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Preface

The spread of new Data Center facilities around the world is an accompanying phe-
nomenon of the twenty-first century always-on-connected-everywhere lifestyle. New
Data Centers are being opened up both in Iceland and in urban conglomerations like
Frankfurt in Germany and New York in the USA. Legacy Data Centers are being
enlarged and continually updated with new equipment and management frameworks.
Globally, this evolution results in an ever-increasing energy consumption of Data
Centers, stipulating climate change and human impact on the earth’s surface. The
concept of energy efficiency in Data Centers that only a few years ago was restricted to
enhancing IT equipment and cooling, is today addressed to a variety of system level
technologies and associated services that will improve energy and environmental
performance. The attention is furthermore focused on software running in Data Centers
and the way that workload is being processed. However, as power consumers Data
Centers additionally need to be viewed as part of a greater system. This applies for
instance to the role Data Centers play in the context of Smart Cities. Data Centers form
an important part of cities and play a leading role as an enabler of city services, but they
are also huge power consumers. This pertains also to Data Centers as major players in
the power grid. Reducing the carbon footprint of Data Centers worldwide is therefore a
huge challenge considering the pressure of rocketing data amounts. However, prom-
ising starting points can be found both in academic and commercial research projects,
as the International Workshop on Energy Efficient Data Centers E2DC 2014 was able
to show once again. For the third time, researchers from around the world met in order
to commonly advance knowledge and experience of reducing Data Center energy and
power consumption and aligning Data Center power profiles to the availability of
renewable power resources or constraints from the power grid. The workshop was
collocated with the ACM SIGCOMM e-Energy 2014 conference on June 10, 2014 in
Cambridge, UK and organized by the EU FP7 project DC4Cities1.

These proceedings of the workshop give an account on high quality papers from a
huge range of relevant technologies within Data Centers as well as regarding the
interaction of a Data Center with its environment aimed at saving energy and inte-
grating renewable energy sources.

The first part of the proceedings contains four papers devoted to energy optimization
algorithms and models. Yi and Singh proposed a greedy algorithm capable to find a
near optimal flow assignment for large-scale Data Center networks. The suggested
approach of traffic merging can reduce energy consumption of active switches. With
very light load, this kind of traffic merging can save 20–40% energy cost compared to
the well-established elastic tree approach. Kuehn introduced a novel method to reduce
task graphs with generally distributed task processing times to a single virtual job
processing time. Looking at a very different problem, i.e., the challenge of dealing with

1 FP7 STREP # 609304, www.dc4cities.eu.

http://www.dc4cities.eu


frequent blackouts from an unstable power grid, Al-Salim et al. proposed a cyclic
blackout mitigation through shifting of HVAC loads by means of queuing optimiza-
tion. Finally, in a work by Postema and Haverkort a set of stochastic petri net models
was applied to the analysis of trade-offs between performance and power consumption
of Data Center. This modeling approach is meant to support decisions in the early
design stage of a Data Center.

The second part of the proceedings contains four papers focused on the future role of
Data Centers in Europe. In this session Anghel et al. presented the European project
GEYSER. This project is aimed at integrating Data Centers into Smart Grids and Smart
Cities and its scope is to realize an optimized intelligent pervasive sensing and mon-
itoring infrastructure. Gribaudo et al. in their paper proposed an analysis of the
influence of application deployment on energy consumption based on the European
project ECO2Clouds. The authors investigated different ways to deploy an application
in clouds and analyzed simultaneously energy consumption and system performances
for each deployment configuration. In their paper “Minimization of Costs and Energy
Consumption in Data Centers by a Workload Based Capacity Management” Da Costa
et al. proposed a holistic view to Data Center modeling including workloads and
cooling. They introduced dynamic power capping to Data Center energy management.
Dupont’s objective for Data Center energy management was to give a contribution for
making Data Centers more energy aware with regard to the availability of renewable
energy. To this purpose an energy-aware virtual machines manager based on Constraint
Programming (Plug4Green) was applied.

The third part of the proceedings discusses energy efficiency metrics for Data
Centers. Capozzoli et al. presented a critical review of performance metrics for energy
efficiency in Data Centers aiming to demonstrate the crucial role of thermal manage-
ment for energy saving. Schlitt et al. in their paper suggested new metrics beyond PUE,
capable to consider the adaptability of infrastructure to IT power: the infrastructure
power adaptability (IPA) metric representing the power adaptability of the Data Center
infrastructure in combination with the power variability (PVar).

The workshop also included three additional presentations: an introduction to the
EU projects All4Green by Sonja Klingert (University of Mannheim) and DC4Cities
by Marta Chinnici (ENEA, Italian National Agency for New Technologies, Energy
and Sustainable Economic Development, Italy), as well as a keynote speech by
Ian F. Bitterlin (CTO Emerson Network Power Systems, Visiting Professor at Uni-
versity of Leeds) about the problem of mushrooming data growth which is spurring the
energy growth of the global Data Center industry and can only partly be offset by
technical evolution and innovation.

We would like to thank Ian F. Bitterlin and all authors for their contributions to the
third volume of the E2DC proceeding, and also the reviewers for their effort: they both
helped in selecting the best papers and improving the initial submissions. Also, thank
you to the Session Chairs Hermann de Meer (University of Passau), Jaume Salom
(IREC), and Alfonso Capozzoli (Politecnico di Torino). And we are grateful for an
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interested and interesting audience, who with lively discussions helped in turning the
workshop yet again into a successful event.

Finally, we are grateful for the strong support from the European Commission and
the ICT FP7 All4Green project.

October 2014 Sonja Klingert
Marta Chinnici

Milagros Rey Porto
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Agile Traffic Merging for DCNs

Qing Yi(B) and Suresh Singh

Department of Computer Science, Portland State University,
Portland, OR 97207, USA
{yiq,singh}@cs.pdx.edu

Abstract. Data center networks (DCNs) have been growing in size
and their power consumption is becoming a matter of concern. Many
recent papers, including ElasticTree and CARPO, propose new near-
energy-proportional DCNs, aiming at reducing the power consumption
by dynamically powering off idle network switches and links. In this
paper, we examine the power optimization model for DCNs, and present
a scalable heuristic algorithm that finds a near-optimal subset of net-
work switches and links that satisfies a given traffic load and consumes
minimal power. Furthermore, we apply merge networks to each switch in
order to power off the idle interfaces of the active switches, thus further
reducing the energy consumption of active switches and achieving greater
energy savings than ElasticTree. We finish by simulating large-scale fat-
tree DCNs and comparing the energy cost of our techniques versus the
ElasticTree method. The results demonstrate that our solution is more
energy efficient.

Keywords: Data center · Routing · Merging · Fat-tree

1 Introduction

Data center networks (DCNs) are designed to support high communication band-
width between servers. However, since many data centers have light loading for
significant lengths of time or localized loading, large parts of these networks
remain under-utilized. Networking equipment continues to consume energy even
when sitting idle, and therefore contributes significantly to the overall operating
costs of the data center over time. Two notable approaches have been studied
to address this problem. In ElasticTree [12], the network forces traffic to the
leftmost switches in a fat-tree topology to allow powering off unused switches.
An orthogonal approach [16] replaces larger switches with many smaller ones in
a fat-tree DCN to enable better packing of traffic into fewer switches compared
with ElasticTree, hence achieving greater energy savings. Additionally, there are
other approaches that primarily focus on changing link rate in response to load.

All these approaches achieve the goal of saving energy, but they have not
proved to be able to adapt to changes in loading patterns efficiently. For instance,

This work was funded by the NSF under award No. 1217996.

c© Springer International Publishing Switzerland 2015
S. Klingert et al. (Eds.): E2DC 2014, LNCS 8945, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-15786-3 1



4 Q. Yi and S. Singh

the approach proposed in [16] is static since the switch sizes and topology is fixed
at design time. As a result, the design is only energy efficient for the specific loads
that the network was designed for. Indeed, as shown in the paper, only when
loads are smaller than 30 % is the topology using many small switches more
energy efficient than the one using large switches. ElasticTree is a more adaptive
mechanism for saving energy since it computes routes every second. However,
there is still considerable amount of energy wasted by switches that are powered
on with light traffic on all its interfaces. Indeed, the number of such lightly
loaded switches is significant, and, as a result, the overall energy savings are
sub-optimal.

Pod 1 Pod 2

k/2 edge
switches

k/2 aggregation
switches

k2/4 core switches

k  pods

1 2 k/2 k/2+1 k2/4

k/2 servers

Fig. 1. Fat-tree model

To explain the deficiency of the prior approaches as well as to motivate our
contribution, we consider a 3-layer fat-tree DCN shown in Fig. 1. The fat-tree
network is divided into k pods, each of which has two layers of switches. The
bottom layer of k/2 switches are called edge switches, while the upper layer of
k/2 switches are called aggregation switches. k/2 servers are attached to each
edge switch and each edge switch is connected to each of the aggregation switches
in the same pod. The leftmost aggregation switch in each pod is connected to
the first k/2 core switches, and so on. Thus there are k2/4 core switches in total.

In previous approaches such as ElasticTree, the k2/2 edge switches are always
fully powered on as they are connected to servers. Although link rate adaptation
at low loads will reduce energy consumption, the reduction is only a very small
fraction of the interface energy cost. At the aggregation layer, switches that
are powered on in ElasticTree do not fully load their interfaces (facing the edge
switches) because each interface is connected to an edge switch. Even if the edge
switch has very little traffic going to the aggregation switch, the link is fully
powered on but very lightly loaded. Our contribution in this paper is to enable
powering off a subset of interfaces in active switches. This is accomplished by
merging traffic carefully.
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1.1 Our Approach: Merging

k/2 x k/2 Merge

k/2 x k/2 Merge

k port edge switch

k/2 links 

k/2 links 

k/2 links to k/2 servers 

k/2 links to k/2 aggregation switches

Fig. 2. Merge networks
applied to a switch

Consider the case of an edge switch connected to k/2
servers, each of which offers a load of λ (expressed
as a fraction of link rate). Then the total traffic to
this switch from the servers is kλ/2. If k = 8, then
for λ ≤ 0.25, one switch interface will suffice to han-
dle the traffic from all four servers. In other words,
if there was a way to merge the traffic from the four
servers, we could potentially power off three of the four
switch interfaces connected to the servers. In a previous
paper [14], we provided a design of a hardware device
called merge network. Rather than repeating that dis-
cussion here, we provide a functional model of what
such a network does, and then use it in the remainder
of this paper. Figure 2 shows a k

2 × k
2 merge network

connected to k/2 servers on one side and to the k/2
ports of an edge switch on the other side.

1. The merge network is a fully analog device with no transceivers and, as a
result, its power consumption is below one watt. The merge network can be
visualized as a train switching station where trains are re-routed by switching
the tracks (rather than store-and-forward).

2. Consider the uplink from the servers to the merge network. All traffic coming
into the merge network is output on the leftmost m ≤ k/2 links connected
to the m leftmost interfaces of the switch, where m = �kλ/2� (assuming a
normalized unit capacity for links). This is accomplished internally by sensing
packets on links and automatically redirecting them to the leftmost output
from the merge network that is free.

3. On the downlink to the servers, traffic from the switch to the k/2 servers is
sent out along the leftmost m ≤ k/2 switch interfaces to the merge network.
The packets are then sent out along the k/2 links attached to the servers from
the output of the merge network. The manner in which this is accomplished
is described in [14] (note that the challenge is to correctly route the packets
flowing through the merge network to the appropriate destinations).

To apply merge networks to a fat-tree network, we add two k
2 × k

2 merge networks
to each edge switch as shown in Fig. 2. The connections are similar for each
aggregation switch. For the core switches, we connect a k × k merge network.

1.2 Contributions and Paper Organization

In this paper, we revisit the problem of reducing energy consumption in fat-tree
DCNs by attaching merge networks to each switch. In addition to the savings
we obtain by forcing traffic to the left as in ElasticTree, we achieve significant
additional savings by powering off unused interfaces in active switches which is
made possible by merge networks.
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The remainder of the paper is organized as follows. In the next section, we
present an optimization model for computing routes with the goal of minimizing
energy consumption. This model is different from those developed in previous
papers because we also consider merge networks and our minimization function
includes the number of active interfaces as a parameter. In Sect. 3, we present an
algorithm that computes routes every second based on traffic load. The results
of the optimization are compared against the simulated algorithm for a variety
of loading scenarios, which show good agreement between the two. Finally, in
Sect. 4, we present the results of simulating more realistic larger fat-tree net-
works and analyze the energy savings obtained when using merge networks.
Section 5 presents related work and Sect. 6 summarizes the main contributions
and future work.

2 Minimizing Energy Consumption

To compute the minimal power required by a DCN, we formulate a power model
for all network elements including switches and links. A network G(V,E) is
given, where V is the set of nodes in the network and E is the set of links. We
consider both the end hosts and the switches as network nodes and thus we have
V = V1 + V2, where V1 is the set of end hosts and V2 is the set of switches.
Link (u, v) ∈ E connects node u and node v (u, v ∈ V ). Assuming each switch
consumes power Ps and each link consumes power Pl, the total power consumed
by the entire network can be expressed as

Ptotal =
1
2

∑

u∈V2

ku × Pl + n × Ps +
ε

2
×

∑

u∈V,w∈Vu

fu,w (1)

where n is the number of active switches and ku is the number of active interfaces
of switch u. Vu is the set of nodes connecting to node u. ε is the dynamic
energy consumption factor representing the power consumption per unit data
transmitted through a link. fu,v is amount of traffic flow assigned to link (u, v).
We use binary variables yu and xu,v to represent the power state of node u and
link (u, v), respectively. For instance, if xu,v = 1, link (u, v) is active; if it is 0,
link (u, v) is idle and can be powered off. Therefore, ku and n can be written as

n =
∑

u∈V2

yu (2)

∀u ∈ V2, ku =
∑

w∈Vu

xu,w (3)

2.1 Optimization Model

Based on the power model defined above, we define an optimization problem
in order to find the optimal flow assignment that involves a minimum subset
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of active network elements, (n, ku), with the minimal total power consumption
Ptotal for a given network topology and a traffic load. This optimization problem
is a Mixed Integer linear Programming problem (MIP), and is an extension
to the capacitated Minimum-Cost MultiCommodity Flow problem (MCMCF).
A classical MCMCF problem is subject to three constraints - capacity constraint,
flow conservation and demand satisfaction, which are written as

∀(u, v) ∈ E, fu,v ≤ cxu,v (4)

∀u, u �∈ S and u �∈ D,
∑

w∈Vu

fu,w −
∑

w∈Vu

fw,u = 0 (5)

⎧
⎪⎨

⎪⎩

∀s ∈ S,
∑

w∈Vs

gis,w − ∑
w∈Vs

giw,s = tis,d

∀d ∈ D,
∑

w∈Vd

giw,d − ∑
w∈Vd

gid,w = tis,d
(6)

where c is the capacity for each link. S is the set of source nodes and D is the
set of destination nodes. Vs and Vd is the set of switches that connect to source
node s and sink node d, respectively. fu,w is the total flow assigned on link (u,w)
and fu,w =

∑
i

giu,w, where giu,v represents the flow of the ith traffic demand tis,d

routed through link (u, v).
Capacity constraint (4) takes account of maximum link utilization and ensu-

res that the total traffic flow assigned to a link does not surpass the link capac-
ity. The capacity constraint also forces flows to go through active links only. For
example, inactive link (u, v) has xu,v = 0, which causes fu,v = 0 meaning no
traffic flow is assigned to this link. Flow conservation (5) ensures that traffic
entering an intermediate node equals to traffic exiting from it. Demand satisfac-
tion (6) describes that the overall traffic departing a source node or entering a
destination node equals to the traffic demand.

Besides these three constraints, the bidirectional link rule ensures that both
directions of a link are powered on if there is a flow assigned to either direction
of the link. The bidirectional link constraint is expressed as

∀(u, v) ∈ E, xu,v = xv,u (7)

Additionally, we include constraints that correlate the power states of switches
and links. For each node u and the connected links (u,w) and (w, u), we have

∀u ∈ V, ∀w ∈ Vu, xu,w ≤ yu and xw,u ≤ yu (8)

∀u ∈ V, yu ≤
∑

w∈Vu

(xu,w + xw,u) (9)

Constraint (8) makes sure that a switch is powered off only when all its connected
links are powered off, and constraint (9) ensures that a switch be powered off
when all its connected links are powered off. Optionally, we can include a non-
splitting constraint as follows to prevent flow splitting:

∀i,∀(u, v) ∈ E, giu,v = ti × riu,v (10)



8 Q. Yi and S. Singh

where riu,v is a binary decision variable that indicates whether the traffic demand
ti is assigned to link (u, v). Constraint (10) ensures that giu,v, the flow assignment
to link (u, v), is either equal to the ith traffic demand ti or equal to zero.

Furthermore, we define heuristic constraints to reduce the problem size. For
example, since a k-ary fat-tree network has 5k2/4 switches and each switch has
at most k active links, we explicitly apply an upper bound and a lower bound to
ku and n as 0 ≤ ku ≤ k and 0 ≤ n ≤ 5

4k2, which can greatly improve convergence
time for the problem.

We implement the power optimization model using CPLEX, which is an
optimization solver for integer programming problems. For a given traffic matrix,
the optimization model outputs the numbers of active switches and links, and
the flow assignment to each link corresponding to every traffic flow demand. Our
model is implemented with both flow-splitting and non-flow-splitting options.

2.2 Energy Savings Due to Traffic Merging

A primary contribution of this paper is to illustrate the additional energy savings
achieved by merge networks when compared with approaches such as ElasticTree.
To quantify this benefit, we run the optimization problem on several different
types of network loadings for a small fat-tree topology of size k = 4. In this
topology, there are 8 edge switches, 8 aggregation switches and 4 core switches.
For each edge switch, there are 2 servers connected for a total of 16 servers in
4 pods. We assume that there is a 2×2 merge network connected to either side of
each edge and aggregation switch and there is a 4 × 4 merge network connected
to each core switch.

Traffic patterns in data centers can vary greatly, and to ensure our results
are widely applicable, we run the optimization algorithm on the following types
of traffic: Random, Stride(n), Staggered(n) [4]. In Random, the source and
destination are randomly selected from among the servers. For Stride(n), the
destination of a flow from server i is server [(i + n) mod 16], where servers are
numbered left to right as 0, 1, · · · , 15. For example, in a k = 4 fat-tree network,
Stride(1) has almost half of the traffic goes between servers connected to the
same edge switch and the other half traffic goes to aggregation and core switches.
On the other hand, Stride(4) sends all traffic between pods, resulting in a larger
number of switches to participate in forwarding traffic. The Staggered traffic
model assigns a probability p1 for traffic going to a server in the same subnet
(i.e., connected to the same edge switch), a probability p2 for traffic going to a
server in the same pod but different subnet, and a probability 1 − p1 − p2 where
the flow is destined to a server in a different pod. By varying these probabilities,
we can generate a large number of different loading patterns.

Figure 3a plots the percentage of active switches for our approach as well
as for ElasticTree for different loading patterns and different loads. As we have
expected, the number of active switches for Stride(1) does not vary with λ. This
is because almost all the traffic goes to the server in the same subnet or in the
same pod and therefore, the active switches required are always the eight edge
switches, one aggregation switch per pod and one core switch. Stride(8) shows
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.5

0.6

0.7

0.8

0.9

1

λ

Random

Stride(1)

Stride(2)

Stride(4)

Stride(8)

Staggered(1)

Staggered(2)

Staggered(3)

(a) Number of active switches

0.1 0.2 0.3 0.4 0.5 0.6 0.7
4

6

8

10

12

14

16

λ

Random

Stride(1)

Stride(2)

Stride(4)

Stride(8)

Staggered(1)

Staggered(2)

Staggered(3)

(b) Total number of active interfaces

Fig. 3. Difference in number of active switches and active interfaces network-wide

the highest number of active switches because all the traffic is inter-pod traffic
and hence more core switches are used.

In order to illustrate the potential benefits of traffic merging, we take a dif-
ference between the total number of active interfaces when using ElasticTree and
using traffic merging with the above optimization. The results, shown in Fig. 3b,
clearly illustrate the benefits of merging. In the case of Stride(1), ElasticTree
uses 12 more interfaces than merging. The reason is that one aggregation switch
is active per pod. In ElasticTree, all the four interfaces to this switch are active
(albeit with very low traffic). In our approach, in contrast, we merge the traffic
using a merge network and use only a single interface of the switch.

The overall energy cost of a switch can be roughly partitioned into the cost
of the chassis and the cost of the interfaces. As described in [8,16], a reasonable
approximation to the cost of a switch is

Switch Cost = C + m log m + m

where m is the number of active switch ports. The constant C accounts for static
costs of a switch such as fan, etc. The second term corresponds to the cost of
the interconnection fabric within the switch, which is a significant contributor
to energy consumption (typically 30% ∼ 40%). This cost scales as m log m for
a switch with m active ports. The last term is the cost contribution from the
active interfaces. This term folds into itself the cost of the line cards that the
interfaces are on. For the purpose of comparing the overall cost reduction of
traffic merging relative to ElasticTree, we set C to 50 % of the maximum switch
cost and express it as

C = mmax log mmax + mmax

where mmax is the number of switch ports. If the traffic load fraction going to a
switch is λ, the merge network will switch the traffic to the leftmost k = �λm�
ports. Thus, the cost of a switch with merge networks is written as
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Traffic Merging Switch Cost = C + k log k + k

Therefore, the fraction of cost savings of traffic merging over ElasticTree is cal-
culated as

Cost Savings =
m log m − k log k + m − k

C + m log m + m

Figure 4 plots the fraction of reduction of network cost using traffic merging over
ElasticTree. It is noteworthy that, for all traffic patterns and across all loads,
the traffic merging reduces the overall energy cost even for a small-sized network
consisting of 20 switches. These savings are more substantial when we consider
realistic DCNs as we do later in this paper.
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Fig. 4. Reduction in total cost when using traffic merging

3 Greedy Flow Assignment

The optimization model can find the optimal flow assignment for a given network
topology and traffic loading. However, since a MCMCF problem is NP-hard, the
optimization problem for a large-sized DCN cannot be solved within a reasonable
time frame. To address this problem, we propose a heuristic greedy algorithm
to find a near-optimal flow assignment.

3.1 Algorithm

Our greedy flow assignment algorithm is based on Dijkstra’s algorithm that
solves the shortest path problem. For a given network topology and a given traffic
flow, our algorithm finds a route between the source node and the destination
node with sufficient bandwidth and the lowest cost. We define the cost of a route
as the sum of the cost of the nodes and links along the route. By carefully defining
the value of the cost of each node and each link, our greedy algorithm finds the
lowest-cost route for each traffic flow incrementally and ultimately obtains the
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Algorithm 1. Flow assignment algorithm

1: function flowAssign(s, d, t)
2: for each vertex v in Graph do
3: dist[v] ← Infinity
4: previous[v] ← nil
5: dist[s] ← 0
6: insert (s, dist[s]) to Q
7: while Q is not empty do
8: u ← first pair in Q
9: remove u from Q

10: if u == d then
11: break
12: for each neighbor v of u do
13: if capacity(u, v) > t then
14: alt ← dist[u]+cost(v)+

cost(u, v)
15: else
16: alt ← Infinity
17: if alt < dist[v] then
18: erase(v, dist[v]) from Q
19: dist[v] ← alt
20: previous[v] ← u
21: insert (v, dist[v]) to Q
22: v ← s
23: while v! = nil do
24: insert v to route
25: v ← previous[v]
26: return route

optimal routing for all the traffic flows that uses the minimum number of switches
and links. The greedy algorithm is described as in Algorithm 1.

Each link in the network has a fixed capacity. We only assign a flow to a link
when there is available capacity in that link. Once a flow is assigned to a link,
the corresponding amount of capacity is subtracted from the available capacity
of the link. The cost(u, v) is a constant value of 2 for all links, which counts each
link along the route, no matter whether it was used previously or not. Therefore,
we will always find the shortest route that involves a minimum number of links.
Cost(v) is the cost of node v and the value is initialized as 1 for all nodes. Once
a node was used for a route once, its cost value will be updated to 0. This will
make sure that a switch that has been used in a previous route has a higher
priority to be reused. As a result, we can minimize the overall number of active
switches. We set higher cost for links than for switches to avoid routing loops.

3.2 Validation of Greedy Algorithm

The greedy algorithm is not optimal but, as we show below, the routes produced
by the algorithm are very close to those produced by solving the optimization
formulation in Sect. 2. We use the same fat-tree topology as in Sect. 2.2 with
k = 4. For a given traffic load, we generate a number of packet traces following
certain DCN traffic patterns [5]. The packet traces in each one-second interval
are organized as a traffic matrix and is fed into the CPLEX optimization model
and the simulated greedy algorithm. We obtain the number of active switches
and active interfaces for the eight traffic patterns and seven traffic loads shown
in Table 1.

The results we get from the simulated greedy algorithm are very close to
those get from the CPLEX optimization model, especially for the lighter loads.
Since the optimization model can only scale to a fat-tree DCN with k = 6, we
use the greedy algorithm to simulate the optimization of a large-scale fat-tree
network in the next part of this paper.
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Table 1. Number of active switches and interfaces from optimization vs. from simulated
greedy algorithm

4 Simulation Results

We simulate a k = 12 fat-tree network which supports 432 servers and 180 12-
port switches. In this network, there are 12 pods and each of which has six edge
switches and six aggregation switches. We assume that each of the core switches
has extra ports to be connected to external Internet through border routers. We
assign 1 Gbps capacity to each link. We experiment with synthetic traffic data
from a traffic generator and real packet traces from a university data center.
Since flow splitting will incur packet reordering cost, which is not a desirable
practice in real data centers, we implement our simulation using non-splitting
flow assignment.

4.1 Synthetic Traffic Data

We generate network traffic following ON/OFF patterns derived from many
production data centers [5,6]. The duration of the ON and OFF periods and the
packet interarrival time follow the lognormal distribution. Like in Sect. 2.2, we
study traffic patterns Random, Stride(n) and Staggered(n). In a k = 12 fat-
tree network, every edge switch is connected to six servers. For Stride(1), flows
sourcing from the first five servers of the edge switch go to servers in the same
subnet, and flows from the sixth server travel to the server in the next subnet
or in the next pod. In contrast, all the flows in Stride(6) go to the neighboring
subnet, and all the traffic in Stride(36) and Stride(216) is inter-pod traffic.
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Table 2. Probabilities of flows going to the same subnet (p1), to other subnets in the
same pod (p2), and to different pods (1 − p1 − p2) for all traffic suites studied.

Traffic Suite p1 p2 1 − p1 − p2 Traffic Suite p1 p2 1 − p1 − p2

Staggered(1) 100% 0 % 0 % Stride(1) 83.3 % 13.9 % 3 %

Staggered(2) 50% 30 % 20 % Stride(6) 0% 83.3 % 16.7 %

Staggered(3) 20% 30 % 50 % Stride(36) 0% 0 % 100 %

Random 1.2 % 7 % 91.8 % Stride(216) 0% 0 % 100 %

For Staggered(n), it has fixed values for p1 and p2 as the probabilities of flow
going to the same subnet and other subnets of the same pod, respectively. Table 2
shows these values for all traffic suites studied.

The load fraction λ offered by each server varied from 0.1 to 0.7. Our simu-
lation outputs the number of active switches (Fig. 5a) and the number of active
interfaces of each switch with varies traffic loads and patterns. In general, the
number of active switches increases with the traffic load. However, both Stride(1)
and Staggered(1) have constant number of active switches and active interfaces.
This is because, for Stride(1), all loads can be satisfied by using a minimum
spanning tree. For Staggered(1), only edge switches are used since all the traffic
flows are local traffic within the same subnet.

Figure 5b illustrates the difference of total numbers of active interfaces of a
DCN using merge networks versus ElasticTree. It shows that more interfaces of
the active switches become idle when the traffic is light, which demonstrates
that traffic merging can save more energy with lighter traffic (Fig. 6). Stride(1)
achieves the most energy savings over ElasticTree (around 42 %) because, for
each active edge switch, the energy consumed by the five idle interfaces is wasted.
Staggered(1) saves 30 % energy consumption since for the entire network, only
half of the interfaces (facing the severs) of the edge switches are used.
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Fig. 5. Number of active switches and active interfaces network-wide for a k = 12
fat-tree network
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ElasticTree provides an energy-efficient solution for DCNs. However, the
drawback of ElasticTree is that, a DCN still consumes a large amount of power
with light load [12]. In contrast, as shown in Fig. 7, our approach reduces energy
consumption when the network is lightly loaded, which demonstrates that traffic
merging achieves better energy proportionality than ElasticTree.

4.2 Empirical Traffic Data

We use packet traces from a university data center published by Benson et al. [5].
This university data center has about 500 servers providing services for campus
users. 60 % of the traffic is for Web services and the rest is for other applications
such as file sharing services. Traffic traces are captured by a sniffer installed at
a randomly selected switch in the data center. Figure 8 illustrates the total load
of the packet traces within 50 min. The overall load is very small for a high-
bandwidth fat-tree topology. We observe that power cost decreases from 30 % to
17 % when applying merge networks compared with ElasticTree (Fig. 9).

5 Related Work

The development of Internet communication and service applications requires
increased bandwidth support and more powerful routing protocols for a DCN.
For the past few years, many new DCN topologies have been proposed, including
fat-tree [4], Clos [7] and flattened butterfly [13]. These hierarchical interconnec-
tion topologies are designed to maximize cross-section bandwidth and optimize
the cost-effect ratio. Alternatively, some server-centric DCN architecture, such
as DCell [10], BCube [9] and CamCube [2], use simple switches and push network
routing to the servers, thus obtaining better scalability and fault-tolerance.
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In general, these proposed network topologies are intended to support increas-
ing number of servers and provide high capacity for bandwidth-hungry services.
However, the rising energy cost of DCNs has attracted the attention of many
researchers. New designs of energy-efficient network devices have been examined.
For example, Abts et al. [1] explore dynamically tuning the link rate according to
traffic intensity to save energy. Inspired by the earlier work of Gupta et al. [11],
other researchers propose energy-proportional DCN topologies through powering
off idle interfaces or devices. For example, Heller et al. proposed ElasticTree [12]
that adapts the network topology to varying traffic loads. CARPO [15] exam-
ines the dynamic topology by consolidating timely-negative-correlated flows into a
smaller set of links and shutting off unused ones. More recently, Adnan and Gupta
propose an online path-consolidation algorithm to right-size network dynamically
[3]. Widiaja et al. [16] compare the energy savings of optimizing fat-tree networks
deployed with different sizes of switches and conclude that, with the same number
of servers, it is more energy efficient to use more smaller-sized switches than using
less large-sized switches when the traffic is highly localized.

Our work complements prior work by utilizing a universal greedy flow assign-
ment algorithm to find the optimal network subset. The greedy bin-packing
algorithm used in ElasticTree leverages the regularity of hierarchical DCNs and
uses left-most heuristics to find the shortest route. Our greedy algorithm can
find flow assignments close to the MIP model, for not just hierarchical network
topologies, but also random or irregular DCN topologies. Furthermore, we apply
merge networks to each switch and scale switch energy cost to the number of
busy interfaces of each switch.

6 Conclusions

This paper addresses the power optimization problem of DCNs. We present a gre-
edy algorithm that is applicable to all types of DCN topologies. We demonstrate
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that this algorithm can find near-optimal flow assignments comparable to solu-
tions achieved from optimization model. In addition, by applying merge networks
to each switch, we further reduce power consumption of active switches. With
very light load, our approach saves 20% ∼ 40% energy cost compared with Elas-
ticTree, depending on the traffic types. Traffic with small number of inter-pod
and inter-subnet flows can benefit even more from traffic merging. In the future,
we will apply merge networks to switches in different ways to explore methods
that further reduce energy consumption of DCNs.
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Abstract. A novel approach is presented for the analysis of parallel processing
of stochastic workload by multi-processor/multi-core processing resources in
data center environments. The method is based on job workload descriptions by
task graphs with generally-distributed task execution times and task scheduling
under consideration of prescribed precedence and synchronization constraints.
For the analytic performance evaluation, task graphs are restricted to the analysis
of directed acyclic graphs which are reduced by stepwise aggregations of tasks.
The reduction allows to aggregate the whole task graph under a given number n
of processing elements to a single virtual job processing time with average value
hv and coefficient of variation cv. By this way, the whole multi-processor system
can be modeled by a queuing system of type GI/G/1 from which the response
time TR and the speedup factor S(n) is derived. Finally, the influence of
the stochastic properties of the workload on the performance and on energy
efficiency of parallel computing will be studied and compared with serial
computing on a multi-processor system modeled by a queuing system of the
type M/G/n.

Keywords: Parallel processing � Task graph � Graph reduction � Queuing
system � Performance evaluation � Energy efficiency

1 Introduction

Parallel processing has received enormous attention in the last 50 years, c.f. funda-
mental presentations in the books as [1–3]. Most of the studies in the early times of
computer science addressed problems of scheduling tasks with given task processing
times to be processed on a single or few processing elements under various scheduling
strategies based on constant processing times, order of arrival, priority classes or
deadlines for the execution. Many results are known from this research on optimum
scheduling with respect to the shortest possible execution duration until completion of a
given workload. For the description of more complex systems with precedence and
synchronization constraints, Petri Nets (PN) [4] have proved as an excellent modeling
methodology to guarantee the correct execution and to detect deadlock situations by the
control of state transitions using places and tokens but were not able to express per-
formance phenomena as a result of the absence of time. This deficiency was later
corrected by the introduction of timed Petri Nets and stochastic Petri Nets (SPN) where
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state transitions were extended by deterministic or stochastic durations. For the
processing of such generalized Petri Nets, powerful tools were developed either for
the simulation or for an analytical evaluation under Markovian process assumptions
[5]. Simultaneously to the developments of scheduling parallel computing as described
before, queuing network theory has progressed extensively within the last 5 decades
which is expressed by the phenomenon of “product-form” queuing networks and
efficient algorithms for their numerical performance evaluation. Queuing networks
allow for modeling of parallelism at large but are severely limited with respect to
synchronization constraints and generalized stochastic arrival and service processes
beyond Markovian assumptions [6]. These deficiencies have partly been overcome by
approximate evaluation methods and powerful computer tools for queuing network
analysis and simulations, see, e.g., [7–9]. Apart from the state-of-the-art reached in
queuing theory and through SPN, main problems remained open as decomposition
methods to reduce complexity in the evaluation and how to apply the results practically
as, e.g., to detect parallelism in the program execution path (at instruction or task level)
or in the data automatically as a basis for scheduling and program execution. More
recent developments in microelectronics and in program languages give rise to a
re-thinking of parallel processing: Through microelectronics powerful multi-core
processors with 16 or 32 cores are integrated on chip-level; multi-processor computer
racks provide thousands of processors within a cloud data center. Developments in
high-level programming languages allow for parallel program constructs which can be
explicitly expressed by the program developer and which support compilation and
scheduling by the operating system, in computing and communication.

