-b-EPR was characterized by atomic force microscopy, in
which the hard PE core surrounded by a soft shell of the EPR segment was clearly
observed [106].

Scientists at Mitsui Chemicals successfully prepared a series of diblock
copolymers consisting of PE and poly(ethylene-co-a-olefins) (a-olefins: 1-hexene,
1-octene, and 1-decene) with well defined structures using complex 62 (Chart 1.2)
[108]. Well-controlled living polymerizations allowed for systematic investiga-
tions on thermal and mechanical properties of these diblock copolymers. Tensile
tests on the diblock copolymer exhibited better extensibility and toughness in
comparison to the corresponding random copolymer and the polymer blend.

Scientists at Dow Chemical Co. achieved production of olefin multi-block
copolymers using two different catalysts capable of a catalytic chain growth on zinc
[116–118]. In catalytic chain growth, a growing polymer chain on a transition metal
catalyst is transferred to a main group metal (zinc in this case) via transmetallation,
which is transferred back to another transition metal in a reversible manner. When
this transmetallation is comparable to chain propagation in rate, all Zn–R species
have an equal opportunity, on average, to enter the catalytic chain growth on the
catalyst, resulting in a living-like polymerization. When there are two catalysts that
are very different in ethylene selectivity in copolymerization, the segments having
high and low ethylene contents are covalently connected through the multiple
reversible chain transfer reactions, which afford multi-block copolymers.
Hf complex 63, which produces amorphous ethylene/1-octene copolymers (EOR),

 

tBu

O

N ZrBn2

2

tBu

N

N

HfMe2

iPr
iPr

iPr

O

N TiCl2

2

62 63 64

F

FF

F

FChart 1.2 Structures of
complexes 62–64
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and a Zr–FI catalyst 64 bearing bulky R2 substituents, which showed very high
ethylene selectivity even in the presence of a high concentration of 1-octene, were
employed in the copolymerization of ethylene and 1-octene in the presence of
diethyl zinc. Since both complexes are capable of the rapid reversible chain transfer
with alkyl zinc, the polymerization afforded multi-block copolymers of the type,
(PE-b-EOR)n. These block copolymers display about 40 �C higher melting tem-
perature (Tm * 120 �C) than random copolymers with similar densities, while
maintaining excellent elastic properties at a higher temperature range, behaving as
typical thermoplastic elastomers [116, 119].

1.5 Concluding Remarks

In order to respond to diverse market demands, polymerization catalysts need to be
capable of synthesizing a wide variety of polymers, in other words, polymerization
catalysts need to be highly active, very selective, and extremely versatile.

Among the ancillary ligands used for transition metal complexes, phenoxy–
imine ligands relative to other ligand motifs possess a larger diversity of structure,
which offers more opportunities and a higher degree of freedom for catalyst design.
For example, the R1 and R2 substituents of FI catalysts are conveniently located at
strategic positions, and thus provide us with efficient means to control the poly-
merization characteristics in a rational manner. Phenoxy–imine ligands also appear
to possess an inherent electronic nature, leading to efficient olefin insertion reac-
tions, whatever the combination of transition metals. These unique and key fea-
tures of FI catalysts are thus responsible for the creation of a wide variety of new
polyolefinic value-added materials. In addition to this, research and development
of FI catalysts has enhanced our understanding of the causal relationship between
catalyst structures, polymerization characteristics, primary and higher order
polymer structures, and the chemical and physical properties of the resultant
materials, building a bridge across catalysis science and material science.
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Chapter 2
Development of Imine Derivative Ligands
for the Exocyclic Activation of Late
Transition Metal Polymerization
Catalysts

Brian C. Peoples and René S. Rojas

Abstract Transition metal complexes bearing imine and imine derivative ligands
represent a growing number of polymerization catalysts in development. The ease
of synthesis and large number of structural variations which are readily accessible
make these systems of great interest both academically and industrially. One
subset of imine-based complexes are those which bear exocyclic functionality
which can interact with Lewis acids. These systems are particularly interesting as
the activation of the complex occurs remotely, away from the active center, and
that the activation can proceed using stoichiometric concentrations of activators. In
addition, the presence of the exocyclic functionality may present an effective
method to heterogenize polymerization catalysts. In this chapter, the development
of such systems and in particular a-iminocarboxamide nickel catalysts and
derivative species are discussed.
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bipy 2,20-Bipyridyl
Bz Benzyl
Cn Complex
COD 1,5-Cyclooctadiene
Dipp Diisopropylphenyl
dme Dimetoxiethane (ethylene glycol dimethylether)
en 1,2-Diaminoethane
Et Ethyl
Ln Ligand
Ls Ligand salt
Lut Lutidine (2,6-dimethyl pyridine)
M Metal
MAO Methylaluminoxane
Me Methyl
NacNacH 1,3-Diketimines
Px Metal precursor
Ph Phenyl
Py Pyridine
r.t. Room temperature
THF Tetrahydrofuran
Ts-CN Para-toluenesulfonylcyanide
tmeda N,N,N0,N0-tetramethylethylenediamine
X Halogen or other anionic group
Y Alkyl or functional groups
Z\Z0 Bidentate ligand (where Z is the coordinating atom)

2.1 Introduction

Olefins can be upgraded to higher value products through a number of industrial
processes, two of the most prevalent are the oligomerization of olefins to higher
alkanes and the production of polyolefins via transition metal catalysis. Polyolefin
production has grown in step with the development of the global economy and is
expected to continue with time [1]. These materials are desirable for many reasons,
including their low cost and the ease of which they can be shaped into many forms
and sizes. Since the development of the first Ziegler-Natta (1953–1954) and
Phillips catalysts (late 1940s) [2] there has been a significant drive to increase
catalytic activity, increase the control of polymer structure and comonomer con-
tent, and at the same time reduce the cost of the polymerization system [3, 4]. The
development of the metallocene catalyst systems has allowed for increased control
of polymer structure and molecular weight distribution, resulting in highly
stereospecific systems and systems which can produce polymers with novel
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properties [5–7]. Many of these systems however, require the use of high
concentrations of cocatalysts, which has generated considerable interest in the
development of catalysts which could produce well defined materials either
without the use of cocatalysts, or with only stoichiometric quantities thereof.

It was realized, that such systems could be developed using late transition
metals in particular the group 8–10 metals and in particular nickel and iron
[8–12]. The relatively low sensitivity of these metals to water and oxygen made
the metals less dependent on the use of cocatalysts [13]. This resulted in the
development of several generations of late-transition metal catalysts. Initial work
with these systems was focused on the modification of the nickel-based shell
higher olefins process (SHOP) oligomerization catalysts, it was discovered by
Keim et al. [10, 14–15] that the catalysts could be modified via the introduction of
steric bulk to the ligand, to produce higher molecular weight materials (Fig. 2.1)
[16]. Subsequent variations to the ligand structure resulted in higher molecular
weight materials, and eventually very good stereo control of the polymers [8, 10].
Perhaps the most recognized and successful of these variations are the Brookhart
diimine catalysts (Fig. 2.1) [17, 18]. These systems produce high molecular
weight materials with high activities by controlling the chain termination and
transfer rates using the pseudo-axial bulk of the ligand [19, 20]. This under-
standing of the function of pseudo-axial bulk led to the development of other
catalyst systems such as the Grubbs salicylaldimine (Fig. 2.1) [21]. The majority
of these systems still require the use of a cocatalyst such as methylaluminoxane
(MAO) in order to become active. Therefore, one of the main drives in the design
and synthesis of late transition metal catalysts is the development of systems
which are either single component, or which can be activated with stoichiometric
amounts of activator.

Fig. 2.1 Examples of
late transition metal
polymerization catalyst
structures

Fig. 2.2 Structure of
a-iminocarboxamide
catalysts
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Nickel a-iminocarboxamide catalysts (Fig. 2.2), have been demonstrated to be
active without the use of aluminum-based cocatalysts, and even as single com-
ponent catalysts [22, 23]. While at first glance the a-iminocarboxamide-based
catalysts appear similar to many of the other families of late transmission metal
polymerization catalysts, they have many subtle, but critical differences. Similar in
structure to the Brookhart diimine catalysts they share some of the basic chemistry,
both in the synthesis of the basic ligand set and as well as in the polymerization
chemistry. Closer inspection of the ligand structure reveals however, that the
systems have properties which are unique. Some of the more notable differences
are the anionic nature of the ligand, the presence of the carboxamide group and the
presence of a stabilizing base such as PMe3. Each of these differences imparts to
the catalyst certain characteristics which are desirable for either single component
activation or stoichiometric activation.

Two of the three substantive differences are linked together. As the metal center
of the catalyst is almost always four coordinate, the anionic nature of the ligand
structure requires that there be a neutral donor ligand associated with the metal
center. This maintains the metal center in the preferred 2+ state, while at the same
time allowing the open site to be generated fairly readily. This neutral donor ligand
has proven useful, as when removed in the presence of monomer, it has been
shown that the catalysts are active for polymerization. When the donor ligand is
selected carefully it is even possible to displace the donor ligand using nothing
more than increased monomer concentration/pressure [23, 24].

The final difference is the structure and presence of the carboxamide group in
the ligand backbone. In a-iminocarboxamide systems the presence of this group
allows for the ligand to interact, through the carbonyl, with Lewis acids present in
the reaction medium forming a Zwitterion [22, 25]. This withdraws electron
density from the metal center resulting in increased polymerization activity, and
also provides a method for the catalyst to be supported on solid Lewis acids [26].
Finally, in a-iminocarboxamide systems, the presence of the carboxamide groups
allows for the coordination of the ligand to the metal center in two distinct ways,
either in an N\O or a N\N configuration and is controlled primarily by the steric
bulk of the ligands [27].

The a-iminocarboxamide-based ligands have diverse chemical and structural
variations which impart to the final polymerization catalysts characteristics which
make them particularly well suited to the polymerization of olefins without
cocatalysts. Their ability to generate active species via exocyclic activation with
Lewis acids, has led to developments in the design and synthesis of related species,
in particular novel six-membered ring systems, which have some degree of con-
jugation as well as an exocyclic functional group through which the electron
density at the metal center can be modulated.

In this chapter, several topics related to imine derivative catalysts, including;
the synthesis of imine derivative ligands particularly those bearing exocyclic
functionality, their metallation, the Lewis acid adduct formation and isolation, and
the polymerization behavior of the complexes activated by Lewis acids through
the exocyclic functionality, will be discussed.
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2.2 Ligand Synthesis

Imines as a class, are important compounds in catalyst ligand design because of the
reactivity associated with the free electron pair present in the sp2 hybridized
nitrogen. In addition, the facile synthesis of these compounds allows for the
generation of a wide variety of steric and electronic environments (Fig. 2.3). This
has led to their widespread application in laboratory and industrial synthetic
processes particularly as part of ligand frameworks [8]. In addition, imine ligands
are important substrates for the production of chiral amines with high enantiose-
lectivity [28] and the epoxidation of olefins [29]. Traditionally, imines were
synthesized from the reaction of ketones or aldehydes with amines in the presence
of an acid catalyst (Fig. 2.3). This reaction however, becomes less efficient as the
size of the substituents increase, requiring long reaction times ([24 h) at elevated
temperatures ([120 �C) and higher concentrations of acid catalysts. Other strat-
egies for the production of imine ligands include the use of TiCl4 [30] and through
oxidation of amines by hypervalent iodine [31]. Several methods have been
developed to work around the use of these conditions. The use of transition metal
complexes (i.e. TiCl4) to form a complex with the ketone/aldehyde to make the
group more accessible to nucleophilic attack from the amine has been demon-
strated to be an effective method to form imines with large steric impediments
[32–35]. A solvent free method has been developed using microwave synthesis
which allows for the relatively facile generation of imines derived from amines
and ketones [36].

2.2.1 Grafting Functionality onto the Ligand Backbone

The majority of the ligand structures discussed in this chapter, when incorporated
into transition metal complexes, are active for the polymerization/oligomerization
of olefins. One of the main goals however, in this and other groups, is the remote
activation of the precatalyst in the catalytic system. This requires the introduction
of functional groups into the ligand backbone which can interact with the activator.
In much of the reported literature these activators have been Lewis acids, although
other groups could conceivably used. The groups introduced therefore have
been Lewis bases, in particular carbonyls (as both ketones and aldehydes),

Fig. 2.3 Synthetic methods for the production of imine ligands
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nitrile groups, olefins, amines and even nitrous substituents [37]. Some of these
groups can be incorporated by selecting the appropriate starting materials, whereas
some of them would interfere with the condensation reactions, and as such must be
introduced after the ligand backbone has been formed. The introduction of the
functional groups into six-membered ring systems is particularly attractive as
the protons on the a-carbon (relative to the imine/ketone) can easily be removed
(for example by NaH, BuLi, etc.), generating metallated ligands which can be
functionalized easily using a variety of reagents.

A ketone can be inserted onto b-ketoimine ligand frameworks at the a-position,
via the use of copper acetate in the presence of O2 at 50 �C (Fig. 2.4) [38, 39]. One
of the newest, and most interesting ligands bearing functionalities are those that
contain a nitrile group. The nitrile functionalized NacNac–H can be produced via
the deprotonation of the NacNac–H ligand with n-butyllithium (Fig. 2.4), followed
by the reaction of the resulting anion with the reagent para-toluenesulfonylcyanide
(Ts-CN). This selectively introduced the nitrile functional group at the a-position
of the ligand framework in good yield [40].

Another facile method to include functionality into the final ligand is through
the selection of starting reagents which include either excess functionality, or
unreactive functionality. One example of this are ligand systems derived from
triacetylmethane. This reagent, which bears three equivalent ketones proved a
convenient scaffold onto which 1, 2 or even 3 anilines can be condensed (Fig. 2.5).
Regardless of how many condensations reactions take place on the scaffold, only
two of the groups can coordinate to a metal center, leaving a third free to interact
with other species [41]. Additionally, after deprotonation, the ligand becomes
conjugated, allowing for efficient transfer of electron density from the metal center
to the exocyclic group.

Fig. 2.4 Methods to incorporate functionality into the ligand backbone
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Exocyclic activation sites can be introduced in places other than the ligand
backbone. The aryl imine substituents themselves can serve as convenient loca-
tions to introduce functionality. For instance the use of aminopyridine or para-
methoxyaniline can both be used in this manner, allowing for the introduction of
functionality while maintaining the ligand core geometry and chemistry [42, 43].

2.2.2 FTIR Characterization of Imine Ligands

While FTIR is not necessarily one of the most commonly used techniques to
characterize imine ligands, it can provide information about the structural char-
acteristics of the ligand. The imine functionality has a characteristic band which
allows for facile characterization and a limited evaluation of the electronic envi-
ronment of the group. In many systems there are two nitrogens present in the
ligand, the first being an amine (R1–NHR2) and the second an imine (R1C=NR2)
which are connected via a conjugated structure. This produces a system in which
the IR adsorption takes place in two distinct regions. The first is a weak absorption
in the range of 3300–3450 cm-1, which is associated with the amine, while the
imine ([C=NR) has a signal which occurs in a band centered in the region of
1590–1670 cm-1 [28, 44]. These signals are seen in ligands used in both five- and
six-membered ring systems. The band shift is mainly dependant on the electronic
properties of the imine substituent, with the signal shifted to higher wavenumbers
when the substituent is an electron donor, and to lower wavenumbers when the
substituent is electron withdrawing [28, 45].

2.2.3 NMR Characterization of Imine Ligands

NMR is the method most often used for the characterization of imine ligands.
Generally, 13C NMR is used for the identification of imine complexes as imines
lack protons and 14N enriched precursors, which are expensive would be necessary
to obtain spectra in reasonable lengths of time.

In order to deal with the large amount of available NMR data on a variety of
ligand families, three sets of imine-based ligands were selected to base the NMR
section on. In b-diimine ligands NMR characterization is the most straightforward.
Due to the conjugation of the system, the proton associated with the amine is
shifted to lower field in the 1H NMR, and appears in the range from 11 to 15 ppm,

Fig. 2.5 Triacetylmethane
as a scaffold for ligand
development
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indicating a very acidic nature.1 In the 13C NMR the signal associated with the
imine carbon is located at in the range of 150–165 ppm [32, 48–50]. In the case of
ketoimines, the characterization of the ligand is less straightforward due to the
tautomerism of the ligands between the keto-amine and alcohol-imine forms. In
many instances it is possible to observe both the imine as well as the carbonyl
groups. As is expected, the carbonyl is observed at lower field, typically at
190 ppm, whereas the imine is observed at 160 ppm (similar to the range observed
in the b-diimines) [41, 51–53]. In the literature, the analysis of the NMR spectra is
often not clear on the distinction between the two different tautomers. During the
preparation of this chapter the authors came across many instances in the literature
where the NMR assignments list situations in which the N was listed in the 13C
NMR as a imine, while at same time in the 1H NMR was listed as an amine.
Obviously, this cannot be the case, however, it is understandable as the conjugated
nature of the ligand makes the location of the proton and the true nature of the
carbonyl/imine uncertain.

Finally, the third type of imine system to take into consideration are the sali-
cylamide systems [21]. In these systems the shifts are similar to those observed in
ketoimines. It appears from the literature that the hydrogen is shared between the
two basic functionalities on the ligand [54, 55]. There is some debate as to the proper
assignment in these systems as the evidence for the location of the proton is unclear.

2.2.4 Imine Ligand Properties and Coordination Modes

Much of the design and coordination of polymerization catalysts can be explained
using Pearson’s hardness/softness theory. This involves matching the relative
electron densities of the coordinating ligands to the vacancies on the metal center.
While early transition metals are most always hard acids, the late transition metals
are normally borderline hard acids, indicating that they prefer to coordinate bor-
derline hard bases. The typical groups used for metal–ligand interactions contain
either O, N, or P. Within this group, O is known to be a hard base, while P is
known to be a soft base, only nitrogen is a borderline base making it ideal for
interactions with late transition metals [56, 57]. This in many ways makes the
imine ligand derivatives more suitable for coordination of both early and late
transition metals. To a limited extent, this hardness can be modified by variation of
the substituents on the imine [58–60] controlling the metal–ligand interaction. In
the preparation of coordination complexes, bidentate ligands with at least one
imine group in the structure have an outstanding ability to chelate transition
metals. Some general examples are shown in Fig. 2.6.

1 Keep in consideration that solvent effects can greatly change the chemical shifts of these
groups and in particular the protons associated with the imine/alcohol, however, the absolute
trend should remain consistent.
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In the ligand types above (L7–L11), nearly any transition metal can be chelated,
however, there are substantial differences if the ligand used is a neutral species or
previously deprotonated and metallated (anionic ligand). In addition, the stabil-
ization can vary greatly depending on the size of the chelate ring (Fig. 2.6). In the
case of complexes with low coordination numbers, such as the late transition
metals (Ni, Pd, Cu) and when using a neutral ligand, a more favorable reaction is
observed in (L7), in the case of (L9) a higher temperature and longer reaction times
are required [61–63]. This is due to the fact that a better electron transference to
the metal occurs in ligand systems which are planar (conjugated). In ligands with
sp3 nitrogen or carbon in the ligand framework the coordination is more com-
plicated due to the rotation of the ligand. The bidentate ligands which form five-
member rings are easier to synthesize because the bite angle of the ligand is less,
which generates a more open steric environment. Complexes with five-membered
rings have bite angles of ca. 80�, [64–66], whereas complexes bearing six-mem-
bered chelate rings have higher bit angles, ca. 90� [21, 38, 63]. In both cases the
metal can assume either a tetrahedral, pseudo-tetrahedral or square planar geom-
etry, depending on the steric environment around the metal center.

The majority of the ligand and derivatives shown in Fig. 2.6, can be deprotonated
by reaction with an equivalent of alkaline hydrides, butyl lithium or softer agents
such as potassium tert-butoxide [52, 66] and subsequently transmetallated using
simple and commercially available transition metal precursors. In late transition
metals, the deprotonated ligand allows access to five coordinate (mainly square
planar, or distorted square planar) complexes with coordination vacancies occupied
by organic monodentate ligands which stabilize the complex. These reactions are
rapid in comparison to those conducted using the neutral species, most likely due to
the driving force created by the elimination of the salt formed during the reaction.

2.2.5 Synthesis and Characterization of Specific Imine
Derivative Ligands

Imine-based ligands have played an important role in many aspects of catalysis.
As was shown in Sect. 2.2.1, the ligands are, in general, facile to synthesize and

Fig. 2.6 Examples of imine
derivative ligand structures
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they have the ability to be used with a wide range of metals. This has enabled them
to be used as supporting ligands in many catalytic processes. In many cases, the
synthesis of the ligands can be modified in order to generate complexes which
have diverse electronic and steric environments [67–71].

2.2.5.1 a-Iminocarboxamide

a-Iminocarboxamide ligands have been synthesized using a variety of synthetic
procedures [22, 24, 72], and more efficient methods have been developed with
increased steric bulk in the backbone [73] can be synthesized following standard
condensation reaction procedures [22]. An improved synthesis employs the use of
oxalyl chloride and pyruvic acid in benzene at room temperature in the presence of
triethylamine to generate pyruvic acid chloride. Addition of one equivalent of ani-
line results in reaction at the acid chloride site. This reaction takes place over a
period of 2 h and requires the addition of one equivalent of triethylamine.
A different aniline may be added at this stage to generate a-iminocarboxamide
ligands with different substituents at the two nitrogen sites. The second step requires
overnight heating to 110 �C, as mentioned previously, the more bulky 2,6-substi-
tuted phenyl groups require harsher reaction conditions and normally the reaction
proceeds with low yield. Two equivalents of aniline are added to pyruvic acid
chloride in cases where identical (symmetric) substitution is desired. Purification
can be accomplished by chromatography or crystallization, depending on the aryl
substituents. Many anilines are commercially available bearing a variety of sub-
stituents; other anilines can be readily synthesized using a number of methods, of
particular utility is the Suzuki cross-coupling reaction (Fig. 2.7) [27, 74–78].

It is important to note that the a-iminocarboxamide ligand is commonly used as
a deprotonated species and in theory, could be considered a tridentate ligand,
(N\N\O), however, due to the planar sp2 hybridization of the carboxamidate
carbon, only the nitrogen or oxygen can coordinate to a Lewis site together with
the imine nitrogen. Instead, the carboxamide group could interact in a single g3

fashion, however this is not very likely due to the substantial steric restraints.

2.2.5.2 a-Imine-b-ketone Ligand

Ligand frameworks such as 4-(2,6-diisopropylphenylimino)-3,3-dimethylpentan-
2-one and 3-(2,6-diisopropylphenylimino)butan-2-one (Fig. 2.8), L13 and L14,
respectively, can be easily prepared by condensation of the respective 2,3-but-
adione and 3,3-dimethylpentane-2,4-dione with equimolar amounts of the
respective aniline. This ligand framework allows for the mono, bi, or tridentate
binding mode to an electrophillic center (N/g2–C=C or O). This variety of binding
modes allows for several structures to be isolated and characterized.

In compounds such as L13, which have a break in the conjugation due to the sp3

carbon between the imine group and the acetate (–COCH3), the chelation
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properties could be depressed and act rather as a monodentate O-binding mode.
This is discussed in later sections.

The chelate properties of a similar ligand are increased by the removal of the
sp3 carbon. This allows a better coordination to the metal center and selectively the
bidentate system. In order to ensure the desired coordination to and electrophillic
site, a conjugated backbone is required, mainly because the delocalization of the
electron density helps to stabilize the final compound [67].

L13 and L14 ligand types or other imine derivatives can be accessed by simple
synthetic routes described previously, and enlarge the variety of ligands with
conjugated backbones. Some of these ligands are applicable in the preparation of
olefin polymerization catalysts. Some examples are shown in Fig. 2.9 [79–85].

2.2.5.3 a-Keto-b-diimine Ligand

a-Keto-b-diimine ligands can be produced starting from 4-(2,6-diisopropyl-
phenyl)iminopent-2-en-2-(aryl) amine substrates, whose synthesis is discussed
elsewhere in depth [67]. The substrate is added to a solution of copper acetate in

Fig. 2.8 Pathway to a- and b-ketoimines

Fig. 2.7 Pathway to a-iminocarboxamide ligand
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methanol/dichloromethane and stirred; an intermediate copper complex bearing the
bisimine ligand can be isolated. The complex can be dissolved in methanol, and
decomposed in the presence of O2 forming copper oxide and the oxidized ligand [38].

2.3 Preparation of Nickel Polymerization Catalysts

There are two crucial components when preparing transition metal catalysts.
The first is the ligand (deprotonated or neutral) and the second is the metal pre-
cursor used. The selection of the metal precursor is critical as it determines the
structure of the catalyst (alkylated or halogenated), as well as the reaction con-
ditions to be used (both the ligand and the metal precursor should, ideally, be
soluble in the same solvents). It has also been reported in combinatorial synthesis/
polymerizations that the same metal complex produced using distinct metal pre-
cursors can actually have different polymerization activities [8]. While this result
is not explained in detail, it illustrates that some metal precursors work better than
others, affecting not only the yield, but also the reactivity of the final complex.

2.3.1 Commonly Used Nickel Precursors

The term metal precursor is commonly applied to a variety of relatively simple
organometallic compounds which can readily serve as a metal source in organo-
metallic synthesis. More specifically, in the case of preparing polymerization
catalysts, metal precursor is an organometallic compound which contains one or
more organic ligands which typically have free lone-pair electrons, common
ligands include: ethers, amines, tetrahydrofuran (THF), phosphine groups, and
bulky olefins. These groups are covalently and coordinatively bonded to one or
more metal atoms. During the synthesis of the desired catalyst, the organic ligand

Fig. 2.9 General
functionalized bidentate
ligand frameworks
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bound to the ‘metal precursor’ rapidly dissociates and is replaced on the metal
center in the presence of a ‘‘better’’ ligand.2 This is often supported by the chelate
effect, which is the formation or presence of two or more separate bonds between a
multidentate ligand and a single central atom [86]. Some of the more commonly
used metal precursors for the preparation of precatalysts and catalysts for olefin
oligomerization and polymerization are shown in Fig. 2.10.

2.3.2 Metallation/Transmetallation of Ligands with Metal
Precursors

In nickel(II) complexes containing an anionic bidentate ligand (cf. Sect. 2.2),
g1-r-bound aryl substituents have played an important role in the development of
well defined catalyst precursors. In the pioneering work of Keim et al. and others
[87–90], the phenyl ligand in Fig. 2.11, originates from the ylid ligand precursor.
In subsequent work, related single component catalyst precursors with aryl sub-
stituents have been prepared by other routes [91, 92].

Fig. 2.10 Nickel precursors used in the preparation of polymerization catalysts (Note: For more
information on the preparation of nickel precursors see: Py2Ni(Bn)2 and derivatives
[93, 94](PMe3)2NiMeCl [95], [(bipy)NiMe2] [96, 97], [(tmeda)NiMe2] has been obtained from
[(tmeda)MgMe] [98, 99] and [(tmeda)Ni(acac)] [100], [(py)2Ni(CH2SiMe3)2], can be prepared
from [(py)4NiCl2] and Mg(CH2SiMe3)Cl in good yield, is stable at r.t. under a protective gas
atmosphere. In contrast to [(tmeda)NiMe2], the reaction of [(py)2Ni(CH2SiMe3)2] with PMe3 has
been reported to yield the dialkylcomplex, but with PPh3 [Ni(PPh3)4] is obtained again.
[(allyl)MX2] can be prepared from allyl halide and [Ni(COD)2] [101, 102] [Ni(COD)2] preparation
[103]. Cationic compounds [(allyl)ML2]Y (e.g. L2 = COD, L = NCCH3) are usually prepared
from the allyl complexes [(allyl)MX2] (M = Ni, Pd) by halide abstraction with silver or thallium
salts in the presence of the appropriate ligand [104–106].)

2 A ‘‘better’’ ligand is normally one which is more compatible with the metal cation, as described
by the hardness/softness of the metal and the ligand. Particularly, those which are multidentate
ligands.
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The precursor bis(1,5-cyclooctadiene)nickel, P1 above, has primarily been used
to prepare the precursors such as P2, P3 and P9, through the oxidative addition of
BzCl, or PhBr in the presence of a phosphine [107, 108], as well as to produce P6

and P8 through the oxidative addition of allylchloride and methyl allyl chloride.
Additionally, it has been used as a precursor for the direct preparation of nickel
catalysts and precatalysts, some examples based on imine or imine derivative
bidentate ligands are shown in Fig. 2.12.

Compound C1 is prepared by oxidative addition of a free salicylaldimine ligand
to Ni(COD)2, and isolated by precipitation in anhydrous n-hexane [37, 109].

Complexes of type C2 were also obtained from the reaction of [Ni(COD)2] and
the 1,4-diaza-1,3-butadiene ligands. Equimolar amounts of Ni(COD)2 and the
ligand were mixed in tetrahydrofuran at -78 �C, the temperature was raised until
room temperature, and the stirring was continued for specific periods of time and
were obtained in 70–90% yields. In a second step this type of compound are
convert in a ionic compounds. The general procedure was by direct abstraction of
halide ligand of complexes with TlBF4 in the presence of a neutral ligand such as
acetonitrile or collidine [110–112].

The a-iminocarboxamide g3-benzyl nickel complex (C3) can be prepared in a
one pot reaction by the oxidative addition of benzyl chloride to Ni(COD)2

followed by the addition of the potassium salt of N-(2,6-diisopropylphenyl)-2-(2,6-
diisopropylphenylimino) propanamide in THF. This type of reaction is generally
applicable with bidentate ligand types (see Sect. 2.2.5.1, L12). Limiting the
exposure to light during the synthesis produces better results, most likely due to
the light sensitivity of Ni(COD)2, the presence of dimethylaniline has also been
shown to increase yields. The role of dimethylaniline is not clear; presumably it

Fig. 2.11 Pathway to Keim oligomerization catalyst

Fig. 2.12 Examples of complexes prepared by oxidative addition to Ni(COD)2
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improves the product yield by stabilizing reactive intermediates. Successive
crystallizations from pentane allow for isolation of C3 as slighty air sensitive dark
orange crystals in 70% yield. While isopropyl substitution on both phenyl rings
provides the desired product, similar reactions with ligand frameworks with lesser
steric bulk failed. The major product from those reactions is the (bis-a-imino-
carboxamide)nickel derivative [(N\O)2Ni] in a trans conformation and are air and
temperature stable complexes [27].

It appears that starting from compound C3 one could access compound C4.
The strategy here is to force the dissociation of the benzyl g3-component by
pyridine. Previous studies have shown that ligand (L12) (Fig. 2.7), has two
coordination modes, N\N or N\O, both coordinate the metal center giving
complexes, but are differentiated in two remarkable way: first, the nitrogen atoms
are a soft Lewis base in comparison to the O atom, this means that it has a
higher affinity and better stabilization effect over soft Lewis acids in comparison
to oxygen atoms (favorable as the thermodynamic product), second, the N\O
chelate coordination gives a less crowded metal center and as a result will be
favorable when L12 ligand has bulky substituent or also if the coordinating
monodentate base (B) is sufficiently large. Nevertheless, the N\O coordination
mode stabilizes the metal center less and consequently produces the more
reactive compound [24].

In addition to the base (B = pyridine) and the g3-component, the NMR spec-
troscopy revealed that the product of the reaction contained two isomers in a 1:1
ratio. X-ray crystallography studies show a square-planar arrangement around the
nickel center with an N\N-bound a-iminocarboxamide ligand, and pyridine trans
to the imine nitrogen.

The second isomer present in solution was assigned as the N\N-bound
a-iminocarboxamide complex with pyridine trans to the carboxamide nitrogen. On
the basis of the previously observed lack of reactivity from N\N-isomers, a dif-
ferent synthetic method to access the (N\O)NiBzB complex was developed. The
same method used in the synthesis of compound (C3) was applied to access
compound (C5), thus through the reaction of potassium N-(2,6-diisopropylphenyl)-
2-(2,6-diisopropylphenylimino) propanamidate, Ni(COD)2, benzyl chloride, and
Py or Lut in THF (Fig. 2.13).

The product is isolated as a single isomer, in the case of B = Lut, in yields of
over 60%. The success of this reaction is highly dependent on the size of B.
Interestingly, it was also possible to isolate the product from the oxidative
addition of benzoyl chloride to Ni(COD)2 in presence of pyridine, producing

Fig. 2.13 Access to N\O
coordination mode in
a-iminocarboxamide nickel
complexes
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the [N-(2,6-diisopropylphenyl)-2-(2,6-diisopropylphenylimino)-propanamidato-j2

N,O](g1-COPh)nickel(pyridine) complex [24]. The formation of the (N\O)2Ni,
which bears two a-iminocarboxamide ligands, and is inactive for polymerization,
was also observed [27].

Additional complexes with N\N and N\O five-member chelate rings have
been reported [64, 91, 113–115].

2.3.3 Synthesis of Nickel Complexes by Using Precursor
P2, P3 and P9

Nickel precursors such as P2, P3 and P9 have been widely used in the preparation
of olefin polymerization catalysts and precatalysts. This is because monodentate
phosphines (PMe3 or PPh3) ligands are easily displaced by bidentate ligands,
particularly in transmetallation reactions. Lithium, sodium or potassium salts of
ligands such as L8–L11 (Fig. 2.6), and L13 and L14 (Fig. 2.8) are examples of
compounds that react directly with the nickel phosphine precursor giving the
respective chelated N\N, N\O, and N\C nickel complexes.

In the case of a-iminocarboxamide ligand derivatives, the reaction of the ligand
salt (L12S) with P2 or P3 yields the corresponding organometallic product. However,
the size of the R substituent defines the coordination mode of the final product.
Characterization by NMR spectroscopy indicates that when R is larger than an ethyl
group, only a single isomer is formed (see Fig. 2.14). Each complex contains a
nickel center ligated by a-iminocarboxamide, benzyl and one phosphine. The 31P
NMR spectrum is characteristic and reveals a single peak at d = -7.7 ppm, which
is indicative of an N\O-coordination of the a-iminocarboxamide ligand to nickel
(the N\N-coordination gives rise to peaks in the -18 to -20 ppm range) [22].

In the case of ligand salts, where the 2,6-dimethylphenyl substituents
are present, one obtains an intermediate situation. The N\O-mode is kineti-
cally preferred, probably because of easier displacement by the sterically less
encumbered oxygen. The N\N isomer is ultimately the thermodynamic product,

Fig. 2.14 Transmetallation of a-iminocarboxamide ligands
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which reflects an electronic preference for nickel to bind to nitrogen over oxygen.
The stability and conversion of the N\O isomer was investigated using 1H NMR
spectroscopy starting with a sample of 90% purity. Over a period of 60 min at
40 �C, the methyl peak of PMe3 (d = 0.56 ppm) is reduced in intensity by more
than 50% with a concomitant increase of two signals at 0.34 and 0.22 ppm, which
correspond to the phosphine resonances in the N\N isomers. Complete conversion
from N\O to N\N takes place after 2 h at 50 �C and the rearrangement is irre-
versible. These studies led to fine tuning of the reaction conditions so that each
isomer could be produced directly. The N\O chelated compound (Fig. 2.14) when
R = Me, was isolated in greater than 95% purity by running the reaction at
-10 �C for 4 h, while the N\N chelated compound was isolated by running the
reaction at 50 �C for 4 h. It should be noted here that there is no change in the
binding mode of the a-iminocarboxamide ligands when R is larger than methyl
after heating to 60 �C for 1 h [27].

The transmetallation reaction of the compounds shown in Fig. 2.15 was carried
out using P2 or P3. The ligand is a relatively small framework, which depending on
the structure can serve as mono, bi, or tridentate ligand when bound to the nickel
center. A variety of binding modes allows for several structures which were isolated
and characterized. Synthetic access begins with ligands L13 and L14 (Fig. 2.8),

Fig. 2.15 Transmetallation of L13S and L14S to C7–C9
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deprotonation with NaH or KH in THF provides the salt in over 80% yield.
Subsequent reaction of the salt with P2, yields compounds with different coordi-
nation modes as shown in Fig. 2.15.

In the case of L14S (Fig. 2.15), the expected 3-(2,6-diisopropylphenylimino)-
but-1-en-2-olato-j2N,O](g1-CH2Ph)(trimethylphosphine)nickel (C7) is obtained.
While in the case of the reaction of L13S with the same precursor, the formation of
a single isomer containing a nickel center ligated by 4-(2,6-diisopropyl-phenyli-
mino)-3,3-dimethylpent-1-en-2-olato, g1-CH2Ph and two PMe3 ligands (as con-
firmed by X-ray diffraction), C8 is observed [116]. This difference is likely
associated with the sp3 carbon between the functionalities which depress the
chelate effect in comparison with L13S where the functionality is present in a
conjugated structure.

In an attempt to isolate an N\O-bound bidentate complex, with the consider-
ation that the presence of the two phosphines helps to have the ligand bind in a
monodentate mode, the monophosphine species [Ni(g3-CH2Ph)Cl(PMe3)] in
toluene-pentane was used at r.t. and formed a single isomer containing a nickel
center ligated by 4-(2,6-diisopropyl-phenylimino)-3,3-dimethyl-pent-1-en-2-olato,
g1-CH2Ph and a PMe3 ligand, C9. The 31P NMR spectrum reveals a single peak at
d = -21.2 ppm. The structure was also corroborated by X-ray diffraction studies
[116].

Similar compounds, prepared by P2, P3, P6 and P9 are shown in Fig. 2.16
[117, 118].

The compound L5S in Fig. 2.17 was designed with an electronically delocalized
conduit in which three atoms that can potentially coordinate to a metal center.
As shown in Sect. 2.2.1, when starting from the commercially available
triacetylmethane [3-(1-hydroxyethylidene)-2,4-pentanedione], replacement of one
of the oxygen atoms by an aryl-substituted nitrogen group provides

Fig. 2.16 Examples of complexes with exocyclic functionality

Fig. 2.17 Synthetic pathway to C10
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3-[1-(arylamino)ethylidene]pentane-2,4-dione derivatives and anionic structures
which can be deprotonated using KH. The reaction of the salt with P3 provides an
organometallic compound (C10) which contains the organic fragment L5 (anionic),
an g1-benzyl group (1H NMR: d = 2.07, 7.65 ppm), and a coordinated trimethyl-
phosphine (31P NMR: d = -6.79 ppm) [43].

These data alone do not allow for the unambiguous determination of the ligand
coordination mode. X-ray diffraction studies shows that the nickel center has a
distorted square-planar coordination geometry with the 3-[1-(2,6-diisopropylphe-
nylimino)ethyl]acetylacetonate ligand bound through the two oxygen atoms at
nearly equal Ni–O bond lengths (1.889 and 1.898 Å). Additionally, the ligand
framework is in a coplanar disposition in a delocalized electronic structure [43].

Another ‘‘tridentate’’ imine ligand derivate, shown in Fig. 2.18 (L1), has been
used in the preparation of nickel complexes for ethylene polymerization. As in
some of the compounds previously reviewed, this allows access to the investiga-
tion of remote activation through an exocyclic CN functionality. This functionality
is restricted by geometry to participate in its chelation form to the metal center.
The preparation of nickel complex was done by reaction of the potassium salt of
the ligand generated by deprotonation with KH in ether. Potassium 3-cyano-4-
(2,6-diisopropylphenylimino)pent-2-en-2-olate (L1S) can then be reacted with Ni
(PMe3)2(g1-CH2C6H5)Cl to yield 3-cyano-4-(2,6-diisopropylphenylimino)pent-2-
en-2-olato-j2N,O] (g1-CH2Ph)(PMe3)Ni, (C11) in diethyl ether at room tempera-
ture (Fig. 2.18).

The product is obtained as a mixture of C11 and bis[3-cyano-4-(2,6-diisopro-
pylphenylimino)pent-2-en-2-olate-j2 N,O-]Ni, (Ni(L1)2. Ni(L1)2 contamination
can be minimized by slow addition of the ligand salt at decreased reaction tem-
peratures. Successive crystallizations from pentane allow isolation of C11 as air
and thermally sensitive dark orange crystals in 78% yield. The 31P NMR spectrum
in C6D6 exhibits a single resonance at -12.31 ppm. Single crystals of C11 suitable
for X-ray diffraction studies were obtained by diffusion of pentane into a toluene
solution at room temperature. The result of this study shows a molecular structure
with an N\O-binding mode for the 3-cyano-4-(2,6-diisopropylphenylimino)pent-
2-en-2-olate ligand (L1) and a trans-orientation between PMe3 and the imine
nitrogen as shown in Fig. 2.19.

The square planar geometry around nickel is slightly distorted. However, the
CN functionality, in the plane of the chelated ring, is oriented in the opposite

Fig. 2.18 Synthetic pathway to produce C11 which contains CN exocyclic functionality
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direction of the N and O atoms and free to coordinate Lewis acids. In the
secondary product [Ni(L1)2] the CN functionality is not coordinated as well.

Another approach to access catalysts or precatalyst for olefin polymerization
was found by using nickel allyl precursors such as P6 or P8. These precursors allow
the use of the selected ligand in either a deprotonated or neutral form, respectively.
An example is the synthesis of C12, which can either be produced by reaction P6

(R = H) with L4S (Fig. 2.20), or through the reaction of P8 with the neutral ligand
L4 producing the expected L4Nig3-allyl in yields of over 80% [119]. These
complexes crystallize from solution readily compared to other compounds, and the
crystal structure of the compound C12 is shown in Fig. 2.21. However, due to the
high stability of this type of compound, the activation process is not very efficient
and the reactivity is lower than the similar g3-benzyl or g1-benzyl-(trimethyl-
phosphine or B) nickel complexes.

The nickel precursor P9, has also been applied in synthesis of nickel compounds
via reaction of ligand salts (such as shown in Fig. 2.6). Some remarkable examples
are shown in Fig. 2.22.

Another common way to prepare precatalysts for polymerization is by the direct
reaction of the neutral ligand with a nickel precursor such as P7 or similar
(e.g. dichloride), through displacement of the previous weakly bound ligand and
coordination of the new one to the metal. The tetrahedral geometry of these types

Fig. 2.19 Crystal structure
of complex C11 (reprinted
with permission from [51].
Copyright 2008 American
Chemical Society)

Fig. 2.20 Synthesis of nickel allyl complexes
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of complexes make the characterization by 1H NMR spectroscopy difficult due to
the paramagnetic nature of the compounds [120] however, in the most of the cases
the complexes are easily crystallized from common solvents and as a result X-ray
crystallography is the spectroscopic analysis of choice for the final determination
of the connectivity of these types of complexes in the solid state.

It is useful to describe here the synthesis of nickel complexes with ‘‘tridentate’’
ligands, which, as previously shown, allow only two atoms to be coordinated to the
same metal, because of geometric restriction. The ligand 2,4-bis(2,6-diisopropyl-
phenylimino)pentan-3-one (L3) is a symmetrical compound, which can coordinate
through two imine nitrogens or by one nitrogen and the oxygen. Figure 2.23 shows
the synthetic pathway into C13 nickel dibromide complexes. This compound is
obtained by the addition of L3 to a stirring suspension of P7 in CH2Cl2 at room
temperature. The resulting red complex, C13, can be isolated in 49% yield [38].

The IR (and other types of spectroscopy) support the formation of just one
isomer. Unfortunately, the 1H NMR, shows a broad peak associated with a para-
magnetic species, which is expected for a nickel compound with a tetrahedral
configuration.

Single crystals suitable for X-ray crystallography examination were obtained
from a concentrated CH2Cl2 solution at -35 �C and the results are shown in
Fig. 2.24. The molecular connectivity is consistent with a neutral N\N-bound
2,4-bis(2,6-diisopropylphenylimino)pentan-3-one ligand. Bond distances within
the six-membered chelate ring are consistent with the proposed structure as

Fig. 2.21 ORTEP structure
of C12 [119]

Fig. 2.22 Examples of
complexes produced using P9
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illustrated by the following selected bond lengths (in Å): C(3)–N(2): 1.292(10),
C(2)–C(3): 1.518(12), C(1)–N(1): 1.287(11), C(1)–C(2): 1.511(12) and C(2)–O(1):
1.223(10) [13]. The Ni atom adopts a pseudotetrahedral coordination geometry
with the chelate ring adopting a boat-like conformation similar to that observed
previously in complex C14. Bond distances for complexes with and without the
addition of the carbonyl group are in close agreement; the main structural dif-
ference stems from the presence of the exocyclic carbonyl functionality on the
a-carbon in this compound.

2.4 Activation of Compounds for Olefin Polymerization

2.4.1 Activation with Soluble Lewis Acids

Due to the dependence of metallocene and early transition metal post-metallocene
systems on the use of expensive co-catalysts such as methylaluminoxane (MAO),
there has been a great deal of interest in developing systems which require less, or
ideally no cocatalyst, in order to make the process more profitable [121]. In late
transition metals, promising candidates can be activated using alternative reagents,
ideally in stoicheometric concentrations. Molecular Lewis acids can be added to
those precatalysts which are already alkylated and that contain in the structure

Fig. 2.24 ORTEP drawing
of C13 shown at the 50%
probability level (Reproduced
with permission from [38].
Copyright Wiley–VCH
Verlag GmbH & Co. KGaA)

Fig. 2.23 Synthesis of C13 and C14
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Lewis bases such as nitrogen or oxygen moieties which bear a lone pair of elec-
trons which can interact with the Lewis acid (Fig. 2.25). This offers the advantage
that the activator is remote, and not directly associated with the metal center. This
is beneficial as it opens up the active site for monomer coordination.

From the precatalysts shown in the last section, the first approach to activation
different to MAO was done by using molecular Lewis acid B(C6F5)3 which is a
solid, stable to 200+ �C and is easy to handle [122–124]. In complexes such as
C11, which bear a base, B, the addition of two equivalents proceeds quantitatively
producing a g3-benzyl complex, C15, as shown in Fig. 2.26. In this reaction one
equivalent of the acid acts to scavenge the base, while the second forms an adduct
through the exocyclic functionality. Depending on the basicity of the groups, the
order in which the acid reacts with the exocyclic functionality and the base may
change.

The crystal structure of C15 is shown in Fig. 2.27, and demonstrates the for-
mation of an adduct between the exocyclic functionality and the Lewis acid. This
adduct is remote from the metal center, which creates a more open steric envi-
ronment, for what will become the active site once monomer is present. The
hardness of the acid and corresponding basic site on the ligand ensure complete
reaction. The resulting adduct crystallizes readily, producing structures of the
polymerization species with the activator already present.

In complexes which have secondary groups which can bind to the metal center
the addition of the BCF to complexes can produce the isomerization of the ligand.
The isomerization from an O\O to an N\O binding mode or from an N\O to
an N\N mode are the most common, two examples are shown in Fig. 2.28.

Fig. 2.26 Isolation of BCF adduct C15 from C11

Fig. 2.25 Lewis acid
activation of complexes
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This rearrangement is caused by the removal of the base (phosphine) which
reduces steric crowding and allows the formation of new, more stable, g3 nickel
complexes.

In systems which do not bear coordinating bases, the reaction with BCF pro-
ceeds stoichiometrically and rapidly produces an adduct as shown in Fig. 2.29.
The crystal structure of the adduct formed is shown in Fig. 2.30. In this figure it
can be observed that the Lewis acid is again remote from the metal center.

2.4.2 Single Component Systems

Single component systems have been known academically and industrially for a
long while. These systems do not require the presence of cocatalysts or activators

Fig. 2.27 Crystal structure
of C11-BCF adduct (C15)
(Reprinted with permission
from [51]. Copyright 2008
American Chemical Society)

Fig. 2.28 BCF induced
isomerization of C10 and C6
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to function. The SHOP, developed by Keim et al., is a prominent industrial method
for the synthesis of linear ethylene oligomers in the C4–C20 range, which are
converted to detergents, plasticizers, lubricants and a variety of fine chemicals
[15], and are based on neutral nickel catalysts which do not require presence of an
activator. Grubbs et al. develop a new family of neutral, single-component cata-
lysts base on salicylaldimine ligand (Fig. 2.1). In this catalyst system, by using
sufficient bulk in the ortho-position of the salicylaldimine ligand to aid phosphine
dissociation and to prevent disproportionation of the ligand, they were able to
produce polyethylene with Mw [ 250,000 g/mol and later on functionalized
copolymers [125, 126]. In a-iminocarboxamide-based nickel catalysts, single
component systems have been developed which rely on the presence of a bulky
coordinating base which can be displaced in the presence of monomer (Fig. 2.13)
[24]. As this system does not require the presence of a Lewis acid activator, it
readily incorporates sterically hindered functional monomers, such as norbornene
derivatives.

2.4.3 Polymerization Reactions

As discussed earlier, the structure of the a-iminocarboxamide catalyst, which
allows for both a wide variety of steric environments, but also for a number of
different activation methods, as such a comparison of the polymerization activities

Fig. 2.29 Direct adduct
formation complexes without
Lewis bases

Fig. 2.30 Crystal structure
of C16 [119]
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and the resulting polymers is not as straight forward as in other cases. Therefore,
in this section general comparisons will be made in order to compare the different
activation routes in selected systems, as well as the effect of ligand modification
using a single activator.

2.4.3.1 Effect of Activator Choice on Polymerization Activity
and Polymer Properties

The presence of the carboxamide group and phosphine ligand on the catalysts
allows the catalyst to be activated using a number of different reagents. In the case
of the a-iminocarboxamide catalysts, this is normally accomplished using a
phosphine scavenger, or in the case of the single component systems, through
ethylene pressure [24, 92, 125]. The most reported reagent are borane Lewis acids
such as BF3, BCF and BPh3. Two equivalents of these reagents are typically added
in order to remove the phosphine, as well as to coordinate to the basic site on the
ligand backbone. A second reagent used to activate the systems is Ni(COD)2,
although the mechanism is less clear it is thought that the second nickel center
serves as a phosphine scavenger, allowing the precatalyst to generate an active
center and initiate polymerization. While the majority of the activating agents are
homogenous, it has also been reported that montmorillonite clays can also serve to
activate the catalyst system (Fig. 2.31) [26]. It is thought that the presence of
Bronsted acid sites on the surface of the clay act as a phosphine scavengers, while
at the same time the presence of the Lewis sites on the surface generate a
Zwitterionic site through their coordination to the ligand backbone.

As can be observed in Table 2.1, the choice of activator can significantly affect
the polymerization activities as well as the polymer properties. The single com-
ponent catalyst, which activates via the displacement of lutidine (or pyridine) from
the nickel center, has an activity of 43 kg mol-1 h-1 at 20 �C. Increasing the
reaction temperature, which favors the displacement of the lutidine from the metal
center, significantly increases the polymerization activity, with the reaction run at
40 �C proceeding with an activity nearly eight times as high (304 kg mol-1 h-1).
The other activator which produces a neutral system is Ni(COD)2. With this system
a polymerization activity of 220 kg mol-1 h-1 is reported. When the precatalyst is
exposed to Lewis acid activators, the polymerization activities increase due to the
Zwitterionic charge on the nickel center (Figs. 2.25 and 2.31). The use of BCF to

Fig. 2.31 Activation of a-iminocarboxamide complexes for polymerization
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activate the catalyst results in a polymerization activity of 850 kg mol-1 h-1,
significantly higher than either the single component or the Ni(COD)2 activated
systems. The use of montmorillonite to activate the catalyst results in a system with
a polymerization activity of 965 kg mol-1 h-1 which is in the same range as that
observed with BCF activation. Therefore, the trend for polymerization activities is:
Lewis Acids [ phosphine scavengers & single component systems.

The polymerization activity, however, is not always the deciding factor. The
selection of a phosphine scavenger/single component system produces materials
which generally have a lower polydispersity, and perhaps more importantly, have
the ability to incorporate some polar copolymers. This has allowed for the for-
mation of new materials, particularly gradient copolymers of polar norbornene
derivatives [127]. When similar copolymerizations are attempted with the acid
activated species, however, the reaction quickly terminates and no product is
formed. This suggests that the cationic nature of the metal center prevents the
copolymerization of polar monomers either by binding the incoming monomer too
tightly or through a back biting mechanism which terminates the polymerization
following an insertion by a polar monomer [127–129]. However, the use of milder
Lewis acids may permit the limited incorporation of polar comonomers [72, 130].

2.4.3.2 Effect of Ligand Structure on the Polymerization
Activities/Properties

There are a number of variations to the ligand structure which provide for inter-
esting comparisons. The ability to vary the substituents on the phenyl rings pro-
vides access to complexes with drastically varied pseudo-axial bulk. Variation to
the ligand backbone changes the rigidity of the ligand and as a result the steric
environment of the metal center. Increases to the bulk of the ligand backbone
resulted in increased polymerization activity and higher molecular weight products
[73]. The effect of pseudo-axial bulk on the polymerization activity and polymer

Table 2.1 Polymerization activities with different activators

Catalyst Activator Temperature/time
(�C/min)

Ac Tm (�C) Mw (10-3 g/mol) PDI

C5
a None 20/20 43 – 125 1.8

C5
a None 40/20 304 – 143 2.2

C4
b Ni(COD)2 20/20 220 127 104d 1.3

C4
b BCF 25/10 850 122 350 2.3

C3 MMTe 40/40 965 128 500 3.4

Polymerization time = 20 min, pressure = 100 psi, toluene as solvent in a autoclave reactor
a B = Lut
b B = PMe3, Ar = 2,6-diisopropylphenyl in all systems
c Activity in kg PE mol-1 h-1

d Derived from Mn to PDI
e MMT = acid treated montmorillonite
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properties have principally been carried out in systems which are activated with
Ni(COD)2. While it would be possible to evaluate the same catalysts using acidic
activators which bind to the ligand backbone, it was suspected that the large steric
demands imposed by the activators may affect other aspects of the polymerization
reaction. A summary of the results are shown in Table 2.2. Several trends were
observed in the polymerizations, the first is that the both the polymerization
activity and the molecular weight of the materials produced by the systems
decrease with reduced pseudo-axial bulk, the second is that the PDI of the
materials and the melting temperature increase with decreasing pseudo-axial bulk.

The nature of these trends is well established particularly in systems such as the
Brookhart catalysts. The effect of the pseudo-axial bulk on the polymerization
properties and activity is twofold. Nickel catalysts have a tendency to under rapid
b-hydride transfer followed by elimination of the polymer chain, this is part of
what initially made them useful as oligomerization catalysts. However, this
property is undesirable in polymerization catalysts for obvious reasons. In order
for the catalyst to undergo the elimination step there must be an incoming
monomer which can displace the polymer chain. The trajectory of this incoming
monomer, however, is important, only those monomers which arrive at the metal
center above/below the plain of the ligand/metal center can displace the polymer.
Thus, steric bulk above and below the plain of the ligand, prevents this monomer
trajectory and in turn reduces the rate of termination/elimination in the system,
increased pseudo-axial bulk results in increased molecular weight.

