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Pyé-koko di i ka vwè lwen, maché ou ké vwè pli lwen.1

1 Creole proverb from Guadeloupe that can be translated: The coconut palm says
it sees far away, walk and you will see far beyond.





Preface of the First Edition

The preface is that part of a book which is written last, placed first, and
read least.

Alfred J. Lotka
Elements of Physical Biology

Baltimore: Williams & Wilkins Company 1925

The purpose of this book is to show how models of complex systems are built
up and to provide the mathematical tools indispensable for studying their
dynamics. This is not, however, a book on the theory of dynamical systems
illustrated with some applications; the focus is on modeling, so, in present-
ing the essential results of dynamical system theory, technical proofs of theo-
rems are omitted, but references for the interested reader are indicated. While
mathematical results on dynamical systems such as differential equations or
recurrence equations abound, this is far from being the case for spatially ex-
tended systems such as automata networks, whose theory is still in its infancy.
Many illustrative examples taken from a variety of disciplines, ranging from
ecology and epidemiology to sociology and seismology, are given.

This is not only an introductory text directed mainly to advanced under-
graduates in most scientific disciplines, but could also serve as a reference book
for graduates and young researchers. The material has been taught to junior
students at the École de Physique et de Chimie in Paris and the University
of Illinois at Chicago. It assumes that the reader has certain fundamental
mathematical skills, such as calculus.

Although there is no universally accepted definition of a complex system,
most researchers would describe a system of connected agents that exhibits
an emergent global behavior not imposed by a central controller, but resulting
from the interactions between the agents, as complex. These agents, may be
insects, birds, people, or companies, and their number may range from one
hundreds to millions.



viii Preface of the First Edition

Finding the emergent global behavior of a large system of interacting
agents using analytical methods is usually hopeless, and researchers there-
fore must rely on computer-based methods. Apart from a few exceptions,
most properties of spatially extended systems have been obtained from the
analysis of numerical simulations.

Although simulations of interacting multiagent systems are thought exper-
iments, the aim is not to study accurate representations of these systems. The
main purpose of a model is to broaden our understanding of general principles
valid for the largest variety of systems. Models have to be as simple as pos-
sible. What makes the study of complex systems fascinating is not the study
of complicated models but the complexity of unsuspected results of numerical
simulations.

As a multidisciplinary discipline, the study of complex systems attracts
researchers from many different horizons who publish in a great variety of
scientific journals. The literature is growing extremely fast, and it would be a
hopeless task to try to attain any kind of comprehensive completeness. This
book only attempts to supply many diverse illustrative examples to exhibit
that common modeling techniques can be used to interpret the behavior of
apparently completely different systems.

After a general introduction followed by an overview of various model-
ing techniques used to explain a specific phenomenon, namely, the observed
coupled oscillations of predator and prey population densities, the book is
divided into two parts. The first part describes models formulated in differen-
tial equations or recurrence equations in which local interactions between the
agents are replaced by uniform long-range ones and whose solutions can only
give the time evolution of spatial averages. Despite the fact that such models
offer rudimentary representations of multiagent systems, they are often able
to give a useful qualitative picture of the system’s behavior. The second part
is devoted to models formulated in terms of automata networks in which the
local character of the interactions between the individual agents is explicitly
taken into account. Chapters of both parts include a few exercises that, as
well as challenging the reader, are meant to complement the material in the
text. Detailed solutions to all exercises are provided.

Nino Boccara



Preface of the Second Edition

In this second edition, I essentially made some additions. I first added a few
extra footnotes to give some details on the main contributors cited in the
text, some more recent references, and a few new exercises also accompanied
by their solutions. Some exercises have been adapted from original publica-
tions, whose reference has always been given. Moreover, I added a framed text
listing all the important points discussed in the chapter just after the chap-
ter title, and a chapter’s summary in which are listed, with their definitions,
all the most important notions and essential results obtained in the chapter,
at the end of the chapter. Finally, at the end of the book before the list of
references, I added a glossary listing the meanings of all the specialized terms
used in the text. Chapter 6, which is dedicated to spatial models, has been
slightly expanded to include a somewhat more realistic agent-based model
than cellular automata models, in which the agents are not constrained to
occupy periodic locations. I supplemented the already rather extensive list of
references with a few more recent ones. The list of references includes either
articles or books to which I am referring to in the text or articles and books
which, I think, could be useful to the reader wishing to go beyond the material
I have presented.

Nino Boccara
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Notations

The essential mathematical notations used in the text are grouped below.

� Indicates the end of a proof
R Set of real numbers
R+ Set of positive numbers
C Set of complex numbers
Z Set of all integers
ZL Set of integers modulo L
N Set of positive integers
N0 Set of nonnegative integers
Q Set of rational numbers
∅ Empty set
x ∈ X x is an element of the set X
S ⊂ X S is a subset of X
A ∪B Set of elements either in A or in B
A ∩B Set of elements that are in both A and B
Ac Complement of set A
A \B Set of all elements in A that are not in B
A�B Set of elements either in A or in B but not in A and B
|A| Number of elements of set A
{x ∈ M | P (x)} All elements of M that have the property P (x)
a ∼ b a is equivalent to b
a⇒ b a implies b
a⇔ b a implies b and conversely

x� Largest integer less than or equal to x
�x Smallest integer greater than or equal to x
z Complex conjugate of z
m(A) Lebesgue measure of the set A
f : X → Y f is a mapping from the set X into the set Y



xvi Notations

f : x �→ f(x) Mapping f takes the point x to the point f(x)
f−1(x) Set of all preimages of x
f ◦ g Composite of mappings f and g, g being applied first
x ∈ R

n x is an element of the n-dimensional vector space R
n

x = (x1, x2, . . . , xn) x1, x2, . . . , xn are the components of vector x
‖x‖ Norm of vector x
dim(S) Dimension of (manifold) S
[a, b] Closed interval; i.e., {x ∈ R | a ≤ x ≤ b}
]a, b[ Open interval; i.e., {x ∈ R | a < x < b}
[a, b[ {x ∈ R | a ≤ x < b}
]a, b] {x ∈ R | a < x ≤ b}
d(x, y) Distance between points x and y in a metric space
N(x) Neighborhood of x
ẋ Time derivative of vector x
DX(x) Derivative of vector field X at x
DxX(x,μ) Derivative with respect to x of vector field X at (x,μ)
trA Trace of square matrix A
detA Determinant of square matrix A
diag[λ1, . . . , λn] Diagonal matrix whose diagonal elements are

λ1, . . . , λn
diag[B1, . . . , Bn] Block-diagonal matrix whose diagonal blocks are

B1, . . . , Bn
[a1,a2, . . . ,an] n× n matrix whose element aij is the j-component of

the n-dimensional vector ai
spec(A) Spectrum of linear operator A
f(x)x→0= O

(
g(x)

)
There exist two positive constants A and a such that

|f(x)| ≤ A|g(x)| for |x| < a

f(x)x→0= o
(
g(x)

)
For any ε > 0, there exists δ > 0 such that

|f(x)| ≤ ε|g(x)| for |x| < δ
f(x) ∼ g(x) f(x) and g(x) have the same asymptotic behavior
f(x+ 0) limε→0 f(x+ ε), where ε > 0
f(x− 0) limε→0 f(x+ ε), where ε < 0
a ≈ b a is approximately equal to b
a � b a is less than or approximately equal to b
a � b a is greater than or approximately equal to b
G(N,M) Graph of order N and size M
A(G) Adjacency matrix of graph G
V (G) Set of vertices of graph G
E(G) Set of edges of graph G
N(x) Neighborhood of vertex x of a graph
d(x) Degree of the vertex x of a graph
din(x) In-degree of the vertex x of a digraph
dout(x) Out-degree of the vertex x of a digraph
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LN Characteristic path length of network N .
CN Clustering coefficient of network N .
DN Diameter of network N .(

n
k

)
Binomial number.

P (X = x) Probability that the random variable X is equal to x.
FX Cumulative distribution function of the random

variable X defined by FX(x) = P (X ≤ x).
fX Probability density function of the absolutely

continuous random variable X .
Xn

d−→ X Sequence of random variables (Xn) converges
in distribution to X .

m̃ Median of a distribution defined by F (m̃) = 1
2 .

〈X〉 Average value of random variable X .
mr(X) Moment of order r of a random variable X ;

i.e., mr(X) = 〈Xr〉.
σ2(X) Variance of a random variable X ;

i.e., σ2(X) = m2(X)−m2
1(X).

ϕX Characteristic function of the random variable X .
N(m,σ2) Normal random variable on mean m and variance σ2.
f̂ Fourier transform of function f .
Lα,β Probability density function of stable Lévy

distribution.
ft Probability density of a Student’s t-distribution.
W = {Wt | t ≥ 0} Stochastic process.
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Introduction

The essential points of this first chapter are
• The definition of a complex system
• The notion of emergence
• The definition of a model
• The notion of dynamical system

This book is about the dynamics of complex systems. Roughly speaking,
a system is a collection of interacting elements making up a whole such as, for
instance, a mechanical clock. While many systems may be quite complicated,
they are not necessarily considered to be complex. Today, most authors agree
on the essential properties a system has to possess to be called complex. The
first section is devoted to the description of these properties.

To interpret the time evolution of a system, scientists build up models,
which are simplified mathematical representations of the system. The exact
purpose of a model and what its essential features should be is explained in
the second section.

The mathematical models that will be discussed in this book are dynami-
cal systems.1 A dynamical system is essentially a set of equations whose so-
lution describes the evolution, as a function of time, of the state of the system.
There exist different types of dynamical systems. Some of them are defined in
the third section.

1 There is an extensive literature on mathematical modeling. The reader may, for
example, consult [11,88,163,233].

N. Boccara, Modeling Complex Systems: Second Edition, Graduate Texts in Physics, 1
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2 1 Introduction

1.1 What is a Complex System?

Outside the nest, the members of an ant colony accomplish a variety of fas-
cinating tasks, such as foraging and nest maintenance.2 Deborah Gordon’s
work [192] on harvester ants3 has shed considerable light on the processes by
which members of an ant colony assume various roles.4 Outside the nest, ac-
tive ant workers can perform four distinct tasks: foraging, nest maintenance,
patrolling, and midden work. Foragers travel along cleared trails around the
nest to collect mostly seeds and, occasionally, insect parts.5 Nest-maintenance
workers modify the nest’s chambers and tunnels and clear sand out of the nest
or vegetation from the mound and trails. Patrollers choose the direction for-
agers will take each day and also respond to damage to the nest or an invasion
by alien ants. Midden workers build and sort the colony’s refuse pile.

Gordon [190,191] has shown that task allocation is a process of continual
adjustment. The number of workers engaged in a specific task is appropriate
to the current condition. When small piles of mixed seeds are placed out-
side the nest mound, away from the foraging trails but in front of scouting
patrollers, early in the morning, active recruitment of foragers takes place.
When toothpicks are placed near the nest entrance, early in the morning at
the beginning of nest-maintenance activity, the number of nest-maintenance
workers increases significantly.

The surprising fact is that task allocation is accomplished without any
central control. The queen does not decide which worker does what. No master
ant could possibly oversee the entire colony and broadcast instructions to the
individual workers. An individual ant can only perceive local information from
the ants nearby through chemical and tactile communication. Each individual
ant processes this partial information to decide which of the many possible
functional roles it should play in the colony.

The cooperative behavior of an ant colony that results from local interac-
tions between its members and not from the existence of a central controller
is referred to as emergent behavior.6 Emergent properties are defined as large-
scale effects of locally interacting agents that are often surprising and hard to
predict even in the case of simple interactions. Such a definition is not very
satisfying: what might be surprising to someone could be not, so surprising
to someone else.

2 There exist a large number of interesting publications on ants. Here are a few
recent ones: [128,132,215,236].

3 Pogonomyrmex barbatus. They are called harvester ants because they mostly eat
seeds, which they store inside their nests.

4 The interested reader might consult Deborah Gordon’s list of publications at
http://www.stanford.edu/ dmgordon/publications.html.

5 On foraging theory, see [235].
6 The concept of emergence, which essentially states that the whole might be greater

than the sum of its parts, is not really a new idea, it was already familiar to
Aristotle (384 BC–322–BC).
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A system such as an ant colony, which consists of large populations of
connected agents (that is, collections of interacting elements), is said to be
complex if there exists an emergent global dynamics resulting from the actions
of its parts rather than being imposed by a central controller.

Ant colonies are not the only multiagent systems that exhibit coordinated
behaviors without a centralized control.

Animal groups display a variety of remarkable coordinated behaviors [79,
358]. All the members in a school of fish change direction simultaneously
without any obvious cue; while foraging, birds in a flock alternate feeding
and scanning. No individual in these groups has a sense of the overall orderly
pattern. There is no apparent leader. In a school of fish, the direction of each
member is determined by the average direction of its neighbors [425,436]. In
a flock of birds, each individual chooses to scan for predators if a majority
of its neighbors are eating and chooses to eat if a majority of its neighbors
are already scanning [29]. The existence of sentinels in animal groups engaged
in dangerous activities is a typical example of cooperation. Recent studies
suggest that guarding may be an individual’s optimal activity once its stomach
is full and no other animal is on guard [112].

Self-organized motion in schools of fish, flocks of birds, or herds of ungulate
mammals is not specific to animal groups. Vehicle traffic on a highway exhibits
emergent behaviors, such as the existence of traffic jams that propagate in the
opposite direction of the traffic flow, keeping their structure and characteristic
parameters for a long time [239], or the synchronization of average velocities
in neighboring lanes in congested traffic [240]. Similarly, pedestrian crowds
display self-organized spatiotemporal patterns that are not imposed by any
regulation: on a crowded sidewalk, pedestrians walking in opposite directions
tend to form lanes along which walkers move in the same direction.

A high degree of self-organization is also found in social networks that
can be viewed as graphs.7 The collection of scientific articles published in
refereed journals is a directed graph, the vertices being the articles and the
arcs being the links connecting an article to the papers cited in its list of
references. A recent study [381] has shown that the citation distribution –
that is, the number of papers N(x) that have been cited a total of x times –
has a power-law tail, N(x) ∼ x−α with α ≈ 3. Minimally cited papers are
usually referenced by their authors and close associates, while heavily cited
papers become known through collective effects.

Other social networks, such as the World Wide Web or the casting pat-
tern of movie actors, exhibit a similar emergent behavior [43]. In the World
Wide Web, the vertices are the HTML8 documents, and the arcs are the links

7 A directed graph (or digraph) G consists of a nonempty set of elements V (G),
called vertices, and a subset E(G) of ordered pairs of distinct elements of V (G),
called directed edges or arcs.

8 Hypertext Markup Language.
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pointing from one document to another. In a movie database, the vertices are
the actors, two of them being connected by an undirected edge if they have
been cast in the same movie.

In October 1987, major indexes of stock market valuation in the United
States declined by 30% or more. An analysis [414] of the time behavior of the
U.S. stock exchange index S&P 5009 before the crash identifies precursory
patterns suggesting that the crash may be viewed as a dynamical critical
point. That is, as a function of time t, the S&P 500 behaves as (t − tc)0.7,
where t is the time in years and tc ≈ 1987.65. This result shows that the stock
market is a complex system that exhibits self-organizing cooperative effects.

All the examples of complex systems above exhibit some common charac-
teristics:

1. They consist of a large number of interacting agents.
2. They exhibit emergence; that is, a self-organizing collective behavior

difficult to anticipate from the knowledge of the agents’ behavior.
3. Their emergent behavior does not result from the existence of a central

controller.

The appearance of emergent properties is the single most distinguishing
feature of complex systems. Probably, the most famous example of a system
that exhibits emergent properties as a result of simple interacting rules be-
tween its agents is the game of life invented by John H. Conway.10 This game
is played on an (infinite) two-dimensional square lattice. Each cell of the lat-
tice is either on (occupied by a living organism) or off (empty). If a cell is off,
it turns on if exactly three of its eight neighboring cells (four adjacent orthog-
onally and four adjacent diagonally) are on (birth of a new organism). If a cell
is on, it stays on if exactly two or three of its neighboring cells are on (sur-
vival), otherwise it turns off (death from isolation or overpopulation). These
rules are applied simultaneously to all cells. Populations evolving according to
these rules exhibit endless unusual and unexpected changing patterns [174].

“To help people explore and learn about decentralized systems and emer-
gent phenomena,” Mitchell Resnick11 developed an agent-based simulation

9 S&P refers to Standard and Poor’s that defines itself as “the world’s foremost
provider of independent credit ratings, indices, risk evaluation, investment re-
search, and data.” The stock market index S&P 500 comprises 500 American
companies covering about 75% of the American Equity market by capitaliza-
tion. The list of these 500 companies can be found at the Wikipedia web site:
http://en.wikipedia.org/wiki/List of S&P 500 companies.

10 John Horton Conway is a prolific mathematician who is the author of many con-
tributions to recreational mathematics. Born in 1937 in England, he is currently
professor at Princeton University, and has been elected fellow of Royal Society in
1981.

11 See Mitchell Resnick’s Web page: http://mres.www.media.mit.edu/people/

mres. Resnick’s research is described in his book [383].
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language called StarLogo12 modeling environment. Among the various sam-
ple projects consider, for example, the project inspired by the behavior of
termites gathering wood chips into piles. Each cell of a 100× 100 square lat-
tice is either empty or occupied by a wood chip or/and a termite. Each termite
starts wandering randomly. If it bumps into a wood chip, it picks the chip up
and continues to wander randomly. When it bumps into another wood chip, it
finds a nearby empty space and puts its wood chip down. With these simple
rules, the wood chips eventually end up in a single pile (Fig. 1.1). Although
rather simple, this model is representative of a complex system. It is inter-
esting to notice that while the gathering of all wood chips into a single pile
may, at first sight, look surprising, on reflection it is no wonder. Actually, it is
clear that the number of piles cannot increase, and, since the probability for
any pile to disappear is nonzero, this number has to decrease and ultimately
become equal to one.13

Fig. 1.1. StarLogo sample project termites. Randomly distributed wood chips (left
figure) eventually end up in a single pile (right figure). Density of wood: 0.25; number
of termites: 75

12 StarLogo is freeware that can be downloaded from the StarLogo Web Page:
http://education.mit.edu/starlogo/. To download the new version called
StarLogo TNG go to http://education.mit.edu/drupal/starlogo-tng. For
a simulation of ants’ emergent behavior using StarLogo, visit http://www.

thepangburns.com/jesse/projects/ant simulation.php.
13 Here is a similar mathematical model that can be solved exactly. Consider a

random distribution of N identical balls in B identical boxes, and assume that,
at each time step, a ball is transferred from one box to another, not necessarily
different, with a probability P (n → n ± 1) of changing by one unit the number
n of balls in a given box depending only on the number n of balls in that box.
Moreover, if this probability is equal to zero for n = 0 (an empty box stays
empty), then it can be shown that the probability for a given box to become
empty is equal to 1 − n/N . Hence, ultimately all balls end up in one unique box.
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1.2 What is a Model?

A model is a simplified mathematical representation of a system.14 In the
actual system, many features are likely to be important. Not all of them,
however, should be included in the model. Only the few relevant features that
are thought to play an essential role in the interpretation of the observed
phenomena should be retained.15 Models should be distinguished from what
is usually called a simulation. To clarify this distinction, it is probably best
to quote John Maynard Smith [307]:

If, for example, one wished to know how many fur seals can be
culled annually from a population without threatening its future sur-
vival, it would be necessary to have a description of that population,
in its particular environment, which includes as much relevant detail
as possible. At a minimum, one would require age-specific birth and
death rates, and knowledge of how these rates varied with the density
of the population, and with other features of the environment likely
to alter in the future. Such information could be built into a simula-
tion of the population, which could be used to predict the effects of
particular management policies.

The value of such simulations is obvious, but their utility lies
mainly in analyzing particular cases. A theory of ecology must make
statements about ecosystems as a whole, as well as about particular
species at particular times, and it must make statements which are
true for many different species and not for just one. Any actual ecosys-
tem contains far too many species, which interact in far too many
ways, for simulation to be a practical approach. The better a simula-
tion is for its own purposes, by the inclusion of all relevant details, the
more difficult it is to generalize its conclusions to other species. For
the discovery of general ideas in ecology, therefore, different kinds of
mathematical description, which may be called models, are called for.
Whereas a good simulation should include as much detail as possible,
a good model should include as little as possible.

A simple model, if it captures the key elements of a complex system, may
elicit highly relevant questions.

For example, the growth of a population is often modeled by a differential
equation of the form

dN
dt

= f(N), (1.1)

where the time-dependent function N is the number of inhabitants of a given
area. It might seem paradoxical that such a model, which ignores the influence

14 On models in science, see the eponymous article in the Stanford Encyclopedia of
Philosophy at http://plato.stanford.edu/entries/models-science/.

15 On the strategy of model building, consult [17,265].
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of sex ratios on reproduction, or age structure on mortality, would be of any
help. But many populations have regular sex ratios and, in large populations
near equilibrium, the number of old individuals is a function of the size of
the population. Thus, taking into account these additional features is not as
essential as it seems.16

To be more specific, in an isolated population (that is, if there is neither
immigration nor emigration), what should be the form of a reasonable function
f? According to Hutchinson17 [228], any equation describing the evolution of
a population should take into account the following:

1. Every living organism must have at least one parent of like kind.
2. In a finite space, due to the limiting effect of the environment, there is an

upper limit to the number of organisms that can occupy that space.

The simplest model satisfying these two requirements is the so-called
logistic model :

dN
dt

= rN

(
1− N

K

)
. (1.2)

The word “logistic” was coined by Pierre François Verhulst18 who used this
equation for the first time in 1838 to discuss population growth.19 His pa-
per [435] did not, at that time, arouse much interest. Verhulst’s equation was
rediscovered about 80 years later by Raymond Pearl and Lowell J. Reed. After
the publication of their paper [361], the logistic model began to be used exten-
sively.20 Interesting details on Verhulst’s ideas and the beginning of scientific
demography can be found in the first chapter of Hutchinson’s book [228].

In (1.2), the constant r is referred to as the intrinsic rate of increase and
K is called the carrying capacity because it represents the population size

16 For a comprehensive treatment of population models, the interested reader should
consult Robert Schoen’s book [402]. See also [273] which studies how accurate
these models are, and [52], which is available online.

17 George Evelyn Hutchinson (1903–1991) was an Anglo-American zoologist consid-
ered the father of American limnology, i.e., the study of bodies of freshwater. He
was elected to the Academy of Arts and Sciences in 1949, and to the National
Academy of Science in 1950.

18 Pierre François Verhulst (1804–1849) was educated in Brussels and obtained a
doctorate in number theory from the University of Ghent (Belgium) in 1825. He
is known for having published in 1838 the famous logistic equation, which was
rediscovered in 1920 by the American biologist Raymond Pearl (1879–1940) and
the American biostatistician Lowell J. Reed (1886–1966), who became President
of the John Hopkins University in 1953.

19 The French word “logistique” had, since 1840, the same meaning as the word
“logistics” in English, but in old French, since 1611, it meant “l’art de compter”;
i.e., the art of counting. See Le Nouveau Petit Robert, dictionnaire alphabétique
et analogique de la langue française (Paris : Dictionnaires Le Robert, 2001).

20 For a critical review of experimental attempts to verify the validity of the logistic
model, see W. Feller [156].
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that the resources of the environment can just maintain (carry) without a
tendency to either increase or decrease. The logistic equation is clearly a very
crude model but, in spite of its obvious limitations,21 it is often a good starting
point.22

The logistic equation contains two parameters. This number can be re-
duced if we express the model in non-dimensional terms. Since r has the
dimension of the inverse of a time and K has the dimension of a number of
individuals, if we put

τ = rt and n =
N

K
,

(1.2) becomes
dn
dτ

= n(1− n). (1.3)

This equation contains no more parameters. That is, if the unit of time is r−1

and the unit of number of inhabitants is K, then the reduced logistic equation
(1.3) is universal; it is system independent.

Equation (1.3) is very simple and can be integrated exactly.23 Most
equations cannot be solved analytically. But, following ideas going back to
Poincaré,24 a geometrical approach, developed essentially during the second
half of the twentieth century, gives, in many cases of interest, a description of
the qualitative behavior of the solutions.

The reduction of equations to a dimensionless form simplifies the mathe-
matics and, usually, leads to some insight even without solving the equation.
Moreover, the value of a dimensionless variable carries more information than
the value of the variable itself.

For simple models such as (1.2), the definition of scaled variables is
straightforward. If the model is not so simple, reduced variables may be de-
fined using a systematic technique. To illustrate this technique, consider the
following model of insect population outbreaks due to Ludwig et al. [284].

Certain insect populations exhibit outbreaks in abundance as they move
from a low-density equilibrium to a high-density equilibrium and back again.
This is the case, for instance, of the spruce budworm (Choristoneura fumifer-
ana), which feeds on the needles of the terminal shoots of spruce, balsam fir,
and other evergreen trees in eastern North America.

In an immature balsam fir and white spruce forest, the quantity of food
for the budworms is low and their rate of recruitment (that is, the amount

21 See, e.g., Chapter 6 of Begon, Harper, and Townsend’s book [46].
22 On the history of the logistic model, see [241].
23 Its general solution reads:

n(τ ) =
1

1 + ae−τ
,

where a is an integration constant whose value depends upon the initial value
n(0).

24 See Chap. 3.
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by which the population increases during one-time unit) is low. It is then
reasonable to assume that the budworm population is kept at a low-density
equilibrium by its predators (essentially birds). However, as the forest gradu-
ally matures, more food becomes available, the rate of budworm recruitment
increases, and the budworm density grows. Above a certain rate of recruitment
threshold, avian predators can no longer contain the growth of the budworm
density, which jumps to a high-level value. This outbreak of the budworm
density quickly defoliates the mature trees; the forest then reverts to immatu-
rity, the rate of recruitment decreases, and the budworm density jumps back
to a low-level equilibrium.

The budworm can increase its density several hundredfold in a few years.
Therefore, a characteristic time interval for the budworm is of the order of
months. The trees, however, cannot put on foliage at a comparable rate. A
characteristic time interval for trees to completely replace their foliage is of the
order of 7 to 10 years. Moreover, in the absence of the budworm, the life span
of the trees is of the order of 100 years. Therefore, in analyzing the dynamics
of the budworm population, we may assume that the foliage quantity is held
constant.25

The main limiting features of the budworm population are food supply
and the effects of parasites and predators. In the absence of predation, we
may assume that the budworm density B satisfies the logistic equation

dB
dt

= rBB

(
1− B

KB

)
,

where rB and KB are, respectively, the intrinsic rate of increase of the spruce
budworm and the carrying capacity of the environment.

Predation may be taken into account by subtracting a term p(B) from the
right-hand side of the logistic equation. What conditions should satisfy the
function p?

1. At high prey density, predation usually saturates. Hence, when B becomes
increasingly large, p(B) should approach an upper limit a (a > 0).

2. At low prey density, predation is less effective. Birds are relatively unselec-
tive predators. If a prey becomes less common, they seek food elsewhere.
Hence, when B tends to zero, p(B) should tend to zero faster than B.

A simple form for p(B) that has the properties of saturation at a level a
and vanishes like B2 is

p(B) =
aB2

b2 +B2
.

The positive constant b is a critical budworm density. It determines the scale
of budworm densities at which saturation begins to take place.

25 This adiabatic approximation is familiar to physicists. For a nice discussion of its
validity and its use in solid-state theory, see Weinreich’s book [442].
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The dynamics of the budworm density B is then governed by

dB
dt

= rBB

(
1− B

KB

)
− aB2

b2 +B2
. (1.4)

This equation, which is of the general form (1.1), contains four parameters:
rB , KB, a, and b. Their dimensions are the same as, respectively, t−1, B,
Bt−1, and B. Since the equation relates two variables B and t, we have to
define two dimensionless variables

τ =
t

t0
and x =

B

B0
. (1.5)

To reduce (1.4) to a dimensionless form, we have to define the constants t0
and B0 in terms of the parameters rB, KB, a, and b. Replacing (1.5) into
(1.4), we obtain

dx
dτ

= rBt0x

(
1− xB0

KB

)
− aB0t0x

2

b2 + x2B2
0

.

To reduce this equation to as simple a form as possible, we may choose either

t0 = r−1
B and B0 = KB,

or
t0 = ba−1 and B0 = b.

The first choice simplifies the logistic part of (1.4), whereas the second one
simplifies the predation part. The corresponding reduced forms of (1.4) are,
respectively,

dx
dτ

= x(1 − x)− αx2

β2 + x2
(1.6)

and
dx
dτ

= rx
(
1− x

k

)
− x2

1 + x2
. (1.7)

To study budworm outbreaks as a function of the available foliage per acre
of forest, the second choice is better. To study the influence of the predator
density, however, the first choice is preferable. Both reduced equations contain
two parameters: the scaled upper limit of predation α and the scaled critical
density β in the first case and the scaled rate of increase r and the scaled
carrying capacity k in the second case.

It is not very difficult to prove that, if the evolution of a model is governed
by a set of equations containing n parameters that relate variables involving d
independent dimensions, the final reduced equations will contain n− d scaled
parameters.
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1.3 What is a Dynamical System?

The notion of a dynamical system includes the following ingredients: a phase
space S whose elements represent all the possible states of the system26; time t,
which may be discrete or continuous; and an evolution law (that is, a rule that
allows determination of the state at time t from the knowledge of the states
at all previous times). In most examples, knowing the state at time t0 allows
determination of the state at any time t > t0.27

The two models of population growth presented in the previous section
are examples of dynamical systems. In both cases, the phase space is the set
of nonnegative real numbers, and the evolution law is given by the solution of
a nonlinear first-order differential equation of the form (1.1).

The name dynamical system arose, by extension, after the name of the
equations governing the motion of a system of particles. Today, the expression
dynamical system is used as a synonym of nonlinear system of equations.28

Dynamical systems may be divided into two broad categories. According
to whether the time variable may be considered as continuous or discrete, the
dynamics of a given system is described by differential equations or finite-
difference equations of the form29

dx
dt

= ẋ = X(x), (1.8)

xt+1 = f
(
xt), (1.9)

where t belongs to the set of nonnegative real numbers R+ in (1.8) and the
set of nonnegative integers N0 (that is, the union of the set N of positive
integers and {0}) in (1.9). Such equations determine how the state x ∈ S
of the system varies with time.30 To solve (1.8) or (1.9), we need to specify

26 S is also called the state space.
27 SIAM (Society for Industrial and Applied Mathematics) organizes a biannual

conference on Applications of Dynamical Systems, whose “scope is to encom-
pass theoretical, computational, and experimental research on dynamical sys-
tems.” The last one took place in Snowbird (Utah) on May 17–21, 2009.
There also exists a System Dynamic Society whose home page can be found
at http://www.systemdynamics.org/.

28 There exists a huge number of books on dynamical systems. One may, for example,
consult [89,203,213,234,444].

29 Here, we are considering autonomous systems; that is, we are assuming that the
functions X and f do not depend explicitly on time. A nonautonomous system
may always be written as an autonomous system of higher dimensionality (see
Example 1).

30 Assuming of course that, for a given initial state, the equations above have
a unique solution. Since we are essentially interested in applications, we will
not discuss problems of existence and uniqueness of solutions. These problems
are important for the mathematician, and nonunicity is certainly an interesting



12 1 Introduction

the initial state x(0) ∈ S. The state of a system at time t represents all the
information characterizing the system at this particular time. Here are some
illustrative examples.

Example 1. The simple pendulum. In the absence of friction, the equation of
motion of a simple pendulum moving in a vertical plane is

d2θ

dt2
+
g

�
sin θ = 0, (1.10)

where θ is the displacement angle from the stable equilibrium position, g the
acceleration of gravity, and � the length of the pendulum. If we put

x1 = θ, x2 = θ̇.

Then (1.10) may be written

dx1

dt
= x2

dx2

dt
= −g

�
sinx1.

This type of transformation is general. Any system of differential equa-
tions of order higher than one can be written as a first-order system of higher
dimensionality.

The state of the pendulum is represented by the ordered pair (x1, x2).
Since x1 ∈ [−π, π[ and x2 ∈ R, the phase space X is the cylinder S

1 × R,
where S

n denotes the unit sphere in R
n+1. This surface is a two-dimensional

manifold. A manifold is a locally Euclidean space that generalizes the idea of
parametric representation of curves and surfaces in R

3.31

Example 2. Nonlinear oscillators. Models of nonlinear oscillators have been the
source of many important and interesting problems.32 They are described by
second-order differential equations of the form

ẍ+ g(x, ẋ) = 0.

While the dynamics of such systems is already nontrivial (see, for instance,
the van der Pol oscillator discussed in Chap. 3, Example 16), the addition of
a periodic forcing term f(t) = f(t+ T ) yields

ẍ+ g(x, ẋ) = f(t) (1.11)

phenomenon. But for someone interested in applications, nonunicity is an un-
pleasant feature indicating that the model has to be modified, since, according to
experience, a real system has a unique evolution for any realizable initial state.

31 See also Sect. 3.1.
32 Refer, in particular, to [203].
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and can introduce completely new phenomena. If we put

x1 = x, x2 = ẋ, x3 = t,

(1.11) may be written

ẋ1 = x2,

ẋ2 = −g(x1, x2) + f(x3),
ẋ3 = 1.

Here again, this type of transformation is general. Any nonautonomous
system of differential equations of order higher than one can be written as a
first-order system of higher dimensionality.

The state of the system is represented by the triplet (x1, x2, x3). If the
period T of the function f is, say 2π, the phase space is X = R×R×S1; that
is, a three-dimensional manifold.

Example 3. Age distribution. A one-species population may be characterized
by its density ρ. Since ρ should be nonnegative and not greater than 1, the
phase space is the interval [0,1]. The population density is a global variable
that ignores, for instance, age structure. A more precise characterization of the
population should take into account its age distribution. If f(t, a) da represents
the density of individuals whose age, at time t, lies between a and a + da,
then the state of the system is represented by the age distribution function
a �→ f(t, a). The total population density at time t is

ρ(t) =
∫ ∞

0

f(t, a) da

and, in this case, the state space is a set of positive integrable functions on R+.

Example 4. Population growth with a time-delay.33 In the logistic model, the
growth rate of a population at any time t depends on the number of indi-
viduals in the system at that time. This assumption is seldom justified, for
reproduction is not an instantaneous process. If we assume that the growth
rate Ṅ(t)/N(t) is a decreasing function of the number of individuals at time
t− T , the simplest model is

Ṅ(t) =
dN
dt

= rN(t)
(

1− N(t− T )
K

)
. (1.12)

This logistic model with a time lag is due to Hutchinson [227, 228], who was
the first ecologist to consider time-delayed responses.34

33 On numerical solutions of time-delay equations, consult a selection of papers
presented at the Third International Conference on the Numerical Solutions of
Volterra and Delay Equations [155].

34 On time-delay systems, the interested reader may refer to [346].
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To solve (1.12), we need to know not only the value of an initial population
but also a history function h such that

(∀u ∈ [0, T ]) N(−u) = h(u).

If we put
x1(t) = N(t), x2(t, u) = N(t− u),

then we have
∂x2

∂t
=
dN(t− u)

dt
= −∂x2

∂u
,

and we may, therefore, write the logistic equation with a time lag under the
form

dx1

dt
= rx1(t)

(
1− x2(t, u)

K

)
,

∂x2

∂t
= −∂x2

∂u
.

Here, the state space is two-dimensional. x1 is a nonnegative real and u �→
x2(t, u) a nonnegative function defined on the interval [0, T ]. The boundary
conditions are x1(0) = h(0) and x2(0, u) = h(u) for all u ∈ [0, T ].

In the more general case of a logistic equation of the form

dN
dt

= rN(t)
(

1− 1
K

∫ t

0

N(t− u)Q(u) du
)
, (1.13)

Q, called the delay kernel, is a positive integrable normalized function on R+;
that is, a function defined for u ≥ 0 such that

∫ ∞

0

Q(u) du = 1. (1.14)

Here are two typical illustrative examples of delay kernels found in the liter-
ature35:

Q1(u) =
1
T

exp(−u/T ),

Q2(u) =
1
T 2
u exp(−u/T ).

Hutchinson’s equation corresponds to the singular kernel Q = δT , where δT
denotes the Dirac distribution at T .36 Taking into account (1.14), it is easy to
verify that K is the only nontrivial equilibrium point of (1.13). The parameter
K corresponds, therefore, to the carrying capacity of the standard logistic
model.

35 On delay models in population ecology, consult [122].
36 On distribution theory and its applications to differential and integral equations,

see [58], Chap. 4.
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The history function h : u �→ N(−u) is defined on R+, and we have

dx1

dt
= rx1(t)

(
1− 1

K

∫ ∞

0

x2(t, u)Q(u) du
)
,

∂x2

∂t
= −∂x2

∂u
,

with the boundary conditions x1(0) = h(0) and x2(0, u) = h(u) for all u ∈ R+.

Example 5. Random walkers on a lattice. Let ZL be a one-dimensional finite
lattice of length L with periodic boundary conditions,37 and denote by n(t, i)
the occupation number of site i at time t. n(t, i) = 0 if the site is vacant, and
n(t, i) = 1 if the site is occupied by a random walker. The evolution rule of the
system is such that, at each time-step, a random walker selected at random
– that is, the probability for a walker to be selected is uniform – will move
with a probability 1/2 either to the right or to the left neighboring site if this
site is vacant. If the randomly selected site is not vacant, then the walker will
not move. The state of the system at time t is represented by the function
i �→ n(t, i), and the phase space is X = {0, 1}ZL. An element of such a phase
space is called a configuration.

In most situations of interest, the phase space of a dynamical system pos-
sesses a certain structure that the evolution law respects. In applications,
we are usually interested in lasting rather than transient phenomena and so
in steady states. Therefore, steady solutions of the governing equations of
evolution are of special importance. Consider, for instance, (1.2); its steady
solutions, which are such that

dN
dt

= 0,

are
N = 0 and N = K.

In this simple case, it is not difficult to verify that, if the initial condition is
N(0) > 0, N(t) tends to K when t tends to infinity. The expression “N(t)
tends to K when t tends to infinity” is meaningful if, and only if, the phase
space X has a topology. Roughly speaking, a topological space is a space in
which the notion of neighborhood has been defined. A simple way to induce a
topology is to define a distance, that is, to each ordered pair of points (x1, x2)
in X we should be able to associate a nonnegative number d(x1, x2), said to
be the distance between x1 and x2, satisfying the following conditions:

1. d(x1, x2) = 0⇔ x1 = x2,
2. d(x1, x2) = d(x2, x1),
3. d(x1, x3) ≤ d(x1, x2) + d(x2, x3).

37
ZL denotes the set of integers modulo L. Similarly, Z

d
L represents a finite d-

dimensional lattice of volume Ld with periodic boundary conditions.
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In the Euclidean space R
n, the distance is defined by

d(x1, x2) =

(
n∑

α=1

(xα1 − xα2 )2
)1/2

.

If, as in Example 1, X is a manifold, we use a suitable coordinate system to
define the distance.

In Example 3, if we assume that age distribution functions are Lebesgue
integrable,38 then the distance between two functions f1 and f2 may be de-
fined by

d(f1, f2) =
(∫ ∞

0

|f1(ξ)− f2(ξ)|p dξ
)1/p

,

where p ≥ 1.
In Example 5, the Hamming distance dH(c1, c2) between two configura-

tions c1 and c2 is defined by

dH(c1, c2) =
1
L

L∑

i=1

|n1(i)− n2(i)|,

where n1(i) and n2(i) are, respectively, the occupation numbers of site i in
configurations 1 and 2.

When the evolution of a system is not deterministic, as is the case for the
random walkers of Example 5, it is necessary to introduce the notion of a
random process. Since a random process is a family of measurable mappings
on the space Ω of elementary events in the phase space X , the phase space
has to be measurable.

To summarize the discussion above, we shall assume that, if the evolution
is deterministic, the phase space is a metric space, whereas, if the evolution
is stochastic, the phase space is a measurable metric space.

To conclude this section, we present two examples of dynamical systems
that can be viewed as mathematical recreations.

Example 6. Bulgarian solitaire. Like many other mathematical recreations,
Bulgarian solitaire has been made popular by Martin Gardner [175]. A pack
of N = 1

2n(n+ 1) cards is divided into k packs of n1, n2, . . . , nk cards, where
n1+n2+· · ·+nk = N . A move consists in taking exactly one card of each pack
and forming a new pack. By repeating this operation a sufficiently large num-
ber of times, any initial configuration eventually converges to a configuration

38 For an elementary presentation of the notion of measure and Lebesgue theory of
integration, see [58], Chap. 1. In applications, this requirement is not restrictive,
but it allows definition of complete metric spaces.
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that consists of n packs of, respectively, 1, 2, . . . , n cards. For instance, if
N = 10 (which corresponds to n = 4), starting from the partition {1, 2, 7},
we obtain the following sequence:

{1, 3, 6}, {2, 3, 5}, {1, 2, 3, 4}.

Numbers N of the form 1
2n(n + 1) are known as triangular numbers. Then,

what happens if the number of cards is not triangular? Since the number of
partitions of a finite integer is finite, any initial partition leads into a cycle of
partitions. For example, if N = 8, starting from {8}, we obtain the sequence:

{7, 1}, {6, 2}, {5, 2, 1}, {4, 3, 1}, {3, 3, 2}, {3, 2, 2, 1}, {4, 2, 1, 1}, {4, 3, 1}.

For any positive integer N , the convergence toward a cycle, which is of length
1 if N is triangular, has been proved by J. Brandt [87] (see also [2]). In the
case of a triangular number, it has been shown that the number of moves
before the final configuration is reached is at most equal to n(n−1) [149,229].

The Bulgarian solitaire is a time-discrete dynamical system. The phase
space consists of all the partitions of the number N .

Remark 1. If instead of taking exactly one card of each pack and to form a new pack,
we take one card of each pack with a probability p < 1, we play the so-called random
Bulgarian solitaire which has been studied, in particular, by Serguei Popov [378].

A similar game studied by A. Bouchet is owari, a popular board game in
Africa. It is made of holes arranged in a circular way and containing pebbles.
A move consists in scooping a hole and distributing its pebbles one by one
into the subsequent holes.39

Example 7. The original Collatz problem.40 Many iteration problems are sim-
ple to state but often intractably hard to solve. Probably, the most famous
one is the so-called 3x + 1 problem, also known as the Collatz conjecture,
which asserts that, starting from any positive integer n, repeated iteration of
the function f defined by

f(n) =

{
1
2 n, if n is even,
1
2 (3n+ 1), if n is odd,

39 See http://www.rpi.edu/ eglash/isgem.dir/texts.dir/OwariI.pdf and
http://www.rpi.edu/ eglash/isgem.dir/texts.dir/OwariII.pdf.

40 Named after the German mathematician Lothar Collatz (1910–1990) who made
the conjecture in 1937, that remains unsolved. See [288].
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always returns 1.41 In what follows, we shall present a less known conjecture
that, like the 3x + 1 problem, has not been solved. Consider the function f
defined, for all positive integers, by

f(n) =

⎧
⎪⎨

⎪⎩

2
3 n, if n = 0 mod 3,
4
3 n− 1

3 , if n = 1 mod 3,
4
3 n+ 1

3 , if n = 2 mod 3.

Its inverse f−1 is defined by

f(n) =

⎧
⎪⎨

⎪⎩

3
2 n, if n = 0 mod 2,
3
4 n+ 1

4 , if n = 1 mod 4,
3
4 n− 1

4 , if n = 3 mod 4.

f , which is bijective, is a permutation of the natural numbers [258]. If we
consider the first natural numbers, we obtain the following permutation:

(
1 2 3 4 5 6 7 8 9 · · ·
1 3 2 5 7 4 9 11 6 · · ·

)
.

While some cycles are finite, e.g., (3, 2, 3) or (5, 7, 9, 6, 4, 5), it has been con-
jectured that there exist infinite cycles. For instance, none of the 200,000
successive iterates of 8 is equal to 8. This is also the case for 14 and 16. For
this particular dynamical system, the phase space is the set N of all positive
integers, and the evolution rule is reversible.

Exercises

Exercise 1.1 As usual (see Page 58), we shall call infective an infected individual
who can transmit the disease by contact and susceptible an infected individual
who can catch the disease by contact from an infective. Let us assume that the
infectives, in an outbreak of a given common disease such as a cold, can be
partitioned into generations as follows: generation zero consists of the introduc-
tory cases, that is, the initial infectives, generation one consists of susceptibles
who have been infected by generation zero infectives; generation two consists of
susceptibles infected by the infectives of generation one, and so on.

41 In 1972, Conway [115] defined a family of problems which are a natural general-
ization of the Collatz problem, and showed that there exist, in this family, prob-
lems that are undecidable (see also Kurtz and Simon paper at: http://people.
cs.uchicago.edu/∼simon/RES/collatz.pdf).
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Consider now household of n individuals which, at time t, consists of It in-
fectives and St susceptibles, and denote let qi be the probability that a given
susceptible escapes infection when exposed to the i infectives of any generation.
Assuming that susceptibles imake infectious contacts independently of each other,
and each remaining susceptible has the same probability of being infected by ex-
posure to the infectives of a given generation, let denote qt the probability that
a given susceptible escapes infection when exposed to the It infectives of gener-
ation t. (1) Find the probability that, at time t+ 1, the number of susceptibles is
equal to x knowing that at time t the number of susceptibles and infectives, were
respectively, equal to s and i. (2) Assuming that infectives become removed, by
acquiring immunity for the remaining duration of the outbreak, find the proba-
bility that in a household of a couple with three children, at generation zero, one
member of the family was infected, at generation one two members are infected,
at generation two there is only one infected and at generation three no more
individuals are infected. Such a chain will be denoted 1-2-1-0. (3) Find all the
probabilities for all the chains in the case of a household of 5 individuals.. This
exercise is adapted from [44].

Exercise 1.2 Consider a growing population with S(t) susceptibles and I(t) in-
fectives at time t > 0, where S(0)+ I(0) = N . If the infection parameter is equal
to 1 and if λ denotes the growth parameter, the equations which determine the
temporal evolution of S and I of this simple epidemic model are

dS
dt

= −SI + λS,

dI
dt

= SI + λI.

Find the solution of this system. This exercise is adapted from [173].

Exercise 1.3 Performing a few numerical experiments, characterize the proper-
ties of the sequence of iterates of the map f : x �→ x2 +0.25 as a function of the
initial value of x0.

Solutions

Solution 1.1 (1) Taking into account the assumptions of the model, the prob-
ability that, at time t + 1, the number of susceptible individuals is equal to x
knowing that at time t the number of susceptible and infective individuals are,
respectively, equal to s and i, is given by

P (St+1 = x|St = s, It = i) =
(
s

x

)
ps−xi qxi ,

where pi = 1− qi, and x = 0, 1, . . . , s.
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(2) The probability to observe a chain 1-2-1-0 is

P (1-2-1-0) =
P (S1 = 2|S0 = 4, I1 = 1)P (S2 = 1|S1 = 2, I1 = 2)P (S3 = 1|S2 = 1, I2 = 1)
(

4
2

)
p2
1q

2
1

(
2
1

)
p1
2q

1
2

(
1
1

)
p0
1q

1
1 = 12p2

1p2q
3
1 .

(3) In the case of a household of 5 individuals,when there is only one infective at
generation zero, the probabilities are given in the following table.

Chain probabilities for households of size 5
one initial case two initial cases three initial cases

chain probability chain probability chain probability
1-0 q41 2-0 q32 3-0 q23

1-1-0 4q61p1 2-1-0 3q2p2q
2
1 3-1-0 2q3p3q1

1-1-1-0 12q71p
2
1 2-1-1-0 6q2p2p1 3-1-1 2q3p3p1

1-1-1-1 24q61p4
1 2-1-1-1 6q22p2q1p

2
1 3-2 p2

3

1-1-1-2 12q51p
4
1 2-1-2 3q22p2p

2
1

1-1-2-0 12q41p
3
1p2 2-2-0 3q22p

2
2

1-1-2-1 12q41p
3
1p2 2-2-1 3q2p2

1-1-3 4q1p4
1 2-3 p3

2

1-2-0 6q21p2
1q

2
2

1-2-1-0 12q31p
2
1q2p2

1-2-1-1 12q21p
3
1q2p2

1-2-2 6q21p2
1p

2
2

1-3-0 4q1p3
1q3

1-3-1 4q1p3
1p3

1-4 p4
1

Solution 1.2 (1) Adding the two differential equations, we obtain

d(S + I)
dt

= λ(S + I).

Hence
S(t) + I(t) = N exp(λt).

from which we obtain the equation which determine S(t):

dS
dt

= −S(N exp(λt) − S)+ λS.
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If U = S exp(λt), we have

dU
dt

= −U(N − U).

Now setting

τ =

(
exp(λt)− 1

)

λ
,

that is,
dτ
dt

= exp(λt),

we obtain
dU
dτ

= −U(N − U),

whose solution is

U(t) =
NS(0) exp(−Nτ)

N − S(0)
(
1− exp(−Nτ)) .

So, finally

S(t) = exp(λt)u(t)

=
N(0) exp

(
λt− N

λ

(
exp(λt) − 1

))

N − S(0)
(
1− exp

(
− N

λ

(
exp(λt) − 1

))) .

In absence of growth, i.e., λ = 0, we would have found

S(t) =
NS(0) exp(−Nt)
N − S(0) exp(−Nt) .

Knowing S(t), we easily obtain I(t) given by I(t) = N − S(t).

Solution 1.3 A few preliminary numerical experiments to determine the succes-
sive iterates of the map f : x �→ x2 + 0.25 give the following results:

1. Starting from 1, the first ten iterates are: {1, 1.25, 1.8125, 3.53516, 12.7473,
162.744, 26486., 7.01508×108, 4.92113×1017, 2.42176×1035, 5.8649×1070},
which clearly shows that the sequence tends to infinity.

2. Starting from 0.7, the first ten iterates are: {0.7, 0.74, 0.7976, 0.886166,
1.03529, 1.32182, 1.99722, 4.23889, 18.2182, 332.153, 110326}, the sequence
still tends to infinity but more slowly.

3. Starting from 0.4, the first twenty iterates are: {0.4, 0.41, 0.4181, 0.424808,
0.430462, 0.435297, 0.439484, 0.443146, 0.446378, 0.449254, 0.451829,
0.454149, 0.456251, 0.458165, 0.459916, 0.461522, 0.463003, 0.464372,
0.465641, 0.466822, 0.467922}, which seems to converge to a finite value
close to 0.5.
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4. Starting from 0.5, the first ten iterates are: {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5}, that is x∗ = 0.5 is a fixed point, and the previous sequence
starting from 0.4 was converging slowly to this value.

5. Starting from 0.25, the first twenty iterates are: {0.25, 0.3125, 0.347656,
0.370865, 0.387541, 0.400188, 0.41015, 0.418223, 0.424911, 0.430549,
0.435373, 0.439549, 0.443204, 0.446429, 0.449299, 0.45187, 0.454186,
0.456285, 0.458196, 0.459944, 0.461548}, the sequence is here again converg-
ing slowly most probably to 0.5.

6. Starting from 0.1, the first twenty iterates are: {0.1, 0.26, 0.3176, 0.35087,
0.37311, 0.389211, 0.401485, 0.41119, 0.419077, 0.425626, 0.431157,
0.435897, 0.440006, 0.443605, 0.446786, 0.449617, 0.452156, 0.454445,
0.45652, 0.458411, 0.46014}, as above, the sequence is slowly converging
most probably to 0.5.

Since x2 +0.25 is invariant under the transformation x→ −x, it is not necessary
to choose negative initial values that will give identical results. Moreover, it is
clear that x∗ = 0.5 is the only fixed point of the map f since 0.5 is a double root
of the quadratic equation x2 + 0.25 = x. Finally, x2 + 0.25 going to infinity as
|x| increases, it is also clear that for initial values of |x| > 0.5, the sequence of
iterates will go to infinity. On the contrary, for all initial values |x| < 0.5, except
x = 0, the sequence of iterates converges to x∗ = 0.5.
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Summary

The essential concepts presented in this chapter are the following notions:

• A complex system consists of a large number of connected agents that, as
a whole, exhibits a coordinated behavior without any centralized control.
That is, a complex system exhibits properties that do not obviously follow
from the properties of the individual agents. These properties are said to
be “emergent” (see below).

• A dynamical system includes the following ingredients: a phase space or
state space whose elements represent the possible states of the system,
time, which may be either discrete or continuous; and an evolution law
which is a rule that allows determination of the state at time t from the
knowledge of the states at all previous times.

• Emergent properties are large-scale effects of a system of locally interact-
ing agents that are often surprising and hard to predict. The appearance
of emergent properties is the essential feature of complex systems.

• A model of a system is a simplified mathematical representation of this
system, which should be as simple as possible but, however, being able to
capture the key elements of the system allowing to elicit highly relevant
questions.
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How to Build Up a Model

The essential points of this chapter are
• The Lotka–Volterra predator–prey model
• The notion of limit cycle
• How to build up models that exhibit cyclic population variations
• The notions of intraspecific competition, predator’s functional

response, and predator’s numerical response
• The logistic and the time-delay logistic models

Nature offers a puzzling variety of interactions between species. Predation
is one of them.1 According to the way predators feed on their prey, various
categories of predators may be distinguished [46,423]. Parasites, such as tape-
worms or tuberculosis bacteria, live throughout a major period of their life
in a single host. Their attack is harmful but rarely lethal in the short term.
Grazers, such as sheep or biting flies that feed on the blood of mammals, also
consume only parts of their prey without causing immediate death. However,
unlike parasites, they attack large numbers of prey during their lifetime. True
predators, such as wolves or plankton-eating aquatic animals, also attack many
preys during their lifetime, but unlike grazers, they quickly kill their prey.

Our purpose in this chapter is to build up models to study the effects
of true predation2 on the population dynamics of the predator and its prey.
More precisely, among the various patterns of predator–prey abundance, we
focus on two-species systems in which it appears that predator and prey pop-
ulations exhibit coupled density oscillations. To give an idea of the variety of

1 On the origin of predation, see [49].
2 A true predator is the one which kills and eats another organism.

N. Boccara, Modeling Complex Systems: Second Edition, Graduate Texts in Physics, 25
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dynamical systems used in modeling, we describe different models of predator–
prey systems. On the origins and evolution of predator–prey theory, see [51]
and [158].

2.1 Lotka–Volterra Model

The simplest two-species predator–prey model has been proposed inde-
pendently by Lotka [281]3 and Volterra [437].4 Volterra was stimulated
to study the predator–prey problem by his future son-in-law, Umberto
D’Ancona (1896–1964) (see [125]), who, analyzing market statistics of the
Adriatic fisheries, found that, during the First World War, certain predacious
species increased when fishing was severely limited.5 A year before, Alfred
James Lotka (1880–1949) had come up with an almost identical solution to
the predator–prey problem. His method was very general, and, probably be-
cause of that, his book did not receive the attention it deserved.6 This model
assumes that, in the absence of predators, the prey population, denoted by
H for “herbivore,” grows exponentially, whereas, in the absence of prey,
predators starve to death and their population, denoted by P , declines expo-
nentially. As a result of the interaction between the two species, H decreases
and P increases at a rate proportional to the frequency of predator–prey
encounters. We have then

Ḣ = bH − sHP, (2.1)

Ṗ = −dP + esHP, (2.2)

where b is the birth rate of the prey, d the death rate of the predator, s the
searching efficiency of the predator, and e the efficiency with which extra food
is turned into extra predators.7

3 Alfred J. Lotka (1880–1949) was an American mathematician and biophysicist
famous for the predator–prey model he developed independently of Vito Volterra.

4 Vito Volterra (1860–1940) was an eminent Italian mathematician, wood-known
for his work on theoretical ecology (see [403]). He is also credited for impor-
tant results he obtained on the theory of integral and integro-differential equa-
tions. In 1900, Volterra became professor of mathematical physics at La Sapienza
(University of Rome). When Benito Mussolini came to power in 1922, he refused
to sign the oath of allegiance to the fascist government and had to resign his
university position and membership of scientific academies. The reader interested
in the correspondence between Volterra and numerous scientists in the field of
theoretical biology should consult [230].

5 On Volterra and D’Ancona, consult Gatto’s recent paper [176].
6 On the relations between Lotka and Volterra, and how ecologists in the 1920s

perceived mathematical modeling, consult Kingsland [241,242]. .
7 Chemists will note the similarity of these equations with the rate equations of

chemical kinetics. For a treatment of chemical kinetics from the point of view of
dynamical systems theory, see Gavalas [177].
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Lotka–Volterra equations contain four parameters. This number can be
reduced if we express the model in dimensionless form.

If we put

h =
Hes

d
, p =

Ps

b
, τ =

√
bd t, ρ =

√
b

d
, (2.3)

(2.1) and (2.2) become

dh
dτ

= ρh (1− p), (2.4)

dp
dτ

= −1
ρ
p (1− h). (2.5)

These equations contain only one parameter, which makes them much easier
to analyze.

Before analyzing this particular model, let us show how the asymptotic
stability of a given equilibrium state of a two-species model of the form

dx1

dτ
= f1(x1, x2),

dx2

dτ
= f2(x1, x2),

may be discussed. A more rigorous discussion of the stability of equilibrium
points of a system of differential equations is given in Sect. 3.2. Here, we are
just interested in the properties of the Lotka–Volterra model. Let (x∗1, x∗2) be
an equilibrium point of the differential system above, and put

u1 = x1 − x∗1 and u2 = x2 − x∗2.
In the neighborhood of this equilibrium point, neglecting quadratic terms in
u1 and u2, we have

du1

dτ
=
∂f1
∂x1

(x∗1, x
∗
2)u1 +

∂f1
∂x2

(x∗1, x
∗
2)u2,

du2

dτ
=
∂f2
∂x1

(x∗1, x
∗
2)u1 +

∂f2
∂x2

(x∗1, x
∗
2)u2.

The general solution of this linear system is

u(τ) = exp
(
Df(x∗)τ

)
u(0),

where f = (f1, f2), x∗ = (x1, x2), u = (u1, u2), and Df(x∗) – called the
community matrix in ecology – is the Jacobian matrix of f at x = (x∗1, x

∗
2),

that is,

Df(x∗) =

⎡

⎢
⎣

∂f1
∂x1

(x∗1, x
∗
2)

∂f1
∂x2

(x∗1, x
∗
2)

∂f2
∂x1

(x∗1, x
∗
2)

∂f2
∂x2

(x∗1, x
∗
2)

⎤

⎥
⎦ .
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Therefore, the equilibrium point x∗ is asymptotically stable8 if, and only if,
the eigenvalues of the matrix Df(x∗1, x

∗
2) have negative real parts.9

The Lotka–Volterra model has two equilibrium states (0, 0) and (1, 1).
Since

Df(0, 0) =

⎡

⎣
ρ 0

0 −1
ρ

⎤

⎦ , Df(1, 1) =

⎡

⎣
0 −ρ
1
ρ 0

⎤

⎦ ,

(0, 0) is unstable and (1, 1) is stable but not asymptotically stable. The eigen-
values of the matrix Df(1, 1) being pure imaginary, if the system is in the
neighborhood of (1, 1), it remains in this neighborhood. The equilibrium point
(1, 1) is said to be neutrally stable.10

The set of all trajectories in the (h, p) phase space is called the phase
portrait of the differential system (2.4–2.5). Typical phase-space trajectories
are represented in Fig. 2.1. Except the coordinate axes and the equilibrium
point (0, 0), all the trajectories are closed orbits oriented counterclockwise.

Since the trajectories in the predator–prey phase space are closed orbits,
the populations of the two species are periodic functions of time (Fig. 2.2).
This result is encouraging because it might point toward a simple relevant
mechanism for predator–prey cycles.

There is an abundant literature on cyclic variations of animal popula-
tions.11 They were first observed in the records of fur-trading companies. The
classic example is the records of furs received by the Hudson Bay Company
from 1821 to 1934. They show that the numbers of snowshoe hares12 (Lepus

8 The precise definition of asymptotic stability is given in Definition 5. Essentially, it
means that any solution x(t, 0,x0) of the system of differential equations satisfying
the initial condition x = x0 at t = 0 tends to x∗ as t tends to infinity.

9 Given a 2 × 2 real matrix A, there exists a real invertible matrix M such that
J = MAM−1 may be written under one of the following canonical forms

[
λ1 0
0 λ2

]
,

[
λ 1
0 λ

]
,

[
a −b
b a

]
.

The corresponding forms of eJτ are

[
eλ1τ 0

0 eλ2τ

]
, eλτ

[
1 τ
0 1

]
, eaτ

[
cos bτ − sin bτ
sin bτ cos bτ

]
.

eAτ can then be determined from the relation

eAτ = M−1eJτM.

More details are given in Sect. 3.2.1.
10 For the exact meaning of neutrally stable, see Sect. 3.2, and, in particular,

Example 13.
11 See, in particular, Finerty [161].
12 Also called varying hares. They have large, heavily furred hind feet and a coat

that is brown in summer and white in winter.
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Fig. 2.1. Lotka–Volterra model. Typical trajectories around the neutral fixed point
for ρ = 0.8
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Fig. 2.2. Lotka–Volterra model. Scaled predator and prey populations as functions
of scaled time

americanus) and Canadian lynx (Lynx canadensis) trapped for the company
vary periodically, the period being about 10 years. The hare feeds on a va-
riety of herbs, shrubs, and other vegetable matter. The lynx is essentially
single-prey oriented, and although it consumes other small animals if starv-
ing, it cannot live successfully without the snowshoe hare. This dependence
is reflected in the variation of lynx numbers, which closely follows the cyclic
peaks of abundance of the hare, usually lagging a year behind. The hare
density may vary from one hare per square mile of woods to 1,000 or even
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10,000 per square mile.13 In this particular case, however, the understanding
of the coupled periodic variations of predator and prey populations seems
to require a more elaborate model. The two species are actually parts of a
multispecies system. In the boreal forests of North America, the snowshoe
hare is the dominant herbivore, and the hare–plant interaction is probably
the essential mechanism responsible for the observed cycles. When the hare
density is not too high, moderate browsing removes the annual growth and
has a pruning effect. But at high hare density, browsing may reduce all new
growth for several years and, consequently, lower the carrying capacity for
hares. The shortage in food supply causes a marked drop in the number of
hares. It has also been suggested that when hares are numerous, the plants
on which they feed respond to heavy grazing by producing shoots with high
levels of toxins.14 If this interpretation is correct, the hare cycles would be the
result of the herbivore–forage interaction (in this case, hares are “preying” on
vegetation), and the lynx, because they depend almost exclusively upon the
snowshoe hares, track the hare cycles.

A careful study of the variations of the numbers of pelts sold by the Hudson
Bay Company as a function of time poses a difficult problem of interpretation.
Assuming that these numbers represent a fixed proportion of the total popu-
lations of a two-species system, they seem to indicate that the hares are eating
the lynx [183] the predator’s oscillation precedes the prey’s. It should be the
opposite: an increase in the predator population should lead to a decrease of
the prey population, as illustrated in Fig. 2.2.

Although it accounts in a very simple way for the existence of coupled
cyclic variations in animal populations, the Lotka–Volterra model exhibits
some unsatisfactory features, however.

Since, in nature, the environment is continually changing, in phase space,
the point representing the state of the system will continually jump from one
orbit to another. From an ecological viewpoint, an adequate model should not
yield an infinity of neutrally stable cycles but one stable limit cycle. That is,
in the (h, p) phase space, there should exist a closed trajectory C such that
any trajectory in the neighborhood of C should, as time increases, become
closer and closer to C.

Furthermore, the Lotka–Volterra model assumes that, in the absence of
predators, the prey population grows exponentially. This Malthusian growth15

13 Many interesting facts concerning northern mammals may be found in Seton [405].
For a statistical analysis of the lynx-hare and other 10-year cycles in the Canadian
forests, see Bulmer [91].

14 See [46], pp. 356–357.
15 After Thomas Robert Malthus (1766–1834), who, in his most influential

book [290], stated that because a population grows much faster than its means of
subsistence – the first increasing geometrically, whereas the second increases only
arithmetically – “vice and misery” will operate to restrain population growth.
To avoid these disastrous results, many demographers, in the nineteenth century,
were led to advocate birth control. More details on Malthus and his impact may
be found in [228], pp. 11–18.
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is not realistic. Hence, if we assume that, in the absence of predation, the
growth of the prey population follows the logistic model, we have

Ḣ = bH

(
1− H

K

)
− sHP, (2.6)

Ṗ = −dP + esHP, (2.7)

where K is the carrying capacity of the prey. For large K, this model is just
a small perturbation of the Lotka–Volterra model. If, to the dimensionless
variables defined in (2.3), we add the scaled carrying capacity

k =
Kes

d
, (2.8)

Equations (2.6) and (2.7) become

dh
dτ

= ρh

(
1− h

k
− p

)
, (2.9)

dp
dτ

= −1
ρ
p (1− h). (2.10)

The equilibrium points are (0, 0), (k, 0), and (1, 1 − 1/k). Note that the last
equilibrium point exists if, and only if, k > 1; that is, if the carrying capacity
of the prey is high enough to support the predator. Since

Df(0, 0) =

[
ρ 0

0 −1/ρ

]

, Df(k, 0) =

[−ρ −ρk
0 −(1− k)/ρ

]

,

and

Df
(

1, 1− 1
k

)
=

[ −ρ/k −ρ
(k − 1)/ρk 0

]

,

it follows that (0, 0) and (k, 0) are unstable, whereas (1, 1− 1/k) is stable. A
finite carrying capacity for the prey transformed the neutrally stable equilib-
rium point of the Lotka–Volterra model into an asymptotically stable equilib-
rium point. It is easy to verify that, if k is large enough for the condition

ρ2 < 4k(k − 1)

to be satisfied, the eigenvalues are complex, and, in the neighborhood of the
asymptotically stable equilibrium point, the trajectories are converging spirals
oriented counterclockwise (Fig. 2.3). The predator and prey populations are no
longer periodic functions of time, they exhibit damped oscillations, the preda-
tor oscillations lagging in phase behind the prey (Fig. 2.4). If ρ2> 4k(k−1), the
eigenvalues are real and the approach of the asymptotically stable equilibrium
point is nonoscillatory.
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Fig. 2.3. Modified Lotka–Volterra model. A typical trajectory around the stable
fixed point (big dot) for ρ = 0.8 and k = 3.5
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Fig. 2.4. Modified Lotka–Volterra model. Scaled predator and prey populations as
functions of scaled time

A small perturbation – corresponding to the existence of a finite carrying
capacity for the prey – has qualitatively changed the phase portrait of the
Lotka–Volterra model.16 A model whose qualitative properties do not change
significantly when it is subjected to small perturbations is said to be struc-
turally stable. Since a model is not a precise description of a system, qualitative
predictions should not be altered by slight modifications. Satisfactory models
should be structurally stable.

16 A precise definition of what exactly is meant by small perturbation and qualitative
change of the phase portrait will be given when we study structural stability (see
Sect. 3.4).
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2.2 More Realistic Predator–Prey Models

If we limit our discussion of predation to two-species systems assuming, as we
did so far, that

• time is a continuous variable,
• there is no time lag in the responses of either population to changes, and
• population densities are not space-dependent,

a somewhat realistic model, formulated in terms of ordinary differential equa-
tions, should at least take into account the following relevant features17:

1. Intraspecific competition; that is, competition between individuals belong-
ing to the same species.

2. Predator’s functional response; that is, the relation between the predator’s
consumption rate and prey density.

3. Predator’s numerical response; that is, the efficiency with which extra
food is transformed into extra predators.

Essential resources being, in general, limited, intraspecific competition re-
duces the growth rate, which eventually goes to zero. The simplest way to take
this feature into account is to introduce into the model carrying capacities for
both the prey and the predator.

A predator has to devote a certain time to search, catch, and consume its
prey. If the prey density increases, searching becomes easier, but consuming a
prey takes the same amount of time. The functional response is, therefore, an
increasing function of the prey density – obviously equal to zero at zero prey
density – approaching a finite limit at high densities. In the Lotka–Volterra
model, the functional response, represented by the term sH , is not bounded.
According to Holling [223,224], the behavior of the functional response at low
prey density depends upon the predator. If the predator eats essentially one
type of prey, then the functional response should be linear at low prey density.
If, on the contrary, the predator hunts different types of prey, the functional
response should increase as a power greater than 1 (usually 2) of prey density.

In the Lotka–Volterra model, the predator’s numerical response is a linear
function of the prey density. As for the functional response, it can be argued
that there should exist a saturation effect; that is, the predator’s birth rate
should tend to a finite limit at high prey densities.

Possible predator–prey models are

Ḣ = rHH

(
1− H

K

)
− aHPH

b +H
,

Ṗ =
aPPH

b +H
− cP,

17 See May [302], pp. 80–84, Pielou [367], pp. 91–95.
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or

Ḣ = rHH

(
1− H

K

)
− aHPH

2

b+H2
,

Ṗ =
aPPH

2

b+H2
− cP.

In these two models, the predator equation follows the usual assumption that
the predator’s numerical response is proportional to the rate of prey con-
sumption. The efficiency of converting prey to predator is given by aH/aP .
The term −cP represents the rate at which the predators would decrease in
the absence of the prey.

Following Leslie [264] (see Example 10), an alternative equation for the
predator could be

Ṗ = rPP

(
1− P

cH

)
,

an equation that has the logistic form with a carrying capacity for the predator
proportional to the prey density.

2.3 A Model with a Stable Limit Cycle

In a recent paper, Harrison [208] studied a variety of predator–prey models to
find which model gives the best quantitative agreement with Luckinbill’s data
on Didinium and Paramecium [282]. Luckinbill grew Paramecium aurelia to-
gether with its predator Didinium nasutum and, under favorable experimental
conditions aimed at reducing the searching effectiveness of the Didinium, he
was able to observe oscillations of both populations for 33 days before they
became extinct.

Harrison found that the predator–prey model

Ḣ = rHH

(
1− H

K

)
− aHPH

b +H
, (2.11)

Ṗ =
aPPH

b +H
− cP, (2.12)

predicts the outcome of Luckinbill’s experiment qualitatively.18

18 The reader interested in how Harrison modified this model to obtain a better
quantitative fit should refer to Harrison’s paper [208].
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To simplify the discussion of this model, we first define reduced variables.
Equations (2.11) and (2.12) have only one nontrivial equilibrium point cor-
responding to the coexistence of both populations. It is the solution of the
system19

rH

(
1− H

K

)
− aHP

b+H
= 0,

aPH

b+H
− c = 0.

Denote as (H∗, P ∗) this nontrivial equilibrium point, and let

h =
H

H∗ , p =
P

P ∗ , τ = rHt, k =
K

H∗ , β =
b

H∗ , γ =
c

r
.

Equations (2.11) and (2.12) become

dh
dτ

= h

(
1− h

k

)
− αhph

β + h
, (2.13)

dp
dτ

=
αpph

β + h
− γp, (2.14)

where20

αh =
(

1− 1
k

)
(β + 1) and αp = γ(β + 1).

Equations (2.13) and (2.14) contain only three independent parameters: k, β,
and γ. In terms of the scaled populations, the nontrivial fixed point is (1, 1),
and the expression of the Jacobian matrix at this point is

Df(1, 1) =

⎡

⎢
⎢
⎣

k − 2− β
k(1 + β)

−1 +
1
k

βγ

1 + β
0

⎤

⎥
⎥
⎦ .

For (1, 1) to be asymptotically stable, the determinant of the Jacobian has to
be positive and its trace negative. Since k > 1, the determinant is positive, but
the trace is negative if, and only if, k < 2 +β. Below and above the threshold
value kc = 2 + β, the phase portrait is qualitatively different. For k < kc,
the trajectories converge to the fixed point (1, 1), whereas for k > kc they
converge to a limit cycle, as shown in Fig. 2.5. The value kc of the parameter
k where this structural change occurs is called a bifurcation point.21 This
particular type of bifurcation is a Hopf bifurcation (see Chap. 3, Example 22).

19 Since the coordinates (H∗, P ∗) of an acceptable equilibrium point have to be
positive, the coefficients of (2.11) and (2.12) have to satisfy certain conditions.
Note that there exist two trivial equilibrium points, (0, 0) and (K, 0).

20 These relations express that (1, 1) is an equilibrium point of (2.13) and (2.14).
21 See Sect. 3.5.
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2.4 Fluctuating Environments

Population oscillations may be driven by fluctuating environments. Consider,
for example, the logistic equation

Ṅ = rN

(
1− N

K(t)

)
, (2.15)
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Fig. 2.5. Two trajectories in the (h, p)-plane converging to a stable limit cycle of
the predator–prey model described by (2.13) and (2.14). Big dots represent initial
points. Scaled parameters values are k = 3.5, β = 1, and γ = 0.5

where K(t) represents a time-dependent carrying capacity. If K(t) = K0(1 +
a cosΩt), where a is a real such that |a| < 1, (2.15) takes the reduced form

dn
dτ

= n

(
1− n

1 + a cosωτ

)
, (2.16)

where

n =
N

K0
, ω =

Ω

r
, τ = rt.

Numerical solutions of (2.16), represented in Fig. 2.6, show the existence of
periodic solutions. Note that this nonlinear differential equation is a Riccati
equation and, therefore, linearizable. If we put n = k u̇/u, where k(τ) =
1 + a cosωτ , (2.16) becomes

ü+

(
k̇

k
− 1

)

u̇ = 0.
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Fig. 2.6. Scaled population evolving according to the logistic equation with a
periodic carrying capacity. ω = 1 and a = 0.5 (left); ω = 1 and a = 0.999 (right)

Hence,

u(τ) = c1

∫
eτ

k(τ)
dτ + c2,

where c1 and c2 are constants to be determined by the initial conditions.

2.5 Hutchinson’s Time-Delay Model

Since reproduction is not an instantaneous process, Hutchinson suggested (see
Chap. 1, Example 4) that the logistic equation modeling population growth
should be replaced by the following time-delay logistic equation

Ṅ(t) =
dN
dt

= rN(t)
(

1− N(t− T )
K

)
. (2.17)

Mathematically, this model is not trivial. Its behavior may, however, be under-
stood as follows. K is clearly an equilibrium point (steady solution). If N(0)
is less than K, as t increases, N(t) does not necessarily tend monotonically
to K from below. The time delay allows N(t) to be momentarily greater than
K. In fact, if at time t the population reaches the value K, it may still grow,
for the growth rate, equal to r(1−N(t− T )/K), is positive. When N(t− T )
exceeds K, the growth rate becomes negative and the population declines. If
T is large enough, the model will, therefore, exhibit oscillations.

In this problem, there exist two time scales: 1/r and T . As a result, the
stability depends on the relative sizes of these time scales measured by the
dimensionless parameter rT . Qualitatively, we can say that if rT is small, no
oscillations – or damped oscillations – are observed, and, as for the standard
logistic model, the equilibrium point K is asymptotically stable. If rT is large,
K is no more stable, and the population oscillates. Hence, there exists a
bifurcation point; that is, a threshold value for the parameter rT above which
N(t) tends to a periodic function of time.

This model is instructive for it proves that single-species populations may
exhibit oscillatory behaviors even in stable environments.
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The following discussion shows how to analyze the stability of time-delay
models and find bifurcation points.

Consider the general time-delay equation (1.13)

dN
dt

= rN(t)
(

1− 1
K

∫ t

0

N(t− u)Q(u) du
)
,

where Q is the delay kernel whose integral over [0,∞[ is equal to 1, and replace
N(t) by K + n(t). Neglecting quadratic terms in n, we obtain

dn(t)
dt

= −r
∫ t

0

n(t− u)Q(u) du. (2.18)

This type of equation can be solved using the Laplace transform.22 The
Laplace transform of n is defined by

L(z, n) =
∫ ∞

0

e−ztn(t) dt.

Substituting in (2.18) gives23

zL(z, n)− n0 = −rL(z, n)L(z,Q),

where n0 is the initial value n(0). Thus,

L(z, n) =
n0

z + rL(z,Q)
. (2.19)

If, as in (2.17), the delay kernel is δT , the Dirac distribution at T , its Laplace
transform is e−zT , and we have

L(z, n) =
n0

z + re−zT
.

n(t) is, therefore, the inverse Laplace transform of L(z, n), that is

n(t) =
n0

2iπ

∫ c+i∞

c−i∞

dz
z + re−zT

,

where c is such that all the singularities of the function z �→ (z + re−zT )−1

are in the halfplane {z | Re z < c}. The only singularities of the integrand are
the zeros of z + re−zT . As a simplification, define the dimensionless variable
ζ = zT and parameter ρ = rT . We then have to find the solutions of

ζ + ρe−ζ = 0. (2.20)

22 On using the Laplace transform to solve differential equations, see Boccara [58],
pp. 94–103 and 226–231.

23 If L(z, n) is the Laplace transform of n, the Laplace transform of ṅ is L(z, ṅ) =
zL(z, n)−n(0), and the Laplace transform of the convolution of n and Q, defined
by

∫ t

0
n(t − u)Q(u) du (since the support of n and Q is R+), is the product

L(z, n)L(z, Q) of the Laplace transforms of n and Q.
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If ζ = ξ + iη, where ξ and η are real, we therefore have to solve the system

ξ + ρe−ξ cos η = 0, (2.21)

η − ρe−ξ sin η = 0. (2.22)

(a) If ζ is real, η = 0, and ξ is the solution of ξ + ρe−ξ = 0. This equation
has no real root for ρ > 1/e, a double root equal to −1 for ρ = 1/e, and two
negative real roots for ρ < 1/e.

(b) If ζ is complex, eliminating ρe−ξ between (2.21) and (2.22) yields

ξ = −η cot η, (2.23)

which, when substituted back into (2.22), gives

η

ρ
= eη cot η sin η. (2.24)

Complex roots of (2.20) are found by solving (2.22) for η and obtaining ξ
from η by (2.21). Since complex roots appear in complex conjugate pairs, it
is sufficient to consider the case η > 0.

The function f : η �→ eη cot η sin η has the following properties (k is a
positive integer):

lim
η↑2kπ

f(η) = 0,

lim
η↓(2k−1)π

f(η) = −∞,

lim
η↑(2k−1)π

f(η) =∞.

In each open interval ](2k−1)π, 2kπ[, f is increasing, and in each open interval
]2kπ, (2k + 1)π[, f is decreasing. Finally, in the interval [0, π[, the graph of f
is represented in Fig. 2.7.

Fig. 2.7. Graph of the function f : η �→ eη cot η sin η for η ∈]0, π[
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Since the slope at the origin f ′(0) = e, if ρ < 1/e, (2.24) has no root in
[0, π[ but a root in each interval of the form [2kπ, ηk], where ηk is the solution
of the equation eη = eη cot η sin η in the interval [2kπ, (2k+ 1)π[. From (2.23),
it could be verified that the corresponding value of ξ is negative.

If 1/e < ρ < π/2, we find, as above, that there are no real roots and that
there is an additional complex root with 0 < η < π/2 and, from (2.23), a
negative corresponding ξ.

Finally, if ρ > π/2, there is a complex root with π/2 < η < π and, from
(2.23), a positive corresponding ξ.

Consequently, if ρ < π/2, the equilibrium point N∗ = K is asymptotically
stable; but, for ρ > π/2, this point is unstable. ρ = π/2 is a bifurcation point.

The method we have just described is applicable to any other delay kernel
Q. Since each pole z∗ of the Laplace transform of n contributes in the expres-
sion of n(t) with a term of the form Aez∗t, the problem is to find the poles
of the Laplace transform of n given by (2.19) and determine the sign of their
real part. These poles are the solutions of the equation z + rL(z,Q) = 0.

2.6 Discrete-Time Models

When a species may breed only at a specific time, the growth process occurs
in discrete time steps. To a continuous-time model, we may always associate
a discrete-time one. If τ0 represents some characteristic time interval, the
following finite difference equations

1
τ0

(
x1(τ + τ0)− x1(τ)

)
= f1

(
x1(τ), x2(τ)

)
, (2.25)

1
τ0

(
x2(τ + τ0)− x2(τ)

)
= f2

(
x1(τ), x2(τ)

)
, (2.26)

coincide, when τ0 tends to zero, with the differential equations

dx1

dτ
= f1(x1, x2), (2.27)

dx2

dτ
= f2(x1, x2). (2.28)

If τ0 is taken equal to 1, (2.25) and (2.26) become

x1(τ + 1) = x1(τ) + f1
(
x1(τ), x2(τ)

)
, (2.29)

x2(τ + 1) = x2(τ) + f2
(
x1(τ), x2(τ)

)
. (2.30)

Equations (2.29) and (2.30) are called the time-discrete analogues of (2.27)
and (2.28).
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Let (x∗1, x
∗
2) be an equilibrium point of the difference equations (2.29) and

(2.30),24 and put

u1 = x1 − x∗1 and u2 = x2 − x∗2.
In the neighborhood of this equilibrium point, we have

u1(τ + 1) = u1(τ) +
∂f1
∂x1

(x∗1, x
∗
2)u1(τ) +

∂f1
∂x2

(x∗1, x
∗
2)u2(τ),

u2(τ + 1) = u2(τ) +
∂f2
∂x1

(x∗1, x
∗
2)u1(τ) +

∂f2
∂x2

(x∗1, x
∗
2)u2(τ).

The general solution of this linear system is

u(τ) =
(
I +Df(x∗1, x

∗
2)
)τ
u(0),

where I is the 2 × 2 identity matrix. Here τ is an integer. The equilibrium
point (x∗1, x

∗
2) is asymptotically stable if the absolute values of the eigenvalues

of I+Df(x∗1, x
∗
2) are less than 1. That is, in the complex plane, the eigenvalues

of Df(x∗1, x
∗
2) must belong to the open disk {z | |z − 1| < 1}.

The stability criterion for discrete models is more stringent than for
continuous models. The existence of a finite time interval between
generations is a destabilizing factor.

For example, the time-discrete analog of the reduced Lotka–Volterra equa-
tions (2.4) and (2.5) are

h(τ + 1) = h(τ) + ρ h(τ)
(
1− p(τ)), (2.31)

p(τ + 1) = p(τ) − 1
ρ
p(τ)

(
1− h(τ)

)
. (2.32)

Since the eigenvalues of the Jacobian matrix at the fixed point (1, 1), which are
i and −i, are outside the open disk {z | |z−1| < 1}, the neutrally stable fixed
point of the time-continuous model is unstable for the time-discrete model.

2.7 Lattice Models

To catch a prey, a predator has to be in the immediate neighborhood of the
prey. In predator–prey models formulated in terms of either differential equa-
tions (ordinary or partial) or difference equations, the short-range character

24 That is, a solution of the system

f1(x∗
1, x

∗
2) = 0

f2(x∗
1, x

∗
2) = 0.



42 2 How to Build Up a Model

of the predation process is not correctly taken into account.25 One way to
correctly take into account the short-range character of the predation process
is to discretize space; that is, to consider lattice models.

Dynamical systems in which states, space, and time are discrete are called
automata networks. If the network is periodic, the dynamical system is a
cellular automaton. More precisely, a one-dimensional cellular automaton is
a dynamical system whose state s(i, t) ∈ {0, 1, 2, . . . , q − 1} at position i ∈ Z

and time t ∈ N evolves according to a local rule f such that

s(i, t+ 1) = f
(
s(i− r�, t), s(i− r� + 1, t), . . . , s(i+ rr, t)

)
.

The numbers r� and rr, called the left and right radii of rule f , are positive
integers.

In what follows, we briefly describe a lattice predator–prey model stud-
ied by Boccara et al. [67]. Consider a finite two-dimensional lattice Z

2
L with

periodic boundary conditions. The total number of vertices is equal to L2.
Each vertex of the lattice is either empty or occupied by a prey or a predator.
According to the process under consideration, for a given vertex, we consider
two different neighborhoods (Fig. 2.8): a von Neumann predation neighborhood
(4 vertices) and a Moore pursuit and evasion neighborhood (8 vertices).

Fig. 2.8. Von Neumann predation neighborhood (left) and Moore pursuit and
evasion neighborhood (right)

The evolution of preys and predators is governed by the following set of
rules.

1. A prey has a probability dh of being captured and eaten by a predator in
its predation neighborhood.

2. If there is no predator in its predation neighborhood, a prey has a prob-
ability bh of giving birth to a prey at an empty site of this neighborhood.

25 This will be manifest when we discuss systems that exhibit bifurcations. In phase
transition theory, for instance, it is well known that in the vicinity of a bifurcation
point – i.e., a second-order transition point – certain physical quantities have a
singular behavior (see Boccara [57], pp. 155–189). It is only above a certain spatial
dimensionality – known as the upper critical dimensionality – that the behavior
of the system is correctly described by a partial differential equation.
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3. After having eaten a prey, a predator has a probability bp of giving birth
to a predator at the site previously occupied by the prey.

4. A predator has a probability dp of dying.
5. Predators move to catch prey, and prey move to evade predators. Preda-

tors and prey move to a site of their own neighborhood. This neighborhood
is divided into four quarters along its diagonals, and prey and predator
densities are evaluated in each quarter. Predators move to a neighboring
site in the direction of highest local prey density of the Moore neigh-
borhood. In case of equal highest density in two or four directions, one of
them is chosen at random. If three directions correspond to the same high-
est density, predators select the middle one. Preys move to a neighboring
site in the opposite direction of highest local predator density. If the four
directions are equivalent, one is selected at random. If three directions
correspond to the same maximum density, preys choose the remaining
one. If two directions correspond to the same maximum density, preys
choose at random one of the other two. If H and P denote, respectively,
the prey and predator densities, then mHL2 preys and mPL2 predators
are sequentially selected at random to perform a move. This sequential
process allows some individuals to move more than others. The parameter
m, which is a positive number, represents the average number of tentative
moves per individual during a unit of time.

Rules 1, 2, 3, and 4 are applied simultaneously. Predation, birth, and death
processes are modeled by a three-state two-dimensional cellular automaton
rule. Rule 5 is applied sequentially.

At each time-step, the evolution results from the application of the syn-
chronous cellular automaton subrule followed by the sequential one.

To study such a lattice model, it is usually useful to start with the mean-
field approximation that ignores space dependence and neglects correlations.
In lattice models with local interactions, quantitative predictions of such an
approximation are not very good. However, it gives interesting information
about the qualitative behavior of the system in the limit m→∞.

If Ht and Pt denote the densities at time t of preys and predators, respec-
tively, we have

Ht+1 = Ht −Htf(1, dhPt) + (1 −Ht − Pt)f(1− Pt, bhHt),
Pt+1 = Pt − dpPt + bpHtf(1, dhPt),

where
f(p1, p2) = p4

1 − (p1 − p2)4.

Within the mean-field approximation, the evolution of our predator–prey
model is governed by two coupled finite-difference equations.

The model has three fixed points that are solutions of the system:

Hf(1, dhP )− (1−H − P )f(1− P, bht) = 0,
dpPt − bpHtf(1, dhPt) = 0.
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In the prey–predator phase space ((H,P )-plane), (0, 0) is always unstable.
(0, 1) is stable if dp − 4bpdh > 0. When dp − 4bpdh changes sign, a nontrivial
fixed point (H∗, P ∗), whose coordinates depend upon the numerical values of
the parameters, becomes stable, as illustrated in Fig. 2.9.
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Fig. 2.9. Orbit in the prey–predator phase space approaching the stable fixed point
(0.288, 0.103) for bh = 0.2, dh = 0.9, bp = 0.2, dp = 0.2

Fig. 2.10. Orbit in the prey–predator phase space approaching the stable limit
cycle for bh = 0.2, dh = 0.9, bp = 0.6, dp = 0.2

Increasing the probability bp for a predator to give birth, we observe a
Hopf bifurcation and the system exhibits a stable limit cycle, as illustrated in
Fig. 2.10.
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We will not describe in detail the results of numerical simulations, which
can be found in [67]. For largem values, the mean-field approximation provides
useful qualitative – although not exact – information on the general temporal
behavior as a function of the different parameters.

If we examine the influence of the pursuit and evasion process (Rule 5) –
i.e., if we neglect the birth, death, and predation processes (bh = bd = dh =
dp = 0) – we observe the formation of small clusters of preys surrounded by
predators preventing these preys from escaping. Preys that are not trapped
by predators move more or less randomly avoiding predators.

For bh = 0.2, dh = 0.9, bp = 0.2, dp = 0.2, the mean-field approxima-
tion exhibits a stable fixed point in the prey–predator phase space located at
(H∗, P ∗) = (0.288, 0.103). Simulations show that, for these parameter values,
a nontrivial fixed point exists only if m > m0 = 0.350. Below m0, the stable
fixed point is (1, 0). This result is quite intuitive; if the average number of
tentative moves is too small, all predators eventually die and prey density
grows to reach its maximum value. As m increases from m0 to m = 500, the
location of the nontrivial fixed point approaches the mean-field fixed point.

For bh = 0.2, dh = 0.9, bp = 0.6, dp = 0.2, the mean-field approximation
exhibits a stable limit cycle in the prey–predator phase space. This oscillatory
behavior is not observed for two-dimensional large lattices [104]. A quasi-
cyclic behavior of the predator and prey densities on a scale of the order of
the mean displacements of the individuals may, however, be observed. As men-
tioned above, cyclic behaviors observed in population dynamics have received
a variety of interpretations. This automata network predator–prey model sug-
gests another possible explanation: approximate cyclic behaviors could result
as a consequence of a not too large habitat; i.e., when the size of the habitat
is of the order of magnitude of the mean displacements of the individuals.

Remark 2. In Chap. 6, the reader will find a more extensive study of spatial models.
Here, we just want to indicate that some authors did introduce space in predator–
prey model formulating their models in terms of partial differential equations (see,
for example, [116,359].)

Exercises

Exercise 2.1 We have seen that the Lotka–Volterra predator prey model assumes
that, in the absence of predators, the prey population, denoted by H , grows
exponentially, whereas, in the absence of prey, predators starve to death and their
population, denoted by P , declines exponentially. As a result of the interaction
between the two species, H decreases and P increases at a rate proportional to
the frequency of predator–prey encounters. Since scavengers play an important
role in ecosystems, we should generalize the Lotka–Volterra model and introduce
a third species: the scavengers. We shall assume that the scavenger species has no
impact on the predator or its prey; but that this species, S, will die exponentially
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in the absence of any other species and will directly benefit in proportion to the
number of deaths of H and P that occur naturally, as well as those caused by the
predation of P on H .
(1) Write down the three equations of this modified Lotka–Volterra model in
presence of a scavenger species.
(2) Has the system an equilibrium point with finite nonzero values of the predator,
prey, and scavenger populations? This exercise is adapted from [349]

Exercise 2.2 Consider the predator–prey model defined by the following system
of two recurrence equations:

Hn+1 = aHn(1 −Hn)− bHnPn

Pn+1 = dHnPn,

where Hn and Pn are the respective reduced prey and predator population densi-
ties, and a, b and d are positive constant. This model assumes that the predator
can survive only in the presence of prey. Find the fixed points, and discuss their
stability. (This exercise is taken from [124].)

Solutions

Solution 2.1 (1) The original Lotka–Volterra model reads:

Ḣ = bH − sHP,
Ṗ = −dP + esHP,

Since the scavenger population S will exponentially disappear in the absence of
any other species but will directly benefit in proportion to the number of deaths
of H and P that occur naturally, as well as those caused by the predation of P
on H , we have to add the following third equation:

Ṡ = −aS + fHPS + gSH + hSP − kS2,

where a is the natural death rate of the scavengers, f represents the benefit to the
scavenger by scavenging corpses of the prey killed by the predator, g represents the
benefit to the scavenger by scavenging corpses of the prey that die naturally, and
h represents the benefit to the scavenger by scavenging corpses of the predator
that die naturally. The last term kS2 is added to avoid the scavenger population
to grow without bound.
(2) If the system has an equilibrium point (H∗, P ∗, S∗) , the coordinates of this
point must satisfy

Ḣ = 0, Ṗ = 0, Ṡ = 0.
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(H∗, P ∗, S∗) must therefore be a solution of the system

bH − sHP = 0
−dP + esHP = 0,

−aS + fHPS + gSH + hSP − kS2 = 0.

The only solution for which all the three populations have nonzero values is

(H∗, P ∗, S∗) =
(
d

es
,
b

s
,
bdf + dgs+ behs− aes2

eks2

)
.

Solution 2.2 (1) An equilibrium point (H∗, P ∗) is a such that, for all values of
n ∈ N, Hn = H∗ and Pn = P ∗. Hence, (H∗, P ∗) is the solution of

H∗ = aH∗(1−H∗)− bH∗P ∗

P ∗ = dH∗P ∗.

We find

(H∗
1 , P

∗
1 ) = (0, 0), and (H∗

2 , P
∗
2 ) =

(
a− 1)
a

, 0
)
,

(H∗
3 , P

∗
3 ) =

(
1
d
,
a

b

(
1− 1

d

)
− 1
b

)
.

the first solution (H∗
1 , P

∗
1 ) is trivial and present no interest, the second solution

(H∗
2 , P

∗
2 ) is not really more interesting since there is no predator and H∗

2 > 0
only for a > 1. The third solution is the only interesting one and we can study
the stability of the corresponding fixed point writing

Hn = H∗
3 + hn and Pn = P ∗

3 + pn,

where hn and pn are small. Replacing in the equations defining the model and
keeping only first order terms in hn and pn, we obtain

(
hn+1

pn+1

)
=
(
a− 2aH∗ − bP ∗ −bH∗

dP ∗ dH∗

)(
hn
pn

)
.

To discuss the stability of this fixed point, we have to find the eigenvalues of
the 2× 2 matrix, and determine under which conditions they are either real with
absolute values less than 1, or complex and inside the unit circle. Solving the
eigenvalues equation, we obtain

λ1,2 =
(
1− a

2d

)
± 1

2

√(
2 +

a

d

)2

− 4a.
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Both eigenvalues are real and their absolute values are less than 1 if

2 +
a

d
> 4a and

a

d
+ 1 < a,

that is, if

d ∈
]

a

a− 1
,

a

2(
√
a− 1)

]
and a > 1.

Both eigenvalues are complex and inside the unit circle if

(a
d

+ 2
)2

< 4a and
2a
a− 1

,

that is, if

d ∈
[

a

2(
√
a− 1)

,
2a
a− 1

[
and a > 1.
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Summary

The essential purpose in this chapter is to build up models in order to study
the effects of true predation on the population dynamics of the predator and
its prey. By true predator, we intend a predator which kills and eats another
organism. The focus is on two-species systems in which it appears that preda-
tor and prey populations exhibit coupled density oscillations. We first studied
in details the Lotka–Volterra model, then gave according to May and Pielou a
list of the features a somewhat realistic model, formulated in terms of ordinary
differential equations, should take into account, presented a model due to Gary
W. Harrison which gives the best quantitative agreement with Luckinbill’s
data on Didinium and Paramecium, and then discussed the existence of pop-
ulation oscillations driven by fluctuating environments, finally, since reproduc-
tion is not an instantaneous process, we presented another model proposed
by Hutchinson in terms of a time delay logistic equation. While all the above
models are formulated in terms of differential equations assuming that the
time t is a continuous variable, we can also build up models in which the time
is a discrete variable. If space is also discrete, we can build up spatial models
that will be studied in detail in Chap. 5.

• The Lotka–Volterra model is the simplest two-species predator–prey
model proposed independently by the American mathematician and bio-
physicist Alfred J. Lotka in 1925, and the Italian mathematician Vito
Volterra in 1926. The model consists in the following pair of first-order,
nonlinear, coupled differential equations:

Ḣ = bH − sHP,
Ṗ = −dP + esHP ;

where H is the prey density, P the predator density, b the birth rate of
the prey, d the death rate of the predator, s the searching efficiency of
the predator, and e the efficiency with which extra food is turned into
extra predators. In the absence of predators, the prey population grows
exponentially, whereas, in the absence of prey, predators will starve to
death and their population decline exponentially; but as a result of the
interaction between the two species, H decreases and P increases at a rate
proportional to the frequency of predator–prey encounters. Solving this
system of equations, it is found that the populations of the two species are
periodic functions of time.



50 2 How to Build Up a Model

• According to Robert May and Evelyn Pielou , a somewhat realistic
model, formulated in terms of ordinary differential equations, should
at least take into account the following relevant features:
1. Intraspecific competition , that is, competition between individuals be-

longing to the same species.
2. Predator’s functional response , that is, the relation between the

predator’s consumption rate and prey density.
3. Predator’s numerical response , that is, the efficiency with which extra

food is transformed into extra predators.
• The Harrison model , which has a good qualitative agreement with

Luckinbill’s experiments, is formulated in terms of the two differential
equations:

Ḣ = rHH

(
1− H

K

)
− aHPH

b+H
,

Ṗ =
aPPH

b +H
− cP.

Playing with the parameters values, it is found that the trajecto-
ries in the phase space either converge to a stable fixed point or a

stable limit cycle .

• The influence of a fluctuating environment on the evolution of a popula-
tion may be described by a logistic model with a time-dependent carrying
capacity:

Ṅ = rN

(
1− N

K(t)

)
,

where K(t) is the time-dependent carrying capacity . This equation has
periodic solutions.

• Since reproduction is not an instantaneous process, Hutchinson suggested
that the logistic equation modeling population growth should be replaced
by the following time-delay logistic equation :

Ṅ(t) =
dN
dt

= rN(t)
(

1− N(t− T )
K

)
.

In this equation, there exist two time scales: 1/r and T , and the stability
depends on the relative sizes of these time scales measured by the dimen-
sionless parameter rT . If rT is small, no oscillations are observed, and the
equilibrium point K is asymptotically stable. If rT is large, K is no more
stable and the population oscillates. This model shows that single-species
populations may exhibit oscillatory behaviors even in stable environments.

• If species may breed only at a specific time, the growth process occurs
in discrete time steps, and to a continuous-time model, we may always
associate a discrete-time one. It is found that the existence of a finite
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time interval between generations is a destabilizing factor. For example,
the discrete analog of the Lotka–Volterra model can be written

h(τ + 1) = h(τ) + ρ h(τ)
(
1− p(τ)),

p(τ + 1) = p(τ)− 1
ρ
p(τ)

(
1− h(τ)

)
.

Since the eigenvalues of the Jacobian matrix at the fixed point (1, 1), which
are i and −i, are outside the open disk {z | |z−1| < 1}, the neutrally stable
fixed point of the time-continuous model is unstable for the time-discrete
model.

We also defined a few more notions such that phase portrait, Malthusian
growth, and structural stability.

• A phase portrait is the set of all trajectories in the phase space.

• An exponential population growth is often called a Malthusian growth ,
after Thomas Robert Malthus who stated that because a population grows
much faster than its means of subsistence “vice and misery” will operate
to restrain population growth.

• A structurally stable model is such that its qualitative properties do not
significantly change when it is subjected to small perturbations. Satisfac-
tory models should be structurally stable.
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Differential Equations

The essential points of this chapter are
• The definitions of class of a function, diffeomorphism

homeomorphism, orbit, period of an orbit, phase portrait
Lyapunov stability, asymptotic stability, susceptible and
infective, SIR and SIS epidemic models, hyperbolic
equilibrium point, strong and weak Lyapunov function
ω- and α-limit point, ω- and
α-limit set, ω- and α-limit cycle
bifurcation, catastrophe

• The Kermack–McKendrick epidemic model
• The Poincaré–Bendixon theorem

The study of dynamical models formulated in ordinary differential equa-
tions began with Newton’s attempts to explain the motion of bodies in the
solar system. Except in very simple cases, such as the two-body problem,
most problems in celestial mechanics proved extremely difficult. At the end
of the nineteenth century, Poincaré1 developed new methods to analyze the

1 Jules Henri Poincaré (1854–1912) was a French mathematician and theoretical
physicist who made numerous important contributions to mathematics, mathe-
matical physics, and celestial mechanics. He excelled in all these fields. He was
the son of Léon Poincaré who was Professor of Medecine at the University of
Nancy, and his cousin Raymond Poincaré was president of the French repub-
lic during World War I. He received his doctorate in mathematics from the
University of Paris in 1879 under the supervision of Charles Hermite (1822–
1901). In 1886, Poincar was nominated for the chair of mathematical physics
and probability at the Sorbonne. Poincaré is considered as a co-discoverer of

N. Boccara, Modeling Complex Systems: Second Edition, Graduate Texts in Physics, 53
DOI 10.1007/978-1-4419-6562-2 3, c© Springer Science+Business Media, LLC 2010
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qualitative behavior of solutions to nonlinear differential equations. In a pa-
per [372]2 devoted to functions defined as solutions of differential equations,
he explains:

Malheureusement, il est évident que, dans la grande généralité des
cas qui se présentent, on ne peut intégrer ces équations à l’aide des
fonctions déjà connues, ...

Il est donc nécessaire d’étudier les fonctions définies par des
équations différentielles en elles-mêmes et sans chercher à les ramener
à des fonctions plus simples, ...3

The modern qualitative theory of differential equations has its origin in
this work.

There exists a wide variety of models formulated in differential equations,
and some of them are presented in this chapter.

3.1 Flows

Consider a system whose dynamics is described by the differential equation

dx
dt

= ẋ = X(x), (3.1)

where x, which represents the state of the system, belongs to the state or
phase space S, and X is a given vector field . Figure 3.1 shows an example of a
vector field. We have seen (Chap. 1, Example 1) that a differential equation of
order higher than one, autonomous or nonautonomous, can always be written
under the above form.

To present the theory, we need to recall some definitions.

Definition 1. A function f : R
n → R

n is differentiable at x0 ∈ R
n if there

exists a linear transformation Df(x0) that satisfies

lim
‖h‖→0

‖f(x0 + h)− f(x0)−Df(x0)h‖
‖h‖ = 0. (3.2)

The linear transformation Df(x0) is called the derivative of f at x0.

the special theory of relativity. He was elected to the Académie des Sciences
in 1887 and became President of the Academy in 1906. Poincaré is consid-
ered as one of the greatest geniuses of all time. More details can be found at
http://www.gap-system.org/ history/Biographies/Poincare.html.

2 This paper is a revision of the work for which Poincaré was awarded a prize offered
by the king of Sweden in 1889.

3 Unfortunately, it is clear that in most cases we cannot solve these equations using
known functions, ...

It is therefore necessary to study functions defined by differential equations for
themselves without trying to reduce them to simpler functions,...
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Instead of the word function, many authors use the words map or mapping.
In this text, we shall indifferently use any of these terms.

It is easily verified that the derivative Df is given by the n × n Jacobian
matrix

∂(f1, f2, . . . , fn)
∂(x1, x2, . . . , xn)

.

Let U be an open subset of R
n; the function f : U → R

n is continuously
differentiable, or of class C1, in U if all the partial derivatives

∂fi
∂xj

(1 ≤ i ≤ n, 1 ≤ j ≤ n)

are continuous in U . More generally, f is of class Ck in U if all the partial
derivatives

∂kfi
∂xj1∂xj2 · · · ∂xjk

(1 ≤ i ≤ n, 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n, . . . , 1 ≤ jk ≤ n)

exist and are continuous in U . Continuous but not differentiable functions are
referred to as C0-functions. A function is said to be smooth if it is contin-
uously differentiable a sufficient number of times, the number of continuous
derivatives necessary for a function to be smooth depends on the particular
problem. That is, a function may be considered smooth for one problem and
not smooth for another problem.4

A function f is said to be analytic, if it is C∞ and equals its Taylor series
expansion around any point in its domain of definition.

Definition 2. A function f : U → V , where U and V are open subsets of R
n,

is said to be a Ck diffeomorphism if it is a bijection, and both f and f−1 are
Ck functions. If f and f−1 are C0, f is called a homeomorphism.

In many models, the phase space is not Euclidean. It may have, for in-
stance, the structure of a circle or a sphere. But if, as in both these cases,
we can define local coordinates, the notions of derivative and diffeomorphism
can be easily extended. Phase spaces that have a structure similar to the
structure of a circle or a sphere are called manifolds . More precisely, M is
a manifold of dimension n if, for any x ∈ M, there exists a neighborhood
N(x) ⊆ M containing x and a homeomorphism h : N(x) → R

n that maps
N(x) onto a neighborhood of h(x) ∈ R

n. Because we can define coordinates in
h
(
N(x)

) ⊆ R
n, h defines local coordinates on N(x). The pair

(
h
(
N(x)

)
,h
)

is called a chart . To obtain a global description of M, we cover it with a
family of open sets Ni, each associated with a chart (hi(Ni),hi). The set of
all these charts is called an atlas . In all the models we shall study, even if the

4 Note that some authors called smooth only C∞ functions, that is, functions having
continuous derivatives of all orders.
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phase space is a manifold, the functions f will be given in local coordinates.
We shall, therefore, never be really involved with charts and atlases. In all
definitions and theorems involving “differential manifolds of dimension n,”
the reader could replace this expression by “open sets of R

n.”
If, in (3.1), the vector field X defined on an open subset U of R

n is Ck, then
given x0 ∈ U and t0 ∈ R, for |t− t0| sufficiently small, there exists a solution
of (3.1) through the point x0 at t0, denoted x(t, t0,x0) with x(t0, t0,x0)=x0.
This solution is unique and is a Ck function of t, t0, and x0. As we already
pointed out (page 11, Footnote 30), we shall not give a proof of this funda-
mental theorem because a differential equation modeling a real system should
have a unique evolution for any realizable initial state.5

The solution of (3.1) being unique, we have

x(t+ s, t0,x0) = x(s, t+ t0,x(t, t0,x0)).