In this paper, a novel and practical approach to the evaluation of parallel processing
will be presented which is based on processing jobs described by reducable task
graphs. A task graph models all possible execution paths of a program (computation
job) and can be described by a directed acyclic graph (DAG) with generally-distributed
task execution times, precedence conditions and synchronization constructs for parallel
executable tasks [9, 10]. From the viewpoint of analysis it is important to derive task
graphs automatically, to generate task graphs synthetically and to reduce the com-
plexity by graph reduction methods [11–14]. For the analytic performance analysis of
this paper it is important that the task graph can be reduced stepwise by elementary
aggregations of two tasks at each step. By this approach, it is possible to reduce the
whole task graph for a given number n of processing elements to one “virtual” task
with a corresponding generally-distributed virtual processing time. Thus, the execution
of a specified job stream on a multi-core or multi-processor system can be modeled by
a virtual queuing system of type GI/G/1 where GI represents the job arrival stream with
arrival rate k, G represents the virtual task execution time on the multi-processor
system, and where n ¼ 1 server represents a “virtual processor”. Jobs are served by the
virtual processor in a batch processing mode, i.e., one at a time only, to avoid context
switching overhead and cache splitting in case of simultaneous processing of multiple
jobs in a time-sharing mode. Temporally idle processors are turned in a low-power
sleeping mode to save energy consumption during enforced “slack times” for con-
current processes or idle periods which can be accomplished by dynamic voltage and
frequency scaling (DVFS).
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The remaining part of this paper is structured as follows: In Sect. 2, the problem of
parallel execution of a job is defined by a task graph which is composed by four generic
modeling constructs for serial processing, parallel processing, alternative task and
repeated task executions. The description and reduction of the task graph follows in
principle the modeling approach reported in [12, 14] and is illustrated by an example
graph. Task execution times are described by generally distributed random variables
and their probability density functions, respectively. For numerical analyses the gen-
erally distributed task execution times are represented by a phase-type model with 3
parameters only which allows the adaption to arbitrary mean values and coefficients of
variation. The four generic modeling constructs are described generally through
mathematical operations on random variables by distributions as well as by a two-
moment characterizations. In Sect. 3, the reduction of the whole task graph by stepwise
aggregation of tasks according to the 4 principal modeling constructs is discussed
generally and for the example graph of Sect. 2. Section 4 addresses the performance of
parallel processing in terms of the speed-up factor achieved by parallel processing and
by the job response time by queuing analysis as well as an analysis of the energy
consumption. Both performance and energy consumption are compared for two fun-
damentally different operation modes for multi-processor systems, serial processing of
jobs on one processing element each and parallel processing of jobs on all available
processing elements. The paper concludes by summarizing the current state of the
project and gives an outlook on ongoing further work based on the presented methods.

2 Multi-processor Job Execution

2.1 Multi-processor Queuing Model

In Fig. 1, the considered queuing model is shown consisting of n processing elements
representing processors of a multi-core or a multi-processor system. Jobs arrive

Fig. 1. Principal model of a multi-core/multi-processor processing system for parellel processing
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according to a general stochastic arrival process of type GI (generally- and indepen-
dently-distributed arrivals) at an arrival rate of k jobs/time unit. The model represents,
e.g., the physical resources provided by a data center to a tenant (company) or to a
group of users for a particular service. The model can be considered as a simplified
model for an “Infrastructure as a Service” (IaaS) providing physical resources upon
which a workload is processed defined by a Virtual Machine. The workload accom-
panied with each arrival is defined by a stochastic task graph, see e.g., Fig. 2. Jobs are
processed on the multi-processor model according to the batch mode, e.g., by FIFO
(First-In, First-Out) scheduling sequence and each job uses the n processors exclusively
to avoid program context switching during a job being in execution.

2.2 Task Graph Job Model

Each job is represented by a task graph with stochastic task processing times. A simple
model of a task graph is shown in Fig. 2(a) consisting of altogether 9 different tasks
1, 2, …, 9 and 4 generic task constructs. Terminals 1 and 8 represent the initial and
final points of a job execution. The task graph belongs to the class of Directed Acyclic
Graphs (DAG). Figures 2(b, c, d) represent reduced task graphs of the DAG of Fig. 2(a)
and will be discussed later on in Sect. 3. Any execution path between Terminal 1 and
Terminal 8 is a feasible production for a job execution.

Fig. 2. Example of a task graph and its stepwise redution (a) Original task graph (b, c) Intermediate
reduction steps (d) Results of aggregation
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Figure 3 represents the four generic or principal constructs (task graph elements).
The execution time Ti of a task i will be represented by its cumulative probability

distribution function (DF) Fi tð Þ ¼ PfTi\tg and its probability density function
fi tð Þ ¼ dFi tð Þ=dt, respectively. Individual task execution times Ti of a job are con-
sidered as being statistically independent of each other. The aggregated execution times
T of the four principal task graph elements of Fig. 3, measured between the Terminals 1
and 2, can be mathematically expressed by their PDF f(t) as follows:

(a) Sequential processing of two tasks (concatenation)

f(t) ¼ f1(t)� f2(t) ð1Þ

where the symbol � indicates the mathematical convolution operator

(b) Alternative Split of two tasks (Or-Split)

f tð Þ ¼ q1f1 tð Þ þ 1� q1ð Þf2 tð Þ Or-Split followed by Or-Join; Choiceð Þ ð2Þ

Remark: The OR-Split is the basic function for tree-structured execution paths.

(c) Parallel processing of two tasks with synchronization (Concurrency, And-Split
followed y And-Join)

T ¼ max T1;T2ð Þ: f tð Þ ¼ f1 tð ÞF2 tð Þ þ f2 tð ÞF1 tð Þ ð3aÞ

T ¼ min T1;T2ð Þ: f tð Þ ¼ f1 tð Þ 1� F2 tð Þ½ � þ f2 tð Þ 1� F1 tð Þ½ � ð3bÞ

Remark: The maximum operator is applied if both tasks 1 and 2 have to be completed
before continuation. The minimum operator applies, e.g., for a parallel search.

Fig. 3. Principal task graph elements (a) Sequential processing of two tasks 1 and 2
(b) Alternative split (Or-Split) of two tasks 1 and 2 (c) Parallel processing (Concurrency,
And-Split) of two tasks 1 and 2 with synchronization S (And-Join) (d) Iteration loop for task 1
with parameter q
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(d) Iteration loop for Task 1 (Repetition)

f ðtÞ ¼
X1
i¼0

qið1� qÞ � f1ðtÞ � ½f ðtÞ � . . .� f1ðtÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ifactors

ð4aÞ

for a probabilistic iteration with probability q and

f ðtÞ ¼ f1ðtÞ � ½f1ðtÞ � . . .� f1ðtÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
qfactors

ð4bÞ

for q deterministic iterations

2.3 Generic Task Execution Model

The operations are generally too complex to be programmed for arbitrary PDFs.
Therefore, a generic task execution model will be used which is defined by 3
parameters only, see Fig. 4.

The substitute model of Fig. 4 consists of a series of a deterministic phase TP1 (D)
with duration h1 between Terminals 1 and 2 followed by a degenerated hyperexpo-
nential phase between Terminals 2 and 3 realized by a probabilistic alternative between
a negative-exponentially distributed phase TP2 (M) with mean h2 ¼ 1=e2 chosen with
probability q and a zero-phase chosen with probability (1−q). This model will be
defined by two parameters for each task execution time TP, its mean hP and its coef-
ficient of variation cP:

hP ¼ E TP½ � ð5aÞ

cP2 ¼ VAR TP½ �/E TP½ �2. ð5bÞ

Parameters hP and cP can be arbitrarily prescribed, where 0� cp\1. This model
allows to represent any task with arbitrary mean hP and coefficient of variation cP by a
PDF fP(t) and a DF FP(t), respectively:

Fig. 4. Mixed phase-type model for task excution times
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fP tð Þ ¼ 1� qð Þd t� h1ð Þ þ qe2exp �e2 t� h1½ �ð Þu t� h1ð Þ ð6aÞ

FP tð Þ ¼ 1� qð Þu t� h1ð Þ þ q 1� expð�e2½ ½t� h1 Þ� �u t� h1ð Þ; ð6bÞ

where dðtÞ indicates the impulse function (delta function) and u(t) the unit-step func-
tion, with

hP ¼ h1 þ qh2 ð6cÞ

cP2 ¼ q 2� qð Þh22= h1 þ qh2ð Þ2: ð6dÞ

The model has 3 parameters h1, h2 and q to be derived from Eq. (6c, d), i.e., there is
one degree of freedom. For h1 ! 0, we find cp ! 1 for q ! 0. The degree of freedom
can be used by choosing h1 [ 0 to avoid trivial task execution times. Fixing h1,
parameters h2 and q follow formally from Eq. (6c, d):

q ¼ 2= 1þ cPhP
hP � h1

� �2
" #

ð7aÞ

h2 ¼ 1
2
hP � h1 þ cP2hP2= hP � h1ð Þ½ � ð7bÞ

For a feasible solution, 0\ q \1 has to be regarded as compatibility condition.
A quite simple solution of the parameter fitting follows from (7a, b) by subdivision of
the cP-range:

(a) 0� cP � 1 (hypoexponential characteristic)

q ¼ 1; h1 ¼ hP 1� cPð Þ; h2 ¼ cPhP ð8aÞ

(b) 1� cP\1 (hyperexponential characteristic)

h1 ¼ 0; h2 ¼ hP 1þ cP2
� �

=2; q ¼ 2= 1þ cP2
� � ð8bÞ

The solution (8a) represents a series of a deterministic phase and an exponential
phase while (8b) represents a degenerated hyperexponential phase.

2.4 Performance of the Principal Task Graph Elements

Applying the mixed phase-type model for all task execution times, represented by the
PDF fP(t) and DF FP(t) acc. to Eq. (6a, b), the execution times T for the principal task
graph elements of Fig. 3 can be expressed explicitly by their PDF f(t) from Eqs. (1–4).
These results are too voluminous and will be reported in detail in a forthcoming
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companion paper. The results for a two-moment representation are much easier to be
derived by elementary moment operators on independent random variables (cases a, b
and d) or on PDFs (case c). Tasks 1 and 2 are represented by the phase-type model
parameters hi1, hi2 and qi, i ¼ 1, 2. For the 4 principal task graph elements we find:

(a) Sequential Processing of two tasks 1 and 2 (Concatenation)

E T½ � ¼ E T1½ � þ E T2½ � ¼ h11 þ q1h12 þ h21 þ q2h22 ð9aÞ

VAR T½ � ¼ VAR T1½ � þ VAR T2½ � ¼ q1 2� q1ð Þh122 þ q2 2� q2ð Þh222
c2 ¼ VAR T½ �=E T½ �2:

ð9bÞ

(b) Alternative Split of two tasks 1 and 2 followed by Or-Join (Choice)

E Ti½ � ¼ q E T1i½ � þ 1� qð Þ E T2i½ �; i ¼ 1; 2

E T½ � ¼ qðh11 þ q1h12Þ þ 1� qð Þ h21 þ q2h22ð Þ ð10aÞ

E T2½ � ¼ q h112 þ 2q1h12
2 þ 2q1h11h21

� � þ 1� qð Þ h212 þ 2q2h22
2 þ 2q2h21h22

� �
ð10bÞ

VAR T½ � ¼ E T2� �� E T½ �2 ð10cÞ

c2 ¼ VAR T½ �=E T½ �2: ð10dÞ

(c) Parallel Processing of two tasks 1 and 2 with synchronization (Concurrency,
And-Split)

In this case, the PDF f(t) of the aggregated random variable T ¼ max T1;T2ð Þ or
T ¼ min T1;T2ð Þ acc. to Eqs. (3a, b) has to be derived first from which the moments

E½Ti� ¼
Z1
t¼0

tif ðtÞdt; i¼1; 2 ð11Þ

follow by integration. The variance VAR[T] and the coefficient of variation c follow
acc. to Eqs. (10c, d). The explicit results are too voluminous and will be reported in a
forthcoming paper.

(d) Iteration Loop for task 1 (Repetition)

Be J the RV of the number of executions of task 1 with average E[J]. Then we get
for the aggregated RV T in general
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E T½ � ¼ E J½ � � E T1½ � : ð12aÞ

In case of a geometrically-distributed number of iterations with feedback prob-
ability q we get

E J½ � ¼
X1
j¼0

ðjþ 1Þq jð1� qÞ ¼ 1=ð1� qÞ ð12bÞ

E J2
� � ¼ X1

j¼0

jþ 1ð Þ2qj 1� qð Þ ¼ 1þ q

1� qð Þ2 ð12cÞ

VAR J½ � ¼ E J2
� �� E J½ �2 ð12dÞ

VAR T½ � ¼ E J½ � � VAR T1½ � þ VAR J½ � � E T1½ �2 ð12eÞ

c2 ¼ VAR T½ �=E T½ �2: ð12fÞ

If J is a constant E[J] ¼ J and VAR[J] ¼ 0, then

VAR T½ � ¼ J � VAR T1½ � : ð12gÞ

E[T] and c follow from Eqs. (12a) and (f).

Remark: If J is an RV, the statistics of T follow from the compound distribution of T1

and J.

3 Task Graph Reductions

3.1 General Aspects and Application Cases

As outlined above, the workload by a specific job will be described by a directed
acyclic graph (DAG) consisting of elementary structural elements expressing arbitrary
workflows. Any DAG can be processed on a single-processor system by following
any possible execution path through the DAG from the initial terminal to the final
terminal. Any feasible execution path through the DAG can be considered as a thread
which is scheduled by the operating system and processed on the single-processor
system without any stop (except for memory I/0 which is not considered here).
Processing of parallel executable instruction paths have to be executed serially in
arbitrary sequence but continuation after the parallel paths depends on the synchro-
nization condition. Parallel processing executed on a single processor does not cause
any “slack times”.

In a multi-processor environment, parallel executable paths can be scheduled
such that the thread is split into multiple parallel threads which can be scheduled by the
operating system and processed simultaneously as long as the synchronization point is
not reached. The degree of processing simultaneity depends on the individual execution
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path durations: The best case is if all parallel threads are of identical durations; how-
ever, with increasing variability, the degree of processing simultaneity decreases and
some processing elements will become idle for a “slack time” until the next syn-
chronization point. This reduces the performance by increasing the total job execution
time. The idea of this paper is to quantify the efficiency of parallel processing by
modeling task execution times by stochastic processes in order to express the influence
on the performance as well as on the energy efficiency.

This can be achieved best if the DAG could be reduced stepwise by aggregating
parallel or serially executable tasks to a single virtual task where the corresponding
execution times of aggregated paths are obtained by application of the basic aggregation
operations introduced in Sect. 2. Reducibility of graphs is a fundamental problem of
graph theory. Graphs resulting out of the use of “go to” statements, e.g., jumps out of a
loop or into another program branch, cause quite complex graph structures which cannot
be reduced stepwise. Modern programming languages and programming styles result
into well-structured programs which support graph reducibility.

From the application point of view, many problems are adequate for parallel
execution and reducibility. Examples are:

(1) Parallel execution of a program for multiple input parameter sets. Each parameter
set can be executed in parallel by a multi-processor system providing results of a
whole parameter range instantaneously.

(2) Batch simulation methods where a simulation is subdivided in (typically) 10
“batches”, each for a certain number of “events”, e.g., 100.000 events. For such
programs, we find a simple program structure of one task at the beginning to
configure the “batch” programs and initializing counters for statistic data, then
executing all “batch” simulations in parallel, and one task after the execution of all
“batches” for processing of the final results out of each “batch” execution. Such a
program consists of a simple DAG-structure of the form fork and join and allows
a speed-up factor close to the number of “batches”.

(3) Searching within large unstructured data sets, a typical problem of “Big Data”. In
such cases, the data sets can be partitioned and each partition can be executed
in parallel. This approach can be repeatedly applied on reduced data sets, etc.

In most of such applications, execution times of parallel threads may depend on the
properties of data or may affect the number of iterations for a certain precision; these
execution time variations are modeled best by random variables.

3.2 Example of a Task Graph Reduction

A simple example of a model task graph as shown in Fig. 2(a) will be considered. In a
first step, m serially or parallel executable tasks are combined successively by aggre-
gation of two tasks in each step either in a linear sequence by (m−1) iterations or in a
binary-tree fashion by aggregating each time 2 tasks resulting in log m iterations; in the
latter case, the aggregations themselves can be executed in parallel, too. By these steps,
the task graph Fig. 2(a) results in a reduced task graph shown in Fig. 2(b). In a second
step, all loops are aggregated and finally replaced by one task resulting in the further
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reduced task graph shown in Fig. 2(c). In the final step, only a series of sequential tasks
has to be aggregated in a single resulting “virtual task” for the whole job, see Fig. 2(d).

In a tree-structured task graph, the above outlined reduction strategy is applied at
first on all branches of the tree or of subtrees, followed by combining the tasks rep-
resenting the whole branch at the root point of subtrees, repeatedly in bottom-up
direction, starting at the leaf-level.

Remark 1: All described steps are performed on two parameters of each task (the mean
value and the coefficient of variation) as outlined in Sect. 2 of this paper. For this, we
need only to program the basic operations which are implemented in a procedure and
are applied repeatedly.

Remark 2: As outlined above, the virtual tasks include automatically the parallel exe-
cution on multiple processors. If the degree of task parallelism exceeds the number of
available processors, the task graph has to be restructured first by combining maximally
possible parallel aggregations and repeat these results sequentially for the remaining
parallel tasks which (of course) adds to an increased task graph execution time.

4 Performance Evaluation and Energy Efficiency

Task graph processing on a multi-processor system will be considered under two
different aspects, performance and energy efficiency. For comparison, we will distin-
guish between two modes in each case:

Mode PP: Parallel processing of each job on the n-processor system.
Mode SP: Serial processing of each job on one processor of the n-processor system.

4.1 Performance Evaluation

The classical performance criterion for parallel computing was formulated by (13a)
(Amdahl’s Law [15]): If a is the fraction of non-parallelizable parts of a program, the
ideal speed-up factor is

S nð Þ ¼ 1= 1� að Þ=n þ a½ � : ð13aÞ

As a consequence of the introduced job description by a DAG, the speed-up factor
has to be re-defined as the fraction of job processing times for n ¼ 1 (single processor)
and n, i.e.,

S(n) ¼ E Tjn ¼ 1½ �
E Tjn½ � ð13bÞ

Note, that this approach is more general as individual task execution time variations
and limitations in parallelization are taken into consideration, where (13a) holds for an
idealized case of constant parallelization degree of n only. Under the special case of a
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constant parallelization degree n we get for a the result a ¼ nE Tjn½ ��ð E Tj1½ �Þ= n� 1ð Þ;
inserting this in Eq. (13b), the result coincides with Amdahl’s Law Eq. (13a).

As a second performance metric, we will consider the response time TR measured
between the arrival instant of a job and the instant when the job is executed, i.e.,

TR ¼ TW þ Tv ð14aÞ

where TW is the waiting time and Tv the virtual processing time of the job.

Mode PP: Parallel Processing
The parallel processing system is represented by a virtual single-server system upon

completion of the graph reduction method outlined in Sect. 3.2. TW follows from a GI/
G/1 queuing model, e.g., for Poisson job arrivals according to the Pollaczek-Khintchine
formula for the M/G/1 delay system [6]:

E TW½ � ¼ qV � 1 + c2V
� �
2 1� qVð ÞE[Tjn], with load factor qV¼ k � E[Tjn]. ð14bÞ

Note, that the maximum capacity of this system is reached for

kmax;PP ¼ 1
E T jn½ � ð15aÞ

The average processing time of a job under Mode PP is E[T|n]. The average of the
slack time TS follows from the balance equation E[TS] ¼ n · E[T|n] – E[T|1] and
reduces the capacity for high loads to kmax;PP acc. to (15a).

Mode SP: Serial Processing
If each job is assigned to be processed by one processor, the n-processor system is

modeled by a GI/G/n system, where G describes the job processing time T on a single
processor which follows from the original task graph by adding all processing phases
resulting in a mean processing time E[T|1]. The response time TR follows from (14a),
where TV is represented by two moments h = E[T|1], c from a task graph reduction for
1 processor, and TW from queuing system GI/G/n; for Poisson arrivals from the delay
system M/G/n (exact closed-form solutions and tabled results are known for M/M/n
and M/D/n only).

The maximum capacity of this n-server system is reached for

kmax;SP ¼ n
E Tj1½ � ¼

n
nE Tjn½ � � E TS½ � [ kmax;PP ð15bÞ

Note, that in Mode SP the full capacity of the n servers is available, where PP
suffers from enforced idle times (slack times).
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4.2 Energy Efficiency

As outlined in Sect. 2, we will assume for both Modes PP and SP that all jobs are
processed on an n-processor machine in batch processing mode. Under low load,
parallel processing results in shorter job execution times and is superior to job pro-
cessing serially on a single processor. Idle phases of a processing element due to a
limited parallelization degree (1� a) will be considered as sleep phases (“slack times”)
with reduced power P0; P1 > P0 denotes the power consumption of a running processor
executing a task. Parallel processing of tasks and serial processing of tasks are neutral
with respect to energy consumption as both modes require the same amount of energy
in total, whereas parallel processing and serial processing differ with respect to the
maximum job rate for saturation as well as with respect to the response time, i.e., there
is a trade-off between parallel and serial processing. This effect has been observed in
other energy-efficiency studies as well, where energy efficiency and performance
reduction behave reciprocally [16, 17]. The energy consumptioncan, however, can be
reduced by low-power operation of idle resources, e.g., by Dynamic Voltage and
Frequency Scaling (DVFS) [18].

The energy consumption in an arbitrary large interval t0 of time amounts for Modes
PP and SP as follows:

EPP ¼ t0 � qV n
E Tj1½ �
nE Tjn½ � � P1 þ n

E TS½ �
nE Tjn½ � � P0

	 

þ t0 1� qVð Þ � nP0 ð16aÞ

ESP ¼ t0 AP1 þ n� Að ÞP0½ �; ð16bÞ

where qV ¼ k � E Tjn½ � denotes the utilization factor of the virtual GI/G/1 delay system
and A ¼ E X½ � ¼ k � E Tj1½ � the offered (and carried) traffic value of the GI/G/n delay
system, respectively. With these relationships both expressions for EPP and ESP of
Eq. (16a, b) are identical ESP ¼ EPP ¼ E.

The energy efficiency g will be defined as the fraction of energy saved by DVFS
relative to the energy consumption without DVFS:

g ¼ 1� E
E0

¼ 1� A
n
� n� A

n
� P0
P1

;

where E0 ¼ nP1t0 is the energy consumption without DVFS.

4.3 Trade-off Between the Operation Modes PP and SP

The observation that both operation modes differ in their maximum capacities gives rise
for a trade-off discussion between them. This will be exemplified in the following by a
numerical example for the generic task graph example for concurrency between two
tasks 1 and 2 acc. to the model of Fig. 3c extended by constant common tasks at the
beginning and end of the task graph with total length h0. Two special cases of concurrent
task execution times will be considered with identical average task execution times
D (deterministic) and negative-exponentially distributed times (M) with parameters
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h1 ¼ h2 ¼ h ¼ 1=e and c ¼ 0 (deterministic) and c ¼ 1 (Markovian), respectively.
Jobs arrive in both cases according to a Poisson process with arrival rate k. Figures 5a
and 5b shows the example task graph and two Gantt-Charts for PP and SP schedules.

The performance analysis of Mode 1 (PP) follows the procedure of stepwise task
graph reduction resulting in a virtual queuing system of the type GI/G/1. The analysis
of Mode 2 (SP) follows from a standard queuing system of the type GI/G/n.

Fig. 5a. Generic taskgraph for numeric example

Fig. 5b. Grant-charts for job PP and SP models handed fields are slack times in PP
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The parameters of the corresponding queuing models are summarized in Table 1. Data
center job arrivals are assumed to follow a Poisson distribution (Type M).

The results for the normalized average response times tR/h are shown for both
scheduling Modes 1 (PP) and 2 (SP) for the two parameter cases of constant task
execution times (Case 1) and negative-exponentially distributed task execution times
(Case 2) of Tasks 2 and 3, respectively (Fig. 6).

Note first the different maximum load levels for PP and SP and the different
maximum load levels for PP for constant and for exponentially distributed virtual task
times acc. to Case 1 and Case 2 which define the load limits of stationary system
operation where the response times increase to infinity asymptotically.

Table 1. Queuing system parameters

Mode Case Av. Serv. Time SCOV Utilization kmax Qu.System

1 (PP) 1 hv ¼ 2 h cv
2 ¼ 0 qv ¼ 2kh 1/2 h M/D/1

2 hv ¼ 2.5 h cv
2 ¼ 0.2 qv ¼ 2:5kh 1/2.5 h M/G/1

2 (SP) 1 E[T|1] ¼ 3 h c2 ¼ 0 q ¼ 3kh 1/1.5 h M/D/2
2 E[T|1] ¼ 3 h c2 ¼ 2/9 q ¼ 3kh 1/1.5 h M/G/2

Fig. 6. Mean Response Time vs. Job Arrival Rate
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The results underline the following general properties

• The maximum capacities for PP are lower than for SP.
• The maximum capacity for PP reduces with increasing slack times caused by task

execution time variations.
• Trade-off of the performance results between PP and SP with smaller response

times for PP in the low-load region and for SP in the high-load region.

5 Conclusions

The main contribution of this paper is a novel method by which parallel and serial
processing of jobs on a multi-core/multi-processor system can be analyzed for gener-
ally-distributed task execution times by stepwise reduction of directed acyclic task
graphs. The reductions are performed by task aggregations for four principal structure
elements of computation programs: concatenation, alternative splitting, iterative repe-
titions, and concurrency of tasks. The mathematical operations are based on generally-
distributed random task execution times. The principal four structure elements are used
for the exact aggregation based on the theory of functions of random variables. For an
efficient computational implementation, the generally-distributed task execution times
are represented by a mixed phase-type model for the first and second order moments.
The method allows to represent the multi-core/multi-processor system to standard
queuing models of the types GI/G/1 and GI/G/n, where the service times are repre-
sented by their averages and coefficients of variation. From the application’s point of
view, the new method allows the extension of Amdahl’s Law to more realistic con-
ditions of random task execution times and arbitrary degrees of parallelization as well
as real-time performance metrics as the average job response times. The trade-off
between the two major schedules for parallel and serial processing of jobs on an
n-server system leads to the most important conclusion, that parallel processing is only
superior for low- and medium-load ranges, while serial processing outperforms parallel
processing for high loads with respect to the maximum capacity and response times.
Both job execution modes are neutral with respect to energy efficiency; the only way to
increase energy efficiency is by low-power operation of idle processors through
Dynamic Voltage and Frequency Scaling (DVFS). The current paper reflects the status
of “work in progress”; ongoing work addresses the development of general analysis
tools for the analytical solution as well as for simulations.
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Abstract. The increasing global demand for power has resulted in frequent
blackouts in many geographies. The cost of domestic standby generation is
prohibitive and novel strategies to provision measures that manage blackouts are
becoming much sought after. In some scenarios certain amounts of surplus
power can be identified, with the mix of available generation not being fully
utilized. The paper presents a strategy that harnesses the aggregated superfluous
power to fulfil essential demand in residential areas during cyclic blackouts. The
solution has at its foundation, a multi-agent distributed demand management
system with a supply-demand matching capability. Power is not distributed
fairly to each user, and appliances which consume the most significant levels of
power such as air conditioners are serviced according to the available super-
fluous power. The approach is evaluated through an extensive emulation
framework and results show that the proposed system is capable of providing an
acceptable Quality-of-Service (QoS) level during cyclic blackout periods and at
the same time succeeds in smoothing demand profiles.

Keywords: Blackouts � Multi-Agent systems � Demand side management �
Supply demand matching � Power management

1 Introduction

Modern technological breakthroughs have resulted in the extensive use of a spectrum of
electrical devices which in turn have created an escalating demand for power. In
addition, the repetitive nature of routine daily life features bursts of activities forming
demand peaks which in many cases result in exceeding the available power and
blackouts. Many countries around across the globe have witnessed large scale blackouts,
the most striking being in India in 2012 which affected 670 million users [1]. Building
more power generation capability is becoming prohibitively costly with a negative
impact on the environment. One alternative is to redistribute demand evenly throughout
the day, in so doing eliminating the need for peak load generators and satisfying the
demand with base load only. This motivation has stimulated a plethora of load man-
agement techniques, measures and strategies, Demand Side Management (DSM) being
the most noteworthy. Demand is modulated using various principles such as peak
clipping, valley lifting, load shifting, demand conservation and build-up. Customers are
essential participants in all solutions; all successful deployments rely on end user
approval and collaboration.
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Blackouts can be precipitated by a range of events, the most obvious being
escalating demand, referred to as ‘peak time’ blackouts. The severity of the power
shortage specifies how deep or long a blackout is. If the power shortage continues for
extended periods of time, the blackout migrates into a cyclic mode in which power is
provided following an ON/OFF ratio. Finally, if the power system reaches a steady
state at which the generation always lags demand for an extended period of time
(years). The cyclic blackout evolves to the most severe chronic mode. This mode is as a
result of a wide scale degradation of the installed power generation, transmission and/or
distribution sub-systems owing to post-war or post-disaster periods; Iraq is a recent
example.

A significant body of research has focused on developing effective ways to manage
blackouts e.g. [2] used intentional islanding to prevent a blackout DSM and its
derivatives have been proposed extensively such as; controlling the set point of ther-
mostatic loads [3, 4, 5]; optimizing different demand parameters [6]; converting power
meters into more intelligent modes of operation through interconnected controller
boards [7]; dual-measure DSM (2DSM) schemes utilizing Direct Load Control (DLC)
scheduling and Dynamic Power Allocation (DPA) [8]; purchasing day ahead power
and applying ON/OFF control to certain appliances [11. 9] segregates household
appliances from air conditioners (ACs), powering the former continuously and dis-
tributing the remaining power according to AC thermostat setting governed by the
customer. Different power distribution strategies have been evaluated: fair and tem-
perature-based allocation.

Multi-Agent Systems (MAS) have recently emerged as a promising technique due
to their flexibility and ability to manage distributed scenarios and their suitability for
distributed control and management. [10] proposes a multi-agent, intelligent DSM
system operating on rationed utility whilst [11] proposes a multi-agent system based on
a supply-demand matching (SDM) based on the power market within a renewables-
dominated generation mix.

Energy efficiency principles have also been adopted; Evaporative Air Coolers
(EACs) are a low cost, energy efficient HVAC alternative to ACs, consuming lower
power at effective cooling. EACs are used widely in many countries such as USA,
China and Iraq and invariably result in a significant lowering in the power demand.
EACs provide considerable energy savings (3 kW/air cooler) [12], an adequate level of
cooling and are environmentally friendly [13]. Yamada et al. [14] evaluated the cooling
effect of water sprayers and studied the design process of mist sprayers and the effects
of water droplets diameters on the cooling process. [15] studied mist sprayer perfor-
mance in Japanese humid weather through controlling droplet diameter.

The wide spectrum of available research with all its techniques and strategies can
be classified into two approaches; ‘blackout prevention’ and ‘blackout containment’.
The first can be defined as a set of DSM measures undertaken to prevent a blackout
from occurring based on shedding some load either directly or indirectly in order to
sustain the remaining load negotiating solely with the utility. The second can be defined
as a set of measures undertaken to contain a blackout from impacting the entire grid
through (say) islanding; blackout containment also negotiates with the utility only.
Alternatively, blackout mitigation can be defined as a set of DSM measures undertaken
during a blackout to enable users to retain a certain Quality-of-Service (QoS) through
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utilizing part of or all available standby or private generation sources. Blackout miti-
gation neither changes nor uses direct utility power and does not correct the blackout.

The acquisition of a standby generator is an obvious option but operational chal-
lenges such as noise, polluting emissions, fire hazard of stored fuel, frequent costly
maintenance, and oil disposal problem are factors which prohibit deployments.
Renewable options are more attractive in this respect but are tied tightly to weather and
although they are environment-friendly they still remain costly especially if they are
used to operate air conditioning systems.

The contribution of the paper is to provide a solution to chronic cyclic blackouts
using variable superfluous standby power inherent in existing scattered generation
capabilities enabling customers to operate appliances including HVAC in environments
where air conditioning is a must. The approach presented here relies on the polling of
all neighborhood standby generation facilities - regardless of ownership - to map the
level of superfluous power. This surplus is then used to power the ‘basic set’ of
appliances such as lights, refrigerators and targets the need to meet the ‘air condi-
tioning’ demand. The basic appliance set does not include high power consumption
appliances such as electric cookers nor washing machines whilst confining the provi-
sion to one HVAC appliance (either an (AC), an air cooler (CO), or a mist fan (MF))
creating an acceptable living environment. The type of HVAC appliance used depends
on the level of available surplus power. Thus the principle is that each dwelling is
allocated a level of AC, CO, and MF operational time following a fair distribution
referred to as the ‘usage right’ i.e. the right to use a certain HVAC appliance for a
specified duration of time. The optimum solution is when there is sufficient power to
allocate an AC to every family throughout the day. If this criterion cannot be satisfied,
the solution finds the optimum blend of ACs, COs, and MFs that matches available
surplus. The system ensures that during the 24 h of the day each family has at least one
HVAC appliance operational.

The organization of the paper is as follows: Sect. 2 introduces the approach and its
operation. Section 3 describes the implementation, the integrated development envi-
ronment and the detail of a representative case study. Section 4 provides an evaluation
of the performance of the approach together with a discussion of results for three
mitigation mechanisms. Section 5 contains conclusions and suggestions for future
work.

2 The Proposed System

2.1 System Structure

The proposed system hardware comprises local controllers deployed in each dwelling of
a residential area. Each controller is equipped with temperature and humidity sensing
capabilities. Controllers are connected to a main controller located at the local substation
with connections to all neighbouring generation facilities. Figure 1 shows a typical
layout of the system. A number of agents are defined to carry out key negotiation tasks
and manage the re-distribution of power resources. Each dwelling is assigned a ‘House
Agent’ (HA) responsible for the management of all appliances, including ON/OFF and
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proportional control of each appliance, sensing ambient temperature and humidity, and
performing data exchange operations with other HAs and with the ‘Administrative
Agent’ (AA). Houses are clustered and cluster heads are assigned. The mix of generation
facilities is managed through ‘Generation Agents’ (GAs), clustered with a cluster head.
GAs map the amount of power available from a certain generator and at what time.
A ‘Utility Agent’ (UA) is tasked with providing utility power delivery schedules. All
agent activities are orchestrated by the AA (Fig. 1).