The presence of the pseudo-axial bulk however, has a secondary effect on the
polymer properties, in particular the Tm of the polymers which is related to the
chain branching. Nickel systems in particular, can undergo a process known as
chain walking (or even chain running) [88, 131]. In this process, when the metal
center and polymer undergo a b-hydride transfer but lack the incoming monomer
to displace the polymer chain, the nickel center can recoordinate to the more stable
b-carbon. This process can be repeated, over and over again until either the

Table 2.2 Polymerization
data for a-iminocarboxamide
catalysts activated by
Ni(COD)2

Catalyst Aa Tm (�C) Mn (10-3 g/mol) PDI

C6
b 385 125 110 1.4

C6
c 196 132 73 1.8

C6
d 210 130 76 1.7

C6
e 133 132 61 1.9

C6
f N.A. – – –

C6
g 49 – Oligomers –

a Activity is given in units of kg PE mol-1 h-1, N.A. = not
active
b R = isopropyl
c R = ethyl
d R1 = methyl, R2 = isopropyl
e N\O R = methyl
f N\N R = methyl
g N\N R1 = phenyl, R2 = isopropyl
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polymer is terminated, or a monomer is inserted. Once the monomer inserts
however, it produces a branch in the polymer. In general it has been found that the
larger the steric bulk, the higher the amount of chain branching and the lower the
melting temperature.

2.4.3.3 Effect of the Presence of Exocyclic Functionality

In many systems the effect of exocyclic functionality is difficult to evaluate, often
times the reactivity of the corresponding unfunctionalized system is not reported,
and even at times the synthesis of the system is not even feasible. In many
instances the introduction of the exocyclic functionality produces a slight change
in the geometry of the ligand, in particular in systems such as C13 and C14, in
which the beta carbon of the ring is change from an sp3 hybridization, lacking
conjugation to a conjugated sp2 hybridization (Fig. 2.32). This may introduce
secondary effects on the polymerization behavior of the catalysts.

The polymerization activities and polymer properties of the catalysts shown in
Fig. 2.32 are shown in Table 2.3. Comparison of the polymerization activity and

Table 2.3 Polymerization activities of complexes bearing exocyclic functionalities

Catalyst Temperature/Time
(�C/min)

Aa Tm (�C) Mw (10-3 g/mol) PDI

C14 32/10 8 – – –
C13 32/10 5,800 117 282 1.1
C11 20/40 1,070 83 13.9 1.8
C16 25/1,080 2.14 127 249 2.2
C10 30/20 5,450 – Oligomers –
C17 30/20 51 – Oligomers –

aActivity given in units kg PE mol-1 h-1 . Refs: C14, C13 [38], C11 [51], C5 [72], C10, C17 [41]

Fig. 2.32 Complexes
bearing exocyclic
functionality
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polymer properties of the materials produced by the complexes bearing the basic
ligand, one which does not bear any functionality in the backbone, with those that
bear some functionality is illustrative of the effect of the functionality, and in
particular the remote activation of the complex. Comparing C14 with C13 for
instance reveals that the presence of the carbonyl in the ligand backbone, and its
subsequent interaction with a Lewis acid (MMAO in this instance) produces a
tremendous increase in the polymerization activity, changing from 8 to
5800 kg mol-1 h-1 [38]. The effect of the Zwitterionic interaction through the
ligand backbone is also clearly demonstrated comparing C10, C11 and C17. In these
systems the functionality is introduced in such a ways as to not disrupt the ligand
geometry. The polymerization activity of the complexes C11 and C10, 1070 and
5450 kg mol-1 h-1, respectively, is substantially higher than that of complex C17,
51 kg mol-1 h-1. This trend is consistent with that observed with C13 and C14, and
suggests that carbonyl groups are much more effective in producing a cationic
metal center when compared with the cyano functionality.

2.5 Conclusions and Future Directions

The field of polymerization catalysis is very large with new ligands or catalysts
appearing in the literature on a regular basis. The focus of these investigations is
primarily, at least at this moment, focused on the development of either systems
with either enhanced insertion control, single component systems, or systems
which can tolerate polymer monomers. Many of these systems are based on imine
derivative ligands. The ease of synthesis, through condensation reactions, allows
for large ligand libraries to be generated. While originally these ligands were
focused on late transition metal catalysts, they have been numerous developments
for their use in early transition metal catalysts. While a-iminocarboxamide-based
catalysts have been shown to be effectively activated exocyclically in the presence
of Lewis acids, the modification of the ligand structure is somewhat limited by the
nature of the ligand. The expansion of the ligand backbone by a single carbon
however, generates what could be considered NacNac derivative ligands. These
ligands are already present in a number of catalytic systems including polymeri-
zation catalysts. The modification of these ligands such that they too are capable of
being activated remotely is the focus of a number of investigations, and the results
thus far show increased polymerization activity compared to the unmodified and
normally activated systems.

While there is still much to explore in this area, the focus of our lab has
expanded to include the use of these systems in early metal, in particular zirco-
nium, polymerization catalysts. The incorporation of NacNac style ligands into
zirconium complexes produces catalysts which are active for polymerization of
olefins while at the same time generating structurally interesting complexes [128].
In many of the early metal systems the ligand assumes a boat configuration with
the b-carbon associating with the metal center, producing a distorted configuration.
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While these systems do not show the same activity as their metallocene cousins,
they are interesting for reactions in which the use of large quantities of activator is
undesirable.

The ability to remotely modify the electronics at a metal center via interactions
with Lewis acids presents interesting and potentially useful application. These
interactions can not only affect the activity and reactivity of the metal center, but
can also serve as catalyst activators. In addition, this interaction can serve as a
method for the heterogenization of the complex, in particular with supports which
are Lewis acids. Future directions in this area include studying the effect of Lewis
acidity on the activity of the resulting adducts, as well as the development of better
Lewis acid-complex pairs. This may aid in the development of systems which are
capable of polar comonomer insertion.
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Chapter 3
Oligomerization and Polymerization
of Olefins with Iron and Cobalt Catalysts
Containing 2,6-Bis(imino)pyridine
and Related Ligands

Lidong Li and Pedro T. Gomes

Abstract The key advances in oligo- or polymerization of olefins catalyzed by the
2,6-bis(imino)pyridine-based iron and cobalt complexes were presented. Particular
attention was paid to trace the structural evolution of the 2,6-bis(imino)pyridine
and related ligands, recent understandings of the relationship between catalyst
structure and catalytic activity, and applications of iron and cobalt catalysts in
oligo- or polymerization of olefins. Additionally, the mechanistic aspects of the
oligo- or polymerization reactions, involving catalyst activation, oligo- or poly-
merization initiation, chain propagation and chain transfer, activators or cocata-
lysts, monomers and comonomers, and immobilization of iron and cobalt catalysts,
have also been reviewed and discussed.
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DSC Differential scanning calorimetry
EPR Electron paramagnetic resonance spectroscopy
ESI-MS Electrospray ionization mass spectrometry
EVE Ethyl vinyl ether
GPC/SEC Gel permeation chromatography/size-exclusion chromatography
1H NMR Proton nuclear magnetic resonance spectroscopy
i-BVE iso-Butyl vinyl ether
LDA Lithium diisopropylamide
LLDPE Linear low-density polyethylene
MA Methyl acrylate
MAO Methylaluminoxane
MM Molecular mechanics
MMA Methyl methacrylate
MMAO Modified methylaluminoxane
Mn Number-average molecular weight
Mw Weight-average molecular weight
Mw/Mn Polydispersity index
n-BMA n-Butyl methacrylate
n-BVE n-Butyl vinyl ether
NMR Nuclear magnetic resonance spectroscopy
OTf Triflate group (trifluoromethanesulfonate, CF3SO3

-)
OTs Tosylate group (p-toluenesulfonate, p-CH3C6H4SO3

-)
PE Polyethylene
PES Potential energy surface
PMAO Polymeric methylaluminoxane
PP Polypropylene
PS Polystyrene
QM Quantum mechanics
SAXS Small-angle X-ray scattering
SGEF Solvent gradient elution fractionation
SHOP Shell higher olefin process
t-BA tert-Butyl acrylate
t-BMA tert-Butyl methacrylate
TEAO Tetraethylaluminoxane
WAXD Wide-angle X-ray diffraction
XPS X-ray photoelectron spectroscopy

3.1 Introduction and Scope

The discovery of methylaluminoxane (MAO), by Kaminsky and coworkers in
1980 [1, 2], boosted the development of homogeneous olefin polymerization
catalysts in the past three decades, both at academic and industrial levels.

78 L. Li and P. T. Gomes



This Lewis acidic alkylating species, which results from the partial hydrolysis of
trimethylaluminum (AlMe3), can activate very efficiently a great variety of pre-
catalyst metal complexes (e.g., derivatives of metal halides or alkyls) to form
single-site homogeneous catalysts for the homo- and copolymerization of olefins.
Compared to the traditional heterogeneous Ziegler–Natta catalysts, the homoge-
neous catalysts possess active species with well-defined structures, which can be
closely related to those of their catalyst precursors, making possible the estab-
lishment of structure–activity relationships. In addition, their architectures and
symmetries can be varied through the modification of their ligands, leading to a
vast number of different homogeneous catalysts that produce many kinds of
polymers with new microstructures, such as those of the hemiisotactic polypro-
pylene (PP) [3] or the isotactic-atactic stereoblock PP [4, 5].

From the metallocenes to post-metallocenes and then to late transition metal
catalysts, a series of landmarks can be defined during the chronological devel-
opment of the homogeneous olefin polymerization catalysts. These include: the
bis(cyclopentadienyl) titanium or zirconium dichloride [1, 2], the C2 symmetrical
rac-ethylenebis(indenyl)titanium dichloride (isotactic PP) [6–8], the Cs symmet-
rical isopropyl(cyclopentadienyl-1-fluorenyl)zirconium dichloride (syndiotactic
PP) [9], the ansa-cyclopentadienyl-amide titanium or zirconium dichlorides
(constrained geometry catalysts, CGC) (ethylene/a-olefin copolymers) [10–12],
the a-diimine nickel(II) and palladium(II) dihalides (branched polyethylenes (PE))
[13], the 2,6-bis(imino)pyridine iron(II) and cobalt(II) dihalides (linear PE)
[14–16], the phenoxy-imine-based Group 4 transition metal catalysts (FI catalysts)
(living polymerization of ethylene and propylene) [17] and the neutral single-
component salicylaldimine-based nickel(II) alkyl or aryl catalysts [18]. From the
comparison of these different homogeneous catalysts, one can notice that they are
based on a limited number of metals (Ti, Zr, Hf, Fe, Co, Ni, Pd), the main
differences lying on the diversity of their ligands. Additionally, it can be observed
that only when a particular ligand set combines with a certain metal a desirable
catalytic activity is promoted, whereas many other ligands fail. The reason why it
happens still remains a mystery, which is in fact one of the driving forces for
further research in the development of new and high performance catalysts.
Coordination of a ligand to a metal not only alters its basic physical and chemical
properties, such as color, solubility, stability, symmetry, etc., but affects its elec-
tronic distribution and coordination environment leading to varied electronic,
magnetic and catalytic properties. It is worth to note that, sometimes, the ligands
can also influence the catalytic performances of the catalysts in olefin polymeri-
zation through the establishment of non-bonded interactions of the ligands with the
growing polymer chains, which are coordinated to the metal centers. For instance,
FI catalysts containing fluorinated aryl phenoxy-imine chelate ligands demon-
strated to induce unprecedented living polymerization effects with both ethylene
and propylene, through an attractive interaction between one of the fluorine atoms
in the ligand and a b-hydrogen atom on the growing polymer chain [19–21].

Due to the significance and versatility of the ligands in the homogeneous olefin
polymerization catalysts, the design of the precatalysts is mainly focused on the
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design and modification of the ligand itself. The 2,6-bis(imino)pyridine (BIP) is
one of the most well-known ligands in olefin polymerization since, during the late
1990s it was employed simultaneously by Brookhart and Gibson groups in the
synthesis of metal complex precatalysts [14–16] (Fig. 3.1). These authors found
that sterically demanding BIP ligands can impart high ethylene polymerization
catalytic activities to late transition metals, especially iron and cobalt. A large
amount of work has been devoted to the modification of this ligand and to the
understanding of the chemistry of its metal derivatives, these subjects being
addressed in reviews published recently [22–24]. BIP-based iron and cobalt
complexes, when activated with MAO, are efficient catalysts for the conversion of
ethylene either to high molecular weight linear polyethylenes or to a-olefins with
Schulz–Flory distribution, which can be readily controlled by tuning the electronic
and steric nature of the BIP ligands. Besides iron and cobalt, the BIP ligands can
also coordinate to a variety of other transition metals, such as titanium [25],
zirconium [25], hafnium [25], vanadium [26–33], chromium [31, 32, 34–38],
molybdenum [39], nickel [40–42], etc., to generate the precatalysts that are active
for olefin polymerization, when activated with MAO or MMAO (modified
methylaluminoxane, AlMeO:AliBuO = 3:1). Furthermore, when reacted with
representative or transition metal alkyls, the BIP ligands exhibit an unexpected and
amazing chemistry, in which its several positions can be attacked by the alkylating
agents, thereby leading to several different reactions, such as alkylation, depro-
tonation, dimerization, etc. [43].

In this chapter, we present a comprehensive review of the developments on the
iron and cobalt catalyst systems based on the BIP and related ligands, and discuss
their catalytic performances in olefin polymerization, with a particular emphasis
on the ethylene monomer.

3.2 Bis(arylimino)pyridine Iron and Cobalt Complexes

3.2.1 Syntheses of 2,6-Bis(arylimino)pyridine Ligands

It is generally accepted that the polymerization of ethylene or a-olefins promoted
by homogeneous single-site catalyst systems commonly involves, among others,
two basic mechanistic steps: chain growth (propagation) by migratory insertion of
the coordinated olefin into the metal-alkyl chain bond, which occurs in cationic

Fig. 3.1 BIP iron and cobalt
precatalysts used by
Brookhart and Gibson in the
oligomerization and
polymerization of ethylene
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alkyl-olefin metal intermediates, and chain transfer, taking place by various
mechanisms, which is responsible for the decrease of the polymer molecular
weight and broadening of the corresponding molecular weight distribution. In the
case of late transition metal catalysts such as those based on nickel, it is well
known that they usually yield olefin dimers or oligomers since their alkyl com-
plexes readily undergo chain transfer by b-hydrogen elimination [44]. A typical
example is the Shell higher olefin process (SHOP), developed by Keim and
coworkers, in which linear a-olefins are obtained by nickel-catalyzed oligomeri-
zation of ethylene [45, 46]. In fact, although the tridentate BIP ligands and their
metal derivatives have been known earlier [47–50], the use of BIP-based cobalt
and iron precatalysts in the polymerization of ethylene to high molecular weight
polyethylenes was only reported in 1998, when sterically demanding BIP ligands
were employed by Brookhart’s and Gibson’s groups [14–16]. After this break-
through, a large number of BIP ligands with different substitution patterns have
been designed and synthesized to date.

Table 3.1 summarizes most of the symmetrical 2,6-bis(arylimino)pyridine
ligands reported so far. According to the variation of the iminic carbon substituents
(R) and the aryl groups employed, these ligands can be classified into several
different types.

In the case of aldimine or acetimine ligands (e.g., L1–L13 and L14–L131,
Table 3.1), where the substituent R is H or methyl, respectively, the ligands are
commonly prepared by the condensation reactions of either pyridine-2,6-dicar-
boxaldehyde or 2,6-diacetylpyridine with two equivalents of the appropriate
substituted anilines. These reactions can be performed either in strongly polar
(e.g., methanol [14, 51] and ethanol [16, 52, 53]) or nonpolar/weakly polar sol-
vents (e.g., benzene [54, 55] and toluene [28, 56, 57]), at room or elevated tem-
perature, being often promoted by the addition of catalytic amounts of acids (e.g.,
formic [15, 51, 58], acetic [16, 53] and p-toluenesulfonic [28, 56, 57, 59] acids), or
by alternative or simultaneous removal of the water formed using the Dean–Stark
apparatus [28, 57, 59] or dehydrating agents (e.g., molecular sieves [55, 60],
sodium sulfate [14, 61], tetraethyl orthosilicate [62]), or a combination of the two
(Scheme 3.1).

Generally, the preparations of aldimine ligands are much more straightforward
than those of ketimine ligands, the latter requiring always a catalytic amount of
acid and harsher reaction conditions. The yields obtained in these condensations
often depend upon the reaction conditions and the nature of the aryl substituents.
For instance, in the syntheses of the o-methoxy-substituted ligands L74 and L119
(Table 3.1) [34], when the reaction is carried out in refluxing ethanol, in the
presence of acetic acid as catalyst and molecular sieves as water absorbents, even
after a prolonged reaction period (up to 5 days), the yields are very low (ca. 5%),
whereas the use of toluene as solvent, p-toluenesulfonic acid as catalyst, and a
Dean–Stark trap to remove the water formed in the reaction, leads to high yields
(ca. 80%) after a few hours. Strongly electron-withdrawing substituents on the aryl
rings (e.g., F [60, 63], CF3 [55], Cl [56, 60] and NO2 [62]) lead to a relatively low
yield, possibly due to the reduced nucleophilicity of the corresponding anilines,
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Table 3.1 Symmetrical 2,6-bis(arylimino)pyridine ligands, 2,6-(ArN=CR)2C5H3N

Ar R Refs.a

Mono-o-substituted phenyl
L1 Phenyl H [291]
L2 2-methylphenyl H [52]
L3 4-methylphenyl H [292]
L4 2-biphenyl H [52]
L5 4-methoxyphenyl H [291, 292]
L6 2-(methylthio)phenyl H [293]
Di-o-substituted phenyl
L7 2,6-dimethylphenyl H [16, 53]
L8 2,4,6-trimethylphenyl H [53, 294]
L9 2,6-diethylphenyl H [53, 56]
L10 2-methyl-6-iso-propylphenyl H [51, 56]
L11 2,6-di-iso-propylphenyl H [53, 293]
L12 2,6-diphenylphenyl H [52]
Others
L13 1-naphthyl H [52, 116]
Mono-o-substituted phenyl
L14 Phenyl Me [28, 58]
L15 2-methylphenyl Me [15, 28, 52, 54, 295]
L16 4-methylphenyl Me [54, 296]
L17 2,3-dimethylphenyl Me [52, 297]
L18 2,4-dimethylphenyl Me [16, 52, 59, 296]
L19 2,5-dimethylphenyl Me [28, 102]
L20 3,5-dimethylphenyl Me [296]
L21 2-ethylphenyl Me [15, 28]
L22 2-n-propylphenyl Me [103]
L23 2-iso-propylphenyl Me [15, 28, 54]
L24 2-iso-propyl-4-methylphenyl Me [59]
L25 2-n-butylphenyl Me [103]
L26 2-tert-butylphenyl Me [14, 28, 53, 54, 296]
L27 4-tert-butylphenyl Me [54, 296]
L28 2,5-di-tert-butylphenyl Me [37, 91]
L29 2-cyclopentylphenyl Me [94, 298]
L30 2-cyclohexylphenyl Me [94, 298]
L31 4-heptylphenyl Me [91]
L32 2-cyclooctylphenyl Me [94, 298]
L33 2-cyclododecylphenyl Me [94, 298]
L34 2-benzylphenyl Me [58]
L35 2-methyl-4-(3-(1-(trimethylsilyl)

-1H-inden-1-yl)prop-1-ynyl)phenyl
Me [57]

L36 4-((9H-fluoren-2-yl)ethynyl)
-2-methylphenyl

Me [57]

L37 4-(5-(cyclopenta-1,3-dienyl)-5
-(9H-fluoren-9-yl)hex-1-ynyl)
-2-methylphenyl

Me [57]

(continued)

82 L. Li and P. T. Gomes



Table 3.1 (continued)

Ar R Refs.a

L38 2-biphenyl Me [78]
L39 2-flourophenyl Me [60, 72]
L40 2,4-difluorophenyl Me [63, 104]
L41 2,5-difluorophenyl Me [63]
L42 2-fluoro-4-methylphenyl Me [72]
L43 2-fluoro-5-methylphenyl Me [104]
L44 3-(4-fluorophenyl)-2-methylphenyl Me [69]
L45 2,5-di-(4-fluorophenyl)-4-methylphenyl Me [69]
L46 2-trifluoromethylphenyl Me [34, 74]
L47 3-trifluoromethylphenyl Me [55]
L48 4-trifluoromethylphenyl Me [55]
L49 4-fluoro-2-trifluoromethylphenyl Me [74]
L50 2-methyl-3-(3,5-bis(trifluoromethyl)

phenyl)phenyl
Me [69]

L51 2-methyl-5-(3,5-bis(trifluoromethyl)
phenyl)phenyl

Me [69]

L52 2-chlorophenyl Me [60, 282]
L53 2-chloro-4-methylphenyl Me [104]
L54 2-chloro-5-methylphenyl Me [104]
L55 3-chloro-2-methylphenyl Me [103]
L56 4-chloro-2-methylphenyl Me [28]
L57 5-chloro-2-methylphenyl Me [297]
L58 2-chloro-4-fluorophenyl Me [104]
L59 4-chloro-2-trifluoromethylphenyl Me [91]
L60 2-bromophenyl Me [60]
L61 2-bromo-4-methylphenyl Me [104]
L62 4-bromo-2-methylphenyl Me [28]
L63 3,5-dibromo-4-methylphenyl Me [69]
L64 4-bromo-2-trifluoromethylphenyl Me [91]
L65 2-iodophenyl Me [60]
L66 4-iodophenyl Me [57]
L67 4-iodo-2-methylphenyl Me [57]
L68 4-(diethylamino)-2-methylphenyl Me [76]
L69 4-hydroxyphenyl Me [136]
L70 4-hydroxy-2-methylphenyl Me [136]
L71 3-methoxyphenyl Me [55]
L72 4-methoxyphenyl Me [296]
L73 4-methoxy-2-methylphenyl Me [42, 254]
L74 2,4-dimethoxyphenyl Me [34]
L75 2-cyclopentyl-4-ethoxyphenyl Me [94, 298]
L76 2-nitrilophenyl Me [75]
L77 2-methyl-4-nitrilophenyl Me [75]
L78 4-nitrophenyl Me [76]
L79 2-methyl-3-nitrophenyl Me [76]
L80 2-methyl-4-nitrophenyl Me [76]

(continued)
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Table 3.1 (continued)

Ar R Refs.a

L81 2-(4,4,5,5-tetramethyl-[1,2,3]
-dioxaborolan-2-yl)phenyl

Me [299]

L82 2-methyl-3-(5-methyl-2-thienyl)phenyl Me [69]
L83 4-ferrocenyl-2-methylphenyl Me [70]
Di-o-substituted phenyl
L84 2,6-dimethylphenyl Me [14, 16, 34, 53, 296]
L85 2,4,6-trimethylphenyl Me [16, 34, 53]
L86 2,6-diethylphenyl Me [36, 59]
L87 2,6-di-iso-propylphenyl Me [14, 16, 34, 36, 53]
L88 2,4,6-tri-iso-propylphenyl Me [92]
L89 2-methyl-6-iso-propylphenyl Me [34, 51, 54]
L90 2,4-di-tert-butyl-6-methylphenyl Me [56]
L91 2,6-dicyclopentylphenyl Me [94, 298]
L92 2-cyclopentyl-6-methylphenyl Me [94, 298]
L93 2-cyclopentyl-4,6-dimethylphenyl Me [94, 298]
L94 2,6-dihexylphenyl Me [228, 229]
L95 2,6-dicyclohexylphenyl Me [94, 298]
L96 2-cyclohexyl-6-methylphenyl Me [94, 298]
L97 2-cyclohexyl-4,6-dimethylphenyl Me [94, 298]
L98 2-cyclooctyl-6-methylphenyl Me [94, 298]
L99 2-cyclooctyl-4,6-dimethylphenyl Me [94, 298]
L100 2-cyclododecyl-6-methylphenyl Me [94, 298]
L101 2-cylcododecyl-4,6-dimethylphenyl Me [94, 298]
L102 4-(5-(cyclopenta-1,3-dienyl)-5

-(9H-fluoren-9-yl)hex-1-ynyl)
-2,6-dimethylphenyl

Me [57]

L103 2,4,6-triphenylphenyl Me [234]
L104 2,6-difluorophenyl Me [36, 63, 72]
L105 2-fluoro-6-methylphenyl Me [77]
L106 2-fluoro-6-trifluoromethylphenyl Me [74]
L107 pentafluorophenyl Me [36]
L108 2,6-dichlorophenyl Me [60]
L109 2-chloro-4,6-dimethylphenyl Me [84, 91]
L110 4-chloro-2,6-dimethylphenyl Me [300]
L111 2-chloro-6-cyclopentylphenyl Me [94, 298]
L112 2,6-dibromophenyl Me [36, 60]
L113 2-bromo-4,6-dimethylphenyl Me [300]
L114 3-bromo-2,4,6-trimethylphenyl Me [59]
L115 4-bromo-2,6-dimethylphenyl Me [84, 91, 301]
L116 2-bromo-4,6-di-iso-propylphenyl Me [92]
L117 4-bromo-2,6-di-iso-propylphenyl Me [92]
L118 4-iodo-2,6-dimethylphenyl Me [57]
L119 2-methoxy-6-methylphenyl Me [34]
L120 4-methoxy-2,6-dimethylphenyl Me [229]
L121 2-cyclopentyl-6-methoxyphenyl Me [94, 298]

(continued)
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and forcing conditions are always required. For example, the fluoro-containing
ligand L104 (Table 3.1) [63] was obtained in low yield (13%) when the corre-
sponding reagents were refluxed in toluene for 3 days, with removal of water using
a Dean–Stark trap and in the presence of p-toluenesulfonic acid as catalyst,

Table 3.1 (continued)

Ar R Refs.a

L122 2,6-dicyclopentyl-4-ethoxyphenyl Me [94, 298]
L123 2,6-dimethyl-4-nitrophenyl Me [62]
L124 4-nitro-2,6-di-iso-propylphenyl Me [62]
L125 4-ferrocenyl-2,6-dimethylphenyl Me [70]
L126 4-ferrocenyl-2,6-di-iso-propylphenyl Me [70]
Others
L127 1-naphthyl Me [98]
L128 2-methyl-1-naphthyl Me [56, 99]
L129 1-(5,6,7,8-tetrahydro)naphthyl Me [85]
L130 1-anthracenyl Me [78]
L131 4-pyrenyl Me [58]
L132 2,6-dimethylphenyl Et [59]
L133 2,4,6-trimethylphenyl Et [66]
L134 2,6-di-iso-propylphenyl Et [66]
L135 2,4,6-trimethylphenyl iPr [66]
L136 2,6-di-iso-propylphenyl iPr [66]
L137 2-methyl-6-iso-propylphenyl nBu [56]
L138 2,6-dimethylphenyl tBu [67]
L139 2,6-dimethylphenyl (CH2)2Ph [59]
L140 2,4,6-trimethylphenyl (CH2)2Ph [66]
L141 2,4,6-trimethylphenyl CH(Bz)2

b [66]
L142 2,6-dimethylphenyl Ph [59]
L143 2,4,6-trimethylphenyl Ph [34]
L144 2,6-di-iso-propylphenyl Ph [64]
L145 2,5-di-tert-butylphenyl Ph [65]
L146 2,4,6-trimethylphenyl MeO [68]
L147 2,6-di-iso-propylphenyl MeO [64]
L148 2,4,6-trimethylphenyl 2,6-(Me)2C6H3O [68]
L149 2,4,6-trimethylphenyl MeS [68]
L150 2,4,6-trimethylphenyl 2,6-(Me)2C6H3S [68]

a Only references reporting compounds for the first time are given; references are also given
when different reaction conditions were used
b Bz = benzyl

Scheme 3.1 General syntheses of symmetrical 2,6-bis(arylimino)pyridine ligands
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whereas the use of silica–alumina catalyst support and molecular sieves as water
absorbents, in toluene, at 30–40 �C, for 24 h, leads to a moderate yield (65%).
Su et al. found out that microwave irradiation improves the conversion for this
kind of condensation reactions [42].

For the ketimine ligands other than acetimine (e.g., L132, L137, L139, L142,
L144, L145, Table 3.1), where R is ethyl [59], n-butyl [56], 2-phenylethyl [59] or
phenyl [59, 64, 65], the abovementioned direct condensation reactions give also
satisfactory conversions. However, in the case of ligand L143 [34], attempts to
obtain it by direct condensation of 2,6-dibenzoylpyridine with 2,4,6-trimethylan-
iline were unsuccessful. Esteruelas et al. [34] found that this condensation reaction
can be promoted by a template reaction with anhydrous nickel dichloride, as
shown in Scheme 3.2. The treatment of 2,6-dibenzoylpyridine with one equivalent
of anhydrous nickel dichloride and two equivalents of 2,4,6-trimethylaniline in
acetic acid, under refluxing conditions, afforded the nickel complex [NiCl2(L143)]
in high yield (89%). Demetalation of the latter with aminopropyl silica gel, in
dichloromethane, gave the ligand L143 in moderate yield (51%).

Gibson and coworkers [66] reported a straightforward protocol for the syn-
theses of ketimine ligands (e.g., L133, L135, L140, L141, Table 3.1) from the
corresponding 2,6-diacetylpyridinebis(imine) ligands, in which the methyl sub-
stituents of the a-imino carbon moiety are deprotonated using lithium diisopro-
pylamide (LDA) at –78 �C, followed by alkylation using a primary alkylhalide at
0 �C (Scheme 3.3). This procedure can be repeated to build up the desired sub-
stitution pattern at the a-imino carbon position.

The ketimine ligands containing the more sterically encumbered tert-butyl
substituents at the a-imino carbon arms (e.g., L138, Table 3.1) cannot be prepared
by the direct condensation reaction of 2,6-diketopyridine with the appropriate

Scheme 3.2 Template synthesis of the BIP ligand L143

Scheme 3.3 Syntheses of the ketimine ligands with different substituents at the a-imino carbon
position, as proposed by Gibson et al.
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anilines even if under forcing conditions [67]. However, they are readily accessible
using Peterson’s method, in which the mono-lithiation of 2,6-dibromopyridine, in
dichloromethane at –78 �C, followed by addition of the imidoyl chloride
ArN=C(tBu)Cl, generates the mono(imino)pyridine compound 2-Br-6-(ArN=
C(tBu))C5H3N. Repetition of the same reaction, in tetrahydrofuran, gives the BIP
ligand 2,6-(ArN=C(tBu))2C5H3N (Scheme 3.4) [67].

The ligands containing ether or thioether substituents at the a-imino carbon
(e.g., L146, L148–L150 in Table 3.1) can also be readily prepared, as shown in
Scheme 3.5. Treatment of the pyridine-2,6-dicarboxyimidoyl dichloride with the
corresponding NaER salt (R = Me, 2,6-Me2C6H3; E = O, S) gives rise to the BIP
ligand 2,6-(ArN=C(ER))2C5H3N [68]. Alternatively, the methoxy groups can also
be attached to the ligand by treatment of the pyridine-2,6-dicarbonyl dichloride
with the appropriate anilines, in triethylamine, to afford the pyridine-2,6-dicarb-
oxamide, which is then further reacted with the Meerwein’s reagent
[Me3O+][BF4

-] to generate the corresponding BIP ligand (e.g., L147 in Table 3.1)
(Scheme 3.6) [64].

The introduction of aryl groups containing bulky substituents, such as
L35–L37, L44, L45, L50 and L51 (Table 3.1), can also be carried out by per-
forming coupling reactions in halogen-containing aryl groups of BIP ligands. For
instance, Alt and Görl [57] utilized the palladium catalyzed Sonogashira coupling
of iodinated BIP ligands with alkynyl-substituted indene or fluorene derivatives, to
form a new family of aryl-BIP ligands (Scheme 3.7). Ionkin et al. [69] employed
the palladium catalyzed Suzuki cross-coupling reactions of brominated aryl-BIP

Scheme 3.5 Syntheses of
ketimine ligands with ether or
thioether groups at the a-
imino carbon

Scheme 3.6 Syntheses of ketimine ligands with methoxy substituents at the a-imino carbon

Scheme 3.4 Syntheses of ketimine ligands containing tert-butyl substituents at the a-imino
carbon
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ligands with fluorine-containing aryl boronic acids, to afford a series of bulky
CF3-containing aryl-BIP ligands (Scheme 3.8).

It is worth to note that Gibson et al. [70] synthesized a series of ferrocene-
substituted BIP ligands (L83, L125 and L126, Table 3.1) by direct condensation
of the respective ferrocenyl anilines with 2,6-diacetylpyridine, in moderate yields
(34–62%) (Scheme 3.9). The reactions were conducted in refluxing ethanol, using
acetic acid as catalyst, and the new ligands are air stable.

Table 3.2 lists the unsymmetrical 2,6-bis(arylimino)pyridine ligands published
to date. These type of ligands are generally prepared by consecutive condensation
reactions of 2,6-diacetylpyridine with two different anilines, as shown in
Scheme 3.10, in which treatment of 2,6-diacetylpyridine with one equivalent of
the aniline ArNH2 gives the mono(imino)pyridine 2-(O=C(Me))-6-(ArN=
C(Me))C5H3N, followed by addition of a further equivalent of the other different
aniline Ar0NH2 to afford BIP ligands of the type 2-(ArN=C(Me))-6-(Ar0N=
C(Me))C5H3N. Conversely, Ionkin et al. [69] used the same reaction employed for
the synthesis of the BIP ligands represented in Scheme 3.8 to introduce sterically
hindered CF3-containing substituents in unsymmetrical BIP ligands. For instance,

Scheme 3.7 Synthesis of the BIP ligand L35

Scheme 3.8 Synthesis of the BIP ligand L50

88 L. Li and P. T. Gomes



the palladium catalyzed Suzuki cross-coupling reaction of the unsymmetrical BIP
ligand 2-(ArN=C(Me))-6-(Ar0N=C(Me))C5H3N (Ar = 4-Br-2,6-Me2C6H2, Ar0 =
3,5-Br2-4-MeC6H2) (L180) with 3,5-bis(trifluoromethyl)phenylbonoric acid leads
to the ligand 2-(ArN=C(Me))-6-(Ar0N=C(Me))C5H3N (Ar = 4-(3,5-(CF3)2C6H3)-
2,6-Me2C6H2, Ar0 = 3,5-(3,5-(CF3)2C6H3)2-4-MeC6H2) (L178).

Due to the existence of hindered aryl ring rotation, variable substitution patterns
can lead to the formation of BIP ligands with diverse configurations. As illustrated
in Fig. 3.2, the arylimino groups and the aryl groups can rotate around the Cpyridyl–
Cimino and Nimino–Caryl single bonds, respectively. Generally, the arylimino groups
are stretched away from the central pyridyl ring to release the steric constraints,
being coplanar with the pyridyl ring, and the aryl groups are nearly perpendicular
to the pyridyl ring, adopting a (E,E) configuration with respect to the C=N double
bonds, as depicted in Fig. 3.3a for L123 [62]. The substituents R, R0 and R00

(Fig. 3.2) have crucial impacts on the configurations of BIP ligands. As the
bulkiness of the substituent R00 increases, the imino groups noticeably deviate from
the pyridyl rings. For instance, in the case of the ligand L138 [67], the two imino
C=N bonds are nearly orthogonal to the pyridyl ring and oriented in a syn fashion
with respect to the pyridyl ring, leading to a reduced ability in the coordination to
the metal center (Fig. 3.3b). For the ligand L144 [64], the two imino C=N bonds
are also perpendicular to the pyridyl ring, but exist in an anti configuration in
relation to the pyridyl ring, being their iron and cobalt complexes readily acces-
sible (Fig. 3.3c). The rotation of the aryl groups about the Nimino–Caryl single
bonds depends on both aryl substituents R and R0, and on the substituent R00 at the
a-imino carbon. Reduction of the steric bulk at R00, e.g., from an alkyl group to a
hydrogen atom, would result in much lower rotational barriers of the aryl groups.
Conversely, the rotation barriers for o-disubstituted aryl groups are much higher

Scheme 3.9 Syntheses of ferrocene-substituted BIP ligands

Scheme 3.10 Syntheses of unsymmetrical 2,6-bis(arylimino)pyridine ligands
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Table 3.2 Unsymmetrical 2,6-bis(arylimino)pyridine ligands, 2-(ArN=C(R))-6-(Ar0N=C(R))-
C5H3N

Ar Ar0 R Refs.a

L151 Phenyl 2,6-dimethylphenyl Me [75]
L152 2-methyl-6-iso-propylphenyl 2,6-dimethylphenyl Me [100]
L153 2-tert-butylphenyl 2,6-dimethylphenyl Me [51]
L154 4-nitrilophenyl 2,6-dimethylphenyl Me [75]
L155 Phenyl 2,4,6-trimethylphenyl Me [75]
L156 2-methylphenyl 2,4,6-trimethylphenyl Me [35]
L157 2-ethylphenyl 2,4,6-trimethylphenyl Me [35]
L158 2-iso-propylphenyl 2,4,6-trimethylphenyl Me [56]
L159 2-tert-butylphenyl 2,4,6-trimethylphenyl Me [34]
L160 4-tert-butylphenyl 2,4,6-trimethylphenyl Me [35]
L161 4-nitrilophenyl 2,4,6-trimethylphenyl Me [75]
L162 4-nitrophenyl 2,4,6-trimethylphenyl Me [76]
L163 2-(4,4,5,5-tetramethyl-[1,3,2]-

dioxaborolan-2-yl)phenyl
2,4,6-trimethylphenyl Me [299]

L164 3-(4,4,5,5-tetramethyl-[1,3,2]-
dioxaborolan-2-yl)phenyl

2,4,6-trimethylphenyl Me [299]

L165 4-(4,4,5,5-tetramethyl-[1,3,2]-
dioxaborolan-2-yl)phenyl

2,4,6-trimethylphenyl Me [299]

L166 2-trifluoromethylphenyl 2,4,6-trimethylphenyl Me [34]
L167 Phenyl 2,6-di-iso-propylphenyl Me [101]
L168 2-methylphenyl 2,6-di-iso-propylphenyl Me [54, 101]
L169 2-iso-propylphenyl 2,6-di-iso-propylphenyl Me [78, 100]
L170 2-tert-butylphenyl 2,6-di-iso-propylphenyl Me [100]
L171 2,6-dimethylphenyl 2,6-di-iso-propylphenyl Me [100, 101]
L172 2,4,6-trimethylphenyl 2,6-di-iso-propylphenyl Me [34]
L173 2-methyl-6-iso-propylphenyl 2,6-di-iso-propylphenyl Me [51]
L174 2-cyclohexyl-6-iso-propyl-

phenyl
2,6-di-iso-propylphenyl Me [54]

L175 1-anthracenyl 2,6-di-iso-propylphenyl Me [78]
L176 2-methylphenyl 2-fluoro-6-methylphenyl Me [77]
L177 2,4-dimethylphenyl 2-fluoro-6-methylphenyl Me [77]
L178 4-methyl-3,5-di-(3,5-

bis(trifluoromethyl)
phenyl)phenyl

2,6-dimethyl-4-(3,5-bis
(trifluoromethyl)phenyl)
phenyl

Me [69]

L179 Phenyl 4-bromo-2,6-
dimethylphenyl

Me [75]

L180 3,5-dibromo-4-methylphenyl 4-bromo-2,6-
dimethylphenyl

Me [69]

L181 4-nitrilophenyl 4-bromo-2,6-
dimethylphenyl

Me [75]

L182 2-(4,4,5,5-tetramethyl-[1,3,2]-
dioxaborolan-2-yl)phenyl

4-bromo-2,6-
dimethylphenyl

Me [299]

L183 4-(4,4,5,5-tetramethyl-[1,3,2]-
dioxaborolan-2-yl)phenyl

4-bromo-2,6-
dimethylphenyl

Me [299]

a Only references reporting compounds for the first time are given; references are also given
when different reaction conditions were used
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than those containing exclusively a single o-substituent. Small and Brookhart [51]
found that the 13C NMR alkyl resonances of R and R0 are sensitive to the aryl
group rotation, and Cámpora et al. [56] showed that the iso-propyl 1H NMR
resonances of o-disubstituted aryl rings are also sensitive to the rotation of these
rings. Despite all the possible existing configurations, the formal symmetry
assignments in free BIP ligands are based on the U-shaped ligand configurations,
similar to those displayed in the corresponding complexes, with the aryl groups
orthogonal to the N–N–N plane (gray part of Fig. 3.2). For instance, the sym-
metrical BIP ligands L10 (2,6-(ArN=CH)2C5H3N, Ar = 2-Me-6-iPrC6H3) and L87
(2,6-(ArN=C(Me))2C5H3N, Ar = 2,6-iPr2C6H3) have Cs/C2 and C2v symmetries,
respectively, and the unsymmetrical BIP ligands L153 (2-(ArN=C(Me))-
6-(Ar0N=C(Me))C5H3N, Ar = 2-tBuC6H4, Ar0 = 2,6-Me2C6H3) and L171 (2-
(ArN=C(Me))-6-(Ar0N=C(Me))C5H3N, Ar = 2,6-Me2C6H3, Ar = 2,6-iPr2C6H3)
possess C1 and Cs symmetries, respectively.

Fig. 3.2 Possible changes in
the configurations of the free
BIP ligand resulting from
group rotations about single
bonds

Fig. 3.3 Molecular structures of the free BIP ligands L123 (a), L138 (b) and L144 (c) [62,
64, 67]
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3.2.2 Syntheses of Iron and Cobalt Complexes
with 2,6-Bis(arylimino)pyridine Ligands

In general, the iron and cobalt complexes of BIP are readily accessible by treat-
ment of the anhydrous or hydrated iron(II) or cobalt(II) dihalides (MX2 or
MX2�xH2O, where M = Fe or Co; X = Cl or Br) with the BIP ligands 2,6-
(ArN=C(R))2C5H3N, in tetrahydrofuran or n-butanol, giving rise to adduct com-
plexes of the type [MX2L], where L denotes [2,6-(ArN=C(R))2C5H3N]
(Scheme 3.11). Reaction of the BIP ligands with iron(III) trichloride, in tetrahy-
drofuran, leads to complexes [FeCl3L] (Scheme 3.11). The trivalent iron com-
plexes [FeCl3L] can be reduced, in tetrahydrofuran, to the divalent iron complexes
[FeCl2L], the reducing agent possibly being the solvent. For instance, the trivalent
iron complex [FeCl3(L50)] (L50 = 2,6-(ArN=C(Me))2C5H3N, Ar = 2-methyl-3-
(3,5-bis(trifluoromethyl)phenyl)phenyl), in tetrahydrofuran, was gradually reduced
to the divalent [FeCl2(L50)] within a week [69]. In order to suppress the reduction
of iron(III) to iron(II), it is necessary to lower the reaction temperature during the
formation of the trivalent iron complexes [71].

The formation of bisligand iron(II) complexes [FeL2]2+[FeCl4]2- depends on
the polarity of the solvent and on the BIP aryl substituents. For instance, the
complex [Fe(L39)2]2+[FeCl4]2- (L39 = 2,6-(ArN=C(Me))2C5H3N, Ar = 2-fluo-
rophenyl) is easily prepared by the treatment of iron(II) dichloride tetrahydrate
with the ligand L39, in the weakly polar tetrahydrofuran [60, 72]. However, the
reactions of the difluoro-substituted BIP ligands 2,6-(ArN=C(Me))2C5H3N, where
Ar is 2,4-F2C6H3 (L40), 2,5-F2C6H3 (L41) or 2,6-F2C6H3 (104), with iron(II)
dichloride tetrahydrate give various products. In the case of the ligand L41, the
monoligand complex [FeCl2(L41)] is the sole product obtained, either in tetra-
hydrofuran or in the strongly polar acetonitrile, while the ligands L40 and L104
afford the monoligand complexes [FeCl2(L40)] and [FeCl2(L104)], in tetrahy-
drofuran, and the bisligand complexes [Fe(L104)2]2+[FeCl4]2- and

Scheme 3.11 Syntheses of the iron and cobalt complexes based on the BIP ligands
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[Fe(L40)2]2+[Cl3FeOCl3]2-, in acetonitrile, respectively [63]. However, the
ligands containing o-methyl or bulkier aryl groups lead exclusively to the mon-
oligand complexes [FeCl2L], regardless of the solvent. Therefore, it seems that the
bisligand complexes [FeL2]2+[FeCl4]2- are formed only when the BIP ligands
have very small o-substituents on the aryl rings, such as F and H [69, 72]. The only
exceptional case is that of ligand L14 (2,6-(ArN=C(Me))2C5H3N, Ar = phenyl),
having no aryl substituents other than H, which gives exclusively the monoligand
complex [FeCl2(L14)] [28, 55, 58, 59].

Archer et al. [73] described a one-pot protocol to prepare BIP iron(II) com-
plexes, in which the condensation of 2,6-dibenzoylpyridine and 2,6-diisopropyl-
aniline in the presence of iron(II) dihalide, in refluxing acetic acid, affords the
iron(II) complex [FeX2(L144)] (L144 = 2,6-(ArN=C(Ph))2C5H3N, Ar = 2,6-iPr2-
C6H3, X = Cl or Br) (Scheme 3.12).

Alternatively, to avoid the time-consuming purification process of the free BIP
ligands, and the corresponding unsatisfactory yields, Cámpora et al. [56] reported
a new synthetic procedure for BIP iron(II) complexes. As shown in Scheme 3.13,
treatment of 2,6-diacetylpyridine with [FeCl2(dme)] (dme = dimethoxyethane)
gives [FeCl2(2,6-diacetylpyridine)], which, after subsequent addition of two
equivalents of 2-chloro-4,6-dimethylanilines, in refluxing ethanol, affords iron(II)

Scheme 3.12 One-pot syntheses of BIP iron(II) complexes

Scheme 3.13 Syntheses of the BIP iron(II) complexes reported by Cámpora et al. [56]
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complexes [FeCl2(L109)] (L109 = 2,6-(ArN=C(Me))2C5H3N, Ar = 2-Cl-4,6-
Me2C6H2). This procedure can be repeated to prepare the unsymmetrical BIP
iron(II) complex [FeCl2(L158)] (L158 = 2-(Ar0N=C(Me))-6-(Ar00N=C(Me))
C5H3N, Ar = 2-iPrC6H4, Ar00 = 2,4,6-Me3C6H2) (Scheme 3.13).

The molecular structures of several BIP iron(II) and cobalt(II) complexes have
been determined by single crystal X-ray diffraction. The cobalt(II) complexes are
commonly isomorphous with those of iron(II) possessing the same BIP ligands.
Their coordination geometries around the metal centers are quite flexible, varying
from trigonal bipyramidal to square pyramidal, with various degrees of distortion
from the ideal geometries, depending on the substitution patterns on the aryl
groups. Generally, the complexes containing less bulky o-substituents on the aryl
rings (e.g., H, F and Me) adopt distorted trigonal bipyramidal geometries, with the
pyridyl nitrogen atom and the two chlorine atoms forming the equatorial plane, the
two imino nitrogen atoms occupying the axial positions (views (a) and (b),
Fig. 3.4), such as in the cases of complexes [FeCl2(L17)] [52], [FeCl2(L41)] [63],
[FeCl2(L85)] [53], and [CoCl2(L40)] [63]. Conversely, the complexes bearing
much bulkier o-substituents (e.g., CF3, iPr and tBu) exhibit distorted square
pyramidal geometries, with the three nitrogen atoms and one of the chlorine atoms
forming the base, and the remaining chlorine atom occupying the apical position
(views (c) and (d), Fig. 3.4), which are the cases of [FeCl2(L87)] [14, 16, 53],
[CoCl2(L87)] [14, 53], [CoCl2(L26)] [14], [CoBr2(L106)] [74] and [FeBr2(L49)]
[74]. The complexes based on the unsymmetrical BIP ligands such as
[FeCl2(L154)] [75], [FeCl2(L180)] [75], [FeCl2(L162)] [76] and [FeCl2(L176)],
follow this rule as well [77].

Regardless of the bulkiness of the BIP ligand aryl substituents, the aryl rings are
oriented essentially orthogonal to the backbone, the latter being essentially planar.
The substituents at the a-imino carbons also have prominent influences on the
geometries of the complexes. These geometries shift from trigonal bipyramidal to
square pyramidal with increasing bulkiness of the substituents. For example, in the
case of complexes [FeCl2{(ArN=C(R))2C5H3N}], where Ar = 2,4,6-Me3C6H2,

Fig. 3.4 Molecular
structures of the complexes
[FeCl2(L85)] (a front view;
b side view) and [FeCl2(L87)]
(c front view; d side view)
[53]
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R = Me (L85) [53], OMe (L146) [68], Et (L133) [66], iPr (L135) [66], or 2,6-
Me2C6H3S (L150) [68], the first three adopt trigonal bipyramidal geometries.
As the bulkiness of the aryl substituents increases, the complex [FeCl2(L135)]
reveals two independent molecules, one being trigonal bipyramidal and the other
square pyramidal, whereas the complex [FeCl2(L150)] only show molecules with
square pyramidal geometry. Likewise, for the complexes of the type
[FeCl2{(ArN=C(R))2C5H3N}], where Ar = 2-PhC6H4, R = H (L4) [52] or Me
(L38) [78], the complex [FeCl2(L4)] exhibits trigonal bipyramidal geometry,
while complex [FeCl2(L38)] shows a square pyramidal one.

In the bisligand complexes [Fe(L39)2]2+[FeCl4]2- [60] and [Fe(L45)2]2+

[FeCl4]2- [69], the iron atom of the cationic part is coordinated by the six nitrogen
atoms of the two ligands, its geometry at the metal center being described as
distorted octahedral, whereas the [FeCl4]2- counteranion geometry can be
described as distorted tetrahedral. The geometries of the trivalent iron complexes
[FeCl3(L14)] [71], [FeCl3(L155)] [75], [FeCl3(L161)] [75] and [FeCl3(L50)] [69]
can be generally described as distorted octahedral, where the three nitrogens and
one of the chlorine atoms form the equatorial plane and the other two chlorine
atoms occupy the axial positions.

The magnetic properties of iron and cobalt complexes have been determined
using Evans (NMR) [53], Gouy (balance) [52, 53, 74] or Faraday (balance) [58]
methods. All of the monoligand iron and cobalt complexes [MX2L] (M = Fe or
Co, X = Cl or Br) are paramagnetic, with magnetic moments typically in the
ranges of 4.8–5.8 BM, for the iron(II) complexes, and 3.9–4.6 BM, for the
cobalt(II) ones, in agreement with high spin, four and three unpaired electrons
species, respectively [52, 53, 56, 58, 74].

Despite the paramagnetic nature of these complexes, 1H NMR spectroscopy can
be informative. The 1H resonances, which are paramagnetically shifted and
broadened, can be assigned on the basis of integration and proximity of the nuclei
to the paramagnetic centers [53]. Cámpora et al. [56] found that 1H NMR spec-
troscopy is a powerful tool to investigate the atropisomerism phenomenon in the
monoligand iron and cobalt complexes.

3.2.3 Oligo- and Polymerization of Ethylene

Because the metal center at the cationic part of the bisligand iron complexes
[FeL2]2+[FeCl4]2- is coordinatively saturated and sterically hindered, these com-
pounds showed to be inactive toward ethylene polymerization, when activated
with MAO [60, 63, 69, 72, 76]. The trivalent iron complexes [FeCl3L] showed
rather similar catalytic performances when compared with the analogous divalent
ones [FeCl2L], when activated with MAO, suggesting that the same active species
are generated from both precatalysts [53, 75]. In this context, both reduction and
oxidation transformations between Fe(III) and Fe(II) species in the presence of
MAO have been observed [79–83], and the ‘‘real’’ active species is unclear to date.
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Treatment of the monoligand iron(II) and cobalt(II) complexes [MX2L] (M = Fe
or Co, X = Cl or Br) with MAO or MMAO generates highly active ethylene oligo-
or polymerization catalysts, which lead to hydrocarbons ranging from a-olefin
oligomers with Schulz–Flory distributions to highly linear polyethylenes with high
molecular weights. These iron and cobalt catalytic systems show substantially low
productivities for the polymerization of propylene or higher a-olefins, and limited
capabilities to incorporate higher a-olefins into the growing polymer chains for the
production of branched polymers [51, 74, 78, 84–90]. Therefore, herein, we will
lay stress on the catalytic performance of BIP iron and cobalt complexes toward
ethylene polymerization, whereas their applications in the polymerization of
propylene and higher a-olefins will be discussed in Sect. 3.8.

3.2.3.1 Polymerization of Ethylene

The monoligand iron and cobalt complexes, when activated with MAO, can
convert ethylene to oligomers or polymers, substantially depending on the bulki-
ness of the aryl ring o-substituents. In general, mono-o-substitution leads to
ethylene oligomerization catalysts, e.g., L2–L6 and L15–L83 (Table 3.1), except
the o-tert-butyl (L26 and L28) [37, 53, 91], o-benzyl (L34) [58], o-trifluoromethyl
(L46, L59 and L64) [74, 91] and o-methyl (L37, with a very bulky substituent on
the p-position) [57] cases. Conversely, the di-o-substitution gives rise to ethylene
polymerization catalysts, e.g., L7–L11 and L84–L126 (Table 3.1), except for the
2,6-difluoro (L104) [63, 72] and 2-fluoro-6-methyl (L105) [77] substituents.

The electronic and steric environments of the complexes have substantial
influences on ethylene polymerization, which can be in principle divided into three
aspects: the metal center, the halide group, and the substituents and substitution
pattern on the ligand backbone.

The nature of the metal center has a marked influence on the catalytic per-
formances of the complexes. Generally, iron complexes are much more productive
and afford polyethylenes with higher molecular weights than those of the corre-
sponding cobalt analogues, under the same polymerization conditions [53, 58, 60,
62, 91, 92]. For instance, iron complexes [FeCl2(L87)], [FeCl2(L85)] and
[FeCl2(L26)] show activities of 5.34, 20.6 and 3.75 9 106 g/(mol h bar) and afford
polyethylenes with molecular weights (Mw) of 6.11, 1.48 and 3.13 9 105 g/mol,
respectively, while the corresponding cobalt complexes [CoCl2(L87)], [CoCl2(L85)]
and [CoCl2(L26)] give activities of 0.45, 1.70 and 1.74 9 106 g/(mol h bar) and
yield polyethylenes with molecular weights of 0.14, 2.57 and 2.34 9 105 g/mol,
respectively [53].