This property shows that the solutions of (3.1) form a one-parameter group
of Ck diffeomorphisms of the phase space. These diffeomorphisms are referred
to as a phase flow or just a flow . The common notation for flows is ϕ(t,x) or
ϕt(x), and we have

ϕt ◦ϕs = ϕt+s (3.3)

for all t and s in R. Note that ϕ0 is the identity and that (ϕt)
−1 exists and

is given by ϕ−t.6

In most cases t0 = 0 and, from the definition of ϕt above, we have

X(x) =
d
dt
ϕt(x)

∣
∣∣
∣
t=0

. (3.4)

Given a point x ∈ U ⊆ R
n, the orbit or trajectory of ϕ passing through

x ∈ U is the set {ϕt(x) | t ∈ R} oriented in the sense of increasing t. There
is only one trajectory of ϕ passing through any given point x ∈ U . That is, if
two trajectories intersect, they must coincide.

The set of all trajectories of a flow is called its phase portrait . A helpful
representation of a flow is obtained by plotting typical trajectories (Fig. 3.1).

Definition 3. Let X be a vector field defined on an open set U of R
n; a

point x∗ ∈ U is an equilibrium point of the differential equation ẋ = X(x) if
X(x∗) = 0.

5 The mathematically oriented reader may consult Hale [206] or Hirsch and
Smale [221].

6 The mapping t �→ ϕt is an isomorphism from the group of real numbers R to the
group {ϕt | t ∈ R}. This group is called an action of the group R on the state
space U .
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Note that if x∗ is an equilibrium point, then ϕt(x
∗) = x∗ for all t ∈ R.

Thus, x∗ is also called a fixed point of the flow ϕ. The orbit of a fixed point
is the fixed point itself.

A closed orbit of a flow ϕ is a trajectory that is not a fixed point but
is such that ϕτ (x) = x for some x on the trajectory and a nonzero τ . The
smallest nonzero value of τ is usually denoted by T and is called the period
of the orbit . That is, we have ϕT (x) = x, but ϕt(x) �= x for 0 < t < T .
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Fig. 3.1. Vector field (left) and phase portrait (right) of the two-dimensional system
ẋ1 = x2, ẋ2 = −x1 − x2

2. (0, 0) is a nonhyperbolic equilibrium point

Definition 4. An equilibrium point x∗ of the differential equation ẋ = X(x)
is said to be Lyapunov stable (or L-stable) if, for any given positive ε, there
exists a positive δ (which depends on ε only) such that, for all x0 in the
neighborhood of x∗ defined by ‖x0 − x∗‖ < δ, the solution x(t, 0,x0) of the
differential equation above satisfying the initial condition x(0, 0,x0) = x0 is
such that ‖x(t, 0,x0)− x∗‖ < ε for all t > 0. The equilibrium point is said to
be unstable if it is not stable.

An equilibrium point x∗ of a differential equation is stable if the trajectory
in the phase space going through a point sufficiently close to the equilibrium
point at t = 0 remains close to the equilibrium point as t increases. Lyapunov
stability does not imply that, as t tends to infinity, the point x(t, 0,x0) tends
to x∗. But:

Definition 5. An equilibrium point x∗ of the differential equation ẋ = X(x)
is said to be asymptotically stable if it is Lyapunov stable and

lim
t→∞x(t, 0,x0) = x∗.



58 3 Differential Equations

Example 8. Kermack–McKendrick epidemic model. To discuss the spread of
an infection within a population, Kermack7 and McKendrick8 [238] divide
the population into three disjoint groups.9

1. Susceptible individuals are capable of contracting the disease and becom-
ing infective.

2. Infective individuals are capable of transmitting the disease to others.
3. Removed individuals have had the disease and are dead, or have recovered

and are permanently immune, or are isolated until recovery and permanent
immunity occur.10

Infection and removal are governed by the following rules.

1. The rate of change in the susceptible population is proportional to the
number of contacts between susceptible and infective individuals, where
the number of contacts is taken to be proportional to the product of the
numbers S and I of, respectively, susceptible and infective individuals.
The model ignores incubation periods.

2. Infective individuals are removed at a rate proportional to their number I.
3. The total number of individuals S + I + R, where R is the number of

removed individuals, is constant, that is, the model ignores births, deaths
by other causes, immigration, emigration, etc.11

Taking into account the rules above yield

Ṡ = −iSI,
İ = iSI − rI,
Ṙ = rI,

(3.5)

where i and r are positive constants representing infection and the removal
rates.

From the first equation, it is clear that S is a nonincreasing function,
whereas the second equation implies that I(t) increases with t, if S(t) >
r/i, and decreases otherwise. Therefore, if, at t = 0, the initial number of
susceptible individuals S0 is less than r/i, because S(t) ≤ S0, the infection
dies out, that is, no epidemic occurs. If, on the contrary, S0 is greater than

7 William Ogilvy Kermack (1898–1970) was a mathematical epidemiologist.
8 Anderson Gray McKendrick (1876–1943) was a Scottish physician and epidemi-

ologist who pioneered the use of mathematical methods in epidemiology.
9 See also papers by Anderson and May [8] and Hethcote [220]. On population biol-

ogy of infectious diseases, the reader may have a look at the interesting web page:
http://mathbio.colorado.edu/index.php/APPM4390:Population Biology of

Infectious Diseases.
10 Models of this type are called SIR models.
11 Or we could say that birth, death, and migration are in exact balance.
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the critical value r/i, the epidemic occurs; that is, the number of infective
individuals first increases and then decreases when S(t) becomes less than
r/i.12

Remark 3. This threshold phenomenon shows that an epidemic occurs if, and only
if, the initial number of susceptible individuals S0 is greater than a threshold value
Sth. For this model, Sth = r/i; i.e., in the case of a deadly disease, an epidemic has
less chance to occur if the death rate due to the disease is high!
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Fig. 3.2. Kermack–McKendrick epidemic model. Susceptible and infective densities
as functions of time for i = 0.6, r = 0.1, S(0) = 0.7, and I(0) = 0.05. S(0) is above
the threshold value, and, as a consequence of the epidemic, the total population is
seriously reduced

Note that Ṡ is nonincreasing and positive, and Ṙ is positive and less than
or equal to the total population N , therefore, limt→∞ S(t) and limt→∞R(t)
exist. Because I(t) = N − S(t) − R(t), limt→∞ I(t) also exists.13 Moreover,
from the first and third of (3.5), it follows that

dS
dR

= − i
r
S;

that is,

S = S0 exp
(
− iR
r

)

≥ S0 exp
(
− iN
r

)
> 0. (3.6)

12 That is, by definition, an epidemic occurs if the time derivative of the number of
infective individuals İ is positive at t = 0.

13 Equations (3.5) show that in the steady state I(∞) = 0. Then, R(∞) = N−S(∞),
and Relation (3.6) shows that S(∞) is the only positive root of x = S0 exp(−i(N−
x)/r). More details can be found in Waltman [438].
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In this model, even in the case of a very serious epidemic, some individuals are
not infected. The spread of the disease does not stop for lack of susceptible
individuals (see Fig. 3.2).

Example 9. Hethcote–York model for the spread of gonorrhea14 [219].
Gonorrhea is a sexually transmitted disease that presents the following

important characteristics that differ from other infections, such as measles or
mumps:

• Gonococcal infection does not confer protective immunity, so individuals
are susceptible again as soon as they recover from infection.15

• The latent period is very short: 2 days, compared to 12 days for measles.
• The seasonal oscillations in gonorrhea incidence16 are very small (less than

10%), while the incidence of influenza or measles often varies by a factor
of 5 to 50.

If we assume that the infection is transmitted only through heterosexual inter-
course, we divide the population into two groups, Nf females and Nm males
at risk, each group being divided into two subgroups,NfSf (resp.NmSm) sus-
ceptible females (resp. males) and NfIf (resp. NmIm) infective females (resp.
males). Nf and Nm are assumed to be constant. The dynamics of gonorrhea
is then modeled by the four-dimensional system

Nf Ṡf = −λfSfNmIm +NfIf/df ,

Nf İf = λfSfNmIm −NfIf/df ,

NmṠm = −λmSmNfIf +NmIm/dm,

Nmİm = λmSmNfIf −NmIm/dm,

where λf (resp. λm) is the rate of infection of susceptible females (resp. males),
and df (resp. dm) is the average duration of infection for females (resp. males).
The rates λf and λm are different because the probability of transmission of
gonococcal infection during a single sexual exposure from an infectious woman
to a susceptible man is estimated to be about 0.2–0.3, while the probability of
transmission from an infectious man to a susceptible woman is about 0.5–0.7.
The average durations of infection df and dm are also different because 90%
of all men who have a gonococcal infection notice symptoms within a few
days after exposure and promptly seek medical treatment, while up to 75%
of women with gonorrhea fail to have symptoms and remain untreated for
some time.

14 The PDF files of Herbert W. Hethcote’s papers on infectious disease modeling
can be found at http://www.math.uiowa.edu/hethcote/Pubs.htm.

15 Models of this type are called SIS models.
16 Incidence is the number of new cases in a time interval.
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Because Sf+If = 1 and Sm+Im = 1, the four-dimensional system reduces
to the two-dimensional system

İf =
λf
r

(1− If )Im − If
df
,

İm = rλm(1− Im)If − Im
dm

,

where r = Nf/Nm. The system has two equilibrium points (If , Im) = (0, 0)
and

(If , Im) =
(
dfdmλfλm − 1
dmλm(r + dfλf )

,
r(dfdmλfλm − 1)
dfλf (1 + rdmλm)

)
.

Because acceptable solutions should not be negative, we find that the non-
trivial equilibrium point exists if

dfdmλfλm > 1.

The coefficient λf/r (resp. λmr) represents the average fraction of females
(resp. males) being infected by one male (resp. female) per unit of time. Be-
cause males (resp. females) are infectious during the period dm (resp. df ),
then the average fraction of females (resp. males) being infected by one infec-
tive male (female) during his (resp. her) period of infection is λfdm/r (resp.
λmdf r). The condition λmdfλfdm > 1 therefore expresses that the average
fraction of females infected by one male will infect, during their period of in-
fection, more than one male. In this case, gonorrhea remains endemic. If the
condition is not satisfied, then gonorrhea dies out. As a consequence, for this
model, if the nontrivial equilibrium point exists, it is asymptotically stable; if
it does not, then the trivial fixed point is asymptotically stable.

Example 10. Leslie’s predator–prey model. After the publication of the Lotka–
Volterra model ((2.1) and (2.1)), many other predator–prey models were pro-
posed. In 1948, Leslie [264] suggested the system

Ḣ = rHH

(
1− H

K

)
− sHP,

Ṗ = rPP

(
1− P

cH

)
,

(3.7)

where H and P denote, respectively, the prey and predator populations. The
equation for the preys is similar to Lotka–Volterra equation (2.1) except that,
in the absence of predators, the growth of the preys is modeled by the logistic
equation. The equation for the predators is a logistic equation in which the
carrying capacity is proportional to the prey population. This model contains
five parameters. There is only one nontrivial equilibrium point (H∗, P ∗), which
is the unique solution of the linear system

rH

(
1− H

K

)
= sP, P = cH.
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Fig. 3.3. Phase portrait of the scaled Leslie model for k = 5 and ρ = 1.5

If we put

h =
H

H∗ , p =
P

P ∗ , ρ =
√
rH
rP
, k =

K

H∗ , τ =
√
rHrP t, (3.8)

then (3.7) become
dh
dτ

= ρh

(
1− h

k

)
− αph,

dp
dτ

=
1
ρ
p
(
1− p

h

)
.

(3.9)

These equations contain two independent parameters, ρ and k, the extra pa-
rameter α being given in terms of these by17

α = ρ

(
1− 1

k

)
.

The equilibrium points are (0, 0), (k, 0), and (1, 1). A few trajectories converg-
ing to the asymptotically stable equilibrium point (1, 1) are shown in Fig. 3.3.

17 This result follows from the first of the two (3.9) if we put

dh

dτ
= 0, h = 1, p = 1.
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Remark 4. Recently, Montero has studied a predator prey models for stock market
fluctuations. His paper, entitled Predator–Prey Model in Stock Market Fluctuations,
can be found (and downloaded) at http://arxiv.org/pdf/0810.4844v4.

Definition 6. Let ϕt : U → U and ψt : W → W be two flows; if there exists
a diffeomorphism h : U → W such that, for all t ∈ R,

h ◦ϕt = ψt ◦ h, (3.10)

the flows ϕt and ψt are said to be conjugate.

In other words, the diagram

U
ϕt−−−−→ U

h

⏐⏐
!

⏐⏐
!h

W
ψt−−−−→ W

is commutative. The purpose of Definition 6 is to provide with a way of charac-
terizing when two flows have qualitatively the same dynamics. Equation (3.10)
can also be written

ψt = h ◦ϕt ◦ h−1.

That is, h takes the orbits of the flow ϕt into the orbits of the flow ψt. In other
words, the flow ϕt becomes the flow ψt under the change of coordinates h.

It is readily verified that conjugacy is an equivalence relation, i.e.,

(ϕt ∼ ϕt), (ϕt ∼ ψt)⇒ (ψt ∼ ϕt), and (ϕt ∼ ψt,ψt ∼ χt)⇒ (ϕt ∼ χt).

If h is a C1 function such that h ◦ ϕt = ψt ◦ h, then differentiating both
sides with respect to t and evaluating at t = 0 yields

Dh(ϕt(x))
d
dt
ϕt(x)

∣
∣∣
∣
t=0

=
d
dt
ψt
(
h(x)

)
∣
∣∣
∣
t=0

,

and taking into account Relation (3.4), we obtain

Dh(x)X(x) = Y(h(x)). (3.11)

That is, if h is a differentiable flow conjugacy of the flows ϕt and ψt, the
derivative Dh(x) transforms X(x) into Y(h(x)).
Remark 5. Definition 6 requires conjugacy to preserve the parameter t. If we are
required to preserve only the orientation along the orbits of ϕt and ψt, we obtain
more satisfactory equivalence classes for flows. In that case, Relation (3.10) would
have to be replaced by

h ◦ ϕt = ψτ(t,x) ◦ h, (3.12)

where, for all x, the function t �→ τ (t,x) is strictly increasing; i.e., its derivative
with respect to t has to be positive for all x. If there exist a homeomorphism h and
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a differentiable function τ such that Relation (3.12) is satisfied, it is said that the
flows ϕt and ψt are topologically equivalent. Here is a simple example. Consider the
two one-dimensional flows:

ϕ1(t, x) = e−λ1tx and ϕ2(t, x) = e−λ2tx,

where λ1 and λ2 are different positive numbers. Let h be such that

h(e−λ1tx) = e−λ2th(x). (3.13)

If h is a diffeomorphism, then taking the derivative with respect to x of each side of
this relation yields

e−λ1th′(e−λ1tx) = e−λ2th′(x).

A diffeomorphism being invertible by definition, h′(0) �= 0, and we obtain e−λ1t =
e−λ2t, which contradicts the assumption λ1 �= λ2. If, on the contrary, we assume
that h is not differentiable everywhere (i.e., h is not a diffeomorphism but only a
homeomorphism), then the homeomorphism18

h �→

⎧
⎪⎨

⎪⎩

−|x|λ2/λ1 , if x < 0

0, if x = 0

xλ2/λ1 , if x > 0

satisfies (3.13) and shows that ϕ1 and ϕ2 are topologically equivalent.

3.2 Linearization and Stability

To analyze a model described by a nonlinear differential equation of the form
(3.1), we first have to determine its equilibrium points and study the behavior
of the system near these points. Under certain conditions, this behavior is
qualitatively the same as the behavior of a linear system. We therefore begin
this section with a brief study of linear differential equations.

3.2.1 Linear Systems

The solution of the one-dimensional linear differential equation

ẋ = ax,

which satisfies the initial condition x(0) = x0, is x(t) = x0eat.
Question. Let A be a time-independent linear operator defined on R

n; is
it possible to generalize the result above and say that, if x ∈ R

n, the solution
to the linear differential equation

ẋ = Ax, (3.14)

which satisfies the initial condition x(0) = x0, is x(t) = eAtx0?
The answer is yes, provided we define and show how to express the linear

operator eAt.

18 h is continuous and invertible.



3.2 Linearization and Stability 65

Definition 7. Let A be a linear operator defined on R
n; the exponential of

A is the linear operator defined on Rn by19

eA =
∞∑

k=0

Ak

k!
. (3.15)

Depending on whether the real linear operator A has real or complex
distinct or multiple eigenvalues, the real linear operator eAt may take different
forms, as described below.20

1. All the eigenvalues of A are distinct.
If A has distinct real eigenvalues λi and corresponding eigenvectors ui,

where i = 1, 2, . . . , k and distinct complex eigenvalues λj = αj + iβj and
λj = αj − iβj and corresponding complex eigenvectors wj = uj + ivj and
wj = uj − ivj , where j = k + 1, k + 2, . . . , �, then the matrix21

M = [u1, . . . ,uk,uk+1,vk+1, . . . ,u�,v�]

is invertible, and

M−1AM = diag[λ1, . . . , λk, Bk+1, . . . , B�].

The right-hand side denotes the matrix
⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

λ1 0 · · · · · · · · · · · · · · · 0
0 λ2 0 · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 λk 0 · · · 0
0 0 · · · · · · 0 Bk+1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · · · · · · · · · · · · · B�

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

,

19 For this definition to make sense, it is necessary to show that the series converges
and, therefore, to first define a metric on the space of linear operators on R

n

to be able to introduce the notion of limit of a sequence of linear operators. If
‖x‖ is the norm of x ∈ R

n, the norm of a linear operator A may be defined as
‖A‖ = sup‖x‖≤1 ‖Ax‖. The distance d between two linear operators A and B on
R

n is then defined as d(A,B) = ‖A −B‖.
20 For a simple and rigorous treatment of linear differential systems, see Hirsch and

Smale [221].
21 If a1,a2, . . . ,an are n independent vectors of R

n, the matrix [a1,a2, . . . ,an]
denotes the matrix ⎡

⎢
⎢
⎣

a11 a21 · · · an1

a12 a22 · · · an2

· · · · · · · · · · · ·
a1n a2n · · · ann

⎤

⎥
⎥
⎦ .
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where, for j = k + 1, k + 2, . . . , �, the Bj are 2× 2 blocks given by

Bj =
[
αj −βj
βj αj

]
.

In this case, we have

eAt = M diag[eλ1t, . . . , eλkt, Ek+1, . . . , E�]M−1, (3.16)

the 2× 2 block Ej being given by

Ej = eαjt

[
cosβjt − sinβjt
sinβjt cosβjt

]
.

Note that the dimension of the vector space on which A and eAt are defined
is n = 2�− k.

2. A has real multiple eigenvalues.
If A has real eigenvalues λ1, λ2, . . . , λn repeated according to their multi-

plicity and if (u1,u2, . . . ,un) is a basis of generalized eigenvectors,22 then the
matrix

M = [u1,u2, . . . ,un]

is invertible, and the operator A can be written as the sum of two matrices
S + N, where

SN = NS, M−1SM = diag[λ1, λ2, . . . , λn],

and N is nilpotent of order k ≤ n.23

In this case, we have24

eAt = M diag
[
eλ1t, eλ2t, . . . , eλnt

]
M−1

×
(
I + Nt+ · · ·+ Nk−1 tk−1

(k − 1) !

)
. (3.17)

3. A has complex multiple eigenvalues.
If a real linear operator A, represented by a 2n× 2n matrix, has complex

eigenvalues λj = αj + iβj and λj = αj − iβj , where j = 1, 2, . . . , n, there ex-
ists a basis of generalized eigenvectors wj = uj + ivj and wj = uj − ivj

22 If the real eigenvalue λ has multiplicity m < n, then for k = 1, 2, . . . , m, any
nonzero solution of (A − λI)ku = 0 is called a generalized eigenvector.

23 A linear operator N is nilpotent of order k if Nk−1 �= 0 and Nk = 0.
24 If the linear operators A and B commute, then eA+B = eAeB. The series defining

the exponential of a nilpotent linear operator of order k is a polynomial of degree
k − 1.
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for C
n, (u1,v1, . . . ,un,vn) is a basis for R

2n, the 2n × 2n matrix M =
[u1,v1, . . . ,un,vn] is invertible, and the operator A can be written as the
sum of two matrices S + N, where

SN = NS, M−1SM = diag
[[
α1 −β1

β1 α1

]
,

[
α2 −β2

β2 α2

]
, · · · ,

[
αn −βn
βn αn

]]
,

and N is nilpotent of order k ≤ 2n.
In this case, we have

eAt = M diag
[
eα1t

[
cosβ1 − sinβ1

sinβ1 cosβ1

]
, · · · , eαnt

[
cosβn − sinβn
sinβn cosβn

]]
M−1

×
(
I + Nt+ · · ·+ Nk−1 tk−1

(k − 1) !

)
. (3.18)

4. A has both real and complex multiple eigenvalues.
In this case, we use a combination of the results above to find the expression

of linear operator eAt.

Example 11. Classification of two-dimensional linear flows. Let trA and
detA denote, respectively, the trace and the determinant of the 2 × 2 time-
independent real matrix A. The eigenvalues of A are the roots of its charac-
teristic polynomial :

det(A− λI) = λ2 − trAλ+ detA. (3.19)

We may distinguish the following cases:

1. If detA < 0, the eigenvalues of A are real and have opposite sign. The
origin is said to be a saddle.

2. If detA > 0 and (trA)2 ≥ 4 detA, the eigenvalues of A are real and have
the same sign. The origin is said to be an attractive node if trA < 0 and
a repulsive node if trA > 0.

3. If trA �= 0 and (trA)2 < 4 detA, the eigenvalues of A are complex. The
origin is said to be an attractive focus if trA < 0 and a repulsive focus if
trA > 0.

4. If trA = 0 and detA < 0, the eigenvalues of A are complex with a zero
real part. The origin is said to be a center .

The phase portraits corresponding to the different cases described above
are represented in Fig. 3.4. Attractive nodes and attractive foci are asymptot-
ically stable equilibrium points for linear two-dimensional systems. Centers
are Lyapunov stable but not asymptotically stable equilibrium points.

To the classification above, we have to add two degenerate cases illustrated
in Fig. 3.5.
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1. If trA �= 0 and detA = 0, one eigenvalue is equal to zero and the other
one equal to trA. The origin is said to be a saddle node.25 In this case,
there exists a basis in which eAt = diag[1, eλt], showing that the equations
of the orbits are x = a, y > 0 and x = a, y < 0, with a ∈ R.

2. If trA = 0 and detA = 0 with A �= 0, there exists a basis in which A is

of the form
[
0 a
0 0

]
. All the orbits are the straight lines y = y0 traveled at

constant velocity ay0.

d e f

a b c

Fig. 3.4. Two-dimensional linear flows. Phase portraits of the nondegenerate cases.
(a) saddle, (b) attractive node, (c) repulsive node, (d) attractive focus, (e) repulsive
focus, and (f) center

We mentioned (Remark 5) that if we require only the orientation along the
orbits to be preserved, we obtain more satisfactory flow equivalence classes.
In the case of two-dimensional linear systems, it can be shown [207]26 that if
the eigenvalues of the two matrices A and B have nonzero real parts, then
the two linear systems ẋ = Ax and ẋ = Bx are topologically equivalent if,
and only if, A and B have the same number of eigenvalues with negative (and
hence positive) real parts. Consequently, up to topological equivalence, there
are three distinct equivalence classes of hyperbolic27 two-dimensional linear
systems; that is, cases (a), (b), and (c) in Fig. 3.4.

25 Also called a fold or a tangent bifurcation point. See Sect. 3.5.
26 See pp. 238–246.
27 That is, whose eigenvalues have nonzero real parts. See Definition 8.
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If the origin is a hyperbolic equilibrium point of a linear system ẋ = Ax,
the subspace spanned by the (generalized) eigenvectors corresponding to the
eigenvalues with negative (resp. positive) real parts is called the stable (resp.
unstable) manifold of the hyperbolic equilibrium point.

Fig. 3.5. Two-dimensional linear flows. Phase portraits of the degenerate cases.
Left: tr A �= 0 and det A = 0. Right: tr A = 0 and detA = 0 with A �= 0

3.2.2 Nonlinear Systems

Definition 8. Let x∗ ∈ U ⊆ R
n be an equilibrium point of the differential

equation ẋ = X(x); x∗ is said to be hyperbolic if all the eigenvalues of the
Jacobian matrix DX(x∗) have nonzero real part. The linear function

x �→ DX(x∗)x (3.20)

is called the linear part of X at x∗.

Let x∗ be an equilibrium point of (3.1). To determine the stability of x∗,
we have to understand the nature of the solutions near x∗. Let

x = x∗ + y.

substituting in (3.1) and Taylor expanding about x∗ yields

ẏ = DX(x∗)y +O(‖y‖2). (3.21)

Because the stability of x∗ is determined by the behavior of orbits through
points arbitrarily close to x∗, we might think that the stability could be de-
termined by studying the stability of the equilibrium point y = 0 of the linear
system

ẏ = DX(x∗)y. (3.22)
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The solution of (3.22) through the point y0 ∈ R
n at t = 0 is

y(t) = exp
(
DX(x∗)t

)
y0. (3.23)

Thus, the equilibrium point y = 0 is asymptotically stable if all the eigenvalues
of DX(x∗) have negative real parts.28

Question: If all the eigenvalues of DX(x∗) have negative real parts, is the
equilibrium point x∗ of (3.1) asymptotically stable? The answer is yes. More
precisely:

Theorem 1. If x∗ is a hyperbolic equilibrium point of the differential equation
ẋ = X(x), the flow generated by the vector field X in the neighborhood of x∗

is C0 conjugate to the flow generated by DX(x∗)(x− x∗).

This result is known as the Hartman–Grobman theorem [201,209].29 Hence,
ifDX(x∗) has no purely imaginary eigenvalues, the stability of the equilibrium
point x∗ of the nonlinear differential equation ẋ = X(x) can be determined
from the study of the linear differential equation ẏ = DX(x∗)y, where y =
x−x∗. If DX(x∗) has purely imaginary eigenvalues, this is not the case. The
following examples illustrate the various possibilities.

Example 12. The damped pendulum. The equation for the damped pendulum is

θ̈ + 2aθ̇ + ω2 sin θ = 0, (3.24)

where θ is the displacement angle from the stable equilibrium position, a > 0
is the friction coefficient, and ω2 is equal to the acceleration of gravity g
divided by the pendulum length �. If we put

x1 = θ, x2 = θ̇,

(3.24) may be written

dx1

dt
= x2,

dx2

dt
= −ω2 sinx1 − 2ax2.

The equilibrium points of this system are (nπ, 0), where n is any integer
(n ∈ Z). The Jacobian of the vector field X = (x2,−ω2 sinx1 − 2ax2) is

DX(x1, x2) =
[

0 1
−ω2 cosx1 −2a

]
.

28 See Sect. 3.2.1.
29 For a proof, see also Palis and de Melo [356].
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If n is even, then the eigenvalues of the Jacobian matrix at (nπ, 0) are
λ1,2 = −a ± √a2 − ω2. If ω ≤ a, both eigenvalues are real and negative; if
ω > a, the eigenvalues are complex conjugate and their real part is negative
(it is equal to −a). Therefore, if n is an even integer, the equilibrium point
(nπ, 0) is asymptotically stable (see Fig. 3.6).

If n is odd, the eigenvalues of the Jacobian matrix are λ1,2 = −a ±√
a2 + ω2, that is, real and of opposite signs. The equilibrium point (nπ, 0) is

therefore unstable (see Fig. 3.6).

Remark 6. A hyperbolic equilibrium point x∗ of the differential equation ẋ = X(x)
is called a sink if all the eigenvalues of DX(x∗) have negative real parts; it is called
a source if all the eigenvalues of DX(x∗) have positive real parts; and it is called a
saddle if it is hyperbolic, and DX(x∗) has at least one eigenvalue with a negative
real part and at least one eigenvalue with a positive real part.
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Fig. 3.6. Phase portrait of a damped pendulum ẋ1 = x2, ẋ2 = −ω2 sin x1−2ax2 for
ω = 2.8 and a = 0.1. The equilibrium points 0 and ±2π are asymptotically stable,
while the equilibrium points ±π are unstable (saddle points)

Example 13. A perturbed harmonic oscillator. Consider the system

ẋ1 = x2 + λx1(x2
1 + x2

2),

ẋ2 = −x1 + λx2(x2
1 + x2

2),

where λ is a parameter. These equations describe the dynamics of a perturbed
harmonic oscillator. For all values of λ, the origin is an equilibrium point. The
Jacobian at the origin of the vector field X = (x2 + λx1(x2

1 + x2
2),−x1 +

λx2(x2
1 + x2

2)) is

DX(0, 0) =
[

0 1
−1 −0

]
.

Its eigenvalues are ±i. The origin is a nonhyperbolic point, and to study its
stability, we have to analyze the behavior of the orbits close to the origin.
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If
(
x1(t), x2(t)

)
are the coordinates of a phase point at time t, its distance

from the origin will increase or decrease according to the sign of the time
derivative

d
dt
(
x2

1(t) + x2
2(t)

)
= 2x1(t)ẋ1(t) + 2x2(t)ẋ2(t) = 2λ

(
x2

1 + x2
2

)2
.

Thus, as t tends to infinity, ‖x(t)‖2 tends to zero if λ < 0, and the origin is
an asymptotically stable equilibrium; if λ > 0 with x0 �= 0, ‖x(t)‖2 tends to
infinity, showing that, in this case, the origin is an unstable equilibrium.

We could have reached the same conclusion using polar coordinates de-
fined by

x1 = r cos θ, x2 = r sin θ.

In terms of the coordinates (r, θ), the system becomes

ṙ = λr3, θ̇ = −1.

Because θ̇ = −1, the orbits spiral monotonically clockwise around the origin,
and the stability of the origin is the same as the equilibrium point r = 0 of
the one-dimensional system ṙ = λr3. That is, r = 0 is asymptotically stable
if λ < 0 and unstable if λ > 0 with r0 �= 0.

Near a hyperbolic equilibrium point x∗ of a nonlinear system ẋ = X(x)
we can define (local) stable and unstable manifolds. They are tangent to the
respective stable and unstable manifolds of the linear system ẏ = DX(x∗)y.30

If the equilibrium point x∗ is nonhyperbolic, we can define in a similar
manner a center manifold tangent to the center subspace spanned by the nz
(generalized) eigenvectors corresponding to the nz eigenvalues of the linear
operator DX(x∗) with zero real parts. Note that while the stable and unsta-
ble manifolds are unique, the center manifold is not. The essential interest
of the center manifold is that it contains all the complicated dynamics in
the neighborhood of a nonhyperbolic point. The following classical example
illustrates the characteristic features of the center manifold.31

30 More precisely: Let x∗ be a hyperbolic equilibrium point of the nonlinear system
ẋ = X(x), where X is a Ck (k ≥ 1) vector field on R

n. If the linear operator
DX(x∗) has nn eigenvalues with negative real parts and np = n−nn eigenvalues
with positive real parts, there exists an nn-dimensional differentiable manifold
W s

loc tangent to the stable subspace of the linear system ẏ = DX(x∗)y at x∗ such
that, for all x0 ∈ W s

loc, and all t > 0, limt→∞ϕt(x0) = x∗, and there exists an
np-dimensional differentiable manifold W u

loc tangent to the unstable subspace of
the linear system ẏ = DX(x∗)y at x∗ such that, for all x0 ∈ W u

loc and all t < 0,
limt→∞ ϕt(x0) = x∗, where ϕt is the flow generated by the vector field X. This
rather intuitive result is known as the stable manifold theorem. For more details
on invariant manifolds, consult Hirsch et al. [222].

31 On center manifold theory, see Carr [97].
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Example 14. Consider the system

ẋ1 = x2
1, ẋ2 = −x2.

The origin is a nonhyperbolic fixed point. The solutions are

x1(t) =
x1(0)

1− x1(0)t
and x2(t) = x2(0)e−t.

Eliminating t, we find that the equations of the trajectories in the (x1, x2)-
space are

x2(0) exp
(

1
x1
− 1
x1(0)

)
− x2 = 0.

For x1 < 0, all the trajectories approach the origin with all the derivatives of
x2 with respect to x1 equal to zero at the origin. For x1 ≥ 0, the only tra-
jectory that goes through the origin is x2 = 0. The center manifold, tangent
to the eigenvector directed along the x1-axis, which corresponds to the zero
eigenvalue of the linear part of the vector field at the origin is therefore not
unique. Except for x2 = 0, all the center manifolds are not C∞. This exam-
ple shows that the invariant center manifold, unlike the invariant stable and
unstable manifolds, is not necessarily unique and as smooth as the vector field.

To determine whether an equilibrium point x∗ of the differential equation
ẋ = X(x) is stable we have to study the behavior of the function x �→ ‖x −
x∗‖ in a neighborhood N(x∗) of x∗. The Lyapunov method introduces more
general functions. The essential idea on which the method rests is to determine
how an adequately chosen real function varies along the trajectories of the flow
ϕt generated by the vector field X.

Definition 9. Let x∗ be an equilibrium point of the differential equation ẋ =
X(x) on U ⊆ R

n. A C1 function V : U → R is called a strong Lyapunov
function for the flow ϕt on an open neighborhood N(x∗) of x∗ provided V (x) >
V (x∗) and

V̇ (x) =
d
dt
V
(
ϕt(x)

)
∣
∣∣
∣
t=0

< 0

for all x ∈ N(x∗) \ {x∗}. If the condition V̇ (x) < 0 is replaced by V̇ (x) ≤ 0,
V is called a weak Lyapunov function.

It is not difficult to prove that [221], if x∗ is an equilibrium point of the
differential equation ẋ = X(x) on U ⊆ R

n and there exists a weak Lyapunov
function V defined on a neighborhood of x∗, then x∗ is Lyapunov stable.
If there exists a strong Lyapunov function V defined on a neighborhood of
x∗, then x∗ is asymptotically stable. This result is known as the Lyapunov
theorem.32

32 Note that V̇ (x) is equal to the dot product ∇V (x) · X(x) of the gradient of
V with the vector field X at x. For two-dimensional systems, if V̇ (x) < 0, the
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The interesting feature of the Lyapunov method is that it is possible to
calculate V̇ (x) without actually knowing the solutions to the differential equa-
tion. To emphasize this particular feature, it is often called the direct method
of Lyapunov. The inconvenience of the method is that finding a Lyapunov
function is a matter of trial and error. In some cases, there are, however, some
natural functions to try. As illustrated by the following example, in the case
of a mechanical system, energy is often a Lyapunov function.

Example 15. Simple and damped pendulums. We have seen that the (1.10) of
the simple pendulum may be written

ẋ1 = x2,

ẋ2 = −g
�

sinx1.

The function
V : (x1, x2) �→ 1

2
�2x2

2 + g�(1− cosx1),

which represents the energy of the pendulum when the mass of the bob is
equal to unity, is a weak Lyapunov function because

V (x1, x2) > 0 for (x1, x2) �= (0, 0) and V̇ (x1, x2) =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 ≡ 0.

The equilibrium point (0, 0) is Lyapunov stable. In the case of the damped
pendulum (see Example 12), we have

ẋ1 = x2,

ẋ2 = −g
�

sinx1 − 2ax2, (a > 0).

If here again we consider the function V defined by V (x1, x2) = 1
2 �

2x2
2 +

g�(1− cosx1), we find that V̇ (x1, x2) = −2a�2x2
2. For the damped pendulum,

V̇ (x1, x2) is a strong Lyapunov function in a neighborhood of the origin. The
origin is, therefore, asymptotically stable.

Example 16. The van der Pol oscillator.33 The differential equation

ẍ+ λ(x2 − 1)ẋ+ x = 0 (3.25)

angle between ∇V (x) and X(x) is obtuse. Because the gradient is the outward
normal vector to the curve V (x) = constant at x, this implies that the orbit is
crossing the curve from the outside to the inside. Similarly, it could be shown
that, if V̇ (x) = 0, the orbit is tangent to the curve, and, if V̇ (x) > 0, the orbit
is crossing the curve from the inside to the outside. These remarks make the
Lyapunov theorem quite intuitive.

33 Balthasar van der Pol (1889–1959) was a Dutch physicist who studied experi-
mental physics with J. A. Fleming and Sir J. J. Thompson in England. He was
one of the founders, and for many years president, of Het Nederlandsch Radio-
genootschap. He was awarded the Institute of Radio Engineers Medal of Honor in
1935.
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describes the dynamics of the van der Pol oscillator34 [376], which arises in
electric circuit theory. It is a harmonic oscillator that includes a nonlinear
friction term: λ(x2 − 1)ẋ. If the amplitude of the oscillations is large, the
amplitude-dependent “coefficient” of friction is positive, and the oscillations
are damped. As a result, the amplitude of the oscillations decreases, and
the amplitude-dependent “coefficient” of friction eventually becomes negative,
corresponding to a sort of antidamping.

If we put
x1 = x and x2 = ẋ,

(3.25) takes the form

ẋ1 = x2, ẋ2 = −x1 − λ(x2
1 − 1)x2. (3.26)

The equilibrium point (x1, x2) = (0, 0) is nonhyperbolic, but we may study
its stability using the Lyapunov method. Consider the function

V : (x1, x2) �→ 1
2
(
x2

1 + x2
2

)
.

It is positive for (x1, x2) �= (0, 0, ), and its time derivative

V̇ (x1, x2) = x1ẋ1 + x2ẋ2

= −λ(x2
1 − 1)x2

2

is negative in a neighborhood of the equilibrium point (0, 0) if λ is negative.
Hence, V is a strong Lyapunov function, which proves that (0, 0) is asymptoti-
cally stable if λ < 0. It is an attractive focus. If λ is positive, (0, 0) is unstable.
It is a repulsive focus, and, as illustrated in Fig. 3.7, trajectories converge to
a stable limit cycle.
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Fig. 3.7. Phase portraits of the van der Pol equation: ẍ + λ(x2 − 1)ẋ + x = 0. For
λ = −0.5, the origin is an asymptotically stable equilibrium point (left), whereas for
λ = 0.5, the orbits converge to a stable limit cycle (right)

34 Demonstrations can be found at http://www.cmp.caltech.edu/∼mcc/Chaos

Course/Lesson3/Demos.html.
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Arnold gives the following simple proof of the existence of a stable limit
cycle.35 Note first that the Lyapunov function V represents the energy of the
system, which is a conserved quantity in the case of the harmonic oscillator,
i.e., for λ = 0. If the parameter λ is very small, trajectories are spirals in which
the distance between adjacent coils is of the order of λ. To determine whether
these spirals either approach the origin or recede from it, we may compute an
approximate value of the increment ΔV over one revolution around the origin.
Because V̇ (x1, x2) = −λ(x2

1−1)x2
2, and, to first order in λ, x1(t) = A cos(t−t0)

and x2(t) = −A sin(t− t0), we obtain

ΔV = −λ
∫ 2π

0

ΔV
(
A cos(t− t0),−A sin(t− t0)

)

= πλ

(
A2 − A4

4

)
.
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Fig. 3.8. Phase portrait of the van der Pol equation: ẍ + λ(x2 − 1)ẋ + x = 0 for
λ = 0.05. As explained in the text, for a small positive value of λ, the stable limit
cycle (thick line) is close to the circle of radius 2 centered at the origin

• If λ < 0 and the amplitude A of the oscillations is small, ΔV < 0, i.e., the
system gives energy to the external world: the trajectory is a contracting
spiral.

• If λ > 0 and the amplitude A of the oscillations is small, ΔV > 0, i.e.,
the system receives energy from the external world: the trajectory is an
expanding spiral.

35 See [12], pp. 150–151.
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• If ΔV = 0, the energy is conserved, and, for a small positive λ, the tra-
jectory is a cycle close to the circle x2

1 + x2
2 = A2, where A is the positive

root of A2(1 − 1
4 A

2) = 0, i.e., A = 2.

This result is illustrated in Fig. 3.8. Note that for a finite positive value of λ,
the energy is not conserved along a stable limit cycle but it varies periodically.
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Fig. 3.9. Energy of the van der Pol oscillator as a function of time along the limit
cycle for λ = 0.5

As shown in Fig. 3.9, the system receives energy from the external world during
a part of the cycle and gives it back during the other part.

If x∗ is an asymptotically stable equilibrium point of the differential equa-
tion ẋ = X(x) on U ⊆ R

n, it is of practical importance to determine its basin
of attraction, that is, the set

{
x ∈ U | lim

t→∞ϕt(x) = x∗
}
. (3.27)

The method of Lyapunov may be used to obtain estimates of the basin of
attraction. The problem is to find the largest subset of U in which V̇ (x) is
negative.

Remark 7. In the case of the van der Pol equation, the symmetry of the equation,
which is invariant under the transformation t �→ −t, λ �→ −λ, shows that, when
λ < 0, the basin of attraction of the origin is the interior of the closed curve sym-
metrical, with respect to the 0x1-axis, to the stable limit cycle obtained for |λ| (see
Fig. 3.7).

Definition 10. A point y ∈ R
n is an ω-limit point for the trajectory {ϕt(x) |

t ∈ R} through x if there exists a sequence (tk) going to infinity such that
limk→∞ ϕtk(x) = y. The set of all ω-limit points of x is called the ω-limit set
of x, and is denoted by Lω(x).
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α-limit points and the α-limit set are defined in the same way but with a
sequence (tk) going to −∞. The α-limit set of x is denoted Lα(x).36

Let y ∈ Lω(x) and z = ϕtk(y); then limk→∞ ϕt+tk(x) = z, showing that
y and z belong to the ω-limit set Lω(x) of x. The ω-limit set of x is, therefore,
invariant under the flow ϕt.37 Similarly, we could have shown that the α-limit
set of x is invariant under the flow.

If x∗ is an asymptotically stable equilibrium point, it is the ω-limit set
of every point in its basin of attraction. A closed orbit is the α-limit and
ω-limit set of every point on it. While, in general, limit sets can be quite
complicated, for two-dimensional systems the situation is much simpler. The
following result known as the Poincaré–Bendixson theorem38 gives a criterion
to detect limit cycles (see Definition 11 below) in systems modeled by a two-
dimensional differential equation:

Theorem 2. A nonempty compact limit set39 of a two-dimensional flow de-
fined by a C1 vector field, which contains no fixed point, is a closed orbit.40

Definition 11. A limit cycle is a closed orbit γ such that either γ ⊂ Lω(x)
or γ ⊂ Lα(x) for some x /∈ γ. In the first case, γ is an ω-limit cycle; in the
second case, it is an α-limit cycle.

Closed orbits around a center are not limit cycles. A limit cycle is an
isolated closed orbit in the sense that there exists an annular neighborhood
of the limit cycle that contains no other closed orbits. The stability of limit
cycles is studied in the next chapter in Sect. 4.3.

To prove the existence of a limit cycle using Theorem 2, one has to find
a bounded subset D of R

2 such that, for all x ∈ D, the trajectories {ϕt(x) |
t> 0} remain in D41 and show that D does not contain an equilibrium point.

Example 17. Perturbed center. Consider the two-dimensional system

ẋ1 = x1 − x2 − x1(x2
1 + x2

2), ẋ2 = x1 + x2 − x2(x2
1 + x2

2).

Using polar coordinates, this system takes the following particularly simple
form:

ṙ = r − r3, θ̇ = 1.
36 The reason for this terminology is that α and ω are, respectively, the first and

last letters of the Greek alphabet.
37 A set M is also invariant under the flow ϕt if, for all x ∈ M and all t ∈ R,
ϕt(x) ∈ M . For instance, fixed points and closed orbits are invariant sets.

38 For simple proofs of the Hartman–Grobman and Poincaré–Bendixon theorems,
visit http://www.math.hmc.edu/∼levy/181 web/Zimmerman web.pdf.

39 A set is compact if, from any covering by open sets, it is possible to extract a
finite covering. Any closed bounded subset of a finite-dimensional metric space is
compact.

40 See Hirsch and Smale [221].
41 Such a subset D is said to be positively invariant .
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For r = 1, ṙ = 0; therefore, if r1 and r2 are two real numbers such that 0 <
r1 < 1 < r2, we verify that, for r1 ≤ r < 1, ṙ > 0, and, for 1 < r ≤ r2, ṙ < 0.
Thus, the closed annular set {x | r1 ≤ (x2

1+x2
2)1/2 ≤ r2} is positively invariant

(see Footnote 41) and does not contain an equilibrium point. According to the
Poincaré–Bendixson theorem, this bounded subset contains a limit cycle (see
Fig. 3.10).
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Fig. 3.10. Phase portrait of the two-dimensional system of Example 17

3.3 Graphical Study of Two-Dimensional Systems

There exists a wide variety of models describing the interactions between two
populations. If one seeks to incorporate in such a model a minimum of broadly
relevant features, the equations describing the model might become difficult to
analyze. It is, however, frequently possible to analyze graphically the behavior
of the system without entering into specific mathematical details.

The system

Ṅ1 = N1f1(N1, N2), Ṅ2 = N2f2(N1, N2), (3.28)

represents a model of two interacting populations, whose growth rates Ṅ1/N1

and Ṅ2/N2 are, respectively, equal to f1(N1, N2) and f2(N1, N2).
The general idea on which rests the qualitative graphical analysis of (3.28)

is to:

(a) Divide the positive quadrant of the (N1, N2)-plane in domains bounded
by the sets {(N1, N2) | f1(N1, N2) = 0} and {(N1, N2) | f2(N1, N2) = 0},42
42 These sets, which are the preimages of the point (0, 0) by f1 and f2, respectively,

are called null clines.



80 3 Differential Equations

(b) Find, in each domain, the sign of both growth rates, which determine
the direction of the vector field, and

(c) Represent, in each domain, the direction of the vector field (i.e., the
flow) by an arrow.

As shown in the following example, a schematic phase portrait can then
be easily obtained.

Example 18. Lotka–Volterra competition model. Assuming that two species
compete for a common food supply, their growth could be described by the
following simple two-dimensional system:

Ṅ1 = r1N1

(
1− N1

K1

)
−λ1N1N2, Ṅ2 = r2N2

(
1− N2

K2

)
−λ2N1N2. (3.29)

This competition model is usually associated with the names of Lotka and
Volterra.

Each population (N1 and N2) has a logistic growth but the presence of
each reduces the growth rate of the other. The constants r1, r2, K1, K2, λ1,
and λ2 are positive. As usual, we define reduced variables writing

τ =
√
r1r2 t, ρ =

√
r1
r2
, n1 =

N1

K1
, n2 =

N2

K2
, α1 =

λ1K2√
r1r2

, α2 =
λ2K1√
r1r2

,

and (3.29) become

dn1

dτ
= ρn1(1− n1)− α1n1n2,

dn2

dτ
=

1
ρ
n2(1− n2)− α2n1n2. (3.30)

To determine under which conditions the two species can coexist, the two
straight lines

ρ(1− n1)− α1n2 = 0,
1
ρ
(1− n2)− α2n1 = 0,

should intersect in the positive quadrant. There are two possibilities repre-
sented in Fig. 3.11. We find that if a1 = ρ/α1 and a2 = 1/ρα2 are both
greater than 1, the nontrivial equilibrium point is asymptotically stable: the
two populations will coexist. If, on the contrary, a1 = ρ/α1 and a2 = 1/ρα2

are both less than 1, the nontrivial equilibrium point is a saddle. The equi-
librium points (0, 1) and (1, 0) are stable steady states. The population that
will eventually survive depends upon the initial state.

When the null clines do not intersect, as in Fig. 3.12, only one population
will eventually survive. It is population 1 if a1 = ρ/α1 > 1 and a2 = 1/ρα2< 1,
and population 2 if a1 = ρ/α1 < 1 and a2 = 1/ρα2 > 1. The equilibrium point
(0, 0) is, in all cases, unstable.

These results illustrate the so-called competitive exclusion principle
whereby two species competing for the same limited resource cannot, in
general, coexist. Note that the species that will eventually survive is the
species whose growth rate is less perturbed by the presence of the other.
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n1

n2

a1

a21

1

n1

n2

a1

a2 1

1

Fig. 3.11. Lotka–Volterra competition model. Intersecting null clines. Dots show
equilibrium points. In each domain, arrows represent the direction of the vector
(ṅ1, ṅ2), with time derivatives taken with respect to reduced time τ . Left: a1 =
ρ/α1 > 1 and a2 = 1/ρα2 > 1. Right: a1 = ρ/α1 < 1 and a2 = 1/ρα2 < 1

n1
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a2 1

1
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n2
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a21

1

Fig. 3.12. Lotka–Volterra competition model. Nonintersecting null clines. Dots
show equilibrium points. In each domain, arrows represent the direction of the vector
(ṅ1, ṅ2), with time derivatives taken with respect to reduced time τ . Left: a1 =
ρ/α1 > 1 and a2 = 1/ρα2 < 1. Right: a1 = ρ/α1 < 1 and a2 = 1/ρα2 > 1

It is possible to use the graphical method to study more complex models.
For instance, Hirsch and Smale [221]43 discuss a large class of competition
models. Their equations are of the form

Ṅ1 = N1f1(N1, N2), Ṅ2 = N2f2(N1, N2),

43 In a much older paper, Kolmogorov [250] had already presented a qualitative
study of a general predator–prey system.
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with the following assumptions:

1. If either species increases, the growth rate of the other decreases. Hence,

∂f1
∂N2

< 0 and
∂f2
∂N1

< 0.

2. If either population is very large, neither species can multiply. Hence,

f1(N1, N2) ≤ 0 and f2(N1, N2) ≤ 0 if either N1 > K or N2 > K.

3. In the absence of either species, the other has a positive growth rate up to
a certain population and a negative growth rate beyond that. There are,
therefore, constants a1 > 0 and a2 > 0 such that

f1(N1, N2) > 0 for N1 < a1 and f1(N1, N2) < 0 for N1 > a1

and

f2(N1, N2) > 0 for N2 < a2 and f2(N1, N2) < 0 for N2 > a2.

Analyzing different possible generic shapes of the null clines, Hirsch and
Smale show that the ω-limit set of any point in the positive quadrant of the
(N1, N2)-plane exists and is one of a finite number of equilibria; that is, there
are no closed orbits.

3.4 Structural Stability

The qualitative properties of a model should not change significantly when
the model is slightly modified: a model should be robust. To be precise, we
have to give a definition of what is a “slight modification.” That is, in the
space V(U) of all vector fields defined on an open set U ⊆ R

n, we have to
define an appropriate metric.44 The metric, we said, has to be appropriate in
the sense that, if two vector fields are close for this metric, then the dynamics
they generate have the same qualitative properties. Actually, on the space
V(U), we shall first define an appropriate norm and associate a metric with

44 We have already defined the notion of distance (or metric) (see page 15). A
distance d on a space X is a mapping d : X × X → R+ satisfying the following
conditions:

1. d(x, y) = 0 ⇐⇒ x = y.
2. d(x, y) = d(y, x).
3. d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a metric space.
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that norm.45 Complete normed vector spaces are called Banach spaces. They
were named after the Polish mathematician Stefan Banach, who introduced
them in 1920–1922.46

x

X

Fig. 3.13. Two neighboring one-dimensional vector fields in the C0 topology that
do not have the same number of equilibrium points

If X ∈ V(U), its C0 norm is defined by

‖X‖0 = sup
x∈U

‖X(x)‖,

where ‖X(x)‖ is the usual norm of the vector X(x) in R
n. The C0 distance

between two vector fields X and Y, which belong to V(U), is then defined by

d0(X,Y) = ‖X−Y‖0.
45 A mapping x �→ ‖x‖ defined on a vector space X into R+ is a norm if it satisfies

the following conditions:

1. ‖x‖ = 0 ⇐⇒ x = 0.
2. For any x ∈ X and any scalar λ, ‖λx‖ = |λ|‖x‖.
3. For all x and y in X, ‖x + y‖ ≤ ‖x‖ + ‖y‖.

A vector space equipped with a norm is called a normed vector space.
46 According to the Polish mathematician Stanis�law Marcin Ulam (1909–1984) [429],

Stefan Banach (1892–1945) was a prodigy who had a very special way of working.
He used to stay with other mathematicians at the Szkocka Café (Scottish Café) in
Lvov where, following Ulam, it was “difficult to outlast or outdrink” him during
these meetings. Banach liked noise and music that did not prevent him from
concentrating and thinking. Thanks to Juliusz Mien, a French intellectual who
taught him French and supervised his education, Banach was fluent in French
and published in 1932 his most influential work, Théorie des opérations linéaires
(Theory of Linear Operations), in French.
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As shown in Fig. 3.13, two vector fields that are close in the C0 topology47

may not have the same number of hyperbolic equilibrium points. To avoid this
undesirable situation, we should define a distance requiring that the vector
fields as well as their derivatives be close at all points of U . The C1 distance
between two vector fields X and Y belonging to V(U) is then defined by

d1(X,Y) = sup
x∈U
{‖X(x)−Y(x)‖, ‖DX(x) −DY(x)‖}.

Similarly, we could define Ck distances for k greater than 1.
In the space V(U) of all vector fields defined on an open set U ⊆ Rn, an

ε-neighborhood of X ∈ V(U) is defined by

Nε(X) = {Y ∈ V(U) | ‖X−Y‖1 < ε}.

A vector field Y that belongs to an ε-neighborhood of X is said to be ε-
C1-close to X or an ε-C1-perturbation of X. In this case, the components(
X1(x), X2(x), . . . , Xn(x)

)
and

(
Y1(x), Y2(x), . . . , Yn(x)

)
of, respectively, X

and Y and their first derivatives are close throughout U .

Theorem 3. Let x∗ be a hyperbolic equilibrium point of the flow ϕt generated
by the vector field X ∈ V(U). Then, there exists a neighborhood V of x∗ and
a neighborhood N of X such that each Y ∈ N generates a flow ψt that has
a unique hyperbolic equilibrium point y∗ ∈ V . Moreover, the linear operators
DX(x∗) and DY(y∗) have the same number of eigenvalues with positive and
negative real parts. In this case, the flow ϕt generated by the vector field X is
said to be locally structurally stable at x∗.

Because the flows exp
(
DX(x∗)t

)
and exp

(
DX(x∗)t

)
are equivalent, this

result follows directly from Theorem 1, which proves that the flows ϕt and
ψt are conjugate.48

The vector field (x2,−ω2 sinx1) of the undamped pendulum generates a
flow that is not structurally stable. Its equilibrium points are nonhyperbolic.
The damped pendulum (Example 12), which is obtained by adding to the

47 A collection T of subsets of a set X is said to be a topology in X if T has the
following properties:

1. X and ∅ belong to T .
2. If {Oi | i ∈ I} is an arbitrary collection of elements of T , then

⋃
i∈I Oi belongs

to T .
3. If O1 and O2 belong to T , then O1

⋂
O2 belongs to T .

The ordered pair (X, T ) is called a topological space, and the elements of T are
called open sets in X. When no ambiguity is possible, one may speak of the
“topological space X.”

48 The flows have to be restricted on neighborhoods of the respective hyperbolic
equilibrium points x∗ and y∗ on which Theorem 1 is valid. For more details, see
Arrowsmith and Place [15].
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vector field of the undamped pendulum the perturbation (0,−2ax2), has hy-
perbolic equilibrium points, which are either asymptotically stable or unstable
(see Fig. 3.6).

Similarly, a linear harmonic oscillator whose vector field is (x2,−x1) has
only one equilibrium point (0, 0), which is a center. The flow generated by the
vector field is not structurally stable. As shown in Example 13, the perturba-
tion (λx1(x2

1 + x2
2), λx2(x2

1 + x2
2)) generates a qualitatively different flow: its

ω-limit set is a stable limit cycle.

3.5 Local Bifurcations of Vector Fields

In Sect. 2.3, we studied the predator–prey model used by Harrison to explain
Luckinbill’s experiment with Didinium and Paramecium. This model, whose
dimensionless equations are

dh
dτ

= h

(
1− h

k

)
− αhph

β + h
,

dp
dτ

=
αpph

β + h
− γp,

where

αh =
(

1− 1
k

)
(β + 1) and αp = γ(β + 1),

exhibits two qualitatively different behaviors. For k < β + 2, the equilibrium
point (1, 1) is asymptotically stable, but, for k > β + 2, (1, 1) is unstable and
the ω-limit set is a limit cycle. The change of behavior occurs for k = β + 2;
that is, when (1, 1) is nonhyperbolic. Such a qualitative change in a family of
vector fields, which depends upon a finite number of parameters, is referred
to as a bifurcation.

The van der Pol equation (Example 16) exhibits a similar bifurcation. Here
again, at the bifurcation point, the equilibrium point (0, 0) is nonhyperbolic.

Like many concepts of the qualitative theory of differential equations, the
theory of bifurcations has its origins in the work of Poincaré.49 Let

(x,μ) �→ X(x,μ) (x ∈ R
n,μ ∈ R

r)

be a Ck r-parameter family of vector fields.50 If (x∗,μ∗) is an equilibrium
point of the flow generated by X(x,μ) (i.e., X(x∗,μ∗) = 0), we should be
able to answer the question: Is the stability of the equilibrium point affected
as μ is varied?
49 Poincaré was the first to use the French word bifurcation in this context [373].
50 The degree of differentiability has to be as high as needed to satisfy the conditions

for the family of vector fields to exhibit a given type of bifurcation. See the
necessary and sufficient conditions below.
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If the equilibrium point is hyperbolic (i.e., if all the eigenvalues of the
Jacobian matrix51 DX(x∗,μ∗) have nonzero real part), then, from Theorem 3,
it follows that the flow generated by X(x,μ), is locally structurally stable at
(x∗,μ∗). As a result, for values of μ sufficiently close to μ∗, the stability of
the equilibrium point is not affected.

More precisely, because all the eigenvalues of the Jacobian DX(x∗,μ∗)
have nonzero real part, the Jacobian is invertible, and, from the implicit func-
tion theorem,52 it follows that there exists a unique Ck function x : μ �→ x(μ)
such that, for μ sufficiently close to μ∗,

X(x(μ),μ) = 0 with x(μ∗) = x∗.

Because the eigenvalues of the Jacobian DX
(
x(μ),μ

)
are continuous func-

tions of μ, for μ sufficiently close to μ∗, all the eigenvalues of this Jacobian
have nonzero real part. Hence, equilibrium points close to (x∗,μ∗) are hyper-
bolic and have the same type of stability as (x∗,μ∗).

If the equilibrium point (x∗,μ∗) is nonhyperbolic (i.e., if some eigenval-
ues of DX(x∗,μ∗) have zero real part), X(x,μ) is not structurally stable at
(x∗,μ∗). In this case, for values of μ close to μ∗, a totally new dynamical
behavior can occur.

Our aim in this section is to investigate the simplest bifurcations that occur
at nonhyperbolic equilibrium points in one- and two-dimensional systems.53

3.5.1 One-Dimensional Vector Fields

In a one-dimensional system, a nonhyperbolic equilibrium point is necessarily
associated with a zero eigenvalue of the derivative of the vector field at the

51 The notation DX(x∗,μ∗) means that the derivative is taken with respect to x at
the point (x∗,μ∗). If there is a risk of confusion with respect to which variable
the derivative is taken, we will write DxX(x∗,μ∗).

52 We shall often use this theorem, in particular in bifurcation theory, where it plays
an essential role. Here is a simplified version that is sufficient in most cases: Let
f : I1 × I2 → R be a Ck function of two real variables; if (x0, y0) ∈ I1 × I2 and

f(x0, y0) = 0,
∂f

∂y
(x0, y0) �= 0,

then there exists an open interval I , containing x0, and a Ck function ϕ : I → R

such that

ϕ(x0) = y0, and f(x, ϕ(x)) = 0, for all x ∈ I.

For a proof, see Lang [261], pp. 425–429, in which a proof of a more general
version of the implicit function theorem is also given.

53 For a comprehensive coverage of bifurcation theory illustrated with many appli-
cations, the reader could consult [286].
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equilibrium point. In this section, we describe the most important types of
bifurcations that occur in one-dimensional systems

ẋ = X(x, μ) (x ∈ R, μ ∈ R). (3.31)

As a simplification, we assume that the bifurcation point (x∗, μ∗) is (0, 0),
that is,

X(0, 0) = 0 and
∂X

∂x
(0, 0) = 0. (3.32)

In a neighborhood of a bifurcation point, the essential information concerning
the bifurcation is captured by the bifurcation diagram, which consists of differ-
ent curves. The locus of stable points is usually represented by a solid curve,
whereas a broken curve represents the locus of unstable points (Fig. 3.17).

Saddle-Node Bifurcation

Consider the equation

ẋ = μ− x2. (3.33)

For μ = 0, x∗ = 0 is the only equilibrium point, and it is nonhyperbolic
because DX(0, 0) = 0. The vector field X(x, 0) is not structurally stable and
μ = 0 is a bifurcation value. For μ < 0, there are no equilibrium points, while,
for μ > 0, there are two hyperbolic equilibrium points x∗ = ±√μ. Because
DX(±√μ, μ) = ∓2

√
μ,
√
μ is asymptotically stable, and −√μ is unstable.

The phase portraits for (3.33) are shown in Fig. 3.14. This type of bifurcation
is called a saddle-node bifurcation.54

a

b

c

Fig. 3.14. Saddle-node bifurcation. Phase portraits for the differential equa-
tion (3.33). (a) μ < 0, (b) μ = 0, (c) μ > 0

54 Also called tangent bifurcation.
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Transcritical Bifurcation

Consider the equation
ẋ = μx− x2. (3.34)

For μ = 0, x∗ = 0 is the only equilibrium point, and it is nonhyperbolic
because DX(0, 0) = 0. The vector field X(x, 0) is not structurally stable, and
μ = 0 is a bifurcation value. For μ �= 0, there are two equilibrium points,
0 and μ. At the bifurcation point, these two equilibrium points exchange
their stability (see Fig. 3.15). This type of bifurcation is called a transcritical
bifurcation.

Pitchfork Bifurcation

Consider the equation
ẋ = μx− x3. (3.35)

For μ = 0, x∗ = 0 is the only equilibrium point. It is nonhyperbolic because
DX(0, 0) = 0. The vector field X(x, 0) is not structurally stable and μ = 0
is a bifurcation value. For μ ≤ 0, 0 is the only equilibrium point, and it
is asymptotically stable. For μ > 0, there are three equilibrium points, 0 is

a

b

c

Fig. 3.15. Transcritical bifurcation. Phase portraits for the differential equa-
tion (3.34). (a) μ < 0, (b) μ = 0, (c) μ > 0

unstable, and ±√μ are both asymptotically stable. The phase portraits for
(3.35) are shown in Fig. 3.16. This type of bifurcation is called a pitchfork
bifurcation.55

Remark 8. According to the sign of the third derivative of X(x, μ) with respect to
x at x=0, and mu = 0, the bifurcation is said to be subcritical when this derivative
is positive and supercritical when it is negative.

55 Sometimes called symmetry breaking bifurcation because it is the bifurcation that
characterizes the broken symmetry associated with a second-order phase transi-
tion in statistical physics [57].
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a

b

Fig. 3.16. Pitchfork bifurcation. Phase portraits for the differential equation (3.35).
(a) μ ≤ 0, (b) μ > 0

Necessary and Sufficient Conditions

It is possible to derive necessary and sufficient conditions under which a one-
parameter family of one-dimensional vector fields exhibits a bifurcation of one
of the types just described. These conditions involve derivatives of the vector
field at the bifurcation point.

Saddle-node bifurcation. If the family X(x, μ) undergoes a saddle-node
bifurcation, in the (μ, x)-plane there exists a unique curve of fixed points (see
the top panel of Fig. 3.17). This curve is tangent to the line μ = 0 at x = 0,
and it lies entirely to one side of μ = 0. These two properties imply that

dμ
dx

(0) = 0,
d2μ

dx2
(0) �= 0. (3.36)

The bifurcation point is a nonhyperbolic equilibrium; i.e.,

X(0, 0) = 0,
∂X

∂x
(0, 0) = 0.

If we assume
∂X

∂μ
(0, 0) �= 0,

then, by the implicit function theorem, there exists a unique function

μ : x �→ μ(x), such that μ(0) = 0,

defined in a neighborhood of x = 0 that satisfies the relation X(x, μ(x))= 0.
To express Conditions (3.36), which imply that (0, 0) is a nonhyperbolic equi-
librium point at which a saddle-node bifurcation occurs, in derivatives of X ,
we have to differentiate the relation X(x, μ(x)) = 0 with respect to x. We
obtain

dX
dx

(x, μ(x)) =
∂X

∂x
(x, μ(x)) +

∂X

∂μ
(x, μ(x))

dμ
dx

(x) = 0.

Hence,

dμ
dx

(0) = −
∂X

∂x
(0, 0)

∂X

∂μ
(0, 0)

,
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Fig. 3.17. Bifurcation diagrams with phase portraits. Bifurcation points are rep-
resented by big dots and hyperbolic equilibrium points by small dots. Stable equi-
librium points are on solid curves. Top: saddle-node; middle: transcritical; bottom:
pitchfork
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which shows that

∂X

∂x
(0, 0) = 0 and

∂X

∂μ
(0, 0) �= 0,

implies
dμ
dx

(0) = 0.

If we differentiate X(x, μ(x)) = 0 once more with respect to x, we obtain

d2X

dx2
(x, μ(x)) =

∂2X

∂2x
(x, μ(x)) + 2

∂2X

∂x∂μ
(x, μ(x))

dμ
dx

(x)

+
∂2X

∂2μ
(x, μ(x))

(
dμ
dx

(x)
)2

+
∂X

∂μ
(x, μ(x))

d2μ

dx2
(x) = 0.

Hence, taking into account the expression of dμ/dx(0) found above,

d2X

dx2
(0) +

∂X

∂μ
(0, 0)

d2μ

dx2
(0) = 0,

which yields

d2μ

d2x
(0) = −

∂2X

∂x2
(0, 0)

∂X

∂μ
(0, 0)

.

That is,
d2μ

dx2
(0) �= 0 if

∂2X

∂x2
(0, 0) �= 0.

In short, the one-parameter family

ẋ = X(x, μ)

undergoes a saddle-node bifurcation if

X(0, 0) = 0 and
∂X

∂x
(0, 0) = 0,

showing that (0, 0) is a nonhyperbolic equilibrium point, and

∂X

∂μ
(0, 0) �= 0 and

∂2X

∂2x
(0, 0) �= 0,

which imply the existence of a unique curve of equilibrium points that passes
through (0, 0) and lies, in a neighborhood of (0, 0), on one side of the line
μ = 0. To exhibit a saddle-node bifurcation, the one-parameter family X has
to be Ck with k ≥ 2.
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Transcritical bifurcation. As for the saddle-node bifurcation, the implicit
function theorem can be used to characterize the geometry of the bifurca-
tion diagram in the neighborhood of the bifurcation point, assumed to be
located at (0, 0) in the (μ, x)-plane, in terms of the derivatives of the vector
field X . In the case of the transcritical bifurcation, in the neighborhood of
the bifurcation point, the bifurcation diagram is characterized (see the mid-
dle panel of Fig. 3.17) by the existence of two curves of equilibrium points:
x = μ and x = 0. Both curves exist on both sides of (0, 0), and the equilib-
rium points on these curves exchange their stabilities on passing through the
bifurcation point.

The bifurcation point (0, 0) being nonhyperbolic, we must have

X(0, 0) = 0,
∂X

∂x
(0, 0) = 0.

Because two curves of equilibrium points pass through this point,

∂X

∂μ
(0, 0) = 0,

otherwise the implicit function theorem would imply the existence of only one
curve passing through (0, 0). To be able to use the implicit function theorem,
the result obtained in the discussion of the transcritical bifurcation will guide
us. If the vector field X is assumed to be of the form X(x, μ) = xΞ(x, μ),
then x = 0 is a curve of equilibrium points passing through (0, 0). To obtain
the additional curve, Ξ has to satisfy Ξ(0, 0). The values of the derivatives of
Ξ at (0, 0) are determined using the definition of Ξ; i.e.,

Ξ(x, μ) =

⎧
⎪⎪⎨

⎪⎪⎩

X(x, μ)
x

, if x �= 0,

∂X

∂x
(0, μ), if x = 0.

Hence,
∂Ξ

∂x
(0, 0) =

∂2X

∂2x
(0, 0),

∂2Ξ

∂2x
(0, 0) =

∂3X

∂3x
(0, 0),

and
∂Ξ

∂μ
(0, 0) =

∂2X

∂μ∂x
(0, 0).

If
∂Ξ

∂μ
(0, 0) �= 0,

from the implicit function theorem, it follows that there exists a function
μ : x �→ μ(x), defined in the neighborhood of x = 0, that satisfies the relation
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Ξ(x, μ(x)) = 0. For the curve μ = μ(x) not to coincide with the curve x = 0
and to be defined on both sides of (0, 0), the function μ has to be such that

0 <
∣
∣
∣∣
dμ
dx

(0)
∣
∣
∣∣ <∞.

Differentiating with respect to x the relation Ξ(x, μ(x)) = 0, we obtain

dμ
dx

(0) = −
∂Ξ

∂x
(0, 0)

∂Ξ

∂μ
(0, 0)

= −
∂2X

∂2x
(0, 0)

∂2X

∂μ∂x
(0, 0)

.

In short, the one-parameter family

ẋ = X(x, μ)

undergoes a transcritical bifurcation if

X(0, 0) = 0 and
∂X

∂x
(0, 0) = 0,

showing that (0, 0) is a nonhyperbolic equilibrium point, and

∂X

∂μ
(0, 0) = 0,

∂2X

∂2x
(0, 0) �= 0, and

∂2X

∂μ∂x
(0, 0) �= 0,

which imply the existence of two curves of equilibrium points on both sides
(0, 0) passing through that point. To exhibit a transcritical bifurcation, the
one-parameter family X has to be Ck with k ≥ 2.

Pitchfork bifurcation. The derivation of the necessary and sufficient condi-
tions for a one-parameter family of vector fields X(x, μ) to exhibit a pitchfork
bifurcation is similar to the derivation for such a family to exhibit a transcrit-
ical bifurcation.

In the case of a pitchfork bifurcation, the bifurcation diagram is charac-
terized (see the bottom panel of Fig. 3.17) by the existence of two curves of
equilibrium points: x = 0 and μ = x2. The curve x = 0 exists on both sides of
the bifurcation point (0, 0), and the equilibrium points on this curve change
their stabilities on passing through this point. The curve μ = x2 exists only
on one side of (0, 0) and at this point is tangent to the line μ = 0.

The point (0, 0) being nonhyperbolic, we must have

X(0, 0) = 0,
∂X

∂x
(0, 0) = 0.

Because more than one curve of equilibrium points passes through this point,

∂X

∂μ
(0, 0) = 0.
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As in the case of a transcritical bifurcation, we assume the vector field X to be
of the form X(x, μ) = xΞ(x, μ) to ensure that x = 0 is a curve of equilibrium
points passing through (0, 0). To obtain the additional curve, Ξ has to satisfy
Ξ(0, 0). The values of the derivatives of Ξ at (0, 0) may be determined using
the definition of Ξ, i.e.,

Ξ(x, μ) =

⎧
⎪⎪⎨

⎪⎪⎩

X(x, μ)
x

, if x �= 0,

∂X

∂x
(0, μ), if x = 0.

Then,
∂Ξ

∂x
(0, 0) =

∂2X

∂2x
(0, 0),

∂2Ξ

∂2x
(0, 0) =

∂3X

∂3x
(0, 0),

and
∂Ξ

∂μ
(0, 0) =

∂2X

∂μ∂x
(0, 0).

If
∂Ξ

∂μ
(0, 0) �= 0,

from the implicit function theorem, it follows that there exists a function
μ : x �→ μ(x), defined in the neighborhood of x = 0, that satisfies the relation
Ξ(x, μ(x)) = 0. For the curve μ = μ(x) to have, close to x = 0, the geometric
properties of μ = x2, it suffices to have

dμ
dx

(0) = 0 and
d2μ

dx2
(0) �= 0.

Differentiating the relation Ξ(x, μ(x)) = 0, we therefore obtain

dμ
dx

(0)=−
∂Ξ

∂x
(0, 0)

∂Ξ

∂μ
(0, 0)

=−
∂2X

∂2x
(0, 0)

∂2X

∂μ∂x
(0, 0)

= 0, (3.37)

d2μ

dx2
(0)=−

∂2Ξ

∂2x
(0, 0)

∂Ξ

∂μ
(0, 0)

=−
∂3X

∂3x
(0, 0)

∂2X

∂μ∂x
(0, 0)

�= 0. (3.38)

In short, the one-parameter family

ẋ = X(x, μ)
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undergoes a pitchfork bifurcation if

X(0, 0) = 0 and
∂X

∂x
(0, 0) = 0,

showing that (0, 0) is a nonhyperbolic equilibrium point, and

∂X

∂μ
(0, 0) = 0

∂2X

∂2x
(0, 0) = 0,

∂2X

∂μ∂x
(0, 0) �= 0, and

∂3X

∂3x
(0, 0) �= 0,

which imply the existence of two curves of equilibrium points passing through
(0, 0), one being defined on both sides and the other only on one side of this
point. To exhibit a pitchfork bifurcation, the one-parameter family X has to
be Ck with k ≥ 3.

Example 19. Bead sliding on a rotating hoop. Consider a bead of massm sliding
without friction on a hoop of radius R (Fig. 3.18). The hoop rotates with
angular velocity ω about a vertical axis. The acceleration due to gravity is
g. If x is the angle between the vertical downward direction and the position
vector of the bead, the Lagrangian of the system is

L(x, ẋ) =
1
2
mR2ẋ2 +

1
2
mω2R2 sin2 x+mgR cosx,

and the equation of motion is

mR2ẍ = mω2R2 sinx cosx−mgR sinx

or
Rẍ = ω2R sinx cos x− g sinx.

m

g

R
x

Fig. 3.18. Bead sliding on a vertical rotating hoop without friction
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Introducing the reduced variables

τ =
√
g

R
t, μ =

R

g
ω2,

the equation of motion takes the form

d2x

dτ2
= sinx(μ cos x− 1). (3.39)

This equation may be written as a first-order system. If we put x1 = x and
x2 = ẋ, where now the dot represents derivation with respect to reduced time
τ , (3.39) is replaced by the system

ẋ1 = x2, ẋ2 = sinx1(μ cosx1 − 1). (3.40)

The state of the system represented by x = (x1, x2) belongs to the cylinder
[0, 2π[×R. In this phase space, there exist four equilibrium points

(0, 0), (π, 0), (± arccosμ−1, 0).

At these equilibrium points, the Jacobian of the system J(x∗1, x
∗
2) is given by

J(0, 0) =
[

0 1
μ− 1 0

]
, J(π, 0) =

[
0 1

μ+ 1 0

]
,

J(± arccosμ−1, 0) =

⎡

⎣
0 1

1− μ2

μ
0

⎤

⎦ .

If 0 < μ < 1, (0, 0) is Lyapunov stable but not asymptotically stable, (π, 0)
is unstable, and (± arccosμ−1, 0) do not exist. For μ slightly greater than 1,
(0, 0) is unstable, and the two equilibrium points (± arccosμ−1, 0) are stable.
The nonhyperbolic equilibrium point (x, μ) = (0, 1) is a pitchfork bifurcation
point. For 0 < μ < 1, the bead oscillates around the point x = 0, while for
μ slightly greater than 1, it oscillates around either x = arccosμ−1 or x =
− arccosμ−1. Because the Lagrangian is invariant under the transformation
x → −x, this system exhibits a symmetry-breaking bifurcation similar to
those characterizing second-order phase transitions in some simple magnetic
systems.

3.5.2 Equivalent Families of Vector Fields

In a one-dimensional system, Conditions (3.32) are necessary but not sufficient
for the system to exhibit a bifurcation. For instance, the equation

ẋ = μ− x3
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does not exhibit a bifurcation at the equilibrium point (x∗, μ∗) = (0, 0).
A simple analysis shows that, for all real μ, the equilibrium point x∗ = (μ)1/3

is always asymptotically stable. In such a case, it is said that the family of
vector fields X(x, μ) does unfold the singularity in X(x, 0). More precisely,
any local family, X(x,μ), at (x∗,μ∗) is said to be an unfolding of the vector
field X(x,μ∗). When X(x,μ∗) has a singularity at x = x∗, X(x,μ) is referred
to as an unfolding of the singularity.

Definition 12. Two local families X(x,μ) and Y(y,ν) are said to be equiv-
alent if there exists a continuous mapping (x,μ) �→ h(x,μ), defined in a
neighborhood of (x∗,μ∗), satisfying h(x∗,μ∗) = y∗, such that for each μ,
x �→ h(x,μ) is a homeomorphism that exhibits the topological equivalence56

of the flows generated by X(x,μ) and Y(y,ν).

Example 20. The family of vector fields X(x, μ) = μx− x2 can be written

X(x, μ) =
μ2

4
−
(
x− μ

2

)2

.

If y = h(x, μ) = x− 1
2 μ, then, for each μ,

ẏ = ẋ =
μ2

4
−
(
x− μ

2

)2

=
μ2

4
− y2 = Y (y, ν),

where ν = 1
4μ

2. Hence, the two families X(x, μ) = μx−x2 and Y (y, ν) = ν−y2

are topologically equivalent.

3.5.3 Hopf Bifurcation

Named after the eponymous Austrian mathematician Hopf who made signif-
icant contributions in topology and ergodic theory.57.

If the differential equation, ẋ = X(x, μ) exhibits a bifurcation of one of
the types described above, clearly the two-dimensional system

ẋ1 = X(x1, μ), ẋ2 = −x2

56 On topological equivalence, see Remark 5.
57 Eberhard Frederich Ferdinand Hopf (1902–1983). In 1931, Hopf became assistant

professor of mathematics at the Massachusetts Institute of Technology. He left
the MIT in 1936 to go back to Germany where he was appointed full professor at
the University of Leipzig. He then published a short book entitled Ergodentheorie
in 1937. In 1942, during the war, he was appointed to a professorship at the
University of Munich, but he left Germany at the end of the war to return to the
United States where, in 1949, he became a US citizen and joined the University
of Indiana. In 1962, he was made Research Professor of Mathematics, keeping
this position until his death. The Hopf bifurcation is also called the Andronov–
Hopf bifurcation named after the Russian physicist Aleksandr Aleksandrovich
Andronov (1901–1952) who was a member of the Soviet Academy of Sciences.
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also exhibits the same type of bifurcation. We will not insist. In this section,
we present a new type of bifurcation that does not exist in a one-dimensional
system: the Hopf bifurcation. This type of bifurcation appears at a nonhyper-
bolic equilibrium point of a two-dimensional system whose eigenvalues of its
linear part are pure imaginary.

We have already found Hopf bifurcations in two models: the prey–predator
model used by Harrison, which predicts the outcome of Luckinbill’s experi-
ment with Didinium and Paramecium qualitatively (Sect. 2.3), and the van
der Pol oscillator (Example 16).

The following theorem indicates under which conditions a two-dimensional
system undergoes a Hopf bifurcation.58

Theorem 4. Let ẋ = X(x, μ) be a two-dimensional one-parameter family of
vector fields (x ∈ R

2, μ ∈ R) such that

1. X(0, μ) = 0,
2. X is an analytic function of x and μ, and
3. DxX(0, μ) has two complex conjugate eigenvalues α(μ) ± iω(μ) with
α(0) = 0, ω(0) �= 0, and dα/dμ|μ=0 �= 0;

then, in any neighborhood U ⊂ R
2 of the origin and any given μ0 > 0 there

is a μ < μ0 such that the equation ẋ = X(x, μ) has a nontrivial periodic orbit
in U .

Example 21. The van der Pol system revisited. In the case of the van der Pol
system (3.26), we have

DxX(0, λ) =
[

0 1
−1 λ

]
.

The eigenvalues of the linear part of the van der Pol system are 1/2(λ ±
i
√

4− λ2). If λ < 0, the origin is asymptotically stable, and if λ > 0, the
origin is unstable. Because the real part of both eigenvalues is equal to 1/2λ,
all the conditions of Theorem 4 are verified.

Example 22. Section 2.3 model. Harrison found that the model described by
the system

Ḣ = rHH

(
1− H

K

)
− aHPH

b +H
,

Ṗ =
aPPH

b +H
− cP,

exhibits a stable limit cycle and is in good qualitative agreement with Luck-
inbill’s experiment. Using the reduced variables

h =
H

H∗ , p =
P

P ∗ , τ = rHt, k =
K

H∗ , β =
b

H∗ , γ =
c

r
,

58 For a proof, see Hassard et al. [210], who present various proofs and many appli-
cations; see also Hale and Koçak [207].
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where (H∗, P ∗) denotes the nontrivial fixed point, the model can be written

dh
dτ

= h

(
1− h

k

)
− αhph

β + h
,

dp
dτ

=
αpph

β + h
− γp,

where

αh =
(

1− 1
k

)
(β + 1) and αp = γ(β + 1).

The Jacobian at the equilibrium point (1, 1) is
⎡

⎢⎢
⎣

k − 2− β
k(1 + β)

−1 +
1
k

βγ

1 + β
0

⎤

⎥⎥
⎦ .

Its eigenvalues are

k − 2− β ± i
√

4(k − 1)k2βγ − (k − 2− β)2

2k(1 + β)
.

The equilibrium point is asymptotically stable if k < 2 + β. Because the
derivative of the real part of the eigenvalues with respect to the parameter k
is different from zero at the bifurcation point, all the conditions of Theorem 4
are verified: there exists a limit cycle for k > 2 + β.

It is often desirable to prove that a two-dimensional system does not pos-
sess a limit cycle. The following theorem, known as the Dulac criterion [140],
is often helpful to prove the nonexistence of a limit cycle.

Theorem 5. Let Ω be a simply connected subset of R
2 and D : Ω → R a C1

function. If the function

x �→ ∇DX(x) =
∂DX1

∂x1
+
∂DX2

∂x2

has a constant sign and is not identically zero in Ω, then the two-dimensional
system ẋ = X(x) has no periodic orbit lying entirely in Ω.

If there exists a closed orbit γ in Ω, Green’s theorem implies

∮

γ

D(x)X1(x) dx2 −D(x)X2(x) dx1 =
∫

Γ

(
∂DX1

∂x1
+
∂DX2

∂x2

)
dx1 dx2 �= 0,
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where Γ is the bounded interior of γ (∂Γ = γ).59 But if γ is an orbit, we also
have
∮

γ

D(x)
(
X1(x) ẋ2 −X2(x) ẋ1

)
dt =

∮

γ

D(x)
(
X1(x)dx2 −X2(x)dx1

)
= 0,

where we have taken into account that ẋi = Xi(x) for i = 1, 2. This contra-
diction proves the theorem.

The function D is a Dulac function. There is no general method for finding
an appropriate Dulac function. If D(x1, x2) = 1, the theorem is referred to as
the Bendixson criterion [48].

3.5.4 Catastrophes

Catastrophe theory studies abrupt changes associated with smooth modi-
fications of control parameters.60 On early applications of the theory, see
Zeeman [457]. Many applications of catastrophe theory have been heavily
criticized. For example, here is a quotation from the English translation by
Wassermann and Thomas of Arnold [13], p. 9:

I remark that articles on catastrophe theory are distinguished by a sharp
and catastrophic lowering of the level of demands of rigor and also of novelty
of published results.

In [422], Thom expounds his philosophical standpoint and shows that a qual-
itative approach may offer a subtler explanation than a purely quantitative
description. In this section, we describe one of the simplest types found in
many models: the cusp catastrophe.

Consider the two-parameter family of maps on R

(x,m1,m2) �→ X(x,m1,m2) = m1 +m2x− x3.

Depending upon the values of the parameters, the differential equation ẋ =
X(x,m1,m2) has either one or three equilibrium points. Because at bifurca-
tion points, the differential equation must have multiple equilibrium points,
bifurcation points are the solutions of the system

X(x,m1,m2) = 0,
∂X

∂x
(x,m1,m2) = 0,

59 Because a closed orbit in R
2 does not intersect itself, it is a closed Jordan’s

curve and, according to Jordan’s theorem, it separates the plane into two disjoint
connected components such that only one of these two components is bounded.
The closed Jordan’s curve is the common boundary of the two components.

60 On catastrophe theory, one should consult René Thom (1923–2002) the founder
of the theory [421]. On the mathematical presentation of the theory, refer to
the book of Castrigiano and Hayes [100] with a preface by René Thom (see
also [13]). Thom received the Fields Medal in 1958. For a simple introduction to
Thom’s ideas, see Marc Chaperon’s paper at http://people.math.jussieu.fr/

∼chaperon/Thom.pdf.
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m1

m2

3 equilibria

1 equilibrium1 equilibrium

Fig. 3.19. The bifurcation diagram of the differential equation ẋ = m1 + m2x−x3

that is,
m1 +m2x− x3 = 0, m2 − 3x2 = 0.

Eliminating x, we find
27m2

1 − 4m3
2 = 0,

which is the equation of the boundary between the domains in the parameter
space in which the differential equation has either one or three equilibrium
points. It is the equation of a cusp (Fig. 3.19).

The bifurcation diagram represented in Fig. 3.20 will help us understand
the nature of the cusp catastrophe. In this figure, the solid line corresponds
to asymptotically stable equilibrium points and the broken line to unstable
points. Suppose that the parameterm2 has a fixed value, say 1. Ifm1 > 2/3

√
3,

there exists only one equilibrium point, represented by point A. This equilib-
rium is asymptotically stable. As m1 decreases, the point representing the
equilibrium moves along the curve in the direction of the arrow. It passes
point E, where nothing special occurs, to finally reach point B. If we try to
further decrease m1, the state of the system, represented by the x-coordinate
of B, jumps to the value of the x-coordinate of C, and, for decreasing values
of m1, the asymptotically stable equilibrium points will be represented by the
points on the solid line below C. If now we start increasing m1, the point rep-
resenting the asymptotically stable equilibrium will go back to C and proceed
up to point D, where, if we try to further increase m1, it will jump to E and
move up along the solid line toward A as the parameter is varied.

The important fact is that the state of the system has experienced jumps
at two different values of the control parameter m1. The parameter values at
which jumps take place depend upon the direction in which the parameter is
varied. This phenomenon, wellknown in physics, is referred to as hysteresis ,
and the closed path BCDEB is called the hysteresis loop. It is important to
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note that the cusp catastrophe, described here, occurs in dynamical systems
in which the vector field X is a gradient field ; that is,

X(x,m1,m2) = −∇Φ(x,m1,m2),

where
Φ(x,m1,m2) = 1

4 x
4 − 1

2 m2x
2 −m1x.

x

m1

A

E

B
C

D

Fig. 3.20. Hysteresis. The closed path BCDEB is a hysteresis loop

Remark 9. For a description of other types of catastrophes, refer to http://en.

wikipedia.org/wiki/Catastrophe theory.

Example 23. Street gang control.61 Street gangs have emerged as tremendously
powerful institutions in many communities. In urban ghettos, they may very
well be the most important institutions in the lives of a large proportion of
adolescent and young adult males. To model the dynamics of a gang popula-
tion, assume that the growth rate of the gang population size N is given by

Ṅ = g(N)− p(N),

61 I presented a first version of this model at a meeting of the Research Police Forum
organized at Starved Rock (IL) by the Police Training Institute of the University
of Illinois at Urbana-Champaign in the early 1990s and a more elaborate version a
few weeks later at the Criminal Justice Authority (Chicago, IL). It was prepared
in collaboration with Jonathan Crane from the Department of Sociology of the
University of Illinois at Chicago and the Institute of Government and Public
Affairs, Center for Prevention Research and Development.
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where g is the intrinsic growth function and p the police response function,
which describes the amount of resources the police devote at each level of the
population. It might be understandably objected that coercive methods are
not sufficient; social programs and education also play an important role. The
expression p(N) should, therefore, represent the amount of resources devoted
by society as a whole.

Using a slight variant of the logistic function, assume that

g(N) = r(N +N0)
(

1− N

K

)
,

where r, K, and N0 are positive constants. Note that the “initial condition”
N0 implies that a zero gang population is not an equilibrium.

For the response function p, assume that, as gang membership in a com-
munity grows, the society will devote more resources to the problem. p should,
therefore, be monotonically increasing, but because resources are limited, the
investment will ultimately approach some maximum level. This pattern can
be modeled by

p(N) =
aN ξ

b+N ξ
,

where a, b, and ξ are positive constants. The parameter a is the maximum
response level. This maximum is approached faster for decreasing values of b
and ξ.62 The parameter ξ is a measure of how “tough” the society response is.

Introducing the dimensionless variables

τ = rt, n =
N

K
, α =

a

rK
, β =

b

Kξ
,

the dynamics of the reduced gang population n is modeled by

dn
dτ

= (n+ n0)(1− n)− αnξ

β + nξ
. (3.41)

The equilibrium points are the solutions to the equation

(n+ n0)(1− n) =
αnξ

β + nξ
. (3.42)

As shown in Fig. 3.21, depending upon the values of the parameters, there exist
one or three equilibrium points. The equation of the boundary separating
the domains in which there exist either one or three equilibrium points is
determined by eliminating n between (3.42) and

d
dn

(n+ n0)(1− n) =
d
dn

αnξ

β + nξ
;

62 Note the similarity of this street gang control model with the Ludwig–Holling–
Jones model of budworm outbreaks (1.6).
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Fig. 3.21. Equilibrium points of the street gang model. The graphs on the left
show the intersections of the graphs of N �→ g(N) and N �→ p(N); on the right are
represented the graphs of N �→ g(n)−p(n). Top: one stable low-density equilibrium;
middle: two stable equilibria, one at low density and one at high density, separated by
one unstable equilibrium at an intermediate density; bottom: one stable equilibrium
at high density

that is,

1− n0 − 2n =
ξαβnξ−1

(β + nξ)2
. (3.43)

Eliminating α between (3.42) and (3.43), we solve for β, and then, replacing
the expression of β in one of the equations, we obtain α. The parametric
equation of the boundary is then

α =
ξ(n+ n0)2(1− n)2

(2− ξ)n2 + (ξ − 1)(1− n0)n+ ξn0
,

β =
nξ+1(1− n0 − 2n)

(2− ξ)n2 + (ξ − 1)(1− n0)n+ ξn0
.
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It is represented in Fig. 3.22. It shows the existence of a cusp catastrophe in
the model.

0.1 0.2 0.3 0.4

0.05

0.15

0.25

one

one

three

Fig. 3.22. Boundary between the domains in which there are three equilibrium
points and one equilibrium point in the (α, β) parameter space

When dramatic increases in gang populations have occurred, there are
usually numerous attempts to try to reverse the rise. Youth employment pro-
grams, educational programs in schools, and increases in police resources are
common interventions. Such interventions can prevent some individuals from
joining the gang, but none of them seem to have had much effect on overall
gang populations. This model suggests one possible reason for this.

Due to the existence of the hysteresis effect, small-scale interventions to
reduce gang activity may have no permanent effect at all. An intervention
may temporarily push gang membership to a slightly lower equilibrium, but
unless the intervention is large enough to push the population all the way
down to the unstable equilibrium, membership will move back up to the high
equilibrium.

While this implication is pessimistic, the model does suggest a strategy
that could succeed. If the intervention is large enough to push gang member-
ship below the unstable equilibrium, the gang population will revert to a low
equilibrium, and because of the stability of the low equilibrium, the interven-
tion does not have to be continued once the low level is achieved. Thus, a
short-term but high-intensity intervention might succeed where a long-term,
low-intensity strategy would fail.

3.6 Influence of Diffusion

In all the models discussed so far, it has always been assumed that the various
species were uniformly distributed in space. In other words, over the whole
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territory available to them, individuals were supposed to mix homogeneously.
In a variety of problems, the spatial dimension of the environment cannot,
however, be ignored.

In this section, we study the influence of diffusion on the evolution of
various populations63; that is, we investigate the dynamics of populations as-
suming that the individuals move at random.64 We will discover that diffusion
can have a profound effect on the dynamics of populations.

3.6.1 Random Walk and Diffusion

Consider a random walker who, in a one-dimensional space, takes a step of
length ξ during each time interval τ . Assuming that the steps are taken ei-
ther in the positive or in the negative direction with equal probabilities, let
p(t, x) dx be the probability that the random walker is between x and x+ dx
at time t. The random walker is between x and x + dx at time t if he was
either between x+ ξ and x+ ξ + dx or between x− ξ and x− ξ + dx at time
t− τ . Thus, the function p satisfies the following difference equation

p(x, t) = 1
2 (p(x+ ξ, t− τ) + p(x− ξ, t− τ)). (3.44)

If p is continuously differentiable, and if we assume that τ and ξ are small,
then

p(x±ξ, t−τ) = p(x, t)− ∂p
∂t

(x, t)τ+O(τ2)± ∂p

∂x
(x, t)ξ+

1
2
∂2p

∂x2
(x, t)ξ2 +O(ξ3),

and substituting in (3.44) yields

∂p

∂t
(x, t) =

ξ2

2τ
∂2p

∂x2
(x, t) +

1
τ

(O(τ2) +O(ξ3)).

Hence, if there exists a positive constant D such that, when both τ and ξ tend
to 0, ξ2/2τ tends to a constant D, p satisfies the diffusion equation65

∂p

∂t
= D

∂2p

∂x2
. (3.45)

If, at t = 0, the random walker is at the origin, p(t, x) satisfies the initial
condition

lim
t→0

p(x, t) = δ,

63 The standard text on diffusion in ecology is Okubo [352].
64 The interest in random dispersal in populations was triggered by the paper of

Skellam [407].
65 The diffusion law has been introduced by the German physiologist Aldof Eugen

Fick (1829–1901) and is often named after him. Diffusion is a flow of matter from
a region of high concentration to a region of low concentration resulting from
the random motion of molecules. A typical example is the perfume of a bunch of
flower that quickly permeates the still air of a room. Fick is also credited with
the construction of the first successful contact lens in 1888.
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where δ is the Dirac distribution, and for t > 0, the solution of (3.45) is66

p(x, t) =
1

2
√
πDt

exp− x2

4Dt
. (3.46)

The random variable representing the distance of the random walker from the
origin is, therefore, normally distributed. Its mean value is 0, and its variance
2Dt varies linearly with time. This result is important. It is indeed a direct
consequence of the fact that p is a generalized homogeneous function of t
and x.67

3.6.2 One-Population Dynamics with Dispersal

As a simple example, consider the influence of random dispersal in a two-
dimensional space on the evolution of a Malthusian population. Including a
diffusion term in the equation for the population density ṅ = an, we obtain

∂n

∂t
= D

(
∂2n

∂x2
1

+
∂2n

∂x2
2

)
+ an. (3.47)

The exponential growth of a spreading population is an acceptable approxi-
mation if, initially, the population consists of very few individuals that spread
66 If

p̂(k, t) =

∫ ∞

−∞
p(x, t)eikx dx

denotes the Fourier transform of x �→ p(x, t), we have

dp̂

dt
+ Dk2p̂ = 0,

and p̂(k, 0) = 1. Hence, p̂(k, t) = exp(−Dk2t). Therefore,

p(x, t) =
1

2π

∫ ∞

−∞
exp(−Dk2t − ikx) dk =

1√
2πDt

exp− x2

4Dt
.

This particular solution is known as a fundamental solution of the diffusion
equation. It can be shown (see Boccara [58]) that, if the initial condition is
p(x, 0) = f(x), then the solution of the diffusion equation is simply given by the
convolution g ∗ f , where g is a fundamental solution. Fundamental solutions are
not unique. In physics, fundamental solutions are referred to as Green’s functions.

67 f : R
n → R is a generalized homogeneous function if, for all λ ∈ R,

f(λa1x1, λ
a2x2, . . . , λ

anxn) ≡ λrf(x1, x2, . . . , xn),

where a1, a2, . . . , an and r are real constants. Because λ can be any real number,
we can replace λ by 1/x

1/a1
1 ; f may then be written as a function of the n − 1

reduced variables xi/x
ai/a1
1 (i = 2, 3, . . . , n). It is said that xi scales as x

ai/a1
1 .

Because the probability density p satisfies the relation p(λ2t, λx) ≡ λp(t, x), x
scales as

√
t.
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and reproduce in a habitat where natural enemies, such as competitors and
predators, are lacking. If we assume that the dispersal is isotropic, the popu-
lation dispersal is modeled by

∂n

∂t
=
D

r

∂

∂r

(
r
∂n

∂r

)
+ an, (3.48)

where r =
√
x2

1 + x2
2.

Introducing the dimensionless variables

τ = at and ρ = r

√
a

D
, (3.49)

(3.48) becomes
∂n

∂τ
=

1
ρ

∂

∂ρ

(
ρ
∂n

∂ρ

)
+ n. (3.50)

Assuming that, at time t = 0, there are N0 individuals concentrated at the
origin, the solution of (3.50) is

n(ρ, τ) =
N0

4πτ
exp

(
τ − ρ2

4τ

)
. (3.51)

The total number of individuals that, at time t, are at a distance greater than
R from the origin is given by

N(R, t) =
∫ ∞

R

n(r
√
a/D, at) 2πr dr

= N0 exp
(
at− R2

4Dt

)
.

For R2 = 4aDt2, the number of individuals that, at time t, are outside a
circle of radius R, equal to N0, is negligible compared to the total number
of individuals N0eat. Hence, the radius of an approximate boundary of the
habitat occupied by the invading species is proportional to t. According to
Skellam [407], this result is in agreement with data on the spread of the
muskrat (Ondatra zibethica), an American rodent, introduced inadvertently
into Central Europe in 1905. The fact that, for the random dispersal of a
Malthusian population, R is proportional to t contrasts with simple diffusion,
where space scales as the square root of time.

3.6.3 Critical Patch Size

Consider a refuge (i.e., a patch of favorable environment surrounded by a
region where survival is impossible). If the population is diffusing, individuals
crossing the patch boundary will be lost. The problem is to find the critical
patch size �c such that the population cannot sustain itself against losses
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from individuals crossing the patch boundary if the patch size is less than �c
but can maintain itself indefinitely if the patch size is greater than �c. As a
simplification, we discuss a one-dimensional problem (i.e., we assume that in
two dimensions, the patch Σ is an infinite strip of width �):

Σ =
{
(x, y) | − 1

2 � < x < 1
2 �,−∞ < y <∞} .

Consider the scaled equation

∂n

∂t
=
∂2n

∂x2
+ n, (3.52)

where a, the growth rate of the population density, has been absorbed in t
and

√
D/a, the square root of the diffusion coefficient divided by the growth

rate, in x (see (3.49)). The condition that survival is impossible outside Σ
implies

n(x, t) = 0 if x = ± 1
2 �.

Assuming that the solution n(x, t) of (3.52), as a function of x, can be rep-
resented as a convergent Fourier series, one finds that this solution can be
written as

n(x, t) =
∞∑

k=1

nk exp
((

1− k2π2

�2

)
t

)
sin

kπ

�

(
x+ 1

2 �
)
. (3.53)

If � < π, then, for all positive integers k, 1−k2/π2�2 < 0, and n(x, t) given
by (3.53) goes to zero exponentially as t tends to infinity. Therefore, for � < π,
the strip Σ is not a refuge. If � > π, then, for any initial population density,
Σ is a refuge because the amplitude of the first Fourier component of n(x, t)
grows without limit when t tends to infinity. The reduced critical size is then
�c = π. In terms of the original space variable, the critical size is

√
D/aπ.

Remark 10. If, for − 1
2

 ≤ x ≤ 1
2

, the initial density n(x, 0) is bounded by M , then,
for all t > 0 and all |x| ≤ 1

2
,

n(x, t) ≤ 4M

π

∞∑

k=0

1

2k + 1
exp

((
1 − (2k + 1)2π2

2

)
t

)

× sin
(2k + 1)π



(
x +

1

2


)
. (3.54)

If the growth of the population density obeys the reduced logistic equation ṅ =
n(1 − n), Ludwig et al. [283] have shown that it grows less rapidly than if it were
Malthusian and, therefore, goes to zero, as t → ∞, if  < π. If  > π, then, as
t → ∞, n(x, t) tends to the solution of u′′ + u(1 − u) = 0, satisfying the condition
u(±/2) = 0. In their paper, Ludwig, Aronson, and Weinberg apply their method
to the Ludwig–Jones–Holling model of spruce budworm outbreak (1.4). They show
that, for this system, there exist two critical strip widths. The smaller one gives a
lower bound for the strip width that can support a nonzero population. The larger
one is the lower bound for the strip width that can support an outbreak.
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3.6.4 Diffusion-Induced Instability

Because diffusion tends to mix the individuals, it seems reasonable to ex-
pect that a system eventually evolves to a homogeneous state. Thus, diffusion
should be a stabilizing factor. This is not always the case, and the Turing ef-
fect [428], or diffusion-induced instability, is an important exception. Turing’s
paper, which shows that the reaction (interaction) and diffusion of chemicals
can give rise to a spatial structure, suggests that this instability could be a
key factor in the formation of biological patterns.68 Twenty years later, Segel
and Jackson [404] showed that diffusive instabilities could also appear in an
ecological context.

Consider two populations N1 and N2 evolving according to the following
one-dimensional diffusion equations69:

∂N1

∂t
= f1(N1, N2) +D1

∂2N1

∂x2
, (3.55)

∂N2

∂t
= f2(N1, N2) +D2

∂2N2

∂x2
. (3.56)

f1(N1, N2) and f2(N1, N2) denote the interaction terms, D1 and D2 are the
diffusion coefficients, and x is the spatial coordinate. We assume the existence
of an asymptotically stable steady state (N∗

1 , N
∗
2 ) in the absence of diffusion.

To examine the stability of this uniform solution to perturbations, we write

N1(t, x) = N∗
1 + n1(t, x) and N2(t, x) = N∗

2 + n2(t, x). (3.57)

If n1(t, x) and n2(t, x) are small, we can linearize the equations obtained upon
substituting (3.57) in (3.55) and (3.56). We obtain70

∂n1

∂t
= a11n1 + a12n2 +D1

∂2n1

∂x2
,

∂n2

∂t
= a21n1 + a22n2 +D2

∂2n2

∂x2
,

where the constants aij , for i = 1, 2 and j = 1, 2, are given by

aij =
∂fi
∂Nj

(N∗
1 , N

∗
2 ).

68 A rich variety of models is discussed in Murray [331].
69 Extension to the more realistic two-dimensional case is straightforward.
70 N∗

1 and N∗
2 are such that f1(N∗

1 , N∗
2 ) = 0 and f2(N∗

1 , N∗
2 ) = 0.
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Solving the system of linear partial differential equations above is a standard
application of Fourier transform theory.71 Let

n1(t, x) =
1
2π

∫ ∞

−∞
n̂1(t, k)e−ikx dk, (3.58)

n2(t, x) =
1
2π

∫ ∞

−∞
n̂2(t, k)e−ikx dx. (3.59)

Replacing (3.58) and (3.59) in the system of linear partial differential equa-
tions yields the following system of ordinary linear differential equations

dn̂1

dt
= a11n̂1 + a12n̂2 −D1k

2n̂1,

dn̂2

dt
= a21n̂1 + a22n̂2 −D2k

2n̂2.

This system has solutions of the form

n̂1(t, k) = n̂01(k)eλt,

n̂2(t, k) = n̂02(k)eλt,

where λ is an eigenvalue of the 2× 2 matrix
[
a11 −D1k

2 a12

a21 a22 −D2k
2

]
.

For a diffusive instability to set in, at least one of the conditions

a11 −D1k
2 + a22 −D2k

2 < 0, (3.60)

(a11 −D1k
2)(a22 −D2k

2)− a12a21 > 0, (3.61)

should be violated. Because (N∗
1 , N

∗
2 ) is asymptotically stable, the conditions

a11 + a22 < 0, (3.62)
a11a22 − a12a21 > 0, (3.63)

are satisfied. From Condition (3.62), it follows that (3.60) is always satisfied.
Therefore, an instability can occur if, and only if, Condition (3.61) is violated.
If D1 = D2 = D, the left-hand side of (3.61) becomes

a11a22 − a12a21 −Dk2(a11 + a22) +D2k4.

In this case, (3.61) is always satisfied because it is the sum of three posi-
tive terms. Thus, if the diffusion coefficients of the two species are equal, no
diffusive instability can occur.
71 For discussion of Fourier transform theory and its applications to differential

equations, see Boccara [58], Chap. 2, Sect. 4.
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If D1 �= D2, Condition (3.61) may be written

H(k2) = D1D2k
4 − (D1a22 +D2a11)k2 + a11a22 − a12a21 > 0.

Because D1D2 > 0, the minimum of H(k2) occurs at k2 = k2
m, where

k2
m =

D1a22 +D2a11

2D1D2
> 0.

The condition H(k2
m) < 0, which is equivalent to

a11a22 − a12a21 − (D1a22 +D2a11)2

4D1D2
< 0,

is a sufficient condition for instability. This criterion may also be written

D1a22 +D2a11

(D1D2)1/2
> 2(a11a22 − a12a21)1/2 > 0. (3.64)

Because the first term on the left-hand side of (3.64) is a homogeneous function
of D1 and D2, for given interactions between the two species, the occurrence
of a diffusion-induced instability depends only on the ratio of the two diffusion
coefficients D1 and D2.

From (3.62), a11 and a22 cannot both be positive. If they are both nega-
tive, Condition (3.64) is violated, and Condition (3.61) cannot be violated by
increasing k; then, necessarily,

a11a22 < 0 (3.65)

and, from (3.63),

a12a21 < 0. (3.66)

If a11 (resp. a22) is equal to zero, then, from (3.62), a22 (resp. a11) must be
negative, and here again Condition (3.61) cannot be violated by increasing k2.
Conditions (3.65)72 and (3.66), which are strict inequalities, are useful. An
instability can be immediately ruled out if they are not verified.