2.2 System Operation

The system provisions power to basic household appliances and one HVAC appliance
whose type depends on available power. All appliances are connected to the Low-
Voltage distribution network. The system HVAC appliance selection pool contains
three types viz. AC, CO, MF, each differing in power consumption. At the outset the
AA interrogates the generation cluster head to determine the available surplus power
within its cluster. The generation cluster head reports the amounts, availability times,
and periods of any surplus power stream. The AA aggregates all streams into one daily
schedule of surplus power availability, (Table 1).

Fig. 1. Typical system layout.
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In this case eight generators are listed; six have surplus power at different times and
durations whilst the other two - which are hospital generators - have no surplus power
to offer. The latter, for security of supply, are powered continuously and their standby
generation is used as a backup for other generators in case no other alternative is
available. The resultant surplus power is indicated in the ‘Sum’ row showing seven
different levels of surplus power distributed over seven time zones. This is not a fixed
distribution but changes as the generation facilities change their donation patterns.

During the utility OFF periods, the AA interrogates the power aggregation table
securing a snapshot of the amount of available surplus power and its duration, cal-
culates the basic household demand, calculates the amount of remaining power to
activate HVAC devices, and allocates the best mix of HVAC devices to match the
needs of each dwelling using an optimization technique developed for this purpose
referred to as Shifted-Queue Optimization (Sect. 2.3). The result is the provision of
some level of cooling in an optimum number of houses. For example, for 20 houses if
the Shifted Queue Optimization yields (AC = 5, CO = 15, MFs = 0) the system then
establishes a single HVAC cluster containing the selected HVAC appliances (5 ACs
and 15 COs). In this case 5 dwellings have the usage right to operate ACs, 15 houses
COs, and there is thus no need for the use of MFs. The number and type of HVAC
appliances in the cluster is governed by the amount of available surplus power; thus a
cluster is subject to dynamic changes in composition depending on the amount of
donated surplus power. In essence the system also executes supply-demand matching.
Figure 2 shows the HVAC composition for different snooped power level.

Each dwelling is then able to exchange HVAC usage right until the end of the
interval at which the surplus power is fixed.

Table 2 shows an HVAC cluster containing 20 HVAC devices for 20 houses
powered by a certain surplus power level lasting 4 h. Each house enjoys one hour of air
conditioning and three hours of air cooling. If the number of ACs, COs, and MFs is not
dividable as in the previous example, the system readjusts the number and mix of ACs,
COs, and MFs so that every dwelling is allocated a fair share of cooling.

Table 1. Surplus power aggregation matrix.
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The proposed system is semi-central in the sense that some activities are central
under the supervision, control, and coordination of the AA while the rest are distrib-
uted, carried out through command-based packetized inter-agent negotiation. All
communication between agents is carried out through packet transfer; Fig. 3 shows the
packet structure.

Figure 4 shows the functional block diagram of agents recruited in the system and
their interactions; solid lines indicate intra-agent data transfer and the dotted lines
indicate inter-agent data transfer.

HAs capture all data related to all appliances and have the ability to control them.
Once a shortfall in allocated power needed to operate base load and HVAC appliance is
identified, then the HAs manage it through inter-agent negotiation. All HA operations
are orchestrated by the AA which gathers operational data from all other agents and
sensors. In addition to this responsibility, aggregating power from different sources and
powering appliance the AA constructs the HVAC cluster and maintains its composition
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Fig. 2. HVAC cluster composition change according to the available surplus power.

Table 2. HVAC usage right distribution.
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in order to allocate HVAC appliance usage rights to dwellings through the appliance
dispatcher. Generation and utility agents have much simpler roles confined to sup-
plying operational data since they deal with entities owned and controlled by other
parties. The system requires smart meters to have the ability to receive the permissible
amount of power allocated to each house and cut the power if the dwelling exceeds its
power allowance. This is marked in the figure with the ‘and actuator’ phrase added to
the smart meter block.

Figure 5 shows the inter-agent communications during a power shortage negotia-
tion between HAs. In this negotiation HA4 has a power shortage and it is negotiating
with the other 9 HAs to identify a power donor. AA fully supervises all operations. HA
could draw on surplus power if the dwellers are not home or some appliances are not
operational.

Lastly, it is worth mentioning that the system is effective in all weather condi-
tions, not limited to summer and air conditioners; it can control heaters in the same
manner.

Source
agent 

Destination
agent 

Main 
command 

Data 
payload 

Sub 
command

Fig. 3. Inter-agent communication packet structure.

Fig. 4. Agents’ functional block diagram.
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2.3 Shifted Queue Optimization

The goal is to maximise the number and quality of active cooling appliances on a one
per dwelling basis for a certain housing cluster size. This is an optimization case in
which the number of HVAC appliances that can be operated with the available surplus
power is to be maximized and the number of other types of HVAC appliances is to be
minimized as demonstrated by the following:

• If there is sufficient power to operate all COs or more then the aim is to maximize
number of ACs and the problem is formulated as:
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• If there is insufficient power to operate all COs then the aim is to maximize number
of COs and the problem is formulated as:
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Fig. 5. Agent activity chart showing inter-agent negotiation.
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where

PSnoop
G

Surplus power

PAC AC power
PCO CO power
PMF MF power
ng Number of generation sources
nac Number of air conditioners
nco Number of air coolers
nh Number of houses

The constraints are:

1. nAC þ nCO þ nMF ¼ Number of dwellings
2. PAC �PCO �PMF

Figure 6 shows a functional block diagram of an optimization. The power con-
sumption of each HVAC option is firstly placed in a HVAC queue starting with ACs to
the right for each house, COs in the middle in the same sequence as ACs, and MF at the
leftmost. The power of the rightmost 10 air conditioners are added and compared with
the amount of surplus power available. If the power available is sufficient then every
dwelling can operate an AC; if not the queue is shifted to the right one place and the
counter is incremented. The operation is repeated until the amount of surplus power is
larger than the required HVAC cluster total power; at this point the final combination of
HVAC appliances is indicated by the shift counter. If the count equals 10 (for 10
houses calculations) then every dwelling is allocated an AC; between 1 and 9, the
number of ACs is 7 and the COs is 3 and so on. In Fig. 6 the shift right line is used to

Fig. 6. Shifted Queue Optimization for 10 houses.
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shift the queue to the right, filling the leftmost cell with zeroes while the two flag line at
the bottom is used simply as a status indicator.

3 Implementation

3.1 Application

The solution is applied to resolve the Iraqi chronic cyclic blackout. Due to the long war
(1980–2003), the bulk of the Iraqi generation, transmission, and distribution network
was destroyed which has resulted in a severe power shortage and severe chronic cyclic
blackouts. In parallel the extensive refurbishment of the Iraqi housing infrastructure
(and thus deployment of household appliances) has resulted in increasing the power
demand many fold. In addition to that Basra is subject to very hot weather, in summer
days temperature reaching 56 °C; Fig. 7 shows such a day, Friday 12/7/2013 [15].

A detailed field survey was conducted to assess the problem, available resources,
and the factors affecting it through a series of meetings with power administration
personnel in Basra. A residential quarter -‘Kafaat’ - was selected as a suitable test
environment. Figure 8 is the Kafaat residential quarter map where (1) is the medical
complex, (2) Basra main bus station, (3) Ibn-Bitar hospital, (4) Kafaat residential
quarter, and (5) is the Southern Oil Company (SOC).

The field study identified the availability of a mix of public, commercial and private
standby generation surplus throughout Kafaat e.g. the largest being a 10 MW standby
generation facility located at SOC. Figure 9 summarizes the commercial and public

Fig. 7. Basra summer temperature
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standby generation facilities in Kafaat. Detailed LV distribution network maps with
other technical support data were secured. to mark the boundaries, loads, LV trans-
formers, house connection of the area needed to setup the 20 house test environment.

Fig. 8. Kafaat residential quarter.

Fig. 9. Standby generation facilities in Kafaat residential quarter
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Figure 10 is a schematic of the area showing houses in the left side, market, school,
Mosque and substation at the right top corner.. The selection of these houses was made
based on connection to the same LV distribution transformer and feeder.

Figure 11 shows the detailed LV distribution network for the residential quarter; the
left white rectangle shows the selected 20 houses and the right one shows the local
substation.

Fig. 10. Kafaat test-bed.

Fig. 11. LV distribution network.
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In an attempt to alleviate the power shortage burden, the local authorities in Basra
have proposed a two part incentive scheme offered to all commercial and private
standby generation facilities participating in providing power to residential areas. The
local government will supply fuel to these facilities free of charge and will also pay half
the generation fees for commercial users while the other half of is charged to
consumers.

3.2 System Simulation

In order to verify the proposed solution, an Integrated Development Environment (IDE)
(Fig. 12) was designed. IDE comprises demand generation capabilities based on house,
family, and individual daily routine data gathered from the field survey. informational
data were embedded into the IDE and used to generate residential demand profiles to
test the performance of the proposed solution. It is assumed that the controller that
hosts the HA is connected wirelessly to the central controller at local substation which
houses the AA. IDE includes ON/OFF and proportional appliance control, demand
analysis unit, house and family setting profiles, generation selection mechanisms, a
graphics area, table display zone, message display zone and graphics control panel.

Fig. 12. The integrated development environment (IDE).
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4 Results and Discussion

Figure 13 shows a normal summer demand profile for 20 residential dwellings; no
commercial, industrial, agricultural, religious, social, or sport areas are considered. Air
conditioning is the dominating component in this demand and its footprint during night
hours’ is evident. Hour 8–14 are characterised by a low demand since the majority of
people are at work or school.

Figure 14 depicts the same demand profile but under a 4 × 2 cyclic blackouts viz.
power is provided for 4 h and cut off for 2 h.

Figure 15 illustrates the manner in which the system manages the demand of
30 houses. For illustration purposes and to cover all possible cases, it is assumed that
no utility supply is available and the base load was excluded to focus just on HVAC
demand coverage. The ‘blue’ shows the collected surplus power while the ‘red’ shows
the amount of power required for HVAC appliances only. The time zones are as
follows; within hour 1–6 there is sufficient power to operate 15 ACs and 15 COs, so the
time zone period is divided into two sub zones; within hour 7–8 no surplus power is
available; within hour 9–12, a modest amount of power has been secured, sufficient to
power 6 ACs and 24 COs. Thus the time is divided into (24 + 6)/6 = 5 sub-zones and
since the time zone is 240 min long, then each sub-zone is 240/5 = 48 min long. Each
house will have 1 × 48 min ACs usage time and 4 × 48 min CO usage time. Within
hour 13–14, 5 (hour 15–20), and hour 23–24 there is sufficient power to operate all
ACs (one for each dwelling).

Within hour 21–22 the power level is such that 25 ACs and 5 COs are active; the
sub-zone period is 120/6 = 20 min i.e. every dwelling has 5 × 20 min AC usage time

Fig. 13. Summer demand profile for 20 residential dwellings.
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and 1 × 20 CO usage time. Table 3 summarises dwelling AC and CO usage rights for
all sub-zones. It is worth noting that a level of underutilisation of surplus power occurs.

Figure 16 shows the summer demand for 20 dwellings under 4 × 2 cyclic blackouts
(‘black’) and the bridging of the no-power gaps in the demand by the proposed system

Fig. 14. Twenty houses summer demand under 4 × 2 cyclic blackouts.

Fig. 15. SnP and HVAC demand for 30 houses (Colour figure online).
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(‘blue’) consisting of two components, the base load and HVAC demands. The latter is
also plotted on the same figure (‘red’). Both demand components are powered from
surplus power (‘purple’).

The overall demand is shown in Fig. 17. During cyclic blackout periods, the pro-
posed system covers the base load demand from surplus power and also uses the surplus
to power HVAC appliances after optimization. There are no limits or constraints on the
demand during utility on hours, so customers can sustain their normal power usage
patterns. The amount of unused surplus power varies depending on base load demand
and the optimization and equal distribution of HVAC appliances. The surplus power
during utility on hours is not used. As is evident, the system has sustained base load and
HVAC demand efficiently and has smoothed the demand profile.

Table 3. Air CONDITIONING USAGE RIGHTS FOR TIME ZONE 7.

Sub zone Number of dwellings
with AC usage rights

Number of dwellings
with CO usage rights

1 1–25 26–30
2 6–30 1–5
3 1–5, 11–30 6–10
4 1–10, 16–30 11–15
5 1–15, 21–30 16–20
6 1–20, 26–30 21–25

Fig. 16. Base load, surplus power, total and HVAC demands (Colour figure online).
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5 Conclusions

A multi-agent distributed DSM-based system with a supply-demand matching capa-
bility has been used to sustain residential base load and HVAC demands during cyclic
blackouts. A combination of air conditioners, air coolers, and/or mist fans are clustered
in a dynamically updated pool of cooling resource used to service customers on a one-
HVAC appliance per family basis. The mix and number of air conditioners, air coolers,
and mist fans depends on the amount of available power. The HVAC appliances usage
rights are distributed fairly amongst all customers. To power these appliances during a
cyclic blackout, the system interrogates all nearby generation for any power surplus,
aggregates all excess power and deploys it judiciously to provision power to better
meet demand. The system clusters dwellings and assigns cluster heads to each, and
recruits different types of agents for the negotiation of resources. Results show that the
approach has succeeded in sustaining the power to basic household appliances and one
HVAC appliance per dwelling. The resulting demand profile was also smoothed.

Acknowledgement. The researchers would like to thank Basra Governorate Council, Basra
Power authority in all its branches that have participated effectively in supporting this research;
University of Basra, Southern Oil Company, Basra Public Hospital, Ibn-Bitar Private Hospital,
Kafaat Medical Center, and finally the people of Kafaat.

References

1. Wikipedia the free encyclopedia, November 2013. http://en.wikipedia.org/wiki/List_of_
major_power_outages

Fig. 17. The mixed demand profile.

50 K. Al-Salim et al.

http://en.wikipedia.org/wiki/List_of_major_power_outages
http://en.wikipedia.org/wiki/List_of_major_power_outages


2. Enacheanu, B. et al.: New control strategies to to prevent blackout: intentional islanding
operation in distributed networks. In: 18th International Conference on Electricity
Distribution, Turin, (2005)

3. Bashash, S., Fathy, H.K.: Modeling and control insights into demand-side energy
management through setpoint control of thermostatic loads. In: American Control
Conference, San Francisco, USA (2011)

4. Zhang, B., Baillieul, J.: A packetized direct load control mechanism for demand side
management. In: IEEE 51st Annual Conference on Decision and Control (CDC), Maui,
Hawaii (2012)

5. Qureshi, J.A., Gul, M., Qureshi, W.A.: Demand side management through innovative load
control. In: IEEE Region 10 Conference (TENCON), Fukuoka, Japan (2010)

6. Ha, D.L., de Lamotte, F.F., Huynh, Q.H.: Real-time dynamic multilevel optimization for
demand side management. In: IEEE International Conference on Industrial Engineering and
Engineering Management, Singapore (2007)

7. Baba, M.F.: Smart grid with ADSL connection for solving peak blackout in west bank. In:
First International Conference on Renewable Energies and Vehicular Technology (REVET),
Hammamet, Tunsia (2012)

8. Shafer, M.G., Bakar, K.A., Ramadhani, F.: Novel dual demand side management (2DSM)
scheme in optimizing utilization of available power. In: IEEE Symposium on Computational
Intelligence in Control and Automation (CICA), Singapore (2013)

9. Chen, Y.-W., Chen, X., Maxemchuk, N.: The fair allocation of power to air conditioners on
a smart grid. IEEE Trans. Smart Grid 3(4), 2188–2195 (2012)

10. Amato, A., Calabrese, M., Di Lecce, V., Piuri, V.: An intelligent system for decentralized
load management. In: IEEE international conference on computational intelligence for
management systems and applications, La Coruna, Spain (2006)

11. Kok, J.K., Warmer, C.J., Kamphuis, I.G.: PowerMatcher: multiagent control in the
electricity infrastructure. In: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems (AAMAS 2005), pp. 75–82, New York, USA
(2005)

12. de Almeida, A.T., Yokoe, J.M.: Residential cool storage: peak load reduction alternatives.
IEEE Trans. Power Syst. 3(3), 837–843 (1988)

13. Bom, G.J., Foster, R., Dijkstra, E., Tummers, M.: Evaporative Air − Conditioning
Applications for Environmentally Friendly Cooling - World Bank Technical Paper No. 421,
Washington, USA (1999)

14. Yamada, H., Yoom, G., Okumiya, M., Okuyama, H.: Study of cooling system with water
mist sprayers: fundamental examination of particle sizedistribution and cooling effects.
Build. Simul. 1(3), 214–222 (2007)

15. WeatherSpark, April 2014. http://weatherspark.com/#!graphs;ws=32872

Cyclic Blackout Mitigation through HVAC Shifted Queue Optimization 51

http://weatherspark.com/#!graphs;ws=32872


Stochastic Petri Net Models for the Analysis
of Trade-Offs in Data Centres with Power

Management

Björn F. Postema(B) and Boudewijn R. Haverkort

Centre for Telematics and Information Technology,
University of Twente, Enschede, The Netherlands
{b.f.postema,b.r.h.m.haverkort}@utwente.nl

http://www.utwente.nl/ewi/dacs/

Abstract. Due to the growth in energy consumption of data centres,
the demand for optimal usage of servers has become a relevant topic. This
paper contributes to the early design phases of data centres by providing
insight into the power-performance trade-off that arises from power man-
agement. This paper proposes a flexible set of stochastic Petri net models
which can be used easily to study the trade-off between performance and
power consumption.

Keywords: Data centre · Power management · Power · Performance ·
Trade-offs · Stochastic Petri nets · Numerical models · Efficiency

1 Introduction

Energy consumption in data centres is still increasing [1]. As a consequence,
CO2 emission and energy bills increase all the more. So, it is worth to con-
sider energy efficiency measures. In [2], ten ways to improve energy efficiency
are elaborated. One of these ways is power management (PM), which is turning
off servers completely or switching them into a lower power state, while trying
to keep performance intact. Additionally, the cascade effect, as described in [3],
which is the profit in the infrastructure that is obtained from reduction of the
energy consumption of the IT equipment, strengthens the effect of efficient con-
trol strategies for PM. Hence, even small reductions in percentages of energy
consumption through efficient PM may have large impact on reduction of CO2

emission and decrease overall cost. In this paper, the simplest PM strategies
considers only turning off idle servers, which can already save up to 20 to 60 %
according to [4–6].

Efficient PM strategies can be explored by simulating and analysing the per-
formance of various scenarios. Most techniques for exploring efficient PM use
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monitoring and testing. However, this reduces the number of applicable scenar-
ios, since unpredictable behaviour has a low probability of occurrence and some
scenarios cannot be easily tested. So, simulation and analysis of models provide a
low-risk method that often result in remarkable insights into the performance of
these systems. Stochastic Petri nets (SPNs) form a modelling technique which is
convenient for performance analysis of systems. In this paper, various SPNs are
introduced that model PM of servers in a data centre, and that can be efficiently
analysed using numerical techniques; for background information on SPNs, we
refer to [7]. For our analyses, we use a well-known software tool Möbius [8] that
allows to model Stochastic Activity Networks (SANs), an SPN extension.

The goal of this paper is to obtain better insight in power consumption and
performance, especially in the design phase of data centres. The contribution
of this paper lies in presenting high-level theoretical models, that allow us to
calculate both power consumption and performance for a given data centre con-
figuration and a given stream of jobs. However, these high-level models might
include aspects that can be considered unrealistic. The paper therefore also shows
that extending the models is easy, in order to provide more realistic results.

In this paper, two SPN models for PM in a data centre are analysed: (a) a
basic model with a single server ; (b) an extended model with multiple servers.
Even though the basic model could be called unrealistic, since it has only one
server, it is still useful, because it provides fundamental insight in the trade-offs.

This paper is further organised as follows. First, the basic model for a single
server with PM is explained and elaborated in Sect. 2, followed by a description
of the multiple server model in Sect. 3; both are analysed for various scenarios.
Section 4 discusses the complexity and scalability of the approach, and Sect. 5
presents related work. The discussion and conclusion are described in Sect. 6.

Fig. 1. The basic model of job flow in data centre with PM

2 Single Server Model

2.1 Basic Model

The basic idea of our models is illustrated in Fig. 1, which is based on [2]. A data
centre serves a job stream from the outside world, buffers the incoming jobs and
subsequently schedules and executes them, on the basis of the job requirements



54 B.F. Postema and B.R. Haverkort

and the system-internal state information that is available. What that state
information exactly is, largely depends on the data centre. It might involve only
information on job queue lengths or server utilisation, but can also include infor-
mation on temperature and humidity in parts of the data centre, or information
in networking bottlenecks, to give just a few examples.

2.2 Single Server Stochastic Petri Net Model

Starting from the basic model for a data centre in Fig. 1, an SPN model is
depicted in Fig. 2. In the model, jobs arrive to the server with rate λ via the tran-
sition Arrivals to the place Buffer. Notice that arrivals can only take place as
long there is buffer capacity available, i.e., as long as there are tokens in place
BufferCap. In that sense, the arrival process forms a truncated Poisson process.
The server can be in four states: the server is either turned off (a token in place
Off), booting (a token in the place Booting), processing a job (a token in the
place Processing) or idle, i.e., not processing a job, (a token in the place Idle).
The corresponding rewards Po = 0, Pb = 200, Pp = 200 and Pi = 140 signify
the power consumption (in W) when a token is present in such a place. Once
jobs arrive in the buffer the server needs to be booted or the idle server can
directly start processing the job. The server is booted with a delay, which in our
model is fixed to an exponentially distributed amount of time with mean 100 s
(α = 100−1 jobs/s). After booting, the server processes the job with rate μ, where
the size of the jobs determines the delay. For instance, a job size can be a web-
request (μ = 1.00 jobs/s, mean duration 1 s), a database request (μ = 0.10 jobs/s,
mean duration 10 s) or an upload/download of a file (μ = 0.01 jobs/s, mean dura-
tion 100 s). The power consumption rates of servers and the job sizes are taken
from [9–11]. After a job is processed, the server becomes idle. Then, either a new
job is processed by the server or it is shut down after a idle time-out with rate β,
i.e., as soon as a server becomes idle, a timer starts, that shuts down the server
after, an average 1/β time is expired.

Fig. 2. Basic single server Petri net
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In order to allow for a numerical solution (which is faster than simulation)
the model should have a finite state space. For this reason, the place BufferCap
is added, which is connected to the Arrivals transition with an output arc
and the immediate transitions Start and Setup with input arcs. By setting the
initial marking of BufferCap to K tokens, we make sure that there are never
more than K jobs in the system. By setting K to a large value, we make sure that
this finite state space does not have an impact on the performance measures of
interest; we check this by making sure that the probability that place Buffercap
would be empty, thus disabling the arrival stream of jobs, is very small in all our
models. The computed probability throughout the paper is always almost zero
(at least up to four digits).

To keep the models relatively simple, we have to make various assumptions.
For our models to be able to obtain the underlying Markov chain (which is
automatically derived and can be solved numerically), only models with expo-
nentially distributed firing times (next to so-called immediate transitions) are
allowed. In more detail, the current models assume a Poisson job arrival process,
a server that has a fixed power consumption for the power states and an service
time durations that follow an exponential distribution (which depends on the
processing speed of the server and size of jobs offered to the server). Power man-
agement shuts down the server after a time-out expires. The value of the timer is
drawn according to an exponential distribution. In practice, power management
will work with deterministic timers, hence, our model is approximate in that
sense. Our assumptions can be relaxed in various ways. For some of these relax-
ations, the underlying model is still a Markov chain, which can still be solved
efficiently numerically. For others, e.g., for fully deterministic time-outs, we will
need to resort to discrete-event simulation.

2.3 Power-Performance Trade-Off

The PM strategy in this paper allows to turn off idle servers and turn these
servers back on, which can decreases the power consumption, but has often a
negative effect on the performance, i.e., there is a so-called power-performance
trade-off. In this section, the power-performance trade-off is explored with sev-
eral performance measures, such as utilisation and mean response time. In [7]
measures to obtain from SPNs are discussed, which can be applied for finding
the mean response time and the throughput. The other performance metrics are
found via SPN properties and reward variables. Assume that J ∈ {Off, Idle,
Processing, Booting} and m(J) denotes the number of tokens in place J for
the following metrics:

The mean number of jobs E[N ] in the system is sum of the expected num-
ber of tokens in places that represent a job in the system: E[N ] = E[m(Buffer)+
m(Booting) + m(Processing)]; E[N ] can be easily computed from the SPN.

The throughput X of jobs in the system is equal to λ ·Pr{BufferCap �= 0},
such that a stable system, i.e., with sufficient buffer capacity, has a throughput
of λ jobs per second, otherwise the throughput is capped, since jobs that do not
fit in the buffer are discarded.
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The power-state utilisation is the expected number of tokens in a place
corresponding to that power-state, which is computed as follows:

ρJ = E[m(J)]. (1)

The mean response time E[R] is the mean delay a job perceives from the
moment it enters the buffer until the time it is finished with processing in a
server. It is computed via Little’s law using the average number of jobs in the
system (E[N ]) and the throughput of jobs (X), as follows:

E[R] =
E[N ]

X
. (2)

The mean power consumption of the server E[P ] (in W) is computed
with a reward variable that depends on the state of the server, as follows:

E[P ] =
∑

J

PJ · Pr{m(J) = 1} (3)

2.4 Results

In this section, the utilisation and trade-off between the mean power consump-
tion and mean response time are explored.

Table 1 shows parameters values (partially taken from Sect. 2.2) for the single
server model; it refers to the set B which is taken such that a good spread of
parameter values for β is found, as follows: B = {10−2 · 1.28i | i ∈ Z ∧ i ∈
{0, . . . , 19}}.

Table 1. Parameter assignments for single server model

Parameter α β λ μ K

Assigned value 0.01 β ∈ B 0.007 0.01, 0.025, 0.1, 1.0 300

Fig. 3. Mean power consumption against β, using the simple data centre model, for
four different service rates

The mean power consumption E[P ] (y-axis) against a changing β rate
(x-axis) is depicted in Fig. 3 (from bottom to top: 1.0 (orange), 0.1 (blue),
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0.025 (green) and 0.01 (red)). For small β, i.e., a long time-out value for an idle
server, the mean power consumption is large, since the server is nearly always on
and only needs to be booted very rarely. When β increases, i.e., a shorter shut
down time for an idle server, the mean power consumption decreases and appear
to converge to a fixed value. This is the case where a server is shut down nearly
every time a job has been processed. Furthermore, the curves show that more
power is consumed on average with a larger job size, i.e., when μ is smaller.

Fig. 4. Mean response time against β, using the simple data centre model, for four
different service rates

Figure 4 shows the mean response time E[R] against a changing β rate. The
mean response times are rather large for one server due to the impact of booting
servers, caused by PM. For this reason, when β is low, the mean response time is
also low and when β increases the mean response time grows to a higher value.

Fig. 5. Parametric curve for trade-off between mean response time and mean power
consumption, using the simple data centre model, for four different service rates

Power-performance trade-off. Figure 5 illustrates the trade-off that exists
between the mean response time and the mean power consumption. The mean
response time is depicted on the x-axis and the mean power consumption is on
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the y-axis, for four different service rates μ. For each service rate μ, we clearly
see that we can trade a lower mean power usage (to the left on the x-axis) for a
higher mean response time (go up on the y-axis).

Note that the curve for μ = 0.01 is much steeper than the other curves. This
shows that the impact of changing β is relatively high for the mean response
time and relatively low on the mean power consumption, compared to other
service rates. The reason this curve is much steeper is that the number of jobs
waiting for a server in the buffer is larger due to the relatively low processing
rate (μ = 0.01); this results in higher mean response times, especially when the
server needs to boot more often. Hence, in this case the smallest increase in
performance per Watt is obtained for shutting down a server.

3 Multiple-Server Model

3.1 Stochastic Petri Net Model

The next step is to extend the single server Petri net model from Fig. 2 with
multiple servers, leading to the model illustrated in Fig. 6. First, new servers are
added to the model by increasing the number of tokens in place Off. So, the
number of tokens n ∈ N in place Off is equal to the number of available servers.

Fig. 6. Multiple server extension of basic Petri net

The depicted model is very similar to an M |M |m multi-server queue as in [7],
where m is the number of servers. In such a multi-server queue, the arrival rate
λ remains the same when adding servers, however, the service rate μ depends
on the number of jobs i in the buffer, as follows:

μi =
{

iμ, i = 0, 1, . . . ,m
mμ, i = m + 1,m + 2, . . .

(4)

The same principle is applied to the rates of the transitions Delay, Service and
Release in Fig. 6, which are, respectively, α · m(Booting), μ · m(Processing)
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and β · m(Idle), where m(P) represent the marking in place P. Our model is
structured in such a way that a new server can only be activated when there is a
token in the place Off. So, there are always n tokens spread over the places Off,
Booting, Processing and Idle. The arrival rate λ from transition Arrivals is
not changed, since multiple servers do not have an effect on this.

Note that the consequence of this approach is that PM is on a per-server
level; there is no global timer for all the servers. So, each server starts a timer
when it becomes idle, and turns itself off when the timer reaches its threshold,
which is, as before, exponentially distributed with rate β.

In the current models, the servers are indistinguishable, since we assume
homogeneous servers. As a consequence, all servers process jobs with rate μ,
boot with rate α and release servers with rate β.

Furthermore, the power rewards now also depend on the marking. Obviously,
if two servers are booting, i.e., two tokens are present in the place Booting, the
power consumption for booting should be doubled. Note that in the model all
servers have the same (distribution for) the booting time and for the processing
jobs. So, for the places Booting, Processing and Idle the power rewards are
adjusted to respectively 200·m(Booting), 200·m(Processing) and 140·m(Idle).
The power reward for a server that is off does not change, since the power
consumption of turned off servers is exactly 0 W.

3.2 Power-Performance Trade-Off

All of the power and performance measures from Sect. 2.3 can again easily be
computed. Additionally, the mean power consumption per server is also com-
puted, which allows us to reason about each server individually and to make
comparisons of various scenarios more informative.

As before, a large buffer capacity (K = 300) is chosen, such that the com-
puted mean values remain accurate with larger numbers of jobs in the system.

3.3 Results

Two scenarios are elaborated by adjusting at most two variables in the model.

Scenario 1. The first scenario addresses the impact of scaling the number of
servers in a data centres with and without PM. For scenario 1, Table 2 presents
the used parameters. Every parameter is fixed, except for the number of tokens
in place Off. In this scenario, the case with PM is compared to the case without
PM (for which we remove transition Release from the model, so that the servers
are always on).

Table 2. Parameters assignments for multiple servers scenario 1

Parameter α β λ μ n K

Scenario 1 0.01 0.005 1.0 1.0 2–10 300
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Since the number of servers increases and the arrival rate is fixed, the pro-
cessing utilisation ρProcessing is expected to drop. The cumulative utilisation plot,
as depicted in Figs. 7 and 8, show from bottom to top the computed process-
ing utilisation ρProcessing (blue), booting utilisation ρBooting (green), idle utilisa-
tion ρIdle (orange) and off utilisation ρOff (red), confirms this expectation. The
2-servers case (top-left) has ρProcessing≈50 % with PM and without PM and the
10-server case (bottom-right) has ρProcessing≈10 % with PM and without PM.
The greatest impact of shutting servers down is found with the lower processing
utilisation with PM. For instance, in the 10-server case, the servers are expected
to spend ≈35 % of the time off, while still ≈55 % of the time is wasted on booting
a server and waiting as an idle server on jobs. In contrast to the case without
PM, where servers are always on, no servers are turned off or need to boot and
spend those moments idle.

Fig. 7. Cumulative utilisation plot with
PM when scaling the number of servers

Fig. 8. Cumulative utilisation plot with-
out PM when scaling the number of
servers

Next, the mean response time is depicted in Fig. 9. Note that lines are added
for better visibility. The plot shows the impact of PM on the mean response time
for multiple servers. The 2-server case shows a mean response time of approx-
imately 1.85 s with PM and 1.33 s without PM (top-left). The 10-server case
shows a mean response time of approximately 1.25 s with PM and 1 s without
PM (bottom-right). An interesting minimal mean response time is found with
the 4-server case with PM of ≈1.16 s. When servers are booting and no servers
are available to be booted or idle, new incoming jobs have to wait in the buffer
for a server. Since booting takes 100 s and processing only 1 s on average, the
impact on the mean response time is the greatest with small number of servers,
which explains the high mean response time for 2 servers. In the plot, an increase
in the mean response time is recorded from 4 to 10 servers. The reason for this is
that servers are only shut down when the server is idle and no jobs are waiting to
be processed. Recall from Fig. 7, that the 4-server case spends the same amount
of time per job on booting as processing, whereas the 10-server case spends much
more time per job on booting compared to processing, i.e., the 10-server case is
much more often in power-state Off than the 4-server case. Therefore, the rela-
tively long booting time compared to a short processing time slightly increases
the mean response time.
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Fig. 9. Impact of PM on mean response time for various number of servers

Having seen the mean response time, next the mean power consumption
is considered in Fig. 10. The mean power consumption for 2 and 10 servers is
respectively 340 W and 1460 W, without PM, in comparison to the case with
PM, where 2 and 10 servers respectively have a mean power consumption of
342 W and 939 W. The slightly higher cost with PM for 2 servers is caused by
booting servers. However, the energy reduction, which is caused by turning off
idle servers, increases with the number of servers and has a larger impact on
the mean power consumption than booting servers. The power consumption is
reduced when the number of servers is larger than 4 compared to the case where
servers are always on for this workload. If you use 1 to 4 servers, it is more
efficient to not use PM at all for this load in this scenario.

Fig. 10. Impact of PM on mean power consumption for various number of servers

Scenario 2. During the peak hours of a data centre, the number of arriving
jobs increase. In this scenario, the impact of β and the number of servers are
discussed by comparing two small data centres, one with 5 servers and one with
10 servers, where in both data centres the mean inter-arrival time (1/λ) between
jobs and release rate (β) vary. Table 3 shows all parameters of scenario 2, which
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all are fixed, except for λ, β, and the number of servers, where β is taken from
B as follows: B = {10−5 · 1.28i | i ∈ Z ∧ i ∈ {0, . . . , 27}}.

Table 3. Parameters assignments for multiple servers scenario 1

Parameter α β λ μ n K

Scenario 2 0.01 β ∈ B 0.5, 1, 2 1.0 5, 10 300

Figure 11 shows the trade-off between the mean response time and the mean
power consumption for 5 servers, three job arrival rates, λ = 0.5 (left curve),
λ = 1 (middle curve) and λ = 1.5 (right curve), and varying β. The utilisation
is expected to be really low for 5 servers. The data points close to β = 0 are in
the lower part of the curves, and the data points for larger β are in the top of
each of the curves. Again, there is a power-performance trade-off, which can be
regulated by β.

