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Chapter 1 

ESSENTIAL ISSUES IN SYSTEM-ON-A-CHIP 
DESIGN 
 

Youn-Long Lin 
Department of Computer Science, National Tsing Hua University, Hsin-Chu, TAIWAN 

Abstract: Due to advance in semiconductor manufacturing technology, integration of 
whole electronics system on a single chip is feasible. Starting with baseline 
CMOS logic, semiconductor wafer manufacturers have gradually added to 
their portfolio embedded memory (SRAM, OPT, Flash), mixed signal devices, 
RF devices, and even MEMS.  Because it offers many advantages over 
traditional multiple-chip solutions, system-on-a-chip (SOC) has drawn great 
attention from both academia and industry. We expect an SOC solution to be 
smaller, less expense, more energy efficient, more reliable, etc. However, 
designing an SOC for successful mass production is much more complicated 
than that of traditional simpler logic, memory, or analog chips. This chapter 
outlines some important issues that face an SOC design team and give brief 
introduction to each chapter of this book  

` 

Keywords:  System-On-a-Chip, SOC Design Foundry, Multimedia SOC 

1. INTRODUCTION 

Since the integrated circuit was invented in 1958, the number of devices that 
can be massively-produced on a chip has been increased following the 
Moore’s Law, that is, the number of transistors on a chip doubles every  
18 months or so. In the old days when a chip contains only smaller number 
of transistors, an electronics system consists of a large number of chips 
housed in many printed-circuit boards which in turn are put into a cabinet. 
Hence, we can call them system-on-boards. Nowadays, semiconductor 

S.Y.-L . Lin (ed.), Essential Issues in SOC Design, 1–5.
© 2006 Springer.
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manufacturing process can give us a billion-transistor chip for a few US 
dollars. This makes possible applications that were previously either 
impossible or unaffordable. 

Ever increasing computational demand from the application side and very 
deep submicron semiconductor processing from the technology side together 
make system-on-chip (SOC) reality and necessary.  

To design an SOC for successful mass production, we have to coupe with 
many technical and management issues. Here we focus on the technical 
aspect. 

Let’s begin with what constitute an SOC. Like a typical electronics 
system, an SOC consists of processing elements, I/O devices, storage 
elements and interconnection structure linking all of them together. 

Processing elements could be processors that run embedded software or 
functional-specific hardware accelerators. There are two popular processor 
categories: microprocessor for control and management function, and digital 
signal processor (DSP) for signal processing-specific function. Recently, 
there are academic and industrial efforts in the so called Application-
Specific Instruction set Processor (ASIP), which allows instruction set 
extension by the users according to the target applications. It is quite 
common that multiple types and multiple instances of processors are used in 
a single SOC project. For example, in the TI-OMAP SOC, an ARM 
microprocessor and a TI DSP core co-exist. 

When a software approach cannot deliver adequate performance for an 
application, we turn to dedicated hardware blocks. Typical accelerators 
include JPEG image Codec, MPEG-4 Video Codec, Viterbi Decoder, Turbo 
Code Decoder, AES Encryption/Decryption engines, etc. 

To communicate with outside, an SOC usually consists of many types of 
standard I/O devices. Commonly found I/O IPs include Ethernet MAC and 
Phy, USB1.1/2.0 Device Controller and Phy, other high-speed serial links 
such as LVDS (Low Voltage Differential Signaling), Audio/Video Output, 
Memory Controller, etc. 

Both internal and external memories are important to SOC. A typical SOC 
utilizes hundreds of internal memory blocks. They may be SRAM, ROM, 
Flash or OTP (One-Time Programmable). Their configurations in terms of 
number of words, word length, number of read/write access ports, and access 
speed are all tailor made to fit the applications. 

When a memory block is too large to be effectively made on chip, we 
usually put it off-chip and integrate it with the SOC using a system-in-
package (SiP) solution. Commonly used external memory includes 
DRAM and Non-Volatile Flash Memory. Very often we will find an SiP 
packed in an SDRAM or DDR-II die. Therefore, the SOC has to include 
memory controller for SDRAM, DDR, SD Card, MMC Card, Compact 
Flash, etc. 
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With all components available, we need a communication structure to 
put them all together. This is called on-chip-communication or on-chip-
bus. Just like the PCI-bus of the PC system allows easy plug-and-play of 
memory cards, graphics cards, etc, the SOC community has proposed 
several on-chip-bus standards. One of the most popular bus architecture 
is the Advanced Microprocessor Bus Architecture (AMBA) by  
ARM.  

As on-chip communication traffic exponentially increases and deep 
submicron effect makes transferring signals difficult in single cycle, 
researchers have proposed Network-on-Chip (NoC) communication 
architecture to cope with the problem. An NoC brings the computer 
networking technology (i.e., packet routing) to the SOC in order to simplify 
the design and management of communication among IPs in an SOC. 

To design a complex SOC, we have to deal with the following essential 
issues: (1) Availability of components, (2) System integration and 
verification, and (3) Physical implementation. 

Components used in an SOC are also called silicon intellectual property 
(IP). The SOC development team has to decide on which IP to use or design. 
There are many IP vendors each serving some segments of the IP market. 
For processor IP, software compatibility must be taken into account. For 
memory and I/O IPs, whether they have mass-production record is the main 
concern. 

In case there are not suitable, ready to use IPs, we have to modify an 
existing one or develop a new one. Longer turn-around time, higher risk, and 
greater resource needs must be taken into account. 