72 This condition also follows from the fact that the expression of k2
m has to be

positive.
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Exercises

Exercise 3.1 In a careful experimental study of the dynamics of populations
of the metazoan Daphnia magna, Smith [409] found that his observations did
not agree with the predictions of the logistic model. Using the mass M of the
population as a measure of its size, he proposed the model

Ṁ = rM

(
K −M
K + aM

)
,

where r, K, and a are positive constants. Find the equilibrium points and deter-
mine their stabilities.

Exercise 3.2 The dimensionless Lotka–Volterra equations (2.4 and 2.5) are

dh
dτ

= ρh (1− p),
dp
dτ

= −1
ρ
p (1− h),

where h and p denote, respectively, the scaled prey and predator populations, and
ρ is a positive parameter.

(a) Show that there exists a function (h, p) �→ f(h, p) that is constant on each
trajectory in the (h, p) plane.

(b) Use the result above to find a Lyapunov function defined in a neighborhood
of the equilibrium point (1, 1).

Exercise 3.3 To develop a strategy for harvesting73 a renewable resource, say
fish, consider the equation

Ṅ = rN

(
1− N

K

)
−H(N),

which is the usual logistic population model with an increase of mortality rate as
a result of harvesting. H(N) represents the harvesting yield per unit time.

(a) Assuming H(N) = CN , where C is the intrinsic catch rate, find the equilib-
rium population N∗, and determine the maximum yield.

(b) If, as an alternative strategy, we consider harvesting with a constant yield
H(N) = H0, the model is

Ṅ = rN

(
1− N

K

)
−H0.

Determine the stable equilibrium point, and show that when H0 approaches 1
4 rK

from below, there is a risk for the harvested species to become extinct.

73 For the economics of the sustainable use of biological resources, see Clark [110].
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Exercise 3.4 Assume that the system

Ṅ1 = r1N1

(
1− N1

K1

)
− λ1N1N2 −CN1, Ṅ2 = r2N2

(
1− N2

K2

)
− λ2N1N2,

is an acceptable model of two competing fish species in which species 1 is subject
to harvesting. For certain values of the parameters, we have seen in Example 18
that for C = 0 (no harvesting), this system has an unstable equilibrium point for
nonzero values of both populations. In this particular case, what happens when
the catching rate C increases from zero?

Exercise 3.5 The competition between two species for the same resource is de-
scribed by the two-dimensional system

Ṅ1 = N1f1(N1, N2), Ṅ2 = N2f2(N1, N2),

where f1 and f2 are differentiable functions.

(a) Show that the slope of the null clines is negative.

(b) Assuming that there exists only one nontrivial equilibrium point (N∗
1 , N

∗
2 ),

find the condition under which this equilibrium is asymptotically stable.

Exercise 3.6 In experiments performed on two species of fruit flies (Drosophila
pseudoobsura and D. willistini), Ayala et al. [25] tested 10 different models
of interspecific competition, including the Lotka–Volterra model, presented in
Example 18, as a special case. They found that the model that gave the best fit
was the system

Ṅ1 = r1N1

(

1−
(
N1

K1

)θ1
− a12

N2

K1

)

, Ṅ2 = r2N2

(

1−
(
N2

K2

)θ2
− a21

N1

K2

)

,

where r1, r2, K1, K2, θ1, θ2, a12, and a21 are positive constants. Under which
condition does this model exhibit an asymptotically stable nontrivial equilibrium
point?

Exercise 3.7 Consider the two-dimensional system

ẋ1 = x2, ẋ2 = −x1 + x2(1 − 3x2
1 − 2x2

2),

which describes a perturbed harmonic oscillator. Use the Poincaré–Bendixson the-
orem to prove the existence of a limit cycle.
Hint: Using polar coordinates, show that there exists an invariant bounded set

{(x1, x2) ∈ R
2 | 0 < r1 < x2

1 + x2
2 < r2},

that does not contain an equilibrium point.
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Exercise 3.8 The second dimensionless Ludwig–Jones–Holling equation
modeling budworm outbreaks (1.6) reads

dx
dt

= rx
(
1− x

k

)
− x2

1 + x2
,

where x represents the scaled budworm density, and r and k are two positive
parameters.

(a) Show that, according to the values of r and k, there exist either two or four
equilibrium points and study their stabilities.

(b) Determine analytically the domains in the (k, r)-space where this equation has
either one or three positive equilibrium points. Show that the boundary between
the two domains has a cusp point. Find its coordinates.

Solutions

Solution 3.1 In the dimensionless time and mass variables

τ = rt and m =
M

K
,

the Smith model takes the form

dm
dτ

= m

(
1−m
1 + am

)
.

The parameter a is dimensionless.
The equilibrium points are m = 0 and m = 1. Because

d
dm

(
m(1−m)
1 + am

)
=

1− 2m− am2

(1 + am)2
,

m = 0 is always unstable, and m = 1 is asymptotically stable if a > 0.

Solution 3.2 (a) Eliminating dτ between the two equations yields

dh
dp

= −ρ2h(1− p)
p(1− h)

or
1− h
h

dh = −ρ2 1− p
p

dp.
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Integrating, we find that on any trajectory the function

f : (h, p) �→ ρ2(p− log p) + h− log h

is constant. The constant depends upon the initial values h(0) and p(0).

(b) Because f(1, 1) = 1 + ρ2, define V (h, p) = f(h, p)− (1 + ρ2). It is straight-
forward to verify that, in the open set ]0,∞[×]0,∞[, the function V has the
following properties

V (1, 1) = 0,
V (h, p) > 0 for (h, p) �= (1, 1),

V̇ (h, p) ≡ 0.

V is, therefore, a weak Lyapunov function, and the equilibrium point (1, 1) is,
consequently, Lyapunov stable.

Solution 3.3 (a) It is simpler, as usual, to define dimensionless variables to reduce
the number of parameters. If

τ = rt, n =
N

K
, c =

C

r
,

the equation becomes
dn
dτ

= n(1− n)− cn.

The equilibrium point n∗ is the solution of the equation 1 − n − c = 0 ( i.e.,
n∗ = 1−c). This result supposes that c < 1 or, in terms of the original parameters,
C < r. That is, the intrinsic catch rate C must be less than the intrinsic growth
rate r for the population not to become extinct. It is easy to check that n∗ is
asymptotically stable. The scaled yield is cn∗ = c(1−c), and the maximum scaled
yield, which corresponds to c = 1/2, is equal to 1/4, or, in terms of the original
parameters, 1/4 rK.

(b) If the harvesting goal is a constant yield H0, then, with

τ = rt, n =
N

K
, h0 =

H0

rK
,

the equation becomes

dn
dτ

= n(1− n)− h0.

The equilibrium points are the solutions of n(1−n)−h0 = 0 ( i.e., n∗
1 = 1/2(1+√

1− 4h0) and n∗
2 = 1/2(1−√1− 4h0)). These solutions are positive numbers

if the reduced constant yield h0 is less than 1/4. n∗
1 and n∗

2 are, respectively,
asymptotically stable and unstable. When H0 approaches 1/4 rK, the reduced
variable h0 approaches 1/4 and the distance |n∗

1 − n∗
2| =

√
1− 4h0 between
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the two equilibrium points becomes very small. Then, as a result of a small
perturbation, n(t) might become less than the unstable equilibrium value n∗

1

and, in that case, will tend to zero. Therefore, if H0 is close to 1/4 rK, there is
a risk for the harvested species to become extinct.

Solution 3.4 In terms of the dimensionless variables

τ =
√
r1r2t, n1 =

N1

K1
, n2 =

N2

K2
,

ρ =
√
r1
r2
, α1 =

λ1K2√
r1r2

, α2 =
λ2K1√
r1r2

, c =
C√
r1r2

,

the equations become

dn1

dτ
= ρ n1(1 − n1)− α1n1n2 − cn1,

dn2

dτ
=

1
ρ
n2(1− n2)− α2n1n2.

If C = 0 ( i.e., c = 0), referring to Example 18, the nontrivial fixed point

(
α1 − ρ

ρ(α1α2 − 1)
,
ρα2 − 1
α1α2 − 1

)

is a saddle if
α1 > ρ and ρα2 > 1.

In this case, the equilibrium points (0, 1) and (1, 0) are both asymptotically stable.
Depending upon environmental conditions, either species 1 or species 2 is capable
of dominating the natural system. Because, in this model, species 1 is harvested,
we will assume that species 1 is dominant. As a result of a nonzero c value, the
asymptotically stable equilibrium

(
ρ− c
ρ

, 0
)
,

which was equal to (1, 0) for c = 0, moves along the n1-axis, as indicated by the
arrow on the left in Fig. 3.23. For a c value such that

ρ− c
ρ

=
1
ρα2

, that is, c = ρ− 1
α2
,

there is a bifurcation and, for c slightly greater than ρ − 1/α2, as on the right
in Fig. 3.23, species 1 does not exist anymore. This extinction is, however, not a
direct consequence of harvesting (c is still less than ρ, that is, C < r1) but the
result of the competitive interaction. For c < ρ−1/α2, the only stable equilibrium
point is (0, 1), so species 2 should become dominant. But, we assumed that, before
harvesting, the state of the system was n∗

1 = 1 and n∗
2 = 0. In nature, this might

not be entirely true, a small population n2 could exist in a refuge and could grow
according to the equations of the model once a sufficient increase of the catching
rate had changed the values of the parameters.
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n1

n2

a1

a2 1

1

n1

n2

a1

a2

1

Fig. 3.23. Modification of the null cline of species 1 as it is harvested

This model is a possible explanation of the elimination, in the late 1940s
and early 1950s, of the Pacific sardines that have been replaced by an anchovy
population.74

Solution 3.5 (a) The equations of the null clines in the (N1, N2)-plane are

f1(N1, N2) = 0 and f2(N1, N2) = 0,

and their slopes are given by

dN2

dN1
= −

∂f1
∂N1

∂f1
∂N2

for Ṅ1 = 0, and
dN2

dN1
= −

∂f2
∂N1

∂f2
∂N2

for Ṅ1 = 0.

Because all the partial derivatives, which represent limiting effects of each species
on itself or on its competitor, are negative in a competition model, both slopes
are negative. That is, each population is a decreasing function of the other, as
should be the case for a system of two competing species.

(b) The nontrivial equilibrium point (N∗
1 , N

∗
2 ), if it exists, is the unique solution,

in the positive quadrant, of the system

f1(N1, N2) = 0, f2(N1, N2) = 0.

This equilibrium point is asymptotically stable if the eigenvalues of the Jacobian
matrix

J =

⎡

⎢
⎣
N∗

1

∂f1
∂N1

(N∗
1 , N

∗
2 ) N∗

1

∂f1
∂N2

(N∗
1 , N

∗
2 )

N∗
2

∂f2
∂N1

(N∗
1 , N

∗
2 ) N∗

2

∂f2
∂N2

(N∗
1 , N

∗
2 )

⎤

⎥
⎦

74 See Clark [110].
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have negative real parts, that is, if

tr J < 0 and detJ > 0.

All partial derivatives being negative, the condition on the trace is automati-
cally satisfied. The only condition to be satisfied for the equilibrium point to be
asymptotically stable is, therefore,

∂f1
∂N1

(N∗
1 , N

∗
2 )
∂f2
∂N2

(N∗
1 , N

∗
2 ) >

∂f1
∂N2

(N∗
1 , N

∗
2 )
∂f2
∂N2

(N∗
1 , N

∗
2 ).

That is, a system of two competitive species exhibits a stable equilibrium if,
and only if, the product of the intraspecific growth regulations is greater than
the product of the interspecific growth regulations. This result has been given
without proof by Gilpin and Justice [182]. It has been established by Maynard
Smith [307] assuming, as suggested by Gilpin and Justice, that, at the point of
intersection of the two null clines, the slope of the null cline of the species plotted
along the x-axis is greater than the slope of the null cline of the species plotted
along the y-axis. This property of the null clines is a consequence of the position
of the stable equilibrium point found by Ayala [24] in his experimental study of
two competing species of Drosophila.

Solution 3.6 In terms of the dimensionless variables

τ =
√
r1r2t, ρ =

r1
r2
, n1 =

N1

K1
, n2 =

N2

K2
, α12 = a12

K2

K1
, α21 = a21

K1

K2
,

the Ayala–Gilpin–Ehrenfeld model becomes

dn1

dτ
= ρ (1− nθ11 − α12n2),

dn1

dτ
=

1
ρ

(1− nθ22 − α21n1).

Assuming the existence of a nontrivial equilibrium point, from the general result
derived in the preceding exercise, this point is asymptotically stable if the condition

∂f1
∂n1

(n∗
1, n

∗
2)
∂f2
∂n2

(n∗
1, n

∗
2) >

∂f1
∂n2

(n∗
1, n

∗
2)
∂f2
∂n2

(n∗
1, n

∗
2),

where

f1(n1, n2) = ρ (1− nθ11 − α12n2) and f2(n1, n2) =
1
ρ

(1− nθ22 − α21n1),

is satisfied; that is, if

θ1θ2(n∗
1)
θ1−1(n∗

2)
θ2−1 > α12α21,

where n∗
1 and n∗

2 are the dimensionless coordinates of the equilibrium point.



120 3 Differential Equations
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Fig. 3.24. Phase portrait of the perturbed harmonic oscillator. Dots show initial
values

Solution 3.7 In polar coordinates, the equations become

ṙ = r sin2 θ(1 − 2r2 − r2 cos2 θ),

θ̇ = −1 + sin θ cos θ(1 − 2r2 − r2 cos2 θ).

For r = 1/2, the first equation shows that

ṙ = 1
4 sin2 θ(1− 1

2 cos θ) ≥ 0

with equality only for θ = 0 and θ = π. The first equation also implies that

ṙ ≤ r sin2(1− 2r2).

Hence, for r = 1/
√

2, ṙ ≤ 0, with equality only for θ = 0 and θ = π.
These two results prove that, for any point x in the annular domain{
x ∈ R

2
∣∣ 1

2 < ‖x‖ < 1√
2

}
, the trajectory {ϕt(x) | t > 0} remains in D.

Because the only equilibrium point of the planar system is the origin, which is not
in D, D contains a limit cycle. The phase portrait of this system is represented
in Fig. 3.24.

Solution 3.8 (a) Equilibrium points are the solutions of the equation

f(x; r, k) = rx
(
1− x

k

)
− x2

1 + x2
= 0.

This is an algebraic equation of degree 4 that has either two or four real solutions.
The graph of the function f : x �→ rx(1 − x/k) − x2/(1 + x2) represented in
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Fig. 3.25 shows that the equilibrium point x0 = 0, which exists for all values
of r and k, is always unstable (positive slope). Therefore, if there are only two
equilibrium points, the nonzero equilibrium point is stable, and if there exist four
equilibrium points (as in Fig. 3.25) there exist two stable equilibrium points x�
and xh at, respectively, low and high density separated by an unstable point xu.

(b) The boundary between the domains in the (k, r)-space in which there exist
either one or three positive equilibrium points is determined by expressing that
the equation

r
(
1− x

k

)
=

x

1 + x2
(3.67)

has a double root. This occurs when

r
d
dx

(
1− x

k

)
=

d
dx

(
x

1 + x2

)
;

that is, if

− r
k

=
1− x2

(1 + x2)2
. (3.68)

Solving (3.67) and (3.68) for k and r, we obtain the parametric representation
of the boundary of the domain in which (3.67) has either one or three positive
solutions (see Fig. 3.26):

2 4 6 8 10 12

–0.9

–0.5

–0.1

0.3

Fig. 3.25. Typical graph of the function x �→ rx(1−x/k)−x2/(1 + x2) when there
exist four equilibrium points. For k = 12 and r = 0.5, the equilibrium points are
located at x0 = 0, x� = 0.704, xu = 1.794, and xh = 9.502

k =
2x3

x2 − 1
,

r =
2x3

(1 + x2)2
.
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This model exhibits a cusp catastrophe. At the cusp point, the derivatives of k
and r with respect to x both vanish. Its coordinates are k = 33/2 and r = 33/2/8
( i.e., k = 5.196 . . . and r = 0.650 . . .). Note that

lim
x→∞k(x) =∞, lim

x→∞ r(x) = 0,

and

lim
x→1

k(x) =∞, lim
x→1

r(x) =
1
2
.

9 13 17 21
k

0.35

0.45

0.55

0.65

r

3 equilibrium points

1 equilibrium point

Fig. 3.26. Boundary between domains in (k, r)-space in which there exist either
one or three positive equilibrium points
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Summary

This rather long chapter introduces many useful concepts in the study of
interacting populations models formulated in terms of differential equations.
The most important ones are listed below.

• A function f is of class Ck in U ∈ R
n if all its partial derivatives up to

order k exist and are continuous in U .
• A function f : U → V , where U and V are open subsets of R

n, is said
to be a Ck-diffeomorphism if it is a bijection, and both f and f−1 are

Ck-functions. If f and f−1 are C0, f is called a homeomorphism .

• A function f is said to be analytic , if it is C∞ and equals its Taylor series
expansion around any point in its domain of definition.

• M is a manifold of dimension n if, for any x ∈M, there exists a neigh-
borhood N(x) ⊆ M containing x and a homeomorphism h : N(x) → R

n

that maps N(x) onto a neighborhood of h(x) ∈ R
n.

• Given a point x ∈ U ⊆ R
n, the orbit or trajectory of ϕ passing through

x ∈ U is the set {ϕt(x) | t ∈ R} oriented in the sense of increasing t.
• The phase portrait is the set of all trajectories of a flow.
• Let X be a vector field defined on an open set U of R

n; a point x∗ ∈ U is
an equilibrium point of the differential equation ẋ = X(x) if X(x∗) = 0.

• A closed orbit of a flow ϕ is a trajectory that is not a fixed point but
is such that ϕτ (x) = x for some x on the trajectory and a nonzero
τ . The smallest nonzero value of τ , usually denoted by T , is called the
period of the orbit .

• An equilibrium point x∗ of the differential equation ẋ = X(x) is said
to be Lyapunov stable (or L-stable) if, for any given positive ε, there
exists a positive δ (which depends on ε only) such that, for all x0 in the
neighborhood of x∗ defined by ‖x0−x∗‖ < δ, the solution x(t, 0,x0) of the
differential equation above satisfying the initial condition x(0, 0,x0) = x0

is such that ‖x(t, 0,x0) − x∗‖ < ε for all t > 0. The equilibrium point is
said to be unstable if it is not stable.

• An equilibrium point x∗ of the differential equation ẋ = X(x) is said to be
asymptotically stable if it is Lyapunov stable and limt→∞ x(t, 0,x0) = x∗.

• Infective individuals are capable of transmitting the disease to others

while susceptible individuals are capable of contracting the disease and
becoming infective.
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• An epidemic occurs if the time derivative of the number of infective
individuals is positive at the initial time.

• The threshold phenomenon shows that an epidemic occurs if, and only
if, the initial number of susceptible individuals is greater than a threshold
value.

• The William Kermack and Anderson McKendrick epidemic model is
given by the following system of differential equations:

Ṡ = −iSI,
İ = iSI − rI,
Ṙ = rI.

where S, I, and R are, respectively, the numbers of susceptible, infective,
and removed individuals. Removed individuals are those who died after
catching the disease. In this model, birth, death, and migration are in
exact balance because the sum S+ I +R is constant, and even in the case
of a very serious epidemic, some individuals are not infected. The spread of
the disease does not stop for lack of susceptible individuals. The Kermack–
McKendrick is an SIR (Susceptible-Infective-Removed) epidemic model.

• Following HerbertHethcote and James York the dynamics of gonorrhea
can be modeled by the four-dimensional system:

Nf Ṡf = −λfSfNmIm +NfIf/df ,

Nf İf = λfSfNmIm −NfIf/df ,

NmṠm = −λmSmNfIf +NmIm/dm,

Nmİm = λmSmNfIf −NmIm/dm,
where λf and λm are the respective different rates of infection of suscepti-
ble females and susceptible males, df and dm are the respective different
average duration of infection for females and males.
Because Sf+If = 1 and Sm+Im = 1, the four-dimensional system reduces
to the following two-dimensional system:

İf =
λf
r

(1− If )Im − If
df
,

İm = rλm(1− Im)If − Im
dm

,

where r = Nf/Nm. The system has two equilibrium points :

(If , Im) = (0, 0) and (If , Im) =
(
dfdmλfλm − 1
dmλm(r + dfλf )

,
r(dfdmλfλm − 1)
dfλf (1 + rdmλm)

)
.
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Note that the nontrivial equilibrium point exists only if dfdmλfλm > 1.
We verify that if the nontrivial equilibrium point exists, it is asymptotically
stable, if it does not, then the trivial fixed point is asymptotically stable. The
above condition expresses that the average fraction of females infected by
one male will infect, during their period of infection, more than one male.
In this case, gonorrhea remains endemic. If the condition is not satisfied,
then gonorrhea dies out.
The Hethcote–York epidemic model is an SIS (Susceptible–Infective–
Susceptible) epidemic model because the gonococcal infection does not
confer protective immunity, so individuals are susceptible again as soon as
they recover from infection.

• Let ϕt : U → U and ψt : W → W be two flows; if there exists a diffeo-
morphism h : U →W such that, for all t ∈ R,

h ◦ϕt = ψt ◦ h,

ϕt and ψt are said to be conjugate flows . Flows conjugacy is an equiva-
lence relation.

• If X : R
n �→ R

n is a C1 vector field and x∗ is an equilibrium point, x∗ is
said to be a hyperbolic equilibrium point if the Jacobian matrix DX has
no eigenvalues with zero real parts.
The Hartman–Grobman theorem states that if x∗ is a hyperbolic equi-
librium point of the differential equation ẋ = X(x), the flow generated by
the vector field X in the neighborhood of x∗ is C0-conjugate to the flow
generated by DX(x∗)(x − x∗). In other words, the orbit structure of a
dynamical system in a neighborhood of a hyperbolic equilibrium point is
topologically equivalent to the orbit structure of the linearized dynamical
system.

• A hyperbolic equilibrium point x∗ of the differential equation ẋ = X(x)
is called a sink if all the eigenvalues of DX(x∗) have negative real parts,
it is called a source if all the eigenvalues of DX(x∗) have positive real
parts, and it is called a saddle if it is hyperbolic and DX(x∗) has at least
one eigenvalue with a negative real part and at least one eigenvalue with
a positive real part.

• Let x∗ be an equilibrium point of the differential equation ẋ = X(x) on
U ⊆ R

n. A C1 function V : U → R is called a strong Lyapunov function
for the flow ϕt on an open neighborhood N(x∗) of x∗ provided V (x) >
V (x∗) and

V̇ (x) =
d
dt
V
(
ϕt(x)

)
∣
∣
∣∣
t=0

< 0

for all x ∈ N(x∗)\{x∗}. If the condition V̇ (x) < 0 is replaced by V̇ (x) ≤ 0,
V is called a weak Lyapunov function .
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• A point y ∈ R
n is an ω-limit point for the trajectory {ϕt(x) | t ∈ R}

through x if there exists a sequence (tk) going to infinity such that
limk→∞ ϕtk(x) = y. The set of all ω-limit points of x is called the
ω-limit set of x, and is denoted by Lω(x). α-limit points and the

α-limit set are defined in the same way but with a sequence (tk) going to
−∞. The α-limit set of x is denoted Lα(x). A limit cycle is a closed orbit
γ such that either γ ⊂ Lω(x) or γ ⊂ Lα(x) for some x /∈ γ. In the first
case, γ is an ω-limit cycle ; in the second case, it is an α-limit cycle .

• The Poincaré–Bendixson theorem states that a nonempty compact limit
set of a two-dimensional flow defined by a C1-vector field, which contains
no fixed point, is a closed orbit.

• A bifurcation is a qualitative change in a family of vector fields, which
depends upon a finite number of parameters.

• Catastrophe theory studies abrupt changes associated with smooth mod-
ifications of control parameters.
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Recurrence Equations

The essential points of this chapter are
• Extension of the definitions we gave for models

formulated in terms of differential equations, such
as orbit, periodic point, Lyapunov stability, etc

• The contracting principle theorem
• The Hartman–Grobman theorem for maps
• The definition of the discrete logistic model
• The definition of a period-doubling bifurcation
• The definition of the Feigenbaum number

In this chapter are studied dynamical models described by recurrence equa-
tions of the form

xt+1 = f(xt), (4.1)

where x, representing the state of the system, belongs to a subset J of R
n,

f : J → J is a map, and t ∈ N0. Since many notions are common to differential
equations and recurrence equations, this chapter will be somewhat shorter
than the preceding one.

As for differential equations, models formulated in terms of recurrence
equations such as (4.1) ignore the short-range character of the interactions
between the elements of a complex system.

4.1 Iteration of Maps

Let f be a map defined on a subset J of R
n; in what follows, for the iterates

of f , we shall adopt the notation

f t+1 = f ◦ f t, where f1 = f

N. Boccara, Modeling Complex Systems: Second Edition, Graduate Texts in Physics, 127
DOI 10.1007/978-1-4419-6562-2 4, c© Springer Science+Business Media, LLC 2010
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and t ∈ N0 (f0 is the identity). If f is a diffeomorphism1, then f−1 is defined
and the definition of f t above remains valid for all t ∈ Z. In applications, the
map f is seldom invertible.2

In the previous chapter on differential equations, a flow has been defined
as a one-parameter group on the phase space. That is, if the phase space is
an open set U of R

n, for all t ∈ R,3 the flow is a mapping ϕt : U → U
such that the group property holds: ϕ0 is the identity and ϕt+s = ϕt ◦ ϕs
(Relation (3.3)).

In the case of maps, the analog of the flow is the mapping f t : J → J ,
defined only for t ∈ Z or t ∈ N0.4

The forward orbit of f through x is the set {f t(x) | t ∈ N0} oriented
in the sense of increasing t. If f is invertible, the backward orbit is the set
{f−t(x) | t ∈ N0}. In this case, the (whole) orbit is the set {f t(x) | t ∈ Z}.

A point x∗ ∈ J is an equilibrium point or a fixed point if f(x∗) = x∗. The
orbit of an equilibrium point is the equilibrium point itself. A point x∗ ∈ J is
a periodic point if fτ (x∗) = x∗ for some nonzero τ . The smallest positive value
of τ is the period of the point and is usually denoted by T . A periodic point
of period T is a fixed point of fT . The set {f t(x∗) | t = 0, 1, . . . , T − 1} is a
periodic orbit or a T -point cycle. A periodic orbit consists of a finite number
of points.

Example 24. Graphical analysis. In the case of one-dimensional maps, there
exists a simple graphical method to follow the successive iterates of an initial
point x0. First plot the graphs of x �→ f(x) and x �→ x. Since the sequence of
iterates is generated by the equation xt+1 = f(xt), the iterate of the initial
value x0 is on the graph of f at (x0, f(x0)), that is, (x0, x1). The horizontal
line from this point intersects the diagonal at (x1, x1). The vertical line from
this point intersects the graph of f at (x1, f(x1)), that is, (x1, x2). Repeating
this process generates the sequence

(x0, x1), (x1, x1), (x1, x2), (x2, x2), (x2, x3), . . .

The equilibrium point x∗ is located at the intersection of the graphs of the two
functions. The diagram (Fig. 4.1) that consists of the graphs of the functions
x �→ f(x) and x �→ x and the line joining the points of the sequence above is
called a cobweb. It clearly shows if the sequence of iterates of the initial point
x0 does or does not converge to the equilibrium point.
1 Given two manifolds M1 and M2, a bijective map f from M1 to M2 is a diffeo-

morphism if both f and its inverse f−1 are differentiable.
2 In the mathematical literature, diffeomorphisms are favored. Among the different

motivations, Smale [408] mentions “its natural beauty” and the fact that “prob-
lems in the qualitative theory of differential equations are present in their simplest
form in the theory of diffeomorphisms.”

3 Or sometimes only for t ∈ R+. In this case, the flow is a one-parameter semi-
group.

4 This mapping is sometimes called a cascade in the Russian literature on dynamical
systems; see, for instance, Anosov and Arnold [9].
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Fig. 4.1. Cobwebs in the vicinity of equilibrium points. The equilibrium point in
the left diagram is asymptotically stable (|f(x∗)| < 1), while the equilibrium point
in the right diagram is unstable (|f(x∗)| > 1). Dots represent initial values

Definition 13. Two maps f and g defined on J ⊆ R
n are said to be conjugate

if there exists a homeomorphism h such that

h ◦ f = g ◦ h

or
h ◦ f ◦ h−1 = g.

This relation implies that, for all t ∈ N,

h ◦ f t ◦ h−1 = gt.

As for flows, h takes the orbits of f into the orbits of g. In particular, if x∗ is
a periodic point of f of period T , then h(x∗) is a periodic point of period T
of g. This follows from

gT (h(x∗)) = h(fT (x∗)) = h(x∗),

which proves that h(x∗) is a periodic point of g. To verify that T is the
(smallest) period, assume that there exists T0 < T such that gT0(h(x∗)) =
h(x∗). Since gT0(h(x∗)) = h(fT0(x∗)), this would imply fT0(x∗) = x∗, which
is not true.

Example 25. The logistic map f4 and the binary tent map T2, defined on the
interval [0, 1] by

f4(x) = 4x(1− x) and T2(x) =

{
2x, if 0 ≤ x < 1

2 ,

2− 2x, if 1
2 ≤ x ≤ 1,
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are conjugate. To prove this result, it suffices to show that the function h :
x �→ sin2(π2 x) is a conjugacy. This is indeed the case since

1. h : [0, 1]→ [0, 1] is continuous,
2. h(x1) = h(x2)⇒ x1 = x2,
3. h([0, 1]) = [0, 1],
4. h′ exists and is positive, so h−1 : [0, 1] → [0, 1] exists and is continuous,

and
5. (f4 ◦ h)(x) = 4 sin2(π2 x)(1 − sin2(π2 x)) = sin2(πx) = (h ◦ T2)(x).

4.2 Stability

Definition 14. A fixed point x∗ of the recurrence equation xt+1 = f(xt) is
said to be Lyapunov stable if, for any given positive ε, there exists a positive
δ (which depends on ε only) such that ‖f t(x) − x∗‖ < ε for all x satisfying
‖x − x∗‖ < δ and all t > 0. A fixed point x∗ is said to be asymptotically
stable if it is Lyapunov stable and if there exists a positive δ such that, for all
x such that ‖x−x∗‖ < δ, limt→∞ f t(x) = x∗. Fixed points that are not stable
are unstable.

That is, the iterates of points close to a Lyapunov stable fixed point remain
close to it, while the iterates of points close to an asymptotically stable fixed
point move toward it as t increases.

Since a T -periodic point x∗ is a fixed point of fT , its stability is determined
by the behavior of the sequence of iterates: fT (x), f2T (x), f3T (x), . . ., where
x is close to x∗.

Definition 15. If a metric d is defined on the phase space S, a map f : S → S
is said to be contracting if there exists a positive real λ < 1 such that, for any
pair (x,y) ∈ S × S,

d
(
f(x), f(y)

) ≤ λd(x,y). (4.2)

Iterating inequality (4.2) yields

d(f t(x), f t(y)) ≤ λd(f t−1(x), f t−1(y)) ≤ · · · ≤ λtd(x,y), (4.3)

so
lim
t→∞ d(f t(x), f t(y)) = 0.

This result means that the asymptotic behavior of all points is the same. On
the contrary, as a consequence of the triangular inequality, for s > t,

d(fs(x), f t(x)) ≤ (
d(fs(x), fs−1(x)) + d(fs−1(x), fs−2(x)) + · · ·

+ d(f t+1(x), f t(x))
)

≤ (
λs−1d(f(x),x) + λs−2d(f(x),x) + · · ·+ λtd(f(x),x)

)

≤ λt

1− λd(f(x),x), (4.4)
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that is,
lim
t→∞ d(fs(x), f t(x)) = 0.

For a given x ∈ S, the sequence of iterates
(
f t(x)

)
t∈N

is a Cauchy sequence.5

Therefore, if the space S is complete, the sequence f t(x) is convergent, and
from (4.3), the limit of the sequence is the same for all x ∈ S. Denote this
limit by x∗. For any x and any positive integer t, using again the triangular
inequality, we obtain

d(f(x∗),x∗) ≤ d(f(x∗), f t+1(x)) + d(f t+1(x), f t(x)) + d(f t(x),x∗)

≤ (1 + λ)d(f t(x),x∗) + λtd(f(x),x).

Since limt→∞ d(f t(x),x∗) = 0 and limt→∞ λt = 0, we find that

f(x∗) = x∗,

which shows that the limit x∗ of the sequence
(
f t(x)

)
is a fixed point of the

recurrence equation (4.1). If, in the inequality (4.4) we take the limit s→∞,
we find that

d(f t(x),x∗) ≤ λt

1− λd(f(x),x),

that is, the iterates of all points x ∈ S converge exponentially to the fixed
point x∗.

The considerations above prove the following fundamental result:

Theorem 6. Let f : S → S be a contracting map defined on a complete metric
space. Then the sequence of iterates (f t(x))t∈N converges exponentially to the
unique fixed point x∗ of f .

Example 26. Newton’s method.6 Any solution of the equation f(x) = 0 is a
solution of the equation

x = x− f(x)
g(x)

5 A sequence (xn) is a Cauchy sequence if, for any positive ε > 0, there exists a
positive integer n0(ε) such that d(xn, xn+k) < ε for all n > n0(ε) and k > 0.
A metric space is said to be complete if every Cauchy sequence is convergent.

6 This method named after Isaac Newton (1643–1727) is also called the Newton–
Ralphson method. It was described by Newton in his De analysi per aequationes
numero terminorum infinitas, he wrote in 1669 but published in 1711, and in
De metodis fluxionum et serierum infinitarum written in 1671, which was trans-
lated and published as Method of Fluxions in 1736 by John Colson. The English
mathematician Joseph Ralphson, whose exact years of birth and death are un-
known, gave a simpler presentation of the method in his Analysis aequationum
universalis published in 1690. See also the web page: http://numericalmethods.
eng.usf.edu/topics/newton raphson.html. On the historical development of
the method, refer to [424].
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for any function g that is not equal to zero in the vicinity of the solution. In
order to optimize the convergence of the iterates of the function defined by
the right-hand side of the equation above toward the root x∗ of f(x) = 0, the
absolute value of the derivative of this function at x = x∗ should be as small
as possible. From

d
dx

(
x− f(x)

g(x)

) ∣∣
∣
∣
∣
x=x∗

= 1− f ′(x∗)
g(x∗)

+
f(x∗)g′(x∗)
(
g(x∗)

)2 ,

it follows that if we take g(x) = f ′(x), then

d
dx

(
x− f(x)

g(x)

) ∣∣
∣
∣
∣
x=x∗

= 0.

The iteration

xt+1 = xt − f(xt)
f ′(xt)

is known as Newton’s method for solving the equation f(x) = 0. For instance,
the numerical values of the solutions of the equation x2 − 2 = 0 (which are
±√2) are the asymptotically stable equilibrium points of the map x �→ xt

2
−

1
xt

.7 Starting from the initial value x = 3, the first iterates are

1.833333333333, 1.46212121212194, 1.4149984298,
1.414213780047, 1.414213562373, . . . .

The convergence toward the equilibrium point is very fast. After only five
iterations, we obtain the value of

√
2 with 12 exact digits after the decimal

point.

Theorem 6 has many important consequences.8 For instance, in the case of
linear maps, if all the eigenvalues of a linear map A : R

n → R
n have absolute

values less than one, the map is contracting and the iterates of every point
converge to the origin exponentially.

In the case of a nonlinear recurrence equation xt+1 = f(xt), as for nonlinear
differential equations, under certain conditions, the stability of an equilibrium
point x∗ can be determined by the eigenvalues of the linear operator Df(x∗).

7 The restrictions of the map to the open intervals ]
√

2,∞[ and ] − ∞,−
√

2[ are
obviously contracting. If the initial point x0 does not lie in these intervals, then
its first iterate f(x0) = x1 is either in ]

√
2,∞[, for 0 < x0 <

√
2, or in ]−∞,−

√
2[,

for −∞ < x0 < −
√

2.
8 For more details, refer to Katok and Hasselblatt [234].
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Definition 16. Let x∗ ∈ S be an equilibrium point of the recurrence equation
xt+1 = f(xt); x∗ is said to be hyperbolic if none of the eigenvalues of the
Jacobian matrix Df(x∗) has modulus equal to one. The linear function

x �→ Df(x∗)x

is called the linear part of f at x∗.

The following result is the Hartman–Grobman theorem for maps. It is the
analog of Theorem 1 for flows.

Theorem 7. If x∗ is a hyperbolic equilibrium point of the recurrence equation
xt+1 = f(xt), the mapping f in the neighborhood of x∗ is C0 conjugate to the
linear mapping Df(x∗) in the neighborhood of the origin.

Therefore, if Df(x∗) has no eigenvalues with modulus equal to one, the
stability of the equilibrium point x∗ of the nonlinear recurrence equation
xt+1 = f(xt) can be determined from the study of the linear recurrence
equation yt+1 = Df(x∗)yt, where y = x − x∗. If Df(x∗) has eigenvalues
with modulus equal to one, then this is not the case. The following examples
illustrate the various possibilities.

Nt

Nt+1

Fig. 4.2. Typical graph of a function f in a one-population model of the form
Nt+1 = f(Nt)

Example 27. One-population models. If a species breeds only at a particular
time of the year, whether adults do or do not survive to breed in the next
season has an important effect on their population dynamics. Due to the
existence of breeding seasons, the population growth may be described by
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a recurrence equation of the form Nt+1 = f(Nt).9 A reasonable function f
should satisfy the following two conditions:

• the image f(N) of any positive N should be positive, and
• f should be increasing for small N and decreasing for large N .

The graph of a function f satisfying these two conditions is represented in
Fig. 4.2. A cobweb analysis of single-population models is presented in Fig. 4.3.

As a first model, consider

Nt+1 = Nt exp
(
r

(
1− Nt

K

))
, (4.5)

where r and K are positive constants. If nt denotes the dimensionless popu-
lation Nt/K, we have

nt+1 = nt exp (r(1 − nt)) . (4.6)

There are two equilibrium points 0 and 1. Since the values of the derivative
of the function n �→ n exp(r(1 − n)) at n = 0 and n = 1 are, respectively, er

and 1− r, 0 is always unstable and 1 is asymptotically stable if 0 < r < 2.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Fig. 4.3. Cobweb analysis of single-population models. Left figure: nt+1 =
nt exp(r(1 − nt)) for r = 1.8 and n0 = 0.1; the equilibrium point n∗ = 1 is asymp-
totically stable. Right figure: nt+1 = rnt/(1 − nt)

a for r = 12, a = 4, and n0 = 1.5;
the equilibrium point n∗ = r1/a − 1 is asymptotically stable

Another example is that of Hassel [212]:

Nt+1 =
rNt(

1 +
Nt
K

)a , (4.7)

9 Various examples are given in May and Oster [304].
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where r, K, and a are constants greater than one. If nt denotes the dimen-
sionless population Nt/K, we have

nt+1 =
rnt

(1 + nt)a
. (4.8)

There are two equilibrium points, 0 and r1/a − 1. Since the values of the
derivative of the function n �→ rn/(1 + n)a at n = 0 and n = r1/a − 1 are,
respectively, r and 1 − a(1 − r−1/a), 0 is always unstable and r1/a − 1 is
asymptotically stable if 0 < a(1− r−1/a) < 2.

Example 28. Host-parasitoid models. A parasitoid is an insect having a lifestyle
intermediate between a parasite and a usual predator. Parasitoid larvae live
inside their hosts, feeding on the host tissues and generally consuming them
almost completely. If we assume that the host has discrete nonoverlapping
generations and is attacked by a parasitoid during some interval of its life
cycle, a simple model is

Ht+1 = rHte−aPt , (4.9)

Pt+1 = cHt(1− e−aPt), (4.10)

where Ht and Pt are, respectively, the host and parasitoid populations at
time t, and r, a, and c are positive constants. This model, whose interest is
essentially historical, was proposed by Nicholson and Bailey [345] in 1935, see
also [211]. The term eaPt represents, at time step t, the fraction of hosts that
escape detection. They are the only ones that can live and reproduce. For
the parasitoid, the factor 1− eaPt is the probability that, at time t, a host is
discovered. Each discovered host gives rise to c new parasitoids at the next
time step.

The model has two equilibrium points, (0, 0) and (H∗, P ∗), where

H∗ =
r log r

ac(r − 1)
, P ∗ =

log r
a

.

The nontrivial fixed point exists only for r > 1. The eigenvalues of the
Jacobian matrix [

re−aP −arHe−aP

c(1 − e−aP ) acHe−aP

]

at (0, 0) are 0 and r. For (H∗, P ∗) to exist, r must be greater than one, and
(0, 0) is unstable. At the equilibrium point (H∗, P ∗), the eigenvalues are

1
2(r − 1)

(
r − 1 + log r ± i

√
4(r − 1)r log r − (r − 1 + log r)2

)
.

The modulus of these two complex conjugate eigenvalues is equal to
√
r log r
r − 1

.
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For r > 1, it is greater than one, and (H∗, P ∗) is unstable (see the left panel of
Fig. 4.4). Nicholson and Bailey showed numerically that the oscillations of the
populations of the two species seemed to increase without limit. They men-
tioned that such a behavior “is certainly not compatible with what we observe
to happen.” To eliminate the unrealistic behavior of the Nicholson–Bailey
model, Beddington et al. [45] introduced a density-dependent self-regulation
for the host. Their model is

Ht+1 = Ht exp
(
r(1 −Ht/K)− aPt

)
, (4.11)

Pt+1 = cHt

(
1− exp(−aPt)

)
. (4.12)

In the absence of parasitoids, the host population evolves according to the
recurrence equation (4.5), which has a stable equilibrium for 0 < r < 2.

To simplify the discussion of this model, we introduce reduced variables.
If (H∗, P ∗) is the nontrivial equilibrium point, let

h =
H

H∗ , p =
P

P ∗ , q =
H∗

K
.

If, in the presence of parasitoids, the host population in the steady state is
nonzero, it is expected to be less than the carrying capacity K. The scaled
parameter q is a measure of the extent to which the host population at equi-
librium is reduced with respect to K. The evolution of the scaled populations
h and p is the solutions of the equations

ht+1 = ht exp(r(1 − qht)− αpt), (4.13)

pt+1 = γht(1 − exp(−αpt)), (4.14)
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Fig. 4.4. Host-parasitoid models. Small dots · represent initial states and bigger
dots • equilibrium points. For the Nicholson–Bailey model (left figure), the nontrivial
equilibrium point is unstable for all values of the parameters (here r = 1.2, a = 0.001,
and c = 1). For the reduced Beddington-Free-Lawton model (right figure), there
exists in the (r, q) parameter space a domain in which the nontrivial fixed point is
stable (here r = 1 and q = 0.5)
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where the scaled constants α and γ depend on the two independent scaled
parameters r and q. Their expressions satisfy the relations

α = r(1 − q), γ =
1

1− e−α
.

The Jacobian matrix at the nontrivial equilibrium point (h∗, p∗) = (1, 1) is

J(1, 1) =

⎡

⎣
1− qr −r(1− q)

1
r(1 − q)

er(1−q) − 1

⎤

⎦ .

Its eigenvalues are the solutions to the quadratic equation

λ2 − tr J(1, 1)λ+ detJ(1, 1) = 0. (4.15)

The equilibrium point (1, 1) is asymptotically stable if the solutions of this
equation

λ1,2 =
1
2

(
T ±

√
T 2 − 4D

)
,

where
T = tr J(1, 1), D = detJ(1, 1),

are such that ∣
∣
∣T ±

√
T 2 − 4D

∣
∣
∣ < 2. (4.16)

To find the conditions under which (4.16) is satisfied, we have to consider two
cases:

1. If T 2 − 4D < 0, the eigenvalues are complex conjugate and their modu-
lus is equal to

√
D. The stability conditions, in this case, are D< 1 and

|T | < 2.
2. If T 2−4D > 0, the eigenvalues are real and the stability conditions (4.16)

may be written as (T ±√T 2 − 4D)2 < 4. It is easy to verify that, solving
for T the equations (T ±√T 2 − 4D)2 = 4, we find T = ±(1 +D). Hence,
if |T | < 1 +D, (4.16) is satisfied.

The trace and the determinant of the Jacobian J(1, 1) should, therefore, sat-
isfy the conditions

| tr J(1, 1)| < 1 + detJ(1, 1) < 2 (4.17)

for the eigenvalues, either real or complex, to have a modulus less than one
(see the right panel of Fig. 4.4). Figure 4.5 shows the domain in which the
nontrivial fixed point (1, 1) is asymptotically stable.

As for models described in terms of differential equations, models repre-
sented by maps should not change significantly when the model is slightly
modified. A result similar to Theorem 3 can be stated for maps. First we
define, as we did for flows, when one can say that two maps are close.
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Fig. 4.5. Domain in which (1, 1) is asymptotically stable as determined using the
conditions (4.17)

In the space M(U) of all C1 maps defined on an open set U ⊆ Rn, an
ε-neighborhood of f ∈M(U) is defined by

Nε(f) = {g ∈M(U) | ‖f − g‖1 < ε}.

A map g that belongs to an ε-neighborhood of f is said to be ε-C1-close to f
or an ε-C1-perturbation of f . In this case, the components (f1(x), . . . , fn(x))
and (g1(x), . . . , gn(x)) of, respectively, f and g and their first derivatives are
close throughout U .

Theorem 8. Let x∗ be a hyperbolic equilibrium point of the C1 map f ∈
M(U). Then, there exists a neighborhood V (x∗) of x∗ and a neighborhood
N(f) of f such that each g ∈ N(f) has a unique hyperbolic equilibrium point
y∗ ∈ V (x∗) of the same type as x∗. In this case, the map f is said to be locally
structurally stable at x∗.

4.3 Poincaré Maps

Definition 17. Let ϕt be a flow on the phase space S, generated by the vector
field X, and Σ a subset of S of codimension 1 10 such that:

1. For all values of t, every orbit of ϕt meets Σ.
2. If x ∈ Σ, X(x) is not tangent to Σ.

Then, Σ is said to be a global cross-section of the flow.

10 The codimension of Σ is dim(S) − dim(Σ).
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Let y ∈ Σ and τ(y) be the least positive time for which ϕτ(y)(y) ∈ Σ;
then the map P : Σ → Σ defined by

P(y) = ϕτ(y)(y)

is the Poincaré map11 for Σ of the flow ϕt.

Example 29. A trivial example. In Example 17, it was shown that according
to the Poincaré-Bendixson theorem, the two-dimensional system

ẋ1 = x1 − x2 − x1(x2
1 + x2

2), ẋ2 = x1 + x2 − x2(x2
1 + x2

2),

had a limit cycle. Using polar coordinates, this system becomes

ṙ = r − r3, θ̇ = 1.

Under this particularly simple form, we can integrate these two decoupled
differential equations. We find

r(t) =
(

1 +
(

1
r20 − 1

)
e−2t

)−1/2

,

θ(t) = θ0 + t,

where r0 = r(0) and θ0 = θ(0). If r0 is close to 1, it is clear that the orbit tends
to the limit cycle r(t) = 1, which is stable. This example is so simple that we
can determine a Poincaré map explicitly. If Σ is the ray θ = θ0 through the
origin, then Σ is orthogonal to the limit cycle r(t) = 1, and the orbit passing
through the point (r0, θ0) ∈ Σ at t = 0 intersects Σ again at t = 2π. Thus,
the map defined on Σ by

P (r0) =
(

1 +
(

1
r20
− 1

)
e−4π

)−1/2

is a Poincaré map. r0 = 1 is a fixed point for this map, and it is stable since

P ′(1) = e−4π < 1.

If ϕt is the flow generated by the vector field X, taking into account (3.4),
we have

X(ϕt(x)) =
d
dτ
ϕτ (x)

∣∣
∣
∣
τ=t

=
d
dτ
ϕt
(
ϕτ (x)

)
∣
∣
∣
∣
τ=0

= Dxϕt
d
dτ
ϕτ (x)

∣
∣∣
∣
τ=0

= Dxϕt
(
X(x)

)
. (4.18)

11 Also called the first return map.
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If x0 is a point on a periodic orbit of period T , then ϕT (x0) = x0, and
from (4.18) it follows that

X(x0) = X(ϕT (x0)) = Dx0ϕT
(
X(x0)

)
.

That is, X(x0) is an eigenvector of the linear operator Dx0ϕT associated with
the eigenvalue 1.

If x0 and x1 are two points on a periodic orbit of period T , there exists s
such that x1 = ϕs(x0). But, we always have

ϕT ◦ϕs(x) = ϕs ◦ϕT (x).

Hence, taking the derivative of both sides of the relation above at x0, we
obtain

Dx1ϕTDx0ϕs = Dx0ϕsDx0ϕT ,

which shows that the linear operators Dx1ϕT and Dx0ϕT are (linearly) con-
jugate by Dx0ϕs.

From the considerations above, it follows that if γ is a periodic orbit of
the flow ϕt in R

n and x0 ∈ γ, the n eigenvalues of the linear operator Dx0ϕT
are 1, λ1, λ2, . . . , λn−1. The n − 1 eigenvalues λ1, λ2, . . . , λn−1 are called the
characteristic multipliers of the periodic orbit. Since Dx1ϕT and Dx0ϕT are
conjugate, these eigenvalues do not depend upon the point x0 on the orbit.
If, for all i = 1, 2, . . . , n − 1, |λi| �= 1, the orbit is said to be hyperbolic.
If the absolute values of all the characteristic multipliers are less than one,
the orbit is a periodic attractor ; if the absolute values of all the characteristic
multipliers are greater than one, the orbit is a periodic repeller, and if the
hyperbolic orbit is neither a periodic attractor nor a periodic repeller, it is a
periodic saddle.

It can be shown that the eigenvalues of the derivative of the Poincaré map
at a point x0 on a periodic orbit γ are the characteristic multipliers of the
periodic orbit γ.12 This result reduces the problem of the stability of a periodic
orbit of a flow to the problem of the stability of a fixed point of a map.

4.4 Local Bifurcations of Maps

The bifurcation theory of equilibrium points of maps is similar to the theory
for vector fields. We shall, therefore, only highlight the differences when they
occur.

Let (x,μ) �→ f(x,μ) be a Ck13 r-parameter family of maps on R
n.

If (x∗,μ∗) is an equilibrium point (i.e., x∗ = f(x∗,μ∗)), is the stability of
the equilibrium point affected as μ is varied?

12 See Robinson [385].
13 The degree of differentiability has to be as high as needed in order to satisfy the

conditions for the family of maps to exhibit a given type of bifurcation. See the
necessary and sufficient conditions below.



4.4 Local Bifurcations of Maps 141

If the equilibrium point is hyperbolic (i.e., if none of the eigenvalues of the
Jacobian matrixDf(x∗,μ∗) has unit modulus), then for values ofμ sufficiently
close to μ∗, the stability of the equilibrium point is not affected. Moreover,
in this case, from the implicit function theorem, it follows that there exists a
unique Ck function x : μ �→ x(μ) such that, for μ sufficiently close to μ∗,

f(x(μ),μ) = x(μ) with x(μ∗) = x∗.

Since the eigenvalues of the Jacobian matrixDf
(
x(μ),μ

)
are continuous func-

tions of μ, for μ sufficiently close to μ∗, none of the eigenvalues of this Ja-
cobian matrix have unit modulus. Hence, equilibrium points close to (x∗,μ∗)
are hyperbolic and have the same type of stability as (x∗,μ∗).

If the equilibrium point (x∗,μ∗) is nonhyperbolic (i.e., if some eigenvalues
of Df(x∗,μ∗) have a modulus equal to one), for values of μ close to μ∗, a
totally new dynamical behavior can occur.

We shall only study the simplest bifurcations that occur at nonhyperbolic
equilibrium points; that is, we investigate one-parameter maps f on R such
that

f(0, 0) = 0 and
∂f

∂x
(0, 0) = 1 or − 1,

and one-parameter maps f on R
2 such that

f(0, 0) = 0 and spec
(
Dx(0, 0)

)
= {α± iω | (α, ω) ∈ R

2, α2 + ω2 = 1},

where spec(A) is the spectrum of the linear operator A; that is, the set of
complex numbers λ such that A− λI is not an isomorphism.

4.4.1 Maps on R

Saddle-Node Bifurcation

Consider the one-parameter family of maps

x �→ f(x, μ) = x+ μ− x2. (4.19)

We have

f(0, 0) = 0 and
∂f

∂x
(0, 0) = 1.

In the neighborhood of the nonhyperbolic equilibrium point (0, 0), equilibrium
points are solutions to the equation

f(x, μ)− x = μ− x2 = 0.

For μ < 0 there are no equilibrium points, while for μ > 0 there are two
hyperbolic equilibrium points x∗ = ±√μ. Since f ′(±√μ, μ) = 1∓ 2

√
μ,
√
μ is

asymptotically stable, and −√μ is unstable. This type of bifurcation is called
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a saddle-node bifurcation. Phase portraits and the bifurcation diagram for the
recurrence equation xt+1 = f(xt, μ) are identical to those obtained for the
differential equation (3.33). See Figs. 3.14 and 3.17.

As for flows, we can derive the necessary and sufficient conditions for a
one-parameter map on R to undergo a saddle-node bifurcation. The derivation
of these conditions makes use of the implicit function theorem and is similar
to what has been done for one-parameter flows on R. A one-parameter family
of Ck (k ≥ 2) maps (x, μ) �→ f(x, μ) exhibits a saddle-node bifurcation at
(x, μ) = (0, 0) if

f(0, 0) = 0,
∂f

∂x
(0, 0) = 1,

and
∂f

∂μ
(0, 0) �= 0,

∂2f

∂x2
(0, 0) �= 0.

Transcritical Bifurcation

Consider the one-parameter family of maps

x �→ f(x, μ) = x+ μx− x2. (4.20)

We have
f(0, 0) = 0 and

∂f

∂x
(0, 0) = 1.

In the neighborhood of the nonhyperbolic fixed point (0, 0), equilibrium points
are solutions to the equation

f(x, μ)− x = μx− x2 = 0.

For all values of μ, there exist two fixed points: 0 and μ. If μ < 0, 0 is stable
and μ unstable, while for μ > 0, 0 becomes unstable and μ stable. Hence, there
exist two curves of fixed points that exchange their stabilities when passing
through the bifurcation point. This type of bifurcation is called a transcritical
bifurcation. Phase portraits and the bifurcation diagram for the recurrence
equation xt+1 = f(xt, μ) are identical to those obtained for the differential
equation (3.34). See Figs. 3.15 and 3.17.

Here again, using the implicit function theorem, it may be shown that a
one-parameter family of Ck (k ≥ 2) maps (x, μ) �→ f(x, μ) on R undergoes a
transcritical bifurcation at (x, μ) = (0, 0) if

f(0, 0) = 0,
∂f

∂x
(0, 0) = 1,

and
∂f

∂μ
(0, 0) = 0,

∂2f

∂x2
(0, 0) �= 0,

∂2f

∂μ∂x
(0, 0) �= 0.
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Pitchfork Bifurcation

Consider the one-parameter family of maps

x �→ f(x, μ) = x+ μx− x3. (4.21)

We have

f(0, 0) = 0 and
∂f

∂x
(0, 0) = 1.

In the neighborhood of the nonhyperbolic fixed point (0, 0), equilibrium points
are solutions to the equation

f(x, μ)− x = μx− x3 = 0.

For μ ≤ 0, 0 is the only fixed point and it is asymptotically stable. For μ > 0,
there are three fixed points, 0 is unstable, and ±√μ are both asymptotically
stable. The curve x = 0 exists on both sides of the bifurcation point (0, 0),
and the fixed points on this curve change their stabilities on passing through
this point. The curve μ = x2 exists only on one side of (0, 0) and is tangent
at this point to the line μ = 0. This type of bifurcation is called a pitchfork
bifurcation. Phase portraits and the bifurcation diagram for the recurrence
equation xt+1 = f(xt, μ) are identical to those obtained for the differential
equation (3.35). See Figs. 3.16 and 3.17.

Using the implicit function theorem, it may be shown that a one-parameter
family of Ck (k ≥ 3) maps (x, μ) �→ f(x, μ) on R undergoes a pitchfork
bifurcation at (x, μ) = (0, 0) if

f(0, 0) = 0,
∂f

∂x
(0, 0) = 1,

and

∂f

∂μ
(0, 0) = 0,

∂2f

∂x2
(0, 0) = 0,

∂2f

∂μ∂x
(0, 0) �= 0,

∂3f

∂x3
(0, 0) �= 0.

Period-Doubling Bifurcation

Consider the one-parameter family of maps

x �→ f(x, μ) = −(1 + μ)x+ x3. (4.22)

We have

f(0, 0) = 0 and
∂f

∂x
(0, 0) = −1.
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The fixed point (0, 0) is a nonhyperbolic fixed point. The other fixed points
are the solutions to the equation

f(x, μ)− x = x(x2 − 2− μ).

For all values of μ, 0 is a fixed point; it is stable for −2 < μ < 0 and unstable
for either μ ≤ −2 or μ ≥ 0. For μ ≥ −2, there exist two other fixed points,
±√2 + μ, that are both unstable. Hence for μ > 0, the map (x, μ) �→ f(x, μ)
has three fixed points, all of them being unstable. This behavior is new; it
could not exist for one-dimensional vector fields. The second iterate f2 of f is

(x, μ) �→ f2(x, μ) = (1 + μ)2x− (2 + 4μ+ 3μ2 + μ3)x3

+ 3(1 +m)2x5 − 3(1 +m)x7 + x9.

It can be verified that

f2(0, 0) = 0 and
∂f2

∂x
(0, 0) = 1,

and

∂f2

∂μ
(0, 0) = 0,

∂2f2

∂x2
(0, 0) = 0,

∂2f2

∂μ∂x
(0, 0) = 2,

∂3f2

∂x3
(0, 0) = −12.

Hence, the one-parameter family of maps (x, μ) �→ f2(x, μ) undergoes a pitch-
fork bifurcation at the point (0, 0) (i.e., the new fixed points of f2 are period
2 points of f). This new type of bifurcation is called a period-doubling bifur-
cation.14

Using the implicit function theorem, it is possible to find the necessary and
sufficient conditions for a one-parameter family of Ck (k ≥ 3) maps (x, μ) �→
f(x, μ) on R to exhibit a period-doubling bifurcation at (x, μ) = (0, 0). From
the discussion above, it follows that (0, 0) should be a nonhyperbolic fixed
point of f such that

f(0, 0) = 0 and
∂f

∂x
(0, 0) = −1,

and, at (0, 0), f2 should exhibit a pitchfork bifurcation; i.e.,

∂f2

∂μ
(0, 0) = 0,

∂2f2

∂x2
(0, 0) = 0,

∂2f2

∂μ∂x
(0, 0) �= 0,

∂3f2

∂x3
(0, 0) �= 0.

For a small positive value of the parameter μ, the map f2 has two fixed
points, which are x∗1 = −√μ and x∗2 =

√
μ, such that

f(x∗1, μ) = x∗2 and f(x∗2, μ) = x∗1.

14 Also called a flip bifurcation.
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Hence, x∗1 and x∗2 are period 2 points of the map f , and the periodic orbit
{x∗1, x∗2} is asymptotically stable if x∗1 and x∗2 are asymptotically stable fixed
points of f2. Since

∂f2

∂x
(x∗1, μ) =

∂f

∂x

(
∂f

∂x
(x∗1, μ)

)
∂f

∂x
(x∗1, μ)

=
∂f

∂x
(x∗2, μ)

∂f

∂x
(x∗1, μ),

the stability condition is
∣
∣
∣
∣
∂f

∂x
(x∗1, μ)

∂f

∂x
(x∗2, μ)

∣
∣
∣
∣ < 1. (4.23)

With x∗1 = −√μ and x∗2 =
√
μ, we find that

∂f

∂x
(
√
μ, μ) =

∂f

∂x
(−√μ, μ) = −1 + 2μ.

Hence, the 2-point cycle {√μ,−√−μ} is asymptotically stable for μ suffi-
ciently small.
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Fig. 4.6. Stable 2-point cycle of the one-population model nt+1 = nt exp(r(1− nt)
obtained for r = 2.1. A transient of 40 iterations has been discarded

Example 30. Period-doubling bifurcation in a one-population model. In Exam-
ple 27, two different one-population models were presented. In the first model,
the reduced population n evolves according to the recurrence equation

nt+1 = nt exp(r(1 − nt)).
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Does this model exhibit a period-doubling bifurcation? Let

f(n, r) = n exp(r(1 − n)).

Since
f(1, 2) = 1 and

∂f

∂n
(1, 2) = −1,

the nonhyperbolic fixed point (1, 2) may be a period-doubling bifurcation
point. Let us check the remaining four other conditions. The second iterate
of f is

(n, r) �→ f2(n, r) = ner(1−n) exp
(
r(1 − ner(1−n))

)
,

and we have

∂f2

∂r
(1, 2) = 0,

∂2f2

∂2n
(1, 2) = 0,

∂2f2

∂r∂n
(1, 2) = 2,

∂3f2

∂3n
(1, 2) = −8.

The one-parameter family of maps (n, r) �→ n exp(r(1−n)) exhibits, therefore,
a period-doubling bifurcation at the point (n, r) = (1, 2).

If r is slightly greater than two, the map f(n, r) has two period 2 points,
n∗

1 and n∗
2, such that f(n∗

1, r) = n∗
2 and f(n∗

2, r) = n∗
1. To check the stability

of these periodic points, we have to verify that Condition (4.23) is satisfied.
If, for example, r = 2.1, we find that (n∗

1, n
∗
2) = (0.629294 . . . , 1.370706 . . .)

and
∂f

∂n
(0.629294, 2.1)

∂f

∂2
(1.370706, 2.1) = 0.603965.

The 2-point cycle {0.629294 . . . , 1.370706 . . .}, shown in Fig. 4.6, is asymptot-
ically stable.

4.4.2 The Hopf Bifurcation

As in the case of families of maps on R, nonhyperbolic points in families of
maps on R

2 are usually bifurcation points. The various types of bifurcations
that may occur for one-dimensional systems may also occur for higher-
dimensional systems. There exist, however, other possible types of bifurca-
tions. In this section, we discuss a bifurcation that appears when the eigen-
values of the linear part of the two-dimensional part in the neighborhood of
a nonhyperbolic equilibrium point cross the unit circle.

Example 31. Delayed logistic model. One-population models of the form xt+1 =
f(xt) are not adequate for species whose individuals need a certain time to
reach sexual maturity. By analogy with the continuous-time equation (1.12),
consider the Maynard Smith delayed logistic recurrence equation [306]

nt+1 = rnt(1− nt−1).
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In order to write this second-order equation as a first-order two-dimensional
system, let

xt = nt−1 and yt = nt.

The delayed logistic equation then takes the form

xt+1 = yt, yt+1 = ryt(1− xt).
The map f : (x, y) �→ (y, ry(1 − x)) has two fixed points,

(0, 0) and
(
r − 1
r

,
r − 1
r

)
.

The eigenvalues of the linear operator at the nontrivial fixed point

Df
((r − 1

r
,
r − 1
r

)
, r

)

are 1/2(1±√5− 4r). If r > 5/4, the eigenvalues are complex conjugate. Their
modulus is equal to one when

1
4

1 + (4r − 5) = 1, that is, for r = 2,

and, in this case, they are equal to e±iπ/3 (i.e., to two of the sixth roots of
unity).15 For r < 2, the nontrivial fixed point is asymptotically stable; hence,
for r > 2, we expect the existence of a stable limit cycle. This is the case,
as shown in Fig. 4.7. The nonhyperbolic point ((1/2, 1/2), 2) is, therefore, a
bifurcation point. Because of its connection with the Hopf bifurcation for
flows, this bifurcation is also named after Hopf.

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

Fig. 4.7. Stable cycle for the two-dimensional map (x, y) �→ (y, ry(1− x)) (delayed
logistic model) for r = 2.1. Initial point: (0.3, 0.5), number of iterations: 400

15 See Theorem 9 for the importance of this remark.
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Theorem 9. Let (x, μ) �→ f(x, μ) be a one-parameter Ck (k ≥ 5) family of
maps in R

2 such that:

1. For μ near 0, f(0, μ) = 0.
2. For μ near 0, Df(0, μ) has two complex conjugate eigenvalues λ(μ) and
λ(μ), with |λ(0)| = 1.

3. λ(0) is not a qth root of unity for q = 1, 2, 3, 4, or 5.

4.
d

dμ
|λ(μ)| > 0 for μ = 0.

Then, there exists a smooth change of coordinates that brings f in polar coor-
dinates under the form

g(r, θ, μ) = (|λ(μ)|r + a(μ)r3, θ + b(μ) + c(μ)r2),

where terms of degree 5 and higher in r have been neglected. a, b, and c
are smooth functions of μ. If a(0)< 0 (resp. a(μ)> 0), then, for μ< 0 (resp.
μ> 0), the origin is stable (resp. unstable), and, for μ> 0 (resp. μ< 0)),
the origin is unstable (resp. stable) and surrounded by an attracting (resp.
repelling) invariant circle.

We could verify that in the case of the delayed logistic equation of Exam-
ple 31, the conditions of the theorem are satisfied (for r = 2 the eigenvalues
are the sixth root of unity). The proof of this theorem is rather laborious. See
either Devaney [130] or Arrowsmith and Place [15].

4.5 Sequences of Period-Doubling Bifurcations

When a one-parameter family of maps on R, (x, μ) �→ f(x, μ), exhibits a
period-doubling bifurcation at a nonhyperbolic fixed point (x1, μ1), the family
of second iterates (x, μ) �→ f2(x, μ) exhibits at (x1, μ1) a pitchfork bifurcation.
Then, when μ is slightly modified, say increased, this bifurcation gives birth
to a 2-point cycle, and both periodic points of this cycle are hyperbolic fixed
points of f2. As μ is further increased, it might happen that the family of
second iterates undergoes a period-doubling bifurcation at a nonhyperbolic
fixed point (x2, μ2), giving birth to a 2-point cycle for f2 (i.e., a 4-point cycle
for f). This process may occur repeatedly, generating an infinite sequence
of period-doubling bifurcations. The interesting fact is that these sequences
possess some universal properties, which are discussed below.

4.5.1 Logistic Model

The discrete logistic model, described by the recurrence equation

nt+1 = rnt(1− nt), (4.24)
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has been extensively studied.16 It is the simplest nonlinear map, but neverthe-
less its properties are far from being trivial. In an earlier study of the iteration
of quadratic polynomials, Myrberg [332] already mentioned the existence of
considerable difficulties:

En nous limitant dans notre travail au cas le plus simple non
linéaire, c’est-à-dire aux polynômes réels du second degré, nous ob-
servons que même dans ce cas spécial on rencontre des difficultés con-
sidérables, dont l’explication exigera des recherches ultérieures.17

As a one-population model, (4.24) represents the evolution of a reduced popu-
lation n = N/K, where K is the carrying capacity. From a purely mathemat-
ical point of view, it has the advantage of being extremely simple, but, as a
population model, it has the disadvantage of requiring n to belong to the closed
interval [0, 1] since, for n /∈ [0, 1], the sequence of iterates of n tends to −∞.

The fixed points of (4.24) are the solutions of

n = f(n, r) = rn(1− n);

i.e., n = 0 and n = (r − 1)/r. The derivative of f with respect to n being
equal to r(1− 2n), if r < 1, n = 0 is asymptotically stable and n = (r− 1)/r,
which does not belong to [0, 1], is unstable. The nonhyperbolic fixed point
(n, r) = (0, 1) is a transcritical bifurcation point. If 1<r< 3, n = 0 is unstable
and n = (r − 1)/r is asymptotically stable.

For r = 3, the derivative of f at n = (r− 1)/r = 2/3 is equal to −1. Since

f2(n, r) = r2n(1− n)(1− (rn(1 − n)),

we verify that

f2(2/3, 3) = 2/3,
∂f2

∂n
(2/3, 3) = 1,

and

∂f2

∂r
(2/3, 3) = 0,

∂2f2

∂2n
(2/3, 3) = 0,

∂2f2

∂r∂n
(2/3, 3) = 2,

∂3f2

∂3n
(2/3, 3) = − 108.

These results show that the nonhyperbolic fixed point (2/3, 3) is a period-
doubling bifurcation point. The map f2 has four fixed points that are the
solutions of the equation

f2(n, r) = n.

16 The reader may find the following two papers, [262] and [310], interesting.
17 Limiting ourselves to the simplest nonlinear case; that is, to quadratic real poly-

nomials, it is observed that even in this special case considerable difficulties are
encountered, whose explanation will require more work in the future.
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Two solutions are already known, namely, the two unstable fixed points,
n = 0 and n = (r − 1)/r, of f . The remaining two solutions are18

n =
1
2r

(r + 1±
√
r2 − 2r − 3).

They are the two components of the 2-point cycle, and are defined only for
r ≥ 3. The domain of stability of this cycle is determined by the condition
∣
∣
∣
∣
∂f

∂n

(
1
2r

(1 + r +
√
r2 − 2r − 3), r

)
∂f

∂n

(
1
2r

(1 + r −
√
r2 − 2r − 3), r

) ∣∣
∣
∣ < 1.

That is, the 2-point cycle is asymptotically stable if 3 < r < 1 +
√

6. For
r > 1 +

√
6, the system undergoes an infinite sequence of period-doubling

bifurcations.
A few iterations of the logistic map for increasing values of r are shown in

Fig. 4.8.
Let (rk)k∈N be the sequence of parameter values at which a period-doubling

bifurcation occurs. This sequence is such that the 2k-point cycle is stable for
rk < r < rk+1. Then, if {nk,1, nk,2, . . . , nk,2k} denotes the 2k-point cycle, for
i = 1, 2, . . . , 2k and rk < r < rk+1, we have

f2k

(nk,i, r) = nk,i. (4.25)

Moreover, for i = 1, 2, . . . , 2k,19

∂f2k

∂n
(nk,i, rk) = +1,

∂f2k

∂n
(nk,i, rk+1) = −1. (4.26)

Numerically, one can easily discover that (rk) is an increasing bounded se-
quence of positive numbers. This sequence has, therefore, a limit r∞. If we
assume that the asymptotic behavior of rk is of the form

rk ∼ r∞ − a

δk
, (4.27)

18 Let n1,1 and n1,2 be these solutions. They are such that

f(n1,1, r) = n1,2, f(n1,2, r) = n1,1.

Hence,

n1,1 + n1,2 =
1 + r

r
, n1,1n1,2 =

1 + r

r2
,

which shows that n1,1 and n1,2 are the solutions of the quadratic equation

r2n2 − r(1 + r)n + 1 + r = 0.

19 The numerical values of the nk,i (i = 1, 2, . . . , 2k) depend on r.
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Fig. 4.8. Iterations of the logistic map f : (n, r) �→ rn(1 − n) for r = 2.5 (fixed
point), r = 3.2 (2-point cycle), r = 3.48 (4-point cycle), and r = 3.55 (8-point cycle).
Sixteen iterates are shown after 100 have been discarded

where a and δ are two positive numbers, then, according to (4.27),

lim
k→∞

rk − rk−1

rk+1 − rk = δ; (4.28)

δ is known as the Feigenbaum number. To determine the numerical values of
r1, r2, r3, . . . and δ, one proceeds as follows. We have seen that the exact values
of r1 and r2 are, respectively, 3 and 1 +

√
6. Once the approximate value of

r3 is found,

δ1 =
r2 − r1
r3 − r2

gives an approximate value of δ, which is used to estimate

r4 ≈ r3 +
r3 − r2
δ1

.

As k increases, solving (4.25), we locate rk and determine a better value
of δ.20 This is the method followed by Feigenbaum [153,154] who found that
δ = 4.6692016091029... .

20 The first period-doubling bifurcations occur for the following parameter values:

r1 = 3.0, r2 = 3.449499... , r3 = 3.544090... , r4 = 3.564407... ,

r5 = 3.568759... , r6 = 3.569692... , r7 = 3.569891... , r8 = 3.569934... .

The limit of the sequence (rk) is r∞ = 3.5699456... , and the value of a in
Relation (4.27) is 2.6327... .
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4.5.2 Universality

The interesting fact, found by Feigenbaum [153], is that the rate of conver-
gence δ of the sequence (rk) is universal in the sense that it is the same for
all recurrence equations of the form xt+1 = f(xt, r) that exhibit an infinite
sequence of period-doubling bifurcations, if f is continuous and has a unique
maximum xc (such a map is said to be unimodal) with f(xc)−f(x) ∼ (xc−x)2.
If the order of the maximum is changed, the ratio will also change. Consider
the map

g(x, a) = 1− axz , (z > 1).

It is easy to verify that, for z = 2, f and g are topologically equivalent; i.e.,
there exists a map � such that

� ◦ g = f ◦ �,

where
�(x) =

(
1
4 r − 1

2

)
x+ 1

2 .

The parameters a and r are such that r2 − 2r − 4a = 0.
The following table gives the value of δ for different values of the expo-

nent z.

z 2 4 6 8
δ 4.669 7.284 9.296 10.948

The existence of an infinite sequence of period-doubling bifurcations for
r ≥ 3 can be made plausible by a simple geometric argument.

Consider the graphs of f2 for two parameter values, one slightly less than
three and the other one slightly greater than three (Fig. 4.9). They show how
the asymptotically stable point for r < 3 splits into an asymptotically stable
2-point orbit for r > 3.

Consider now the graph of f2 for a value of r between r1 and r2. As shown
in Fig. 4.10, it has four fixed points. Two of them, 0 and (r− 1)/r, are unsta-
ble and the other two correspond to the stable 2-point cycle. In the interval
[1/r, (r − 1)/r], the graph of f2, after a symmetry about a horizontal axis, is
similar to the graph of f for a certain parameter value s. More precisely, the
map F , defined by

F = L ◦ f2 ◦ L−1, (4.29)

where L is the linear map

L : x �→ x− (r − 1)/r
(2− r)/r , (4.30)

is such that F (0) = F (1) = 0, and if we choose a parameter value s such
that f(1/2, s) = F (1/2, r), the graphs of (x, s) �→ f(x, s) and (x, r) �→ F (x, r)
are very close, as shown in Fig. 4.11. For r close to r2, in the boxed domain,
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Fig. 4.9. Graphs of the second iterates of the logistic map for r = 2.85 and r = 3.15
showing how the period-doubling bifurcation at the point (2/3, 3) gives birth to a
stable 2-point orbit

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r=3.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r=2.24

Fig. 4.10. In the boxed domain, the graph of the second iterate of the logistic map
for r = 3.3 is similar to the graph of the logistic map for r = 2.24

the scenario represented in Fig. 4.9 will this time occur for f4; that is, the
stable fixed point of f2 in the boxed domain, the asymptotically stable point
for r < r2, splits into an asymptotically stable 2-point cycle for r > r2. This
2-point cycle for f2 is a 4-point cycle for f , which is asymptotically stable for
r2 < r < r3, and so on ... .

This argument can be made more rigorous using renormalization-group
methods.21

A fixed point x∗ of a map f is said to be superstable if f ′(x∗) = 0.22 In
the case of the logistic map f : (n, r) �→ rn(1 − n), (1/2, 2) is a superstable

21 See Coullet and Tresser [120], and Feigenbaum [153].
22 Such a point is said to be critical.
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Fig. 4.11. Graph of the transform F of f2 (see text) for r = 3.3 (broken line)
compared to the graph of the logistic curve for r = 2.24 (full line)

fixed point. Superstable cycles are defined in a similar way. In the case of the
logistic map, a 2k-point cycle that includes the point 1/2 is superstable if, for
the parameter value r = Rk, (f2k

)′(1/2, Rk) = 0. Since rk < Rk < rk+1, we
have

lim
k→∞

Rk −Rk−1

Rk+1 −Rk = δ.

It is actually easier to calculate δ accurately from the relation above than
from (4.28) because, when r is close to rk from above, the 2k-cycle is weakly
stable, and the method to determine rk converges slowly.

The sequence (dk), where

dk = f2k−1 ( 1
2 , Rk

)− 1
2 ,

represents the distance between the point 1/2 and its nearest point on the
2k-point cycle, is such that the limit23

− lim
k→∞

dk
dk+1

= α

is also a universal constant equal to 2.5029078751 . . . [153].
While Feigenbaum’s universality is quantitative, in 1973 Metropolis et al.

[315] had already discovered a qualitative universality of finite limit sets of
families of unimodal maps fr defined on the unit interval [0, 1] such that
fr(0) = fr(1) = 0.24

23 The minus sign in the definition of α is related to the fact that the nearest point
to 1/2 on the 2k-point cycle is alternatively below and above 1/2 as k increases.

24 In their paper, Metropolis, Stein, and Stein enumerate a list of conditions that
the maps should satisfy. In particular, they allow maps such as, for example,
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In order to illustrate this qualitative universality, consider the logistic map
(x, r) �→ fr(x) = rx(1 − x). fr(x) is maximum for x = 1/2, and f ′

r(1/2) = 0.
For a given integer k > 1, solving for r the equation

fkr
(

1
2

)
= 1

2

gives the values of the parameter r for which there exists a superstable k-point
cycle. For example, if k = 5, there are three different solutions: 3.7389149 . . .,
3.9057065 . . ., and 3.9902670 . . .. In each case, the successive iterates of x =
1/2 are either greater than or less than 1/2. Following Metropolis, Stein, and
Stein, according to whether an iterate is greater than or less than 1/2, it is
said to be of type R or of type L. Using this convention, the itinerary along
a superstable 5-point cycle is characterized by a pattern of four letters:

1
2 → R → L → R → R → 1

2 for r = 3.7389149 . . . ,
1
2 → R → L → L → R → 1

2 for r = 3.9057065 . . . ,
1
2 → R → L → L → L → 1

2 for r = 3.9902670 . . . .

Omitting the initial and final points 1/2, the patterns are simply written under
the form

RLR2, RL2R, RL3.

These sequences of R and L symbols are called U -sequences, where U stands
for universal. They are universal in the sense that they appear for all unimodal
maps in the same order for increasing values of the parameter r.

Note that any U -sequence necessarily starts with R, followed by L if the
sequence contains more than one symbol, that is, if the period of the super-
stable cycle is greater than two.

Many one-population models, described by continuous maps with only one
quadratic maximum, exhibit universal infinite sequences of period-doubling
bifurcations. This is the case, for example, for the map (n, r) �→ n exp(r(1−n))
(see Fig. 4.12) that undergoes period-doubling bifurcations for the following
parameter values25:

r1 = 2, r2 = 2.526..., r3 = 2.656..., r4 = 2.682..., r∞ = 2.692... .

fr(x, a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r

a
x, if 0 ≤ x ≤ a,

r, if a ≤ x ≤ 1 − a,
r

a
(1 − x), if 1 − a ≤ x ≤ 1,

where a and r are positive reals such that 1 − a < r < 1.
25 See also Exercise 4.7.
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Fig. 4.12. Iterations of the first one-population map of Example 27 (n, r) �→
ner(1−n) for r = 1.8 (fixed point), r = 2.1 (2-point cycle), r = 2.55 (4-point cy-
cle), and r = 2.67 (8-point cycle). Sixteen iterates are shown after 200 have been
discarded

Since n exp(r(1 − n)) is maximum for x = 1/r, superstable cycles must
include this point. The one-population model exhibits superstable 2k-point
cycles for the following parameter values:

R0 = 1, R1 = 2.25643 . . . , R2 = 2.59352 . . . , R3 = 2.671 . . .

It can be verified that the U -sequences corresponding to the 2-, 4-, and 8-point
cycles are

R, RLR, RLR3LR,

the same as for the superstable cycles of the logistic map.

Remark 11. The patterns in Fig. 4.13 illustrate an interesting general feature men-
tioned by Metropolis et al. [315]. If P is a pattern for a given superstable cycle, then
the pattern of its first harmonic is PXP , where X = L if P contains an odd number
of Rs, and X = R otherwise.
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Fig. 4.13. Superstable cycles of the one-population map of Example 27 (n, r) �→
ner(1−n) for r = 1 (fixed point), r = 2.25643 (2-point cycle), r = 2.59352 (4-point
cycle), and r = 2.671 (8-point cycle)

Exercises

Exercise 4.1 Consider the map f such that

x �→ f(x) =

{
2x, if 0 ≤ x ≤ 1

2

2x− 1, if 1
2 < x ≤ 1.

Find all fixed points, and all period 2, period 3, and period 4 points of this map.

Exercise 4.2 An acceptable discrete one-population model of sexually reproduc-
ing organisms should be such that if the population density is small, the organisms
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are sparsely distributed in their habitat, resulting in a low mating rate and a
density-dependent growth rate less than one. This effect is named after Allee26 [7].
If the population density is large, intraspecific competition is strong, and it is rea-
sonable to assume that, in this case, the density-dependent growth rate has to be
less than one. The model

nt+1 = rnxt (1 − nt),

where nt is the population density at time t, and r and x are positive constants, is
a generalization of the logistic model. Under which condition(s) does it exhibit the
Allee effect? In this case, find its equilibrium points and determine their stabilities.

Exercise 4.3 The recurrence equation

nt+1 = rn2
t (1 − nt)− cnt

is a model of harvesting a species that exhibits the Allee effect. The constant c is
the intrinsic catching rate. Show that for a fixed value of r greater than a critical
value rc, the system undergoes a saddle-node bifurcation at a point (n∗, c∗).
What does this bifurcation imply from an ecological point of view?

Exercise 4.4 In an SIR model for the spread of an infectious disease, based on
disease status, the individuals are divided into three disjoint groups:

1. Susceptible individuals are capable of contracting the disease and becoming
infective.

2. Infective individuals are capable of transmitting the disease to susceptibles.
3. Removed individuals either have had the disease and are dead, or have recov-

ered and are permanently immune, or are isolated until recovery and perma-
nent immunity occur.

Let St, It, and Rt denote the densities of individuals belonging to the three
different groups defined above. If we assume that the interactions responsible for
the spread of the disease have a very long range ( i.e., each susceptible individual
can be equally infected by any infective individual), it can be shown that the
spread of the infectious disease can be modeled by the recurrence equations27

26 Warder Clyde Allee (1885–1955) was an American zoologist and ecologist who
was professor of zoology at the University of Chicago from 1928 to 1950. He
became president of the Ecological Society of America in 1929. See [145].

27 If each susceptible individual can be equally infected by any infective individual,
the probability for a susceptible individual to be infected can be written as i/N ,
where i is a positive real number and N the total number of individuals in the
population. Hence, between times t and t + 1, the density of infected individuals
due to infection of susceptible individuals is given by

St

(

1 −
(

1 − iIt

N

)N−1
)

,
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St+1 + It+1 +Rt+1 = ρ,

It+1 = It + St
(
1− exp(−iIt)

)− rIt,
Rt+1 = Rt + rIt,

where i is a coefficient proportional to the probability for a susceptible individual
to be infected, r is the probability for an infective individual to be removed, and
ρ is the total initial density.

(a) Show that as time t goes to infinity, the limits S∞, I∞, and R∞ exist. What
is the value of I∞?

(b) Show that, as for the Kermack–McKendrick epidemic model (Example 8),
there is an epidemic if, and only if, the initial density of susceptible individuals S0

is greater than a critical value. The initial conditions are such that R0 = 0 and
I0 ! S0.

(c) What is the behavior of It as a function of t if S0 is either less than or greater
than its critical value?

Exercise 4.5 (a) Extend the previous one-population SIR epidemic model to de-
scribe the spread of a sexually transmitted disease among heterosexual individuals.

(b) Show that the limits Sm
∞, Im

∞, Rm
∞, Sf

∞, I f
∞, and Rf

∞, where the superscripts
m and f refer, respectively, to the male and female populations, exist. What are
the values of Im

∞ and I f
∞?

(c) According to the initial values Sm
0 , Im

0 , Sf
0, and I f

0 and the ratios rm/im and
rm/im, discuss the existence of epidemics in one or both populations.

Exercise 4.6 Consider an SIS epidemic model; i.e., a model in which, after re-
covery, infected individuals become again susceptible to catch the disease (as,
e.g., with common cold).

(a) Assuming, as in Exercise 4.4, that each susceptible individual can be equally
infected by any infective individual, derive the recurrence equations satisfied by
the densities of susceptible and infected individuals denoted, respectively, by St
and It.

28

(b) Show that this model exhibits a transcritical bifurcation between an endemic
state ( i.e., a state in which the stationary density of infected individuals I∞ is
nonzero) and a disease-free state in which I∞ is equal to zero.

which, in the limit N → ∞ (i.e., in the limit of infinite-range interactions), is
equal to

St

(
1 − (1 − exp(−iIt))

)
.

See Boccara and Cheong [61].
28 See Boccara and Cheong [64].
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Exercise 4.7 Determine the first period-doubling bifurcations of the one-
parameter map (n, r) �→ f(n, r) = −rn logn, which is a discrete version of
the classical Gompertz map [187].

Exercise 4.8 Show that the Newton-method can be used to find

(a) the maximum of a differentiable function f defined on Re, and (b) the square
root of a positive real a.

Solutions

Solution 4.1 A fixed point x∗ of f is such that f(x∗) = x∗. It has, therefore, to
satisfy either the relation 2x∗ = x∗ or the relation 2x∗ − 1 = x∗. The only fixed
points of the map f are therefore the points x∗1 = 0 and x∗2 = 1 .

An orbit (x1, x2) of period 2 of the map f is such that f(x1) = x2 and
f(x2) = x1. The only possibility is a pair of points (x1, x2) such that 2x1 = x2

and 2x2 − 1 = x1, that is, (x1, x2) =
(

1
3 ,

2
3

)
.

An orbit (x1, x2, x3) of period 3 of the map f is such that f(x1) = x2,
f(x2) = x3, and f(x3) = x1. It is easy to check that the three points x1, x2,
and x3 cannot all belong to the interval [0, 1

2 ] or the interval ]12 , 1]. The only
possibility is that one point belongs to one of the two intervals and the other
two points belong to the other interval. So, we have to solve either the system
2x1 = x2 2x2 = x3 2x3− 1 = x1, which supposes that x1 and x2 are both in
[0, 1

2 ] while x3 is in ]12 , 1], or the system 2x1 = x2 2x2−1 = x3 2x3−1 = x1,
which supposes that x1 is in [0, 1

2 ] while x2 and x3 are both in ]12 , 1]. The solution

of the first system is (x1, x2, x3) =
(

1
7 ,

2
7 ,

4
7

)
, while the solution of the second one

is (x1, x2, x3) =
(

3
7 ,

6
7 ,

5
7

)
. In both cases, the solution satisfies the assumptions

we made concerning the locations of x1, x2 and x3 in the intervals.
An orbit (x1, x2, x3, x4) of period 4 of the map f is such that f(x1) =

x2, f(x2) = x3, f(x3) = x4, and f(x4) = x1. Here again all four val-
ues cannot belong to the same interval. If x1 is in [0, 1

2 ] and x2, x3, and
x4 are in ] 12 , 1], we have to solve the system 2x1 = x2 2x2 − 1 = x3,

2x3−1 = x4, 2x4−1 = x1, whose solution is (x1, x2, x3, x4) =
(

7
15 ,

14
15 ,

13
15 ,

11
15 ,

)
.

If x1 and x2 are in [0, 1
2 ] and x3 and x4 are in ]12 , 1], we have to solve the sys-

tem 2x1 = x2 2x2 = x3, 2x3 − 1 = x4, 2x4 − 1 = x1 whose solution is

(x1, x2, x3.x4) =
(

1
5 ,

2
5 ,

4
5 ,

3
5

)
. If x1, x2, and x3 are in [0, 1

2 ] and x4 is in ] 12 , 1],
we have to solve 2x1 = x2 2x2 = x3, 2x3 = x4, 2x4 − 1 = x1 whose solution

is (x1, x2, x3.x4) =
(

1
15 ,

2
15 ,

4
15 ,

8
15

)
. In all cases, the values we found are in the

intervals we assumed they should be.
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Solution 4.2 Let f denote the one-parameter family of maps (n, r) �→ rnx(1−n).
For intermediate values of n, the growth rate rnx−1(1−n) should be larger than
one; otherwise extinction is automatic. If x > 1, the value of the population
density maximizing the growth rate is (x− 1)/x, and the corresponding value of
the growth rate is

r
(x − 1)x−1

xx
.

This quantity is larger than one if

r >
xx

(x − 1)x−1
.

If, as a simple example, we assume that x = 2, then r has to be greater than
four, and, in this case, the recurrence equation nt+1 = f(nt, r) has three fixed
points:

0 and

√
r +

√
r − 4

2
√
r

,

which are asymptotically stable, and
√
r −√r − 4

2
√
r

,

which is always unstable (Fig. 4.14).
The nonhyperbolic equilibrium point (1/2, 4) is a saddle-node bifurcation

point.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4.14. Cobwebs for the map f : (n, r) �→ rnx(1 − n) for x = 2 and r = 5. The
asymptotically stable fixed points are 0 and 0.723607, and the unstable fixed point
is 0.276393. Starting from an initial population density n0 = 0.25 (left cobweb),
the population becomes extinct, while for an initial population density n0 = 0.3, n
converges to the high-density asymptotically stable fixed point



162 4 Recurrence Equations

Solution 4.3 If 0 < r < 4, 0 is the only fixed point of the map n �→ rn2(1−n).
If r > 4, there exist three fixed points 0 and (

√
r ±√r − 4)/2

√
r; 0 and (

√
r +√

r − 4)/2
√
r are asymptotically stable, while (

√
r − √r − 4)/2

√
r is unstable.

The harvesting model makes sense only if r > rc = 4.
If c > 0 and r− 4c− 4 > 0, the map n �→ rn2(1−n)− cn has two nontrivial

fixed points:

n∗
± =

√
r ±√r − 4c− 4

2
√
r

;

n∗
+ is asymptotically stable and n∗

− unstable. Therefore, a saddle-node bifurcation
occurs at the nonhyperbolic point (n∗, c∗) = (1

2 , 1− 1
4 r).

From an ecological point of view, if c is less than but close to its bifurcation
value (c � 1− 1

4 ), there is a serious risk of extinction of the harvested species.

Solution 4.4 (a) The three recurrence equations show that as time t increases,
St cannot increase and Rt cannot decrease. Since these quantities are bounded,
the limits S∞ and R∞ exist. The second equation shows that I∞ also exists and
is equal to zero.

(b) By definition, there is an epidemic if I1>I0.
29 According to the second

equation, this occurs if

S0

(
1− exp(−iI0)

)− rI0 > 0.

If the initial conditions are R0 = 0 and I0 ! S0, then

S0

(
1− exp(−iI0)

)− rI0 = I0(iS0 − r) +O
(
I2
0 ).

Hence, an epidemic occurs if, and only if,

S0 >
r

i
.

This is the threshold phenomenon of Kermack and McKendrick (see Chap. 3,
Remark 3).

(c) Since as t increases, St does not increase, if S0 is less than r/i, for all values
of t, St remains less than r/i. Hence, It goes monotonically to zero as t tends
to ∞. If S0 > r/i, the density of infective individuals increases as long as St
is greater than r/i. Since St cannot increase, when it reaches the value r/i, It
reaches its maximum value and then tends monotonically to zero as t tends to∞.

Solution 4.5 (a) Assuming that each susceptible individual can be equally in-
fected by any infective individual (see Footnote 27), the equations describing the
spread of a sexually transmitted disease among heterosexuals are

29 Refer to Chap. 3, Footnote 12.
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Sm
t+1 + Im

t+1 +Rm
t+1 = ρm,

Im
t+1 = Im

t + Sm
t

(
1− exp(−imI f

t )
)− rmIm

t ,

Rm
t+1 = Rm

t + rmIm
t ,

Sf
t+1 + I f

t+1 +Rf
t+1 = ρf ,

I f
t+1 = I f

t + Sf
t

(
1− exp(−ifIm

t )
)− rfI f

t ,

Rf
t+1 = Rf

t + rfI f
t ,

where ρm and ρf are two constants representing the initial densities of males and
females respectively. im (resp. if) is proportional to the probability for a male
(resp. female) to be infected by a female (resp. male).

(b) As for the one-population model, it follows that Sm
t and Sf

t cannot increase,
whereas Rm

t and Rf
t cannot decrease. Hence, all the limits Sm

∞, Rm
∞, Sf

∞, Rf
∞

exist. The third and sixth equations show that the limits Im∞ and I f∞ also exist
and are both equal to zero.

(c) Due to the coupling between the two populations, a wider variety of situations
may occur. For instance, if the initial conditions are

Rm
0 = Rf

0 = 0 and Im
0 ! Sm

0 , I f
0 ! Sf

0,

we have

Im
1 − Im

0 = imSm
0 I

f
0 − rmIm

0 +O
(
(I f

0)
2
)
,

I f
1 − I f

0 = ifSf
0I

m
0 − rfI f

0 +O
(
(Im

0 )2
)
.

Hence, according to the initial values Sm
0 , Sf

0, I
m
0 , and I f

0, we may observe the
following behaviors:

1. If imSm
0 I

f
0 − rmIm

0 < 0 and ifSf
0I

m
0 − rfI f

0 < 0, then Im
1 < Im

0 and I f
1<I

f
0.

Since Sm
t and Sf

t are nonincreasing functions of time, Im
t and I f

t go mono-
tonically to zero as t tends to ∞. No epidemic occurs.

2. If imSm
0 I

f
0 − rmIm

0 > 0 and ifSf
0I

m
0 − rfI f

0 > 0, then Im
1 > Im

0 and I f
1 > I f

0.
The densities of infected individuals in both populations increase as long
as the densities of susceptible and infective individuals satisfy the relations
imSm

t I
f
t − rmIm

t > 0 and ifSf
tI

m
0 − rfI f

t > 0 and then tend monotonically to
zero.

3. If imSm
0 I

f
0 − rmIm

0 < 0 and ifSf
0I

m
0 − rfI f

0 > 0, then Im
1 < Im

0 and I f
1 >

I f
0. But, since Im

t+1 depends on I f
t , the density of infected males does not

necessarily go monotonically to zero. After having decreased for a few time
steps, due to the increase of the density of infected females, it may increase
if imSm

t I
f
t − rmIm

t becomes positive. The spread of the disease in the female
population may trigger an epidemic in the male population, as shown in
Fig. 4.15. If, however, the increase in the density of infected females is not
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high enough, then the density of infected males will decrease monotonically,
whereas the density of infected females will increase as long as the density
of susceptible individuals Sf

t is greater than rfIm
t /i

fIm
t and then tend to go

monotonically to zero. The disease spreads only in the female population,
whereas no epidemic occurs among males.

4. If imSm
0 I

f
0 − rmIm

0 > 0 and ifSf
0I

m
0 − rfI f

0 < 0, our conclusions are similar
to the case above.

Solution 4.6 (a) As in Exercise 4.4, assuming that each susceptible individual
can be equally infected by any infective individual, we can write

St+1 + It+1 = ρ,

It+1 = It + St
(
1− exp(−iIt)

)− rIt,

where i is a positive real number proportional to the probability for a susceptible
individual to catch the disease and r is the probability for an infected individual
to recover. ρ is the constant total density of individuals.

0 20 40 60 80 100
time

0

0.005

0.01

0.015

0.02

0.025

in
fe
ct
iv
e 
de
ns
it
ie
s

Fig. 4.15. Time evolution of the densities of infected individuals for the two-
population SIR model when the epidemic in one population triggers an epidemic
in the other one. im = 0.5, if = 0.9, rm = 0.3, rf = 0.1, Im

0 = 0.01, I f
0 = 0.01,

Rm
0 = 0, Rf

0 = 0, ρm = 0.35, ρf = 0.35, and number of iterations = 100

(b) Eliminating St from the second equation, we obtain

It+1 = (1− r)It + (ρ− It)
(
1− exp(−iIt)

)
.

The steady-state density of infected individuals I∞, therefore, satisfies the
equation

I∞ = (1− r)I∞ + (ρ− I∞)
(
1− exp(−iI∞)

)
.
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This equation has the obvious solution I∞ = 0, which characterizes the disease-
free state. In the vicinity of the bifurcation point, I∞ is small, and the equation
above can be written as

I∞ = (1 − r + ρi)I∞ −
(
i+ 1

2 ρi
2
)
I2
∞ +O

(
(I∞)3

)
,

which shows that, in the (i, r)-plane, the transcritical bifurcation occurs along the
line ρi− r = 0. The disease-free state is stable if ρi < r and unstable if ρi > r.
The endemic state is stable in the latter case.

Solution 4.7 For n ∈ [0, 1] and r > 0, the map f has a quadratic maximum at
n = e−1. For r = e, the maximum reaches the value one. There exist two fixed
points: 0 and e−1/r. The derivative of f is equal to −r(1 + logn), which shows
that 0 is always unstable and e−1/r is asymptotically stable for 0 < r < 2. Since

f

(
1√
e
, 2
)

= 1 and
∂f

∂n

(
1√
e
, 2
)

= −1,

the nonhyperbolic point (1/
√

e, 2) may be a period-doubling bifurcation point.
We have to check the remaining conditions. The second iterate of f is

(n, r) �→ f2(r, n) = r2n logn log
(− rn log n

)
,

and we have

∂f2

∂r

(
1√
e
, 2
)

= 0,
∂2f2

∂2n

(
1√
e
, 2
)

= 0,

∂2f2

∂r∂n

(
1√
e
, 2
)

= 2,
∂3f2

∂3n

(
1√
e
, 2
)

= − 16e.

The one-parameter family of maps (n, r) �→ −rn logn exhibits, therefore, a
period-doubling bifurcation at the point (n, r) = (1/

√
e, 2).

It can be shown numerically that the 2-point cycle is asymptotically sta-
ble for 2 < r < 2.39536... . For r = 2.39536... , there is a new period-
doubling bifurcation, and we find that the 4-point cycle is asymptotically stable
for 2.39536... < r < 2.47138... . There is actually an infinite sequence of period-
doubling bifurcations. The first period-doubling bifurcations of this infinite se-
quence occurring for the parameter values:

r1 = 2, r2 = 2.39536..., r3 = 2.47138..., r4 = 2.48614....

A few iterations for different values of r are represented in Fig. 4.16.
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Fig. 4.16. Iterations of the f : (n, r) �→ −rn log n for r = 1.4 (fixed point), r = 2.1
(2-point cycle), r = 2.43 (4-point cycle), and r = 2.483 (8-point cycle). 16 iterates
are shown after 1,000 have been discarded

Solution 4.8 (a) If the real function f is differentiable, its extremums are
solutions of the equation f ′(x) = 0. To find them, we have, therefore, to apply
Newton’s method to the derivative of f , using the iteration:

xn+1 = xn − f ′(xn)
f ′′(xn)

.

(b) To find the square root of a positive real a, we have to find the zero of the
equation f(x) = x2 − a = 0. We thus have to use the iteration:

xn+1 = xn − x2
n − a
2xn

=
xn
2

+
a

2xn
.
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Summary

This chapter deals with dynamical models described by recurrence equations

of the form xt+1 = f(xt), where x, representing the state of the system,
belongs to a subset J of R

n, f : J → J is a map , and t ∈ N0, that is, the
time t is a positive integer. Many notions defined for differential equations can
also be defined for recurrence equations, but sometimes they have a slightly
different definition. Note that in applications, the map f is seldom invertible.

• In the case of recurrence equations, the flow is the mapping f t : J → J ,
defined only for t ∈ Z or t ∈ N0.

• The forward orbit of f through x is the set {f t(x) | t ∈ N0} oriented in

the sense of increasing t. If f is invertible, the backward orbit is the set

{f−t(x) | t ∈ N0}. In this case, the (whole) orbit is the set {f t(x) | t ∈ Z}.
• A point x∗ ∈ J is an equilibrium point or a fixed point if f(x∗) = x∗.

The orbit of an equilibrium point is the equilibrium point itself. A point
x∗ ∈ J is a periodic point if fτ (x∗) = x∗ for some nonzero τ . The smallest

positive value of τ is the period of the point and is usually denoted by T .

• Two maps f and g defined on J ⊆ R
n are said to be conjugate if there

exists a homeomorphism h such that

h ◦ f = g ◦ h or h ◦ f ◦ h−1 = g.

• A fixed point x∗ of the recurrence equation xt+1 = f(xt) is said to be
Lyapunov stable if, for any given positive ε, there exists a positive δ

(which depends on ε only) such that ‖f t(x) − x∗‖ < ε for all x satisfying
‖x− x∗‖ < δ and all t > 0.
A fixed point x∗ is said to be asymptotically stable if it is Lyapunov stable
and if there exists a positive δ such that, for all x such that ‖x− x∗‖ < δ,
limt→∞ f t(x) = x∗. If a fixed point is not stable, it is said to be unstable .

• If a metric d is defined on the phase space S, a map f : S → S is said to
be contracting if there exists a positive real λ < 1 such that for any pair
(x,y) ∈ S × S,

d
(
f(x), f(y)

) ≤ λd(x,y).
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• The contracting principle theorem states that if f : S → S is a contract-
ing map defined on a complete metric space, then the sequence of iterates
(f t(x))t∈N converges exponentially to the unique fixed point x∗ of f .

• Let x∗ ∈ S be an equilibrium point of the recurrence equation xt+1 =
f(xt); x∗ is said to be a hyperbolic point if none of the eigenvalues of the
Jacobian matrix Df(x∗) has modulus equal to one.

• The Hartman–Grobman theorem for maps is similar to the eponymic
theorem for differential equations. It states that if x∗ is a hyperbolic equi-
librium point of the recurrence equation xt+1 = f(xt), the mapping f in
the neighborhood of x∗ is C0-conjugate to the linear mapping Df(x∗) in
the neighborhood of the origin.

• Let x∗ be a hyperbolic equilibrium point of the C1-map f ∈M(U). Then,
there exists a neighborhood V (x∗) of x∗ and a neighborhood N(f) of
f such that each g ∈ N(f) has a unique hyperbolic equilibrium point
y∗ ∈ V (x∗) of the same type as x∗. In this case, the map f is said to be
locally structurally stable at x∗.

• Let ϕt be a flow on the phase space S, generated by the vector field
X, and Σ a subset of S of codimension 1. Then, Σ is said to be a
global cross-section of the flow.

• Let y ∈ Σ and τ(y) be the least positive time for which ϕτ(y)(y) ∈ Σ; then

the map P : Σ → Σ defined by P(y) = ϕτ(y)(y) is the Poincaré map

(also called the first return map ) for Σ of the flow ϕt.

• The discrete logistic model , described by the recurrence equation nt+1 =
rnt(1−nt), has been extensively studied. While it is a very simple model,
its properties are far from being trivial.

• A period-doubling bifurcation is a bifurcation in which the sys-
tem switches to a new behavior with twice the period of the orig-
inal system. The logistic map exhibits, as r varies, an infinite se-
quence of period-doubling bifurcations. If (rk)k∈N is the sequence
of r-values at which the period-doubling bifurcations occur, then
a 2k-point cycle is stable for rk < r < rk+1 . If r∞ denotes the limit of

the sequence (rk)k∈N, the asymptotic behavior of rk is described by

rk ∼ r∞ − a

δk
,

where r∞ ≈ 3.599692, and a and δ are two positive numbers. δ is the
Feigenbaum number equal to 4.6692016091029 . . .. The interesting fact
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is that the rate of convergence δ of the sequence (rk) is universal in the
sense that it is the same for all recurrence equations of the form xt+1 =
f(xt, r) that exhibit an infinite sequence of period-doubling bifurcations,
if f is unimodal, that is, it is continuous and has a unique maximum.
If close to the maximum xc, f(x) behaves as (x − xc)z, where z > 1, the
value of the Feigenbaum number δ which depends upon z is, for some
z-values, given in the following table:

z 2 4 6 8
δ 4.669 7.284 9.296 10.948

• For most values of r ∈ ]r∞, 4], the successive iterates of f seem to wander
in an apparently random manner (see next chapter).



5

Chaos

The essential points of this chapter are
• The definition of an invariant measure
• The Šarkovskii theorem
• The Devaney definition of chaos
• The definition of a route to chaos
• The period-doubling route to chaos
• The definition of ergodicity
• The definition of integration with

respect to a probability measure
• The Li-Yorke theorem
• The definition of an attractor
• The definition and the essential

properties of the Cantor triadic set
• The definition and an example of a fractal set
• The definition of a strange attractor
• The expression of the Hénon map

In 1963, Edward Lorenz1 published a numerical analysis of a simplified
model of thermal convection represented by three quadratic differential equa-
tions. He discovered that all nonperiodic solutions of his deterministic model

1 Edward Norton Lorenz (1917–2008) [279] was an American mathematician whose
research laid the foundation of chaos theory. Having served as a weather forecaster
in the US Army Corps, he decided to continue studying meteorology. In 1948,
he received a doctorate in that discipline from the Massachusetts Institute of
Technology and joined the department of meteorology. In 1963, he published in
the Journal of the Atmospheric Sciences an important paper [279] considered

N. Boccara, Modeling Complex Systems: Second Edition, Graduate Texts in Physics, 171
DOI 10.1007/978-1-4419-6562-2 5, c© Springer Science+Business Media, LLC 2010
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were bounded but showed irregular fluctuations. Some thirty years later [280],
here is how he described his discovery:

..., while conducting an extensive experiment in the theory of
weather forecasting, I had come across a phenomenon that later came
to be called “chaos” – seemingly random and unpredictable behavior
that nevertheless proceeds according to precise and often easily ex-
pressed rules. Earlier investigators had occasionally encountered be-
havior of this sort, but usually under rather different circumstances.
Often they failed to recognize what they had seen, and simply became
aware that something was blocking them from solving their equations
or otherwise completing their studies. My situation was unique in
that, as I eventually came to realize, my experiment was doomed to
failure unless I could construct a system of equations whose solu-
tions behaved chaotically. Chaos suddenly became something to be
welcomed, at least under some conditions, and in the ensuing years I
found myself turning more and more toward chaos as a phenomenon
worthy of study for its own sake.