It is noteworthy that the 13C NMR end group analysis of the polyethylenes
obtained with iron precatalysts reveals an excess of saturated chain ends in relation
to the vinyl unsaturated ones, indicating that chain transfer at the iron catalytic
systems involves both b-H elimination and chain transfer to aluminum centers.
In contrast, all the polyethylenes formed by cobalt complexes exhibit a 1:1 ratio
of saturated to unsaturated chain ends, regardless of the polymerization
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conditions, which is characteristic of chain transfer exclusively by b-H elimination
[53, 60, 62].

The halide group has a slight influence on the catalytic performance of iron and
cobalt precatalysts because complexes based on the same BIP ligand, being
structurally isomorphous, will form the same active species upon alkylation and
activation by MAO. Generally, the BIP iron and cobalt dichlorides are more
productive than the corresponding dibromides, and they afford polyethylenes with
similar properties. For instance, the iron complex [FeCl2(L85)] (20.6 9 106 g/
(mol h bar)) is only slightly more active than [FeBr2(L85)] (17.6 9 106 g/
(mol h bar)) [53, 93]. Through the correlation of the net charge at the metal center
with the catalytic activity, Zhang et al. [93] demonstrated that the difference in
activity can be ascribed to the variation on the net charge of the iron center. For
instance, [FeCl2(L85)] (0.6935) has a very slightly higher net charge on the iron
center than [FeBr2(L85)] (0.6932), leading to the observed small difference in
activity.

The substituents and substitution pattern on the BIP ligand play crucial roles on
determining the catalytic performance of iron and cobalt complexes. Replacement
of the hydrogen atom at the a-imino carbon (aldimine ligands) by alkyl groups
(ketimine ligands) results in an increase both in the productivity and in the
molecular weight. For instance, the ketimine-based iron complexes [FeCl2(L84)],
[FeCl2(L85)] and [FeCl2(L87)] (9.34, 20.6 and 5.34 9 106 g/(mol h bar),
respectively), containing a methyl group at the a-imino carbon, are significantly
more active than the corresponding aldimine-based ones [FeCl2(L7)], [FeCl2(L8)]
and [FeCl2(L11)] (0.56, 0.55 and 0.31 9 106 g/(mol h bar), respectively), and
afford polyethylenes with significantly higher molecular weights (Mw) (2.42 vs.
1.08 9 105 g/mol, 1.48 vs. 1.52 9 105 g/mol, 6.11 vs. 1.32 9 105 g/mol,
respectively) [53]. Substituents such as the ethyl, iso-propyl, 2-phenylethyl and
1,3-diphenylprop-2-yl groups at the a-imino carbon display a similar effect.
For example, iron complexes [FeCl2(L133)], [FeCl2(L135)], [FeCl2(L140)]
and [FeCl2(L141)], bearing those substituents, show activities of 17.1, 17.8, 16.3
and 16.8 9 106 g/(mol h bar), respectively, being much higher than that of
[FeCl2(L8)] (0.55 9 106 g/(mol h bar)), and yield polyethylenes with molecular
weights (Mw) of 1.65, 4.56, 1.98 and 4.68 9 105 g/mol, which are values higher
than that obtained with the latter precatalyst (1.52 9 105 g/mol) [66]. Introduction
of a phenyl group at the a-imino carbon (e.g., [CoMe(L144)], 1.5 9 104 g/
(mol h bar)) gives a comparable activity to that obtained with the complex con-
taining a methyl group at the a-imino carbon (e.g., [CoMe(L87)], 1.6 9 104 g/
(mol h bar)) [64]. Substitution of a methoxy group at the a-imino carbon gives rise
to deactivation of the iron precatalyst, e.g., [FeCl2(L146)], possibly due to irre-
versible bonding of the activator to the heteroatom, leading to destabilization of
the catalyst via ligand dissociation or decomposition of the active iron-alkyl
propagating species [68]. To prevent the establishment of this bonding to the ether
oxygen atom, substituents bearing a soft atom such as sulfur, or large steric hin-
drances such as 2,6-dimethylphenoxy and 2,6-dimethylphenylthio, e.g., L148–
L150, were introduced. As a result, the corresponding iron complexes
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[FeCl2(L148)], [FeCl2(L150)] and [FeCl2(L151)] exhibited comparable catalytic
activities to that of [FeCl2(L85)] [68].

The effects of the presence of alkyl substituents on the aryl rings on the
polymerization of ethylene are dependent upon their nature and substitution pat-
tern, leading to various electronic and steric effects at the metal center. Generally,
an increase in the steric bulk at the aryl ring ortho positions results in a decrease in
the activity and an increase in the molecular weight, whereas a replacement at
the para position leads to an increase in the activity and a decrease in the
molecular weight. For instance, with the increase of the steric bulk (2,6-
Me2 \ 2-tBu \ 2,6-iPr2), the catalytic activities of the corresponding iron com-
plexes [FeCl2(L84)], [FeCl2(L26)] and [FeCl2(L87)] tend to decrease
(9.34 [ 3.75 \ 5.34 9 106 g/(mol h bar)) and the molecular weights (Mw)
markedly increase (2.42 \ 3.13 \ 6.11 9 105 g/mol) [53]. The replacement of
the para-aryl proton of [FeCl2(L84)] by a methyl group ([FeCl2(L85)]) results in
an increase in the activity from 9.34 to 20.6 9 106 g/(mol h bar) and a decrease in
the molecular weight (Mw) from 2.42 to 1.48 9 105 g/mol [53]. Substitution with
cycloalkyl groups has no identical effect on ethylene polymerization. For a
cyclopentyl group, the increase of the steric bulk from a mono-o-cyclopentyl
group ([FeCl2(L92)]) to a di-o-cyclopentyl ([FeCl2(L91)]) one leads to the
increase in both activity and molecular weight, whereas, for a cyclohexyl group,
the opposite trends are observed when the steric bulk is increased from mono-o-
cyclohexyl ([FeCl2(L96)]) to di-o-cyclohexyl ([FeCl2(L95)]) [94]. A striking
feature of the cycloalkyl effect is that these groups may dramatically improve the
temperature stability of the corresponding iron active species, the activity maxi-
mum shifting toward higher temperatures with the increasing size of the cycloalkyl
group [94]. For example, the activity maxima shift to 50 �C, for cyclopentyl, and
to 70 �C, for cyclohexyl and cyclooctyl groups, while for the cyclododecyl group
the catalytic system still has a good activity even over 80 �C.

Incorporating phenyl groups into the aryl ortho positions substantially
depresses the activity. For instance, the aldimine-based iron complex [FeCl2-
(L12)], bearing 2,6-diphenyl substituents on the aryl rings, displays an unusual low
activity (4.2 9 104 g/(mol h bar)) and affords low molecular weight polyethylene
(Mw = 1.2 9 103 g/mol), while the ketimine-based complexes, bearing 2,4,6-tri-
phenyl substituted aryl rings, present no activity for the cobalt complex
[CoCl2(L103)] and very low activity for the iron one [FeCl2(L103)] [91].

In the case of the di-o-substitution with halogen atoms at the aryl rings,
the fluorine substitution gives rise to an ethylene oligomerization catalyst
(e.g., [FeCl2(L104)]), and chlorine and bromine substituents lead to ethylene
polymerization catalysts (e.g., [FeCl2(L108)] and [FeCl2(L112)], respectively). On
increasing the size from chlorine to bromine, a reduction in the activity, e.g.,
12.8 9 106 g/(mol h bar) for [FeCl2(L108)] vs. 8.6 9 106 g/(mol h bar) for
[FeCl2(L112)], and an increase in the molecular weight (Mw), e.g., 1.33 9 104 g/mol
for [FeCl2(L108)] vs. 10.1 9 104 g/mol for [FeCl2(L112)], are observed [60, 95].
Precatalysts [FeCl2(L108)] and [FeCl2(L112)] are more active than [FeCl2(L87)],
which bears di-o-iso-propyl substituents on the aryl ring, but the molecular
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weights obtained are substantially lower than that obtained by the latter. The cobalt
complexes show the same trends as those of iron complexes. Chen et al. [60]
thought that the electron-withdrawing nature of chlorine and bromine sub-
stituents, which results in more electrophilic metal centers in the complexes,
would be responsible for their enhanced activities in ethylene polymerization.
In fact, semiempirical calculations indicate that the atomic (Mulliken) charges on
the iron centers of the complexes bearing iso-propyl or methyl substituents are
very close, –0.2859 ([FeCl2(L87)]) and –0.2854 ([FeCl2(L84)]), respectively,
whereas the chlorine- or bromine-substituted iron complexes have lower charges at
the iron centers, –0.2354 ([FeCl2(L108)]) and –0.2502 ([FeCl2(L112)]), respec-
tively [60]. Although the size of the trifluoromethyl group lies in between the
methyl and iso-propyl groups, the o-trifluoromethyl-aryl monosubstituted iron
complexes (e.g., [FeCl2(L46)], [FeCl2(L49)], [FeCl2(L59)] and [FeCl2(L64)])
exclusively afford polymers, while the corresponding cobalt complexes (e.g.,
[CoCl2(L46)], [CoCl2(L49)], [CoCl2(L59)] and [CoCl2(L64)]) yield a mixture
of oligomers along with some polymeric fraction [74, 91]. These observations
are in sharp contrast to those reported for the aryl o-alkyl-substituted iron and
cobalt complexes, which exclusively lead to oligomers. Pelascini et al. [91]
attribute this result to the interaction of one of the fluorine atoms with the
b-hydrogens of the polymer chain, as in the case of the fluorine-containing
phenoxy-imine titanium complexes [19, 96, 97]. It is noteworthy that the presence
of a o-trifluoromethyl substituent in the aryl rings of the BIP ligand boosts the
activities of cobalt and iron complexes by up to 2 and 6 orders of magnitude,
respectively [74].

The replacement of the phenyl ring of the BIP ligand by groups containing
extended p-conjugation, such as 1-naphthyl (L127), 2-methyl-1-naphthyl (L128),
1-anthracenyl (L130) or 4-pyrenyl (L131), significantly improves the catalytic
activity of the corresponding complexes, along with varied effects on the molec-
ular weight [58, 78, 98, 99].

The catalytic performance of the complexes based on unsymmetrical BIP
ligand is largely dependent on the combined bulkiness of the o-substituents on
both aryl rings [100, 101]. For instance, the precatalyst [FeCl2(L167)], containing
simultaneously phenyl and 2,6-di-iso-propylphenyl groups, affords oligomers
when exposed to ethylene and MAO, while [FeCl2(L171)], containing 2,6-
dimethylphenyl and 2,6-di-iso-propylphenyl groups, yields polymers [101].
A mixture of oligomer and polymer is obtained by [FeCl2(L168)], which contains
2-methylphenyl and 2,6-di-iso-propylphenyl rings. Bianchini et al. [101] ascribed
this simultaneous oligomerization and polymerization processes to the C1-sym-
metry of the complex, in which, due to the hindered rotation of the tolyl group, two
atropisomeric propagating alkyl active species are formed, one of them being
responsible for the ethylene polymerization and the other for the ethylene oligo-
merization. A similar phenomenon is observed with the iron complex
[FeCl2(L262)], which contains (R)-1-phenylethyl and 2,6-di-iso-propylphenyl
rings (see below in Table 3.4) [101].
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3.2.3.2 Oligomerization of Ethylene

Treatment of iron and cobalt complexes, exclusively bearing mono-o-alkyl sub-
stituents on the aryl rings, with MAO generates highly active ethylene oligo-
merization catalysts, such as in the case of [FeCl2(L15)], with activities reaching
1.21 9 108 g/(mol h bar), at 90 �C and 600 psig [15]. In general, iron complexes
are more active than the corresponding cobalt analogues, and the ketimine-based
complexes give much higher activities than the aldimine-based ones [52, 60, 63,
102]. For instance, under the same oligomerization conditions, the acetimine-
based iron complex [FeCl2(L15)] is substantially more active than the corre-
sponding cobalt one [CoCl2(L15)], 1.30 vs. 0.02 9 106 g/(mol h bar), and more
active than the aldimine-based iron complex [FeCl2(L2)], 1.30 vs. 0.48 9 106 g/
(mol h bar) [52]. These trends parallel those observed for the ethylene polymer-
ization with iron and cobalt complexes containing o-disubstituted aryl rings,
although the difference is more pronounced in the case of the oligomerization
systems. In all cases, the oligomers obtained follow a Schulz–Flory distribution,
which is characterized by the constant K, representing the probability of chain
propagation (K = ratepropagation/(ratepropagation + ratechain transfer) = (moles of Cn+2)/
(moles of Cn)). The K values are experimentally determined by the molar ratio of
two oligomer fractions, generally the C14 and C12 ones. A high K value means that
a catalyst produces higher molecular weight oligomers. In the case of industrial-
grade a-olefin oligomers, the K value is commonly preferred to be in the range of
0.6–0.8 [75, 76]. If this value exceeds 0.8, unwanted polymer fractions will be
present. Generally, the ketimine-based iron complexes give higher K values than
those of the aldimine-based ones, whereas the K values for both ketimine- and
aldimine-based cobalt complexes lie in between those obtained for the ketimine-
and aldimine-based iron systems. For instance, the ketimine-based iron complex
[FeCl2(L15)] gives a higher K value of 0.79 when compared with 0.50 for the
corresponding aldimine-based one [FeCl2(L2)], while the ketimine- and aldimine-
based cobalt complexes [CoCl2(L15)] and [CoCl2(L2)] give moderate K values of
0.67 and 0.74, respectively [52].

Similar to the ethylene polymerization precatalysts, the influences of alkyl
substituents on the ligand aryl rings toward ethylene oligomerization depend on
their nature and substitution pattern. Generally, the more sterically congested
complexes result in somewhat lower activities and higher K values, this effect
being not as evident as in the case of ethylene polymerization precatalysts. For
instance, when the size of the o-substituents on the aryl rings increases in the order
Me \ Et \ iPr, the corresponding iron complexes [FeCl2(L15)], [FeCl2(L21)] and
[FeCl2(L23)] show decreasing activities (2.80, 2.24 and 2.24 9 106 g/(mol h bar),
respectively) and increasing K values (0.81, 0.81 and 0.87, respectively) [15]. The
same trends are also observed in iron complexes bearing o-ethyl, o-n-propyl and
o-n-butyl substituents on the aryl rings [103]. Britovsek [52] and Kim [102] groups
investigated the effect of the alkyl group substitution patterns on the oligomeri-
zation of ethylene, and found that additional alkyl substitution at the meta and para
positions of the aryl rings substantially enhances the catalytic activities, but has a
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little effect on the K value. For example, iron complexes [FeCl2(L15)],
[FeCl2(L17)] and [FeCl2(L18)], bearing 2-methyl, 2,3-dimethyl and 2,4-dimethyl
substituents on the aryl rings, respectively, exhibit activities of 2.01, 4.17 and
2.66 9 106 g/(mol h bar) and give K values of 0.73, 0.77 and 0.70, respectively [52].
Zhang et al. [93] correlated the variation in the activity with the net charge at the
metal center, demonstrating that the activity decreases when the net charge is
higher than 0.7000, and increases when it is lower than 0.7000. In fact, for the
latter series of iron complexes, the net charge at the iron center increases
in the order [FeCl2(L17)] (0.7014) \ [FeCl2(L18)] (0.7044) \ [FeCl2(L15)]
(0.7053), while the activity decreases in the reverse order [FeCl2(L17)] [
[FeCl2(L18)] [ [FeCl2(L15)]. Ivanchev et al. [94] found that mono-o-cycloalkyl
substitution at the aryl ring, e.g., cyclopentyl, cyclohexyl, cyclooctyl and cy-
clododecyl, exclusively leads to oligomers, but the substituent effect was not
discussed in detail. Görl and Alt [57] revealed that sterically congested substitu-
ents at the para positions of the aryl rings also exert a marked influence on the
polymer molecular weights. Introduction of the relatively less bulky group (9H-
fluoren-2-yl)ethynyl at the para positions of the mono-o-methyl substituted aryl
rings of BIP ligand L15 leads to ligand L36, whose iron complex [FeCl2(L36)]
exclusively produces oligomers. Conversely, the incorporation of the relatively
much bulkier 5-(cyclopenta-1,3-dienyl)-5-(9H-fluoren-9-yl)hex-1-ynyl group
results in the ethylene polymerization precatalyst [FeCl2(L37)], although ligand
L37 is mono-o-methyl substituted at the aryl rings [57].

The influence of halogen atom substitution at the aryl ring on the oligomeri-
zation of ethylene is also dependent on their nature and substitution pattern, as in
the case of alkyl substituents. Due to the reduced size of the fluorine atom, the
mono-o-fluorine substitution at the aryl rings gives the bisligand iron complex
[Fe(L39)2]2+[FeCl4]2-, which is inactive toward ethylene oligomerization [60, 72].
In opposition, the corresponding di-o-fluorine substitution leads to the highly
active ethylene oligomerization iron catalyst [FeCl2(L104)] and to the inactive
analogous cobalt complex [CoCl2(L104)] [63, 72]. The corresponding chloro-,
bromo- and iodo-mono-o-substituted BIP ligand derivatives give rise to the highly
active ethylene oligomerization catalysts [FeCl2(L52)], [FeCl2(L60)] and
[FeCl2(L65)], respectively, and to the inactive analogous cobalt complexes
[CoCl2(L52)], [CoCl2(L60)] and [CoCl2(L65)]. An increase in the size of the
halogen atoms (Cl \ Br \ I) leads to a decrease in the catalytic activity
[FeCl2(L52)] (5.19 9 106 g/(mol h bar)) [ [FeCl2(L60)] (2.95 9 106 g/(mol h
bar)) [ [FeCl2(L65)] (0.93 9 106 g/(mol h bar)), but the corresponding K values
vary in the reverse order: [FeCl2(L52)] (0.59) \ [FeCl2(L60)] (0.63) \
[FeCl2(L65)] (0.67) [60]. The same trends are observed for the series
[FeCl2(L42)], [FeCl2(L53)] and [FeCl2(L61)], bearing 2-fluoro-4-methyl,
2-chloro-4-methyl and 2-bromo-4-methyl groups on the aryl rings, respectively
[104]. In the case of [FeCl2(L104)], [FeCl2(L41)] and [FeCl2(L40)], bearing 2,6-,
2,5- and 2,4-difluoro groups on the aryl rings, respectively, they show activities of
4.07, 9.33 and 11.1 9 106 g/(mol h bar), at 60 �C, respectively [63]. It is obvious
that the substitution of the fluorine atom at the meta and para positions leads to
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higher catalytic activities than that at the ortho position. Their cobalt analogues are
inactive for ethylene oligomerization. It is worth to note that the K values obtained
by [FeCl2(L104)], [FeCl2(L41)] and [FeCl2(L40)] precatalysts are 0.44, 0.33 and
0.34, respectively, being much lower than those obtained with the analogous alkyl-
substituted complexes [15, 52, 103]. Although the o-trifluoromethyl monosubsti-
tution leads to ethylene polymerization iron precatalysts [74, 91], the m- and p-
trifluoromethyl-substituted iron complexes are active exclusively toward ethylene
oligomerization, showing comparable catalytic activities and K values [55].

Ionkin et al. [76] introduced the nitro group into the BIP ligand L15, which
bears a o-methyl substituent on the aryl ring, and found that all the corresponding
nitro-substituted iron complexes, [FeCl2(L79)], [FeCl2(L80)] and [FeCl2(L162)],
show lower activities when compared to that of the parent iron complex
[FeCl2(L15)], but give higher K values. Conversely, the introduction of the
diethylamino group ([FeCl2(L68)]) results in the decrease in both activity and
K values [76]. Likewise, the same group [75] synthesized a nitrile o-aryl mono-
substituted derivative of the BIP ligand, the resulting complex [FeCl2(L76)]
showing to be inactive toward ethylene oligomerization. Nevertheless, the nitrile
p-substituted aryl ring, either in symmetrical or unsymmetrical BIP ligands, results
in decreased activities and increased K values produced by their iron complexes
[FeCl2(L77)], [FeCl2(L154)], [FeCl2(L161)], [FeCl2(L181)] [75]. Among them,
the symmetrical iron complex [FeCl2(L77)] gives the highest K value of 0.69, and
the remaining unsymmetrical iron complexes lead to lower K values of ca. 0.62.

3.3 Mono(arylimino)pyridine-Based Ligands and Their
Corresponding Iron and Cobalt Complexes

3.3.1 Syntheses of Ligands and Complexes

The 2-mono(arylimino)pyridine ligands mentioned in this section are bi- or tri-
dentate chelated species, differing from those presented in the previous Sect. 3.2 in
that they contain a single imino arm attached to the pyridine fragment.

Table 3.3 lists the 2-mono(arylimino)pyridine-based ligands reported in the
literature. Like the 2,6-bis(arylimino)pyridine, these N,N,E ligands (E = N, O, S)
are prepared by the condensation reaction of either a 6-substituted 2-pyridine-
carboxaldehyde or a 6-substituted 2-acetylpyridine with one equivalent of the
appropriate aniline, using an alcohol (e.g., methanol [105–107] and ethanol [78,
108]) as solvent, in the presence of a protic acid (e.g., formic [105–107] or acetic
[78, 108] acids) as catalyst (Scheme 3.14). In order to improve the yield, the water
formed in the reaction is usually concomitantly removed by the addition of water
absorbents (e.g., molecular sieves [55, 78, 109] and sodium sulfate [110]). In some
cases, the alcohol is replaced by a nonpolar or weakly polar solvent (e.g., benzene
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Table 3.3 2-Mono(arylimino)pyridine-based ligands, 2-(ArN=C(R))-6-R0-C5H3N

Ar R R0 Refs.a

L184 Phenyl Me H [291]
L185 Phenyl Me Br [302]
L186 2-methylphenyl Me Phenyl [303]
L187 2,6-dimethylphenyl Me Phenyl [303]
L188 2,6-dimethylphenyl Me Br [302]
L189 2,6-dimethylphenyl Me 2-quinolinyl [111]
L190 2,6-dimethylphenyl Me Acetyl [35, 42, 118]
L191 2,6-dimethylphenyl Me Ethoxycarbonyl [109, 112]
L192 2,4,6-trimethylphenyl Me Acetyl [34, 42]
L193 2,4,6-trimethylphenyl Me Ethoxycarbonyl [112]
L194 2,4,6-trimethylphenyl Me 2-quinolinyl [111]
L195 2,4,6-trimethylphenyl Me 2-hydroxy-2-

propyl
[114]

L196 2,6-diethylphenyl Me Acetyl [42]
L197 2,6-diethylphenyl Me Ethoxycarbonyl [109, 112]
L198 2,6-diethylphenyl Me 2-quinolinyl [111]
L199 2-iso-propylphenyl Me Acetyl [78]
L200 2,6-di-iso-propylphenyl H 2-benzo[b]thienyl [105]
L201 2,6-di-iso-propylphenyl H 6-(2,20-bipyridyl) [108]
L202 2,6-di-iso-propylphenyl H Hydroxymethyl [304]
L203 2,6-di-iso-propylphenyl H Acryloyloxymethyl [304]
L204 2,6-di-iso-propylphenyl Me Phenyl [107]
L205 2,6-di-iso-propylphenyl Me 2-naphthyl [105]
L206 2,6-di-iso-propylphenyl Me Br [106]
L207 2,6-di-iso-propylphenyl Me 2-quinolinyl [111]
L208 2,6-di-iso-propylphenyl Me 2-pyridyl [106]
L209 2,6-di-iso-propylphenyl Me 6-methyl-2-pyridyl [106]
L210 2,6-di-iso-propylphenyl Me 6-(2,20-bipyridyl) [108]
L211 2,6-di-iso-propylphenyl Me 2-furanyl [107]
L212 2,6-di-iso-propylphenyl Me 2-thienyl [107]
L213 2,6-di-iso-propylphenyl Me 3-thienyl [106]
L214 2,6-di-iso-propylphenyl Me 5-ethyl-2-thienyl [107]
L215 2,6-di-iso-propylphenyl Me 2-benzo[b]thienyl [105]
L216 2,6-di-iso-propylphenyl Me 3-benzo[b]thienyl [106]
L217 2,6-di-iso-propylphenyl Me 2-hydroxy-2-

propyl
[114]

L218 2,6-di-iso-propylphenyl Me Acetyl [110, 118]
L219 2,6-di-iso-propylphenyl Me Ethoxycarbonyl [109]
L220 2,6-di-iso-propylphenyl Et 2-benzo[b]thienyl [105]
L221 2-tert-butylphenyl Me Acetyl [35]
L222 2-cyclopentylphenyl Me Br [302]
L223 2-cyclopentyl-6-methylphenyl Me Br [302]
L224 2-cyclopentyl-4,6-

dimethylphenyl
Me Br [302]

L225 2,6-dicyclopentylphenyl Me Br [302]

(continued)
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[55] and toluene [34, 109, 111]), combined with the addition of p-toluenesulfonic
acid as catalyst and removal of water using the Dean–Stark trap technique.

The nature of the substituent R0 and the aryl group (Ar) (Scheme 3.14) has a
marked influence on the condensation reaction. When the substituent R0 is eth-
oxycarbonyl, Su et al. were unsuccessful in the preparation of ligands L191, L193
and L197 by condensation of ethyl 6-acetylpicolinate with the corresponding
anilines, in refluxing ethanol, and in the presence of acetic acid as catalyst [112,
113]. The use of toluene as solvent, p-toluenesulfonic acid as catalyst and a Dean–
Stark trap to remove the water formed gave very low yields (about 10–15%).
Nevertheless, the same authors found that microwave-assisted condensation
reactions afford the desired ligands in satisfactory yields. Analogous to the 2,6-
bis(arylimino)pyridine ligands, the use of strong electron-withdrawing substituents
on the aryl ring (e.g., CF3 [55]) commonly results in a relatively low yield. Due to
the reduced nucleophilicity of the corresponding anilines, forcing conditions are
required to improve the reaction yield. For instance, in the case of ligand L232,
bearing a m-trifluoromethyl substituent on the aryl ring [55], a satisfactory result
(70%) was obtained only when benzene was employed as solvent, molecular
sieves as water absorbent and prolonged reaction times were used (up to 80 days).

Table 3.3 (continued)

Ar R R0 Refs.a

L226 2-cyclohexylphenyl Me Br [302]
L227 2-cyclohexyl-6-methylphenyl Me Br [302]
L228 2-cyclohexyl-4,6-dimethylphenyl Me Br [302]
L229 2,6-dicyclohexylphenyl Me Br [302]
L230 2,6-difluorophenyl Me 2-quinolinyl [111]
L231 2,6-difluorophenyl Me Ethoxycarbonyl [109]
L232 3-trifluoromethylphenyl Me Acetyl [55]
L233 2,6-dichlorophenyl Me 2-quinolinyl [111]
L234 2,6-dichlorophenyl Me Ethoxycarbonyl [109]
L235 2,6-dibromophenyl Me 2-quinolinyl [111]
L236 2,6-dibromophenyl Me Ethoxycarbonyl [109]
L237 4-methoxyphenyl Me H [291]
L238 8-quinolinyl H Methyl [115]
L239 2-methyl-8-quinolinyl H H [115]
L240 2-methyl-8-quinolinyl H Methyl [115]
L241 2-iso-propyl-8-quinolinyl H H [115]
L242 2-iso-propyl-8-quinolinyl H Methyl [115]
L243 2-cyclohexyl-8-quinolinyl H H [115]
L244 2-cyclohexyl-8-quinolinyl H Methyl [115]
a Only references reporting compounds for the first time are given; references are also given
when different reaction conditions were used

Scheme 3.14 Synthesis of 2-
mono(arylimino)pyridine
ligands

104 L. Li and P. T. Gomes



Bianchini et al. [105–107] described a new protocol to introduce aryl or
heterocyclic ring substituents, e.g., 2-furanyl, 2-thienyl and 2-pyridyl groups, into
the 6-position of the 2-mono(arylimino)pyridine ligand, leading to a new family of
6-substituted 2-(arylimino)pyridine neutral ligands (e.g., L204, L211, L212 and
L216) (Scheme 3.15). This method consisted in the condensation of 6-bromo-2-
pyridinecarboxaldehyde or 2-acetyl-6-bromopyridine with the appropriate anilines
to form the 6-bromo-2-(arylimino)pyridines, followed by the palladium catalyzed
Stille coupling of the latter compounds with the appropriate stannanes. Alterna-
tively, introduction of the aryl substituents, e.g., phenyl and 2-naphthyl, into the
6-position of the 2-mono(arylimino)pyridine ligand can be achieved by the pal-
ladium catalyzed Suzuki coupling of 6-bromo-2-pyridinecarboxaldehyde or
2-acetyl-6-bromopyridine with the appropriate substituted boronic acid, followed
by the condensation of the resulting 6-substituted 2-pyridinecarboxaldehyde or
2-acetylpyridine with the desired anilines (Scheme 3.15).

Treatment of 6-acetyl-2-(arylimino)pyridine ligands with two equivalents of
trimethylaluminum affords the air-sensitive bimetallic 2-arylacetiminopyridinyl-6-
(propan-2-olate) aluminum complexes [2-(ArN=CMe)-6-{C(CH3)2O(AlMe3)}-
C5H3N]AlMe2 (Ar = 2,6-iPr2C6H3 or 2,4,6-Me3C6H2), which, followed by
hydrolysis, generate a new class of tridentate ligands such as L195 and L217
(Scheme 3.16) [114].

The iron and cobalt complexes based on the 2-mono(arylimino)pyridine ligands
are readily prepared by the reactions of the ligands with hydrated or dehydrated iron
and cobalt dichloride, in ethanol or tetrahydrofuran [42, 78, 105, 106, 109, 112].
However, the molecular structures of the corresponding iron and cobalt complexes

Scheme 3.15 Syntheses of 6-substituted 2-mono(arylimino)pyridine ligands reported by
Bianchini et al. [105–107]

Scheme 3.16 Syntheses of ligands L195 and L217
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are largely dependent upon the nature of the substituents (R0) at the 6-positions of the
pyridyl ring. The 2-acetyl R0 substituent exclusively gives rise to the N^N^O
tridentate chelated iron and cobalt complexes [42, 78, 110], the molecular structures
of which adopt square pyramidal geometries around the metal centers. Two nitrogen
atoms, one oxygen atom and one of the chlorine atoms form the basal plane, the
remaining chlorine occupying the apical position, e.g., [FeCl2(L218)] [78]. The
2-ethoxycarbonyl substitution at the 6-position of the pyridyl ring gives rise to either
N^N^O(carbonyl) tridentate chelates of iron and cobalt, e.g., [FeCl2(L197)] [109]
and [CoCl2(L197)] [112], or to N^N bidentate chelated complexes, e.g.,
[FeCl2(L219)], [FeCl2(L191)] and [CoCl2(L236)] [109]. The tridentate chelated
complexes show distorted trigonal bipyramidal geometries around the metal centers,
with the pyridyl nitrogen atom and the two chlorine atoms forming the equatorial
plane, while the bidentate chelated complexes display distorted tetrahedral geom-
etries around the metal centers. The aryl- or heterocycle-substitution at the pyridyl
ring 6-position also leads to either N^N bidentate chelated complexes with tetra-
hedral geometries around the metal centers, e.g., [CoCl2(L204)] and [CoCl2(L214)]
[107], or to N^N^N tridentate chelated complexes in the case of the 2-pyridyl [106]
and 2-quinolinyl [111] derivatives (e.g., [FeCl2(L189)], [CoCl2(L208)] and
[CoCl2(L207)]). In addition, the nature of the heterocyclic rings also largely influ-
ences the molecular structures of the complexes. Replacement of the phenyl iminic
ring by a 8-quinolinyl ring exclusively affords the N^N^N tridentate chelated
complexes, e.g., [FeCl2(L238)], [FeCl2(L240)] and [CoCl2(L243)] [115].

3.3.2 Oligo- and Polymerization of Ethylene

Treatment of the 2-mono(arylimino)pyridine-based iron and cobalt complexes
with MAO (or MMAO) generates ethylene oligo- and polymerization catalysts.
The substituents (R0) at the 6-position of the pyridyl ring and the aryl iminic
substituents have marked influences on the catalytic performances of the
complexes.

The 6-acetyl substitution on the 2-(arylimino)pyridine ligand bearing sterically
congested ortho aryl substituents (e.g., 2,6-dimethyl (L190), 2,6-diethyl (L196)
and 2,6-di-iso-propyl (L217)) exclusively leads to highly active ethylene poly-
merization iron and cobalt catalysts [42, 110]. The highest activity can reach
1.32 9 107 g/(mol h bar) ([FeCl2(L217)] [110]), which is comparable with those
of 2,6-bis(arylimino)pyridine iron catalysts [14, 53]. Notably different from the
2,6-bis(arylimino)pyridine iron catalysts, branched polyethylenes, instead of linear
ones, were obtained by this kind of iron complexes. The cobalt complexes are
substantially less active than their iron analogues [42]. The iron complex
[FeCl2(L232)], containing a relatively less bulky ortho aryl substituent exclusively
affords oligomers, upon activation with MAO [55].

The 6-ethoxycarbonyl-2-(arylimino)pyridine-based iron and cobalt complexes
show moderate activities, in the order of 104 g/(mol h bar), in the oligo- and
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polymerization of ethylene, upon activation with MAO, affording a mixture of
oligomers and polymers [109, 112]. The oligomers predominantly consist of
butenes and hexenes and small amounts of higher oligomers, following the Schulz–
Flory distribution, with K values varying in the range of 0.73–0.96, while the
polymers comprise relatively low molecular weight polyethylenes (Mn =

500–4,700). The aryl substituents have marked influences on the catalytic activities.
The o-alkyl substitution gives an identical influence on the activities of iron and
cobalt complexes, i.e., the catalytic activity decreases with the size of the o-sub-
stituents (Me \ Et \ iPr), e.g., [FeCl2(L191)] [ [FeCl2(L197)] [ [FeCl2(L219)],
which is consistent with the trends observed for the 2,6-bis(arylimino)pyridine-
based iron and cobalt complexes [14, 53]. In the case of the o-halo substitution, the
activity varies in the order of chloro- ([FeCl2(L234)]) [ fluoro- ([FeCl2(L231)]) [
bromo- ([FeCl2(L236)]) for iron complexes, and bromo- ([CoCl2(L236)]) [
chloro- ([CoCl2(L234)]) [ fluoro- ([CoCl2(L231)]) for cobalt complexes. It is
worth to note that the catalytic activities of cobalt complexes are, in the latter cases,
not lower, but remarkably higher than those of their iron analogues.

The 2-quinolinyl substitution at the 6-position leads exclusively to iron and
cobalt catalysts that exhibit high activities in the oligomerization of ethylene
(ca. 105 g/(mol h bar)), under a low pressure of ethylene (1 bar), yielding a
mixture of ethylene oligomers and polymer, under higher pressures of ethylene
(e.g., 10 bar). The oligomers formed mainly consist of butenes and hexenes [111].
The cobalt complexes are slightly less active than the corresponding iron ana-
logues. The substituents on the aryl groups have no relevant effects on the catalytic
behavior of the system.

The heterocycle substitution (e.g., 2-thienyl (L212), 2-furanyl (L211) and
2-benzo[b]thienyl (L215)) at the 6-position of the 2-(arylimino)pyridine ligands
results in ethylene oligomerization cobalt catalysts [105–107]. The substitution of
3-thienyl (L213), 3-benzo[b]thienyl (L216), 2-furanyl (L211), phenyl (L204)
and 2-naphthyl (L205) give rise to comparable catalytic activities in the order of
106 g/(mol h bar), which are 5–10 times lower than those obtained with the
2-thienyl (L212), 5-ethyl-2-thienyl (L214) and 2-benzo[b]thienyl (L215) sub-
stituted derivatives. It is worth noting that the 3-thienyl- and 3-benzo[b]thienyl-
substituted cobalt complexes [CoCl2(L213)] and [CoCl2(L216)] produce
exclusively 1-butene, while the 2-thienyl-, 5-ethyl-2-thienyl- and 2-benzo[b]thienyl-
substituted ones (respectively, [CoCl2(L212)], [CoCl2(L214)] and [CoCl2(L215)])
afford C4–C14 a-olefins with very low K values in the range of 0.06–0.21.

The 2-hydroxy-2-propyl-substituted iron complexes [FeCl2(L195)] and
[FeCl2(L217)] display moderate activities upon treatment with MAO, affording
highly linear polymers along with some oligomeric products [114].

Replacement of the iminic phenyl by the 8-quinolinyl ring leads to highly active
ethylene oligomerization iron and cobalt catalysts [115]. The butenes are the major
products with good selectivity for 1-butene. Both the substituent (R0) at the
6-position of the pyridyl ring and the substitution with the 8-quinolinyl ring have
pronounced effects on the catalytic activities. Generally, the bulkier the substitu-
ents, the higher the activities. The cobalt complexes show comparable activities
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with their iron analogues, and all cobalt complexes exhibit good selectivity for
1-butene, regardless of the substituent bulkiness, a behavior that is quite different
from the corresponding iron complexes.

3.4 Mono- or Bis(alkylimino)pyridine-Based Ligands and
Their Corresponding Iron and Cobalt Complexes

3.4.1 Syntheses of Ligands and Complexes

To date, just a few mono- or bis(alkylimino)pyridine ligands and their iron
and cobalt derivatives have been reported (Table 3.4). Compared with the
2,6-bis(arylimino)pyridine, the 2,6-bis(alkylimino)pyridine ligands are more readily

Table 3.4 Mono- or bis(alkylimino)pyridine-based ligands, (R0N=C(R))-6-(R00N=C(R))C5H3N

R0 R00 R Refs.a

Symmetrical ligands
L245 iso-propyl iso-propyl Me [61]
L246 n-hexyl n-hexyl Me [204]
L247 Cyclohexyl Cyclohexyl Me [34, 36, 61]
L248 2,6-dimethylcyclohexyl 2,6-dimethylcyclohexyl Me [120]
L249 n-octadecyl n-octadecyl Me [204]
L250 Benzyl Benzyl H [116]
L251 Benzyl Benzyl Me [116]
L252 Benzhydryl Benzhydryl Me [100]
L253 Cyclohexylmethyl Cyclohexylmethyl Me [116]
L254 cis-myrtanyl cis-myrtanyl H [116]
L255 cis-myrtanyl cis-myrtanyl Me [58]
L256 (R)-bornyl (R)-bornyl H [116]
L257 9H-fluoren-9-yl 9H-fluoren-9-yl Me [100]
Unsymmetrical ligands
L258 Cyclohexyl 2,6-dimethylphenyl Me [118]
L259 n-butyl 2,6-di-iso-propylphenyl Me [119]
L260 Cyclohexyl 2,6-di-iso-propylphenyl Me [118]
L261 Benzyl 2,6-di-iso-propylphenyl Me [101]
L262 (R)-1-phenylethyl 2,6-di-iso-propylphenyl Me [118]
L263 (S)-1-naphthalen-2-yl-

ethyl
2,6-di-iso-propylphenyl Me [118]

L264 2-propenyl 2,6-di-iso-propylphenyl Me [119]
L265 3-butenyl 2,6-di-iso-propylphenyl Me [119]
L266 4-pentenyl 2,6-di-iso-propylphenyl Me [119]
L267 5-hexenyl 2,6-di-iso-propylphenyl Me [119]

a Only references reporting compounds for the first time are given; references are also given
when different reaction conditions were used
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accessible by the typical condensation reaction of pyridine-2,6-dicarboxaldehyde
or 2,6-diacetylpyridine with the appropriate aliphatic amines. This is possibly due
to the electron-donating nature of the alkyl groups, which lead to enhanced
nucleophilic reactivities of the corresponding aliphatic amines. Generally, the use
of an alcohol as solvent (e.g., methanol [116] and ethanol [34]), and a protic acid
as catalyst (e.g., formic [116] or acetic [34] acids), in the absence of water ab-
sorbents, is sufficient to afford a satisfactory yield (Scheme 3.17). Treatment of the
2,6-bis(alkylimino)pyridine ligands with equimolar amounts of iron or cobalt
dichloride, in tetrahydrofuran, gives the corresponding iron and cobalt complexes
in good yields (Scheme 3.17). Addition of an excess of ligand leads to bis-che-
lating ligand derivatives. For instance, reaction of hydrated cobalt dichloride with
an equivalent of ligand L247, bearing cyclohexyl groups, in methanol, generates
the monoligand cobalt complex [CoCl2(L247)], whereas addition of the ligand in a
2:1 or 5:1 ligand-to-metal ratio suppresses the formation of [CoCl2(L247)], and the
cation [Co(L247)2]2+ is observed using UV/vis spectroscopy [117]. In contrast,
treatment of the ligand L247 with hydrated cobalt tetrafluoroborate exclusively
afforded the bis-chelating ligand complex [Co(L247)2][BF4]2, regardless of the
ligand-to-metal ratio employed [117].

Bianchini and Erker groups [101, 118, 119] reported a new family of 2-(al-
kylimino)-6-(arylimino)pyridine ligands L258–L267, which were easily prepared
by treatment of 2,6-diacetylpyridine with an equimolar quantity of an aromatic
amine, followed by reaction of the resulting 6-acetyl-2-(arylimino)pyridine with
an equimolar amount of an aliphatic amine (Scheme 3.18). Reaction of these
ligands with anhydrous iron or cobalt dichloride, in boiling n-butanol, gave rise to
the corresponding iron and cobalt complexes (Scheme 3.18).

Similar to the 2,6-bis(arylimino)pyridine-based iron and cobalt complexes,
bearing less bulky o-substituents on the aryl rings (e.g., [FeCl2(L17)] [52] and
[FeCl2(L41)] [63]), the molecular structures of the 2,6-bis(alkylimino)pyridine-
based iron and cobalt complexes also feature a distorted trigonal bipyramidal
geometry around the metal center, with the pyridyl nitrogen atom and two chlorine
atoms positioned in the equatorial plane and the two imino nitrogen atoms located
at the axial positions, e.g., [CoCl2(L247)] [117] and [CoCl2(L256)] [116], due to
the presence of the less sterically congested alkyl substituents, except
[FeCl2(L248)] containing the bulkier 2,6-dimethylcyclohexyl, which adopted a
distorted square pyramidal geometry around the metal center. On the contrary, iron

Scheme 3.17 Syntheses of symmetrical 2,6-bis(alkylimino)pyridine ligands and their iron and
cobalt complexes

3 Oligomerization and Polymerization of Olefins with Iron and Cobalt Catalysts 109



and cobalt complexes based on the unsymmetrical 2-(alkylimino)-6-(arylimino)
pyridine ligands present structures with geometries in between square pyramidal
and trigonal bipyramidal, by virtue of the co-contributions of the less sterically
congested alkyl and the more sterically congested aryl substituents [118, 119].
A pronounced feature in the unsymmetrical ligand-based complexes
is that the bond distance of Co–Nalkylimino is dramatically shorter than that of
Co–Narylimino, 2.185(6) Å vs. 2.348(6) Å, respectively, in [CoCl2(L258)] [118],
likely due to the relatively higher nucleophilicity and smaller size of the alkyl
substituents.

3.4.2 Oligo- and Polymerization of Ethylene

The majority of iron and cobalt complexes based on the symmetrical bis(alkyli-
mino)pyridine ligands are inactive toward the oligo- or polymerization of ethylene,
upon treatment with MAO, possibly due to the lack of steric protection of the
active species’ metal center, leading to the deactivation of the catalyst. Just a few
cases exhibit low ethylene oligo- or polymerization activities, e.g., [FeCl2(L255)]
with the cis-myrtanyl group [58], [CoCl2(L248)] with the 2,6-dimethylcyclohexyl
group [120] and [FeCl2(L257)] with the 9H-fluoren-9-yl group [100]. When
activated with MAO, the first two catalysts give very low ethylene polymerization
activities, while the latter shows a moderate activity toward ethylene oligomeri-
zation (ca. 105 g/(mol h bar)).

The catalytic performance of iron and cobalt complexes containing unsym-
metrical 2-(alkylimino)-6-(arylimino)pyridine backbones is determined by the
combined effects of the alkyl and aryl groups. Bianchini et al. [118] studied the
catalytic behavior of a series of such complexes, in which the alkyl groups involve
cyclohexyl, (R)-1-phenylethyl and (S)-1-naphthalen-2-yl-ethyl, the aryl groups
being either 2,6-dimethylphenyl or 2,6-di-iso-propylphenyl, on the oligo- or
polymerization of ethylene, and found that all the iron and cobalt complexes are

Scheme 3.18 Syntheses of the 2-(alkylimino)-6-(arylimino)pyridine unsymmetrical ligands and
their iron and cobalt derivatives
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active in the oligomerization of ethylene, upon activation with MAO, affording
a-olefins with Schulz–Flory distributions (K = 0.61–0.91). The catalytic activity
increases with the bulkiness of the alkyl substituents, e.g., [FeCl2(L260)] (cyclo-
hexyl) \ [FeCl2(L262)] ((R)-1-phenylethyl) \ [FeCl2(L263)] ((S)-1-naphthalen-
2-yl-ethyl), and decreases with the size of the aryl substituents, e.g., [FeCl2(L258)]
(2,6-dimethylphenyl) [ [FeCl2(L260)] (2,6-di-iso-propylphenyl). The cobalt
complexes are approximately one order of magnitude less active than their iron
analogues.

Wallenhorst et al. [119] revealed that the presence of a pendant alkenylimino
substituent (instead of a normal alkylimino group) in the 2-(alkylimino)-6-(aryli-
mino)pyridine ligands (e.g., L264–L267) leads to a unique catalytic behavior of
the corresponding iron and cobalt complexes in the oligo- or polymerization of
ethylene. Iron complexes [FeCl2(L264)]–[FeCl2(L267)] afford a mixture of linear
polyethylenes and low molecular weight oligomers with low polydispersities (Mw/
Mn = 1.15–1.31), whereas the corresponding cobalt complexes exclusively yield
linear polyethylenes. All the cobalt complexes give relatively lower activities than
their iron analogues. The same author ascribed this unusual catalytic behavior to
the reversible involvement of the alkenyl pendant group in the polymerization
process, as an internal comonomer.

3.5 Derivatization of 2,6-Bis(imino)pyridine Ligands
and Their Corresponding Iron and Cobalt Complexes

Besides the aforementioned modified BIP ligands, a wealth of other new BIP
derivatives have to date been achieved by further in-depth modification of the
parent BIP ligand, and their corresponding iron and cobalt complexes have been
tested for the oligo- or polymerization of ethylene. These modifications can be, in
principle, divided into three aspects: (1) modifications on the pyridine moiety; (2)
modifications on the imino arms; and (3) modifications both on the pyridine
moiety and on the imino arms.

3.5.1 Modifications on the Pyridine Moiety

The simplest modification on the pyridine moiety was achieved by alkylation of
the pyridyl ring 4-position of the BIP ligand [56, 121, 122]. The reaction of 2,6-
bis(arylimino)pyridine with dialkylmanganese gives a thermally unstable dial-
kylmanganese species that undergoes a spontaneous rearrangement involving the
migration of one of the alkyl groups from the metal center to the 4-position of
the heterocyclic ring, which looses a hydrogen to the solution, affording the
4-alkylated BIP manganese(I) alkyl complex (Scheme 3.19). Treatment of these
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manganese species with methanol leads to a mixture of the free 4-alkylated BIP
ligand and 4-alkyl-2,6-bis(imino)-1,4-dihydropyridine. The latter is slowly trans-
formed into the former on exposure to air, a reaction that is promoted by the
addition of potassium carbonate and a catalytic amount of chromium trioxide,
leading to the desired 4-alkylated BIP ligand (e.g., L268–L272 in Scheme 3.19) as
the main product. Alternatively, the introduction of a tert-butyl group into the
4-position of the pyridyl ring can be achieved by radical nucleophilic substitution
on 2,6-diacetylpyridine with tBu� radicals, using Minisci conditions, followed by
the typical condensation reaction with the appropriate anilines, e.g., L273 and
L274, (Scheme 3.20) [123]. In addition, the 4-chloro-substituted BIP ligands are
readily prepared by the condensation reaction of 2,6-diacetyl-4-chloropyridine
with the appropriate anilines, e.g., L275 (4-Cl-2,6-(ArN=C(Me))2C5H2N,
Ar = 2,6-iPr2C6H3) [120]. Iron and cobalt complexes based on the 4-substituted
BIP ligands are readily accessible by treatment of the corresponding ligands with
iron or cobalt dichlorides. These iron and cobalt complexes are structurally

Scheme 3.19 Syntheses of 4-alkyl-2,6-bis(imino)pyridine ligands

Scheme 3.20 Substitution of tert-butyl group at the 4-position of the pyridyl ring of the BIP
ligand
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comparable with the corresponding parent BIP ligands, e.g., [FeCl2(L268)] vs.
[FeCl2(L87)] (both show distorted square pyramidal geometries around the metal
centers).

The 4-substituted BIP ligand-based iron and cobalt complexes are active toward
the polymerization of ethylene, upon activation with MAO, being the iron com-
plexes generally more active than the cobalt analogues. Compared to iron and
cobalt complexes based on the corresponding parent BIP ligands, 4-alkyl substi-
tution has an insignificant effect on the catalytic activity, whereas the 4-chloro
substitution results in a pronounced decrease in the activity [120, 122].

Ligands related to BIP but bearing alternative heterocyclic backbones have also
been synthesized. This is the case of L276 and L277, which are easily obtained by
the condensation of 2,3,7,8-tetrahydro-1H,6H-acridine-4,5-dione with the proper
anilines. Coordination of these ligands to iron dichloride affords the corresponding
iron derivatives (Scheme 3.21) [31, 124]. On activation with MMAO, precatalysts
[FeCl2(L276)] and [FeCl2(L277)] are active toward ethylene oligomerization, with
activities in the order of 104 g/(mol h bar).

Replacement of the pyridine ring by further heteroaryl rings, such as pyrazine
[125, 126], pyrimidine [127], furan [127] and thiazole [128], affords a large family
of novel BIP derivatives.

The condensation of 2,6-diacetylpyrazine with the proper anilines yields the
2,6-bis(imino)pyrazine ligands, which, upon coordination to iron dichloride, in
tetrahydrofuran, give rise to the corresponding iron complexes, e.g., [FeCl2(L278)]
and [FeCl2(L280)] (Scheme 3.22) [125, 126]. Treatment of these complexes with
MMAO leads to active ethylene polymerization catalysts showing activities in the
order of 104 g/(mol h bar). When compared with the corresponding BIP

Scheme 3.21 Syntheses of BIP ligands with a cyclic backbone and their iron complexes

Scheme 3.22 Syntheses of 2,6-bis(imino)pyrazine ligands and their iron complexes

3 Oligomerization and Polymerization of Olefins with Iron and Cobalt Catalysts 113



precatalysts, the replacement of pyridine by the pyrazine ring causes remarkable
decreases both in the activity and in the molecular weight of the resulting
polyethylenes.

Using an analogous reaction protocol, the 4-methyl-2,6-bis(imino)pyrimidine
ligands and their corresponding iron and cobalt complexes were synthesized
(Scheme 3.23) [127]. It is worth to mention that attempts to prepare the cobalt
complexes [CoCl2(L285)] were unsuccessful, possibly as a consequence of the
increased steric bulk of the iso-propyl groups in combination with an intrinsically
weaker metal–ligand interaction compared to iron. Further introduction of a
nitrogen atom into the pyrimidine ring leads to two ligand derivatives L287 and
L288 containing a 1,3,5-triazine core (Scheme 3.24) [127]. Attempts to coordinate
these two molecules to iron or cobalt dichloride were unsuccessful. The high
isomerization barriers to the conformer suited to coordination, as well as the
reduced basicities of these triazine ligands, likely prevent the formation of metal
complexes. Upon activation with MAO, the complexes [MCl2(L283)],
[MCl2(L284)] and [MCl2(L285)] (M = Fe or Co), bearing the bulky 2,6-dimethyl,
2,4,6-trimethyl and 2,6-di-iso-propyl groups on the aryl rings, respectively, con-
vert ethylene to polymers, in which the former two show comparable catalytic
activities and yield similar polymer molecular weights, and the latter displays a
reduced activity and affords higher polymer molecular weights. The complexes
[FeCl2(L286)] and [CoCl2(L286)], bearing the less bulky 2-methyl groups on the
aryl rings, convert the ethylene to oligomers with Schulz–Flory distribution
(K values of 0.69 and 0.83, respectively), when activated by MAO, thereby fol-
lowing the same trend as that observed for the BIP ligand-based iron and cobalt
catalysts [127].

Scheme 3.24 Potential
ligands bearing a 1,3,5-
triazine core

Scheme 3.23 Syntheses of 2,6-bis(imino)pyrimidine ligands and their iron and cobalt complexes
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Of a slightly different nature from BIP, the 2,5-bis(imino)pyrrole 2,5-
(ArN=CH)2C4H2NH (Ar = 2,6-iPr2C6H3) (L289), which is a potential precursor
to a monoanionic tridentate ligand, can be prepared by condensation of pyrrole-
2,5-dicarboxaldehyde with 2,6-di-iso-propylaniline, in methanol. Reaction of the
lithium salt of L289 with iron dichloride, in refluxing tetrahydrofuran, gives the
neutral bisligand complex [Fe(L289)2], showing a distorted tetrahedral geometry
around the metal center, whereas the reaction with cobalt dichloride generates the
ionic complex [Li(THF)4]+[CoCl2(L289)]-, which is converted into [Li(THF)2]+-
[CoCl2(L289)]- on pumping in vacuum (Scheme 3.25) [129]. It is apparent that
L289 acts exclusively as a monoanionic bidentate ligand in both complexes, but
not as a tridentate ligand. When activated with MAO, [Fe(L289)2] is unreactive
toward ethylene, but the cobalt derivative can convert ethylene to oligomers with
an activity of ca. 3.1 9 104 g/(mol h bar). The resulting oligomers are a mixture
of terminal and internal olefins, and branched products. Using the analogous
condensation protocol, 1-methyl-2,5-bis(phenylimino)pyrrole (L290) was pre-
pared, but attempts to coordinate it to iron failed (Scheme 3.26) [128].

Replacement of the pyridine ring of the BIP ligand by furan or thiophene
heterocycles to achieve potentially new neutral tridentate ligands can be accom-
plished by condensation of furan-2,5-dicarboxaldehyde or thiophene-2,5-dicar-
boxaldehyde with the appropriate anilines, e.g., L291–L293 (Scheme 3.27)
[127, 128]. However, attempts to prepare the tridentate iron or cobalt complexes of

Scheme 3.25 Synthesis of the 2,5-bis(imino)pyrrole ligand precursor L289 and its iron and
cobalt complexes

Scheme 3.26 Synthesis of the potential ligand 1-methyl-2,5-bis(imino)pyrrole L290
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these ligands failed. Conversely, the bis(imino)thiazole ligands L294 and L295,
which are easily accessible by condensation of the corresponding 2,5-diacetyl-
thiazole and 2,4-diacetylthiazole with anilines, can be coordinated to iron and
cobalt, leading to the corresponding tridentate derivatives (Scheme 3.28) [128].
Treatment of these iron and cobalt derivatives with MMAO results in ethylene
oligomerization catalysts, yielding predominantly butenes and hexenes.