After we put all components together into a system, we have to verify its 
functional and timing correctness. In the old days when the chip was small, 
we usually relied on simulation tools for verification. However, for complex 
SOC which have high gate count and longer simulation pattern, simulation 
alone cannot give us sufficient confidence level. Moreover, as processors are 
integrated, we have to perform software/hardware co-verification down to 
cycle-accurate level.  To cope with this challenge, emulation based 
prototyping is needed. 

Physical implementation of SOC is also more difficult than that of traditional 
ASIC. Complex SOCs are usually targeted towards advanced nanometer 
technology (90nm and below). As feature size shrinks, process variation 
becomes relatively significant. Variation-aware analysis and optimization of 
timing and power consumption must be introduced into the implementation 
flow. Design for manufacturability consideration becomes a must. 

In the case where system-in-package is chosen, chip and package co-
design is inevitable.  

After an SOC is tape-out, the design team should work closely with the 
testing team and the processing engineers to enhance the yield. 
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2. BOOK OVERVIEW 

This book brings together experts from different research areas to present 
their knowledge in various topics related to SOC design. We hope that they 
have pointed to possible solutions and research directions for those who are 
either designing SOCs or are considering entering the field. 

Chapter 2 describes “An SOC Controller for Digital Still Camera.” This is 
a real industrial case. The authors present their experience in defining 
specification with system house, taking IP from third parties, integrating the 
SOC and, finally, ramping up for mass production of millions of units. 

Chapter 3 presents “Multimedia IP Development – Image and Video 
Codec.” The authors describe their academic experience in developing JPEG, 
JPEG2000 and MPEG4 codec IPs that find their ways into industrial 
applications. 

Chapter 4 deals with “SOC Memory System Design.” Memory will 
account for majority of silicon area in most SOCs. There is trade-off 
between memory usage and memory traffic. Careful algorithm and 
architecture designs will gain significantly in terms of area, performance and 
power consumption. 

Chapter 5 describes “Embedded Software.” Contemporary SOCs all 
contain one or more microprocessors and DSPs. Both system software and 
application software are important. Unlike traditional PC-based software, 
embedded software must have small foot-print and consume less power. 
Moreover, their interaction with hardware devices and hardware accelerators 
is more closely coupled. 

Chapter 6 presents “Energy Management Techniques for SOC Design.” 
Since most SOC solutions are for portable devices, which have limited 
battery life, power efficiency is a major concern. It is well known that the 
power of a circuit is linearly proportional to the frequency and quadratic 
proportional to the supply voltage. Depending on the characteristics of 
applications, we can run circuits at various clock rates to just meet the 
deadline. Consequently, slow circuit needs only small supply voltage. 
Dynamically scheduling the frequency and voltage will result in significant 
energy saving. 

Chapter 7 describes “SOC Prototyping and Verification.” It takes a long 
time and huge costs to get a complex SOC manufactured. We cannot afford 
to make any mistakes during the design process. Complete verification of 
functionality and timing is a must for any SOC project. To speed up the 
verification process, prototyping is a popular approach. This chapter presents 
an industrial strength verification strategy. 

Chapter 8 deals with “SOC Testing and Design for Testability.” Testing is 
the key to a high quality product. In a complex SOC, we should be able to 
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test every IP in the shortest possible test application time. Therefore, test 
integration and scheduling are important issues. Moreover, design for 
testability enhancement is also a common practice. For example, memory 
BIST has to be inserted into every memory macros. 

Chapter 9 describes “Physical Design for SOC.” In the nanometer 
semiconductor manufacturing process, chip complexity and process 
variation together make physical implementation challenging. High 
complexity calls for hierarchical divide-and-conquer approach, while 
process variation calls for statistical-based analysis and optimization. A chip 
should be laid out such that it is manufacturable (i.e., high yield). Therefore, 
physical design should be aware of a mask making process and the 
manufacturing process. 
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Chapter 2 

A  SOC CONTROLLER  
FOR DIGITAL STILL CAMERA 
 

Jiing-Yuang Lin,* Chien-Liang Chen,* and Youn-Long Lin** 
*Global UniChip Corp., Hsin-Chu, TAIWAN  

 ** Department of Computer Science, National Tsing Hua University, Hsin-Chu, TAIWAN 

Abstract: We present our experience of designing a single-chip multimedia SOC for 
advanced digital still camera from specification all the way to mass production. 
The process involves collaboration with camera system designer, IP vendors, 
EDA vendors, silicon wafer foundry, package & testing houses, and camera 
maker. We also co-work with academic research groups to develop a JPEG 
codec IP and memory BIST and SOC testing methodology. In this presentation, 
we cover the problems encountered, our solutions, and lessons learned. This 
case study shows the feasibility of expanding semiconductor wafer foundry 
service to electronics manufacturing service (EMS) providers who in general 
have very limited IC design capability/experience. We also point out possible 
directions for future research 

Keywords: System-On-a-Chip, SOC Design Foundry, Multimedia SOC, Silicon 
Intellectual Property, Design for Manufacturability 

1. INTRODUCTION 

Ever increasing computational demand from the application side and very 
deep submicron semiconductor processing from the technology side together 
make system-on-chip (SOC) reality and necessary. Makers of such 
electronics systems as PDA, cellular phone handsets, digital still camera, 
portal music player, etc., need Application-Specific Integrated Circuits 
(ASIC) solutions in order to differentiate themselves from the competition, 

Lin (ed.), Essential Issues in SOC Design, 7–17.
© 2006 Springer.