Fig. 11. Parametric curve for trade-off between mean response time and mean power
consumption per server, using the multiple server data centre model with 5 servers, for
three different job arrival rates

For instance, consider the curve for λ = 0.5 for 5 servers (red). Values for
β higher than 0.001 (E[R] ≈ 1.8 and E[P ] ≈ 124) are all bad choices for β,
since the mean response time and mean power consumption both increase. How-
ever, for β below 0.001, the power-performance trade-off exists. In more detail,
when β decreases the mean power consumption increases and the mean response
time decreases. The other curves show similar behaviour, only the curve for
λ = 1.5 (blue) does not show the power-performance trade-off any more, which
basically suggests that with the current PM strategy it is better to always keep
the servers on.

Figure 12 shows the same trade-off for 10 servers with similar curves. Note
that λ is the same as with 5 servers, so the 10 server case has even smaller load.
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Fig. 12. Parametric curve for trade-off between mean response time and mean power
consumption per server, using the multiple server data centre model with 10 servers,
for three different job arrival rates

4 Computational Cost and Scalability

For the evaluation of all the models, the provided SPN is translated by Möbius
into an underlying Markov chain; the number of states and the time for state-
space generation (SSG) for various cases is depicted in Table 4. As can be seen,
even though the models have thousands of states, generating these does not cost
much time at all. The generated Markov chain is subsequently solved numerically
using Successive over-relaxation (SOR). For smaller models, roughly, below 1000
states, a direct LU-decomposition (LUD), can also be used. As becomes clear
from the table, the solution times are all very small, so that easily many sce-
narios can be studied. The longest computation times were reported for model
instances with very small β, apparently leading to so-called stiff models. All
Möbius settings were kept default or as recommended; the accuracy was set to 9
decimal places. All measurements have been performed on a machine equipped
with a 2.70 GHz Intel� CoreTM i7-4800MQ CPU, 8 GB of RAM and Win-
dows 7 64-bit.

Table 4. Computation time and size of state space

Single-server Multi-server (1) Multi-server (2)

Number of states 604 910—3586 1856—3586

CTDPa SSG (in s) 0.04 0.07—0.27 0.15—0.30

CTDPa LUD (in s) 0.01 n.a n.a

CTDPa SOR (in s) 0.03 0.05—0.70 0.06—15.30

Total CTDPa (in s) 0.04—0.07 0.12—0.97 0.21—15.60
aCTDP= Computation time per data point.
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Having seen the computation times and sizes of the state space for Scenario 1
(Sect. 3.3) and Scenario 2 (Sect. 3.3), the size of the state space for Scenario 1 is
computed to examine how scalable the models are, as follows:

Fig. 13. Number of states when scaling
the number of servers from 10 to 100
servers computed with Möbius

Fig. 14. Number of states when scal-
ing the buffer capacity from K = 300 to
K = 3000 computed with Möbius

Figure 13 shows the effect of scaling the number of servers on the number of
states in Möbius. The 10-server case shown (bottom-left) has 3586 states and
the 100-server case (top-right) has 207151 states.

As a consequence of scaling the number of servers, the number of tokens in
buffer capacity often needs to be adjusted when the arrival rate is increased.
Figure 14 shows the effect of scaling the number of tokens for the buffer capacity
for the 10-server case from Scenario 2.

5 Related Work

The work of [12] focuses on power-performance trade-offs with PM, similar to this
paper. Also, PM is conducted in [13], which focusses on power-saving algorithms
with hysteresis for adapting to the load of the system. In contrast to our paper,
both papers elaborate their models for virtualisation and/or multiple servers
directly at the level of Markov chains, while we propose simpler SPN models,
which are more generally applicable to data centres.

A similar remark applies to the papers [14,15], which both focus on mod-
elling consolidation of virtual machines with the aid of numerical analysis of
Stochastic Reward Nets (SRNs). Their main goal is to propose and analyse vir-
tual resource allocation strategies, which differs from our approach that focuses
more on analysis of the power-performance trade-off for data centres with PM.

Power-performance trade-offs for various policies are also explored in [16], in
which an exact analysis of an M |M |k|setup multi-server queue (k servers and a
setup time) using the new recursive renewal reward (RRR), for solving Markov
chains with repeating structures, is applied. They focus on demonstrating the
new RRR technique with a data centre case study, while our focus is on the
analysis of power-performance trade-offs with PM.
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The papers [17,18], which are related to the All4Green project, explore per-
formance trade-offs at the server level, such that hardware components and
energy-aware mechanisms for these components are taken into account. Other
approaches, such as [19,20], focus on uncovering fundamental trade-offs (power,
capacity, performance and dependability) with Disk Power Management (DPM),
which is used for energy-aware file and storage systems. Also, here models for
the power state of the system are analysed to discuss these trade-offs. In contrast
to their work, our SPN models are defined on a much higher level, such that the
overall impact on power-performance can be discussed.

Our approach differs from all the above in proposing a flexible set of con-
venient and extendible SPN models, which are numerically solvable via Möbius
in order to analyse important power-performance trade-offs. Furthermore, the
models are useful for data centres during the design phase to provide insight into
trade-offs for various designs. In short, this paper differs from other works in the
application of an other modelling technique and/or aim for a different goal.

6 Discussion and Conclusion

In this paper, simple models for single server and multiple servers data cen-
tres with PM are analysed, to study the power-performance trade-off. For that
purpose, SPN models have been defined from which we can easily and quickly
derive important performance and power-usage measures, such as utilisation,
mean response time and mean power consumption. To do so, we used the tool
Möbius. Interesting trade-offs between the mean power consumption and the
mean response time are presented, which show that with PM reduction in the
power consumption can be obtained at the cost of a higher mean response time.

For data centre analysts, an advantage of our approach is that the proposed
models are reasonably high-level; this allows them to easily describe different
configurations. Furthermore, the available analysis tools allow for the easy com-
putation of relevant power and performance measures, thereby hiding mathe-
matical details from the analysts.

The proposed SPN models can easily be extended towards models with (i) dif-
ferent PM strategies, e.g., with some form of hysteresis; (ii) dynamic PM, e.g.,
dynamic voltage and frequency scaling; (iii) multiple server types (speeds) and
a mixtures of job sizes and inter-arrival times; (iv) sleep and hibernate states for
the servers; (v) virtualisation; and (vi) thermal-aware data centres.

The models proposed in this paper still allow for the usage of efficient numeri-
cal methods. However, future model extensions might require discrete-event sim-
ulation, but the tool Möbius also supports this. Furthermore, validation of the
models with actual measurements in data centres or a small measurement set
up with actual servers is intended as future work.
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1 Introduction

As our lives become heavily digitized, the role and significance of Information
Technology grows steadily. Not surprisingly, Data Centres, lying at the heart of the IT
landscape, have attracted attention over the last decade. The workload directed to DCs
around the globe increases in volume and density, reinforced by recent technological
advances, such as cloud computing and mobile networking. Such trends are actually a
driving force towards keeping DCs close to, if not within, urban agglomerations, and
are expected to rise in the upcoming years. On the downside, however, they also raise
concerns about increased energy consumption and, in general, detrimental environ-
mental footprint, especially under the prism of the climate change. Thus, energy and
ecological efficiency are important factors to consider while designing, operating, or
even decommissioning a DC, especially within urban areas.

Energy consumption of DCs significantly affects operational costs and, conse-
quently, business sustainability and competitiveness; according to Gartner, Inc. [1]
“energy-related costs account for approximately 12 % of overall data centre costs and
are the fastest rising cost in the data centre”. Besides, the sector’s increasing energy
needs pose risks of causing supply shortage and potential electricity network insta-
bilities or blackouts. Introducing such instabilities has also a dire effect on the inte-
gration of (distributed) renewable energy sources, an essential element of Smart Grids.
In a world of Smart Grids and Smart Cities, energy inefficient practices of the past such
as for example ignoring the potential use of waste heat, cannot be sustained. For the DC
sector to continue its operation, energy efficiency and seamless integration with Smart
City infrastructures are mandatory steps towards environmental, business and social
sustainability.

In the recent years, serious efforts have been taken up by consortia involving the
industry, academia and public authorities to address the increasing energy demand of
the DC sector [2–5]. So far efforts were focused on treating DCs as isolated islands:
coordinated cooling and load management to reduce energy consumption [6], energy
efficiency using virtualization techniques [7] or load (re)distribution [8], and of course
big players of the industry, such as Google, adopting novel techniques for their back-up
storage [9]. Although such efforts do provide valuable tools and practices towards
reducing energy consumption and environmental footprint, they should be considered
as just the beginning of the journey since: (a) the energy demand is still on the rise, so
obviously they are not enough, and (b) they are missing out positive synergistic effects
that emerge from considering DCs as connection hubs within both data and energy
(including both electricity and heat) networks. The latter becomes of special interest
when looking into DCs specific load profile which actually qualifies them as potentially
leading players in offering support services to the power grid distributors within the
market of the so-called ancillary services1. Also, in anticipation of game-changing
transformations of this market due to the creation of local markets of services very
much in connection with a Smart City vision.

1 https://www.entsoe.eu/about-entso-e/market/balancing-and-ancillary-services-markets/.
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Moving a step forward in this direction, the GEYSER project no longer considers
DCs as pure energy consumer “silos” with no or limited relationships with the sur-
rounding context and stakeholders, but paves the way for the next generation of green
sustainable DCs, turning them into active connection hubs at the crossroads of two
bidirectional, interwoven network overlays:

• The Data Network, characterized by computational and storage workload and
communications flows, placed on different servers and DCs, and

• The Energy network, characterized by both unified energy and control and infor-
mation flows

This duality can provide DCs with a unique leverage to become the enablers of
maximizing the overall use of renewable energy while ensuring network stability, by
offering energy consumption flexibility to Smart Cities (Districts) and delivering
support services specifically tailored to the distribution grid operators. Thus, GEYSER
future green, networked DCs will be able to monitor, control, reuse and optimize their
energy consumption and production, from renewable energy in particular, within the
framework of a holistic representation of energy and along the underway roadmap
towards acting as both consumers and producers that is, prosumers, of energy.

The remainder of this paper is structured as follows: Sect. 2 discusses the inno-
vative GEYSER approach to providing DCs with the right tools for transforming
themselves into energy prosumers within a Smart City environment; Sect. 3 outlines
the general GEYSER architecture; Sect. 4 presents the simulation environment where
GEYSER vision is to be validated in preparation for the pilot activities; finally, Sect. 5
concludes this paper.

2 GEYSER Visionary Scenarios

The GEYSER project aspires to go a step beyond current efforts by providing DCs with
the conceptual, business and software framework that enables them to become leading
actors within their Smart City (District) environments. It should be noted that within
GEYSER the concepts of Smart City and Smart Grids are not fully interchangeable. On
the contrary, a GEYSER-compliant DC has the option of either offering energy flex-
ibility to support Smart City (District) energy management and consumption optimi-
zation carried out at holistic level through the integration of power, heating, and
cooling, or offering directly to the smart power grid operator(s) specific support and
regulation services. In particular, the GEYSER vision is built on the following pillars:

• In the context of a Smart City environment
– Energy is considered as yet another type of service, bringing under its umbrella

electricity, heating, and cooling, thus introducing the term unified energy.
– The role of a Smart City Energy Manager is introduced, being the one in charge

of overseeing the optimal operations of energy distribution and management
networks in order to ensure that energy demands on a Smart City level are met at
all times.
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– DCs may have setup specific collaboration agreements with local energy dis-
tributor(s) (of power, district heating, or both) for participating to demand side
management so as to provide short term regulating capability or as local energy
supplier with near real time balancing flexibility. This provides DCs with the
possibility of, for example, migrating their loads at peak time of renewable
energy. Besides, by integrating DCs with the neighbourhood’s local thermal
grids, the waste heat generated by usual DCs operations can be transferred and
used for meeting heating needs of associated business offices or neighbourhood
(residential or otherwise) buildings.

• In the context of DC operations
– DCs may have the possibility of in-house renewable energy source, for example

solar panels on their roof or windmills in their premises. They may also have the
possibility of storing energy temporarily, such as compressed air storage facil-
ities, flywheel, ice storage tanks, and UPS. Naturally, back-up solutions of
brown energy sources, for example diesel electric generators, may be available
as well.

– DCs implemented operation procedures should make continuous efforts for
optimizing their local operations aiming at decreasing the energy consumption
thus allowing to offer a greater flexibility on energy demands. For increasing the
DC operation efficiency, two types of optimizations can be continuously run-
ning: (i) DC facility operation optimization by dynamically monitoring, con-
trolling and adjusting the cooling, heating, humidity and lighting of the DC and
(ii) DC workload execution optimization by energy aware IT workload migra-
tion, deployment, consolidation, and execution.

Bearing in mind the above, the GEYSER project is to also set the scene for a Unified
Green Energy Marketplace, as a tool for enabling interaction between the DC sector
and Smart Cities, while effectively optimizing the integration of DCs with a Smart
City’s physical energy infrastructure such as, for example, smart electricity grids and
smart heating grids. By actively participating within the Unified Green Energy Mar-
ketplace, a DC may see an opportunity rising to meet the energy demand on the Smart
City level while making profit and contributing to the overall efforts towards energy
conservation, efficiency, and maximizing use of renewable energy sources. In such
cases, the DC may choose to internally rearrange its operation so as to meet the
underlying flexibility requirements by, for example:

• Falling back to their own energy storage reserves to manage in-house heating
demands, for example in the form of precooling such as ice storage tanks

• Considering IT workload migration
• Cogeneration (make use of waste heat)

Thus, the GEYSER innovative conceptual and software framework will provide DCs
with the means to interact primarily on the Smart City (Smart District) level by actively
participating within the Unified Green Energy Marketplace to also fulfil energy
demands; especially taking into account their unique load profile that allows them to
offer specific ancillary services such as voltage regulation and load smoothening.
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As the first step in realizing the ambitious GEYSER vision, various scenarios are
identified and analysed within the project as a combinatory exercise alongside the
following two dimensions:

• Is there the possibility of IT workload migration, either within the same DC
(temporal migration, Service Level Agreements (SLAs) relaxation) or within a
network of DCs (including therefore spatial migration as well2)?

• Are there multiple DCs connected to the grid with the possibility of coordinated
energy management?

The 2-dimensional scenario space can be visualized as shown in Fig. 1. The horizontal
axis refers to the option of coordinated energy management and the vertical one to the
option of IT workload migration, with special focus on load relocation. The four
reference scenarios are thus defined as follows:

• Scenario “00”: Single DC within a Smart City
• Scenario “01”: DCs as coordinated energy elements within a Smart City
• Scenario “10”: Workload Federated DCs
• Scenario “11”: Workload and Energy Federated DCs

Within the GEYSER framework, of high importance is the investigation of the syn-
ergistic effects on the overall energy consumption and sustainability efforts that emerge
when multiple DCs become active players in the Unified Green Energy Marketplace.

Scenario "10"-
Workload 

Federated Data 
Centres

Scenario "11"-
Workload and 

Energy 
Federated Data 

Centres 

Scenario "00"-
Single Data 

Centre within a 
Smart City

Scenario "01"-
Data Centres as 

coordinated 
energy 

elements within 
a Smart City 

Fig. 1. Scenarios 2-dimensional space

2 In the case of spatial migration the cost of IT workload transportation is an important factor to
consider.
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Adoption of the GEYSER framework is expected to lead to (i) DCs increasing the
share of locally produced renewable energy in their operation, and, in general, con-
tribute towards maximising the use of renewable energy sources, (ii) DCs contributing
to reducing CO2 emissions on system level, (iii) DC operations being optimised in
terms of facility and IT resources energy efficiency and across a network of DCs,
(iv) DCs acting as energy prosumers in the context of Smart City and Smart Grids,
(v) DCs taking advantage of the smart grid flexibility for energy demand management,
and finally (vi) DCs exchanging energy with the city through the Unified Green Energy
Marketplace.

3 GEYSER System Design

3.1 General Architecture

The GEYSER conceptual architecture, as shown in Fig. 2 uses a hierarchical approach
based on real time monitoring and sensing, assessing the energy efficiency of the
system and taking optimization decisions to improve the energy efficiency from the
lower layer individual components, all the way up to the network of DCs.

Real-time Energy Monitoring/Sensing and Adaptive Control Subsystem. This
subsystem aims at collecting data by means of sensors to (i) determine the initial status
and energy (both electricity and heat) consumption of the various subsystems and
provide a rough classification and categorisation of hosted applications, and (ii) identify
an initial trade-off of schedule and allocation of workload to virtualised resources,
which optimizes energy consumption, while respecting existing SLAs. The real-time

Fig. 2. GEYSER Conceptual Architecture
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measurements allow us to identify significant deviations from the optimal plan, which
could be minimised. On this side GEYSER innovates by introducing a layer of soft-
ware intelligence on top of physical measurements, trading off extra cost for incre-
mental hardware with the level of information provided. Non-intrusive appliance load
monitoring algorithms (NIALM) are used within GEYSER as a solution for disag-
gregating loads and for tracking information not possible to be provided by physical
meters, such as for example, the current power state of a cooling unit or which lighting
units are powered on, when they are all fed from a same circuit. Uncovering the periods
of power activity of individual loads also allows for a finer investigation of DC
components’ consumption patterns that are currently unknown to DC operators.

Data Centre Real-time Multi-criteria Energy Efficiency Optimization. This com-
ponent deals with two types of optimizations at different levels: continuous optimi-
zation at the level of the data centre and on-demand optimization at the level of the
network of data centres.

The continuous optimization aims at improving the DC energy efficiency in the
context of the smart city by: (i) optimizing the usage and sharing of DC locally
produced renewable energy, (ii) optimizing the interaction and energy exchange with
the smart city, and finally (iii) optimizing DC facility operation and workload execu-
tion. It also takes into account a number of new criteria including, for example, the
overall DC energy consumption (electricity load, electricity transformations and geo-
thermal), the overall energy production (renewable and heat), the energy price and
flexibility aspects, the energy gain and the performance penalties by time and spatial
relocation and migration of processing, internal network characteristics. The continu-
ous optimization will be addressed by re-using the Green Cloud Scheduler OpenNebula
ecosystem [10] component developed in the EU FP7 GAMES project and enhancing it
to consider the new criteria of the GEYSER project.

The on-demand optimization aims at energy efficient relocation of workload across
multiple interconnected DCs and automatically renegotiation and decreasing the SLA
levels contracted by customers, for limited periods of time, when the DC cannot sustain
the SLAs. In the energy optimizer a number of criteria are added including the overall
network of DC energy consumption, the overall network of DCs energy production
(renewable and heat), the energy gain and the performance penalties by time and spatial
relocation and migration of processing, storage and networking load though a network
of DCs, as well as the network and transmission costs.

The multi-criteria optimization problem requires specific search strategies capable
of identifying the optimal or near optimal solutions. In consequence we plan to
approach and solve the problem by means of evolutionary techniques that combine the
strength elements of different bio-inspired meta-heuristics. We plan to combine pop-
ulation-based algorithms (such as Evolutionary Algorithms, and especially Genetic
Algorithms, Bee Colony Optimization, and Particle Swarm Optimization) with tra-
jectory-based algorithms (such as Simulated Annealing or Tabu Search) aiming to find
the perfect balance between intensification and diversification aspects of the optimi-
zation problem. The advantage of using bio-inspired techniques is that they require
modelling data structures with low processing overhead while by defining a proper
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fitness function, the optimal workload placement can be found in relatively short con-
vergence times without processing the entire search space as opposed to classical
exhaustive search strategies. For example, the energy efficient relocation of workload
across multiple interconnected DCs can be approached exploiting the bees foraging
behaviour [11, 12]. The GEYSER Optimizer may implement scout mobile agents (similar
to scout bees) which randomly migrate from a source DC (the hive) to the interconnected
DCs (food sources) aiming at gathering information regarding their operation context such
as load levels, SLAs, cross-DCs network capabilities, energy consumption, power source
type, and so on. When the scout mobile agents return, their findings are analysed and the
most appropriate DC for workload relocation will be selected and the relocated workload
activities will follow the path of the scout mobile agent.

To take optimization decisions the GEYSER optimization component relies on the
sensed data describing the DC internal and external context for inferring, in real-time,
the energy system status and the detection of contingencies or anomalies.

This is archived by means of the Energy-Budget Situational Awareness (at the level
of a DC and a Network of DCs) components which estimate the current and foreseen
energy consumption and production, taking into account IT energy consumption,
cooling, heating, resources usage, internal network characteristics, heat dissipation, and
so on. The Energy-Budget Broker components are based on semantic annotations of
the sensed data to achieve contextualisation. The annotations are done using the
semantically enhanced GEYSER data model (see Sect. 3.2). Reasoning techniques will
be applied on the semantically enhanced data aiming at assessing the current energy
budget of the DC. Prediction techniques will be used to forecast future energy con-
sumption and renewable energy production trends both at DC and smart city and grid
levels. Based on the prediction outcome, the GEYSER optimizer may proactively take
actions to decrease the energy consumption, so as to take advantage of smart grid
flexibility options or to sell the surplus energy to the city. GEYSER will develop
prediction techniques based on time series analysis and neural networks that use the
knowledge extracted by means of data mining to determine future energy consumption
trends, frequent patterns, and so on. The constructed time series models will be used to
extract information regarding short and long term trends of the energy consumption and
production, cyclical, seasonal and irregular components. For example, during night
time the workload and energy consumption levels of a DC are decreasing (a predicted
cyclical component). Using this knowledge the GEYSER Multi-criteria Real-time
Energy Efficiency Optimizer will proactively prepare the DC to save enough energy to
power up a smart neighbourhood (if requested). Also, during summer time, the energy
consumption levels of a smart city are at very high levels (a predicted seasonal com-
ponent) mostly due to the extensive usage of air conditioners. As a result, GEYSER
Optimizer may proactively shift most of the DC workload to partner DCs located in
colder regions.

The IT Load Migration Broker and Network of DC Adaptive IT Load Migration
subcomponents (not visible in Fig. 2) are in charge of defining the load migration
strategy, passing the decision taken to the Virtual Machine scheduler, and estimating
the best way to migrate the IT load among the network of DCs.

Customers’ Quality of Service (QoS) & SLA Negotiation Broker subcomponent
(not visible in Fig. 2) is responsible for monitoring the QoS of the offered services and

78 I. Anghel et al.



re-negotiate SLAs between DCs. Since the workload to be migrated within the limits of
a DC corresponds to a particular service that is provided to a specific customer under
certain conditions and guarantees, it is of primary importance to maintain the SLA
guarantees after the reallocation. GEYSER aims to make sure that the established SLAs
will not be affected by the migration process. However, in case this might not be
possible or in case an adjustment of the SLA is required so as to achieve a better pricing
mode for the end-customer, GEYSER automatically re-negotiates SLAs and decreases
the customers contracted SLA levels, within acceptable and agreed limits for limited
periods of time. SLA negotiation is dynamic, in the sense that a new SLA offered by
the DC provider may be followed by modified suggestions by the customer.

3.2 Semantically Enhanced GEYSER Data Model

A central component of the GEYSER framework is the semantically enhanced data
model, whose goal is to define the energy efficiency semantics for DCs in the context of
urban smart environments. The model will be implemented by means of ontology and
will be used for: (i) defining the main energy-enhanced business vocabulary together
with energy-performance complex dependencies, (ii) representing and sharing data and
knowledge among GEYSER modules, and (iii) enacting reasoning techniques for
assessing the energy efficiency of the DC and forecasting the energy consumption and
production future values.

In that respect, EU FP7 GAMES data model will be extended to cope with the DC
flexibility aspects and interoperability with the smart city and to ensure semantic
integration with the prominent EU eeBuilding Models including the leading-edge
BEMS model and a semantic mapping with the EU FP7 COOPERATE [13] project
Neighborhood Information Model (NIM).

Concepts related to identifying the DC energy efficiency are classified in two main
branches:

• Concepts describing the DC internal context – used to assess and improve the
energy efficiency of a single isolated DC data;

• Concepts describing the DC external context - used to assess and improve the
energy efficiency of the DCs in the context of the smart grid and smart city.

Data Centres Internal Context. DC internal context semantic model design is built
upon the Energy Aware Context Model [14] defined in the EU FP7 GAMES project
and GEYSER will use a Component – Action – Indicator based approach. As a result
the relevant concepts are classified within three main categories: (i) DC Components,
(ii) DC Energy Efficiency Optimization Actions, and (iii) DC Energy Efficiency
Indicators.

DC Components are describing active elements inside the DC that can be moni-
tored, controlled, and optimized. DC Components are further classified in two main sub
classes: components that consume energy and components that produce energy.
In the DC we have identified two classes of components that consume energy, as
shown in Fig. 3: (i) non-IT components which do not run workload but may be used to
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assure the proper conditions for workload execution or improve the quality of
personnel working conditions and (ii) IT components which run the DC workload.

The DC Components that produce energy (associated or internal to the DC), part
of the GEYSER semantic data model are classified as:

• Green Energy Sources – resources that produce renewable energy (for example
photovoltaic, wind, and geothermal);

• Brown Energy Sources – resources that produce energy and generate pollution (for
example, Diesel Generators);

• On-site Energy Storage Components - components which are used to store energy
and provide it when requested (for example, UPS).

DC Energy Efficiency Optimization Actions describe the classes of actions that can be
taken to improve the energy efficiency of the DCs. For each type of components that
can be monitored and controlled, we have identified classes of optimization actions that
can be used to improve their energy efficiency. Figure 4 shows the classification of DC
energy efficiency optimization actions to be considered in GEYSER.

DC Energy Efficiency Indicators are representing metrics and their associated
thresholds used for assessing the DC energy efficiency. Figure 5 presents a categori-
zation of DC parameters that need to be measured and used to assess the energy
efficiency of DCs. One of the challenges to be addressed in GEYSER is to find an
optimal combination of state of the art metrics that covers all interesting parameters
shown in Fig. 5 or to define new metrics for covering all relevant aspects.
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Fig. 3. Classification of DC energy consumption components
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For each indicator the following properties are represented in the GEYSER
semantic model: (i) the indicator formula or condition which is the subject of evalu-
ation (if the condition is false, optimization actions must be taken), (ii) policy’s
evaluation value for the current data collected from the DC (true or false), (iii) the set of
DC components on which the indicator imposes restrictions, and (iv) the set of DC
components through which the indicator may be enforced.

Data Centre External Context. In this section we describe the relevant concepts for
semantically modelling the DC external context, more specifically the interaction with the
Smart Grid and Smart City. We consider the DC as an Energy Element of a smart
neighbourhood and use the model developed within the EU FP7 COOPERATE project,
NIM, for representing the DC integration within the smart grid and smart city. Figure 6
presents the integration of the GEYSER semantically enhanced model with the COOP-
ERATENIM and the association of its elements with the DC internal context information.

The dark boxes in Fig. 6 indicate the extensions to the COOPERATE NIM, while
the light boxes indicate the elements of the NIM which are used to represent the
integration and interaction between the DC and Smart Grid and Smart City. In our
vision the NIM EnergyData element needs to be extended to represent the overall
amount of the DC energy consumption and production provided by means of the DC
internal components (see above). The DataCenter element is a model based

Fig. 6. Integration of the GEYSER semantic data model with COOPERATE Neighborhood
Information Model
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representation of the DC itself. It must refer to all components inside the DC relevant
for assessing its energy efficiency. The EnergyGridConnection element will be
extended to represent the two different types of energy flows that may exist, according
to GEYSER vision, between a DC and smart neighborhood: heat grid connection and
electricity grid connection. The LegislativeConstraints element will be extended to
express constraints related to SLAs, while the GeographicalData will be extended to
cover also the weather forecasting data which will be used in GEYSER for forecasting
renewable energy sources availability and energy prices.

4 GEYSER Simulation Environment

In order to deliberate on various aspects of integrating DCs in smart energy networks,
the various scenarios developed within GEYSER are to be tested. These scenarios are
to be evaluated using simulations as well as Hardware In-the-Loop (HIL) test beds.
This approach ensures the uniformity of the boundary conditions in each simulation,
making the comparison and optimization procedures possible.

4.1 Modelling

All the components related to DCs as well as smart cities are to be represented as
models. The appropriate modelling especially for electric components is a challenge, as
the observed behaviour depends on the observation and later simulation resolution.
Energy shifting actions have a time constant of several minutes until they show a
beneficial value for the user. In contrast to that, power quality phenomena have a
timescale of less than 1 ms. Since large scale simulations are necessary to study the
behaviour of different systems, the models only need to reproduce the behaviour of
each component at its boundaries. For example, a rack model in the DC should not
include the detailed structure and components inside the rack but only how the rack and
its surroundings interact dynamically.

All models are designed to be expandable. This ensures the scalability of the whole
system with regards to the different scenarios making it possible to use the same
platform for diverse applications. The models are also developed in such a way that
real-time simulations are possible in order to run HIL simulations.

Since the whole electrical and thermal behaviour of the system is taken into
account, the modelling language Modelica [15] has been chosen. Modelica is an object-
oriented, equation-based language for modelling physical systems which allows multi-
physic simulations including mechanical, thermal, electrical and hydraulic as well as
control components [16].

An extensive library for different components is required for the whole system,
containing but not limited to energy sources such as generators, CHPs and PVs, cooling
equipment such as chillers and air conditioning units and IT components like different
types of racks, lightning, and so on.

The modelling will not only consider internal to DCs components but also the
interfaces of bidirectional energy exchange between a DC and the Smart City. An
overview of the various model blocks is given in Fig. 7.
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As a consequence a DC-Smart Grid interaction is to cover not only pure energy
transfer but also to model the provision of ancillary services such as voltage support
from the DC towards the Smart City. Since the latter is categorized as a power quality
topic the models used for the simulation should be designed so as to hold for this
timescale as well. The provision of ancillary services from the DC to the Smart City
can then improve the energy efficiency of the whole system, as this provision does not
need to come from other sources.

4.2 Simulation Methods

Two different simulation parts are considered. First whole systems are simulated and
optimized using different energy sources and sinks as well as different energy carriers
and control strategies. This enables the incorporation of futuristic scenarios and opti-
mizations in DCs.

Another part of the simulation includes the HIL simulation. Different components
in the simulation can be replaced with real hardware. For example, a complete DC or
part of it can be used as the hardware connected to simulation models of the rest of the
DC as well as the smart city. Simulation models and hardware will be connected using
the so called electrical, thermal and hydraulic interfaces [17]. Depending on the
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boundaries between the software and hardware, different interfaces should be built to
emulate the simulation conditions for the hardware side.

As mentioned earlier, one of the challenges in simulating multi-physic systems is
the different time constants for different components. Thermal and hydraulic compo-
nents can use time steps in the order of seconds or minutes while electrical components
need to be computed at least every 1 ms for sufficient accuracy. To overcome this
problem, as suggested in [17] the complete system model should be split in different
nodes according to their simulation time step. Each node can be executed on a separate
platform which then can interact with other platforms using shared memory
architecture.

The HIL simulation will be used to evaluate and validate the methodology of
GEYSER solutions in a lab-based environment aiming at better understanding the
energy profiles as well as energy related processes in DCs.

• This approach enables us to successfully verify the following scenarios and the
scalability of the models: Real time testing of the complete DC and interaction with
the Grid

• Detailed testing of the DC operation and its components with a limited model of the
grid

• Power Hardware in the Loop of the efficiency of the cooling of one or more
computational racks

In any of the cases, the simulation models will be able to communicate with all external
sources such as the marketplace.

5 Conclusions

Although considerable efforts have been made in the last years to reduce the energy
consumption of the DC industry and improve its efficiency, these are not enough in the
dawn of the Internet of Things society. Especially, for DCs located within urban
environments there is still room for improvement by removing the barriers between the
DC sector and Smart Cities. This paper presented and discussed the first steps taken
within the EU FP7 GEYSER project towards this direction. In particular, within the
previous sections we have identified the GEYSER visionary scenarios, described the
overall system architecture, and outlined its novel approach in optimization mecha-
nisms to be considered and simulation methodology to be followed. These constitute
the building blocks for GEYSER to design, implement and validate a fully innovative
conceptual, business, and software framework for green energy-sustainable DCs acting
as energy prosumers within a Smart City and Smart Grid paradigm, in which the DCs
will be the key transformational nodes by also providing energy as a service.

GEYSER: Enabling Green Data Centres in Smart Cities 85



References

1. Kumar, R.: How to measure Energy Consumption in Your Data Center, Gartner RAS Core
Research Note G00205428, September 2010. http://www.gartner.com/resId=1433244

2. EU FP7 GAMES, Green Active Management of Energy in IT SErvice Center. http://www.
green-datacenters.eu/

3. EU FP7 FIT4Green, Federated IT for a sustainable environment impact. http://www.
fit4green.eu/

4. EU FP7 All4Green, Active collaboration in data centre ecosystem to reduce energy
consumption and GHG emissions. http://www.all4green-project.eu/

5. EU FP7 CoolEmAll, Platform for optimising the design and operation of modular
configurable IT infrastructures and facilities with resource-efficient cooling. http://www.
coolemall.eu

6. Parolini, L., Sinopoli, B., Krogh, B.H.: Reducing data centre energy consumption via
coordinated cooling and load management. In: HotPower 2008: Workshop on Power Aware
Computing and Systems, December 2008

7. Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data
centres. In: IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
(CCGrid), pp. 826–831, May 2010

8. Aikema, D., Kiddle, C., Simmonds, R.: Energy-cost-aware scheduling of HPC workloads.
In: 1st International Workshop on Sustainable Internet and Internet for Sustainability, June
2011

9. Miller, R.: Google embraces thermal storage in Taiwan, April 2012. http://www.
datacentreknowledge.com/archives/2012/04/03/google-embraces-thermal-storage-in-taiwan/

10. http://community.opennebula.org/ecosystem:green_cloud_scheduler
11. Yuce, B., Packianather, M.S., Mastrocinque, E., Pham, D.T., Lambiase, A.: Honey bees

inspired optimization method: the bees algorithm. Insects 4, 646–662 (2013). http://dx.doi.
org/10.3390/insects4040646

12. Babu, D., Krishna, P.V.: Honey bee behavior inspired load balancing of tasks in cloud
computing environments. Appl. Soft Comput. 13(5), 2292–2303 (2013). http://dx.doi.org/
10.1016/j.asoc.2013.01.025

13. EU FP7 Cooperate, Control and Optimization for Energy Positive Neighbourhoods. http://
www.cooperate-fp7.eu/

14. Salomie, I., Cioara, T., Anghel, I., Moldovan, D., Copil, G., Plebani, P.: An energy aware
context model for green it service centers. In: Maximilien, E., Rossi, G., Yuan, S.-T.,
Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568, pp. 169–180. Springer,
Heidelberg (2011)

15. Modelica and the Modelica Association – Modelica Association. https://www.modelica.org/
16. Stoyanova, I., Matthes, P., Harb, H., Molitor, C., Marin, M., Streblow, R., Monti, A.,

Muller, D.: Challenges in modeling a multi-energy system at city quarter level Complexity
in Engineering (COMPENG), pp. 1–5 (2012)

17. Molitor, C., et al.: Mutliphysics test bed for renewable energy systems in smart homes. IEEE
Trans. Industr. Electron. 60(3), 1235–1248 (2013)

86 I. Anghel et al.

http://www.gartner.com/resId=1433244
http://www.green-datacenters.eu/
http://www.green-datacenters.eu/
http://www.fit4green.eu/
http://www.fit4green.eu/
http://www.all4green-project.eu/
http://www.coolemall.eu
http://www.coolemall.eu
http://www.datacentreknowledge.com/archives/2012/04/03/google-embraces-thermal-storage-in-taiwan/
http://www.datacentreknowledge.com/archives/2012/04/03/google-embraces-thermal-storage-in-taiwan/
http://community.opennebula.org/ecosystem:green_cloud_scheduler
http://dx.doi.org/10.3390/insects4040646
http://dx.doi.org/10.3390/insects4040646
http://dx.doi.org/10.1016/j.asoc.2013.01.025
http://dx.doi.org/10.1016/j.asoc.2013.01.025
http://www.cooperate-fp7.eu/
http://www.cooperate-fp7.eu/
https://www.modelica.org/


Analysis of the Influence of Application
Deployment on Energy Consumption

Marco Gribaudo, Thi Thao Nguyen Ho, Barbara Pernici(B),
and Giuseppe Serazzi

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza L. da Vinci, 32, 20133 Milan, Italy

{marco.gribaudo,thithao.ho,barbara.pernici,giuseppe.serazzi}@polimi.it

Abstract. Energy efficiency for data centers has been recently an active
research field. Several efforts have been made at the infrastructure and
application levels to achieve energy efficiency and reduction of CO2 emis-
sions. In this paper we approach the problem of application deployment
to evaluate its impact on the energy consumption of applications at
runtime. We use queuing networks to model different deployment con-
figurations and to perform quantitative analysis to predict application
performance and energy consumption. The results are validated against
experimental data to confirm the correctness of the models when used
for predictions. Comparisons between different configurations in terms of
performance and energy consumption are made to suggest the optimal
configuration to deploy applications on cloud environments.