Considering the facts that ligands bearing five-membered heterocyclic cores,
such as pyrrole (L289), furan (L291) and thiophene (L292 and L293) are not able
to form the corresponding tridentate chelating iron and cobalt complexes, pre-
sumably due to insufficient imino arm length and metal radii, an extra carbon atom
linker between the imino moiety and the central heterocyclic core was introduced
to overcome this problem, as depicted in Scheme 3.29 [127, 130]. The
bis(imino)carbazole monoanionic ligand precursors L296–L299 were prepared by
condensation of 1,8-diformylcarbazole with the appropriate amines. The lithium or
sodium salts of these ligands, which can be obtained by deprotonation of these
precursors, in tetrahydrofuran, using n-butyllithium or sodium hydride, were
treated with iron or cobalt dichloride to afford the complexes of the type [MClL]
(L = L296 or L298, M = Fe or Co), presenting a severely distorted and flattened
tetrahedral geometry around the metal center. Similar reaction was performed with
iron trichloride to generate complexes of the type [FeCl2L] (L = L296–L299),
which have slightly distorted trigonal bipyramidal geometries. All the iron and
cobalt complexes obtained were found to be inactive toward the oligo- or poly-
merization of ethylene in combination with MAO. With the same objective, the
dibenzofuran and the diphenyl ether and thioether ligand derivatives were prepared

Scheme 3.27 Syntheses of
the potential ligands 2,5-
bis(imino)furan and 2,5-
bis(imino)thiophene

Scheme 3.28 Syntheses of the bis(imino)thiazole iron and cobalt complexes
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by condensation of the corresponding dicarboxaldehydes with the appropriate
anilines (Scheme 3.30) [127]. However, like in the cases of bis(imino)furan and
bis(imino)thiophene, these ligands fail to coordinate to iron and cobalt, not
forming the corresponding tridentate chelated complexes.

Sun and coworkers [131, 132] prepared a series of 2,6-bis(imino)phenol ligands
by condensation of 2-hydroxy-5-methylisophthalaldehyde or 5-tert-butyl-2-hy-
droxyisophthalaldehyde with the appropriate anilines (Scheme 3.31). The reaction
of iron trichloride with 4-methyl-2,6-bis(imino)phenol bearing ortho aryl substit-
uents (e.g., L307–L309), in acetonitrile, resulted in the formation of salts of the
type [2,6-(Ar(H)N=CH)2-4-MeC6H2O]+[FeCl4]- (where the phenol group is
deprotonated, while the C=N groups are protonated), which adopt a columnar
helical structure through the formation of hydrogen bonding between the anion and
cation counterparts and intermolecular p–p interactions. When the ortho aryl
groups are hydrogen atoms (e.g., L310), the adduct FeCl3�L310 is formed

Scheme 3.29 Syntheses of the bis(imino)carbazole ligands and their iron and cobalt complexes

Scheme 3.30 Syntheses of
potential ligands derived
from dibenzofuran, diphenyl
ether and diphenyl thioether
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(Scheme 3.31). Conversely, reaction of cobalt dichloride with 4-tert-butyl-2,6-
bis(imino)phenols such as L304–L306 gives the corresponding bidentate chelated
cobalt complexes, which adopt distorted tetrahedral geometries around the metal
centers. Upon treatment with MAO, cobalt complexes afford exclusively butenes
with very low catalytic activities (ca. 103 g/(mol h bar)).

The 2,8-bis(imino)quinoline ligands are readily accessible by condensation of
2,8-diacetylquinoline with the corresponding anilines, which, followed by treat-
ment with iron or cobalt dichloride, yield their iron and cobalt derivatives
(Scheme 3.32) [133]. It is worth to mention that the coordination reaction to iron
and cobalt chlorides is limited to the ligands (L311 and L312) bearing o-methyl
substituents on the aryl rings, whereas those with the bulkier o-ethyl or o-iso-
propyl substituents (L313 and L314) do not react. Treatment of the resulting iron
and cobalt complexes with MAO leads to highly active ethylene polymerization
catalysts. The activities of cobalt complexes are comparable with those of their
iron analogues. Maximum catalytic activities of 7.61 9 106 g/(mol h) and
6.93 9 106 g/(mol h) can be reached for [FeCl2(L311)] and [CoCl2(L311)],
respectively, under 30 bar of ethylene. The most pronounced feature of these iron
and cobalt complexes is that their catalytic activities remarkably increase with the
polymerization temperature up to 100 �C, along with a decrease in the molecular
weight.

The bis(imino)bipyridine ligand L315 can be easily prepared by condensation
of 2,20-bipyridine-6,60-dicarboxaldehyde with 2,4,6-trimethylaniline, in ethanol, in
the presence of acetic acid as catalyst (Scheme 3.33) [134]. Treatment of L315

Scheme 3.31 Syntheses of
2,6-bis(imino)phenol ligands
and their iron and cobalt
complexes

Scheme 3.32 Syntheses of 2,8-bis(imino)quinoline ligands and their iron and cobalt complexes

118 L. Li and P. T. Gomes



with iron dichloride, in tetrahydrofuran, affords a tridentate chelated iron complex
[FeCl2(L315)], which demonstrated to be inactive toward the oligo- or polymer-
ization of ethylene, in the presence of MAO.

The 2,9-bis(imino)-1,10-phenanthroline ligands (L316–L318) are prepared by
condensation of 1,10-phenanthroline-2,9-dicarboxaldehyde with the corresponding
anilines, which, followed by treatment with iron or cobalt dichloride, afford their
iron and cobalt complexes that adopt a distorted trigonal bipyramidal geometry
around the metal center (Scheme 3.34) [134, 135]. Upon treatment with MAO, the
iron complexes are not active toward the oligo- or polymerization of ethylene,
under various pressures of ethylene (1, 10 and 20 bar), while the cobalt complexes
are as well inactive under 1 bar of ethylene, but can serve as ethylene oligomer-
ization catalysts, at pressures above 10 bar of ethylene, with activities in the order
of 105 g/(mol h).

3.5.2 Modifications on the Imino Arms

In order to place a catalytic site at the core of a dendrimer, and thus create a
controllable microenvironment around it, Moss and coworkers [136] prepared a
series of the BIP ligands containing dendritic wedges, as shown in Scheme 3.35.
These dendritically functionalized BIP ligands are prepared by reaction of BIP
derivatives containing 4-hydroxy groups on the aryl rings, which are easily syn-
thesized by the condensation of 2,6-diacetylpyridine with the corresponding
4-anilines, with the appropriate bromoalkyl wedge, using the Williamson ether

Scheme 3.33 Syntheses of a bis(imino)bipyridine ligand and the corresponding iron complex

Scheme 3.34 Syntheses of 2,9-bis(imino)-1,10-phenanthroline ligands and their iron and cobalt
complexes
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synthesis protocol. Treatment of these ligands with iron dichloride, in tetrahy-
drofuran, leads to the corresponding iron derivatives [FeCl2(L319)]–
[FeCl2(L326)]. Upon treatment with MAO, all the iron complexes, except
[FeCl2(L321)] and [FeCl2(L324)], can serve as ethylene oligomerization catalysts
with activities in the order of 105 g/(mol h bar). In comparison with the corre-
sponding unsubstituted BIP iron complex [FeCl2(L15)], bearing 2-methyl groups
on the aryl rings, the dendritically functionalized iron complexes show higher
activities and K values. In addition, the dendritically substituted complexes
[FeCl2(L322)], [FeCl2(L323)] and [FeCl2(L326)] are evidently more active than
their nondendritic analogues [FeCl2(L320)] and [FeCl2(L325)], respectively,
suggesting that the dendritic functionalization at the BIP ligand can efficiently
improve the catalytic activities of the corresponding iron complexes toward eth-
ylene oligomerization.

Replacement of the aryl rings of the 2,6-bis(arylimino)pyridine ligands by
azolyl rings, such as pyrrolyl, indolyl, carbazolyl and triazolyl rings, leads to a new
family of BIP ligands with N–heterocyclic groups L327–L338, which are readily
accessible by condensation of 2,6-diacetylpyridine with the corresponding
N-amino azoles (Scheme 3.36) [137]. The unsymmetrical ligand L339 is prepared
by stepwise condensation of pyridine-2,6-carboxaldehyde with N-aminocarbazole
and N-aminopyrrole, respectively. Treatment of these ligands with the appropriate
metal halides (FeCl2, CoCl2 and FeCl3) gives the corresponding iron and cobalt
derivatives in good yields, except for L330 and L333, bearing exclusively phenyl
substituents on the N-pyrrolyl rings, possibly due to a high steric hindrance and/or
electron-withdrawing effect imposed by two pairs of ortho phenyl groups. Upon
treatment with MAO, all these iron and cobalt complexes, except [FeCl2(L336)]
containing triazolyl groups, show remarkable catalytic activities in the oligo- or
polymerization of ethylene, comparable with that of the 2,6-bis(arylimino)pyridine
iron complex [FeCl2(L87)]. The highest activity is achieved by [FeCl2(L328)],
bearing 2,5-dimethylpyrrolyl groups, with almost twice of the productivity as that
of [FeCl2(L87)]. Iron complexes are generally more active by a factor of 10–100

Scheme 3.35 Syntheses of BIP ligands bearing dendritic wedges
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than their corresponding cobalt analogues. Similar to the trend observed for the
2,6-bis(arylimino)pyridine iron and cobalt complexes, increasing the steric hin-
drance of the N-azolyl groups leads to lower catalytic activities and higher poly-
mer molecular weights, while the opposite effect is observed as the steric
hindrance decreases. The molecular weights of the resulting polyethylenes are
remarkably lower than those obtained with the normal 2,6-bis(arylimino)pyridine-
based iron and cobalt complexes. It is worth to note that the oligomers produced
with the N-pyrrolyl complexes possess a significant degrees of branching, being
substantially different from the strictly linear oligomers obtained with the N-aryl
systems. For instance, an NMR analysis shows the polyethylene formed by
[FeCl2(L335)] contains 1.1% of vinyl, 0.2% of vinylidene, 4.3% of cis/trans
double bonds, with a branching of 19 methyl, 71 ethyl, 11 butyl and 80 alkyl C C6

per 1000 carbon atoms.
Gibson and coworkers prepared a series of new aminoiminopyridine and

bis(amino)pyridine ligands [138, 139]. The aminoiminopyridine ligands (L339–
L341) are prepared by reaction of 2,6-bis(arylimino)pyridine with trimethylalu-
minum, in which one of the imino arms is transformed into an amino group via
nucleophilic attack of this alkylating agent on only one of the imino carbons,
followed by hydrolysis (Scheme 3.37). Treatment of these ligands with iron or
cobalt dichlorides, in n-butanol, at elevated temperature, leads to their corre-
sponding metal complexes. The bis(amino)pyridine ligand (L342) is prepared by
reaction of 2,6-bis(bromomethyl)pyridine with lithium amide LiNHAr (Ar = 2,6-
di-iso-propylphenyl) (Scheme 3.37) [140]. However, its iron derivative could not
be prepared by reaction with anhydrous iron dichloride, in n-butanol or tetrahy-
drofuran. Alternatively, the reaction of L342 with the iron dichloride tetrahydro-
furan adduct [FeCl2(THF)1.5], in refluxing toluene, gives the desired complex in
high yield [138]. When activated with MAO, these iron and cobalt complexes
based on the aminoiminopyridine and bis(amino)pyridine ligands are active in the
polymerization of ethylene, with the activities in the order of 104 g/(mol h bar),
which are dramatically lower than those obtained with the corresponding bis-
(arylimino)pyridine-based metal complexes. The catalytic activity of [FeCl2(L342)]

Scheme 3.36 Syntheses of N-azolyl BIP ligands
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is remarkably lower than those of [FeCl2(L339)]–[FeCl2(L341)], suggesting that
the substitution of both imino groups by two amino functionalities is not favorable.
Using a similar reaction protocol, Britovsek et al. [141] prepared a couple of non-
protic bis(amino)pyridine ligands 2,6-(R(Me)NCH2)2C5H3N (R = Me (L343) or
Ph (L344)). The corresponding iron complexes [Fe(OTf)2(L343)] and [FeCl2-
(L344)], which are easily prepared by reaction of the ligands with the iron(II)
triflate acetonitrile adduct ([Fe(OTf)2(NCMe)2]) and iron dichloride tetrahydro-
furan adduct ([FeCl2(THF)1.5]), respectively, were found to be active for the
oxidation of cyclohexane with hydrogen peroxide.

The biphenyl-bridged bis(iminopyridine) ligands L345–L348 are prepared by
the reaction of biphenyl-2,20-diamines with the appropriate 6-substituted 2-ace-
tylpyridine or pyridine-2-carboxaldehyde (Scheme 3.38) [142]. Treatment of the
ligands bearing no alkyl substituents at the pyridyl rings 6-positions (R00 = H) with
metal halides (FeCl2, FeBr2, and CoCl2) affords the tetradentate chelated iron and
cobalt complexes, which adopt distorted octahedral geometries around the metal
centers, whereas the reaction of L347, bearing a 6-methyl substituent, with iron
dichloride gives the cationic complex [FeCl(L347)]+Cl-, which shows a square
pyramidal geometry around the metal center. These iron or cobalt complexes show
extremely low or no activities toward ethylene polymerization, upon activation
with MAO.

The 2-benzoxazolyl-6-(arylimino)pyridine ligands L349–L355 are accessible
by condensation of 2-(2-benzoxazolyl)-6-acetylpyridine with the appropriate ani-
lines, which, followed by treatment with iron or cobalt dichloride, give rise to
the corresponding iron and cobalt derivatives (Scheme 3.39) [143–145].

Scheme 3.37 Syntheses of aminoiminopyridine and bis(amino)pyridine ligands and their iron
and cobalt complexes
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The complexes [FeCl2(L349)], [FeCl2(L351)], [CoCl2(L349)] and [CoCl2(L350)],
bearing o-methyl, o-ethyl or o-iso-propyl groups on the aryl rings, adopt distorted
trigonal bipyramidal geometries around the metal centers, whereas [FeCl2(L355)]
and [CoCl2(L355)], bearing o-bromo groups, show distorted square pyramidal
geometries [143, 144]. Upon exposure to ethylene, the iron complexes
[FeCl2(L349)]–[FeCl2(L355)], in combination with MMAO, afford oligomers with
Schulz–Flory distributions, characterized by K values of 0.55–0.78, along with
waxy oligomers, consisting mainly of linear a-olefins, whereas the cobalt com-
plexes [CoCl2(L349)]–[CoCl2(L355)] exclusively generate butenes and traces of
hexenes. The oligomerization activities of the iron complexes (in the order of
105 g/(mol h bar)) are one order of magnitude higher than those of their cobalt
analogues. The substituents on the aryl rings substantially, but not identically,
influence the catalytic performance of the iron and cobalt complexes. For example, in
the case of [FeCl2(L350)], containing o-ethyl groups, the highest oligomerization

Scheme 3.38 Syntheses of biphenyl-bridged bis(iminopyridine) ligands and their iron and cobalt
complexes

Scheme 3.39 Syntheses of 2-benzoxazolyl-6-(arylimino)pyridine ligands and their iron and
cobalt complexes
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activity of 1.02 9 106 g/(mol h bar) is obtained. The presence of halogen
substituents on the ortho positions of the aryl rings ([FeCl2(L354)] and
[FeCl2(L355)]) leads to activities similar to those of the o-alkyl-substituted com-
plexes ([FeCl2(L349)]–[FeCl2(L351)]). Compared with the parent iron complex
[FeCl2(L349)], which is 4-methyl substituted, precatalyst [FeCl2(L352)] gives rise
to an increase in the activity, whereas the 4-bromo substituted [FeCl2(L353)] leads to
a marked decrease in the activity [144]. On the contrary, for cobalt complexes, the
precatalyst [CoCl2(L355)], containing o-bromo atoms, exhibits the highest
oligomerization activity of 7.52 9 104 g/(mol h bar). Compared with the o-alkyl-
substituted complexes [CoCl2(L349)]–[CoCl2(L351)], the o-halo substituted
[CoCl2(L354)] and [CoCl2(L355)] give rise to a significant increase in the activity.
Both 4-methyl and 4-bromo substitutions result in remarkable decrease in the activity
with respect to the parent complex [CoCl2(L349)] [143].

The 2-benzimidazolyl-6-(arylimino)pyridine ligands can be prepared routinely
by the condensation of 2-benzimidazolyl-6-acetylpyridine with the appropriate
substituted anilines (Scheme 3.40) [146–149]. Treatment of these ligands with
iron or cobalt dichloride gives the desired metal complexes of the type [MCl2L]
(M = Fe or Co), except for L365 that contains the less bulky o-fluoro groups on
the aryl rings, and leads to the bisligand complexes [Fe(L365)2]2+[FeCl4]2- [150],
analogous to the 2,6-bis(arylimino)pyridine-based iron complex [Fe(L39)2]2+

[FeCl4]2- (L39 = 2,6-(ArN=C(Me))2C5H3N, Ar = 2-fluorophenyl) [60, 72].
The coordination geometry of these [MCl2L] complexes is dependent upon the
bulkiness of the substituents on both the aryl and the benzimidazolyl rings.
The less bulky substituents (H or Me) on the benzimidazolyl ring favor distorted

Scheme 3.40 Syntheses of 2-benzimidazolyl-6-(arylimino)pyridine ligands and their iron and
cobalt complexes
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trigonal bipyramidal geometries, e.g., [FeCl2(L358)], [CoCl2(L357)],
[FeCl2(L362)], [CoCl2(L362)] and [FeCl2(L366)], regardless of the substituents
on the aryl ring, whereas when the substituent on the benzimidazolyl ring is iso-
propyl, less bulky substituents on the aryl ring lead to trigonal bipyramidal
geometries, e.g., [FeCl2(L371)] and [CoCl2(L371)], bearing o-methyl groups,
while much bulkier substituents on the aryl ring result in the square pyramidal
geometry, such as in the case of [CoCl2(L370)] that contains iso-propyl groups.
Treatment of the ligands with iron trichloride gives iron(III) complexes of the type
[FeCl3L]. Except cobalt complexes bearing the iso-propyl groups on the benz-
imidazolyl rings ([CoCl2(L368)]–[CoCl2(L373)]), which show higher catalytic
activities in combination with diethylaluminum chloride (AlEt2Cl) than with MAO
or MMAO, iron and cobalt complexes of the type [MCl2L] (M = Fe and Co)
display the highest activities for ethylene oligomerization, when activated with
MAO or MMAO, forming predominantly oligomers with Schulz–Flory distribu-
tions, along with a small amount of waxy polymers. The latter were proved to be
linear a-olefins.

Iron complexes are generally much more active than the corresponding cobalt
analogues. The substituents on both the aryl and benzimidazolyl rings have
remarkable influences on the catalytic performance of the metal complexes.
In general, the bulkier the substituent (R) on the benzimidazolyl rings, the lower
the catalytic activity. For instance, when the size of the R group increases in the
order of H \ Me \ iPr, the activities of [FeCl2(L356)] (R = H), [FeCl2(L362)]
(R = Me) and [FeCl2(L368)] (R = iPr), all bearing 2,6-dimethylphenyl groups,
decrease in the order of [FeCl2(L356)] (1.35 9 106 g/(mol h)) [ [FeCl2(L362)]
(9.2 9 105 g/(mol h)) [ [FeCl2(L368)] (2.34 9 105 (mol h)), at 10 bar of ethylene.
For complexes containing a hydrogen atom or a methyl group on the benzimi-
dazolyl rings (R = H or Me), the bulkier o-alkyl substituents on the aryl rings lead
to higher activities, e.g., [FeCl2(L358)] (Ar = 2,6-di-iso-propylphenyl)
(2.62 9 106 g/(mol h)) [ [FeCl2(L357)] (Ar = 2,6-diethylphenyl) (1.57 9 106 g/
(mol h))[ [FeCl2(L356)] (Ar = 2,6-dimethylphenyl) (1.35 9 106 g/(mol h)), at
10 bar of ethylene, whereas for complexes containing an iso-propyl group on the
benzimidazolyl rings (R = iPr), the reverse trend is observed, i.e., [FeCl2(L370)]
(Ar = 2,6-di-iso-propylphenyl) (0.48 9 105 g/(mol h)) \[FeCl2-(L369)] (Ar =
2,6-diethylphenyl) (1.62 9 105 g/(mol h)) \ [FeCl2(L368)] (Ar = 2,6-dimethyl-
phenyl) (2.34 9 105 g/(mol h)), at 10 bar of ethylene. For all the complexes,
o-halo substituents on the aryl rings cause a dramatic decrease in the activity when
compared with those of the o-alkyl-substituted derivatives. It is worth to mention
that the cocatalyst also has a remarkable effect on the catalytic behavior of these
complexes. For instance, in the case of complexes bearing a methyl group on
the benzimidazolyl rings (R = Me), in the presence of MAO, the catalytic activ-
ity varies in the order of [FeCl2(L362)] (with Me) \ [FeCl2(L363)] (with
Et) \ [FeCl2(L364)] (with iPr) and [FeCl2(L366)] (with Cl) \ [FeCl2(L367)]
(with Br), whereas in the presence of MMAO, the reverse trend is observed,
[FeCl2(L362)] (with Me) [ [FeCl2(L363)] (with Et) [ [FeCl2(L364)] (with iPr)
and [FeCl2(L366)] (with Cl) [ [FeCl2(L367)] (with Br). Upon activation with
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MAO, iron(III) complexes of the type [FeCl3L] can serve as highly active ethylene
oligomerization catalysts, with activities of ca. 106 g/(mol h), at 10 bar of ethylene.
The catalytic activity varies in the order of [FeCl3(L362)] (with Me) [
[FeCl3(L363)] (with Et) [ [FeCl3(L364)] (with iPr) and [FeCl3(L365)] (with
F) [ [FeCl3(L366)] (with Cl) [ [FeCl3(L362)] (with Br), which is consistent with
the trend observed for the corresponding iron(II)/MMAO system, but opposite to
that obtained in the corresponding iron(II)/MAO system.

Sun et al. [149] synthesized a series of 2-(benzimidazolyl)pyridine derivatives,
starting from o-phenylenediamine and 2,6-dimethylpyridine, as shown in
Scheme 3.41. Reaction of o-phenylenediamine with 2,6-dimethylpyridine in the
presence of sulfur, as oxidant, gives 2-(2-benzimidazolyl)-6-methylpyridine
(L374), which, followed by treatment with selenium dioxide, affords 6-(2-benz-
imidazolyl)pyridine-2-carboxylic acid. The latter is esterified with ethanol, in the
presence of a catalytic amount of sulfuric acid, to form 2-(ethoxycarbonyl)-6-(2-
benzimidazolyl)pyridine (L376). N-methylation of L374 and L376 with methyl
iodide, in the presence of potassium carbonate, in acetonitrile, gives 2-(1-methyl-
2-benzimidazolyl)-6-methylpyridine (L375) and 2-(ethoxycarbonyl)-6-(1-methyl-
2-benzimidazolyl)pyridine (L377), respectively. The latter can be transformed into
6-(2-benzimidazolyl)-2-acetylpyridine (L378) through a Claisen reaction with
ethyl acetate, in the presence of sodium ethoxide. Treatment of these ligands with
iron or cobalt dichloride (MCl2, M = Fe or Co) gives the desired N^N bidentate
chelated complexes [MCl2(L374)]–[MCl2(L377)] and N^N^O tridentate chelated
complexes [MCl2(L378)]. Upon activation with MAO, MMAO or AlEt2Cl, these
iron or cobalt complexes give moderate ethylene oligomerization activities
(ca. 104 g/(mol h bar)). For cobalt complexes, the cocatalyst AlEt2Cl gives higher
activities than MAO and MMAO. Compared with the complexes [MCl2(L374)]

Scheme 3.41 Syntheses of 2-(benzimidazolyl)pyridine derivatives

126 L. Li and P. T. Gomes



and [MCl2(L376)], their corresponding N-methylated complexes [MCl2(L375)]
and [MCl2(L377)] show lower activities. Iron complexes [MCl2(L376)] and
[MCl2(L377)], containing an ethoxycarbonyl group at the 6-position of the pyridyl
ring, exhibit higher activities than their corresponding iron analogues
[MCl2(L374)] and [MCl2(L375)], containing a methyl group at the 6-position of
the pyridyl ring.

The 2,6-di(1H-pyrazol-1-yl)pyridine ligands (L379–L382) are prepared by
treatment of the pyrazole sodium salt with 2,6-dibromopyridine, while the 2,6-
bis((1H-pyrazol-1-yl)methyl)pyridine ligands (L383 and L384) can be synthesized
by phase transfer catalyzed reactions of 2,6-bis(chloromethyl)pyridine with the
pyrazole salt (Scheme 3.42) [128, 151]. Treatment of these ligands with iron or
cobalt dihalide (MX2, M = Fe or Co, X = Cl or Br), in tetrahydrofuran or
n-butanol, leads to the corresponding tridentate chelated iron and cobalt deriva-
tives. It is noteworthy that iron complexes [FeBr2(L381)] [128] and [FeCl2(L381)]
[152], bearing the 3,5-dimethyl groups, adopt a distorted trigonal bipyramidal
geometry around the metal center, whereas the cobalt complex [CoCl2(L380)]
[151], containing 3,4,5-trimethyl groups, shows a distorted square pyramidal
geometry. Iron and cobalt complexes [FeCl2(L379)], [FeCl2(L380)], [CoCl2-
(L370)], [CoCl2(L380)], [FeCl2(L383)] and [FeCl2(L384)], containing unsubsti-
tuted or 3,4,5-trimethyl-substituted pyrazole rings, are active toward ethylene
polymerization, when activated with MAO, forming linear polyethylenes with
high molecular weights, whereas they give very low or no activities in the poly-
merization of ethylene, when activated with MMAO. Iron complexes are more
active than their cobalt analogues, and the introduction of a methylene linker
between the pyrazole and pyridine rings causes a decrease in activity, e.g.,
[FeCl2(L379)] (9.7 9 104 g/(mol h bar)) [ [FeCl2(L383)] (6.6 9 104 g/(mol h -
bar)). On the contrary, iron complexes [FeBr2(L383)] and [FeBr2(L382)], con-
taining 3,5-dimethyl- or 3,5-diphenyl-substituted pyrazole rings, are active in the

Scheme 3.42 Syntheses of 2,6-bis(pyrazolyl)pyridine ligands
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oligomerization of ethylene, when activated with MMAO, generating predomi-
nantly butenes and a small amount of hexenes.

The 2,6-bis(2-benzimidazolyl)pyridine-based iron complexes [FeBr2(L385)]
and [FeBr2(L386)] are prepared by reaction of iron dibromide with the commer-
cially available 2,6-bis(2-benzimidazolyl)pyridine and 2,6-bis(1-methyl-2-benz-
imidazolyl)pyridine, respectively, in tetrahydrofuran (Scheme 3.43) [128]. The
latter can be easily synthesized by N-methylation of 2,6-bis(2-benzimidazol-
yl)pyridine with methyl iodide. Upon activation with MMAO, these two iron
complexes are active toward ethylene oligomerization, also giving rise predomi-
nantly to butenes and a small amount of hexenes.

Starting from the tetraketones, 2,6-bis(5-n-butylpyrazol-3-yl)pyridine is pre-
pared by a ring closure reaction with hydrazine, while 2,6-bis(6-tert-butylpyrim-
idin-4-yl)pyridine (L389) is obtained by treatment of the tetraketones with
formamide, in the presence of ammonium carbonate and sodium sulfate
(Scheme 3.44) [153]. Deprotonation of the former compound with sodium
hydride, in tetrahydrofuran, generates the corresponding pyrazolides, which react
with butyl or benzyl bromide to give the alkylated derivatives L387 and L388.
Similarly, treatment of the same compound with ortho- or para-nitro-substituted
fluorobenzene results in the formation of the arylated ligands L390 and L391.
Treatment of ligands L387–L391 with iron or cobalt dichloride gives the corre-
sponding iron and cobalt complexes. Upon exposure to ethylene, all the iron and
cobalt complexes, except [FeCl2(L391)] and [CoCl2(L391)], are inactive in the

Scheme 3.43 Syntheses of 2,6-bis(2-benzimidazolyl)pyridine-based iron complexes

Scheme 3.44 Syntheses of 2,6-bis(pyrazolyl)pyridine and 2,6-bis(pyrimidinyl)pyridine ligands
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presence of a large excess of MAO. At 10 bar of ethylene, [FeCl2(L391)] and
[CoCl2(L391)] show moderate activities in the order of 105 g/(mol h), forming
polyethylenes with high molecular weights.

Imanishi and Nomura [154] synthesized the iron complex [FeCl2(L392)] by
treatment of the commercially available 2,6-bis[(4S)-(–)-iso-propyl-2-oxazolin-2-
yl]pyridine with iron dichloride, in dichloromethane (Scheme 3.45). This complex
exhibits very low activities (ca. 103 g/(mol h), at 8 bar of ethylene) toward eth-
ylene polymerization, in the presence of MAO, giving polyethylenes with high
molecular weights (ca. 105–106 g/mol). Similarly, Chirik and coworkers [155]
prepared a series of 2,6-bis(oxazolinyl)pyridine or 2,2-bis(oxazolinyl)propane iron
dialkyl complexes [FeR2(L392)]–[FeR2(L400)] (R = CH2SiMe3 or CH2CMe3),
either by displacement of pyridine in [FeR2(py)2] (py = pyridine) with commer-
cially available 2,6-bis(oxazolinyl)pyridine or 2,2-bis(oxazolinyl)propane ligands
or by direct dialkylation of the corresponding iron dichloride complexes. These
iron dialkyl complexes were found to be active in the catalytic hydrosilylation of
various ketones.

The reaction of iron dichloride with 2,20:60,200-terpyridine (L401) gives the
bisligand iron complex [Fe(L401)2]2+[FeCl4]2

2-, whereas the reactions with L402
and L403, bearing bulky substituents at the o-positions, afford the monoligand iron
derivatives [FeCl2(L402)] and [FeCl2(L403)], respectively (Scheme 3.46) [156].
Treatment of L401 and L404 with iron trichloride leads to the iron(III) complexes
[FeCl3(L401)] and [FeCl3(L404)], respectively. It was found that, except in the
cases of [FeCl2(L402)] and [FeCl2(L403)], which show extremely low activities
for ethylene polymerization in the presence of MMAO (respectively, 90 and 70 g/
(mol h bar)), all the other complexes are totally inactive toward ethylene
polymerization.

Scheme 3.45 Iron complexes based on 2,6-bis(oxazolinyl)pyridine- or 2,2-bis(oxazolinyl)pro-
pane ligands
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Treatment of iron dibromide with the 2,6-bis(N-heterocyclic carbene)pyridine
L405, a tridentate chelating ligand containing the iso-propyl substituent, in tetra-
hydrofuran, gives the bisligand iron complex [Fe(L405)2]2+[FeBr4]2-, whereas the
reaction with L406, bearing the bulkier 2,6-di-iso-propylphenyl substituent, gen-
erates the monoligand iron complex [FeBr2(L406)], which can be alternatively
synthesized by the direct metalation reaction from 2,6-bis(arylimidazolium)pyri-
dine dibromide (aryl = 2,6-di-iso-propylphenyl) and bis[bis(trimethylsilyl)
amido]iron(II) ([Fe{N(SiMe3)2}2]), in tetrahydrofuran (Scheme 3.47) [157, 158].
Likewise, the reaction of 2,6-bis(arylimidazolium)pyridine dibromide (aryl =

2,6-di-iso-propylphenyl) with bis[bis(trimethylsilyl)amido]cobalt(II) ([Co{N(Si-
Me3)2}2]), in tetrahydrofuran, gives quantitative yields of [CoBr2(L406)] [159].
These 2,6-bis(carbene)pyridine-based iron and cobalt complexes were found to be
totally inactive toward the oligo- or polymerization of ethylene, in the presence of
MAO.

Treatment of the 2,6-bis(iminophosphoranyl)pyridine L407–L410 and
bis(iminophosphoranyl)ethane ligands L416–L419 with iron or cobalt dihalide
(MX2, M = Fe or Co, X = Cl or Br) give, respectively, the corresponding tri-
dentate or bidentate iron and cobalt complexes (Scheme 3.48) [160]. Deprotona-
tion of bis(iminophosphoranyl)methane ligand precursors with n-butyllithium, in
tetrahydrofuran, followed by reaction with cobalt dichloride, affords the cobalt
complexes [CoCl(L)] (L411–L415). All the iron and cobalt complexes were tested
toward ethylene polymerization, in the presence of MAO, the cobalt complexes
based on the 2,6-bis(iminophosphoranyl)pyridine and bis(iminophosphor-
anyl)alkane ligands showing moderate catalytic activities, with typical values in

Scheme 3.46 Syntheses of terpyridine-based iron complexes
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the range of 5–30 9 103 g/(mol h bar), and giving rise to polyethylenes with high
molecular weights (Mw = 1.5–4 9 105 g/mol), while the 2,6-bis(iminophos-
phoranyl)pyridine-based iron complexes exhibited very low or no activities.

The 2,6-bis((diarylphosphino)methyl)pyridine ligands L420–L422 are prepared
by treatment of diarylphosphines with 2,6-bis(chloromethyl)pyridine in the pres-
ence of potassium tert-butoxide. These tridentate ligands react with iron or cobalt

Scheme 3.47 Syntheses of 2,6-bis(N-heterocyclic carbene)pyridine ligands and their iron and
cobalt complexes

Scheme 3.48 Syntheses of 2,6-bis(iminophosphoranyl)pyridine- and bis(iminophosphoranyl)
alkane-based iron and cobalt complexes
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dichloride, in ethanol, to afford the corresponding metal complexes (Scheme 3.49)
[161]. Upon activation with MAO, iron complexes [FeCl2(L420)]–[FeCl2(L422)]
are not active toward the polymerization of ethylene, with a fast decomposition of
the system being observed, while cobalt complexes [CoCl2(L420)]–[CoCl2(L422)]
exhibit very low activities of 74–225 g/(mol h), at 60 bar of ethylene, forming
polyethylenes with high molecular weights (ca. 3 9 105 g/mol).

3.5.3 Modifications on Both Pyridine and Imino Moieties

Sun and Solan groups [162–167] recently reported a large family of 2-imino-1,10-
phenanthrolinyl ligands, which were prepared by the condensation of the 1,10-
phenanthrolinyl ketones or aldehydes with substituted anilines (Scheme 3.50).
Depending on the difference in reactivities between aldehydes or ketones and
alkyl- or halo-substituted anilines, the reaction conditions were tuned, including
solvent (e.g., ethanol, toluene), dehydrating agent (e.g., tetraethyl orthosilicate),
catalyst (e.g., acetic acid and p-toluenesulfonic acid), and reaction temperature and
time, in order to improve the product yields.

The 2-imino-1,10-phenanthrolinyl ligands can be classified according to the
nature of the R1 substituent at the imino carbon as: methyl-ketimine (R1 = Me,
L423–L447 and L472–L474), aldimine (R1 = H, L448–L459), ethyl-ketimine
(R1 = Et, L460–L466) and phenyl-ketimine (R1 = Ph, L467–L471 and L475–
L477). Reaction of the ligands with anhydrous or hydrated iron or cobalt
dichloride, in tetrahydrofuran or ethanol, gave the corresponding metal complexes.
Analogous to the 2,6-bis(arylimino)pyridine metal complexes, the coordination
geometries of the 2-imino-1,10-phenanthrolinyl iron and cobalt complexes are
flexible, varying from trigonal bipyramidal to square pyramidal, and are greatly
dependent on the bulkiness of the aryl rings o-substituents. Generally, the com-
plexes containing the less bulky o-substituents on the aryl rings adopt trigonal
bipyramidal geometries, in which the nitrogen atom of the phenanthrolinyl
group (next to the imino carbon) and two chlorides form the equatorial plane, and
the other nitrogen atom of the phenanthrolinyl group and the imino nitrogen
atom occupy the axial positions, e.g., [FeCl2(L424)] (with Et), [FeCl2(L427)]

Scheme 3.49 Syntheses of 2,6-bis((diarylphosphino)methyl)pyridine ligands and their iron and
cobalt complexes
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(with Me), [FeCl2(L430)] (with Cl), [FeCl2(L431)] (with Br), [CoCl2(L449)]
(with Et), [CoCl2(L468)] (with Et), [FeCl2(L471)] (with Me) and [FeCl2(L473)]
(with Et), while the complexes bearing the much bulkier o-substituents on the aryl
rings exhibit square pyramidal geometries with the three nitrogen atoms and one of
the chlorine atoms forming the base, and the remaining chlorine atom occupying the
apical position, e.g., [CoCl2(L452)] (with iPr) and [CoCl2(L455)] (with iPr).

All the iron and cobalt complexes, when activated with MAO or MMAO,
display high catalytic activities toward ethylene oligomerization, with high
selectivity for a-olefins, and the distribution of oligomers obtained in all cases
follows the Schulz–Flory rules. The catalytic activities of iron complexes (ca. 106

g/(mol h bar)) are generally one order of magnitude higher than those obtained by
their cobalt analogues. The various substituents (R, R1, R2, R3 and R4,
Scheme 3.50) of the ligand backbone are found to have remarkable influences on
the catalytic performances of the metal complexes. For the variation of R, the
phenyl substitution (R = Ph) gives rise to a substantial decrease in the activity, in
the case of iron complexes, and a slight increase for the cobalt ones. For instance,
the phenyl-substituted iron complexes [FeCl2(L472)]–[FeCl2(L474)] show activ-
ities of 40.8, 29.1 and 0.62 9 104 g/(mol h), respectively, at 10 bar of ethylene,
being strikingly lower than those of 38.9, 49.1 and 9.42 9 106 g/(mol h), observed

Scheme 3.50 Syntheses of 2-imino-1,10-phenanthrolinyl ligands and their iron and cobalt
complexes
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for the corresponding unsubstituted iron analogues [FeCl2(L423)]–[FeCl2(L425)]
(R = H), while the cobalt complexes [CoCl2(L472)]–[CoCl2(L474)] give slightly
higher activities of 6.85, 6.71 and 5.23 9 105 g/(mol h) (at 1 bar of ethylene) than
those of 1.93, 2.34 and 2.57 9 105 g/(mol h) for [CoCl2(L423)]–[CoCl2(L425)].
Additionally, it is noteworthy that the phenyl-substituted iron complexes
[FeCl2(L472)]–[FeCl2(L477)] exclusively form 1-butene, whereas the corre-
sponding unsubstituted iron analogues (FeCl2(L423)]–[FeCl2(L425)] and
FeCl2(L467)]–[FeCl2(L469)]) afford oligomers with K values in the range of
0.50–0.67, along with a small amount of waxy polyethylenes. On the contrary, the
oligomers obtained with the phenyl-substituted and unsubstituted cobalt com-
plexes display comparable molecular weight distributions, the latter possessing a
higher content of butenes.

Concerning the influence of the imino carbon substituents (R1 = H, Me, Et, and
Ph, Scheme 3.50), the catalytic activity varies in the order: methyl-ketimine [
phenyl-ketimine [ ethyl-ketimine & aldimine, for the iron complexes having no
alkyl or aryl substituents on the 9-position of the 1,10-phenanthrolinyl ring
(R = H), whereas among the iron complexes with phenyl substituents on the 9-
position (R = Ph), the phenyl-ketimine is slightly more active than the methyl-
ketimine one. For all the cobalt complexes, the aldimine and methyl-ketimine
show comparable activities, which are slightly lower than those of the phenyl-
ketimine.

The influence of the aryl substituents (R2, R3 and R4, Scheme 3.50) on the
catalytic performances of metal complexes is of significance and varies according
to the nature of the complexes (e.g., aldimine, methyl-ketimine or phenyl-keti-
mine). For the 2,6-dialkyl-substituted methyl-ketimine iron complexes ([FeCl2-
(L423)]–[FeCl2(L425)] and [FeCl2(L472)]–[FeCl2(L474)]), the bulkier precata-
lysts lead to reduced catalytic activities, e.g., [FeCl2(L424)] (Et, 4.91 9 107

g/(mol h)) [ [FeCl2(L423)] (Me, 3.89 9 107 g/(mol h)) [ [FeCl2(L425)] (iPr,
9.42 9 106 g/(mol h)) [162] and [FeCl2(L472)] (Me, 4.08 9 105 g/(mol h)) [
[FeCl2(L473)] (Et, 2.91 9 105 g/(mol h)) [ [FeCl2(L474)] (iPr, 0.62 9 104

g/(mol h)), at 10 bar of ethylene [166]. Furthermore, the bulkier the substituents,
the smaller the K values, and the smaller the amount of low-molecular-weight
waxy polyethylene produced. The same trend is observed for the dialkyl-substi-
tuted aldimine, ethyl-ketimine and phenyl-ketimine iron complexes
([FeCl2(L448)]–[FeCl2(L450)], [FeCl2(L460)]–[FeCl2(L462)], [FeCl2(L467)]–
[FeCl2(L469)] and [FeCl2(L475)]–[FeCl2(L477)]) and the monoalkyl-substituted
methyl-ketimine iron complexes ([FeCl2(L435)]–[FeCl2(L437)]). For the
2,6-dihalo-substituted methyl-ketimine iron complexes ([FeCl2(L429)]–
[FeCl2(L431)]), a reverse tendency is observed since bulkier substituents result in
higher catalytic activities and K values (bromo [ chloro [ fluoro). However, in
the case of the 2,6-dihalo-substituted aldimine iron complexes ([FeCl2(L454)]–
[FeCl2(L456)]), the precatalyst [FeCl2(L456)], with o-bromo substituents on the
aryl ring, gives the lowest activity (1.08 9 106 g/(mol h)), at 10 bar of ethylene,
while the 2,6-dichloro-substituted [FeCl2(L455)] displays the highest one
(7.30 9 106 g/(mol h)), with some waxy polymer formed. The 2,6-difluoro-
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substituted [FeCl2(L454)] shows a catalytic activity similar to the latter
(6.99 9 106 g/(mol h)), with a lower K value [162]. For all the dialkyl- or dihalo-
substituted cobalt complexes, regardless of their aldimine ([CoCl2(L448)]–
[CoCl2(L450)] and [CoCl2(L454)]–[CoCl2(L456)]), methyl-ketimine ([CoCl2-
(L423)]–[CoCl2(L425)] and [CoCl2(L429)]–[CoCl2(L431)]) or phenyl-ketimine
([CoCl2(L467)]–[CoCl2(L469)]) nature, the catalytic activity increases with the
size of the aryl ring o-substituents (Me \ Et \ iPr and F \ Cl \ Br).

The 2-(benzimidazol-2-yl)-1,10-phenanthrolyl ligands L478–L487 can be
prepared by treatment of o-phenylenediamine either with 2,9-dimethyl-1,10-phe-
nanthroline, using sulfur as oxidant, or with 1,10-phenanthroline-2-carboxylic
acid, in the presence of polyphosphoric acid (ppa), under microwave radiation,
followed by N-alkylation with an alkyl halide, in the presence of potassium car-
bonate (Scheme 3.51) [168]. Reaction of the ligands with iron or cobalt dichloride,
in ethanol, gives the corresponding metal complexes. These complexes, when
activated with MMAO, are active in the oligomerization of ethylene, affording
oligomers with predominance of butenes. The highest activity can reach
3.51 9 106 g/(mol h) in the case of [FeCl2(L483)], and 2.32 9 106 g/(mol h) for
[CoCl2(L483)], at 30 bar of ethylene. In general, the iron complexes are more
active than their cobalt analogues. The backbone substituents (R and R0,
Scheme 3.51) show marked influences on the catalytic performance of the pre-
catalysts. The introduction of a methyl group on the 9-position of the phen-
anthrolinyl ring (R = Me) results in a decrease in the activity and a slight increase
in the a-C4 selectivity. Replacement of the active proton attached to the benz-
imidazolyl nitrogen by an alkyl group leads to a decrease both in the activity and in
the a-C4 selectivity. The steric effect of these alkyl groups on the catalytic activity
does not follow regular patterns.

Zhang et al. [169] prepared several 2-oxazolinyl/benzoxazolyl-1,10-phen-
anthrolinyl ligands (L488-L491 and L492-L495, respectively), using a multistep

Scheme 3.51 Syntheses of 2-(benzimidazol-2-yl)-1,10-phenanthrolyl ligands and their iron and
cobalt complexes
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reaction protocol starting from 2-methyl-1,10-phenanthroline. Reaction of the
resulting ligands with iron or cobalt dichloride, in ethanol, gives the corresponding
iron and cobalt complexes (Scheme 3.52). The substituent (R0) on the benzoxaz-
olyl ring greatly influences the coordination geometry of complexes. For instance,
[CoCl2(L492)], bearing a hydrogen atom on the benzoxazolyl ring (R0 = H) dis-
plays a distorted trigonal bipyramidal geometry around the metal center, whereas
[CoCl2(L494)], with a tert-butyl group (R0 = tBu) exhibits a square pyramidal
geometry. Treatment of these complexes with MMAO gives rise to highly active
ethylene oligomerization catalysts, with activities of ca. 105 g/(mol h), at 10 bar of
ethylene. The maximum activity reaches 1.51 9 106 g/(mol h) for cobalt com-
plexes ([CoCl2(L492)]), and 1.89 9 106 g/(mol h) for iron complexes
([FeCl2(L492)]). The resulting oligomers are mainly butenes and hexenes. The
substitution of the phenyl group on the 9-position of the phenanthrolinyl ring
(R = Ph) and the alkyl-substitution on the 2-oxazolinyl/benzoxazolyl rings
(R0 = Me or tBu, R00 = Me) give rise to a decrease in the activity and an increase in
the selectivity for a-olefins. Complexes bearing the benzoxazolyl ring show higher
activity and selectivity than their oxazolinyl-containing analogues. All the iron
complexes show slightly higher activities than their cobalt analogues.

The stoichiometric reaction of N-(2-pyridylmethyl)-2-hydroxy-3,5-di-tert-bu-
tylbenzaldimine L496 with iron dichloride, in tetrahydrofuran, gives the bidentate
complex [FeCl2(L496)], in high yield (90%), in which L496 is a neutral ligand,
while the reaction of the lithium salt of L496 with iron dichloride, in tetrahy-
drofuran, affords a complex of the type [FeClL], in moderate yield (46%), in which
L is the monoanionic tridentate ligand generated by the deprotonation of L496

Scheme 3.52 Syntheses of 2-oxazolinyl/benzoxazolyl-1,10-phenanthrolinyl iron and cobalt
complexes
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(Scheme 3.53) [156]. None of these complexes is active toward ethylene poly-
merization, in the presence of MMAO.

3.5.4 Polynuclear Metal Complexes

Incorporating the BIP ligand, as a unit, into a macrocycle or a polymeric chain
may lead to polydentate ligands, and their corresponding homo- or heteropoly-
nuclear metal complexes are expected to show some particular features as pre-
catalysts in the oligo- or polymerization of ethylene. Indeed, such homo- or
heteropolynuclear metal complexes may produce unconventional mixtures of
polyethylenes and/or a-olefins, improve the catalytic activities compared with the
parent mononuclear BIP complex, and tailor the molecular weight and micro-
structure of the polymers.

The simplest methyl-bridged BIP ligands L497–L499 are prepared by con-
densation of the bridged diamine with 2 equivalents of 6-acetyl-2-(arylimi-
no)pyridine, which is formed by reaction of 2,6-diacetylpyridine with an equimolar
amount of substituted aniline, either in methanol, catalyzed by formic acid, or in
toluene, in the presence of p-toluenesulfonic acid (Scheme 3.54) [170, 171].

Scheme 3.53 Syntheses of N-(2-pyridylmethyl)-2-hydroxy-3,5-di-tert-butylbenzaldimine-based
iron complexes

Scheme 3.54 Syntheses of methyl-bridged binuclear BIP ligands
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Treatment of these ligands with iron dichloride, in tetrahydrofuran, gives the
corresponding binuclear iron complexes [(FeCl2)2(L497)]–[(FeCl2)2(L499)]. Upon
treatment with tri-iso-butylaluminum (AliBu3), [(FeCl2)2(L498)] and
[(FeCl2)2(L499)] are highly active toward ethylene polymerization, forming high
molecular weight polyethylenes with broad/bimodal molecular weight distribu-
tions, while [(FeCl2)2(L497)] is almost inactive, but it can be activated by trieth-
ylaluminum (AlEt3) to generate a highly active ethylene polymerization catalyst.
Compared with the parent mononuclear BIP iron complexes ([FeCl2(L84)],
[FeCl2(L87)] and [FeCl2(L171)]), the corresponding binuclear modification leads
to a remarkable increase both in activity and polymer molecular weight, e.g.,
[(FeCl2)2(L498)] (activity = 5.36 9 106 g/(mol h), Mw = 4.60 9 105 g/mol) vs.
[FeCl2(L171)] (activity = 0.69 9 106 g/(mol h), Mw = 3.21 9 104 g/mol), at
1 bar of ethylene.

The macrocyclic BIP ligand L500 can be synthesized by condensation of 2,6-
diacetylpyridine with 4,40-methylenebis(2,6-di-iso-propylaniline), using p-tolu-
enesulfonic acid as catalyst, under pseudo-high-dilution conditions. Reaction of
this macrocycle with iron dichloride affords the corresponding trinuclear iron
complex [(FeCl2)3(L500)] (Scheme 3.55) [172]. Treatment of [(FeCl2)3(L500)]
with MMAO or AliBu3 gives origin to a highly active ethylene polymerization
catalyst. Compared with its mononuclear parent complex [FeCl2(L87)], this
complex exhibits higher catalytic activities and the resulting polymers possess
higher molecular weights.

The oligomeric BIP ligand L501 and L502 are prepared by condensation of 2,6-
diacetylpyridine with equimolar quantities of 4,40-methylenebis(2-cyclopentyl-6-
methylaniline) or 4,40-methylenebis(2-cyclohexyl-6-methylaniline), in methanol.
Further treatment with iron dichloride, in tetrahydrofuran, leads to their iron
complexes [(FeCl2)3(L501)] and [(FeCl2)2(L502)] (Scheme 3.56), which are
active toward ethylene polymerization, when activated with MAO [173]. Com-
pared with the mononuclear analogues ([FeCl2(L93)] and [FeCl2(L97)]), the

Scheme 3.55 Synthesis of a macrocyclic trinuclear BIP iron complex
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polynuclear precatalysts [(FeCl2)3(L501)] and [(FeCl2)2(L502)] show higher
activity and stability at elevated temperature.

The dendritic BIP ligands L503 and L504 are prepared by platinum-catalyzed
hydrosilylation reactions of the allyl-containing BIP with tetra(Si–H)silane or
octa(Si–H)silane. The treatment of the resulting ligands with iron dichloride
affords the corresponding polynuclear iron complexes [(FeCl2)4(L503)] and
[(FeCl2)8(L504)], which are active toward ethylene polymerization upon activa-
tion with MMAO (Scheme 3.57) [174]. Compared with the mononuclear analogue
([FeCl2(L87)], these polynuclear precatalysts display higher catalytic activities
and produce higher molecular weight polyethylenes.

The bis(imino)quaterpyridine ligand L505 can be easily synthesized by conden-
sation of 2,4,6-tri-iso-propylaniline with 6,6000-diacetylquaterpyridine. Further treat-
ment with metal dihalide (FeCl2, CoCl2 or CoBr2), in n-butanol, gives the
corresponding metal complexes [M2X3(L505)]2[MX4] (M = Fe or Co, X = Cl or Br)

Scheme 3.56 Oligomeric BIP iron complexes

Scheme 3.57 Syntheses of dendritic BIP ligands
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(Scheme 3.58) [175]. Their molecular structures are sensitive to the solvent. Crys-
tallization of [Co2Cl3(L505)]2[CoCl4] in acetonitrile gives a dinuclear monocation
balanced by a half occupancy tetrahedral tetrachlorocobaltate(II) dianion, in which the
presence of a molecule of acetonitrile coordinated at only one of the metal centers
results in two different coordination geometries, namely octahedral and distorted
square pyramidal, while crystallization of [Co2Br3(L505)]2[CoBr4] in acetonitrile
generates two distinct monocations balanced by a discrete tetrabromocobaltate
dianion, in which one of the monocations are isostructural with the CoCl2 analogues
and the other consists of a [CoBr2(N^N^N)] unit with a square pyramidal geometry
and a [CoBr(N^N^N)(NCMe)(OH2)] unit with a distorted octahedral geometry.
Upon activation with MAO, the cobalt complexes [Co2Cl3(L505)]2[CoCl4] and
[Co2Br3(L505)]2[CoBr4] show moderate activities in the oligomerization of ethylene,
affording a-olefins with Schulz–Flory distributions (K values of 0.76 and 0.74,
respectively), whereas the iron complex [Fe2Cl3(L505)]2[FeCl4] is inactive.

The tetrakis-imino-bis-pyridine ligand L506 is prepared by condensation of
1,10,100,1000-(4,4’-bipyridine-2,20,6,60-tetrayl)tetraethanone with 2,6-di-iso-propy-
laniline. Reaction of ligand L506 with 2 equivalents of iron or cobalt dichloride
affords the corresponding bimetallic complexes [Fe2Cl4(L506)] and
[Co2Cl4(L506)] (Scheme 3.59) [176]. Upon activation with MAO, [Fe2Cl4(L506)]
shows a catalytic activity comparable with that of its monometallic analogue
[FeCl2(L87)], whereas [Co2Cl4(L506)] is strikingly more active than its mono-
metallic analogue [CoCl2(L87)].