S.Y.-L .
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to increase product value, and to reduce cost. On the other hand, 
semiconductor wafer foundry has to expand its service scope from wafer 
manufacturing to mask tooling, cell & I/O library, memory compiler, and up 
to silicon intellectual properties (IP) such as Phase-Lock Loop (PLL), 
Digital-to-Analog Converter (DAC), and Analog-to-Digital Converter 
(ADC). Therefore, there is a need to bridge the gap between electronic 
system houses and wafer foundry. We call such company SOC design 
service provider. 

An SOC design service provider takes as its inputs from the electronics 
system house a specification or partially-designed prototype and delivers to its 
customer layout database in GDSII format ready for manufacturing as depicted 
in Figure 1. It is also called a fabless ASIC vendor if packaged and tested chips 
are delivered instead. Close collaboration is needed among all parties in order to 
successfully bring a competitive product to the market in time. 

 

Figure 1. SOC design foundry 

System houses are also called Electronics Manufacturing Service (EMS) 
as they do design and manufacture but they do not sell products under their 
own brands. Instead, their customers are those brand-name companies. 
Presently, almost all IT products including PC, Notebook, cellular phone, 
PDA, digital camera, music player, etc., are all operated under this business 
model. EMS usually does not have IC design capability. Instead, they buy 
chips from IC design houses and differentiate from one another in system 
board level design and software. As chip integration level increase, the room 
for differentiation in the board level shrinks. Therefore, it is natural for them 
to search for their own chip solutions (ASIC). As EMS usually command 
huge volume in the order of tens of millions units per year, it is reasonable 
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and economically feasible for spinning their own chips. However, chip 
design is not their core business. Hence, partnership with a chip design 
service provider becomes essential to an EMS’s competitiveness. 

In the semiconductor manufacturing side, the industry is divided into three 
segments: wafer foundry, packaging and testing houses. In the past, a 
semiconductor wafer foundry takes GDSII layout database from its customer 
and delivers manufactured wafers. As technology advances and design 
complexity grows, more and more customers cannot afford expensive 
infrastructure and investment required to produce GDSII in house. Wafer 
foundry can expand its reach of service to those who cannot submit GDSII 
by teaming up with an SOC design service provider. 

For package and testing houses, it is beneficial to co-work with a design 
service provider too. It is already well known that design for testability is 
commonly accepted practice. Presently, heterogeneous integration of logic, 
memory, and radio frequency (RF) devices, makes testing and diagnosis 
more complicated. Therefore, it is essential to involve testing houses in an 
SOC design project. As package technology advances, substrate design, pin-
to-pad routing, thermal aware package design, layout-package co-design all 
become very important.  Moreover, system-in-a-package (SiP) is gaining 
momentum. It is very common to pack an SOC together with a DRAM 
and/or a Flash in a same package. Therefore, cooperation between SOC 
design service foundry and packaging service providers is also essential. 

One of the promising approaches to cope with high design complexity is 
reusing existing design from previous projects or external sources. Such 
reusable object is called silicon intellectual property (IP). There are many IP 
vendors specializing in microprocessor (i.e., ARM, MIPS, Tensilica), digital 
signal processor (DSP), embedded memory (SRAM, 1T-RAM, ROM 
compilers), standard interface (USB, Ethernet), analog blocks (PLL, ADC, 
DAC), accelerators (JPEG, MPEG), etc. We have also seen organization that 
promotes inter-operability of IPs (e.g., OCP-IP). Usually, it is a tedious 
process for an SOC project manager to put together all appropriate IPs 
because there are many uncertainty and ambiguity in diverse IP from diverse 
sources. It is beneficial to have a one-stop-shopping service such as an SOC 
design service foundry, which has multiple experiences with various IP. 
Therefore, productivity is increased and risk reduced. 

Digital still camera (DSC) is one of the fastest growing consumer 
electronics products over the past few years. Due to the success of the JPEG 
image compression standard, advance in CMOS image sensing and 
availability of high capacity yet low cost flash memory cards, DSC has 
virtually taken over the traditional film-based camera in just a few years. 
Moreover, DSC also penetrates quickly into cellular phone sets, which have 
become the convergent target of PDA, MP3 audio player, etc. Ever 
increasing picture resolution and advanced features such as video clip 
recording requires ultra low power and small form factor integration of all 
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needed functionality. Therefore, an SOC solution is very attractive to the 
camera makers. 

We describe our experience with designing an SOC for DSC controller 
applications including IP preparation, system integration and verification, 
chip implementation, manufacturing, failure analysis and yield enhancement 
during million-units mass production. In Section 2, we first give the chip 
specification defined by the camera system maker. Then, we list all the 
intellectual properties (IP) used and difficulty encountered. The integration 
and verification of the whole system in a chip is then described. Section 3 
presents our chip implementation flow from RTL synthesis down to GDSII 
layout ready for manufacturing. Then, we describe mass-production-related 
issues including yield ramp-up and failure analysis. Section 4 describes 
recent development based on the presented project. Finally, we summarize 
this chapter in Section 5.  