The study of chaos can be traced back to Poincaré2 [375]. In Science et
Méthode, first published in 1909, he already indicates the possibility for certain
systems to be subject to sensitive dependence on initial conditions :

Si nous connaissions exactement les lois de la nature et la situation
de l’univers à l’instant initial, nous pourrions prédire exactement la
situation de ce même univers à un instant ultérieur. Mais, lors même
que les lois naturelles n’auraient plus de secret pour nous, nous ne

as the foundation of chaos theory. In 1991, he won the Kyoto Prize for basic
sciences in the field of earth and planetary sciences. The prize committee made the
following dithyrambic statement: Lorenz made his boldest scientific achievement
in discovering ’deterministic chaos,’ a principle which has profoundly influenced
a wide range of basic sciences and brought about one of the most dramatic changes
in mankind’s view of nature since Sir Isaac Newton. More details on Lorenz can
be found in his obituary which appeared in the September 2008 issue of Physics
Today.

2 Jules Henri Poincaré (1854–1912) was a French mathematician, theoretical physi-
cist, and philosopher of science who excelled in all fields of mathematics. After
graduating from the École Polytechnique and the École des Mines, he became a
student of Charles Hermite (1822–1901) and received his doctorate in Mathemat-
ics from the University of Paris in 1879. Poincaré became professor of mathemat-
ical physics and probability at the Sorbonne in 1886. Besides his very important
scientific contributions, Poincaré also wrote many popular scientific book, making
science accessible to the general public. Readers interested in Poincaré’s achieve-
ments will find more biographical details in the web page:
www-history.mcs.st-andrews.ac.uk/ history/Biographies/Poincare.html

and the Internet Encyclopedia of Philosophy web page:
http://www.iep.utm.edu/poincare/.
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pourrons connâıtre la situation initiale qu’approximativement. Si cela
nous permet de prévoir la situation ultérieure avec la même approxi-
mation, c’est tout ce qu’il nous faut, nous disons que le phénomène a
été prévu, qu’il est régi par des lois ; mais il peut arriver que de petites
différences dans les conditions initiales en engendrent de très grandes
dans les phénomènes finaux ; une petite erreur sur les premières pro-
duirait une erreur énorme sur les derniers. La prédiction devient im-
possible et nous avons le phénomène fortuit.3

And a few lines below, he shows how these considerations allow an answer
to the question:

Pourquoi les météorologistes ont tant de peine à prédire le temps avec
quelque certitude ? 4

More than 50 years later, computers were available, and in his seminal
paper, Lorenz used almost identical terms to answer the same question:

When our results concerning the instability of nonperiodic flow are
applied to the atmosphere, which is ostensibly nonperiodic, they indi-
cate that prediction of the sufficiently distant future is impossible by
any method unless the present conditions are known exactly. In view of
the inevitable inaccuracy and incompleteness of weather observation,
precise very-long forecasting would seem to be non-existent.

While the kind of complicated dynamics Lorenz discovered cannot exist in
one- or two-dimensional systems of differential equations, this is not the case
for recurrence equations. The modern theory of deterministic chaos started
after the publication, in 1976, of a review article in which Robert May [303]
called attention to the very complicated dynamics of some very simple one-
population models:

Not only in research, but also in the everyday world of politics
and economics, we would all be better off if more people realized that
simple nonlinear systems do not necessarily possess simple dynamical
properties.

3 If we could know exactly the laws of nature and the situation of the universe at
the initial instant, we should be able to predict exactly the situation of this same
universe at a subsequent instant. But even when the natural laws should have
no further secret for us, we could know the initial situation only approximately.
If that permits us to foresee the subsequent situation with the same degree of
approximation, this is all we require, we say that the phenomenon has been pre-
dicted, that it is ruled by laws. But this is not always the case; it may happen that
slight differences in the initial conditions produce very great differences in the fi-
nal phenomena; a slight error in the former would make an enormous error in the
latter. Prediction becomes impossible and we have the fortuitous phenomenon.
(English translation [375], p. 397.)

4 Why do the meteorologists have such difficulty in predicting the weather with
any certainty? (English translation [375], p. 398.)
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5.1 Defining Chaos

In the previous chapter, we have seen that in the case of the logistic map
(n, r) �→ f(n, r) = rn(1 − n), there exists an infinite sequence of parameter
values (rk)k∈N for which f undergoes a period-doubling bifurcation, a 2k-
point cycle being asymptotically stable for all r ∈]rk, rk+1[. The sequence
(rk) has a limit r∞ ≈ 3.599692. A natural question is: What is the dynamics
for r > r∞? The answer is given by the bifurcation diagram represented
in Fig. 5.1. The bifurcation diagram has been computed for 300 parameter
values equally spaced between 2.5 and 4. For each value of r, 300 iterates are
calculated, but only the last 100 have been plotted.

2.6 2.8 3 3.2 3.4 3.6 3.8 4

0.2

0.4

0.6

0.8

1

Fig. 5.1. Bifurcation diagram of the logistic map (n, r) �→ rn(1−n). The parameter
r, plotted on the horizontal axis, varies from 2.5 to 4, and the reduced population
n, plotted on the vertical axis, varies between 0 and 1

For most values of r ∈]r∞, 4], the successive iterates of f seem to wander
in an apparently random manner. For example, if r = 4, as illustrated in
Fig. 5.2, the trajectory through the initial point n0 =

√
2 − 1 appears to be

dense5 in [0.1].
A numerical experiment cannot, of course, determine whether the trajec-

tory converges to an asymptotically stable periodic orbit of very high period
or is dense in an interval. If the trajectory is dense, say in [0.1], we can divide
this interval into a certain number of subintervals (bins) and count how many

5 Let I be an interval of R. A subset J of I is dense in I if the closure of J coincides
with I . In other words, any neighborhood of any point in I contains points in J .
For example, the set of rational numbers Q is dense in R.
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Fig. 5.2. Cobweb showing a sequence of 250 iterates of the map n �→ 4n(1 − n).
The initial value is n0 =

√
2 − 1 with a precision of 170 significant digits

iterates fall into each subinterval. If the number of iterates is high enough, this
could determine, if it exists, an approximate invariant measure,6 as shown in
Fig. 5.3.

Fig. 5.3. Histogram representing the approximate probability distribution of the
iterates of the logistic map f4 : n �→ 4n(1 − n). The histogram has been obtained
from 75,000 iterates distributed in 25 bins

6 Let f be a map defined on an interval I of R; a measure μ on I is invariant for f
if, for any measurable subset E ⊂ I , μ(E) = μ(f−1(E)).
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Remark 12. As already noticed by Poincaré, some maps may have a sensitive depen-
dence on initial conditions. This feature, which is a necessary condition for a map to
be chaotic (see Definition 20), implies that the precision, i.e., number of significant
digits – of each iterate is decreasing. In the case of the map n �→ 4n(1 − n), this
precision decreases, on average, by 0.6 digit/iteration. In order to determine numer-
ically a meaningful histogram, it is therefore essential to choose an initial value with
a sufficient number of significant digits.

The considerations above are essentially heuristic, but, at least in the case
of the map f4 : n �→ 4n(1 − n), it is possible to understand its dynamics
completely.

5.1.1 Dynamics of the Logistic Map f4

In Example 25, we have seen that the logistic map f4 and the binary tent map
T2, defined on [0, 1] by

f4(x) = 4x(1− x) and T2(x) =

{
2x, if 0 ≤ x < 1

2 ,

2− 2x, if 1
2 ≤ x ≤ 1,

are conjugate. This property greatly simplifies the study of the dynamics of f4.
Let 0.x1x2x3 . . . be the binary representation of x ∈ [0, 1], i.e.,

x =
∞∑

i=1

xi
2i
,

where for all i ∈ N, xi ∈ {0, 1}. The binary representation of T2(x) is then
given by

T2(x) =

{
0.x2x3x4 . . . , if 0 ≤ x ≤ 1

2 ,

0.(1− x2)(1− x3)(1− x4) . . . , if 1
2 ≤ x ≤ 1.

Both these formulae are correct for x = 1/2. The binary representation of 1/2
being either 0.1000 . . . or 0.01111 . . ., the binary representation of T2(x) is, in
both cases, 0.1111 . . ., which is equal to one.

The description of the iterates of x in terms of their binary representation
leads to some remarkable results due to James Whittaker [443].

(1) If the binary representation of x is finite (i.e., if there exists a positive
integer n such that xi = 0 for all i > n), then after at most n+ 1 iterations
the orbit of x will reach 0 and stay there. Hence, there exists a dense set of
points whose orbit reaches the origin and stays there.

(2) If the binary representation of x is periodic with period p, then the orbit
of x is periodic with a period equal to p or a divisor of p. For example, for
p = 2, x is either equal to 0.010101 . . . = 1/3 or 0.101010 . . . = 2/3, and we
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verify that T2(1/3) = 2/3 and T2(2/3) = 2/3. In both cases, the orbit after,
at most, one iteration reaches the fixed point 2/3 (period 1). More generally,
suppose that x1+p = x1. If after p iterations there have been an even number
of conjugations (i.e., changes of xi in 1− xi), we are back to the initial point
x = 0.x1x2x3 . . .; but if, after p iterations, there have been an odd number
of conjugations, we are not back to the initial point but to the point whose
binary representation is 0.(1− x1)(1− x2)(1− x3) · · · . However, in this case,

T2(0.(1− x1)(1 − x2)(1− x3) · · · ) = T2(0.x1x2x3 . . .),

and after p + 1 iterations, we are back to the first iterate T2(x). Here is an
example. Consider x = 0.001110011100111 . . ., whose binary representation is
periodic with period 5. We have

x = 0.001110011100111 . . .
T2(x) = 0.01110011100111 . . .

T 2
2 (x) = 0.1110011100111 . . .

T 3
2 (x) = 0.001100011000 . . . conjugation

T 4
2 (x) = 0.01100011000 . . .

T 5
2 (x) = 0.1100011000 . . . this is not x

T 6
2 (x) = 0.011100111 . . . but this is T2(x).

Using this method, we could show that the binary tent map has periodic orbits
of all periods, and the set of all periodic points is dense in [0.1]. T2 and f4
being conjugate, the logistic map f4 has the same property.

Regarding the existence of a periodic orbit, an amazing theorem, due to
A. N. Šarkovskii (sometimes transliterated as Sharkovsky), indicates which
periods imply which other periods. First, let us define among all positive
integers Šarkovskii’s order relation by

3 � 5 � 7 � · · · 2 · 3 � 2 · 5 � · · ·� 22 · 3 � 22 · 5 � · · ·
� 23 · 3 � 23 · 5 � · · · · · ·� 23 � 22 � 2 � 1.

That is, first list all the odd numbers, followed by 2 times the odd numbers,
22 times the odd numbers, etc. This exhausts all the positive integers except
the powers of 2 that are listed last in decreasing order. Since � is an order
relation, it is transitive (i.e., n1 �n2 and n2 �n3 imply n1 �n3). Šarkovskii’s
theorem is as follows7:

Theorem 10. Let f : R → R be a continuous map. If f has a periodic orbit
of period n, then for all integers k such that n� k, f has also a periodic orbit
of period k.

7 For a proof, see Štefan [419] or Collet and Eckmann [113].
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We said earlier that the binary tent map T2 and its conjugate, the logistic
map f4, have periodic orbits of all periods. Following Šarkovskii’s theorem, to
prove this result it suffices to prove that either T2 or f4 has a periodic orbit
of period 3.

In order to generate an orbit of period 3 for f4, we can start from x =
0.100100100 . . ., which generates an orbit of period 3 for the binary tent map.
From the binary representation of x, we find that x satisfies the equation
8x = 4 + x, thus x = 4/7. In order to generate the corresponding period 3
orbit for f4, we have to start from the point h(x) = sin2(2π/7).

All these periodic orbits are unstable. Hence, periodic orbits computed
with a finite precision will always present, after a number of iterations de-
pending upon the precision, an erratic behavior. This feature is illustrated in
Fig. 5.4.
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Fig. 5.4. Unstable orbit of period 3 of the map x �→ 4x(1 − x) generated from an
initial value with a precision equal to either 16 (top) or 60 (bottom)
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(3) Now let us turn our attention to initial points whose binary representation
is neither finite nor periodic such as, for instance, x = 0.101001000100001 . . ..
It is readily verified that, given ε > 0 and k = 0, 1, 2, . . ., there exists a positive
integer t such that |T t2(x)− 2−k| < ε.

Theorem 11. Let x0 ∈ [0, 1]; then, arbitrarily close to x0, there exists x ∈
[0, 1] such that the orbit through x {T t2(x) | t ∈ N} is dense in [0, 1].

Denote s0 ∈ [0, 1], a number whose finite binary representation agrees with
sufficiently many initial digits of x0 so that s0 is as close as desired to x0. Let
(sij) be a sequence of numbers in [0, 1] with finite binary representations,
where, for a given number sij , i is the finite number of digits of its binary
representation and j its decimal value (0 ≤ j ≤ 2i − 1). For example,

s20 = 0.00, s21 = 0.01, s22 = 0.10, s23 = 0.11.

Now define recursively the binary representation of x as follows. First, let
x = s0, then to the digits of s0 add either the digits of each element of the
sequence (sij) in the order s10, s11, s20, s21, s22, s23, ... or the digits obtained
by conjugation s10 = 0.1, s11 = 0.0, s20 = 0.11, ... according to the following
rule. Once the digits of n − 1 elements of either the sequence (sij) or the
sequence (sij) have been added, if the resulting finite representation contains
an even number of conjugations, we add the digits of the nth element of
(sij); otherwise, we add the digits of the nth element of (sij). The infinite
binary representation so obtained gives the number x close to x0. Now for
any y ∈ [0, 1] and any positive ε, there is an sij such that 2−i < ε/2 and
|sij − y| < ε/2. From this it follows that one of the iterates of x, say s, will
have the same initial digits as sij , so

|s− y| ≤ |s− sij |+ |sij − y| < ε

2
+
ε

2
= ε,

which proves that there are iterates of x as close as we want to any given
y ∈ [0, 1]. The orbit of x is therefore dense in [0, 1].

The existence of dense orbits for the logistic map f4 suggested by Fig. 5.2
follows from Theorem 11 and the fact that the maps f4 and T2 are conjugate.

Theorem 11 also implies that if J is an open interval of [0, 1], almost all
points x ∈ J will return to J infinitely many times under iteration of the
binary tent map T2. Under that form, Theorem 11 is a special case of the
Poincaré recurrence theorem.

Definition 18. A map f : S → S is said to be topologically transitive if for
any pair of open sets (U, V ) in S there exists a positive integer t such that
f t(U) ∩ V �= ∅.

A topologically transitive map has points that eventually move under it-
eration from one arbitrarily small neighborhood to any other. If a map is
topologically transitive, the phase space cannot be decomposed into two dis-
joint open sets that are invariant under the map.



180 5 Chaos

Definition 19. A map f : S → S is said to have sensitive dependence on
initial conditions if there exists a positive real number δ such that for any
x ∈ S and any neighborhood N(x) of x, there exist y ∈ N(x) and a positive
integer t such that |f t(x)− f t(y)| > δ.

A map has sensitive dependence on initial conditions if there exist points
arbitrarily close to x that eventually separate from x by at least δ under it-
eration of f . Note, however, that sensitive dependence on initial conditions
requires that some points, but not necessarily all points, close to x eventu-
ally separate from x under iteration. If a map has sensitive dependence on
initial conditions, one has to be very careful when drawing conclusions from
numerical determinations of orbits.

As a consequence of Theorem 11, the binary tent map T2 and its conju-
gate f4 are topologically transitive and possess sensitive dependence on initial
conditions.

5.1.2 Definition of Chaos

We are now ready to define chaos. The following definition is one of the sim-
plest. It is due to Devaney [130].

Definition 20. Let S be a set. The mapping f : S → S is said to be chaotic
on S if

1. f has sensitive dependence on initial conditions,
2. f is topologically transitive,
3. f has periodic points that are dense in S.

And after having chosen this definition, Robert Devaney adds the following
comment:

To summarize, a chaotic map possesses three ingredients: unpre-
dictability, indecomposability, and an element of regularity. A chaotic
system is unpredictable because of sensitive dependence on initial con-
ditions. It cannot be broken down or decomposed into two subsystems
(two invariant open subsets) which do not interact under f because of
topological transitivity. And, in the midst of this random behavior, we
nevertheless have an element of regularity, namely the periodic points
which are dense.

According to Devaney’s definition, the binary tent map T2 and the logistic
map f4 are chaotic.

Actually, Devaney’s definition of chaos is redundant. It can be shown [37]
that sensitive dependence on initial conditions follows from topological transi-
tivity and the existence of a dense set of periodic points. For general maps it is
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the only redundancy [16]. However, if one considers maps on an interval, finite
or infinite, then continuity and topological transitivity imply the existence of
a dense set of periodic points and sensitive dependence on initial conditions.
The proof of this result, which uses the ordering of R, cannot be extended to
maps defined in R

n for n > 1 or to the unit circle S1 [434].

Remark 13. The word “chaotic” to qualify the apparently random behavior of de-
terministic nonperiodic orbits of one-dimensional maps seems to have been used for
the first time in 1975 by Li and York [268].

5.2 Routes to Chaos

The infinite sequence of period-doubling bifurcations preceding the onset of
chaos is called the period-doubling route to chaos. A route to chaos is a scenario
in which a parameter-dependent system that has a simple deterministic time
evolution becomes chaotic as a parameter is changed.

The period-doubling route is followed by a variety of deterministic systems,
but it is not the only one. For example, the intermittency route, discovered
by Pomeau and Manneville [377], is another scenario in which a deterministic
system can reach chaos.

As described by the authors, for values of a control parameter r less than
a critical transition value rT , the attractor is a periodic orbit. For r slightly
greater than rT , the orbit remains apparently periodic during long time in-
tervals (said to be laminar phases,), but this regular behavior seems to be
abruptly and randomly disrupted by a burst of finite duration. These bursts
occur at seemingly random times, much larger than – and not correlated with
– the period of the underlying oscillations. As r increases substantially above
rT , bursts become more and more frequent, and regular oscillations are no
longer apparent. Pomeau and Manneville have identified three types of inter-
mittency transitions according to the nature of the bifurcations characterizing
these transitions.

An example of an intermittent transition occurs for the logistic map
(n, r) �→ f(n, r) = rn(1 − n) for rT = 1 + 2

√
2. If r is slightly greater than

rT , there exists a stable and an unstable 3-point cycle (Fig. 5.5). These cy-
cles coalesce at rT through a saddle-node bifurcation for f3(n, r), and for r
slightly less than rT , we observe intermittent bursts, as shown in Fig. 5.6.
Numerical calculations were done with a precision of 200 significant digits on
the initial value; 100 iterations have been discarded, and 170 are represented.
For this type of intermittency, Pomeau and Manneville have shown that the
average time between two bursts goes to infinity as r tends to rT from below
as (rT − r)−1/2.
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Fig. 5.5. Stable 3-point cycle of the logistic map (n, r) �→ rn(1 − n) for r =
1+2

√
2+1/1000. Numerical calculations were done with a precision of 200 significant

digits on the initial value. One hundred iterations have been discarded
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Fig. 5.6. Intermittent bursts of the logistic map (n, r) �→ rn(1 − n) for r = 1 +
2
√

2 − 1/1000. Numerical calculations were done with a precision of 200 significant
digits on the initial value. One hundred iterations have been discarded
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5.3 Characterizing Chaos

Computer studies have shown that chaos is probably present in many mod-
els. In the absence of a mathematical proof, when can we say that the time
evolution of a system is chaotic? Some indications are given in the following
sections (see Ruelle [390]8).

5.3.1 Stochastic Properties

The histogram represented in Fig. 5.3, while suggesting the existence of an
invariant measure for the map f4, shows that chaos implies deterministic ran-
domness. In what follows, we describe the stochastic properties associated
with the chaotic behavior of the binary tent map T2 and the logistic map f4.
That is, for each map, we determine an invariant probability density ρ such
that the probability ρ(x) dx measures how frequently the interval [x, x + dx]
is visited by the dense orbit of a point x0 ∈ [0, 1].

Before going into any further detail, let us recall a few basic results of
ergodic theory.9

Let f : S → S be a map. A subset A of S is invariant if f(A) = A. A
measure μ is invariant for the map f if, for all measurable subsets A of S,
μ(f−1(A)) = μ(A). The map f is ergodic with respect to the invariant measure
μ if any measurable invariant subset A of S is such that either μ(A) = 0
or μ(A) = μ(S).

If f is ergodic with respect to the invariant probability measure μ10 and
g : S → R, an integrable function with respect to μ, then, for almost all
x0 ∈ S,

lim
t→∞

1
t

t∑

i=1

g ◦ f i(x0) =
∫
g(x) dμ(x).

That is, the time average is equal to the space average. If there exists a positive
real function ρ such that dμ(x) = ρ(x) dx, ρ is called an invariant probability
density.

If the map f : [0, 1] → [0, 1] is such that any point x has k preimages
y1, y2, . . . yk by f (i.e., for all i = 1, 2, . . . , k, f(yi) = x), the probability

8 David Pierre Ruelle, born in 1935, is a Belgian-French mathematical physicist
who worked on statistical physics and dynamical systems. With the Dutch math-
ematician Floris Takens, born in 1940, he coined the term strange attractor, and
founded a new theory of turbulence. In 1964, he became Professor at the Institut
des Hautes Études Scientifiques, in Bures-sur-Yvette, France.

9 See, for example, Shields [406].
10 μ is a probability measure if μ(S) = 1.
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of finding an iterate of f in the interval [x, x + dx] is then the sum of the
probabilities of finding its k preimages in the intervals [yi, yi + dyi]. Hence,
from the relation

ρ(x) dx =
k∑

i=1

ρ(yi) dyi,

it follows that

ρ(x) =
k∑

i=1

ρ(yi)
|f ′(yi)| , (5.1)

where we have taken into account that

dx
dyi

= f ′(yi).

Equation (5.1) is called the Perron-Frobenius equation. In the case of the
binary tent map T2, the Perron-Frobenius equation reads

ρ(x) = 1
2

(
ρ
(

1
2 x
)

+ ρ
(
1− 1

2 x
))
.

This equation has the obvious solution ρ(x) = 1. That is, the map T2 preserves
the Lebesgue measure. If I1 ∪ I2 is the preimage by T2 of an open interval I
of [0, 1], we verify that

m(I1 ∪ I2) = m(I1) +m(I2) = m(I),

where m denotes the Lebesgue measure. Using the relation

f4 ◦ h = h ◦ T2,

0.2 0.4 0.6 0.8 1
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3

Fig. 5.7. Invariant probability density ρ : x �→ 1/π
√

x(1 − x) for the logistic map f4.
Compare with Fig. 5.3
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where h : x �→ sin2(π/2 x), the density ρ of the invariant probability measure
for the map f is given by

ρ(x) dx =
dh−1

dx
dx (5.2)

=
dx

π
√
x(1 − x) . (5.3)

The graph of ρ, represented in Fig. 5.7, should be compared with the histogram
in Fig. 5.3.

5.3.2 Lyapunov Exponent

Sensitive dependence on initial conditions is a necessary but not sufficient
condition for a map f to be chaotic.11 It is nonetheless interesting to be able
to measure this essential feature of a chaotic map. Consider two neighboring
initial points x0 and x0 + ε. If after t iterations of the map f the distance
|f t(x0+ε)−f t(x0)| grows exponentially, we may define the exponent λ(x0) by

|f t(x0 + ε)− f t(x0)| ∼ εetλ(x0),

or more precisely by

λ(x0) = lim
t→∞ lim

ε→0

1
t

log

∣∣
∣
∣
∣
f t(x0 + ε)− f t(x0)

ε

∣∣
∣
∣
∣

= lim
t→∞

1
t

log

∣
∣∣
∣
∣
df t

dx
(x0)

∣
∣∣
∣
∣
. (5.4)

λ(x0) is called the Lyapunov exponent.
eλ(x0) is the average factor by which the distance between two neighboring

points becomes stretched after one iteration.
Applying the chain rule to Relation (5.4), the Lyapunov exponent can also

be expressed as

λ(x0) = lim
t→∞

1
t

log

∣
∣∣
∣
∣

t−1∏

i=0

f ′(xi)

∣
∣∣
∣
∣

= lim
t→∞

1
t

t−1∑

i=0

log |f ′(xi)|, (5.5)

where xi = f i(x0), for i = 0, 1, 2, . . . , t− 1.

11 See Exercise 5.4 for an example of a map that has sensitive dependence on initial
conditions and dense periodic points but is, however, not chaotic.
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In the case of a chaotic map, except for a set of measure zero, the Lyapunov
exponent does not depend upon x0. If the map is ergodic with respect to an
invariant measure μ, then the Lyapunov exponent expressed as a time average
by (5.5) is also given by the space average:

λ =
∫

log |f ′(x)|dμ(x). (5.6)

Example 32. Lyapunov exponent of the logistic map f4. The map f4 is ergodic
with respect to the invariant measure

dμ(x) =
dx

π
√
x(1 − x) ,

thus

λ =
1
π

∫ 1

0

log |4(1− 2x)|
√
x(1 − x) dx

=
∫ 1

0

log(4| cosπu|) du

= log 2.

Since a chaotic map has sensitive dependence on initial conditions, its
Lyapunov exponent is necessarily positive. Notice that the result found
for the logistic map f4 could have been obtained without any calculation
since f4 is conjugate to T2 and, for all x ∈ [0, 1], |T ′

2(x)| = 2.

5.3.3 “Period Three Implies Chaos”

In their paper Period Three Implies Chaos, published in 1975, Li and
York [268] gave the following theorem.

Theorem 12. Let I be an interval and let f : I → I be a continuous map.
Assume there is a point x ∈ I such that its first three iterates satisfy

either f3(x) ≤ x < f(x) < f2(x) or f3(x) ≥ x > f(x) > f2(x). (5.7)

Then, for all positive integers k, there exists in I a periodic point of period k.
Furthermore, there exists an uncountable set S ⊂ I, containing no periodic or
eventually periodic points,12 such that for all pairs of different points x1 and
x2 in S,

lim sup
t→∞

|f t(x1)− f t(x2)| > 0 and lim inf
t→∞ |f t(x1)− f t(x2)| = 0. (5.8)

12 A point is eventually periodic if it tends to a periodic point.
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For Li and York, “chaotic behavior” means existence of

1. infinitely many periodic points, and
2. an uncountable subset of I becoming highly folded under successive iter-

ations.

According to Šarkovskii’s theorem, the existence of infinitely many peri-
odic points follows from the existence of a periodic point of either an odd
period [269] or a period not equal to 2n [354].

Condition (5.7) has been improved by Li et al. [269], making the existence
of chaotic behavior easier to verify. If there exists an initial point x0 such that

fn(x0) < x0 < f(x0), (5.9)

where n is an odd integer, then there exists a periodic orbit of odd period k
with 1 < k ≤ n.
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Fig. 5.8. Magnification of the bifurcation diagram of Fig. 5.1 around the period 3
window

It is important to realize that when the Li-York conditions of Theorem 12
are satisfied, it may happen that for most initial values x0 ∈ I, the orbit
{f t(x0) | t ∈ N} is eventually periodic. For example, the magnification of
the bifurcation diagram of the logistic map represented in Fig. 5.8 shows the
existence of 3-point cycles in a narrow range of values of the parameter r.
Convergence to a typical cycle is shown in Fig. 5.9. Such behavior is certainly
not chaotic. However, according to the Li-York theorem, there exists an un-
countable set of orbits that are chaotic. These orbits may, however, be rare
and thus difficult to exhibit numerically. Therefore, time series obtained either
numerically or experimentally are considered chaotic when apparently dense
orbits in an invariant subset and sensitive dependence on initial conditions
can be observed.
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Fig. 5.9. Three-point cycle of the logistic map (n, r) �→ rn(1 − n) for r = 3.835.
Fifty iterations are represented after 150 have been discarded

Example 33. Condition (5.9) is easily verified for the two discrete one-
population models of Example 27.

For nt+1 = nt exp(r(1 − nt) with r = 3, we find

n5 < n0 < n1, where n0 = 0.3, n1 = 2.44985, n5 = 0.0877748.

For nt+1 = rnt(1 + nt)−a with r = 40 and a = 8, we find

n7 < n0 < n1, where n0 = 0.15, n1 = 1.96141, n7 = 0.0265951.

In Sect. 5.4.1, it is shown that apparent dense orbits are observed in both
cases.

5.3.4 Strange Attractors

A closed set A is an attracting set for a map f if there exists a neighborhood
N of A such that

lim
t→∞ f t(N) = A.

If a domain D is such that f t(D) ⊂ D for all positive t, D is called a trapping
region. If we can find such a domain, then

A =
⋂

t∈N

f t(D).
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If an attracting set contains a dense orbit, it is called an attractor. Attrac-
tors of chaotic systems often have complex structures. For example, a one-
dimensional attractor can be an uncountable set of zero Lebesgue measure. In
order to characterize such sets, we need to introduce a new type of measure.
First, let us describe the typical classical example of such a set.

Example 34. The Cantor set13 [94]. Let (Jn) be a sequence of subsets of [0, 1]
defined by

J0 = [0, 1],

J1 = [0, 1
3 ] ∪ [ 23 , 1],

J2 = [0, 1
9 ] ∪ [ 29 ,

1
3 ] ∪ [ 69 ,

7
9 ] ∪ [ 89 , 1],

· · · · · ·
Jn is the union of 2n pairwise disjoint closed intervals of length 3−n. It is
obtained from Jn−1 by removing from each closed interval of length 3−(n−1)

an open interval of length 3−n with the same center. The set

C =
∞⋂

n=1

Jn

is called the triadic Cantor set or ternary Cantor set. Note that for all n ∈ N,
the endpoints of all closed intervals, whose union at stage n is Jn, belong to C.
C is closed since it is the intersection of closed sets. It contains no interval,14

so its interior15 is empty, that is, all its points are boundary points. Since any

13 Georg Ferdinand Ludwig Phillip Cantor (1845–1918) was a German mathemati-
cian, born in Russia, whose achievements in mathematics were remarkable. He
is best known as the creator of set theory that revolutionized the foundations of
mathematics. Cantor also created the theory of transfinite numbers and showed
the existence of different orders of infinity. This theory was considered as coun-
terintuitive by even the most famous mathematicians of his time. Cantor had
many opponents to his original and inventive ideas (on the battle for transfi-
nite numbers, see [126]) such as Leopold Kronecker and Henri Poincaré; and as
a consequence, he never obtained the appointment he deserved in a prestigious
university. Toward the end of his life, Cantor was frequently afflicted with attacks
of mental illness and died after a heart attack in Halle in Germany on January
6, 1918. For a serious biography that tries to avoid misrepresentations and er-
rors of previous biographies by drawing on a wide variety of manuscript sources
concerning Cantor’s life and care, the reader should refer to Grattan-Guinness’
paper [198].

14 At stage n, there is no interval of length greater than 2n.
15 Let (X, T ) be a topological space. A point x is an interior point of a subset

E ⊂ X if there exists an open set U ∈ T containing x such that U ⊂ E. The
set of interior points of E is the interior of E. A point x is a boundary point of
a set E if there exists an open set U ∈ T containing x that contains at least one
point of E and one point of X\E. The set of boundary points of E is called the
boundary of E.



190 5 Chaos

open set containing a point x of C contains at least another point of C, all
points of C are limit points.16

At each stage of the construction of C, the open intervals that consti-
tute the “middle thirds” of the closed intervals left at the previous stage are
removed. Thus any element x of the Cantor ternary set can be written as

x =
∞∑

n=1

xn
3n
,

where for all positive integers n, xn = 0 or 2. In other words, the ternary
expansion – that is, the expansion to the base 3 – of an element x ∈ C does
not contain the digit 1.

Remark 14. One might think that this statement is not correct since, for example,
7/9 = 2/3+1/32 belongs to C, and its ternary expansion, which is 0.21, contains the
digit 1. There is indeed an infinite number of elements in C that have this property.
The expansion of all of them contains only a finite number of terms, the last one
being 1/3n0 . If this term is replaced by the series

∞∑

n=n0+1

2

3n
,

which is equal to 1/3n0 , the statement becomes correct. We shall always respect this
convention and write 7/9 as 0.2022 . . .. Note that, with this convention, each point
in C has a unique infinite expansion.

The Cantor set is not countable. If C were countable, there would exist a
bijection ϕ : N→ C, and the set

ϕ(N) = {ϕ(n) | n ∈ N}
would coincide with C. Let

(∀n ∈ N) ϕ(n) =
∞∑

k=1

x
(n)
k

3k
,

and consider the sequence (xn) such that

xn =

{
0, if x(n)

n = 2,
2, if x(n)

n = 0.

The number

x =
∞∑

n=1

xn
3n

is clearly in C but not in ϕ(N). Hence, there is no such bijection ϕ.17

16 Limit points are also called accumulation points.
17 This method of proof, called Cantor’s diagonal process, is frequently used to prove

that a set is not countable.
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The Cantor set is equipotent to the interval [0, 1]. To prove it, we have to
exhibit a bijection ψ : [0, 1]→ C. Let

x =
∞∑

n=1

xn
2n

be an element of [0, 1], where, for all n ∈ N, xn = 0 or 1, and define the Cantor
function ψ by

ψ(x) =
∞∑

n=1

2xn
3n

.

It is clear that ψ([0, 1]) = C. Furthermore, if

y =
∞∑

n=1

yn
3n

is an element of C, for all n ∈ N, yn = 0 or 2, and

x = ψ−1(y) =
∞∑

n=1

1
2 yn

2n

exists and is unique. Then ψ−1(C) = [0, 1], which finally proves that ψ :
[0, 1]→ C is a bijection.

The Lebesgue measure of the Cantor set is zero. Since Jn is obtained from
Jn−1 by removing 2n−1 open intervals of length 3−n, we have

m(C) = 1−
∞∑

n=0

2n

3n+1
= 0.

To make a distinction between sets of zero Lebesgue measure, the
Hausdorff dimension (also called the Hausdorff–Besicovitch dimension)18

is a helpful notion [214]. Let A be a subset of R; the Hausdorff outer measure
in dimension d of A is

H∗
d (A) = lim inf

ε→0

∑

j∈J

(
m(Ij)

)d
, (d > 0),

18 Felix Hausdorff (1868–1942) was a German mathematician who contributed sig-
nificantly, in particular, to set theory, measure theory, and functional analysis.
When the Nazis came to power, the mathematics of Hausdorff – who was Jewish
– were considered as un-German. He lost his position as University professor and
was forced to publish in non-German journals. In January 1942, he was informed
that he was to be sent to a concentration camp. He then committed suicide, tak-
ing barbiturates, with his wife and his wife’s sister on January 25, 1942.
Abram Samoilovitch Besicovitch (1891–1970) was a Russian–Jewish mathemati-
cian. At the St. Petersburg University, he studied under Andrei Andreyevich
Markov (1856–1922) and obtained a doctorate in 1912. He joined the Russian
Orthodox Church, when he married in 1916. He worked essentially on combina-
torial methods and real analysis.
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where the infimum is taken over all finite or countable coverings of A by open
intervals Ij whose Lebesgue measure (here length) m(Ij) is less than ε. The
limit exists – but may be infinite – since the infimum can only increase as ε
decreases.

1. If H∗
d1

(A) < ∞, then for d2 > d1, H∗
d2

(A) = 0. Indeed, the condition
m(Ij) < ε, for all j ∈ J , implies

(
m(Ij)

)d2
(
m(Ij)

)d1 =
(
m(Ij)

)d2−d1 ≤ εd2−d1 .

Therefore,

inf
ε→0

∑

j∈J

(
m(Ij)

)d2 ≤
∑

j∈J

(
m(Ij)

)d2

≤ εd2−d1
∑

j∈J

(
m(Ij)

)d1
.

Letting ε→ 0, the result follows.
2. If 0 < H∗

d1
(A) <∞, then for d2 < d1, H∗

d2
(A) =∞. This is a corollary of

the preceding result.

Let A be a subset of R; the number inf{d | H∗
d(A) = 0} is called the

Hausdorff dimension of the subset A and is denoted by dH(A).
The Hausdorff outer measure and Hausdorff dimension of a subset of R

k

can be defined in a similar way using the Lebesgue measure (volume) m of
open hypercubes.

Example 35. Hausdorff dimension of the ternary Cantor set. C is self-similar ,
that is,

3 C ∩ [0, 1
3 ] = C and 3 C ∩ [ 23 , 1]− 2 = C,

where for a given real number k, kA denotes the set {kx | x ∈ A}. But

H∗
d (C) = H∗

d

(C ∩ [0, 1
3 ]
)

+H∗
d

(C ∩ [ 23 , 1]
)
,

and

H∗
d

(C ∩ [0, 1
3 ]
)

= H∗
d

(C ∩ [23 , 1]
)

=
1
3d
H∗
d (C),

since if A = kB, then H∗
d (A) = kdH∗

d (B). Finally,

H∗
d (C) =

2
3d
H∗
d (C).

This relation shows that H∗
d (C) takes a finite nonzero value if, and only if,

2
3d

= 1.
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Hence, the Hausdorff dimension dH(C) of the ternary Cantor set C is given by

dH(C) =
log 2
log 3

.

Remark 15. There exist many different definitions of dimension. Let A be a subset
of R

k and N(ε, A) be the minimum number of open hypercubes of side ε needed to
cover A. Then, the capacity of A is

dC(A) = − lim sup
ε→0

log N(ε, A)

log ε
.

In the case of the ternary Cantor set, we have

dC(C) = lim
ε→0

log 2n

log 3n
=

log 2

log 3
.

For the Cantor set, dC(C) = dH(C). This is not always the case. In general, dC(A) ≥
dH(A) since in the definition of the Hausdorff dimension of a subset A of R

k, we
consider coverings of A by open hypercubes of variable sides.

Sets like the ternary Cantor set are called fractals by Mandelbrot19 [294,
295] who defined them as sets for which the Hausdorff dimension strictly
exceeds the topological dimension. This definition, which has the advantage
of being precise, is a bit restrictive. It excludes sets that can be accepted as
fractals. Self-similarity, which is an essential characteristic of fractals, should
be included in their definition.

In the following example, we study a two-dimensional map having a fractal
attractor.

Example 36. The generalized baker’s map. The three-parameter family of two-
dimensional maps defined by

br1,r2,a(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(
r1x,

1
a
y

)
, if 0 ≤ x ≤ 1, 0 ≤ y ≤ a,

(
r2x+

1
2
,

1
1− a (y − a)

)
, if 0 ≤ x ≤ 1, a ≤ y ≤ 1,

19 The French American mathematician Benôıt Mandelbrot was born in Warsaw in
1924 to a Jewish family from Lithuania. To escape the threat of Nazi Germany,
his family left Poland for France in 1936. His family remained in France during
the war. Mandelbrot studied at the École Polytechnique from 1945 to 1947 where
he had Gaston Julia (1893–1978) and Paul Lévy (1886–1971) as professors. From
1947 to 1949, he studied at the California Institute of Technology. Back in France,
he obtained a doctorate in mathematics from the University of Paris in 1952. In
1958, he moved to the United States to join the research staff at IBM. He is best
known for his works on fractals, a term he coined in 1975 [293]. Other interesting
details on Mandelbrot’s life can be found in a paper he wrote entitled A maverick’s
apprenticeship that can be found at www.math.yale.edu/mandelbrot/web pdfs/

mavericksApprenticeship.pdf.
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where the parameters r1, r2, and a are positive numbers less than 1/2, is
called the generalized baker’s map [152].20 It can be verified that the map
transforms the unit square [0, 1]× [0, 1] into the two rectangles

[0, r1]× [0, 1] ∪ [1
2 ,

1
2 + r2

]× [0, 1],

and, after a second iteration, we obtain four rectangles:
[
0, r21

]× [0, 1] ∪ [ 1
2 r1, r1(

1
2 + r2)

]× [0, 1]

∪ [ 1
2 ,

1
2 + r1r2

]× [0, 1] ∪ [1
2 (1 + r2), 1

2 + r2(1
2 + r2)

]× [0, 1].

At this stage, it is important to note the following self-similarity property: if
the interval [0, r1] on the x-axis is magnified by a factor 1/r1, the set

[
0, r21

]× [0, 1] ∪ [ 1
2 r1, r1(

1
2 + r2)

]× [0, 1]

becomes a replica of the set obtained after the first iteration. Similarly, if the
interval [1/2, 1/2 + r2], after a translation equal to −1/2, is magnified by a
factor 1/r2, the set

[
1
2 ,

1
2 + r1r2

]× [0, 1] ∪ [ 1
2 (1 + r2), 1

2 + r2(1
2 + r2)

]× [0, 1]

also becomes a replica of the set obtained after the first iteration.
To determine the capacity and Hausdorff dimension of the attractor of the

generalized baker’s map, we first note that this attractor is the product of a
Cantor set21 along the x-axis and the interval [0, 1] along the y-axis. Thus dC
and dH are, respectively, equal to 1 + dC and 1 + dH , where dC and dH are
the capacity and the Hausdorff dimension of the attractor along the x-axis.

To find the capacity dC(A) of the intersection of the attractor A and the
interval [0, 1] along the x-axis, we use the self-similarity property. We write

N(ε,A) = N1(ε,A) +N2(ε,A),

where N1(ε,A) is the number of intervals of length ε needed to cover the part
of the attractor along the x-axis that lies in the interval [0, r1], and N2(ε,A)
is the number of intervals of length ε needed to cover the part of the attractor
along the x-axis that lies in the interval [1/2, 1/2 + r2]. From the scaling
property,

N1(ε,A) = N

(
ε

r1
, A

)
and N2(ε,A) = N

(
ε

r2
, A

)
.

20 The map models the process whereby a baker kneads dough by stretching and
folding.

21 By “Cantor set” we mean a closed set with no interior points, and such that all
points are limit points. A closed set that, as a Cantor set, coincides with the set
of all its limit points is said to be perfect.
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Thus

N(ε,A) = N

(
ε

r1
, A

)
+N

(
ε

r2
, A

)
.

If dC(A) exists, N(ε,A) should behave as ε−dC when ε is small enough. Hence,

1 = rdC
1 + rdC

2 .

If r1 = r2 = 1/2, dC = 1, and for r1 = r2 = r, dC decreases with r.
Again using self-similarity, we find that the Hausdorff dimension dH(A) of

the attractor A is equal to its capacity dC(A).

Chaotic attractors that are fractals are usually called strange attractors,
a term coined by Ruelle and Takens. More precisely, according to Ruelle
[387–389]:

Definition 21. A bounded set A ⊂ R
k is a strange attractor for a map f if

there is a k-dimensional neighborhood N of A such that for all t ∈ N, f t(N) ⊂
N , and if, for all initial points in N , the map f has sensitive dependence on
initial conditions.

As for the generalized baker’s map, strange attractors occur in dissipative
systems22 and in most cases result from a stretching and folding process.
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Fig. 5.10. Graph of the logistic map n �→ 4.5 n(1 − n)

22 That is, systems in which the determinant of the Jacobian matrix is less than
one. This implies that the Hausdorff dimension of a strange attractor is less than
the dimension of the phase space.
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Example 37. A strange repeller: the logistic map for r > 4. Consider again the
logistic map (n, r) �→ fr(n) = rn(1 − n) but, this time, for parameter values
greater than four. Since fr(0.5) > 1, there exists an open interval J1 centered
at n = 1/2 such that for all x ∈ J1, limn→∞ fnr (x) = −∞. Hence, for the orbit
of a point x ∈ [0, 1] to be bounded, x has to belong to [0, 1]\J1, that is, to

I1 ∪ I2 = [0, 1] ∩ f−1
r ([0, 1]) = f−1

r ([0, 1]),

as shown in Fig. 5.10. This condition, which is necessary but obviously not
sufficient, can be rewritten as

⋃

i1=1,2

Ii1 = f−1
r ([0, 1]).

More generally, for the orbit of a point x ∈ [0, 1] to be bounded, x has to
belong to the union of 2n disjoint closed intervals

⋃

i1,i2,...,in=1,2

Ii1,i2,...,in = f−n
r ([0, 1]).

If we let n go to infinity, we find that the orbit of a point x ∈ [0, 1] is bounded
if, and only if, x belongs to the invariant set Cr defined by

Cr =
∞⋂

n=1

⋃

i1,i2,...,in=1,2

Ii1,i2,...,in . (5.10)

The set Cr is closed since it is the intersection of closed sets.
The Lebesgue measure (i.e., the length) of the closed intervals Ii1,n2,...,in

decreases as n increases. Denoting by m(I) the Lebesgue measure of the in-
terval I, we shall prove that

lim
n→∞m(Ii1,n2,...,in) = 0 (5.11)

for r > 2 +
√

5.
First, let us show that, for all x ∈ I1 ∪ I2, |f ′

r(x)| > 1 if r > 2 +
√

5. Since
f ′
r(x) = r − 2rx and f ′′

r (x) = −2r < 0, |f ′
r(x)| is minimum on I1 ∪ I2 for x

such that fr(x) = 1, that is, for x = (r ±√r2 − 4r)/2r. But

∣
∣
∣
∣∣
f ′
r

(
r ±√r2 − 4r

2r

)∣∣
∣
∣∣
=
∣
∣
∣
√
r2 − 4r

∣
∣
∣ .

Thus,
∣
∣f ′
r

(
(r ±√r2 − 4r)/2r

)∣∣ > 1 if

r2 − 4r > 1; that is, if r > 2 +
√

5.
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Let λr = infx∈I1∪I2 |f ′
r(x)|. We shall prove by induction that

m(Ii1,n2,...,in) ≤ λ−nr . (5.12)

Consider the interval Ii = [ai, bi], where i = 1, 2. The images by fr of its
endpoints are 0 and 1 for i = 1 and 1 and 0 for i = 2. By the mean value
theorem, there exists a point ci ∈ Ii such that fr(bi)−fr(ai) = f ′

r(ci)(bi−ai).
Hence,

1 = |fr(bi)− fr(ai)| = |f ′
r(ci)|m(Ii) ≥ λrm(Ii).

That is, m(Ii) ≤ λ−1
r , which shows that (5.12) is true for n = 1.

Let ai1,i2,...,in and bi1,i2,...,in denote the endpoints of the interval Ii1,i2,...,in .
For in = 1, 2,

fr(Ii1,i2,...,in) = Ii1,i2,...,in−1 .

Hence,

m(Ii1,i2,...,in−1) = |bi1,i2,...,in−1 − ai1,i2,...,in−1 |
= |fr(bi1,i2,...,in)− fr(ai1,i2,...,in)|
= |f ′

r(ci1,i2,...,in)| |(bi1,i2,...,in − ai1,i2,...,in)|
≥ λrm(Ii1,i2,...,in),

and, if we assume that (5.12) is true for n− 1, we finally obtain

m(Ii1,i2,...,in) ≤ λrm(Ii1,i2,...,in−1)

≤ λ−nr .

Thus, in the limit n→∞, Relation (5.11) is verified.
The set Cr is a Cantor set since it possesses the characteristic properties

of such a set given in Footnote 21: it is closed with no interior points, and all
its points are limit points. At the same time, it is a repeller since any point
in a neighborhood of Cr goes to −∞. Cr is then a strange repeller.

5.4 Chaotic Discrete-Time Models

5.4.1 One-Population Models

We have seen that for continuous maps defined on an interval, topological
transitivity implies the existence of a dense set of periodic points and sensitive
dependence on initial conditions. To verify that a one-dimensional map is
chaotic, it is therefore sufficient to prove that it is topologically transitive. It
can be shown [385] that if a map f is topologically transitive on an invariant
set X, then the orbit of some point x ∈ X is dense in X . Except for very par-
ticular maps, it is, in general, almost impossible to determine a specific point
that has a dense orbit. However, when analyzing models, a map is considered
to be chaotic if it is possible to find numerically an orbit that “looks” dense.
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In Figs. 5.11 and 5.13 are represented the bifurcation diagrams of two one-
population models. These bifurcation diagrams have been computed for 200
equally spaced parameter values. For each parameter value, 300 iterates are
calculated, but only the last 100 have been plotted. Cobwebs corresponding
to “apparently” dense orbits are represented in Figs. 5.12 and 5.14.
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Fig. 5.11. Bifurcation diagram of the one-population map (n, r) �→ ner(1−n). The
parameter r, plotted on the horizontal axis, varies from 1.5 to 3, and the population
n, plotted on the vertical axis, varies between 0 and 2.5
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Fig. 5.12. Cobweb showing a sequence of 250 iterates of the map (n, r) �→ ner(1−n)

for r = 3. The initial value is n0 =
√

2 with a precision of 150 significant digits
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Fig. 5.13. Bifurcation diagram of the one-population map (n, r) �→ rn(1+n)−8. The
parameter r, plotted on the horizontal axis, varies from 5 to 40, and the population
n, plotted on the vertical axis, varies between 0 and 2
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Fig. 5.14. Cobweb showing a sequence of 250 iterates of the map (n, r) �→
rn(1 + n)−8 for r = 40. The initial value is n0 =

√
3 with a precision of 150 signifi-

cant digits

5.4.2 The Hénon Map

In order to find a simpler model than the Lorenz system (Equations (5.14) be-
low) that nevertheless possesses a strange attractor, Hénon23 [218] considered

23 The French mathematician and astronomer Michel Hénon was born in Paris in
1931. He is best known for the map that bears his name. A partial list of his pub
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the two-dimensional map24

Ha,b(x, y) = (1 + y − ax2, bx). (5.13)

The Jacobian matrix

DHa,b(x, y) =
[−2ax 1

b 0

]

has a constant determinant equal to −b. The map is, consequently, a uniform
contraction for |b| < 1 and area-preserving for |b| = 1. For b �= 0, the map is
invertible, and we have

H−1
a,b(x, y) = (b−1y, x− 1 + ab−2y2).

If a > a0 = −1/4(1− b)2, the map has two fixed points:

x∗1,2 =
b− 1±√(1− b)2 + 4a

2a
, y∗1,2 = bx∗1,2.

One is always unstable, while the other is asymptotically stable if a1 = 3(1−
b)2/4 > a > a0. For b = 0.3, which is the value chosen by Hénon, a0 = −0.1225
and a1 = 0.3675. For a fixed value of b, as a increases, the map exhibits
an infinite sequence of period-doubling bifurcations. Derrida et al. [129] have
determined the parameter values ak of the first 11 period-doubling bifurcations
and found that the rate of convergence is equal to the Feigenbaum number δ.
Their estimate of a∞ is 1.058048 . . .. The universality of the period-doubling
route to chaos is, therefore, valid for dissipative maps of dimensionality higher
than one.

After some preliminary numerical experiments, Hénon found a strange
attractor for the parameter values a = 1.4 and b = 0.3. It is represented in
Fig. 5.15.

Two enlargements of the attractor are represented in Figs. 5.16 and 5.17
showing its fine structure, which looks identical at all scales. Both frames
contain the unstable fixed point (0.631354 . . . , 0.189406 . . .), which apparently
lies on the upper boundary of the attractor.

lications can be found at the web page: http://adsabs.harvard.edu/cgi-bin/
nph-abs connect db key=AST&sim query=YES&au xct=NO&&author=henon&

object=&return= 100&start nr=1&version=1.
24 It can be shown that the Hénon map is one of the reduced forms of the most gen-

eral quadratic map, such that the determinant of its Jacobian matrix is constant.
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Fig. 5.15. Ten thousand successive points obtained by iteration of the Hénon map
starting from the unstable fixed point (0.631354 . . . , 0.189406 . . .)
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Fig. 5.16. Enlargement of the Hénon attractor increasing the number of iterations
to 105. The initial point in both cases is the unstable fixed point

The Hausdorff dimension of the strange attractor of the Hénon map has
been determined numerically by Russell et al. [391]25, who found dH = 1.261±
0.003 for a = 1.4 and b = 0.3, and dH = 1.202±0.003 for a = 1.2 and b = 0.3.26

25 The authors divided the phase space in boxes of side ε and after many iterations
counted how many boxes contained at least one iterate. The dimension is found
assuming that for a sufficiently small ε, the number of boxes behaves as εd. Strictly
speaking, such a dimension approaches the value dC of the capacity. However, for
most strange attractors, dC = dH (see Farmer et al. [152]).

26 All these numerical considerations do not constitute a proof of the existence of a
strange attractor. Sometimes such a proof can be given. For the Hénon map, see
Tresser et al. [426].
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Fig. 5.17. Enlargement of the Hénon attractor increasing the number of iterations
to 106. The initial point is the unstable fixed point

5.5 Chaotic Continuous-Time Models

5.5.1 The Lorenz Model

In his historical paper, published in 1963 [279], Lorenz derived, from a model of
fluid convection, a three-parameter family of three ordinary differential equa-
tions that appeared, when integrated numerically, to have extremely compli-
cated solutions. These equations are

ẋ = σ(y − x)
ẏ = rx − y − xz (5.14)
ż = xy − bz,

where σ, r, and b are real positive parameters. The system is invariant under
the transformation (x, y, z) → (−x,−y, z). Figures 5.18, 5.19, and 5.20 rep-
resent the projections of the Lorenz strange attractor, calculated for σ = 10,
r = 28, and b = 8/3, on, respectively, the planes x0y, x0z, and y0z.

The orbit is obviously not periodic. As t increases, the orbit winds first
around the unstable nontrivial fixed point

(x∗, y∗, z∗) = (−8.48528 . . . ,−8.48528 . . . , 27)

and then around the other unstable fixed point

(x∗, y∗, z∗) = (8.48528 . . . , 8.48528 . . . , 27),

without ever settling down. Its shape does not depend upon a particular choice
of initial conditions.

The divergence of the flow (trace of the Jacobian matrix) is equal to −(σ+
b+ 1). Thus a three-dimensional volume element is contracted, as a function
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of time t, by a factor e−(σ+b+1)t. It can be shown that there is a bounded
ellipsoid E ⊂ R

3 that all trajectories eventually enter.27 Taken together, the
existence of the bounded ellipsoid and the negative divergence of the flow
imply that there exists a bounded set of zero Lebesgue measure inside the
ellipsoid E towards which all trajectories tend.
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Fig. 5.18. Projection on the x0y plane of a numerical solution of the Lorenz equa-
tions for t ∈ [0, 40] with (x0, y0, z0) = (0, 0, 1)
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Fig. 5.19. Projection on the x0z plane of a numerical solution of the Lorenz equa-
tions for t ∈ [0, 40] with (x0, y0, z0) = (0, 0, 1)

27 For the most complete study of the Lorenz model, consult Sparrow [416].
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Fig. 5.20. Projection on the y0z plane of a numerical solution of the Lorenz equa-
tions for t ∈ [0, 40] with (x0, y0, z0) = (0, 0, 1)

Exercises

Exercise 5.1 The converse of Šarkovskii’s theorem is also true.28 Show that the
piecewise linear map defined on [1, 5] by

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2x+ 1, if 1 ≤ x ≤ 2,
−x+ 7, if 2 ≤ x ≤ 3,
−2x+ 10, if 3 ≤ x ≤ 4,
−x+ 6, if 4 ≤ x ≤ 5,

has a periodic orbit of period 5 but no periodic orbit of period 3.

Exercise 5.2 Consider the symmetric tent map defined by

Tr(x) =

{
rx, if 0 ≤ x ≤ 1

2 ,

r(1 − x), if 1
2 ≤ x ≤ 1.

Find the values of the parameter r for which the map Tr has periodic orbits of
period 3.

28 This example is taken from Li and York [268].
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Exercise 5.3 Find the condition under which the invariant probability density ρ
is equal to 1 ( i.e., the Lebesgue measure) for the asymmetric tent map defined by

Ta,b(x) =

⎧
⎪⎨

⎪⎩

ax, if 0 ≤ x ≤ b

a+ b
,

b(1− x), if
b

a+ b
≤ x ≤ 1.

Exercise 5.4 Let f : R+ → R+ be the map defined by

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3x, if 0 ≤ x ≤ 1
3 ,

−3x+ 2, if 1
3 ≤ x ≤ 2

3 ,

3x− 2, if 2
3 ≤ x ≤ 1,

f(x− 1) + 1, if x ≥ 1.

Show that f has sensitive dependence on initial conditions, has periodic points
that are dense in R+, but is not chaotic.

Exercise 5.5 Determine the bifurcation diagram of the one-parameter family of
maps (n, r) �→ −rn logn, which is a discrete version of the Gompertz model (see
Exercise 4.7) for 1.8 ≤ r ≤ 2.7.

Exercise 5.6 Drosophila population dynamics has been investigated to clarify if
the observed fluctuations about the carrying capacity were the result of a chaotic
behavior [327,366]. Populations Nt and Nt+1 at generation t and t+ 1, respec-
tively, were fitted on the discrete theta model

Nt+1 = Nt

(

1 + r

(

1−
(
Nt
K

)θ))

,

where K is the carrying capacity and r and θ are two positive parameters that
measure the growth rate and its asymmetry. If we denote by nt = Nt/K the
reduced population, find the first period-doubling bifurcation points and determine
the bifurcation diagram of the two-parameter family of maps (n, r, θ) �→ fr,θ(n) =
n+ rn(1 − nθ).
Exercise 5.7 Find the invariant probability density of the two-dimensional chaotic
map

(xt+1, yt+1) = (yt, 4xt(1− xt)).
Exercise 5.8 Consider the two-parameter family of one-dimensional maps de-
fined by

fa,b(x) = a+
bx

1 + x2
.

Study its bifurcation diagram for a ∈ [−5, 0] and b ∈ [11, 12].

Exercise 5.9 Show that for all points x ∈ R the map f : x �→ 1/(1− x) has a
period three. Does this result contradict the Šarkovskii theorem?
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Solutions

Solution 5.1 Figure 5.21 shows that the map f has a unique fixed point in the
interval [3, 4], solution of the equation −2x+ 10 = x, i.e., x = 10/3. This fixed
point is unstable (f ′(10/3) = −2). Since f3 has no other fixed point, f has
no 3-point cycle, while it is readily verified that it has a 5-point cycle, namely
{1, 3, 4, 2, 5}.
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Fig. 5.21. Exercise 5.1. Graphs of maps f (left) and f3 (right). They show that f
has a 5-point cycle {1, 3, 4, 2, 5}, but no 3-point cycle

Solution 5.2 If {x∗1, x2
2, x

∗
3} is a 3-point cycle, we have to distinguish three pos-

sibilities.

1. Two points of the cycle (say x∗1 and x∗2) are less than 1/2, and the third one
(x∗3) is greater. In this case, the three points satisfy the equations

x∗2 = rx∗1, x∗3 = rx∗2 , x∗1 = r(1 − x∗3).
Hence,

x∗1 =
r

1 + r3
, x∗2 =

r2

1 + r3
, x∗3 =

r3

1 + r3
.

Since we assumed that

0 < x∗1 <
1
2 , 0 < x∗2 <

1
2 ,

1
2 < x∗3 < 1,

the parameter r has to satisfy the condition

1
2 (1 +

√
5) < r ≤ 2.
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2. One point of the cycle (say x∗1) is less than 1/2, and the other two (x∗2 and
x∗3) are greater. In this case, the three points satisfy the equations

x∗2 = rx∗1, x∗3 = r(1 − x∗2), x∗1 = r(1 − x∗3).

Hence,

x∗1 =
r

1 + r + r2
, x∗2 =

r2

1 + r + r2
, x∗3 =

r(1 + r)
1 + r + r2

.

Since we assumed that

0 < x∗1 <
1
2 ,

1
2 < x∗2 < 1, 1

2 < x∗3 < 1,

here again, the parameter r has to satisfy the condition

1
2 (1 +

√
5) < r ≤ 2.

These two 3-point cycles are shown in Fig. 5.22.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 5.22. The two different types of 3-point cycles for the symmetric tent map Tr

for r = 1.9

3. If one point of the cycle (say x∗2) is equal to 1/2, then among the other two,
one (x∗3) is greater than 1/2, and the second one (x∗1) is less than 1/2. Then
x∗1 and x∗3 have to satisfy the relation

rx∗1 = 1
2 ,

r

2
= x∗3, r(1 − x∗3) = x∗1.

In this case, r is the root of r3 − 2r2 + 1 = 0 in the semi-open interval
]1, 2]; that is, r = 1/2(1 +

√
5). This particular 3-point cycle is represented

in Fig. 5.23.
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Fig. 5.23. The 3-point cycle for the symmetric tent map Tr for r = 1/2(1 +
√

5)

Solution 5.3 Let ρ be the invariant probability density for the asymmetric tent
map Ta,b. If I is an open interval in [0, 1], its preimage by T−1

a,b (I) is the union of
two disjoint intervals I1 and I2 whose Lebesgue measure is

m(I1 ∪ I2) = m(I1) +m(I2) =
(

1
a

+
1
b

)
m(I).

Hence the map Ta,b preserves the Lebesgue measure if

1
a

+
1
b

= 1.

This relation is satisfied, in particular, by the symmetric binary tent map T2 and
by any asymmetric tent map Ta,b with maximum

Ta,b

(
b

a+ b

)
=

ab

a+ b
= 1.

We could also have derived this result from the Perron-Frobenius equation, which,
in the case of the asymmetric tent map, reads

ρ(x) =
1
a
ρ
(x
a

)
+

1
b
ρ
(
1− x

b

)
.

This equation is satisfied by ρ(x) = 1 if

1
a

+
1
b

= 1.

The graph of the asymmetric tent map for a = 3 and b = 3/2, which satisfy the
condition above, is plotted in Fig. 5.24.
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Fig. 5.24. An example of an asymmetric tent map Ta,b for a = 3 and b = 3/2 and
invariant probability ρ = 1 (see the text)
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Fig. 5.25. An example of a map in R+ (left figure) that has sensitive dependence on
initial conditions and dense periodic points but that is not topologically transitive
and, therefore, not chaotic. The right figure shows the graph of f2

Solution 5.4 The map f (see Fig. 5.25) has sensitive dependence on initial con-
ditions because |f ′(x)| = 3 for all x ∈ R+. Between two consecutive integral
values of x, fn has 3n − 2 unstable fixed points. Since the distance between two
consecutive fixed points is less than 3−n+1, these periodic points are dense in R+.
The map f , however, is not chaotic since it is not topologically transitive, because
f([k, k + 1]) = [k, k + 1], for any nonnegative integer k.
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Fig. 5.26. Bifurcation diagram of the discrete map (n, r) �→ −rn log n. The param-
eter r, plotted on the horizontal axis, varies from 1.8 to 2.7, and the population n,
plotted on the vertical axis, varies between 0 and 1

Solution 5.5 As for all bifurcation diagrams represented in this chapter, this one
(see Fig. 5.26) has been computed for 300 equally spaced parameter values, and
for each parameter value, 300 iterates are calculated, but only the last 100 have
been plotted.

Solution 5.6 The map fr,θ has two fixed points: 0 and 1. 0 is always unstable
(f ′
r,θ(0) = 1+ r), and 1, which is the reduced carrying capacity, is asymptotically

stable if 0 < rθ < 2 (f ′
r,θ(1) = 1−rθ). For rθ = 2, the family of maps undergoes

a period-doubling bifurcation.
While the stability of the fixed point 1 depends only on the product rθ, this

is not the case for the 2-point cycle. To simplify, we shall, therefore, fix the value
of r and find the values of θ for which the family fr,θ undergoes the first period-
doubling bifurcations. For r = 1, the 2-point cycle is stable for 2 < θ < 2.47887
and the 4-point cycle is stable for 2.47887 < θ < 2.5876. The bifurcation diagram
is represented in Fig. 5.27.

Solution 5.7 Let f : (x, y) �→ (
y, 4x(1 − x)

)
; then f2 : (x, y) �→ (

4x(1 − x),
4y(1− y)), which shows that

f2 : (x, y) �→ (
f4(x), f4(y)

)
,

where f4 is the chaotic logistic map x �→ 4x(1 − x). Thus, taking into account
the expression of the invariant probability density (5.3) found in Sect. 5.3.1, the
invariant probability density of the two-dimensional map f is given by

ρ(x, y) =
1

π2
√
xy(1− x)(1 − y) .
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Fig. 5.27. Bifurcation diagram of the discrete θ map (n, r, θ) �→ n + rn(1 − nθ).
The value of r is equal to one; the parameter θ, plotted on the horizontal axis, varies
from 1.5 to 3.4; and the population n, plotted on the vertical axis, varies between 0
and 1.4
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Fig. 5.28. Bifurcation diagram of the two-parameter map (x, a, b) �→ a+bx/(1+x2)
for b = 11. The parameter a, plotted on the horizontal axis, varies from −5 to 0,
and x, plotted on the vertical axis, varies between 0 and 5

Solution 5.8 Figures 5.28 and 5.29 show the bifurcation diagram of the map
fa,b for b equal to 11 and 12, respectively. For b = 11 and a = −5, the attractor
is a stable fixed point. Then, as a increases from −5 to −3, we observe two
period-doubling bifurcations, but as a increases further, the system undergoes
two reverse period-doubling bifurcations and its attractor is again a fixed point.
For b = 12 and a = −5, the attractor is, as for b = 11, a stable fixed point.
But here, as a increases, the map becomes apparently chaotic after a sequence of
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Fig. 5.29. Bifurcation diagram of the two-parameter map (x, a, b) �→ a+bx/(1+x2)
for b = 12. The parameter a, plotted on the horizontal axis, varies from −5 to 0,
and x, plotted on the vertical axis, varies between 0 and 5

period-doubling bifurcations, and as a further increases, through a reverse route,
the attractor again becomes a fixed point. In the chaotic region, periodic windows
are clearly visible.

Figure 5.30 shows the bifurcation diagram obtained for a = −3 and increasing
b from 11 to 12.
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Fig. 5.30. Bifurcation diagram of the two-parameter map (x, a, b) �→ a+bx/(1+x2).
The parameter a is equal to −3; the parameter b, plotted on the horizontal axis,
varies from 11 to 12; and x, plotted on the vertical axis, varies between 0 and 3.5
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Solution 5.9 It is straightforward to verify that starting from any real x1, if f is
the map x �→ 1/(1− x), we have

f(x1) = x2, f(x2) = x3, and f(x3) = x1,

as shown below

f(x1) =
1

1− x1
= x2,

f(x2) =
1

1− x2
= x3 =

x1 − 1
x1

,

f(x3) =
1

1− x3
=

1

1− x1 − 1
x1

= x1.

This result does not contradict the Šarkovskii theorem since the map f is not
continuous. Continuity of the map is a necessary condition for the Šarkovskii
theorem to apply.
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Summary

This chapter is devoted to the study of deterministic chaos discovered in
1963 by the American mathematician Edward Lorenz . Actually, the study
of chaos can be traced back to the French mathematician, theoretical physicist,
and philosopher of science Jules Henri Poincaré who excelled in all fields of
mathematics.

• Let f be a map defined on an interval I of R; a measure μ on I is invariant
for f if, for any measurable subset E ⊂ I, μ(E) = μ(f−1(E)).

• Regarding the existence of a periodic orbit, the Šarkovskii theorem indi-
cates which periods imply which other periods.
First, define among all positive integers the Šarkovskii’s order relation
by

3 � 5 � 7 � · · · 2 · 3 � 2 · 5 � · · ·� 22 · 3 � 22 · 5 � · · ·
� 23 · 3 � 23 · 5 � · · · · · ·� 23 � 22 � 2 � 1.

That is, first list all the odd numbers, followed by 2 times the odd numbers,
22 times the odd numbers, etc. Since � is an order relation, it is transitive,
i.e., n1 � n2 and n2 � n3 imply n1 � n3.
The Šarkovskii theorem states that if f : R → R is a continuous map,
then if f has a periodic orbit of period n, then, for all integers k such that
n� k, f has also a periodic orbit of period k.
So, in order to prove that the map f4 : n �→ 4n(1− n) has periodic orbits
of all orders, it suffices to prove that f4 has a periodic orbit of order 3 (see
Page 176).

• According to Robert Devaney, a mapping f : S → S is said to be chaotic
on S if
1. f has sensitive dependence on initial conditions ,

2. f is topologically transitive ,

3. f has dense periodic points in S.
Note that this definition of chaos is redundant as shown on Page 180.

• A route to chaos is a scenario in which a parameter-dependent system
that has a simple deterministic time evolution becomes chaotic as a pa-
rameter is changed. The infinite sequence of period-doubling bifurcations
preceding the onset of chaos is a period-doubling route to chaos. For other
routes to chaos, refer to Page 181.
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• Let f : S → S be a map. A subset A of S is invariant if f(A) = A. A
measure μ is invariant for the map f if for all measurable subsets A of S,

μ(f−1(A)) = μ(A). The map f is ergodic with respect to the invariant
measure μ if any measurable invariant subset A of S is such that either
μ(A) = 0 or μ(A) = μ(S). For example, the map f4 is ergodic with respect
to the invariant measure dμ(x) = dx/π

√
x(1 − x).

• μ is a probability measure if μ(S) = 1 and if g : S → R is an integrable
function with respect to μ, then, for almost all x0 ∈ S,

lim
t→∞

1
t

t∑

i=1

g ◦ f i(x0) =
∫
g(x) dμ(x).

That is, the time average is equal to the space average. If there exists
a positive real function ρ such that dμ(x) = ρ(x) dx, ρ is called an
invariant probability density .

• The Li and York theorem states that period three implies chaos , that
is, if I is an interval and f : I → I is a continuous map, and there is a point
x ∈ I such that its first three iterates satisfy the Li and York condition :

either f3(x) ≤ x < f(x) < f2(x) or f3(x) ≥ x > f(x) > f2(x) ,

then for all positive integers k, there exists in I a periodic point of period k.
Furthermore, there exists an uncountable set S ⊂ I, containing no periodic
or eventually periodic points (an eventually periodic point is a point that
tends to a periodic point), such that for all pairs of different points x1 and
x2 in S,

lim sup
t→∞

|f t(x1)− f t(x2)| > 0 and lim inf
t→∞ |f t(x1)− f t(x2)| = 0.

• The Li and York condition has been improved by Li, Misiurewicz, Pagani,
and York, making the existence of chaotic behavior easier to verify.
According to these authors, if there exists an initial point x0 such that

fn(x0) < x0 < f(x0) ,

where n is an odd integer, then there exists a periodic orbit of odd period
k with 1 < k ≤ n.

• A closed set A is an attracting set for a map f if there exists a neighbor-
hood N of A such that

lim
t→∞ f t(N) = A.
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If a domain D is such that f t(D) ⊂ D for all positive t, D is called a
trapping region . If we can find such a domain, then

A =
⋂

t∈N

f t(D).

• If an attracting set contains a dense orbit, it is called an attractor .
• Let (Jn) be a sequence of subsets of [0, 1] defined by

J0 = [0, 1],

J1 = [0, 1
3 ] ∪ [ 23 , 1],

J2 = [0, 1
9 ] ∪ [ 29 ,

1
3 ] ∪ [ 69 ,

7
9 ] ∪ [ 89 , 1],

· · · · · ·
That is, Jn is the union of 2n pairwise disjoint closed intervals of length
3−n which is obtained from Jn−1 by removing from each closed interval of
length 3−(n−1) an open interval of length 3−n with the same center. The
set

C =
∞⋂

n=1

Jn

is called the triadic Cantor set (or ternary Cantor set ). All points of

C are limit points (also called accumulation points ). Note that any el-
ement x of the triadic Cantor set can be written as

x =
∞∑

n=1

xn
3n
,

where for all positive integers n, xn = 0 or 2 . In other words, the ternary
expansion – that is, the expansion to the base 3 – of an element x ∈ C
does not contain the digit 1.

• The Cantor set is not countable . It is equipotent to the interval [0, 1] ,
and it has a zero Lebesgue measure (see Pages 190 and 191).

• Let A be a subset of R; the Hausdorff outer measure in dimension d of
A is

H∗
d (A) = lim inf

ε→0

∑

j∈J

(
m(Ij)

)d
, (d > 0),

where the infimum is taken over all finite or countable coverings of A
by open intervals Ij whose Lebesgue measure (here length) m(Ij) is less
than ε.

• Let A be a subset of R; the number inf{d | H∗
d (A) = 0} is called

the Hausdorff dimension of the subset A and denoted by dH(A). The
Hausdorff dimension dH(C) of the triadic Cantor set C is given by dH(C) =
log 2/log 3.
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• Let A be a subset of R
k and N(ε,A) be the minimum number of open

hypercubes of side ε needed to cover A. Then, the capacity of A is

dC(A) = − lim sup
ε→0

logN(ε,A)
log ε

.

In the case of the ternary Cantor set, we have

dC(C) = lim
ε→0

log 2n

log 3n
=

log 2
log 3

.

That is, for the triadic Cantor set, dC(C) = dH(C). This is not the case in
general.

• Fractals , a term coined in 1975 by the French American mathematician
Benôıt Mandelbrot, are defined as sets for which the Hausdorff dimension
strictly exceeds the topological dimension. This definition, which has the
advantage of being precise, is a bit restrictive. It excludes sets that can be
accepted as fractals. Self-similarity, which is an essential characteristic of
fractals, should be included in their definition.

• Chaotic attractors that are fractals are usually called strange attractors .
More precisely, according to the Belgian-French mathematical physicist
David Ruelle, a bounded set A ⊂ R

k is a strange attractor for a map f
if there is a k-dimensional neighborhood N of A such that for all t ∈ N,
f t(N) ⊂ N , and if, for all initial points in N , the map f has sensitive
dependence on initial conditions.

• The Hénon map Ha,b, named after the French mathematician and as-
tronomer Michel Hénon, is defined by

Ha,b(x, y) = (1 + y − ax2, bx).

This map, whose determinant of its Jacobian matrix is constant and
equal to −b, is, consequently, a uniform contraction for |b| < 1 and area-
preserving for |b| = 1. For b �= 0, the map is invertible, and we have

H−1
a,b(x, y) = (b−1y, x− 1 + ab−2y2).

For a fixed value of b, as a increases, the map exhibits an infinite sequence
of period-doubling bifurcations. Derrida, Gervois, and Pomeau have deter-
mined the parameter values ak of the first 11 period-doubling bifurcations
and found that the rate of convergence is equal to the Feigenbaum num-
ber. After some preliminary numerical experiments, Hénon found a strange
attractor for the parameter values a = 1.4 and b = 0.3.
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Spatial Models

The essential points of this chapter are
• The definition of a cellular automaton
• The definition of the local evolution rule
• The definition of an elementary cellular automaton
• The definition of the Wolfram code number of a rule
• The properties of a few examples of elementary cellular automata
• The evolution of a cellular automaton toward its limit set

as the results of interacting particle-like structures
• The theorem giving the conditions under which a cellular

automaton is number-conserving
• The definition of an eventually number-conserving cellular

automaton and examples of this type of cellular automata
• The definition of a site-exchange cellular automaton
• The definition of spatial models without assuming

that the space is a periodic grid
• Models of spatial segregation
• The Axelrod model of dissemination of culture
• Models formulated in terms of game theory

While models in terms of differential equations or recurrence equations
neglect that the agents are usually distributed in space, the spatial feature
can play an important role and should, at least in some cases, be taken into
account. In this chapter, we focus essentially on cellular automata in which the
agents are located at the sites of a periodic grid, and on another type of model
in which the agents are randomly distributed in space without occupying
periodic locations.

N. Boccara, Modeling Complex Systems: Second Edition, Graduate Texts in Physics, 219
DOI 10.1007/978-1-4419-6562-2 6, c© Springer Science+Business Media, LLC 2010



220 6 Spatial Models

6.1 Cellular Automata

Depending upon the nature of the graph G, there exist many types of au-
tomata networks. In this section, we focus on cellular automata in which the
set of vertices, usually called sites, is either Z

n, if the n-dimensional cellular
automaton is infinite, or the torus Z

n
L, if the n-dimensional cellular automaton

is finite. ZL denotes the set of integers modulo L. If the set of vertices is Z
n
L,

the cellular automaton is said to satisfy periodic boundary conditions. In what
follows, we always assume that this is the case.1

Cellular automata are constructed from many identical simple compo-
nents, but when put together are capable to exhibit a complex behavior. They
are ideal tools for developing models of complex systems [449].2

Deterministic one-dimensional cellular automaton rules are defined as fol-
lows. Let s(i, t) ∈ Q represent the state at site i ∈ Z and time t ∈ N; a local
evolution rule is a map f : Qr�+rr+1 → Q such that

s(i, t+ 1) = f
(
s(i− r�, t), s(i− r� + 1, t), . . . , s(i+ rr, t)

)
, (6.1)

where the integers r� and rr are, respectively, the left radius and right radius
of the rule f ; if r� = rr = r, r is called the radius of the rule. The local rule f ,
which is a function of n = r�+rr+1 arguments, is often said to be an n-input
rule. The function St : i �→ s(i, t) is the state of the cellular automaton at
time t; St belongs to the set QZ of all configurations. Since the state St+1 at
t + 1 is entirely determined by the state St at time t and the local rule f ,
there exists a unique mapping Ff : S → S such that

St+1 = Ff (St), (6.2)

which is called the cellular automaton global rule or the cellular automaton
evolution operator induced by the local rule f .

1 For a short history of cellular automata, refer to Wolfram’s A New Kind of Science
[450], page 876. There exist numerous reviews of Wolfram’s book; the interested
reader could consult the following reviewers:
(1) David Bailey: http://docs.google.com/gview?a=v&q=cache:Vxy7qN6lPAsJ:
crd.lbl.gov/∼ dhbailey/dh,
(2) Henry Cohn: http://www.maa.org/reviews/wolfram.html,
(3) Ralph Griswold: http://209.85.229.132/search?q=cache:j3Af5MntK3cJ:
www.cs.arizona.edu/patterns/weaving/webdocs/gre nks.pdf+Review+of+

%22A+New+Kind+of+Science%22&cd=19&hl=en&ct=clnk&client=safari,
(4) Ray Kurzweil: http://www.kurzweilai.net/meme/frame.html?main=
/articles/art0464.html?,
(5) Yves Pomeau: http://shell.cas.usf.edu/∼eclarkMathSciNetReview.htm,
(6) Cosma Shalizi: http://cscs.umich.edu/∼crshalizi/notebooks/cellular-

automata.html.
2 For recent books on cellular automata and their applications, the reader should

consult the proceedings of the different international conferences on Cellular Au-
tomata for Research and Industry (ACRI) that are organized biennially and the
international workshops Automata organized every year.
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In the case of two-dimensional cellular automata, there are several possible
lattices and neighborhoods. If, for example, we consider a square lattice and a
(2r1 +1)×(2r2 +1)-neighborhood, the state s

(
(i1, i2), t+1

) ∈ Q of site (i1, i2)
at time t+ 1 is determined by the state of the (2r1 + 1) × (2r2 + 1)-block of
sites centered at (i1, i2) by

s
(
(i1, i2), t+ 1

)

= f

⎛

⎜⎜
⎝

s
(
(i1 − r1, i2 − r2), t

) · · · s
(
(i1 + r1, i2 − r2), t

)

s
(
(i1 − r1, i2 − r2 + 1), t

) · · · s((i1 + r1, i2 − r2 + 1), t
)

· · · · · · · · ·
s
(
(i1 − r1, i2 + r2), t

) · · · s
(
(i1 + r1, i2 + r2), t

)

⎞

⎟⎟
⎠ , (6.3)

where f : Q(2r1+1)×(2r2+1) → Q is the two-dimensional cellular automaton
local evolution rule.

Most models presented in this chapter will be formulated in terms of prob-
abilistic cellular automata. In this case, the image by the evolution rule of
any (r� + rr + 1)-block, for a one-dimensional cellular automaton, or of any
given (2r1 + 1)× (2r2 + 1)-block, for a two-dimensional cellular automaton, is
a discrete random variable with values in Q.

The simplest cellular automata are the so-called elementary cellular au-
tomata in which the finite set of states is Q = {0, 1} and the rule’s radii are
r� = rr = 1. Sites in a nonzero state are sometimes said to be active. It is easy
to verify that there exist 223

= 256 different elementary cellular automaton
local rules f : {0, 1}3 → {0, 1}. The local rule of an elementary cellular au-
tomaton can be specified by its look-up table, giving the image of each of the
eight three-site neighborhoods. That is, any sequence of eight binary digits
specifies an elementary cellular automaton rule. Here is an example:

111 110 101 100 011 010 001 000
1 0 1 1 1 0 0 0

Following Wolfram [448], a code number may be associated with each cel-
lular automaton rule. If Q = {0, 1}, this code number is the decimal value
of the binary sequence of images. For instance, the code number of the rule
above is 184 since3

101110002 = 27 + 25 + 24 + 23 = 18410.

More generally, the code number N(f) of a one-dimensional |Q|-state n-input
cellular automaton rule f is defined by

N(f) =
∑

(x1,x2,...,xn)∈Qn

f(x1, x2, . . . , xn)|Q||Q|n−1x1+|Q|n−2x2+···+|Q|0xn .

3 In the notations 101110002 and 18410, the index gives the value of the base.
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Fig. 6.1. First 50 iterations of the elementary cellular automaton rule 184 starting
from a random initial configuration with an equal number of 0s (light gray) and 1s
(dark gray). Time is oriented downwards. Number of lattice sites: 50

Figure 6.1 represents the first 50 iterations of the elementary cellular au-
tomaton rule 184. The cellular automaton size is equal to 50. The initial
configuration is random, and the density of active sites is exactly equal to
1/2. As a result of the local rule, we observe the growth of a self-organized
pattern. After a number of time steps of the order of the size of the cellular
automaton, the initially disordered configuration becomes perfectly ordered,
i.e., the attractor consists of two configurations, namely,

. . . 01010101 . . . and . . . 10101010 . . . .

Remark 16. Rule 184 has been used to model traffic flow when the speed limit is
equal to 1 (see below), a particular form of deposition of particles onto a surface in
which each local minimum of the surface is filled with a particle in each step [47,257],
and a process in which moving particles and antiparticles annihilate each other when
they collide [47,257].

In the case of cellular automata, the attractor is called the limit set and
is defined by

ΛF = lim
t→∞F t(S) =

⋂

t≥0

F t(S),

where F is the global evolution rule and S = QZ is the set of all configurations.
As mentioned in Chap. 1, such an emergent property is an essential char-

acteristic of a complex system.
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In the case of the elementary cellular automaton 184, the perfect order
exists only if the density of active sites is exactly equal to 1/2. If this is not
the case, the limit set ΛF184 , illustrated in Fig. 6.2, is the set of all configura-
tions consisting of finite sequences of alternating 0s and 1s separated by finite
sequences of either 0s, if the density of active sites is less than 1/2, or 1s, if
the density of active sites is greater than 1/2.

The evolution toward the limit set can be viewed as the elimination of
defects, which are sequences of 0s or sequences of 1s. These defects can
also be viewed as interacting particle-like structures evolving in a regular
background.4

Fig. 6.2. First 50 iterations of the elementary cellular automaton rule 184 starting
from a random initial configuration. The density of active sites is exactly equal to
0.4 in the left figure and 0.6 in the right one. Time is oriented downwards. The
number of lattice sites is equal to 50

6.2 Number-Conserving Cellular Automata

Elementary cellular automaton 184 belongs to a special class of cellular au-
tomata. It is number-conserving ; i.e., it satisfies the condition

(∀t ∈ N)
L∑

i=1

s(i, t) = constant,

where L is the cellular automaton size. It is not difficult to establish a neces-
sary and sufficient condition for a one-dimensional |Q|-state n-input cellular

4 On interacting particle-like structures in spatiotemporal patterns representing the
evolution of one-dimensional cellular automata, see Boccara et al. [60].
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automaton rule to be number-conserving [74]. An extension of these results to
infinite lattices and higher dimensions can be found in Durand et al. [141]. It
can be shown that any one-dimensional cellular automaton can be simulated
by a number-conserving cellular automaton; see Moreira et al. [324].

Definition 22. A one-dimensional |Q|-state n-input cellular automaton rule
f is number-conserving if, for all cyclic configurations of length L ≥ n, it
satisfies

f(x1, x2, . . . , xn−1, xn) + f(x2, x3, . . . , xn, xn+1) + · · ·
+ f(xL, x1 . . . , xn−2, xn−1) = x1 + x2 + · · ·+ xL. (6.4)

Theorem 13. A one-dimensional |Q|-state n-input cellular automaton rule f
is number-conserving if, and only if, for all (x1, x2, . . . , xn) ∈ Qn, it satisfies

f(x1, x2, . . . , xn) = x1 +
n−1∑

k=1

(
f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, . . . , xn−k+1)

−f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x1, x2, . . . , xn−k)
)
. (6.5)

To simplify the proof, we need the following lemma.

Lemma 1. If f is a number-conserving rule, then

f(0, 0, . . . , 0) = 0. (6.6)

Write Condition (6.4) for a cyclic configuration of length L ≥ n where all
elements are equal to zero. �

To prove that Condition (6.5) is necessary, consider a cyclic configuration
of length L ≥ 2n− 1 that is the concatenation of a sequence (x1, x2, . . . , xn)
and a sequence of L−n zeros, and express that the n-input rule f is number-
conserving. We obtain

f(0, 0, . . . , 0, x1) + f(0, 0, . . . , 0, x1, x2) + · · ·
+ f(x1, x2, . . . , xn) + f(x2, x3, . . . , xn, 0) + · · ·
+ f(xn, 0, . . . , 0) = x1 + x2 + · · ·+ xn, (6.7)

where all the terms of the form f(0, 0, . . . , 0), which are equal to zero according
to (6.6), have not been written. Replacing x1 by 0 in (6.7) gives

f(0, 0, . . . , 0, x2) + · · ·+ f(0, x2, . . . , xn)
+ f(x2, x3, . . . , xn, 0) + · · ·+ f(xn, 0, . . . , 0)
= x2 + · · ·+ xn. (6.8)

Subtracting (6.8) from (6.7) yields (6.5).
Condition (6.5) is obviously sufficient since when summed on a cyclic con-

figuration, all the left-hand side terms except the first cancel. �
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Remark 17. The proof above shows that if we can verify that a cellular automaton
rule f is number-conserving for all cyclic configurations of length 2n − 1, then it is
number-conserving for all cyclic configurations of length L > 2n − 1.

The following corollaries are simple necessary conditions for a cellular au-
tomaton rule to be number-conserving.

Corollary 1. If f is a one-dimensional |Q|-state n-input number-conserving
cellular automaton rule, then for all x ∈ Q,

f(x, x, . . . , x) = x. (6.9)

To prove (6.9), which is a generalization of (6.6), write Condition (6.5) for
x1 = x2 = · · · = xn = x. �

Corollary 2. If f is a one-dimensional |Q|-state n-input number-conserving
cellular automaton rule, then

∑

(x1,x2,...,xn)∈Qn

f(x1, x2, . . . , xn) =
1
2

(|Q| − 1) |Q|n. (6.10)

When we sum (6.5) over (x1, x2, . . . , xn) ∈ Qn, all the left-hand-side terms
except the first cancel, and the sum over the remaining terms is equal to
(0 + 1 + 2 + · · ·+ (|Q| − 1))|Q|n−1 = 1

2 (|Q| − 1) |Q|n. �
Number-conserving cellular automata can be used to model closed systems

of interacting particles.5

So far, we have only considered cellular automata evolving according to
deterministic rules. In many applications, it is often necessary to allow for
probabilistic rules as defined on page 221.

Example 38. Highway car traffic. Vehicular traffic can be treated as a system
of interacting particles driven far from equilibrium. The so-called particle-
hopping model describes car traffic in terms of probabilistic cellular automata.
An early model of this type was proposed by Nagel and Schreckenberg [333].
These authors consider a finite lattice of length L with periodic boundary
conditions. Each cell is either empty (i.e., in state e) or occupied by a car
(i.e., in state v), where v = 0, 1, . . . , vmax denotes the car velocity (cars are
moving to the right). If di is the distance between cars i and i+1, car velocities
are updated in parallel according to the following subrules:

vi(t+ 1
2 ) = min(vi(t) + 1, di(t)− 1, vmax),

vi(t+ 1) =

{
max

(
vi(t+ 1

2 )− 1, 0
)
, with probability p,

vi
(
t+ 1

2

)
, with probability 1− p,

5 A short review with many references on number-conserving cellular automata due
to Andrés Moreira can be found on the web page http://www.dim.uchile.cl/

∼anmoreir/ncca/review.html.
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where vi(t) is the velocity of car i at time t. Then, if xi(t) is the position of
car i at time t, cars are moving according to the rule

xi(t+ 1) = xi(t) + vi(t+ 1).

That is, at each time step, each car increases its speed by one unit (acceleration
a = 1), respecting the speed limit and avoiding collisions. But, the model also
includes some noise: with a probability p, each car decreases its speed by
one unit.

Although rather simple, the model exhibits features observed in real high-
way traffic (e.g., with increasing vehicle density, it shows a transition from
laminar traffic flow to start-stop waves, as illustrated in Fig. 6.3).

Fig. 6.3. First 50 iterations of the Nagel–Schreckenberg probabilistic cellular au-
tomaton traffic flow model. The initial configuration is random with a density equal
to 0.24 in the left figure and 0.48 in the right one. In both cases vmax = 2 and
p = 0.2. The number of lattice sites is equal to 50. Empty cells are very light gray
while cells occupied by a car with velocity v equal to either 0, 1, or 2 have darker
shades of gray. Time increases downwards

When discussing road configurations evolving according to various illustra-
tive rules, the knowledge of both car positions and velocities proves necessary.
Therefore, although we are dealing with two-state cellular automaton rules,
we shall not represent the state of a cell by its occupation number (i.e., 0
or 1), but by a letter in the alphabet {e, 0, 1, . . . , vmax}, indicating that the
cell is either empty (i.e., in state e) or occupied by a car with a velocity equal
to v (i.e., in state v ∈ {0, 1, . . . , vmax}). Configurations of cells of this type
will be called velocity configurations, or configurations for short.

When using velocity configurations, we shall not represent cellular automa-
ton rules by their rule tables but make use of a representation that clearly
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exhibits the particle motion. This motion representation, or velocity rule, in-
troduced by Boccara and Fukś [71], may be defined as follows. If the integer
r is the rule’s radius, list all the (2r + 1)-neighborhoods of a given particle
represented by a 1 located at the central site of the neighborhood. Then, to
each neighborhood, associate an integer v denoting the velocity of this par-
ticle, which is the number of sites this particle will move in one time step,
with the convention that v is positive if the particle moves to the right, and
negative if it moves to the left. For example, rule 184 is represented by the
radius 1 velocity rule:

•11→ 0, •10→ 1. (6.11)

The symbol • represents either a 0 or a 1 (i.e., either an empty or an occupied
site). This representation, which clearly shows that a car can move to the next
neighboring site on its right if, and only if, this site is empty, is shorter and
more explicit.

Elementary cellular automaton rule 184 is a particularNagel–Schreckenberg
highway traffic flow model in which the probability p of decelerating is equal
to zero and the maximum speed vmax = 1. In this particular case, Fukś [169]
has been able to determine the exact expression of the average car velocity
〈v〉(ρ, t) as a function of car density ρ and time t. He found

〈v〉(ρ, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− (4ρ(1− ρ))t√
πt

, if ρ < 1
2 ,

1− ρ
ρ

(
1− (4ρ(1− ρ))t√

πt

)
, otherwise.

In the limit t→∞, this yields

〈v〉(ρ,∞) =

⎧
⎨

⎩

1, if ρ < 1
2 ,

1− ρ
ρ

, otherwise.

This deterministic model exhibits a second-order phase transition at ρ = 1/2
between a free-moving phase and a jammed phase (see Fig. 6.2). This phase
transition may be characterized by the order parameter

m(ρ) = 1− 〈v〉(ρ,∞),

which is equal to zero in the free-moving phase.6 The control parameter, whose
role is usually played by the temperature in statistical physics, is here played
by the car density.

6 In phase transition theory, the order parameter is equal to zero in the phase
of higher symmetry, its nonzero value characterizes the broken symmetry of the
ordered phase [57].
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Fig. 6.4. First 30 iterations of the generalized deterministic rule 184 traffic flow
model. The initial configuration is random with a density equal to 0.24 in the left
figure and 0.48 in the right one. In both cases vmax = 2. The number of lattice sites
is equal to 50. Empty cells are white while cells occupied by a car with velocity v
equal to 0, 1, and 2 have darker shades of gray. Time increases downwards

It is straightforward to generalize the traffic flow model described by rule
184 to higher maximum velocities (see Fig. 6.4). If, as before, di is the distance
between car i and car i + 1, car velocities are updated in parallel according
to the rule7

vi(t+ 1) = min(di(t)− 1, vmax),

and car positions are updated according to the rule

xi(t+ 1) = xi(t) + vi(t+ 1).

In the steady state, the average car velocity 〈v〉(ρ,∞) is given, as a function
of the car density ρ, by

〈v〉(ρ,∞) =

⎧
⎪⎨

⎪⎩

vmax, if ρ < ρc =
1

1 + vmax
,

1− ρ
ρ

, otherwise,
(6.12)

and the order parameter characterizing the second-order phase transition be-
tween the free-moving phase and the jammed phase is

m(ρ) = vmax − 〈v〉(ρ,∞), (6.13)

or

m(ρ) =

⎧
⎨

⎩

0, if ρ < ρc,
ρ− ρc
ρρc

, otherwise.

In the jammed phase close to the critical car density ρc, the critical behavior
of the order parameter is characterized by the exponent β = 1 defined by
m(ρ) ∼ (ρ− ρc)β .
7 A similar model has also been studied by Fukui and Ishibashi [170].
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While the value of the critical exponent β can be found exactly, this is
not the case for the other critical exponents. The exponents γ and δ have
been determined by Boccara and Fukś [72]. They characterize, respectively,
the critical behavior of the susceptibility and the response to the symmetry-
breaking field at the critical point.

If ρ < ρc, any configuration in the limit set consists of perfect tiles of
vmax + 1 cells, as shown below.8

vmax e · · · e e

in a sea of cells in state e (see Fig. 6.4).
If ρ > ρc, a configuration belonging to the limit set only consists of a

mixture of tiles containing v + 1 cells of the type

v e · · · e e

where v = 0, 1, · · · , vmax.
If we introduce random braking, then, even at low density, some tiles

become defective, which causes the average velocity to be less than vmax.
The random-braking probability p can, therefore, be viewed as a symmetry-
breaking field conjugate to the order parameter m defined by (6.13). This
point of view implies that the phase transition characterized by m will be
smeared out in the presence of random braking as in ferromagnetic systems
placed in an external magnetic field.

The susceptibility, defined as

χ(ρ) = lim
p→0

∂m

∂p
,

diverges, in the vicinity of ρc, as (ρc − ρ)−γ for ρ < ρc and as (ρ− ρc)−γ′
for

ρ > ρc, and at ρ = ρc, the response function

lim
p→0

m(ρc, 0)−m(ρc, p)
p

goes to zero as p1/δ. For the model corresponding to vmax = 2,9 using nu-
merical simulations and a systematic approximation technique, described in
Example 44, Boccara and Fukś found that γ = γ′ ≈ 1 and δ ≈ 2.

It is interesting to note that these values are found in equilibrium statis-
tical physics in the case of second-order phase transitions characterized by
nonnegative order parameters above the upper critical space dimension.

8 Note that, in what follows, v is the velocity with which the car is going to move
at the next time step.

9 For vmax = 2, the cellular automaton local rule must have at least a left radius
r� = 2 and right radius rr = 1. Using Wolfram codification, the corresponding
4-input rule code number is 43944.
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Close to the phase transition point, critical exponents obey scaling rela-
tions. If we assume that in the vicinity of the critical point (ρ = ρc, p = 0),
the order parameter m is a generalized homogeneous function of ρ− ρc and p
of the form

m = |ρ− ρc|βf
(

p

|ρ− ρc|βδ
)
, (6.14)

where the function f is such that f(0) �= 0, then, differentiating f with respect
to p and taking the limit p→ 0, we readily obtain

γ = γ′ = (δ − 1)β. (6.15)

These relations, verified by the numerical values, confirm the existence of a
universal scaling function, which has also been checked directly [72].

Boccara [73] has shown that this highway traffic flow model satisfies, with
other deterministic traffic flow models, a variational principle. For the sake
of simplicity, in our discussion of this variational principle, it is sufficient to
consider the case vmax = 2; that is, the radius 2 velocity rule

• • 11• → 0, • • 101→ 1, • • 100→ 2. (6.16)

According to velocity rule (6.16) and our choice of configuration represen-
tation, a cell occupied by a car with velocity v must be preceded by at least v
empty cells. Each configuration is, therefore, a concatenation of the following
four types of tiles:

2 e e

1 e 0 e

The first tile, which corresponds to cars moving at the speed limit vmax = 2,
is a perfect tile,; the next two tiles, corresponding to cars with a velocity less
than 2 (here 1 and 0), are defective tiles; and the last tile is a free empty cell ;
that is, an empty cell that is not part of either a perfect or a defective tile.

If ρ < ρc = 1/3 (left part of Fig. 6.4), only the first configurations contain
defective tiles. After a few time steps, these tiles progressively disappear, and
the last configurations contain only perfect tiles and free empty cells. Hence,
all cars move at vmax = 2, and the system is in the free-moving phase. If ρ > ρc
(right part of Fig. 6.4), at the beginning, the same process of annihilation of
defective tiles takes place, but, in this case, all defective tiles do not eventually
disappear. A few cars move at vmax, while other cars have either a reduced
speed (v = 1) or are stopped (v = 0). The system is in the jammed phase.

To analyze the annihilation process of defective tiles in generalized rule
184 models, we need to define what we call a local jam.

Definition 23. In deterministic generalized rule 184 models of traffic flow, a
local jam is a sequence of defective tiles preceded by a perfect tile and followed
by either a perfect tile or free empty cells.
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From this definition, it follows that:

Theorem 14. In the case of deterministic generalized rule 184 models of traf-
fic flow, the number of cars that belong to a local jam is a nonincreasing
function of time.

This result is a direct consequence of the fact that, by definition, a local
jam is preceded by a car that is free to move, and, according to whether a
new car joins the local jam from behind or not, the number of cars in the
local jam remains unchanged or decreases by one unit. Note that the jammed
car just behind the free-moving car leading the local jam itself becomes free to
move at the next time step. �

In order to establish the variational principle for any value of vmax, we will
first prove the following lemma.

Lemma 2. In the case of deterministic generalized rule 184 models of traffic
flow, the number of free empty cells is a nonincreasing function of time.

Let us analyze how the structure of the most general local jam changes in
one time step. A local jam consisting of n defective tiles is represented below:

· · · v1 ee · · · e︸ ︷︷ ︸
v1

v2 ee · · · e︸ ︷︷ ︸
v2

· · · · · · vn ee · · · e︸ ︷︷ ︸
vn

vmax ee · · · e︸ ︷︷ ︸
vmax

· · · ,

where for i = 1, 2, . . . , n, 0 ≤ vi < vmax. At the next time step, a car with
velocity vi located in cell k moves to cell k + vi. Hence, if the local jam is
followed by v0 free empty cells, where v0 ≥ 0, we have to distinguish two
cases:

1. If v0+v1 < vmax, then the number of jammed cars remains unchanged but
the leftmost jammed car, whose velocity was v1, is replaced by a jammed
car whose velocity is v0 + v1:

· · · vmax

vmax+v0︷ ︸︸ ︷
ee · · · e v1ee · · · ev2ee · · · e · · · · · ·vnee · · · evmaxee · · · e · · ·

· · · e(v0 + v1)ee · · · ev2ee · · · e · · · · · · vnee · · · evmaxee · · · e · · ·
2. If v0 + v1 ≥ vmax, then the local jam loses its leftmost jammed car:

· · · ev1ee · · · ev2ee · · · e · · · · · · ·vnee · · · evmaxee · · · e · · ·
· · · vmax ee · · · e︸ ︷︷ ︸

vmax+v′0

v2ee · · · e · · · · · · vnee · · · evmaxee · · · e · · ·

and, at the next time step, the local jam is followed by v0 + v1 − vmax =
v′0 < v0 free empty cells.

If we partition the lattice in tile sequences whose endpoints are perfect
tiles, then, between two consecutive perfect tiles, either there is a local jam,
and the proof above shows that the number of free empty cells between the
two perfect tiles cannot increase, or there is no local jam, and the number of
free empty cells between the two perfect tiles remains unchanged. �
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Remark 18. If a configuration contains no perfect tiles, then it does not contain free
empty cells. Such a configuration belongs, therefore, to the limit set, and as we shall
see below, the system is in its steady state. On a circular highway, if a configuration
contains only one perfect tile, the reasoning above applies without modification.

Remark 19. The proof above shows that at each time step, the rightmost jammed
car of a local jam moves one site to the left. Local jams can only move backwards.

We can now prove the following variational principle:

Theorem 15. In the case of deterministic generalized rule 184 models of traf-
fic flow, for a given car density ρ, the average car flow is a nondecreasing
function of time and reaches its maximum value in the steady state.

If L is the lattice length, N the number of cars, and Nfec(t) the number
of free empty cells at time t, we have

Nfec(t) = L−N −
N∑

i=1

vi(t)

since at time t, car i is necessarily preceded by vi(t) empty cells. Dividing by
L, we obtain

Nfec(t)
L

= 1− N

L
− N

L

1
N

N∑

i=1

vi(t).

Hence, for all t,
ρfec(t) = 1− ρ− ρ〈v〉(ρ, t), (6.17)

where ρfec(t) is the density of free empty cells at time t and 〈v〉(ρ, t) the
average car velocity at time t for a car density equal to ρ. This last result
shows that when time increases, since the density of free empty cells cannot
increase, the average car flow ρ〈v〉(ρ, t) cannot decrease. �

The annihilation process of defective tiles stops when there are either no
more defective tiles or no more free empty cells. Since a perfect tile consists
of vmax + 1 cells, if the car density ρ is less than the critical density ρc =
1/(vmax+1), there exist enough free empty cells to annihilate all the defective
tiles, and all cars eventually become free to move. If ρ > ρc, there are not
enough free empty cells to annihilate all defective tiles, and eventually some
cars are not free to move at vmax. At the end of the annihilation process,
all subsequent configurations belong to the limit set, and the system is in
equilibrium or in the steady state.

Note that the existence of a free-moving phase for a car density less than
ρc = 1/(vmax + 1) can be seen as a consequence of Relation (6.17). When
t goes to infinity, according to whether ρfec is positive or zero, this relation
implies

〈v〉(ρ,∞) = min
(

1− ρ
ρ

, vmax

)
.
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If the system is finite, its state eventually becomes periodic in time, and
the period is equal to the lattice size or one of its submultiples.

Since local jams move backwards and free empty cells move forwards, equi-
librium is reached after a number of time steps proportional to the lattice size.

Remark 20. In the case of rule 184, the existence of a free-moving phase for a particle
density ρ less than the critical density ρc = 1/2 obviously implies that the average
velocity 〈v〉(ρ, t), as a function of time t, is maximum when t → ∞. For ρ > 1/2, this
property is still true since the dynamics of the holes (empty sites) is governed by the
conjugate of rule 184 (i.e., rule 226),10 which describes exactly the same dynamics
as Rule 184 but for holes moving to the left. Therefore, for all values of the particle
density, the average velocity takes its maximum value in the steady state.

Recently, many papers on the application of statistical physics to vehicular
traffic have been published. For a review see, for example, Chowdhury et al.
[108].

Example 39. Pedestrian traffic. While considerable attention has been paid to
the study of car traffic since the early 1990s, comparatively very few cellular
automaton models of pedestrian dynamics have been published. In contrast
with cars, pedestrians can accelerate and brake in a very short time, and their
average velocity is sharply peaked.

Pedestrian traffic models can provide valuable tools to plan and design a
variety of pedestrian areas such as shopping malls, railway stations, or airport
terminals.

One of the first pedestrian traffic models is due to Fukui and Ishibashi [171,
172], who studied pedestrians in a passageway moving in both directions. The
passageway is represented as a square lattice of length L and width W < L
with periodic boundary conditions in which each cell is either occupied by
one pedestrian or empty. Pedestrians are divided in two groups walking in
opposite directions. Eastbound pedestrians may move only at odd time steps,
while westbound pedestrians may move only at even time steps. At each odd
time step, an eastbound pedestrian moves to his right-nearest cell when it is
empty. If this cell is occupied by another eastbound pedestrian, he does not
move, but if it is occupied by a westbound pedestrian, he tries to change lanes.
At each even time step, a westbound pedestrian moves to his left-nearest cell
when it is empty. If this cell is occupied by another westbound pedestrian,
he does not move, but if it is occupied by an eastbound pedestrian, he tries
to change lanes. When a pedestrian cannot move forward, he tries to change
lanes according to the following rules:

10 If f is an n-input two-state deterministic cellular automaton rule, its conjugate,
denoted by Cf , is defined by

Cf(x1, x2, · · · , xn) = 1 − f(1 − x1, 1 − x2, · · · , 1 − xn).
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1. In the first model, called the sidestepping model,
(a) if both adjacent cells are empty, he moves to one of them chosen at
random giving precedence, however, to pedestrians moving in the same
direction without changing lanes,
(b) if only one cell is empty, he moves to this cell, here again giving
precedence to a pedestrian moving without changing lanes, and
(c) if none is empty, he does not move.

2. In a second model, called the diagonal-stepping model, instead of trying
to move to an adjacent cell, the pedestrian tries to move to one of the
cells in front of the adjacent cells – in the direction of motion – applying
the same rule as in the first model.