Scheme 3.58 Syntheses of bis(imino)quaterpyridine polynuclear iron and cobalt complexes
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The tri-imino-bis-pyridine ligands L507 and L508 are prepared by the formic
acid-catalyzed condensation of 1,10-(6,60-carbonylbis(pyridine-6,2-diyl))dietha-
none with the appropriate anilines in methanol (Scheme 3.60) [176]. Reaction
of these ligands with an equimolar amount of metal dihalide (MX2, M = Fe
or Co, X = Cl or Br) leads to the monometallic complexes [FeCl2(L507)],
[CoCl2(L507)], [CoCl2(L508)] and [CoBr2(L507)], while reaction with 2
equivalents of metal dihalide, in tetrahydrofuran, generates the homo-bimetallic
complexes ([Fe2Cl4(L507)], [Co2Cl4(L507)] and [Co2Br4(L507)]). The hetero-
bimetallic complex [CoFeCl4(L507)] is prepared by mixing equimolar quantities
of iron dichloride with [CoCl2(L507)], in dichloromethane. It is noteworthy that
the coordination geometries of the monometallic complexes [FeCl2(L507)] and
[CoCl2(L508)] in the solid state and in solution are invariable, being described as a
distorted trigonal bipyramid and a square pyramid, respectively, consistent with
those of their corresponding BIP complexes [FeCl2(L85)] and [CoCl2(L87)],
whereas [CoCl2(L507)] and [CoBr2(L507)] are characterized by an equilibrium
between the five-coordinate trigonal bipyramidal and the six-coordinate octahedral

Scheme 3.59 Syntheses of a tetrakis-imino-bis-pyridine ligand and its bimetallic iron and cobalt
complexes

Scheme 3.60 Syntheses of tri-imino-bis-pyridine ligands and their mono- or bimetallic iron and
cobalt complexes
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geometries in solid state and solution. All the mono- and bimetallic iron and cobalt
complexes can serve as catalysts for the polymerization of ethylene, when acti-
vated with MAO, and, irrespective of the metal, the catalytic activities of the
monometallic complexes are significantly higher than those of the corresponding
bimetallic derivatives, but lower than those obtained with the typical BIP com-
plexes (e.g., [FeCl2(L85)], [CoCl2(L85)] and [CoCl2(L87)]).

The tetrakis-imino-bis-pyridine ligand L509 can be accessible by the stepwise
condensation of 1-(6-(6-acetylnicotinoyl)pyridin-2-yl)ethanone with 2,6-di-iso-
propylaniline and cyclohexylamine. Further treatment with 1 or 2 equivalents of
iron or cobalt dichloride, in tetrahydrofuran, affords, respectively, the mono- and
bimetallic complexes [MCl2(L509)] and [M2Cl4(L509)] (M = Fe or Co)
(Scheme 3.61) [177]. Upon activation with MAO, these complexes are active in

Scheme 3.61 Syntheses of a tetrakis-imino-bis-pyridine ligand and its mono- and bimetallic iron
and cobalt complexes

Scheme 3.62 Syntheses of bis-imino-bis-pyridine ligands and their bimetallic iron and cobalt
complexes
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the oligomerization of ethylene, forming a-olefins with a Schulz–Flory
distribution.

The bis-imino-bis-pyridine ligands L510 and 511 are prepared by condensation
of 3,3-dihydro-2-methyl-2,4-bis(6-acetylpyridin-2-yl)-1H-1,5-benzodiazepine, which is
synthesized by reaction of o-phenylenediamine with 2,6-diacetylpyridine, with the
appropriate o-substituted anilines (Scheme 3.62) [178]. Further treatment with 2
equivalents of iron or cobalt dichloride, in ethanol, results in the corresponding
bimetallic complexes [M2Cl4(L510)] and [M2Cl4(L511)] (M = Fe or Co), which
show high catalytic activities in the oligomerization of ethylene (ca. of 105 g/
(mol h bar)), when activated with MMAO, affording oligomers with a very high
selectivity for a-olefins, along with a small amount of waxy polyethylene.

3.6 Oligo- or Polymerization Mechanisms

3.6.1 Activation and Initiation

3.6.1.1 Iron Complexes

It has been well recognized that the polymerization of olefins initiated by homo-
geneous single-site catalysts, e.g., metallocenes/MAO systems, starts from a
highly reactive mono-methylated metal cation of the type [LM–Me]+, commonly
referred to as the active species, which is balanced by a weakly coordinating
counteranion such as [X–MAO]- (X = halide or Me). By analogy, one would
tend to consider that the MAO-activated BIP iron and cobalt catalyst systems
initiate olefin polymerization starting also from this kind of active species.
However, there is a number of controversial experimental and theoretical findings
[79–81, 83, 179–181] that render the nature of the active species in the BIP iron
and cobalt catalyst systems still a matter of debate.

The initial experimental [86] and theoretical [182–184] results support the
assumption of formation of a cationic monoalkyl iron(II) or cobalt(II) species
when the BIP iron or cobalt complexes are treated with MAO. Gould and

Scheme 3.63 The proposed active species present in the [FeCl2(L84)]/various activator systems
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coworkers [183] presented the first theoretical studies on these type of catalyst
systems. They performed a full ab initio calculation on the iron complex
[FeCl2(L87)], and identified the key structures operating for the first monomer
insertion within a cationic alkyl mechanism. Based on the same iron complex,
combined density functional theory (DFT) and molecular mechanics (MM) cal-
culations were carried out by Ziegler and coworkers [182]. It was found that the
rate-determining step, for both propagation and chain transfer, is the capture of
ethylene by the iron alkyl cation and that the steric bulk exerted by the aryl
substituents suppresses the ethylene capture for the chain transfer step and
increases the rate of insertion.

Given the very low activities that characterize the polymerization of propylene
with BIP iron complexes/MAO catalyst systems, Babik and Fink [86] activated the
iron complex [FeCl2(L89)] with triphenylcarbenium tetrakis(pentafluorophe-
nyl)borate ([Ph3C]+[BC6F5]4

-) and subsequently reacted it with tri-iso-butylalu-
minum or triethylaluminum to generate a very active catalytic system toward
propylene polymerization. This system is over 200 times more active than that
activated with MAO, and these authors found that the characteristic aliphatic
polymer end groups, derived from the different iron alkyl cations, could be
identified. Recently, electrospray ionization mass spectrometry (ESI–MS) com-
plemented by UV–visible spectroscopy was used to investigate the activation
process of [FeCl2(L87)] with MAO [180]. The four-coordinate cationic methyl
iron(II) complex [FeMe(L87)]+ was observed. In addition, the cationic iron(II)
monochloride [FeCl(L87)]+, the product resulting from the a-hydrogen transfer
from [FeMe(L87)]+ to trimethylaluminum, [Fe(CH2AlMe2)(L87)]+, and the cat-
ionic iron hydride complex [FeH(L87)]+ were identified.

Talsi et al. [179] employed 1H and 2H NMR spectroscopy to study interme-
diates formed via the activation of [FeCl2(L84)] with not only MAO but also
AlMe3, AlMe3/tris(pentafluorophenyl)borane (B(C6F5)3) and AlMe3/[Ph3C]-
[B(C6F5)4]. They suggested two neutral heterodinuclear species [(L84)FeII(Cl)(l-
Me)2AlMe2] (A) and [(L84)FeII(Me)(l-Me)2AlMe2] (B) (Scheme 3.63). The
former species (A) is formed by activation of the precatalyst with MAO at rela-
tively low Al/Fe ratios (less than 50), while the latter (B) is generated by activation
with MAO at high Al/Fe ratios (more than 500) or by pure AlMe3. Treatment of
the precatalyst [FeCl2(L84)] with AlMe3/B(C6F5)3 or AlMe3/[Ph3C][B(C6F5)4]
generates the ion pairs [(L84)FeII(l-Me)2AlMe2]+[MeB(C6F5)3]- (C) and
[(L84)FeII(l-Me)2AlMe2]+[B(C6F5)4]- (D), respectively. Since comparable cata-
lytic activities were observed in these catalyst systems, Talsi et al. concluded that
neutral but not cationic species are active intermediates. Later on, the same authors
[185] found that the active species formed by MAO was erroneously assigned on
the basis of the accidental similarity of the observed 1H NMR spectra of catalyst
systems [FeCl2(L84)]/AlMe3, in dichloromethane, and [FeCl2(L84)]/MAO, in
toluene. When these two systems are studied in the same solvent (toluene), pro-
nounced differences in the 1H NMR spectra are observed, and the new cationic
intermediates [(L84)FeII(l-Cl)(l-Me)AlMe2]+[Me-MAO]- (E) and [(L84)FeII(l-
Me)2AlMe2]+[Me-MAO]- (F) were suggested for the [FeCl2(L84)]/MAO catalyst
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system. More recently, based on the iron complex [FeCl2(L87)], Bryliakov et al.
[181] observed similar active species when [FeCl2(L87)] is activated with AlMe3/
B(C6F5)3 or polymeric MAO (PMAO), and, at the same time, they found that these
active species decay with time with the concomitant appearance of some new
EPR-active iron species (g = 2.08, Dm1/2 = 330 G). These EPR signals were
similar to those detected by Gibson and coworkers [80], which were assigned by
the latter authors to iron(III), based on the observed Mössbauer data. On the
contrary, Bryliakov et al. considered that these species should be assigned to a
low-spin (S = 1/2) iron(I) complex, since the transformation of iron(II) precursors
to iron(III) is unfeasible under the reductive conditions used (MAO containing
AlMe3). In order to explore the latter hypothesis, reactions of [FeCl2(L87)] and
[FeCl(L87)] with AlMe3 were studied, being detected two new species G and H,
as shown in Scheme 3.64. Both reactions yielded the same species, showing 1H
NMR resonances in the range of d +430 to –300 (ppm), which is a much broader
range of chemical shifts than that observed for [FeCl2(L87)], but close to that of
[FeCl(L87)]. It is worth to note that, in the latter complex, iron retains the +2
oxidation state, one electron being distributed over the tridentate ligand, to afford a
complex of the type [Fe(+)Cl(L87(-))], which has a leff = 3.5 BM, indicative of a
high-spin Fe(II) ion (SFe = 2) coupled antiferromagnetically to the ligand radical
(SL = 1/2). The unpaired electron spin density on the pyridine part of the ligand
leads to the paramagnetic contact shifts observed in the 1H NMR spectra of such
species. Hence, the species G and H were assigned to a heterobinuclear complex
of the type [(L87(-))Fe(+)(l-X))(l-Me)AlMe2], where X = Cl (G) or Me (H). The
presence of the bridging AlMe3 within the species can be demonstrated by the
reaction between [FeMe(L87)] and AlMe3. Therefore, the intermediates

Scheme 3.64 Reactions of [FeCl2(L87)] and [FeCl(L87)] with AlMe3
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previously assigned to [(L84)FeII(R)(l-Me)2AlMe2] (R = Cl (A) or Me (B)) are
actually alkyl-bridged heterobinuclear species [(L84(-))Fe(+)(l-Me)2AlMe2].
Based on these experimental results, Bryliakov et al. proposed a multiple active
species model for the initiation and propagation steps of the polymerization of
ethylene promoted by the BIP iron complex/MAO system, as schematically rep-
resented in Scheme 3.65.

The actual oxidation state of the iron center, in the catalytically active species,
has been a subject of debate within the area of BIP iron polymerization catalysts,
and so far, it remains a ‘‘black box’’. Based on Mössbauer and EPR spectroscopic
studies, Gibson and coworkers [80] demonstrated that the divalent iron of the
precatalyst is fully oxidized to trivalent iron, upon treatment with MAO. By using
global and local descriptors of chemical reactivity and selectivity, Martínez et al.
[81] theoretically compared the reactivities of iron(II) and iron(III) toward olefin
polymerization, and revealed that the bare iron(III) is more active than iron(II),
whereas, upon activation with MAO, iron(III) displays an activity comparable to
that of iron(II). The latter presents a stronger delocalization of the charge, making
the whole catalytic species of iron(II) much less efficient than that of iron(III).
DFT calculations were performed by Raucoules et al. [83] to study the coordi-
nation and insertion of the first ethylene molecule, taking into consideration the 10
most reasonable active species which can be formed from the reaction of
[FeCl2(L84)] with MAO. All the possible coordination and insertion reactions for
the two most reactive active species, i.e., the monomethylated iron(III) and iron(II),
were evaluated using the B3LYP/LACVP** potential energy surface (PES), taking
into account all possible iron spin states and several coordination modes of the
ethylene molecule. Consequently, it was found that these reactions occur at
the quintet PES of iron(II) and quartet PES of iron(III) species, respectively.
Concerning the insertion reaction, the iron(III) species has more favorable reac-
tion and activation enthalpies: iron(II), DH(298 K) = –14.1 kcal/mol and

Scheme 3.65 A multicenter model for the initiation and propagation of the polymerization of
ethylene promoted by iron BIP complex/MAO or AlMe3 catalyst systems
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DH�(298 K) = ? 21.6 kcal/mol; iron(III), DH(298 K) = –22.8 kcal/mol and
DH�(298 K) = ? 10.0 kcal/mol. Assuming similar insertion barriers for the sec-
ond insertion reaction (chain propagation), the b-hydrogen transfer reaction to the
monomer (chain transfer) (DH�(298 K) = ? 11.9 kcal/mol) is favored over fur-
ther chain growth for the iron(II), whereas for the iron(III) chain growth and chain
transfer reactions are apparently in competition (DH�(298 K) = ? 10.0 and
+12.1 kcal/mol, respectively). Founded on these results, Raucoules et al. con-
cluded that the most active species in the catalytic system is that based on iron(III),
which is likely expected to produce low molecular weight polyethylene, consistent
with the low molecular weight fraction of the characteristic bimodal molecular
weight distribution of the polyethylenes experimentally produced by the BIP iron
complex/MAO catalyst system. A similar DFT theoretical study was carried out by
Cruz et al. [82], further demonstrating the multicenter nature of the BIP iron
catalyst system that exhibits different iron oxidation states. On the contrary,
Bryliakov et al. [79] studied the reactions of [FeCl2(L85)] and [FeCl3(L85)] with
MAO, using 1H NMR and EPR spectroscopies, and demonstrated that the iron(III)
species in the [FeCl3(L85)]/MAO system is completely transformed into iron(II)
species, which, according to these authors, are the actual active species in the
olefin polymerization process. Their latest studies [181] revealed that iron(II)
species can be further reduced to the iron(I) by the AlMe3 present in MAO, and
also can serve as active species for olefin polymerization (see above).

Undoubtedly, these ambiguities could be resolved by the preparation of
well-defined, single-component BIP iron catalysts, e.g., BIP iron alkyl complexes
that may allow the study of the fundamental transformations related to the chain
initiation, growth and transfer. Several BIP iron monoalkyl complexes
[FeMe(L85)]–[FeMe(L87)], [Fe(CH2CMe3)(L86)], [Fe(CH2CMe3)(L87)] and
[FeMe(L87)]-[Li(THF)4]+, and dialkyl complexes [Fe(CH2SiMe3)2(L86)] and
[Fe(CH2SiMe3)2(L87)] have been prepared by Chirik [186, 187] and Gambarotta
[188] groups, as shown in Scheme 3.66. Alternatively, Cámpora et al. [189]
prepared the BIP iron dialkyl complexes [Fe(CH2SiMe3)2(L84)], [Fe(CH2Si-
Me3)2(L85)] and [Fe(CH2SiMe3)2(L158)] by reaction of [Fe(CH2SiMe3)2(py)2]
(py = pyridine) with the appropriate BIP ligands. Scott et al. [190] described
a more detailed investigation in the preparation of these complexes and pro-
vided evidence for the chemical participation of the BIP ligand in the forma-
tion of byproducts. Treatment of [Fe(CH2SiMe3)2(L87)] with B(C6F5)3 or
[PhMe2NH][BPh4] leads to the cationic compounds [Fe(CH2SiMe2CH2Si-
Me3)(L87)]+[MeB(C6F5)3]- and [Fe(L)(CH2SiMe3)(L87)]+[BPh4]- (L = Et2O or
THF) [191]. Upon activation with MMAO, AliBu3, AlMe3, ZnMe2 or AlMe(OAr)2

(Ar = 2,4,6-tBu3C6H2O), the iron dialkyl complex [Fe(CH2SiMe3)2(L85)] show
high catalytic activities, whereas the reaction of this complex with B(C6F5)3, under
the same conditions, is inactive toward the polymerization of ethylene. The com-
plexes [Fe(CH2SiMe2CH2SiMe3)(L87)]+[MeB(C6F5)3]

- and [Fe(Et2O)(CH2SiMe3)-
(L87)]+[BPh4]- are single-component catalysts for the polymerization of ethylene,
exhibiting activities comparable to that obtained with the corresponding
[FeCl2(L87)]/MAO system, originating high molecular weight polyethylenes with
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narrow molecular weight distributions. However, under the same conditions,
[Fe(THF)(CH2SiMe3)(L87)]+[BPh4]- is inactive, indicating that the dissociation
of the donor ligand gives rise to the catalytically active species. The complex
[FeMe(L87)]-[Li(THF)4]+ alone displays no catalytic activity when exposed to
ethylene, but in combination with MAO is a highly active catalyst system.
Although the abovementioned iron alkyl complexes are useful to evaluate the
stability of the iron–carbon bond and probe the catalytic reactivity toward olefin
polymerization, the lack of b-hydrogens in its structure, being used to protect
the iron alkyl complex from b-hydrogen elimination, limits its relevance to the
propagating species during olefin polymerization. More recently, to expand the
number of well-defined single-component iron precatalysts and better mimic
the propagating species, several BIP iron alkyl complexes of the type
[Fe(CH2R)(L87)] (R = Me, nPr or iPr), bearing b-hydrogens, have been synthe-
sized either by salt metathesis reactions or by oxidative addition of alkyl bromide
to [Fe(N2)2(L87)] (Scheme 3.67) [192]. It was demonstrated that these iron alkyl
complexes are unstable and prone to decomposition, by hydrogen transfer from a
methyl group belonging to the iso-propyl o-substituents of the aryl rings. It is
worth to mention that a combination of structural, spectroscopic and theoretical
studies revealed that all the aforementioned alkyl or chloro iron(I) and neutral
iron(0) dinitrogen complexes should be virtually described as high-spin iron(II)
species antiferromagnetically coupled to a ligand-centered radical anion or
diradical anion, indicating that the corresponding reduction reactions involve a

Scheme 3.66 Syntheses of BIP iron alkyl complexes
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sequential electron transfer to the ligand conjugated p-system rather than to the
metal center [43, 193, 194].

3.6.1.2 Cobalt Complexes

Parallel to the investigation on the BIP iron active species in olefin polymerization,
the catalytically active species of the BIP cobalt catalysts have also been widely
explored [64, 195–202]. By analogy with the theoretical study performed on BIP
iron catalysts [182], Ziegler and coworkers [195] disclosed the first theoretical
calculations on BIP cobalt catalyst systems. These authors used quantum-
mechanics/molecular-mechanics coupling to investigate the mechanisms and
energetics of ethylene polymerization promoted by [CoCl2(L87)], assuming the
polymerization is initiated by a cobalt(II) alkyl cation. Gibson [196], Gal [197] and
Erker [64, 198] groups, prepared a series of BIP cobalt monoalkyl complexes
[CoMe(L87)], [CoBz(L87)] (Bz = benzyl) and [Co(CH2SiMe3)(L87)], which,
being diamagnetic, are substantially different from the corresponding iron alkyl
complexes, making them suitable to be studied by NMR spectroscopy. They can
be prepared either by direct alkylation of [CoCl2(L87)] with methylmagnesium
bromide (MeMgBr) or by alkylation of [CoCl(L87)] with methyllithium (LiMe),
dibenzylmagnesium (MgBz2) or ((trimethylsilyl)methyl)lithium (LiCH2SiMe3)
(Scheme 3.68), and their reactivities investigated toward ethylene polymerization.
These authors found that all the cobalt monoalkyl complexes are themselves
inactive toward this catalytic reaction. On the contrary, upon activation with
MAO, all the cobalt alkyl complexes show catalytic activities comparable with
that obtained with the [CoCl2(L87)]/MAO system. Treatment of [CoMe(L87)] and
[CoCl(L87)] with B(C6F5)3 or lithium tetrakis(pentafluorophenyl)borate
(Li[B(C6F5)4]) results in highly active ethylene polymerization catalysts. It is
noteworthy that the reaction of complexes [CoR(L87)] (R = Me or Cl) with
B(C6F5)3, Li[B(C6F5)4] or MAO leads to a cobalt(I) cation [Co(L87)]+ that does

Scheme 3.67 Preparation of BIP iron alkyl complexes containing b-hydrogens
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not contain a cobalt–C(alkyl) bond. Mechanistic studies revealed that the poly-
merization initiation from this species involves the incorporation of alkyl groups
from the cocatalyst, most likely involving the attack of a methyl anion (from the
counteranion) on a cobalt-ethylene species [203].

Although the cobalt alkyl complexes [CoR(L87)] (R = nPr or nBu) are them-
selves not active toward ethylene polymerization, Gibson et al. [199] revealed they
can be reacted with ethylene to give [CoEt(L87)] along with the formation of
a-olefins, via a stepwise mechanism involving a cobalt-hydride intermediate rather
than a concerted process involving direct b-H transfer to the monomer. These
reactions gave insight into the chain transfer process commonly encountered in
olefin polymerization. The theoretical calculations showed a remarkable agree-
ment with this experimental result [200]. More recently, Talsi and coworkers [201,
202] investigated the activation process of the BIP cobalt complexes by various
activators such as MAO, AlMe3 and AlMe3/[Ph3C][B(C6F5)4] using 1H, 2H, 19F
NMR and EPR spectroscopies. The results are shown in Scheme 3.69. Treatment
of [CoCl2(L87)] with MAO or AlMe3/[Ph3C][B(C6F5)4] gives cobalt(II) complex
[CoIIMe(S)(L87)]+X- (S = solvent or vacancy, X = Me-MAO or B(C6F5)4), in
which the broad resonance at ca. 150 ppm in the 1H NMR spectrum, is assigned to
a Co–CH3 group. At 20 �C, the complex [CoIIMe(S)(L87)]+X in toluene gradually
transforms into cobalt(I) complexes [CoI(S)(L87)]+X after several days, the 1H
NMR spectra of which are consistent with typical diamagnetic cobalt(I) species.
On the contrary, the activation of [CoCl2(L87)] with AlMe3 rapidly leads to
diamagnetic cobalt(I) complexes [(L87)CoI(l-R)(l-Me)AlMe2] (R = Me or Cl),
which are unstable and rapidly (within several minutes) transform into the
paramagnetic aluminum complex [Al(+)Me2(L87(�-))] with a radical anion
ligand, exhibiting an EPR signal at g = 2.003. Interestingly, in the presence of
ethylene, reaction of [CoCl2(L87)] with AlMe3 yields a diamagnetic ethylene
cobalt(I), which is assigned to the ion pair [CoI(C2H4)(L87)]+[AlMe3Cl]-. Upon
consumption of ethylene, polyethylene is generated and the cobalt complex
evolves to [(L87)CoI(l-Cl)(l-Me)AlMe(R)] (R = Me or Cl). By analogy with

Scheme 3.68 Preparation of BIP cobalt alkyl complexes
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iron(I) or iron(0) complexes [43, 193, 194], cobalt(I) alkyl or chloro complexes
(e.g., [CoMe(L87)] and [CoCl(L87)]) are regarded as a low-spin cobalt(II) species
antiferromagnetically coupled to a ligand-centered radical anion [204], whereas
neutral cobalt(0) dinitrogen complexes (e.g., [CoN2(L84)] and [CoN2(L86)]),
being formed by reduction of the corresponding cobalt(II) dichlorides with sodium
amalgam, are virtually low-spin cobalt(I) complexes antiferromagnetically cou-
pled with a ligand-centered radical anion [205].

3.6.2 Propagation and Chain Transfer

Based on a systematic study of the effects of structural modifications of the pre-
catalyst and of the reaction conditions on the catalytic activity and polymer
properties, an olefin polymerization mechanism for the BIP iron or cobalt catalyst
system was put forward by Gibson and coworkers (Scheme 3.70) [53], which
actually is not significantly different from those proposed for other classes of olefin
polymerization transition-metal catalysts. Assuming that the active species during
the olefin polymerization is a cationic metal alkyl complex, a Cossee-type prop-
agation (a) is presumed, involving migratory insertion of ethylene into a metal–
alkyl (polymer chain) bond, in which the rate of propagation has a first-order
dependence on ethylene, in agreement with the observed experimental results.
Three chain transfer pathways were proposed. Both b-hydrogen transfer to the
monomer (c) and b-hydrogen elimination to the metal (d) produce the polymer

Scheme 3.69 Reactions of the BIP cobalt complex [CoCl2(L87)] with various activators
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with unsaturated vinyl end groups and are bimolecular, i.e., first order in monomer
and precatalyst, in agreement with the experimental facts. The latter two chain
transfer pathways are kinetically indistinguishable.

The chain transfer to aluminum (b) involves the formation of an alkyl-bridged
Fe–Al species, which induces an exchange of the growing polymer chain for a new
alkyl group, generating fully saturated polymer chains. The 13C NMR analysis of
the low molecular weight fraction of the typically obtained bimodal polyethylenes,
which can be separated from the bulk polymer with toluene Soxhlet extraction,
shows it consists of almost fully saturated end groups, indicating that chain
transfer to aluminum is responsible for its origin. Combined DFT/MM (QM/MM)
theoretical calculations [182] showed that the rate-determining step for both chain
transfer and propagation is the uptake of ethylene by the cationic iron(II)–alkyl
complex, in which the Ca atom of the alkyl (chain) occupies an axial position
above the iron–nitrogen coordination plane and a b-agostic hydrogen binds to the
metal center. Chain propagation begins through the backside approach of ethylene,
from the same side of the iron–nitrogen coordination plane as Ca, leading to the
formation of a p-complex from which the insertion takes place. The dominant
chain transfer path is a b-H transfer from the polymer chain to the incoming
monomer. Steric bulk helps suppress or reduce the formation of the chain transfer
precursor by introducing a coordination barrier, as ethylene would sense the
repulsion of the iso-propyl groups in its path toward the metal center, from above
the iron–nitrogen plane trans to Ca (frontside). Gould [183] and Morokuma [184]
groups performed two comparable theoretical studies. These results also matched
the chain propagation and chain transfer mechanisms proposed in Scheme 3.70.

Scheme 3.70 Proposed chain propagation (a) and chain transfer (b–d) pathways
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Recently, Tomov et al. [206] used C2H4/C2D4 co-oligomerization experiments,
which are a powerful tool to differentiate between a metallacyclic and a Cossee-
type chain growth mechanism. No H/D scrambling should be observed for a
metallacyclic mechanism, whereas for a Cossee-type mechanism, similar rates of
chain propagation and chain transfer (b-H elimination) would result in rapid H/D
scrambling of the C2H4/C2D4 feed. These experiments confirmed the Cossee-type
mechanism is valid for the BIP iron and cobalt catalysts.

3.6.3 Multiple Active Sites

Compared with the BIP cobalt catalyst system, which commonly yields polyeth-
ylenes with narrow molecular weight distributions, one of the most pronounced
features of the BIP iron catalyst system is the formation of polymers with bimodal
molecular weight distributions, which remarkably varies with the nature of the
activators and the molar ratio of activator to iron precatalyst. There are two likely
explanations to account for this bimodality. First, there may be multiple active
species operating at the same time, and second, the polymerization mechanism
involving chain propagation and chain transfer may change during the course of
polymerization. A number of experimental or theoretical results [53, 95, 207–212]
support these two explanations, thereby the nature of bimodality so far is still
unclear. From the kinetic studies, Barabanov et al. [207] observed that two types of
active species are present in each of the systems [FeCl2(L84)]/MAO and
[FeCl2(L84)]/AliBu3. The highly active but unstable active species are formed at
the early stages of polymerization, yielding low molecular weight polyethylenes,
which are transformed into more stable but less active species, giving high
molecular weight polyethylenes. Kissin et al. [95] studied the relationship of broad
molecular weight distribution produced by the BIP iron catalyst and the active
species, by using a Flory–Schulz function fitting, and further supported the
abovementioned assumption of active site transformation. Mao and coworkers
[208, 209] systematically characterized the compositional heterogeneity in the
polyethylenes formed with the BIP iron complex/AlR3 (R = Et, iBu or nHex)
systems by using gel permeation chromatography/size-exclusion chromatography
(GPC/SEC), 13C NMR spectroscopy, solvent gradient elution fractionation
(SGEF), crystallization analysis fractionation (CRYSTAF), and differential scan-
ning calorimetry (DSC). The results indicate that at least two different active
species are present in the polymerization of ethylene. The aforementioned bridged
heterodinuclear Fe–Al active species model, suggested by Talsi and coworkers
[179, 181, 185], and the multicenter model with different metal oxidation states,
raised by Cruz [82], Martínez [81] and Raucoules [83], are consistent with the
assumption of multiple active sites.

In contrast, Gibson et al. [53, 210, 211] considered that the bimodality results
from the variation of the polymerization mechanism during the course of the
reaction. Studies on the effect of different MAO concentrations on the
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polymerization behavior of [FeCl2(L87)] show that an increase in the MAO
concentration leads to an increase in the lower molecular weight fraction of the
bimodal polyethylene, which can be separated by toluene Soxhlet extraction.
As mentioned in the last subsection, the lower molecular weight fraction consists
of fully saturated polyethylene chains, its formation being ascribed to the chain
transfer to aluminum, most likely due to the free AlMe3 present in MAO. With a
view to a better understanding of this chain transfer process, a number of alkyl
aluminum reagents including trialkylaluminum (AlR3, R = Et, Oct, iBu), dieth-
ylaluminum ethoxide (AlEt2(OEt)), chlorinated aluminum alkyls (e.g., AlMe2Cl
and AlEt2Cl), and other alkyl metal reagents, including n-butyllithium (LinBu),
di-n-butylmagnesium (MgnBu2), triethylborane (BEt3), trialkylgallium (GaR3,
R = Me, Et, nBu), tetramethyltin (SnMe4), tetraethyllead (PbEt4) and diethylzinc
(ZnEt2), were investigated. The results show AlEt3, GaMe3 and ZnEt2 are the most
efficient chain transfer agents, AlEt3 giving lower molecular weight polyethylene
with Schulz–Flory distributions, along with a higher molecular weight polyeth-
ylene, which indicates a competing chain transfer to aluminum relative to chain
propagation. Conversely, ZnEt2 affords low molecular weight product with a
Poisson distribution, indicating the rate of chain transfer is far faster than the rate
of propagation, and the molecular weight distribution obtained by GaMe3 fit
neither a Poisson nor a Schulz–Flory distribution. Therefore, Gibson et al. con-
cluded that alkyl aluminum cocatalysts work as chain transfer agents in the BIP
iron catalyst system, leading to a polyethylene with a bimodal molecular weight
distribution, due to a competing chain transfer to aluminum relative to chain
propagation, while the iron complex/MAO/ZnEt2 system can be regarded as a
catalyzed chain growth process, featuring the formation of product with a Poisson
distribution. In conjugation with a chain displacement agent ([Ni(acac)2],
acac = acetylacetonate), the latter catalyst system can be used to convert ethylene
to the technologically desired linear a-olefins with a Poisson distribution, as dis-
played in Scheme 3.71. Similarly, Wang and coworkers [212–217] studied the
effect of oligomeric alkylaluminoxane, formed by partial hydrolysis of trialkyl-
aluminum (e.g., AlEt3, AliBu3), on the bimodal molecular weight distribution
obtained by [FeCl2(L84)]/MAO or [FeCl2(L87)]/MAO systems, and found that
end group-saturated low molecular weight fraction of the bimodal product is
formed at the polymerization early stages and results from chain transfer to
aluminum.

Scheme 3.71 Synthesis of linear a-olefins with a Poisson distribution
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3.7 Cocatalysts/Activators

MAO or MMAO have been widely used as cocatalysts to activate the BIP iron and
cobalt complexes for the polymerization of olefins, but a number of other alkyl
aluminum compounds, including AlMe3 [32, 179, 185, 189, 201, 218, 219], AlEt3
[209, 218, 220], AliBu3 [32, 185, 189, 201, 207, 209, 218–220], AlnHex3 [209,
218], AlnOct3 [32, 185, 218] and AlEt2Cl [209], have been screened. By analogy
with the roles of MAO or MMAO in catalyst systems, alkyl aluminum compounds
can play as alkylating agents, as halide or alkyl abstractors, thus giving rise to
cationic species, as reducing agents, or as a combination of the three, in order to
activate and stabilize the precatalysts. Additionally, they play key roles in the
generation of the active species (e.g., bridged heterodinuclear Fe–Al active species
[179, 181, 185]) and in the chain transfer process (e.g., chain transfer to aluminum
[53, 210, 211, 216]), which substantially contribute to the formation of broad/
bimodal polyethylenes. More recently, some unexpected ligand-participating
reactions of alkyl aluminum compounds with the free BIP ligand or BIP iron
complexes (such as, ligand alkylation [221], tricyclic reaction [222] and concur-
rent transmetalation and 4-electron reduction [223]) have attracted interest, and are
examples of the complexity of the BIP iron and cobalt catalyst systems. Based on
different BIP iron complexes such as [FeCl2(L87)], [FeCl2(L84)] and
[FeCl2(L85)], Cramail [218], Bryliakov [185], Semikolenova [32] and Mao [209]
groups systematically compared the catalytic behaviors of various alkyl aluminum
compounds. In the case of [FeCl2(L87)], it was found that the catalytic activity
toward ethylene polymerization, at an aluminum-to-iron ratio of 500, increases in
the order AlMe3 \ AlnOct3 \ AliBu3 \ AlEt3 \ AlnHex3, with MAO still dis-
playing the highest activity. The same tendency, i.e., AliBu3 \ AlEt3 \ AlnHex3

was observed for [FeCl2(L85)], and AlEt2Cl revealed to be inactive in this case.
For [FeCl2(L84)], a reverse tendency, i.e., AlnOct3 [ AlMe3 [ AliBu3, was
obtained. Cramail and coworkers [218] also found that in the [FeCl2(L87)]/trial-
kylaluminum catalytic systems, all the primary trialkylaluminum activators,
AlMe3, AlEt3, AlnHex3 and AlnOct3, essentially yield polyethylenes with bimodal
molecular weight distributions containing substantial amounts of low molecular
weight fractions, except in the case of AliBu3, which leads to polyethylenes with
narrow molecular weight distributions (Mw/Mn = 3.2–4.9). The occurrence of
bimodality was ascribed to extensive primary alkyl-participating chain transfer
reactions to aluminum, which was further confirmed by a study on the catalytic
behavior of a mixture of AlMe3/AliBu3, in which an enhanced activity was
observed relative to each trialkylaluminum compound, and the molecular weight
distributions of the resulting polyethylenes narrowed down from bimodal to
monomodal with an increase in the amount of AliBu3. In contrast, the
[FeCl2(L84)]/AliBu3 and [FeCl2(L84)]/AlnOct3 systems give rise to broad but not
bimodal molecular weight distributions of polyethylenes with equimolar saturated
and vinyl unsaturated end groups, and Semikolenova et al. [32] considered that a
set of different active species are formed in these catalytic systems. Unlike the
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results observed by Cramail and coworkers [218], Mao and coworkers [209] found
that, in the [FeCl2(L85)]/trialkylaluminum catalyst systems, besides the primary
trialkylaluminum compounds AlEt3 and AlnHex3, also AliBu3 leads to bimodal
polyethylenes composed of branched low molecular weight and linear high
molecular weight fractions, this bimodality being ascribed to different active
species.

Wang and coworkers [212–216, 220, 224, 225] reported a series of tetra-
alkylaluminoxanes, R1R2AlOAlR3R4 (R1, R2, R3, R4 = Et or iBu), which are
formed by partial hydrolysis of AlEt3 or AliBu3, or a mixture of both, and
investigated their catalytic performance in ethylene polymerization, when mixed
with precatalysts [FeCl2(L84)] and [FeCl2(L87)], as an alternative to the use of
MAO. It was shown that tetraalkylaluminoxanes could serve as promising acti-
vators to promote ethylene polymerization with high activities comparable with
those of MAO, affording polyethylenes with molecular weight distributions
varying from monomodal to bimodal. An increase of the amount of Al–Et groups
in tetraalkylaluminoxanes results in an increase both in activity and in the low
molecular weight fraction of the bimodal distribution, along with a corresponding
decrease in the high molecular weight fraction. Additionally, Wang and coworkers
[216] found that steric bulk on the aryl substituents of BIP iron complexes also has
a substantial effect on the chain transfer reaction to aluminum, a lower steric bulk
implying a faster chain transfer to aluminum, e.g., [FeCl2(L84)], containing
methyl o-substituents (ktrA/kp = 2.48, where ktrA and kp are the rate constants of
chain transfer to aluminum and chain propagation, respectively) vs. [FeCl2(L87)],
with iso-propyl o-substituents (ktrA/kp = 0.12). The partial replacement of the
aluminoxane aluminum units by boron units, which was carried out by the con-
trolled reaction of trialkylaluminums with boronic acids (e.g., 4-fluorophenylbo-
ronic and n-butylboronic acids) and water, gives rise to new activators (e.g.,
BTEAO [214], BEBAO [214] and FB [224]) that showed to dramatically suppress
the chain transfer reactions to aluminum and to favor high temperature stability of
the catalytic systems, in comparison with MAO.

Semikolenova et al. [201] studied the effect of the free residual AlMe3 of MAO
on the catalytic activities of [FeCl2(L84)] or [CoCl2(L84)]/MAO systems, and
found that the highest activity is reached by MAO when completely purified from
free AlMe3. The effect of addition of alkyl aluminum compounds to the BIP iron
complex/MAO system has also been studied [211]. It was concluded that the
addition of AlMe3, AlEt3 and AlnOct3 to the [FeCl2(L87)]/MAO catalyst system
leads to a slight decrease in activity and a remarkable broadening in molecular
weight distribution of the resulting polyethylene, whereas for AliBu3 a reverse
trend is observed, i.e., the activity slightly increases and the molecular weight
distribution narrows down. Diethyl aluminum ethoxide (AlEt2(OEt)) causes a
slight decrease in the activity but has little effect on the molecular weight distri-
bution, whereas chlorinated alkyl aluminum compounds, such as AlMe2Cl and
AlEt2Cl, deactivate the catalyst system.

The catalyst systems [FeCl2(L84)]/AlMe3 and [FeCl2(L84)]/AlMe3/B(C6F5)3

showed showed comparable activities toward ethylene polymerization, affording
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polyethylenes with similar molecular weights [179], whereas the [FeCl2(L84)]/
AliBu3/[Ph3C][B(C6F5)4] system is one order of magnitude less active for ethylene
polymerization than the [FeCl2(L84)]/AliBu3 one [32]. Babik and Fink [86] found
that activation of [FeCl2(L89)] with [Ph3C][B(C6F5)4] and subsequent treatment
with AliBu3 or AlEt3 generates a highly active catalyst system toward propylene
polymerization, which is two orders of magnitude more active than the
[FeCl2(L89)]/MAO system.

Deffieux and coworkers [226] reported a series of new activators, which are
prepared by the reaction of carboxylic acids, such as acetic acid, benzoic acid and
benzoic acid derivatives, with trialkylaluminums (e.g., AlMe3, AlEt3 or AliBu3).
In the presence of [FeCl2(L87)], these activators show similar or higher catalytic
activities toward ethylene polymerization in comparison with trialkylaluminum or
MAO, and the highest activity (1.73 9 106 g/(mol h bar) was reached with the
cocatalyst obtained by the reaction of benzene-1,3,5-tricarboxylic acid (BTCA)
with AlMe3 at a ratio of [AlMe3]/[BTCA] = 6.

3.8 Monomers and Comonomers

With a view to expanding their potential applications, the abilities of the BIP iron
and cobalt catalysts to polymerize other alkene monomers, such as propylene,
1-butene, 1-hexene and norbornene, besides ethylene, have been widely investigated.

Brookhart and Small [51] systematically studied the polymerization of pro-
pylene promoted by the bulkier 2,6-bis(arylimino)pyridine iron complex/MMAO
systems, and the corresponding mechanisms of chain initiation, propagation and
transfer were discussed at length. Upon activation with MMAO, the 2,6-bis-
(arylimino)pyridine iron complexes (e.g., [FeCl2(L84)], [FeCl2(L87)],
[FeCl2(L153)] and [FeCl2(L171)]) show moderate catalytic activities toward the
polymerization of propylene, forming isotactic polypropylenes with low molecular
weights (Mn = 600–7000 g/mol) and typical Schulz–Flory distributions (Mw/
Mn & 2.0). The highest activity (1.64 9 106 g/(mol h bar)) is obtained by
[FeCl2(L171)], at –20 �C. The aldimine iron complexes are substantially less
active than the corresponding ketimine analogues, e.g., [FeCl2(L10)] (2.95 9 104

g/(mol h bar), at –20 �C) vs. [FeCl2(L89)] (7.28 9 105 g/(mol h bar), at –20 �C),
respectively. The precatalyst molecular structure does not show a clear influence
on the catalytic activities of propylene polymerization. However, the steric bulk of
the o-substituents has a similar effect on the molecular weights of the resulting
polypropylenes to that shown in the polymerization of ethylene, i.e., an increase in
the o-substituents bulkiness leads to an increase in molecular weight. For instance,
the symmetrical precatalyst [FeCl2(L87)], containing 2,6-di-iso-propylphenyl
groups, affords polypropylene, at –20 �C, with a Mn of 6500 g/mol, while the
slightly less bulky unsymmetrical [FeCl2(L173)], with 2,6-di-iso-propylphenyl
and 2-methyl-6-iso-propylphenyl groups, gives a polymer with a Mn of 5700 g/
mol. A further reduction in the steric bulk yields lower molecular weight polymers,
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such as in the cases of the symmetrical precatalyst [FeCl2(L89)], with two
2-methyl-6-iso-propylphenyl groups, and the unsymmetrical [FeCl2(L171)], with
2,6-di-iso-propylphenyl and 2,6-dimethylphenyl groups, giving rise to polymers
with Mn of 4100 and 5600 g/mol, respectively. The results obtained with the
symmetrical [FeCl2(L84)], with 2,6-dimethylphenyl groups, demonstrates this
trend conclusively by yielding polypropylene with a Mn of 1800 g/mol. An end
group analysis of these polymers indicates that the polymerization proceeds via a
secondary enchainment mechanism followed by b-hydrogen elimination, leading
to the exclusive formation of 1-propenyl end groups. In all cases, highly isotactic
polypropylenes ([mmmm] = 55–67%) are obtained, in which the regioregularity
decreases with a decrease in the steric bulk of the aryl rings o-substituents.
13C NMR spectroscopy demonstrates that the isotacticity results from a chain-end
control mechanism. Similar experimental results were obtained by Pellecchia et al.
[88] using the [FeCl2(L87)]/MAO catalytic system, at a polymerization temper-
ature as high as 50 �C. Babik and Fink [86] found out that when [FeCl2(L89)] is
activated with [Ph3C][B(C6F5)4], and subsequently treated with AliBu3 or AlEt3, it
shows a remarkably higher catalytic activity toward propylene polymerization than
that obtained with MAO. Different aliphatic end groups in the polymer were
identified by 13C NMR spectroscopy, which arise from the different alkyl alumi-
num compounds, as a consequence of a catalytic cycle based on an iron hydride
species.

Upon activation with MMAO, iron complexes based on less bulky 2,6-bis-
(arylimino)pyridine ligands, e.g., [FeCl2(L14)] (phenyl), [FeCl2(L18)] (2,4-
dimethylphenyl) and [FeCl2(L21)] (2-ethylphenyl), convert propylene into oligo-
mers with a predominant composition of dimers and trimers. These oligomers, in
particular the dimers and trimers, can be identified using analytical gas chroma-
tography, and structurally characterized by 1H and 13C NMR spectroscopies after
separation by preparative gas chromatography [87]. The structural information
about the dimers and trimers provides important evidence for the chain propaga-
tion and chain transfer mechanisms. Babik and Fink [87] suggested that the first
insertion of propylene into an iron hydride species could occur competitively in a
primary (1,2-) or a secondary (2,1-) fashion, the bulkier o-substituents on the aryl
rings favoring the former, while the second insertion of propylene into the Fe–C
bonds is dominated by the secondary enchainment mechanism. Tellmann et al.
[74] tested the catalytic activities of the fluorine-containing 2,6-bis(arylimi-
no)pyridine iron and cobalt complexes, e.g., [FeCl2(L46)], [FeCl2(L106)],
[CoCl2(L46)] and [CoCl2(L106)], in the polymerization of propylene, in the
presence of MAO, and found that none of the iron complexes are active, whereas
both cobalt complexes are active, being [CoCl2(L106)] the most active one (1.14 9

106 g/(mol h bar), at –20 �C). The oligomers formed are mainly the linear dimers
1-hexene and 2-hexene, indicating a 1,2-insertion mechanism starting from a
cobalt hydride species, which is followed by 2,1-insertion, and finally a
b-hydrogen elimination to regenerate the cobalt hydride active species. Analogous
highly linear dimers of propylene ([99%) can also be formed by MMAO-activated
cobalt complexes [CoCl2(L15)], [CoCl2(L21)] and [CoCl2(L23)] [90]. When
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activated with MMAO, [FeCl2(L23)], with 2-iso-propylphenyl aryl groups, and
[FeCl2(L130)], with 1-anthracenyl groups, were found to be moderately active
toward propylene polymerization with moderate activities (ca. 105 g/(mol h bar)),
giving atactic and isotactic-enriched oligomers, respectively [78].

Treatment of [FeCl2(L15)] with MAO or MMAO leads to an active catalyst for
the oligomerization of 1-butene, affording predominantly dimers ([ 80%), the
majority of which are linear, along with a small amount of methyl-branched
products [85]. A DFT theoretical study demonstrated [89] that these linear dimers
are formed by a primary insertion of 1-butene into an iron hydride species fol-
lowed by a secondary insertion. Compared with the iron compounds, the cobalt
complexes [CoCl2(L15)], [CoCl2(L21)] and [CoCl2(L23)] show much lower
catalytic activities toward 1-butene oligomerization, but a much higher content of
linear dimers ([97%) are obtained, upon activation with MMAO. Unlike the iron
catalysts, in which only a small percentage of the initial amount of 1-butene is
isomerized to 2-butene, the cobalt catalysts show a considerably higher yield in
this reaction, as evidenced by the approximately equal levels of dimers and
2-butene achieved when 1-butene is oligomerized [90]. It was found that the
isomerization occurs with an initial secondary (2,1-) insertion of olefin into a
cobalt hydride species, followed by b-hydrogen elimination occurring from the
b-methylene group. For iron catalysts, initial 2,1-insertions tend to produce
branched dimers, indicating that the propagation is preferred, whereas cobalt
catalysts undergo chain transfer after a 2,1-insertion, resulting in high amounts of
both linear dimers and 2-butene.

Souane et al. [84] tested the catalytic abilities of several iron and cobalt
complexes based on bulky 2,6-bis(arylimino)pyridine ligands such as L84, L26,
L109 and L115 toward the polymerization of 1-hexene, in combination with
MAO, revealing that all these catalyst systems are inactive. Further copolymeri-
zation tests of ethylene with 1-hexene show extremely low degrees of incorpo-
ration of 1-hexene (ca. 3.5 mol%). This result is similar to that observed by
Brookhart and Small [15] in the copolymerization of ethylene and 1-pentene,
demonstrating that the BIP iron and cobalt catalyst systems are not able to
copolymerize ethylene with higher a-olefins. A combined QM/MM study on the
BIP iron complex-catalyzed ethylene/1-hexene copolymerization further
confirmed this result [227]. On the other hand, the less sterically encumbered
2,6-bis(arylimino)pyridine iron catalysts, e.g., [FeCl2(L14)], [FeCl2(L15)], [FeCl2-
(L18)], [FeCl2(L21)] and [FeCl2(L129)], were found to be highly active for the
oligomerization of 1-hexene, forming dimers ([80%) that consist primarily of
linear products ([70%) and a small amount of methyl-branched products
(ca. 30%) [85]. On the contrary, in the cobalt-catalyzed oligomerization of
1-hexene, a remarkable degree of isomerization, leading to 2-hexene and 3-hex-
ene, was observed, along with the dimerization products, the ratio of dimerization
to isomerization dramatically depending on the activator used [90]. For example,
when cobalt catalysts (e.g., [CoCl2(L15)], [CoCl2(L21)] and [CoCl2(L23)]) are
activated with MMAO, the dimerization and isomerization of 1-hexene are
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competitive, whereas isomerization occurs almost exclusively when AlEt2Cl is
used.

The BIP iron and cobalt complexes have also been found to be active toward
the polymerization of conjugated/non-conjugated dienes such as 1,3-butadiene,
isoprene and 1,6-heptadiene. Gong et al. [71] observed that iron and cobalt
complexes [FeCl2(L14)], [FeCl3(L14)] and [CoCl2(L14)] are highly active toward
the polymerization of 1,3-butadiene upon activation with MAO, forming trans-
1,4-/cis-1,4-polybutadienes along with traces of 1,2-polybutadiene. Iron com-
plexes [FeCl2(L14)] and [FeCl3(L14)] primarily give trans-1,4-polybutadienes,
while for the cobalt complex [CoCl2(L14)], the selectivity is strongly dependent
on the MAO/Co molar ratio. For instance, when a molar ratio of 50 is used, the
polymer formed is essentially trans-1,4 (ca. 94%), while a significant increase in
the cis-1,4 selectivity occurs (reaching 79%), along with a corresponding decrease
in the trans-1,4 selectivity to 18%, when the MAO/Co molar ratio is increased to
75 or 100. Nakayama et al. [156] reported that several terpyridine iron complexes,
such as [Fe(L401)2]2+[FeCl4]2

2-, [FeCl3(L401)] and [FeCl3(L404)], or the N-(2-
pyridylmethyl)-2-hydroxy-3,5-di-tert-butylbenzaldimine-based iron complexes
[FeCl2(L496)] and [FeCl(L496)], were also highly active toward the (co)poly-
merization of isoprene and 1,3-butadiene, upon activation with MMAO, with
approximately 99% conversion after 3 or 12 h. In the case of the homopolymer-
ization of isoprene, the polymer obtained is mainly the 3,4-polyisoprene
(50–85%), while for the homopolymerization of 1,3-butadiene, the less bulky
[FeCl3(L401)] affords trans-1,4 products ([90%), and the much bulkier
[FeCl3(L404)], as well as [FeCl2(L496)] and [FeCl(L496)], yield almost equi-
molar amounts of cis-1,4, trans-1,4 and 1,2 products. All the iron complexes
copolymerize isoprene and 1,3-butadiene to generate random copolymers.

Osakada and coworkers [228–231] reported that, upon activation with MMAO,
the 2,6-bis(arylimino)pyridine iron and cobalt complexes can catalyze the cyc-
lopolymerization of 1,6-heptadiene with high conversions ([60% for the iron
catalysts, and [40% for the cobalt ones), forming polymers with trans- or cis-
fused 1,2-cyclopentanediyl groups. The ratio of cis- to trans-fused five-membered
rings in this polymer is dependent upon the steric bulk of the aryl substituents of
iron and cobalt complexes. The less sterically encumbered aryl-BIP iron com-
plexes, e.g., [FeCl2(L84)], with o-methyl substituents, [FeCl2(L86)], with o-ethyl
substituents, [FeCl2(L108)], with o-chloro substituents, [FeCl2(L115)], with
o-methyl and p-bromo substituents, and [FeCl2(L120)], with o-methyl and p-
methoxy substituents, yield polymers with higher contents of cis-five-membered
rings than trans ones ([95:5), and high molecular weights ([6,000 g/mol), while
the iron complexes with much bulkier o-substituents, such as [FeCl2(L87)], with
o-iso-propyl substituents, [FeCl2(L95)], with o-cyclohexyl substituents,
[FeCl2(L26)], with a single o-tert-butyl substituent in each of aryl rings,
[FeCl2(L170)], with o-iso-propyl substituents on one of the aryl rings and a single
o-tert-butyl substituent on the other, afford polymers with mixed cis- and trans-
five-membered rings and lower molecular weights. The cobalt complexes, such as
[CoCl2(L84)], [CoCl2(L87)] and [CoCl2(L97)], give rise exclusively to polymers
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with trans-five-membered rings, regardless of the steric bulk of the o-substituents.
These trends can also be observed in the cyclopolymerization of substituted 1,6-
heptadienes, such as 4-phenyl-1,6-heptadiene, 4-tri-iso-propylsiloxy-1,6-heptadi-
ene and 4-tert-butyldimethylsiloxy-1,6-heptadiene. The copolymerization of 1,
6-heptadiene with ethylene catalyzed by iron and cobalt complexes have also been
investigated, being reported that iron complexes lead only to a mixture of the
corresponding homopolymers, whereas copolymers with variable incorporation of
1,6-heptadiene (3–50%) can be obtained with cobalt complexes.

Osakada and coworkers [232, 233] also found that the cobalt complex
[CoCl2(L87)] is able to catalyze the polymerization of 2-aryl-1-methylenecyclo-
propanes (aryl = phenyl, 4-methoxyphenyl, 4-chlorophenyl) in a living fashion,
giving origin to polymers with the cyclopropyl groups intact. Additionally, it
copolymerizes ethylene with 2-aryl-1-methylenecyclopropanes or 7-methylenebi-
cyclo[4.1.0]heptane to yield alternating copolymers.

Pelascini et al. [234, 235] studied the catalytic behaviors of a series of iron and
cobalt complexes based on the 2,6-bis(arylimino)pyridine ligands, such as L26,
L46, L59, L87, L103 and L115, in the polymerization of bicyclo[2.2.1]hept-2-ene
(norbornene), upon activation with MAO. The results show that the iron com-
plexes are completely inactive, irrespective of the reaction conditions and the
ligands used, while the corresponding cobalt analogues can polymerize norborn-
ene, via an addition mechanism, with low catalytic activities (ca. 103–104 g/
(mol h)), forming polynorbornenes with high molecular weights (Mw ca. 105–
106 g/mol). The inactivity of iron complexes such as [FeCl2(L26)] and
[FeCl2(L87)], upon activation with MAO, was confirmed by Sacchi et al. [236]
that also reported the cobalt complex [CoCl2(L26)] as inactive. On the contrary,
Chen et al. [37] found that iron and cobalt complexes [FeCl2(L28)] and
[CoCl2(L28)] are both active toward the addition polymerization of norbornene,
when activated with MAO, the latter being the most active one.