2. A DIGITAL STILL CAMERA SOC 

Our objective was to design a single chip controller for 2-million-pixel and 
3-million-pixel grade DSC for mass production of 3.5 million units in a span 
of about 18 months in year 2002 and 2003. In order to satisfy required 
functionality at a very aggressive cost set to help proliferating the entry-level 
high-resolution camera, the SOC was specified to include the following IPs: 

 A microprocessor capable of both traditional 32-bit RISC and DSP 
functionality 

 A hardwired JPEG encoding and decoding accelerator 
 A hardwired custom logic for color image processing 
 A USB 1.1. device controller with min-host function and its 

transceiver PHY 
 A dual mode SD/MMC flash memory card host interface 
 An SDRAM controller interface 
 An LCD interface controller for view-finder 
 An NTSC/PAL TV signal encoder for viewing photos on TV 
 A 10-bit Video DAC for TV 
 An 8-bit LCD DAC 
 Two PLLs for clock sources 
 30 SRAM macros for internal buffering 

The IP cores come from multiple sources for different reasons. Each of 
them posts different challenges to the project team. To help their 
development, to verify the functionality of each individual IP as well as 
customize some of the IP for the project, we built an SOC platform as 
depicted in Figure 2.  In the platform, some IPs are existing ICs, some are 
soft cores that can be configured and programmed into the FPGA. All IPs 
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are interconnected together with an AMBA-AHB/APB on-chip bus system. 
Because most of the IPs on the platform have been proven many times in 
previous projects, for each new SOC project we only have to concentrate on 
verifying newly added or customized IPs. Moreover, whole system 
verification is also easy due to the readiness of system-level verification 
bench. This platform approach greatly increase our productivity of IP 
development, IP qualification, and system verification. 

 

Figure 2. SOC and IP development platform 

The hybrid RISC/DSP implements both a typical 32-bit RISC instruction 
set and a DSP-specific instruction set in a unified instruction set architecture 
to simplify the programming interface. It was not an IP at all. Actually it was 
a stand alone processor chip used in the previous generations of cameras. For 
software compatibility concern, we have no option but to replace it with any 
other IP-style microprocessor such as ARM or MIPS cores. To meet high 
speed requirement (133MHz @ 0.25um), we have to make it a hard core 
before integration with other parts of the SOC. To integrate it into the SOC, 
we have to collaborate with the original vendor to create synthesis, 
simulation and test models in addition to hardening the processor into a 
high-speed hard macro. 

The USB1.1 device controller and the SD card (secure digital flash 
memory card) controller are supplied by a third party vendor. They are in 
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VHDL RTL instead of more locally popular Verilog. Therefore, mixed-
language simulation environment has to be set up. Only FPGA prototyping 
was performed at the time of SOC integration. Moreover, the synthesis 
scripts and testbenches were less than ideal. Therefore, close intensive co-
work/co-debugging was carried remotely.   

To meet processing speed requirement of 3M pixels @ 0.1Sec and long 
battery life, the JPEG codec function has been implemented in a hardware 
accelerator. We collaborated with a university research laboratory. The effort 
we spent was in bridging the gap between university prototype and industrial 
strength design. Also there was discrepancy among the interpretation of the 
JPEG standard by the system house and the IP developers. Therefore, we 
added a wrapper around it as depicted in Figure 3. Extensive regressive test 
of more than 1,000 pictures from different origins was conducted for every 
change made. 

 

Figure 3. Wrapping a JPEG codec for the SOC platform 

There is a block of custom logic for color image processing. Its function 
includes auto focusing, auto white-balancing, color image quality 
enhancement, etc. It was supplied by the camera maker in Verilog RTL. 

There were more than 30 SRAM macros used in the SOC. We have 
jointly developed a memory BIST (Built-In Self Test) generator, again 
with a university laboratory. The generated BIST circuit performs testing 
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of 100% coverage without patterns from the tester machines. Therefore, 
testing cost is greatly reduced during production. 

After all IP models are made ready, whole system integration and 
verification is an even bigger challenge. We encountered the problem of 
in-consistent and in-sufficient testbenches. Therefore, developing testbench 
as the project goes is very important. 

Our verification set up is a mixture of simulation and FPGA/chip co-
emulation.  

3. CHIP IMPLEMENTATION 

Figure 4 depicts our chip implementation flow from RTL to GDSII ready 
for tape-out. The DSC controller consists of 240K gates excluding 
memory macros. After whole system verification with hybrid 
emulation/simulation, it was implemented in TSMC 0.25um 1P5M 
CMOS process and packed in TFBGA256 package. It took three months 
for a team of six engineers to complete the Netlist-to-GDSII 
implementation. During the course, there are 3 spec changes involving 
re-synthessi and FF modification, 10 netlist changes involving ECO of 
combinational logic, 3 ECO changes to fix setup/hold time violation, and 
13 versions of pin assignments to simplify the substrate design. 

There are 30 embedded memory macros in the controller. We use an in-
house memory BIST circuit generator to insert one common BIST 
controller, multiple sequencers, and 30 pattern generators. The MBIST is 
from collaboration between us and a university research laboratory. After 
scan insertion, the fault coverage was 93%. 

The physical design of the chip was done with timing-driven placement 
and routing, physical synthesis, formal verification and STA QoR check. 

During chip implementation, we encountered several problems:  

 During the course, there are 3 spec changes involving re-synthessi and 
FF modification, 10 netlist changes involving ECO of combinational 
logic, 3 ECO changes to fix setup/hold time violation, and 13 versions 
of pin assignments. 

 There existed inconsistency between simulators/versions among 
customer,  IP  vendors  and  ourselve.  The  customer  used  PC-based 
Verilog/Modelsim while we used NC-Verilog. This lead to extra twist 
during ASIC sign-off. 

 IP quality is less than ideal. We have to clean up many DRC/LVS 
violation in the database provided by the IP vendors. 

 The USB IP was delivered in FPGA-targeted RTL. No robust synthesis  
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Figure 4. RTL to GDSII design flow 

script was available and the first RTL level simulation was failed. We 
had to co-work with the IP vendor over 10 versions of RTL code 
modification or synthesis constraint updates. 