In their first paper, Fukui and Ishibashi study the problem of one west-
bound pedestrian walking across the passageway among a fixed density ρ of
eastbound pedestrians.

In the case of the sidestepping model, they find that for ρ ≤ ρc = (W −1)/
2W , the average flow of eastbound pedestrians grows linearly with ρ; for
ρc ≤ ρ ≤ 1 − ρc, the flow remains constant; and for 1 − ρc < ρ ≤ 1, the
flow decreases linearly with ρ and becomes equal to zero for ρ = 1. In the
limit W → ∞, as it should be, ρc = 1/2.11 Phase transitions at ρ = ρc and
ρ = 1− ρc are second order.

In the case of the diagonal-stepping model, for ρ ≤ 1−ρc, the average flow
of eastbound pedestrians grows linearly with ρ and then decreases linearly to
reach zero for ρ > 1− ρc. At ρ = 1− ρc, the phase transition is second order.

In their second paper, Fukui and Ishibashi consider an equal number of
westbound and eastbound pedestrians walking along a passageway who avoid
collisions trying first to move to one of the cells in front of the adjacent
cells, or, if these cells are occupied, trying to move to one of the adjacent
cells. Numerical simulations seem to indicate that as a function of pedestrian
density, the system exhibits a first-order phase transition.

Adopting a slightly different point of view, it is possible to build up a much
simpler purely deterministic bidirectional pedestrian traffic model. Consider
a square lattice of length L and width W < L with periodic boundary con-
ditions in which Nw and Ne cells are, respectively, occupied by westbound
and eastbound pedestrians, with Nw +Ne < LW . As in the Fukui–Ishibashi
models, a pedestrian moves forward to the cell in front of him if it is empty.
If this cell is occupied by another pedestrian moving in the same direction,
the pedestrian does not move, but if it is occupied by a pedestrian moving in
the opposite direction, the pedestrian moves to the cell in front of his right
adjacent cell (with respect to the moving direction), and if this cell is also
occupied, he moves to his right adjacent cell. If both cells are occupied, the
pedestrian does not move. In all cases, pedestrians who can move forward have

11 Refer to car traffic rule 184 and see Fig. 6.1.
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the right of way. Eastbound (resp. westbound) pedestrians move at odd (resp.
even) time steps. As a result of the lane-changing rule, to avoid collisions, the
local walking rule, which is of the form

s(i, j, t+ 1) = f

⎛

⎝
s(i+ 1, j − 1, t) s(i+ 1, j, t) s(i+ 1, j + 1, t)
s(i, j − 1, t) s(i, j, t) s(i, j + 1, t)

s(i− 1, j − 1, t) s(i− 1, j, t) s(i− 1, j + 1, t)

⎞

⎠ ,

where i ∈ {1, L} and j ∈ {1,W}, depends on a lesser number of variables
and is not probabilistic. Figure 6.5 shows an example of spontaneous lane
formation of pedestrians moving in the same direction.

Fig. 6.5. Multilane bidirectional pedestrian traffic. Lattice length: 100; lattice
width: 10; number of pedestrians: 150 moving to the left (light gray cells) and 150
to the right (black cells); number of iterations: 200. Empty cells are gray

A few other lattice models of pedestrian traffic have been studied [328–
330]. In the first paper, Muramatsu, Irie, and Nagatani consider a square
lattice of length L and width W < L whose sites are occupied by two types
of biased random walkers. That is, eastbound walkers cannot move west and
westbound walkers cannot move east, but both types may move either north
or south. For each walker, the respective probabilities of moving to any of the
three authorized neighboring sites depend upon the occupancy of these sites.
For instance, if all three sites are empty, a walker will move forward with
probability D + (1 − D)/3 and sideways with probability (1 − D)/3; if one
lateral site is occupied, then the walker will move forward with probability
D + (1 − D)/2 and laterally with probability (1 − D)/2. The probabilistic
walking rules depend, therefore, upon a unique parameter D called the drift
strength. Lateral walls are reflecting, and the right and left boundaries are
open. A constant flow of walkers enters the system at each of these open
boundaries. The walking rules are applied sequentially. In the case of a pas-
sageway, numerical simulations seem to indicate the existence of a first-order
jamming phase transition depending upon D and W .

A promising model has been recently proposed by Burstedde et al. [93].
Pedestrians move on a square lattice with at most one pedestrian per cell.
A 3 × 3 matrix M is associated with each pedestrian. The nine elements of
this matrix give the respective probabilities for a pedestrian to move to one
of the eight neighboring sites. The central element refers to the probability
of not moving. In the simple problem of bidirectional traffic in a passageway,
we only need two different types of matrices, one for pedestrians moving east
and the other for pedestrians moving west. More complex problems could be
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handled using many more different types of matrices. One of the key features
of this model is the existence of a floor field, which is a substitute for the long-
range interactions necessary to take into account the geometry of a building,
such as the existence of emergency exits. Actually, the authors introduce two
floor fields: the static floor field matrix S, which does not depend upon time
and the presence of pedestrians, is used to specify regions in space such as
doors, in contrast with the dynamic floor field matrix D, which is modified
by the presence of pedestrians and has its own dynamics and that is used to
represent, for instance, the trace left by pedestrian footsteps. The expression
of the probability for a pedestrian to move from site i to site j is then given
by an expression of the form

pij = AMijSijDij(1− nij),

where A is a normalization constant to ensure that for all i,
∑9

j=1 pij = 1 and
nij , the occupation number of the neighboring cell j of cell i. The system is
updated synchronously.

This model has been applied [244] to study a variety of situations such as
the evacuation of a large room through one or two doors, the evacuation of a
lecture hall, the formation of lanes in a long corridor, etc.

Remark 21. Cars and pedestrians are self-propelled particles that, as a result of local
interactions, exhibit self-organized collective motion. There exist many other sys-
tems that display similar collective behaviors, such as, for instance, flocks of birds,
schools of fish, or herds of quadrupeds. Cellular automata have rarely been used to
model these systems. Researchers have mostly used so-called off-lattice models. Sim-
ple two-dimensional models, closely related to the XY model of ferromagnetism,12

that exhibit flocking behavior have been proposed by different authors [425, 436].
Essentially, these models consist of a system of particles located in a plane, driven
with a constant absolute velocity, whose direction is, at each time step, given by the
average direction of motion of the particles in their neighborhood with the addition
of some random perturbation. Such models undergo a second-order phase transition
characterized by an order parameter breaking the symmetry of the two-dimensional
rotational invariance of the average velocity of the particles. Extensive numerical
simulations have been performed [123] on systems of 104–105 particles in a 100×100
plane with periodic boundary conditions.13 Typically, the authors run simulations
of 105 time steps. If the noise is uniformly distributed in the interval [− 1

2
η, 1

2
η], the

average velocity of the particles (the order parameter) behaves as (ηc − η)β with
β = 0.42 ± 0.03, where ηc is the critical noise amplitude. For a fixed lattice size, ηc

12 The XY model is a system of two-dimensional spins (or classical vectors) located
at the sites of a d-dimensional lattice. Its Hamiltonian is H = −J

∑
ij Si · Sj ,

where the sum runs over all first-neighboring pairs of spins, and J is a positive
or negative constant. According to the Mermin–Wagner theorem [314], such a
system does not exhibit long-range order for d ≤ 2.

13 Particles are located anywhere in the plane; in particular, a lattice cell may con-
tain more than one particle.
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behaves as a function of the particle density ρ as ρκ with κ = 0.45± 0.05. When the
absolute value of the particle velocity v0 is equal to zero, this model coincides with
a diluted XY model and does not exhibit long-range order. For a nonvanishing v0,
the model belongs to a new universality class of dynamic, nonequilibrium models.

6.3 Eventually Number-Conserving Cellular Automata

In this section, we consider a new class of cellular automata that have been
defined and studied recently by N. Boccara [75] called eventually number-
conserving cellular automata (ENCCAs) that become number-conserving not
from the beginning but only after a finite number of time steps; that is, a
one-dimensional q-state n-input CA rule f is eventually number-conserving
if it satisfies condition (6.4) for all cyclic configurations of length L ≥ n after
a number of iterations of the order of L. Although it is undecidable whether
a one-dimensional cellular automaton obeys a given conservation law over its
limit set, it is however possible to obtain sufficient conditions to be satisfied
by a one-dimensional cellular automaton to be eventually number-conserving.
The characterization of this new class of cellular automata is challenging since
number-conserving are special cases of eventually number-conserving rules,
and it is not, therefore, obvious that eventual number conservation is a de-
cidable property. Although number-conserving CAs may be viewed as models
of isolated systems of interacting particles in which processes of annihilation
or creation of particles are forbidden, ENCCAs could model systems of inter-
acting particles that, as a result of the interactions, reach, after a time of the
order of L, a state in which the number of particles remains constant.

It would be tempting to define a ENCCA rule as a CA rule that emulates
at least one number-conserving rule. Here are two examples.

Example 40. Elementary CA rule 176, defined by

f176(0, 0, 0) = 0, f176(0, 0, 1) = 0, f176(0, 1, 0) = 0, f176(0, 1, 1) = 0,
f176(1, 0, 0) = 1, f176(1, 0, 1) = 1, f176(1, 1, 0) = 0, f176(1, 1, 1) = 1.

One can readily verify that it emulates number-conserving elementary CA
rules 184 and 240 (see Fig. 6.6). Configurations belonging to its limit set con-
sist of isolated 1s separated by sequences of 0s whose lengths depend upon
the initial configuration.

Example 41. Elementary CA rule 99 defined above emulates elementary CA
rule 170. Configurations of its limit set consist of alternating sequences of
0s and 1s with, depending upon the initial configuration, either a few pairs of
0s, separating two successive 1s, or a few pairs of 1s, separating two succes-
sive 0s (see Fig. 6.6).

But are there ENCCA rules that do not emulate a number-conserving
rule? Surprisingly, the answer is “yes,” and defining ENCCA rules as rules,
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Fig. 6.6. Spatiotemporal patterns of elementary CA rules 176 (top) emulating el-
ementary CA rules 184 and 240 and 99 (bottom) emulating elementary rule 170.
Initial configurations are random

that after a finite number of iterations emulate number-conserving rules would
be inadequate. Elementary CA rules 74 and 88 are examples of such rules.
They are defined by

f74(0, 0, 0) = 0, f74(0, 0, 1) = 1, f74(0, 1, 0) = 0, f74(0, 1, 1) = 1,
f74(1, 0, 0) = 0, f74(1, 0, 1) = 0, f74(1, 1, 0) = 1, f74(1, 1, 1) = 0,

and

f88(0, 0, 0) = 0, f88(0, 0, 1) = 0, f88(0, 1, 0) = 0, f88(0, 1, 1) = 1,
f88(1, 0, 0) = 1, f88(1, 0, 1) = 0, f88(1, 1, 0) = 1, f88(1, 1, 1) = 0.

They do not emulate number-conserving rules. Actually, the configuration
belonging to their limit sets contains all the 8 different triplets. Both spa-
tiotemporal patterns exhibit the propagation in opposite directions of similar
structures (see Fig. 6.7).

How can we find eventually number-conserving cellular automaton rules?
Here is an example. Four-input rule 50358 is number-conserving. It is de-
fined by

f50358(0, 0, 0, 0) = 0, f50358(0, 0, 0, 1) = 1, f50358(0, 0, 1, 0) = 1,
f50358(0, 0, 1, 1) = 0, f50358(0, 1, 0, 0) = 1, f50358(0, 1, 0, 1) = 1,
f50358(0, 1, 1, 0) = 0, f50358(0, 1, 1, 1) = 1, f50358(1, 0, 0, 0) = 0,
f50358(1, 0, 0, 1) = 0, f50358(1, 0, 1, 0) = 1, f50358(1, 0, 1, 1) = 0,
f50358(1, 1, 0, 0) = 0, f50358(1, 1, 0, 1) = 0, f50358(1, 1, 1, 0) = 1,
f50358(1, 1, 1, 1) = 1.
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Fig. 6.7. Spatiotemporal patterns of elementary CA rules 74 (top) and 88 (bottom).
Both rules do not emulate number-conservative rules. Initial configurations are
random

Fig. 6.8. Spatiotemporal pattern showing the limit set of 4-input rule 50358, where
left and right radii have been chosen equal, respectively, to 3 and 0

As shown in Fig. 6.8, its limit set, when the left and right radii are, respec-
tively, equal to 3 and 0, can be viewed as 2-row tiles of one of the following
types:

1,1,1,0,0,0,0 1,0,1,1,0,0,0
1,0,1,1,0,0,0 1,1,1,0,0,0,0

concatenated with any number of 2-row tiles of type:

0
0
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Among the 16 different quadruplets of 0s and 1s, the limit set of rule 50358
contains only the following ones:

(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1),
(0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 1, 1), (1, 1, 0, 0),

(1, 1, 1, 0).

Among all the four-input rules having the same images as rule 50358 for
all these 11 quadruplets, one can verify that only rules 16566, 49334, and
50870 are eventually number-conserving, and have the same limit set as rule
50358. Viewed as models of systems interacting particles, eventually number-
conserving cellular automaton rules are interesting in the sense that they obey
a kind of Darwinian principle by either annihilating unnecessary particles or
creating necessary ones.

6.4 Approximate Methods

If we assume that the finite set of states Q is equal to {0, 1}, the simplest
statistical quantity characterizing a cellular automaton configuration is the
average density of active (nonzero) sites denoted by ρ. If the initial config-
uration is random (i.e., if the states of the different cells are uncorrelated),
the iterative application of the cellular automaton rule introduces correlations
between these states.

Starting from an initial random configuration with a density of active sites
equal to ρ(0), the simplest approximate method to determine the density as
a function of time t is the mean-field approximation. This method neglects
correlations, introduced by the application of the cellular automaton rule,
between the states of the cells. This approximation gives a simple expression
of the form

ρ(t+ 1) = fMFA

(
ρ(t)

)
,

where fMFA is a map derived from the look-up table of the local rule f of the
cellular automaton assuming that the probability for a cell to be in state 1 at
time t is equal to ρ(t).

Example 42. Elementary cellular automaton rule 184. Since the preimages of
1 by rule f184 are

111, 101, 100, 011,

the probability ρ(t+ 1) for a cell to be active at time t+ 1 is the sum of the
following terms:

ρ(t)3, 2ρ(t)2(1− ρ(t)), ρ(t)(1 − ρ(t))2.
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The evolution of ρ described by the mean-field approximation for rule f184 is,
therefore, determined by the map

ρ �→ ρ3 + 2ρ2(1− ρ) + ρ(1− ρ)2.

Taking into account the identity
(
ρ+ (1− ρ))2 = 1, this yields

ρ(t+ 1) = ρ(t), (6.18)

which is exact since rule 184 is number-conserving. It can be shown that, for
all number-conserving cellular automaton rules, the mean-field approximation
always gives Relation (6.18). This, obviously, does not mean that for this set
of rules, the mean-field approximation is exact.

Fig. 6.9. Limit set of the elementary cellular automaton rule 18. One hundred
successive iterates of an initial random configuration have been discarded. The fol-
lowing 50 iterations are represented. Time is oriented downwards. Number of lattice
sites: 50

Example 43. Elementary cellular automaton rule 18. Since 1810 = 000100102,
the look-up table for rule 18 is

111 110 101 100 011 010 001 000
0 0 0 1 0 0 1 0

The preimages of 1 by rule f18 being

100 and 001,
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the mean-field map is
ρ �→ 2(1− ρ)2.

Within the framework of the approximation, in the steady state, the density
of active sites ρ∞ is thus given by the solution to the equation

ρ∞ = 2(1− ρ∞)2.

That is, ρ∞ = 1 − 1/
√

2 = 0.292893 . . .. This result is not exact. It can be
shown [59] that the configurations in the limit set consist of sequences of
0s of odd lengths separated by isolated 1s (see Fig. 6.9). More precisely, the
structure of the configurations belonging to the limit set results from random
concatenations of the 2-blocks 00 and 01 with equal probability. The exact
density of active sites of such configurations is thus equal to 1/4.

In order to build up better approximate methods than the mean field, we
have to take explicitly into account the existence of correlations between the
states of the cells. The local structure theory [205]14 is a systematic general-
ization of the mean-field approximation. In what follows, as a simplification,
the theory is presented assuming that the set of cell states Q is {0, 1}.

An n-block Bn is a sequence s1s2 . . . sn of length n, where for i = 1, 2, . . .,
si ∈Q. If Bn is the set of all n-blocks, an n-input rule f is a map from Bn
into Q. The truncation operators L and R map any n-block Bn to an (n− 1)-
block by truncation from the left or right, respectively. That is, if Bn =
s1s2 . . . sn,

LBn = s2s3 . . . sn and RBn = s1s2 . . . sn−1.

L and R commute. Applied to a 1-block, L and R yield the null-block.
A map Pn from the set of all blocks of length less than or equal to n into

[0, 1] is a block probability distribution of order n if it satisfies the following
self-consistency conditions:

1. For i = 0, 1, 2, . . . , n, Pn(Bi) ≥ 0.15

2. For i = 0, 1, 2, . . . , n, ∑

Bi∈Bi

Pn(Bi) = 1.

3. For all blocks B′ of length n− 1,

Pn(B′) =
∑

B stLB=B′
Pn(B).

4. For all blocks B′ of length n− 1,

Pn(B′) =
∑

B stRB=B′
Pn(B).

In B stLB = B′ and B stRB = B′, “st” stands for “such that.”

14 This paper can be downloaded from: http://www-users.med.cornell.edu/

jdvicto/pdfs/guvikn87.pdf.
15 Since there is only one null-block, its probability is equal to 1.
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Satisfaction of these last two conditions together implies that the proba-
bility of any block in the domain of Pn is the sum of the probabilities of blocks
that contain the given block at a particular position.

For example, considering all 3-blocks

B3 = {000, 001, 010, 011, 100, 101, 110, 111},

the probability distribution P3 must satisfy the conditions

P3(00) = P3(000) + P3(001) = P3(000) + P3(100),
P3(01) = P3(010) + P3(011) = P3(001) + P3(101),
P3(10) = P3(100) + P3(101) = P3(010) + P3(110),
P3(11) = P3(110) + P3(111) = P3(011) + P3(111).

These four constraints on P3 imply that only four (22) parameters are needed
to describe P3 instead of eight (23). In general, for Pn, 2n−1 parameters are
needed. Note that the conditions

P3(0) = P3(00) + P3(01) = P3(00) + P3(10),
P3(1) = P3(10) + P3(11) = P3(01) + P3(11),

do not further restrict the number of parameters.
The problem now is to construct block probability distributions satisfying

the consistency relations. Given a block probability distribution Pn, we want
to define a process to generate block probability distributions Pm for m > n.

It is reasonable to assume that although the iterative application of a
cellular automaton rule produces configurations in which nearby cells are cor-
related, these correlations die away with increasing cell separation. That is,
for a block B that is long enough, the conditional probability of finding the
block B augmented by a cell in state s on the right does not significantly
depend upon the state of the left-most cell of B. Then,

P (Bs)
P (B)

=
P (LBs)
P (LB)

or

P (Bs) =
P (LBs)P (B)

P (LB)
.

This last formula should be symmetric between the addition of cells to the
right or left of B; changing Bs in B, B in RB, and LB in LRB, it can be
written under the symmetric form

P (B) =
P (LB)P (RB)
P (LRB)

.
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We shall use this relation to define an operator � mapping an n-block prob-
ability distribution Pn to an (n + 1) probability distribution �(Pn), which
gives the probability of (n+ 1)-blocks B by

�
(
Pn(B)

)
=
Pn(LB)Pn(RB)

Pn(LRB)
. (6.19)

Since �(Pn) = Pn for blocks of length n or less, we have to verify that the
consistency relations are satisfied for blocks of length n+ 1.

Let B′ and B be blocks of length n and n+ 1, respectively; then

∑

B stLB=B′
�(Pn)(B) =

∑

B stLB=B′

Pn(LB)Pn(RB)
Pn(LRB)

=
∑

B stLB=B′

Pn(B′)Pn(RB)
Pn(RB′)

=
Pn(B′)
Pn(RB′)

∑

B stLB=B′
Pn(RB).

If B′′ = RB, then LB = B′ implies LRB = RB′ = LB′′, and the relation
∑

B′′ stLB′′=RB′
Pn(B′′) = Pn(RB′)

shows that ∑

B stLB=B′
Pn(RB) = Pn(RB′),

which yields ∑

B stLB=B′
�(Pn)(B) = Pn(B′).

Replacing the operator L by R, we also obtain
∑

B stRB=B′′
�(Pn)(B) = Pn(B′′).

Moreover,

∑

B∈Bn+1

�(Pn)(B) =
∑

B′∈Bn

∑

B stLB=B′

Pn(RB)Pn(LB)
Pn(LRB)

=
∑

B′∈Bn

Pn(B′)

= 1.

Example 44. Traffic flow models. In Example 38, we studied a cellular automa-
ton model of traffic flow generalizing rule 184 for a speed limit vmax = 2. Here
we show how to apply the local structure theory to this model.
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To construct a local structure approximation, it is more convenient to rep-
resent configurations of cars as binary sequences, where 0s represent empty
spaces and 1s represent cars. Since for vmax = 2, the speed of a car is deter-
mined by the states of, at most, two sites in front of it,16 the minimal block
size to obtain nontrivial results is 3 (the site occupied by a car plus two sites
in front of it). In what follows, we limit our attention to order-three local
structure approximation.

Using 3-block probabilities, we can write a set of equations describing the
time evolution of these probabilities,

Pt+1(σ2σ3σ4)

=
∑

si∈{0,1}
i=0,1,...,6

w(σ2σ3σ4 | s0s1s2s3s4s5s6)Pt(s0s1s2s3s4s5s6), (6.20)

where Pt(σ2σ3σ4) is the probability of block σ2σ3σ4 at time t, and w(σ2σ3σ4 |
s0s1s2s3s4s5s6) is the conditional probability that the rule maps the seven-
block s0s1s2s3s4s5s6 into the three-block σ2σ3σ4. States of lattice sites at
time t are represented by s variables, while σ variables represent states at
time t + 1, so that, for example, s3 is the state of site i = 3 at time t, and
σ3 is the state of the same site at time t+ 1. Conditional probabilities w are
easily computed from the definition of the rule.

Equation (6.20) is exact. The approximation consists of expressing the
seven-block probabilities in terms of three-block probabilities using Rela-
tion (6.19). That is,

Pt(s0s1s2s3s4s5s6) =
Pt(s0s1s2)Pt(s1s2s3)Pt(s2s3s4)Pt(s3s4s5)Pt(s4s5s6)

Pt(s1s2)Pt(s2s3)Pt(s3s4)Pt(s4s5)
, (6.21)

where Pt(sisi+1) = Pt(sisi+10)+Pt(sisi+11) for i = 1, . . . , 4. Equations (6.20)
and (6.21) define a dynamical system whose fixed point approximates three-
block probabilities of the limit set of the cellular automaton rule. Due to the
nonlinear nature of these equations, it is not possible to find the fixed point
analytically. It can be done numerically.

From the knowledge of three-block probabilities Pt(s2s3s4), different quan-
tities can be calculated.17

We have seen that the expression of the average velocity 〈v〉(ρ,∞) in the
steady state as a function of the car density ρ can be determined exactly by
(6.12). As a test of the local structure theory, we can check that the value of
the average velocity as a function of ρ, which is given by

〈v〉(ρ,∞) = 2P∞(100) + P∞(101),
16 As a cellular automaton rule, it is the 4-input rule 43944. See Footnote 9.
17 The local structure theory and numerical simulations have been used by Boccara

and Fukś [72] to determine critical exponents. See Example 38.
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agrees with the exact relation. The car density is given by

ρ = Pt(1) = Pt(100) + Pt(101) + Pt(110) + Pt(111).

More interestingly, we can determine the velocity probability distribution in
the steady state; that is, the probabilities P (v = 0), P (v = 1), and P (v = 2)
for a car velocity to be equal to 0, 1, or 2 as a function of car density in the
limit t→∞. These probabilities are given by

P (v = 0) = P∞(110) + P∞(111),
P (v = 1) = P∞(101),
P (v = 2) = P∞(100).

For 0 < ρ ≤ ρc = 1/3, P (v = 0) = 0, P (v = 1) = 0, and P (v = 2) = 1.
For ρc ≤ ρ ≤ 1, the velocity probability distributions obtained from the
expressions above are represented in Fig. 6.10.
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Fig. 6.10. Velocity probability distributions for the deterministic car traffic flow
model with vmax = 2 determined using the local structure theory



6.5 Generalized Cellular Automata 247

6.5 Generalized Cellular Automata

In this section, we define a new class of evolution operators that contains as
particular cases all cellular automaton global evolution rules.18 In the follow-
ing discussion, we suppose that the finite set of cell states Q coincides with
{0, 1}. Moreover, we may always assume that the radii r� and rr of the cellular
automaton local rule f are equal by formally expressing f as a function of
2r+ 1 variables, where r = max{r�, rr}. Under that form, f does not depend
upon the values of the extra |r� − rr| variables.19

Let St : i �→ s(i, t) be the state of the system at time t, and put

σ(i, t) =
∞∑

n=−∞
s(i+ n, t)p(n),

where p is a given probability measure on the set of all integers Z
20; that is,

a nonnegative function such that

∞∑

n=−∞
p(n) = 1.

Since s(i, t) ∈ {0, 1}, for all i ∈ Z and t ∈ N, it is clear that σ(i, t) ∈ [0, 1].
The state St+1 of the system at time t+ 1 is then determined by the function

i �→ s(i, t+ 1) = IA(σ(i, t)),

where IA is a given indicator function on [0, 1], that is, a function such that
for all x ∈ [0, 1],

IA(x) =

{
1, if x ∈ A ⊂ [0, 1],
0, otherwise.

Since the state St+1 at time t + 1 is entirely determined by the state St at
time t, the probability measure p, and the subset A of [0, 1], there exists a
unique mapping Fp,A : S → S such that

St+1 = Fp,A(St).

Fp,A is an evolution operator defined on the state space S = {0, 1}Z.

18 This result had been derived first for a restricted set of rules by Boccara et al. [70].
19 Note that the set of all radius r rules contains all n-input rules for n ≤ 2r + 1.

For example, a rule f with r� = 0 and rr = 1 may be represented as a function of
three variables (x1, x2, x3) �→ f(x1, x2, x3) satisfying, for Q = {0, 1}, the condition
f(x1, x2, x3) = f(1 − x1, x2, x3).

20 The expression “probability measure” does not imply that we are considering
stochastic cellular automata. A probability measure is just a finite measure such
that the measure of the whole space is equal to 1.
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Theorem 16. Let Ff be a cellular automaton global rule on S = {0, 1}Z

induced by a local rule f ; then, there exists an evolution operator Fp,A such
that for any configuration x ∈ S, Fp,A(x) = Ff (x).

The set of all configurations with prescribed values at a finite number
of sites is called a cylinder set. Cellular automaton rules being translation-
invariant, we only need to consider cylinder sets centered at the origin. Since
we assumed that both radii of the local rule are equal to r, we are inter-
ested in the 22r+1 cylinder sets associated with the different (2r + 1)-blocks
(x−r, x−r+1, . . . , xr). Each (2r+ 1)-block may be characterized by the binary
number νr = x0x−1x1x−2x2 · · ·x−rxr; that is,

νr =
r∑

n=1

x−n22r−2n+1 +
r∑

n=0

xn22r−2n.

The cylinder set corresponding to a specific (2r+1)-block is denoted C(r, νr).
For any configuration x belonging to the cylinder set C(r, νr), the set of

all numbers

ξ
(
C(r, νr)

)
=

∞∑

n=−∞
xnp(n)

belongs to the subinterval (called a C-interval in what follows)
[
ξmin

(
C(r, νr)

)
, ξmax

(
C(r, νr)

)] ⊂ [0, 1],

where

ξmin

(
C(r, νr)

)
=

r∑

n=−r
xnp(n)

and

ξmax

(
C(r, νr)

)
= ξmin

(
C(r, νr)

)
+

∞∑

|n|=r
p(n).

There are 22r+1 different ξmin

(
C(r, νr)

)
and as many different C-intervals.

If we want to define 222r+1
different Fp,A evolution operators, representing

the 222r+1
different cellular automaton local evolution rules f , we first have

to find a probability measure p such that the 22r+1 C-intervals are pairwise
disjoint. Then, according to the local rule f to be represented, we choose a
subset A of [0, 1] such that some of these C-intervals are strictly included in
A, whereas the others have an empty intersection with A. The only problem
is, therefore, to find the conditions to be satisfied by p.

Let

p(n) =

⎧
⎪⎨

⎪⎩

β − 1
β2n

, if n < 0,

β − 1
β2n+1

, if n ≥ 0.
(6.22)
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We verify that for β > 1,
∞∑

n=−∞
p(n) = 1.

In the trivial case of cellular automaton rules with r = 0, we have the
following two C-intervals:

ξmin

(
C(0, 0)

)
= 0, ξmax

(
C(0, 0)

)
=

1
β
,

and
ξmin

(
C(0, 1)

)
=
β − 1
β

, ξmax

(
C(0, 1)

)
= 1.

These C-intervals are disjoint if

ξmin

(
C(0, 1)

)
> ξmax

(
C(0, 0)

)
(6.23)

or
β − 1
β

>
1
β

;

that is, for β > 2.
Increasing the radius by one unit, multiply the number of C-intervals by

4. That is, from each closed C-interval of the form
⎡

⎣
∑

|n|≤r
anp(n),

∑

|n|≤r
anp(n) +

∑

|n|>r
p(n)

⎤

⎦ ,

where (a−r, a−r+1, · · · , ar−1, ar) is a specific (2r+ 1)-block, we generate four
closed C-intervals, each one being associated with one of the following (2r+3)-
blocks:

(0, a−r, a−r+1, · · · , ar−1, ar, 0), (0, a−r, a−r+1, · · · , ar−1, ar, 1),
(1, a−r, a−r+1, · · · , ar−1, ar, 0), (1, a−r, a−r+1, · · · , ar−1, ar, 1).

These new C-intervals are disjoint if, and only if, the following three conditions
are satisfied:

p(r + 1) >
∞∑

|n|=r+2

p(n), (6.24)

p(−r − 1) > p(r + 1) +
∞∑

|n|=r+2

p(n), (6.25)

p(−r − 1) + p(r + 1) > p(−r − 1) +
∞∑

|n|=r+2

p(n). (6.26)
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Conditions (6.24) and (6.26) are identical. Therefore, replacing p(n) by its
expression, and noting that

∞∑

|n|=r+2

p(n) =
1

β2r+3
,

we have finally to satisfy the conditions

β − 1
β2r+3

>
1

β2r+3
and

β − 1
β2r+2

>
β − 1
β2r+3

+
1

β2r+3
=

1
β2r+2

.

That is, β has to be greater than 2.
Therefore, the global evolution rule induced by any radius r cellular au-

tomaton local rule f can be represented as an evolution operator Fp,A, where
the probability measure p is given by (6.22) for β > 2 and A a subset of [0, 1]
that, according to f , includes some C-intervals, whereas the others have an
empty intersection with it. A is not unique. �

Example 45. Radius 1 rules. The table below lists the eight different C-
intervals for β = 2.5.

Triplet νr C-Interval Triplet νr C-Interval

(0,0,0) 0 [0, 0.064] (0,1,0) 4 [0.6, 0.664]
(0,0,1) 1 [0.096, 0.16] (0,1,1) 5 [0.696, 0.76]
(1,0,0) 2 [0.24, 0.304] (1,1,0) 6 [0.84, 0.904]
(1,0,1) 3 [0.336, 0.4] (1,1,1) 7 [0.936, 1]

Using this table, we can represent any elementary cellular automaton
global evolution rule. For example, the global rule induced by local rule 18
(see Example 43), defined by

f18(x1, x2, x3) =

{
1, if (x1, x2, x3) = (0, 0, 1) or (1, 0, 0),
0, otherwise,

(6.27)

may be represented by an evolution operator Fp,A, where p is given by (6.22)
with β = 2.5, and A is any subset of [0, 1] containing the union [0.096, 0.16]∪
[0.24, 0.304] but whose intersection with all the other six C-intervals is empty.
In particular, we could choose A = [0.09, 0.31], illustrating the fact that A is
not unique.

Remark 22. In the process described above, four new closed intervals, necessary to
represent radius (r + 1) rules, are obtained by removing three open intervals from
each closed C-interval used to represent radius r rules. This process is reminiscent
of the recursive construction of the triadic Cantor set (see Example 34). In the limit
r → ∞ (i.e., when all open intervals have been removed), we obtain a Cantor-like
set Σ; that is, a closed set with no interior points and such that all points are limit
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points (see page 194, Footnote 21).21 This set consists of all the numbers represented
by expansion of the form

σ(x) =
∞∑

n=−∞
xnp(n), (6.28)

where p is given by (6.22) for β > 2 and for all n ∈ Z, xn ∈ {0, 1}. The right-hand
side of (6.28) is the expansion of σ(x) in (nonintegral) base β.22
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Fig. 6.11. Lebesgue measure of the Cantor set Σ as a function of β

The Lebesgue measure of Σ is obtained by subtracting from 1 the sum of the
lengths of all the removed intervals. That is,

1 − β − 2

β
− 2

∞∑

r=0

β − 2

β2r+2
− 4

∞∑

r=0

β − 2

β2r+3
= 1 − β − 2

β
− 2(β − 2)

β2 − 1
− 4(β − 2)

β(β2 − 1)

=
6

β(β2 − 1)
.

As shown in Fig. 6.11, the Lebesgue measure of Σ is equal to 1 for β = 2 (Σ coincides,
in this case, with the set of all numbers of the interval [0, 1] in base 2) and goes to
zero as β tends to infinity. For a finite value of β, Σ has a nonzero Lebesgue measure
(equal, for example, to 0.457143 for β = 2.5).23

21 Let x(1) and x(2) be two elements of S = {0, 1}Z; the distance between the two
corresponding points σ(x(1)) and σ(x(2)) in Σ is defined by

d
(
σ(x(1)), σ(x(2))

)
=

∞∑

n=−∞
|x(1)

n − x(2)
n |p(n),

where p(n) is given by (6.22).
22 In the mathematical literature, these representations of a real number of the

interval [0, 1] are called β-expansions. For a review of their properties, see
Blanchard [55].

23 On Cantor-like sets, see Boccara [69].
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Remark 23. An interesting feature of the definition of the space Fp of evolution
operators for a given probability measure p is that it is possible to define the dis-
tance d(Fp,A1 , Fp,A2) between two evolution operators Fp,A1 and Fp,A2 . The basic
property of d, defined on Fp, is that the distance between two different evolution
operators (that is, two operators associated with two different subsets A1 and A2 of
[0, 1]) should be zero if the evolution operators Fp,A1 and Fp,A2 represent the same
evolution rule (remember, the subset A defining Fp,A is not unique).

The distance d : Fp → [0, 1] is defined by

d(Fp,A1 , Fp,A2) =

∫ 1

0

|IA1(σ) − IA2(σ)|dF (σ), (6.29)

where dF (σ) is a measure we have to define. The best way to understand the meaning
of this measure is to use the language of probability theory. Let (Xn)n∈Z be a doubly
infinite sequence of identically distributed Bernoulli random variables such that for
all n ∈ Z,

P (Xn = 0) = P (Xn = 1) = 1
2
,

and consider the cumulative distribution function F of the random variable

∞∑

n=−∞
Xnp(n),

that is, the function F : [0, 1] → [0, 1] such that24

F (σ) = P

( ∞∑

n=−∞
Xnp(n) ≤ σ

)

.

In other words, F (σ) is the probability that the random variable
∑∞

n=−∞ Xnp(n)
does not exceed σ. F is a singular measure such that F (0) = 0 and F (1) = 1. It
is represented in Fig. 6.12. The meaning of the distance d(Fp,A1 , Fp,A2) defined by
(6.29) becomes clear. It is the measure of the symmetrical difference between the sets
A1 and A2, that is, the set of all numbers σ(x) ∈ [0, 1] that belong to A1 XOR A2.
Hence

d(Fp,A1 , Fp,A2) =

∫

A1	A2

dF (σ),

where A�A2 is the symmetrical difference (A1 ∪ A2)\(A1 ∩ A2). For example, the
distance between rule 18 defined by (6.27) and rule 22 defined by

f22(x1, x2, x3) =

{
1, if (x1, x2, x3) = (0, 0, 1) or (1, 0, 0) or (0, 1, 0),

0, otherwise,
(6.30)

is, according to the table of C-intervals, the measure of any interval including the
C-interval [0.6, 0.664] but having an empty intersection with all the other seven
C-intervals. By construction of the distribution function F , all C-intervals for a given
radius are equally probable (have the same measure). Thus, the distance between
rule 18 and rule 22 is equal to 1/8. It does not depend upon the value of β for β > 2.

24 On probability theory, see, for example, Grimmett and Stirzaker [199].
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Fig. 6.12. Cumulative distribution function F : [0, 1] → [0, 1] of the random variable∑∞
n=−∞ Xnp(n) for β = 2.5

Remark 24. For a given p, the space F of all generalized cellular automaton evolution
operators {Fp,A | A ⊂ [0, 1]} defined on Z is a metric space for the distance given
by 6.29. It is easy to verify that the set of all cellular automaton global rules is
countable and dense in F, exactly as the set of positive rational numbers less than
1 is dense in the closed interval [0, 1]. Thus, just as any irrational number in the
interval [0, 1] can be approximated by a rational number in the same interval as
close as we want, any generalized cellular automaton evolution operator Fp,A can be
approximated by a cellular automaton global rule (i.e., with a finite radius) as close
as we want. In other words, given Fp,A, we can always find a sequence of cellular
automaton global rules (Ffn) induced by the local rules fn (n ∈ N) that converges
to Fp,A for the metric d defined by (6.29).

6.6 Kinetic Growth Phenomena

Kinetic growth phenomena are the result of stochastic growth processes taking
place in time. As a result, the systems we shall consider evolve according to
a probabilistic growth rule. Strictly speaking, the percolation phenomenon
described below is not a kinetic growth process, but it often plays an important
role in many kinetic growth processes.25 This is the reason why it is briefly
described in this section.

25 Many examples showing the unifying character of the percolation concept can be
found in de Gennes [180]).
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Example 46. Percolation models. Percolation processes were defined in the late
1950s by Broadbent and Hammersley [90]. Discussing the spread of a fluid
through a random medium, these authors distinguish diffusion processes, in
which the random mechanism is ascribed to the fluid, from percolation pro-
cesses, where, in contrast, the random mechanism is ascribed to the medium.
Among the examples given to illustrate what is meant by percolation pro-
cesses, Broadbent and Hammersley consider gas molecules (fluid) adsorbed
on the surface of a porous solid (medium). The gas molecules move through
all pores large enough to admit them. If p is the probability for a pore to be
wide enough to allow for the passage of a gas molecule, they discovered that
there exists a critical probability pc below which there is no adsorption in the
interior. Similarly, in a large orchard, if the probability p for an infectious dis-
ease to spread from one tree to its neighbors is less than a critical probability
pc, the disease will not spread through the orchard, only a small number of
trees will be infected.

There exist two types of standard percolation models: bond and site per-
colation models (see Figs. 6.13 and 6.14, respectively). In what follows, def-
initions are given for two-dimensional square lattices. Extension to higher
dimensionalities and different lattice symmetries is straightforward.

On a square lattice, the so-called Manhattan distance is defined by

d(x, y) = |x1 − y1|+ |x2 − y2|,
where x = (x1, x2) and y = (y1, y2) are two lattice sites. Viewed as a graph, a
square lattice consists of a set of vertices Z

2 (called sites) and a set of edges
(called bonds) E = {(x, y) | (x, y) ∈ Z

2, |x− y| = 1}. That is, the set of edges
is the set of all straight line segments joining nearest-neighboring vertices.

In the bond percolation model, we assume that each edge is either open
with a probability p, or closed with a probability 1 − p, independently of
all other edges. In contrast, in the site percolation model, we assume that
each vertex is either open or occupied with a probability p or closed or empty
with a probability 1 − p, independently of all other vertices. An alternating
sequence (x0, e0, x1, e1, x2, . . . , xn−1, en−1, xn) of distinct vertices xi and edges
ei−1 = (xi−1, xi) (i = 0, 1, 2, . . . , n) is called a path of length n. For the bond
(resp. site) percolation model, a path is said to be open (resp. closed) if all
its edges (resp. vertices) are open (resp. closed). Two different sites are said
to belong to the same open cluster if they are connected by an open path.
It can be shown that if the dimension of the lattice is greater than or equal
to 2, then the critical probabilities (or percolation thresholds) pbond

c and psite
c

for the bond and site percolation models, respectively, satisfy the relation26

0 < pbond
c < psite

c < 1. (6.31)

Except for a very few lattice structures, critical probabilities can be de-
termined using numerical simulations. For example, it can be shown that
26 See Grimmett [200].
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Fig. 6.13. Bond percolation model. In the left figure, the probability for a bond to
be open (darker bond) is p = 0.4 and, in the right figure, this probability is p = 0.7

Fig. 6.14. Site percolation model. In the left figure, the probability for a site to be
occupied (darker site) is p = 0.4 and, in the right figure, this probability is p = 0.7

for the square lattice, the bond critical probability pbond
c is exactly equal to

0.5 [200] while the site critical probability psite
c is only approximately equal to

0.592746 . . . [343].
While critical probabilities, for a given space dimensionality, depend on the

symmetry of the lattice and whether bond or site percolation is considered,
critical exponents are universal. Here are two exactly known results.27

1. The correlation length ξ diverges as |p− pc|−ν when p tends to pc either
from below or from above with ν = 4/3.

27 These exact results are obtained from the equivalence of both percolation models
with Potts models; see Wu [451].
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2. The percolation probability, which is the probability P∞(p) that a given
vertex belongs to an infinite cluster, is clearly equal to zero for p < pc,
but, for p > pc, it behaves as (p− pc)β with β = 5/36.28

The percolation process we have described is not the only one. Another
important process in applications is the directed percolation process. Consider
the square lattice represented in Fig. 6.15 in which open bonds are randomly
distributed with a probability p. In contrast with the usual bond percolation
problem, here bonds are directed downwards, as indicated by the arrows.

Fig. 6.15. A configuration of directed bond percolation on a square lattice

If we imagine a fluid flowing downwards from wet sites in the first row, one
problem is to find the probability P (p) that, following directed open bonds,
the fluid will reach sites on an infinitely distant last row. There clearly exists
a threshold value pc above which P (p) is nonzero. If the downwards direction
is considered to be the time direction, the directed bond percolation process
may be viewed as a two-input one-dimensional cellular automaton rule f such
that

s(i, t+ 1) = f
(
s(i, t), s(i+ 1, t)

)

=

⎧
⎪⎨

⎪⎩

0, if s(i, t) + s(i+ 1, t) = 0,
1, with probability p, if s(i, t) + s(i+ 1, t) = 1,
1, with probability 1− (1− p)2, if s(i, t) + s(i+ 1, t) = 2.

28 For percolation, the lower and upper critical space dimensions are, respectively,
equal to 1 and 6.
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If ρ is the density of wet (active) sites,29 the mean-field map is

ρ �→ 2pρ(1− ρ) + (1 − (1− p)2)ρ2 = 2pρ− p2ρ2.

This map shows the existence of a directed bond percolation threshold, or a
directed bond percolation probability pDBP

c , equal to 1/2. That is, within the
mean-field approximation, using the image of the flowing fluid, above pDBP

c ,
the fluid has a nonzero probability of reaching an infinitely distant last row.
These values are not exact. Numerical simulations show that pDBP

c equals
0.6445± 0.0005 for the bond model.30

The most general two-input one-dimensional totalistic probabilistic cellu-
lar automaton rule,31 called the Domany–Kinzel cellular automaton rule [131],
may be written as

s(i, t+ 1) = f
(
s(i, t), s(i+ 1, t)

)

=

⎧
⎪⎨

⎪⎩

0, if s(i, t) + s(i+ 1, t) = 0,
1, with probability p1, if s(i, t) + s(i+ 1, t) = 1,
1, with probability p2, if s(i, t) + s(i+ 1, t) = 2.

Directed bond percolation corresponds to p1 = p and p2 = 2p − p2. The
case p1 = p2 = p is also interesting; it describes the directed site percolation
process. In this case, numerical simulations show that the site percolation
probability pDSP

c = 0.7058± 0.0005.

Example 47. General epidemic process. The general epidemic process (see
Fig. 6.16) describes, according to Grassberger [95, 193], who studied its criti-
cal properties, “the essential features of a vast number of population growth
phenomena.” In its simplest version, the growth process can be described as
follows. Initially the cluster consists of the seed site located at the origin. At
the next time step, a nearest-neighboring site is randomly chosen. This site is
either added to the cluster with a probability p or rejected with a probability
1 − p. At all subsequent time steps, the same process is repeated: a nearest-
neighboring site of any site belonging to the cluster is selected at random,
and it is either added to the cluster with a probability p or rejected with a
probability 1−p. It is clear that there exists a critical probability pc such that
for p > pc, the seed site has a nonzero probability of belonging to an infinite
cluster.

In order to determine the critical behavior of the general epidemic model,
Grassberger performed extensive numerical simulations on a slightly different
model that belongs to the same universality class and whose static properties
29 The density ρ, which is equal to P (p), is the order parameter of the second-order

phase transition.
30 Refer to Kinzel [243] for critical exponents and scaling laws.
31 A cellular automaton n-input rule is said to be totalistic if it only depends upon

the sum of the n inputs.
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Fig. 6.16. Grassberger’s general epidemic process. The cluster represents the spread
of the epidemic to 4,000 sites for p = 0.6

are identical to a bond percolation model. In this model, every lattice site
of a two-dimensional square lattice is occupied by only one individual, who
cannot move away from it. The individuals are either susceptible, infected,
or immune. At each time step, every infected individual infects each nearest-
neighboring susceptible site with a probability p and becomes immune with
probability 1. For this model, the critical probability pc is exactly equal to
1/2. If, at time t = 0, all the sites of one edge of the lattice are infected, among
other results, Grassberger found that, at pc, the average number of immune
sites per row parallel to the initial infected row increases as a function of time
as tx, where the critical exponent x is equal to 0.807± 0.01.32

Example 48. Forest fires. A fire is characterized by its intensity,33 its direction
of travel, and its rate of spread.34 MacKay and Jan [287] proposed a simple
bond percolation model to describe the propagation of fire in a densely packed
forest from a centrally located burning tree. The fire is supposed to be of

32 For more detailed numerical results concerning this model, refer to
Grassberger [193].

33 Fire intensities are measured in kilocalories per second per meter of fire front.
Low-intensity fires of about 800–900 kcal s−1 m−1 are two-dimensional phenom-
ena, while high-intensity fires of about 15,000–25,000 kcal s−1 m−1 are three-
dimensional phenomena.

34 The rate of spread of a fire depends upon many factors: recent rainfall, oxygen
supply, wind velocity, age and type of trees, etc.
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low intensity so that its propagation can be viewed as a localized surface
phenomenon (i.e., a burning tree is only able to ignite its nearest neighbors).

Fig. 6.17. Burning forest after 70 time steps. Burning, burnt, and unburnt trees
are, respectively, represented by white, black, and gray squares. The forest is a
square lattice of size 101 × 101. In the left figure, the fire propagates isotropically
with a probability p = 0.6. In the right figure, the fire propagates northward (resp.
southward) with a probability pn = 0.65 (resp. ps = 1 − pn) and eastward or
westward with the same probability pe = pw = 0.6

More specifically, the authors assume that trees occupy the sites of a two-
dimensional (square)35 lattice. At each time step, the fire propagates from
burning trees to their nearest neighbors with probability p, and burning trees
become burnt. At t = 0, all sites are occupied by unburnt trees except for
the central tree, which is burning. This growth model is identical to the
model for the spread of blight in a large orchard mentioned by Broadbent
and Hammersley (see Example 46).36 It is also similar to the general epidemic
process.

Precise numerical simulations [347] show that the critical probability pc =
0.5. For p = pc, the total number of burnt trees M(t) grows as a function of
time t as tα, where α = 1.59, while the radius of gyration R(t) increases with
time as t2β , where β = 0.79.

It is possible to modify slightly the model above in order to take into ac-
count the influence of wind. We can, for example, suppose that the probability
for a tree to be ignited by a neighboring burning tree is equal to pn (resp.
ps = 1−pn) if it is located north (resp. south) of the burning tree and pe = pw
if it located either east or west of the burning tree (see Fig. 6.17). The critical

35 In their original paper, the authors assumed the lattice to be triangular.
36 See also Frish and Hammersley [167].
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probability pe,c = pw,c depends upon the value of the probability pn. Von
Niessen and Blumen [347] give the following values:

pn 0.5 0.6 0.7 0.8 0.9
pe,c 0.5 0.459 0.385 0.287 0.160

Example 49. Diffusion-limited aggregation. Cluster formation from a single
particle is of interest in many domains such as, for instance, dendritic growth,
flocculation, soot formation, tumor growth, and cloud formation. In 1981,
Witten and Sander [447] proposed a model for random aggregates in which
an initial seed particle is located at the center of a square lattice. A second
particle is added at some random site at a large distance from the origin.
This particle walks at random on the lattice until either it reaches a site ad-
jacent to the seed and stops or first reaches the boundary of the lattice and
is removed. A third particle is then introduced at a random distant point
and walks at random until either it joins the cluster or reaches the boundary
and is removed, and so forth. Figure 6.18 represents a (small) aggregate of
250 particles.

Fig. 6.18. Diffusion-limited aggregate of 250 particles

Numerical simulations showed that these structures have remarkable scal-
ing and universal properties [311, 312]. In particular, these aggregates are
fractals with a Hausdorff dimension equal to 5d/6, where d is the Euclidean
dimensionality.

In 1983 Meakin [313] and Kolb et al. [248] investigated simultaneously
a related model in which, in the initial state, N0 lattice sites are occupied.



6.7 Site-Exchange Cellular Automata 261

Clusters – which may consist of only one particle – are picked at random and
moved to a nearest-neighboring site selected at random. If a cluster contacts
one or more clusters, these clusters merge to form a larger cluster. Clusters
therefore grow larger and larger until one large cluster remains. Different
variants of this model have been considered. Clusters may move with a prob-
ability independent of their size or with a probability inversely proportional
to their size.

6.7 Site-Exchange Cellular Automata

A site-exchange cellular automaton is an automata network whose evolution
rule consists of two subrules:

1. The first subrule is a probabilistic cellular automaton rule such as, for
example, a “diluted” one-dimensional rule f defined by

s(i, t+ 1) = Xf
(
s(i− r�, t), s(i− r� + 1, t), . . . , s(i+ rr , t)

)
, (6.32)

where f is a one-dimensional deterministic cellular automaton rule with
left and right radii equal, respectively, to r� and rr , and X is a Bernoulli
random variable such that

P (X = 0) = 1− p and P (X = 1) = p.

When p = 1, rule (6.32) coincides with the deterministic cellular automa-
ton rule f .

2. The second subrule is a site-exchange rule defined as follows. An occupied
site (i.e., a site whose state value is 1) is selected at random and swapped
with another site (either empty or occupied) also selected at random. The
second site is either a nearest neighbor of the first site (short-range move)
or any site of the lattice (long-range move). Between the application of the
first subrule at times t and t+1, this operation is repeated 
m×ρ(m, t)×L�
times, where m is a positive real number called the degree of mixing, ρ(t)
the density of occupied sites at time t, L the total number of lattice sites,
and 
x� the largest integer less than or equal to x.

Site-exchange cellular automata were introduced by Boccara and Cheong
[61, 64] and used in theoretical epidemiology in which infection by contact
and recovery are modeled by two-dimensional probabilistic cellular automaton
rules applied synchronously, whereas the motion of the individuals, which is
an essential factor, is modeled by a sequential site-exchange rule.

While short-range moves are clearly diffusive moves on a finite-dimensional
lattice, long-range moves may be viewed as diffusive motion of the individuals
on an infinite-dimensional lattice. In order to help clarify the mixing process
that results from the motion of the individuals, it might be worthwhile to char-
acterize the mixing process as a function ofm and the lattice dimensionality d.



262 6 Spatial Models

Consider a random initial configuration c(0, ρ) of walkers with density ρ on
a d-dimensional torus Z

d
L. Select sequentially 
mρLd� walkers and move them

to a neighboring site also selected at random if, and only if, the randomly
selected neighboring site is vacant. Ld is the total number of sites of the
torus (finite lattice), and m represents the average number of tentative moves
per random walker since only a fraction of these moves are effective. The
expression at random means that all possible choices are equally probable.
Let c(mρLd, ρ) denote the resulting configuration.37

Theorem 17. The d-dimensional sequential multiple random walkers model
is equivalent to a one random walker model in which the walker has a probabil-
ity 1/2dρL to move either to the left or to the right and a probability 1−1/dρL
not to move, where ρ is the density of random walkers.

To simplify the proof, consider a one-dimensional torus (d = 1), and let
P (mρL, ρ, j) be the probability that the site j is occupied after mρL tentative
moves. P (mρL, ρ, j), is therefore, the average value 〈n(mρ, ρ, j)〉rw over all the
possible random walks starting from the same initial configuration. In order to
find the evolution equation of P (mρL, ρ, j), consider the set of configurations
in which n(mρL, ρ, j−1), n(mρL, ρ, j), and n(mρL, ρ, j+1) have fixed values,
whereas for all i �= j − 1, j, j + 1, n(mρL, ρ, i) takes any value with the
restriction that the total density is equal to ρ. Let px1x2x3(mρL, ρ, j) denote
the probability of a configuration such that

n(mρL, ρ, j − 1) = x1, n(mρL, ρ, j) = x2, n(mρL, ρ, j + 1) = x3.

The probability P (mρL+1, ρ, j) for site j to be occupied by a random walker
after mρL+ 1 tentative moves is the sum of different terms.

1. If site j is empty after mρL tentative moves, then at least one of its
nearest-neighboring sites has to be occupied. The probability for a given
site to be occupied being 1/ρL, and the probability to move either to the
right or to the left being equal to 1/2, the contribution to P (mρL+1, ρ, j)
is in this case

1
2ρL

(p001(mρL, ρ, j) + p100(mρL, ρ, j)) +
1
ρL

p101(mρL, ρ, j).

2. If site j is occupied by a random walker after mρL tentative moves, the
site has to remain occupied. The different contributions to P (mρL+1, ρ, j)
are, in this case, the sum of the following three terms:

(
1− 1

ρL

)
p010(mρL, ρ, j),

37 The following exact results were established by Boccara et al. [66].



6.7 Site-Exchange Cellular Automata 263

since the occupied site j should not be chosen to move,

1
2ρL

(
p011(mρL, ρ, j) + p110(mρL, ρ, j)

)
,

since the occupied site j should be selected to try to move to the neigh-
boring occupied site, and

p111(mρL, ρ, j).

Hence,

P (mρL+ 1, ρ, j) =
1

2ρL
(
p001(mρL, ρ, j) + p100(mρL, ρ, j)

)

+
(

1− 1
ρL

)
p010(mρL, ρ, j)

+
1

2ρL
(
p011(mρL, ρ, j) + p110(mρL, ρ, j)

)

+
1
ρL

p101(mρL, ρ, j) + p111(mρL, ρ, j).

Taking into account the relations

P (mρL, ρ, j − 1) = p100(mρL, ρ, j) + p101(mρL, ρ, j)
+ p110(mρL, ρ, j) + p111(mρL, ρ, j)

P (mρL, ρ, j) = p010(mρL, ρ, j) + p011(mρL, ρ, j)
+ p110(mρL, ρ, j) + p111(mρL, ρ, j)

P (mρL, ρ, j + 1) = p001(mρL, ρ, j) + p011(mρL, ρ, j)
+ p101(mρL, ρ, j) + p111(mρL, ρ, j),

we finally obtain the following discrete diffusion equation:

P (mρL+ 1, ρ, j) = P (mρL, ρ, j)

+
1

2ρL
(
P (mρL, ρ, j + 1) + P (mρL, ρ, j − 1)− 2P (mρL, ρ, j)

)
. (6.33)

For a d-dimensional torus, we would have obtained

P (mρL+ 1, ρ, j) = P (mρL, ρ, j)

+
1

2dρL

⎛

⎝
∑

i nn j

P (mρL, ρ, i)− 2dP (mρL, ρ, j)

⎞

⎠ , (6.34)
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where the summation runs over the 2d nearest neighbors i of j. This equation
may also be written as

P (mρL+ 1, ρ, j) =
(

1− 1
ρL

)
P (mρL, ρ, j)

+
1

2dρL

∑

i nn j

P (mρL, ρ, i), (6.35)

showing that the problem of ρLd random walkers on a d-dimensional torus
is equivalent to the problem of one random walker that may move to any
single neighboring site with probability 1/2dρLd or not move with probability
1− 1/ρLd. �

To characterize the mixing process, consider the Hamming distance

dH
(
c(0, ρ), c(nρLd, ρ)

)
=

1
Ld

Ld
∑

j=1

(
n(0, ρ, j)− n(mρLd, ρ, j)

)2
,

where n(0, ρ, j) and n(mρLd, ρ, j) are the occupation numbers of site j in
c(0, ρ) and c(mρLd, ρ), respectively.

If m is very large, c(0, ρ) and c(mρLd, ρ) are not correlated and the Ham-
ming distance, which is the average over space of

(
n(0, ρ, j)− n(mρLd, ρ, j)

)2

= n(0, ρ, j) + n
(
mρLd, ρ, j

)− 2n(0, ρ, j)n
(
mρLd, ρ, j

)
,

is equal to 2ρ(1− ρ).
Theorem 18. In the limit L → ∞, the average of the reduced Hamming
distance δH , defined by

δH(m, d, ρ) = lim
L→∞

〈
dH
(
c(0, ρ), c(nρLd, ρ)

)

2ρ(1− ρ)

〉

,

is a function of m and d only, i.e., it does not depend on ρ.

We shall first consider a complete graph (i.e., a graph in which any pair
of vertices are nearest neighbors). If the graph has N vertices, we have

P (mρN + 1, ρ, j) = P (mρN, ρ, j)

+
1

ρ(N − 1)N

N∑

k=1

(
P (mρN, ρ, k)− P (mρN, ρ, j)

)
. (6.36)
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Taking into account the relation

N∑

k=1

P (mρN, ρ, k) = ρN,

Equation (6.36) may also be written as

P (mρN + 1, ρ, j) =
(

1− 1
ρ(N − 1)

)
P (mρN, ρ, j) +

1
N − 1

. (6.37)

Since this equation involves only one site – a typical result of mean-field
equations – its solution is easy to obtain. We find

P (mρN, ρ, j) =
(

1− 1
ρ(N − 1)

)mρN (
n(0, ρ, j)− c)+ ρ.

Initial configurations of numerical simulations are random; hence, only
averages over all random walks and all initial configurations with a given
density ρ of random walkers are meaningful quantities. Averaging over all
random walks starting from the same initial configuration c(0, ρ) = {n(0, ρ, j) |
j = 1, 2, . . . , N}, the Hamming distance is

dH
(
c(0, ρ), c(mρN, ρ)

)
=

1
N

N∑

j=1

(n(0, ρ, j) + P (mρN, ρ, j)− 2n(0, ρ, j)P (mρN, ρ, j)) ,

that is,

dH
(
c(0, ρ), c(mρN, ρ)

)
= 2ρ− 2

N

N∑

j=1

n(0, ρ, j)P (mρN, ρ, j).

Replacing P (mρN, ρ, j) by its expression yields

n(0, ρ, j)P (mρN, ρ, j)

=

((
1− 1

ρ(N − 1)

)mρN (
n(0, ρ, j)− c)+ c

)

n(0, ρ, j)

=
(

1− 1
ρ(N − 1)

)mρN ((
n(0, ρ, j)

)2 − ρn(0, ρ, j)
)

+ ρn(0, ρ, j),

and, taking the average over space, we obtain

〈n(0, ρ, j)P (mρN, ρ, j)〉space

=
(

1− 1
ρ(N − 1)

)mρN (
〈(n(0, ρ, j)

)2〉space − ρ2
)

+ ρ2.
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Since 〈(n(0, ρ, j)
)2〉space = 〈n(0, ρ, j)〉space = ρ, letting N go to infinity, we

finally obtain 2ρ(1− ρ)(1 − e−m), i.e.,

δH(m,∞, ρ) = 1− e−m,

where the symbol ∞ refers to the fact that, in the limit N →∞, a complete
graph is equivalent to an infinite-dimensional lattice.

Consider now (6.33), and replace P (mρL, ρ, j) by its expression in terms
of its Fourier transform P̂ (mρL, ρ, k) defined by

P (mρL, ρ, j) =
1√
L

L∑

k=1

P̂ (mρL, ρ, k)e2iπk/L.

This yields

P̂ (mρL+ 1, ρ, k) =
(

1− 2
ρL

sin2

(
πk

L

))
P̂ (mρL, ρ, k)

and, therefore,

P̂ (mρL, ρ, k) =
(

1− 2
ρL

sin2

(
πk

L

))mρL
P̂ (0, ρ, k).

The average Hamming distance over all initial configurations is

1
N

L∑

j=1

〈(
P (0, ρ, j) + P (mρL, ρ, j)− 2P (0, ρ, j)P (mρL, ρ, j)

)〉
ic

= 2ρ− 2
L

L∑

k=1

〈P̂ (0, ρ, k)P̂ (0, ρ,−k)〉ic
(

1− 2
ρL

sin2

(
πk

L

))mρL
,

where 〈f(j)〉ic denotes the average over all initial configurations of f(j). Since

〈P̂ (0, ρ, k)P̂ (0, ρ,−k)〉ic

=
1
N

L∑

j1=1

L∑

j2=1

〈P (0, ρ, j1)P (mρL, ρ, j2)〉ice2iπk(j1−j2)/N ,

we find

2
L

L∑

k=1

〈P̂ (0, ρ, k)P̂ (0, ρ,−k)〉ic
(

1− 2
ρL

sin2

(
πk

L

))mρL

=
1
L2

(Lρ+ L(L− 1)ρ2) + (ρ− ρ2)
1
L

L−1∑

k=1

(
1− 2

ρL
sin2

(
πk

L

))mρL
.
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Finally, in the limit L → ∞, the average Hamming distance over all random
walks and all initial configurations is equal to

2ρ(1− ρ)
(

1−
∫ 1

0

e−2m sin2 πq dq
)
,

and the reduced Hamming distance is thus given by

δH(m, 1, ρ) = 1− e−mI0(m),

where the function I0, defined by

I0(m) =
1
π

∫ π

0

em cosu du,

is the modified Bessel function of the first kind of order zero. δH(m, 1, ρ)
does not, therefore, depend upon ρ. For large values of m, I0(m) behaves
as em/

√
2πm; hence, δH(m, 1, ρ) approaches unity as m tends to infinity as

1/
√
m.

Equation (6.34) could be solved in a similar way, and, in particular, we
would find that δH(m, d, ρ) does not depend upon ρ and approaches unity as
m tends to infinity as 1/

√
md.

For small m, it is easy to verify that for all d, the reduced Hamming
distance behaves as m. �

Example 50. Period-doubling route to chaos for a global variable of a one-
dimensional totalistic cellular automaton. As a first example of a site-exchange
cellular automaton, we shall study the behavior, as a function of the degree
of mixing m in the case of long-range moves, of the infinite-time limit density
of active sites ρ(∞,m) of the two-state one-dimensional radius r totalistic
cellular automaton rule 38 defined by

s(i, t+ 1) = Xf

⎛

⎝
j=r∑

j=−r
s(i+ j, t)

⎞

⎠ ,

where

f(x) =

{
1, if Smin ≤ x ≤ Smax,

0, otherwise.
(6.38)

The spatiotemporal pattern of the cellular automaton evolving according
to the radius 3 totalistic rule with Smin = 1 and Smax = 6 is represented in
Fig. 6.19. It can be shown [62] that the limit set of this cellular automaton

38 Totalistic cellular automaton rules of this type were studied in detail by Bidaux
et al. [54].
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Fig. 6.19. First 100 iterations of the radius 3 totalistic cellular automaton rule (6.38)
(with Smin = 1 and Smax = 6) starting from a random initial configuration with 25
nonzero sites. 0s and 1s are, respectively, represented by white and black squares.
Total number of lattice sites: 96

consists of sequences of 0s and 1s whose lengths are multiples of 6. The distri-
butions of 0s and 1s are identical, which implies that the asymptotic density
of nonzero sites is 1/2. The average number of sequences of length 6n per site
is 1

3 × 2n+3.
The prediction of the mean-field approximation is very bad. The mean-field

map given by

ρ �→ 1− ρ7 − (1 − ρ)7 = 7ρ(1− ρ)(1− 2ρ+ 3ρ2 − 2ρ3 + ρ4)

is chaotic.
Since the mean-field result should be correct when the number of ten-

tative moves per active site m tends to infinity, the asymptotic density of
active sites ρ(∞,m) should evolve chaotically when m is large enough. Inter-
estingly, increasing m from 0, Boccara and Roger [62] observed for ρ(∞,m) a
complete sequence of period-doubling bifurcations, as illustrated in Fig. 6.20.
In order to estimate the Feigenbaum number δ, some numerical simula-
tions were done on lattices having L = 1.6 × 107 sites to be able to locate
the first four bifurcations with a reasonable accuracy. The parameter values
of these bifurcation points are m1 = 0.340 ± 0.005, m2 = 0.655 ± 0.005,
m3 = 0.780± 0.001, and m4 = 0.813± 0.001, yielding δ1 = 2.5 and δ2 = 3.8,
where δn = (mn+1 −mn)/(mn+2 −mn+1).

Taking into account the very small number of bifurcations, these results
suggest that the period-doubling sequence has the universal behavior found
for maps with a quadratic maximum. Plotting ρ(t + 1,m) as a function of
ρ(t,m) for different values of m allowed verification of this hypothesis. Note
that ∂ρ(∞,m)/∂m is infinite at m = 0.
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Fig. 6.20. Bifurcation diagram for the asymptotic density of active sites ρ(∞,m) of
the radius 3 totalistic cellular automaton rule (6.38) (with Smin = 1 and Smax = 6).
The parameter m, which is the number of tentative moves per active site, is plotted
on the horizontal axis and varies from 0 to 1.7

Example 51. SIR epidemic model in a population of moving individuals. In an
SIR epidemic model, individuals are divided into three disjoint groups:

1. Susceptible individuals capable of contracting the disease and becoming
infective,

2. Infective individuals capable of transmitting the disease, and
3. Removed individuals who either have had the disease and are dead, or have

recovered and are permanently immune, or are isolated until recovery and
permanent immunity occur.

The possible evolution of an individual may, therefore, be represented by
the transfer diagram

S
pi−→ I

pr−→ R,

where pi denotes the probability for a susceptible to be infected and pr the
probability for an infective to be removed.

In a two-dimensional cellular automaton model, each site of a finite square
lattice is either empty or occupied by a susceptible or an infective.
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The spread of the disease is governed by the following rules:

1. Susceptibles become infective by contact (i.e., a susceptible may become
infective with a probability pi if, and only if, it is in the neighborhood
of an infective). This hypothesis neglects latent periods (i.e., an infected
susceptible becomes immediately infective).

2. Infectives are removed (or become permanently immune) with a prob-
ability pr. This assumption states that removal is equally likely among
infectives. In particular, it does not take into account the length of time
the individual has been infective.

3. The time unit is the time step. During one time step, the two preceding
rules are applied after the individuals have moved on the lattice according
to a specific rule.

4. An individual selected at random may move to a site also chosen at ran-
dom. If the chosen site is empty, the individual will move; otherwise, the
individual will not move. The set in which the site is randomly chosen
depends on the range of the move. To illustrate the importance of this
range, two extreme cases may be considered. The chosen site may either
be one of the four nearest neighbors (short-range move) or any site of the
graph (long-range move). If N is the total number of individuals on Z

2
L,

mN individuals, where the positive real number m is the degree of mixing,
are sequentially selected at random to perform a move. This sequential
process allows some individuals to move more than others.

This model assumes that the population is closed. It ignores births, deaths
by other causes, immigrations, and emigrations.

In order to have an idea of the qualitative behavior of the model, let us
first study its mean-field approximation.

Denoting by St, It, and Rt the respective densities of susceptible, infective,
and removed individuals at time t, we have

St+1 = ρ− It+1 −Rt+1,

It+1 = It + St
(
1− (1− piIt)4

)− prIt,
Rt+1 = Rt + prIt,

where ρ is a constant representing the total density of individuals.
From the equations above, it follows that as functions of t, St is positive

nonincreasing, whereas Rt is positive nondecreasing. Therefore, the infinite-
time limits S∞ and R∞ exist. Since It = ρ− St − Rt, it follows also that I∞
exists and satisfies the relation

R∞ = R∞ + prI∞,

which shows that I∞ = 0. In such a model, there is no endemic steady state.
If the initial conditions are

R0 = 0 and I0 ! S0,



6.7 Site-Exchange Cellular Automata 271

I1 is small, and we have

I1 − I0 = (4piS0 − pr)I0 +O(I2
0 ).

Hence, according to the initial value of the density of susceptible individuals,
we may distinguish two cases:

1. If S0 < pr/4pi, then I1 < I0, and since St is a nonincreasing function of
time t, It goes monotonically to zero as t tends to∞. That is, no epidemic
occurs.
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Fig. 6.21. Time evolution of the density of infective individuals for the one-
population SIR epidemic model using the mean-field approximation. The initial
densities of susceptible and infective individuals are, respectively, equal to 0.69 and
0.01. For pr = 0.6 and pi = 0.3, an epidemic occurs, whereas there is no epidemic
if, for the same value of pr, pi = 0.2

2. If S0 > pr/4pi, then I1 > I0. The density It of infective individuals
increases as long as St is greater than the threshold pr/zpi and then
tends monotonically to zero. An epidemic occurred.

This shows that the spread of the disease occurs only if the initial density
of susceptible individuals is greater than a threshold value. This threshold
theorem was established for the first time by Kermack and McKendrick [238]
using an epidemic model formulated in terms of a set of three differential
equations (see Example 8, page 58). It being, in general, very small, the second
recurrence equation of the model is well-approximated by

It+1 = It + 4piStIt − prIt,
which shows that the mean-field approximation is equivalent to a time discrete
formulation of the Kermack–McKendrick model. Figure 6.21 shows two typical
time evolutions of the density of infective individuals.
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In the numerical simulations done by Boccara and Cheong [61], the total
density of individuals was equal to 0.6, slightly above the site percolation
threshold in two dimensions for the square lattice (approximately equal to
0.592746 . . .) in order to be able to see cooperative phenomena. As the degree
of mixing m increases, as expected, the density of infective individuals tends
to the mean-field result. Long-range moves are a much more effective mixing
process. For instance, in the case of an epidemic with permanent removal,
simulation and mean-field results almost coincide if m = 2 for long-range
moves compared to m = 250 for short-range moves. In the case of infective
individuals recovering and becoming immune, the convergence to mean-field
behavior is somewhat slower since the presence of the inert immune population
on the lattice interferes with the mixing process.

As shown by Kermack and McKendrick [238], the spread of the disease
does not stop for lack of susceptible individuals. For any given value of m,
the stationary density of susceptible individuals S∞(m) can be small but is
always positive.

In the case of short-range moves and permanent removal, S∞(m) tends
to its mean-field value S∞(∞) as m−α with α = 1.14 ± 0.11. If, instead of
short-range moves, we consider long-range moves, the convergence to mean-
field behavior is faster: the exponent α is equal to 1.73±0.11. All these results
were obtained for pi = 0.5, pr = 0.3, and with 100× 100 lattices.

The results above show that the mean-field approximation is valid in the
limit m→∞. A recent analysis of the spatiotemporal behavior of the spread
of influenza for the epidemic of winter 1994–1995 [83] reveals a high degree of
mixing of the population, making mean-field models appropriate. A possible
explanation could be the change in transportation systems, allowing people to
move over greater distances more easily and more frequently than in the past.

Example 52. SIS epidemic model in a population of moving individuals. In an
SIS epidemic model, individuals are divided into two disjoint groups:

1. Susceptible individuals capable of contracting the disease and becoming
infective, and

2. Infective individuals capable of transmitting the disease to susceptibles.

If pi denotes the probability for a susceptible to be infected and pr the
probability for an infective to recover and return to the susceptible group,
the possible evolution of an individual may be represented by the following
transfer diagram:

S
pi−→ I

pr−→ S.

In a two-dimensional cellular automaton model, each site of a finite square
lattice is either empty or occupied by a susceptible or an infective.
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The spread of the disease is governed by the following rules.

1. Susceptible individuals become infected by contact (i.e., a susceptible may
become infective with a probability pi if, and only if, it is in the neigh-
borhood of an infective). This hypothesis neglects incubation and latent
periods: an infected susceptible becomes immediately infective.

2. Infective individuals recover and become susceptible again with a prob-
ability pr. This assumption states that recovery is equally likely among
infective individuals but does not take into account the length of time the
individual has been infective.

3. The time unit is the time step. During one time step, the two preceding
rules are applied synchronously, and the individuals move on the lattice
according to a specific rule.

4. As in the model above, an individual selected at random may perform
either short-range or long-range moves.

Here again, this model assumes that the population is closed. It ignores
births, deaths by other causes, immigrations, or emigrations.

Let us first study the qualitative behavior of the model using the mean-
field approximation.

Denoting by St and It the respective densities of susceptible and infective
individuals at time t, we have

St+1 = ρ− It+1,

It+1 = It + St
(
1− (1− piIt)4

)− prIt,

where ρ is a constant representing the total density of individuals. Eliminating
St in the second equation yields

It+1 = (1− pr)It + (ρ− It)
(
1− (1− piIt)4

)
.

In the infinite-time limit, the stationary density of infective individuals I∞
satisfies the equation

I∞ = (1− pr)I∞ + (ρ− I∞)
(
1− (1− piI∞)4

)
.

I∞ = 0 is always a solution to this equation. This value characterizes the
disease-free state. It is a stable stationary state if, and only if, 4ρpi − pr ≤ 0.
If 4ρpi − pr > 0, the stable stationary state is given by the unique positive
solution of the equation above. In this case, a nonzero fraction of the popu-
lation is infected. The system is in the endemic state. For 4ρpi − pr = 0, the
system, within the framework of the mean-field approximation, undergoes a
transcritical bifurcation similar to a second-order phase transition character-
ized by a nonnegative order parameter, whose role is played, in this model,
by the stationary density of infected individuals I∞.
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In the numerical simulations done by Boccara and Cheong [64], the total
density of individuals was equal to 0.6, slightly above the site percolation
threshold in two dimensions for the square lattice in order to be able to observe
cooperative effects. Most simulations were performed on a 100 × 100 lattice
and some on a 200× 200 lattice to check possible size effects.

In the case of short-range moves, for given values of pr and m, there exists
a critical value pci of the probability for a susceptible to become infected. At
this bifurcation point, the stationary density of infective individuals I∞(m)
behaves as (pi−pci)β . When m = 0, the exponent β is close to 0.6, which is the
value obtained for the two-dimensional directed percolation. When m = ∞,
that is for the mean-field approximation, β = 1.

Because it neglects correlations, which play an essential role in the neigh-
borhood of a second-order phase transition, the mean-field approximation
cannot correctly predict the critical behavior of short-range interaction sys-
tems [57]. For standard probabilistic cellular automata, this is also the
case [54, 65].

For a given value of pr, the variations of β and pci as functions of m are
found to exhibit two regimes reminiscent of crossover phenomena. In the small
m regime (i.e., for m � 10), pci and particularly β have their m = 0 values. In
the large m regime (i.e., for m � 300), pci and β have their mean-field values.
In agreement with what is known in phase transition theory, the exponent β
does not seem to depend upon pr; i.e., its value does not change along the
second-order transition line.

The fact that, for m = 0, the value of β, for this model, is equal to the
two-dimensional directed percolation value strongly suggests that the critical
properties of this model are universal (i.e., model-independent).

For given values of pi and pr, the asymptotic behaviors of the stationary
density of infective individuals I∞(m) for small and large values of m may be
characterized by the exponents

α0 = lim
m→0

log
(
I∞(m)− I∞(0)

)

logm
,

α∞ = lim
m→∞

log
(
I∞(∞)− I∞(m)

)

logm
.

It is found that α0 = 0.177± 0.15 and α∞ = −0.945± 0.065.
The fact that α0 is rather small shows the importance of motion in the

spread of a disease. The stationary number of infective individuals increases
dramatically when the individuals start to move. In other words, the response
∂I∞(m)/∂m of the stationary density I∞(m) to the degree of mixing m tends
to ∞ when m tends to 0.

In the case of long-range moves, for a fixed value of pr, the variations of
pci and β are very different from those for short-range moves. Whereas for
short-range moves β and pci do not vary in the small-m regime; for long-range
moves, on the contrary, the derivatives of β and pci with respect to m tend to
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∞ as m tends to 0. For small m, the asymptotic behaviors of β and pci may,
therefore, be characterized by the exponents

αβ = lim
m→∞

log
(
β(m) − β(0)

)

logm
,

αpc
i

= lim
m→0

log
(
pci (m)− pci(0)

)

logm
.

Both exponents are found to be close to 0.5.

Example 53. Rift Valley Fever in Senegal. The Rift Valley Fever is a viral dis-
ease infecting sheep, cattle, and humans in contact with infected animals. The
virus is transmitted among susceptible hosts by mosquitoes such as the Aedes
vexans and Culex pipiens. The eggs may remain in diapause (i.e., a period of
reduced metabolic activity), until the damp soil on which the eggs are laid is
flooded to form a pool suitable for the larvae. A model for the propagation
of the disease in Senegal explaining the appearance of endemicity in subsa-
helian regions has been given by Dubois et al. [139]. In order to take into
account seasonal migration of herds and shepherds, the authors consider a
two-dimensional square lattice in which a viremic herd at a given site can
infect, with a probability α, herds located in its von Neumann neighborhood
and with a probability β a randomly selected distant site. This model is not,
strictly speaking, a site-exchange cellular automaton. A herd infecting a dis-
tant site does so by moving back and forth between two consecutive time
steps, i.e., a given herd always stays at the same location. A time step cor-
responds to a full year during which the seasonal migration took place. It is
clear that interesting results are expected only for nonzero values of both α
and β. While for α �= 0 and β = 0, we have a classical cellular automaton
epidemic model; for α �= 0 and β �= 0, we have what is called a small-world
model (see next chapter), which may exhibit an explosive propagation of the
disease.

When the motion of the individuals is an important factor of an agent-
based model, instead of a sequential site-exchange rule, one could use a syn-
chronous moving rule defined, for example, as follows. Consider N random
walkers on a d-dimensional hypercubic lattice, each lattice site being occu-
pied by at most one random walker. At each time step, each walker decides
to move to one of his 2d neighboring sites with a probability equal to 1/2d.
If this neighboring site is empty, the walker performs the move; otherwise, he
does not. If two or more random walkers choose to move to the same empty
site, then one can imagine many rules to resolve this conflict. For example,
timorous walkers could agree not to move, while amiable walkers could agree
on randomly selecting one of them to move to the empty site.39 The multiple

39 A cellular automaton model implementing these rules has been published by
Nishidate et al. [348].
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amiable random walkers should have, when the number of iterations is small,
a degree of mixing slightly higher than the timorous model (see Exercise 6.8).
The essential difference between sequential site-exchange rules and multiple
random walker cellular automaton rules is that the degree of mixing, mea-
sured by the reduced Hamming distance between two configurations, can be
continuously increased from zero in the first case, whereas it jumps to a finite
value after only one iteration in the second case.

6.8 Agent-Based Spatial Models

In order, for example, to define a simple model of opinion dynamics, we could
consider a system of n agents located inside the unit square [0, 1] × [0, 1] in
which each agent is characterized by

1. Its name: a number from 1 to n,
2. Its location inside the square: a pair of reals (x, y) where the coordinates
x and y both belong to the open interval ]0, 1[,

3. Its political opinion: a random real number distributed according to a
truncated normal distribution, whose bounded support is the interval
[−1, 1], having a mean m = 0 and standard deviation σ = 0.54. In order
to generate random numbers distributed according to such a truncated
normal distribution with a finite support equal to [−1, 1], we generated
normally distributed random numbers with a zero mean and a standard
deviation equal to 1 and rejected all random numbers that did not be-
long to the interval [−1, 1]. The mean of this truncated distribution is still
equal to zero, which is obvious by symmetry, but its standard deviation
is equal to 0.54. Opinions close to −1 could be referred to as extreme left
opinions and those close to +1 would represent extreme right opinions.

If we want, for instance, to study the temporal evolution of the agents’ opin-
ions, in order to see if the number of agents with extreme opinions either
increases or decreases as the result of the interactions between each agent and
its neighbors, we have to define an evolution rule. Considering the specific
agent i, whose opinion at time t is ωi(t), we could assume that its opinion
ωi(t+ 1) at time t+ 1 is given by

ωi(t+ 1) =
1
2

(ωi(t) + 〈ωnid(t)〉) ,

where 〈ωnid(t)〉 represents the average opinion, at time t, of all the neighbors of
i that are at a Euclidean distance from i less than or equal to d. We can also
assume that at each time step, each agent moves to a neighboring random
location distributed around its original one according to a two-dimensional
normal distribution with zero mean and a standard deviation equal to 0.02.
Finally, since the more radical an individual’s ideas are the more this individ-
ual is convinced of the rightness of his ideas, we shall assume that an agent
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with opinion ω will only adopt a new opinion with a probability equal to
1− |ω|, which makes agents with opinions close to either −1 or 1 not inclined
to change opinion easily, while agents having an opinion not differing much
from zero are, on the contrary, very easy to convince. Agents are constrained
to remain inside the unit square and if, an agent close to a wall, had to per-
form a displacement that will take it outside the square, it will remain inside
the square and move to the symmetric location of the point outside the square
with respect to the wall it could not go through.

Numerical simulations for different values of d have given the results sum-
marized in the following table. The initial population of 200 agents is the same
in all cases.

Table 6.1. Evolution of a 200-agent population for different numbers of time steps
when each agent interacts with all its neighboring agents located at a maximum
distance equal to d

d Time steps Interval Mean Standard deviation

0.1 100 [0.2765, 0.9892] 0.4302 8.78 × 10−2

0.1 200 [0.3958, 0.7313] 0.4742 8.04 × 10−2

0.2 100 [0.3565, 0.3694] 0.3632 3.02 × 10−3

0.2 200 [0.3624, 0.3639] 0.3632 4.84 × 10−4

0.3 100 [0.4093, 0.4156] 0.4124 1.75 × 10−3

0.3 200 [0.4124, 0.4125] 0.4124 3.36 × 10−5

0.4 100 [0.3900, 0.4098] 0.3990 5.16 × 10−3

0.4 200 [0.3900, 0.4098] 0.3990 5.16 × 10−3

In the case of the neighborhood characterized by a maximum distance
d = 0.1, after 100 time steps, one agent with the extreme opinion ω = 0.989204
did not change opinion. Since the probability to change opinion for an agent
with an opinion ω is 1 − |ω|, we see that for this agent the probability to
change opinion at each time step is only of the order of 1%. Removing this
extremist, we find that for the opinions distribution of the remaining 199
agents lies in the smaller interval [0.2765, 0.7047], and the mean value and
standard deviation of this distribution are, respectively, equal to 0.4274 and
0.07846.

As the size of the neighborhood increases, agents opinions are faster evolv-
ing toward a peaked distribution with a standard deviation getting smaller.
This is not the case for d = 0.4 since, in that case, neither the mean value nor
the standard deviation changed when we increased the number of time steps
from 100 to 200. After 100 time steps, the probability distribution seems to
have already reached an equilibrium.

For all neighborhood sizes, we found that the mean value of the final distri-
bution was positive. This is probably due to the fact that the initial opinions
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distribution is not perfectly symmetric. Actually among the initial 200 opin-
ions, we found that 105 are positive while only 95 were negative. Moreover,
19 are greater than 0.8, whereas only 13 are less than −0.8.

The reported values show that in all cases, when the number of time
steps increases, agents opinions tend to concentrate around a mean value
with a small standard deviation. As expected, the standard deviation tends
to decrease when the neighborhood size increases.40

Another paper by Boccara using a similar model to study voter’s fickleness
appeared recently [77].

6.9 Sociophysics

Lately, there has been a growing interest in agent-based modeling in the social
sciences.41 This new discipline called sociophysics uses the techniques of sta-
tistical physics to build up agent-based models of social phenomena treating
interacting individuals as elementary units. The aim of these models, which
may include [148] trade, migration, group formation, combat, interaction with
an environment, transmission of culture, propagation of disease, and popula-
tion dynamics, is “to discover fundamental local or micro mechanisms that
are sufficient to generate the macroscopic social structures and collective be-
haviors of interest.”

Example 54. Spatial segregation. In probably the first attempt at agent-based
modeling in the social sciences, Schelling [393, 394, 399] devised a very sim-
ple model of spatial segregation in which individuals prefer that a minimum
fraction of their neighbors be of their own type.42

Consider a two-dimensional cellular automaton on Z
2
L (i.e., an L×L square

lattice with periodic boundary conditions). Each site is either occupied by an
individual with a probability ρ or empty with a probability 1− ρ. Individuals
are of two different types. The state of an empty site is 0, while the state of an
occupied site is an integer a ∈ {1, 2} representing the individual type (race,
gender, social class). The local evolution rule consists of the following steps.

40 This model and the numerical results are part of a paper I recently submitted. It
is available from the Web site http://arxiv.org/.

41 See, in particular [22,103,148].
42 Many demos of the Schelling segregation model can be found on the Web.

Note that the relocation method used by these models might be different from
the one we mentioned. Here are few sites: http://www.econ.iastate.edu/

tesfatsi/demos/schelling/schellhp.htm, http://ccl.northwestern.edu/

netlogo/models/run.cgi?Segregation.734.460, http://www.faculty.ucr.

edu/hanneman/spatial/schelling/schelling.html. The reader interested by
Schelling books should also consult [395].
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1. Each individual counts how many individuals in his Moore neighborhood
(eight sites) share with him the same type.

2. If this number is larger than or equal to four, the individual stays at the
same location; if this is not the case, the individual tries to move to a
randomly selected nearest-neighboring site.

3. Individuals who decide to move do so according to the multiple random
walkers model described on page 275 in which when two or more random
walkers are facing the same empty site, they agree not to move (timorous
walkers).

Fig. 6.22. Spatial segregation. Lattice size: 20 × 20; number of individuals: 238
(138 of type 1 and 130 of type 2 represented by light gray and dark gray squares,
respectively). The left figure represents the initial random configuration, and the
right one shows the formation of segregated neighborhoods after 2,000 iterations.
Note the existence of two individuals trapped in Moore neighborhoods fully occupied
by individuals of a different type

Starting from a random configuration, Fig. 6.22 shows the formation of seg-
regated neighborhoods. Since an unsatisfied individual moves to a randomly
selected location, he may dissatisfy his new neighbors who, consequently, will
try to move to a new location. Long-range moves not being permitted, some
unsatisfied individuals who would like to move to new locations cannot do so if
they are trapped in a neighborhood fully occupied by individuals of a different
type. Because individuals move away from other individuals of different type,
they also move away from empty sites that have no type. As a consequence,
empty sites also segregate.
Remark 25. If we increase the number of types, say from two to four (see Fig. 6.23),
as expected, it takes more iterations to observe well-segregated neighborhoods.

Since individuals were only permitted to perform short-range moves, this
model is not a very realistic model of spatial segregation. However, it is rather
realistic if we view it as a model of clustering of people, say by gender or gen-
eration, at a party. In a more realistic model of spatial segregation, we should
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Fig. 6.23. Spatial segregation. Lattice size: 20 × 20; number of individuals: 268
(70, 69, 61, and 68 of, respectively, types 1, 2, 3, and 4, represented by darker
shades of gray from light gray to black). The left figure represents the initial random
configuration and the right one shows the formation of segregated neighborhoods
after 10,000 iterations

allow unsatisfied individuals to perform long-range moves to reach a distant
preferable location. A model of spatial segregation allowing individuals to
perform long-range moves has been proposed by Gaylord and D’Andria in an
interesting book [178] intended for the reader who wishes to create his own
computer programs to model artificial societies. As in the model above, indi-
viduals of two different types occupy a fraction ρ of the sites of a finite square
lattice with periodic boundary conditions. The state of an empty site is 0, and
the state of an occupied site is either 1 or 2 according to the individual type.
The evolution rule consists of the following steps.

1. Build up the list of the individuals of each type who want to move using
the rule that an individual wants to move if his Moore neighborhood
contains fewer individuals of his own type than the other type.

2. List the positions of all individuals of type 1 who want to move.
3. List the positions of all individuals of type 2 who want to move.
4. List the positions of all empty sites that are suitable for individuals of

type 1.
5. List the positions of all empty sites that are suitable for individuals of

type 2.
6. If the length of the list of a given type of individual who wants to move

is not equal to the list of empty sites suitable to that type of individual,
match the lengths of the two lists by randomly eliminating elements of
the longest list.

7. Carry out the moves by swapping the positions of individuals of a given
type who want to move with the positions of the empty sites suitable to
that type of individual.
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As expected, it takes much fewer iterations to observe the formation of
segregated neighborhoods when individuals are permitted long-range moves.
Figure 6.24 shows the initial random configuration and the resulting configu-
ration after 200 iterations. Note that in this model an individual does take into
account empty sites in deciding to stay or to move. This is why, in contrast
with the previous model, there is no segregation of empty sites.

Example 55. Dissemination of culture. Axelrod [21] has proposed a model for
the dissemination of culture in which an individual’s culture is described by a
list of features such as political affiliation or dress style. For each feature, there
is a set of traits, which are the alternative values the feature may have, such

Fig. 6.24. Spatial segregation allowing long-range moves. Lattice size: 20 × 20;
number of individuals: 254 (125 of type 1 and 129 of type 2 represented by light gray
and dark gray squares, respectively). The left figure represents the initial random
configuration, and the right one shows the formation of segregated neighborhoods
after 200 iterations

as the different colors of a piece of clothing. If we assume that there are five
features and each feature can take on any one of ten traits, then the culture of
an individual is represented by a sequence of five digits such as (4, 5, 9, 0, 2).
The degree of cultural similarity between two individuals is defined as the
percentage of their features that have the identical trait. For example, the
degree of cultural similarity between (4, 5, 9, 0, 2) and (4, 7, 5, 0, 2) is equal to
60%, for these two sequences share traits for three of the five cultural features.

The basic idea is that individuals who are similar to each other are likely
to interact and then become even more similar. This process of social influence
is implemented by assuming that the probability of interaction between two
neighboring individuals is equal to their degree of similarity.

The local evolution rule consists of the following steps.

1. Select at random a site to be active and one of its neighbors.
2. Select at random a feature on which the active site and its neighbor differ,

and change the active site’s trait on this feature to the neighbor’s trait on
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this feature with a probability equal to the degree of similarity between
the two sites. If the two sites have a degree of similarity equal to 100%,
nothing happens.

Applying this evolution rule repeatedly, Axelrod found that cultural fea-
tures tend to be shared over larger and larger regions. Since two neighboring
sites with completely different cultures cannot interact, the process eventually
stops with several surviving cultural regions.

An interesting result concerns the influence of the number of features and
number of traits per feature on the number of surviving cultural regions:

The number of surviving cultural regions is much smaller if there
are many cultural features with few traits per feature than if there
are few cultural features with many traits per feature.

Increasing the number of cultural features increases the interaction probability
since there is a greater chance that two neighboring sites will have the same
trait on at least one feature. On the contrary, increasing the number of traits
per feature has the opposing effect since, in this case, there is a smaller chance
that two neighboring sites will have the same trait.

In the original Axelrod model, there is no movement and the sites may
be viewed as villages. Gaylord and D’Andria [178] proposed a modified ver-
sion of the Axelrod model incorporating random motion of the individuals43

and bilateral, instead of unilateral, cultural exchange. Their model is a two-
dimensional cellular automaton on Z

2
L. Each site is either occupied by an

individual with a probability ρ or empty with a probability 1−ρ. The state of
an empty site is 0, while the state of an occupied site is an ordered pair (i, j).
The first element i is a list of s specific traits of cultural features, each trait
having an integer value between 1 and m. The second element j, randomly
selected at each time step in the set {n, e, s, w}, indicates the direction faced
by the individual (i.e., north, east, south or west).

The local evolution rule consists of two subrules.

1. The first subrule is a bilateral cultural exchange rule: two individuals
facing each other interact if they have some, but not all, traits in com-
mon. The interaction is carried out by randomly selecting one feature
with traits having different values and changing these traits to a com-
mon value for both individuals with a probability equal to the degree
of cultural similarity between the two individuals. The new value taken
by the trait is randomly selected between the two differing values. For
example, if a north-facing individual’s traits list is (1, 4, 2, 7, 9) and her
south-facing neighbor’s traits list is (1, 8, 2, 7, 5), these individuals will
change either their second or fifth feature trait with a probability equal

43 Mobility had already been included in Axelrod’s model and was shown to result
in fewer stable cultural regions. See Axtell et al. [23]. See an adapted version in
Axelrod [22].
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to 0.6. If the fifth trait is randomly chosen, then the new lists will be
(1, 4, 2, 7, x) and (1, 8, 2, 7, x), where x is an integer selected at random in
the set {5, 6, 7, 8, 9}.

2. The second rule is the multiple random walkers moving rule defined on
page 275 in which when two or more random walkers are facing the same
empty site they agree not to move (timorous walkers).

Fig. 6.25. Dissemination of culture among individuals, each of whom has two pos-
sible traits for each of their two features. Empty sites are white, and the traits lists
(1, 1), (1, 2), (2, 1), and (2, 2) are darker shades of gray from light gray to black. Lat-
tice size: 20 × 20; number of individuals: 335. The left figure represents the initial
random configuration, and the right one is the resulting configuration after 10,000
iterations

Figure 6.25 shows the dissemination of culture among 335 individuals on
a 20× 20 lattice. Each individual has two possible traits for each of their two
features. The table below gives the number of individuals for each trait’s list
for the initial random configuration and for the configuration obtained after
10,000 time steps.

Traits list (1, 1) (1, 2) (2, 1) (2, 2)
Initial configuration 102 89 70 74
Final configuration 211 0 114 10

The traits list (1, 2) has completely disappeared, and only ten individuals
having the traits list (2, 2) remain. The dominant “cultures” are (1, 1) and
(2, 1).

In the social sciences, the interaction between members of a population is
often modeled as a game. Game theory was originally designed by John von
Neumann and Oskar Morgenstern [335] to solve problems in economics.
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In a two-person game, the players try to outsmart one another by an-
ticipating each other’s strategies. The “stone-paper-scissors” game played by
most children makes clear what is meant by strategy. The game’s rules are

1. Scissors defeats paper
2. Paper defeats stone
3. Stone defeats scissors

Assuming that the winner wins one unit from the loser, the outcomes are
listed in the following table:

Player B

stone paper scissors
stone (0, 0) (−1, 1) (1, −1)

Player A paper (1,−1) (0, 0) (−1, 1)
scissors (−1, 1) (1,−1) (0, 0)

Each player has three strategies: “stone,” “paper,” and “scissors.” The
number of units received by players A and B adopting, respectively, strategies
i and j are given by the ordered pair (xij , yij). For example, if A adopts
strategy “scissors” and B strategy “paper,” A wins one unit and B loses one
unit, represented by (1,−1). The entries in the table above are referred to as
payoffs, and the table of entries is the payoff matrix. Usually, only the payoffs
received by player A from player B are listed, and the payoff matrix of the
“stone-paper-scissors” game is

⎡

⎣
0 −1 1
1 0 −1
−1 1 0

⎤

⎦ . (6.39)

In the “stone-paper-scissors” game, the gain of player A equals the loss of
player B, and vice versa. Such a game is said to be a zero-sum game. Since
the game is entirely determined by the payoff matrix, it is called a matrix
game.

Suppose players A and B have, respectively, m and n strategies, and let
aij be the payoff A receives from B. The payoff matrix is

A =

⎡

⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

⎤

⎥
⎥
⎦ .

If player A adopts strategy i, his payoff is at least

min
1≤j≤n

aij .
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Since player A wishes to maximize his payoff, he should choose strategy i so
as to receive a payoff not less than

max
1≤i≤m

min
1≤j≤n

aij .

If player B adopts strategy j, his loss is at most

max
1≤i≤m

aij .

Since player B wishes to minimize his loss, he should choose strategy j so as
to lose not more than

min
1≤j≤n

max
1≤i≤m

aij .

Theorem 19. Let the payoff matrix of a matrix game be [aij ], then

max
1≤i≤m

min
1≤j≤n

aij ≤ min
1≤j≤n

max
1≤i≤m

aij . (6.40)

Since for all i = 1, 2, . . . ,m and for all j = 1, 2, . . . , n, we have

min
1≤j≤n

aij ≤ aij and aij ≤ max
1≤i≤m

aij ,

for all (i, j), we have
min

1≤j≤n
aij ≤ max

1≤i≤m
aij .

The left-hand side of the inequality above does not depend upon j; hence,
taking the minimum with respect to j of both sides yields

min
1≤j≤n

aij ≤ min
1≤j≤n

max
1≤i≤m

aij .

This result being true for all i, taking the maximum with respect to i of both
sides, we finally obtain inequality (6.40). �

If the elements of the payoff matrix [aij ] satisfy the relation

max
1≤i≤m

min
1≤j≤n

aij = min
1≤j≤n

max
1≤i≤m

aij , (6.41)

this common value is called the value of the game, and there exist is and js
such that

min
1≤j≤n

ais,j = max
1≤i≤m

min
1≤j≤n

aij

and

max
1≤i≤m

ai,js = min
1≤j≤n

max
1≤i≤m

aij .

Thus,
min

1≤j≤n
ais,j = max

1≤i≤m
ai,js .
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But
min

1≤j≤n
ais,j ≤ aisjs ≤ max

1≤i≤m
ai,js .

Hence,
min

1≤j≤n
ais,j = aisjs = max

1≤i≤m
ai,js .

Therefore,
aisj ≥ aisjs ≥ aijs , (6.42)

which shows that aisjs is equal to the value of the game. Relation (6.42) shows
that whichever strategy is adopted by player B, if player A adopts strategy is,
the payoff cannot be less than the value of the game, and whichever strategy
is adopted by player A, if player B adopts strategy js, the payoff cannot be
greater than the value of the game. This is the reason why strategies is and js
are said to be optimal strategies for, respectively, players A and B. The pair
(is, js) is called a saddle point of the game, and (i, j) = (is, js) is a solution
of the game.

The existence of a saddle point ensures that Relation (6.41) is satisfied. In
this case, the element aisjs of the payoff is, at the same time, the minimum
of its row and the maximum of its column. Using this remark, we verify that
the “stone-paper-scissors” game has no saddle point.

Saddle points are not necessarily unique. If (is1 , js1) and (is2 , js2) are two
different saddle points, then the relations

aijs1
≤ ais1 js1

≤ ais1j
and aijs2

≤ ais2 js2
≤ ais2j

,

which are valid for all i and j, imply

ais1 js1
≤ ais1 js2

≤ ais2 js2
≤ ais2js1

≤ ais1 js1
;

that is,
ais1 js1

= ais1 js2
= ais2 js2

= ais2js1
= ais1 js1

.

Hence, if (is1 , js1) and (is2 , js2) are two different saddle points, (is1 , js2) and
(is2 , js1) are also saddle points.

When saddle points exist, suitable strategies are clear, but if, as in the
“stone-paper-scissors” game, there are no saddle points – that is, when the
elements of the payoff matrix [aij ] are such that

max
1≤i≤m

min
1≤j≤n

aij ≤ min
1≤j≤n

max
1≤i≤m

aij

– the game has no solution in the sense given above. In such a game, players
cannot select optimal strategies; they are led to adopt mixed strategies. Let
[aij] 1≤i≤m

1≤j≤n
be the payoff matrix of a matrix game. Mixed strategies for players

A and B, respectively, are sequences (xi)1≤i≤m and (yj)1≤j≤m of nonnegative
numbers such that m∑

i=1

xi = 1 and
n∑

j=1

yj = 1. (6.43)



6.9 Sociophysics 287

If player A adopts strategy i with probability xi and player B adopts strategy
j with probability yj , then the expected payoff of player A is

m∑

i=1

n∑

j=1

aijxiyj.

If Sm (resp. Sn) denotes the set of all sequences X = (xi)1≤i≤m (resp. Y =
(yj)1≤j≤n) of all nonnegative numbers satisfying Conditions (6.43), then the
expected payoff of player A using the mixed strategy X = (xi) ∈ Sm is at
least

min
Y ∈Sn

m∑

i=1

n∑

j=1

aijxiyj ,

and, to maximize this quantity, he should choose a mixed strategy X ∈ Sm
such that his expected payoff would be at least equal to

max
X∈Sm

min
Y ∈Sn

m∑

i=1

n∑

j=1

aijxiyj .

Similarly, player B should choose a mixed strategy Y ∈ Sn to prevent player
A from receiving an expected payoff greater than

min
Y ∈Sn

max
X∈Sm

m∑

i=1

n∑

j=1

aijxiyj .

Proceeding as we did to prove Theorem 19, it can be shown that

max
X∈Sm

min
Y ∈Sn

m∑

i=1

n∑

j=1

aijxiyj ≤ min
Y ∈Sn

max
X∈Sm

m∑

i=1

n∑

j=1

aijxiyj .

Actually, John von Neumann proved in 1928 that for all finite44 two-person
zero-sum games,45

max
X∈Sm

min
Y ∈Sn

m∑

i=1

n∑

j=1

aijxiyj = min
Y ∈Sn

max
X∈Sm

m∑

i=1

n∑

j=1

aijxiyj . (6.44)

This important result is known as the minimax theorem. The pair of sequences
(Xs, Ys) ∈ Sm × Sn is said to be a solution of the game, and Xs and Ys are
optimal mixed strategies for, respectively, players A and B. The common value
of both sides of Relation (6.44) is called the value of the game.

In a two-person zero-sum game, the players have conflicting interests: what
is gained by one player is lost by the other. In a nonzero-sum game, this
44 That is, all matrix games having a finite number of strategies.
45 See von Neumann and Morgenstern [335] and, for an alternative simple proof,

Jianhua [232].



288 6 Spatial Models

is not necessarily the case. Consider, for example, the celebrated prisoner’s
dilemma. Two prisoners, A and B, suspected of committing a serious crime
are isolated in different cells and each is asked whether the other is guilty.
Both prisoners want, naturally, to get the shortest prison sentence, and both
know the consequences of their decisions. Each prisoner has two strategies: to
accuse or not to accuse the other.

1. If both defect – that is, each of them accuses the other – both go to jail
for five years.

2. If both cooperate – that is, neither of them accuses the other – both go
to jail for one year, say, on account of carrying concealed weapons.

3. If one defects while the other does not, the former goes free and the latter
goes to jail for 15 years.

For both prisoners, the only rational choice is to defect. Although each
prisoner ignores what the other will do, if he defects, he will either get five
years instead of 15 if the other also defects, or go free if the other does not
defect. The paradox is that when both prisoners act selfishly and do not
cooperate, they both get a five-year sentence, whereas both could have been
sentenced only one year if they had cooperated.

More formally, in the two-person prisoner’s dilemma game, if both players
cooperate, they receive a payoff R (reward); if both defect, they receive a
lesser payoff P (punishment); and if one defects while the other cooperates,
the defector receives the largest payoff T (temptation), while the cooperator
receives the smallest S (sucker), as shown in the following table

Cooperation Defection
Cooperation (R,R) (S,T )
Defection (T ,S) (P ,P )

where T > R > P > S and R > 1/2 (T + S), so that, in an iterated game, in
which players can modify their strategies at each time step, each player gains
on average more per game by agreeing to cooperate (R) repeatedly than by
agreeing to cooperate and defect out-of-phase (1/2 (T + S)) alternately.

As emphasized by Axelrod and Hamilton in their 1981 paper [20], if two
players can meet only once, the best strategy is to defect, but if

an individual can recognize a previous interactant and remember
some aspects of the previous outcomes, then the strategic situation
becomes an iterated Prisoner’s Dilemma with a much richer set of
possibilities. A strategy would take the form of a decision rule which
determined the probability of cooperation or defection as a function
of the history of the interaction so far.

Here are a few examples of evolving strategies adopted by players on a
square lattice with periodic boundary conditions.
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Example 56. Iterated prisoner’s dilemma game: individuals have memory of
past encounters. On an L × L lattice with periodic boundary conditions Z

2
L,

each site is either occupied by an individual with probability ρ or empty with
probability 1−ρ. The state of an empty site is 0, while the state of an occupied
site is a five-tuple where

1. The first element is an integer representing the individual’s name;
2. The second element is either d or c, indicating whether the individual is

a defector or a cooperator;
3. The third element is a list of defectors who have interacted with the indi-

vidual in previous encounters;
4. The fourth element is an integer representing the sum of the payoffs from

previous time steps;
5. The last element, randomly selected at each time step in the set
{n, e, s, w}, indicates the direction faced by the individual (i.e., north,
east, south, or west).

The local evolution rule consists of the following two subrules.

1. Two facing individuals decide to interact if neither of them is on the other
individual’s list of previously encountered defectors.

2. The second rule is the multiple random walkers moving rule defined on
page 275 in which when two or more random walkers are facing the same
empty site, they agree not to move (timorous walkers).

In agreement with what is found in the literature, we used the payoff values
T = 5, R = 3, P = 1, and S = 0. Figure 6.26 shows that, in the long run,
cooperators do better than defectors.