Considering that the iron and cobalt complexes are less oxophilic and more
tolerant toward polar functionalities when compared with the early transition-
metal complexes, the catalytic performance of the BIP iron and cobalt complexes
on the polymerization of polar monomers such as methyl acrylate (MA), methyl
methacrylate (MMA) and tert-butyl acrylate (t-BA) has also been widely inves-
tigated. Repo [61, 237, 238] and Abu-Surrah [239] reported that iron and cobalt
complexes bearing N-aryl or N-alkyl groups, e.g., [FeCl2(L14)], with phenyl rings,
[FeCl2(L84)], with 2,6-dimethylphenyl rings, [FeCl2(L245)], with iso-propyl
groups, and [CoCl2(L247)], with cyclohexyl groups, are active toward the poly-
merization of t-BA, forming syndiotactic-enriched polymers. The catalytic activity
is strongly dependent on both the metal center and the ligand structure. Generally,
the iron complexes are more active than the corresponding cobalt ones, e.g.,
[FeCl2(L247)] (2.5 9 105 g/(mol h)) vs. [CoCl2(L247)] (1.3 9 105 g/(mol h))
[237], and the activities of the alkyl-substituted complexes are higher than those of
the aryl-substituted ones. For instance, [FeCl2(L245)] and [FeCl2(L247)] give
higher conversions than [FeCl2(L14)] and [FeCl2(L84)], under the same condi-
tions [61]. In the case of the aryl-substituted complexes, an increase in the
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bulkiness of the aryl rings o-substituents leads to a reduction both in activity and in
polymer molecular weight. Since the addition of free radical scavengers such as
tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane (Irganox
1010) and 2,6-di-tert-butyl-a-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadiene-1-yli-
dene)-p-tolyloxy (Galvinoxyl) does not inhibit the polymerization, a free radical
mechanism is excluded. However, despite the detailed polymerization studies
presented, the actual polymerization mechanism remains unclear. The
[FeCl2(L85)]/MAO system was demonstrated by Fullana et al. [240] to be highly
active toward the polymerization of MA, forming atactic polymers with high
molecular weights. Attempts to copolymerize MA and ethylene using the
[FeCl2(L85)]/MAO catalyst system resulted in a blend of the two homopolymers.
Li and coworkers [241] studied the catalytic behaviors of the BIP iron complexes
[FeCl2(L84)] and [FeCl2(L87)] on the polymerization of MMA, n-butyl methac-
rylate (n-BMA) and tert-butyl methacrylate (t-BMA), and found that [FeCl2(L84)]
and [FeCl2(L87)] are both highly active toward the polymerization of MMA, in the
presence of MMAO or a trialkylaluminum (e.g., AlEt3 and AliBu3), forming
syndiotactic-enriched polymers, while MMAO alone displays a high catalytic
activity for the polymerization of n-BMA and t-BMA. Kim et al. [242] tested the
polymerization of vinyl ethers, such as ethyl vinyl ether (EVE), n-butyl vinyl ether
(n-BVE) and iso-butyl vinyl ether (i-BVE), catalyzed by the BIP iron and cobalt
complex/MAO systems and reported that iron and cobalt complexes based on
ligands L14, L84, L86 and L87 are able to polymerize these vinyl ethers with
moderate activities, affording the corresponding atactic polymers.

3.9 Dual Catalyst Systems

A dual catalyst system can be literally regarded as a system in which two different
catalysts, being placed in a single reactor, operate independently or cooperatively
to yield a product with some peculiar properties, which are not accessible by each
of the catalysts independently. Certainly, if necessary, more than two catalysts can
be mixed in a single reactor to generate multiple catalyst systems, but these are
expected to be complicated cases. Therefore, the great majority of the multiple
catalyst systems reported so far are in fact dual catalyst systems. According to the
difference in the operating mechanism, the dual catalyst systems can be classified
into two types: reactor blending and tandem catalysis [243, 244]. In the former
method, two catalysts operate independently in a single reactor to yield a mixture
of two different homopolymers, each of them being produced by an individual
catalyst and possessing its original properties. This method allows a control on the
molecular weight and the molecular weight distribution of the resulting polymer
by an in situ blending. Since the molecular weight and the molecular weight
distribution are responsible for the ultimate mechanical and rheological properties
of polymers, respectively, this method is effective in the simultaneous improve-
ment of the physical properties and processability of the polymers. In the case of
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the latter method, one of the two catalysts operates firstly to produce oligomers
with controllable molecular weight distributions, which are further copolymerized
(as comonomers) with a-olefins by the second catalyst. Finally, a copolymer with
controllable branching is formed. It has been demonstrated that this method is very
powerful to produce linear low-density polyethylene (LLDPE) [244].

Considering the unique abilities of the BIP iron and cobalt catalysts to produce
strictly linear polyethylenes or a-olefins with high selectivities, the use of the BIP
iron and cobalt catalysts, both in reactor blending and in tandem catalysis, has
attracted considerable attention [245–250]. Mecking [245], using a combination of
the iron complex [FeCl2(L87)] with the a-diimine nickel(II) complex
[NiBr2(ArN=C(Me)-C(Me)=NAr)] (where Ar = 2,6-Me2C6H3) or the zirconocene
[Zr(nBuCp)2Cl2] (where nBuCp = g-n-butylcyclopentadienyl), made the first
attempt to prepare blends with a BIP iron complex in reactor blending. Since the
nickel complex and the zirconocene polymerize ethylene to yield highly branched
and ultra-high molecular weight polyethylenes, respectively, the combination of
[FeCl2(L87)] with the nickel complex leads to a reactor blend of linear and
branched polyethylenes, while the combination with the zirconocene gives a blend
of linear polyethylenes with different molecular weights or crystallinities. The
differences in density, molecular weight and overall branching between the reactor
blend and the original polymers formed by each catalyst are indicative of both
catalysts being active and compatible. An ideal polyethylene blend in an industrial
application consists of a linear fraction, with a relatively low molecular weight that
provides rigidity, and a branched fraction, with high molecular weight that pro-
vides flexibility, totally showing a bimodal/broad molecular weight distribution.
Considering the fact that the BIP cobalt complexes yield linear polyethylenes with
relatively lower molecular weights compared with their iron analogues, under the
same conditions, the cobalt complex [CoCl2(L87)] was selected by Li and
coworkers [246, 247] to polymerize ethylene, together with the nickel complexes
[NiBr2(ArN=C(R)-C(R)=NAr)] (where Ar = 2,6-iPr2C6H3, R = Me, acenaphthene
or cyclohexane backbones) in a single reactor. As a result, a perfect blend was
obtained with a bimodal molecular weight distribution, in which the linear low
molecular weight fraction is produced by the cobalt complex and the highly
branched fraction with high molecular weight is produced by the nickel com-
plex. The linear correlation between the overall catalyst activity and percentage
of nickel complex suggests that both catalysts operate independently from each
other in the catalytic system. The final blends were characterized by using a
combination of GPC/SEC, DSC, wide-angle X-ray diffraction (WAXD) and small-
angle X-ray scattering (SAXS), and it was found that the molar ratio of the
catalysts has a remarkable effect on the physical properties of the resulting blends,
such as molecular weight, molecular weight distribution, crystallization rate,
melting temperature (Tm), crystallization temperature (Tc) and degree of
crystallinity.

Chadwick and coworkers [251, 252] reported an immobilized dual catalyst
system, which is produced by co-impregnation of an iron complex ([FeCl2(L109)]
or [FeCl2(L85)]) and a chromium complex [CrCl2{1-(8-quinolyl)Ind}] on
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MgCl2/AlEtn(OEt)3-n. This system is able to polymerize ethylene, leading to
reactor blending of polyethylenes with low and high molecular weights, respec-
tively. As a result, a bimodal molecular weight distribution of polyethylene was
obtained. The proportions of high and low molecular weight fractions can be
changed simply by adjusting the relative loadings of the two catalysts on the
support. Similarly, a SiO2-supported dual late transition-metal catalyst system was
reported by Ivanchev et al. [253], in which the iron complex [FeCl2(L97)] and the
nickel complex [NiBr2(ArN=C(An)-C(An)=NAr)] (where Ar = 2-cyclohexyl-4,6-
Me2C6H2, An = acenaphthene backbone) are concurrently or successively
immobilized on silica gel, in the presence of MAO. This supported catalyst system
shows high catalytic activities toward ethylene polymerization in the presence or
absence of AliBu3 as cocatalyst, affording a blend of linear and branched
polyethylenes.

The use of tandem catalysis with the participation of BIP iron and cobalt
complexes is essentially based on the high selectivities exhibited by these pre-
catalysts to produce oligomers. At the same time, a second catalyst with good
ability to copolymerize ethylene or propylene with higher a-olefins is required.
Quijada et al. [248] prepared branched polyethylene, from a monomer feed con-
sisting only of ethylene, using tandem catalysis with the participation of one of
such iron complexes, as schematically represented in Scheme 3.72. In the presence
of MAO, the less sterically encumbered iron complex [FeCl2(L21)] was used to
convert ethylene into oligomers first, and then a simultaneous copolymerization of
ethylene with the in situ formed oligomers was performed by using a homoge-
neous zirconocene complex ([Zr(rac-EtInd2)Cl2] or [Zr(rac-Me2SiInd2)Cl2],
where Ind = indenyl) as second catalyst, finally leading to polyethylenes with
degrees of branching varying in the range of 1–4 branches per 100 units of eth-
ylene. It is noteworthy that the polymers obtained by the [FeCl2(L21)]/[(Zr(rac-
Me2SiInd2)Cl2] tandem catalyst system have characteristic bimodal/broad
molecular weight distributions, and the low molecular weight fraction becomes
more pronounced as the Fe/Zr molar ratio increases, giving compositions similar
to those obtained with [FeCl2(L21)] alone. This finding indicates that a significant
fraction of the oligomers produced by this iron complex is not incorporated into
the growing polymer chain governed by the zirconocene sites. On the contrary, the
polymers obtained by the [FeCl2(L21)]/[Zr(rac-EtInd2)Cl2] system show a
monomodal molecular weight distribution, and the degree of branching increases
with the Fe/Zr molar ratio, indicating an efficient incorporation of the in situ
formed oligomers into the polymer backbone. Similarly, a tandem catalysis system
consisting of a cobalt complex ([CoCl2(L18)] or [CoCl2(L73)]) and the zircono-
cene [Zr(rac-EtInd2)Cl2] was reported by Hu and coworkers [254], which allow
the formation of LLDPE with various branching degrees. Bianchini [249] and
Frediani [250] groups reported a new homogeneous tandem catalysis system,
which consists of a cobalt complex ([CoCl2(L204)], [CoCl2(L214)] or
[CoCl2(L215)]) and the constrained geometry catalyst [Ti{g5,jN-C5Me4Si-
(Me)2(NtBu)}Cl2], to yield branched polyethylenes. It was found that both the
extent of a-olefin incorporation and the number and type of branches are
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proportional to the molar fraction of cobalt, ranging from 0 to 0.75. An increase in
these values from 0.05 to 0.75 produces an increase in the a-olefin incorporation
between 5 and 50 mol%, leading to an increase in the number of branches from 27
to 254 per 1000 carbon atoms, and the polymer morphology correspondingly
changes gradually from rigid solids, tough flexible white solids, white rubbery
materials, to clear colorless rubbery materials. Additionally, the distribution of the
branches (ethyl 82–86%, butyl 17–12%) is in excellent agreement with the molar
distribution of the a-olefins produced by [CoCl2(L215)] in the oligomerization of
ethylene (butenes 82%, hexenes 15%).

By analogy with tandem catalysis employing ethylene as the single monomer
(see Scheme 3.72), a comb-branched polypropylene with isotactic backbone and
atactic side chains was prepared from propylene, by using a combination of
[FeCl2(L84)] and the zirconocene [Zr{rac-Me2Si(2-MeBenz[e]Ind)2}Cl2] precat-
alysts [255]. Upon activation with MMAO, [FeCl2(L84)] converts propylene into
macromonomers with low molecular weights (ca. 3000 g/mol) and atactic nature,
which are in situ copolymerized with propylene by the [Zr{rac-Me2Si(2-Me-
Benz[e]Ind)2}Cl2] system to afford branched isotactic polypropylene. It was
revealed that the catalyst addition method has a substantial effect on the nature of
the resulting polymer. Simultaneous addition of both catalysts results in a mixture
of atactic polypropylene and isotactic polypropylene, produced by [FeCl2(L84)]
and [Zr{rac-Me2Si(2-MeBenz[e]Ind)2}Cl2], respectively. In contrast, a consecu-
tive addition of [FeCl2(L84)] and [Zr{rac-Me2Si(2-MeBenz[e]Ind)2}Cl2] in a
given time interval (30, 90, or 120 min) leads to the formation of copolymers. The
degree of branching of the final polymer is dependent on the time interval and
molar ratio of both catalysts. Increasing the time interval and molar ratio of iron to
zirconium causes an increase in the degree of branching.

Tandem catalysis can also be performed by combining a homogeneous single-
site catalyst with a heterogeneous Ziegler–Natta catalyst. Hu and coworkers
[256, 257] combined the iron complex [FeCl2(L53)] with the Ziegler–Natta cat-
alyst TiCl4/MgCl2 to in situ polymerize ethylene in the presence of MAO or MAO/
AlEt3 as cocatalysts, affording branched polyethylene with total branching varying
from 10.5/1000 C to 59.0/1000 C, including ethyl (ca. 50%), butyl (ca. 30%) and
longer branches (ca. 20%). The result shows that the amount of cocatalyst has a
marked effect on the final properties of the polymers. Recently, Xu et al. [258]
reported an immobilized tandem catalyst system, in which the iron complex

Scheme 3.72 Tandem catalysis
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[FeCl2(L104)] and the zirconocene [Zr(rac-EtInd2)Cl2] are co-impregnated on a
layered zeolite-like calcosilicate (CAS-1), to polymerize ethylene, yielding
LLDPE. By comparison with the homogeneous tandem catalyst systems, sup-
ported tandem catalyst systems show improved temperature stability and enhanced
molecular weights and degrees of branching of the resulting LLDPE.

3.10 Supported Iron and Cobalt Catalysts

Catalyst immobilization is a key step to industrialize the homogeneous single-site
catalysts, which not only can overcome the reactor fouling resulting from the
employment of homogeneous catalysts, but also improves the morphology and
bulk density of polymer particles. Additionally, it can also substantially affect the
properties of the resulting polymers, such as molecular weight, molecular weight
distribution, branching or crystallinity, as well as the temperature stability of the
catalyst and polymerization kinetics. Parallel to the modification of the BIP iron
and cobalt catalysts, many efforts have been devoted to investigating their
immobilization [259–267].

3.10.1 Self-immobilization

The immobilization of catalysts can be simply divided into two types: self-
immobilization and immobilization on inorganic or polymeric materials. The self-
immobilization implies that a catalyst is itself in situ incorporated into the growing
polymer chain during the course of an olefin polymerization reaction, and the
formed polymers, bearing the catalyst, agglomerate to generate a seed polymer
particle. The subsequent polymerization occurs on the seed polymer particle, and
not in the solution, the morphological characteristics of the seed polymer particle
being replicated by the growing polymer. In order to achieve the self-immobili-
zation of a catalyst, an active functional group is required to be attached to the
catalyst itself, which can then be polymerized or copolymerized with the mono-
mer, under olefin polymerization conditions. The presence of terminal vinyl
functionalities in the molecular structure of the precatalyst is preferred because of
its similarity to the ethylene monomer. Therefore, a great number of catalyst
functionalizations so far reported have been directed toward the introduction of
terminal vinyl groups into the precatalyst structure [78, 103, 261, 268–270].

The introduction of terminal vinyl groups at the imino carbons of the BIP
ligands can be readily achieved by deprotonation of the methyl protons of the
bis(arylacetimino)pyridine ligands with lithium diisopropylamide (LDA) or
sodium bis(trimethylsilyl)amide, followed by treatment with x-alkenyl bromides,
leading to the terminal vinyl-functionalized ligands L512–L520 (Scheme 3.73)
[103, 268]. Using a similar synthetic protocol, Herrmann and coworkers [78]
prepared the ligand L521 (Scheme 3.73). The reaction of ligands L512–L521 with
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iron dichloride, in tetrahydrofuran, leads to the corresponding iron complexes
[FeCl2(L512)]–[FeCl2(L521)] bearing alkyl substituents at the imino carbons that
contain terminal vinyl groups. Upon activation with MAO or MMAO, these iron
complexes exhibit high activities toward ethylene polymerization. Kaul et al. [268]
reported that, during the course of ethylene polymerization with [FeCl2(L512)]–
[FeCl2(L514)], in the presence of MMAO, the terminal vinyl groups of the
complexes are copolymerized with ethylene, affording in situ self-immobilized
catalytically active particles, which work as supported catalysts (Scheme 3.73).
These self-immobilized polymeric catalysts can be isolated from a solution of
MMAO-activated iron complex, after bubbling ethylene for a short period (e.g.,
5 min), and subsequently stored and reused to catalyze ethylene polymerization
with high activities. In contrast, no self-immobilization was observed in the cases
of [FeCl2(L515)]–[FeCl2(L520)]FeCl2/MAO systems [103].

Jin and coworkers [269, 270] prepared a symmetrical allyl-substituted BIP
ligand L522 by direct condensation of 2,6-diacetylpyridine with 4-allyl-2,6-di-iso-
propylaniline (Scheme 3.74). Using a similar reaction protocol, unsymmetrical
allyl-substituted BIP ligands 2-(ArN=C(Me))-6-(Ar0N=C(Me))C5H3N (Ar = 4-
allyl-2,6-iPr2C6H2, Ar0 = 2,6-iPr2C6H3 (L523) or 2,6-Me2C6H3 (L524)) were
synthesized by stepwise condensation of 2,6-diacetylpyridine with 4-allyl-2,6-di-
iso-propylaniline and 2,6-di-iso-propylaniline or 2,6-dimethylaniline [270, 271].
Their corresponding iron complexes [FeCl2(L522)]–[FeCl2(L524)] are easily
prepared by treatment of the ligands with iron dichloride. Upon activation with

Scheme 3.73 Immobilizations derived from the introduction of terminal vinyl groups at the
substituents of the BIP ligand imino carbons
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MMAO, these complexes are active toward ethylene polymerization, and
[FeCl2(L522)], containing two allyl groups, shows a relatively lower activity
(1.9 9 106 g/(mol h bar)) than that of the corresponding [FeCl2(L523)],
containing a single allyl group (4.02 9 106 g/(mol h bar)). In all cases, the self-
immobilization phenomenon is observed, i.e., the catalyst molecules are incor-
porated into the growing polymer through self-catalyzed copolymerization of the
allyl groups with ethylene (Scheme 3.74). However, the self-immobilization
cannot lead to greatly improved morphologies of the resulting polymers since iron
catalysts have extremely weak abilities to copolymerize ethylene with a-olefins.
In order to improve the morphology of these polymers, two kinds of new supported
catalysts were prepared, as represented in Scheme 3.74. Iron complexes containing
allyl groups (e.g., [FeCl2(L522)] and [FeCl2(L523)]) are copolymerized with
styrene in the presence of a radical initiator (azobis-iso-butyronitrile, AIBN),
giving polymer-incorporated catalysts, whereas if iron complexes, styrene and
divinylbenzene are copolymerized in the presence of AIBN and silica (SiO2)
particles, shell-core catalysts are obtained. Upon activation with MMAO, these
polymer-incorporated catalysts show high catalytic activities toward ethylene
polymerization, similar to those obtained with the original homogeneous iron
catalysts, whereas the activities of the shell-core catalysts are substantially higher,
being the molecular weights of the resulting polyethylenes greatly increased. The
morphologies obtained with the polymer-incorporated catalysts are still ill-defined,

Scheme 3.74 Immobilization methods derived from the introduction of allyl groups at the
p-positions of the BIP ligand aryl rings
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as in the case of the self-immobilized catalysts, but the shell-core ones afford well-
defined spherical polymer particles.

The introduction of terminal vinyl groups into the o-positions of the BIP ligand
aryl rings can be easily achieved by condensation of 2,6-diacetylpyridine with
2-(x-alkenyl)-substituted anilines. Reaction of these ligands with iron di- or
trichlorides affords iron complexes [FeCl2(L525)]–[FeCl2(L529)] and [FeCl3-
(L525)]–[FeCl3(L529)] (Scheme 3.75) [103]. When activated with MAO, all these
complexes exhibit high catalytic activities toward ethylene polymerization,
forming a mixture of oligomers and polyethylenes. It is worth to mention that,
compared with their corresponding saturated iron complexes (e.g., [FeCl2(L21)],
[FeCl2(L22)] and [FeCl2(L25)]), the terminal vinyl-substituted iron complexes
form higher contents of polymers, which corresponds to a lower rate of
b-hydrogen elimination (chain transfer). For example, [FeCl2(L527)] exclusively
yields a polymer fraction, whereas its corresponding saturated iron complex
[FeCl2(L25)] gives a product with over 60 wt% of oligomers. In all cases, no self-
immobilization was observed.

Alt et al. [261] and Kim et al. [272] introduced terminal vinyl groups at the
4-position of the BIP ligand pyridine ring by condensation of 4-(x-alkenyl)-
substituted 2,6-diacetylpyridine with the appropriate anilines (Scheme 3.76).
Subsequent reaction with iron dichloride affords the terminal vinyl-functionalized
iron complexes [FeCl2(L530)]–[FeCl2(L532)]. For a comparison, the saturated
iron complex [FeCl2(L533)] (L533 = 4-nBuO-2,6-(ArN=C(Me))2C5H2N; Ar =
2,6-iPr2C6H3) was synthesized using the same reaction procedure. Upon activation
with MAO, all the iron complexes showed moderate catalytic activities toward
ethylene polymerization. Compared with the saturated iron complex
[FeCl2(L533)]), which leads to pronounced reactor fouling, the iron complexes
bearing terminal vinyl groups do not give rise to adhesion of polymer on the

Scheme 3.75 Introduction of terminal vinyl groups at the o-positions of the BIP ligand aryl rings
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reactor walls and stirrer, indicating that self-immobilization occurred. Addition-
ally, it was demonstrated that the self-immobilized catalysts greatly suppress the
chain transfer to aluminum, leading to polyethylene with a monomodal molecular
weight distribution.

3.10.2 Immobilization on Inorganic or Polymeric Supports

Silica (SiO2) in the form of amorphous silica gel with irregularly formed
particles, which can be described as agglomerates of smaller particles with large
surface area (e.g., commercially available Davison SiO2, a = 200–300 m2/g
[253, 273–275]), is the most widely used inorganic support. Immobilization of
catalysts on SiO2 can be in principle divided into three methods: (a) direct
immobilization of the catalyst precursor on SiO2 (denoted as [MCl2L]/SiO2,
where L = the BIP ligand, M = Fe or Co); (b) immobilization of catalyst pre-
cursor on SiO2 pretreated with MAO or trialkylaluminum (denoted as [MCl2L]/
MAO (or AlR3)/SiO2, where R = Me, Et or iBu); (c) chemical tethering of the
catalyst precursor ligands on SiO2.

Sivaram [273] and Semikolenova [201] groups studied in detail the interactions
of the iron precatalysts (e.g., [FeCl2(L84)] and [FeCl2(L87)]) with the SiO2 sup-
port in supported catalysts obtained by the former two methods. They found that
direct immobilization gives low loading of catalyst precursor, e.g., 0.56–0.63 wt%
(Fe) for [FeCl2(L87)]/SiO2, obtained by Sivaram and coworkers, and 0.10–0.13
wt% (Fe) for [FeCl2(L84)]/SiO2, by Semikolenova et al., regardless of the amount
and nature of the hydroxyl groups present on SiO2. Since the loading of iron
precatalyst is substantially lower than that of the terminal hydroxyl groups on
SiO2, Semikolenova et al. considered that fixation of the iron precatalyst occurs by
multiple bonding of the latter to the SiO2 surface, via the interaction of both
pyridyl and phenyl groups of the ligand with the surface hydroxyl groups. How-
ever, based on the examination of the binding energy of iron by X-ray

Scheme 3.76 Introduction of terminal vinyl groups at the 4-position of the BIP ligand pyridine
ring
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photoelectron spectroscopy (XPS), Sivaram and coworkers found that the iron
precatalyst has no strong chemical interaction with the SiO2 surface, except some
weak secondary interactions between Si–OH and Fe–Cl. At the same time, the
binding energy of the iron centers in the supported catalyst [FeCl2(L87)]/MAO/SiO2,
made by method (b), revealed to be higher than those of the [FeCl2(L87)]/SiO2

catalyst and of the homogeneous [FeCl2(L87)], indicating the presence of cationic
iron centers. A similar increase in the binding energy of the Fe2p center for
[FeCl2(L87)]/MAO/SiO2 was observed by Ma et al. [276]. Upon activation with
MAO or trialkylaluminum, directly immobilized iron catalysts, e.g., [FeCl2(L84)]/
SiO2 [201] and [FeCl2(L87)]/SiO2 [273], exhibit high catalytic activities toward
ethylene polymerization. Compared with the parent homogeneous catalysts, both
[FeCl2(L84)]/SiO2 and [FeCl2(L87)]/SiO2 show significantly improved tempera-
ture stability and polymerization kinetics. The homogeneous iron catalysts
[FeCl2(L84)] and [FeCl2(L87)] generally show very high initial activities, which
sharply fall down in the course of the polymerization, and a temperature increase
up to 70 �C causes catalyst deactivation. Conversely, the supported catalysts
[FeCl2(L84)]/SiO2 and [FeCl2(L87)]/SiO2 give steady-state polymerization
kinetics and exhibit high activities even at 70 �C. It is noteworthy that Sivaram and
coworkers found that the catalytic activity increases with the calcination tem-
perature of SiO2, while Semikolenova et al. observed a reverse trend. Improved
molecular weights and morphologies of the resulting polymers were observed for
both supported catalysts.

Barabanov et al. [274, 275] studied the kinetics of ethylene polymerization
catalyzed by the supported iron catalyst [FeCl2(L84)]/SiO2. The number of active
species and the propagation rate constant were measured by inhibiting the poly-
merization reaction with radioactive 14CO. It was found that the supported catalyst
is highly stable, and the catalytic activity, as well as the number of active species
and the propagation rate constant, are practically constant during the polymeri-
zation time (up to 60 min). The same results were also obtained for Al2O3- or
MgCl2-supported catalysts. In addition, an investigation of the effect of temper-
ature on the number of active sites and propagation rate constant, with or without
the presence of hydrogen, revealed that the variation of the number of active
centers results from a reversed equilibrium of the active and ‘‘dormant’’ sites.
Broad molecular weight distributions were obtained for all the supported catalysts,
indicating a set of active sites with different reactivities, and it was demonstrated
that, compared with the parent homogeneous catalysts, the supported ones possess
a lower number of active sites producing low molecular weight polymer and a
higher number of active sites generating the high molecular weight fraction. Using
the same method, the same authors [277] investigated the supported cobalt catalyst
[CoCl2(L84)]/SiO2, and similar results were obtained.

A new strategy to immobilize iron complexes on SiO2 was reported by Kaul
et al. [268], as schematically represented in Scheme 3.77. The iron complexes
[FeCl2(L512)]–[FeCl2(L514)], bearing terminal vinyl groups at the BIP ligands
imino carbons, were anchored on SiO2 through the hydrosilylation reaction of the
Si–H groups of a tetramethyldisilazane-modified silica surface with the terminal
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vinyl groups of the iron complexes, in the presence of the Karstedt catalyst. This
immobilization method leads to high loadings of iron catalyst (0.99–1.15 wt% Fe).
Upon activation with MMAO, these supported catalysts are highly active toward
ethylene polymerization, leading to polyethylenes showing bimodal molecular
weight distributions, the high molecular weight fraction being predominant.

The supported iron catalysts of the type [FeCl2L]/MAO (or AlR3)/SiO2, made
by method (b), can be described as iron catalyst precursors anchored on the SiO2

surface through a direct interaction with MAO, that will result in the in situ
formation of the active species. The cationic metal-alkyl centers thus formed
become trapped and stabilized by the aluminum activator, which can be identified
by XPS spectroscopy [259, 276]. Similar to the directly immobilized iron catalysts
[FeCl2L]/SiO2, [FeCl2L]/MAO (or AlR3)/SiO2 supported catalysts also show a
steady-state kinetics for ethylene polymerization, but the catalytic activities are
remarkably lower than those of the parent homogeneous catalysts [253, 259].
Conversely, unlike [FeCl2L]/SiO2, a substantial increase in the polymer molecular
weight is observed for the [FeCl2L]/MAO (or AlR3)/SiO2 systems [259, 273],
indicating that b-hydrogen transfer is markedly suppressed.

Wang et al. [217] studied the effect of the activator on the bimodal molecular
weight distribution produced by supported iron catalysts [FeCl2(L84)]/TEAO/SiO2

or [FeCl2(L87)]/TEAO/SiO2 (TEAO = tetraethylaluminoxane). It was revealed
that the immobilization of the iron catalyst can significantly improve the Mn of the
high molecular weight fraction of the bimodal polyethylene, but it has an insignif-
icant effect on the low molecular weight fraction. Such bimodal molecular weight
distribution can be easily adjusted by the modification of the polymerization con-
ditions, such as the ethylene pressure and molar ratio of aluminum to iron.

Ivanchev et al. [253] prepared a series of supported single or dual catalyst
systems, consisting of the iron complex [FeCl2(L97)] and the nickel com-
plex [NiBr2(ArN=C(An)-C(An)=NAr)] (where Ar = 2-cyclohexyl-4,6-Me2C6H2,
An = acenaphthene backbone), by varying the order of immobilization, e.g., Fe/
MAO/SiO2 (I), Ni/MAO/SiO2 (II), (Fe ? Ni)/MAO/SiO2 (III), Ni/Fe/MAO/SiO2

(IV), Fe/Ni/MAO/SiO2 (V), and I ? II (VI). All these supported catalysts show

Scheme 3.77 Direct tethering of an iron complex on a tetramethyldisilazane-modified SiO2

surface
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high activities toward ethylene polymerization, in the presence or absence of
AliBu3. The dual catalyst systems III–VI afford a blend of linear and branched
polyethylenes, the degree of branching notably varying in each of these catalyst
systems.

A novel layered zeolite-like calcosilicate (CAS-1) was employed by Xu et al.
[278] to immobilize the iron precatalyst [FeCl2(L87)], leading to a supported
catalyst [FeCl2(L87)]/MAO/CAS-1, which exhibits high catalytic activities toward
ethylene polymerization, upon activation with MAO or AlEt3, giving rise to
polyethylenes not only with higher molecular weights but also unique
morphologies.

Recently, Alt and coworkers [260, 279] described a new method to immobilize
iron precatalysts on SiO2. First, trimethylaluminum (AlMe3) is partially hydro-
lyzed by the addition of water as steam, in the presence of SiO2, to yield a SiO2-
supported cocatalyst, which is denoted as PHT. The latter is then treated with iron
complex, leading to the supported catalysts, e.g., [FeCl2(L57)]/PHT and
[FeCl2(L84)]/PHT. Using the same method, binary or ternary supported catalysts
based on [FeCl2(L57)], [ZrCp2Cl2] and [TiCp2Cl2], were prepared. Upon activa-
tion with AliBu3, these supported catalysts are active toward ethylene polymeri-
zation. For [FeCl2(L57)]/PHT, the highest activity (5.34 9 106 g/(mol h bar)) is
obtained when a water/aluminum molar ratio of 1:1 is applied, being approxi-
mately 10 times higher than that of the parent homogeneous catalyst (6.30 9 105

g/(mol h bar)). On the contrary, the ternary supported catalyst (Fe + Zr + Ti)/
PHT gives a surprisingly low activity (0.50–2.34 9 105 g/(mol h bar)), probably
due to unfavorable interactions of the different catalyst species. The same
immobilization protocol was also used on the other supports (e.g., MCM-41) by
the same authors [279].

Chemical tethering of the precatalyst ligands on SiO2 for the preparation of
supported catalysts (method (c)) has recently attracted considerable attention
[271, 272, 280, 281]. Han et al. [280, 281] reported a strategy to anchor the ligand
of an iron precatalyst on a flat SiO2 model (based on silicon (100) single crystals
covered with a thin layer of silica (20 nm) with a surface roughness below 1 nm),
as displayed in Scheme 3.78. The terminal vinyl group of the alkyl substituent at
the BIP ligand L514 imino carbon was hydrosilylated with dichloromethylsilane,
in the presence of the Karstedt catalyst, and subsequently reacted with the
hydroxyl groups of SiO2, leading to a SiO2-supported ligand. The latter was further
reacted with iron dichloride yielding the desired supported iron catalyst. Its
binding energy of Fe2p, determined by XPS spectroscopy, is similar to that of the
corresponding parent homogeneous iron complex, suggesting a very close chem-
ical environment for iron in both catalysts. Upon activation with AliBu3, the
supported iron catalyst shows a moderate activity (2.5–5.3 9 105 g/(mol h bar))
toward ethylene polymerization. Polyethylene is formed as a thin film on the silica
surface, and no polymer formation is observed in the solution. This is because the
iron catalyst is covalently anchored to the surface, and the polymer grows in a
single direction, forming a film with a constant height on the flat SiO2 surface.
Using the same preparation strategy, Li [271] and Kim [272] groups anchored the
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ligands L522–L524 and L531 on SiO2, respectively, and prepared the corre-
sponding supported iron and cobalt catalysts (Schemes 3.79 and 3.80). Upon
activation with MAO or MMAO, these supported catalysts show higher activities
toward ethylene polymerization and yield polyethylenes with higher molecular
weights in comparison with those of the corresponding parent homogeneous cat-
alysts. However, the L531-based supported iron and cobalt catalysts show activ-
ities about 100 times lower than those of their corresponding homogeneous
catalysts.

MCM-41 and SBA-15 are mesoporous zeolites, and have large surface areas,
narrow pore size distributions, large pore volumes and a hexagonal arrangement
of uniform cylindrical pores (approximately 1.5 to 10 nm in diameter). They
also have been used to immobilize the BIP iron and cobalt precatalysts [279,
282–284]. By impregnating the iron complexes [FeCl2(L18)] and [FeCl2(L52)] on

Scheme 3.78 Chemical tethering of the BIP ligand on SiO2 via the functionalization of the
terminal vinyl groups at the imino carbons

Scheme 3.79 Chemical tethering of the BIP ligand L522 on SiO2 via the functionalization of the
terminal vinyl groups at the aryl rings p-positions
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MAO-pretreated MCM-41 or SBA-15, Guo et al. [282] prepared supported iron
catalysts [FeCl2(L18)]/MAO/MCM-41 (or SBA-15) and [FeCl2(L52)]/MAO/
MCM-41 (or SBA-15). Upon activation with MAO, all the supported catalysts
exhibit high catalytic activities toward ethylene oligomerization, forming linear a-
olefins. The MCM-41 zeolite, with relatively narrow pore size, leads to much
lower molecular weight a-olefins. Similarly, Zhang et al. [283] prepared the
supported iron catalyst [FeCl2(L87)]/MAO/MCM-41, which is active toward
ethylene polymerization, when activated with MAO or AlEt3. Although its cata-
lytic activity is much lower than that of the corresponding parent homogeneous
catalyst, the resulting polyethylenes have molecular weights substantially higher
than those obtained with the corresponding homogeneous catalyst. Interestingly,
when the supported catalyst [FeCl2(L87)]/MAO/SBA-15 was used to polymerize
ethylene, a polyethylene with a fibrous morphology was obtained, since the two-
dimensional ordered channel structure of SBA-15 controls the growth direction of
the polymer chains [284]. This phenomenon is termed as extrusion ethylene
polymerization. Paulino and Schuchardt [264] prepared supported catalysts
[FeCl2(L87)]/MCM-41 and [FeCl2(L115)]/MCM-41 by direct immobilization.
These two supported catalysts are active toward ethylene polymerization, upon
activation with MAO. The activities are much lower than those of the corre-
sponding homogeneous catalysts, but the molecular weights of the polyethylenes
obtained are substantially higher than those produced by the corresponding
homogeneous catalysts.

Mao [263, 285, 286] and Chadwick [252, 262, 267] prepared a series of MgCl2
supports with relatively high surface area and high porosity by partial dealco-
holization of spherical MgCl2/ethanol adducts (e.g., MgCl2�2.56C2H5OH
[263, 285] and MgCl2�1.1C2H5OH [262, 267]), which can be achieved through a
thermal treatment. The morphology, crystallinity and mechanical strength of the
formed support are substantially dependent on the temperature of the thermal
treatment. When treated at 170 �C, for 4 h, an ideal MgCl2 support
MgCl2�0.047C2H5OH is obtained, being characterized by a surface area of ca.

Scheme 3.80 Chemical tethering of the BIP ligand on SiO2 via the functionalization of the
terminal vinyl groups at the 4-position of the pyridine ring
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95 m2/g and pore volume of 0.56 cm3/g, as well as good spherical morphology and
mechanical strength. A further increase in the pretreatment temperature ([200 �C)
gives rise to fragmentation of the support. Additionally, dealcoholization can also
be performed by reaction with AlEt3 to afford a new MgCl2 support AlEtn(OEt)3-n/
MgCl2. The immobilization of iron precatalysts on these two MgCl2 supports leads
to the corresponding supported iron catalysts, e.g., [FeCl2(L85)]/MgCl2�nC2H5OH
[263, 286], [FeCl2(L87)]/MgCl2 [263], [FeCl2(L85)]/AlEtn(OEt)3-n/MgCl2 [263,
285], [FeCl2(L87)]/AlEtn(OEt)3-n/MgCl2 [263]. Upon activation with AlEt3,
AliBu3 or MAO, all the supported iron catalysts are active toward ethylene
polymerization. The studies show that the pretreatment temperature has a signif-
icant effect on the catalytic activity, polymerization kinetics, and morphology of
the resulting polyethylenes. For the supported iron catalysts [FeCl2L]/
MgCl2�nC2H5OH (where L = BIP ligand), an increase of the pretreatment tem-
perature results in marked increases both in catalytic activity and bulk density of
the resulting polyethylene, and a considerably steadier polymerization kinetics.
In the case of the supported catalysts [FeCl2L]/AlEtn(OEt)3-n/MgCl2, on increasing
the pretreatment temperature, the catalytic activity first rises, and then drops down,
reaching its maximum value at 100 �C, while the molecular weight and bulk
density of the resulting polyethylenes continuously increase. Huang et al. [267]
studied the effect of hydrogen on the oligomerization and polymerization of eth-
ylene with the supported catalysts [FeCl2L]/AlEtn(OEt)3-n/MgCl2. It was found
that the hydrogen has a significant activating effect on the supported catalysts
bearing sterically encumbered BIP ligands, e.g., [FeCl2(L87)]/AlEtn(OEt)3-n/
MgCl2, but similar observation is not applicable in the ethylene oligomerization
with a supported catalyst containing a less bulky BIP ligand, e.g., [FeCl2(L85)]/
AlEtn(OEt)3-n/MgCl2. The presence of hydrogen in the latter case leads to a
decrease in the activity and an overall increase in the product molecular weight,
indicating deactivation of the active species responsible for the oligomers and low
molecular weight polymer. Additionally, Huang et al. [252] prepared a supported
binary catalyst system by co-immobilizing [FeCl2(L85)] and [NiBr2(ArN=C(Me)-
C(Me)=NAr)] (where Ar = 2,6-iPr2C6H3) complexes on the support AlEtn(OEt)3-

n/MgCl2. In comparison with the single-component iron catalyst [FeCl2(L85)]/
AlEtn(OEt)3-n/MgCl2, this binary catalyst system leads to a remarkably improved
catalytic activity toward ethylene polymerization, even if a tiny amount of nickel
complex is incorporated. This synergetic effect of the nickel complex in the binary
catalyst system is attributed to the branched polyethylenes produced by the nickel
catalyst during the early stages of the polymerization, which reduce the ethylene
monomer diffusion limitation inherent in ethylene polymerization, thereby
increasing the activity of the main catalyst component. Mikenas et al. [287]
studied the kinetics of the polymerization of ethylene catalyzed by the supported
iron catalyst [FeCl2(L85)]/MgCl2, in the presence of AliBu3, and found that the
corresponding activation energy (11.9 kcal/mol) is close to those of the supported
Ziegler–Natta catalysts, the polymerization reaction being first order with respect
to monomer, at ethylene concentrations higher than 0.2 mol/L.
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Several layered montmorillonite clay-immobilized iron catalysts, prepared
in situ by treatment of the corresponding homogeneous iron precatalysts
(e.g., [FeCl2(L85)] and [FeCl2(L87)]) with MAO- or MMAO-modified clay, were
used by Tritto [266] and Sivaram [288] groups, respectively, to synthesize hybrid
exfoliated polyethylene-clay nanocomposites. These clay-immobilized iron cata-
lysts display a longer polymerization lifetime and turn ethylene polymerization
more efficient than the corresponding parent homogeneous systems, the polyeth-
ylenes obtained having also higher molecular weights. The studies show that a
treatment of the clay with MAO or MMAO gives rise to an increase in the d-
spacing of the clay galleries, but no further increase in this parameter is observed
when the iron precatalyst is immobilized. In the course of ethylene polymerization,
the active species of the iron catalyst are intercalated into the layered clay galleries
and initiate the polymer growth directly from the filler lamellae interlayer, thus
promoting deagglomeration of the clay and its effective dispersion in the polymer.
The exfoliation of the clay inside the polymer matrix is dependent on various
parameters such as the clay content, catalyst amount, and Al/Fe molar ratio.

Armspach et al. [265] described a new protocol to immobilize iron precatalysts
on methylated a- and b-cyclodextrin derivatives, as shown in Scheme 3.81.
Amination of a- and b-cyclodextrin dimesylate gives rise to the a- and b-cyclo-
dextrin diamine derivatives, which, followed by condensation with 2,6-pyridin-
edicarboxaldehyde, in dilute acetonitrile, afford the BIP ligand-capped a- and
b-cyclodextrin derivatives. Complexation of these two a- and b-cyclodextrin-
supported BIP ligands to iron dichloride leads to the desired supported iron pre-
catalysts. Upon activation with MAO, the a-cyclodextrin-supported iron system is
almost inactive toward ethylene polymerization, whereas the b-cyclodextrin-sup-
ported one shows an appreciable but still very low catalytic activity (56–583 g/

Scheme 3.81 Immobilization of an iron precatalyst on methylated a- and b-cyclodextrin
derivatives
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(mol h bar)). The resulting polyethylenes have moderate molecular weights
(Mw = 1.28–2.73 9 104 g/mol), indicating that the b-cyclodextrin support pro-
vides adequate steric protection of the active site for the polymer chain to reach an
appreciable length, although at the expense of activity.

Cramail et al. [289, 290] recently described a straightforward and novel route to
the preparation of star-like polystyrene (PS)-supported iron catalysts, as displayed
in Scheme 3.82. Using 4-(1-bromoethyl)benzoic acid as initiator, styrene is
polymerized by atom transfer radical polymerization (ATRP), in the presence of
copper(I) bromide and 2,20-bipyridine (bpy), yielding benzoic acid-functionalized
polystyrene macroinitiators, which are cross-linked using divinylbenzene, as
coupling agent, in combination with copper(I) bromide and 2,20-bipyridine,
affording PS stars composed of microgel cores and benzoic acid end-capped arms
(Mw = 5 9 104 g/mol, with an average number of 10 arms per molecule). Using
the same synthetic route, PS microgels with arms end-capped by either benzo-
phenone or ethylene oxide units bearing methoxy or hydroxyl end groups can be
readily prepared. Since it was experimentally demonstrated that the presence of
bromide atoms in microgel cores would deactivate the polymerization of ethylene
catalyzed by iron catalysts, these atoms were eliminated by hydrogen transfer in
the presence of dodecanethiol, copper(I) bromide, 2,20-bipyridine (bpy) and cop-
per(0). Treatment of these star-like PS microgels with AlMe3 (the corresponding
hydrodynamic radii vary from 6 to 300 nm), followed by reaction with the iron
complex [FeCl2(L87)], yields the PS-supported iron catalyst [FeCl2(L87)]/AlMe3/
PS. Upon activation with MAO, it shows high catalytic activities for ethylene
polymerization, which are comparable to those of the corresponding homogeneous
catalyst. Increased bulk density and improved spherical morphology of the
resulting polyethylene are observed.

3.11 Conclusions and Outlook

Originated from the sterically encumbered 2,6-bis(arylimino)pyridine iron and
cobalt complexes, discovered by Brookhart and Gibson groups, a vast number of
2,6-bis(imino)pyridine and related ligands have been designed and synthesized so

Scheme 3.82 Immobilization of an iron precatalyst on polystyrene microgels
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far in order to mimic the original BIP model and to develop the potential of this
kind of ligands. In this chapter, these ligands were collected, assembled and
classified according to the relevance to each other, and their structural features and
reactivities of complexation to iron and cobalt metal salts were discussed. Par-
ticular attention was paid to the description of the catalytic performance of their
corresponding iron and cobalt catalysts in oligo- or polymerization of ethylene and
of other olefins, including the related mechanisms of oligo- or polymerization.

The experimental facts demonstrate that the BIP ligands are virtually amazing
chemicals with wealthy and versatile chemistries, which not only is reflected by
their excellent complexation to various transition metals (e.g., iron, cobalt, nickel,
titanium, vanadium, chromium, zirconium, hafnium, molybdenum, etc.) yielding
catalytically active precatalysts for the polymerization of olefins, but also can be
looked from the perspective of their ligand-participating chemical reactivities,
including the formation of ligand radical anion-stabilized metal complexes, ligand
alkylation, ligand deprotonation, and ligand dimerization. In fact, the abundance of
chemistries of the BIP ligands seems to be the main reason for the challenging
identification of the active species operating in the BIP-based metal catalysts.

The BIP-based iron and cobalt catalysts demonstrated to be highly active cat-
alyst systems toward the ethylene oligo- or polymerization, yielding oligomers
with high selectivities or polymers with strictly linear microstructures. The pro-
ductivities, molecular weights and molecular weight distributions of the products
are readily tuned by the modifications of the BIP-type ligands on the different
positions of the ligand backbones, such as varying the aryl substituents, employing
different aryl rings (e.g., phenyl, naphthyl, anthracenyl and pyrenyl), replacing the
central pyridine ring by other heterocyclic rings (e.g., triazine, pyrrole, furan,
thiophene and carbazole rings) and tailoring the imino arms.

The high catalytic activities can be obtained by activation with diverse cocat-
alysts such as MAO, MMAO, AlR3 (R = Me, Et, iBu, nHex or Oct), tetraalkyl-
aluminoxanes (R1R2AlOAlR3R4, where R1, R2, R3, R4 = Et or iBu), AlMe3/
B(C6F5)3 and AliBu3/[Ph3C][B(C6F5)4].

This kind of iron and cobalt catalysts exhibit low abilities for the homo- or
copolymerization of propylene, 1-butene, 1-hexene or other higher a-olefins, but
show good capabilities in the oligomerization of these olefin monomers with high
selectivities (e.g., dimerization). Additionally, these catalysts also display catalytic
activities in the polymerization of conjugated or non-conjugated olefin monomers,
such as 1,3-butadiene, isoprene and 1,6-heptadiene. In view of the lower oxo-
philicities and higher tolerance of the iron and cobalt metal centers toward polar
functionalities, the BIP-based iron and cobalt catalysts have also been used to
polymerize polar monomers, e.g., MA, MMA, t-BA, EVE and n-BVE.

Immobilization of the iron and cobalt precatalysts on inorganic or polymeric
supports, such as SiO2, MgCl2, clays and polystyrene, were widely investigated,
and the resulting supported catalysts were used to polymerize ethylene with
improved polymerization kinetics and polymer morphology. The presence of vinyl
groups in the molecular structures of the precatalysts enables them to copolymerize
with the ethylene monomer, at the early stages of polymerization, generating
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self-immobilized supported catalyst systems that function as real supported cata-
lysts and efficiently affects the catalytic performance of the systems and properties
of the resulting polymers.

The studies of the polymerization mechanism showed that the formation of the
iron and cobalt active species involves metal-to-ligand electron transfer, variation
of the central metal oxidation and spin states, and change of ligand charge dis-
tribution, which leads to ambiguity in the recognition of the nature of the active
species, but meanwhile it provides insight into the understanding of the poly-
merization mechanism. Nevertheless, a large amount of experimental and theo-
retical findings pointed to the conclusion that iron- or cobalt-alkyl intermediates
virtually are the active species to initiate the oligo- or polymerization, being
followed by chain propagation via a migratory insertion mechanism, and chain
transfer reactions, such as b-hydrogen transfer (or elimination), chain transfer to
aluminum and intramolecular isomerization, which are present during the course
of the polymerization, generally leading to broad molecular weight distributions.

The success of the BIP-based iron and cobalt catalysts in olefin oligo- and
polymerization highlights the significance of the ligand on determining the per-
formance of the catalyst, and proves the feasibility of ligand-oriented catalyst
design ideology. At the same time, the abundance and diversity of this type of
ligands provides chemists with a reservoir of selectivities to approach the ideal
catalyst system. As the saying goes, all roads lead to Rome. One can believe that,
in the future, the more efficient catalyst systems can be achieved by tailoring the
ligands, affording polymers with excellent properties.
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Chapter 4
Challenges and Breakthroughs
in Transition Metal Catalyzed
Copolymerization of Polar and Non-Polar
Olefins

Juan Cámpora and Mikael Brasse

Abstract This chapter describes the state of the art in copolymerization of
non-polar olefins and functionalized monomers with transition metal-based cata-
lysts operating by coordination-insertion mechanisms. A critical approach has
been adopted in order to analyze what are the difficulties of making compatible
olefin polymerization catalysts and functionalized monomers, and the strategies
that have been proposed to overcome such difficulties. Special attention is devoted
to mechanistic and computational insights that led to the development of our
present ideas and to the understanding of this complex topic.
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tmda N,N,N0,N0-tetramethylethylenediamine
VAf Vinyl trifluoroacetate
VCl Vinyl chloride
VF Vinyl fluoride

4.1 Introduction

Ziegler–Natta catalysts provide access to an extremely wide range of polyolefin
materials. These catalysts allow a precise control over the properties of the
polyolefins, expanding the range of their uses and improving their adaptation to
specific applications [1]. However, the essentially non-polar nature of polyethyl-
ene or polypropylene is the origin of some important limitations of these materials.
For example, the surface of these polymers has low affinity for pigments and dyes,
and has poor adhesive properties. The introduction of polar functional groups helps
to overcome these limitations and greatly improves some other physical and
chemical properties [2, 3]. Unfortunately, Ziegler–Natta systems, including both
heterogeneous and homogeneous polymerization catalysts that operate by coor-
dination-insertion mechanisms, are in general incompatible with functionalized
monomers such as methyl acrylate (MA), vinyl acetate (VA) or acrylonitrile (AN)
due to the ability of polar groups to interact with the metal center, disrupting the
catalytic process [4].

Polar polyolefin copolymers, such as ethylene–methyl acrylate (EMA) or eth-
ylene–vinyl acetate (EVA), are important commercial materials. Compared to
non-polar olefins, these show better surface properties, gloss, toughness and mar
resistance. Ionizable functions, e.g., carboxylic or sulfonic groups, called ionomers,
can provide extreme toughness by extensive crosslinking, or excellent adhesive
and sealing properties. These materials are produced by radical polymerization
methods under high temperature and pressures that have scarcely evolved in the
last 50 years. The resulting polymers usually have branched structures and broad
molecular weight distributions [2, 3]. In addition, the possibility of controlling the
copolymer composition is very limited with these methods, which invariably
afford products containing more than 50% of the polar comonomer [5].

Improving the tolerance of Ziegler–Natta catalysts to polar monomers would
permit the synthesis of polar copolymers under mild conditions, reducing energy
costs and allowing better control on their microstructure and molecular weight.
Moreover, these catalysts would allow regulating the polar comonomer contents in
the copolymers. Since polar comonomers are much more expensive than ethene or
propene, this would also contribute to significantly lower the cost of polar
copolymers. It is documented that even a very small proportion of polar func-
tionalities has a dramatic influence on the polyolefin properties. For example, it is
known that less than 1% of maleic anhydride incorporation in polypropylene can
improve properties of polypropylene allowing direct application of compatibilizing
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agents on its surface [6]. Therefore, it is not strange that an intense research effort
to overcome the difficulties associated with the controlled copolymerization of
polar and non-polar comonomers has been sustained for many years [3, 4, 7–9].
This goal is still far from being fully accomplished, but very significant progress
has been achieved in recent years. Brookhart’s discovery of the first highly active
catalysts for olefin polymerization based on late transition metals in 1995 [10, 11]
spurred a quest for the synthesis of new catalysts that could potentially copoly-
merize olefins and polar monomers. When shortly after Pd catalysts were shown to
copolymerize ethene with methyl acrylate and other polar olefins [12], prospects
appeared to be confirmed, at least in part. It was soon appreciated, however, that
such capability is rather unusual even for late transition metal catalysts, and that
incorporation of polar comonomers has to pay a toll in the form of a dramatic drop
of the catalytic activity.

Since the discovery of MAO as activating cocatalyst in the early 1980s, early
transition metal-based complexes containing Cp-based ligands have dominated
the field of molecular catalysts for olefin polymerization [13]. Sophisticated Cp
ligands can shape the steric and electronic environment of the metal to achieve
impressive results in terms of productivity and stereoselectivity, but at the cost of
a considerable synthetic effort. In contrast, Brookhart’s catalysts containing
readily available nitrogen-based a-diimine ligands are quite simple and easy to
prepare [12]. These have inspired the development of an ample family of cata-
lysts containing nitrogen-based ligands. With the important exception of palla-
dium phosphinosulfonato complexes [9, 14], most catalysts that exhibit some
capability for incorporating polar comonomers belong to this family. This jus-
tifies the inclusion of this chapter in a book specifically devoted to nitrogen-
based ligands.

Rather than a comprehensive description of the activity and selectivity of the
different copolymerization catalysts, which has been the subject of two recent
reviews [8, 9], the purpose of this chapter is to provide a vision of the nature of the
difficulties met in the quest for catalysts for polar/non-polar olefin copolymeri-
zation, and the different approaches devised to overcome them.

4.2 Types of Catalysts Used for the Copolymerization
of Polar and Non-polar Comonomers

Olefin polymerization catalysts containing early transition metals are essentially
incompatible with functionalized monomers [2–4]. However, group 4 metallocene
catalysts can be used to prepare polar copolymers if the functional groups are
previously transformed to render them more compatible. As shown in Scheme 4.1,
the functional groups of the monomers can be masked by treatment with Lewis acids
or silylating agents [15–23] (up), or replaced by a boryl group (bottom) [24].
Recently, titanium catalysts containing Schiff-base ligands, shown in Fig. 4.1, have
been used to copolymerize ethene with masked polar comonomers [25]. These
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methods have a number of serious disadvantages. In any case, a post-polymerization
process is necessary to produce the polar copolymer. Masking or protecting
elements can be removed by hydrolysis, and boryl groups can be oxidatively cleaved
generating alcohol functionalities. In addition, the success of these early transition
catalysts is limited to special comonomers in which the polar functionality and the
polymerizable vinyl group are separated, such as x-functionalized a-olefins [15–25]
or functionalized norbornenes [22, 23]. This constitutes a severe limitation since
industrially relevant copolymers are limited to those containing fundamental
monomers [9], which are small and cheap molecules that contain directly connected
vinyl and polar groups, such as MA, MMA or VA.