Keywords: Green ICT · Energy efficiency · Performance evaluation ·
Cloud computing · Application deployment

1 Introduction

Cloud computing has enabled new paradigms for computing and providing
services. On one side, it offers new business solutions that can reduce costs
and improve business agility; on another side, researches have shown that cloud
computing is the dominant contributor of carbon footprint in Information and
Communication Technology (ICT) [1] due to the rapidly increasing power con-
sumption of data centers. This triggers the need of investigating energy-efficiency
solutions to design, implement and deploy applications in cloud environments.

Buyya et al. [2] have performed an analysis to understand the main sources
of energy consumption in clouds and solutions to address them. According
to the analysis, the application profile, including response time, CPU utiliza-
tion and memory usage, has a significant impact on energy consumption. This
motivates investigation on methods for design and implement applications to
achieve energy efficiency. Other elements that contribute significantly to energy
consumption are resources allocation and provisioning. Indeed, resources are
often over provisioned to meet required Service Level Agreements (SLAs).
c© Springer International Publishing Switzerland 2015
S. Klingert et al. (Eds.): E2DC 2014, LNCS 8945, pp. 87–101, 2015.
DOI: 10.1007/978-3-319-15786-3 6
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Network devices, used to carry out data communication over Internet, add non-
negligible components to energy consumption. The last important element of
this analysis is the data centers with their large scale cooling infrastructures and
their impact on the environment.

Different solutions have been proposed and implemented to achieve energy effi-
ciency based on identified dominant energy-consumed sources [2]. The key drivers
for achieving this are (1) Dynamic Provisioning: resources are allocated dynami-
cally according to runtimedemand; (2)Multi-tenancy: the same infrastructure and
software are used to serve multiple companies resulting in minimization of extra
infrastructure; (3) Server Utilization: maximizes server usage in order to reduce
numbers of active servers; (4) Data Center Efficiency: focuses on advanced power
management and cooling systems to improve Power Usage Effectiveness (PUE).

In Data Centers, research efforts have been put at both hardware and soft-
ware levels. According to [6], four main techniques have been employed in Data
Centers: (1) Dynamic Voltage and Frequency Scaling (DVFS) to dynamically
change electrical voltage and CPU frequency with respect to changing work-
load; (2) Resource throttling: to maximize resource utilization; (3) Dynamic
Component Deactivation (DCD): to activate/deactivate resources on demand;
(4) Workload consolidation: to dynamically allocate the workload, either incom-
ing requests or virtual machines, to a minimal amount of physical resources
while satisfying SLAs. Moreover, the main part of power consumed by a server
is drawn by the CPU, followed by memory and by the losses due to the power
supply inefficiency [6]. Therefore the goal of the energy-aware consolidation is
to keep servers well utilized, while avoiding the performance degradation due to
high utilization.

For the purpose of our study, here we briefly discuss the state of the art of
energy efficiency at application level, in particular for Information Systems (IS) in
cloud environments. Vitali and Pernici [4] have performed a survey on energy effi-
ciency in IS. According to this survey, the majority of work about energy efficiency
has been given to physical resource management, including provisioning virtual
machines (VMs), dynamic workload placement, scheduling cloud instances. Some
studies have focused on the design of processes to obtain greener solutions. To this
regard, re-engineering process life cycle to obtain green solutions is required and
composed by four relevant areas [7]: (1) Process Design, (2) Process Measuring,
(3) Process Improvement and Change, (4) Process Implementation. During pro-
cess design and implementation, environmental constraints have to be considered.

However, to the best of our knowledge, there is no work that systemati-
cally study the influence on energy efficiency of applications deployment. While
a layered approach to consider energy efficiency has been proposed to man-
age resources associated to VMs according to application requirements [8], the
deployment configuration of applications on VMs and its impact on energy con-
sumption is still an open issue. According to the study of Mayo et al. [3], the
infrastructure and configuration to deploy applications have a significant effect
on energy consumption.
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The goal of the present work is to investigate different ways to deploy an
application in cloud environments and to analyze simultaneously the energy
consumption together with the system performance. The results obtained can
be used by services providers to choose the best deployment for the applications,
considering their profiles and requirements in terms of response time and energy
consumption.

Our approach uses queueing networks to model different deployments of an
application in cloud infrastructures. Specifically, the models help to easily ana-
lyze several system performance indices and to estimate energy consumption
for each deployment configuration. The results are validated against experimen-
tal data to check the correctness of the models. Comparisons between different
deployment configurations are made to select the best one, considering both
system performance and energy consumption. We focus on the problem of com-
paring different deployment configurations for the execution of an application,
considering different deployments on VMs with homogeneous configurations,
while the more general case of selecting the most appropriate configuration of
resources in VMs for an application is not examined in this paper. In particular,
we analyze the behavior of applications in High Performance Computing (HPC)
domain, characterized by separate data loading and processing phases.

The rest of this paper is organized as follows: Sect. 2 introduces our case
study, Sect. 3 presents model analysis, Sect. 4 describes the power model used in
our work, Sect. 5 provides validation of the results obtained from the models,
Sect. 6 provides an analysis of different configurations based on the models
to support application deployment decisions; finally, Sect. 7 addresses future
research directions.

2 The ECO2Clouds Project and the Eels Application

In this section, we introduce the ECO2Clouds project, which provides the exper-
imental basis for our work, and the case study used in our experimental analysis.

2.1 ECO2Clouds

ECO2Clouds is a European project1 studying ways of reducing the environ-
mental impact of applications in a federated cloud infrastructure, incorporating
ecological concerns (such as energy efficiency and CO2 footprint) as key design
parameters for cloud infrastructure and application deployment strategies. The
aim of the ECO2Clouds project is to develop an energy efficient solution for
the deployment of workloads on cloud infrastructures. To achieve this goal, the
project establishes a set of key metrics (eco-metrics) to expose energy consump-
tion of applications as well as of cloud infrastructures. The project has developed
a scheduler that places workloads on the Cloud with the aim to achieve optimal
performance within agreed service level parameters, while keeping the energy
usage and environmental impact as low as possible [12].
1 http://eco2clouds.eu.

http://eco2clouds.eu
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BonFIRE2 is the cloud infrastructure used in ECO2Clouds. The BonFIRE
platform delivers a robust, reliable and sustainable facility for large scale
experimentally-driven cloud research. The solutions resulted from ECO2Clouds
project are validated on BonFIRE, monitoring and collecting ecometrics and
supporting ecofriendly scheduling of VMs and management of applications. The
work in this paper, also in the scope of ECO2Clouds project, studies in particular
how the given ecometrics can be used to support an optimal deployment, taking
into account application-level requirements specified in the execution profile of
the application.

2.2 The Case Study

The subject of this case study is the oceanic migration of European eel larvae,
aiming to understand the response of fish populations to anthropogenic pressures
on marine ecosystems [5]. The model built to analyze eels trajectories, consisting
of three main steps, i.e., Calibration, Simulation/Forecast, Data aggregation and
analysis, requires significant computational effort in terms of CPU processing
and management of large datasets.

The Eels application involves two main phases: Data Loading, the initial step
of the execution, and Data Processing, that requires high CPU computation. At
the beginning of the execution, an Eels instance will load the data specified by the
input parameters to the machine that will perform the analysis. In our case study,
the data loading usually takes 3 min to complete. After the data are ready, com-
putational machine performs the processing phase which usually requires 30 min
and it is computational intensive. The storage contains oceanographic data and,
in our setup, is shared among multiple Eels application instances. Experiments
are based on the request to execute multiple instances of the Eels application.

3 Different Deployment Configurations and Models

3.1 Application Deployment Configurations

Deploying applications on cloud environments is supported by means of vir-
tualization of physical resources, providing users an abstract view of physical
infrastructures. Thus, applications actually run on virtual machines created
inside the physical servers. Users are provided a certain degree of flexibility
to select a VM’s configuration (e.g., number of CPUs, memory, size), and how
they want to run their applications (e.g., concurrently, sequentially). Since the
Eels application shares its execution pattern (i.e., data loading phase and CPU
intensive computation phase) with many other HPC applications, we will analyze
different possible deployment strategies for its execution. Given N application
instances, we want to find the best configuration, in terms of number of VMs
needed to execute the application instances, execution policies (e.g., parallel or

2 bonfire-project.eu.

www.bonfire-project.eu/
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sequential execution), storage access strategies (e.g., synchronous or asynchro-
nous), such that the best results concerning execution time and energy consump-
tion are obtained. We will analyze the impact of different execution strategies
with one or more virtual machines on response time, resources utilization, and
energy consumption of the same configuration. In this specific scenario, we inves-
tigate five different deployment configurations (listed below) that can be used
to execute the Eels application. Each one of them is associated with a specific
scenario that the users might encounter. The method proposed in this paper can
also be applied to other applications with a similar execution pattern.

Configuration 1 - Synchronous Parallel Execution. In this configuration,
several users execute the application to analyze the Eels migration behaviors
(Fig. 1). To minimize the users response time, several application instances, one
for each user, are executed in parallel. A separated VM is assigned to each appli-
cation instance; and all VMs are homogeneous and synchronized in accessing the
storage. While this configuration promises a potential shortest response time, it
might exhibit a risk of resource contention since the storage can become the
bottleneck of the system.

Configuration 2 - Asynchronous Parallel Execution. This configuration
is slightly different from the previous one with respect to the storage accesses
(Fig. 2). In this case, to avoid potential resource contention in data loading,
storage accesses have been scheduled with a mean delay of 3 min, the required
time to complete a data loading phase. The remaining part of the setup is similar
to Configuration 1. At the first sight, this configuration might lead to longer
response time with respect to Configuration 1 due to the delay. However, by
avoiding resource contention, it might result in shorter execution times when
the number of VMs is large.

App VM

App VM

App VM

.

.

.

Disk

synchronization

Fig. 1. Configuration 1: synchronous
parallel execution

App VM

App VM

App VM

.

.

.

Disk

delay

Fig. 2. Configuration 2: asynchronous
parallel execution

Configuration 3 - Sequential Execution. This configuration describes the
situation in which a user executes multiple instances of the application to analyze
the same data set several times, possibly with different parameters (Fig. 3). The
time required to analyze the data is not a critical constraint while the minimum
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Disk
App VM

...

Fig. 3. Configuration 3 - sequential execution

amount of resources used it is. Therefore, multiple application instances will be
executed sequentially on the same VM, the accesses to the storage are sequential.

Configuration 4 - Synchronous Parallel Execution with Minimal
Resources. This configuration (Fig. 4) is another deployment alternative to
Configuration 1 that considers only the minimum amount of computational
resources, i.e., one VM. Multiple application instances are deployed on the same
VM, executed in parallel and storage accesses are synchronized. This configura-
tion might result in longer response time due to the higher workload assigned to
computational resources (e.g., the application VMs). However, it will be inter-
esting to compare its results with the ones of other configurations, analyzing the
tradeoff of system response time and energy consumption, and evaluating the
benefits in terms of energy consumption due to the limits of the computational
resources.

Configuration 5 - Asynchronous Parallel Execution with Minimal
Resources. This deployment is alternative to Configuration 4, where we con-
sider a delay for each application instance when accessing the storage (Fig. 5).
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Fig. 4. Configuration 4 - synchro-
nous parallel execution with mini-
mum resources
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Fig. 5. Configuration 5 - asynchro-
nous parallel execution with minimum
resources

3.2 The Models Implemented

Given five possible configurations of the Eels application, in this section we
present the models that capture their characteristics and we use them to analyze
the performance indices and the energy consumption. We use JMT tools [11] to
model the configurations.
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Model 1: Synchronous Parallel Execution. Model 1, shown in Fig. 6, refers
to Configuration 1 where the disk is modelled as a queue station, serving one
request at a time. The requests arriving while the disk is busy will wait in queue.
The VM hosting the application instance is modelled as a delay station (named
Application in the figure) with no queue of requests since each VM is dedicated
to the execution of one application instance. The synchronization is performed by
the Fork and Join stations. The model captures the execution sequence: the data
loading phase is performed first, followed by the processing phase that involves
high CPU computation.

Fig. 6. Model 1: synchronous parallel execution

Model 2: Asynchronous Parallel Execution. Model 2, shown in Fig. 7, is
associated to Configuration 2, with the only difference in the delay between the
accesses to the disk. To model the delay, we add additional queue stations, each
represents one delay. Hence, as a function of the application VMs in the system,
the number of delay stations will be updated accordingly. Precisely, the number
of delay stations is smaller than the number of application VMs of one unit.

Fig. 7. Model 2: asynchronous parallel execution

Model 3: Sequential Execution. Model 3 refers to Configuration 3, simulat-
ing the sequential execution of multiple application instances. The VM hosting
application instances is modelled by a queue station because multiple application
instances are deployed on the same VM, therefore potentially leads to competing
of resources usage. Moreover, due to the constraint of sequential execution, only
one request can be present in the disk and in the application VM at a time.
This constraint is satisfied by adding a finite capacity region, e.g. FCRegion0.
Figure 8 shows this model.
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Fig. 8. Model 3: sequential execution

Model 4: Synchronous Parallel Execution with Minimal Resources.
Model 4, shown in Fig. 9, is associated to Configuration 4. It simulates synchro-
nous parallel execution of multiple application instances deployed on the same
application VM. Application VM is modelled as a queue station, with no limi-
tation in the number of requests in the disk and the application VM. The Fork
and Join stations perform the synchronization.

Fig. 9. Model 4: synchronous parallel execution with minimal resources

Model 5: Asynchronous Parallel Execution with Minimal Resources.
Model 5, shown in Fig. 10, is associated to Configuration 5. It simulates asynchro-
nous parallel execution of application instances hosted on the same application
VM. Application VM is modelled as a queue station, while the delay is performed
by introducing extra delay stations, depending on the number of delays needed.

4 Power Model

To compute the power consumption of the different configurations, it is nec-
essary to adopt a power model able to predict the actual value of the con-
sumption based on some runtime characteristics. Fan et al. [9] describe a linear

Fig. 10. Model 5: asynchronous parallel execution with minimum resources
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relationship between the CPU utilization and the total power consumption of
a server. According to their model, the power consumption of a server grows
linearly with the CPU utilization. The initial value is Pidle, i.e., the power con-
sumption in the idle state, and the final value is Pbusy, i.e., the power consumed
at 100 % of utilization. Equation 1 describes this relationship.

P (u) = Pidle + (Pbusy − Pidle) × U (1)

where U is actual value of CPU utilization.
While Eq. 1 computes the power consumption of a VM considering only one

physical host, in our work, we used Eq. 2 to estimate the power consumption
when there are more than one VM involved and deployed on multiple physical
hosts, assuming a single physical host allows to deploy up to a maximum number
of VMs:

P (u) = Pidle × ceil(N ÷MaxVM) + (Pbusy − Pidle) × U ×N (2)

where N is the number of VMs used in the experiment, MaxVM is the maximum
number of VMs that can be deployed on a single physical host.

This model allows us to estimate the power consumption even in cases where
multiple physical servers are used. With Eq. 2 we estimate the power consump-
tion for each configuration, using the Pidle and Pbusy measured from our Bon-
FIRE infrastructure, and the value of U obtained from our models. To estimate
the total energy consumption, we use Eq. 3:

E = P (u) ×R (3)

where E is the estimated total energy consumption, P is the estimated power
consumption computed using Eq. 2, and R is the system response time given by
the models.

5 Validation

In this section, we validate the models, using experimental data provided by
the BonFIRE and ECO2Clouds platform. We explain how to obtain power
measurement and the values of Pidle and Pbusy in order to compute power con-
sumption and derive energy consumption.

The ECO2Clouds platform uses Zabbix to monitor its running environment
from low-level infrastructure layer up to high-level application layer [10,12].
Physical hosts in BonFIRE are equipped with a power distribution unit (PDU),
an external hardware power device that distributes electric power to the hosts,
and monitors power consumption of each host. Given the data provided by the
PDU, Zabbix monitoring system performs sampling each minute to sample power
value at a time instant, and stores it in a monitoring database. Figure 11 shows
the schematic representation of the monitoring environment in ECO2Clouds.

To perform experiments on ECO2Clouds, we use dedicated physical hosts
having 2 × QuadCore Intel Xeon @ 2.83 GHz, 32 GB RAM as configuration.
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Fig. 11. Collecting data via monitoring environment

Each physical host is able to deploy up to a maximum of 6 VMs. Experiments
involving more than 6 VMs will have to allocate more than one physical host with
the same configuration. Since the PDU provides power consumption only at the
host level, our hypothesis is that power measured from physical host is accounted
for all the VMs running on the host. In specific, if there is one running VM, the
measured power is accounted completely to that VM; in case of multiple VMs
on the host, the measured power is accounted to all the VMs. In this work, we
do not study how to distribute the measured power to specific VMs considering
their performance and workload. Indeed, during the experiments only the VMs
related to our application were running on the considered hosts, so the total
measured power can be accounted globally to all of them.

To measure Pidle and Pbusy, we created one VM on a host and deployed the
Eels application on it. Pidle value is computed as the average of power samples
over an idle period (e.g., 10 min) when the VM does not execute the application.
Pbusy is computed as the average of power samples over a peak period (e.g., CPU
load is 100 %) when the application is being executed. The energy consumption
of one experiment is computed by integrating power samples getting from the
PDU over the experiment’s lifetime.

Finally, we choose to validate Eq. 2 for two different configurations, Config-
uration 1 with synchronous parallel execution and Configuration 4 with syn-
chronous parallel execution with minimal resources. These two configurations in
fact are the representative of different strategies to deploy applications. Config-
uration 2 shares the same setup with Configuration 1 with the only difference
in the delay (the same considerations applies also for Configurations 5 and 4).
Configuration 3, instead, refers to a deployment in which one application instance
runs on one VM and is then repeated several times.
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Fig. 12. Application and disk energy consumption for Configuration 1

Fig. 13. Application and disk energy consumption for Configuration 4

We compare scenarios where the application instances vary from 1 up to 6,
then we analyze particular values of application instances (e.g. 7, 8, etc.) where
numbers of instances require to use multiple physical hosts to deploy the VMs.
The comparison results, if then confirm the correctness of the models, will lead
to their usage to predict unforseen cases.
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Figures 12 and 13 show for Configuration 1 and Configuration 4 respectively
the energy consumption of the application VM and the disk. The comparison
between the model results and the experimental data is provided. As it can be
seen, the total energy consumption of the application VM and the disk measured
from real system are very close to the values predicted by the model. Moreover, it
is shown that the application VM consumes more energy than the disk, and the
increasing speed of energy consumed by application grows faster than the disk.

6 Deployment Configuration Analysis

In this section, we exploit the five different models to extract useful insights of sys-
temperformance and energy consumption.We want to compare five configurations
in terms of system response time and energy consumption, with a number of appli-
cation VMs ranging from 1 to 30. This comparison will help us to find the dominant
and dominated configurations with respect to energy consumption and system per-
formance, i.e., the response time. Figures 14 and 15 show the comparison.

The figures unveil a linear increasing in energy consumption with respect
to system response time in Configuration 3, 4 and 5; and a non-linear relation-
ship of energy consumption in Configuration 1 and 2. The ladder step behav-
ior in energy consumption of Configuration 1 and 2 is due to the ceil function
(ceil(N ÷MaxVM)) in Eq. 2, which is related to the number of physical hosts
required to host N VMs.

The figures also show that Configuration 3 is slightly dominated by the others,
considering both energy consumption and system response time. Moreover, the

Fig. 14. Energy consumption comparison of different configurations
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Fig. 15. System response time comparison of different configurations

energy consumption and system response time of Configuration 1 and 2 are iden-
tical, similarly for Configuration 4 and 5. This phenomenon can be explained by
the way the delay is applied. In Configurations 1 and 4, the disk accesses are syn-
chronized. These setups give the disk itself responsibility to schedule incoming
requests; in fact, the delay is performed automatically by the disk. While in Con-
figurations 2 and 5, the delay is performed manually by adding delay stations. So,
for this type of problems, asynchronous disk accesses do not seem to provide a case
for a better deployment configuration.

As a conclusion, assuming an unlimited number of resources is available,
Configuration 1, with a single VM for each application instance, consumes less
energy than using a single VM for all application instances, either executed in
parallel or serial. Hence, Configuration 1 is the optimal deployment for this type
of application profile. However, further analysis is needed to extend the results
in cases in which congestion might occur at a certain number of application
instances or in which data dependencies are present.

7 Conclusions and Future Work

In this paper, we analyze the influence of application deployment on energy con-
sumption in cloud environments. We build various models to simulate different
possible configurations for deploying the application, and we compare their results
with experimental data to validate them. We perform comparisons among config-
urations considering total energy consumption and system response time, to sug-
gest optimal configuration with our infrastructures and setup. The models can
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be applied, varying their parameters, to applications with a similar profile to the
one which has been analyzed: the instances of the applications access the same
storage unit, and are characterized by a data loading phase and a computing phase.
The durations of the data loading phase and of the computing phase are stable and
are the parameters for the analysis. The model also allows the application user to
evaluate the effects of setting requirements on response time or on energy con-
sumption of applications, therefore enabling the user to set the most appropriate
constraints according to his needs.

In future work, we are also planning to extend the analysis to other appli-
cation profile patterns, considering the behaviour of other types of applications,
such as web services and providing models for their analysis. The result will be
the basis for providing adaptive applications on cloud infrastructures, able to
react to changing parameters, such as an increase of service time due to external
factors, such as temporary shortage of resources.
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Abstract. In this paper we present an approach to improve power and
cooling capacity management in a data center by taking into account
knowledge about applications and workloads. We apply power capping
techniques and proper cooling infrastructure configuration to achieve sav-
ings in energy and costs. To estimate values of a total energy consumption
and costs we simulate both IT software/hardware and cooling infrastruc-
ture at once using the CoolEmAll SVD Toolkit. We also investigated the
use of power capping to adjust data center operation to variable power
supply and pricing. By better adjusting cooling infrastructure to specific
types of workloads, we were able to find a configuration which resulted
in energy, OPEX and CAPEX savings in the range of 4–25 %.

Keywords: Data centers · Energy efficiency · Simulations · Heat-aware ·
Metrics · OPEX · CAPEX

1 Introduction

The problem of capacity management in data centers is a well known issue,
which data center planners and operators must deal with. The problem can be
defined as finding such a data center configuration that its space, power and
cooling capacity is maximized. In other words, the goal is to put maximal num-
ber of servers into a data center subject to its size, electrical infrastructure power
limits, and heat dissipation constraints. Usually, this process is based on server
power usage nameplates and by getting theoretical peak values from specifica-
tions. Unfortunately, these values are often the Power Supply Unit (PSU) maxi-
mum capacity so they substantially overestimate actual power loads. Therefore,
vendors sometimes deliver calculators that help to obtain estimations closer to
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real values. Still, most of these methods neither take into consideration char-
acteristics of specific applications nor dynamic properties of workloads that are
executed in data centers. Some attempts to! apply more advanced power cap-
ping to improve efficiency of the whole data center can be found in literature.
An alternative method to power capping based on managing distributed UPS
energy is presented in [8]. Interesting approach to combine IT workloads, power,
cooling and renewable energy was studied in [17] but without use of power cap-
ping techniques. In [10] authors propose adaptive power capping for virtualized
servers, however they investigate neither the cooling system nor variable power
supply. Dynamic power capping to enable data center participation in power
markets was proposed in [4] but without detailed cooling consideration, either.
To address these issues, we propose modeling and analysis of data center work-
loads and hardware to identify real power limits that should be met. Based on
these limits we present methods to save energy and optimize cooling capacity of
a data center including adaptation of limits to power supply and pricing.

To meet this objective we have used the SVD Toolkit developed within the
CoolEmAll project [5]. The toolkit enables data center designers and operators
to reduce its energy impact by combining the optimization of IT, cooling and
workload management. For this purpose, CoolEmAll project investigated in a
holistic approach how cooling, heat transfer, IT infrastructure, and application-
workloads influence overall cooling- and energy-efficiency of data centers, taking
aspects into account that traditionally have been considered separately. SVD
Toolkit was used to conduct experiments described in this paper. In particular,
most simulations were done using one of the main tools of the SVD Toolkit - the
Data Center Workload and Resource Management Simulator (DCworms) [9].

Using the CoolEmAll SVD Toolkit we demonstrate how to improve capacity
management by taking into account knowledge about applications and workloads
as well as by using power capping techniques and proper cooling infrastruc-
ture configuration. To obtain total energy consumption, we simulate both IT
software/hardware and cooling infrastructure in parallel. In this way, by better
adjusting cooling infrastructure to specific types of workloads, we were able to
find a configuration which result in energy savings and even in improvement
of CAPEX (Capital Expenditures) without significant workload performance
deterioration. Decrease in CAPEX was achieved by the selection of smaller
chiller which fits the foreseen workloads better. Energy savings were achieved
by increase of server inlet temperature. This was possible by limiting power
used by particular racks and by compliance to the latest ASHRAE recommen-
dations. Finally, we applied power capping to adjust data center operation to!
variable power supply and achieved additional OPEX (Operating Expenditures)
savings. The structure of this paper is as follows. In Sect. 2 we present a model
of a data center including models of IT hardware, cooling, workloads and appli-
cations. This section also contains definitions of metrics used for the assessment
of data center configurations studied in this paper. We analyze workloads along
with their impact of on energy-efficiency in Sect. 3. Based on this analysis we
define power limits which allow reducing energy consumption and costs of a data
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center operation. Section 4 contains results of the data center optimization using
power capping methods and decisions about cooling infrastructure deployment
and configuration. Section 5 concludes the paper.

2 Data Center Model

2.1 Modeling Workloads

In terms of workload management, workload items are defined as jobs that are
submitted by users [19]. Thus, modeling of workloads consists in providing infor-
mation about structure, resource requirements, relationships and time intervals
of jobs arriving to the management and scheduling system. Primary properties
of a workload include:

– number of jobs to be scheduled
– jobs arrival rate, expressed as a time interval between successive jobs
– reference to an application profile describing behaviour of particular job on

the hardware (resource requirements and execution times)

The last one is described in the next section in more detail.
Having these dependencies established, it is possible to express the impact

of particular workload on the hardware layer. For now, one of the main and
commonly used format that provides unitary description of workloads models
and logs obtained from real systems is Standard Workload Format (SWF) [22].

As mentioned, workload profiles may be obtained by monitoring real systems
or generated synthetically. The main aim of synthetic workloads is to reflect
the behavior of real observed workloads and to characterize them at the desired
level of detail. Moreover, they are also commonly adopted to evaluate the system
performance for the modified or completely theoretical workload models. Usage
of synthetic workloads and their comparison to the real ones have been the
subject of research for many years [12].

2.2 Modeling Applications

Concerning application-led management a maximum feedback is needed from the
applications from different point of view. The focus is on power-, energy- and
thermal-impact of decisions on the system. Still it is impossible to put a watt-
meter on an application. In order to obtain the same kind of information, we
monitored applications to evaluate their resource consumption at each second. At
each of these points, using system values and hardware performance counters,
processor, memory and I/O resources are monitored. Using these information
and models we produce for each of these timestamps an evaluation of the power
consumption [6]. Each of those values are monitored, computed and stored in
real-time in a database for future use.

In the system, an application is then described as the resources it uses on
a particular hardware. Each application can be run on different hardware or
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configuration (frequency for example) and those data are associated with the
same application. In case the data for a particular application on a particular
hardware is not available, a translation tool is used to evaluate the behavior of
the application using its behavior on a different hardware. First, it models the
resource bottleneck of an application using the monitored resource consumption
on a particular hardware. Using the target hardware specification, it evaluates
the resource bottleneck and thus overall resource consumption on that hardware.

Using the monitored data, we create a description of applications based on
their phases following the same methodology as in [11]. A phase is defined as
a duration when resources consumption are stable. As an example, Fig. 1 show
the profile of a Fast Fourier Transform algorithm with its phases. Using the
XML files describing exact application behavior and resource consumption, SVD
toolkit can evaluate precisely the impact of its decisions.

Fig. 1. Profile of the benchmark test3d: 3D real-to-complex FFT routine

2.3 Modeling Servers

In the scope of CoolEmAll, data center server room is composed by a number of
racks. Each rack consists of a set of node groups, which are then responsible for
hosting a collection of nodes. Node groups are defined by a means of chassis that
models the placement of nodes within the node group as well as mounted fans.
The main component of the node is a processor with assigned number of cores
and computing capability (expressed by a clock speed). Moreover, each processor
comes with its power and computing profile, described by the means of C-States
and P-States defining operating states with corresponding power usage values
for different utilization levels. Node definition is supplemented by a description
of memory and network. Rack represents a standardized enclosure for carrying
server and power supply modules. Power profiles of IT infrastructure are the
basis for calculating the power consumption of particular resources.



106 G. Da Costa et al.

The following equations show how the power usage for different resource
levels is estimated.

Pcpu(Px, load) = Pcpu(Px, 0) + load ∗ (Pcpu(Px, 100) − Pcpu(Px, 0))/100 (1)

where Pcpu(Px, load) is a power consumed by a processor operating in a given
P-State Px and utilized in a level denoted by load. Pcpu(Px, 0) and Pcpu(Px, 100)
expresses an idle and fully loaded processor working in a given P-State, respec-
tively (these constant values are part of the processor power profile providing
power consumptions levels for all available frequencies).

Pnode =
n∑

i=1

Pcpui
+ Pmem + Pnet (2)

where Pnode is a power consumed by a node, n is the number of processors assigned
to a node, Pmem is a power drawn by a memory, while Pnet by a network.

Pnode group =
m∑

i=1

Pnodei +
k∑

j=1

Pfanj
(3)

where Pnode group is a power consumed by a node group, m is the number of
nodes placed in a node group, k is the number of fans mounted within it and
Pfanj

is a power used by particular fan j.

Prack = (
l∑

i=1

Pnode groupi
)/ηpsu (4)

where Prack is a power consumed by a rack, l defines the number of carried node
groups and ηpsu is efficiency of a power supply unit.

Finally, each component is accompanied with its carbon emissions and elec-
tricity costs. Apart from IT equipment, data center server room is composed by
a cooling devices, which are the subject of next subsection.

2.4 Cooling Models

The SVD CoolEmAll toolkit integrates models to calculate the power associated
to cooling equipment and other electric facilities required in data center to fulfill
its mission related with IT services. The cooling model provided consists of a
simple data center where central fan and air-water coil cools the IT equipment
and other related loads (PDU, UPS and lighting). A chiller placed outside pro-
vides cooling water to the coil and dissipates the exhausted heat from the room
to the atmosphere by a dry-cooler (Fig. 2 shows details). The power model adds
the consumption of IT, fans, chiller, PDU and lighting. Other electric compo-
nents of a data center as back-up generator or transformer are excluded from
the present model.
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Fig. 2. Model of cooling and power facilities of a data center

The following model description is based on a single time-stamp where Q is
referred to heat dissipated and P to power consumption. The time variability is
indicated by (t). This model has been constructed based on basic thermodynamic
equations of conservation of mass and energy. The total power consumption of
a data center (PDC) will be calculated with Eq. 5, where Pload DC is the power
used by IT components, Pchiller is the consumption of the chiller, Pfans DC is
the consumption of fans in data center and Pothers is the consumption associated
to PDU and lighting:

PDC(t) = Pload DC(t) + Pchiller(t) + Pfans DC(t) + Pothers(t) (5)

The total thermal load (QDC) is the sum of the heat associated to IT load
(Qload DC), the heat from other loads, as PDU and lighting (Qothers DC) and
the heat from fans distributing air inside a data center room (Qfan DC).

QDC(t) = Qload DC(t) + Qfan DC(t) + Qothers DC(t) (6)

The cooling demand that should be covered (Qcooling) is the thermal load in
data center including the inefficiencies in the air-water coil represented by ηcc
according Eq. 7. That corresponds to the heat exchanger efficiency of a common
CRAH, where heat of the room is transferred to the water flow (Qcooling).

Qcooling(t) =
QDC(t)

ηcc
(7)

The chiller has been modelled with generic profiles based on condenser tem-
perature (Tco), evaporator temperature (Tev) and partial load ratio (PLR).
Thereby, the model presented here should provide a general method to determine
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the power consumption of the chiller without knowing the specific characteristics
of the chiller provided by a certain manufacturer. As a result, it has been used
parametric curves implemented by the Building Certification Code in Spain [1]
named COOL(Tev, Tco) and CoolPR(Tev, Tco, PLR,EERrated) following certain
relations depicted in Eqs. 8 and 9.

Qcooling nom = Qcooling rated · COOL(Tev, Tco) (8)

CoolPR(t) = CoolPR(Tev, Tco, PLR,EERrated) =
1

EER(t)
(9)

Partial Load Ratio is the relation between the cooling demand in a certain
conditions and the cooling load in nominal conditions (Qcooling nom) correspond-
ing to the operation of the chiller at the chilled water temperature (Tev) and con-
denser water temperature (Tco) set-up (Eq. 10). At the same time, Qcooling nom

has relation with the cooling capacity rated (Qcooling rated) which corresponds
to load of the chiller in Standard Conditions (full load; temperature of chilled
water leaving the chiller at 7 ◦C and temperature of condenser water entering
the chiller at 30 ◦C) as stated in Eq. 8.