In this model, information about defectors is kept private. If individuals
are allowed to share information, the average gain of defectors eventually
declines.46
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Fig. 6.26. Average gain of defectors and cooperators in an iterated prisoner’s
dilemma game in which individuals refuse to interact with previously encountered
defectors. Lattice size: 30 × 30, number of cooperators: 360, number of defectors:
355, total number of iterations: 1,000. The left figure represents the average gain
for each population for the first 150 iterations, showing that at the beginning the
average gain of defectors is higher

46 See Gaylord and D’Andria [178], p. 57.
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In Example 56, each individual always adopted the same strategy; and if
the cooperators’ average gain was higher in the long run than the defectors’
average gain, this was due to the fact that the former refused to interact with
defectors they had previously encountered.

While defection is the unbeatable strategy if individuals know they will
never meet again, when after the current encounter the two opponents will
meet again with a nonzero probability w, strategic choices become more com-
plex. To find out what type of strategy was the most effective, Axelrod in 1980
conducted two computer tournaments [18,19]. The strategies were submitted
by a variety of people, including game theorists in economics, sociology, and
political science or professors of evolutionary biology, physics, and computer
science. In both cases, the strategies were paired in a round-robin tournament,
and in both cases the winner was Anatol Rapoport,47 who submitted the sim-
plest strategy, called tit for tat. This strategy consists in cooperating on the
first encounter (i.e., being nice) and then doing whatever the opponent did in
the previous encounter (i.e., being provoking and forgiving).

Axelrod and Hamilton [20] argued that if two individuals have a prob-
ability w of meeting again greater than a threshold value, tit for tat is an
evolutionarily stable strategy, which means that a population of individuals
using that strategy cannot be invaded by a rare mutant adopting a different
strategy.48 They determined the w threshold value as follows.

1. If two players adopt the tit-for-tat strategy, every one receives a payoff R
at each time step, that is, a total payoff49

R+Rw +Rw2 + · · · = R

1− w .

2. If a player adopts the tit-for-tat strategy against another player who al-
ways defects, the latter receives a payoff T the first time and P thereafter,
so it cannot invade a population of tit-for-tat strategists if

R

1− w ≥ T +
Pw

1− w
or

w >
T −R
T − P . (6.45)

47 An interesting early discussion of the prisoner’s dilemma game “addressed specif-
ically to experimental psychologists and generally to all who believe that knowl-
edge about human behavior can be gained by the traditional method of interlacing
theoretical deductions with controlled observations” can be found in Rapoport
and Chammah with the collaboration of Carol Orwant [379].

48 On the concept of stability in evolutionary game theory, see Maynard Smith [308]
and Cressman [121].

49 The game is supposed to go on forever.
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3. If a player adopts the tit-for-tat strategy against another player who alter-
nates defection and cooperation, the latter receives the sequence of payoffs
T, S, T, S, . . ., and so cannot invade a population of tit-for-tat strategists if

R

1− w ≥
T + Sw

1− w2

or
w >

T −R
R − S . (6.46)

From these two results, it follows that no mutant adopting one of these
two strategies can invade a population of tit-for-tat strategists if w is such
that

w > max
(
T −R
T − P ,

T −R
R − S

)
. (6.47)

According to Axelrod and Hamilton [20], if w satisfies (6.47), a popula-
tion of tit-for-tat strategists cannot be invaded not only by a mutant who
either always defects or alternates defection and cooperation but also, as a
consequence, by any mutant adopting another strategy. This result, which
would imply that the tit-for-tat strategy is evolutionarily stable, has been
questioned by Boyd and Lorberbaum [86] (see also May [305]). Essentially,
the argument of these authors is that Axelrod and Hamilton proved that if
tit for tat becomes common in a population where w is sufficiently high, it
will remain common because such a strategy is collectively stable. A strategy
Se is collectively stable if, for any possible strategy Si,

V (Se | Se) ≥ V (Si | Se),
where V (S1 | S2) is the expected fitness of individuals who use strategy S1

when interacting with individuals using strategy S2. But collective stability
does not imply evolutionary stability.50

Tit for tat is nevertheless a very successful strategy, and there have been
a few attempts to test tit for tat as a model to explain cooperative behav-
ior among animals in nature. It seems that the first test was reported by
Lombardo [278], who examined the interactions between parent and non-
breeding tree swallows (Tachycineta bicolor), and showed that parents and
nonbreeders seem to resolve their conflicting interests by apparently adopt-
ing a tit-for-tat strategy. He used stuffed model nonbreeders and simulated
acts of defection by nonbreeders by making as though nonbreeders had killed
nestlings. A more sophisticated test has been reported by Milinski [318], who
studied the behavior of three-spined sticklebacks (Gasterosteus aculeatus)
when approaching a potential predator to ascertain whether it poses a threat
or not. Using a system of mirrors, single three-spined sticklebacks “inspecting”
a predator were provided with either a simulated cooperating companion or
a simulated defecting one. In both cases, the test fish adopted the tit-for-tat
strategy.
50 See Exercise 6.12.
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Example 57. Iterated prisoner’s dilemma game: tit-for-tat strategists against
defectors. Consider a population of mobile players in which most individuals
adopt the tit-for-tat strategy and the rest always defect. As illustrated in
Fig. 6.27, the average gain of individuals adopting the tit-for-tat strategy is
eventually higher than the average gain of a small fraction of individuals who
always defect.
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Fig. 6.27. Average gain of individuals adopting the tit-for-tat strategy or being
always the defector in an iterated prisoner’s dilemma game. Lattice size: 25 × 25;
number of individuals who always defect: 62; number of individuals adopting the
tit-for-tat strategy: 459; total number of iterations: 600

Example 58. Iterated prisoner’s dilemma game: imitating the most successful
neighbor. Nowak and May [351] have obtained fascinating results concern-
ing the evolution of cooperation among individuals located at the sites of a
two-dimensional square lattice. The individuals interact with their neighbors
through simple deterministic rules and have no memory. The evolution pro-
duces constantly changing surprising spatial patterns reminiscent of Persian
carpets, in which both cooperators and defectors persist forever.

Consider an L × L square lattice in which initially all sites are occupied
by cooperators, except a few sites located in the middle of the lattice and
disposed symmetrically that are occupied by defectors. At each time step, each
individual plays with all the individuals located in his Moore neighborhood,
including himself. He then compares his payoff to the payoffs of his neighbors
and adopts at the next time step the strategy of the most successful neighbor.
The outcome depends on the initial configuration and the value of the single
parameter b characterizing the reduced payoff values:

S = P = 0, R = 1, T = b > 1.

For b = 2, successive patterns are shown in Fig. 6.28. Note that regions
occupied by individuals who defect or cooperate twice in a row are separated
by narrow boundaries of individuals who just changed their strategy.
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Since the early 1980s, the iterated prisoner’s dilemma game has become
the most important model for studying the evolution of cooperation among
a population of selfish individuals, and a very large number of articles have
been published on the subject.

Example 59. Opinion Formation: Influence of Opinion Leaders. Social choice
theory, as a scientific discipline, started with the works of the eighteenth-
century French mathematician Jean-Charles de Borda (1733–1799) who

Fig. 6.28. Successive patterns generated from an initial state in which all individuals
located at the sites of a 60 × 60 square lattice are cooperators except the four sites
(28, 28), (28, 32), (32, 28), and (32, 32), who are defectors. A site is colored based
on the strategies adopted at time t − 1 and t by the individual located at that site
according to the following code: if the individual defects at times t − 1 and t, the
site is black; if the individual defects at t − 1 and cooperates at t, the site is dark
gray; if the individual cooperates at t − 1 and defects at t the site is light gray, and
if the individual cooperates at t − 1 and t, the site is very light gray
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showed that majority rules could lead to inconsistent results when voters have
to choose between three candidates. But it is only in 1951 when Kenneth
Arrow published his celebrated impossibility theorem [14], showing that there
exists no social choice rule satisfying a set of reasonable requirements, that
social choice became a scientific discipline.

In this example, following [76] we describe and study a model of opin-
ion formation under the influence of opinion leaders favoring the existence
of polarized subgroups of agents. Although in a society each individual has
personal opinions, these opinions can, to a certain extent, change under the
influence of the opinions of the individuals this person is connected to, such
as family members, friends, coworkers, and other persons who by virtue of
position may exercise influence like politicians or journalists. Since these in-
dividuals, influenced by other individuals, may also revise their own opinions,
we observe successive modifications of each individual’s opinions; and one may
reasonably ask if this iterative process leads to the formation of consensual
subgroups of people.

In democratic societies, the outcome of political elections plays an essen-
tial role and it is not surprising to discover that the problem of voter deci-
sion making has attracted many political scientists. In 1992, John Zaller, in
a book [452], considered as a most important contribution to political sci-
ence [237,300], developed a theory to explain how people receive political in-
formation and determine their political preferences. Following Converse [114],
Zaller argues that most people do not have fixed positions on issues, only
the most aware agents, who are well informed, have a consistent ideology. In
his own words, “there is high variance in political awareness around a gen-
erally low mean.” Public opinion is shaped by exposure to elite discourse,
via the media, on issues with, however, significant differences in attention to
this discourse. “Political awareness denotes intellectual or cognitive engage-
ment with public affairs as against emotional or affective engagement or no
engagement at all.” The most aware agents are more able to receive political
information but, due to their exposure to multiple and often conflicting mes-
sages, are more selective in accepting ideas contradicting their basic values.
The least aware agents receive less information and are usually more likely
to be influenced. Thus, variations of political opinions and political awareness
are strongly correlated. In our model, described below, the dependence of an
agent’s awareness on its opinion plays an important role.

We represent a population of agents by a directed graph, that is, an ordered
pair of disjoint sets (V,E), where V is a nonempty set of elements called
vertices, nodes, or points, and E a set of ordered pairs of distinct elements of
V , called directed edges, arcs, or links. Each vertex is occupied by an agent
characterized by the vertex number, the list of agents it interacts with, its
level of awareness, and its opinion. The opinion of an agent located at vertex
i evolves as a result of its interactions with the agents located at all the
vertices j ∈ V such that (i, j) ∈ E, according to an evolution rule that takes
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into account opinions and levels of awareness of the interacting agents. All
the agents directly connected to a given agent i form its social environment
or social neighborhood. In what follows, the words neighbor and neighborhood
will not imply any spatial proximity; a neighbor of agent i is just an element
of its social environment who may influence its opinion.

Each agent’s level of awareness is represented by a real number s between
0 and 1. In this model, the opinion of an agent with a high s-value is thought
to have more value; it has a strong convincing power when interacting with
other agents and a high degree of “wise” skepticism when influenced by other
agents. Concepts similar to our level of awareness have been introduced by
various authors. French [165] defines the power of A over B (with respect
to a given opinion) as the maximum force which A can induce on B minus
the maximum resisting force which B can mobilize in the opposite directions;
De Groot [202], Krause [256], and Hegselmann and Krause [217] define a
stochastic matrix of positive coefficients aij representing the weight given by
i to j that may change with time and opinions; Nowak et al. [350] in the
numerical study of a model inspired by Latané’s theory of social impact [260],
among other attributes, characterize each agent by a strength variable called
persuasiveness.

In this model, the level of awareness of an agent is a time-independent
characteristic of the agent. We have not found in the literature any statistical
study of levels of awareness of groups of individuals. So, in order to reproduce
Zaller’s observations approximately, we have adopted the probability distribu-
tion of levels of awareness defined below. It is such that 10% of the agents are
very easy to convince and are, therefore, responsible of the observed fickleness
of voters in polls during election campaigns. Another equal fraction are, on
the contrary, very difficult to convince and represent the small group of indi-
viduals who are well informed on political issues. The remaining group (80%)
of agents represents the majority of individuals having opinions close to the
median opinion and who are more or less subject to change opinion easily.

For the probability distribution of levels of awareness in a population of
agents, we have chosen a bell-shaped probability density function p symmetric
about 0.5 given by

p : s �→ p(s) =
1

2πσn
exp

(s− 0.5)2

2σ2
, (6.48)

where

σ = 0.2 and n =
∫ 1

0

exp
(x− 0.5)2

2σ2
dx = 0.9876.

Choosing σ = 0.2 makes the percentages of the population belonging to the
four groups of agents having, respectively, a level of awareness in the semi-
open intervals [0, 0.25[, [0.25, 0.5[, [0.5, 0.75[, and [0.75, 1[ approximately equal
to 10%, 40%, 40%, and 10%. The graph of p is represented in Fig. 6.29.
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Each agent has an opinion represented by a real number in the interval
]0, 1[ uniformly distributed among all agents. An agent’s opinion may change
at each time step to adopt the weighted average of neighbors’ opinions having
a higher level of awareness if the following condition is satisfied. An agent
with level of awareness s < 0.5 and opinion ω changes its opinion to adopt
the weighted average opinion ω of all its neighbors if the condition |ω − ω| <
(1 − s)α is satisfied, whereas an agent with level of awareness s ≥ 0.5 and
an opinion ω may change its opinion to adopt the weighted average opinion

1

1

2

0.2 0.4 0.6 0.8

1.5

0.5

Fig. 6.29. Probability density function of the distribution of levels of awareness in
the population. The vertical lines delimit four different groups of agents (see text)

ωleaders of their neighbors having a higher level of awareness than its own if
the condition |ω − ωleaders| < (1− s)α is satisfied.

Note that the exponent α characterizes the level of skepticism of the popu-
lation of agents as a whole. Increasing its value increases the level of skepticism
of the whole population and makes it more difficult to convince. The exponent
α can, therefore be viewed as a cultural trait of the population. In our numer-
ical simulations, we took α = 4, which makes agents with a level of awareness
s such that 0 ≤ s < 0.25 very easy to convince, whereas agents with a level
of awareness s such that 0.75 ≤ s < 1 are very difficult to convince.

Since election campaigns are limited in time, we assume that each agent
may be influenced by a rather small number of other agents. The size of
each neighborhood is, therefore, assumed to be a random integer uniformly
distributed between 1 and a maximum value nmax = 7 (implying an average
number of neighbors equal to 4). An agent k belongs to the neighborhood
of agent i �= k if the directed link (i, k) belongs to the set E of graph’s
edges. While vertices out-degrees are uniformly distributed between 1 and
nmax = 7, the random selection of neighbors is such that vertices in-degrees
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have a Pareto probability distribution with a minimum value parameter x0 =1
and a shape parameter σ = 2. The cumulative distribution function of the
Pareto distribution with a minimum value parameter equal to x0 and a shape
parameter equal to σ is

x �→ 1−
(x0

x

)σ
.

The probability distribution of in-degrees has, therefore, a cumulative dis-
tribution function given by x �→ 1 − x−2, and a density function equal to
x �→ 2x−3.

The Pareto distribution of neighbors implies that a few agents belong to
many neighborhoods. These agents are our opinion leaders. More precisely, the
subgroup of agents called opinion leaders consists of the rN agents located
at the nodes having the highest in-degrees. That is, each agent of the fraction
r of the total number N of agents, selected among those having the highest
in-degrees, is assigned a level of awareness s = 1 and, with a probability 1

2 ,
an opinion either equal to Ω or 1 − Ω. This subnetwork of opinion leaders,
whose in-degrees belong to the tail of the power-law distribution, represents,
therefore, the group of the most influential agents. Since their level of aware-
ness is equal to 1, they never change opinion during the temporal evolution
of the system. They are committed agents firmly attached to their opinion.
In our numerical simulations, we took Ω = 0.4.

In the following histograms, instead of plotting frequencies as functions
of data, we have plotted scaled frequencies as functions of data in order to
obtain approximate plots of the probability density function of the data.

We have performed several runs of the evolution rule applied to 20 different
initial societies of 1,000 agents having a fraction r = 0.1 of committed agents
with a level of awareness equal to 1. These agents have, with a probability 1

2 ,
an opinion either equal to Ω = 0.4 or to 1−Ω = 0.6. The levels of awareness
of the remaining part of the population are randomly distributed following
the probability density function p given by (6.48). According to whether its
level of awareness belongs to one of the following semi-open intervals: [0, 0.25[,
[0.25, 0.5[, [0.5, 0.75[, or [0.75, 1[, we say that the agent belongs to group 1, 2,
3, or 4. Following Zaller, choosing α = 4 implies that agents in group 1 have
a particularly low level of awareness and are, therefore, very easy to convince,
whereas agents in group 4 have a high level of awareness and are especially
difficult to convince. That is, our mixed rule tries to take into account the fact
that less aware agents do not have fixed positions on political issues, whereas
more aware agents, having a more consistent ideology, may only be influenced
by the elite. Groups 2 and 3 represent the majority; they have a moderate level
of awareness and are more or less easy to convince according to whether they
belong to group 2 or 3. The average distribution of opinions in the 20 initial
societies is represented in Fig. 6.30 and the percentages of agents belonging to
the different groups are given in Table 6.2.
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Table 6.2. Percentages of the total population belonging to each group; groups 0.4
and 0.6 denote the groups of strongly committed agents having a level of awareness
equal to 1 and an opinion equal to either 0.4 or 0.6. For groups 1 to 4, the standard
deviation is of the order of 1%

Group 1 Group 2 Group 3 Group 4 Group 0.4 Group 0.6

9 36 36 9 5 5

0.2 0.4 0.6 0.8 1

2

4

6

8

10

Fig. 6.30. Histogram of the distribution of opinions averaged over the 20 initial
societies
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12

Fig. 6.31. Histogram of the distribution of opinions at t = 500

The agents changing opinions belong essentially to groups 1 and 2.
In order to see if the hardly visible small bump centered around opinion

0.5 in the histogram of the distribution of opinions (Fig. 6.31) would grow, we
increased the number of time steps up to 1,000 and found no change.
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Table 6.3. Percentages with their standard deviations of the number of agents in
each group who did not change opinion after 500 time steps

Time Group 1 Group 2 Group 3 Group 4

500 17 ± 4 70 ± 3 95 ± 3 100

Temporal evolution according to different evolution rules can be found in
N. Boccara [76]

Exercises

Exercise 6.1 Consider a Cantor-like set defined by removing the open middle
interval of length 1/4 from the unit interval I0 = [0, 1] to get the set I1; then
removing the two open middle intervals of length 1/42 = 1/16 from each of the
two subintervals of I1 to get I2; then removing the four open middle intervals of
length 1/43 = 1/64 from each of the four subintervals of I2 to get I3; and so on.
That is, at the nth step we remove the open middle intervals of length 1/4n from
each of the 2n−1 subintervals of In−1 to get In. Find the Lebesgue measure of
the set In, that is, the sum of the lengths of all the subintervals of In. What is
its limit when n tends to infinity?

Exercise 6.2 We have seen that configurations in the limit set of elementary
cellular automaton rule 18 consist of sequences of 0s of odd lengths separated
by isolated 1s as illustrated in Fig. 6.9. The evolution toward the limit set can
be viewed as interacting particle-like defects.51 Defects in the case of rule 18 are
only of one type, namely, two consecutive 1s, which generate a sequence of an
even number of 0s. These defects (kinks) were first studied by Grassberger [194],
who showed that they perform a random walk. When two defects meet, they
annihilate, and this implies, in the case of an infinite lattice, that the density of
these defects decreases as t−1/2, where t is the number of iterations.

Illustrate this annihilation process starting from an initial configuration con-
taining only two defects.

Exercise 6.3 Let S = {0, 1}Z be the set of all configurations and M a surjective
mapping on S.52

(a) If F is a global one-dimensional cellular automaton rule of radius r, show that
there exists a unique global cellular automaton rule Φ of radius not greater than
r such that53

Φ ◦M = M ◦ F (R)

51 See [60].
52 A mapping M on S is surjective if, for all c ∈ S , the set of all preimages M−1(c) of

c by M is not empty. That is, each configuration c ∈ S has at least one preimage.
53 M has to be surjective because the domain of definition of Φ has to be the whole

space S .
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if, and only if, for any configuration c ∈ S, the image by M ◦F of the set M−1(c)
contains only one element. When Φ exists, it is called the transform of F by M .
Prove that if Φ exists, it is unique.

(b) It can be shown that an n-input mapping M is surjective if, and only if, each
n-block has exactly the same number of preimages. Using this result, show that
the 3-input mapping M30, whose Wolfram code number is 30 (Wolfram code
numbers are defined on page 221), is surjective.

(c) Determine all radius 1 rules F that have a transform Φ under the 3-input
surjective mapping 30.

Exercise 6.4 Consider a string of 0s and 1s of finite length L; the density clas-
sification problem is to find a two-state cellular automaton rule fρ such that the
evolution of the string according to fρ (assuming periodic boundary conditions)
converges to a configuration that consists of 1s only (resp. 0s only) if the density
of 1s (resp. 0s) is greater than (resp. less than) a given value ρ. It has been found
that there exists no such rule [259]. The problem can, however, be solved using
two cellular automaton rules. Following Fukś [169], if ρ = 1/2, the solution is
first to let the string evolve according to radius 1 rule 184 for a number of time
steps of the order of magnitude of half of the string length and then again to let
the last iterate evolve according to radius 1 rule 232 for a number of time steps
of the order of magnitude of half the string length. Justify this result.

Exercise 6.5 A two-lane one-way car traffic flow consists of two interacting lanes
with cars moving in the same direction with the possibility for cars blocked in their
lane to shift to the adjacent lane. If we assume that the road is a circular highway
with neither entries nor exits, such a system may be modeled as a one-dimensional
cellular automaton with periodic boundary conditions in which the state of cell i
is a two-dimensional vector

si = (s1i , s
2
i ), where (s1i , s

2
i ) ∈ {0, 1} × {0, 1},

s1i and s2i representing, respectively, the occupation numbers of lanes 1 and 2 at
location i, as shown below.

... s1i−1 s1i s1i+1 ...

... s2i−1 s2i s2i+1 ...

If the speed limit is vmax = 1, we may adopt the following moving rule:

1. If the site ahead of a site occupied by a car is empty, the car moves to that
site.

2. If the site ahead of a site occupied by a car is occupied, the car shifts to the
adjacent site if this site and the site behind are both empty.

This rule is a radius 1 rule of the form

(si,1, si,2)t+1 = f
(
(si−1,1, si−1,2)t, (si,1, si,2)t, (si+1,1, si+1,2)t,

)
.
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In traffic engineering, the car flow – that is, the product of the car density by the
average car velocity – as a function of the car density is called the fundamental
diagram. Write down explicitly traffic rule f , and determine the fundamental
diagram of this model.

Exercise 6.6 Let

Q = {0, 1, 2, . . . , q − 1} × · · · × {0, 1, 2, . . . , q − 1}
︸ ︷︷ ︸

�

.

An n-input one-dimensional cellular automaton �-vectorial rule

(x1,x2, · · · ,xn) �→ f(x1,x2, · · · ,xn),
where for i = 1, 2, . . . , n, xi ∈ Q, is number-conserving if, for all cyclic configu-
rations of length L ≥ n,

�∑

j=1

(
fj(x1,x2, . . . ,xn) + fj(x2,x3, . . . ,xn+1) + · · ·+ fj(xL,x1 . . . ,xn−1)

)

=
�∑

j=1

(
x1,j + +x2,j + · · ·+ xL,j

)
,

where (f1, f2, . . . , f�) are the components of f and (xi,1, xi,2, . . . , xi,�) the com-
ponents of xi. Extend the proof of Theorem 13 and find the necessary and suffi-
cient condition for vectorial rule f to be number-conserving.

Exercise 6.7 A one-dimensional q-state n-input CA rule f is said to be number-
nondecreasing if, for all cyclic configurations of length L ≥ n, it satisfies

f(x1, x2, . . . , xn−1, xn) + f(x2, x3, . . . , xn, xn+1) + · · ·
+ f(xL, x1 . . . , xn−2, xn−1) ≥ x1 + x2 + · · ·+ xL.

Show that if a one-dimensional q-state n-input CA rule f satisfies for all
(x1, x2, . . . , xn) ∈ Qn, the condition

f(x1, x2, . . . , xn) ≥ x1 +
n−1∑

k=1

(
f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, . . . , xn−k+1)

−f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x1, x2, . . . , xn−k)
)

(6.49)

this rule f is number-nondecreasing. Is this condition necessary?

Exercise 6.8 In order to evaluate the degree of mixing of the multiple random
walkers cellular automaton model described at the end of Sect. 6.7 (Nishidate–
Baba–Gaylord model), study, as a function of the number of time steps, the
reduced Hamming distance between the initial configuration and the configuration
obtained after t time steps.
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Exercise 6.9 The Eden model [143] is one of the simplest growth models. Con-
sider a finite square lattice with free boundary conditions, and suppose that at
time t, some sites are occupied while the other sites are empty. The growth rule
consists of selecting at random an empty site, the nearest neighbor of an occupied
site, and occupying that site at t+ 1. Assume that at t = 0, only the central site
of the lattice is occupied.

According to Eden, this process may reasonably represent the growth of bacte-
rial cells or tissue cultures of cells that are constrained from moving. For example,
the common sea lettuce (Ulva lactuca) grows as a sheet only two cells thick at
its periphery.

Write a small program to generate Eden clusters.

Fig. 6.32. Bethe lattice for z = 3

Exercise 6.10 In most lattice models, the existence of closed paths (also called
loops) causes difficulties in finding exact solutions. In statistical physics, special
lattices with no loops have been very helpful in understanding critical phenomena.
Such lattices, called Bethe lattices, are undirected graphs in which all vertices have
the same degree z. An example for z = 3 is represented in Fig. 6.32.

(a) Find the site percolation critical probability of a Bethe lattice, and show that
the critical exponent β, characterizing the critical behavior of the site percolation
probability P site∞ (p) for p > psite

c , is equal to 1 for all values of z. Examine the
case z = 3.

(b) Answer the same questions for the bond percolation model.

Exercise 6.11 Motivated by the problem of one fluid displacing another from
a porous medium under the action of capillary forces, Wilkinson and Willem-
sen [445] considered a new kind of percolation problem, which may describe any
kind of invasion process proceeding along a path of least resistance. The invasion
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percolation model considered here consists of a two-dimensional square lattice in
which a random number, uniformly distributed in the interval [0, 1], is assigned
to each lattice site. A cluster of invaders grows by occupying the lattice site of
its perimeter that has the smallest random number. By perimeter of a cluster
we mean all the sites that are nearest neighbors of cluster sites. Assuming that
clusters of invaders grow from a single site localized at the origin, write and run
a program to generate invader clusters.

Exercise 6.12 On page 291 we mentioned that Boyd and Lorberbaum questioned
the evolutionary stability of the tit-for-tat strategy. In their discussion, they con-
sidered the following two strategies:

1. the tit for two tats which allows two consecutive defections before retaliating,
and

2. the suspicious tit for tat, which defects on the first encounter but thereafter
plays tit for tat.

Compare how tit for tat and tit for two tats behave against suspicious tit for
tat, and show that tit for tat is not evolutionarily stable.

Exercise 6.13 In a society, individuals often adopt prevailing political ideas, be-
liefs, fashion, etc., of their neighbors. In order to model such a process of conform-
ing, consider the following two-dimensional two-state cellular automaton. Each
cell of a square lattice with periodic boundary conditions is occupied by an indi-
vidual who at each time step can adopt only one of two possible behaviors (being
Democrat or Republican, going or not going to church, buying an American or a
foreign car, etc.). In order to fit into his neighborhood, at each time step, each
individual adopts the prevailing norm of his neighborhood, i.e., if two or more
of his four neighbors share his own idea, he keeps it; otherwise he changes. Run
a simulation to exhibit the formation of clusters of individuals having identical
behaviors.

Solutions

Solution 6.1 After the first steps, the sum Ln of the lengths of all intervals of
In is given in the table below.

n 1 2 3 4

Ln
3
4

5
8

9
16

17
32

After n steps, the sum Ln of the lengths of all intervals of In is given by

Ln = 1−
k=n∑

k=1

2k−1

2k − 1
= 1− 2n − 1

21+n
.
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When n tends to infinity, we find that

lim
n→∞Ln =

1
2
.

Such a Cantor-like set with a non-zero Lebesgue measure is called a fat Cantor
set. We shall always obtain a fat Cantor set if, at each step, we remove less than
1/3 of each remaining interval.

Fig. 6.33. Rule 18: annihilation of two defects. The defects (two consecutive 1s) at
positions 19 and 28 in the initial configuration meet and annihilate at t = 32. Time
is oriented downwards

Solution 6.2 The annihilation of two defects for a cellular automaton evolving
according to rule 18 is illustrated in Fig. 6.33.

Solution 6.3 (a) The process defining the transform Φ of F by the surjective
mapping M may be conveniently represented by the following commutative dia-
gram:

S M−−−−→ S
F

⏐
⏐
!

⏐
⏐
!Φ

F (S) M−−−−→ Φ(S)

Since M is surjective, each configuration c ∈ S has a preimage. Let c1 and c2
be two different preimages of a given c (M not being invertible in general, the
set M−1(c) of preimages of a given c contains more than one element). If the
transform of Rule F exists, then

(Φ ◦M)(c1) = Φ(c) = (M ◦ F )(c1),
(Φ ◦M)(c2) = Φ(c) = (M ◦ F )(c2);
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that is,
(M ◦ F )(c1) = (M ◦ F )(c2).

Hence, the transform Φ of a given rule F by a surjective mapping exists if, and
only if, for any configuration c ∈ S, the set (M ◦ F )(M−1(c)) contains one, and
only one, element. In other words, all the images by M ◦ F of the configurations
in M−1(c) are identical. If Φ1 and Φ2 are such that for all c ∈ S,

(Φ1 ◦M)(c) = (Φ2 ◦M)(c) = (M ◦ F )(c),

then, for all c ∈ S, (
(Φ1 − Φ2) ◦M

)
(c) = 0,

which implies Φ1 = Φ2 and proves that when Φ exists, it is unique. Since M and
F are local, Φ is local, and it is readily verified that its radius cannot be greater
than the radius r of F .

(b) The look-up table of the 3-input mapping 30 is

111 110 101 100 011 010 001 000
0 0 0 1 1 1 1 0

The following table, which lists all the preimages by M106 of each 3-block, shows
that each 3-block has an equal number of preimages and proves that M106 is
surjective.

111 110 101 100 011 010 001 000
00100 00101 01010 01101 00010 10101 00001 00000
01001 00110 01011 01110 00011 10110 11010 11101
10010 00111 01100 01111 10100 10111 11011 11110
10011 01000 10001 10000 11001 11000 11100 11111

(c) To determine all radius 1 rules F that have a transform Φ under the 3-input
surjective mapping 30, we have to check systematically when Relation (R) is
satisfied for a pair of radius 1 rules (F,Φ). We find that only seven rules F have
a transform Φ. The results are summarized in the table below.54

F 0 30 170 204 225 240 255
Φ 0 30 170 204 120 240 0

Solution 6.4 As illustrated in Fig. 6.1, the limit set of the cellular automaton rule
184 consists of alternating 0s and 1s if the density of 1s (active sites) is exactly
equal to 1/2. If the density is not equal to 1/2, as shown in Fig. 6.2, the limit set
consists of finite sequences of alternating 0s and 1s separated by finite sequences
of either 0s, if the density of active sites is less than 1/2, or 1s, if the density
of active sites is greater than 1/2. Hence, after a number of time steps of the
order of magnitude of half the lattice size, any initially disordered configuration

54 More results on transformations of cellular automaton rules can be found in
Boccara [63].
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becomes ordered as much as possible; that is, according to whether the density
of active sites is less than or greater than 1/2, the 1s or the 0s are isolated.

If such a configuration evolves according to the 3-input majority rule, that is,
the rule f such that

f(x1, x2, x3) =

{
0 if x1 + x2 + x3 = 0 or 1,
1 if x1 + x2 + x3 = 2 or 3,

then after a number of time steps of the order of magnitude of half the lattice
size, the configuration consists either of 0s only, if the density of active sites is

Fig. 6.34. Successive applications of rules 184 and 232 to determine whether the
density of an initial configuration is either less than or greater than 1/2. Empty
(resp. active) sites are light (resp. dark) gray. The density is equal to 0.48 in the left
two figures and to 0.52 in the right two ones. The lattice size is 50 and the number
of iterations is in all cases equal to 30. Time is oriented downwards

less than 1/2, or of 1s only, if the density of active sites is greater than 1/2.
Radius 1 rule 232 is precisely the majority rule above. Figure 6.34 illustrates these
considerations. If ρ = 1/2, we obtain a string of alternating 0s and 1s.

The number of necessary time steps is equal to the number of time steps
necessary to eliminate completely one type of defect. Since the two types of
defects, for both rules, travel in opposite directions with the same speed v = 1
(see Fig. 6.34), we find that for each rule the system has to evolve for a number
of time steps of the order of magnitude of half the string length.

The density classification problem can also be solved of any rational value of
ρ [106, 107].



Solutions 307

Solution 6.5 The 3-input traffic rule f reads

f
(
(•, •), (1, 1), (a, b)

)
=(a, b), f

(
(•, 0), (1, 0), (0, •)) =(0, 0),

f
(
(•, 0), (1, 0), (1, •)) =(0, 1), f

(
(•, 1), (1, 0), (0, •)) =(0, 1),

f
(
(•, 1), (1, 0), (1, •)) =(1, 1), f

(
(0, •), (0, 1), (•, 0)

)
=(0, 0),

f
(
(0, •), (0, 1), (•, 1)

)
=(1, 0), f

(
(1, •), (0, 1), (•, 0)

)
=(1, 0),

f
(
(1, •), (0, 1), (•, 1)

)
=(1, 1), f

(
(a, b), (0, 0), (•, •)) =(a, b),

where • stands for either 0 or 1, and a and b are equal to either 0 or 1. Note that
the two lanes play a symmetric role.

Figure 6.35 represents the flow diagram of the two-lane one-way car traffic
flow with vmax = 1. The average car flow has been determined numerically for
the following car densities: 0.1, 0.2, 0.3, 0.4, 0.405, 0.406, 0.407, 0.408, 0.41,
0.43, 0.45, 0.47, 0.49, 0.51, 0.55, 0.6, 0.7, 0.8, 0.9, 0.95.

0 0.2 0.4 0.6 0.8 1
car density

0

0.1

0.2

0.3

0.4
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Fig. 6.35. Fundamental diagram of a two-lane one-way road with vmax = 1. Lattice
size: 1,000

All simulations were done on a 1,000-site lattice. Starting from a random initial
road configuration with an exact car density value, the car flow is measured after
2,000 iterations. Each point of the fundamental diagram is an average over 10
different simulations. The critical car density ρc is approximately equal to 0.406.

Remark 26. Since the speed limit is equal to 1, as for traffic rule 184, one could expect
that the critical density should be ρc = 1/2. This would be the case if, for ρ = 1/2,
cars were equally distributed between the two lanes. This is rarely the case, and due
to the existence of defects in the steady state, the average velocity for ρ = 1/2 is less
than 1. This feature is illustrated in Fig. 6.36.
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Fig. 6.36. Car traffic on a two-lane one-way road for a car density exactly equal to
0.5 on a 60-site lattice. The top figure represents the initial configuration and the
bottom one the configuration after 120 iterations

Solution 6.6 We shall prove that an n-input one-dimensional cellular automaton
�-vectorial rule f is number-conserving if, and only if, for all (x1,x1, . . . ,x1) ∈
Qn, it satisfies

�∑

j=1

fj(x1, x2, . . . ,xn) =

�∑

j=1

x1,j +

�∑

j=1

(
n−1∑

k=1

(
fj(0, 0, . . . ,0

︸ ︷︷ ︸
k

,x2,x3, . . . ,xn−k+1)

− fj(0, 0, . . . ,0
︸ ︷︷ ︸

k

,x1,x2, . . . ,xn−k)
)
)

. (6.50)

To prove this result, we proceed exactly as for the proof of Theorem 13.
First, if we write that a cyclic configuration of length L ≥ n, which consists

of 0s only, is number-conserving, we verify that

f(0,0, · · · ,0) = 0,

where 0 = (0, 0, . . . , 0
︸ ︷︷ ︸

�

).

Then, if we consider a cyclic configuration of length L ≥ 2n− 1, which is the
concatenation of a sequence (x1,x2, . . . ,xn) and a sequence of L − n 0s, and
express that the n-input rule f is number-conserving, we obtain

�∑

j=1

fj(0,0, . . . ,0,x1) +
�∑

j=1

fj(0,0, . . . ,0,x1,x2) + · · ·

+
�∑

j=1

fj(x1,x2, . . . ,xn) +
�∑

j=1

fj(x2,x3, . . . ,xn,0) + · · ·

+
�∑

j=1

fj(xn,0, . . . ,0)

=
�∑

j=1

(x1,j + x2,j + · · ·+ xn,j),

where for j = 1, 2, . . . , �, all the terms of the form fj(0,0, . . . ,0) that are equal to
zero have not been written. Replacing x1,j by 0 for all j ∈ {1, 2, . . . , �} in the re-
lation above and subtracting the relation so obtained shows that Condition (6.50)
is necessary.
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Condition (6.50) is obviously sufficient since, when summed over a cyclic
configuration, all the left-hand-side terms except the first cancel.

One easily verifies that the two-lane traffic rule of the preceding exercise sat-
isfies Condition (6.50).

Solution 6.7 If, for all L sites of a cyclic length-L one-dimensional q-state n-
input CA, we write down the relations

f(x1, x2, . . . , xn) ≥ x1 +
n−1∑

k=1

(
f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, . . . , xn−k+1)

−f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x1, x2, . . . , xn−k)
)

and add them, we find that

f(x1, x2, . . . , xn−1, xn) + f(x2, x3, . . . , xn, xn+1) + · · ·
+ f(xL, x1 . . . , xn−2, xn−1) ≥ x1 + x2 + · · ·+ xL.

which shows that Condition 6.49 is a sufficient condition for the CA evolving ac-
cording to the one-dimensional q-state n-input CA f to be number-nondecreasing.
It can be verified that Condition 6.49 is however not necessary, since elementary
CA rule 237 defined by

f237(0, 0, 0) = 1, f237(0, 0, 1) = 0, f237(0, 1, 0) = 1, f237(0, 1, 1) = 1,
f237(1, 0, 0) = 0, f237(1, 0, 1) = 1, f237(1, 1, 0) = 1, f237(1, 1, 1) = 1

is number-nondecreasing but does not satisfy Condition 6.49. A similar sufficient
but not necessary condition could be written for number-nonincreasing CA rules
f which are such that

f(x1, x2, . . . , xn−1, xn) + f(x2, x3, . . . , xn, xn+1) + · · ·
+ f(xL, x1 . . . , xn−2, xn−1) ≤ x1 + x2 + · · ·+ xL.

A CA rule that is either number-nondecreasing or number-nonincreasing is said
to be monotone. Some properties of monotone CAs have been discussed in [325].

Solution 6.8 Figure 6.37 shows, for the timorous and amiable multiple random
walkers models, plots of the reduced Hamming distance between the initial con-
figuration and the configuration obtained after t time steps for two different
densities of random walkers. Increasing the density ρ of random walkers decreases
the reduced Hamming distance δH . For timorous random walkers, starting from
a random initial configuration, δH jumps to 0.729 for ρ = 0.4 and to 0.615 for
ρ = 0.6. When the number of time steps increases, as expected, δH approaches
1. After 30 time steps, δH is equal to 0.989 for ρ = 0.4 and to 0.987 for ρ = 0.6.
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For amiable random walkers, the mixing process is, for a small number of itera-
tions, slightly more efficient. δH jumps to 0.861 or 0.797 for ρ equal to 0.4 or 0.6.
After 30 time steps, δH is equal to 0.989 and 0.991. Both models seem to have
the same asymptotic behavior. As for the sequential rule, the asymptotic reduced
Hamming distances of these synchronous rules probably do not depend upon ρ.

Solution 6.9 To generate an Eden cluster, we have to manipulate two lists of
sites: a list of t sites that, at time t − 1, form the Eden cluster and the list of
perimeter sites ( i.e., the list of sites that are first neighbors of sites belonging to

5 10 15 20 25 30

0.86

0.94

0.98

0.4

0.6

5 10 15 20 25 30

0.94

0.98

0.4
0.6

Fig. 6.37. Reduced Hamming distance between a random initial configuration and
the configuration obtained after t time steps for t varying from 1 to 30. Each point
represents an average reduced Hamming distance over 40 simulations. Lattice size
is 200 × 200. The left (resp. right) figure corresponds to timorous (resp. amiable)
random walkers

the Eden cluster). Then at time t, a randomly selected site from the second list is
added to the first. Implementing this algorithm, we obtain clusters as illustrated
in Fig. 6.38.

Fig. 6.38. An example of Eden cluster obtained on a square lattice after 4,000
iterations of the growth rule
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Solution 6.10 Let us first label the sites of the Bethe lattice as shown in Fig. 6.39.
For z = 3, the lattice consists of three binary trees whose root is site 0. Note that
in the case of an infinite lattice, our labeling is purely conventional: all sites play
exactly the same role and any site could have been chosen as root 0.

(a) If p is the probability for a site to be occupied, let Q(p) be the probability
that a path starting from an occupied site is connected to infinity along a given

0

1

2 3

1112

21 32

22 31

Fig. 6.39. Labeled Bethe lattice sites for z = 3

branch. The probability that site 0 is not connected to infinity along a specific
branch, say branch (0, 1), is then

Q(p) = 1− p+ pQ2(p)

since either site 1 is empty (probability 1 − p) or occupied (probability p) and
not connected to infinity along either branch (1, 11) or branch (1, 12) (probability
Q2(p)). For an arbitrary value of z > 2, the equation above is to be replaced by

Q(p) = 1− p+ pQz−1(p). (6.51)

For all values of the positive integer z, Q(p) = 1 is always a solution to Equa-
tion (6.51). This solution corresponds to P site

∞ (p) = 0 ( i.e., for p < psite
c ). When

p is increasing, it reaches its critical value psite
c ; Q(psite

c ) = 1 becomes a double
root.55 Thus, psite

c satisfies the equation

∂

∂Q

(
1− p+ pQz−1

)
∣
∣
∣
∣
Q=1

= p(z − 1) = 1;

55 As a function of p, the map Q �→ 1−p+pQz−1 exhibits a transcritical bifurcation
corresponding to the second-order phase transition characterized by the incipient
infinite cluster.
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that is,

psite
c =

1
z − 1

.

As shown in Fig. 6.40, for p > psite
c , (6.51) has two real roots, Q(p) = 1 and

0 < Q(p) < 1. For z = 3, this second root is

Q(p) =
1− p
p

.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 6.40. Graphical solution of the equation Q = 1 − p + pQz−1. For z = 5 and
p = 0.6, we find Q = 0.418385 . . .

The percolation probability P site∞ (p) being the probability for an occupied site to
be connected to infinity, we have

P site
∞ (p) = p

(
1−Qz(p)) (6.52)

since the site has to be occupied (probability p) and connected to infinity through
at least one of the z outgoing edges (probability 1−Qz(p)). For z = 3, we have

P site
∞ (p) = p

(

1−
(

1− p
p

)3
)

,

and in the vicinity of psite
c = 1/2, we find

P site
∞ (p) = 6

(
p− 1

2

)
+O

(
(p− 1

2 )2
)
,

which shows that β = 1.
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In order to verify that β = 1 for all values of z, we first find the expansion in
powers of p− 1/(z − 1) of the solution Q(p) < 1 to (6.51). Let

Q(p) = 1 + a1

(
p− 1

z − 1

)
+ a2

(
p− 1

z − 1

)2

+O

((
p− 1

z − 1

)3
)

.

Then, substituting this expression in (6.51) yields

a1 =
2(z − 1)
2− z .

Replacing

Q(p) = 1 +
2(z − 1)
2− z

(
p− 1

z − 1

)
+O

((
p− 1

z − 1

)2
)

in the expression of P site
∞ (p) given by (6.52), we obtain

P site
∞ (p) =

2z
z − 2

(
p− 1

z − 1

)
+O

((
p− 1

z − 1

)2
)

,

which proves that β = 1 for all values of z.

(b) In the case of the bond percolation model, p is the probability for a bond
to be open. Let Q(p) denote the probability that an outgoing path from a given
site along a specific branch is closed. For z = 3, the probability that site 0 is not
connected to infinity along a specific branch, say branch (0, 1), is then

Q(p) =
(
1− p+ pQ(p)

)2

since the two branches (1, 11) and (1, 12) are either closed (probability 1− p) or
open but not connected to infinity (probability pQ(p)). For an arbitrary value of
z > 2, the equation above is to be replaced by

Q(p) =
(
1− p+ pQ(p)

)z−1
. (6.53)

For all values of the positive integer z, Q(p) = 1 is always a solution to (6.53).
This solution corresponds to P bond

∞ (p) = 0 ( i.e., for p < pbond
c ). When p is

increasing, it reaches its critical value pbond
c ; Q(pbond

c ) = 1 becomes a double
root. Thus, pbond

c satisfies the equation

∂

∂Q
(1− p+ pQ)z−1

∣∣
∣
∣
Q=1

= p(z − 1) = 1,

and we find, as for the site percolation model,

pbond
c =

1
z − 1

.



314 6 Spatial models

For p > psite
c , (6.53) has two real roots, Q(p) = 1 and 0 < Q(p) < 1. For z = 3,

this second root is

Q(p) =
(

1− p
p

)2

.

The percolation probability P bond
∞ (p) being the probability for a site, say site 0,

to be connected to infinity, we have

P bond
∞ (p) = 1−Qz(p) (6.54)

since site 0 has to be connected to infinity through at least one of z outgoing
edges. For z = 3, we have

P bond
∞ (p) = 1−

(
1− p
p

)6

,

and in the vicinity of pbond
c = 1/2, we find

P bond
∞ (p) = 24

(
p− 1

2

)
+O

(
(p− 1

2 )2
)
,

which shows that β = 1.
To prove that β = 1 for all values of z, we proceed as for the site model by

first finding the expansion in powers of p− 1/(z− 1) of the solution Q(p) < 1 to
(6.53). Let

Q(p) = 1 + a1

(
p− 1

z − 1

)
+ a2

(
p− 1

z − 1

)2

+O

((
p− 1

z − 1

)3
)

.

Then, substituting this expression in (6.53) yields

a1 =
2(z − 1)2

2− z .

Replacing

Q(p) = 1 +
2(z − 1)2

2− z
(
p− 1

z − 1

)
+O

((
p− 1

z − 1

)2
)

in the expression of P bond
∞ (p) given by (6.54), we obtain

P bond
∞ (p) =

2z(z − 1)2

z − 2

(
p− 1

z − 1

)
+O

((
p− 1

z − 1

)2
)

,

which proves that β = 1 for all values of z.

Solution 6.11 To generate a cluster of invaders, we manipulate two lists of sites:
a list of t sites that, at time t − 1, form the cluster of invaders and the list of
perimeter sites. Then, at time t, the perimeter site with the smallest random
number is added to the cluster of invaders. Implementing this algorithm, we
obtain a typical cluster, as shown in Fig. 6.41.
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Solution 6.12 Tit-for-tat and tit-for-two-tats strategists always cooperate when
playing against each other or against a fellow strategist. They cannot, therefore,
be distinguished in the absence of a third strategy.

Playing against each other, a suspicious tit-for-tat and a tit-for-tat strategist
lock into a pattern of alternating cooperations and defections, the first one playing
the sequence defection, cooperation, defection, cooperation, etc., and the second
one cooperation, defection, cooperation, defection, etc. Then, their respective
total payoffs are

Fig. 6.41. Example of a cluster of invaders obtained on a square lattice after 2,000
iterations of the invasion rule

T + wS + w2T + w3S + · · · = T + wS

1− w2
,

S + wT + w2S + w3T + · · · = S + wT

1− w2
.

Playing against each other, a suspicious tit-for-tat and a tit-for-two-tats strategist,
after the first encounter, lock into a pattern of mutual cooperation, and their
respective total payoffs are

T + wR+ w2R+ w3R + · · · = T +
wR

1− w,

S + wR+ w2R+ w3R + · · · = S +
wR

1− w .

Hence, in the presence of mutant suspicious tit-for-tat strategists, tit-for-two-
tats strategists do better than tit-for-tat strategists, showing that the tit-for-tat
strategy is not evolutionarily stable.



316 6 Spatial models

Remark 27. While this example may cast doubts on the general result of Axelrod and
Hamilton [20], as stressed by May [305], it may turn out that tit for tat is more robust
than what Boyd and Lorberbaum [86] think since it depends on these strategies being
rigidly adhered to. In the real world, cooperation is not always rewarded and defection
not always punished. If, for example, a tit-for-tat strategist punishes defection with a
probability slightly less than 1, tit-for-tat and suspicious tit-for-tat strategists would
eventually settle on mutual cooperation.

Solution 6.13 If the set of states is {0, 1}, where state 0 corresponds to say
opinion A and 1 to opinion B, the evolution rule is totalistic (i.e., it depends only
upon the sum of the states of the nearest neighbors) and can be written as

st+1
i,j = f(Sti,j) =

{
0, if 0 ≤ Sti,j < 3,
1, if 3 ≤ Sti,j ≤ 5,

where
Sti,j = sti,j−1 + sti−1,j + sti,j + sti+1,j + sti,j+1.

Figure 6.42 shows the initial random configuration followed by three other
configurations exhibiting cluster formation after 50, 100, and 200 iterations. Note
that the patterns after 100 and 200 iterations are identical, showing that clusters
do not evolve after a rather small number of time steps. While many individuals
change their behavior during the evolution, the number of individuals having a
given behavior does not change so much. In our simulation, initially the individ-
uals were divided into two groups of 1,214 (light gray) and 1,286 (dark gray)
individuals. In the steady state, these groups consisted of 1,145 (light gray) and
1,355 (dark gray) individuals, respectively.
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Fig. 6.42. Formation of clusters of individuals having identical behavior. Initially
the individuals have either behavior A or B with equal probability. Lattice size:
50 × 50. From left to right and top to bottom, the figures represent configurations
after 0, 50, 100, and 200 iterations
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Summary

This chapter focusses on models in which space plays an important role. It
essentially studies models formulated in terms of cellular automata in which
the agents can only occupy sites that are periodically distributed in space,
and models in which agents can occupy any spatial locations.

• A cellular automaton is a discrete system consisting of a regular grid of
cells, in which each cell is in one state of a finite number of states. The grid
can be of any finite dimension. At each cell is associated a finite number of
neighboring cells defining its neighborhood . The state of each cell evolves
in time according to a rule that depends upon the state of the cell and
the states of all the cells belonging to its neighborhood. The evolution rule
may be either deterministic or probabilistic. Although cellular automata
are constructed from many identical simple components, put together these
components can exhibit a complex behavior.

• Let s(i, t) ∈ Q represent the state at site i ∈ Z and time t ∈ N; a
local evolution rule is a map f : Qr�+rr+1 → Q such that

s(i, t+ 1) = f
(
s(i− r�, t), s(i− �+ 1, t), . . . , s(i+ rr, t)

)
,

where the integers r� and rr are, respectively, the left radius and right
radius of the one-dimentional cellular automaton rule f . The function
St : i �→ s(i, t) is the state of the cellular automaton at time t. Many
cellular automata rules have equal left and right radii: r� = rr.

• In the case of two-dimensional cellular automata , there are several possi-
ble lattices and neighborhoods. If, for example, we consider a square lattice
and a (2r1 + 1)× (2r2 + 1)-neighborhood, the state s

(
(i1, i2), t+ 1

) ∈ Q of
site (i1, i2) at time t+1 is determined by the state of the (2r1+1)×(2r2+1)-
block of sites centered at (i1, i2) by

s
(
(i1, i2), t+ 1

)

= f

⎛

⎜
⎜
⎝

s
(
(i1 − r1, i2 − r2), t

) · · · s
(
(i1 + r1, i2 − r2), t

)

s
(
(i1 − r1, i2 − r2 + 1), t

) · · · s((i1 + r1, i2 − r2 + 1), t
)

· · · · · · · · ·
s
(
(i1 − r1, i2 + r2), t

) · · · s
(
(i1 + r1, i2 + r2), t

)

⎞

⎟
⎟
⎠ ,

where f : Q(2r1+1)×(2r2+1) → Q is the two-dimensional cellular automaton
local evolution rule.
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• The simplest one-dimensional cellular automata are the so-called elemen-
tary cellular automata in which the finite set of states is Q = {0, 1} and
the rule’s radii are r� = rr = 1. Sites in a nonzero state are sometimes
said to be active. It is easy to verify that there exist 223

= 256 different
elementary cellular automaton local rules f : {0, 1}3 → {0, 1}.

• The local rule of an elementary cellular automaton can be specified by its
look-up table , giving the image of each of the eight three-site neighbor-

hoods. That is, any sequence of eight binary digits specifies an elementary
cellular automaton rule. Here is an example:

111 110 101 100 011 010 001 000
1 0 1 1 1 0 0 0

• Following Stephen Wolfram, a code number may be associated with each
cellular automaton rule. If Q = {0, 1}, this code number is the decimal
value of the binary sequence of images. For instance, the code number of
the rule above is 184 since

101110002 = 27 + 25 + 24 + 23 = 18410,

where, in the notations 101110002 and 18410, the index gives the value of
the base.
More generally, the code number of a one-dimensional |Q|-state n-input
cellular automaton rule f is defined by

N(f) =
∑

(x1,x2,...,xn)∈Qn

f(x1, x2, . . . , xn)|Q||Q|n−1x1+|Q|n−2x2+···+|Q|0xn .

• In the case of cellular automata, the attractor is called the limit set and
is defined by

ΛF = lim
t→∞F t(S) =

⋂

t≥0

F t(S),

where F is the global evolution rule and S = QZ is the set of all configu-
rations.

• With Jamil Nasser and Michel Roger, I have shown that the evolution
toward the limit set can be viewed as the elimination of defects , which
are sequences of 0s or 1s. These defects can also be viewed as interacting
particle-like structures evolving in a regular background.

• Elementary cellular automaton 184 belongs to a special class of cellular
automata. It is number-conserving ; i.e., it satisfies the condition

(∀t ∈ N)
L∑

i=1

s(i, t) = constant,
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where L is the cellular automaton size. More generally, a one-dimensional
|Q|-state n-input cellular automaton rule f is number-conserving if, for all
cyclic configurations of length L ≥ n, it satisfies

f(x1, x2, . . . , xn−1, xn) + f(x2, x3, . . . , xn, xn+1) + · · ·
+ f(xL, x1 . . . , xn−2, xn−1) = x1 + x2 + · · ·+ xL.

• In 1998, with Henryk Fukś I proved the following theorem: A one-
dimensional |Q|-state n-input cellular automaton rule f is number-
conserving if, and only if, for all (x1, x2, . . . , xn) ∈ Qn, it satisfies

f(x1, x2, . . . , xn) = x1 +
n−1∑

k=1

(
f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, . . . , xn−k+1)

−f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x1, x2, . . . , xn−k)
)
.

If a cellular automaton rule f is number-conserving for all cyclic con-
figurations of length 2n − 1, then it is number-conserving for all cyclic
configurations of length L > 2n− 1.

• The following corollaries are simple necessary conditions for a cellular au-
tomaton rule to be number-conserving.
1. If f is a one-dimensional |Q|-state n-input number-conserving cellular

automaton rule, then

for all x ∈ Q, f(x, x, . . . , x) = x.

2. If f is a one-dimensional |Q|-state n-input number-conserving cellular
automaton rule, then

∑

(x1,x2,...,xn)∈Qn

f(x1, x2, . . . , xn) =
1
2
(|Q| − 1) |Q|n.

• In 2007, I have defined and studied a new class of cellular automata called
eventually number-conserving cellular automata that become number-

conserving not from the beginning but only after a finite number of time
steps. Although it is undecidable whether a one-dimensional cellular au-
tomaton obeys a given conservation law over its limit set, it is however
possible to obtain sufficient conditions to be satisfied by a one-dimensional
cellular automaton to be eventually number-conserving. While eventu-
ally number-conserving cellular automata rules often emulate number-
conserving cellular automata rules, this is not always the case. For in-
stance, elementary cellular automaton rules 74 and 88 are examples of



Solutions 321

eventually number-conserving cellular automata rules that do not emulate
number-conserving rules. These two rules are defined by

f74(0, 0, 0) = 0, f74(0, 0, 1) = 1, f74(0, 1, 0) = 0, f74(0, 1, 1) = 1,
f74(1, 0, 0) = 0, f74(1, 0, 1) = 0, f74(1, 1, 0) = 1, f74(1, 1, 1) = 0,

f88(0, 0, 0) = 0, f88(0, 0, 1) = 0, f88(0, 1, 0) = 0, f88(0, 1, 1) = 1,
f88(1, 0, 0) = 1, f88(1, 0, 1) = 0, f88(1, 1, 0) = 1, f88(1, 1, 1) = 0.

On Page 240 is indicated how one can find eventually number-conserving
rules.

• In 1992, in collaboration with Cheong, I introduced and studied site-
exchange cellular automata defined as follows:
A site-exchange cellular automaton is an automata network whose evo-
lution rule consists of two subrules:
1. The first subrule is a probabilistic cellular automaton rule , such as,

for example, a diluted one-dimensional rule f defined by

s(i, t+ 1) = Xf
(
s(i− r�, t), s(i− r� + 1, t), . . . , s(i+ rr , t)

)
,

where f is a one-dimensional deterministic cellular automaton rule with
left and right radii equal, respectively, to r� and rr, andX is a Bernoulli
random variable (whose purpose is to dilute the rule f) such that

P (X = 0) = 1− p and P (X = 1) = p.

When p = 1, the above rule coincides with the deterministic cellular
automaton rule f .

2. The second subrule is a site-exchange rule defined as follows. An oc-
cupied site (i.e., a site whose state value is 1) is selected at random and
swapped with another site (either empty or occupied) also selected at
random. The second site is either a nearest neighbor of the first site
(short-range move) or any site of the lattice (long-range move). Be-
tween the application of the first subrule at times t and t + 1, this
swapping operation is repeated 
m × ρ(m, t) × L� times, where m is
a positive real number called the degree of mixing, ρ(t) the density of
occupied sites at time t, L the total number of lattice sites, and the
notation 
x� denotes the largest integer less than or equal to x.

This type of new cellular automaton rule was used to build up epidemic
model in which the infection by contact and recovery are modeled by
the first two-dimensional probabilistic cellular automaton rules applied
synchronously, whereas the motion of the individuals, which is an essential
factor, is modeled by a sequential site-exchange rule. For applications, see
Page 262.
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• As said above, we also considered a spatial model in which the agents
are located inside a unit square without, however, occupying the sites of
a periodic grid. For instance, we studied a model of opinions dynamics
defined as follows: Consider a system of n agents located inside the unit
square [0, 1]× [0, 1] in which each agent is characterized by
1. Its name: a number from 1 to n,
2. Its location inside the square: a pair of reals (x, y) where the coordinates
x and y both belong to the open interval ]0, 1[,

3. Its political opinion: a random real number distributed according to a
truncated normal distribution, whose bounded support is the interval
[−1, 1], having a mean m = 0 and standard deviation σ = 0.54. (On
how to generate this type of random numbers, refer to Page 276.)
Opinions close to −1 could be referred to as extreme left opinions and
those close to +1 would represent extreme right opinions.

• In 1971, Thomas Schelling devised a very simple model of spatial segrega-
tion in which individuals prefer that a minimum fraction of their neighbors
be of their own type.
Consider a two-dimensional cellular automaton on Z

2
L (i.e., an L×L square

lattice with periodic boundary conditions). Each site is either occupied by
an individual with a probability ρ or empty with a probability 1− ρ. Indi-
viduals are of two different types. The state of an empty site is 0, while the
state of an occupied site is an integer a ∈ {1, 2} representing the individual
type (race, gender, social class). The local evolution rule consists of the
following steps:
1. Each individual counts how many individuals in his Moore neighbor-

hood (eight sites) share with him the same type.
2. If this number is larger than or equal to four, the individual stays at

the same location; if this is not the case, the individual tries to move
to a randomly selected nearest-neighboring site.

3. Individuals who decide to move do so according to the multiple ran-
dom walkers model described on Page 275 in which when two or more
random walkers are facing the same empty site they agree not to move.

We can increase the number of types, say from two to four; but as expected,
it takes more iterations to observe well-segregated neighborhoods.

• In the Schelling model, individuals are only permitted to perform short-
range moves, making this model not a very realistic model of spatial
segregation. However, it is rather realistic if we view it as a model of
clustering of people, say by gender or generation, at a party. In a more
realistic model of spatial segregation, we should allow unsatisfied individ-
uals to perform long-range moves to reach a distant preferable location.
A model of spatial segregation allowing individuals to perform long-range
moves has been proposed by Richard Gaylord and Louis D’Andria . As in
the Schelling model, individuals of two different types occupy a fraction ρ
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of the sites of a finite square lattice with periodic boundary conditions.
The state of an empty site is 0, and the state of an occupied site is either
1 or 2 according to the individual type. The evolution rule consists of the
following steps:
1. Build up the list of the individuals of each type who want to move using

the rule that an individual wants to move if his Moore neighborhood
contains fewer individuals of his own type than the other type.

2. List the positions of all individuals of type 1 who want to move.
3. List the positions of all individuals of type 2 who want to move.
4. List the positions of all empty sites that are suitable for individuals of

type 1.
5. List the positions of all empty sites that are suitable for individuals of

type 2.
6. If the length of the list of a given type of individual who wants to move

is not equal to the list of empty sites suitable to that type of individual,
match the lengths of the two lists by randomly eliminating elements of
the longest list.

7. Carry out the moves by swapping the positions of individuals of a given
type who want to move with the positions of the empty sites suitable
to that type of individual.

As expected, it takes much fewer iterations to observe the formation of seg-
regated neighborhoods when individuals are permitted long-range moves.

• We also discussed a model of culture dissemination proposed by Robert
Axelrod in which an individual’s culture is described by a list of features
such as political affiliation or dress style. For each feature, there is a set of
traits, which are the alternative values the feature may have, such as the
different colors of a piece of clothing. The basic idea is that individuals
who are similar to each other are likely to interact and then become even
more similar. This process of social influence is implemented by assuming
that the probability of interaction between two neighboring individuals is
equal to their degree of similarity. Richard Gaylord and Louis D’Andria
proposed a modified version of the Axelrod model incorporating random
motion of the individuals. Mobility had, however, already been included in
Axelrod’s model and was shown to result in fewer stable cultural regions.

• The end of the chapter is devoted to the study of a few models using a
game theory approach.
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Networks

The essential points of this chapter are
• The small-world phenomenon, Milgram

experiments, and the six degrees of separation
• The collaboration graph of movie actors
• The Erdös number
• The definition of a graph
• Isomorphism of graphs
• In- and out-degree of a vertex
• Definition of a path or chain
• Length of a chain
• Definition and properties of the adjacency matrix
• Definition of bipartite graph
• Definition of uniform and binomial random graphs
• Characteristic path length of a graph
• Clustering coefficient of a graph
• The scientific collaboration networks
• The notion of preferential attachment
• The World Wide Web as a highly connected graph
• How to build up a random graph

7.1 The Small-World Phenomenon

In the late 1960s, Stanley Milgram1 [317] performed a simple experiment to
show that, despite the very large number of people living in the United States
and the relatively small number of a person’s acquaintances, two persons
1 Stanley Milgram (1933–1984) was a social psychologist. He conducted the small-

world experiment in 1967 while he was at Harvard. His results, known as the Six

N. Boccara, Modeling Complex Systems: Second Edition, Graduate Texts in Physics, 325
DOI 10.1007/978-1-4419-6562-2 7, c© Springer Science+Business Media, LLC 2010
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chosen at random are very closely connected to one another.2 In a recent
paper [270], Jure Leskovec and Eric Horvitz explored a dataset of 30 billion
conversations generated by 240 million distinct users over one month, collected
from the Microsoft Messenger instant-messaging system, to investigate on a
planetary-scale the oft-cited report that people are separated by “six degrees
of separation.” They found that the average path length among Messenger
users was 6.6.

Here is how he says his study was carried out:

The general idea was to obtain a sample of men and women from
all walks of life. Each of these persons would be given the name and
address of the same target person, a person chosen at random, who
lives somewhere in the United States. Each of the participants would
be asked to move a message toward the target person, using only a
chain of friends and acquaintances. Each person would be asked to
transmit the message to the friend or acquaintance who he thought
would be most likely to know the target person. Messages could move
only to persons who knew each other on a first-name basis.

In a first study, the letters, given to people living in Wichita, Kansas, were
to reach the wife of a divinity student living in Cambridge, Massachusetts, and
in a second study, the letters, given to people living in Omaha, Nebraska, had
to reach a stockbroker working in Boston and living in Sharon, Massachusetts.
Out of 160 chains that started in Nebraska, 44 were completed. The number
of intermediaries needed to reach the target person in the Nebraska study is
distributed as shown below:

(2,2) (3,4) (4,9) (5,8) (6,11) (7,5) (8,1) (9,2) (10,2) .

The first number of the ordered pairs is the chain length (number of interme-
diaries) and the second one the number of such completed chains.

The median of this distribution is equal to 5 and its average is 5.43. These
results are certainly not very accurate, the statistics being too poor to make
serious claims. However, the fact that two randomly chosen persons are con-
nected by only a short chain of acquaintances, referred to as the small-world
phenomenon, has been verified for many different social networks. One strik-
ing example is the collaboration graph of movie actors. Consider the graph

degrees of separation (the sentence he coined at that time to describe the world-
shrinking effects of social networks), were popularized by a play written, in 1990,
by John Guare and a movie which was adapted from the play in 1993. Later, a
trivia game, the Six Degrees of Kevin Bacon, was created in 1994 by three students
at Albright College. It required a player to connect any film actor in history to
actor Kevin Bacon as quickly as possible and in as few links as possible. In 2007,
Kevin Bacon started a charitable organization named SixDegrees.org.

2 Actually, it appears that the first proponent of the six degrees separation concept
was the Hungarian author Frigyes Karinthy (1887–1938) who mentioned the idea
in his 1929 short story entitled Láncszemek (Chains).
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whose vertices are the actors listed in the Internet Movie Database3 in which
two actors are connected by an edge if they acted in a film together. In April
1997,4 this graph had 225,226 vertices, with an average number of edges per
vertex equal to 61. It is found that the average chain length (in the sense of
Milgram) or degree of separation between two actors selected at random from
the giant connected component of this graph, which includes about 90% of
the actors listed in the database, is equal to 3.65.5 Networks, like Milgram’s
network of personal acquaintances, are everywhere, and recently a substantial
number of papers dealing with their basic properties have been published. Ex-
amples include neural networks, food webs, metabolic networks, power grids,
collaboration networks, distribution networks, highway systems, airline routes,
the Internet, and the World Wide Web.6

Milgram’s experiments provoked emotional criticism about the experi-
ment’s implications, see in particular, Joseph Dimow7, and Tom Peters and
Robert H. Waterman, Jr who wrote In Search of Excellence that was ex-
tremely successful: 3 million copies were sold in its first four years8 See also,
by Elizabeth DeVita-Raebu: If Osama’s Only 6 Degrees Away, Why Can’t We
Find Him? published in February 2008 issue of the magazine Discover

7.2 Graphs

From a mathematical point of view, a graph G is an ordered pair of disjoint
sets (V,E), where V is a nonempty set of elements called vertices, nodes, or
points, and a subset E of ordered pairs of distinct elements of V , called directed
edges , arcs, or links. An edge may join a vertex to itself. If we need to specify
that V (resp. E) is the set of vertices (resp. edges) of a specific graph G, we use
3 Web site: http://us.imdb.com.
4 These data are taken from Watts and Strogatz [439].
5 On the Web site: http://oracleofbacon.org one can select two actors and find

their degree of separation. For instance, Stan Laurel and Oliver Hardy have both
a Bacon number equal to 3. In the world of mathematics, there exists a famous
collaboration graph centered on the Hungarian mathematician Paul Erdös (1913–
1996), who traveled constantly, collaborated with hundreds of mathematicians,
and wrote more than 1,400 papers. Mathematicians who coauthored a paper with
Erdös have an Erdös number equal to 1, mathematicians who wrote a paper with
a colleague who wrote a paper with Erdös have an Erdös number equal to 2, and
so forth. It appears that among mathematicians who coauthored papers, less than
2% have an Erdös number larger than 8. The Erdös number was apparently first
defined in print [185] (the paper is only half a page long) by the mathematician
Casper Goffman (1913–2006) who met Erdös at a meeting in London and told
him about the Erdös number that apparently Erdös never heard of.

6 The reader might be interested by the following papers dealing with various
aspects of the small world phenomenon [247,431,439–441].

7 Refer to http://www.jewishcurrents.org/2004-jan-dimow.htm.
8 See http://en.wikipedia.org/wiki/In Search of Excellence.
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the notation V (G) (resp. E(G)).9 Edges can also be undirected. A network of
personal acquaintances is an undirected graph, while the routes of an airline
company are a directed graph.

12

3 6

4 5

12

3

4 5

6

Fig. 7.1. Examples of directed and undirected graphs with six vertices and nine
edges

A graph H is a subgraph of G if V (H) ⊂ V (G) and E(H) ⊂ E(G).
In a directed graph (also called a digraph), if (x, y) is an arc joining vertex

x to vertex y, vertex y is said to be adjacent to x or a neighbor of x. The
set of all vertices adjacent to a vertex x is the neighborhood N(x) of x. In an
undirected graph, the edge joining x and y is denoted {x, y}, and, in this case,
x and y are said to be adjacent. Figure 7.1 shows both types of graphs.

The number of vertices |V (G)| of a graph G is the order of G, and the
number of edges |E(G)| of G is the size of G. The notationG(N,M) represents
an arbitrary graph of order N and size M . A graph of order N is empty if it
has no edges (i.e., if its size M = 0) and complete if all pairs of vertices are

adjacent

(

i.e., if its size M =
(
N

2

))

.

Graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a
bijection ϕ : V1 → V2 such that {x, y} ∈ E1 if, and only if, {ϕ(x), ϕ(y)} ∈ E2.
9 On graph theory, see Bollobás [81] and Berge [50]. Béla Bollobas is a Hungarian-

born British mathematician who was born in Budapest in 1943. He proved nu-
merous important results on extremal graph theory, functional analysis, random
graphs theory, graph polynomials and percolation. He obtained his Ph.D. from the
University of Cambridge in 1972 with a dissertation entitled Banach Algebras and
the Theory of Numerical Ranges under the direction of J. Frank Adams (1930–
1989). Claude Berge (1926–2002) was a French mathematician considered as one
of the founders of graph theory. He has been a visiting professor at Princeton Uni-
versity in 1957, New York University in 1985, and a frequent visitor to the Indian
Statistical Institute in Calcutta. The interested reader may consult his obituary
at http://users.encs.concordia.ca/∼chvatal/perfect/claude2.pdf.
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In other words, G1 and G2 are isomorphic if the bijection ϕ between their
vertex sets V1(G1) and V2(G2) preserves adjacency. Isomorphic graphs have,
of course, the same order and same size.

The degree d(x) of vertex x is the number |N(x)| of vertices adjacent to x.
In the case of a directed graph, we have to distinguish the in-degree din(x)
and the out-degree dout(x) of a vertex x, which represent, respectively, the
number of incoming and outgoing edges. A graph is said to be regular if all
vertices have the same degree. A vertex of degree zero is said to be isolated.

An alternating sequence

(x0, e1, x1, e2, . . . , e�, x�)

of vertices xi (i = 0, 1, 2, . . . , �) and edges ej = (xj−1, xj) (j = 1, 2, . . . , �) is a
path or a chain of length � joining vertex x0 to vertex x�. Without ambiguity,
a path can also be represented by a sequence of vertices (x0, x1, . . . , x�). This
notation assumes that, for all j = 1, 2, . . . , �, all edges ej = (xj−1, xj) exist.
The chemical distance d(x, y), or simply distance, between vertices x and y is
the smallest length of a path joining x to y.

If a path (x0, x1, . . . , x�) is such that � ≥ 3, x0 = x� and, for all j =
1, 2, . . . , �, all vertices xj are distinct from each other, the path is said to be
a cycle.

A graph is connected if, for every pair of distinct vertices {x, y}, there
is a path joining them. A connected graph of order greater than 1 does not
contain isolated vertices. If a graph G is not connected, then it is the union of
connected subgraphs. These connected subgraphs are the components of G.
A connected graph without any cycle is called a tree.

Graphs considered here contain neither multiple edges (i.e., more than one
edge joining a given pair of vertices) nor loops (i.e., edges joining a vertex to
itself).

A graph G of order N can be represented by its N ×N adjacency matrix
A(G), whose elements aij are given by

aij = aji =

{
1, if there exists an edge between vertices i and j,
0, otherwise.

A(G(10, 20)) =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0 1 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 0 1
1 1 0 1 0 1 1 0 0 0
0 0 1 0 0 0 0 1 1 0
1 1 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 1 0
1 0 0 1 1 0 1 0 0 1
0 0 0 1 0 0 1 0 0 1
1 1 0 0 0 1 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

. (7.1)
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Figure 7.2 shows the graph of order 10 and size 20 represented by the
adjacency matrix (7.1).
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Fig. 7.2. Undirected graph of order 10 and size 20 represented by the adjacency
matrix (7.1)

The ij-element of the square of the adjacency matrix is given by

N∑

k=1

aikakj ;

it is nonzero if, for some k = 1, 2, . . . , N , both aik and akj are equal to 1. If, for
a specific value of k, aikakj = 1, this implies that there exists a path of length 2
joining vertex i to vertex j, and the value of

∑N
k=1 aikakj represents, therefore,

the number of different paths of length 2 joining vertex i to vertex j. More
generally, it is straightforward to verify that the value of the element ij of the
nth power of the adjacency matrix is the number of different paths of length
n joining vertex i to vertex j. Note that a specific edge may belong to a path
more than once. In particular, in the case of an undirected graph, the value of
the diagonal element ii of the square of the adjacency matrix is equal to the
number of paths of length 2 joining vertex i to itself. It represents, therefore,
the degree of vertex i. These considerations are illustrated by matrix (7.2),
which represents the square of the adjacency matrix (7.1).
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A2(G(10, 20)) =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

5 3 1 2 2 3 2 2 1 2
3 5 2 1 1 2 1 3 1 2
1 2 5 0 2 1 0 3 2 3
2 1 0 3 1 1 3 0 0 2
2 1 2 1 3 1 1 1 0 3
3 2 1 1 1 3 1 1 1 1
2 1 0 3 1 1 3 0 0 2
2 3 3 0 1 1 0 5 3 1
1 1 2 0 0 1 0 3 3 0
2 2 3 2 3 1 2 1 0 5

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

. (7.2)

Sometimes it might be useful to consider that the vertices of a graph are
not of the same type. The collaboration graph of movie actors can be viewed
as a set of actors (vertices of type 1) and a set of films (vertices of type 2)
with links between a film and an actor when the actor appeared in the film.
Such graphs are said to be bipartite. In a bipartite graph, there exist no edges
connecting vertices of the same type.

7.3 Random Networks

Except when mentioned otherwise, in what follows we shall deal with undi-
rected graphs. A random graph is a graph in which the edges are randomly
distributed.10 Networks of intricate structure could be tentatively modeled by
random graphs. But, to verify if they are acceptable models, we have to study
some of their basic properties.

To give a precise definition of a random graph, we have to define a space
whose elements are graphs and a probability measure on that space. For graphs
with a given number N of vertices, there exist two closely related models of
random graphs.

1. For 0 ≤M ≤
(
N

2

)
, there are

((N
2

)

M

)
graphs with exactly M edges. If the

probability of selecting any of them is
((N

2

)

M

)−1

, we define the probability

space G(N,M) of uniform random graphs.
2. Let 0 ≤ p ≤ 1. If the probability of selecting a graph with exactly m

edges in the set of all graphs of order N is pk(1 − p)(
N
2 )−m – that is, if

an edge between a pair of vertices exists independently of the other edges
with a probability p and does not with a probability 1− p – the resulting
probability space is denoted G(N, p), and graphs of this type are called
binomial random graphs.

10 On random graphs see the classic book of Bollobás [82], and also Janson et al.
[231].
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In a uniform random graph, the probability that there exists an edge

between a given pair of vertices is M/

(
N

2

)
, whereas the average number of

edges of a binomial random graph is p
(
N

2

)
.

If p is the probability that there exists an edge between two specific ver-
tices, the probability that a specific vertex x has a degree d(x) = m is

P
(
d(x) = m

)
=
(
N − 1
m

)
pm(1− p)N−1−m.

In most applications, p is small and N is large, so, in the limit p→ 0, N →∞,
and pN = λ, we find that for both uniform and binomial random graphs, the
vertex degree probability distribution is Poisson11:

(∀x) P
(
d(x) = m

)
= e−λ

λm

m !
.

For a given number of vertices N , if the number M of edges is small,
a random graph tends to have only tree components of orders depending
upon the value of M .12 As the number of edges grows, there is an important
qualitative change first studied by Erdös and Rényi and referred to as the
phase transition, which is the sudden formation of a giant component (i.e.,
a component whose order is a fraction of the order N of the graph). This
component, formed from smaller ones, appears when M = N/2 +O(N2/3).13

The phase transition in random graphs is clearly similar to the percolation
transition described on page 253. In a random graph of order N , each of the(
N

2

)
edges exists with a probability p = 2M/N(N − 1). The formation of

the giant component may, therefore, be viewed as a percolation phenomenon
in N dimensions. Since, in most real networks,N is very large, the percolation
threshold is extremely small (see Exercise 6.10). This agrees with the result
mentioned in the previous paragraph (i.e., the giant component appears for a
number of edges M ∼ N ; that is, for a probability p = O(N−1)).

When studying the properties of a large network, we shall only consider
the giant component.

The structural properties of a network are usually quantified by its charac-
teristic path length, its clustering coefficient, and its vertex degree probability
distribution.

The characteristic path length L of a network is the average shortest path
length between two randomly selected vertices.
11 This classical result, which is very simple to establish using either characteris-

tic functions or generating functions, can be found in almost any textbook on
probability theory. See Exercise 7.2.

12 The interested reader will find precise results in Bollobás [81], p. 240.
13 For details on this “sudden jump” of the largest component, refer to Janson et al.

[231], Chap. 5.
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The clustering coefficient C of a network is the conditional probability
that two randomly selected vertices are connected given that they are both
connected to a common vertex. That is, if x is a given vertex and d(x) the
number of other vertices linked to x (i.e., the degree of x), since these d(x)
vertices may be connected together by at most 1/2 d(x)(d(x) − 1) edges, the
clustering coefficient Cx of vertex x is the fraction of this maximum number
of edges present in the actual network, and the clustering coefficient C of the
network is the average of the clustering coefficients of all vertices.

The characteristic length takes its minimum value of L = 1 and the clus-
tering coefficient its maximum value C = 1 in the case of a complete graph.

If N is the order of a random graph, 〈d〉 = λ the average vertex degree,
and p ≈ 〈d〉/N the probability that there exists an edge between two vertices,
in the case of the random graph, the conditional probability that two ran-
domly selected vertices are connected given that they are both connected to
a common vertex coincides with the probability that two randomly selected
vertices are connected, which is 〈d〉/N . Thus

Crandom ≈ 〈d〉
N
.

The shortest path length between any two vertices of a graph is called
the diameter D of the graph. Since a given vertex has, on average, 〈d〉 first
neighbors, 〈d〉2 second neighbors, etc., the diameter Drandom of a random
graph is such that 〈d〉Drandom ≈ N ; hence

Drandom ≈ logN
log〈d〉 .

This result shows that for large random networks the characteristic path
length Lrandom satisfies

Lrandom ∼ logN
log〈d〉 .

Let us compare these results with data obtained from real networks.
The collaboration network of movie actors mentioned on page 326 has

been studied by different authors (see for instance [43]). The vertices of this
collaboration graph are the actors listed in the Internet Movie Database, and
there is an edge linking two actors if they acted in a film together. This network
is continuously growing; it had 225,226 vertices in April 1997 and almost
half a million in May 2000 [344]. The table below indicates a few structural
properties of the collaboration graph of movie actors, such as the orderNactors,
the average vertex degree 〈dactors〉, the characteristic path length Lactors, and
the clustering coefficient Cactors. For a comparison, the characteristic path
length Lrandom and the clustering coefficient Crandom of a random network of
the same order and same average vertex degree are also given.
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Movie actors
Nactors 〈dactors〉 Lactors Lrandom Cactors Crandom

225,226 61 3.65 2.99 0.79 0.00027

Although the characteristic path lengths Lactors and Lrandom have the same
order of magnitude, the clustering coefficients Cactors and Crandom are very
different, suggesting that a random graph is not a satisfactory model for the
collaboration network of movie actors. This is the case for many other real net-
works. Here we shall mention only one more example14: scientific collaboration
networks. These networks have been extensively studied by Newman [340–
342]. The vertices are authors of scientific papers and two authors are joined
by an edge if they have written an article together. Bibliographic data from the
years 1995–1999 were drawn from the following publicly available databases:

1. The Los Alamos e-Print Archive, a database of unrefereed preprints in
physics, self-submitted by their authors.

2. MEDLINE, a database of papers on biomedical research published in ref-
ereed journals.

3. SPIRES, a database of preprints and published papers in high-energy
physics.

4. NCSTRL, a database of preprints in computer science submitted by par-
ticipating institutions.

Except in theoretical high-energy physics and computer science where the
average number of authors per paper is small (about 2), the size of the giant
component is greater than 80%. Since authors may identify themselves in dif-
ferent ways on different papers (e.g., using first initials only, using all initials,
or using full names), the determination of the true number of distinct authors
in a database is problematic. In the table below, all initials of each author
were used. This rarely confuses two distinct authors for the same person but
could misidentify the same person as two different people.

The order N , the average vertex degree 〈d〉, the characteristic path
length L, and the clustering coefficient C are given for the various networks.
As above, the characteristic path length Lrandom and the clustering coefficient
Crandom of a random network of the same order and same average vertex
degree are given for comparison.

Scientific collaboration
Network N 〈d〉 L Lrandom C Crandom

Los Alamos archive 52,909 9.7 5.9 4.79 0.43 0.00018
MEDLINE 1,520,251 18.1 4.6 4.91 0.066 0.000011
SPIRES 56,627 173 4.0 2.12 0.726 0.003
NCSTRL 11,994 3.59 9.7 7.34 0.496 0.0003

14 Data on many more networks can be found in Albert and Barabási [6].
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7.4 Small-World Networks

7.4.1 Watts–Strogatz Model

The collaboration network of movie actors and the various scientific collab-
oration networks have short characteristic path lengths and high clustering
coefficients. In what follows, any large network possessing these two proper-
ties will be called a small-world network, where by large we mean that the
order N of the corresponding graph is much larger than the average vertex
degree 〈d〉.

Random graphs, which have short characteristic path lengths but very
small clustering coefficients, are not acceptable models of small-world
networks. However, regular lattices, which have obviously high clustering
coefficients but large characteristic path lengths, cannot be used to model
small-world networks.15

A small-world model with a high clustering coefficient, such as a regular
lattice, and a short characteristic path length, such as a random network,
has been suggested by Watts and Strogatz [439]. Starting from a ring lattice
with N vertices and d = 2r edges per vertex, they rewire each edge at random
with probability p. More precisely, the rewiring is done as follows. The vertices
along the ring are visited one after the other; each edge connecting a vertex to
one of its r right neighbors is reconnected to a randomly chosen vertex other
than itself with a probability p and left unchanged with a probability 1 − p.
Two vertices are not allowed to be connected by more than one edge. This
construction is illustrated in Fig. 7.3. Note that this rewiring process keeps the
average vertex degree unchanged. Varying p from 0 to 1, the perfectly regular
network becomes more and more disordered. However, for p = 1, the network
is not locally equivalent to a random network since the degree of any vertex
is larger than or equal to r, as shown in Fig. 7.4. However, for p = 1, the
characteristic path length and the clustering coefficient have the same order
of magnitude as the characteristic path length and the clustering coefficient
of a random network.

What is particularly interesting in this model is that, starting from p = 0,
a small increase in p causes a sharp drop in the value of the characteristic path
length but almost no change in the value of the clustering coefficient. That
is, for small values of p, the Watts–Strogatz model has a clustering coefficient
CWS(p) of the same order of magnitude as Clattice, while its characteristic
path length LWS(p) is of the order of magnitude of Lrandom.

15 For a regular one-dimensional lattice with periodic boundary conditions in which
each site is linked to its r nearest neighbors (i.e., the degree of each vertex is
equal to 2r), it can be shown (see Exercise 7.1) that the characteristic path
length Llattice and the clustering coefficient Clattice are given exactly by

Llattice =

(
1 − r

N − 1

⌊
N − 1

2r

⌋)(⌊
N − 1

2r

⌋
+ 1

)
, Clattice =

3(r − 1)

2(2r − 1)
.
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Fig. 7.3. Constructing the Watts–Strogatz small-world network model. The graph
is of order N = 15, the average vertex degree 〈d〉 = 2r = 4, and the probability
p = 0.2
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Fig. 7.4. For p = 1, the Watts–Strogatz small-world network model is NOT a
random graph. N = 15 and 〈d〉 = 2r = 4

To have an idea of the structural properties of the Watts–Strogatz small-
world network model compared to those of regular lattices and random net-
works, it suffices to consider a rather small network with N = 500 vertices,
〈d〉 = 8, and p = 0.05. We find:

1. For a regular lattice, Llattice = 31.6894, Clattice = 0.642857.
2. For a random network, Lrandom = 3.21479, Crandom = 0.00930834.
3. For a Watts–Strogatz small-world network, LWS = 5.50771, CWS =

0.555884.
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Hence, for a small value of p, the clustering coefficient remains of the same
order of magnitude, while the characteristic path length is much shorter.

It is possible to modify the rewiring process of the Watts–Strogatz small-
world network model to obtain a random network for p = 1. Starting from
a regular ring lattice, we visit each edge and replace it with a probability
p by an edge between two randomly selected vertices or leave it unchanged
with a probability 1− p, subject to the condition that no more than one edge
may exist between two vertices. Small-world graphs of this type may have
disconnected subgraphs, as shown in Fig. 7.5.
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Fig. 7.5. For the modified Watts–Strogatz small-world network model, the graph
may become disconnected, and some vertices may have a degree equal to 0. N = 15,
〈d〉 = 2r = 4, and p = 1

For the same values of N , 〈d〉, and p as above, we find, in this case,
LmodifiedWS = 5.73836, CmodifiedWS = 0.556398, which are very close to the
values obtained for the Watts–Strogatz original rewiring process.

If we say that a network in which the characteristic path length behaves as
the number of vertices is a “large-world” network as opposed to a small-world
network in which the characteristic path length behaves as the logarithm of
the number of vertices, on the basis of numerical simulations, it has been
shown that, for the Watts–Strogatz model, as p increases from zero, the ap-
pearance of the small-world behavior is not a phase transition but a crossover
phenomenon [10,42,43,339]. As a function of N and p, the characteristic path
length satisfies the scaling relation

LWS(N, p) = Nf

(
N

ξ(p)

)
,
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where ξ(p) ∼ p−1 and

f(x) ∼
⎧
⎨

⎩

constant, if x! 1,
log x
x

, if x" 1.

7.4.2 Newman–Watts Model

Although the rewiring process of the original Watts–Strogatz small-world net-
work model cannot yield a disconnected graph, some rewiring process may dis-
connect the graph. Although, for small values of p, there always exists a giant
connected subgraph, the existence of small disconnected subgraphs makes the
characteristic path length poorly defined since we may find pairs of vertices
without a path joining them. And assuming that, in such a case, the path
length is infinite and it does not solve the problem. What is usually done is
to forget about small detached subgraphs and define the characteristic path
length for the giant connected part. While such a procedure may be acceptable
for numerical studies, for analytic work, having to deal with poorly defined
quantities, it is not very satisfactory.

To avoid disconnecting the network, Newman and Watts [338] suggested
adding new edges between randomly selected pairs of vertices instead of
rewiring existing edges. That is, to randomize a regular lattice, on average, pN
new links, referred to as shortcuts, between pairs of randomly selected vertices
are added, where, as usual, p is a probability and N the number of vertices
of the lattice (see Fig. 7.6). In this model, it is allowed to have more than one
edge between a pair of vertices and to have edges connecting a vertex to itself.
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Fig. 7.6. Newman–Watts small-world network model with shortcuts. The graph is
of order N = 15 and the probability p = 0.2
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If we take as aboveN = 500, 〈d〉 = 8, and p = 0.05, for the Newman–Watts
small-world model, we find LNW = 7.03808 and CNW = 0.636151.

7.4.3 Highly Connected Extra Vertex Model
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Fig. 7.7. Extra vertex connected on average to pN sites. The graph is of order
N = 15 and the probability p = 0.2

Instead of creating direct shortcuts between sites as in the Newman–Watts
model, we can create shortcuts connecting distant sites going through an extra
site connected to an average pN sites, as illustrated in Fig. 7.7. In the case of a
large network, this extra site would represent the existence of a well-connected
individual. More realistically, for a large network, we should consider the ex-
istence of a small group of well-connected individuals. In the case of the col-
laboration network of movie actors, these extra vertices would correspond to
the small group of very popular actors, whereas the collaboration network of
scientists, they would correspond to particularly productive authors.

If we take, as above, N = 500, 〈d〉 = 8, and p = 0.05, for the model
with only one highly connected extra vertex, we find LHCEV = 6.07453 and
CHCEV = 0.633522.

7.5 Scale-Free Networks

7.5.1 Empirical Results

At the end of Sect. 7.3, we reported results on the existence of a short char-
acteristic path length and a high clustering coefficient for the collaboration
network of movie actors and different scientific collaboration networks showing
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that these networks are therefore better modeled by small-world network mod-
els than by random graphs. There is, however, a third important structural
property of real networks that we have not yet examined, namely, the vertex
degree probability distribution.

World Wide Web

The World Wide Web, which has become the most useful source of informa-
tion, is a huge network whose order, larger than one billion, is continuously
growing. This growth is totally unregulated: any individual or institution is
free to create Web sites with an unlimited number of documents and links.
Moreover, existing Web sites keep evolving with the addition and deletion of
documents and links. The vertices of this network are HTML documents called
Web pages , and the edges are the hyperlinks pointing from one document to
another. Since the Web has directed links, as mentioned on page 329, we have
to distinguish the in-degree din(x) and the out-degree dout(x) of a vertex x,
which represent, respectively, the number of incoming and outgoing edges.
In 1999, Albert et al. [3] studied a subset of the Web (the nd.edu domain)
containing 325,729 documents and 1,469,680 links.16 They found that both
vertex in-degree and out-degree probability distributions have power-law tails
extending over about 4 orders of magnitude; i.e.,

P (dout = k) ∼ k−γout , P (din = k) ∼ k−γin,

with γout = 2.45 and γin = 2.1. As pointed out by the authors, this result
shows that, while the owner of a Web page has complete freedom in choosing
the number of links and the addresses to which they point, the overall system
obeys scaling laws characteristic of self-organized systems.

Despite its huge size, Barabási et al. [40] found that the World Wide Web
is a highly connected graph: two randomly chosen documents are, on average,
19 clicks away from each other. More precisely, they showed that the average
distance between any two documents is given by 0.35+2.06 logN , where N is
the total number of documents. This logarithmic dependence shows that an
“intelligent” agent should be able to find in a short time the information he
is looking for by navigating the Web.

Scientific collaborations

Like the World Wide Web, networks of scientific collaboration are evolving
networks.17 An extensive investigation of the dynamical properties of these
16 In Barabási et al. [40], the authors also studied the domains whitehouse.gov,

yahoo.com, and snu.ac.kr.
17 The collaboration network of movie actors is also an evolving network, but the

decision to collaborate is usually the responsibility of the casting director. In
contrast, the decision for two scientists to collaborate is made at the authors
level.
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networks has been recently carried out [41]. To reveal the dynamics of these
networks, it is important to know the time at which the vertices (authors)
and edges (coauthored papers) have been added to the network.

The databases analyzed by the authors contain titles and authors of pa-
pers in important journals in mathematics and neuroscience published over
an 8-year period from 1991 to 1998. In mathematics, the number of different
authors is 70,975 and the number of published papers is 70,901. In neuro-
science, these numbers are, respectively, 209,293 and 210,750. Both networks
are scalefree. The exponents characterizing the power-law behavior of the
vertex degree probability distributions are γM = 2.4 for mathematics and
γNS = 2.1 for neuroscience.

An important part of this study is devoted to the time evolution of various
properties of these networks.

1. Although the order of these networks increases with time, the characteris-
tic path length is found to decrease with time. This apparently surprising
result could be due to new edges being created between already existing
vertices: two authors, who had not yet written a paper together, coauthor
a new article. Since the average number of coauthors in neuroscience is
larger than in mathematics, the characteristic path length is smaller in
neuroscience than in mathematics.

2. Clustering coefficients are found to decay as a function of time. Conver-
gence to an asymptotic value, if it exists, appears to be very slow.

3. The size of the largest component, greater for neuroscience than for math-
ematics, grows with time. For neuroscience, this size seems to be very close
to an asymptotic value, while this is, apparently, not the case for mathe-
matics.

4. The average vertex degree increases with time, much faster for neuro-
science than for mathematics.

These time-dependent properties suggest that one has to be very care-
ful when interpreting certain results. For instance, numerical simulations of
a model based on the empirical results show that the vertex degree probabil-
ity distribution exhibits a crossover between two different power-law regimes
characterized by the exponents γsmall = 1.5 for small degrees and γlarge = 3
for large degrees.

First papers by new authors (i.e., authors who did not belong to the net-
work), are found to be preferentially coauthored with old authors who already
have large numbers of coauthors than with those less connected. This phe-
nomenon is called preferential attachment. More exactly, it is found that the
probability that an old author with d links is selected by – or selects – a new
author is proportional to dα with α ≈ 0.8 for mathematics and α ≈ 0.75
for neuroscience. Moreover, old authors also write papers together. If d1 and
d2 are the number of coauthors of author 1 and author 2, respectively, it is
found that the probability that two old authors write a new paper together
is proportional to d1d2, exhibiting another aspect of preferential attachment.



342 7 Networks

Citations

Another interesting study of the vertex connectivity within a network has
been carried out by Redner [381], who investigated two large data sets:

1. The citation distribution of 783,339 papers published in 1981 and cited
between 1981 and June 1997 that have been cataloged by the Institute for
Scientific Information with a number of 6,716,198 citations.

2. The citation distribution, as of June 1997, of the 24,296 papers cited at
least once that where published in volumes 11–50 of Physical Review D
from 1975 to 1994 with a number of 351,872 citations.

In this network, the vertices are the papers and the directed edges are the
links from citing to cited papers.

The main result of the study is that the citation distribution is, for large
citation numbers, reasonably well-approximated by a decreasing power law,
characterized by an exponent γcite ≈ 3, while, for small citation numbers,
a stretched exponential (i.e., exp

(− (x/x0)β
)

with β ≈ 0.4) provides a better
fit. The fact that two different functions are needed to fit the data is, accord-
ing to Redner, a consequence of different mechanisms generating the citation
distributions of rarely cited and frequently cited papers. The former are essen-
tially cited by their authors and close associates and usually forgotten a short
time after their publication, while the latter become known through collective
effects and their impact extends over a much longer time.

In contrast with Redner’s suggestion, Tsallis and de Albuquerque [427]
showed that the whole distribution is fairly well fit by a single function,
namely, x �→ N0

(
1 + λ(1 − q)x

)q/(1−q) with N0 = 2, 332, λ = 0.13, and
q = 1.64 for the Physical Review D papers, and N0 = 46, 604, λ = 0.11, and
q = 1.53 for the Institute for Scientific Information papers. In both cases, the
distribution has a decreasing power-law tail with an exponent γcite = q/(q−1)
equal to 2.56 for the first data set and to 2.89 for the second one. The fit by a
single function might suggest that the underlying mechanisms responsible for
the citation distribution of rarely and frequently cited papers are not neces-
sarily different, but the authors do not put forward any theoretical argument
indicating why the parameter q should be approximately equal to 1.5. It is
worth mentioning that, in 1966, Mandelbrot [292] suggested a modification of
Zipf’s law (see page 375) concerning the asymptotic behavior of the frequency
f of occurrence of a word as a function of its rank r of the form

f(r) ∼ A

(1 + ar)γ
,

which coincides with the form used by Tsallis and de Albuquerque.
The empirical results above concerning the citation network, in which

the vertices are the papers and the directed edges are links from citing to
cited papers, are related to the vertex in-degree distribution. Vázquez [433]
investigated the out-degree distribution (i.e., the distribution of the number
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of papers cited). Analyzing the data collected from the Science Citation Index
report concerning 12 important journals for the period 1991–1999, he found
that, in all cases, the out-degree probability distribution exhibits a maximum
for an out-degree value dm. The values of dm and f(dm) depend upon the
journal. dm varies from 13 to 39 and f(dm) from 0.024 to 0.079. A plot of
the scaled probability distribution f(d)/f(dm) as a function of d/dm reveals
that, for large out-degrees, the probability distribution decreases exponen-
tially, with a rate equal to either 0.4 or 1.6 according to whether there is or
there is not a restriction on the number of pages per article.

Human sexual contacts

The network of human sexual contacts has been recently investigated [272].
The authors analyzed data gathered in a 1996 Swedish survey of sexual be-
havior. They found that the cumulative distribution functions of number of
sexual partners, either during the 12-month period preceding the survey or
during the entire life, have power-law behaviors for males and females. For
the 12-month period, the characteristic exponents are equal to 2.54± 0.2 for
females with more than four partners and to 2.31± 0.2 for males with more
than five partners. Over the entire life, these exponents are 2.1 ± 0.3 for fe-
males, and 1.6±0.3 for males when the number of partners is greater than 20.
Since the number of different partners cannot be very large over a one-year
period, power-law behaviors are observed over only one order of magnitude.
Over an entire life, the number of partners of some promiscuous individuals
could be quite large, but the survey apparently did not gather enough data
on older individuals. The authors did not mention whether the survey they
analyzed took into consideration only heterosexual contacts or also homosex-
ual ones. If only heterosexual contacts are considered, the network of human
sexual contacts is an example of a bipartite graph (see page 331).

E-mails

E-mail networks, which consist of e-mail addresses connected through e-mails,
appear to have a scale-free structure. A study of the log file of the e-mail server
at the University of Kiel recording the source and destination of all e-mails
exchanged between students over a 3-month period has shown that the vertex
degree distribution has a power-law behavior characterized by an exponent
γe−mail = 1.82± 0.10 over about 2 orders of magnitude [142]. Since the study
was restricted to one e-mail server, only the accounts at this server are known
exactly. When only e-mails exchanged between students having an account at
this server are taken into account, the exponent characterizing the power-law
behavior of the “internal” vertex degree distribution, equal to 1.47± 0.12, is
smaller than the exponent for the whole network.

The authors also determined the characteristic path length and clustering
coefficient of this e-mail network. They found Le−mail = 5.33 ± 0.03 and
Ce−mail = 0.113, showing that the e-mail network is a small world.
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7.5.2 A Few Models

A common feature of both the random network model and the Watts–Strogatz
small-world network model is that the probability of finding a vertex with
a large degree decreases exponentially. In contrast, power-law vertex degree
probability distributions imply that highly connected vertices have a large
chance of being present.

Example 60. Barabási–Albert models. According to Barabási and Albert [6,38],
there are two generic aspects of real networks that are not incorporated in the
two types of models above.

First, most real networks continuously expand. The collaboration network
of movie actors grows by the addition of new actors, and the World Wide Web
grows by the addition of new Web pages.

Second, when constructing a random network, the addition, with a proba-
bility p, of an edge is done by selecting the end vertices with equal probability
among all pairs of vertices. In growing real networks, a new vertex has a higher
probability of being connected to a vertex that already has a large degree. For
instance, a new actor is more likely to be cast with a well-known actor than
with a less well-established one; a new paper has a higher probability of citing
an already much-cited article.

To incorporate these two features, Barabási and Albert suggested the
following model. Start at t = 0 with an empty graph of small order N0. At
t = 1, add a new vertex and a number m ≤ N0 of edges linking that vertex
to m randomly selected different vertices. Then, at all times t > 1, add a
new vertex and m new edges connecting this vertex to m existing vertices. To
take into account preferential attachment of a new vertex to highly connected
vertices, the probability of connecting the new vertex to an existing vertex
xi is

d(xi)
Nt−1∑

j=1

d(xj)

,

where d(xi) is the degree of vertex xi and Nt−1 is the number of already
existing vertices.18 At time t, the network is of order Nt = N0 + t and of
size Mt = mt. These linear behaviors imply that the average vertex degree is
constant in time.

Numerical simulations by the authors showed that their model evolves into
a stationary scale-free network with a power-law probability distribution for
the vertex degree P (d = k) ∼ k−γBA , where γBA = 2.9 ± 0.1 over about 3
orders of magnitude.19 In their simulations, the authors considered different
values of m = N0 = 1, 3, 5, and 7 for t = 300,000, and different values of
18 The linear dependence upon d(xi) of the probability to connect is an essential

assumption. See Remark 29.
19 See Exercise 7.3.



7.5 Scale-Free Networks 345

t = 100,000, 150,000, and 200,000 for m = N0 = 5. To verify that continuous
growth and preferential attachment are necessary ingredients to build up a
model of a scale-free network, the authors studied two other models. In the
first one, they consider a growing network in which each new added vertex
has an equal probability of connecting to any of the already existing vertices.
In the second model, they consider a network with a fixed number N of
vertices. Initially, the network consists of N vertices and no edges; then, at
each time-step, a randomly selected vertex is connected to another vertex
with preferential attachment. They found that neither of these two models
developed a stationary power-law probability distribution.

Because of preferential attachment, a vertex that acquires more connec-
tions than another will increase its connectivity at a higher rate (i.e., a sort
of “rich get richer” phenomenon). Barabási and Albert showed that, as a
function of time t, the degree of a vertex increases as tβBA , where βBA = 1/2.

The Barabási–Albert exponent γBA ≈ 3 is close to the value found by
Redner [381] for the network of citations, but other real growing networks,
such as the World Wide Web or scientific collaboration networks have power-
law vertex degree probability distributions characterized by different exponent
values.

Remark 28. Error and attack tolerance. In a scale-free network, the power-law ver-
tex degree probability distribution implies that the majority of vertices have only a
few links. Thus, if a small fraction of randomly selected vertices are removed, the
characteristic path length remains essentially the same since highly connected ver-
tices have a very small probability of being selected. A scale-free network should,
therefore, exhibit a high degree of tolerance against errors. However, the intentional
removal of a few highly connected vertices could destroy the small-world properties
of the network, making scale-free networks highly vulnerable to deliberate attacks.
These properties have been verified for the Barabási–Albert model [5]. In contrast,
random networks, in which all vertices have approximately the same number of
links, are much less vulnerable to attack, but their characteristic path length, which
increases monotonically with the fraction of removed vertices, shows they are less
tolerant against errors.

While the Barabási–Albert model predicts the emergence of power-law
scaling, as pointed out by the authors, the agreement between the measured
and predicted exponents is less than satisfactory. This led them to propose an
extended model [4]. The dynamical growth process of this new model, which
incorporates addition of new vertices, addition of new edges, and rewiring
of edges, starts like the first model, but, instead of just adding new vertices
linked to existing ones with preferential attachment, at each time-step, one of
the following operations is performed.

1. With probability p, add m new edges. That is, randomly select a vertex as
one endpoint of an edge and attach that edge to another existing vertex
with preferential attachment. Repeat this m times.
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2. With a probability q, rewire m edges. That is, randomly select a vertex
xi and an edge {xi, xj}. Replace that edge by a new edge {xi, xj′} with
preferential attachment. Repeat this m times.

3. With a probability 1− p− q, add a new vertex and m new edges linking
the new vertex to m existing vertices with preferential attachment.

In the (p, q)-plane, the system exhibits two regimes:

1. An exponential regime as for the uniform or binomial random network
models and the Watts–Strogatz small-world network model.

2. A scale-free regime, but with an exponent γ characterizing the power-law
decay depending continuously on the parameters p and q, showing a lack of
universality, and accounting for the variations observed for real networks.

Using this model to reproduce the properties of the collaboration network
of movie actors, Albert and Barabási found an excellent fit taking p = 0.937,
q = 0 (rewiring is absent), and m = 1.

Example 61. Dorogovtsev–Mendes–Samukhin model. Starting from the as-
sumption that preferential attachment is the only known mechanism of
self-organization of growing a network into a scale-free structure, Dorogovt-
sev et al. [133] proposed a model similar to the first Barabási–Albert model
but in which a new parameter, representing the site initial attractiveness,
leads to a more general power-law behavior.

In this model, at each time-step, a new vertex and m new edges are added
to the network. Here, the edges are directed and coming out from nonspecified
vertices; that is, they may come from the new vertex, from already existing
vertices, or even from outside of the network. In the Barabási–Albert model,
the new links were all coming out from the new vertex. The probability that
a new edge points to a given vertex xt, added at time t, is proportional to the
attractiveness of this site, defined as

Axt = A+ d(xt),

where A ≥ 0 is the initial attractiveness of a site (the same for all sites) and
d(xt) denotes, as usual, the degree of vertex xt. In the Barabási–Albert model,
all sites have an initial attractivenessA equal tom. The Dorogovtsev–Mendes–
Samukhin model is equivalent to a system of increasing number of particles
distributed in a growing number of boxes, such that, at each time-step, m
new particles (incoming links) have to be distributed between an increasing
number (one per time step) of boxes (sites) according to the rule above.