Catalysts containing less oxophilic late transition elements are more tolerant
to polar functionalities, and offer more opportunities for the copolymerization of
polar and non-polar comonomers without previous compatibilization treatments.
So far, the vast majority of the catalysts capable of such task are based on group
10 metals, Ni and Pd. Figure 4.2 shows a classification of these catalysts
according to their general structures. Early work by Klabunde and Ittel in the
late 1980s showed that nickel phosphinoenolato complexes (A) used for ethene
oligomerization in the Shell higher olefin process (SHOP) can be turned into
polymerization catalysts when the ancillary PPh3 ligand is removed with a
phosphine scavenger such as Ni(cod)2 or Rh(acac)(C2H4)2 [26]. These nickel
catalysts are very tolerant to polar substances and can operate even in alcohol
solution (this is how they are used in the SHOP process). Klabunde and It-
tel demonstrated that such catalysts not only tolerate polar molecules, but they
can directly copolymerize ethene with polar a-olefins containing ester, keto,
alkylsiloxanes or fluorinated functionalities, provided that these are separated
from the vinyl group by a polymethylene linker. However, simple functional
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Scheme 4.1 Copolymerization of protected polar comonomers

N

O Ti S

Cl

Cl

Cl

RtBu

tBu
N

Ph

Ph O Ti S

Cl

Cl

Cl

R

Fig. 4.1 Efficient titanium
catalysts for the
copolymerization of ethene
with protected polar
comonomers

202 J. Cámpora and M. Brasse



O
N

i

P
h 2

P

R
'

R

P
P

h 3

P
h

O
N

i

B
u 2

P
t

RR

O
N

i

B
u 2

P
t

RR

Li

ON
N

i

L

P
h

R
R

R
'

X

ON
N

i

L

P
h

R
R "RR
'

N
ON

N
iR

R

N
P

d
N

R
'

R
'

R

RR

R

O
2S

OP
P

d

R
'

R
'

F
G

N
on

-F
un

da
m

en
ta

l F
on

om
er

s,
N

F
M

F
G

F
G

A
lR

3

F
G

F
un

ct
io

na
liz

ed
 V

in
yl

s 
 o

r
fu

nd
am

en
ta

l m
on

om
er

s(
 F

M
)

N
N

i
N

R
'

R
'

R

RR

R

C
at

io
n

ic

N
eu

tr
al

O
N

i
N

LC
H

2P
h

R
' N

R
R

R
R

A
: 

P
ho

sp
hi

no
en

ol
at

e 
(1

98
7)

E
: 

P
ho

sp
hi

no
al

co
xi

de
 (

20
02

)

N
F

M

F
M

,

B
:

α-
di

im
in

e,
 P

d 
(1

99
5)

F
M

C
: 

 α
-d

iim
in

e,
 N

i (
19

95
)

M
F

M
, F

M

M
as

ke
d 

F
un

da
m

en
ta

l M
on

om
er

,
M

F
M

(F
G

: F
un

ct
io

na
l G

ro
up

)

T
yp

es
 o

f P
ol

ar
 C

om
on

om
er

s

G
: 

Im
in

oc
ar

bo
xa

m
id

e 
(2

00
3)

,
N

F
M

D
: 

S
al

ic
yl

al
di

m
in

at
e 

(1
99

8)
N

F
M

F
: 

P
ho

sp
hi

no
su

lfo
na

to
 (

20
03

)
F

M
, N

F
M

 (
m

an
y 

ty
pe

s)

E
1E
2

R
'

H
: β

-im
in

ok
et

im
in

at
e 

(2
00

5)
F

M

I: 
P

ym
no

x
F

M
 (

20
08

)

F
ig

.
4.

2
G

ro
up

10
ca

ta
ly

st
s

su
cc

es
sf

ul
ly

ap
pl

ie
d

to
th

e
co

po
ly

m
er

iz
at

io
n

of
no

n-
po

la
r

an
d

po
la

r
vi

ny
l

m
on

om
er

s.
T

he
bo

xe
s

hi
gh

li
gh

t
th

os
e

th
at

ha
ve

be
en

su
bj

ec
t

to
m

ec
ha

ni
st

ic
in

ve
st

ig
at

io
n

4 Challenges and Breakthroughs in Copolymerization of Olefins 203



vinyls such as MA or VA could not be incorporated [27]. More recently,
Claverie carried out such copolymerization reactions in aqueous emulsion,
improving the incorporation of polar comonomers [28].

Widespread interest on late transition metal catalysts for the copolymerization
of polar and non-polar olefins was not triggered until Brookhart’s report on a-
diimine complexes B and C [10]. Using complexes B, Brookhart demonstrated in
1996 that fundamental vinyl monomers such as alkyl acrylates or methyl vinyl
ketone can be directly copolymerized with ethene or propene by a coordination-
insertion mechanism [12]. The catalysts used for this purpose are ionic complexes
containing the low-coordinating borate anion [B(3,5-C6H3(CF3)2)4]- (BAr4

f-)
(Scheme 4.2). Initially, cationic methylpalladium derivatives stabilized with a
labile diethylether (B1) or acetonitrile (B2) ligands were used. It was discovered
that when these react with MA, they produce chelate complexes, B3, which are
very stable and more convenient catalyst precursors. Copolymerization of ethene
and MA with palladium a-diimine catalysts affords branched EMA copolymers
with polar comonomer contents of up to 12%. The methoxycarbonyl groups are
found exclusively at terminal positions of the branches [29]. This property has
been exploited by Guan for the synthesis of functionalized polyethylenes dis-
playing different types of functional groups at the branch edges (see Sect. 4.5.1)
[30–32]. Compared with the palladium a-diimine derivatives, the analogous Ni
catalysts C are much more sensitive to polar substances, failing to incorporate MA
under mild conditions [7]. However, [NiX2(a-diimine)] complexes catalyze the
copolymerization of ethene with polar comonomers if these are previously masked
with aluminum alkyls [21, 33–36]. In contrast to early transition metal catalysts,
these nickel catalysts can incorporate fundamental vinyls such as MA, VA and AN
[34], and even acrylamide (AA) [33, 36], which is one of the most challenging
functional comonomers. Direct copolymerization of ethene and free MA can also
be achieved with Ni(a-diimine) catalysts (introduced in the form of a cationic
g3-allylnickel complex, C1’, Scheme 4.2) at high temperature and pressure

N
Pd

NR'

R'

R

R

R

R
L

Me

BArF
4

CO2Me

N
Pd

NR'

R'

R

R

R

R
O

OMe

B1, L = OEt2
B2, L = CH3CN

B3

N
Ni

NR'

R'

R

R

R

R

BArF
4 BArF

4

CO2Me

C1'

+ CO2Me

(B1 - B3)[Pd]

~ R. T., low pressure (    )

MeO2C

x

......

(    )y

(    )z

Moderate activity

CO2Me

...... (    )z

(    )w

(    )w

(C4)[Ni]

- Cocatalysts
~ 80 ºC, > 30 bar
Low activity

0 - 12 % MA

0 - 1 % MA

Scheme 4.2 Ethene–MA copolymerization with a-diimine catalysts

204 J. Cámpora and M. Brasse



(80 �C, [30 bar). Under these conditions, Ni catalysts produce slightly branched
copolymers with the acrylate units incorporated in main polymer chain. MA
incorporation is usually below 1%, and the catalytic activities are also quite low
although they are somewhat improved by the addition of large amounts of
B(C6F5)3 and Na(BAr4

f ) as co-catalysts [37, 38].
Neutral salicylaldiminato complexes of nickel, (D) described by Grubbs in

1998, are the next milestone in this account (Fig. 4.2). The design of these
complexes is clearly inspired by the phosphinoenolato catalysts, replacing the soft
P donor group by a hard imine fragment bearing a bulky aryl substituent, which is
the key feature of Brookhart’s a-diimine model [7]. This leads to significantly
higher activities and polymer molecular weights. Stabilized with L = PPh3 these
catalysts can be very active in ethene homopolymerization either alone or in the
presence of ligand scavengers (Ni(cod)2 or B(C6F5)3) [39]. The catalyst design is
further improved when PPh3 is replaced by the labile ligand MeCN [40]. Just as
the phosphinoenolato catalysts, salicylaldiminato complexes tolerate polar sol-
vents such as ethers [39], ketones, or even water.1 The two types of nickel catalysts
resemble in their ability to copolymerize ethene with special polar comonomers
containing separated vinyl and polar functionalities such as x-functionalized a-
olefins but, disappointingly, they are also similar in their incapacity to incorporate
simple functional vinyls such as MA or VA [40, 42]. The rate of incorporation of
x-functionalized a-olefins with nickel salicylaldiminato catalysts is rather low
(0.2–2 mol%), but improves for functionalized norbornenes monomers and other
polycyclic alkenes (5–10%) [43, 44]. Another class of neutral nickel catalysts are
iminocarboxamidato complexes, G, introduced by Bazan [45]. These complexes
can exist in two isomeric forms that differ in the ligand coordination mode, j-N,
O or j-N, N (Fig. 4.3). Remarkably, only the j-N, O isomer is active, which
renders the system more akin to salicylaldiminato catalysts than to a-diimines.
Iminocarboxamidato and salicylaldiminato catalysts also resemble in their capa-
bility to incorporate polar norbornene derivatives. A phosphine sponge such as
Ni(cod)2 efficiently activates the PMe3-containing iminocarboxamidato catalysts,
which readily achieve comonomer incorporation of ca. 15 mol% and productivi-
ties in the range 50–150 kg of copolymer/mol Ni h [46–49].

Other types of nickel catalysts have also been described that represent addi-
tional variations of electrically neutral molecules with mixed-donor ligands. The
DuPont group reported a series of allylnickel complexes displaying P–O ligands

1 The problem of polymerization catalysts tolerance to polar substances is closely related to
polar comonomer copolymerization. Like the nickel phosphinoenolato catalysts, their salicyl-
aldiminato counterparts are also capable to operate in the presence of alcohols and water. Olefin
polymerization in aqueous media is important because it directly affords polyolefin latexes, and
has been addressed by different groups. Palladium diimines have also been applied for this
purpose, but their tolerance to water is due to catalyst encapsulation into the polyolefin particle
rather than to genuine tolerance. It is a noteworthy fact that, in spite of their higher performance
in these polar media, nickel catalysts are usually inferior to palladium in their ability to
copolymerize polar and non-polar comonomers. For some leading references, see for example
Soula et al. [28] and [41].
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including derivatives E1 (Fig. 4.2) that copolymerize ethene and alkyl acrylates in
the presence of a large excess of B(C6F5)3 [38, 50]. The performance of these
catalysts is further improved by complexation with a Li+ cation (E2), but little
information is available on this intriguing effect [50]. Structurally related nickel
phosphinophenolato complexes have also been shown to catalyze the copoly-
merization of ethene with long-chain functionalized olefins [51]. The b-ketiminato
complexes H, activated with MMAO, catalyze the copolymerization of ethene and
MMA affording copolymers with up to 17 mol% comonomer incorporation,
depending on the MMA concentration. 1H NMR analyses of these polymers
indicate that the MMA units are uniformly distributed in the polyethylene chain.
These features strongly suggest that MMA is incorporated by a true coordination-
insertion mechanism, which is unusual for this monomer [52]. Catalyst type I
contains PymNox ligands, which relate to the salicylaldiminato anion in a way that
the phenolato fragment has been replaced by a neutral pyridine-N-oxide unit.
Therefore, PymNox catalysts can be regarded as cationic analogues of the sali-
cylaldiminato family. Simple [NiBr2(PymNox)] complexes activated with MMAO
have been tested in MA/ethene copolymerization. Only the derivative containing
an acetaldimine-based PymNox ligand (R = Me) produces EMA with 0.7 mol%
MA. NMR analysis of the polymer showed that the CO2Me groups are directly
attached to the main polymer chain or form short CH2CO2Et branches [53].

The diversity of neutral nickel polymerization catalysts contrasts with the
paucity of active catalysts based on neutral palladium complexes. Although some
neutral palladium complexes containing anionic pyrrole-imine [54], N–O
salicylaldiminato [55] or even simple monodentate phosphine groups [56] have
been reported to copolymerize ethene and acrylates, these involve radical initiated
processes rather than controlled coordination-insertion mechanisms. Thus, the
discovery of a new class of palladium polymerization catalysts based on anionic
phosphinosulfonato ligands (type F in Fig. 4.2) came as a surprise. However,
phosphinosulfonato catalysts have proven to be a major breakthrough in olefin/
polar monomer copolymerization [57]. In their preliminary communication in
2003, Pugh and Drent generated the active species in situ, by reacting the free
phosphinosulfonic acids with palladium sources such as Pd(OAc)2 or Pd(dba)2 [58].
The resulting catalysts copolymerize ethene with MA and other alkyl acrylates,
producing essentially linear copolymers with up to 17 mol% acrylate incorporation
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and productivities of ca 5–15 kg/mol h. In contrast with Pd a-di-imine complexes,
the phosphinosulfonato catalysts incorporate MA units directly into the polymer
backbone (Scheme 4.3). In recent years, phosphinosulfonato catalysts have been
the subject of intense research by several groups. A number of well-defined
palladium phosphinosulfonato complexes have been prepared and characterized
containing different types of auxiliary ligands L such as Cl- (anionic complexes)
[59], pyridine and bulky pyridine derivatives [60–66], or amines [65] and weakly
bound solvent molecules such as dmso [67, 68] methanol or water [69], as well as
base-free, dimeric species [69, 70]. The syntheses of well-defined species lead to
improved productivities and more efficient co-monomer incorporation.
For example, using catalysts with weakly bound dmso, Mecking has achieved
ethene-MA copolymers with more than 50 mol% incorporation [67, 70], bridging
the gap between the composition ranges provided by copolymerization catalysts
based on insertion and radical mechanisms [5]. The NMR spectra of such
comonomer-rich copolymers reveal the presence of alternating E–MA-E–MA
regions, together with consecutively inserted MA units, as shown in Scheme 4.3.
In the absence of ethene, dmso-stabilized phosphinosulfonato complex catalyzes
the homooligomerization of MA [67].

In addition to alkyl acrylates [58, 59, 62, 67, 70] and functionalized norbornene
comonomers [71], palladium phosphinosulfonato catalysts demonstrated a unique
capability for copolymerizing ethene with various comonomers, including indus-
trially relevant AN [61], or VA [66]. Other challenging monomers copolymerized
with these catalysts are vinyl fluoride (VF) [64], vinyl sulfones [68], N-vinyl
pyrrolidone and acrylamide derivatives [65]. In all these cases, essentially linear
copolymers containing evenly distributed comonomer units were obtained.
Although phosphinosulfonato catalysts fail to copolymerize ethene with propene
or other a-olefins, they efficiently incorporate norbornene [71]. Their versatility
was further demonstrated when shortly after the initial report on phos-
phinosulfonato catalysts, Pugh and Drent communicated that the same in situ
generated catalysts copolymerize ethene and CO [72]. Contrary to all the catalysts
known up to that date, the copolymer was not perfectly alternating and contained
ethene excess. Further investigation in this field has shown the possibility of
decreasing the CO content to as low as 10 mol% [69, 73].
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A number of well-defined nickel organometallic complexes with phos-
phinosulfonato ligands have also been prepared [74–77]. Although these com-
pounds behave as very active ethene homopolymerization or oligomerization
catalysts, no copolymerizations with polar monomers have been reported so far.
It is worth noting the analogy with the a-diimine system with regard to the low
compatibility of the Ni catalysts with polar comonomers.

In addition to Ni and Pd, other metals have also been investigated for polar-
comonomer incorporation (Fig. 4.4). However, only the Ti-based phenoxiimine
catalysts developed by Fujita, J, have shown the capability of copolymerizing
polar comonomers without previous masking. This is certainly an exceptional
feature for an early-transition metal-based system. Catalysts J, when activated
with small amounts of MAO, incorporate up to 1 mol% of hexane-1-yl-acetate into
polyethylene, achieving high productivities of about 500 kg/mol h [78] (see
Chap. 1, Vol. 35). Complexes containing elements that are closer to Ni and Pd in
the periodic table should be in principle better candidates than Ti. However, this is
not the case. In spite of the structural similarity of Fe or Co 2,6-bisiminopyridine
and the Ni, Pd a-diimine systems, the former have been found unable to copo-
lymerize ethene with polar comonomers. The cationic iron derivative K, activated
with MAO, was tested for ethene copolymerization in the presence of MMA, MA
and 2-vinyl-1,3-dioxolane. Although the ethene homopolymerization activity was
not entirely suppressed (especially in the case of MMA), no comonomer incor-
poration was detected [79]. On the other hand, 2,6-bisiminopyridine iron com-
plexes initiate acrylate homopolymerization, presumably by a radical mechanism [80].
Thus, it is not surprising that attempts to copolymerize ethene and MMA with
Fe(2,6-bisiminopyridine) catalysts afford mixtures of ethene and MMA homo-
polymers rather than true copolymers [81].

A number of copper complexes [82–85] such as the bis(benzoimidazolyl)-
methane (BMIM) derivative L, described by Stibrany [82, 83] copolymerize
ethene and MMA. Furthermore, several BMIM catalysts have a small activity in
ethene homopolymerization. The latter is very likely the result of an insertion
mechanism, therefore it was suggested that the same mechanism could also be
responsible for ethene/MMA copolymerization [82, 83]. However, the EMA
copolymers have high polar comonomer ([40 mol%), which strongly suggests
that they are produced by a radical initiated mechanism [85].
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4.3 Basic Mechanisms

Before examining the difficulties of polar and non-polar comonomer copolymer-
ization, this section will summarize the essential aspects of polymerization
mechanism by late transition metal complexes, and how these are perturbed by the
presence of polar functions in the co-monomers.

Ni and Pd a-diimine complexes are by far the best understood olefin
polymerization late transition catalysts [86]. Since Brookhart’s initial communi-
cation in 1995 [10], an intense effort has been devoted to fully develop all their
potential [7, 8]. Intensive mechanistic research and computational modeling have
been combined to draw a detailed picture of this system [87–91]. The conceptual
framework developed for the a-diimine catalysts is a powerful tool for the analysis
of related catalyst systems, where the experimental mechanistic data available is
limited.

General features of olefin polymerization mechanism by Ni and Pd a-diimine
catalysts are summarized in Scheme 4.4. The upper part displays the sequence of
steps for the normal propagation of the polymer chain, i.e. recurrent insertion of
monomer units into the active M–C bond, not different in essence from the
standard Cossee–Arlman mechanism [1]. However, the tendency of Ni and Pd
catalysts to undergo rapid and reversible b-hydrogen elimination leads to the
reactivity manifold depicted in the lower part of the Scheme. Chain transfer occurs
by rapid associative displacement of the resulting olefin ligand by the monomer
(bottom, right side). This process limits the polymerization degree [88, 91]. In a-
diimine complexes, the substituents of the N-aryl fragments hinder this process by
obstructing the access of free monomer to the axial coordination positions of the
metal. This effect tends to increase the molecular weight of the polymer, in an
extent that depends directly on the size of the aryl substituents. Theoretical cal-
culations have disclosed an alternative pathway for chain transfer that does not
require formation of an intermediate hydride species and involves concerted H
transfer from the alkyl chain to the monomer [92]. Since both mechanisms are
kinetically equivalent, it would be difficult to distinguish between them on an
experimental basis.

Blocking the associative monomer exchange enables the process termed chain
walking [89, 90] to become competitive with chain transfer, which is the cause of
the branching of the polymer chain. The b-H elimination step is a reversible
process, but re-insertion of the olefin back into the metal-hydride bond is not
regioselective and can take place either in 1,2 or 2,1 fashion. The latter leads to the
formation of a secondary alkyl species. If a new monomer unit inserts in this Pd–C
bond, the result is the generation of a methyl branch in the growing chain. The
combination of successive episodes of b-H elimination followed by non-selective
olefin re-insertion causes the effective displacement of the metal center along the
polymer chain, or chain walking. This mechanism gives rise to methyl, ethyl and
higher branches. For Pd, the energy barrier for b-hydrogen elimination is signif-
icantly lower than for the monomer insertion, which means that chain walking and
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branch generation is faster than normal propagation. Since the metal center moves
freely along the polymer chain prior to each insertion, the total number of branches
does not depend on the monomer concentration (however, monomer concentration
does affect the shape of the branches, see Sect. 4.5.4.1). In contrast, chain walking
and monomer insertion have comparable energy barriers for Ni catalysts. As a
result, polymers produced with Ni are more linear. Decreasing the monomer
concentration and increasing the temperature favors the chain walking process in
comparison to chain transfer and normal propagation, leading to an increased
number of branches [87, 91, 93].

Catalysts containing ligands with two different donor atoms (e.g. salicylal-
diminato or phosphinosulfonato complexes), give rise to a special mechanistic
situation because each of the intermediates can exist in two possible cis or trans
configurations. Ziegler has carried out DFT calculations in order to examine the
mechanism of ethene polymerization by nickel salicylaldiminato catalysts [94].
The basic features of this mechanism are shown in Scheme 4.5. As in the a-
diimine system, the resting state of the catalyst is a p-olefin complex. Isomer D1O,
is more stable than D1N by 3.0 kcal/mol because the stronger r-donor groups, the
alkyl and the imine, avoid mutually trans positions. However, the least stable
isomer D1N is also the most reactive one. The energy barrier for migratory
insertion, 15.0 kcal/mol, is substantially smaller than that for D1O, 25.0 kcal/mol.
Ethene insertion leads to the corresponding agostic alkyl intermediates D2O and
D2N. Note that migratory insertion inverts the relative configuration of the prod-
ucts, i.e., D1O affords D2N, and D1N produces D2O. At first sight, the propagation
mechanism would alternate between the two possible insertion steps with the
overall rate controlled by the most difficult of them, D1O to D2N. Due to height of
the energy barrier associated to the latter, the catalyst would be rather poor.
However, the conformational lability of square-planar Ni(II) complexes avoids this
problem, because the intermediates readily exchange their configuration via tet-
rahedral isomer. The energy barrier for the cis–trans isomerization of the p-ethene
complexes D1 has been calculated in 11.4 kcal/mol which is appreciably lower
than that for the insertion step. Thus, the most stable p-ethene complex D1O will
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Scheme 4.5 Propagation mechanism in ethene polymerization with Ni salicylaldiminato
catalysts. The diagram on the right side represents calculated energies in kcal/mol

4 Challenges and Breakthroughs in Copolymerization of Olefins 211



isomerize to its reactive isomer D1N prior to undergoing migratory insertion.
As shown in the diagram of Scheme 4.5, the overall energy barrier for this process
is calculated as the difference between the energies of the two p-complexes plus
the lowest insertion barrier, i.e. 3.0 ? 15.0 = 18.0 kcal/mol. In contrast, the
isomerization of the agostic species D2 is much more difficult, with a barrier of
36.6 kcal/mol. A similar situation has been described for the structurally related
PymNox catalyst (I, Fig. 4.2). For this cationic catalyst, the composed energy
barrier for the overall insertion process is only 13.0 kcal/mol [95]. It is worth
mentioning that this propagation scheme cannot be immediately extended to pal-
ladium, because formation of tetrahedral intermediates is less favorable for second
and third-row than for first-row transition elements. An alternative isomerization
pathway has been proposed for Pd phosphinosulfonato catalysts (see Sect. 4.5.4).

Insertion of polar and non-polar olefins into M–C bonds proceeds by qualita-
tively identical mechanisms. However, the presence of a substituent on the double
bond leads to two possible regioisomeric products arising from 2,1 or 1,2 insertion
(Scheme 4.6). The 2,1 product is usually favored for steric reasons (the alkyl group
migrates to the least hindered carbon on the olefin), and electron-withdrawing
groups further increase this tendency. Thus, while propene insertion in cationic a-
diimine alkylpalladium complexes leads to a 8:2 mixture of the 2,1 and 1,2
insertion products [89], fully selective 2,1 insertions have been observed for vinyl
monomers bearing electron-withdrawing groups such as MA [29], VA [96], AN
[97, 98] or vinyl chloride (VCl) [99]. Reactions of different Pd complexes with AN
[100], MA [67], VA [101] or vinyl sulfones [66] provide further examples of
selective 2,1 insertions. The reaction of VA with a Ni a-diimine methyl complex
also favors the 2,1-insertion mode but proceeds with lower selectivity, affording a
mixture of the two insertion products [96]. Electronic effects can override the
intrinsic preference for 2,1 insertion. Vinyl ethers (in which the OR group is a
p-electron donor) react with cationic Pd(a-diimine) complexes affording 1,2
insertion products [102]. Selective 1,2 insertions have also been observed in the
case of acrolein dimethylacetal [103] and the nitrogen-based monomers N, N-
dimethylallylamine and N-pentenylcarbazole [104]. Insertion of MMA in Pd-a-
diimine complexes poses an interesting case. Here, steric effects originating in the
bulky metal–ligand unit play a dominant role because the normal 2,1 insertion
mode would produce a very crowded quaternary center directly bound to Pd. In
consequence, 1,2 insertion takes place selectively [105].

Theoretical models reproduce reasonably well the general trends observed
in the regioselectivity of the insertion of simple functionalized vinyl monomers

CM + X

M
X

C

M
C

X

2,1 insertion

1,2 insertion

Scheme 4.6 Possible
regioisomeric outcomes of
the insertion of substituted
vinyl monomers
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[99, 106–109]. However, DFT calculations are not, in general, an easy guide for
the interpretation of chemical phenomena in familiar terms such as steric or
electronic influences. This requires an extra effort in the analysis of the compu-
tational data. The generic preference for 2,1 over 1,2 insertion has been ratio-
nalized in terms of the extra energy cost of distorting the monomer fragment going
from the ground to the transition states in the latter case [106, 107]. Explaining the
electronic influence of substituents in the olefin fragment is even more difficult, but
an attempt has been made to rationalize such effects on the basis of a frontier
molecular orbital analysis of the monomers [110]. In a detailed study of the
copolymerization of MA and ethene and other a–olefins, Brookhart has shown that
a-functionalized alkyls formed after the insertion of the polar monomer rearrange
to the 6-membered chelates B30. This process, shown in Scheme 4.7, involves two
consecutive chain walking steps [12, 29]. The cyclic species B30 is very stable (in
fact, the parent complex B3, prepared as shown in Scheme 4.2, is readily isolable).
The subsequent insertion step requires the displacement of the cyclic structure of
B30 by an incoming unit of ethene, a thermodynamically unfavorable process that
raises the global energy barrier for insertion and controls the overall copolymer-
ization rate. Opening the chelate ring by other olefins different from ethene, such
as propene or 1-hexene, is even more difficult. Although no experimental data is
available for the displacement of the chelate by a second MA unit, theoretical
calculations show that this should be energetically prohibitive [106], preventing
consecutive insertions of acrylate to take place. It is worth comparing this behavior
with that of the analogous chelate in palladium catalyzed ethene/CO copolymer-
ization. This very stable 5-membered chelate allows CO insertion but cannot be
displaced by ethene, leading to the strictly alternating copolymerization observed
with most Pd catalysts. The structure of chelate B30 also ensures that the car-
boxylate groups will end-up in the terminal position of branches that will have at
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least three carbon units, although the chain walking mechanism also allows
building longer carboxylate-capped branches, as depicted in Scheme 4.7.

Once the chelate is opened and a new nonpolar monomer unit is inserted, the
propagating species becomes essentially the same as in the homopolymerization
process, and both types of monomers will compete for the active site. Measure-
ments of the insertion rates in complexes of type [Pd(Me)(CH2=CHX)(N–N)]+

have shown that the rate of insertion is accelerated by electronegative substituents
directly attached to the double bond. For example, for N–N = a-diimine, the rates
decrease in the order X = CO2Me [ Br [ H [ Me [111]. The same trend has
been observed for the insertion of p-substituted styrene derivatives (with
N–N = bipyridiyl), and has been attributed to the destabilization of the p-com-
plexes of the electron-poorer olefins relative to the transition state (a ground-state
effect) [112].

When two monomers are copolymerized, their relative reactivity determine the
ratio at which they are incorporated into the polymer. Two factors determine the
relative reactivities of the monomers: their capability to bind to the metal center,
and the energy barriers for migratory insertion. Mechanistic studies on the copo-
lymerization of ethene and MA in the Pd a-diimine system have shown that the
exchange between free and coordinated monomers is rapid, and that the corre-
sponding p-complexes are in equilibrium prior to undergoing migratory insertion [29].
This leads to the typical Curtin–Hammett situation drawn in Scheme 4.8, where
the relative incorporation rates of monomer and comonomer are defined by the
equilibrium constant Keq, the individual insertion rates of the monomers (kE and
kMA) and the comonomer concentration ratio, [MA]/[ethene]. Due to its small size
and better electron-donor properties, Pd binds ethene much more strongly than
MA. However, the advantage of the non-polar monomer is partially offset by the
faster insertion rate of MA. Feeding the experimentally determined values of
equilibrium constant and reaction rates into the equation shown in Scheme 4.8
gives an MA incorporation ratio of ca. 5 mol%, which is in good agreement with
the actual comonomer content of the copolymers obtained with this system.
Another successful prediction of this model is that the comonomer incorporation
will increase proportionally with the comonomer ratio in the feed. However,
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adding more comonomer causes the concentration of the cyclic species B30 to rise,
slowing and eventually shutting down the polymerization process. In practice, this
limits comonomer incorporation in this system to about 12 mol%. As discussed
later in this chapter, the utility of this simple model goes beyond of a simple
mechanistic test, since it can be used to interpret computational results and deduce
some interesting predictions on the performance of different catalysts.

4.4 Difficulties Met in the Copolymerization of Polar
and Non-polar Olefins

Achieving a controlled copolymerization of polar and non-polar monomers by
catalysts based on coordination-insertion mechanisms has proven to be an extre-
mely challenging objective. A very intense research devoted to this task for almost
two decades and, as a result, a clearer image of the obstacles involved is emerging.
This knowledge is essential in order to propose possible solutions. This section
will summarize the origin of the difficulties, while the next will review the main
innovations devised for overcoming them.

4.4.1 Catalyst Poisoning by the Polar Monomer

Monomers containing polar substituents have different coordination modes, p and
r (Scheme 4.9). In order to undergo migratory insertion, first the monomer has to
bind to the metal in the p mode. Thus, the formation of a r coordination complex
is unproductive, blocking (or poisoning) the active center and preventing the
polymerization to progress. Strongly Lewis acidic metal centers (such as those in
conventional Ziegler–Natta systems) are irreversibly poisoned by polar monomers,
but less oxophilic late transition metals are less sensitive to them. Carboxylates,
esters, ethers, and other oxygen functional groups bind reversibly to late metal
centers. The resulting r-complexes can readily isomerize to p mode, or can be
displaced by the non-polar olefin, allowing the copolymerization to proceed.
Such reversible poisoning decreases catalytic activity, but does not prevent the
copolymerization process nor influences the comonomer incorporation ratio.

The preference of polar monomers for p or r coordination has been addressed
in a number of theoretical papers using DFT methods [106, 108, 113–115]. These
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Scheme 4.9 r- and p
coordination modes of polar
monomers
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have shown that three main factors control the balance between both coordination
modes: the electronic structure of the monomer [111, 112], the nature of the metal
centre [106, 113, 114] and the electric charge of the catalyst [109, 113, 114].
Table 4.1 collects relative energies of the p and r coordination modes calculated
for selected monomers and catalysts.

The preference of the monomer for p or r binding mode is defined, to an
important extent, by the shape and energy of its frontier molecular orbitals (FMO),
which are made up from those in the C=C and the polar fragments. The FMO
energies of several functionalized vinyl monomers are plotted in Fig. 4.5 [113, 114].
Most olefin polymerization catalysts are electron-poor species, therefore their
interaction with the monomer essentially involves electron donation to the metal
from the HOMO or other high energy filled orbital of the monomer. Hence, p
coordination will be more favorable for electron-rich olefins such as vinyl ethers
and amines which have high-energy p C=C orbitals. Conversely, the electron
donor capability of the p bond decreases when electron-withdrawing groups are
directly attached to the C=C bond. For example, in MA the energy of the p C=C
bond falls below that of the lone electron pair sitting on the carbonyl oxygen atom.
Clearly, this is a factor that favors r coordination. On the other hand, the lower
donor capability of the electron-poor C=C bond is partially compensated by its
extra ability to accept electron back-donation from the metal center into low
energy empty p* orbitals [106, 108, 113]. As a result, methyl acrylate is a bor-
derline case that favors r coordination in some cases and p in others, depending on
the properties of the metal center. Thus, it is difficult to draw a simple relationship
between the energies of the FMO in the monomers and their binding preferences.
A complete picture of monomer bonding can only be obtained after considering
another important factor, the capability of the available orbitals to achieve a good
overlapping. This is determined by the shape and extension of the orbitals and
varies greatly from one case to another [109]. For example, lone pairs on nitrogen
tend to be very good donors to metal atoms, therefore the r coordination mode is

Table 4.1 Energy
differences between p and r
coordination modes
calculated for selected
monomers and catalysts

Catalysta Monomer E(r?p)b Ref.

(a-diim)Ni-R+ MA +4.0 [113]
(a-diim)Pd-R+ MA -3.4 [113]
(sal)Ni-R MA -7.5 [113]
(sal)Pd-R MA -14.6 [113]
(a-diim)Ni-R+ VA +0.7 [113]
(a-diim)Pd-R+ VA -5.2 [113]
(sal)Ni-R VA -7.2 [113]
(a-diim)Ni-R+ AN +16.9 [114]
(a-diim)Pd-R+ AN +12.8 [114]
(sal)Pd-R AN +3.9 [114]
(a-diim)Pd-R+ VCl -8.1 [108]
a a-diim, HN=HCH=NH; sal, HN=CH-o-C6H4O- ; R, n-Pr or Et
b Energy differences, kcal/mol, negative values favor p
coordination
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particularly favored for monomers containing nitrogen functional groups such as
nitriles. On the contrary, non-bonding pairs on halogenated hydrocarbons are very
internal and interact only weakly with the transition elements. Accordingly, cal-
culations predict that AN has a strong preference for r coordination [109, 114],
while VCl will be forming exclusively p complexes [106, 108, 109] despite the
fact that the nitrogen lone pair of AN is lying at much lower energy than either its
p-C=C orbital, or the lone pair orbitals in any other monomers shown in Fig. 4.5,
including VCl.

The nature of the metal center also has a critical role in the coordination mode
of the monomer. p Coordination is usually more favorable for Pd(II) based cata-
lysts than for their Ni(II) analogues. In general, g2-olefin complexes in high oxi-
dation state are much more common for second and third row transition elements
than for the first row congeners. A simple explanation for this trend is that the s,
p and d orbitals have similar radial extensions in the cations of the first transition
row elements, which causes unfavorable repulsions between the ligand and metal
filled orbitals, while the more extended d orbitals in the heavier 2nd and 3rd
transition series allow better ligand/metal p-d overlapping [114, 115]. DFT cal-
culations have confirmed this trend for a variety of Ni and Pd catalysts. Interest-
ingly, detailed wavefunction analyses suggest that the lower tendency of Ni
complexes to bind polar monomers in p mode arises from the electrostatic com-
ponent of the bond energy, rather than from unfavorable electron–electron (or
Pauli) repulsions or from reduced orbital overlapping [113]. These calculations
point out the important role of the electric charge: p-coordination is favored by
electrically neutral catalysts, such as salicylaldiminato [113] or anilinotroponato
complexes [116], due to their stronger capability to back-donate electron density
into the empty p* orbitals of the ligand, as compared to more electron-deficient
cationic a-diimine derivatives. In an interesting computational experiment, Jordan
and Ziegler have shown that p-coordination becomes increasingly favorable in a
series of isostructural Pd complexes as their net charge decreases from +1 to -1
[109]. This is in good agreement with calculations on neutral Pd-phos-
phinosulfonato complexes, which indicate that the p bonding mode of MA is

Fig. 4.5 Energies of the
frontier orbitals for some
polar monomers calculated at
the B3LYP/6-311G* level
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strongly favored (by ca. 3 kcal/mol) [117]. On the other hand, calculations for
a-diimine complexes indicate that steric effects play only a minor role on deter-
mining the monomer coordination mode [113].

Coordination of functional monomers to alkyl-Pd and alkyl-Ni moieties has also
been investigated experimentally. The unstable alkene complexes were generated at
low temperature and characterized by NMR in situ. In agreement with DFT calcu-
lations, the preference of MA or VA to bind in p fashion to cationic a-diimine
complexes is higher for Pd than for the analogous Ni complexes [29, 96]. Palladium
forms exclusively p-complexes with MA and VA, while Ni forms a 9:1 equilibrium
mixture of the p- and the r (O-bound) complexes with VA [96]. The latter equi-
librium ratio corresponds to a free energy difference of 0.7 kcal/mol that is in
excellent agreement with DFT predictions (see Table 4.1) [113]. Also in line with
theoretical predictions, polar monomers with poor r-donor functionalities such as
vinyl ethers [118] and halides [110, 119] form exclusively p-complexes, while
acrylonitrile invariably coordinates in r mode to palladium both in cationic [97, 98]
and neutral [100] complexes. Equilibrium mixtures of the r and p complexes have
been observed only in the above-mentioned case of a Ni a-diimine complex with
VA [96]. Here the individual NMR spectra of the r/p isomers are resolved only
below -120 �C, as exchange of the coordination mode is extremely fast. Increasing
the temperature above -50 �C leads to insertion of VA into the Ni–R bond. Exchange
between the r/p modes is probably facile even when only one of the possible
coordination isomers can be observed. Thus, the very stable r-complexes formed by
the reaction of acrylonitrile with palladium alkyls evolve gradually to afford insertion
products, presumably via undetected p-complexes [97, 98, 100].

Although much importance has been attributed to r-coordination of the polar co-
monomer as one of the main problems for the copolymerization of polar comonomers
[113], its real impact is reduced by the facile r/p exchange at Ni and Pd centers.
Poisoning by the monomer only becomes a significant problem when the polar group
is an exceptionally good r donor, for example AN. Although this monomer under-
goes stoichiometric insertion reactions with Pd a-diimine complexes, it suppresses all
catalytic activity if added in excess [100]. Both experimental and theoretical methods
provide clear indication of the relative importance of the poisoning effect of polar
monomers: Nickel catalysts are more sensitive than Pd ones, and positively charged
catalysts more than the neutral ones. However, the most important factor for catalyst
poisoning of the catalyst is the nature of the polar comonomer itself. The compati-
bility of polar monomers with p coordination increases in the order acryloni-
trile \ acrylates \ vinyl esters \ vinyl ethers and halides.

4.4.2 Low Reactivity of the Polar Monomer

A typical feature of copolymers formed by coordination-insertion mechanisms is
the low incorporation level of the polar comonomer. This indicates that polar
monomers are in general much less reactive towards the catalyst than non-polar
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olefins, especially ethene. In extreme cases, ethene homopolymerization can take
place in the presence of polar olefins without these being actually incorporated in
the polymer. As described in Sect. 4.3, the comonomer incorporation ratio can be
modeled by a classic Curtin–Hammett model, which considers the binding equi-
librium of the monomers and their characteristic insertion rates. Migratory
insertion is faster for electron-poor alkenes, such as MA, which, at the same time,
coordinate weakly to the metal center. Although the two effects are opposite and
tend to compensate mutually, the binding capacity of ethene is much higher than
any other olefin, including a-olefins [96] and some electron-rich alkenes such as
vinyl ethers [118] that are better p-electron donors. Thus, the dominant role of the
coordination equilibrium determines the relatively low reactivity of polar mono-
mers, at least in copolymerization with ethene.

Brookhart has determined relevant kinetic and thermodynamic parameters for
the Pd(a-diimine) system [29, 96]. Figure 4.6 displays free energy diagrams for
the competitive insertion of ethene with MA, VA and vinyl trifluoroacetate
(VAf), measured for two slightly different a-diimine complexes. In either case,
the most stable p-complex is formed with ethene. This complex can either
undergo migratory insertion with a barrier DGE

� , or exchange the ethene ligand to
produce the polar comonomer p-complex, which can then evolve to the corre-
sponding insertion product. The energy barrier for the latter process is the sum of
the free energy of the exchange preequilibrium, DGE/comon., and the ‘‘intrinsic’’
kinetic barrier for the comonomer insertion, DGcomon

� . The ratio between the
polar monomer and ethene incorporation rates is a function of the difference
between their respective insertion barriers, DDGins

� (see Fig. 4.6 A, below), as
well as the relative monomer concentrations in the feed. For MA, DDGins

� is
3.4 kcal/mol (at 34 �C), which is consistent with 5% comonomer incorporation
under realistic copolymerization conditions [29]. The barrier DGcomon.

� , for VA is
ca. 1 kcal/mol larger than DGE

� . However, since VA is a better electron donor
than MA, the formation of the VA p complex is more favorable. Both factors
compensate mutually, and the difference DDGins

� for the insertion of VA and
ethene is 3.5 kcal/mol, i.e., nearly the same than for MA. Thus, the failure of Pd
a-diimine systems to copolymerize VA cannot be attributed to difficulties in the
comonomer insertion. However, the DDGins

� term is somewhat higher for VAf,
4.1 kcal/mol, suggesting that the tendency for comonomer incorporation would
be lower in this case. This helps to understand why, although the a-diimine
catalyst homopolymerizes ethene in the presence of VAf, it does not incorporate
this comonomer [96].

There is much less information available on the relative insertion rates of ethene
and polar co-monomers in Ni complexes. However, DFT calculations for cationic
a-diimine catalysts suggest that, while energy barriers to migratory insertion are in
general lower for Ni than Pd, the difference between the ethene and MA insertion
rates is smaller for the former, suggesting that MA incorporation would be lower [120].
This seems to be confirmed experimentally, since high-pressure MA/E copoly-
merizations with nickel a-diimine catalysts typically lead to less than 1 mol%
incorporation [37, 38].
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Although the accuracy of the data required for a reliable calculation of the
comonomer incorporation rate is probably beyond the limits of present-time DFT
methods, it is illustrative examining the calculations results in the light of the
Curtin–Hammett model for comonomer incorporation. Table 4.2 shows p-binding

Fig. 4.6 Free energy diagrams for competitive insertion of ethene and methyl acrylate (a) and
vinyl acetate or trifluoroacetate (b) into methylpalladium a-diimine complexes
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and insertion barrier energies calculated by Goddard et al. for the simplified cat-
alyst model [Pd(HN=CCHCH=NH)(Et)]+, which include corrections for solvent
effects [108]. In spite of its simplicity and the neglect of the entropic terms, the
model provides an excellent description of the real system at a semiquantitative
level, including the relative stability of the p-olefin complexes with ethene, MA
and VA, and the olefin insertion barriers. The differences between global insertion
barrier for polar comonomer and ethene (DDEins

� ) are remarkably similar to the
experimental DDGins

� values. One of its most important features is that the model
reproduces the comparatively high stability of the ethene p-complex.

This calculation confirms that DDEins
� has similar values for the monomers MA,

VA and VCl, which is not too surprising since, as previously discussed, the
influence of electronic effects on the stability of the p-complex and on the size of
the insertion barrier are of opposite sign and tend to cancel out [112]. For acry-
lonitrile, the exceptional weakness of the p-complex is only compensated in part
by the easier insertion, and DDEins

� is significantly higher. This suggests that, even
if the catalyst were not poisoned by acrylonitrile, the incorporation rate would be
negligible for this comonomer.

The energy balance for the incorporation of electron-deficient olefins can be
improved by decreasing the positive charge at the metal fragment. In order to
investigate this effect, Jordan and Ziegler have carried out DFT calculations on a
hypothetical set of isostructural Pd catalysts containing ligands in which the
electric charge is varied from +1 to -1 by adding anionic hydroborate fragments
to the a-diimine ligands (Fig. 4.7) [109]. Table 4.3 collects the results obtained for
ethene and acrylonitrile. As can be seen, the DDEins

� parameter becomes more
favorable for AN in the neutral catalyst, and even negative in the anionic one,
suggesting that such catalyst would discriminate the polar monomer over ethene.
This is due to the dramatic increase of the p-bonding capability of acrylonitrile to
neutral and anionic molecules, while the effect of electric charge on the corre-
sponding insertion barriers is small. At first sight, this result appears promising, but
ethene insertion becomes increasingly difficult on passing from cationic to anionic
catalysts. In the latter case, the ethene insertion barrier is over 24 kcal/mol,
suggesting that this complex would be too unreactive to display any significant
catalytic activity. Thus, it can be concluded that, although decreasing the

Table 4.2 Calculated
monomer p-binding energies
(kcal/mol) to the fragment
[Pd(HN=CH–CH=NH)(Et)]+

and insertion barriers for
several monomers (data taken
from Chen et al. [102])

Comon. DEcomon
a DEcomon

� b DDEins
� c

E 0.0 18.7 0
MA 4.6 17.3 3.2
VA 3.7 18.7 3.7
VCl 3.8 18.1 3.2
AN 8.4 15.4 5.1

ap-Binding energy of the monomer relative to ethene (more
positive values mean less favorable p binding)
b Insertion barrier for each monomer, relative to the correspond-
ing p complex
cDDEins

�
= (DEcomon ? DEcomon

� ) - DEE
�
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electrophilicity of the catalyst would improve its tolerance to polar functionalities,
at the same time it causes a serious decrease of the catalytic activity.

4.4.3 Formation of Less Reactive or ‘‘Dormant’’ Propagating
Species

Incorporation of a polar comonomer unit into the growing polymer chain has deep
effects on the catalyst behavior. In some cases, the interaction of the metal center
with the polar group could cause irreversible catalyst deactivation (see next section).
In other cases, however, the polar functionality simply decreases the reactivity of
the propagating species, allowing the catalytic process to continue albeit at a
slower pace. One of the causes for such activity drop is the propensity of the polar
group attached to the polymer chain to coordinate to the metal center, blocking the
incorporation of new monomer units. It has already been mentioned (Scheme 4.7)
that ethene/MA copolymerization with palladium a-diimine catalysts involves the
formation of 6-membered cyclic chelates. However, the formation of such chelates
is not the only possible reason for the decrease of the catalyst activity.

Insertion of the polar monomer in 2,1 fashion leads to a metal alkyl species that
bears a functional group on the metal-bound carbon atom. Such intermediates
usually display lower reactivity. When the functional group is a carbonyl fragment
(e.g., -COOR or -COR), the insertion product is a metal enolate. Enolates can bind
to the metal either through carbon (C-enolate) or oxygen (O-enolate), as shown in
Scheme 4.10. If the metal center is oxophilic, it will migrate from the carbon atom
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Table 4.3 p-binding energy and insertion barriers for AN and E calculated for cationic, neutral
and anionic Pd(a-diimine) catalysts (kcal/mol)

Catalyst EAN
a DEAN

� b DEE
� c DDEins

� d

Cationic 5.8 16.3 16.3 5.8
Neutral -0.4 20.5 21.6 1.5
Anionic -6.1 19.3 24.4 -11.6

ap Binding energy for acrylonitrile (more negative values mean more favorable p-binding)
b Acrylonitrile insertion barrier
c Ethene insertion barrier
d (EAN ? DEAN

� ) - DEE
� . All energies relative to ethene complex ? acrylonitrile
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to the oxygen. Although O-enolates catalyze the homopolymerization of the polar
monomers by a coordination-addition mechanism [121], they are inactive in olefin
insertion polymerization. While early transition metals have a strong preference
for O-coordination [3, 4], ‘‘soft’’ metal centers, such as Pd, almost invariably favor
the C-coordination mode [122]. The small Ni(II) cation is midway between these
two situations, favoring O-coordination in some cases (e.g., ketone enolates [123]),
and C- in others (ester or nitrile derivatives [124]). However, enolate formation
will not deactivate a Ni catalyst because the preference for the C– or O– coor-
dination modes is small and these are readily exchanged.

Aside from the problem of enolate coordination, an electronegative group at the
metal-bound carbon atom tends to stabilize the M–C linkage, decreasing its
reactivity towards new monomer units. An intuitive way of understanding this
effect is to look at olefin migratory insertion as an internal nucleophilic attack of
the metal-bound alkyl on the coordinated alkene, as shown in Fig. 4.8. Removing
electron density from the a-carbon lowers its nucleophilicity and causes the energy
barrier for the insertion to rise.

Acrylonitrile provides a good example of catalyst deactivation by the electron-
withdrawing effect of a-functional groups. Typical palladium polymerization/
oligomerization catalysts, such as cationic alkyls containing a-diimines [98], sal-
icylaldiminato [100] or other bidentate nitrogen ligands [97] undergo 2,1-insertion
of acrylonitrile, affording catalytically inert oligomeric products bridged by the
a-cyano group. One of these compounds is the bis(imidazolyl)methane derivative
shown in Scheme 4.11 [97]. This oligomer is not reactive towards ethene or AN
but is cleaved by carbon monoxide affording monomeric a-cyanoalkyl-carbonyl
species that very slowly undergo CO insertion over a period of several days. This
demonstrates that the lack of reactivity of such complexes cannot be entirely due
to the aggregation in oligomers, but also to the low migratory capability of the a-
cyano alkyl group. For comparison, CO insertion in analogous methylpalladium
species takes less than 1 min. Analogous Pd complexes containing a-chloroalkyl
groups also display lower reactivity towards CO or ethene than their normal
alkylic counterparts [125].
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Unreactive a-functional alkyls are not formed exclusively by 2,1 insertion
reactions, since the chain walking mechanism facilitates the migration of the metal
center to the vicinity of the polar group also when the insertion takes place with the
opposite regioselectivity (Scheme 4.12). Thus, the insertion of vinyl ethers into the
Pd–Me bond of cationic a-diimine complexes proceeds with 1,2 regioselectivity to
afford b-alkoxyalkyl products, which isomerize into a-alkoxyalkyl species
[102, 118, 126]. Analogous reactions with a-olefins containing a N-carbazolyl
group in their x-positions also afford a-functionalized alkyls, following successive
chain-walking events [104]. Palladium complexes with a-alkoxo or a-amino
functionalization become further stabilized by the formation of three-membered
chelate complexes. At least in some special cases, the formation of these
intermediates does not prevent the copolymerization of the polar monomers.
The resulting copolymers have branched structures with the OSiR3 [118] or
carbazolyl groups [104] placed at the end of side branches and separated from the
main polymer by at least two consecutive CH2–CH2-units. This suggests that, even
though the Pd-C(X) bond is too unreactive to undergo new monomer insertions,
the Pd unit can shift away from the funcitonal group by (chain walking) in order to
resume the chain growth process.
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Formation of cyclic chelates is probably the general situation in polar como-
nomer copolymerization with Ni and Pd a-diimine catalysts. Five-membered
chelates B5, B6 and B7 (Fig. 4.9) have been isolated from the reaction of a-
diimine Pd methyl complexes with MMA [105], allyl ethers (acrolein dimethyl-
acetal, allyl ethyl ether) [103], and allyldimethylamine [104], respectively. The
Pd-oxygen interaction in chelates B5 and B6 can be displaced by ethene, and these
compounds can initiate ethene homo- and copolymerization reactions. However,
the strong donor properties of the NMe2 group render the chelate ring of B7 too
stable to undergo any further olefin insertion. Stable chelate complexes are
probably a more serious problem in the case of Ni catalysts, but they have been
less studied. Johnson has briefly reported that cationic Ni a-diimine alkyls insert
MA at -40 �C to afford a relatively stable 4-membered chelate, C4, which slowly
rearranges to 6-membered chelates C3 at room temperature [37] (Scheme 4.13).
The stability of C4, attributed to the strength of the dative Ni–O bond, was
invoked to explain the difficulty of Ni catalysts for copolymerizing MA. DFT
calculations confirmed that the metal–oxygen dative interaction is stronger for Ni
than for Pd [120]. However, according to these calculations, when the catalyst
bears bulky N-aryl substituents the stability of the Ni and Pd chelates is not so
different because the Ni derivatives are more destabilized by steric effects than
their Pd analogues. Thus, the causes of the low activity of Ni complexes in ethene/
MA copolymerization are not fully understood and could be attributed either to the
formation of stable chelates or to catalyst poisoning by the comonomer.

In contrast to MA, VA and VAf react with Pd a-diimine alkyls affording
products with a thermodynamic preference to form 5-membered chelate rings.
As shown in Scheme 4.14, VA or VAf insert selectively in 2,1 fashion to give the
isolable chelates B8 and B80 [96]. Similar 5-membered chelates complexes are
also formed from x-alkenyl acetates such as allyl acetate or butenyl acetate, by
means of chain walking rearrangement of the alkyl chain. Complex B8 has been
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isolated and structurally characterized, but B80 is thermally unstable (see next
section).

Since Pd a-diimine complexes copolymerize MA and ethene, but become
deactivated by VA, it is instructive to compare the behavior of chelates B3 and B8
towards ethene (Scheme 4.15). In contrast with B3, complex B8 does not initiate
ethene homopolymerization, even under forcing conditions. The low reactivity of
this complex is the prime cause of the failure of the a-diimine catalysts to copo-
lymerize ethene and VA. However, NMR studies showed that, like B3, B8 reacts
reversibly with ethene at low temperature (below -70 �C) to form the corre-
sponding p-olefin complex. At room temperature, the free energy change for the
displacement of the chelate ring by ethene (extrapolated from low temperature
measurements) is only 0.5 kcal/mol higher for B8 than for B3. Although this
means that the VA chelate is somewhat more difficult to open, the difference is not
large enough to explain why this monomer shuts down the Pd(a-diimine) catalyst,
while MA is successfully copolymerized. The different behavior of the two
monomers is due to the fact, that subsequent ethene insertion step is much more
difficult for B8 than for B3. Note that in the case of MA, the insertion takes place
in a ‘‘normal’’ Pd–CH2 bond, and therefore the energy barrier is essentially the
same than in Pd alkyls (ca. 18.5 kcal/mol). However, the p-ethene species arising
from B8 is less reactive due to the presence of an electronegative OAc substituent
in the metal-bound carbon. Ethene insertion has not been experimentally observed
in this case, but DFT calculations by Goddard point to a high-energy barrier of
25.1 kcal/mol. The latter value is in good agreement for the experimental value
measured with the more reactive chelate B80 obtained from VAf (21. 5 kcal/mol).
Thus, it can be concluded that the deactivation of the Pd(a-diimine) complex by
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VA is due to the deactivating effect of the a-acetoxy group rather than to the
stability of the chelates of type B8. It is interesting to consider that, although the
formation of chelate B3 in the MA system significantly decreases the polymeri-
zation rate, it probably has a protective effect preventing the formation of ‘‘dor-
mant’’ species with a carboxylate substituent sitting on the a-carbon.