PLR(t) =
Qcooling(t)

Qcooling nom
(10)

The relation between the cooling load and the power consumed in the chiller
(Pchiller) is linked by the Energy Efficiency Ratio (EER), that quantifies the
cooling provided by the chiller by each unit of power consumed, according Eq. 11.
EERrated corresponds to the value of the parameter measured at Standard Con-
ditions defined above.

Pchiller(t) =
Qcooling(t)
EER(t)

(11)

2.5 Assessment of Data Center Efficiency, Performance, and Costs

Metrics CoolEmAll SVD Toolkit provides a set of metrics divided in the level of
granularity of the analysis (node, node-group, rack and data center). The whole
group of metrics assesses the resource usage, capacity, energy, heat-aware, green
and financial concepts. The total selection of metrics of CoolEmAll are described
in public report of the project [14] as well as in some articles [15,16].

Total Energy Consumed: this corresponds to the total energy consumed by
the data center in a certain period of time.

Power Usage Effectiveness (PUE): defined by The Green Grid [3] this metric
consist of dividing power used by the data center between power used by the
IT equipment. The accuracy level of the metrics is related with the point of
measurement of IT power, that can be the UPS (Uninterruptible Power Supply
Unit), the PDU (Power Distribution Unit) or the IT itself, after PSU (Power
Supply Unit). When the measurement is done after the PSU the metric is defined
as PUE Level 3.
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When the measurement is referred to IT properly, excluding PSU and fans,
the metric is named PUE Level 4, according CoolEmAll project proposal [15].

Carbon emissions: this metric is calculated multiplying the total power con-
sumed by carbon emissions factor (CEF). CEF depends on the country power gen-
eration mix and power system efficiency. For the approach of this study,
0.34 kg/kWh has been used as average value for the European Union according
to [7].

OPEX: it is calculated multiplying the total power consumed by the price
of electricity. The price of electricity has been considered as 0.0942e/kWh for
EU-28 as average of 2013 according to [21].

CAPEX: it is the amount of money used to acquire equipment or to improve
the useful life of existing facilities.

3 Analysis of Workloads

As mentioned in Sect. 2.1, workloads are characterized by the number of jobs,
their arrival rate, resource requirements and execution time of particular applica-
tions. The following section contain describes the results of workload simulations
performed by the means of Data Center Workload and Resource Management
Simulator, which is part of SVD Toolkit.

3.1 Simulation of Diverse Workloads Using DCworms

Resource Characteristics. In our experiments we used a configuration of
the real server room. Each server was equipped with a processor belonging to
Intel Xeon processors family. The following table (Table 1) summarizes overall
characteristics of particular racks.

Table 1. Power characteristics of racks in the server room

Rack name Number Number of Processor type Min. power us- Max. power usage

of nodes processors age (idle) [W] (100 % load) [W]

Rack 1 84 2 Xeon E5-2603 10292 27672

Rack 2 84 2 Xeon E5-2630 12030 30568

Rack 3 84 1 Xeon L5310 4499 11258

Rack 4 84 1 Xeon L5310 4499 11258

Rack 5 84 2 Xeon E5-2603 10292 27672

Rack 6 84 2 Xeon E5-2603 10292 27672

Rack 7 84 2 Xeon E5-2630 12030 30568

Rack 8 56 2 Xeon E5-2630 8020 20379

Sum 644 1120 - 71955 187046

Additionally, server room was equipped with the cooling facilities presented
in Table 2.

Finally, the following input parameters were applied to the simulation envi-
ronment (Table 3).
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Table 2. Cooling facilities characteristics

Parameter Symbol in the equations Value

Cooling capacity rated Qcooling rated 240000 [W]

Energy efficiency ration rated EERrated 3

Efficiency of cooling coil ηcc 0.95

Data center fans efficiency ηf 0.6

Temperature difference between Tev and TR in ΔThex 10 ◦C

Table 3. Input parameters

Parameter Symbol in the equations Value

Relation between PloadDC and Pothers α 0.2

Inlet temperature TR in 18 ◦C

Outlet temperature TR out 33 ◦C

Pressure drop Δp 65 J/m3

Workloads and Application Profiles. In our experiment we evaluated two
workloads with different utilization levels what was achieved by the modification
of arrival rate (all tasks arrive according to the Poisson distribution) and the
number of submitted tasks. The former workload consists of 1280 tasks, while
the latter consists of 1760 tasks.

A distribution of applications constituting both workloads is the same in
both cases and looks as follows: 20 % - App1, 50 % - App2, 30 % - App3. Their
general overview is shown in Table 4. The understanding of the cells content is
as follows: number of requested processors, execution time, load level (in [%]).

Table 4. Application characteristics

Processor type App1 App2 App3

Xeon E5-2630 1, 380, 84 4, 3200, 62.6 6, 3200, 94

Xeon E5-2603 1, 400, 86 4, 3600, 92 -

Xeon L5310 1, 1200, 92 - -

3.2 Identifying Power Caps

Based on the simulation results obtained for execution of both workloads using
Load Balancing policy, we observed two visible increases on utilization criteria,
reaching almost 75 % and 95 % in the highest peak for Workload 1 and Workload
2 respectively. High utilization values have direct impact on the power consump-
tion and thus might result in sudden power drawn peaks. Identification of such
levels is crucial in terms of avoiding hot spots and decreasing data center costs.
Taking into account power consumption ranges for the modeled server room,
power consumption distribution obtained during the experiments and the uti-
lization curves we decided to use the following approach to specify the values of
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power caps. As there occured temporary, but significant load rises and we were
not considering the possibility of switching nodes on/off, we wanted to ensure
constant computational capabilities for all the servers within particular racks.
To this end the power cap level is determined by the total power consump-
tion of the rack, with all the processors fully loaded and working in the highest
P-State (with lowest frequency). The following formula can be used to calculate
this value (PC) for the given rack j.

PCj =
n∑

i=1

PCPUi
(Phi

, 100%), (12)

where n is the number of processors in a rack, PCPU is the power consumed by
the processor working under given utilization level and in the given P-State, Ph

refers to the highest P-State (power consumption is lower at higher P-State).
On the other hand, in order not to observe the performance losses (due to

frequency downgrading) another threshold is necessary. It aims at setting the
power consumption level PU below which the current processor performance
state will increase. It is defined by the following equation:

PUj = PCj ·
∑n

i=1 PCPUi
(Phi

, 100%)∑n
i=1 PCPUi

(Phi−1, 100%)
, (13)

where n is the number of processors in a rack, PCPU is the power consumed by
the processor working under given utilization level and with the given P-State,
Ph and Ph−1 refer to two highest P-States. As power consumption is lower at
higher P-States, thus, PUj is lower than PCj .

PUj allows increasing the current processors performance states at least by
one without exceeding the power cap limit (PCj). Below table introduces bound-
ary values according to the aforementioned approach;

Table 5. Power caps values for the racks in the server room

Rack name Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 Rack 6 Rack 7 Rack 8 Sum

PC level [W] 20333 21878 8940 8940 20333 20333 21878 14585 137220

PU level [W] 18854 20223 8449 8449 18854 18854 20223 13482 127388

Adjusting Power Limits to Workloads. Having information about historical
or predicted workloads it is possible to adjust power caps. For instance, there
may exist specific patterns of incoming tasks related to peak hours, time of a
day, etc. This knowledge can be applied to identification of optimal power caps.

There are two main requirements that should be taken into consideration
while setting the values of power caps. First of all, the use of power capping
shouldn’t cause significant increase of IT energy consumption for a given work-
load. Second, the mean completion time of tasks should not go below certain
required threshold.
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Fig. 3. Power distribution for Workload 1 and Workload 2 for two racks

The first requirement can be defined as follows. Let assume that energy
decrease caused by power capping in rack j is denoted as Eexcess

j and given in
Eq. 14. This amount of energy can be illustrated by the field above the power cap
line in Fig. 3. On the other hand, let denote by Ereserve

j the amount of additional
energy that can be used in a rack without exceeding the set power cap. This can
be seen as a free space below the power cap in Fig. 3 and defined by Eq. 15.

Eexcess
j =

∫ t2

t1

max(0, P IT
j (t) − PCj)dt (14)

Ereserve
j =

∫ t2

t1

max(0, PCj − P IT
j (t))dt (15)

Then, the condition Eexcess
j < Ereserve

j must be met. Otherwise, tasks whose
execution times are increased by decreased performance states of CPUs could
cause additional delays of additional tasks. Of course, this method is approx-
imation as the actual results depend on sizes of tasks, their distribution, and
exact relation between CPU performance states and execution time. However,
as results in Sect. 4.3 show this approach is helpful to avoid increase of energy
consumption caused by power capping.

The second requirement is meant to limit the power but without visible per-
formance lost. The mean completion time increase caused by power capping can
be estimated as a product of the CPU frequency change (we assume proportional
relation to execution time) and a percentage of time for which power capping was
used. We empirically set a 5 % as a threshold for mean completion time increase
to limit overall delays of the workload completion time and this condition was
met (see results in Table 6). This parameter was used to limit CPU frequency
decrease according to a model presented in Sect. 2.3 and can be based on specific
Service Level Agreements with end users.

4 Optimizing Capacity Using Power Capping Methods

4.1 Power Capping Methods

Generally, power capping solutions can be divided into: software-based (coarse-
grained and slower) and hardware-based solutions (fine-grained and faster).
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Software-based solutions can be introduced independently from the vendor
and regardless of whether hardware power capping is available. It can be applied
on higher levels, e.g. managing tasks in a queue and balancing the load (with
respect to power) among racks. The drawback of the software-based approach is
longer time of reaction and more coarse-grained granularity.

Hardware-based power capping addresses this issue by the means of two
main technologies available at processor level that enable the use of power cap-
ping. The first one is related to processor P-States and consists in lowering the
processor core frequency and voltage. That provides a good power reduction
for a relatively small loss in performance. However, using P-States can lower
power consumption only to a certain point. Reducing consumption below that
point requires the use of second technology, namely clock throttling. In this case,
depending on the processor model, the system BIOS can either reprogram the
processor to run at a lower frequency or modulate the processor between running
periods and stopped periods.

In this paper we focus on the hardware-based approach benefiting from the
processors P-States, as in the real data centers it ensures more reliable and faster
effects. Moreover, it is often supported by hardware vendors and can be easily
applied on the resource management level without affecting existing queueing
system configuration (comparing to software-based approach). Its pseudo code
for a rack is depicted by Algorithm 1.

Algorithm 1. Pseudo code of power capping algorithm
Require: P � description of current power consumption of a rack
Require: PC � power cap level for a rack
Require: PU � power threshold for a rack
Ensure: Pxi � final P-state of a processor i

if P > PC then
repeat

Py ← lowest P-State of all processors � lower P-State=higher frequency
for each processor i in a rack with Pxi = Py do Pxi = Pxi+1

if P <= PC then break
end if

end for
until P <= PC

else if P < PU then
repeat

Py ← highest P-State of all processors � higher P-State=lower frequency
for each processor i in a rack with Pxi = Py do Pxi = Pxi−1

if P >= PC then break
end if

end for
until P >= PC or Py= lowest available P-State of all processors

end if
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4.2 Simulation Experiments

To study the impact of power capping approach we performed another two sim-
ulations each time applying the power caps levels introduced in Sect. 3.2. More-
over, in the first simulation run we increased the inlet temperature (temperature
of air entering the room) to 27 ◦C, while in the latter one we additionally mod-
ified, according to Table 5, the cooling capacity rated factor to 180[kW ]. Below
we introduce the nomenclature used to compare the simulation results.

– Experiment A: Load Balancing strategy, TR in = 18 ◦C, reference case.
– Experiment B: Load Balancing with Power Capping approach, TR in = 27 ◦C
– Experiment C: Load Balancing with Power Capping approach, TR in = 27 ◦C,

Qcooling rated = 180[kW ].

4.3 Simulation Results

This section shows the simulation results for three types of experiments per-
formed. Due to the paper constraints, only the results for Workload 1 are pre-
sented (Table 6).

Table 6. Simulation results for Workload 1

Metrics A B C

Total IT energy consumption [kWh] 308.9 313.2 313.2

Total rack energy consumption [kWh] 370.8 376.2 376.2

Total cooling device energy consumption [kWh] 77.4 48.38 64.18

Total energy consumption [kWh] 525.22 502.66 518.47

Mean rack power [kW] 105.13 106.31 106.31

Mean power [kW] 148.916 142.04 146.51

Max rack power [kW] 144.82 130.38 130.38

Max power [kW] 214.45 176.87 183.49

PUE 1.416 1.336 1.378

PUE Level 4 1.7 1.605 1.655

Mean completion time [s] 6919 7262 7262

Mean task execution time [s] 2906 3249 3249

System load [%] 24.65 27.65 27.65

Figure 4 depicts the power distribution before and after applying a power
capping technique.

Total Savings Achieved. The following section shows the savings achieved for
the simulations carried out. The reference case, with Load Balancing policy, is
named “A”. Optimized cases are named “B” and “C” respectively. First, when
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Fig. 4. Example power distribution on two racks for Workload 1 before (left) and after
(right) applying a power capping technique

Table 7. Savings on particular metrics

Metrics Savings (A-B)/A*100 Savings (A-C)/A*100

Execution time −0.33 % −0.33 %

Maximum rack power 9.98 % 9.98 %

Maximum power 17.53 % 14.44 %

Average power 4.61 % 1.61 %

Total energy consumed 4.30 % 1.29 %

PUE3 5.65 % 1.29 %

PUE4 5.59 % 2.68 %

Carbon Emissions 4.30 % 1.29 %

OPEX 4.30 % 1.29 %

the strategy of power capping is applied, main savings can be observed in the
chiller consumption (reaching 37,50 % and 17.09 % respectively) due to the effi-
ciency of the chiller (EER) improves with higher inlet temperatures. This leads
to savings in terms of total energy consumed that are equal to 4.19 % in case
“B” and 1.20 % in case “C”.

In the simulation carried out, the strategy consisted of cutting the maximum
power of racks keeping same cooling facilities (in case “B”) or changing the chiller
capabilities (in case “C”). The result obtained in these cases is a reduction
in OPEX associated to power saved mainly in chiller and in CAPEX due to
reduction of IT infrastructure. The metrics calculated from the results of those
simulations are shown in Table 7.

Proposed approaches provide small benefits on PUE - the savings are obtained
due to the lower power consumption of the chiller. With a power capping of 10 %
the savings obtained in total energy consumed, carbon emissions and electric-
ity costs (OPEX) are 4.30 % for case (B) and 1.29 % for case (C). The corre-
sponding values obtained in savings extrapolated to a whole year considering
a 24 × 7 operation time are 60 MWh/year, 20 tones CO2/year, 5666 Euros/year
and 21 MWh/year, 7 tones CO2/year, 1982 Euros/year, respectively. Also, the
CAPEX costs associated to less equipment required are calculated based on the
following approach. Total building cost of traditional data center is estimated as
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Table 8. Cost of data center placed in a room for three cases (thousand Euro)

Costs by sub-system A B C

Project management 156 156 156

Power equipment 562 506 506

Cooling equipment 187 187 141

Engineering & installation 562 562 562

Racks 62 56 56

System monitoring 31 31 31

TOTAL 1562 1500 1453

15 million-US$ per MW of IT load according market survey developed by 451
Research company, referred as [18]. Converting this value to Euros with average
annual ratios determined by the European Central Bank [20] referred to 2012,
the corresponding value is 10784 Euros/kW(IT). On the other hand, the follow-
ing distribution of cost between subsystems is considered according the study
done by Schneider Electric [13].

The 10 % capping on maximum power of racks will affect directly the cost
of those IT equipment but also on the sub-system of power equipment. Table 8
shows the distribution of costs of the three cases simulated. The costs of case (B)
and (C) have been calculated estimating a reduction of 10 % in racks and power
equipment. Finally, with this assumption, the savings obtained in CAPEX over
the total cost of the data center is a 4 % or 62 thousands of Euros and 7 % or
109 thousands of Euros, respectively.

4.4 Application to Demand-Response Management

Nowadays, power grids face significant transformations. More open energy mar-
ket, increased contribution of renewable energy sources, and rising energy prices
stimulate changes of power grids to cope with new challenges such as adaptation
to changing demand and supply, i.e. demand-response management. The app-
roach to apply demand-response management to data centers was also already
studied, e.g. proposed in [2]. We show that our approach to analysis of workloads
and power capping mechanism can be applied to reduce costs in data centers.

Table 9. Comparison of approaches with and without power capping to deal with high
demand periods

Approaches Total energy Average energy Mean completion

cost [e] price [e] time [s]

No power capping 128.24 0.12 6919

Mix 96.8 0.0942 7090
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Let’s assume that for a period assumed in previous Sections (3 h 20 min)
there is a regular price for energy: 0.0942 /kWh. Now, let’s also assume that
period of the same size is a peak period in which energy provider is struggling
with a demand that exceeds provider’s supply. The provider to cope with this
demand proposes the following contract to its customers: a regular price for this
period will stay on the same level provided that a customer guarantees that it
will not exceed 200 kW of power at anytime. Otherwise, the cost of 1 kWh will
rise up to 0.15 /kWh. To reduce costs in this case we applied power capping to
the peak period. The comparison of approaches without and with power capping
are presented in Table 9.

In the first case power capping was not used in any period. In the second
case power capping was applied to the second (peak) period. As it can be easily
seen, the total cost savings reached almost 25 %. Extrapolating these numbers
to the whole year would give around 45000e of savings.

5 Conclusions

In this paper we demonstrated the use of the CoolEmAll SVD Toolkit to improve
power and cooling capacity management in a data center by taking into account
knowledge about applications and workloads. We applied power capping tech-
niques and proper cooling infrastructure configuration to achieve savings in
energy and costs. To obtain estimated values of a total energy consumption
we simulated both IT software/hardware and cooling infrastructure using our
tools. In this way, by better adjusting cooling infrastructure to specific types
of workloads, we were able to find a configuration which resulted in energy
savings by around 5 % and corresponding OPEX decrease. We have also found
improvements of CAPEX without significant workload performance deteriora-
tion. Decrease in CAPEX was achieved by the selection of smaller chiller which is
sufficient for the foreseen types of workloads. Savings in CAPEX reached 7 % for
the case in which a smaller chiller was used according to the work! load analy-
sis results and power capping strategies. Replacing only electrical equipment
brought 4 % of savings in CAPEX. Energy savings were achieved by increase
of the server inlet temperature. This was possible by limiting power used by
particular racks and by compliance to the latest ASHRAE recommendations.
Finally, we applied power capping to adjust data center operation to variable
power supply and pricing. We achieved additional OPEX savings in order of
25 % (45000e per year in the studied case).

Future work will include further improvements and tuning of cooling models.
It will also include closer integration of CFD simulations into this analysis in
order to identify hot spots and other consequences of modifications in a data
center configuration. This approach will be used for various types of data centers.
Finally, we plan to study more dynamic power capping strategies by adjusting
power caps to the situation in a data center such as level and priority of load,
energy supply and prices.
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Abstract. Data centres are powerful and power-hungry facilities which
aim at hosting ICT services. The current trend is to, on the one hand, try
to reduce the overall consumption of a data centre, and on the other hand
to prioritize the utilization of renewable energies over brown energies.
Renewable energies tend to be very variable in time (e.g. solar energy),
and thus renewable energy aware algorithms tries to schedule the appli-
cations running in the data centres accordingly. However, one of the main
problems is that most of the time very little information is known about
the applications running in data centres. More specifically, we need to
have more information about the current and planned workload of an
application, and the tolerance of that application to have its workload
rescheduled. In this paper, we present a work in progress on Plug4Green,
a flexible VM manager able to reduce energy consumption in data cen-
tres. We extend Plug4Green with the second goal of increasing the usage
of renewable energy in data centres. This includes the development of
specific application profiles, and a new optimization technique.

1 Introduction

Data centres are large facilities which purpose is to host information processing
and telecommunication services for scientific and/or business applications. Due
to the rise in service demands together with energy costs, the energy efficiency
has now been added as a new key metric for data centres. Energy-aware strate-
gies are beginning to be integrated inside the data centre resource manager. In
practice, a Virtual Machine (VM) placement algorithm considers the data centre
and the workload characteristics to place the VMs among the servers in the most
efficient way, considering performance and energy consumption. This placement
must be done respecting the requirements of the Service Level Agreement (SLA)
existing between the data centre and its clients.

In parallel to reducing the overall energy consumption, the current trend is
to foster the use of renewable energies. Renewable energies have the problem
to be very variable and time-dependent: for example solar power is available
only during the day, and is subject to variations due to the meteorological con-
ditions. Thus, data centre operators must try to shift the workload of running

c© Springer International Publishing Switzerland 2015
S. Klingert et al. (Eds.): E2DC 2014, LNCS 8945, pp. 120–131, 2015.
DOI: 10.1007/978-3-319-15786-3 8



Building Application Profiles to Allow a Better Usage 121

Fig. 1. Adapting applications for a better usage of renewable energies

applications in time, to match it with the availability (or forecast availability)
of renewable energy, as it is depicted in Fig. 1.

As preliminary work, we present Plug4Green [1], an energy aware VM man-
ager based on Constraint Programming (CP) [2]. The use of CP allows to attain
a relatively good flexibility and extensibility: indeed data centres are evolving
permanently and new use cases are added regularly. We already proposed and
implemented 23 VM placement constraints to address common concerns such as
hardware compatibilities, performance, security issues, and workload instabil-
ity. The usage of CP makes placement constraints, objectives, and algorithms
independent from each other: new concerns can be added in the VM manager
without changing the existing implementation.

The goal of this paper is to present a work in progress on the extension of
Plug4Green, so as to extend its objectives to not only reduce the overall energy
consumption of a data centre, but also allow a better usage of the renewable
energies. A great challenge of efficiently using the renewable energies in a data
centre is to be able to schedule correctly the workload of the applications. This
shows the importance of being able to know the workload an application will
have to run at a certain point of time, to understand under what conditions it
can be shifted or delayed, and in fine to schedule it correctly.

Yet, currently most of the applications running in data centres are unaware of
their self workload: they are unable to predict how much computing power they
will require and when. In data centres, the knowledge of the requirements of an
application in terms of resources is still “meta-knowledge”, i.e. the knowledge
of the data centre operators. For example, in data centres, database indexing
maintenance operations are usually performed at night, to minimize the impact
on the overall performance. However, in a data centre using primarily solar
power, it would be interesting to shift this task during the lunch break, when the
sun is shining. The knowledge that this particular task, “database indexing”, can
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cope with a 12 h shift, and that it takes approximately half an hour, belongs
to the operator’s knowledge. In this paper, we show how this knowledge can be
encoded and used by Plug4Green to schedule the application workload correctly.
We propose a design for the extended version of Plug4Green and discuss the
possible optimization techniques.

The remainder of this paper is structured as follow: we will first perform a
survey of the related works in Sect. 2. We then present the extended design of
Plug4Green in Sect. 3 and preliminary implementation in Sect. 4. We conclude
in Sect. 5.

2 Related Work

A few flexible and extensible frameworks for VM allocation have been proposed
recently. For example, BtrPlace [3] is a CP-based flexible consolidation manager.
Plug4Green leverages on Btrplace [4,5]. BtrPlace does not take into considera-
tion energy related problems and does not provide an operator with the oppor-
tunity of setting optimization objectives. In contrast to BtrPlace, Plug4Green
directly addresses energy consumption problem. This required numerous exten-
sions: the development of a power model and different model extensions, two
objectives with their associated heuristics, 7 energy-related constraints, and a
domain-specific language to directly exhibit energy concerns and metrics such
as PUE, CUE1 and Watts, to the end-users.

Similar modular consolidation manager adopting CP paradigm is presented
in [6]. The authors ensure high availability for VM placement by guaranteeing
at any time a certain number of vacant servers to allocate VMs with regards
to placement constraints. The manager scalability is effective for 32 servers and
128 VMs.

A hybrid system proposed in [7] solves a resource reallocation problem.
This system includes Business Rules Management System (BRMS) and CP.
A user can customize both business rules and constraints. The BRMS moni-
tors and analyses the servers’ state at a period of time to detect overloaded
servers and bottlenecks. Once a problem is identified the BRMS models its
instance and sends it to the CP solver which resolves it within seconds. In con-
trast to our manager, both the systems presented in [6,7] are not addressing
energy-efficiency problems.

In [8], the authors proposes GreenSwitch, a model-based approach for dynam-
ically scheduling the workload and selecting the source of energy to use. In this
work, the authors focuses on the trade-offs involved in powering data centres
with solar and/or wind energy, and propose an implementation of their solar
powered mini data centre called Parasol. With contrast to this approach, we
propose the possibility to schedule the workload at a finer grain, which is the
application level.
1 PUE and CUE are defined by The Green Grid Consortium: http://www.
thegreengrid.org/.

http://www.thegreengrid.org/
http://www.thegreengrid.org/
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3 Design

We present the design selected for the Plug4Green prototype in Sect. 3.1. We
then present our advancement in defining the application management engine
in Sect. 3.2. We finally discuss the technology choice made for the optimization
engine, and compare it especially to SMT, a technology that we envisage to use
in the future development of Plug4Green in Sect. 3.3.

3.1 Plug4Green

Plug4Green is an extensible VM manager. The architecture chosen allows to eas-
ily extend the engine by adding new concerns, without modifying the underlying
algorithms. In particular, new constraints can be added straightforwardly, as we
showed by implementing 23 constraints commonly encountered in data centres,
including energy-oriented ones. As can be seen in Fig. 2, Plug4Green has the
following inputs:

– The SLAs
– The data centre configuration
– A Single Allocation request
– Or a Global Optimisation request
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Fig. 2. Plug4Green architecture

Plug4Green considers a set of SLA constraints along with the data centre
configuration to compute a reconfiguration plan as an output. The data centre
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configuration captures all the relevant ICT resources of a data centre with their
energy-related attributes and interconnections, in an XML format. The recon-
figuration plan consists of a set of actions such as powering on, powering off,
waking up and putting in idle mode a server, and migrating a VM, that satisfies
all the constraints and minimizes the current objective. The objective can be to
minimize either the power consumption of a federation of data centres, or the
CO2 emissions. The diagram shows the clear separation between the Constraints
part (“what” we want to do) and the Models part (“how” to solve the problem),
which is fundamental for extensibility.

Plug4Green is called by the Data Centre Infrastructure Management (DCIM)
for two different events: Single Allocation or Global Optimisation. The Single
Allocation event is triggered when a new VM have to be allocated. Plug4Green
will compute and return the best server to allocate the VM on, taking into
account the characteristics of the VM, the current state of the data centre, the
SLAs and the current objective. The Global Optimisation event is itself triggered
regularly (every ten minutes in our experimentation) and Plug4Green will return
a reconfiguration plan. In manual mode, the data centre operator has the pos-
sibility to accept or reject this reconfiguration plan, while in automatic mode,
it is enacted automatically. Plug4Green will then execute the reconfiguration
plan in order to reduce the overall consumption of the data centre (either power
consumption or gas emission) while also respecting the SLAs. The Com/Prox
layer ensures that Plug4Green can be plugged easily to different existing DCIM:
its the only part that must be updated when adapting the software for a new
DCIM. Currently, Plug4Green can be integrated into VMWare2, Eucalyptus3,
and HP Matrix Operating Environment4 infrastructures. Plug4Green is based
on the flexible consolidation manager BtrPlace [3].

We evaluated Plug4Green in an industrial test bed, to show that it is both
efficient and scalable:

– Using our framework in a realistic cloud data centre environment allowed
to reduce the overall energy consumption up to 33 % and the gas emission
up to 34 %. These savings are achieved by considering the servers hardware
heterogeneity, their different energy-efficiency and different compositions
of SLAs.

– We showed by simulation how such an approach can be scalable. In particu-
lar, we were able to compute the improved placement of 7,500 VMs on 1,500
servers, while respecting their SLA.

3.2 Energy Aware Software Controller

In order to allow Plug4Green to optimize the usage of renewable energies, we
extend the design of Plug4Green presented previously: we define the Energy
2 http://www.vmware.com.
3 http://eucalyptus.com.
4 http://h18004.www1.hp.com/products/solutions/insightdynamics/overview.html.

http://www.vmware.com
http://eucalyptus.com
http://h18004.www1.hp.com/products/solutions/insightdynamics/overview.html
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Aware Software Controller (EASC), as depicted in Fig. 3. For each application,
the EASC is in charge of:

– building an energetic profile of that application,
– defining the tasks and working modes,
– building the list of constraints,
– executing the activity plan as computed by Plug4Green.

Fig. 3. Energy aware software controllers for aPaaS

A working mode, specifically, is a particular way for an application to perform
a task, according to its SLA. For example, a typical 3-tier application can have
several VMs containing its web server, and be allowed to scale up or down the
number of VMs according to the number of requests. Each possible combination
of VMs is called a working mode. In order to build the energetic profile of the
working modes, we use Zabbix to collect monitoring data for the VMs used by
the application. We then use Energis5 to compute the energy necessary for each
working modes and tasks of the applications. Energis is a tool using predictive
algorithms based on historical measurement data in order to predict the energy
consumption of a particular VM.

The energetic profiles together with the defined working modes and tasks are
then transmitted to Plug4Green, that will compute an optimized scheduling,
called the activity plan. This activity plan is transmitted back to the EASC to
be performed. In practice, the activity plan consists in spawning more or less
5 Energis: http://www.freemind-group.com/index.php/products/energis.html.

http://www.freemind-group.com/index.php/products/energis.html
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VMs to execute the tasks of the application, such as front-end web servers or
back-end databases. A PaaS management tool such as Cloudify6 can provide
such a scalability service, together with OpenStack7.

The EASC is instantiated into three flavours: The EASC aPaaS (Applica-
tion Platform as a Service), showed in the picture, is in charge of controlling
the Cloud applications inside a data centre. It will scale up and down 3-tier
applications according to the availability of renewable energies. The EASC IaaS
(Infrastructure as a Service) is in charge of collaborating with the Cloud man-
agement system to manage the data centre infrastructure. In practice, it we will
tune the VM consolidation factor to allow more or less energy saving and thus
follow the renewable energy availability. Finally, the EASC TM (Tasks Manage-
ment) will shift in time the maintenance tasks that are performed by the data
centre, such as virus scan or server decommissioning tasks. Those tasks will be
scheduled when the renewable energy is available.

3.3 Optimization

Plug4Green is based on Constraint Programming, which is a programming par-
adigm devoted to solve Constraint Satisfaction Problems (CSP). In a CSP, rela-
tions between variables are stated in the form of constraints. Each constraint
restricts the combination of values that a set of variables may take simultane-
ously. While CP was a very good choice and fulfilled most of the requirements,
we discovered some practical drawbacks. Especially, defining new constraints
easily is one of the main design goal of Plug4Green: as data centres evolves, new
use cases arrives regularly, and a qualified operator should be able to insert new
constraints into the engine. However, defining a new constraint takes a lot of
lines of code and is also very error prone. The debugging period for each new
constraint is also quite long. This diminishes the flexibility of the tool, which
should imply the easy creation of new constraints to fit the new requirements
arriving in a data centre.

To tackle this problem of flexibility, we started exploring alternatives to the
couple Constraint Programming/Java. As an alternative to CP, we propose Satis-
fiability Modulo Theories [9] (SMT). A SMT problem is to determine the satisfia-
bility of ground logical formulas with respect to background theories expressed in
classical first-order logic with equality. Modern SMT solvers integrate a Boolean
satisfiability (SAT) solver with specialized solvers for a set of literals belonging to
each theory. The problem consists in finding an assignment to the variables that
satisfy all constraints. We also surveyed the feasibility of using Pure Functional
languages such as Haskell8 as the base language for the constraint engine of
Plug4Green. Programs in Haskell tend to be much less verbose than in Java (in
the order of ten time less lines). It is also a declarative language, like Constraint

6 Cloudify: http://getcloudify.org/.
7 OpenStack: https://www.openstack.org/.
8 http://haskell.org.

http://getcloudify.org/
https://www.openstack.org/
http://haskell.org
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Programming is, so the expression of constraints is more clear and natural. Fur-
thermore, Haskell is pure, which combined with its strong type system allows to
reduce drastically the number of bugs.

4 Implementation

To show the usability of both SMT and pure functional languages to tackle
energy efficiency problems in a flexible way, we implemented the classical prob-
lem of packing VMs on servers using the library SBV9, with only one dimension
for the sake of simplicity. In the example10 showed in Listing 1.1, each VM has
a demand in term of CPU, and each server has a certain CPU capacity to offer.
The objective is to find the placement of the VMs on the servers that minimizes
the number of servers needed. The only constraint applied is that the total CPU
consumption of the VMs that will be running on a server must not exceed the
capacity of that server.

1

2 −−concrete IDs for VMs and servers
3 type VMID = Integer
4 type SID = Integer
5

6 −−symbolic IDs of the servers
7 type SSID = SBV SID
8

9 −−A VM is just a name and a cpuDemand
10 data VM = VM { vmName :: String,
11 cpuDemand :: Integer}
12

13 −−a server has got a name and a certain amount of free CPU
14 data Server = Server { serverName :: String,
15 cpuCapacity :: Integer}
16

17 −−list of VMs
18 vms :: Map VMID VM
19 vms = fromList $ zip [0..] [VM”VM1” 100, VM ”VM2” 50, VM ”VM3” 15]
20

21 −−list of servers
22 servers :: Map SID Server
23 servers = fromList $ zip [0..] [Server ”Server1” 100, Server ”Server2” 100, Server ”Server3” 200]
24

25 −−number of servers ON (which we’ll try to minimize)
26 numberServersOn :: Map VMID SSID −> SInteger
27 numberServersOn = count . elems . M.map (./= 0) . vmCounts
28

29 −−computes the number of VMs on each servers
30 vmCounts :: Map VMID SSID −> Map SID SInteger
31 vmCounts vmls = M.mapWithKey count servers where
32 count sid = sum [ite (mysid .== literal sid) 1 0 | mysid <− elems vmls]
33

34 −−All the CPU constraints
35 cpuConstraints :: Map VMID SSID −> SBool
36 cpuConstraints vmls = bAnd $ elems $ M.mapWithKey criteria (serverCPUHeights vmls) where
37 criteria :: SID −> SInteger −> SBool
38 criteria sid height = (literal $ cpuCapacity $ fromJust $ M.lookup sid servers) .> height
39

9 http://leventerkok.github.io/sbv/.
10 The full implementation can be seen at https://github.com/cdupont/Plug4Green-

design.

http://leventerkok.github.io/sbv/
https://github.com/cdupont/Plug4Green-design
https://github.com/cdupont/Plug4Green-design
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40 −−computes the CPU consummed by the VMs on each servers
41 serverCPUHeights :: Map VMID SSID −> Map SID SInteger
42 serverCPUHeights vmls = M.mapWithKey sumVMsHeights servers where
43 sumVMsHeights :: SID −> Server −> SInteger
44 sumVMsHeights sid = sum [ite (sid’ .== literal sid) (literal $ cpuDemand $ fromJust $ M.lookup

vmid vms) 0 | (vmid, sid’) <− M.assocs vmls]
45

46 −−solves the VM placement problem
47 vmPlacementProblem :: IO (Maybe (Map VMID SID))
48 vmPlacementProblem = minimize’ numberServersOn cpuConstraints
49

50 main = do
51 s <− vmPlacementProblem
52 putStrLn $ show s

Listing 1.1. Example of VM placement problem solved using SMT

When run, this program returns the placement for the VMs that mini-
mizes the number of necessary servers. In this case, it will place all three VMs
on the third server. While it is difficult to compare, it is anyway striking that
this program is shorter than its equivalent in Java/Choco11. The definition of a
constraint takes only a few lines (for example numberServersOn takes 2 lines)
and flows with the program definition. Furthermore, as it is usually the case
in Haskell, the type signature of the functions are carrying a lot of information
that can be used both by the programmer to understand and reason about the
program, and by the compiler to prove its correctness. For example, the type
signature numberServersOn :: Map VMID SSID -> SInteger makes it clear that
the function numberServersOn is a constraint that takes the positions of all the
VMs on the servers (denoted as a mapping between the VM ids and the server
symbolic ids) and returns a symbolic integer representing the necessary number
of servers.