Writing down the master equation for the evolution of the distribution of
the connectivity of a given site as a function of time, the authors were able to
derive the exact expression of the vertex degree probability distribution. In
particular, for the Barabási–Albert model, they obtained (see Exercise 7.4)

P (d = k) =
2m(m+ 1)

(k +m)(k +m+ 1)(k +m+ 2)
,
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which, for large k, behaves as k−3. Another interesting result is the existence of
a simple universal relation between the exponent β characterizing the connec-
tivity growth rate of a vertex and the exponent γ characterizing the power-law
behavior of the vertex degree probability distribution. They found that

β(γ − 1) = 1,

which is, in particular, satisfied by the Barabási–Albert exponents βBA = 1/2
and γBA = 3.

Example 62. Krapivsky–Rodgers–Redner model. Using a simple growing net-
work model, Krapivsky, Rodgers, and Redner were able to reproduce the ob-
served in-degree and out-degree probability distributions of the World Wide
Web as well as find correlations between in-degrees and out-degrees of each
vertex [254]. In their model, the network grows according to one of the fol-
lowing two processes:

1. With probability p, a new vertex is added to the network and linked to an
existing target vertex, the target vertex being selected with a probability
depending only upon its in-degree.

2. With probability 1− p, a new edge is created between two already exist-
ing vertices. The originating vertex is selected with a probability depend-
ing upon its out-degree and the target vertex with a probability depending
upon its in-degree.

If N is the order of the network, and Din and Dout denote, respectively,
the total in-degree and out-degree, according to the growth processes, the
evolution equations of these quantities are

N(t+ 1) =

{
N(t) + 1, with probability p,
N(t), with probability 1− p,

Din(t+ 1) = Din(t) + 1,
Dout(t+ 1) = Dout(t) + 1.

Hence,
N(t) = pt, Din(t) = Dout = t.

These results show that the average in-degree and out-degree are both time-
independent and equal to 1/p.

To determine the joint degree distributions, the authors assume that the
attachment rate A(din, dout), defined as the probability that a newly intro-
duced vertex connects with an existing vertex of in-degree din and out-degree
dout, and the creation rate C

(
(din(x1), dout(x1)), (din(x2), dout(x2))

)
, defined

as the probability of adding a new edge pointing from vertex x1, whose in-
degree and out-degree are, respectively, din(x1) and dout(x1), to vertex x2,
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whose in-degree and out-degree are, respectively, din(x2) and dout(x2), are
simply given by

A(din, dout) = din + λ

C
(
(din(x1), dout(x1)), (din(x2), dout(x2))

)
=
(
din(x2) + λ

)(
dout(x1) + μ

)
,

where λ > 0 and μ > −1 to ensure that both rates are positive for all permis-
sible values of in-degrees din ≥ 0 and out-degrees dout ≥ 1.

Using the assumptions above regarding the attachment and creation rates
to write down and solve the rate equation for the evolution of the joint degree
distribution N(din, dout, t), defined as the average number of vertices with din

incoming and dout outgoing links, Krapivsky, Rodgers, and Redner obtained

N(din, dout, t) = n(din, dout)t.

The expression of n(din, dout) reveals interesting features. Power-law probabil-
ity distributions for the in-degrees and out-degrees of vertices are dynamically
generated. Choosing the values [6]

p = 0.1333, λ = 0.75, μ = 3.55,

it is possible to match the empirical values regarding the World Wide Web:

〈din〉 = 〈dout〉 = 7.5, γin = 2.1, γout = 2.7.

Correlations between the in-degree and out-degree of a vertex develop spon-
taneously. For instance, the model predicts that popular Web sites (i.e., those
with large in-degree) tend to list many hyperlinks (i.e., have large out-degree),
and sites with many links tend to be popular. Finally, the model also predicts
power-law behavior when, e.g., the in-degree is fixed and the out-degree varies.

Remark 29. The linear dependence of the attachment rate upon din appears to be a
necessary condition for a growing network to display a scale-free behavior [133,253,
255]. If the attachment rate varies as dα

in, then,

1. for 0 < α < 1, the degree distribution exhibits a stretched exponential decay;
2. for α = 1, the degree distribution has a power-law behavior characterized by

the exponent γBA = 3;
3. for an attachment rate asymptotically linear in din, the degree distribution has

a nonuniversal power-law behavior characterized by an exponent γ > 2;
4. for 1 < α < 2, the number of vertices with a smaller number of links grows

slower than linearly in time, while one vertex has the rest of the links;
5. for α > 2, all but a finite number of vertices are linked to one particular vertex.

The statistical analysis of the two databases containing paper titles and authors
of important journals in mathematics and neuroscience seems to indicate a nonlinear
dependence of the attachment rate (see page 341), in contradiction with the reported
power-law behavior of the vertex degree probability distribution.
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Example 63. Vázquez model. When a scientist enters a new field, he is usually
familiar with only some of the already published papers dealing with this
field. Then, little by little, he or she discovers other papers on the subject
by following the references included in the papers he or she knows. When,
finally, the new paper is accepted for publication, it includes, in its list of
references, papers discovered in this way; i.e., with the addition of a new
vertex to the citation network, new outgoing links, discovered recursively, are
simultaneously added to the network.

This walking on the network mechanism is the basic ingredient of a citation
network model proposed by Vázquez [432]. Starting from a single vertex, at
each time-step the following subrules are applied successively.

1. A new vertex with an outgoing link to a randomly selected existing vertex
is added.

2. Then, other outgoing links between the new vertex and each neighbor of
the randomly selected existing vertex are added with a probability p. If
at least one link has been added in this way, the process is repeated by
adding outgoing links between the new vertex and the second neighbors
of the randomly selected vertex, and so forth. When no links are added,
the time step is completed.

This evolution rule does not include preferential attachment as in
Barabási–Albert models, but vertices with large in-degrees being more fre-
quently reachable during the walking process, the basic mechanism of the
evolution rule induces preferential attachment.

Numerical simulations show that, if p < pc ≈ 0.4, the asymptotic behavior
of the vertex in-degree distribution decreases exponentially, while, for p > pc,
this distribution decreases as a power law with an exponent γV ≈ 2. A value
close to 2 has been found for the distribution of in-degrees in the case of the
World Wide Web (see page 340).

The small-world network models described in the preceding section were
built up adding some randomness to an underlying regular lattice. While
these models are certainly interesting toy models, real small-world networks,
such as acquaintance networks, form dynamically, starting from some random
structure. However, many real networks, and in particular, some acquaintance
networks, have been shown to possess a scale-free structure. This important
feature is successfully explained in terms of network growth and preferential
attachment. But models based on these two ingredients have a small clustering
coefficient, which arguably makes them small-world network models.

Example 64. Davidsen–Ebel–Bornholdt model. Davidsen, Ebel, and Bornholdt
proposed a small-world network model (i.e., a graph with short characteristic
path length and a high clustering coefficient) evolving toward a scale-free
network despite the fact that it keeps a fixed number of vertices [127]. The
two essential ingredients of this model are a local connection rule based on
transitive linking and a finite vertex life span.
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To model an acquaintance network, the authors start from a random graph
of order N in which each vertex represents a person and each undirected
edge between two vertices indicates that these two persons know each other.
The network evolves as the result of the application at each time-step of the
following subrules:

1. Assuming that people are usually introduced to each other by a common
acquaintance, randomly select one vertex and two of its neighbors, and, if
these two vertices are not connected, add an edge between them, otherwise
do nothing. If the selected vertex has less than two neighbors, add an edge
between this vertex and another one selected at random.

2. Since people have a finite life span, with probability p! 1, one randomly
selected vertex and all the edges connected to this vertex are removed
from the network and replaced by a new vertex and an edge connecting
this vertex to a randomly selected existing vertex.

The condition p! 1 implies that the average life span of a person is much
larger than the rate at which people make new acquaintances. Due to this
finite life span, the average vertex degree does not grow forever but tends to
be a finite value that depends upon the value of p.

Numerical simulations of a model with N = 7,000 vertices show that, for
p = 0.0025, the vertex degree probability distribution behaves as a decreasing
power law characterized by an exponent γDEB = 1.35, the average vertex de-
gree 〈d〉 = 149.2, the clustering coefficient CDEB = 0.63, and the characteristic
path length LDEB = 2.38. The vertex degree distribution exhibits a cutoff at
high degree values resulting from the finite vertex life span.

Exercises

Exercise 7.1 Consider a regular finite one-dimensional lattice having N sites and
periodic boundary conditions ( i.e., a ring), in which each site is linked to its r
nearest neighbors.

(a) Find the exact expression of the characteristic path length Llattice.

(b) Find the exact expression of the clustering coefficient Clattice.

(c) What is the asymptotic expression of Llattice for large N and fixed r? What
is the maximum value of Clattice?

Exercise 7.2 Consider a rather large random graph of a few thousand vertices,
and check numerically that the probability distribution of the vertex degrees of a
random graph is a Poisson distribution.

Exercise 7.3 To study the evolution as a function of time t of the degree d(xi)
of a given vertex xi of the Barabási–Albert scale-free network model, Barabási
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et al. [39] assume that the degree is a continuous function of time whose growth
rate is proportional to the probability d(xi)/2mt that the new vertex, added at
time t, will connect to vertex xi. Taking into account that, when adding a new
vertex to the network,m new edges are added at the same time, the authors show
that d(xi) satisfies the equation

∂d(xi)
∂t

=
d(xi)

2t
.

(a) Find the solution to this equation.

(b) Assuming that, at time t, the random variable ti at which vertex xi has been
added to the network is uniformly distributed in the interval [0, N0 + t[, use the
result of (a) to determine in the infinite-time limit the vertex degree probability
distribution.

(c) To verify that continuous growth and preferential attachment are necessary
ingredients to build up a model of a scale-free network, Barabási and Albert
studied two other models (see page 345). In the first one, they consider a growing
network in which each new added vertex has an equal probability of connecting to
any of the already existing vertices. In the second model, they consider a network
with a fixed number N of vertices. Initially, the network consists of N vertices
and no edges. Then, at each time-step, a randomly selected vertex is connected
to another vertex with preferential attachment. Use the method of (a) and (b)
to find the time evolution of the degree of a specific vertex and the vertex degree
probability distribution for these two models.

Exercise 7.4 Following a method due to Krapivsky et al. [253, 382], it can be
shown that, for the Barabási–Albert network model, the average number Nd(t) of
vertices with d outgoing edges at time t is a solution of the differential equation

dNd
dt

=
(d− 1)Nd−1 − dNd

2t
+ δdm,

where δdm = 1 if d = m and 0 otherwise.

(a) Justify this equation.

(b) Show that the vertex degree probability distribution

P (d) = lim
t→∞

Nd(t)
t

satisfies a linear recurrence equation, and obtain its expression.

Exercise 7.5 When dealing with discrete random variables, the generating func-
tion technique is a very effective problem-solving tool,20 and it can be used suc-
cessfully when dealing with random graphs [344]. Let X be a discrete random

20 See, for example, Boccara [68], pp. 42–49.
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variable defined on the set of nonnegative integers N0 = {0, 1, 2, . . .}. If the prob-
ability P (X = k) is equal to pk, the generating function GX of this probability
distribution is defined by

GX(x) =
∞∑

k=0

pkx
k.

The relation

(∀k ∈ N0) 0 ≤ pk ≤ 1

implies that the radius of convergence of the series defining GX is at least equal
to 1; that is, for |x| < 1 the series is normally convergent.

In this exercise, G1 denotes the generating function of the vertex degree prob-
ability distribution ( i.e., pk is the probability that a randomly chosen vertex has
k first neighbors).

(a) What is the generating function of the sum of the degrees of n randomly
chosen vertices?

(b) What is the generating function of the vertex degree probability distribution
of an end vertex of a randomly chosen edge?

(c) What is the generating function of the number of outgoing edges of an end
vertex of a randomly chosen edge?

(d) We have seen that, for uniform and binomial random graphs, the vertex degree
probability distribution is the Poisson distribution

pk = e−λ
λk

k !

when N →∞, p→ 0, and Np = λ. In this case, what is the generating function
of the probability distribution of the number of outgoing edges of an end vertex
of a randomly chosen edge?

(e) What is the generating function of the probability distribution of the number
of second neighbors of a randomly selected vertex?

(f) What is the average number of second neighbors of a randomly selected
vertex?

Exercise 7.6 (a) Let St and It denote the respective densities of susceptible and
infective individuals occupying the sites of a random network at time t. If pi is the
probability for a susceptible to be infected by a neighboring infective, show that
the average value of the probability for a susceptible to be infected, at time t, by
one of his neighbors is

1− exp(−〈d〉piIt),
where 〈d〉 is the average vertex degree.
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(b) If pr is the probability for a susceptible to recover and become susceptible
again, within the mean-field approximation, show that the system undergoes a
transcritical bifurcation from a disease-free to an endemic state. Denote by ρ the
total constant density of individuals.

(c) The previous model neglects births and deaths. To model the spread of a
more serious disease, assume that infected individuals do not recover and denote
by ds and di, respectively, the probabilities of dying for a susceptible and an
infective. Dead individuals are permanently removed from the network. If bs and
bi are the respective probabilities for a susceptible and an infective to give birth
to a susceptible at a vacant vertex of the network during one time unit, show
that, within the mean-field approximation, this model exhibits various bifurcations.
Discuss numerically the existence and stability of the different steady states.

Solutions

Solution 7.1 (a) Let the sites of the regular lattice be numbered from 0 to N−1.
If � < N/2, we have

d(0, �) = d(0, N − �) =

⎧
⎪⎪⎨

⎪⎪⎩

�

r
, if � = 0 mod r,

⌊
�

r

⌋
+ 1, otherwise,

where d(x, y) denotes the distance between sites x and y. Hence, grouping sites in
r-blocks on both sides of site 0, we are left with N−1−2r
(N−1)/2r� sites that
cannot be grouped into two r-blocks, and their distance from 0 is 
(N−1)/2r�+1
(if N −1 = 0 mod 2r, there are no sites left, but the final result is always valid).
The sum of the distances from site 0 to all the other N − 1 sites of the lattice is
therefore given by

2r
(

1 + 2 + · · ·+
⌊
N − 1

2r

⌋)
+
(
N − 1− 2r

⌊
N − 1

2r

⌋)(⌊
N − 1

2r

⌋
+ 1

)

= r

⌊
N − 1

2r

⌋(⌊
N − 1

2r

⌋
+ 1

)
+
(
N − 1− 2r

⌊
N − 1

2r

⌋)(⌊
N − 1

2r

⌋
+ 1

)

=
(
N − 1− r

⌊
N − 1

2r

⌋)(⌊
N − 1

2r

⌋
+ 1

)

and, since site 0 does not play any particular role, dividing this result by N − 1
yields the characteristic path length:

Llattice =
(

1− r

N − 1

⌊
N − 1

2r

⌋)(⌊
N − 1

2r

⌋
+ 1

)
.
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(b) Let −r,−r+1,−r+2, . . . ,−1, 1, 2, . . . , r−1, r be the 2r nearest neighbors of
site 0. To avoid counting edges twice, starting from site −r, we only count edges
whose endpoints are on the right of each site of the list above. For 0 ≤ j < r,
site −r + j is linked to r − 1 sites on its right, and for 0 ≤ k < r, site r − k is
linked to k sites on its right. The total number of edges is thus

r(r − 1) + (r − 1) + (r − 2) + · · ·+ 2 + 1 + 0 =
3
2
r(r − 1).

The number of edges connecting all pairs of nearest-neighboring sites of site 0 is
r(2r − 1). Thus, the clustering coefficient of the lattice s given by

Clattice(r) =
3(r − 1)
2(2r − 1)

.

(c) For large N and fixed r, we find

Llattice ∼ N

4r
.

This result can be obtained without knowing the exact expression of Llattice. It suf-
fices to note that site 
N/2�, which is one of the most distant sites from site 0,
is at distance 
N/2r�. The characteristic path length is, therefore, approximately
equal to N/4r.

For r ≥ 1, Clattice is an increasing function of r that tends to 3
4 when r →∞.

Clattice(r) is, therefore, bounded by 3
4 .

Solution 7.2 Writing a small program to build up a random graph with N =
5,000 vertices and a total number of edges E = 20,000, for a specific example,
we find that the degrees of the vertices vary between 0 and 13. Degrees equal to 0
imply the existence of disconnected subgraphs. Actually, the graph connectivity,
which is defined as the fraction of vertices belonging to the giant component, is
found to be equal to 0.964242. The numerical frequencies of the different degrees
compared to the theoretical frequencies predicted by the Poisson distribution are
listed in the table below.

Degree 0 1 2 3 4 5 6
Numerical 89 363 715 996 986 787 520
Theoretical 91.58 366.31 732.63 976.83 976.83 781.47 520.98

Degree 7 8 9 10 11 12 13
Numerical 297 143 65 24 9 5 1
Theoretical 297.70 148.85 66.16 26.46 9.62 3.21 0.99

The agreement is quite good. The plots of the numerical and theoretical frequen-
cies shown in Fig. 7.8 almost coincide. The standard deviation of the numerical
frequencies is found equal to 1.98544 compared to the theoretical value

√〈d〉 = 2.
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Fig. 7.8. Poisson test. Plots of the degree’s frequencies for z varying from 0 to 13
obtained from a numerical simulation of a random graph with 5,000 vertices and
an average degree 〈d〉 = 4 (light gray) compared to theoretical frequency values
predicted by a Poisson distribution (darker gray)

Solution 7.3 (a) The solution d(xi, t) to the equation

∂d(xi)
∂t

=
d(xi)

2t
,

which, for t = ti, is equal to m, is

d(xi, t) = m

√
t

ti
.

(b) Taking into account the expression of d(xi, t), the probability P (d(xi, t) ≤ d)
that the degree of a given vertex is less than or equal to d can be written

P (d(xi, t) ≤ d) = P

(
ti ≥ m2t

d2

)
.

But

P

(
ti ≥ m2t

d2

)
= 1− P

(
ti <

m2t

d2

)
,

and since, at time t, the random variable ti is uniformly distributed in the interval
[0, N0+t[, the probability P (ti < T ) that, at time t, ti is less than T is T/(N0+t).
Hence,

P (d(xi, t) ≤ d) = 1− m2t

d2(N0 + t)
.
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Thus, in the infinite-time limit, the vertex degree cumulative distribution
function Fvertex is such that

Fvertex(d) = lim
t→∞

(
1− m2t

d2(N0 + t)

)

= 1− m2

d2
,

and the vertex degree probability density is given by

fvertex(d) =
∂F (d)
∂d

=
2m2

d3
.

As it should be, the function Fvertex, defined on the interval [m,∞[, is monoton-
ically increasing from 0 to 1.

In agreement with numerical simulations, the exponents βBA and γBA are,
respectively, equal to 1/2 and 3 (see page 345).

(c) For the first model, with growth but no preferential attachment, the differential
equation satisfied by d(xi) is

∂d(xi)
∂t

=
m

N0 + t− 1

since the probability that, at time t, one of the m new edges added to the network
connects to an already existing vertex is the same for all the N0 + t− 1 vertices
of the network. The solution to this equation, which, for t = ti, is equal to m, is

d(xi, t) = m

(
log

N0 + t− 1
N0 + ti − 1

+ 1
)
.

As above, the probability P (d(xi, t) ≤ d) that the degree of a given vertex is less
than or equal to d can be written

P (d(xi, t) ≤ d) = P

(
ti ≥ (N0 + t− 1) exp

(
1− d

m

)
−N0 + 1

)
.

Assuming that, at time t, the random variable ti is uniformly distributed in the
interval [0, N0 + t[, we can write

P

(
ti ≥ (N0 + t− 1) exp

(
1− d

m

)
−N0 + 1

)

= 1− P
(
ti < (N0 + t− 1) exp

(
1− d

m

)
−N0 + 1

)

= 1−
(N0 + t− 1) exp

(
1− d

m

)
−N0 + 1

N0 + t
.
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For this first model, in the infinite-time limit, the cumulative distribution function
F 1

vertex of the vertex degree is given by

F 1
vertex(d) = 1− exp

(
1− d

m

)
,

and the corresponding vertex degree probability density f1
vertex is such that

f1
vertex(d) =

e
m

e−d/m.

For the second model with preferential attachment but no growth ( i.e., a fixed
number of vertices N). The degree growth rate is given by the probability 1/N
of first selecting the vertex from which the edge originates plus the probability of
preferentially attaching that edge to vertex xi. This second probability is of the
form

A
d(xi)
N∑

j=1

d(xj)

,

where
∑N
j=1 d(xj) = 2t and A = N/(N − 1) to exclude from the summation

edges originating and terminating at the same vertex. Hence, we have

∂d(xi)
∂t

=
N

N − 1
dxi

2t
+

1
N
.

The solution that, for t = 0, satisfies d(xi, 0) = 0 (the initial network consists of
N vertices and no edges) is

d(xi, t) =
2(N − 1)
N(N − 2)

t+ CtN/2(N−1),

where C is a constant. Since N " 1, the expression above can be written

d(xi, t) ≈ 2
N
t+ Ct1/2.

Taking into account the relation
∑N

j=1 d(xj) = 2t, the constant C is equal to
zero, and we finally obtain

d(xi, t) ≈ 2
N
t.

That is, for large values of N and t all vertices have approximately the same
degree. This implies a normal vertex degree distribution centered around its mean
value.

In their paper, Barabási et al. [39] give the results of numerical simulations
that agree with all the analytical results above.
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Solution 7.4 (a) When a new vertex with m outgoing edges is added to the
network, the probability that a new edge connects to a vertex with degree d is
given by

md
∑

k≥m
kNk

=
md

2mt
=

d

2t
.

Hence, the first and second terms of the right-hand side of the Krapivsky–Redner–
Leyvraz rate equation represent, respectively, the increase and decrease of Nd
when new edges are connected either to vertices of degree d− 1 or to vertices of
degree d. The last term accounts for new vertices of degree m.

(b) The term
∑

k≥m kNk = 2mt represents the sum of the degrees of all the
vertices, clearly equal to twice the sum of all edges. On average, in the infinite-
time limit, Nd(t) is therefore linear in t. Thus, replacing Nd(t) by tP (d) in the
differential equation, we obtain

P (d) = 1
2

(
(d− 1)P (d− 1)− dP (d)

)
+ δdm

or

P (d) =

⎧
⎪⎨

⎪⎩

d− 1
d+ 2

P (d− 1), if d > m,

2
m+ 2

, if d = m.

Hence, for d > m,

P (d) =
2m(m+ 1)

d(d + 1)(d+ 2)
.

For large d, P (d) ∼ d−γBA with γBA = 3.

Solution 7.5 (a) This is a classical result: If GX and GY are the respective gen-
erating functions of the discrete random variables X and Y , then the generating
function of the random variableX+Y is GX+Y = GXGY . Hence, the generating
function of the sum of the degrees of n randomly chosen vertices is the nth power
of the generating function G1 of the vertex degree probability distribution.

(b) The probability that an edge reaches a vertex of degree k is proportional to
kpk. Since the sum of all probabilities has to be equal to 1, the generating func-
tion of the vertex degree probability distribution of an end vertex of a randomly
chosen edge is defined by

∞∑

k=0

kpkx
k

∞∑

k=0

kpk

=
xG′

1(x)
G′

1(1)
.

This result assumes that the value of the average vertex degree G′
1(1) =∑∞

k=1 kpk exists ( i.e., is finite).
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(c) The previous result gave us the generating function of the vertex degree prob-
ability distribution of an end vertex of a randomly chosen edge. The number of
outgoing edges of one end vertex is equal to its degree minus 1, since one edge
was selected to reach this vertex. Thus, the generating function Gout of the num-
ber of outgoing edges is equal to the generating function of the vertex degree
probability distribution of an end vertex of a randomly chosen edge divided by x;
that is,

Gout(x) =
G′

1(x)
G′

1(1)
.

(d) The expression of the generating function of the Poisson probability distribu-
tion is

G1(x) =
∞∑

k=0

e−λ
λk

k !
xk

=
∞∑

k=0

e−λ
(λx)k

k !

= eλ(x−1),

where λ = G′
1(0) is the average vertex degree. Hence, the generating function of

the probability distribution of the number of outgoing edges of an end vertex of
a randomly selected edge is, in this case,

Gout(x) =
G′

1(x)
G′

1(1)
= eλ(x−1) = G1(x);

that is, the generating function of the vertex degree probability distribution.
Whether a vertex is randomly selected or it is an end vertex of a randomly selected
edge, the probability distribution of the number of outgoing edges of this vertex
is the same!

(e) A randomly selected vertex has a probability pk of having k first neighbors,
and each of these neighbors has a probability q� of having a number � of outgoing
edges, where q� is the coefficient of x� in the series expansion of Gout(x); that is,

q� =
1
� !

d�

dx�
Gout(x)

∣
∣
∣
x=0

.

The generating function of the number of second neighbors of a randomly selected
vertex is therefore defined by

G2(x) = G1

(
Gout(x)

)
= G1

(
G′

1(x)
G′

1(1)

)
.
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(d) If GX is the generating distribution of a discrete random variable X , the
average value of X , if it exists, is given by

〈X〉 =
∞∑

k=0

kpk = G′
X(1).

The average number of second neighbors of a randomly selected vertex is then

d
dx

G1

(
G′

1(x)
G′

1(1)

) ∣∣∣
∣
x=1

= G′′
1 (1).

Solution 7.6 (a) Let St and It denote the respective densities of susceptible and
infective individuals occupying the network vertices at time t. If pi is the probability
for a susceptible to be infected by a neighboring infective, the probability for a
susceptible to be infected, at time t, by one of his k neighbors is

P (pi, It, k) = 1− (1 − piIt)k.
Since, in a random network, the vertex degree probability distribution is Poisson,
the average value of P (pi, It, k) as a function of the random variable k is given
by

〈P (pi, It, k)〉Poisson =
∞∑

k=0

(
1− (1− piIt)k

)
e−〈d〉 〈d〉k

k !

= 1− exp(−〈d〉piIt).
(b) If pr is the probability for an infective to recover and become susceptible
again, the mean-field equations governing the time evolution of this SIS epidemic
model are

St+1 = ρ− It+1,

It+1 = It + St
(
1− exp(−〈d〉piIt)

)− prIt,
where ρ is the total constant density of individuals. Eliminating St in the second
equation yields

It+1 = (1 − pr)It + (ρ− It)
(
1− exp(−〈d〉piIt)

)
.

In the infinite-time limit, the stationary density of infective individuals I∞ satisfies
the equation

I∞ = (1 − pr)I∞ + (ρ− I∞)
(
1− exp(−〈d〉piI∞)

)
.

I∞ = 0 is always a solution to this equation. This value characterizes the
disease-free state. It is a stable stationary state if, and only if, 〈d〉ρpi − pr < 0.

If 〈d〉ρpi − pr > 0, the stable stationary state is given by the unique positive
solution of the equation above. In this case, a nonzero fraction of the population
is infected. The system is in the endemic state.
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For 〈d〉ρpi − pr = 0, within the framework of the mean-field approximation,
the system undergoes a transcritical bifurcation similar to a second-order phase
transition characterized by a nonnegative order parameter, whose role is played,
in this model, by the stationary density of infected individuals I∞.

(c) If bs and bi are, respectively, the probabilities for a susceptible and an infective
to give birth to a susceptible at a vacant site during one time unit, reasoning as
in (a), the probability that either a susceptible or an infective will give birth to a
susceptible at a neighboring vacant site is

(1− St − It)
(
1− exp

(− 〈d〉(bsSt + biIt)
))
.

Taking into account this result, the mean-field equations governing the time
evolution of the model are

St+1 = St + (1− St − It)
(
1− exp

(− 〈d〉(bsSt + biIt)
))− dsSt,

− (1 − ds)St
(
1− exp(−〈d〉piIt)

)

It+1 = It + (1− ds)St
(
1− exp(−〈d〉piIt)

)− diIt,

where ds and di are, respectively, the probabilities for a susceptible and an infective
to die during one time unit.

In the infinite-time limit, the stationary densities of susceptible and infective
individuals S∞ and I∞ satisfy the equations

S∞ = S∞ + (1− S∞ − I∞)
(
1− exp

(− 〈d〉(bsS∞ + biI∞)
))− dsS∞

− (1− ds)S∞
(
1− exp(−〈d〉piI∞)

)

I∞ = I∞ + (1− ds)S∞
(
1− exp(−〈d〉piI∞)

)− diI∞.

There exist different solutions.

1. (S∞, I∞) = (0, 0) is always a solution of the system of equations above. The
eigenvalues of the Jacobian at (0, 0) being 1−di and 1−〈d〉bs−ds, this point,
which corresponds to extinction of all individuals, is asymptotically stable if
〈d〉bs < ds ( i.e., when the average birth rate of susceptible individuals is less
than their death rate).

2. I∞ = 0 is always a solution to the second recurrence equation. There exists,
therefore, a disease-free state (S♥, 0), where the infinite-time limit of the
susceptible density S♥ is the nonzero solution to the equation

(1 − S♥)
(
1− exp(−〈d〉bsS♥)

)− dsS♥ = 0.

This solution is stable if

〈d〉pi(1 − ds)S♥ − di < 0.
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It can be verified that, during the evolution toward the disease-free steady
state,
• If S0 > di/(〈d〉pi(1 − ds)), I1 > I0, there is an epidemic,

• If S0 < di/(〈d〉pi(1 − ds)), I1 < I0, there is no epidemic,

where S0 and I0 denote the susceptible and infective initial densities.21 For
example, if 〈d〉 = 4, pi = 0.34, bs = 0.2, bi = 0.1, ds = 0.355, and di = 0.5,
the condition 〈d〉bs > ds is verified. In the infinite-time limit, the system is in
a disease-free state, and since di/(〈d〉pi(1− ds)) = 0.57 there is no epidemic
for S0 = 0.54 and an epidemic for S0 = 0.6. For these parameter values
S♥ = 0.468, and the eigenvalues of the Jacobian at the point (S♥, 0) are
0.911 and 0.625, confirming the asymptotic stability of this point.

3. There also exists a solution (S♣, I♣) �= (0, 0) that satisfies the system of
equations

0 = (1− S♣ − I♣)
(
1− exp

(− 〈d〉(bsS♣ + biI♣)
))− dsS♣

− (1− ds)S♣
(
1− exp(−〈d〉piI♣)

)
,

0 = (1− ds)S♣
(
1− exp(−〈d〉piI♣)

)− diI♣.

For 〈d〉 = 4, pi = 0.8, bs = 0.6, bi = 0.1, ds = 0.355, and di = 0.5, the non-
trivial fixed point (S♣, I♣) = (0.3495, 0.2450) and the eigenvalues of the
Jacobian at the point are complex conjugate and equal to 0.448522 ±
i 0.401627. This indicates the existence of damped oscillations in the neigh-
borhood of this asymptotically stable point representing an endemic state.
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Fig. 7.9. Limit cycle. Parameter values: 〈d〉 = 4, pi = 0.8, bs = 0.049, bi = 0.0001,
ds = 0.001, and di = 0.18

21 This result is another illustration of the Kermack–McKendrick threshold theorem;
see pages 58 and 159.
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4. Playing with the numerical values of the parameters, we can modify the lo-
cation of the nontrivial fixed point (S♣, I♣) and increase the modulus of
the eigenvalues of the Jacobian at this point. When the modulus of these
eigenvalues becomes equal to 1, the system exhibits a Hopf bifurcation. For
〈d〉 = 4, pi = 0.8, bs = 0.054, bi = 0.0001, ds = 0.001, and di = 0.18,
the convergence to the fixed point (S♣, I♣) = (0.0623303, 0.0646393) is ex-
tremely slow since the eigenvalues of the Jacobian at this point, equal to
0.983503 ± i 0.180775, have a modulus equal to 0.999979, indicating the
proximity of a Hopf bifurcation.

5. Decreasing the value of the parameter bs, the system exhibits a limit cycle as
illustrated in Fig. 7.9.
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Summary

This chapter is devoted to the study of various networks.

• In 1967, Stanley Milgram conducted experiments showing that two in-
dividuals are often linked by a rather short chain of acquaintances. This
so-called small-world phenomenon is also known as the six degrees of
separation. In a first study, the letters, given to people living in Wichita,
Kansas, were to reach the wife of a divinity student living in Cambridge,
Massachusetts, and in a second study, the letters, given to people living
in Omaha, Nebraska, had to reach a stockbroker working in Boston and
living in Sharon, Massachusetts. These simple experiments showed that,
despite the very large number of people living in the United States and the
relatively small number of a person’s acquaintances, two persons chosen
at random are connected to one another by a very small number of inter-
mediaries. Milgram found that the median of this distribution was equal to
5 and its average is 5.43. These results are certainly not very accurate,
the statistics being too poor to make serious claims. However, the fact
that two randomly chosen persons are connected by only a short chain of
acquaintances has been verified for many different social networks.

• One striking example of small-world phenomenon is the collaboration
graph of movie actors. Consider a graph whose vertices are the actors listed
in the Internet Movie Database (Web site: http://us.imdb.com) in which
two actors are connected by an edge if they acted in a film together. In
1998, Duncan Watts and Steven Strogatz published a paper showing that
among the 225,226 vertices, with an average number of edges per vertex
equal to 61, the average chain length or degree of separation between
two actors selected at random from the giant connected component of this
graph, which includes about 90% of the actors listed in the database, is
equal to 3.65 .

• In the world of mathematics, there exists a famous collaboration graph
centered on the Hungarian mathematician Paul Erdös , who traveled con-
stantly, collaborated with hundreds of mathematicians, and wrote more
than 1,400 papers. Mathematicians who coauthored a paper with Erdös
have an Erdös number equal to 1, mathematicians who wrote a paper with
a colleague who wrote a paper with Erdös have an Erdös number equal
to 2, and so forth. It appears that among mathematicians who coauthored
papers, less than 2% have an Erdös number larger than 8 .

• A graph G is an ordered pair of disjoint sets (V,E), where V is a

nonempty set of elements called vertices , nodes, or points and a subset E



Solutions 365

of ordered pairs of distinct elements of V , called directed edges arcs, or
links. Edges can also be undirected. A network of personal acquaintances
is an undirected graph, whereas the routes of an airline company are a
directed graph.

• Graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there ex-
ists a bijection ϕ : V1 → V2 such that {x, y} ∈ E1 if, and only if,
{ϕ(x), ϕ(y)} ∈ E2. In other words, G1 and G2 are isomorphic if the bijec-
tion ϕ between their vertex sets V1(G1) and V2(G2) preserves adjacency.
Isomorphic graphs have, of course, the same order and same size.

• The degree d(x) of vertex x is the number of vertices adjacent to x. In

the case of a directed graph, we have to distinguish the in-degree din(x)

and the out-degree dout(x) of a vertex x, which represent, respectively,
the number of incoming and outgoing edges. A graph is said to be regular
if all vertices have the same degree. A vertex of degree zero is said to be
isolated.

• An alternating sequence (x0, e1, x1, e2, . . . , e�, x�) of vertices xi (i=
0, 1, 2, . . . , �) and edges ej = (xj−1, xj) (j = 1, 2, . . . , �) is a path or

a chain of length � joining vertex x0 to vertex x�. A graph is connected
if, for every pair of distinct vertices {x, y}, there is a path joining them.

• A graph G of order N can be represented by its N×N adjacency matrix
A(G), whose elements aij are given by

aij = aji =

{
1, if there exists an edge between vertices i and j,
0, otherwise.

• Here are a few simple properties of the adjacency matrix.
1. If, for a specific value of k, aikakj = 1, there exists a path of length 2

joining vertex i to vertex j. Hence, the value of
∑N
k=1 aikakj represents,

therefore, the number of different paths of length 2 joining vertex i to
vertex j.

2. Hence, the value of
∑N
k=1 aikakj represents the number of different

paths of length 2 joining vertex i to vertex j.
3. More generally, the value of the element ij of the nth power of the

adjacency matrix is the number of different paths of length n joining
vertex i to vertex j.

• A bipartite graph consists of two types of vertices and edges are connect-
ing only vertices of different types.

• We could define a random graph as a graph in which the edges are ran-
domly distributed. But, if we want to give a precise definition of a random
graph, we have to define a space whose elements are graphs and a probabil-
ity measure on that space. For graphs with a given number N of vertices,
there exist two closely related models of random graphs.
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1. For 0 ≤ M ≤
(
N

2

)
, there are

((N
2

)

M

)
graphs with exactly M edges.

If the probability of selecting any of them is
((N

2

)

M

)−1

, we define the

probability space G(N,M) of uniform random graphs .
2. Let 0 ≤ p ≤ 1. If the probability of selecting a graph with exactly m

edges in the set of all graphs of order N is pk(1 − p)(
N
2 )−m – that is,

if an edge between a pair of vertices exists independently of the other
edges with a probability p and does not with a probability 1− p – the
resulting probability space is denoted G(N, p), and graphs of this type
are called binomial random graphs .

In a uniform random graph, the probability that there exists an edge

between a given pair of vertices is M/

(
N

2

)
, while the average number of

edges of a binomial random graph is p
(
N

2

)
. In most applications, p is

small and N is large, so, in the limit p → 0, N → ∞, and pN = λ, we
find that for both uniform and binomial random graphs, the vertex degree
probability distribution is Poisson.

• The structural properties of a network are usually quantified by its char-
acteristic path length its clustering coefficient, and its vertex degree prob-
ability distribution.
1. The characteristic path length L of a network is the average shortest

path length between two randomly selected vertices.
2. The clustering coefficient C of a network is the conditional probabil-

ity that two randomly selected vertices are connected given that they
are both connected to a common vertex. The clustering coefficient C of
the network is the average of the clustering coefficients of all vertices.

The characteristic length takes its minimum value of L = 1 and the clus-
tering coefficient its maximum value C = 1 in the case of a complete graph.
The table below indicates the average degree dactors of a vertex, the char-
acteristic path length Lactors and the clustering coefficient Cactors of the
collaboration graph of movie actors.

Movie actors
Nactors 〈dactors〉 Lactors Lrandom Cactors Crandom

225,226 61 3.65 2.99 0.79 0.00027

• While the characteristic path lengths Lactors and Lrandom have the same
order of magnitude, the clustering coefficients Cactors and Crandom are very
different, suggesting that a random graph is not a satisfactory model for
the collaboration network of movie actors. This is the case for many other
real networks such as, for example, the scientific collaboration network .
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The scientific collaboration network and the collaboration network of
movie actors are both evolving networks , with, however, an important
difference: for movie actors, the decision to collaborate is usually the re-
sponsibility of the casting director, while for scientists, this decision is
made at the authors level.

• The analysis of scientific collaboration networks carried out in impor-
tant journals in mathematics and neuroscience published over an 8-year
period from 1991 to 1998 showed that both networks were scalefree and
1. in mathematics, the number of different authors is 70,975 and the num-

ber of published papers is 70,901, and the power-law behavior of the
vertex degree probability distributions is γM = 2.4, while

2. in neuroscience, the number of different authors is 209,293 and the
number of published papers is 210,750, and the power-law behavior of
the vertex degree probability distributions is γNS = 2.1.

3. While the order of these evolving networks increases with time, the
characteristic path length is found to decrease with time.

4. Clustering coefficients are found to decay as a function of time, and
convergence to an asymptotic value, if it exists, appears to be very
slow.

5. The size of the largest component, greater for neuroscience than for
mathematics, grows with time. For neuroscience, this size seems to be
very close to an asymptotic value, while this is, apparently, not the
case for mathematics.

6. The average vertex degree increases with time, much faster for neuro-
science than for mathematics.

7. These networks exhibit the phenomenon of preferential attachment .
That is, first papers by new authors (i.e., authors who did not belong
to the network), are found to be preferentially coauthored with old
authors who already have large numbers of coauthors than with those
less connected. More precisely, it is found that the probability that an
old author with d links is selected by – or selects – a new author is
proportional to dα with α ≈ 0.8 for mathematics and α ≈ 0.75 for
neuroscience. Moreover, old authors also write papers together, and
if d1 and d2 are the respective numbers of coauthors of author 1 and
author 2, it is found that the probability that two old authors write a
new paper together is proportional to d1d2, exhibiting another aspect
of preferential attachment.

• Because of preferential attachment , a vertex that acquires more connec-
tions than another will increase its connectivity at a higher rate. Barabási
and Albert showed that, as a function of time t, the degree of a vertex
increases as tβBA , where βBA = 1/2.

• Despite its huge size (larger than one billion), A.-L. Barabási, R. Albert,
and H. Jeong found that the World WideWeb is a highly connected graph :
two randomly chosen documents are, on average, 19 clicks away from each
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other. More precisely, the average distance between any two documents is
given by 0.35 + 2.06 logN , where N is the total number of documents.

• The vertex in-degree and out-degree of the WWW probability distributions
have power-law tails :

P (dout = k) ∼ k−γout , P (din = k) ∼ k−γin ,

with γout = 2.45 and γin = 2.1.
• To build up a random network A.-L. Barabási and R. Albert suggested

the following procedure:
1. Starting at t = 0 with an empty graph of small order N0, add at t = 1

a new vertex and a number m ≤ N0 of edges linking that vertex to m
randomly selected different vertices.

2. Then, at all times t > 1, add a new vertex and m new edges connecting
this vertex to m existing vertices. To take into account preferential
attachment of a new vertex to highly connected vertices, the probability
of connecting the new vertex to an existing vertex xi is

d(xi)
Nt−1∑

j=1

d(xj)

,

where d(xi) is the degree of vertex xi andNt−1 is the number of already
existing vertices. At time t, the network is of order Nt = N0 + t and
of size Mt = mt implying that the average vertex degree is constant in
time.

Numerical simulations showed that the above model evolves into a sta-
tionary scale-free network with a power-law probability distribution for the
vertex degree P (d = k) ∼ k−γBA, where γBA = 2.9 ± 0.1 over about 3
orders of magnitude. In the simulations, the following values were consid-
ered: m = N0 = 1, 3, 5, and 7 for t = 300,000, and m = N0 = 5 for t =
100,000, 150,000, and 200,000. It was also verified that continuous growth
and preferential attachment are necessary ingredients to build up a model
of a scale-free network.

• While the random network model defined by Albert–Laslo Barabási and
Réka Albert predicts the emergence of power-law scaling, the agreement
between the measured and predicted exponents is less than satisfactory.
This led them to propose an extended model. The dynamical growth process
of this new model, which incorporates addition of new vertices, addition of
new edges, and rewiring of edges, starts like the first model, but, instead of
just adding new vertices linked to existing ones with preferential attach-
ment, at each time-step, one of the following operations is performed.
1. With probability p, add m new edges. That is, randomly select a vertex

as one endpoint of an edge and attach that edge to another existing
vertex with preferential attachment. Repeat this m times.
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2. With a probability q, rewire m edges. That is, randomly select a vertex
xi and an edge {xi, xj}. Replace that edge by a new edge {xi, xj′} with
preferential attachment. Repeat this m times.

3. With a probability 1−p−q, add a new vertex and m new edges linking
the new vertex to m existing vertices with preferential attachment.

In the (p, q)-plane, the system exhibits two regimes:
1. An exponential regime as for the uniform or binomial random network

models and the Watts–Strogatz small-world network model.
2. A scale-free regime, but with an exponent γ characterizing the power-

law decay depending continuously on the parameters p and q, showing
a lack of universality, and accounting for the variations observed for
real networks.

• This modified model reproduces with an excellent fit the properties of
the collaboration network of movie actors. Other models were proposed,
in particular, by (1) Dorogovtsev, Mendes, and Samukhin, (2) Krapivsky,
Rodgers, and Redner, (3) Vázquez (4) Davidsen, Ebel, and Bornholdt that
brought some new interesting results.
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Power-Law Distributions

The essential points of this chapter are
• The Pareto law
• The log-normal distribution
• The two regimes of income distribution

and how it is explained
• The Zipf’s law of word frequency
• The behavior of stock prices as a function of time

according to Louis Bachelier and Benôıt Mandelbrot
• The definition of econophysics
• The universal behavior of rank as a function size for cities
• The distribution of family names (in Japan)
• The distribution of votes (in São Paulo)
• The explanation of the power-law behavior
• The log-normal behavior
• The definition of self-organized criticality
• The sandpile model and the avalanches

8.1 Classical Examples

Many empirical analyses suggest that power-law behaviors in the distribution
of some quantity are quite frequent in nature.1 However, we have to keep in
mind that these behaviors may be purely apparent (see pages 387 and 416) or

1 In Sect. 7.5.1, we presented a few scale-free networks characterized by power-law
vertex degree probability distributions.

N. Boccara, Modeling Complex Systems: Second Edition, Graduate Texts in Physics, 371
DOI 10.1007/978-1-4419-6562-2 8, c© Springer Science+Business Media, LLC 2010
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simply transient or spurious (see Page 407).2 Here are two classical examples
completed with some recent developments.3

Example 65. Pareto law.4 Pareto is known, in particular, for his pioneering
work on the distribution of income. Pareto [357] considered data for England,
a few Italian towns, some German states, Paris, and Peru. A log–log plot of
the number N(x) of individuals with income greater than x, showed5 that
N(x) behaved as x−α, where, for all the data, the exponent α, referred to as
the Pareto exponent, is in all cases close to 1.5.

2 On how to discern and quantify power-law behavior in empirical data, con-
sult Arkiv:0706.1062v2 (SIAM Review, to appear in 2009).

3 The reader interested in the future of power-law research may consult [319].
4 The Italian economist and sociologist Vilfredo Pareto (1848–1923) was born Wil-

fried Fritz Pareto because his parents, who were living in Paris (his mother Marie
Metenier was French) at that time, were enthusiastic about the 1848 German
revolution, he became Vilfredo Federico upon his family’s move back to Italy in
1858. In 1867, he graduated in mathematical sciences and in 1870 he earned a
doctorate in engineering from what is now the Polytechnic University of Turin.
In 1886, he obtained a position of lecturer on economics and management at the
University of Florence. After the death of his parents, Pareto quit his job and
married Alessandrina Bakunin, a Russian who later left him. In 1893, he was
appointed as lecturer in economics at the University of Lausanne (Switzerland),
where he succeded to Léon Walras (1834–1910), the father of the general equilib-
rium theory and author of the Elements of Pure Economics. Pareto remained at
the University of Lausanne for the rest of his life. Pareto had always been fasci-
nated by problems of power and wealth. In 1906, he stated the “Pareto principle”
also known as the “80/20 rule” which stated that 80% of the land in Italy was
owned by 20% of the population. In pages 152–155 of [296], the authors write
“At the bottom of the Wealth curve Men and Women starve and children die
young. In the broad middle of the curve all is turmoil and motion: people rising
and falling, climbing by talent or luck and falling by alcoholism, tuberculosis and
other kinds of unfitness. At the very top sit the elite of the elite, who control
wealth and power for a time – until they are unseated through revolution or up-
heaval by a new aristocratic class.” Pareto, who had argued that democracy was
an illusion, welcomed Mussolini’s coming to power.

5 If Ntotal is the total number of individuals, the quantity

F (x) =
Ntotal − N(x)

Ntotal

is the probability that an individual has an income less than or equal to x.
F is known in probability theory as the cumulative distribution function; see
Sect. 8.2.1.
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x N x N x N
150 400,648 600 42,072 2,000 9,880
200 234,185 700 34,269 3,000 6,069
300 121,996 800 29,311 4,000 4,161
400 74,041 900 25,033 5,000 3,081
500 54,419 1,000 22,899 10,000 1,104

The table above gives the number N(x) as a function of x in pounds ster-
ling of a category of British taxpayers (businessmen and professionals) for the
fiscal yearss 1893–1894. The data are taken from Pareto’s Cours d’Économie
Politique, volume 2, Page 305. Figure 8.1 shows a log–log plot of these data
(dots) and the least-squares fit (straight line). Actually, from our fit of Pareto’s
data, we find α = 1.34.

Many papers have been published on the probability density of income
distribution in various countries.6 It appears that this probability density
follows a power-law behavior in the high-income range, but, according to
Gibrat [181],7 it is lognormal in the low–middle range. This probability dis-
tribution, which depends upon two parameters is discussed in Sect. 8.2.3. It
can be mistaken for a power-law distribution as shown in Fig. 8.5.
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Fig. 8.1. Distribution of income of a category of British taxpayers (businessmen
and professionals) for the year 1893–1894. x is the annual income and N(x) the
number of taxpayers whose annual income is greater than x

The Pareto’s law is also known as the 80/20 law which means that 80%
of the wealth is held by 20% of the population.

6 Pareto law, which states N(x) ∼ x−α, implies the probability density f(x) ∼
x−(1+α).

7 See also Badger [27] and Montroll and Shlesinger [323].
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In a recent study of the overall profile of Japan’s personal income distribu-
tion, Souma [415]8 found that only the top 1% of the Japanese income data
for the year 1998 follows a power-law distribution with a Pareto exponent
equal to α = 2.06; the remaining 99% of the data fit a lognormal distribution
with m = 4 million yen and β = 1/

√
2πσ2 = 2.68.9 Souma also studied the

time dependence from 1955 to 1998 of Pareto’s exponent α and the index β
and found that the values of the Pareto exponent for Japan and the US during
that period were strongly correlated.

Pointing out that many recent papers dealing with income probability
distributions “do little or no comparison at all with real statistical data,”
Drăgulescu and Yakovenko [136, 137] analyzed the data on income distribu-
tion in the United States from the Bureau of the Census and the Internal
Revenue Service. They found that the individual income of about 95% of the
population is not lognormal but described by an exponential distribution of
the form exp(−r/R)/R.10 The parameter R, which represents the average
income, changes every year. For example, from data collected from the Inter-
nal Revenue Service11 for the year 1997, R = 35,200 US$ from a database
size equal to 1.22 × 108. Above 100,000 US$, the income distribution has a
power-law behavior with a Pareto exponent α = 1.7± 0.1. (See also [105]).

The exponential distribution is valid for individual incomes. For house-
holds with two persons filing jointly, the total income r is the sum r1 + r2 of
the two individual incomes, and the income probability distribution p2 of the
household is

p2(r) =
∫ r

0

p(r′)p(r − r′) dr′ =
r

R2
e−r/R.

Data obtained from the Web site of the bureau of the Census12 are in good
agreement with this distribution.

The individual and family income distributions differ qualitatively. The
former monotonically increases toward low incomes and reaches its maximum
at zero. The latter has a maximum at a finite income rmax = R and vanishes
at zero. That is, for individuals, the most probable income is zero, whereas,
for a family with two earners, it is equal to R.

According to Drăgulescu and Yakovenko, hierarchy could explain the exis-
tence of two regimes, exponential and power-law, for the income distribution.

8 See also analyses of large and precise data sets by Fujiwara et al. [168].
9 β is called the Gibrat index.

10 This discrepancy with Souma’s result may be due, according to the authors, to
the fact that, in Japan, below a relatively high threshold, people are not required
to file a tax form.

11 Information on tax statistics can be found on the Internal Revenue Service Web
site: http://www.irs.gov/taxstats/.

12 http://ferret.bls.census.gov/. FERRET, which stands for Federal Electronic Re-
search and Review Electronic Tool, is a tool developed and supported by the U.S.
Bureau of the Census.
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People have leaders, which have leaders of higher order, and so forth. The
number of people decreases exponentially with the hierarchical level. So, if the
income increases linearly with the hierarchical level, an exponential distribu-
tion follows; but if the income increases exponentially with the hierarchical
level, a power law is obtained. The linear increase is probably more realistic
for moderate incomes, whereas the exponential increase should be the case for
very high incomes.

Example 66. Zipf’s law. Analyzing word frequency in different natural lan-
guages, George Kingsley Zipf (1902–1950) discovered that the frequency f of
a word is inversely proportional to its rank r [458–460], where a word of rank r
is the rth word in the list of all words ordered with decreasing frequency.13

Remark 30. Heaps’ law [28, 216] is another statistical law in linguistic that can be
formulated

VR(n) = Knβ

where VR is the subset of size n of the vocabulary V ; K and β are parameters. In
other words, this law describes the vocabulary growth as a function of text size. In
English texts, K is usually between 10 and 100, and β between 0.4 and 0.6. For a
formal derivation of Heaps’ law, see [263].

For example, James Joyce’s novel Ulysses contains 260,430 words. If words
such as give, gives, gave, given, giving, giver, and gift are considered to be
different, there are, in Ulysses, 29,899 different words. Zipf data, taken from
Human Behavior and the Principle of Least Effort, p. 24, are reproduced in
the table below.

r f r f r f
10 2,653 200 133 3,000 8
20 1,311 300 84 4,000 6
30 926 400 62 5,000 5
40 717 500 50 10,000 2
50 556 1,000 20 20,000 1
100 265 2,000 12 29,899 1

A log–log plot of the word frequency f as a function of the word rank r
is shown in Fig. 8.2 with a straight line representing the least-squares fit. The
slope of this line is equal to 1.02.14

In its original form, Zipf’s law, observed on a rather small corpus, ac-
counts for the statistical behavior of word frequencies for ranks between a

13 There exists a very large number of papers dealing with Zipf’s law. Here are a
few of them that might interest the reader [1,101,111,179,271,297,363,368,456].
The French stenographer and General Secretary of the Institut Stnographique de
France Jean-Baptiste Estoup (1868–1950) already noticed in [150] the regularity
later known as Zipf’s law. See also[365].

14 On a simple and efficient test for Zipf’s law, consult [430].
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Fig. 8.2. Log–log plot of word frequency f as a function of word rank r (dots) and
the least-squares fit (straight line). Zipf data taken from Human Behavior and the
Principle of Least Effort are reproduced in the table above

few hundred and a few thousand. To test its validity for higher rank values,
much larger corpora have to be analyzed. Recently, Montemurro [321] studied
a very large corpus made up of 2,606 books with a vocabulary size of 448,359
different words. He found that Zipf’s law is verified with an exponent equal
to 1.05 up to r ≈ 6,000. Above this value, there is a crossover to a new regime
characterized by an exponent equal to 2.3. These two regimes have also been
found by Ferrer i Cancho and Solé [159], who processed the British National
Corpus, which is a collection of text samples both spoken and written and
comprising about 9 × 107 words. The values of the two exponents found by
these authors are 1.01±0.02 and 1.92±0.07. Words seem, therefore, to belong
to two different sets: a kernel vocabulary used by most speakers and a much
larger vocabulary used for specific communications. For words belonging to
the second set, being much less usual, it is not so surprising that their fre-
quency decreases much faster as a function of their rank than the more usual
words belonging to the first set. See also [225].

It is clear that the frequency-ordered list carries only a small part of the
information on the role of words. If, for instance, we reorder at random the
different words of a text, the word frequency as a function of word rank is
unchanged, while the text meaning is totally lost. It is, therefore, not sufficient
to determine how often a word is used, we need also to assess where a word is
used. A step in this direction has been taken by Montemurro and Zanette [322].
Consider a text corpus (36 plays by Shakespeare containing a total of 885,535
words divided into 23,150 different words) as made up of the concatenation of
P parts (the different plays). Determine the frequency fi of a particular word
in part i (i = 1, 2, . . . , P ). The quantity

pi =
fi
P∑

i=1

fi
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is the probability of finding the word in part i and

S = − 1
logP

P∑

i=1

pi log pi

the entropy associated with this word. Note that 0 ≤ S ≤ 1, where the
minimum value 0 corresponds to a word that appears only in one part and the
maximum value to a word equally distributed among all parts. It is clear that
very frequent words tend to be more uniformly distributed, which implies that
the entropy S of a word increases with its global frequency.

To explain the behavior of the entropy, the authors generated a random
version of Shakespeare’s 36 plays. This was done by shuffling the list of all
the 885,535 words and then dividing this list into 36 parts, part j containing
exactly the same number of words as play j (j = 1, 2, . . . , 36). Comparing the
entropy of the actual plays with the entropy of the randomized plays, while
the tendency of the entropy to increase with the global word frequency is
preserved, it is found that large fluctuations of the value of the entropy are
absent in the randomized version. On average, words have higher entropies in
the random version than in the actual corpus.

Language can also be described as a network of linked words. That is, a
language can be described as a graph whose vertices are words, and undirected
edges represent connections between words. Word interactions are not easy
to define precisely, but it seems that different reasonable definitions provide
very similar network structures. Following Ferrer i Cancho and Solé [160], an
edge may connect an adjective and a noun (e.g., red flowers), an article and
a noun (e.g., the house), a verb and an adverb (e.g., stay here), etc. This
means that two words are at distance 1, i.e., they are connected by an edge
if they are nearest neighbors in at least one sentence. The existence of a link
between two words could be given a more precise definition saying that words
i and j are at distance 1 if the probability pij of the co-occurrence of the pair
(i, j) is larger than the product pipj of their probabilities of occurring in the
language. Taking into account this restrictive condition, Ferrer i Cancho and
Solé found that in a network of 460,902 vertices (words) and 1.61×107 edges,
the average degree 〈d〉 = 70.13. The vertex degree probability distribution has
two different power-law regimes characterized by the exponents γ1 = 1.50 for
vertex degrees less than 103 and γ2 = 2.70 for vertex degrees larger than 103.
Furthermore, the characteristic path length of the word network Lwn = 2.67,
and the clustering coefficient Cwn = 0.437, which shows that the word network
is a small world.

Considering the language as a self-organizing growing network, and using
the Barabási–Albert idea of preferential attachment (see Page 344) (i.e., a
new word has a probability of being connected to an old word x proportional
to the degree d(x) of that word), Dorogovtsev and Mendes [134] found that
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the vertex degree probability distribution exhibits a crossover between two
power-law behaviors with exponents γ1 = 1.5 for vertex degrees d � 5,000
and γ2 = 3 for vertex degrees d � 5,000.

Another application of statistical linguistics is the idea of extracting
keywords from interword spacing [355]. The interword spacing is defined as
the word count between a word and the next occurrence of the same word in
a text. For each word, all interword spacings are counted up and the standard
deviation is computed. It is found that high standard deviation is a better
criterion as a search engine keyword than high frequency.

Standard deviations of interword spacings seem also to offer the possibility
of identifying texts due to the same author. If, for a given text, words are
ranked according to the value of the standard deviation of their interword
spacing and standard deviation is plotted versus the logarithm of the rank,
it appears that plots corresponding to different texts by the same author
almost coincide. This result, reported by Berryman et al. [53], is in favor of
the hypothesis that the biblical books of Luke and The Acts of the Apostles
have a common author.

8.2 A Few Notions of Probability Theory

8.2.1 Basic Definitions

Although ideas about probability are very old, the development of probabil-
ity theory, as a scientific discipline, really started in 1654 when Pascal15 and
Fermat16 analyzed simple games of chance in a correspondence published for
the first time in 1679 [157]. In the meantime, the basic concepts of probability
theory were clearly defined and used by Huygens17 in his treatise Tractatus
15 Blaise Pascal (1623–1662) was a French mathematician and physicist. He pub-

lished his Essai sur les sections coniques (Essay on Conic Sections) when he
was only 17. He made important contributions to projective geometry, proba-
bility theory, construction of mechanical calculators, and the study of fluids. He
clarified the concept of pressure and proved the existence of vacuum whose ex-
istence Descartes did not believe in. Pascal was also a religious philosopher who
converted to jansenism in 1646, a doctrine on grace and predestination whose fa-
ther was the catholic bishop of Ypres (Belgium) Cornelius Jansenius (1585–1638)
(see more details on Jansenism in the catholic encyclopedia: article Jansenius
and Jansenism which can be found on the Web page: http://www.newadvent.
org/cathen/08285a.htm.

16 Pierre de Fermat (1601–1665) was a French Councillor of the Parliament of
Toulouse and a brilliant amateur mathematician who made important contribu-
tions, in particular, to number theory. More details can be found in his obituary
published in the Journal des Sçavans on February 9, 1665.

17 Christiaan Huygens (1629–1695) was a remarkable Dutch mathematician, as-
tronomer, physicist, and horologist. He published in 1690 a Traité de la lumière
(Treatise on light). He admired Newton but found his theory of gravitation
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de ratiociniis in alæ ludo published in 1657. In the early eighteenth century,
Jakob Bernoulli18 proved the law of large numbers, and de Moivre (1667–1754)
established the first version of the central limit theorem. In the early nine-
teenth century, important contributions, essentially on limit theorems, were
made by Laplace (1749–1827), Gauss (1777–1855), and Poisson (1781–1840).
These results were extended in the late nineteenth and early twentieth cen-
turies by Chebyshev (1821–1894), Markov (1856–1922), and Lyapunov (1857–
1918). The axiomatization of the theory started with the works of Bernstein
(1878–1956), von Mises (1883–1953), and Borel (1871–1956), but the formu-
lation based on the notion of measure, which became generally accepted, was
given by Kolmogorov19

According to Kolmogorov [249], a probability space is an ordered triplet
(Ω,A, P ), where Ω is the sample space or space of elementary events, A is
the set of all events, and P is a probability measure defined on A.

The set A is such that:

1. The empty set ∅ is an event.
2. If {An | n ∈ N} is a countable family of events, then

⋃
n∈N

An and⋂
n∈N

An are events.
3. If A is an event, the complement Ac of A is an event.

The probability measure P defined on A has the following properties:

1. P (∅) = 0.
2. For all countable sequences (An) of pairwise disjoint events

P

( ∞⋃

n=1

An

)

=
∞∑

n=1

P (An).

3. P (Ω) = 1.

absurd! More details at http://www.gap-system.org/ history/Biographies/

Huygens.html and http://www.maths.tcd.ie/pub/HistMath/People/Huygens/

RouseBall/RB Huygens.html [386].
18 Jakob Bernoulli (1654–1705), also called James or Jacques, is one of the many

famous mathematicians of the Bernoulli family. He was the son of Nicolaus, the
brother of Johann and the uncle of Daniel. He studied theology but also mathe-
matics and astronomy. He is best known for Ars Conjectandi (The Art of Con-
jecture) published in Basel (Switzerland) after his death in 1713. More details at
http://www.gap-system.org/∼history/Biographies/Bernoulli Jacob.html.

19 Andrey Nikolaevich Kolmogorov (1903–1987) was an eminent Russian mathe-
matician who made important contributions to many different fields (refer to
his list of publications [251]. He also studied Russian history and wrote a seri-
ous scientific thesis on the owning of property in Novgorod in the fifteenth and
sixteenth centuries. When he completed in doctorate in 1929, he had already writ-
ten 18 papers. He became professor at Moscow University in 1931, and published
in 1933 his famous monograph on probability theory entitled Grundbegriffe der
Wahrscheinlichkeitsrechnung.
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A random variable X is a real function defined on Ω such that, for all
x ∈ R, the set {ω ∈ Ω | X(ω) ≤ x} is an event; i.e., an element of A. The
cumulative distribution function of the random variable X is the function
FX : R→ [0, 1] defined by

FX(x) = P (X ≤ x),

where the notation P (X ≤ x) represents the probability of the event {ω ∈
Ω | X(ω) ≤ x}.

The cumulative distribution function is a measure. This measure is abso-
lutely continuous if there exists a nonnegative function fX , called the proba-
bility density of the random variable X , such that

FX(x) =
∫ x

−∞
fX(u) du.

In this case, X is said to be an absolutely continuous random variable.
If the cumulative distribution function is piecewise constant with disconti-

nuities at points xk (k ∈ N) such that, for all k, ΔFX(xk)=F (xk)−F (xk−0)
> 0, the random variable is said to be discrete, and the sequence of numbers
(pk), where pk = P ({xk}), is called a discrete probability distribution (see an
example on Page 332).

There exist continuous cumulative distribution functions that are constant
almost everywhere; i.e., they increase on a set of zero Lebesgue measure. Such
distributions are said to be singular (see an example on Page 252).

In most applications, when dealing with a random variable X , we never
refer to the sample space Ω of elementary events. We always refer to the cu-
mulative distribution function FX , or, when X is absolutely continuous, to its
probability density fX . Both functions are often abusively called probability
distributions. It is clear that any nonnegative integrable function f such that

∫ ∞

−∞
f(x) dx = 1

defines a probability density.
The following characteristics are of frequent use. They do not, however,

always exist.
The mean value or average value of a random variable X is

m1(X) = 〈X〉 =
∫ ∞

−∞
xdFX(x),

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

k=1

xkpk, if X is discrete,

∫ ∞

−∞
xfX(x) dx, if X is absolutely continuous.
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More generally, the moment of order r of X is defined by

mr(X) = 〈Xr〉 =
∫ ∞

−∞
xr dFX(x).

The variance of X is

σ2(X) = 〈(X − 〈X〉)2〉
= 〈X2〉 − 〈X〉2 = m2(X)−m2

1(X).

The square root σ(X) of the variance is called the standard deviation.20 If
there is no risk of ambiguity, we shall omit X and simply write m1, mr,
and σ2.

An important function, which is always defined, is the characteristic func-
tion ϕX of the probability distribution of X defined by

ϕX(t) = 〈eitX〉 =
∫ ∞

−∞
eitx dFX(x).

In the case of absolutely continuous random variables, the characteristic func-
tion is the Fourier transform of the probability density: ϕX = f̂X .21

If the moment mr(X) of the random variable X exists, then

ϕX(t) =
r∑

k=0

mk(X)
k !

(it)k + o(tr);

that is, if mr(X) exists, then ϕX is at least of class Cr and, for k = 0, 1, . . . , r,
ϕ(k)(0) = ikmk(X).

There exist various modes of convergence for sequences of random vari-
ables. Let us just mention one mode that usually leads to short and elegant
proofs of limit theorems:

Definition 24. The sequence of random variables (Xn) converges in distri-
bution to the random variable X if for every bounded continuous function f

lim
n→∞〈f(Xn)〉 = 〈f(X)〉.

This mode of convergence is denoted

Xn
d−→ X.

That is, to prove that (Xn) converges to X in distribution, we may just
check whether either

lim
n→∞FXn(x) = FX(x)

at every point of continuity of FX or

lim
n→∞ϕXn(t) = ϕX(t).

20 The term standard deviation was first used in writing by Karl Pearson (1857–
1936) in 1894 [362].

21 The Fourier transform of the function f is denoted f̂ .
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8.2.2 Central Limit Theorem

The most important absolutely continuous probability distribution is the
normal or Gauss distribution, whose density, defined on R, is

fGauss(x) =
1√
2πσ

exp− (x−m)2

2σ2
,

where m is real and σ positive. It is easily verified that, for a Gaussian random
variable,

〈X〉 = m, and 〈X2〉 − 〈X〉2 = σ2.

A Gaussian random variable of mean m and variance σ2 is denoted N(m,σ2).
As its name emphasizes, the central limit theorem plays a central role in

probability theory. In its simplest form, it can be stated:

Theorem 20. Let (Xj) be a sequence of independent identically distributed
random variables with mean m and standard deviation σ; if Sn = X1 +X2 +
· · ·+Xn, then

Sn − nm
σ
√
n

d−→ N(0, 1).

That is, the scaled sum of n independent identically distributed random
variables, with mean m and standard deviation σ, converges in distribution
to a normal random variable of zero mean and unit variance.

Following Lyapunov,22 the simplest method for proving the central limit
theorem is based on characteristic functions of probability distributions. Since
the random variables Xj are identically distributed, they have the same char-
acteristic function ϕX . For j ∈ N, let Yj = (Xj − m)/σ and denote by ϕY
their common characteristic function. Then, the characteristic function ϕUn

of the random variable

Un =
1√
n

n∑

j=1

Yj =
Sn − nm
σ
√
n

22 Aleksandr Mikhailovich Lyapunov (1857–1918) was a Russian mathematician and
physicist. He studied at the University of Saint-Petersburg where Pafnuty Lvovich
Chebyshev (1821–1894) was professor of mathematics – who became an ordinary
member of the Imperial Academy of Sciences in 1858 –, and Andrey Andreye-
vich Markov (1856–1922) a school friend. In 1896, Markov was elected ordinary
member of the Academy as the successor of Chebyshev. Lyapunov was awarded
his Ph.D. in 1885; his doctoral advisor was Chebyshev. In 1894, after the death
of Chebyshev, he became the head of applied mathematics at the University of
Saint-Petersburg, and in 1901 member of the Academy. On October 31, 1918,
when his wife died, he shot himself and died a few days later on November 3. For
a detailed biography of Lyapunov, refer to http://turnbull.dcs.st-and.ac.uk/

history/Biographies/Lyapunov.html.
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is
ϕUn(t) =

(
ϕY (t/

√
n)
)n
.

For a fixed t and a large n,

ϕY

(
t√
n

)
= 1− t2

2n
+ o

(
t2

n

)
.

Thus,

ϕUn(t) =
(

1− t2

2n
+ o

(
t2

n

))n

and
lim
n→∞ϕUn(t) = exp

(− 1
2 t

2
)
,

which proves the theorem since t �→ e−
1
2 t

2
is the characteristic function of a

Gaussian random variable N(0, 1) (see Page 388). �
Example 67. The probability distribution of a Poisson random variable is

PPoisson(X = k) = e−λk
λk

k !
.

It is easy to verify that the sum of n independent identically distributed
Poisson variables is a Poisson variable. Thus, for λ = 1, the central limit
theorem implies

lim
n→∞

∑

k≤n+x
√
n

e−nk
nk

k !
=

1√
2π

∫ x

−∞
e−u

2/2 du.

Figure 8.3 shows the approach to a normal distribution for the scaled sum
of 50 independent Poisson random variables with a unit parameter value; see
also Exercise 8.2.

The central limit theorem holds under more general conditions. Here is an
example23:

Theorem 21. Let (Xj) be a sequence of independent random variables such
that, for all j,

〈Xj〉 = mj , 〈(Xj −mj)2〉 = σ2
j , 〈|Xj −mj|3〉 <∞.

If

lim
n→∞

∑n
j=1〈|Xj −mj |3〉
(∑n

j=1 σ
2
j

)3/2
= 0,

then ∑n
j=1(Xj −mj)
√∑n

j=1 σ
2
j

d−→ N(0, 1).

23 See, for example, Loève [277].
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Fig. 8.3. Convergence to the normal distribution of the scaled sum of 50 indepen-
dent Poisson random variables with unit parameter value

Remark 31. According to the central limit theorem, the normal distribution is uni-
versal in the sense that the distribution of the scaled sum of a large number of
random variables subject to some restrictive conditions is a Gaussian random vari-
able. In the averaging process, we are thus losing information concerning the specific
random variables. This implies that, for given average value and variance, the normal
distribution is the distribution containing minimal information.24

Random variables observed in nature can often be interpreted as sums of
many individual mutually independent random variables, which, as a conse-
quence of the central limit theorem, should be normally distributed. Coeffi-
cients characterizing the shape of a probability distribution as skewness and
kurtosis excess are often used to check possible deviations from normality.
These coefficients are, respectively, defined by the scale-invariant expressions25

α3 =
〈(X −m1)3〉

σ3
,

α4 =
〈(X −m1)4〉

σ4
− 3

They are both equal to zero for normally distributed random variables. The
coefficient α3 is a measure of the asymmetry of the probability distribution,
and α4 can be, more specifically, used as a measure of departure from Gaussian
behavior.

In the case of a unimodal probability distribution (i.e., probability distri-
bution with only one relative maximum – the mode), the median m̃, defined
24 This result can, in fact, be established directly, as shown in Exercise 8.1.
25 The coefficient 〈(X − m1)4〉/σ4, which is also used in statistics, is called the

kurtosis.
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by FX(m̃) = 1/2, may give, when it differs from the average value m1, a
measure of skewness (see Page 395).26

Example 68. A discrete random variable X that can take the value k =
0, 1, 2, . . . , n with the probability

Pbinomial(X = k) =
(
n

k

)
pk(1− p)n−k

is a binomial random variable. Its skewness and kurtosis excess are given by

α3 =
1− 2p

√
np(1− p) and α4 =

1− 6p(1− p)
np(1− p) .

As n → ∞, both coefficients go to zero. This result follows from the central
limit theorem. Since the binomial distribution of parameters n and p is the
probability distribution of the sum of n independent identically distributed
Bernoulli random variables Xj (j = 1, 2, . . . , n), where, for all j,

PBernoulli(Xj = 1) = p and PBernoulli(Xj = 0) = 1− p,

the central limit theorem implies27

lim
n→∞

∑

k≤np+x
√
np(1−p)

(
n

k

)
pk(1− p)n−k =

1√
2π

∫ x

−∞
e−u

2/2 du.

The central limit theorem tells us that the sum Sn of n independent identi-
cally distributed random variables X1, X2, . . . , Xn with finite variance is well
approximated by a Gaussian distribution with mean nm1 and variance nσ2

when n is large enough. Typically, for a large finite value of n, deviations of
Sn from nm1 are of the order of n1/2, which is small compared to nm1. Devi-
ations of Sn from nm1 may be much greater. The theory of large deviations
studies, in particular, the asymptotic behavior of P (|Sn− nm1| > an), where
a > 0. The following result is often useful28:

Theorem 22. Let (Xj) be a sequence of independent identically distributed
random variables; if the function29 M : t �→ 〈exp(t(X1−m1))〉 is finite in some
neighborhood of the origin, then, if P (X1 −m1 > a) > 0 for a positive a,

lim
n→∞ (P (Sn − nm1 > na))1/n = e−ψ(a),

26 On the technical aspects of statistics, the interested reader may consult
Sachs [392]. On the mathematical aspects, see Wilks [446].

27 This result was first established by de Moivre for p = 1/2 and extended by Laplace
to any value of p.

28 See Grimmett and Stirzaker [199], p. 184.
29 M is the moment-generating function.
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Fig. 8.4. Probability density function of the lognormal distribution for x0 = e and
σ = 1

where Sn = X1 +X2 + · · ·+Xn and

ψ(a) = − log
(

inf
t>0

(
e−atM(t)

))

is positive.

That is, P (Sn − nm1 > na) decays exponentially. For an application of
this result, see Exercise 8.3.

8.2.3 Lognormal Distribution

The lognormal probability density function, which depends upon two param-
eters x0 and σ, is given by

flognormal(x) =
1

x
√

2πσ2
exp

(

−
(
log(x/x0)

)2

2σ2

)

.

That is, if X is a lognormal random variable, logX is normally distributed
with 〈logX〉 = log x0 and 〈(logX)2〉 − 〈logX〉2 = σ2. The graph of flognormal

is represented in Fig. 8.4.
A lognormal distribution results when many random variables cooperate

multiplicatively. Let Xi (i = 1, 2, . . . , n) be independent random variables.
Since

log
n∏

i=1

Xi =
n∑

i=1

logXi,

if the independent random variables logXi (i = 1, 2, . . . , n) satisfy the condi-
tions of validity of the central limit theorem, the scaled sum of such random
variables is a lognormal random variable.
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Fig. 8.5. Apparent power-law behavior of the lognormal distribution. The dotted
line represents the sequence

(
log(10,000 n), log

(
fnormal(10,000 n)

))
n=1,2,...,1,000

. The

parameters of the lognormal distribution are x0 = e and σ = −3.873. The slope of
the straight line giving the least-squares fit is equal to −3.873

The lognormal distribution is used in biology, where, for instance, the
sensitivity of an individual to a drug may depend multiplicatively upon many
characteristics such as weight, pulse frequency, systolic and diastolic blood
pressure, cholesterol level, etc. It is also used in finance, where it is assumed
that the increments of the logarithm of the price rather than the change of
prices are independent random variables (see Page 398).

In data analysis, power-law behavior of certain observables is detected
using log–log plots. When adopting such a procedure, a lognormal distribution
can be mistaken for a power-law distribution over a rather large interval,
as illustrated in Fig. 8.5. (See Exercise 8.6 for another example of apparent
power-law behavior.)

8.2.4 Lévy Distributions

Let X1 and X2 be two absolutely continuous random variables and fX1 and
fX2 their respective probability densities. If X1 and X2 are defined on the
same space and are independent, the probability density fX1+X2 of their sum
is given by

fX1+X2(x) =
∫ x

−∞
fX1(x1)fX2(x− x1) dx1.

That is, the probability density fX1+X2 of the sum of the two independent
random variables X1 and X2 is the convolution fX1 ∗ fX2 of their probability
densities.

Since the characteristic function ϕX of an absolutely continuous random
variable X is the Fourier transform of its probability density, we have

ϕX1+X2(t) = ϕX1 (t)ϕX2 (t).
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It is straightforward to verify that the characteristic function of a normal
(Gaussian) random variable with probability density function

x �→ 1
2πσ

exp
(
x−m)2

2σ2

)
,

where m is real and σ positive, is

t �→ exp
(
itm− 1

2 t
2σ2

)
.

Using this result, we find that the characteristic function of the sum of two
independent normal random variables is given by

exp
(
itm1 − 1

2 t
2σ2

1

)
exp

(
itm2 − 1

2 t
2σ2

2

)

= exp
(
it(m1 +m2)− 1

2 t
2(σ2

1 + σ2
2)
)
,

which proves that the sum of two independent normal random variables is
also a normal random variable. Probability distributions having this property
are said to be stable under addition.30

Paul Lévy31[184, 266,267] addressed the problem of determining the class
of all stable distributions. He found that the general form of the characteristic
function L̂α,β of a stable probability distribution is such that

log L̂α,β(t) =

⎧
⎪⎪⎨

⎪⎪⎩

imt− a|t|α
(

1− iβ
t

|t| tan
(π

2
α
))

, if α �= 1,

imt− a|t|
(

1− iβ
k

|t|
2
π

log |t|
)
, if α = 1,

(8.1)

where 0 < α ≤ 2,32 a > 0, m is real, and −1 ≤ β ≤ 1. The indices α and β
refer, respectively, to the peakedness and skewness of Lévy probability density
functions. If β = 0, the Lévy probability density function is symmetric about
x = m (see Fig. 8.6).

The particular case α = 2, a = 1/2 σ2, and β = 0 corresponds to the
normal distribution. Another simple example of a stable distribution is the

30 Using the characteristic function method, one can easily verify that binomial and
Poisson probability distributions are stable under addition.

31 Paul Pierre Lévy (1886–1971) was a French mathematician active in probability
theory, introducing many new ideas, such as martingales and Lévy flights. He
studied at the École Polytechnique where Jacques Salomon Hadamard (1865–
1963) was professor and who became his doctoral advisor (with Vito Volterra).
Lévy was appointed Professor of Analysis at the École Polytechnique in 1920.
He kept that appointment until his retirement in 1959. He received many hon-
ors, including membership at the French Academy of Sciences. More details at
http://www-history.mcs.st-andrews.ac.uk/Biographies/Levy Paul.html.

32 For α > 2, the Fourier transform of e−a|t|α may become negative for some values
of x and cannot be an acceptable probability density function.
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Fig. 8.6. Right figure: symmetric Lévy stable probability density functions for
α = 1.5 (lighter gray) and α = 2 (normal distribution). Left figure: tails of both
probability density functions

Cauchy distribution (also called the Lorentzian distribution). It corresponds
to α = 1 and m = β = 0, and its probability density is

L1,0(x) =
a

π(x2 + a2)
, (a > 0).

If m = β = 0, we have

Lα,0(x) =
1
2π

∫ ∞

−∞
exp(−itx− a|t|α) dt

=
1
π

∫ ∞

0

e−a|t|
α

cos txdt.

Except for α equal to either 1 or 2, there is no simple expression for Lα,0(x).
It is, however, possible to find its asymptotic expansions for large values of x.
For 0 < α < 2, one finds

Lα,0(x) ∼ aΓ (1 + α)
π|x|1+α sin 1

2πα,

where Γ is the Euler function.33 The case α = 2, which corresponds to the
normal distribution, is singular with its exponential tail.

For 0 < α ≤ 1, the mean value of a Lévy random variable is not defined,
while for 1 < α < 2, the mean value is defined but not the variance.

The probability that the sum Sn of n independent identically distributed
symmetric Lévy random variables lies in the interval ]sn, sn + dsn] is

(
1
π

∫ ∞

0

e−an|t|
α

cos tsn dt
)
dsn.

33 For Re z > 0, the Γ function is defined by

Γ (z) =

∫ ∞

0

tz−1e−t dt.
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Changing n1/αt in τ yields
(

1
π

∫ ∞

0

e−a|τ |
α

cos τ(snn−1/α) dτ
)
d(snn−1/α),

showing that the correct scaled sum is the random variable Un = Snn
−1/α.

Note that for α = 2, which corresponds to the Gaussian case, we obtain the
right scaling.

The central limit theorem may be restated saying that the Gaussian dis-
tribution with zero mean and unit variance is, in the space of probability
distributions, the attractor of scaled sums of large numbers of independent
identically distributed random variables with finite variance; or, equivalently,
scaled sums of large numbers of independent identically distributed random
variables with finite variance are in the basin of attraction of the Gaussian
distribution with zero mean and unit variance.

Is there an equivalent result for scaled sums of independent identically
distributed random variables with infinite variance? The answer is yes.

Consider the random variable

Sn =
n∑

j=1

Xj,

where the Xj (j = 1, 2, . . . , n) are independent identically distributed random
variables. Suppose that their common probability density function f behaves
for large x as

f(x) ∼
{
C−|x|−(1+α), as x→ −∞,
C+x

−(1+α), as x→∞,
where 0 < α < 2, and let

β =
C+ − C−
C+ + C−

.

Then, the probability density function of the scaled sum tends to a Lévy
probability density of index α and asymmetry parameter β.

The asymptotic power-law behavior of stable Lévy probability distribu-
tions makes them good candidates when modeling systems characterized by
Pareto’s tails with a Pareto exponent equal to α.

If, in a random walk, the jump length probability distribution is a sym-
metric Lévy distribution, the existence of a long tail implies unfrequent long
jumps connecting distant clusters of visited points. This feature is illustrated
in Fig. 8.7 on Cauchy random walks in one and two dimensions.34 Random
walks with a jump length probability distribution given by a Lévy stable dis-
tribution are called Lévy flights.
34 The probability density function of the Cauchy distribution considered here is

x �→ 1

π(1 + x2)
,

which is the Lévy distribution L1,0 for a = 1.
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Fig. 8.7. Cauchy random walks showing occasional long jumps. Top: one-
dimensional walk, number of steps: 250. Bottom: two-dimensional walk, dot indicates
initial point, number of steps: 100

8.2.5 Truncated Lévy Distributions

Finite-size effects prohibit the observation of infinitely long tails. If a mea-
sured probability distribution looks Lévy-like, since it cannot extend to in-
finity, there must exist some sort of cutoff. This remark led Mantegna and
Stanley [298] to define truncated Lévy probability densities by

T (x) =

{
CLα,0(x), if |x| ≤ �,

0, otherwise,

where C is a normalizing factor and � a cutoff length. An example of such a
distribution is represented in Fig. 8.8.

For a Lévy random variable X , the probability P (X > �) that X is greater
than � is a decreasing function of �. The truncation therefore eliminates the
possible but rare occurrence of certain events. For very large values of n, the
scaled sum of n independent identically distributed truncated Lévy random
variables should approach a Gaussian distribution as a consequence of the
central limit theorem. But it is clear that the larger � is, the slower the con-
vergence will be, since, for a large �, the truncation eliminates values ofX that,
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Fig. 8.8. A truncated symmetric Lévy probability density function for α = 1.5
equal to zero for |x| > 2

even for sums of nontruncated Lévy random variables, would have had a neg-
ligible probability of occurring. There should therefore exist a value n∗ of n
such that, for n < n∗, the scaled sum would approach a Lévy random vari-
able, while, for n > n∗, the scaled sum would approach a Gaussian random
variable. This crossover has indeed been observed by Mantegna and Stanley,
who found n∗ to be proportional to �α.

If, instead of the sharp cutoff of Mantegna and Stanley, one considers with
Koponen a smooth cutoff [252] – that is, a probability density of the form

TKoponen(x) =

{
A−e−λx|x|−1−α, if x < 0,
A+e−λxx−1−α, if x ≥ 0,

where 0 < α < 2 – the expression of its characteristic function can be exactly
calculated. This allowed Koponen to prove for sums of independent random
variables, whose common probability distribution is TKoponen(x), the existence
of the two regimes observed by Mantegna and Stanley.

8.2.6 Student’s t-Distribution

The t-distribution was introduced in statistics by William Sealy Gosset35,
writing under the pseudonym Student [420]. For x ∈ R, its probability density

35 William Sealey Gosset (1876–1937) studied mathematics and chemistry, and ob-
tained a First Class degree in both subjects. He worked as a statistician for the
Guinness Brewing Company in Dublin where he did important work on statistics.
In 1935, he left Ireland to take charge of the new Guinness Brewery in London. He
liked to discuss statistics problems in particular with Karl Pearson (1857–1936),
Sir Ronald Aylmer Fisher (1890–1962), and Jerzy Neyman (1894–1981). A more
detailed biography of Gosset can be found at http://www.gap-system.org/

history/Biographies/Gosset.html.
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function is given by

ft(x) =
Γ
(

1
2 (1 + μ)

)

(πμ)
1
2Γ
(

1
2 μ
)
(

1 +
x2

μ

)− 1
2 (1+μ)

.

In Fig. 8.9 are represented the graphs of two Student’s probability density
functions for μ = 1 and μ = 10. Since Γ (1

2 ) =
√
π, for μ = 1, ft(x) coincides

with the Cauchy distribution
(
π(1 + x2)

)−1.
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Fig. 8.9. Probability density function of the Student t-distribution for μ = 1 (black)
and μ = 10 (gray)

The Student’s probability distribution arises in a commonly used statis-
tical test of hypotheses concerning the mean of a small sample of observed
values drawn from a normally distributed population when the population
standard deviation is unknown (see Page 396).

It is simple to show that, as μ → ∞, the Student’s distribution tends to
the Gaussian distribution with zero mean and unit variance. We have

Γ
(

1
2 (1 + μ)

)

(πμ)
1
2Γ
(

1
2 μ
) =

1√
2π

(
1− 1

4μ
+

1
32μ2

− · · ·
)

and

log
(

1 +
x2

μ

)− 1
2 (1+μ)

= −1
2

(1 + μ) log
(

1 +
x2

μ

)

= −1
2

(1 + μ)
(
x2

μ
− x4

2μ2
+ · · ·

)

= −x
2

2
+
x4 − 2x2

4μ
+ · · · .
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Thus

ft(x) =
1√
2π

e−
1
2 x

2
(

1− 1
4μ

+ · · ·
)(

1 +
x4 − 2x2

4μ
+ · · ·

)
,

which proves that

lim
μ→∞ ft(x) =

1√
2π

e−
1
2 x

2
.

8.2.7 A Word About Statistics

If, for example, we are interested in the distribution of annual incomes of
people living in a specific country, we assume that the income is a random
variable X taking the observed values x1, x2, . . ., where each index refers to a
specific individual of the population. To estimate the parameters characteriz-
ing the probability distribution ofX , we have to select a set of observed values
{xi | i = 1, 2, . . . , n}, which is said to be a sample of size n.36 Assuming that
the sample is representative,37 numerical values computed from the sample
are called statistics. Here are some examples:

1. The Arithmetic mean

x =

n∑

i=1

xi

n
;

2. The Standard deviation38

s =

√√
√
√
√√

n∑

i=1

(xi − x)2

n− 1
;

36 In mathematical statistics, a random sample is a sequence of random variables
(X1, X2, . . . , Xn) with a common probability distribution. Such a random sample
can be viewed as the result of n successive drawings from an infinite popula-
tion, the population probability distribution remaining unchanged throughout
the drawings.

37 A representative sample of a population consists of elements selected with equal
probability (i.e., if the population has a total number N of elements, each element
has a probability 1/N of being selected.

38 Note that to estimate the variance from a sample of size n, we divide
∑n

i=1(xi−x)2

by n − 1 and not by n. This is usually justified in the following way. Since the
exact average value m1 is not known, we replace m1 by the arithmetic mean of
the sample. But this arithmetic mean is obviously closer to the various sample
values than the exact average value m1. Consequently, we divide

∑n
i=1(xi − x)2,

which is, therefore, a too small estimate, by a smaller value than n, that is,
n − 1. This correction is often referred to as the Bessel’s correction, named after
the German mathematician Friedrich Wilhelm Bessel (1784–1846). Note that if
{x1, x2, . . . , xn} is a sample of size n, the sequence of n values {x1 − x, x2 −
x, . . . , xn − x}, where x is the arithmetic mean contains only n − 1 independent
terms since the sum

∑n
i=1(xi − x) is equal to zero. See also Footnote 40.
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3. The skewness

a3 =

n∑

i=1

(xi − x)3

ns3
;

4. The kurtosis excess

a4 =

n∑

i=1

(xi − x)4

ns4
− 3.

Remark 32. To estimate the skewness of a distribution, statisticians have other
coefficients at their disposal such as,

3(x − x̃)

s
,

where x̃ is the estimate of the median. For instance, in the case of the distribution
of incomes, the median, which is not influenced by the extreme values, is a more
informative quantity than the arithmetic mean. Smaller than the mean, it reveals
the positive skewness of the distribution.

The right-hand side of the relation that defines x is said to be the estimate
of x. It should be distinguished from the estimator X defined by

X =
1
n

n∑

i=1

Xi,

where Xi are independent random variables distributed as X . In this specific
case, since

〈X〉 = m1,

X is said to be an unbiased estimator for the mean.39

Similarly,

S2 =
1

n− 1

n∑

i=1

(Xi −X)2

is an unbiased estimator for the variance.40

39 As a consequence of the law of large numbers, the estimator X converges to the
mean m1 as n → ∞. There exist actually two forms of the law of large numbers.
The weak law states that

lim
n→∞

P (X − m1) = 0,

while the strong law states that the event
{

ω ∈ Ω | lim
n→∞

X(ω) = m1(ω)
}

has a probability 1. X is said to converge to m1 in probability in the first case
and almost surely in the second case.

40 For the estimator of the standard deviation, the denominator has to be equal to
n − 1 and not n. For a proof, see Boccara [68], p. 95.
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Remark 33. The estimator X converges to 〈X〉 in the limit of an infinite sample size
(refer to Footnote 39). In practice, the sample size is finite, and, as a consequence,
we can only expect to obtain an approximate value of 〈X〉. But, according to the
central limit theorem,

lim
n→∞

(
|X − m1| <

σ√
n

)
=

√
2

π

∫ 1

0

exp
(
− 1

2
x2
)

dx.

Hence, if we want |X − m1| < ε, the sample size n should be of the order of ε−2.

Given a sample (x1, x2, . . . , xn) of size n, Student’s test allows acceptance
or rejection of a hypothesis concerning its mean x. Let (Xi) be a sequence
of n independent identically distributed Gaussian random variables N(m,σ).
The random variable

T =
(X −m)

√
n

S
,

where S is the unbiased estimator of the variance, has a Student’s probability
distribution; i.e.,

P (|T | ≤ t∗) =
∫ t∗

−t∗

Γ
(

1
2 n
)

(π(n− 1))
1
2Γ

(
1
2 (n− 1)

)
(

1 +
x2

n− 1

)− 1
2 n

dx.

Thus, if we have a small sample (x1, x2, . . . , xn) of size n, Student’s test tells
us that the mean m belongs to the interval [x− st∗n−1/2, x+ st∗n−1/2] with
a probability given by the expression above if

∣∣
∣
∣
(x−m)

√
n

s

∣∣
∣
∣ ≤ t∗.

For example, if dn is a sample of size n from a Gaussian distribution with
zero mean and unit variance, the table below shows the mean xn and the
standard deviation sn of the sample, the value of tn = xn

√
n/sn, and the 90%

confidence interval for n equal to 10 and 100.

n xn sn tn t∗ Confidence interval
10 0.0617 0.847 0.231 1.8331 [−0.429, 0.552]
100 0.129 0.988 1.304 1.6604 [−0.0352, 0.293]

In both cases, the nonzero value of xn is not significant, or, more precisely,
the hypothesis of a zero mean value is accepted with 90% confidence. Simi-
larly, the Student’s distribution could also be used to test the hypothesis that
two independent random samples have the same mean. Since the Student’s
distribution tends to the normal distribution when μ tends to infinity (see
Page 393), as the sample size increases, instead of the Student’s distribution,
the normal distribution is usually applied. For instance, for n = 100, using
the normal distribution, the t∗ value differs by less than 1%.

A sample (x1, x2, . . . , xn) of size n is supposed to represent successive draw-
ings from the probability distribution of a certain random variable X . All the
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statistics computed from this sample give a more or less accurate description of
the probability distribution of X . It is clear that, compared to the information
contained in the sample of size n, the values of a few statistics contain much
less information. Due to the finite bin size, even the histogram corresponds to
a loss of information. Not to lose information, it is much better to use all the
sample points to represent the approximate cumulative distribution function
FX of the random variable X . To do it, we first have to order by increas-
ing values the sequence (x1, x2, . . . , xn). If (xj1 , xj2 , . . . , xjn) is the ordered
sequence, the sequence of n points of coordinates (ξk, ηk) (k = 1, 2, . . . , n),
where ξk = xjk and ηk = jk/n, are approximately located on the graph
of FX .

Figure 8.10 represents the approximate cumulative distribution function
determined from a random sequence of size 2,000 drawn from a normal dis-
tribution with zero mean and unit variance.
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Fig. 8.10. Approximate cumulative distribution function determined from a random
sequence of size 2,000 drawn from a normal distribution with zero mean and unit
variance

8.3 Empirical Results and Tentative Models

To determine a reliable value for the exponent characterizing the asymptotic
power-law behavior of the probability distribution of a certain quantity, it is
indispensable to carry out statistical analyses on very large samples. For the
time being, this is far from being the case for most examples presented below.

8.3.1 Financial Markets

Financial markets are systems of many interacting agents that can be divided
into two broad categories: traders and assets. Banks, brokerage firms, mu-
tual funds, and individual investors are traders; stocks, bonds, futures, and
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options are assets. The interactions between these agents generate different
observables, such as transaction prices and traded volumes. In mathematical
finance, the concept of a financial market is defined in terms of a continuous-
time Brownian motion stochastic process. This type of model is based on the
work of the two Nobel laureates in economic science, respectively, in 1997 and
1970, Robert C. Merton and Paul Samuelson.

The statistical analysis of financial data has a long history, starting with
the publication of Louis Bachelier’s thesis in 1900 [26]. If S(t) is the price
of a stock at time t, Bachelier’s model assumes that the successive differ-
ences S(t + T ) − S(t) are independent normally distributed random vari-
ables with zero mean and variance proportional to the time interval T .41 The
abundant data accumulated since Bachelier’s pioneering contribution showed,
however, a clear departure from normality. This fact led Mandelbrot to sug-
gest a “radically new approach” called the stable Paretian hypothesis [291].42

Mandelbrot’s basic assumption is that logS(t+T )− logS(t) are independent
identically distributed Lévy random variables (see Sect. 8.2.4).

Nowadays, an important number of papers presenting empirical results
and theoretical interpretations are regularly submitted for publication.43 Phy-
sicists, in particular, have been increasingly interested in the analysis and
modeling of financial markets, giving birth to econophysics [299].

An example of a studied quantity is the return G(t) defined by

GΔt(t) = logS(t+Δt)− logS(t),

where S(t) may represent the market capitalization of a specific company or
a market index at time t, and Δt is the sampling time interval. If Δt is small,
GΔt(t) is approximately equal to the relative price change:

GΔt(t) ≈ S(t+Δt)− S(t)
S(t)

.

To compare returns of different companies, it is preferable to study the nor-
malized return, defined as

gΔt(t) =
GΔt(t)− 〈GΔt〉T√〈G2

Δt〉T − 〈GΔt〉2T
,

where 〈X〉T represents the time average of X over an interval of time T . The
standard deviation

√〈G2
Δt〉T − 〈GΔt〉2T is the volatility.44

41 S = {S(t) | t ≥ 0} is a Wiener process (see Grimmett and Stirzaker [199],
Chap. 13). If S(t + T ) − S(t) is N(0, σ2T ), for all positive t and T , Bachelier,
five years before Einstein, was the first to show that such a process satisfies the
diffusion equation.

42 See also Fama [151].
43 Refer to the Web site http://www.unifr.ch/econophysics.
44 There is no unique definition of the volatility. For example, it could also be defined

as an average over a time window T = nΔt, i.e.,
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The statistical analysis of the normalized returns of the 1,000 largest US
companies, with Δt = 5 min over the 2-year period 1994–1995, and where
the time t runs over the working hours of the stock exchange; i.e., removing
nights, weekends, and holidays shows that the probability P (|g| > x) has, for
both positive and negative tails, a power-law behavior [188,369]. That is,

P (|g| > x) ∼ 1
xα
,

where, in the region 2 ≤ |g| ≤ 80,

α =

{
3.10± 0.03, for positive g,
2.84± 0.12, for negative g.

The S&P 500 index, defined as the sum of the market capitalizations of
500 companies representative of the US economy, has also been analyzed [189].
The probability P (|g| > x) of the normalized return also exhibits power-law
tails characterized by the exponents

α =

{
2.95± 0.07, for positive g,
2.75± 0.13, for negative g,

for Δt = 1 min, over the 13-year period 1984–1996, and in the region 3 ≤ |g| ≤
50. This result is surprising since the returns of the S&P 500 are weighted sums
of the returns of 500 companies, and, as a consequence of the central limit
theorem, one would expect to find that these returns are normally distributed
unless there exist significant dependencies between the returns of the different
companies.

Investigating the power-law behavior for sampling time interval Δt, it
appears that the exponent α ≈ 3 for Δt varying from a few minutes up to
several days. For larger values of Δt, there is a slow convergence to a Gaussian
behavior.

There exist many other stock market indices. A study, by the same au-
thors, of the NIKKEI index of the Tokyo stock exchange (for the 14-year pe-
riod 1984–1997) and the Hang Seng index of the Hong Kong stock exchange
(for the 18-year period 1980–1997) shows that, in both cases, the probability
P (|g| > x) has similar power-law tails with exponents close to 3, suggesting
the existence of a universal behavior for these distributions.

In the recent past, most papers on price dynamics have essentially tried to
answer the question: How can one approximately determine with good accu-
racy the probability distribution function of the logarithm of price differences

1

n

τ+n−1∑

t=τ

|GΔt(t)|,

where n is an integer.
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from market data?45 Although, for small Δt, it is clear that this distribu-
tion is not Gaussian, it is less clear to decide whether it is a truncated Lévy
distribution with an exponential cutoff or a Student’s t-distribution, which,
incidentally, are not very easy to distinguish. More recently, the search for
plausible mechanisms to explain the observed phenomena and build up mod-
els that are not just curve-fitting has been suggested by some authors.46 To
conclude this section, we briefly present an example of a time series model
widely used in finance.47

One important feature of financial time series is the phenomenon of con-
ditional heteroskedasticity;48 i.e., the time-dependence of the variance of the
price increments. For instance, traders may react to certain news by buying
or selling many stocks, and a few days later, when the news is valued more
properly, a return to the behavior preceding the arrival of the news may be
observed. This could induce a large increase or decrease of the returns fol-
lowed by the opposite change in the following days; and it may be reasonable
to assume that these two abrupt changes are correlated.

Let W = {Wt | t ∈ N0} be a stochastic process, where the Wt are in-
dependent identically distributed random variables with zero mean and unit
variance, and consider the process X = {Xt | t ∈ N0} defined by

Xt = σtWt, with σ2
t = a0 + a1X

2
t−1 (a0 > 0, 0 < a1 < 1 σ0 = 1). (8.2)

Processes such as X are called ARCH processes.49 ARCH processes are
specified by the probability density fW of the random variables Wt and the
parameters a0 and a1.50

Since 〈Wt〉 = 0, the unconditional mean value of Xt is equal to zero, and
its unconditional variance 〈X2

t 〉 is given by

〈X2
t 〉 = a0 + a1〈X2

t−1〉,
which shows the autocorrelation of the squared time series. Solving the equa-
tion above for 〈X2

t−1〉 = 〈X2
t 〉 yields

〈X2
t 〉 =

a0

1− a1
.

45 Mantegna and Stanley [299], Chap. 8.
46 See Bouchaud and Potters [84], Chap. 2; Lux and Marchesi [285]; Huang and

Solomon [226]; and Bouchaud [85].
47 On time series models, see Franses [164].
48 On conditional heteroskedasticity, see [334].
49 The acronym ARCH stands for autoregressive conditional heteroskedasticity.

Such time series models were initially proposed by Robert Engle [146, 147].
For an introduction to ARCH and GARCH models refer to the Web page
http://www.econ.uiuc.edu/ econ472/ARCH.pdf. The GARCH model (that is,
Generalized Autoregressive Conditional Heteroskedasticity has been introduced
in 1986 by Tim Bollerslev [80].

50 This is actually an ARCH model of order 1. In an ARCH model of order τ , σ2
t is

given by a0 + a1X
2
t−1 + a2X

2
t−2 + · · · + aτX2

t−τ .
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Relations (8.2) show that large (resp. small) absolute values ofXt are expected
to be followed by large (resp. small) absolute values even while 〈Xt−τXt〉 = 0;
i.e., the time series is uncorrelated. The ARCH model can therefore describe
time series with sequences of data points looking like outliers, and as a conse-
quence of the relation σ2

t = a0 + a1X
2
t−1, these outliers will appear in clusters

(see Exercise 8.7).
Clusters of outliers lead to nonzero kurtosis excess. From (8.2), we have

〈X4
t 〉 = 3〈(a2

0 + 2a0a1X
2
t + a2

1X
4
t−1)〉

= 3a2
0 + 6a0a1

a0

1− a1
+ 3a2

1〈X4
t−1〉.

Solving for 〈X4
t−1〉 = 〈X4

t 〉 yields

〈X4
t 〉 =

3a2
0(1 + a1)

(1− a1)(1 − 3a2
1)
,

which shows that the unconditional kurtosis excess is thus given by

〈X4
t 〉

〈X4
t 〉2

− 3 =
6a2

1

1− 3a2
1

if 0 < a1 < 3−
1
2 . Since 〈W 3

t 〉 = 0, the skewness of Xt is zero.
An interesting property of ARCH processes is that they can dynamically

generate power-law tails [370,371] (see Exercises 8.9 and 8.10). For instance,
the probability distribution of the first differences of the S&P 500 index over
the 12-year period 01/84–12/95, for Δt = 1 min, is well-fit by the probability
distribution of an ARCH process with fW given by a truncated Lévy prob-
ability density determined by the parameters α = 1.4, a = 0.275, and � = 8
(see pages 388 and 391 for parameter definitions) and the parameters of the
ARCH process a1 = 0.4 and a0 chosen to fit the empirical standard devia-
tion σ = 0.07. The probability density fX appears to exhibit two power-law
regimes: a first one characterized by the exponent α1 = 1.4 of the Lévy distri-
bution up to the cutoff length � followed by a second one with a dynamically
generated exponent α2 = 3.4 for x > �.

8.3.2 Demographic and Area Distribution

The demographic distribution of humans on Earth is extremely heterogeneous.
Highly concentrated areas (cities) alternate with large extensions of much
lower population densities. If s is the population size of a city (number of
inhabitants) and r(s) its rank, where the largest city has rank 1, Zipf [459]
found empirically that

r(s) ∼ 1
s
,
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which, for the frequency as a function of population size, implies

f(s) ∼ 1
s2
.

This result appears to be universal. Statistical studies of 2,700 cities of the
world having more than 105 inhabitants, 2,400 cities of the United States
having more than 104 inhabitants, and 1,300 municipalities of Switzerland
having more than 103 inhabitants give exponents very close to 2. More pre-
cisely: 2.03 ± 0.05 for the world (in the range s < 107), 2.1 ± 0.1 for the
United States, and 2.0 ± 0.1 for Switzerland [453]. Moreover, around huge
urban centers, the distribution of the areas covered by satellite cities, towns,
and villages obeys the same universal law.

Zanette and Manrubia proposed a simple model to account for the ex-
ponent −2 characterizing the power-law behavior of the frequency f as a
function of population size s [453]. Consider an L × L square lattice and de-
note by s(i, j; t) ≥ 0 the population size at site (i, j) ∈ Z

2
L at time t. This

system evolves in discrete time-steps according to the following two subrules.

1. The one-input rule:

s
(
i, j; t+ 1

2

)
=

⎧
⎪⎨

⎪⎩

1− q
p

s(i, j; t), with probability p,

q

1− p s(i, j; t), with probability 1− p,

where 0 < p < 1 and 0 ≤ q ≤ 1.
2. A diffusion process in which a fraction a of the population at site (i, j) at

time t+1/2 is equally divided at time t+1 between its nearest-neighboring
sites.

Note that for such an evolution rule the total population is conserved in the
limit L→∞.

Zanette and Manrubia claim that numerical simulations on a 200 × 200
square lattice starting from an initial homogeneous population size distri-
bution (s(i, j; 0) = 1 for all (i, j) ∈ Z

2
200), and for different values of the

parameters p, q and a, show that, after a transient of 103 time steps, the time
average of the size frequency has a well-defined power-law dependence char-
acterized by an exponent α = −2.01± 0.01. This result has been questioned
by Marsili et al. [301], who found that, for the same parameter values, the
total population tends to zero as a function of time. In their reply, Zanette
and Manrubia [454] argued that extinction is a finite-size effect and that
simulations in large systems clearly show a transient in which a power-law
distribution builds up before finite-size effects play their role.

8.3.3 Family Names

A statistical study of the distribution of family names in Japan shows that, if s
denotes the size of a group of individuals bearing the same name, the number
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n(s) of groups of size s has a decreasing power-law behavior characterized by
an exponent equal to 1.75± 0.05 in five different Japanese communities [320].
The data were obtained from 1998 telephone directories. Similar results have
been obtained from (a) a sample of the United States 1990 census and (b) all
the family names of the Berlin phone book beginning with A. In both these
cases, however, the exponent is close to 2 [455]. It has been argued that the
discrepancy between these two results could be attributed to transient effects:
most Japanese family names having been created in the rather recent past
(about 120 years ago) [455]. To obtain reliable results, statistical analyses of
family name frequency should be carried out on very large population sizes.
This is not the case for the two studies above.