 Because there is no automation tool available, we manually performed 
many versions of pin assignments to reduce the number of substrate 
layers from four to two resulting in packaging cost saving. 

After overcoming all of the above problems, we were able to tape-out 
on time. Figure 5 shows the layout image of the chip. We achieved the 
first silicon work. 

During mass production, manufacturing tests uncovered that the yield 
killer (5% loss) was in the insufficient driving strength of an output 
buffer in the CPU. The chip also went through reliability tests including 
ESD performance test, temperature cycle test, high/low temperature 
storage test and humidity/temperature test.  
 The mass production yield was enhanced from 82.7% initially to very 
close to the foundry yield model of 93.4% over a period of 8 months. Our 
measures include optimizing probe card overdrive spec, optimizing 
power relay waiting time, and retargeting Isat and Vth by optimizing poly 
CD in the foundry according to results from corner lot splitting. 
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Figure 5. Layout drawing of the DSC controller SOC 

We have been asked to perform failure analysis on 20 returned chips that 
have pins shorted to GND. After checking substrate delaminating and 
popped-corner using scanning acoustics tomography, we found no 
abnormality.  Finally, by sinking 400mA of current to the corresponding pin 
of a good chip we concluded that the failure was due to a system board bug. 

4. RECENT DEVELOPMENT 

We went on to produce over three million of the chips over 18 months. Our 
system customer was able take about 8% of world-wide market share in the 
2 and 3 million pixels segment during that period. We have also migrated the 
chip from 0.25um process to 0.18um one, achieving 20% saving in die cost. 
The migration was easy because we have been familiar with the design and 
the design flow. 

The project has demonstrated that it is feasible to bridge the gap between 
the need of an electronics system house without IC design capability and the 
production capacity of a semiconductor foundry with an SOC design service 
provider. We have been able to leverage the experience gained and lesson 
learned to serve more customers and more projects such as DVD player, 
cellular phone set, electronics photo display, etc. 
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As both applications and technology become more advanced, we have 
expanded our IP portfolio to include MPEG-4 Encoder/Decoder/Codec, 
USB2.0 Device Controller, USB On-The-Go (OTG), SerDes I/O and 
embedded non-volatile memory such as flash and one-time-programmable 
(OTP). We have also enhanced our EDA flow to be able to simultaneously 
handle dozens of multi-million gate design at 0.13um and 90nm processes. 

Current complex SOC projects require virtual prototyping, signal integrity 
check (crosstalk, electron-migration, dynamic IR drop, de-coupling cell 
insertion), design for manufacturability (intra-die process variation modeling, 
double via, dummy metal insertion), STA sign-off with in-die variation analysis, 
hierarchical DFT and physical implementation, low power solution (multi 
Vt/VDD cell library, gated clock, power down isolation) and flip-chip solution. 

We have extended the development of memory BIST to more complicated 
SOC testing. In an SOC employing multiple IPs, each with test sequence, 
effective integration of all tests with necessary additional circuitry and test 
schedule is very important. 

We have also extended the multimedia IP development from JPEG to 
JPEG2000, MPEG-4 and H.264/AVC standards. Although there are many 
software or ASIP approaches, we focused on pure hardwired approach 
because cost is a very important factor in mass consumer market. Figure 6 
depicts the block diagram of an H.264/AVC decoder. 

 

Figure 6. An H.264/AVC main profile video decoder 
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5. CONCLUSION 

We have presented a new business model called SOC design foundry along 
with a case study of putting together resources and IP from both industry and 
academia, from multiple countries to implement a successful SOC for digital 
still camera all the way to mass production. 

As applications are becoming more demanding and process technology is 
becoming more advanced, we expect to see more and more complex SOC 
integration. We will see advanced video such as H.264/AVC and wireless 
communication function being integrated together. Dealing with more IP 
sources is certainly more complicated but unavoidable. 

A mass-production-proven SOC platform including IP, system, chip 
implementation to GDSII, and production methodologies will be a feasible 
approach to response to the challenge. 
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Chapter 3 

MULTIMEDIA IP DEVELOPMENT 
Image and video codecs 
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Abstract:       Multimedia intellectual property (IP) cores play a critical role in a successful 
multimedia SOC design. This chapter will focus on the design of image and 
video codec IPs, which usually requires lots of computational power. From 
theory to practice and from algorithm to hardware architecture, design 
methodologies toward an optimized architecture and also real design cases will 
be presented. Both top-down system analysis and bottom-up core module 
design are emphasized. Following theoretical discussions of the overall 
scenario, key building blocks of image and video codecs proposed in literature 
are reviewed. Examples will cover motion estimation, discrete cosine 
transform, discrete wavelet transform, and entropy coder. Then, complete 
image and video codec designs are explored. JPEG, JPEG 2000, and 
H.264/AVC are the three case studies. This chapter is intended to provide an 
overview, from theory to practice, on how to design efficient multimedia IPs 

Keywords: image; video; compression, codec; architecture; intellectual property (IP) 

1. INTRODUCTION 

In this chapter, the design issues and methodologies of image and video 
codec IPs are discussed. Driven by cost and performance, system-on-a-chip 
(SoC) is a design trend. Intellectual Property (IP) integration is a must for 
designers to bridge the gap between design productivity and technology 
advances. In the post-PC era, there are more and more multimedia consumer 
products. In a complex multimedia SoC, the development of an optimized 
image/video codec IP is a critical point.  