The role of chelated intermediates seems to be more important for cationic than
for neutral complexes, although for the latter there is less information available.
Mecking has found that the products arising from the reaction of MA or VA with
nickel salicylaldiminato complexes are 5-coordinated, with a weak secondary Ni–O
interaction (Scheme 4.16) [127]. DFT calculations suggest that 2,1 insertion of
MA in Pd-phosphinosulfonato catalysts leads to reactive 4- or 5-membered che-
lates [117]. However, such chelates have not been detected experimentally,
because the Pd���O=C interaction is so weak that is displaced by the auxiliary
coligand present in the reaction, even if this is an extremely weak ligand such as
dmso [67]. In spite of this, kinetic measurements of the ethene/MA copolymeri-
zation rate suggest that, similarly to the a-diimine system, the limiting step is the
monomer insertion subsequent to that of MA. Since the stabilization of the MA
insertion intermediate by chelate interaction is not important, the limiting factor is
the intrinsically low reactivity of the Pd–CH(CO2Me)R bond. The same argument
could also explain the low polymerization and incorporation rates observed in this
system with other polar comonomers that are not expected to produce strong
intramolecular chelates, such as VF [64].

4.4.4 Irreversible Catalyst Deactivation

As a general rule, the activity of olefin polymerization catalysts decays as a result
of side reactions leading to catalytically inert products. In certain cases, polar
comonomers can promote such deactivation processes or induce specific reactions
causing the irreversible deactivation of the catalyst.

Neutral polymerization catalysts such as nickel phosphinoenolato [26, 27],
anilinotroponato [128, 129] or anilinoperinaphthenato [130] derivatives are prone
to deactivate through the formation of inactive bis(ligand) complexes [Ni(O–N)2].
Although nickel salicylaldiminato catalysts are rather stable and compatible with
many polar substances, they are deactivated by MA [131]. Grubbs has shown that
the salicylaldiminato catalyst precursor D1, containing PPh3 as stabilizing
coligand, reacts with MA to afford a mixture of methyl cinnamate and methyl
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3-phenylpropionate (Scheme 4.17, up) [42]. The inactive bis-ligand complex D2
was detected as the main nickel-containing byproduct. While methyl cinnamate is
a Heck-type product arising from MA insertion followed by b-H elimination, the
origin of the saturated ester is less evident. Isotopic labeling experiments have
demonstrated that, under rigorously anhydrous conditions, the extra hydrogen in
the latter comes exclusively from MA. Moisture traces can also act as a proton
source, producing saturated products (same scheme, bottom) [42, 132]. It is
believed that the deactivation of neutral nickel catalysts is related to the tendency
of intermediate hydrides to transfer hydrogen by one of the two pathways shown in
Scheme 4.18. One of them (Path A) involves reductive O–H coupling and elim-
ination of the ligand in protonated form. If the ligand is acidic enough, it can
cleave the Ni–C bond of a second catalyst molecule affording the saturated R–H
product [129]. The same products can be formed by direct H transfer from the
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hydride to the enolate complex arising from the acrylate insertion (Path B) [132].
Finally, the enolate complex could undergo hydrolysis by moisture traces
(Path C).

Using salicylaldiminato complexes stabilized by PMe3, Mecking has shown
that MA insertion products decay by a bimolecular mechanism involving b-
hydrogen elimination and hydride transfer (i.e., the mechanism depicted by Path B)
[127]. However, as previously noted by Grubbs [42], the hydrolytic deactivation
pathway C becomes important when the PMe3 coligand is replaced by PPh3.
Mecking showed that the hydrolytic stability of the acrylate insertion products is
closely related to the stabilizing capability of the ancillary ligand present in the
catalyst: water readily cleaves the enolate intermediates containing PPh3, but
reacts more slowly with species containing the strongly donor ligand PMe3. Thus,
reaction of the highly reactive dmso-stabilized ethyl complex D3 with MA
exclusively produces methyl pentanoate because the enolate intermediate is
trapped by water traces faster than it decomposes by b-hydrogen elimination
(Scheme 4.17, bottom) [127].

The ultimate causes of the irreversible decomposition of nickel salicylaldimi-
nato complexes by MA seem to lie in a combination of low reactivity of the MA
insertion products towards ethene insertion, and low stability of hydride species.
In this scenario, b-hydrogen elimination followed by deactivation processes A–C
become dominant. If the hydride intermediates were more stable, MA insertion
would not lead to catalyst deactivation but only to chain transfer, and polyolefins
capped with polar units would be produced. Tomov and Gibson have observed this
type of reactivity using nickel phosphinoenolato catalysts (type A, Fig. 4.2)
modified with bulky substituents [133].

A different deactivation pathway appears when the polar monomer bears an
electronegative group X directly bound to the vinyl group, for example, vinyl
chlorides, ethers or esters (X = -Cl, -OR or -OCOR) (Scheme 4.19). Insertion of
such monomers transfers the substituent X to the propagating species, in a way that

[M]

H2
C Polymer

X

[M] Polymer

[M] Polymer

X

X

β-X
elimination

2,1
insertion

1,2
insertion

Polymer

X

[M]

[M] Polymer
X

[M] Polymer

X

Chain
Walking

β-X elimination

α-elimination

[M] X

Polymer
+2,1-H shift

Scheme 4.19 Mechanisms of irreversible heteroatom cleavage following 1,2 or 2,1 insertion of
functionalized vinyls

4 Challenges and Breakthroughs in Copolymerization of Olefins 229



facilitates its abstraction by the metal center in a process that is formally similar to
b-hydrogen elimination. However, in contrast to b-H elimination, abstraction of
the electronegative X fragment is irreversible and causes the M–C bond to be
replaced by a catalytically inert M-X fragment. Vinyl halides are potent venoms
for olefin polymerization catalysts, because b-halogen abstraction and formation of
strong M-halide bonds are thermodynamically very favorable. Analogous OAc and
OR abstraction reactions have been detected in the reaction of polymerization
catalysts with alkenyl acetates [93, 127, 134] and phenyl vinyl ether [118].

The most direct route for heteroatom elimination is 1,2-insertion followed by b-
X elimination. However, 1,2 insertion is not essential for catalyst deactivation.
As shown in Scheme 4.19, the same products formed after 1,2 insertion can be
equally produced when the monomer inserts with 2,1 regioselectivity, by two
alternative mechanisms. The a-haloalkyl complex formed in the 2,1 insertion step
could experience a-X elimination to an unstable alkylidene complex, which
evolves into the final products by 2,1-hydrogen shift. Otherwise, chain-walking
migration of the metal fragment allows the rearrangement of the 2,1-insertion
product into a b-haloalkyl complex, which directly undergoes b-X elimination.

Insertion of VCl into Zr–Me bond of zirconocene complexes produces propene
and chlorozirconium species. Since chain-walking isomerization does not occur in
d0 systems, the reaction most likely involves 1,2 insertion of VCl followed by b-Cl
elimination [135]. DFT calculations for the reaction of VCl with transition metal
hydrides provide support for the 1,2-insertion regioselectivity [136, 137]. Iron
diiminopyridine complexes activated with MAO also react with VCl producing
propene [119]. The mechanism of this reaction is probably the same as for the
metallocene alkyls, but the Fe–Cl complex is recycled by reaction with the alu-
moxane (Scheme 4.20, up). Recycling the Fe catalyst allows ethene polymeriza-
tion to proceed in the presence of VCl or VA, apparently without comonomer
incorporation. However, when a mixture of ethene and deuterated VCl or VA is
oligomerized with a FeCl2(diiminopyridine)/MAO catalyst, the resulting poly-
olefins have deuterated vinyl terminal groups, indicating that VCl or VA insertion
takes place and it is immediately followed by halide abstraction (Scheme 4.20,
bottom) [134].
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Jordan [99, 119] and Sen [111] have studied the mechanism of the insertion of
vinyl halides into Pd–Me bonds. Vinyl chloride or bromide complexes were
generated at low temperature and their evolution monitored by NMR. As observed
for the Zr and Fe catalysts, the Pd p-complexes evolve affording propene and
different halogenated metal products, but the initial insertion products were not
detected. DFT calculations for Pd a-diimine complexes suggest that VCl insertion
should favor the 2,1 regioselectivity [99, 107–109]. This has been recently con-
firmed by an isotopic labeling experiment involving the complex [Pd(Me)(OEt2)-
(ArN=CC(Me)C(Me)C=NAr)]+ (Ar = 2,6-diispropylphenyl) and VCl selectively
deuterated at the positions 1 or 2 [99]. The distribution of deuterium in the propene
product, shown in Scheme 4.21, is consistent with 2,1-insertion followed either by
isomerization to a b-chloroalkyl intermediate or by a-halide abstraction and 1,2-
hydrogen shift. The first of these two options appears as more likely, since chain-
walking is precisely one of the main features of Pd(a-diimine) alkyls and, on the
other hand, a-chloroalkyl complexes are usually stable [125]. DFT calculations
provided additional support for this conclusion [99].

Palladium a-diimine catalysts copolymerize non-polar olefins with certain
monomers containing OR substituents, including some allyl ethers (acrolein
dimethylacetal/ethene) [103] and silyl vinyl ethers (Ph3SiOCH=CH2/1-hexene) [118].
One of the difficulties met in the copolymerization of this kind of monomers is the
formation of catalytically inactive g3-allylcomplexes. It is believed that the process
involves OR group abstraction leading to highly reactive alkoxo-p-alkene inter-
mediates. These evolve with C–H abstraction and alcohol elimination, as shown in
Scheme 4.22. The tendency to undergo this deactivation step depends strongly on
the nature of the OR group of the comonomer. Elimination of aliphatic alkoxo (-OR)
or siloxane (-OSiR3) moieties is relatively difficult, which allows the above-men-
tioned copolymerizations. However, elimination of phenoxo (-OPh) from phenyl
allyl ether is a rapid and very favorable process. Alkoxo abstraction is not the only
problem in the copolymerization of vinyl ethers, since cationic Pd catalyst readily
trigger facile cationic homopolymerization reactions (see next section).

Insertion of VA in the Ni-Me bond of the nickel a-diimine complex, shown in
Scheme 4.23, leads to a mixture of 5- and 6-membered metallacyclic chelates
arising from 2,1 and 1,2 insertion, respectively. The 1,2-insertion product, having
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the acetate group in the b position, is thermally unstable and decomposes at low
temperature affording propene and paramagnetic Ni acetate complexes. On the
other hand, the regioisomer resulting from 2,1 insertion is thermally robust
(decomposes at 70 �C). As discussed in the preceding section, analogous Pd
complexes arising from 2,1 insertion of VA are also very stable. The decomposition
of 2,1-VA insertion product requires previous opening of the 5-membered chelate
ring and isomerization to the corresponding b-acetoxy alkyls by the chain walking
mechanism. Similar chelates arising from the reaction of VAf with both Ni and Pd
complexes are not as stable due to the better migratory properties of the electro-
negative trifluoroacetate group. Interestingly, the Ni VAf insertion product is more
stable than its Pd analogue, probably because opening the chelate is more difficult in
the former case. The b-carboxylate abstraction process is probably responsible for
the deactivation of Ni and Pd catalysts by VAf. However, the available data are not
conclusive on whether acetate abstraction is one of the causes that prevents the
copolymerization of ethene and VA with Pd a-diimine catalysts [96].

4.4.5 Undesired Competing Polymerization Processes

An important problem in the copolymerization of polar olefins is the occurrence of
polymerization mechanisms other than the coordination-insertion process, which
lead to products that are markedly different from the intended copolymers [5].
Highly reactive olefins such as acrylates, vinyl halides or vinyl ethers are prone to
polymerize by radical or cationic mechanisms. Such processes can also occur
during copolymerization reactions and may be difficult to suppress, particularly if the
copolymerization process is slow. It is a well-known fact that due to their redox
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reactivity many transition metal complexes can readily initiate many chemical
transformations involving free radicals, including polymerizations [138]. Palladium
complexes are no exception, and it was soon realized that some complexes with
structures which are typical for polymerization catalysts, like the pyrrole-imine
complex N1 [54] or the salicylaldiminato D5 [55] (Fig. 4.10) initiate ethene/acrylate
copolymerization reactions by free-radical rather than insertion mechanisms.

This ability of some Pd alkyl complexes to initiate radical polymerization
suggests that they behave as sources of free radicals. Sen has shown that neutral
(halo)alkyl Pd a-diimine complexes are unstable with respect to homolytic Pd–C
fission [139]. Treatment of the cyclic chelate B3 with tetralkylamonium halides
causes the opening of the chelate ring to afford a linear alkyl, which rapidly
transposes by chain walking into a thermodynamically favored enolate species
(Scheme 4.24). These species decompose spontaneously producing free radicals,
which decay mainly to methyl crotonate, together with smaller amounts of methyl
butyrate and dimethyl suberate. If the reaction is carried out in the presence of
MA, these free radicals trigger its polymerization. These results pose some doubt
on whether the decomposition of MA insertion products in the salicylaldiminato
system reported by Grubbs and Mecking discussed in the previous section, could
arise by a bond homolysis mechanism as well. These Pd C-enolate complexes are
probably more prone to homolysis than other Pd alkyl species because the
resulting radicals are particularly stable.

Sen and Espinet have shown that simple palladium perfluorophenyl complexes
with PPh3 ligands can polymerize MA and copolymerize MA with 1-hexene pro-
ducing MA rich copolymers [56]. This system has some properties that are unusual
for a radical polymerization mechanism. For instance, the catalyst homopolymerizes
MA but not MMA, a monomer that is even more easily polymerized by free radical
methods. In fact, the polymerization of MA does not take place in the presence of
MMA. However, the poly-MA and poly-MA-co-1-hexene produced by this catalyst
are very similar to the materials obtained with a classic radical initiator such as AIBN.
A non-conventional radical mechanism involving reversible Pd-C(CO2Me)R
homolysis/recombination was proposed to explain these observations.

Establishing that olefin/polar olefin copolymerization takes place by a coordi-
nation-insertion mechanism, and does not involve competition by free radical
processes is not a trivial task, especially when only small amounts of comonomer
are incorporated. The composition of the copolymer can be a good indicator,
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because those produced by radical mechanisms have high polar comonomer
contents, while coordination-insertion mechanisms lead to products that are higher
in the less polar component. However, a mixture of homopolymers might resemble
a typical copolymer with low polar comonomer content. GPC analysis with two
types of detectors (e.g., refractometric and UV) detectors is a very useful char-
acterization technique in such cases, but separation of the components of the
mixture by selective extraction and precipitation is sometimes the only reliable
tool for a correct characterization.

Classic tests for radical reactions such as polymerization inhibition with radical
traps can be misleading, as such reagents can react with hydride complexes that are
key intermediates in the insertion polymerization mechanism [140]. Mild radical
traps such as phenols are usually inefficient inhibitors of radical polymerizations
[56], but more efficient reagents such as TEMPO and galvinoxyl can produce false
negative results as well, because they react with aluminum alkyls such as alu-
moxanes commonly used as cocatalysts in polymerization reactions.

Electron-rich olefins such like vinyl ethers vinyl-t-butylether or vinyl-methy-
lether are easily polymerized through non-selective cationic propagation
mechanisms. These processes can be initiated by cationic complexes such as
Pd(a-diimine) derivatives, which prevents their copolymerization with non-polar
comonomers with these catalysts [118]. This problem can be avoided by using
electrically neutral catalysts, such as Pd(phosphinosulfonato) complexes [60].

4.5 Overcoming the Difficulties: Strategies and Breakthroughs

4.5.1 Strategies Based on the Comonomer

One of the most direct ways to improve the compatibility between catalysts and
polar comonomers is to adapt the structure of the latter or to protect their func-
tional groups. For example, bulky acrylates (e.g., t-butyl acrylate) or fluorinated
esters such as VAf are tolerated more readily by polymerization catalysts because
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their polar functionalities have less capacity to interact with the metal center [96, 113].
In some cases, both the polar and non-polar monomers can be tuned simulta-
neously to facilitate their copolymerization with a certain catalyst. Jordan’s work
on the copolymerization of vinyl ethers by palladium a-diimine complexes pro-
vides a good example of this [126]. As mentioned in the preceding section,
electron-rich monomers such as methyl or t-butyl vinyl ethers are very prone to
cationic polymerization, a process that can be initiated by cationic complexes such
as Pd a-diimine catalysts. This leads to vinyl ether homopolymers and prevents
their copolymerization with non-polar olefins. If the strongly electron-donor -OR
group of the monomer is replaced by the more electronegative–OPh fragment, the
cationic polymerization pathway is suppressed, but the catalyst is then readily
deactivated through facile b-OPh elimination reactions. Vinyl siloxanes, R3Si-
OCH=CH2 provide a compromise with electronic properties midway between the
two types of ether functionalities. Cationic polymerization is slow with the tri-
methylsilyl derivative, and does not take place with the bulkier triphenylsilyl ether.
However, the steric hindrance of the Ph3SiO- group decreases significantly the
ability of the monomer to bind to the sterically hindered Pd center. In order to
increase its capability to compete with the non-polar component, the less reactive
olefin 1-hexene was used instead of ethene. This particular selection of monomers
is successful and allows the Pd catalyst to copolymerize affording branched
products containing up to 20 mol% comonomer.

Some other strategies based on monomer modification by masking this func-
tionality with a protective group or alkyl reagents have already been mentioned in
Sect. 4.2. These seek to minimize the interaction of the polar group with the active
center, disrupting their capability to poison the metal center or to form ‘‘dormant’’
chelate intermediates once the insertion has taken place (see Scheme 4.2).
Selecting suitable monomers, with separated vinyl and functional fragments, can
also avoid the unfavorable interactions of the metal center and the polar groups.

From a practical point of view, the main drawback of strategies based on the
monomer is their high economic cost. Using stoichiometric amounts of masking
agents is expensive, and special comonomers are much more costly than simple
substances such as MA or VA. However, these methods can be useful for the
production of specialty polymers with interesting properties. A couple of examples
will illustrate this concept.

The first example is the preparation of nanostructured polyolefin copolymers
with functionalized norbornene monomers. Neutral nickel catalysts, e.g. salicyl-
aldiminato or iminocarboxamidato alkyl complexes (D and G, respectively,
Fig. 4.2), have excellent compatibility with this type of monomers and catalyze
their copolymerization with ethene. Bazan has used the iminocarboxamidato
catalysts G to develop interesting ethene/norbornenyl acetate copolymers [45].
The copolymerization reactions exhibit a quasi-living behavior affording high
molecular weight copolymers with very narrow molecular weight distributions.
The comonomer contents can be accurately controlled through the ethene/como-
nomer ratio in the feed. Changes in this ratio during the polymerization process are
translated into the relative rates of comonomer insertion, and therefore become
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‘‘recorded’’ in the polymer molecules as local differences in the copolymer rich-
ness. For example, an ethene pressure jump from 50 to 1,100 psi produces a
pseudoblock copolymer with two segments of different composition. A technically
easier approach for this strategy is to continuously feed ethene while allowing the
depletion of the comonomer. This leads to a ‘‘tapered’’ comonomer distribution.
If the comonomer concentration is restored at regular times, peaks are produced in
the monomer/comonomer distribution along the polymer chains (Scheme 4.25).
The pseudomultiblock structure of the resulting copolymers leads to phase sepa-
ration and to peculiar layered microscopic structures that are similar to those
observed in typical block copolymers [48, 49].

Late transition metal catalysts enclose an undeveloped potential for the syn-
thesis of advanced functional materials. Guan has shown how the unique prop-
erties of Pd a-diimine catalysts can be exploited in a straightforward manner in the
synthesis of advanced functional materials [30]. As discussed in Sect. 4.3, the
topology of branched polyethylenes produced with these catalysts can be con-
trolled by the ethene concentration during the synthesis [30–32]. Low ethene
pressure favors the formation of polymers with a dendritic morphology (i.e.,
branches in branches), while higher pressures leads to less entangled structures
with a larger number of terminal branches. When MA is introduced in the system,
the same branching schemes can be obtained, but with many of these branches
terminated with the functional group. This leads to the production of interesting
copolymers with tailored topologies (Scheme 4.26). A problem with this is that the
molecules of EMA copolymers produced with Pd a-diimine catalysts are too small
to allow a detailed investigation by light scattering methods.

Guan has developed the special comonomers O–U in order to increase the
molecular weight of the copolymers, and to allow the introduction of different
functional groups. For example, inserting a polymethylene spacer between the

Scheme 4.25 Synthesis of ethene-norbornenyl acetate pseudoblock copolymers
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vinyl and the carboxylate fragments of the monomer (O) increases the polymer-
ization degree. This simple approach does not work with other functional mono-
mers. For example olefins with terminal ether groups (P) are not copolymerized,
presumably because the Pd atom migrates to the ether group and the catalyst is
deactivated by b-OR abstraction. This problem is solved by inserting a quaternary
C atom which prevents chain walking of the metal center to the OR group
(comonomer Q). Consistently with Jordan’s findings, the catalyst performance also
improves when the OR group is replaced by the bulky siloxy group (R). Note-
worthy, this comonomer does not induce the typical decrease of the catalyst
activity observed in almost every polar/non polar copolymerizations, and the
copolymers have essentially the same molecular weight than ethene homopoly-
mers produced with this Pd catalyst. Using a quaternary-C blocked spacer, highly
reactive functionalities such as epoxides can be introduced without perturbing the
active center (S, T). Even silyl-protected carbohydrate moieties can be copoly-
merized, such as the mannose derivative U. Post-polymerization deprotection of
the carbohydrate moiety leads to polyethylene functionalized with biologically
active monosaccharide units. Although the precise location of the functional
groups is not established, it is assumed that most likely these are placed at the
branch terminations, as observed in MA or vinyl ether copolymers [29, 118].

4.5.2 Catalyst Activation Methods

Lewis acids such as aluminum or boron derivatives commonly used as co-catalysts
in polymerization reactions react with polar vinyl monomers, initiating their
polymerization [121, 138]. In order to prevent undesired side polymerization

Scheme 4.26 Functional copolymers with well-defined branching topologies
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processes, catalysts intended for copolymerization of polar monomers are usually
designed to avoid the use of such conventional co-catalysts. A simple approach
consists of generating the catalyst in situ from free ligands and suitable precursors.
A classic example is the ethene oligomerization system employed in the SHOP
process, where a nickel phosphinoenolato complex is directly produced from
Ni(cod)2 and a phosphorusylide [141]. More recently, Pd-phosphinosulfonato
catalysts have been generated from free phosphinosulfonic acids and simple Pd
compounds [58, 71, 72]. One drawback of this methodology is that only a fraction
of the ligand or the metal precursors are converted effectively into active species,
which limits catalytic efficiency. Thus, using well-defined organometallic species
as single-component catalysts is a more efficient strategy.

A typical single-component polymerization catalyst is a metal alkyl stabilized
by the main ligand and a secondary ligand or ‘‘base’’. The purpose of the base is to
stabilize the metal complex by occupying the coordination position required for the
catalytic process. In order to activate the catalyst, the free base has to be released
under the catalysis conditions. Scheme 4.27 summarizes the main methods avail-
able for the synthesis of base-stabilized catalyst precursors. Cationic complexes of
Ni and Pd a-diimine alkyl complexes developed by Brookhart, are classic examples
[10, 29, 96]. Cationic a-diimine complexes are strongly electrophilic, and only the
weakest bases are labile enough to be displaced by ethene or other olefins.
Extremely reactive alkyls containing Et2O as auxiliary ligand are obtained by
reacting dialkyl precursors M(R)2(a-diimine) with suitable protic acids (method A).
Cationic Pd complexes containing nitrile co-ligands can also be prepared by halide
abstraction from readily available (halo)alkyl precursors (method B). A key feature
of cationic catalysts is the use of low coordination capability counteranions with
very small tendency to occupy the free coordination site. For a soft Lewis acid
center such as Pd(II), many anions of reduced coordinating capability, such as
PF6

-, BF4
-, etc., fulfill this condition [142]. However, some of these are small

anions basic enough to interact with a harder Lewis-acid center such as Ni(II).
Brookhart’s choice of the very stable fluorinated tetraarylborate anion BAr4

f-

proves very satisfactory for its stability and high solubility in non-polar hydro-
carbon solvents. This anion has been adopted by many other researchers and is
widely used in the development of late-transition metal catalysts for olefin poly-
merization, as well as in other applications in homogeneous catalysis.
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An acceptable replacement for BAr4
f- is SbF6

-, which can be advantageous for
isolation and characterization purposes [29].

In contrast with cationic catalysts, electrically neutral catalysts do not require
special non-coordinating anions. Compared to their cationic counterparts, neutral
catalysts are milder Lewis acids, and better p-donors. However, displacement of
coordinated coligands by the p-acceptor olefin monomers is more favorable,
allowing the use of stronger ligands as bases. The main methods developed for the
synthesis of base-stabilized neutral alkyl complexes are shown in Scheme 4.28. A
classic synthesis of nickel phosphinoenolato complexes involves the oxidative
addition of phosphine ylide precursors to Ni(cod)2 in the presence of phosphines or
other stabilizing bases [26, 27] (method C). However, a more general approach to
the synthesis of neutral catalysts involves methathetical halide exchange between
well-known organometallic precursors, such as [NiPh(Br)(PPh3)2] [39, 52] or
[Ni(CH2Ph)((Cl)(PMe3)2] [47] with alkaline salts of the anionic ligand (D).
Method E uses the ligand in neutral form as a protic acid for cleaving one M–C
bond of a suitable dialkyl precursor such as [PdMe2(Py)2] [63]. A clever extension
of the latter methodology resorts to the use of dialkyl precursors [MMe2(tmda)],
containing the N,N,N0,N0-tetramethylethylenediamine ligand (tmda), as shown in F.
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These dialkyls are stable and easily handled precursors because the tmda ligand
forms very stable chelates. However, irreversible cleavage of one of the M–Me
bonds by the acidic ligand forces the formation of highly reactive intermediates,
from which tmda is readily displaced [143]. This method allows direct access to
reactive salicylaldiminato complexes stabilized by acetonitrile [131, 142], pyridine
[62, 74, 144] or other weak coordinating bases [41]. Extremely reactive salicyl-
aldiminato and phosphinosulfonato catalysts containing dmso as stabilized base
have been prepared by either methods F [67] or G [132]. Nozaki used chloride as
the stabilizing base. The resulting anionic complexes can be used for the synthesis
of more reactive catalysts containing sterically crowded bases such as 2,6-lutidine,
that can be more readily dissociated from the metal center (method H) [59, 61].
Bazan has also described the preparation of a iminocarboxamidato catalyst con-
taining 2,6-lutidine by the oxidative addition reaction outlined in equation I.
In contrast with PMe3-ligated analogues, the 2,6-lutidine complex is active in the
absence of ligand scavengers (see below) [145].

The role of the base used in the catalyst design may go beyond a mere pro-
tection of the coordination vacancy. In some cases, the presence of the base in the
reaction medium can be beneficial for the catalyst stability [40]. But, in general,
the base competes with the monomer for the open coordination site of the catalyst,
reducing its activity and/or the molecular weight of the products. The effect can be
negligible when the base is very weak (e.g., Et2O), but catalyst precursors stabi-
lized by such weak ligands are sensitive compounds, which may be not convenient
for routine use. These problems have prompted a search for different catalyst
precursors, preferably base-free derivatives, which combine high reactivity and
easy use and storage (Fig. 4.11). For example, reactive chelates of type B3 are
very stable and can be used as convenient catalyst sources. The synthesis of such
precursors has been simplified and can be accomplished by treating readily
available chloro(methyl) a-diimine complexes with MA and the sodium salt of the
adequate counteranion (e.g., NaBAr4

f or NaSbF6) [29]. Related metallacycles such
as B5 or B6 (see Fig. 4.9), are similarly obtained from different monomers (MMA
[105], acroleine dimethyl acetal or ethyl vinyl ether [103]) and can also be applied
as useful catalyst precursors. In contrast, similar base-free precursors for nickel a-
diimine catalysts has still to be developed. Although the Ni analogue of B3 has
been detected (compound C3, see Scheme 4.13) [38, 96], its use as catalyst pre-
cursors has not been investigated. Easily prepared Ni and Pd g3-allyl complexes
may be an alternative to these chelate precursors, since the organometallic ligand
can release a coordination position by changing its hapticity from g3 to g1. Nickel
allyls containing a-diimine ligands (Fig. 4.11) have been used as ethene poly-
merization catalysts [146–148]. However, g3 coordination of the allyl ligand is too
stable and their performance is rather poor unless they are combined with alkyl-
aluminum activators. The allyl complex C1’ was applied for the copolymerization
of ethene with methyl acrylate under rather rigorous conditions. In order to achieve
significant activities, this catalyst has to be activated with large loads of B(C6F5)3

and NaBAr4
f [37, 38]. Related g3-benzyl complexes are expected to be compara-

tively more reactive than the allyl precursors. Zwitterionic Ni g3-benzyl complexes
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M, prepared by ligand abstraction with strong Lewis acids such as B(C6F5)3 are
highly active catalysts for ethene homopolymerization [44]. Some other g3-ben-
zylnickel derivatives, such as the cationic [Ni(g3-CH2Ph)(a-diimine)]+ [149], have
also been prepared by similar phosphine abstraction reactions. However, the use of
g3-benzyl derivatives of Ni as base-free catalysts compatible with polar como-
nomers has not been widely explored, and it has only been demonstrated with the
neutral salicylaldiminate derivatives D5-D7 (see Sect. 4.5.4). In addition to
g3-allyl and g3-benzyl derivatives, several base-free complexes of composition
‘‘M(R)(L-O)’’ with L-O = phosphinoenolato [27] and phosphinosulfonato ligands
[63, 69] have been isolated. These compounds are dimers stabilized by bridging
metal–oxygen interactions. In spite of their ability to catalyze ethene polymeri-
zation, their possible use as base-free catalysts for the incorporation of polar
comonomers has received little attention.

The activity of base-stabilized catalysts can be promoted by using suitable
‘‘ligand scavenging’’ reagents. A typical example is the activation of phosphine-
containing complexes with Ni(cod)2 [27, 40, 44–49]. The latter removes the
phosphine from the reaction mixture forming stable Ni(PR3)n complexes. Addition
of Ni(cod)2 or other ‘‘phosphine sponges’’ is facultative when the catalyst contains
a readily dissociable ligand such as PPh3 [27, 40, 43, 45], but strictly necessary for
strongly binding phosphine such as PMe3 [46–49]. Nozaki showed that halide
precipitating salts (NaBAr4

f better than AgOTf) boost the catalytic activity of
anionic [Pd(Me)(Cl)(P–O)]- phosphinosulfonato complexes in ethene-MA copo-
lymerization [59].
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The use of ‘‘soft’’ activating agents as phosphine sponges or halide precipitating
salts brings back the classic ‘‘two components’’ methodologies to the polar
comonomer polymerization field, with the corresponding advantages in terms of
catalyst preparation and handling, avoiding the use of aluminum or boron co-
catalysts. However, some recent publications have described the use of alumox-
anes to activate Ni [52, 53] and Ti [78] complexes for the copolymerization of
ethene and polar comonomers. In order to minimize the impact of the aluminum
reagents in the copolymerization system the cocatalysts are used in relatively small
excess, well below the dose of the polar comonomer. The dose of the activating
aluminum reagent can be further diminished when the catalyst and co-catalyst are
designed to achieve a good match. A combination of a-diimine palladium
catecholate complexes and alkylaluminum catecholates in 1:1 molar ratio leads to
the formation of ion pairs containing weakly coordinating catecholaluminate
anions that are effective for ethene polymerization [150] (Scheme 4.29). The
aluminum catecholate complex interacts only weakly with MA, which makes this
system very appropriate for copolymerization reactions. Indeed, at low MA con-
centrations this combination produces essentially the same type of EMA copoly-
mers obtained with the classic tetraarylborate-based system (Brasse et al.,
unpublished results). However, under high MA concentrations, the aluminum
cocatalyst triggers radical homopolymerization reactions, resulting in the forma-
tion of EMA and polyMA mixtures. As mentioned above, the possibility of polar
comonomer copolymerization reactions with catalysts generated by readily
available two components systems instead of sophisticated organometallic com-
plexes represents an bonus for practical application and deserves further attention.

4.5.3 Selecting the Metal

Doubtless, one of the key aspects of catalyst design is the choice of the metal. It is
reasonable to assume that a good catalyst for copolymerization of non-polar and
polar monomers should also be an excellent catalyst for the homopolymerization
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of ethene and other non-polar olefins. After the discovery of Ni and Pd-based
olefin polymerization catalysts, most other transition elements have been subjected
to a meticulous scrutiny to find out which ones produce other active catalysts. It is
now known that nearly all elements from the first transition row from Ti to Ni,
with the exception of Mn, are good candidates for this purpose, as are some
heavier elements from groups 4 (Zr, Hf), and 10 (Pd). The second aspect to
consider is the compatibility of the catalyst with polar functionalities. Leaving
aside the polymerization of protected or masked comonomers, this condition
apparently rules out catalysts based on early-transition metals. However, Fujita has
demonstrated recently that even Ti complexes with a suitable catalyst design can
be applied for this purpose [78] (see Chap. 1, this volume).

Iron 2,6-bisiminopyridine complexes are relatively tolerant to polar func-
tionalities. They polymerize ethene in the presence of MA [79], and they have
also been used to hydrogenate functionalized olefins [151]. The failure to cata-
lyze copolymerization could be associated with specific monomers rather than a
general incompatibility with polar functionalities [79, 132]. As mentioned in
Sect. 4.2, several copper catalysts show some capacity for ethene polymerization
and, at the same time, can copolymerize ethene and acrylates, which poses the
question of whether these copolymerization reactions involve true insertion
mechanisms. However, the acrylate content of copolymers produced with copper
cannot be lowered below 40 mol%, which argues in favor of a radical-type
mechanism [82–85].

The success of Fujita’s Ti catalysts suggests that the horizon of polar como-
nomer copolymerization could expand to other transition elements beyond Ni and Pd.
However, in the present state of the art there is little alternative to these two
elements. The available evidence indicates that Pd is superior to Ni for polar
comonomer incorporation, essentially because p-coordination of the monomer is
more favorable with the former, and r-interactions, which poison the catalyst are
stronger for the latter (see discussion in Sect. 4.3). Thus, nickel catalysts are less
successful in the incorporation of industrially relevant polar vinyl monomers, but
some catalysts capable of performing such copolymerizations have been described
very recently [52, 53, 152]. Developing the potential of Ni catalysts for polar/non
polar monomer copolymerization is important for practical application, since the
high cost of Pd prevents its application in the large-scale production of polymeric
materials.

4.5.4 Ligand Design

The aim of this section is to discuss a few examples in which specific modifica-
tions of a known catalyst design leads to improvements on the ability to incor-
porate polar comonomers. This line of work has achieved very significant
advances, but predicting how a given modification will alter the catalyst perfor-
mance is still very difficult.
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Since most of our current knowledge regarding the copolymerization of polar
and non-polar olefin comes from the study of the a-diimine-based catalysts, many
of the proposals concern the modification of these ligands or closely related ones
containing N and O donor atoms. One of the important advances in the field has
been the introduction of palladium phosphinosulfonate catalysts, which are not
nitrogen-based. Due to the focus of this book, this section first addresses the
progress of the nitrogen-based catalyst designs, and concludes by examining some
of the main features of palladium phosphinosulfonato catalysts.

4.5.4.1 Steric Effects

Steric effects are probably the most prominent aspect of ligand design for olefin
polymerization catalysts. As discussed in Sect. 4.3, the steric effects exerted by
bulky aryl substituents play a key role in the control of the activity and the
molecular weight of the polymers produced by catalysts based on a-diimines and
other related nitrogen-based ligands [7]. These effects are also important for the
performance of these catalysts in copolymerization reactions. Incorporation of MA
by Pd-a-diimine catalysts increases when the ortho substituents of the aryl groups
are relatively small, because they oppose less steric hindrance to monomer
coordination, hence discrimination by size becomes less important. For example
going from 2,6-diisopropyl to 2,6-dimethyl changes the MA incorporation level
from ca. 4 to 15–20% [29]. At the same time, decreasing the size of the ortho
substituents causes the molecular weight of the polymer to drop. Thus, the
improvement in comonomer incorporation is gained at the cost of significant
decrease of the polymer molecular weight.

Although steric effects have a significant influence on the activity of a-
diimine catalysts in ethene homopolymerization, they do not affect their cata-
lytic activity in ethene-MA copolymerization. Large aryl substituents increase
the monomer insertion rate, but at the same time they hinder the displacement
of the chelate ring formed upon MA insertion, which is believed to control the
overall reaction rate.

The steric hindrance of the a-diimine ligand influences the regioselectivity of
the comonomer insertion. DFT calculations show that encumbered ligands
decrease the preference of MA for 2,1 insertion by destabilizing its transition state
with regard to that of the competing 1,2 insertion pathway [106]. Accordingly, Sen
reasoned that such destabilization should be even more pronounced for a bulkier
ligand, such as MMA. Overriding the preference for 2,1 insertion selectivity have
some positive effects, such as preventing the formation of unreactive a-function-
alized intermediates and avoiding homolytic decomposition which leads to the
formation of free radicals. Indeed, MMA reacts with the Pd catalyst selectively
affording the 1,2 insertion product B5 (Fig. 4.9) but the reaction is very slow.
Compared with ethene, MMA is too unreactive and does not incorporate. Proba-
bly, the same steric effects responsible for the inversion of the regioselectivity are
also the cause of the low reactivity of this monomer [105].
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The cyclophane-based catalyst B7 (Scheme 4.30) provides a very interesting
example of how an appropriate ligand design provides control on certain aspects of
the copolymerization process [153]. In spite of being more sterically crowded, this
catalyst achieves up to 20 mol% incorporation of methyl or t-butyl acrylate, sig-
nificantly more than the analogous catalyst with 2,6-diisopropylphenyl substituents.
This might seem paradoxical on the light of the previously commented effect of the
ligand size on MA incorporation, but it has been explained by the disruption of the
Curtin–Hammett mechanism of monomer discrimination described in Sect. 4.3 (see
Scheme 4.8). The cyclophane ligand encapsulates the metal center, preventing the
associative exchange of coordinated monomers [154]. The exchange of ethene and
acrylate monomers in the coordination sphere of Pd becomes so slow that it cannot
be detected by NMR spin recovery experiments. Thus, monomer discrimination
ceases to be under thermodynamic control, and higher incorporation of the weaker
binding acrylate monomer takes place. Kinetic measurements have shown that
relative insertion rates of ethene and MA in the Pd–C bond catalysts are nearly the
same in the cyclophane and 2,6-diisopropylphenyl substituted catalysts, demon-
strating that the differences in the MA incorporation values emanate exclusively
from the disruption of the associative monomer exchange equilibrium.

4.5.4.2 Electronic Effects

Electronic effects exert an important influence on the activity of olefin polymer-
ization catalysts, and particularly on their ability to incorporate polar comonomers.
The electric charge of the catalyst has a deep effect on the metal electrophilicity
and is one of the most important factors that determine their tolerance to polar
functionalities. As discussed in Sect. 4.2, neutral catalysts are expected to facilitate
polar comonomer incorporation. However, decreasing the positive charge at the
metal center has a negative side, as the benefits on the improved tolerance to polar
monomers are counteracted by poorer performance as polymerization catalysts.
Specially designed ligands that behave as electron buffers may help to regulate
electron density on the metal center, optimizing the balance between tolerance
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polar groups and high catalytic activity (Fig. 4.12). Zwitterionic iminocarbox-
amidato catalysts (M) constitute an interesting approach to this concept (see also
Chap. 2, Vol. 35). These are very active catalysts for ethene polymerization [44],
but their capacity for the incorporation of polar comonomers seems to be very
limited. For ER3 = AlMe3 these catalysts polymerize ethene in the presence of
10-undecen-1-ol, incorporating very small amounts of the comonomer [155].
PymNox catalysts (I) represent another case in which the electric charge is de-
localized in the ligand [53]. This class of complexes relate to the neutral sali-
cylaldiminato catalysts by replacement of the anionic phenolato fragment by a
neutral pyridine-N-oxide unit. However, the two types of ligands probably have
very similar donor capabilities because aromatic N-oxides have a strongly dipolar
electronic structure, with a large fraction of negative charge sitting at the oxygen
atom. The active species involved in polymerization with PymNox catalysts are
cationic, but as a result of the peculiar electronic structure of the ligand, PymNox
catalysts are best described as a resonance hybrid with a delocalized positive
charge. As a result, it can be expected that the PymNox complexes should exhibit
intermediate properties between those of typical cationic and neutral catalysts.
Accordingly, they are one order of magnitude more active than the analogous
salicylaldiminato catalysts in ethene polymerization, but at the same time they
show good tolerance towards polar molecules and one of them (R0 = Me) copo-
lymerizes ethene and MA with ca. 1 mol% incorporation.

Pd-a-diimine complexes bearing electron donor or withdrawing substituents in
the para position of the aryl substituents show different capability for MA
incorporation [29]. Guan has carried out a detailed study of the electronic effects
on the catalysts represented in Scheme 4.31 [156]. As can be seen, MA incor-
poration increases as the substituents become more electron donor. Catalysts with
stronger electron-donor ligands maintain higher catalytic activity in the presence
of the polar comonomer, while those with electron-withdrawing groups become
readily deactivated at sufficiently high comonomer concentrations. This is
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consistent with the idea that a somewhat less electrophilic metal center should be
more adequate for polar comonomer incorporation. It also suggests that fine-tuning
of the donor capacity of the ligand can significantly improve the polar como-
nomner incorporation capability.

4.5.4.3 Cooperative Effects

A very promising strategy for enhancing the performance of olefin polymerization
catalysts consists in building binuclear structures where complex cooperative
interactions between metal centers can emerge. Marks has studied extensively the
effects of nuclearity and proximity of metal centers in group 4 catalysts containing
two metal units. The forced proximity of the metal centers has a significant impact
on both catalytic activity and monomer enchainment [157]. The same approach
has been applied to late transition metal catalysts. Binuclear complexes formed by
tethered phosphinoenolato [158–160] or salicylaldiminato [161–163] units have
been prepared. Compared to similar monomeric catalysts, many of these catalysts
show significant differences on activity, tolerance to polar solvents or the
branching topology of the resulting polymers. It has been demonstrated that
appropriate design of binuclear salicylaldiminato complexes leads to remarkable
enhancements on their capability to incorporate polar comonomers (Fig. 4.13).
In 2005, Lee reported that the binuclear complexes D5–D7 incorporate function-
alized norbornenes two to three times more efficiently than similar mononuclear
catalysts [164]. Interestingly, the amount of comonomer incorporated by these
catalysts does not show a linear dependency on the feed composition, as it
increases more sharply at higher comonomer concentrations. The effectiveness of
the binuclear arrangement depends on the size of the linker, increasing as
D6 \ D5 \ D7. More recently, Marks has advanced further on this concept,
developing a new bimetallic catalyst design, D8, which incorporates both nickel
centers in a rigid salicylaldiminato-type structure based on a central naphthalene
core [152, 165]. In addition to the substantial effects on the catalyst activity and
branching degree observed in ethene homopolymerization, the capability of these
catalysts to incorporate functionalized norbornenes is four times of the related
mononuclear catalysts. Furthermore, the binuclear catalyst exhibits a notable
capability for incorporating acrylate comonomers, up 8–9% MMA and 11% MA,
which is a rather unique property considering that classic salicylaldiminato com-
plexes are rapidly deactivated by this monomer (see Sect. 4.4).
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It is believed that the enhancement of the comonomer incorporation capability
of bimetallic catalysts is due to the ability of the two active centers to cooperate
binding both the polar and the vinyl groups, hence facilitating the migratory
insertion pathway (Scheme 4.32) [152, 157, 164]. According to this explanation,
cooperativity would be maximized when the separation between the metal centers
matches the size of the polar comonomer.

Molecular models of complexes D5–D7 indicate that the distance between
metal centers in D7, ca. 7.3 Å, is similar to the size of the functional norbornene
monomers, while the metal–metal separations in D5 and D6 are too long or too
short, respectively. This could justify why D7 is the best catalyst of the group. The
metal–metal distance in the naphthalene derivative D8 is shorter, and therefore is
best suited for the incorporation of the smaller acrylate monomers.

4.5.4.4 Palladium Phosphinosulfonato Catalysts, a System
Without Nitrogen-Based Ligands

To conclude this section, palladium phosphinosulfonato complexes will be exam-
ined and compared with other group 10 catalysts containing nitrogen-based ligands.
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Phosphinosulfonato catalysts combine two features that help to increase catalyst
tolerance to polar monomers: they are palladium-based and, in addition, electri-
cally neutral. This combination is unusual amongst polymerization catalysts,
probably because the intermediate alkyl or hydride complexes readily decompose
by reductive coupling reactions that are common in Pd chemistry. The very low
nucleophilicity and basicity of the sulfonate group is probably fundamental to
prevent such processes [8].

One of the most obvious differences between catalysts containing N- (either
N,N or N,O donors) and P,O based ligands (phosphinosulfonato, phosphinoenolato
and other related ligands) is that bulky 2,6-disubstituted aryls are not required to
produce polyethylene in the latter case. This points out important differences in the
mechanisms regulating chain growth in the two families of catalysts. As discussed
in Sect. 4.3, b-H elimination is faster for palladium a-diimine catalysts than chain
propagation; thus, molecular weight control depends on the ability of bulky aryl
substituents to hinder associative chain displacement by blocking the axial posi-
tions of the complex. In contrast, theoretical calculations for phosphinosulfonato
catalysts [117, 166] have shown that the slower rate of chain transfer relative to
chain propagation is due to the comparatively difficult b-H elimination. Of course,
steric effects can add to this factor, and the molecular weight of the polymers is
further increased if the phosphinosulfonato ligand is supplemented with bulky aryl
substituents on the P atom [62]. The magnitude of the energy barriers for b-H
elimination and ethene insertion are similar, therefore chain propagation prevails
at high ethene concentration (giving rise to high molecular weight, linear
polymers), while chain transfer and chain walking become dominant at low
ethene pressure [153, 166].2 That palladium phosphinosulfonato catalysts have
chain-walking capability is evidenced when [Pd(Me)(Py)(P–O)] (P–O: phos-
phinosulfonato) reacts with 6-chloro-1-hexene in the absence of ethene.
This reaction produces a mixture of chlorinated olefin oligomers and the
corresponding chlorocomplex [Pd(Cl)(Py)(P–O)], as a result of b-chloride
abstraction that requires chain walking migration of the metal to the vicinity of the
chlorine atom [63].

Another important characteristic of the phosphinosulfonato ligands is the
extreme disparity of the electronic properties of their two donor centers, a strongly
r donor and moderate p acceptor phosphine fragment and a weakly r-donor
sulfonato group. It should be recalled here that the mechanism of olefin poly-
merization by square-planar complexes containing non-symmetrical ligands
involves two sets of cis–trans isomeric intermediates that alternate along the
reaction pathway (see Sect. 4.3). Isomers having the alkyl chain in trans to
the sulfonato group (the weaker r-donor) are thermodynamically more stable,
while those with the alkyl in trans to the phosphine group are more reactive

2 Note the contrast with the Pd a-diimine system: in this case the rate of insertion is independent
on the monomer concentration. This is due to the fact that here the resting state is the p-ethene
complex and the rate-limiting step is the intramolecular monomer insertion.
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(Scheme 4.33). DFT calculations show that ethene insertion will be much more
favorable for the less stable complex F2P than for the stable isomer F2O. The
energy difference between the two insertion barriers is very large in this system
(10.7 vs. 31.3 kcal/mol), therefore cis/trans isomerization of the p-olefin isomers
constitutes the only feasible mechanism for chain propagation, as discussed pre-
viously for the Ni salicylaldiminato system. Normally, cis–trans isomerization is
considerably more difficult for Pd because the energy of tetrahedral intermediates
is prohibitively high. However, DFT calculations by Morokuma have disclosed
another remarkable property of the phosphinosulfonato ligand: it provides a low-
energy path for cis–trans isomerization. Simultaneous interaction of Pd with two
oxygen atoms of the SO3 group enables Berry’s pseudorotation, which is a process
typical for five-coordinated species that exchanges the relative positions of the
ligands with a low energy barrier [166]. It is possible that the lack of such an
isomerization mechanism is the reason why other Pd complexes with non-sym-
metrical P,O ligands are inactive in olefin polymerization, remaining frozen in
their most stable thermodynamic configurations [167]. Ziegler has calculated that
the effective insertion barrier for ethene in phosphinosulfonato catalysts is
18.2 kcal/mol, very close to the value calculated by the same author for the Pd-a-
diimine system [117].

Some of the properties of phosphinosulfonato catalysts can be interpreted on
the basis of the low symmetry of the ligand and the strong labilizing trans effect of
the P atom. Thus, the energy barrier for migratory insertion is relatively low in this
system because, in the reactive isomers F2P, the P atom labilizes the alkyl chain
placed in trans, increasing its migratory ability. In the stable form of the catalyst
(F1O, F2O), the alkyl group is cis to the P donor. Therefore, the P atom directs its
strong trans effect to the position available for the monomer, which decreases the
tendency of r donors to coordinate in this site. Very likely, this effect contributes
to improve the tolerance of the system to polar substances and favors the
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productive binding of polar monomers in p fashion. Similarly, the trans effect
increases the lability of the chelates formed upon insertion of polar monomers.
Based on the linear structure and random distribution of the MA units in the EMA
copolymer produced by phosphinosulfonato catalysts, Pugh and Drent deduced
that, in contrast to the Pd a-diimine system, strong 6-membered chelated inter-
mediates are not formed with these catalysts [58]. DFT calculations provide
additional support to this deduction [117], showing that coordination of the car-
bonyl oxygen to Pd is weaker in this system, and that the thermodynamic driving
force for the expansion of the chelate ring is very small (Scheme 4.34). Mecking
has also shown that any chelate formed by MA insertion is displaced even by
extremely weak ligands such as dmso [67]. Hence, if the rate-limiting step in the
ethene-MA copolymerization in the phosphinosulfonato system is the insertion
following MA incorporation, this is due to the intrinsically low reactivity of the
Pd–C bond in the resulting a-carbonyl substituted species. For comparison, the
reactivity of Ni–C bonds formed by MA in the salicylaldiminato system is too low
to undergo any further insertion (see Sect. 4.4). The weakness of the chelate
coordination allows multiple MA insertions when the MA/ethene ratio in the feed
is high enough [67, 70], in contrast with the a-diimine system, where the chelate
ring can be displaced only by ethene but not by the weaker binding MA
comonomer.

In summary, the stability and catalytic activity of neutral palladium phos-
phinosulfonato ligands are enhanced by their special features: (1) the intrinsically
high barrier to b-H elimination, producing high molecular weight and linear
polymers; (2) the strongly non-symmetrical configuration and the labilizing
influence of the P atom lowers the effective energy barrier for monomer insertion
and, at the same time, enhances the tolerance of the system by disfavoring trans r-
coordination of monomers or chelate formation; and (3) the sulfonato donor group
plays an essential role for the success of this class of catalysts providing a low
energy isomerization path between cis–trans isomers, and preventing reductive
coupling reactions that destabilize other neutral palladium complexes with anionic
ligands.

P
Pd

O

Polym
CO2Me

H

P
Pd

O

OMe

O

Polym

P
Pd

O O OMe

Polym
P

Pd
O O

Polym

OMe

-1.8 Kcal/mol

-1.6 Kcal/mol

+0.3 Kcal/mol

Scheme 4.34 Thermodynamic preferences for chelate formation with neutral phosphinosulfo-
nato catalysts

4 Challenges and Breakthroughs in Copolymerization of Olefins 251



4.6 Conclusion and Outlook

Development of olefin polymerization catalysts that are not only compatible with
polar comonomers, but capable of incorporating them into polyolefin molecules by
coordination-insertion mechanisms is an extremely challenging goal. After
15 years of intensive research, a good understanding of the difficulties associated
with the incorporation of polar comonomers has been gained. Early concerns, like
poisoning of the catalyst by the comonomer in its r-coordination mode are
presently considered as a relatively minor problem. In contrast, other difficulties
that had not been clearly foreseen, such as the low reactivity of functionalized
intermediates are currently deemed crucial to understand how polar monomers
affect catalyst activity and why certain systems undergo undesired radical poly-
merization processes. Gaining such knowledge would not have been possible
without the extraordinary mechanistic research carried out by Brookhart and other
authors, and the invaluable contribution of theoretical methods. The improved
understanding of the problems associated with the introduction of polar substances
in a coordination-insertion polymerization system has stimulated many researchers
to devise the means to solve them. Many creative proposals have been made, and
success has been achieved where the difficulties have appeared impossible to
overcome. Remarkable cases illustrate this statement. One of them is the devel-
opment of palladium phosphinosulfonato system, which demonstrated that copo-
lymerizing ethene in a controlled manner with important functionalized vinyls,
including acrylates, VA, VF, vinyl sulfones, etc., with catalysts based on coordi-
nation-insertion mechanisms is a real possibility. Perhaps the success of these
catalysts containing P,O ligands suggests that classic catalyst designs based on
nitrogen ligands devised by Brookhart or Grubbs in the last decade of the past
century could be, after all, not so well-suited for compatibility with polar mono-
mers as initially thought. However, very recent results have shown how cleverly
designed bimetallic catalysts based on nitrogen ligands can supply the deficiencies
of a single metal center with cooperative interaction of multiple active units.

So far, relatively few systems have been successful in the incorporation of polar
comonomers, and the recorded catalytic activities are still too low for practical
application in large-scale processes. Furthermore, using precious elements such as
Pd for production of bulk materials is not realistic, but this problem could be
alleviated in the future by developing efficient catalysts based on Ni or other
abundant first-row transition series metals. Fujita’s work with Ti phenoxiimine
catalysts appears particularly promising on this regard.

There is still a long way to go before olefin copolymerization catalysts capable
of controlled incorporation of MA, MMA or other polar comonomers become
attractive for industrial uses. However, Pd- and Ni-based catalysts are fulfilling
some of the most ambitious expectations in terms of control of the copolymeri-
zation process. In contrast with classic radical copolymerization techniques, these
catalysts offer for the first time the possibility of controlling the copolymer
molecular weight, microstructure and comonomer incorporation rate. In addition,
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it is now possible to control the distribution of the comonomer units, placing the
polar groups in branch terminations, randomly dispersed over the polymer mole-
cule, or generating controlled monomer/comonomer gradients. Work by Guan on
Pd a-diimine catalysts has demonstrated that it is possible to produce copolymers
with controlled topologies spanning from open structures to hyperbranched mol-
ecules. It is possible now to dream of polyfunctional materials prepared by rela-
tively simple olefin copolymerization reactions.
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