8.3.4 Distribution of Votes

On October 4, 1998, Brazil held general elections with compulsory vote. The
state of São Paulo, with 23,321,034 voters and 1,260 local candidates, is the
largest electoral group. It has been found [118] that the number of candidates
N(v) receiving a fraction v of the votes behaves as v−α with α = 1.03± 0.03
over almost two orders of magnitude. The authors claimed that this power-law
behavior is also observed for the other Brazilian states having a large enough
number of voters and candidates. A similar result (α = 1.00±0.02) holds also
for all the candidates for state deputy in the country.51

A similar analysis was carried out for the 2002 elections [119]. In spite
of a new rule concerning alliances between parties approved by the National
Congress, the same power law was observed for the number of candidates
N(v) receiving a fraction v of the votes. It should be noted that, while a
scale-free behavior is found for elections to the National Congress and State
Houses, there is no evidence of such a behavior for the municipal elections
held in 2000. According to the authors, this discrepancy may be due to the
fact that, in municipal elections, candidates are much closer to voters, whereas
candidates to the National Congress or State Houses are usually only known
through the media.

According to the authors, a possible explanation of the power-law behavior
is to assume that the success of a candidate is the result of a multiplicative
process in which each factor “should be related to attributes and/or abili-
ties of the candidate to persuade voters.” Assuming that the corresponding
random variables are independent and in large number, the central limit the-
orem implies that the distribution of votes should be lognormal, which can
be mistaken for a power-law distribution over a few orders of magnitudes (see
Page 387).52

51 Detailed information on Brazilian elections can be found on the Web site of the
Tribunal Superior Eleitoral: http://www.tse.gov.br. For the 1998 elections, go to
http://www.tse.gov.br/eleitorado/eleitorado98/index.html.

52 Playing with the two parameters of the lognormal distribution, it is not difficult
to adjust the value of the exponent of the apparent power-law behavior.
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8.4 Self-Organized Criticality

In the late 1980s, Bak et al. [30, 31, 33] reported “the discovery of a general
organizing principle governing a class of dissipative coupled systems.” These
systems evolve naturally toward a critical state, with no intrinsic time or
length scale, in which a minor event starts a chain reaction that can affect
any number of elements in the system. This self-organized criticality therefore
would be an explanation of the occurrence of power-law behaviors. In a recent
book [35], Bak even argues that self-organized criticality “is so far the only
known general mechanism to generate complexity.”

8.4.1 The Sandpile Model

Consider a finite L×L square lattice. The state of a cell is a nonnegative integer
representing the number of sand grains stacked on top of one another in that
cell. In the initial state, each cell contains a random number of sand grains
equal to 0, 1, 2, or 3. Then, to cells sequentially chosen at random, we add one
sand grain. When the number of sand grains in one cell becomes equal to 4,
we stop adding sand grains, removing the four grains, and equally distributing
them among the four nearest-neighboring cells. That is, the number of sand
grains in the cell that reached the threshold value 4 at time t becomes equal to
0 at time t+1, and the number of sand grains in the four nearest-neighboring
cells increases by one unit. This process is repeated as long as the number of
sand grains in a cell reaches the threshold value.53 When the number of sand
grains in a boundary cell reaches the value 4, the same process applies but
the grains “falling off” the lattice are discarded.

A sequence of toppling events occurs when nearest-neighboring cells of a
cell reaching the threshold value contain three sand grains. Such a sequence
is called an avalanche. An avalanche is characterized by its size (that is, the
number of consecutive toppling events) and its duration, equal to the number
of update steps. An avalanche of size 6 and duration 4 is shown in Fig. 8.11.

The sandpile model illustrates the basic idea of self-organized criticality.
For a large system, adding sand grains leads at the beginning to small
avalanches. But as time increases, the system reaches a stationary state where
the amount of added sand is balanced by the sand leaving the system along
the boundaries. In this stationary state, there are avalanches of all sizes up
to the size of the entire system. Numerical simulations show that the number
N(s) of avalanches of size s behaves as s−τ , where, in two-dimensional sys-
tems, the exponent τ is close to 1. The sandpile model is interesting in that
it is attracted to its critical state, at which point the correlation length of the
system and the correlation time of the system go to infinity, without any fine
tuning of a system parameter.
53 A similar transition rule defined on a one-dimensional lattice was first studied

by J. Spencer [417]; for exact results on one-dimensional sandpile models, see
E. Goles [186].
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Fig. 8.11. An example of an avalanche of size 6 and duration 4. Cells occupied by
n sand grains, where n is equal to 0, 1, 2, 3, and 4 are, respectively, white, light
gray, medium gray, dark gray, and black. The system evolves from left to right and
top to bottom

Careful experiments carried out on piles of rice [166] have shown that
self-organized criticality

is not as ‘universal’ and insensitive to the details of a system as was
initially supposed, but that instead its occurrence depends on the
detailed mechanism of energy dissipation.

Power-law behaviors were only observed for rice grains of elongated shape.
The authors of this experimental study were then led to reanalyze previous
experiments on granular systems. They found that the flow over the rim of the
pile had a stretched-exponential distribution that is definitely incompatible
with self-organized criticality.

A distinctive observable consequence of self-organized critical dynamics,
as illustrated by the sandpile model, is that the distribution of fluctuations
or avalanche size has a power-law behavior. But, as we shall discover, the
converse is not necessarily true.

8.4.2 Drossel–Schwabl Forest Fire Model

An important number of numerical studies have been dedicated to the analysis
of this model. Originally, a forest fire model that should exhibit self-organized
criticality had been proposed by Bak et al. [32]. Their model is a three-state
cellular automaton. State 0 represents an empty site, state 1 a green tree, and
state 2 a burning tree. At each time-step, a green tree has a probability p of
growing at an empty site, a green tree becomes a burning tree if there is, at
least, one burning tree in its von Neumann neighborhood, and sites occupied
by burning trees become empty. As stressed by Grassberger and Kantz [195],
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for finite p,“the model is in the universality class of the epidemic model with
recovery which is isomorphic to directed percolation.” Numerical simulations
on rather small lattices led Bak, Chen, and Tang to conjecture that the system
exhibits self-organized criticality in the limit p→ 0, i.e., when the time for a
tree to burn is much smaller than the average time to wait for a green tree to
grow at an empty site.

Simulations on much larger lattices and for much smaller values of p per-
formed by Grassberger and Kantz [195] and Moßner et al. [326] provided
evidence that the system does not exhibit self-organized criticality. In two
dimensions, starting from a random distribution of trees (green and burning),
for small values of p, after a number of iterations of the order of 1/p, the fire
propagates along rather regular fronts, as illustrated in Fig. 8.12.

Fig. 8.12. Forest fire model of Bak, Chen, and Tang. Lattice size: 200; initial green
tree density: 0.3; initial burning tree density: 0.01; tree growth rate p = 0.05; number
of iterations: 40. Color code: burning trees are black, green trees are gray, and empty
sites are light gray

Following Drossel and Schwabl [138], for the model to become critical, a
mechanism allowing small forest clusters to burn has to be included. This can
be done introducing the following extra subrule: A green tree with no burning
tree in its von Neumann neighborhood has a probability f ! p of being struck
by lightning and becoming a burning tree. This model involves three time
scales: the fire propagation rate from burning trees to green neighbors, the
growth rate of green trees, and the lightning rate (1" p" f). As emphasized
by Grassberger [197]:

The growth of trees does not lead to a state which is inherently un-
stable (as does the addition of sand grains to the top of the pile does),
but only to a state susceptible to being burnt. Without lightning, the
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tree density in any patch of forest can go far beyond criticality. When
the lighting strikes finally, the surviving trees have a density far above
critical.

Actually, Grassberger showed [196] that the “forest” consists of large patches
of roughly uniform density, most of which are either far below or far above
the critical density for spreading. Since these patches occur with all sizes, fires
also have a broad distribution of sizes. Grassberger confirmed the criticality of
the Drossel–Schwabl model, but he found critical exponents in disagreement
with those obtained by Drossel and Schwabl:

1. If s is the number of trees burnt in one fire, in the limit p/f → ∞, the
fire size distribution behaves as s1−τ with τ = 2.15± 0.02.

2. For a finite value of p/f , the power-law behavior above is cutoff at smax ∼
(p/f)λ with λ = 1.08± 0.02.

3. The average cluster radius 〈R2〉1/2 scales as (p/f)ν with ν = 0.584±0.01.

In their paper, Drossel and Schwabl [138], using mean-field arguments, found
τ = 2, λ = 1, and ν = 0.5. Their numerical simulations apparently confirmed
these results, but they were carried out for rather small values of p/f .

This, however, is not the end of the story. Following recent studies [360,400,
401], that introduced corrections to the scaling laws above, Grassberger [197]
presented numerical simulations on very large systems (65,536× 65,536) with
helical boundary conditions, large p/f values (256,000), long transients (ap-
proximately 107 lightnings), and a very large number of fires (between 9.3×106

for p/f = 256,000, and 109 for p/f ≤ 250). While confirming previous results
obtained for much smaller lattice sizes and p/f values, the essential conclusion
of this study is that, without ambiguity, previous results do not describe the
true critical behavior of the Drossel–Schwabl forest fire model. Still worse, ac-
cording to Grassberger, his own simulations do not reach the true asymptotic
regime. Most probably, all proposed scaling laws are just transient and there
seems to be no indication of any power laws. These results are to be taken as
a warning, especially when dealing with real systems [197]:

The situation becomes even worse when going to real life phenom-
ena. It does not seem unlikely that many of the observed scaling laws
are just artifacts or transients. Problems of spurious scaling in models
which can be simulated with very high precision such as the present
one should be warnings that not every power law supposedly seen in
nature is a real power law.

8.4.3 Punctuated Equilibria and Darwinian Evolution

In the foreword to the Canto edition of John Maynard Smith’s book on the
theory of evolution [309], Richard Dawkins tells us that:

Natural selection is the only workable explanation for the beauti-
ful and compelling illusion of ‘design’ that pervades every living body
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and every organ. Knowledge of evolution may not be strictly useful
in everyday commerce. You can live some sort of life and die without
ever hearing the name of Darwin. But if, before you die, you want to
understand why you lived in the first place, Darwinism is the one sub-
ject that you must study. This book is the best general introduction
to the subject now available.

And, in the introduction of this highly recommended book, John Maynard
Smith so presents Eldredge and Gould’s theory of punctuated equilibria [144,
418]:

A claim of which perhaps too much has been made concerns ‘punc-
tuated equilibria’. Gould and Eldredge suggested that evolution has
not proceeded at a uniform rate, but that most species, most of the
time, change very little, and that this condition of ‘stasis’ is occasion-
ally interrupted by a rapid burst of evolution. I do not doubt that this
picture is sometimes, perhaps often, true. My difficulty is that I cannot
see that it makes a profound difference to our view of evolution.

Punctuated equilibrium behavior, with its intermittent bursts interrupting
long periods of stasis, is very similar to self-organized critical behavior.

Bak and Sneppen [34] proposed a model of biological evolution of in-
teracting species that exhibits co-evolutionary avalanches. Consider a one-
dimensional lattice of size L, with periodic boundary conditions. Each lattice
site represents a species, and its state is a random number between 0 and 1
that measures the evolutionary barrier of the species. At each time-step, the
system – called an ecology – is updated by locating the species with the lowest
barrier and mutating it by assigning a new random barrier to that species.
At the same time, the left and right neighbors are also assigned new random
barriers.

Figure 8.13 shows that some species do not change at all while others
change many times.

Flyvberg et al. [162] gave a mean-field theory of a slightly different model
in which, instead of modifying three random barriers – the barrier of the
species with the lowest barrier and the barriers of its two nearest neighbors –
in the new model, the random barriers of K species are modified: the barrier
of the species with the lowest barrier and the barriers of K − 1 other species
chosen at random. In the limit N → ∞, the authors found that avalanches
come in all sizes, and the larger ones are distributed according to a power law
with an exponent equal to −3/2.

Actually, this model has been solved exactly [78], and the mean-field
exponent was found to be exact.

Analyzing the distribution of distances between successive mutations,
Bak and Sneppen found a power-law behavior indicating that the ecology
has organized into a self-critical state.
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Fig. 8.13. Number of mutations of each species. The number of species is 200. The
system has been updated 20,000 times, and the first 10,000 iterations have been
discarded

8.4.4 Real-Life Phenomena

Here are presented some observed phenomena that may provide illustration
of the idea of self-organized criticality.

Example 69. Mass extinctions. Most species that ever lived on Earth are ex-
tinct. Recently, several well-documented mass extinctions have been analyzed,
and the interpretation of the available data has generated many controversies.

Analyzing the extinction record of the past 250 ma (millions of years),
Raup and Sepkoski [380] discovered, using a variety of tests, a periodicity of
26 ma. Discarding the existence of purely biological or earthbound cycles, the
authors favor extraterrestrial causes, such as meteorite impacts due to the
passage of the solar system through the spiral arms of the Milky Way, as a
possible explanation of periodic mass extinctions.

More recently, the existence of power-law functional forms in the distri-
bution of the sizes of extinction events has been put forward in favor of a
self-organized criticality mechanism [410, 412, 413]. In particular, it has been
reported [413] that many time series are statistically self-similar with 1/f
power spectra. These findings, according to the authors, support the idea
that a nonlinear response of the biosphere to perturbations provides the main
mechanism for the distribution of events.

These results have been criticized by Kirchner and Weil [245], who claimed
that the apparent self-similarity and 1/f scaling are artefacts of interpolation
methods – the analyzed time series containing actually much more interpo-
lated (86%) than real data.
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However, in a detailed paper on mass extinction, Newman [337] reviewed
the various models based on self-organized criticality and analyzed the avail-
able empirical evidence. Using a simple model, he previously used in collabo-
ration with Sneppen [336,411] to study earthquake dynamics, he showed that
self-organized criticality is not the only mechanism leading to power laws.

Newman’s model assumes that the ultimate cause for the extinction of
any species is environmental stress of any kind such as climate change or
meteorite impact. His model may be described as follows. Consider a system
of N species, and assign to species i a random number xi from a probability
distribution with a given density fth(x), which, for example, may be uniform
on the interval [0, 1]. The number xi, called the threshold level of species i,
represents the amount of stress above which it becomes extinct. Then, at each
time-step, the system evolves according to two subrules:

1. Select a random number η, called the stress level, from a probability dis-
tribution with a given density fst(η). Assuming that small stresses are
more common than large ones, the probability density is chosen to fall off
away from zero. All species whose threshold level is less than η become
extinct. Extinct species are replaced by an equal number of new species to
which are assigned threshold levels distributed according to fth(x). The
number of extinct species s is the size of the avalanche taking place at
this time-step.

2. A small fraction f of all species, chosen at random, are assigned new
random threshold levels.

Although this system never becomes critical in the sense of possessing long-
range spatial correlations, it does organize into a stationary state characterized
by avalanches with a power-law size distribution. If fst(x) is a Gaussian dis-
tribution with zero mean and standard deviation σ = 0.1, it is found that the
distribution of the size of extinction events has a power-law behavior, over
many orders of magnitude, with an exponent equal to 2.02± 0.02. Moreover,
for a variety of stress probability distributions – e.g., Cauchy or exponential
– the exponent varies slightly but remains close to 2, in agreement with fossil
data.

In self-organized critical models, the system is slowly driven toward some
instability and the relaxation mechanism is local. In Newman’s model, on the
contrary, the system is not slowly driven to produce intermittent bursts and
there are no (local) interactions between the species.

Example 70. Earthquakes. Earthquakes are the result of seismic waves pro-
duced when some sort of stored energy is suddenly released. Earthquakes are
classified in magnitude according to the Richter scale [384]. Essentially, the
magnitude number is the logarithm of the maximum seismic wave amplitude
measured at a certain distance from the epicenter.54 Earthquakes having a
54 The epicenter is the point on the surface of Earth that is directly above the source

of the earthquake, called the focus.
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magnitude equal to 8 or more are extremely devastating. For example, the
San Francisco earthquake of April 18, 1906, had a magnitude of 8.25, and
was felt along the west coast from Los Angeles in the south to Coos Bay in
southwestern Oregon in the north.

In the late 1960s, the plate tectonics model was developed to explain seis-
mic patterns. According to this theory, the lithosphere (i.e., the Earth’s upper
shell) consists of nearly a dozen large slabs called plates. These plates move
relative to each other and interact at their boundaries, where most faults lie.
The majority of earthquakes are the result of movements along faults. The San
Andreas fault, which extends northwest from Southern California for about
1,000km, results from the abutment of two major plates. The San Francisco
earthquakes of 1906 and 1989 were both caused by movement along this fault.

The frequency of shallow earthquakes as a function of their magnitude
obeys the Gutenberg–Richter law [204], which states that the logarithm of
the frequency of shocks decreases linearly with magnitude. That is,

log10N(M > m) = a− bm,
where the left-hand side is the base 10 logarithm of the number of earthquakes
whose magnitude M is larger than m. Data collected [36] from the Web site
of the Southern California Earthquake Data Center 55 show that for a total
number of 335,076 earthquakes recorded during the period 1984–2000, the
exponent b is equal to 0.95 for magnitudes larger than 2.

Most of the various models that have been proposed to account for the
Gutenberg–Richter law are based on the idea of self-organized criticality. One
popular model has been suggested by Olami et al. [353].56 Consider a two-
dimensional square array of blocks in which each block is connected to its four
nearest neighbors by springs of elastic constant K. Additionally, each block
is connected to a single rigid driving plate by another set of springs of elastic
constant KL as well as connected frictionally to a fixed rigid plate. The blocks
are driven by the relative movement of the two rigid plates. When the force
on one of the blocks is larger than some threshold value Fth, the block slips to
a zero-force position. The slip of one block redefines the forces on its nearest
neighbors, and this may result in further slips, starting an avalanche of slips.

If Δi,j is the displacement of block (i, j) from its zero-force position, the
total force exerted by the springs on block (i, j) is

Fi,j = K (4Δi,j −Δi−1,j −Δi+1,j −Δi,j−1 −Δi,j+1) +KLΔi,j .

If v is the velocity of the moving plate relative to the fixed plate, the total force
on a given block increases at a rate proportional to KLv until the force on one
block reaches its threshold value and triggers an earthquake. This mechanism
55 http://www.scecdc.scec.org/.
56 A purely deterministic one-dimensional version of this model had been studied

by Carlson and Langer [96]. Both models are variants of the Burridge–Knopoff
model [92].
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is referred to as a stick-slip frictional instability.57 The redistribution of forces
after a local slip of block (i, j) is such that

Fi,j → 0, Fi±1,j → Fi±1,j +
K

4K +KL
Fi,j , Fi,j±1 → Fi,j±1 +

K

4K +KL
Fi,j

The parameter α = K/(4K +KL) varies between 0 and 0.25.
The system evolves in time according to the following rules.

1. Consider an L×L array of blocks satisfying a zero-force condition on the
boundary.

2. Initialize forces on blocks to a random value between 0 and Fth.
3. If, for a pair (i, j), Fi,j > Fth, then redistribute the force Fi,j on the

neighboring blocks as indicated above. An earthquake is taking place.
4. Repeat step 3 until the earthquake is fully evolved.
5. Locate the block on which the exerted force is maximum. If Fmax is the

value of this force, increment the force exerted on each block by Fth−Fmax

and repeat step 3.

The numerical determination of the probability distribution of the size – i.e.,
the total number of relaxations – of the earthquakes, which is proportional to
the energy released during an earthquake, is found to exhibit self-organized
criticality for a wide range of values of the parameter α.58 The exponent values
depend upon α. Lattice sizes used in the computer simulations were rather
small: from 15 to 50.

As stressed by the authors, it is important to note that in this model, in
contrast with the original Bak–Tang–Wiesenfeld model, only a fraction of the
transported quantity is dissipated in each relaxation event: for KL > 0,
the redistribution of forces is nonconservative. This fraction is controlled
by the parameter α.

Soon after the publication of the paper of Olami, Feder, and Chris-
tensen [353], Klein and Rundle [246], noticing that the behavior, as a function
of the lattice size, of the exponential cutoff observed by the authors could
not be correct, found suspect the observed critical behavior. A few years
later, de Carvalho and Prado [98], revisiting the Olami–Feder–Christensen
paper [353], found, in contrast with its authors and a subsequent study by

57 The earthquake is the “slip,” and the “stick” is the period between seismic events
during which elastic strain accumulates.

58 The energy E released during the earthquake is given in terms of the magnitude
m by the relation

log10 E = c + dm,

where c and d are positive constants. From the Gutenberg–Richter law, the prob-
ability for an earthquake to have an energy larger than E behaves as E−B , where
B = b/d. In the modern scientific literature, an earthquake size is measured by
its seismic moment M0, which is defined as GAu, where G is the shear modulus,
A the rupture area, and u the mean slip.
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Middleton and Tang [316], that it can be critical only in the conservative
case, i.e., for α = 0.25. Christensen et al. [109], repeating the simulations of
de Carvalho and Prado with the same parameter values, claimed that numer-
ical results did not really exclude that the Olami–Feder–Christensen model
remained critical also in the nonconservative case. In their reply, de Carvalho
and Prado [99] agreed that on numerical evidence a true critical behavior for
the nonconservative case could not be ruled out, but they thought that it was
unlikely.

Recently, extensive numerical simulations [274, 275] have shown that the
model displays scaling behavior on rather large square lattices (512 × 512).
The probability density function of earthquake sizes obeys the Gutenberg–
Richter law with a universal exponent τ = 1.859 that does not depend upon
the parameter α. It has been found, however, that the probability distribution
of earthquakes initiated close to the boundary of the system does not obey
finite-size scaling.60 However, numerical investigations of the Olami–Feder–
Christensen model on a random graph [276] show that, for an average vertex
degree equal to 4, there is no criticality in the system, as the cutoff in the
probability distribution of earthquake sizes does not scale with system size.
On the contrary, if each vertex has the same degree, for a weaker disorder,
the system does exhibit criticality and obey finite-size scaling with universal
critical exponents that are different from those of the lattice model.

Self-organized criticality is not the only mechanism that may explain the
scale-free Gutenberg–Richter law. The Newman–Sneppen model [336, 411],
described as a model of mass extinction on Page 410, may be used as an
earthquake model replacing the word “species” by “point of contact” in a
subterranean fault. Choosing an exponential distribution for fst(x), the ex-
ponent of the size distribution is found equal to 1 + B = 1.84 ± 0.03. To
investigate possible connections with a spatially organized system, Newman
and Sneppen [336] implemented their model on a lattice and, at each time-
step, they eliminated not only those agents whose stress thresholds fall below
the stress level but also their neighbors. As for noninteracting systems, they
found an avalanche power-law distribution with an exponent close to 2.

To conclude this discussion on earthquake models, let us just mention
another completely different model [102]. Its essential ingredient is the fractal
nature of the solid-solid contact surfaces involved in the stick-slip mechanism.
The authors relate the total contact area between the two surfaces to be
proportional to the elastic strain energy grown during the sticking period as
the solid-solid friction force due to interactions between asperities increases.
This energy is released as one surface slips over the other. Assuming that the

59 This exponent τ is equal to 1 + B, where B is the exponent characterizing the
power-law behavior of the cumulative distribution function (see Footnote 58).

60 This feature was already apparent in the numerical results of Olami, Feder, and
Christensen, and it is the reason why Klein and Rundle [246] cast doubt on the
critical behavior.
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fractal dimension df of the surfaces in contact is less than 2, the exponent B
(see Footnote 58) of the Gutenberg–Richter law is found to be approximately
equal to 1/df .

Example 71. Rainfall. Conventional methods of rain measurement are based
on the idea of collecting rain in a container and measuring the amount of
water after a certain time. Recently, high-resolution data have been collected
by the Max-Planck Institute for Meteorology (Hamburg, Germany). Data col-
lected at 250 meters above sea level with a one-minute resolution have been
analyzed [364]. The authors define a rain event as a sequence of successive
nonzero rain rates (i.e., two rain events are separated by at least one minute).
The size of a rain event is the height, in millimeters, of the rain collected in
a water column during the rain event. The drought duration is the time, in
minutes, between two consecutive rain events. They found that the number
N(M) of rain events of size M per year and the number N(D) of drought
periods of duration D per year have the power-law behaviors:

N(M) ∼M−1.36 and N(D) ∼ D−1.42,

which extend over at least three orders of magnitude. These power-law be-
haviors are, according to the authors, consistent with a self-organized critical
process. As for a sandpile to which sand grains are constantly added, the
atmosphere is driven by a slow and constant energy input from the Sun, lead-
ing to water evaporation. The energy is thus stored in the form of clouds
and suddenly released in bursts when the vapor condenses to water drops.
The power-law distribution N(M) ∼ M−1.36 is the analog of the power-law
distribution of the avalanche size of the sandpile model.

Exercises

Exercise 8.1 (a) Show that, among all continuous probability density functions
f defined on R subject to the conditions

∫

R

xf(x) dx = m,

∫

R

(x−m)2f(x) dx = σ2,

the normal distribution maximizes the entropy defined as

S(f) = −k
∫

R

f(x) log f(x) dx,

where k is a constant depending upon the entropy unit.

(b) What kind of auxiliary condition(s) should be imposed so that an a priori
interesting probability density function f would maximize the entropy? Consider
the case f(x) = a/π(a2 + x2), where x ∈ R.
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Exercise 8.2 The exponential probability density function is defined, for x ≥ 0,
by

fexp(x) = λe−λx (λ > 0).

(a) Find the probability density function of the sum of n independent identically
distributed exponential random variables.

(b) Show that

∫ n+x
√
n

0

un−1

(n− 1) !
e−u du =

1√
π

∫ x

−∞
exp

(− 1
2u

2
)

du.

(c) Illustrate the approach to the Gaussian distribution of the scaled sum of n
independent identically distributed exponential random variables for two values of
n, one somewhat small and the other one sufficiently large for the two distributions
to be reasonably close in an interval of a few units around the origin.

Exercise 8.3 Consider a sequence of independent identically distributed Bernoulli
random variables (Xj) such that, for all j,

P (Xj = −1) = 1
2 and P (Xj = 1) = 1

2 .

Use Theorem 22 to show that, if 0 < a < 1,61

lim
n→∞ (P (Sn > an))1/n =

1
√

(1 + a)1+a(1− a)1−a .

Exercise 8.4 If (xj)1≤j≤n is a sequence of observed values of a random variable
X , to limit risk, one is often interested in finding the probability distributions of
minimum and maximum values.

(a) Consider a sequence of n independent identically distributed random variables
(Xj)1≤j≤n; knowing the common cumulative distribution function FX of these
random variables, determine the cumulative distribution functions FYn and FZn

of the random variables

Yn = min(X1, X2, . . . , Xn) and Zn = max(X1, X2, . . . , Xn).

(b) Assuming that the n independent random variables have a common Cauchy
probability density function centered at the origin and unit parameter, find the
limit

lim
n→∞P

(
Zn >

nz

π

)
.

Exercise 8.5 In statistical physics, the Boltzmann–Gibbs distribution applies to
large systems in equilibrium with an infinite reservoir of energy. In this case, the
system is said to be in thermal equilibrium, which means that its temperature

61 This example is taken from G. R. Grimmett and D. R. Stirzaker [199], p. 187,
where a few more examples can be found.
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is constant and its average energy is fixed. Claiming that in a closed economic
system the total amount of money is conserved, Drăgulescu and Yakovenko [135]
argue that, in a large system of N economic agents, money plays the role of
energy and the probability that an agent has an amount of money between m
and m + dm is p(m)dm with p(m) of the form Ce−m/T , where C = 1/T is a
normalizing factor and T an effective “temperature.”

(a) Assuming that m can take any nonnegative value, derive this expression of
p(m). What is the meaning of the “temperature” T ?

(b) What is the form of p(m) if m values are restricted to the interval [m1,m2]?
Discuss, in this case, the sign of T .

Exercise 8.6 Show that a power law with an exponential cutoff distribution of
the form x−α(1− ε)−x, where ε is a small positive number, can be mistaken for
a pure power-law distribution.

Exercise 8.7 (a) To show that the ARCH model can describe time series with
sequences of data points looking like outliers, generate a time series from the
ARCH process defined by (8.2) with independent identically distributed Gaussian
random variables Wt with zero mean and unit variance, i.e., for all t > 0, Wt =
N(0, 1).

(b) Determine the different statistics (mean, variance, skewness, kurtosis excess)
for the generated time series Xt.

Exercise 8.8 (a) Use the method described on Page 397 to obtain an approxi-
mate graph of the cumulative distribution function from a random sample drawn
from a Student’s t-distribution for μ = 2.

(b) Consider a rather large random sample to determine numerically the exponent
characterizing the power-law behavior of the tail of the Student’s t-distribution.

Exercise 8.9 Study numerically the positive tail of the probability distribution of
a random sequence generated from the ARCH process of Exercise 8.7.

Exercise 8.10 The ARCH process of order τ is defined by the relations

Xt = σtWt, with σ2
t = a0 + a1X

2
t−1 + a2X

2
t−2 + · · ·+ aτX

2
t−τ ,

where a0 > 0 and aj ≥ 0 for j = 1, 2, . . . , τ . In some applications, it appears that
the order τ takes a high value, and one therefore has to estimate many parameters.
It would be convenient to have a simpler model involving less parameters. The
GARCH model, of Tim Bollerslev [80] involves only three parameters. It is defined
by the relations

Xt = σtWt, with σ2
t = a0 + a1X

2
t−1 + b1σ

2
t−1, (8.3)
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where the Wt are independent identically distributed Gaussian random variables
with zero mean and unit variance, a0, a1, and b1 are positive, and a1 + b1 < 1.

(a) Show that the GARCH model may describe time series with data points
looking like outliers.

(b) Study numerically the positive tail of the probability distribution of a random
sequence generated from a GARCH process.

Solutions

Solution 8.1 (a) The probability function f that maximizes the entropy

S(f) = −k
∫

R

f(x) log f(x) dx

and satisfies the conditions
∫

R

f(x) dx = 1,
∫

R

xf(x) dx = m,

∫

R

(x −m)2f(x) dx = σ2,

is the solution to the equation

δ

δf

(

k

∫

R

f(x) log f(x) dx, + λ1

∫

R

f(x) dx

+ λ2

∫

R

xf(x) dx + λ3

∫

R

(x−m)2f(x) dx

)

= 0,

where λ1, λ2, and λ3 are Lagrange multipliers to be determined from the con-
ditions above and δ/δf denotes the functional derivative with respect to the
function f . Taking the derivative yields

k(log f(x) + 1) + λ1 + λ2x+ λ3(x−m)2 = 0.

This shows that the function f should be proportional to e−λ2x−λ3(x−m)2 , and
expressing that it has to satisfy the three conditions above, yields

f(x) =
1√
2πσ

exp
(
− (x−m)2

2σ2

)
.

f is the probability density function of the normal distribution. Its entropy is
equal to

Snormal =
k

2
(1 + log 2π) + k log σ = k(1.41894 . . .+ log σ).
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To verify that the entropy of the normal distribution is maximum, it suffices to
consider any other probability density with the same mean value m and standard
deviation σ and check that its entropy is smaller. The entropy of the symmetric
exponential distribution

1√
2σ

exp

(

−
√

2
σ
|x−m|

)

is

Sexponential = k

(
1 +

1
2

log 2 + log σ
)

= k(1.34657 . . .+ log σ) < Snormal.

Since the entropy measures the lack of information, the central limit theorem
shows that averaging a large number of independent identically distributed random
variables leads to a loss of information about the probability distribution of the
random variables.

(b) The probability density function f that maximizes the entropy

S(f) = −k
∫

R

f(x) log f(x) dx

subject to the n auxiliary conditions

∫

R

Fj(x)f(x) dx = cj (j = 1, 2, . . . , n),

with F1(x) = 1 (normalization of f), should verify

k(log f(x) + 1) + λ1 + λ2F2(x) + · · ·+ λnFn(x) = 0,

where λ1, λ2, . . . , λn are Lagrange multipliers.
If we want f to be the Cauchy probability density function, the equation above

becomes

k(log(a/π) + 1) + λ1 − k log(a2 + x2) + λ2F2(x) + · · ·+ λnFn(x) = 0.

Since all the moments of the Cauchy distribution are infinite, we cannot expect to
satisfy this equation expanding log(a2 +x2) and writing down an infinite number
of conditions for all moments of even order. The only possibility is to choose λ1

to cancel all constant terms and F2(x) proportional to log(a2 +x2), which would
be, as pointed out by Montroll and Schlesinger [323], a rather unlikely a priori
choice.

Solution 8.2 (a) There are at least two different methods to obtain this result.
First method. Let us first find the probability density function of the sum of

two independent identically distributed exponential random variables. It is given by
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f2exp(s) =
∫ s

0

λ2e−λxe−λ(s−x) dx

= λ2se−λs.

For the sum of three exponential random variables, we find

f3exp(s) =
∫ s

0

λ3xe−λxe−λ(s−x) dx

=
λ3s2

2
e−λs.

This last result suggests that the probability density function of the sum of n
independent identically distributed exponential random variables could be the
Gamma distribution of index n defined by

fGamma(s) =
λnsn−1

(n− 1) !
e−λs.

This is easily verified by induction since
∫ s

0

λn+1xn−1

(n− 1) !
e−λxe−λ(s−x) dx =

λn+1sn

n !
e−λs.

Second method. On the one hand, the characteristic function of an exponential
random variable is given by

ϕexp(t) =
∫ ∞

0

λe−λxeitx dx

=
(

1− it
λ

)−1

.

On the other hand, the characteristic function of a Gamma random variable of
index n is

ϕGamma(t) =
∫ ∞

0

λnxn−1

(n− 1) !
e−λxeitx dx

=
(

1− it
λ

)−n
,

which proves that the sum of n independent identically distributed exponential
random variables is a Gamma random variable of index n.

(b) For λ = 1, the mean m1 and the standard deviation σ of the corresponding
exponential random variable are both equal to 1. Hence, from the central limit
theorem, it follows that

∫ n+x
√
n

0

un−1

(n− 1) !
e−u du =

1√
π

∫ x

−∞
exp

(− 1
2u

2
)

du.

(c) Figure 8.14 shows the approach to the Gaussian distribution of the scaled sum
of 10 and 50 independent identically distributed exponential random variables.
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Fig. 8.14. Convergence to the normal distribution of the scaled sum of 10 (left
figure) and 50 (right figure) exponential random variables with unit parameter value.
Continuous curves represent the Gaussian distribution and dashed curves distribu-
tions of scaled sums of independent exponential random variables for λ = 1

Solution 8.3 The mean value of the Bernoulli random variables Xj is zero, and
their moment-generating function M is given by M(t) = cosh t. This function is
finite in any finite neighborhood of the origin. From Theorem 22 it follows that,
for 0 < a < 1,

lim
n→∞ (P (Sn > na))1/n = inf

t>0

(
e−at cosh t

)
.

As a function of et, e−at cosh t has a minimum for et =
√

(1 + a)/(1− a), so

inf
t>0

(
e−at cosh t

)
=

1
√

(1 + a)1+a(1− a)1−a ,

which proves the required result.

Solution 8.4 (a) By definition

FYn(y) = P
(
min(X1, X2, . . . , Xn) ≤ y

)

= 1− P (min(X1, X2, . . . , Xn) > y
)

= 1− P (X1 > y,X2 > y, · · · , Xn > y
)

− 1− P (X1 > y)P (X2 > y) · · ·P (Xn > y)

= 1− (1− FX(y)
)n
.

Similarly,

FZn(z) = P
(
max(X1, X2, . . . , Xn) ≤ z

)

= P
(
X1 ≤ z,X2 ≤ z, · · · , Xn ≤ z

)

= P (X1 ≤ z)P (X2 ≤ z) · · ·P (Xn ≤ z)

=
(
FX(z)

)n
.
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(b) The cumulative distribution function FX(x) of a Cauchy random variable X
centered at the origin and unit parameter is given by

FX(x) =
∫ x

−∞

1
π

du
1 + u2

=
1
2

+
arctan(x)

π
.

Hence,62

lim
n→∞P

(
Zn >

nz

π

)
= 1− lim

n→∞

(
1
2

+
1
π

arctan
(nz
π

))n

= 1− lim
n→∞

(
1− 1

π
arctan

( π
nz

))n

= 1− lim
n→∞

(
1− 1

zn
+ o(n−1)

)n

= 1− e−1/z.

Remark 34. The function z �→ e−1/z is the cumulative distribution function of a
positive random variable. As a consequence of the result above, the scaled random
variable πZn/n converges in distribution to a positive random variable Z such that
FZ(z) = e−1/z. For z = 1/ log(2), e−1/z = 1/2; therefore, the probability that,
in a sequence of n realizations of a symmetric Cauchy random variable with unit
parameter, the maximum of the n observed values has a probability equal to 1/2 to
be greater than n/(π log 2) ≈ 0.4592241 n.

Solution 8.5 (a) To derive the expression of p(m), we proceed as in Exercise 8.1.
The entropy associated with a probability density function p is

S(p) = −
∫ ∞

0

p(m) log p(m) dm.

Using Lagrange multipliers to maximize this entropy with respect to the function
p under the constraints

∫ ∞

0

p(m) dm = 1 and

∫ ∞

0

mp(m) dm =
M

N
,

which express that p(m) has to be normalized and that the average amount of
money per agent, equal to the total amount of money M divided by the number
of agents N , is fixed, we have to maximize

−
∫ ∞

0

p(m) log p(m) dm+ λ1

∫ ∞

0

p(m) dm+ λ2

∫ ∞

0

mp(m) dm.

62 Using the relations arctan(x) + arctan(1/x) = π/2 and arctan(x) = x + o(x) as
x → 0.
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Writing that the functional derivative with respect to p of the expression above
is zero yields

− log p(m)− 1 + λ1 + λ2m = 0.

This shows that p is an exponential distribution, which can be written

p(m) =
1
T

exp
(
−m
T

)
(T > 0).

The meaning of the parameter T is found expressing that the average amount of
money per agent is fixed. This gives

∫ ∞

0

mp(m) dm = T =
M

N
.

That is, when the system is in equilibrium, the parameter T , which plays the role
of the “temperature” in statistical physics, is the average amount of money per
agent. It is always positive.

Remark 35. Maximizing the entropy means that the disorder associated with the dis-
tribution of an amount of money M between N agents under the weak constraint that
fixes the average amount per agent is maximized. Taking into account more restric-
tive constraints such as a fixed standard deviation would give a Gaussian distribution
(as in Exercise 8.1) corresponding to a much more egalitarian society. Note that, for
the exponential distribution, the most probable amount of money is equal to zero!

(b) In the derivation of the probability distribution of money above, it was as-
sumed that the amount of money could vary from 0 to infinity. If m ∈ [m1,m2],
the maximization of the entropy under constraints leads again to an exponential
distribution, but now we have to satisfy the conditions

∫ m2

m1

Ce−m/T dm = 1 and

∫ m2

m1

Cme−m/T dm = 〈m〉 =
M

N
.

Hence,

CT
(
e−m1/T − e−m2/T

)
= 1,

CT
(
e−m1/T (m1 + T )− e−m2/T (m2 + T )

)
= 〈m〉.

The first equation determines the normalizing factor C. The probability density
function is then given by

p(m) =
e−m/T

T (e−m1/T − e−m2/T )
.

Replacing C by its expression in the second equation yields

em2/T (m1 + T )− em1/T (m2 + T )
em2/T − em1/T

= 〈m〉.
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Let

m+ =
m2 +m1

2
and m− =

m2 −m1

2
or

m1 = m+ −m− and m2 = m+ +m−.

In terms of m+ and m−, the relation between T and 〈m〉 becomes

coth
m−
T
− T

m−
= −m+ + 〈m〉

m−
.

The odd function L : x �→ cothx − 1/x, familiar in statistical physics, is the
Langevin function. Its graph is represented in Fig. 8.15. The relation above shows
that the sign of T is the same as the sign of −(m+ + 〈m〉). If, for example,
m1 = −5, m2 = 5, and 〈m〉 = 4, then −(m+ + 〈m〉) = −4, and solving for T ,
we find T = −1. The graph of the corresponding probability density function is
shown in Fig. 8.16.
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Fig. 8.15. Graph of the Langevin function

Solution 8.6 To show that a power law with an exponential cutoff distribution
can be mistaken for a pure power-law distribution, consider the probability density
function

f(x) = Cx−1.5(1− 0.0005)x (x ≥ 1),

where C is a normalizing factor approximately equal to 0.520. Figure 8.17 shows
a log–log plot of the sequence

(
f(10 k)

)
for k = 1, 2, . . . , 100. A least-squares

fit of the apparent power-law behavior of this sequence gives an exponent equal
to −1.6. While the random variable distributed according to f has a mean value
equal to 40.2, the random variable defined for x ≥ 1 with a power-law probability
density proportional to x−1.6 has no mean value.
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Fig. 8.16. Probability density function of the distribution of money when the
amount of money possessed by one individual is restricted to the interval [m1, m2]
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Fig. 8.17. Log–log plot of the sequence
(
f(10 k)

)
for k = 1, 2, . . . , 100, which

exhibits an apparent power-law behavior, with an exponent equal to −1.6, over
about two orders of magnitude. The slightly shifted straight line represents the
least-squares fit

Solution 8.7 (a) Consider the ARCH model defined by the relations

Xt = σtWt, with σ2
t = a0 + a1X

2
t−1 (a0 > 0, 0 < a1 < 1),

where, for all positive integers t,Wt = N(0, 1), and choose, for example, a0 = 0.6,
a1 = 0.5, and σ1 = 1. Figure 8.18 clearly shows the existence of outliers present
in a generated sequence of 1,000 data points.

Another interesting way to show the existence of outliers in the generated
time series (Xt) is the scatter plot of Xt versus Xt−1 represented in Fig. 8.19.
By comparison, the scatter plot of the Gaussian time series is shown in Fig. 8.20.
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Fig. 8.18. ARCH model: (Xt) time series for t = 1, 2, . . . , 1,000
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Fig. 8.19. Scatter plot of Xt versus Xt−1
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Fig. 8.20. Scatter plot of Wt versus Wt−1
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(b) The different statistics for the time series Wt and Xt is given in the following
table. To obtain a better accuracy, we generated a sequence of 50, 000 data points.

Mean Variance Skewness Kurtosis excess
Wt −0.000854 0.997 −0.0213 0.0240
Xt −0.00242 1.20 −0.0847 3.86

The numerical values of the statistics of the time series Wt are to be compared
to the theoretical values, respectively, equal to 0, 1, 0, and 0. We have also rep-
resented the histograms of both time series in Fig. 8.21. The heights of the bars
being scaled so that their areas sum to unity, the histograms represent approxi-
mate probability density functions.
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Fig. 8.21. Histograms of time series (Wt) (left) and (Xt) (right). The heights of the
bars are scaled so that their areas sum to unity

Solution 8.8 (a) The probability density of the Student’s t-distribution for μ = 2
is given by

ft(x) =
1

(2 + x2)
3
2
.

Following the method described on Page 397, from a random sample of 2,000
points, we obtain the plot represented in Fig. 8.22.

(b) To study numerically the power-law behavior of the positive tail of the prob-
ability distribution, we have generated a random sample of size n = 100,000
drawn from a Student’s t-distribution for μ = 2 and considered the last 2,000
points of the ordered random sequence. Using the notation of Page 397, a log–
log plot of the sequence of points (ξk, 1 − ηk) for k > 98,000 is represented
in Fig. 8.23. From a least-squares fit, the exponent characterizing the power-law
behavior of the cumulative distribution function is found to be equal to −1.99,
in very good agreement with the asymptotic behavior of the probability density
function ft(x) ∼ x−3 for large x. Here the tail corresponds to x-values greater
than 4.8 (log 4.8 = 1.57).
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Fig. 8.22. Approximate cumulative distribution function of the Student’s
t-distribution for μ = 2
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Fig. 8.23. Power-law behavior of the cumulative distribution function of the Stu-
dent’s t-distribution for μ = 2 determined from the last 2,000 points of an ordered
random sequence of size n = 100,000. A least-squares fit gives an exponent equal to
−1.99, in very good agreement with the theoretical value −2

Solution 8.9 If we consider the ARCH model of Exercise 8.7, from the sequence
of 50,000 points generated to compute the four statistics (see solution of Exer-
cise 8.7), and using the method described on Page 397, from the log–log plot
of the last 2,000 points of the ordered sequence, represented in Fig. 8.24, it can
be shown that the tail of the distribution exhibits a power-law behavior. A least-
squares fit gives α = −3.62 for the exponent characterizing the power-law be-
havior for large positive x values of the cumulative distribution function (see
Fig. 8.24). The last 100 points have been discarded.

Solution 8.10 Choosing a0 = 0.5, a1 = 0.5, b1 = 0.3, and σ1 = 1, the time
series and the scatter plot represented, respectively, in Figs. 8.25 and 8.26 show
the existence of outliers in a sequence of 1,000 data points generated by the
GARCH process defined by (8.3).
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Fig. 8.24. Power-law behavior of the positive tail of the probability distribution
of the Xt sequence of 50,000 points generated by the ARCH model studied in
Exercise 8.7. The straight line representing the least-squares fit has been slightly
translated for clarity. The exponent is equal to −3.62
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Fig. 8.25. GARCH model: (Xt) time series for t = 1, 2, . . . , 1,000
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Fig. 8.26. GARCH model: Scatter plot of Xt versus Xt−1
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(b) Different statistics for a time series Xt of 100,000 data points generated by
the GARCH process defined above is given in the following table.

Mean Variance Skewness Kurtosis excess
Xt 0.000933 2.45 0.142 10.5
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Fig. 8.27. Power-law behavior of the positive tail of the probability distribution of
the Xt sequence of 100, 000 points generated by the GARCH process. The straight
line representing the least-squares fit has been slightly translated for clarity. The
exponent is equal to −3.08

Using the method described on Page 397, from the log–log plot of the last 5,000
points of the ordered sequence represented in Fig. 8.27, show that the tail of the
distribution exhibits a power-law behavior. A least-squares fit gives α = 3.62 for
the exponent characterizing the power-law behavior for large positive x values of
the cumulative distribution function.
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Summary

This chapter deals with power-laws that are quite frequent in nature. Here
are two classical examples completed with some recent developments.

• The Italian economist Vilfredo Pareto considered income data for Eng-
land, a few Italian towns, some German states, Paris, and Peru. A log–log
plot of the number N(x) of individuals with income greater than x, be-
haved as x−α, where, for all the data, the exponent α, referred to as the
Pareto exponent, is in all cases close to 1.5. It appears that this proba-
bility density follows a power-law behavior in the high-income range, but
it is actually lognormal – which could be mistaken for a power-law dis-
tribution –, in the low–middle range (see Page 386). The Pareto’s law

is also known as the 80/20 law , which means that 80% of the wealth
is held by 20% of the population. In a recent study of the overall profile
of Japan’s personal income distribution, W. Souma found that only the
top 1% of the Japanese income data for the year 1998 follows a power-
law distribution with a Pareto exponent equal to α = 2.06; the remaining
99% of the data fit a lognormal distribution with m = 4 million yen and
β = 1/

√
2πσ2 = 2.68.

• Pointing out that many recent papers dealing with income probability
distributions “do little or no comparison at all with real statistical data,”
A. A. Drăgulescu and V. M. Yakovenko analyzed the data on income
distribution in the United States from the Bureau of the Census and the
Internal Revenue Service. They found that the individual income of about
95% of the population is not lognormal but described by an exponential
distribution of the form exp(−r/R)/R.

• The individual and family income distributions differ qualitatively. The
former monotonically increases toward low incomes and reaches its max-
imum at zero. The latter has a maximum at a finite income rmax = R
and vanishes at zero. That is, for individuals, the most probable income is
zero, whereas, for a family with two earners, it is equal to R.

• According to A. A. Drăgulescu and V. M. Yakovenko, hierarchy could

explain the existence of two regimes , exponential and power-law, for the
income distribution. People have leaders, who have leaders of higher or-
der, and so forth. The number of people decreases exponentially with the
hierarchical level. So, if the income increases linearly with the hierarchi-
cal level, an exponential distribution follows; but if the income increases
exponentially with the hierarchical level, a power law is obtained. The
linear increase is probably more realistic for moderate incomes, while the
exponential increase should be the case for very high incomes.
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• Analyzing word frequency in different natural languages, George Kingsley
Zipf (1902–1950) discovered that the frequency f of a word is inversely
proportional to its rank r, where a word of rank r is the rth word in the
list of all words ordered with decreasing frequency. For example, James
Joyce’s novel Ulysses contains 260,430 words. If words such as give, gives,
gave, given, giving, giver, and gift are considered to be different, there are,
in Ulysses, 29,899 different words. A log–log plot of the word frequency f
as a function of the word rank r shows that the exponent is equal to 1.02.

• In its original form, Zipf’s law, observed on a rather small corpus, ac-
counts for the statistical behavior of word frequencies for ranks between a
few hundred and a few thousand. To test its validity for higher rank values,
much larger corpora have to be analyzed. M. Montemurro studied a very
large corpus made up of 2,606 books with a vocabulary size of 448,359 dif-
ferent words. He found that Zipf’s law is verified with an exponent equal

to 1.05 up to r ≈ 6,000. Above this value, there is a crossover to a new
regime characterized by an exponent equal to 2.3.

• If S(t) is the price of a stock at time t, Louis Bachelier’s assumed that the
successive differences S(t+T )−S(t) are independent normally distributed
random variables with zero mean and variance proportional to the time
interval T . The abundant data accumulated since Bachelier’s contribution
showed, however, a clear departure from normality. This fact led Benôıt
Mandelbrot to suggest a radically new approach called the stable Paretian
hypothesis, in which the basic assumption is that logS(t + T ) − logS(t)
are independent identically distributed Lévy random variables.

• Nowadays, an important number of papers presenting empirical results
and theoretical interpretations are regularly submitted for publication.
Physicists, in particular, have been increasingly interested in the analysis
and modeling of financial markets, giving birth to econophysics .

• The demographic distribution of humans on Earth is extremely heteroge-
neous. Highly concentrated areas (cities) alternate with large extensions of
much lower population densities. If s is the population size of a city (num-
ber of inhabitants) and r(s) its rank, where the largest city has rank 1,
Zipf found empirically that

r(s) ∼ 1
s
,

which, for the frequency as a function of population size, implies

f(s) ∼ 1
s2
.

This result appears to be universal. Statistical studies of 2,700 cities of the
world having more than 105 inhabitants, 2,400 cities of the United States
having more than 104 inhabitants, and 1,300 municipalities of Switzerland
having more than 103 inhabitants give exponents very close to 2. Zanette
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and Manrubia proposed a simple model to account for the exponent −2
characterizing the power-law behavior of the frequency f as a function of
population size s.

• A statistical study of the distribution of family names in Japan shows
that, if s denotes the size of a group of individuals bearing the same name,
the number n(s) of groups of size s has a decreasing power-law behavior
characterized by an exponent equal to 1.75±0.05 in five different Japanese
communities. Similar results have been obtained from (a) a sample of the
United States 1990 census and (b) all the family names of the Berlin phone
book beginning with A. In both these cases, however, the exponent is close
to 2.

• On October 4, 1998, Brazil held general elections with compulsory vote.
The state of São Paulo, with 23,321,034 voters and 1,260 local candidates,
is the largest electoral group. On the distribution of votes , it has been
found that the number of candidates N(v) receiving a fraction v of the
votes behaves as v−α with α = 1.03 ± 0.03 over almost two orders of
magnitude.

• A possible explanation of the power-law behavior is to assume that the
success of a candidate is the result of a multiplicative process in which each
factor should be related to attributes and/or abilities of the candidate to
persuade voters. Assuming that the corresponding random variables are
independent and in large number, the central limit theorem implies that
the distribution of votes should be lognormal, which can be mistaken for
a power-law distribution over a few orders of magnitudes. Playing with
the two parameters of the lognormal distribution, it is possible to adjust
the value of the exponent of the apparent power-law behavior.

• In the late 1980s, Per Bak, Chao Tang, and Kurt Wiesendfeld reported
the discovery of a general organizing principle governing a class of dissi-
pative coupled systems. These systems evolve naturally toward a critical
state, with no intrinsic time or length scale, in which a minor event starts
a chain reaction that can affect any number of elements in the system.
This self-organized criticality therefore would be an explanation of the
occurrence of power-law behaviors.

• The sandpile model which the first example of a dynamical model display-
ing self-organized criticality is defined as follows: Consider a finite L × L
square lattice. The state of a cell is a nonnegative integer representing the
number of sand grains stacked on top of one another in that cell. In the
initial state, each cell contains a random number of sand grains equal to
0, 1, 2, or 3. Then, to cells sequentially chosen at random, we add one
sand grain. When the number of sand grains in one cell becomes equal
to 4, we stop adding sand grains, removing the four grains, and equally
distributing them among the four nearest-neighboring cells. That is, the
number of sand grains in the cell that reached the threshold value 4 at
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time t becomes equal to 0 at time t + 1, and the number of sand grains
in the four nearest-neighboring cells increases by one unit. This process is
repeated as long as the number of sand grains in a cell reaches the thresh-
old value. When the number of sand grains in a boundary cell reaches the
value 4, the same process applies but the grains falling off the lattice are
discarded. A sequence of toppling events occurs when nearest-neighboring
cells of a cell reaching the threshold value contain three sand grains. Such
a sequence is called an avalanche .

• The sandpile model illustrates the basic idea of self-organized critical-
ity. For a large system, adding sand grains leads at the beginning to
small avalanches. But as time increases, the system reaches a station-
ary state where the amount of added sand is balanced by the sand leav-
ing the system along the boundaries. In this stationary state, there are
avalanches of all sizes up to the size of the entire system. Numerical

simulations show that the number N(s) of avalanches of size s behaves as
s−τ , where, in two-dimensional systems, the exponent τ is close to 1.

• In 1990 Per Bak, Kan Chen and Chao Tang proposed a three-state cellular
automaton model of forest fire that should exhibit self-organized criticality.
However, more precise simulations performed by Peter Grassberger and
Holger Kantz in 1991 and W. K. Moßner, B. Drossel, and F. Schwabl in
1992 proved that this was not the case. According to Drossel and Schwabl,
for the model to become critical, a mechanism allowing small forest clusters
to burn has to be included. The growth of trees does not lead to a state,
which is inherently unstable (as does the addition of sand grains to the top
of the pile does), but only to a state susceptible to being burnt.

We finally conclude this chapter with a brief study of punctuated equilibria,
which are rapid burst of evolution, mass extinctions, which seem to occur
periodically, earthquakes that are the result of seismic waves produced when
some sort of stored energy is suddenly released, and rainfalls.
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A
Adjacency matrix. A graph G of order N can be represented by
its N ×N adjacency matrix A(G), whose elements aij are given by

aij = aji =

{
1, if there exists an edge between vertices i and j,
0, otherwise.

The ij-element of the square of the adjacency matrix is given by
∑N

k=1 aikakj ;
it is nonzero if, for some k = 1, 2, . . . , N , both aik and akj are equal to 1. If,
for a specific value of k, aikakj = 1, this implies that there exists a path of
length 2 joining vertex i to vertex j, and the value of

∑N
k=1 aikakj represents,

therefore, the number of different paths of length 2 joining vertex i to vertex
j. More generally, it is straightforward to verify that the value of the element
ij of the nth power of the adjacency matrix is the number of different paths
of length n joining vertex i to vertex j.

ARCH model. ARCH stands for Autoregressive Conditional Het-
eroskedasticity. It is a technique – introduced by Robert Engle in 1982 –
used in finance to model asset price volatility over time. The GARCH model
(Generalized Autoregressive Conditional Heteroskedasticity) was introduced
in 1986 by Tim Bollerslev.

Asymptotic stability. An equilibrium point x∗ of the differential
equation ẋ = X(x) is said to be asymptotically stable if it is Lyapunov stable
and

lim
t→∞x(t, 0,x0) = x∗.
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B
Bendixon criterion. The Bendixon criterion is a particular case of
the Dulac criterion (see Dulac criterion).

Bifurcation. In the study of dynamical systems, a bifurcation (this word
was used for the first time in 1885 by Henri Poincaré) is a qualitative change
in the behavior of a system, either discrete (described by maps) or continuous
(described by differential equations), as a result of a smooth change of a
parameter value. That is, a bifurcation represents the sudden appearance of
a qualitatively different solution for a nonlinear system. There exist different
type of bifurcations. Here are examples:

1. A period doubling bifurcation is a bifurcation in which the system
switches to a new behavior with twice the period of the original system.

2. A saddle-node (or tangent) bifurcation corresponds to the creation
of a pair of periodic points. For example, in the case of the equation
ẋ = X(x, μ) = μ − x2, for μ = 0, x∗ = 0 is the only equilibrium point,
and it is nonhyperbolic since DX(0, 0) = 0, the vector field X(x, 0) is not
structurally stable and μ = 0 is a bifurcation point. For μ < 0, there is no
equilibrium point, while, for μ > 0, there are two hyperbolic equilibrium
points x∗ = ±√μ. Since DX(±√μ, μ) = ∓√mu, √μ is asymptotically
stable, and −√μ is unstable. This type of bifurcation is a saddle-node
bifurcation.

3. A transcritical bifurcation occurs when two equilibrium points ex-
change their stability. For example, in the case of the equation ẋ =
X(x, μ) = μx− x2, for μ = 0, x∗ = 0 is the only stable equilibrium point,
and it is nonhyperbolic since DX(0, 0) = 0. The vector field X(μ, 0) is
not structurally stable, and μ = 0 is a bifurcation value. For μ �= 0, there
are two equilibrium points, 0 and μ. At the bifurcation point, these two
equilibrium points exchange their stability, and we have a transcritical
bifurcation.

4. At a pitchfork bifurcation, a stable equilibrium point and an unstable
pair of equilibrium points exchange their stability. For example, consider
the equation

ẋ = μx− x3.

For μ = 0, x∗ = 0 is the only (stable) equilibrium point, and ±√μ are
both unstable. It is nonhyperbolic since DX(0, 0) = 0. The vector field
X(x, 0) is not structurally stable and μ = 0 is a bifurcation value. For
μ ≤ 0, 0 is the only equilibrium point, and it is asymptotically stable.
For μ > 0, there are three equilibrium points, 0 is unstable, and ±√μ
are both asymptotically stable, and we have a pitchfork bifurcation. Note
that according to the sign of the third derivative of X(x, μ) with respect
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to x at x = 0, and mu = 0 the bifurcation is said to be subcritical when
this derivative is positive and supercritical when it is negative.

Bipartite graph. It is sometimes useful to consider that the vertices
of a graph are not of the same type. For instance, the collaboration graph of
movie actors can be viewed as a set of actors (vertices of type 1) and a set
of films (vertices of type 2) with links between a film and an actor when the
actor appeared in the film. Such graphs are said to be bipartite. In a bipartite
graph, there exist no edges connecting vertices of the same type.

C
Carrying capacity. The carrying capacity is the maximum number
of individuals that the environment can support.

Catastrophe theory. Catastrophe theory was founded by the
French mathematician René Thom in the 1960s. It is a branch of bifurca-
tion theory that studies abrupt changes associated with smooth modifications
of control parameters. Many applications of the theory have often been criti-
cized, but René Thom received the Fields Medal in 1958. There exist different
types of catastrophes (refer to
http://en.wikipedia.org/wiki/Catastrophe theory.

Cellular automaton. A cellular automaton (plural: cellular au-
tomata) consists of a grid of cells, each cell being in one of a set of finite states.
The grid being in any finite dimension. Each cell is associated with a neigh-
borhood which is a set of neighboring cells. For instance, in a two-dimensional
cellular automaton whose grid consist of a doubly periodic square array, the
neighborhood of a cell could be either the four cells located at distance one
from the cell (the distance between two cells is the number of steps to go from
one cell to another cell where authorized unit steps are those to go from one
cell to a neighboring one, if, and only if these two cells have a side in common)
or it could be all the cells which are at distance less than or equal to 2 (on a
square grid, this neighborhood consists of 8 cells). The states of all the cells
evolve according to an evolution rule. A cellular automaton evolution rule is
such that the state of each cell at time t+1 is a function of the state of that cell
and the states of all the cells belonging to its neighborhood. For instance, in
the case of a one-dimensional cellular automaton, all the cells are aligned on a
straight line and we could consider the simplest neighborhood of a cell which
consists of only the two adjacent cells on either side of it. If the set of states
is the set {0, 1}, the cellular automaton is said to be elementary. Note that
since in this case the evolution rule depends upon three variables (the states
of the cell and of its two neighboring cells), and since these three variables can
each takes only two value, the triplet of cells can be only in 8 different con-
figurations: {(0,0,0),(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}.
The evolution rule of an elementary cellular automaton, therefore a function
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from the set of the 8 triplets to the set {0,1}. It exists therefore only 28 = 256
different elementary cellular automaton evolution rules. For example, a rule
could be written

(0, 0, 0)→ 0, (0, 0, 1)→ 0, (0, 1, 0)→ 0, (0, 1, 1)→ 1,
(1, 0, 0)→ 1, (1, 0, 1)→ 1, (1, 1, 0)→ 0, (1, 1, 1)→ 1.

Following Stephen Wolfram, a code number may be associated with each
cellular automaton rule. If the space of states is {0, 1}, this code number is
the decimal value of the binary sequence of images. That is, in our example,
the sequence of images being (1,0,1,1,1,0,0,0), the code number of the rule is
184 since 10111000 is the base 2 representation of 184 (27+25+24+23 = 184).
Code numbers can be defined for all one-dimensional cellular automata and
all state spaces (see Page 319).

Chaotic map. Let S be a set. The mapping f : S → S is said to be
chaotic on S if

1. f has sensitive dependence on initial conditions,
2. f is topologically transitive,
3. f has periodic points that are dense in S.

This definition is due to Robert Devaney.

Characteristic path length of a network. The charac-
teristic path length L of a network is the average shortest path length between
two randomly selected vertices. The characteristic length takes its minimum
value of L = 1 in the case of a complete graph.

Clustering coefficient of a network. The clustering coeffi-
cient C of a network is the conditional probability that two randomly selected
vertices are connected given that they are both connected to a common ver-
tex. That is, if x is a given vertex and d(x) the number of other vertices linked
to x (i.e., the degree of x), since these d(x) vertices may be connected together
by at most 1

2 d(x)
(
d(x)− 1

)
edges, the clustering coefficient Cx of vertex x is

the fraction of this maximum number of edges present in the actual network,
and the clustering coefficient C of the network is the average of the clustering
coefficients of all vertices. The clustering coefficient takes its maximum value
C = 1 in the case of a complete graph.

Collatz problem. Also known as the Collatz conjecture, this prob-
lem, posed in 1937, is very simple to state but is still unsolved. It is the
so-called 3x+1 problem which asserts that, starting from any positive integer
n, repeated iteration of the function f defined by

f(n) =

{
1
2 n, if n is even,
1
2 (3n+ 1), if n is odd,

always returns 1.
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Complex system. A complex system consists of a large number of
connected agents that, as a whole, exhibits a coordinated behavior without
any centralized control. That is, a complex system exhibits properties, called
emergent properties, that do not obviously follow from the properties of the
individual agents. A typical example of complex system is an ant colony.

Computer simulation. A computer simulation is an attempt to
model a system on a computer so that it can be studied to see how it works.
Changing the values of the parameters that characterize the system, we can
predict the system behavior. According to John Maynard Smith, “whereas
a good simulation should include as much detail as possible, a good model
should include as little as possible.” A computer simulation is also used as a
substitute when the mathematical model of a system cannot be solved exactly.
The utility of computer simulations lies mainly in analyzing particular cases.

Conjugacy of maps. Two maps f and g defined on J ⊆ R
n are

said to be conjugate if there exists a homeomorphism h such that

h ◦ f = g ◦ h or h ◦ f ◦ h−1 = g.

Conjugacy of logistic f4 and tent T2 maps. The logistic
map f4 and the binary tent map T2, defined on the interval [0, 1] by

f4(x) = 4x(1− x) and T2(x) =

{
2x, if 0 ≤ x < 1

2 ,

2− 2x, if 1
2 ≤ x ≤ 1,

are conjugate. This result can be established verifying that the function h :
x �→ sin2(π2 x) is a conjugacy, that is

h ◦ f4 = T2 ◦ h.
Contracting map. A map f : S → S is said to be contracting if
there exists a positive real λ < 1 such that, for any pair (x,y) ∈ S × S,

d
(
f(x), f(y)

) ≤ λd(x,y).

Contracting principle theorem. The contracting principle
theorem states that if f : S → S is a contracting map defined on a complete
metric space, then the sequence of iterates (f t(x))t∈N converges exponentially
to the unique fixed point x∗ of f .

D
Degree of a vertex. The degree d(x) of vertex x is the number of
vertices adjacent to x. In the case of a directed graph, we have to distinguish
the in-degree din(x) and the out-degree dout(x) of a vertex x, which represent,
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respectively, the number of incoming and outgoing edges. A graph is said to
be regular if all vertices have the same degree. A vertex of degree zero is said
to be isolated. If p is the probability that there exists an edge between two
specific vertices, the probability that a specific vertex x has a degree d(x) = m
is P

(
d(x) = m

)
=
(
N−1
m

)
pm(1 − p)N−1−m. In most applications, p is small

and N is large, so, in the limit p → 0, N → ∞, and pN = λ, we find that
for both uniform and binomial random graphs, the vertex degree probability
distribution is Poisson: (∀x) P

(
d(x) = m

)
= e−λ λ

m

m ! .

Diameter of a graph. The diameter of a graph is the greatest path
length between any two vertices of the graph.

Diffeomorphism. Given two manifolds M1 and M2, a bijective map
f from M1 to M2 is a diffeomorphism if both f and its inverse f−1 are
differentiable.

Diffusion equation. The diffusion equation is the partial differential
equation:

∂f

∂t
= D

∂2f

∂x2
.

It was originally derived by the German physiologist Adolf Eugen Fick in
1855 who also developed successful contact lenses in 1888 to correct irregular
astigmatism.

Dirac delta function. The Dirac delta is a mathematical construct
introduced by theoretical physicist Paul Dirac. Originally, it was defined as
equal to zero everywhere except at the origin where it is equal to infinity and
satisfying the relation ∫

R

δ(x) dx = 1.

Since a function almost everywhere equal to zero is equal to zero, this def-
inition is unacceptable for a function. Usually, in physics books, the fol-
lowing properties are added. If f is a function is defined at a ∈ R, then∫

R
δ(x− a)f(x) = f(a). Such a property is also mathematically unacceptable,

and the correct way to define such an object is either to consider that delta is
a measure, or to follow Laurent Schwartz to define δ as a distribution. If φ is
a C∞ function with compact support defined on R, then a Schwartz distribu-
tion is a linear functional on the space of all test functions (that is, the space
of all the functions having the same properties as φ) such that

δ(φ) = φ(0).

All Schwartz distributions are differentiable, and it can be shown that δ is the
derivative of the Heaviside step function H : x �→ H(x), which is equal to 0 for
x < 0 and to 1 for x > 0. It is, therefore, discontinuous at the origin. For more
details on Schwartz distributions, the reader may consult [396–398]. Laurent
Schwartz (1915–2002) received a long list of prizes, medals, and honors. In
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1950, he received the Fields Medal from the Danish mathematician Harald
Bohr (1887–1951), who was the brother of Niels Bohr, and described the orig-
inal Schwartz article on distribution theory as a paper which certainly will
stand as one of the classical mathematical papers of our times. Incidentally,
Laurent Schwartz was an outspoken intellectual who, in particular, encoun-
tered serious problems to enter the United states to receive his Fields Medal,
because of his sympathy for trotskyism.

Dulac criterion. Let Ω be a simply connected subset of R
2 and D :

Ω → R a C1 function. If the function

x �→ ∇DX(x) =
∂DX1

∂x1
+
∂DX2

∂x2

has a constant sign and is not identically zero in Ω, then the two-dimensional
system ẋ = X(x) has no periodic orbit lying entirely in Ω.
The function D is called a Dulac function. If D(x1, x2) = 1, the theorem is
referred to as the Bendixson criterion.

Dynamical system. A dynamical system is essentially a set of equa-
tions whose solution describes the evolution, as a function of time, of the state
of the system. More precisely, the notion of a dynamical system includes the
following ingredients: a phase space S whose elements represent all the possi-
ble states of the system; time t, which may be discrete or continuous; and an
evolution law, that is, a rule that allows to determine of the state at time t
from the knowledge of the states at all previous times. In most cases, knowing
the state at time t0 allows determining the state at any time t > t0.

E
Emergence. Emergent properties are large-scale effects of a system re-
sulting from the (local) interactions between the agents. They are often sur-
prising and hard to predict. The appearance of emergent properties is the
single most distinguishing feature of complex systems.

Equilibrium point. Let X be a vector field defined on an open set
U of R

n; a point x∗ ∈ U is an equilibrium point of the differential equation
ẋ = X(x) if X(x∗) = 0. If x∗ is an equilibrium point, then ϕt(x∗) = x∗ for
all t ∈ R. Thus, x∗ is also called a fixed point of the flow ϕ.

Erdös number. The Hungarian mathematician Paul Erdös (1913–
1996), traveled constantly, collaborated with hundreds of mathematicians, and
wrote more than 1,400 papers. Mathematicians who coauthored a paper with
Erdös have an Erdös number equal to 1, mathematicians who wrote a paper
with a colleague who wrote a paper with Erdös have an Erdös number equal
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to 2, and so forth. It appears that among mathematicians who coauthored
papers, less than 2% have an Erdös number larger than 8.63

F
Feigenbaum number See “logistic map.”

Fixed point. See equilibrium point.

Financial market. A financial market is a system of many interact-
ing agents that can be divided into two broad categories: traders and assets.
Banks, brokerage firms, mutual funds, and individual investors are traders;
stocks, bonds, futures, and options are assets. The interactions between these
agents generate different observables such as transaction prices and traded
volumes. In mathematical finance, a financial market is defined in terms of a
continuous-time Brownian motion stochastic process.

Flow. In dynamical system theory, a flow on a set X is a function ϕt∈R
:

X → X such that ϕ0(x) = x, and ϕt2(ϕt1(x)) = ϕt1+t2(x). The index t in
ϕt is the time.

G
Game of life. The game of life, invented by the British mathematician
John Horton Conway, is played on a two-dimensional square lattice. Each cell
of the lattice is either on (occupied) or off (empty). If a cell is off, it turns on
if exactly three of its eight neighboring cells (four adjacent orthogonally and
four adjacent diagonally) are on. If a cell is on, it stays on if exactly two or
three of its neighboring cells are on (survival), otherwise it turns off (death
from isolation or overpopulation). These rules are applied simultaneously to
all cells. Populations evolving according to these rules exhibit endless unusual
and unexpected changing patterns. The evolution of the game is determined
by its initial state. Once the initial configuration is created no further input
by participants is required.

Graph. A directed graph (or digraph) G consists of a nonempty set of
elements V (G), called vertices, and a subset E(G) of ordered pairs of distinct
elements of V (G), called directed edges or arcs. For example, the collection
of scientific articles published in refereed journals is a directed graph, the
vertices being the articles and the arcs being the links connecting an article
to the papers cited in its list of references. The routes of an airline company is
also a directed graph, but a network of personal acquaintances is an undirected
graph.
63 The Erdös number has been defined in print [185] by the mathematician Casper

Goffman in 1969. When many years later he met Erdös at a meeting in London,
apparently he was not aware of the existence of a number bearing his name.
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Green function. Let L be a linear differential operator. A Green
function G : x �→ G(x, a) at point a is a solution of

LG(x, a) = δ(x− a),

where δ is the so-called Dirac function (see this term), which is not actually
a function but a distribution. Green function essentially in mathematics is to
solve inhomogeneous boundary value problems.

Growing network models. Since many networks, such as the
collaboration network of movie actors and the World Wide Web are con-
tinuously expanding, and new vertices are connected to existing ones with
preferential attachment.

Barabási and Albert proposed different models respecting these conditions.

• In model 1, the authors start at t = 0 with an empty graph of small order
N0. At t = 1, they add a new vertex and a number m ≤ N0 of edges linking
that vertex to m randomly selected different vertices. Then, at all times
t > 1, they add a new vertex and m new edges connecting this vertex to
m existing vertices. To take into account preferential attachment of a new
vertex to highly connected vertices, the probability of connecting the new
vertex to an existing vertex xi is d(xi)

Nt−1∑

j=1

d(xj)

, where d(xi) is the degree of

vertex xi and Nt−1 is the number of already existing vertices.
• In model 2, the authors consider a growing network in which each new

added vertex has an equal probability of connecting to any of the already
existing vertices.

• In model 3, the authors consider a network with a fixed number N of
vertices and no edges; then, at each time-step a randomly selected vertex
is connected to another vertex with preferential attachment.

• In model 4, the growth process incorporates addition of new vertices, ad-
dition of new edges, and rewiring of edges, but, instead of just adding
new vertices linked to existing ones with preferential attachment, at each
time-step, one of the following operations is performed.
1. In model 4, with probability p, add m new edges. That is, randomly

select a vertex as one endpoint of an edge and attach that edge to
another existing vertex with preferential attachment. Repeat this m
times.

2. With a probability q, rewire m edges. That is, randomly select a vertex
xi and an edge {xi, xj}. Replace that edge by a new edge {xi, xj′} with
preferential attachment. Repeat this m times.

3. With a probability 1−p−q, add a new vertex and m new edges linking
the new vertex to m existing vertices with preferential attachment.
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Neither model 2 nor 3 developed a stationary power-law probability distri-
bution.

Dorogovtsev, Mendes, and Samukhin proposed a growing network model
similar to the first Barabási–Albert model but in which a new parameter,
representing the site initial attractiveness, leads to a more general power-
law behavior. In their model, at each time-step, a new vertex and m new
edges are added to the network. Here, the edges are directed and coming out
from nonspecified vertices; that is, they may come from the new vertex, from
already existing vertices, or even from outside of the network. In the Barabási–
Albert model, the new links were all coming out from the new vertex. The
probability that a new edge points to a given vertex xt, added at time t, is
proportional to the attractiveness of this site, defined as Axt = A + d(xt),
where A ≥ 0 is the initial attractiveness of a site (the same for all sites) and
d(xt) denotes, as usual, the degree of vertex xt.

Krapivsky, Rodgers, and Redner proposed a model in which they were able
to reproduce the observed in-degree and out-degree probability distributions
of the World Wide Web as well as find correlations between in-degrees and
out-degrees of each vertex. In their model, the network grows according to
one of the following two processes:

1. With probability p, a new vertex is added to the network and linked to an
existing target vertex, the target vertex being selected with a probability
depending only upon its in-degree.

2. With probability 1−p, a new edge is created between two already existing
vertices. The originating vertex is selected with a probability depending
upon its out-degree and the target vertex with a probability depending
upon its in-degree.

H
Harrison model. Gary Harrison studied a variety of predator–prey
models to find a model giving the best quantitative agreement with Luckin-
bill’s data on Didinium and Paramecium. He proposed the following model
that predicts the outcome of Luckinbill’s experiment qualitatively.

Ḣ = rHH

(
1− H

K

)
− aHPH

b +H
,

Ṗ =
aPPH

b +H
− cP,

This model exhibits a stable limit cycle. Using the reduced variables

h =
H

H∗ , p =
P

P ∗ , τ = rHt, k =
K

H∗ , β =
b

H∗ , γ =
c

r
,

where H∗ and P ∗ are the coordinates of the nontrivial fixed point, the model
can be written
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dh
dτ

= h

(
1− h

k

)
− αhph

β + h
,

dp
dτ

=
αpph

β + h
− γp,

where

αh =
(

1− 1
k

)
(β + 1) and αp = γ(β + 1).

Hartman–Grobman theorem for maps. The Hartman-
Grobman theorem for maps states that if x∗ is a hyperbolic equilibrium point
of the recurrence equation xt+1 = f(xt), the mapping f in the neighborhood
of x∗ is C0-conjugate to the linear mapping Df(x∗) in the neighborhood of
the origin.

Heaps’ law. Heaps’ law is another statistical law in linguistic that can be
formulated VR(n) = Knβ where VR is the subset of size n of the vocabulary
V ; K and β are parameters. In other words, this law describes vocabulary
growth as a function of text size. In English texts, K is usually between 10
and 100, and β between 0.4 and 0.6.

Heteroskedasticity. In statistics, a sequence of random variables
is heteroscedastic, or heteroskedastic, if the random variables have different
variances. If a sequence of random variables has constant variance it is called
homoscedastic.

Homeomorphism. Let X1 andX2 be two topological spaces; if there
exists a continuous bijection h : X1 → X2 and its inverse h−1 is also continu-
ous, h is said to be a homeomorphism. In this case, the two spaces X1 and X2

are said to be homeomorphic. For example, the interval ]0, 1[ and the set of all
reals R are homeomorphic, but a sphere and a torus are not homeomorphic.
In simple words, two spaces are homeomorphic if we can continuously deform
one of them and make it coincide with the other one. A topological space X is
obviously homeomorphic to itself. We can easily verify that homeomorphism
is an equivalence relation.

Hysteresis. A system with hysteresis has memory in the sense that hys-
teresis occurs in materials in which there is a lag between the application and
the removal of a force (or field) and its subsequent effect. The classical example
is the lagging (hysteresis is actually derived from an ancient Greek word mean-
ing, in particular, “lagging behind”) in the values of resulting magnetization
in a magnetic material, such as iron, due to a changing magnetizing force.

I
Income distribution of two-person households.
From the Web site of the bureau of the Census, for households with two
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persons filing jointly, the total income r which is equal to the sum r1 + r2 of
the two individual incomes, has an exponential probability distribution:

p2(r) =
∫ r

0

p(r′)p(r − r′) dr′ =
r

R2
e−r/R.

The individual and family income distributions differ qualitatively. The former
monotonically increases toward low incomes and reaches its maximum at zero.
The latter has a maximum at a finite income rmax = R and vanishes at zero.
That is, for individuals, the most probable income is zero, while, for a family
with two earners, it is equal to R.

Interword spacing. The interword spacing is defined as the word
count between a word and the next occurrence of the same word in a text. For
each word, all interword spacings are counted up and the standard deviation
is computed. It is found that high standard deviation is a better criterion as
a search engine keyword than high frequency. Standard deviations of inter-
word spacings seem also to offer the possibility of identifying texts due to the
same author. If, for a given text, words are ranked according to the value of
the standard deviation of their interword spacing and standard deviation is
plotted versus the logarithm of the rank, it appears that plots corresponding
to different texts by the same author almost coincide. For example, this re-
sult, reported by Berryman, Allison, and Abbot, is in favor of the hypothesis
that the biblical books of Luke and The Acts of the Apostles have a common
author.

Invariant measure. Let f be a map defined on an interval I of R;
a measure μ on I is invariant for f if, for any measurable subset E ⊂ I,
μ(E) = μ(f−1(E)).

J
Julia set. Let f be a holomorphic function defined on the complex plane;
its Julia set consists of all the points z of the complex plane such that an
arbitrarily small perturbation δz of z can cause drastic changes in the sequence
of iterated function values. In other words, the behavior of the function f on
its Julia set is chaotic.

K
Kermack–McKendrick epidemic model. To discuss
the spread of an infection within a population, William Kermack and
Anderson McKendrick divide the population into three disjoint groups.

1. Susceptible individuals are capable of contracting the disease and becom-
ing infective.

2. Infective individuals are capable of transmitting the disease to others.
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3. Removed individuals have had the disease and are either dead, or have
recovered and are permanently immune, or are isolated until recovery and
permanent immunity occur.

This is why this type of model is said to be an SIR epidemic model.
Infection and removal are governed by the following rules.

1. The rate of change in the susceptible population is proportional to the
number of contacts between susceptible and infective individuals, where
the number of contacts is taken to be proportional to the product of the
numbers S and I of, respectively, susceptible and infective individuals.
The model ignores incubation periods.

2. Infective individuals are removed at a rate proportional to their number
I.

3. The total number of individuals S + I + R, where R is the number of
removed individuals, is constant, that is, the model ignores births, deaths
by other causes, immigration, emigration, etc.

Taking into account the rules above yields

Ṡ = −iSI,
İ = iSI − rI,
Ṙ = rI,

where i and r are positive constants representing infection and the re-
moval rates.

L
Limit set of a cellular automaton. In the case of a cellular
automation, the attractor is called the limit set and is defined by

ΛF = lim
t→∞F t(S) =

⋂

t≥0

F t(S),

where F is the global evolution rule and S = QZ is the set of all configurations.

Logistic map. The logistic map is a polynomial mapping of degree 2
popularized in a 1976 paper by the biologist Robert May (Robert McCredie
May, Baron May of Oxford). It reads

xn+1 = rxn(1− xn),

where xn ∈ [0, 1] represents the reduced population at year n, r a positive real
representing the reproduction rate. Although this model looks rather simple,
its behavior as r varies is far from being trivial. In fact, the logistic map
exhibits, as r varies, an infinite sequence of period-doubling bifurcations. If
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(rk)k∈N is the sequence of r-values at which the period-doubling bifurcations
occur, then a 2k-point cycle is stable for rk < r < rk+1. If r∞ denotes the
limit of the sequence (rk)k∈N, the asymptotic behavior of rk is described by

rk ∼ r∞ − a

δk
,

where r∞ ≈ 3.599692, and a and δ are two positive numbers. δ is the Feigen-
baum number equal to 4.6692016091029 . . .. All continuous maps having a
unique maximum xc that close to the maximum xc, behaves as (x − xc)z,
with z > 1 have a similar behavior. The value of the Feigenbaum number δ
depends, however, upon z. For r > r∞, the map is chaotic.

Logistic model. The logistic model is a model of population growth,
originally published for the first time by the Belgian mathematician Pierre-
François Verhulst in 1838. It has been rediscovered in 1920 by the American
biologist Raymond Pearl and the American biostatistician Lowell J. Reed.
The model is represented by the differential equation

dN
dt

= rN

(
1− N

K

)
,

where N(t) is the number of individuals at time t, K the carrying capacity
(see that term), and r the intrinsic rate of increase. The equation can be
integrated exactly. Its solution is

N(t) =
K

1 + CK exp(−rt) ,

where the constant is given by

C =
1

N(0)
− 1
K

;

N(0) is the number of individuals at time t = 0.

Lotka–Volterra model. The American mathematician and bio-
physicist Alfred Lotka and the Italian mathematician Vito Volterra developed
independently the predator–prey model defined by the system of differential
equations

Ḣ = bH − sHP,
Ṗ = −dP + esHP,

where H and P are, respectively, the prey and the predator populations, b is
the birth rate of the prey, d the death rate of the predator, s the searching
efficiency of the predator, and e the efficiency with which extra food is turned
into extra predators. While these equations contain four parameters, we can
reduce this number if we express the model in dimensionless form.
If we put

h =
Hes

d
, p =

Ps

b
, τ =

√
bd t, ρ =

√
b

d
,
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the Lotka-Volterra equations become

dh
dτ

= ρh (1− p),
dp
dτ

= −1
ρ
p (1− h).

These equations contain only one parameter, which makes them much easier
to analyze.

Lyapunov stability. An equilibrium point x∗ of the differential
equation ẋ = X(x) is said to be Lyapunov stable if, for any given positive ε,
there exists a positive δ (which depends on ε only) such that, for all x0 in the
neighborhood of x∗ defined by ‖x0 − x∗‖ < δ, the solution x(t, 0,x0) of the
differential equation above satisfying the initial condition x(0, 0,x0) = x0 is
such that ‖x(t, 0,x0) − x∗‖ < ε for all t > 0. The equilibrium point is said
to be unstable if it is not stable. Lyapunov stability does not imply that, as t
tends to infinity, the point x(t, 0,x0) tends to x∗.

M
Magnitude of an earthquake. The magnitude of an earth-
quake is a number that characterizes its relative size. Magnitude is measured
by the maximum motion recorded by a seismograph. Several scales have been
defined, the most commonly used is the so-called Richter scale, which is a
logarithmic scale used to express the total amount of energy released by the
earthquake. Its values typically fall between 0 and 9. Thus, an increase of
one unit representing a tenfold increase in energy. In collaboration with the
American seismologist and physicist Charles Francis Richter (1900–1985), the
German-born seismologist Beno Gutenberg (1889–1960) developed, in 1932,
the following relation, known as the Richter scale (which should be called
the Gutenberg–Richter scale) between seismic magnitude M and energy E,
logE = 11.8 + 1.5M . It was the Japanese seismologist Kiyoo Wadati’s 1928
paper on earthquakes which led Charles Richter to develop his earthquake
magnitude scale in 1935.

Manifold A n-dimensional manifold is a space such that the neighbor-
hood of each point is homeomorphic to the space R

n. That is, locally a man-
ifold looks like a Euclidean space. For example, a circle is a one-dimensional
manifold.

Model. A model is a simplified mathematical representation of the sys-
tem. Mathematical modeling is the basic tool in any branch of science which
has become sufficiently quantitative. The temporal evolution of a model is
governed by a set of evolution rules used to study its behavior. While in a real
system, many features are likely to be important, not all of them should be
included in the model. Only the few relevant features that are thought to play
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an essential role in the interpretation of the observed phenomena should be
retained. A model has to be distinguished from a simulation since, according
to the British theoretical evolutionary biologist and geneticist John Maynard
Smith, “whereas a good simulation should include as much detail as possible,
a good model should include as little as possible.”

N
Number-conserving cellular automaton rule. A
one-dimensional |Q|-state n-input cellular automaton rule f is number-
conserving if, for all cyclic configurations of length L ≥ n, it satisfies

f(x1, x2, . . . , xn−1, xn) + f(x2, x3, . . . , xn, xn+1) + · · ·
+ f(xL, x1 . . . , xn−2, xn−1) = x1 + x2 + · · ·+ xL.

A one-dimensional |Q|-state n-input cellular automaton rule f is number-
conserving if, and only if, for all (x1, x2, . . . , xn) ∈ Qn, it satisfies

f(x1, x2, . . . , xn) = x1 +
n−1∑

k=1

(
f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, . . . , xn−k+1)

−f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x1, x2, . . . , xn−k)
)
.

For example, cellular automaton rule 184 is number conserving.
If a cellular automaton rule f is number-conserving for all cyclic configura-
tions of length 2n−1, then it is number-conserving for all cyclic configurations
of length L > 2n− 1.
The following corollaries are simple necessary conditions for a cellular automa-
ton rule to be number-conserving.

1. If f is a one-dimensional |Q|-state n-input number-conserving cellular
automaton rule, then,

for all x ∈ Q, f(x, x, . . . , x) = x.

2. If f is a one-dimensional |Q|-state n-input number-conserving cellular
automaton rule, then

∑

(x1,x2,...,xn)∈Qn

f(x1, x2, . . . , xn) =
1
2
(|Q| − 1) |Q|n.

|Q| denotes the number of elements of states space Q. While number-
conserving cellular automaton rules are such conservation is respected since
the first iteration of the these rules, there also exist cellular automation
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rules that become number-conserving not from the beginning but only af-
ter a finite number of time-steps which have been called eventually number-
conserving cellular automaton rules. Although it is undecidable whether a
one-dimensional cellular automaton obeys a given conservation law over its
limit set, it is, however, possible to obtain sufficient conditions to be satisfied
by a one-dimensional cellular automaton to be eventually number-conserving.
While eventually number-conserving cellular automata rules often emulates
number-conserving cellular automata rules, this is not always the case. For
instance, elementary cellular automaton rules 74 and 88 are examples of even-
tually number-conserving cellular automata rules that do not emulate number-
conserving rules. The eventually number-conserving cellular automaton rules
have been defined and studied by Nino Boccara in an article downloadable
from arXiv:cond-mat/0410563v2.

O
Orbit. If ϕt∈R

: XtoX is a flow (see that term), the set Rϕt(x) : {t ∈ R}
is the orbit of x. Note that “orbit” which also called “trajectory” also denotes
the function t �→ ϕt(x). Note that the orbit of a fixed point is the fixed point
itself.
A closed orbit of a flow ϕ is a trajectory that is not a fixed point but is such
that ϕτ (x) = x for some x on the trajectory and a nonzero τ . The smallest
nonzero value of τ , usually denoted by T , is called the period of the orbit.

P
Pareto distribution. Named after the Italian economist Vilfredo
Federico Damaso Pareto (1848–1923), this distribution is a power law proba-
bility distribution.

Path. An alternating sequence (x0, e1, x1, e2, . . . , e�, x�) of vertices xi (i =
0, 1, 2, . . . , �) and edges ej = (xj−1, xj) (j = 1, 2, . . . , �) is a path or a chain of
length � joining vertex x0 to vertex x�. Without ambiguity, a path can also be
represented by a sequence of vertices (x0, x1, . . . , x�). The chemical distance
d(x, y) between two vertices of a graph, or simply distance between vertices
x and y is the smallest length of a path joining x to y.

Phase portrait. The set of all trajectories of a flow is called the phase
portrait.

Poincaré map. Let y ∈ Σ and τ(y) be the least positive time for
which ϕτ(y)(y) ∈ Σ; then the map P : Σ → Σ defined by P(y) = ϕτ(y)(y) is
the Poincaré map (also called the first return map for Σ of the flow ϕt.

Power law. A power law is a relationship between two quantities. If
one quantity is the frequency of an event, and the other is the size of the
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event, then the relationship has a power-law distribution when the frequency
of the event decreases at a greater rate than the size increases. For instance,
an earthquake twice as large is four times as rare. If this pattern holds for
earthquakes of all sizes, then the distribution is said to ”scale.”

R
Random graph. A random graph is a graph in which the edges are
randomly distributed. Networks of intricate structure could be tentatively
modeled by random graphs.

To give a precise definition of a random graph, we have to define a space
whose elements are graphs and a probability measure on that space. For graphs
with a given number N of vertices, there exist two closely related models of
random graphs.

1. For 0 ≤M ≤
(
N

2

)
, there are

((N
2

)

M

)
graphs with exactly M edges. If the

probability of selecting any of them is
((N

2

)

M

)−1

, we define the probability

space G(N,M) of uniform random graphs.
2. Let 0 ≤ p ≤ 1. If the probability of selecting a graph with exactly m

edges in the set of all graphs of order N is pk(1 − p)(
N
2 )−m – that is, if

an edge between a pair of vertices exists independently of the other edges
with a probability p and does not with a probability 1− p – the resulting
probability space is denoted G(N, p), and graphs of this type are called
binomial random graphs.

In a uniform random graph, the probability that there exists an edge between

a given pair of vertices is M/

(
N

2

)
, while the average number of edges of a

binomial random graph is p
(
N

2

)
.

Random walk. A random walk is a mathematical formalization of a
trajectory resulting from a sequence of random steps. Random walk theory has
many applications in diverse fields such as computer science, physics, ecology,
and economics.

Recurrence relation. A recurrence relation is an equation that
defines recursively a sequence of terms. That is, each term of the sequence is
defined as a function of the preceding terms. A typical example is the famous
logistic model described by the recurrence relation

xn+1 = rxn(1− xn),

where the real xn ∈ [0, 1] represents the reduced population at time n. It
was proposed for the first time by the Belgian mathematician Pierre François
Verhulst in 1838.
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S
S&P 500 index. The S&P 500 index is a free-float capitalization-
weighted index (A capitalization-weighted index is an index whose compo-
nents are weighted according to the total market value of their outstanding
shares where by outstanding shares is meant the stock currently held by in-
vestors, including restricted shares owned by the company’s officers and insid-
ers, as well as those held by the public. Shares that have been repurchased by
the company are not considered outstanding stock.) published since 1957 of
the prices of 500 large capitalization common stocks (common stock is a form
of corporate equity ownership) actively traded in the United States. After the
Dow Jones Industrial Average, the S&P 500 is the most widely followed index
of large-capitalization American stocks. The list of the 500 companies can be
found at http://en.wikipedia.org/wiki/List of S%26P 500 companies.

Šarkovskii order relation. Among all positive integers, the
Šarkovskii order relation � is defined by

3 � 5 � 7 � · · · 2 · 3 � 2 · 5 � · · ·� 22 · 3 � 22 · 5 � · · ·
� 23 · 3 � 23 · 5 � · · · · · ·� 23 � 22 � 2 � 1.

According to Šarkovskii theorem, this relation indicates which periods imply
which other periods, that is, if n1�n2, a continuous map having a periodic or-
bit of period n1 has also a periodic orbit of period n2. Note that the Šarkovskii
order relation, as all order relation, is transitive, that is n1 � n2 and n2 � n3

imply n1 � n3.

Šarkovskii theorem. Let f : R→ R be a continuous map. If f has
a periodic orbit of period n, then, for all integers k such that n � k, f has
also a periodic orbit of period k, where n� k represents the Šarkovskii order
relation.

Scale-free network. A scale-free network is a network whose degree
distribution follows a power law, at least asymptotically. Many empirically
observed networks are scalefree. In a scale-free network, the power-law vertex
degree probability distribution implies that the majority of vertices have only
a few links.

Self-organization. Self-organization is the ability of a complex sys-
tem to spontaneously exhibit a non-random behavior, usually nonobviously
predictable from the agents properties, without the help of an external con-
troller. In the context of complex systems, self-organization is often a synonym
of emergence.

Site-exchange cellular automaton. Studied by Boccara
and Cheong, site-exchange cellular automata are cellular automata which
evolve according to a rule that consists of the two following subrules:
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1. The first subrule is a probabilistic cellular automaton rule, such as, for
example, a diluted one-dimensional rule f defined by

s(i, t+ 1) = Xf
(
s(i− r�, t), s(i− r� + 1, t), . . . , s(i+ rr , t)

)
,

where f is a one-dimensional deterministic cellular automaton rule with
left and right radii equal, respectively, to r� and rr , and X is a Bernoulli
random variable (whose purpose is to dilute the rule f) such that

P (X = 0) = 1− p and P (X = 1) = p.

When p = 1, the above rule coincides with the deterministic cellular au-
tomaton rule f .

2. The second subrule is a site-exchange rule defined as follows. An occupied
site (i.e., a site whose state value is 1) is selected in random and swapped
with another site (either empty or occupied) also selected in random. The
second site is either a nearest neighbor of the first site (short-range move)
or a more distant site (long-range move). Between the application of the
first subrule at times t and t + 1, this swapping operation is repeated

m × ρ(m, t) × L� times, where m is a positive real number called the
degree of mixing, ρ(t) the density of occupied sites at time t, L the total
number of lattice sites, and the notation 
x� represents the largest integer
less than or equal to x.

This type of new cellular automaton rule has been used, for example, to
build up epidemic model in which the infection by contact and recovery are
modeled by the first two-dimensional probabilistic cellular automaton rules
applied synchronously, whereas the motion of the individuals, which is an
essential factor, is modeled by a sequential site-exchange rule.

Small world phenomenon. The small world phenomenon refers
to the fact that two randomly chosen individuals are connected by only a short
chain of acquaintances. This phenomenon is also expressed as the six-degree
of separation which means that, if an individual is one step away from another
individual he or she knows, then any individual is at most six steps away from
any other individual on Earth. This phenomenon has been investigated by
the social psychologist Stanley Milgram in the late 1960s. In his experiments,
Milgram selected a group of persons from the same city and asked each of these
persons to move a message toward the target person, they did not know, using
only a chain of friends and acquaintances.

It seems, however, that the first proponent of the six degrees of separa-
tion concept was the Hungarian author Frigyes Karinthy (1887–1938) who
mentioned the idea in his 1929 short story entitled Láncszemek (Chains).

StarLogo. StarLogo is an agent-based simulation language developed by
Mitchel Resnick, and others at MIT Media Lab and MIT Teacher Education
Program. Its aim is to help people explore and learn about decentralized sys-
tems and emergent phenomena. It is freeware and can be downloaded from the



Glossary 455

StarLogo Web Page: http://education.mit.edu/starlogo/. In July 2008 a
new version, called StarLogo TNG, is available. Various sample projects can
be found on the Web, such as the project inspired by the behavior of ter-
mites gathering wood chips into piles: Each cell of a 100× 100 square lattice
is either empty or occupied by a wood chip or/and a termite. Each termite
starts wandering randomly. If it bumps into a wood chip, it picks the chip up
and continues to wander randomly. When it bumps into another wood chip,
it finds a nearby empty space and puts its wood chip down. With these sim-
ple rules, the wood chips eventually end up in a single pile. Although rather
simple, this model is representative of a complex system.

Street gang control model. I presented a first version of this
model at a meeting of the Research Police Forum organized at Starved Rock
(IL) by the Police Training Institute of the University of Illinois at Urbana-
Champaign in the early 1990s and a more elaborate version a few weeks later
at the Criminal Justice Authority (Chicago, IL). The paper was written in
collaboration with Jonathan Crane from the Department of Sociology of the
University of Illinois. The dynamics of a gang population N is modeled by

Ṅ = g(N)− p(N),

where g(N) = r(N +N0)
(
1− N

K

)
is the intrinsic growth function, and pN) =

aN ξ

b+N ξ
, where a, b, and ξ are positive constants, the police response function,

which describes the amount of resources the police devote at each level of the
population. Introducing the dimensionless variables

τ = rt, n =
N

K
, α =

a

rK
, β =

b

Kξ
,

the dynamics of the reduced gang population n is modeled by

dn
dτ

= (n+ n0)(1− n)− αnξ

β + nξ
.

The equilibrium points are the solutions to the equation

(n+ n0)(1− n) =
αnξ

β + nξ
.

Depending upon the values of the parameters, there exist one or three equilib-
rium points. Due to the existence of an hysteresis effect, small-scale interven-
tions to reduce gang activity may have no permanent effect. An intervention
may temporarily push gang membership to a slightly lower equilibrium, but
unless the intervention is large enough to push the population all the way
down to the unstable equilibrium, membership will move back up to the high
equilibrium. While this implication is pessimistic, the model does suggest a
strategy that could succeed. If the intervention is large enough to push gang
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membership below the unstable equilibrium, the gang population will revert
to a low equilibrium, and because of the stability of the low equilibrium, the
intervention does not have to be continued once the low level is achieved. Thus,
a short-term but high-intensity intervention might succeed where a long-term,
low-intensity strategy would fail.

System. A system is a set of interacting parts making up a whole.

T
Tent map. The binary tent map T2 is defined on [0, 1] by

T2(x) =

{
2x, if 0 ≤ x < 1

2 ,

2− 2x, if 1
2 ≤ x ≤ 1,

More generally, the tent map with parameter μ is the real-valued function fμ
defined by

fμ(x) = μmin{x, 1− x}.
The name comes from the fact that the graph of fμ has the shape of a tent.
According to the value of the parameter μ, the tent map exhibits a variety of
dynamical behavior.

1. If μ < 1, the point x∗ = 0 is an attractive fixed point of the system for all
initial values of x.

2. If μ = 1, all values of x ≤ 0.5 are fixed points of the system.
3. If μ > 1, the system has two unstable fixed points, x∗1 = 0, and x∗2 =
μ/(μ+ 1).

4. If 1 < μ <
√

2, the system maps a set of intervals between μ− μ2/2 and
μ/2 to themselves.

5. If μ >
√

2, all the intervals mentioned above merge into the interval from
μ− μ2/2 to μ/2.

6. If μ < 2 the interval [μ−μ2/2, μ/2] contains both periodic and nonperiodic
points, but all the orbits are unstable.

7. If μ > 2, the map’s Julia set becomes disconnected, and breaks up into
a Cantor set within the interval [0, 1]. In the particular case μ = 3, the
Julia set coincides with the triadic Cantor set.

Trajectory See orbit.

W
World Wide Web. The World Wide Web is a huge continuously
growing network whose order is larger than one billion. The vertices of this
network are HTML documents called Web pages, and the edges are the hyper-
links pointing from one document to another. Since the Web has directed links,
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we have to distinguish the in-degree din(x) and the out-degree. In a study of
a subset of the Web (the nd.edu domain) containing 325,729 documents and
1,469,680 links, Albert, Jeong, and Barabási found that both vertex in-degree
and out-degree probability distributions have power-law tails extending over
about 4 orders of magnitude. P (dout = k) ∼ k−γout , and P (din = k) ∼ k−γin,
with γout = 2.45 and γin = 2.1. As pointed out by the authors, this result
shows that, while the owner of a Web page has complete freedom in choosing
the number of links and the addresses to which they point, the overall system
obeys scaling laws characteristic of self-organized systems. Despite its huge
size, the authors of the study found that the World Wide Web is a highly
connected graph: two randomly chosen documents are, on average, 19 clicks
away from each other. More precisely, they showed that the average distance
between any two documents is given by 0.35 + 2.06 logN , where N is the
total number of documents. This logarithmic dependence shows that an “in-
telligent” agent should be able to find in a short time the information it is
looking for by navigating the Web.

Z
Zipf’s law. Analyzing word frequency in different natural languages,
George Kingsley Zipf discovered in 1935 that the frequency f of a word is
inversely proportional to its rank, where a word of rank r is the rth word in
the list of all words ordered with decreasing frequency.
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137. Drăgulescu A. A. and Yakovenko V. M., Exponential and Power-Law
Probability Distributions of Wealth and Income in the United Kingdom and
the United States, Physica A 299 213–221 (2001)

138. Drossel B. and Schwabl F., Self-organized Critical Forest-Fire Model, Phys-
ical Review Letters 69 1629–1632 (1992)

139. Dubois M. A., Favier C., and Sabatier P., Mathematical Modelling of the
Rift Valley Fever in Senegal, in Simulation and Industry 2001, pp. 530–531,
Norbert Giambiasi and Claudia Frydman (editors) (Ghent: SCS Europe Bvba
2001)

140. Dulac M. H., Sur les cycles limites, Bulletin de la Société Mathématique de
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159. Ferrer i Cancho R. and Solé R. V., Two Regimes in the Frequency of Words
and the Origins of Complex Lexicons, Journal of Quantitative Linguistics 8
165–173 (2001)
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260. Latané B., The Psychology of Social Impact, American Psychologist 36 343–
356 (1981)

261. Lang S., Undergraduate Analysis (Heidelberg: Springer 1983)
262. Leach D., Re-Evaluation of the Logistic Curve for Human Population, Journal

of the Royal Statistical Society. Series A 144 94–103 (1981)
263. Leijenhorst D. C. van and Welde Th. P. van der, A formal derivation of

Heaps’ Law, Information Sciences 170 263–272 (2005)
264. Leslie P. H., Some Further Notes on the Use of Matrices in Population Math-

ematics, Biometrika 35 213–245 (1948)
265. Levins R, The strategy of model building in population biology, American Sci-

entist 54 421–431 (1966)
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Gauthier-Villars 1954)
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Journal de Mathématiques, 3ème série 7 375–422 (1881), and 8 251–296 (1882).
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formation de Fourier et applications mathḿatiques et physiques. Annales de
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Hethcote–York, 60

equilibrium point, 56
equivalence relation, 63
Erdös, 327

number, 327

ergodic map, 183, 186
ergodic theory, 183
error and attack tolerance, 345
Euler Γ function, 389

event, 379
evolution law, 11, 15
evolution operator, 247, 248
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component, 329
connected, 329
cycle, 329
degree of a vertex, 329
diameter, 333
directed, 294
directed edge, 327
distance between two vertices, 329
empty, 328
giant component, 327, 332, 354
in-degree of a vertex, 329, 340, 342,

347–349
isolated vertex, 329
isomorphism, 328
link, 327
neighborhood of a vertex, 328
order, 328
out-degree of a vertex, 329, 340, 342,

343, 347, 348
path, 329
phase transition, 332
random, 331

binomial, 331
characteristic path length, 333
clustering coefficient, 333
diameter, 333
uniform, 331
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size, 328
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tree, 329
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Hénon map, 200
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Harrison, Gary W., 34
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Holling, C. S., 33
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host-parasitoid
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Kermack–McKendrick threshold
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Laurel, Stan, 327
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linear

differential equation, 70
function, 69, 133
part, 69, 133
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Lorenz, E. N., 172, 173
Lorenz, E. N., 202
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Lotka, Alfred James, 26
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convergence in probability, 395
discrete, 380
exponential, 415
Gaussian, 382–388
kurtosis, 384
kurtosis excess, 384, 401, 416, 426,

429
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Davidsen–Ebel–Bornholdt, 349–350

highly connected extra vertex, 339
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Watts–Strogatz, 335–338
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social networks, 3
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source, 71
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space average, 183, 186
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spatial segregation model, 278–281
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Lyapunov, 57, 130
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two-dimensional linear flows, 67
two-lane car traffic flow model, 300, 307
two-species competition model, 114

U -sequences, 155
unfolding, 97
unimodal map, 152, 154
universality, 152–156, 200, 260, 268,

346, 399, 402
universality class, 237, 257
unstable, 57, 123
unstable manifold, 69, 72

van der Pol oscillator, 74
van der Pol, Balthasar, 12
variational principle, 230, 231
vector field, 54
velocity configuration, 226
velocity probability distribution, 246
velocity rule, 227
Verhulst, Pierre François, 7
volatility, 398
Volterra, Vito, 26
voting, 403

Watts, D. J., 335, 337, 338, 344, 346
Web pages, 340
Whittaker, J. V., 176
word network, 377
World Wide Web, 3, 340, 345, 347, 349

York, J. A., 181, 186

Zipf’s law, 375


	Modeling Complex Systems
	Preface of the First Edition
	Preface of the Second Edition
	Contents
	Notations
	1 Introduction
	2 How to Build Up a Model
	3 Differential Equations
	4 Recurrence Equations
	5 Chaos
	6 Spatial Models
	7 Networks
	8 Power-Law Distributions
	Glossary
	References
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