Digital image/video compression and decompression require many 
computing and bandwidth resources. To cope with the design challenges of 

Lin (ed.), Essential Issues in SOC Design, 19–72.
© 2006 Springer.

S.Y.-L .
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high-specification image and video codecs, dedicated architecture is chosen 
to provide the most efficient implementation. No matter the final integration 
is in the form of a platform-based design with dedicated accelerators in 
module level or a fully hardwired codec system, dedicated hardware does 
efficiently off-load the processor in a complex SoC. 

This chapter is organized as follows. Section 2 is a brief introduction of 
digital image and video coding. Section 3 is a comprehensive discussion 
about the design issues and methodology for the development of a good 
codec IP. In Section 4, some module-level design cases are presented. These 
critical modules are the basic building blocks of a codec system. In Section 5, 
the JPEG [1], JPEG 2000 [2] and H.264/AVC [3] codec designs are 
discussed. Finally, Section 6 summarizes this chapter. 

2. DIGITAL IMAGE AND VIDEO CODING 

2.1 Applications 

We start by talking about applications since it is the application that drives 
the advances of technologies. There are more and more multimedia products 
in our daily life. Consumers continue to look for not only convenient but 
also fancier appliances (Figure 1), such as digital still camera (DSC), digital 
camcorder, multimedia phone, DVD player, digital TV, etc. Digital image 
and video become one of the most attractive features.  

As we continuously pursue higher quality digital image and video, the 
huge amount of digital image and video data become a problem. Unlike  
 

 

Figure 1. Digital image and video applications 
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voice or text data, whose data size is not that large, both the transmission and 
storage of image and video data are big issues since high resolution and high 
quality image and video always result in large data size. To transmit or store 
the uncompressed raw data is wasteful in the view of time and cost. To 
alleviate these problems, image and video compression are important 
enabling technologies for multimedia products. 

Thanks to the advances of IC technologies, modern multimedia products 
can be light, thin, and small. In the old days, a system consists of many chips. 
Nowadays, more functions can be integrated on a single chip. The form 
factor of IC and hence the overall product become smaller. Less cost and 
higher performance are achieved. Successful and on-going examples such as  

 

– DVD chips that integrate the MPEG core, the servo control, and related 
signal processing.  

– DSC chips that integrate the JPEG, the image processing pipeline, and 
the camera control. 

– Multimedia phone chips that integrate the multimedia engine (audio, 
video and graphics), the base-band processor and system control. 

2.2 Image and Video Coding Basics 

The basic concept of image and video compression is redundancy removal. 
The types of redundancy can be classified as spatial, temporal, statistical, and 
visual redundancy. By some mathematical algorithm and human visual system 
(HVS) characteristics, the digital image and video information can be 
manipulated and represented in a more compact way. That is what digital 
image and video coding (compression) does to shrink the data size. 

It will be a long story to talk all the techniques on image and video 
compression. Readers are referred to some other books [4][5][6] that have 
more detailed introduction of image and video coding algorithms and 
standards. This section only provides a brief overview of some basic 
techniques that are more representative. In the following, transform coding, 
quantization, entropy coding, motion estimation (ME) and motion 
compensation (MC) will be briefly introduced. 

2.2.1 Transform coding: Discrete Cosine Transform (DCT) and 
Discrete Wavelet Transform (DWT) 

Transform coding is to transform the image data from the spatial domain to 
the frequency domain. After the transformation, there is an advantage of 
signal energy compaction, which is better for data compression. Also, the 
HVS characteristic of the sensitivity on different frequency components can 
be used for quantization. 
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Transform coding forms the basis of image and video coding standards. 
For image coding standards, JPEG selects DCT [7] as its transformation, and 
JPEG 2000 adopts DWT. For current video coding standards, DCT is the 
mainstream. The DWT is adopted for the temporal filtering in the emerging 
scalable video coding (SVC) standard. 

For an 8 × 8 block x(m,n), where 0 ≦ m, n < 8, the forward and inverse 
2D DCT equations are 
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where 0 ≦ m, n, p, q < 8, α(0) = 1/ 2 , and α(i) = 1 for i ≠0. Figure 2 (a) 
shows the result of a Lena image after 8 × 8 DCT. The Z(0,0) of each block 
is the DC coefficient, whose energy is usually higher. The other 63 
coefficients are AC coefficients, which contain higher frequency information. 
Their values are usually small, and may be quantized to zero at high 
compression level. 

The 2-D DWT is a series of low pass, high pass filtering and subsampling 
in both horizontal and vertical directions. The spatial domain data are 
transformed into the LL (horizontal low pass, vertical low pass), HL 
(horizontal high pass, vertical low pass), LH (horizontal low pass, vertical 
high pass) and HH (horizontal high pass, vertical high pass) sub-band signals  
 

(a) (b) (c)  

Figure 2. Transform coding. (a) original Lena image (b) Lena image after 8 × 8 DCT (c) Lena 
image after two-level DWT 

π  

π
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in the frequency domain. In image coding, Mallat structure is usually 
adopted. That is, the LL sub-bands in each resolution can be further 
decomposed into four sub-bands. Figure 3 shows a 2-level 2-D DWT 
dataflow, and the result of a Lena image after the DWT of two-level dyadic 
decomposition is shown in Figure 2 (b). In JPEG 2000 Part 1, two filters are 
supported. The (5,3) filter is for lossless coding and the (9,7) filter is for 
lossy coding. 