Furthermore, programming at the symbolic level, as it is required when
designing a CSP, is not very different than programming in concrete Haskell.
This is because a lot of the Haskell standard functions, like the function sum in
our example program, can be reused in a constraint programming program. The
definition of sum in the standard library of Haskell is generic enough to be able
to be used also at the symbolic level. On the other hand, programming in Choco
is completely different than programming in concrete Java: all the operators are
necessarily different, due to the low genericity of Java. Therefore, the intuition
of the Java programmer cannot be completely reused.

SBV is also a theorem prover, and that can be used to prove properties of
the constraints expressed. For example, we might want to prove some proper-
ties about our constraint vmCounts. This function counts the number of VMs
present on each servers. We want to prove the property that the count of VMs
on a server has for absolute maximum the total numbers of VMs present in the
data centre.

11 For example this implementation of bin packing: http://www.dcs.gla.ac.uk/∼pat/
cpM/jchoco/binPack/CPBinPack.java.

http://www.dcs.gla.ac.uk/~pat/cpM/jchoco/binPack/CPBinPack.java
http://www.dcs.gla.ac.uk/~pat/cpM/jchoco/binPack/CPBinPack.java
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1

2 ∗Main> prove $ \x y −> bAll (.<= 2) $ vmCounts’ [x, y]
3 Q.E.D.

Listing 1.2. Example of proof about a constraint

The Listing 1.2 show how we can ask SBV to prove that the number of
VMs per server computed by the constraint vmCounts cannot exceed the total
number of VMs (in this simplified example with only 2 VMs and a version of
vmCounts defined for lists instead of maps). SBV simply replies with Q.E.D,
showing that it found a proof of our property (this proof can be exhibited if
needed).

In order to give to an optimization engine complementary informations about
the profile of an application, we use a configuration file. An example is given in
Listing 1.3 (written in Yaml).

1 Name: PetClinic
2 Tasks:
3 − Name: T1
4 Duration: 1h
5 StartTask: ./startT1
6 Dependencies:
7 − finishBefore T2
8 − finishBefore 00:00
9 WorkingModes:

10 − Name: W1D1
11 SwitchMode: ./switchMode.sh W1D1
12 Resources: m1.small
13 TimeFrame: WeekEnds
14 − Name: W1D2
15 SwitchMode: ./switchMode.sh W1D2
16 Resources: m1.small
17 TimeFrame: WeekDays, WeekEnds
18 − Name: T2
19 Duration: 2h
20 StartTask: ./startT2
21 Dependencies:
22 − finishBefore 00:00
23 Constraints:
24 − MutuallyExclusive: W1D1, W1D2
25 − AtLeastOne: W1D1, W1D2

Listing 1.3. Example of profile configuration file

The above listing describes a 3-Tier application, PetClinic, that has an Apache
front-end, a Java back-end and a database. The front-end as well as the back-end
can be scaled up and down using Cloudify: for example in the case too much web
pages are requested, a new VM will be spawned and the Apache server will be
installed in it using Chef12. The example file defines two tasks T1 and T2. Tasks
define a punctual activity with a duration. We define a script able to start the
task, and some absolute and relative dependencies. We also define working modes,
W1D1 and W1D2, with the way we can switch from one mode to another (switch-
Mode shell script), the needs in term of resources, and the possibly repetitive
time frames during which those working modes are authorized. Finally we define
12 http://www.getchef.com/.

http://www.getchef.com/
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overall constraints, such as “MutuallyExclusive”, which describe a relation
between two or more working modes that should not be active at the same time.
Another example “AtLeastOne” describe the fact that there should be at least
one working mode active at all time.

5 Conclusion

In this paper we presented our plan to enhance Plug4Green, an energy-aware
VM manager based on Constraint Programming, in particular to allow it to
increase the usage of renewable energies in data centres. We introduced the
Energy Aware Software Controller, a new component communicating with Plug4
Green and able to build energy profiles for Cloud applications, and to control the
application following the activity plans computed by Plug4Green. To compute
the activity plans, we surveyed the SAT Modulo Theory technique in order to
integrate it inside Plug4Green.

Acknowledgments and Availability. The author would like to thanks the Univer-
sity of Trento, the EU FP7 projects FIT4Green and DC4Cities, and the Create-Net
research centre. Evaluations presented in this paper were carried out by HP Innovation
Centre Milan and INRIA.

Plug4Green is licensed under the terms of the Apache 2.0 License. The current
prototype is available for download at https://github.com/fit4green/Plug4Green.

References

1. Dupont, C., Schulze, T., Giuliani, G., Somov, A., Hermenier, F.: An energy
aware framework for virtual machine placement in cloud federated data centres.
In: Proceedings of the 3rd International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet, e-Energy 2012, pp. 4:1–4:10.
ACM (2012)

2. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

3. Hermenier, F., Lawall, J., Muller, G.: Btrplace: a flexible consolidation manager
for highly available applications. IEEE Trans. Dependable Secure Comput. 10(5),
273–286 (2013)

4. Hermenier, F., Demassey, S., Lorca, X.: Bin repacking scheduling in virtualized
datacenters. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 27–41. Springer,
Heidelberg (2011)

5. Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.: Entropy: a consoli-
dation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE 2009, pp. 41–
50. ACM (2009)

6. Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E.K., Moatti, Y., Lorenz,
D.H.: Guaranteeing high availability goals for virtual machine placement. In:
2011 31st International Conference on Distributed Computing Systems (ICDCS),
pp. 700–709 (2011)

https://github.com/fit4green/Plug4Green


Building Application Profiles to Allow a Better Usage 131

7. van der Krogt, R., Feldman, J., Little, J., Stynes, D.: An integrated business rules
and constraints approach to data centre capacity management. In: Cohen, D. (ed.)
CP 2010. LNCS, vol. 6308, pp. 568–582. Springer, Heidelberg (2010)
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Abstract. Energy consumption and thermal performance are the two most
important tasks in data centers (DCs) facility management. In recent years, to
monitor and control their variation several performance metrics were introduced.
In this paper an overview on the main important energy and thermal metrics is
provided. A critical analysis to investigate mutual relations among metrics was
performed, with the aim to clarify some physical aspects regarding the assess-
ment of DC global energy performance.

Indeed, although these metrics are commonly used to assess the energy
efficiency of DCs, their usefulness for encouraging lower energy consumption
was poorly investigated. Moreover, an analysis on the effect of the DC thermal
performance on metrics was done. The thermal management assume a key
role for achieving energy saving during the operation of a DC and for the
improvement of the IT equipment reliability.

Keywords: Data centers management � Energy efficiency � Metrics � Temper-
ature in data center � IT equipment � Data center thermal performance

1 Introduction

Data centers (DCs) are indispensable elements of information systems. They have been
upgraded by information systems organizations continuously to offer institutional and
private customers a constantly growing variety of IT services. As a consequence,
inventory, power density and energy use of DCs are rising steadily. Recently, to
provide a set of green strategies for energy consumption of DCs, the attention is
addressed above all, on servers ability to properly function and not lose data – com-
monly called reliability. This goal can be reached using redundant systems and con-
nections, backup power supplies and an appropriate environmental control by HVAC
systems (servers are less susceptible to failure and faults when operating at certain
environmental conditions [1]).

In recent years, energy efficiency became an important issue in DC design due to
the increase of energy prices and policy pressures [2]. Besides, expansion of demands
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has increased the power consumption. Indeed electricity usage became the most
expensive portion of a DC’s costs [3]. In general, 80 % of capital cost is related to IT
power supply and cooling, while constructing a DC costs cover remaining 20 % [4]. In
the last decade, the growth trend of electricity usage contribution of DCs is +11 %/year,
compared to the sum of all sectors equal to +3 %/year [5].

In light of this trend, companies operating in DCs have launched research efforts to
improve the energy efficiency of several components. Subsequently, different inter-
national initiatives and energy efficiency criteria, benchmarks, best practice measures
and efficient product technologies were proposed supporting efficiency both at the IT
hardware and the infrastructure level [6]. These strategies allow to slightly reduce the
growth trend of electricity usage. Based on several data collected from IT equipment
manufacturers, the Uptime Institute predicted an annual increase of product heat
density (W/m2) from 7 % to 28 %, for tape storages and communication equipment
respectively [7]. However, energy consumption in DCs of past five year has only
increased by about 50 % of this predicted scenario [6]).

Although much research effort was made in the field of energy efficiency best
practices on DCs so far, there is only little step forward on DC green performance
measurement system. Moreover, several different metrics were proposed during the last
few years [8] which allow to outlay a trend over time by means the evaluation of their
variation in different periods. In details, the paper addresses two major research
questions: real time thermal diagnostic analysis and the energy assessment of a DC.
These tasks become easier where a metering system monitoring environmental con-
ditions and power/energy usage of different loads is in place [9].

The paper provides academic and practitioners with the body of Knowledge on DC
green performance measurement, and moreover formulates open research challenges.
In details, this paper focuses on the most important energy performance metrics cur-
rently used. The importance of each metric analysed is evaluated by its matching with
the thermal and energy efficiency requirements, its popularity/diffusion and its recent
introduction. The variables and physical models on which they are based were dis-
cussed in the first part of the paper. Afterwards, mutual relations among performance
metrics were underlined and reciprocal physical influences were evaluated, taking into
account that this aspect was poorly investigated in literature. Moreover, the impact of
local thermal phenomena on the behavior of the global energy consumption and on the
reliability of the IT equipment was carried out. At last, the strategies for achieving
energy saving through a thermal awareness approach were discussed. The key role of
thermal management during the operation of a DC in order to achieve energy saving is
demonstrated. A proposal of a conceptual framework to follow is carried out. Finally,
the conclusion summarizes the findings.

2 A Review of Data Center Energy Efficiency Metrics

A DC is an integration of complex systems and this complexity creates serious diffi-
culties in pinpointing a methodology in terms of energy efficiency. Indeed, within DCs
many variables are to be taken into account. In recent years, to measure these variables,
various metrics were proposed. However, in Europe there is a lack of a complete plan
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which provides standard metrics and methodologies for DCs. Evaluation of DCs should
be based on globally accepted assessment systems in terms of common metrics that
promote the improvement of energy saving, renovation and improvement of infra-
structures, management methods and so on.

In order to provide a systematically approach - in terms of metrics for energy
efficiency for DC - a classification of metrics into four macro-categories are proposed
by the authors: waste and emission metrics; component efficiency metrics; power and
energy consumption metrics; thermal/energy metrics.

Waste and Emission metrics allow to measure the amount of natural sources wasted
or the quantity of pollution generated by building and managing a DC. Examples of
these metrics are the WUE (Water Usage Effectiveness) and the CUE (Carbon Usage
Effectiveness) proposed by The Green Grid [10, 11]. The first one measures the water
usage and the second one the carbon emissions associated with DCs energy con-
sumption. However, this paper focuses only on the effect of thermal management on
the other three categories and the Waste and Emission metrics are not discussed
in-depth.

Component efficiency metrics measure the productivity and the energy requested
by individual components or sub-assemblies. The metrics measuring efficiencies of an
individual component are straightly related to the global power/energy consumption
metrics. Indeed, the global energy consumption of the DC is directly connected to the
efficiency and consumption of its single sub-systems. Generally, the major causes of
energy consumption in a DC are the IT equipment and the cooling system of the
infrastructure. Thus, the most important component efficiency metrics belong to these
two categories.

Power and Energy Consumption metrics are proposed in order to capture the
“greenness” concept of the DC. Indeed, the concept of green DC recently became an
important issue with the aim to reduce the energy consumption through an improve-
ment of both infrastructure and IT productivity management [8]. Typically these
metrics are defined as an efficiency ratio of obtained useful work on power/energy
consumed for its production, or vice versa.

Thermal/Energy metrics are generally indices related to airflow performance and
thermal management. These metrics are used to label the thermal efficiency in DC
and to detect local anomalous behaviors, which have influence on temperature fields
and, consequently, on reliability of IT equipment.

Hence, the energy efficiency can only be represented by a vector which captures the
effect of energy consumed by a metrics suite (as above mentioned). In the next sections,
a critical description of the most important metrics for DCs is carried out.

2.1 Thermal Metrics

The most common design structure in a DC is characterized by a raised floor with the
racks arranged in Hot/Cold Aisle layout. In the Computer Room Air Conditioning
(CRACs) the hot exhaust air from racks is cooled and supplied chilled in the floor
plenum.
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Figure 1 shows this typical air distribution layout in a DC. In the hot/cold aisle
layout, some air management problems were observed by several researchers. The hot
exhaust air could flow back into the cold aisle to mix with the supply cold air. The
mixing of hot exhaust and cold supply air can raise the inlet IT equipment temperature
resulting in the hot spot phenomenon. In [12] the authors found that, on average, one
over ten racks works at a temperature higher than the standards recommendations and
that hot spots occur especially in DC with light load.

As far as a correct air management is concerned, two problems have been identi-
fied: by pass air and recirculation air. In the first case a fraction of inlet cold air does not
contribute to the cooling of the IT equipment, usually because the flow rate is too high
or it leaks through cable cutouts. Moreover, a higher amount of cold air results in
excess fan energy and reduced return air temperatures. In [13] the author assess that on
average only the 40 % of cold air supplied by CRAC, directly enters in the IT
equipment cooling it down. In the second case the cold air intake into IT equipment is
not sufficient (for by pass problem or incorrect air distribution system design) and as a
consequence a fraction of the hot air is recirculated, resulting in higher equipment inlet
temperature. The same effect of recirculation can be related to the incomplete rack slot
occupation of IT equipment. Finally a negative pressure phenomena (hot air drawn into
the under-floor plenum) could occur. The problems of air management in reality lowers
the cooling efficiency and generates a vicious cycle of rising local temperature [14]. In
this context became very important to investigate the supply air flow efficiency in the
DC environment. The aim of a correct air management system is to minimize the
recirculation of hot air and minimize by pass of cool air.

Several thermal performance metrics were introduced in literature to enable real
time feedback and control of DC thermal architecture. Due to standardized vent tiles
and rack, composed by Unity Rack multiples, these indices can be applied regardless

Fig. 1. By pass and recirculation air in a typical DC distribution layout
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on different DCs. These kind of metrics can be useful for a real time feedback regarding
the air management particularly because the normalized non dimensional nature
enables scalability across the rack, row and room levels. However, even if some metrics
can be related to a single rack, they are not always able to predict in a comprehensive
way local hot spots. For this reason some thermal metrics are devoted to give infor-
mation on local phenomena while through others only average thermal condition can
be derived. In Table 1 the formulas useful to calculate the main thermal metrics
following described are summarised.

SHI (Supply Heat Index) [15] is defined as the ratio between the enthalpy rise in
cold aisle due to infiltration of warm air and the total enthalpy rise at rack exhaust. RHI
(Return Heat Index) is defined as the ratio between the total enthalpy rise in DC
airspace and total enthalpy rise at rack exhaust. A value of 0 for SHI and 1 for RHI
means that there is no recirculation of hot air, and the air inlet temperature of the racks
is equal to the air supply temperature from the CRAC unit. As benchmark, it is
considered good performance a value of SHI < 0.2 and RHI > 0.8.

However some authors [14, 16] assess that SHI/RHI are not always effective
because a DC with a favorable global profiles can be still affected by local hotspots.
A single rack could have a rapid increase in temperatures, that could comport a local
hot spot that these indices could not identify. Several researchers claim that these
indices give a macro evaluation of the recirculation phenomena, but they fail especially
when the rack intake temperatures have to be evaluated in respect of IT equipment
reliability even if they are calculated at rack level. Schmidt has tried to overcome this
problem proposing the β Index [17]. This index gives information about local tem-
peratures in a rack and it is obtained from the ratio of a punctual temperature difference
across a rack on the average difference across the rack. The common values of this
index range between 0, which represent the condition of absence of recirculation, and
1. A value above 1 indicates the presence of self-heating phenomenon.

The metric RCI (Rack Cooling Index) [18] is a measure of how effectively the IT
equipment is cooled and maintained within a given intake temperature specifications. It
was based on the comparison between air inlet temperature and benchmark values [1].
Due to the two-fold values of temperatures, cold and hot, the index is divided into RCILo
and RCIHi, for low and high threshold values respectively. In general, a value equal to 1
means that the overall rack intake air temperature is in the range recommended and a
value of benchmark of RCI > 96 % is considered a good cooling condition.

Some other indices were introduced to characterize how the air flow rate supply is
distributed in the environment [19]. In particular, starting from the mass and heat
balance equation, NP (Negative Pressure) index measures the ambient air infiltration
into the under-floor, BP (bypass) measures the rate of air which doesn’t get inside IT
equipment, R (Recirculation) indicates the rate of hot air that goes into the IT equip-
ment and BAL (balance) measures the difference between cold air produced by the
cooling plant and the server request. The ideal condition of airflow performance and
thermal management is NP, BP and R equal to 0 and BAL equal to 1. The flow
performance, equal to 1-BP is defined as the ratio between the air mass flow rate from
cooling units supplied to IT equipment and air mass flow rate through cooling units.
The thermal performance, also equal to 1-R defines how much of the air used by IT
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equipment actually comes from the CRAC. The ratio of thermal performance on flow
performance represents the flow availability.

The index RTI (Return Temperature Index) [20] gives information about recircu-
lation or bypass of the airflow: the value is obtained as a ratio of the temperature
difference in the CRAC unit on temperature difference across the IT equipment,
expressed in percentage. RTI equal to 100 % is the ideal condition, RTI > 100 %
indicates recirculation, RTI < 100 %, instead, indicate a bypass. This index is con-
sidered as an opportunity to improve energy efficiency: a bypass result means that the
cooling plant is producing more airflow rate than which requested by the IT equipment.
This index has to be measured at room level.

Another index, based only on the mass flow rate, is CI (capture index) [21]. It may
be calculated both in the cold and hot aisle. If related to the cold aisle, CI evaluates the
mass rate ingested from a rack that comes directly from the CRAC unit. In the hot aisle,
instead, CI measures the fraction air captured by a local vent or local cooler. The ideal

Table 1. Most important thermal metrics for DCs
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2
664

3
775 � 100

[18]

Rack Cooling Index High

RCIHi ¼ 1�

P
Tr
ini;j

�TmaxRec

� �
Tr
ini;j

[TmaxRec

TmaxAll�TmaxRecð Þ�n

2
664

3
775 � 100

[18]

Negative Pressure NP ¼ Tuf
sup�TC

sup

Tc
ret�Tuf

sup

[19]

Bypass Ratio BP ¼ TS
out�TC

ret

TS
out�Tuf

sup

[19]

Recirculation R ¼ TS
in�Tuf

sup

TS
out�Tuf

sup

[19]

Balance BAL ¼ TS
out�TS

in
TC
ret�TC

sup
¼ 1�R

1�BPð Þ�ð1þNPÞ
[19]

Return Temperature
Index

RTI ¼ TC
ret�TC

sup

Tr
out�Tr

in
� 100 [20]

Capture Index
(cold aisle)

CI ¼ _mC
ini

_mC
supi

[21]

Capture Index (hot aisle)
CI ¼ PN

J¼1

CC
retj

: _mC
retj

_mr
outj

[21]
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condition is represented by a value of CI equal to 1. This index and the similar ones
(e.g. contaminant index k [22] and R recirculation) mean that the total heat flow
produced by an IT equipment is not fully dissipated from the airflow supplied by the
cooling plant but only by a fraction of this, on the base of the index magnitude.

2.2 Component Efficiency Metrics

Component efficiency metrics measure the performance of individual components or
sub-assemblies. Improving the efficiency of a single apparatus allows to improve the
efficiency of the overall structure. For this reason the energy consumption of a DC is
straightly related to the productivity and efficiency of its single components. In a DC
the energy consumption is mainly due to the IT equipment and the cooling system. For
these reason in literature many indices related to the components of these two cate-
gories were introduced.

Main component efficiency metrics for IT equipment
Although the connection between performance and energy consumption of IT equip-
ment is becoming necessary information for data center efficiency, there isn’t an uni-
versally accepted metric for this sector [23]. However, to capture a more accurate
picture of the energy efficiency (performance) of IT equipment, are proposed different
benchmarks in order to stress different components, such as the processor, memory,
and disk (Standard Performance Evaluation Corporation and LINPACK benchmark).

Main component efficiency metrics for cooling system
The component efficiency metrics for cooling systems listed in Table 2 are in the
following described.

The index CSE (Data Center Cooling System Efficiency) characterizes the overall
efficiency of the cooling system (including chillers, pumps, and cooling towers) in
terms of energy input per unit of cooling output [24]. This metric is defined by the ratio
of the average system power used on the average cooling load required. Considering
the only chiller without auxiliary (e.g. cooling tower) and the inverse of CSE it is
possible to find the COP (Coefficient Of Performance), an index widely diffused in
refrigeration systems.

The index CSS (Cooling System Sizing factor) is defined as the ratio of the
installed cooling capacity on the peak cooling load. It is an indicator useful to mea-
sure the percentage of working hours of the cooling system at part load condition.
Usually the cooling system has different efficiencies between partial and full loads
(generally the highest efficiency is around 80 % of the load [24]). An high CSS value
suggest a good potential and scalability of the cooling system [8].

The AEU (air economizer utilization) is a metric related to the airflow economizer
system. The airflow economizer is a component of the cooling system which allows to
work in “free cooling” condition, controlling the environment temperature directly with
colder outdoor air. A consistent energy saving is due to “free cooling” especially in
cold climates, where the outdoor air is colder than indoor condition for a long period of
time. AEU is defined as the percentage of hours in a year during which the economizer
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system work in either full or complete operation [8, 24]. The external conditions
strongly influence the AEU and hence the opportunity to increase the DC efficiency.

The index AE (airflow efficiency) measures the overall airflow efficiency. It is
defined in terms of the total fan power required per unit of airflow [24]. This metric
provides an overall measure of how efficiently air is moved through the DC, from the
supply to the return [8]. An high value of AE suggest that the fan system is inefficient.
However only few data on this index are available in literature.

2.3 Power and Energy Consumption Metrics

Due to the diversity and complexity of the infrastructure, understanding the total data
center power consumption is not easy [22]. In order to clarify the problem, a division
into categories it is necessary.

Pelley et al. [22] identified five distinct sub-systems that account for most of a data
center’s power draws: servers and storage systems, power conditioning equipment,
cooling and humidification systems, networking and connecting equipment, light-ing/
physical security. According to Wang et al. [8] it is possible to differentiate the power
consumption in servers and in storage system. The second one could be merged with
the power draws in networking and connecting equipment, thus forming a category of
power draws of all delivery components external to the IT equipment (i.e. UPS, switch
gear, generators, PDUs, batteries, networking and connecting equipment). The total
power consumed by a typical data center is broken down into previous categories as
follow [22, 26, 27]: IT equipment (30 ÷ 60 %); cooling plant: (25 ÷ 40 %); power
conditioning system (8 ÷ 15 %); lighting/security (1 ÷ 3 %); delivery components and
others (5 ÷ 15 %).

Generally the useful work of a data center is represented by the activity of the
computing activities coming from IT, while all other categories are only auxiliaries to
this purpose. Several power and energy consumption metrics for data centers were
suggested in recent year following this guideline. A brief overview of these main
indices is proposed in this section, before analysing and discussing the interaction of
these metrics with thermal and component efficiency indices. In Table 3 the formula of
energy consumption metrics for DCs below described are shown.

Data center infrastructure efficiency (DCIE) is an accepted metric used to determine
the energy efficiency of a data center. The metric, which is expressed as a percentage, is
calculated by dividing IT equipment power by total facility power. DCIE was developed
by members of the Green Grid, an industry group focused on data center energy

Table 2. Most important component efficiency metrics for cooling system.

Metric Formula

CSE CSE ¼ Average cooling system power usage
Average cooling load

CSS CSS ¼ Installed chiller capacity
Peak chiller load

AEU AEU ¼ Air economizer hours
24�365

AE AE ¼ Total fan power
Total fan airflow � 100

142 A. Capozzoli et al.



efficiency [28, 29]. The inverse of the DCiE, is another index called PUE (Power Usage
Effectiveness) [29]. PUE is the most popular metric for energy consumption in data
centers, due to its simplicity of interpretation: the lower the better [6]. Many companies
uses the PUE as an indicator to show how green their data centers are. Similar to the PUE
is the KPITE (Key Performance Indicator of Task Efficiency) introduced by ETSI [30].

The metric, Power Usage Effectiveness (PUE), was successfully used for improving
the energy efficiency of DCs [12, 31]. However, several problems and shortcomings
were found. The main of these issues, is the fact that PUE only measure the efficiency
of the whole infrastructure, defined as a “black box”. Moreover, IT equipment ineffi-
ciencies, due to rising environmental temperature, are not taken into account by the
PUE [32]. This metric is strongly dependent on the climatic environment of the site and
on the IT load. These variables may change over time and the DC operate for con-
siderable periods at part load conditions [33].

In order to overcome previous problems, other indices were recently introduced. In
details, as PUE does not account for the power distribution and energy losses inside IT
equipment, two new metrics are proposed: ITUE (IT-power usage effectiveness),
similar to PUE but “inside” the IT and TUE (total-power usage effectiveness), which
combines PUE and ITUE for a total efficiency picture [32]. In details, TUE provides a
ratio of total energy (internal and external support energy uses) into the DC divided by
the total energy to the computational components inside the IT equipment. Moreover,
The Green Grid proposed the indices CPE (Compute Power Efficiency) and DCeP
(Data Center Energy Productivity) for characterizing the energy request to produce
useful computational work in a data center [34].

To measure how “green” a data center is, it is also necessary to take into account
the presence of renewable energy sources and the recovery of some energy wastes.
Therefore, The Green Grid introduced the coefficients ERF (Energy Reuse Factor) and
GEC (Green Energy Coefficient), which take into account these phenomena and,
combined with the PUE, produce the index ERE (Energy Reuse Effectiveness) [35].
Likewise, ETSI proposed the metrics KPIREUSE(Key Performance Indicator of Energy
Reuse) and KPIREN (Key Performance Indicator of Renewable Energy) which, com-
bined with the KPITE, produce the DC index DCP [30].

Table 3. Most important energy consumption metrics for DCs

Metric Formula Introduced
by

DC infrastructure
Efficiency

DCiE ¼ IT equipment power
Total facility power

[28, 29]

Power Usage
Effectiveness

PUE ¼ Total facility power
IT equipment power ¼ 1

DCiE
[29]

Key Performance
Indicator of
Task Efficiency

KPITE ¼ Total facility energy consumption
IT equipment energy consumption

[30]

IT-power Usage
Effectiveness

ITUE ¼ Total energy into IT equipment
Total energy into compute components

[32]

(Continued)
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3 Relations Among Thermal, Component Efficiency
and Power/Energy Metrics

In this section an analysis of the effect of temperature variation on the DC metrics was
performed. Moreover the mutual relations between thermal and energy/power indices
were critically discussed. This aspect was poorly investigated in literature. The aim is to
clarify the physical phenomena affecting the energy consumption considering both
thermal and energy aspects in order to show the capability of different metrics in
capturing in a comprehensive way the energy savings opportunities in DCs.

3.1 The Effect of Thermal Performance on Data Center Energy
Consumption

For most critical DCs ASHRAE guidelines [1] recommends that the temperature at the
inlet of the IT equipment Tr

in should be maintained between 18 and 27 °C, with an
allowable range of 15–32 °C. The moisture level should be kept within a minimum
5.5 °C and maximum 15 °C dew point [1, 12]. To accomplish performance and
reliability of IT equipment, a colder Tr

in is desirable. Even if the recommended tem-
perature are referred to Tr

in, the control of the cooling system is generally based on the

Table 3. (Continued)

Metric Formula Introduced
by

Total-power
Usage
Effectiveness

TUE ¼ ITUE � PUE [32]

Compute Power
Efficiency

CPE ¼ IT equipment utilisation
PUE

[34]

DC energy
Productivity

CPE ¼ Useful work produced
Total facility energy consumption

[34]

Energy Reuse
Factor

ERF ¼ Reused energy consumption
Total facility energy consumption

[35]

Green Energy
Coefficient

GEC ¼ Renewable energy consumption
Total facility energy consumption

[35]

Energy Reuse
Effectiveness

ERE ¼ 1� ERFð Þ � ð1� GECÞ � PUE [35]

Key Performance
Indicator of
Energy Reuse

KPIREU ¼ Reused energy consumption
Total facility energy consumption

[30]

Key Performance
Indicator of
Renewable
Energy

KPIREN ¼ Renewable energy consumption
Total facility energy consumption

[30]

DC Performance DCP ¼ KPITE � 1�WReu � KPIreuð Þ � 1�WRen � KPIrenð Þ [30]
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setting of air supplied temperature in the cold aisle TCA
sup. This temperature is always

colder than Tr
in. The difference between TCA

sup and Tr
in is due to bad air management

phenomena - such as recirculation and bypass - which are usually sources of coldspots
and hotspots.

To evaluate the effect of temperature on thermal metrics is not an easy task. Cho
et al. [36] applied a CFD method to study the variation of overall thermal metrics by
changing different geometric and physical parameters. It was evinced that the tem-
perature of the air supplied in the cold aisle TCA

sup is the most important parameter for air
flow efficiency. However, certain thermal metrics - like SHI, RHI and RTI - didn’t
change sensibly modifying this value. Indeed, thermal metrics are mainly related to
temperature differences and not to a local and single value of temperature, as previously
described. For example the difference between TCA

sup and Tr
in is considered in SHI [15].

Durand-Estebe et al. [25] demonstrated that, varying TCA
sup from 17 °C to 30 °C, the

temperature difference between TCA
sup and Tr

in remained quite stable. On the other hand,
other metrics are related to difference between a monitored temperature and a bench-
mark value, such as RCI [18]. For this reason in both [25] and [36] RCI is sensitive to
the temperature variation of TCA

sup. On the other hand the impact that the temperature
variation has on the efficiency of single components was widely studied [1, 33, 38].
Metrics related to this efficiencies and global power/energy consumption are straightly
related. Indeed, the global energy consumption of the DC is directly connected to the
efficiency and consumption of its single sub-systems.

The efficiency of the cooling system growth with the increasing of air temperature.
Cooling system efficiency indices, such as CSE and COP, get to better values with higher
temperatures, because the chiller efficiency is directly proportional to the supply temperature
TCA
sup [37]. Moreover, also the index AEU increase with ambient temperature rising. This

fact is due to the increasing of the percentage of hours in a year in which the economizer
system can work because outside air temperature is colder than inside temperature. Also
at the air fan level (AE index) the temperature increasing reduce thepower required to
move the air, due to lower density of hotter air. However, at higher temperatures, the
specific heat cp of air is lower. This means a lower cooling capacity and higher flow rates,
which remove any improvement for the lower density [33].

Despite these improvements, rising the temperature is not necessary a source of
energy saving, because it could cause problems for the IT equipment. First of all a
worst reliability, but also a decreasing of energy efficiency of IT equipment by rising
the Tr

in temperature occur. In recent year these effects were studied theoretically [1, 33]
and experimentally [38]. It appears that, rising the Tr

in also the power consumption of
the CPU growth, due to higher chip current leakage. At the same time the flow rate of
the fans increase, on the basis of an algorithm which ensure that the chips operate under
their upper temperature limit. As a consequence an increasing in fan energy con-
sumption results. In general, it can be observed that the two phenomena (increasing of
CPU leakage and of fan energy consumption) can occur not concurrently. Recent
studies [33, 39] demonstrate that an optimal CRAC temperature set-point exists, that
would be the ideal tradeoff between CRAC and IT energy consumption. This tem-
perature mainly depends on the server and the CRAC characteristics [25].
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The analysis of previous relations shows how the increasing of temperature causes
an improvement of the efficiency of the cooling system components (infrastructure
side), but it causes negative effects on IT equipment. This fact produces a better PUE or
DCiE, since these metrics are very sensitive to the infrastructure improvement and not
to the IT equipment. Patterson in [33] calculated the variation of PUE by varying the
temperature in an ideal DC. The temperature was set from 20 °C to 30 °C and the COP
of the cooling system was calculated as a function of temperature (higher the tem-
perature the better the COP). For this reason PUE resulted better at the higher tem-
perature: 1.91 at 30 °C compared to 2.0 at 20 °C. However, considering the effect of
temperature on IT equipment the total power request by DC passes from 32 kW at
20 °C to 32.2–32.8 kW at 30 °C. In this way Patterson demonstrated that the PUE is
not a good indicator for the assessment of energy saving because it neglects the IT side.
Generally the TUE and DCeP should not be affected by the error due to this opposite
trends because they consider also the effects on IT side. However, no examples are
referred in literature on this aspect, because this metrics were introduced to take into
account the improvements - and not the worsening – for IT equipment.

3.2 Mutual Relation Among Thermal and Energy Consumption Metrics

Previously described inefficiencies related to single components could be caused by
local phenomena, such as hotspots, which are generally caused by bad air management.
Hotspots are local rising temperature effects which have a bad influence on the IT
equipment efficiency and reliability. However, in order to offset hotspots the CRAC
unit are often controlled to supply air at a lower TC

sup, with an higher energy con-
sumption [40]. This fact required an oversized design of cooling system (bad CSS
index) to deal with these instantaneous overcooling request phenomena. The effects of
poor air management are identified through thermal metrics.