H(z)  2
H(z)  2

G(z)  2

G(z)  2
H(z)  2

G(z)  2 HH

HL

LH

LL

H(z)  2
H(z)  2

G(z)  2

G(z)  2
H(z)  2

G(z)  2 LLHH

LLHL

LLLH

LLLL

horizontal
vertical

horizontal
vertical

Level 1 Level 2  

Figure 3. Two-level 2-D DWT. H(z): low-pass filter, G(z): high-pass filter 

2.2.2 Quantization 

Quantization is the main scheme to control the compression ratio. Lossless 
compression can only achieve limited compression ratio. By quantization, 
the range of compression ratio is widened, and can be adjusted by specifying 
different quantization extent.  

In JPEG, 8×8 quantization matrices are used, and each entry of the 
quantization matrices can be specified by a user. The uniform quantizer of 
JPEG is defined as Zq(m,n) = round( Z(m,n) / Q(m,n) ), where Z(m,n) is the 
DCT coefficients, Q(m,n) is the quantizer step size, and Zq(m,n) is the 
quantized DCT coefficient, normalized by the quantizer step size. The 
dequantization is defined by Zdeq = Zq(m,n) × Q(m,n). For JPEG 2000,  
a specific quantization step can be defined for each subband. In MPEG video 
coding, the quantization step size is chosen by the quantization parameter 
QP defined in standards. In H.264/AVC, 52 different QPs are supported, and 
when the QP increases by one, the required data rate will decrease 
approximately 12.5%. 

Quantization is a lossy operation where some information is selectively 
discarded and cannot be recovered at the decoding side. Therefore, there will 
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be differences between the reconstructed image and the original one. The 
peak signal-to-noise ratio (PSNR) is a common index for objective quality 
evaluation. Quantization is based on rate-distortion model and HVS 
characteristics. Since human eyes are less sensitive to high frequency 
components, the quantization extent of higher frequency parts can be larger. 
In this case, the lost information is less apparent to human eyes.  

2.2.3 Entropy coding: Huffman coding and arithmetic coding 

Statistical redundancy can be removed by entropy coding. It is a lossless 
coding process based on the concept that more frequent symbols can be 
assigned shorter code words, and less frequent ones can be assigned longer 
code words. The average code length of the variable length coded data will 
therefore be shorter than fixed length codes. Huffman coding and arithmetic 
coding are the two main entropy coders used in image and video coding 
standards. 

The implementation complexity of a Huffman coder is less than that of 
an arithmetic coder, while the compression performance of an arithmetic 
coder is usually better than a Huffman coder. In baseline JPEG [8] and 
MPEG-1/-2/-4, the Huffman coding is adopted. In JPEG, user-customized 
Huffman tables are supported, while in video coding, Huffman tables are 
fixed and predefined in the standards. In JPEG 2000 [9] and MPEG-4 Visual 
Texture Coding (VTC) tool, the binary arithmetic coding is adopted. The 
latest H.264/AVC standard supports both Huffman coding and Arithmetic 
coding as its coding tools. In baseline profile, context-based adaptive 
variable length coding (CAVLC) is supported, while in main profile, 
context-based adaptive binary arithmetic coding (CABAC) is adopted. 

2.2.4 Motion Estimation (ME) and Motion Compensation (MC) 

ME and MC are the most important techniques for the inter frame video 
coding to remove the temporal redundancy. They provide tens to hundreds 
more compression ratio compared with intra-only techniques. In a video 
sequence, the successive frames are similar since the time period between 
them is short. For a 30 frames per second video, the time differences 
between two frames are 1/30 second. The concept of ME and MC is to find a 
predictor in the reference frame(s) that can best predict the current frame 
data, and therefore, compensate the frame differences. 

Block-matching ME is adopted in all video coding standards to find the 
best matched prediction data. A current frame is divided into macroblocks 
(MBs), and each MB in the current frame (current MB) is matched within 
the search range of the reference frame (Figure 4) by a matching criterion. The  
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Figure 4. Block-matching motion estimation to find the motion vector (MV) of a MB. 

sum of absolute differences (SAD) between a current MB and a reference 
MB is usually adopted as the matching criterion, which is defined by  
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where N is the block size of a MB, cur(i, j) is the pixel value in the current 
MB, ref(i+k, j+p) is the pixel value in the reference block, the search range 
is [-PH, PH) and [-PV, PV) in the horizontal and vertical direction, and (k, p) is 
the position of the search candidate (a reference block) in the search range, -
PH ≦ k ＜ PH and -PV ≦ p ＜ PV. After the search, the search candidate with 
the smallest SAD is selected as the best reference MB, and the associated 
MB position is the motion vector of this current MB. The motion vectors are 
variable length coded, and the prediction error (residue) between the current 
MB and the reference MB is coded by JPEG-like intra coding. 

2.3 Standards 

The standardization of image and video coding algorithms make data 
exchange easier. We have briefly described some basic compression 
techniques in the previous subsection, and there are actually more techniques 
than those basic techniques. A proprietary algorithm can be a combination of 
any basic component among them. Interoperability becomes an issue when 
we want to share the compressed data with others. 

Interoperability of the coded data is a key issue of the product popularity 
and cost. Therefore, international organizations start to standardize image 
and video coding standards. In the digital image field, JPEG should be the 
best model of standardization. It is so successful and popular that current 
DSCs all support JPEG compression. As for the digital video field, the big 
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success of MPEG-2 is another good model. The DVD market is growing 
rapidly for the big entertainment requirement. 