In general, global energy indices are not necessary capable to detect these phe-
nomena. Indeed, hotspots are local phenomena whose influence on the global power/
energy efficiency may be negligible. This is due to the fact that few rack in a DC could
be interested on local air management problems and as a consequence global energy
indicators may not vary significantly. Furthermore, the energy metrics are referred to a
long period (e.g. a year or a season) while hotspots are phenomena which depends on
short term variation of boundary conditions (e.g. IT data loads or temporary mal-
functioning of the cooling system). Therefore it is necessary to apply a continuous
commissioning to detect the occurrence of local phenomena through thermal metrics.
An overall air management efficiency should be evaluated taking into account at the
same time different air management metrics proposed in literature. In particular the
thermal metrics at local level (e.g. RCI and β) should be assessed primarily. After that
an analysis on the other global thermal indices (e.g. RTI, SHI and RHI), still important
to characterize airflow behavior and energy saving opportunities, should be carried out.

In general power/energy metrics provide no information about bypass/recirculation
phenomena and corresponding impacts on the thermal manageability of DCs. Vice
versa, thermal metrics are still of limited use because few information is gained
regarding the energy efficiency of the system [41]. Thermal metrics are used to enable
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real-time feedback and control of DC thermal architecture, while power/energy metrics
to outline the global energy consumption. Usually these metrics are used in parallel.
For example Lu et al. [12, 42] calculated SHI, RTI and PUE for a DC case of study.
SHI and RTI were used for the detection of local phenomena of recirculation and
bypass, PUE for attesting the global energy consumption. The fact that the analysis
require three different indicators indicate a poor relationship among metrics.

Other researchers deepen how the energy performance is influenced by the varia-
tion of thermal metrics. For example Pelley et al. [22] considered the effect of a thermal
metric in their DC power flow model, by means the index κ (containment index). This
metric is based on previously described CI and its better benchmark value is 1. κ is
influenced by the power and the supply temperature of CRAC and IT equipment.
Authors showed that preventing air recirculation causes an increase of κ and drastically
improve cooling efficiency.

However, Shah et al. [41] found that in general thermal metrics fail to provide
adequate information regarding the energy consumption of a DC, due to the use of the
first law of thermodynamic for their formulation. They propose a method to addresses
this limitation through an exergy analysis of the DC thermal management system. The
exergy of a system is a representation of the amount of useful work that can be obtained
from a given quantity of energy. This approach recognizes that the mixing of hot and
cold streams in the DC airspace is an irreversible process and must therefore lead to a
loss of exergy. The proposed exergy-based approach can provide a foundation upon
which the DC cooling system can be simultaneously evaluated for thermal manage-
ability and energy efficiency [41]. This work has recently been taken over by Qian et al.
[43] that introduce new indices using entransy, a novel physical quantity recently
presented [44].

The discussion presented in this section demonstrate that the energy and thermal
metrics accomplish to different tasks: energy assessment and real time diagnostic.
These tasks always should be coupled for a comprehensive DC performance analysis.
Moreover, although it is not yet widely considered, the local thermal performance
management assume a key role for achieving energy saving during the operation of a
DC. In the next section some examples supporting this assumption are reported. Recent
studies focused on the energy saving strategies through a thermal awareness approach
are analysed.

3.3 Energy Efficiency Management Trough Thermal Performance
Awareness

Many authors proposed strategies to reduce the DC energy consumption and to
increase the reliability the IT equipment. Tang et al. [37] identified two major steps for
improving the DC performance. The first is a good DC design and planning per-
spective. For example Flucker and Tozer [9] established an order of priorities in
strategies and measures to be taken in this step. The second step is to improve
and optimise the performance during the operation of a DC. Generally this aim is
achieved through the optimization of DC thermal performance. Lowering operation
costs and extending the life of the IT equipment are key design objectives that can be
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achieved through the improvement of thermal management. A recent challenge is to
schedule the task assignment to server with a thermal awareness approach.

Although several researches tried to consider the thermal management for task
scheduling [45, 46]. In this approach the management of computing workload is
controlled considering the minimization of recirculation heat [37]. This effect can be
considered by means Cross Interference Coefficients α, which characterize the thermal
interference among the computing nodes within a DC. Starting from the DC thermal
behavior some algorithms were developed to schedule the workload on servers with the
aim of minimize heat recirculation and to maximize CRAC air supply temperatures.
In this way computing and cooling costs can be improved.

DCs very often work with an utilization rate lower than 100 %. For example, an
High Performance Computing DC utilization rate is generally between 60 % and 80 %
[47]. One of the most representative algorithm is Xint-GA, a genetic algorithm that
follow the condition to Minimize the Peak Inlet Temperature through Task Assign-
ment. Considering the total computing and cooling cost as a function of power com-
puting, the tool dispatches tasks following the concept of consolidation.

In order to consider the thermal environment, for a set task to assign to computing
devices, airflow IT inlet temperatures are obtained through Cross Interference Coeffi-
cients. Air supply temperature is optimized from the difference between the maximum
air inlet temperature and a threshold value. The optimal CRAC supply temperature is
set choosing the task assignment that minimize the peak air IT inlet value. In this
manner the supply temperature is the highest allowable taking into account the recir-
culation effect caused by heat interference among the computing nodes.

From comparison between different scheduling algorithms (as Uniform Output
Profile, Minimal Computing Energy and Uniform Task [37]), Minimizing Heat
Recirculation [46] and XInt-GA assure a lower SHI value for each utilization rate,
validating the approach of heat recirculation minimization. At the same time, with
thermal awareness approach the air supply temperature is highest, allowing the most
efficient way to manage operational DC with optimization of cooling and computing
power, on the base of heat recirculation minimization. This results seems to be the most
efficient because it take into account three different aspects that are often analysed
without correlations. A correct thermal management represents an efficient criteria for
the optimization of energy request both for cooling and computing and to obtain energy
saving during the operation of a DC.

4 Conclusions

In this paper, a critical analysis on the most important energy performance metrics
currently used for DCs was presented. The variables and physical models on which
they are based as well as their mutual relations were discussed. The impact of tem-
perature on metrics, on behavior of the global energy consumption and on reliability of
the IT equipment was carried out.

In order to achieve energy saving the key role of thermal management during the
operation of DCs was demonstrated. Energy assessment and real time thermal envi-
ronment diagnostic should be not considered as separate tasks for a comprehensive DC
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performance analysis. These two aspects should be always coupled. In details, the
thermal management should be achieved through the calculation of local thermal
metrics primarily, and then by other average thermal metrics referred to the whole DC
environment. On the other hand the energy assessment should be performed through
power/energy metrics capable to capture in a correct way the effect of energy con-
sumption variation for both cooling and computing. The improvement and optimisation
of DC performance through a thermal awareness approach represents an effective way
to obtain energy savings. To this purpose thermal management through the detection of
local temperature faults, cooling efficiency, IT reliability and computing energy request
are take into account for DC energy assessment.
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Abstract. The power usage effectiveness (PUE) for data centers is used
by operators as KPI to measure the absolute infrastructure power over-
head. However, this only draws conclusions on static or average opera-
tion conditions during an usual annual time period. For analyzing the
aspect of dynamics in the IT to infrastructure power relation, we propose
two new metrics. First, the power variability (PVar). It simply indicates
the relative rates and heights of power variations. Second, the infras-
tructure power adaptability (IPA). It relates the power variabilities and
relative average deviations of IT and infrastructure power in order to
represent the scalability and adaptability of the infrastructure to the IT
demands. Both metrics use the same input data also needed for a contin-
uous PUE calculation. Thus, the applicability in a data center running
a PUE-metering can be ensured. In an evaluation, we applied the IPA
on power traces of a container data center (in the following denoted as
CDC) and compared the results with PUE scalability, a metric with the
same scope. The comparison showed, that IPA covers more operating
states and is therefore more robust and reliable than its counterpart.

1 Introduction

Data centers are identified as system relevant for future evolutions of IT ser-
vices of any kind [1]. Their growing demands, induced by society needs and IT
evolution, have defined an increasing electric power consuming industry [2]. An
ongoing challenge is the procurement of energy in the order of multiple mega
watts covered by renewable energy whilst ensuring the availability of IT services.
Because of the dominance of the availability requirement, some data centers
and their operators are blamed as reckless energy squanderers [3]. This slightly
distorted perspective on energy procurement neglects the continuous effort made
to operate data centers as energy efficient as possible. One main objective in this
domain is the reduction of operational costs. Currently, the energy demand cov-
ers a significant fraction of the operational costs. Thus, the reduced usage and
economic procurement is highly desired! Especially, technical achievements like
server virtualization, interoperability of cloud services, and a high inter connect
bandwidth will possibly increase the competition in this market [4].
c© Springer International Publishing Switzerland 2015
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Such a growing market competition and the public importance of green IT
possibly argues the intention to establish a simple performance indicator of effi-
ciency. Such indicator has to emphasize the practical benefit in relation to the
resources needed to attain it. It could then be used to reflect the effort made
being efficient and not wasting money or natural resources. One established met-
ric used to compare data centers with each other is the PUE. It is defined by the
ratio of total facility energy demand to energy demand of IT hardware systems.
The metric’s purpose is to reflect the power overhead needed to run the IT under
desired conditions. The main problem is the superficial and isolated consider-
ation of PUE values, which misleads to wrong assumptions. As PUE does not
consider the useful work done by the data center nor its performance, two data
centers sharing the same PUE value may not have the same overall efficiency.
Thus, PUE can be used as infrastructure efficiency indicator for a single data
center site but it cannot be used to compare different sites.

The construction and the resulting power overhead of a data center depends
on several parameters and constraints, where location is a dominating one. The
recent evolution and resulting variety of air conditioning systems exemplifies the
needs to adapt to these operational differences. An example is given by the capa-
bility to use direct or indirect free cooling systems. Simplified, the influence of
location on power overhead depends on two parameters. One is the implementa-
tion of temperature recommendations to operate the IT within a data center [5].
The second, which cannot be influenced after a data center is built, is the course
of the outdoor temperature and the expected environmental maximum. Both
define the constraints how a backup refrigeration system needs to be included
and sized. This second system has to support the free cooling system to ensure
the operating conditions of IT. Concluding, even if two data centers are built
equally and are running the same services synchronously on equal IT systems,
the power overhead can differ. This occurs, if changing temperatures cause the
need for the backup refrigeration system.

The previously described scenario considers the adaptation to location only
and does not consider the adaptation to internal causes. The implementation
of temperature recommendations defines the target temperature range of IT
systems and the IT load defines the amount of cooling power needed. Assuming
that the IT load differs, it will have an impact on cooling power demands [6]. So,
the internal effort for providing cooling power should differ, too. Thus, it would
be helpful to know whether the infrastructure can adapt to these changes or not.
Further, if the infrastructure adapts, the latency and power demand needed will
decide if these actions are economic or not. Finally, avoiding over-provisioning
of infrastructure services by fast and economic adaptation is relevant to obtain
operational efficiency.

To obtain a full view on data center infrastructure efficiency, we believe beside
existing metrics, it is important to emphasize and express the capability of the
infrastructure to adapt to real IT demands at run-time. Further, its applica-
tion should base on existing measuring points and data to ease its application.
Therefore, we propose the infrastructure power adaptability (IPA) metric in
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combination with the power variability (PVar) as an addition to PUE. While
PUE constitutes the average absolute infrastructure power overhead, IPA repre-
sents the adaptability of infrastructure to IT power whereas PVar is an general
indicator for dynamics in power behavior. By combining all three metrics, the
infrastructure power behavior can be suitably described.

2 Related Work

There exists a broad spectrum of different energy efficiency metrics for data
centers. The most common ones are the power usage effectiveness (PUE) and
the data center infrastructure efficiency (DCiE). Both metrics are developed by
The Green Grid [7]. The PUE and the DCiE relate IT and complete data center
power demand to reflect the infrastructure power overhead. A drawback, results
have a limited significance, since dynamics caused by varying workloads and
power demands are not considered. Even the analysis of a time series of PUE
values will not allow to identify the dynamic behavior sufficiently, as a constant
PUE e.g. may stand for a perfectly adaptive infrastructure but it may also mean
that nothing changes at all.

The PUE scalability metric was introduced as an addition to the PUE [8]. By
relating the slopes of two linear functions – for the actual and the proportional
PUE scalability – the metric determines the percentaged PUE scalability. It
assumes that the infrastructure scales linearly with IT power. Furthermore, if
infrastructure power demand reacts with delay to changes in IT power, PUE
scalability will provide delusive results. The metric only correlates values at the
same time point. Thus, due to a possible temporal gap it is not able to recognize
the real correlation.

The infrastructure focused facility fixed/proportional overhead multiplier
metric was proposed by bcs Data Centre Specialist Group [9]. It splits the
infrastructure overhead into fixed and proportional portions. Hence, a theoreti-
cal dynamic power range from zero to full IT load is known, but actual dynamic
is not surveyed by this. Even the successor, the fixed to variable energy ratio
(FVER) [10], which relates idle to full IT productivity, does not consider typical
workload and power variations in a time span.

Energy efficiency metrics with focus on computing assess power/energy
demands in relation to the useful work done. Summarized, they only differ in
their approach how to assess useful work. However, all of them possess a subjec-
tive component, as productive outcome (e.g. processed orders per time) of data
center applications must be defined by humans. Thus, an application of such
a metric is complex and unique for each data center. This finally avoids a fair
comparison between different data centers. Example metrics are given by the
data center performance per watt (DCPpW) [11] by Dell and the data center
energy productivity (DCeP) [12] by The Green Grid. Due to mentioned definition
problems, there are also eight proxy measures given, which can be used instead
of useful work. These proxies reduce the useful work basically to productivity,
performance, or utilization.
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Besides the mentioned high-level metrics there are also known examples
of system-level metrics and benchmarks for single components. They focus on
energy efficiency of single server systems or storage systems connected to network
and other server components. Examples are SUN Microsystems’ space, watts,
and performance (SWaP) metric [13], SPECpower ssj2008 [14] by the Standard
Performance Evaluation Corporation (SPEC), TPC-Energy [15] by the Trans-
action Processing Performance Council (TPC), and SPC-1/E [15] by the Stor-
age Performance Council (SPC). In contrast to high-level metrics, they deliver
detailed information for single systems, but they have to be combined to get
a view on the whole IT surroundings. The load dependent energy efficiency
(LDEE) metric [16] takes this approach to model the data center performance.

3 Conception of IPA @ PVar

We propose two new metrics, the infrastructure power adaptability (IPA) and
the power variability (PVar), which are intended as an enrichment of the PUE.
While the PUE indicates the relative average overhead by infrastructure compo-
nents in a data center, it does not represent the dynamics of IT and infrastruc-
ture power. If for instance a data center operates a load and power management,
which adjusts the number of active servers to the current resource demand, the
IT power will possess a certain dynamic. With PUE alone it is not comprehen-
sible, how dynamics in IT power influences infrastructure power, and therefore
energy optimization potential is lost. With our proposed metrics, it is possible
to additionally rate the variability of IT and the adaptability of infrastructure.
The combined view of all three metrics will provide a detailed insight into the
overall efficiency of data center infrastructures.

3.1 Power Variability

In addition to a data center’s PUE also the characteristics of changes in IT and
infrastructure power are important to know. This would allow that the PUE
can be related to the dynamics of the data center in operation. Such power
variability can be extracted from the IT and infrastructure power traces, which
are measured to determine the annual average PUE.

The variability is measured in a statistical manner. First, the power trace has
to be flattened to filter the irrelevant peaks according to cooling reaction times.
Averaging the data in intervals of one minute is suitable, because random noise
can be reduced, whereas greater changes in power demand (e.g. high workloads,
de-/activation of servers, fan speed changes) are still fully distinguishable. If the
input data is only available in a less detailed time resolution, it is still possi-
ble to compute variability. However, a time resolution of more than 30 min is
not recommended, because there exist optimization techniques, which influences
dynamic in a 30 min scale. One example would be the load and power man-
agement of servers presented by Hoyer et al [17]. With time resolutions above
30 min, variability induced by such techniques could not be covered.
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After the input data preparation, the second step is to determine the power
variation. To accommodate to usable optimization intervals regarding IT and
infrastructure power dynamics, the power trace is divided into suitable segments.
Only variability regarding those segments will be analyzed, as it corresponds to
the power variation utilizable for optimization. The segments cover a time span
of t + 1 time points and overlap with the neighboring segments by one time
point. By this, a power trace with n time points will consist of n/t segments. An
example is depicted in Fig. 1.

Fig. 1. Power variability estimation by averaging relative segment ranges. The relative
range for segment i is computed by dividing the range Ri by maximum of segment i.

For every segment i the relative range RRi will be estimated as shown in (1),
where xi

max and xi
min denote the maximum and minimum value for segment i,

respectively. The relative range is chosen over absolute differences, as the vari-
abilities of different power traces have to be comparable, which is not the case
when absolute values are used.

RRi =
x i
max − x i

min

x i
max

(1)

A single representative for power variability PVar is given by the average of
the relative ranges of every power trace segment, cf. (2). The value is normalized
between 0 and 1, where 0 represents a trace with constant power and a value of 1
means the trace varies extremely in every segment. Values in between represent
the average relative variation range throughout the trace.

PVar =
1
n

n∑

i=1

RRi (2)
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3.2 Infrastructure Power Adaptability

The infrastructure power adaptability is a metric, which evaluates how good
power demand of data center infrastructure scales with variations in IT power
demand. These variations may be induced for instance by using workload depen-
dent power management techniques, which switch servers off at times of low uti-
lization and turn them on again at increasing demands. In times of lowered IT
power load also the cooling demand decreases. Depending on the adaptability
of the cooling components, they may adjust to the actual cooling demand and
also use less power or they may still operate on a constant level. Our proposed
metric represents this degree of adaptability.

In contrast to the power variability metric, not only the power load change
rate and its magnitude are relevant for the rating but also the duration of altered
load levels. Thus, the relation of power variability of IT and infrastructure power
alone is not sufficient to indicate adaptability. In addition to the relative ranges
the adaptability metric makes use of deviations to the power trace’s baseline,
which represents the most frequent power state.

To determine the power trace’s baseline, we use the mode – the most frequent
power value. As power values are real numbers, the power trace will be discretized
into classes with a range of about 5 % of the maximum power value, resulting in
20 classes. After that, the mode for grouped data, which lies within the modal
class (the class with the highest frequency of occurrences), will be ascertained. It
can be computed with (3), where L is the lower class limit, f the class frequency,
and h the class interval for the modal class m, its predecessor m − 1, or its
successor m + 1.

mode = Lm + hm
fm − fm−1

2fm − fm−1 − fm+1
(3)

The variability as well as the extent of variations in power load can be deter-
mined by the relative average deviation RAD about the mode, which is shown
in (4) with xi as the power values and n as the trace length.

RAD =

n∑
i=1

|xi − mode|
n · mode

(4)

The infrastructure power adaptability metric IPA combines the relative aver-
age deviations RAD of IT and infrastructure power with the corresponding power
variabilities PVar, respectively. The partial results for both power traces will then
be related to each other. As for IT and infrastructure two (relative) values have
been multiplied, respectively, the square root of the resulting value will be used
to get to a normalized final result. The final adaptability metric is shown in (5),
where IT denotes the IT power and inf the infrastructure power.

IPA =
√

PVarinf · RADinf

PVarIT · RADIT
· 100 (5)

By relating both infrastructure and IT power variability, the metric indicates
how well infrastructure power adapts to IT power variations. The result is a
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percentage and may even rise above 100 % as the metric bases solely on relative
values. Target would be to have a rating of 100 %, which would suggest to have
a perfect adaptability of infrastructure to IT inside the data center. Values less
than 100 % mean the infrastructure power only adapts to a certain percentage
to IT power. If the rating is above 100 %, the infrastructure adapts well but may
operate inefficiently at certain times.

As the IPA metric delivers information solely about adaptability, the IT
power variability should always be appended in the way IPA[%]@PVar, e.g.
63%@0.24. If power variability is not known, the IPA rating may not be distinct.
For instance, there is a difference in the cases that a very good adaptability is
measured either at a high or at a low power variability. In the first case the
infrastructure is definitely adaptive as variability was measured and rated within
the metric. In the second case there were no information about how infrastructure
power behaves at varying IT power, as the IT power only marginally changed.
Naturally, the adaptability is optimal if both IT power and infrastructure power
are constant. Thus, the IT power variability has to be included in the final result
to get an idea of the measured power data upon which the result bases.

4 Integration in LDEE Metric

The main purpose of IPA and PVar is to get an overview over dynamic power
behavior inside a data center alongside to the general power relation between
IT and infrastructure given by the PUE. However, IPA and PVar in conjunction
with PUE may also be embedded in the load dependent energy efficiency (LDEE)
metric for data centers, where it will serve as a proxy for missing infrastructure
power models.

4.1 Load Dependent Energy Efficiency

The LDEE metric for data centers introduced in [16] bases on performance and
power models for data center IT and infrastructure components. This approach
has several advantages: (1) By using predefined models no measurements are
necessary and efficiency can be ascertained for arbitrary data center workload.
(2) Inefficiencies can not only be recognized but also the sources can be identified
by analyzing the component models. (3) In contrast to common metrics like PUE
it enables a fair comparison of data center energy efficiency through abstraction
from real measurements. (4) Possible changes in data center configurations can
be explored by substituting/adding the appropriate component models.

The LDEE metric, shown in (6), is designed as a function on the data center
hardware configuration. It needs data center workload and outside temperature
as inputs to estimate the corresponding energy efficiency. The inputs are prop-
agated to the combined data center performance /power models, which are also
either represented as functions. The models then return data center performance
and power, whose relation represents data center energy efficiency.

LDEE (load ,T ) =
perfDC (load)

powerDC (load ,T )
(6)
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The combined performance and power models are organized similarly. At
first, a load and power management abstracting behavioral model (basing on
Schroeder et al. [18]) estimates the workload distribution in the data center.
The diverse load levels then are input to the performance and power component
models. In the combined data center performance model, the maximum perfor-
mance of IT components will be scaled with the load. After that, the normalized
performance of server, storage, and network is aggregated in a weighted manner.
In the combined power model, depicted in Fig. 2, the load has a direct influence
on the IT component power, which will be estimated with the specific power
models. The UPS power model then computes the complete IT power, which is
the input for the climate control model as IT power is nearly completely con-
verted to thermal power, which has to be handled by climate control. IT and
climate power then is added to data center power.

Fig. 2. Load dependent DC power model

4.2 Proxy for Infrastructure Power Models

LDEE bases strongly on power models for all relevant data center components.
However, particularly for cooling components the availability of suitable power
models is still low. Also, many power models have to be characterized for the
particular hardware which means input and output data (cooling capacity and
electrical power) has to be measured. Dependencies between cooling components
complicate the building of accurate models. In the end, if there are no pre-
characterized power models for the specific cooling hardware, it is easier and
faster to use metrics as a proxy for power models.

A suitable choice for proxy metrics is the combination of PUE, PVar, and
IPA. A big advantage is the fact, that the only data traces needed are the
complete IT and infrastructure power. As the PUE is very common by now, a lot
of data centers already measure the necessary data, so no further measurement
equipment would be needed.
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The LDEE metric with proxy infrastructure metrics utilizes an alternate
computation of data center power. Instead of the function powerDC (load ,T )
both the IT pIT () and infrastructure power pinf () are estimated separately. The
resulting LDEE metric for load l ∈ R∧0 ≤ l ≤ 1 and lPUE is shown in following
(7) till (10).

LDEE (l , lPUE ) =
perfDC (l)

pIT (l) + pinf (l , lPUE )
(7)

pIT (l) = Psrv + Psto + Pnet (8)
pinf (l , lPUE ) = pIT (lPUE ) · (PUE − 1 ) · f (l , lPUE ) (9)

f (l , lPUE ) = 1 − IPA
100

(
1 − pIT (l)

pIT (lPUE )

)
(10)

While l is the data center load for which the energy efficiency is computed,
lPUE represents the (average) load level at which the PUE was determined. The
IT power pIT consists of the load dependent server, storage, and network power
relating to the IT power model outputs in Fig. 2. The infrastructure power pinf
is composed of a constant and a dynamic part. The constant power is computed
with help of the PUE and IT power at the corresponding load level. The dynamic
load dependent part results from multiplication with a factor f , which is the
quotient of current IT power to reference (PUE) IT power adjusted by the IPA.

5 Evaluation

In this section the IPA @ PVar metric will be applied on different data center
power sets. These sets are assigned to two categories. (1) Manually created data
sets representing extremes of IT and infrastructure power variability and adapt-
ability. (2) Generated realistic power traces by utilizing real work loads on a
container data center (CDC) power model. As The Green Grid’s proposed PUE
scalability metric has the same target as the IPA, results of both metrics will be
compared and analyzed.

5.1 PUE Scalability

The Green Grid’s PUE scalability is seen as an addition to PUE and has the
aim to inform data center operators about the infrastructure’s ability to scale
the total facility power to accommodate IT power changes [8]. Similarly to the
IPA metric it makes use of the power traces measured for PUE calculation and
analyzes them in a statistical manner.

According to Azevedo et al. [8] PUE scalability is defined by the relation of
the slope of actual PUE scalability (mActual) to the slope of proportional PUE
scalability (mean PUE/mPUE), cf. (11).

PUEscalability =
mActual

mPUE
100% (11)
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mActual is determined by a linear approximation of the IT (PIT ) to total
facility power (PDC) relation in the form PDC = mActualPIT + b using the least
squares method. mPUE is total facility energy usage divided by IT energy usage
for a measuring period.

5.2 Extremes of IT/Infrastructure Dependency

The first data sets represent three cases: (a) A fully adaptive data center infras-
tructure, (b) a constant infrastructure power, and (c) a disproportional infras-
tructure power behaviour. The data is manually created to verify IPA @ PVar
and PUE scalability results for these extreme cases. The corresponding results
are summarized in Table 1. For the PVar metric a segment size (cf. Sect. 3.1) of
five time points has been chosen.

The infrastructure power in data set A (DSA), shown in Fig. 3, is half the IT
power for every time point, resulting in a constant PUE. Thus, infrastructure is
fully adaptive. The metrics behave as expected as both come to an adaptability
rating of 100 %.

Fig. 3. DSA: Fully adap-
tive infrastructure power
behavior

Fig. 4. DSB: Constant
infrastructure power (no
adaptability)

Fig. 5. DSC: Disproportio-
nate infrastructure power
behavior

The data set B (DSB, Fig. 4) shows a constant infrastructure power, which
implies that the infrastructure is not adaptive at all. According to this, the met-
rics’ results should be 0 %. However, only the IPA represents this case correctly.
The PUE scalability returns still a result of 70 %. The reason for this can be
found in the definition, where IT power is related to total facility power instead
of infrastructure power. And due to the fact that DC power always varies with
IT power, PUE scalability may even at constant infrastructure power be high.
The result is not influenced by infrastructure power scalability, but it is by the
absolute values.

Data set C (DSC, Fig. 5) represents the case of a disproportionate infras-
tructure power behavior, i.e. infrastructure power scales (relatively) better than
IT power. A possible reason for such behavior could be the usage of plenty
fans, whose power demands rise quadratically with fan speed (cooling demand).
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The IPA metric covers this case with ratings above 100 %. This means, infras-
tructure is highly adaptive. However, there are also operational states in which
the infrastructure runs inefficient, otherwise infrastructure power could not scale
this well. The higher the result, the higher these inefficiencies are. In contrast,
PUE scalability is limited to 100 % by definition. Although the metric would
represent disproportionality correctly (applying the metric for DSC results in
131.6 %), values above 100 % are according to [8] defined as invalid as they
would indicate an inadequate number of samples.

5.3 Realistic Data Center Operation

The second evaluation will analyze the results of IPA @ PVar and PUE scalability
for data generated by a data center simulation tool [6]. This simulation tool
consists of two major components: A load and power management of virtual
machines (VMs) and servers and a combined data center power model. The
load and power management bases on the work by Hoyer et al. [17] and has
been implemented and extended in the research project AC4DC [6]. The load
and power management is connected to a data center power model, which is
composed of power models for IT and infrastructure components, as shown in
Fig. 2.

For this evaluation a CDC with six 19” racks has been modeled, configured,
and characterized. Each rack was assembled with 21 Hewlett-Packard ProLiant
DL380 G6 servers with two Intel Xeon X5670 6-core CPUs and 96GB RAM (126
servers in total). For the power supply a UPS with two modules of each 20kW
power capacity was used and the cooling chain with a cooling capacity of 60kW
consisted of six electronically commutated (EC) fans in the raised floor, a free
cooling system, and pumps. The single evaluation runs have been performed with
different sets of virtual machines, whose utilization profiles have been measured
in productive operation. These utilization profiles were the input data to the
load and power management, which determined the dynamic allocation of VMs
to servers and managed actions like VM migrations and server power downs.
With help of the power models the resulting IT, infrastructure, and total facility
power could be estimated. The simulation time was one week (10080 min/time
points).

By using the simulation tool, four data sets with different VM sets and there-
fore different characteristics have been generated. Then, the IPA and PUE scal-
ability metrics have been applied to the generated power traces. The results are
presented in Table 1.

The first simulation was performed with 900 VMs with partially matching
utilization profiles (low/high utilization at same time points) generating the
data set D (DSD, Fig. 6). The corresponding ratings of IPA and PUE scalability
are quite divergent. While PUE scalability hypothesizes that the data center
infrastructure power scales very well at this work loads (86 %), it is much less
adaptive according to IPA (27 %). As already seen with DSB, the mismatch is
caused by the PUE scalability, which focuses rather on absolute infrastructure
power than its variability or scalability.
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Table 1. Metric results

Metric DSA DSB DSC DSD DSE DSF DSG

meanPUE 1.50 1.44 1.58 1.22 1.12 1.19 1.10

PUEscalability [%] 100 69.5 100 86.4 94.5 88.6 98.6

IPA [%] 100 0 196.3 27.0 56.0 29.1 85.6

PVarIT 0.17 0.24 0.14 0.34 0.35 0.13 0.19

PVarInf 0.17 0 0.26 0.11 0.22 0.03 0.17

Fig. 6. DSD: CDC, 126 servers, 900 VMs Fig. 7. DSE: CDC, 126 servers, 1300 VMs

Data set E (DSE, Fig. 7) bases on a simulation with 1300 VMs with simi-
lar utilization profiles, so that the servers may be fully utilized at times. This
results for both metrics in a higher scalability rating: IPA with 56 % and PUE
scalability with 95 %. Although the same data center components and the same
configuration has been used, the infrastructure behaved more adaptive. Thus,
the influence of the work loads in a data center on (energy) efficiency becomes
evident. With higher utilization and therefore IT power load, the static part of
infrastructure power decreases in relation to the dynamic part. This is a good
example for the necessity of the LDEE metric (cf. Sect. 4), which can rate a data
center for all work load levels or operational states, respectively.

In data set F (DSF, Fig. 8) the power traces have been generated by sim-
ulating the load and power management with 1000 VMs with highly diverse
utilization profiles. Consequently, periodical peaks are averaged out so that the
IT power load has a small range with low variability (PVar of 0.13). Similar to
data set E the divergence between IPA and PUE scalability is very high. How-
ever, due to the low IT power variability, results are not significant, as there was
no data for any conclusions on adaptability.

For the generation of data set G (DSG, Fig. 9) the CDC configuration in the
simulation has been changed to fully utilize the cooling chain, i.e. to generate a
cooling demand of up to 60kW. To achieve this, the server type has been changed
to six NEC Corporation Express5800/A1080a-E per rack (36 servers in total),
each containing eight Intel Xeon X7560 8-core CPUs and 768GB RAM. Due to
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Fig. 8. DSF: CDC, 126 serv., 1000 VMs Fig. 9. DSG: CDC, 36 serv., 1100 VMs

the higher maximum power demand of this server type, another UPS with 40kW
capacity has been added. By utilizing the servers with 1100 VMs with matching
utilization profiles, IT power ranges from 20kW up to 60kW at times. Compared
to the other data sets, in this case IPA delivers a relatively high infrastructure
adaptability rating (86 %). The reason is analog to data set E: The relative static
overhead of infrastructure power decreases with higher absolute power values.

5.4 Proxy for Power Models

In another evaluation we assessed the practicability of IPA as proxy for infra-
structure power models in the LDEE metric, cf. Sect. 4. Therefore, we used (9)
and (10) to estimate the infrastructure power pinf of a CDC and compared it
to the power traces generated by the infrastructure power models. Input data
were the generated IT power traces of the CDC model (DSD to DSG) and the
corresponding IT load traces as well as IPA ratings. Additionally, the average
load in the time span of PUE computation (lPUE) for each data set was used.

With given IT load and power the corresponding infrastructure power for
every time point has been computed and subsequently compared to the generated
infrastructure power. The error of computed to generated IT power for each data
set is shown in Table 2. With a mean squared relative error of 1.1 % or less for
every data set, the proxy is a good option for estimating dynamic infrastructure
power in data centers without a complete infrastructure power model.

Table 2. Errors using IPA as proxy for infrastructure power models in LDEE

Error DSD DSE DSF DSG

Mean squared absolute error [kW] 0.007 0.016 0.000 0.029

Mean squared relative error [%] 0.8 1.1 0.04 1.1

Maximum absolute error [kW] 0.023 0.079 0.001 0.250

Maximum relative error [%] 1.9 4.1 0.1 4.5
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However, if infrastructure models are available, they should always be pre-
ferred. By using proxies all advantages of LDEE, listed in Sect. 4.1, will be lost.

6 Conclusion

Power usage effectiveness, the most common energy efficiency metric for data
centers, only considers absolute (static) power overhead by infrastructure com-
ponents. In the absence of viable alternatives for rating the dynamic power
behavior, we proposed two new metrics with focus on the dynamics in data cen-
ter power which can be seen as an addition to the PUE, as they base on the
same input data. The power variability (PVar) represents frequency and relative
height of changes in power demand (IT, infrastructure, facility). The infrastruc-
ture power adaptability (IPA) relates IT to infrastructure power variations to
ascertain the ability of infrastructure components to adapt to changes in IT
operation regarding power demand.

Compared to the PUE scalability metric, which has the same target as IPA
@ PVar, the combination of our proposed metrics is more reliable and robust.
The evaluation showed that PUE scalability cannot represent certain cases like
constant infrastructure power or disproportionate behavior correctly. On the
contrary, IPA @ PVar provides proper results on a percentage scale from 0%
for constant infrastructure power to 100% for perfect adaptability and values
above 100% for disproportionate scaling. Another analysis applying the metrics
on power traces of a CDC confirmed these findings.

As a further use case IPA @ PVar can be used as a proxy for missing infras-
tructure power models in the LDEE metric. Compared to power model data the
proxy has a mean squared relative error of about 1 % (4.5 % max), which makes it
a suitable alternative. The only requirements are continuous PUE measurements
and logging of data center utilization.
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