The advances of digital image and video coding standards keep going. 
The JPEG, MPEG and VCEG under ISO/IEC and ITU-T international 
organizations are the three groups consisting of many image and video 
experts who have long been devoted to the development of coding 
algorithms and standardizing them. Figure 5 shows the progress of some 
classical and state-of-the-art standards. Different standards focus on different 
applications. The trend is that the compression performance advances at the 
cost of higher complexity. Also, more features and functions are provided to 
fulfill the demands. 

ITU-T Video Coding Experts Group (VCEG)

H.261 (1990) H.263 (1995) H.263++ (1998)

H.26L (1999)

MPEG-1 (1992) MPEG-2 (1994) MPEG-4 (1999)

H.264/AVC (2001)ISO Motion Picture Experts Group (MPEG)

Joint Video Team (JVT)

Short-Term

Long-Term

ISO Joint Photographic Experts Group (JPEG)

JPEG(1991) JPEG 2000 (2000)

 

Figure 5.  Advances of image and video coding standards. 

Figure 6 shows the basic framework of image coding. Baseline JPEG [8] is a 
DCT and Huffman coding based coder, while JPEG 2000 [9] and MPEG-4 
VTC is based on DWT and arithmetic coding. Figure 7 is the basic 
framework of a video coder. Besides the intra frame coding part (DCT, 
quantization and entropy coding), which is similar to a still image coder, the 
ME/MC is used for inter frame coding, and all this forms the hybrid coding 
architecture of most MPEG and H.26x standards. There is a decoder 
embedded in a video encoder, and a coding loop is formed in a video 
encoder. This is just a basic and simplified diagram. Different video coding 
standards have some specific features on some functional modules. Besides, 
in standards like H.264/AVC, there is an in-loop de-blocking filter. 

The standard does not standardize everything. The scope of these image 
and video coding standards is only the detailed definition of the syntax and 
semantics of the bitstream and the decoding process. Standards still leave 
large room for the optimization of a codec design. 
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Figure 6.  Basic framework of image coding 
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Figure 7. Basic framework of MPEG video coding standards 

2.4 Characteristics of Image and Video Coding 

The first step to design a good image/video codec is to understand the 
characteristics of image and video coding. 

The standardized coding flows do not mean the standardized codec 
implementation. The design of a good image/video codec is not just a trivial 
mapping of standard algorithms to architectures but an optimization problem 
of timing, cost, power, etc., that requires many efforts. Besides the general 
IC design knowledge and techniques, we need to have an insight of the 
characteristics of the video data we need to process and the algorithms we 
are going to use. With deeper domain knowledge of image and video coding, 
designers can design better codec architectures. 

Since an image or video codec has to process large raw data and 
compress them into smaller size, a codec itself also faces the large storage 
and bandwidth problem. For image encoding, the input is a huge amount of 
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raw data. For an M × N 24-bit color image, there will be M × N × 24 bits or 
M × N × 3 bytes. If the image is sub-sampled to YUV 4:2:0 format, the size 
becomes M × N × 1.5 bytes. Take a 5-million pixels DSC for example, one 
raw image size is about 7.5 Mbytes. Unlike video’s real time requirement, 
there is no exact time budget for the processing of an image. The guideline is 
to process an image as fast as possible to avoid the compression engine 
becoming the bottleneck, compared with other system components such as 
flash memory access time. 

For 30 frames per second (4:2:0, resolution M × N) video data, the input 
data rate will be M × N × 12 x 30 bits/s. For real time applications such as 
video conferencing and broadcasting, the compression and decompression of 
a frame has to be done within 1/30 second. Also, the processing delay should 
be kept as low as possible. 

Different modules have different operation characteristics. In the 
transform and motion estimation stage, it is a block-based operation. Image 
and video data are partitioned into blocks. Typical DCT block is of size 8 × 8, 
and ME macroblock is of size 16 × 16. The computational complexity of 
transform coding and motion estimation dominates the video codec. These 
operations are more regular since operations basically are done in the block-
based coding units. Therefore, parallelism exists inherently in these 
algorithms, and high parallel array processor can handle this loading. In the 
later entropy coding stage, usually it is a bit-level processing. There are no 
complex mathematical operations but fine and delicate variable-rate and 
variable-length data processing. 

Besides the objective analysis of data and algorithm characteristics, 
human visual perception also plays an important role on image and video 
coding. The key is that the video is for human eyes, not for computers. What 
people see is a beautiful image, not the binary digits and numbers. Since 
human visual system (HVS) is more sensitive to low-frequency signals than 
high-frequency ones, quantization is based on this characteristic. Also, the 
trade-off between computational complexity and quality is feasible. 

In summary, for the image/video codec design, we see something good: 

• Standardization of algorithms 
• Regular and simple computation: DCT/DWT, ME, … except entropy 

coding 
• Regular data flow 
• Human perceptual tolerance 

At the same time, we see something bad: 
• Real time requirements especially for multimedia communications: 

scheduling, timing 
• Resource limitation, especially for portable applications: computing 

power, battery energy, storage, channel, … 
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• High data rate 
• Multi-mode multimedia requirements: JPEG, JPEG 2000, MPEG-1/-2/-4, 

H.263, H.264/AVC, SVC, MP3, AAC, CELP, … 

3. DESIGN METHODOLOGY 

3.1 System Analysis 

Before hardware architecture design, system analysis was the most 
important step to have an insight into the design problem designers will face. 
The goal of system analysis is to find out the bottleneck of a video codec 
design so that designers can focus on it and get an optimal design. 

Computational complexity and memory access are the basic and 
important data we want to get from system analysis. There are many 
different approaches and tools for system analysis. For a designer who is 
somewhat familiar with the video coding concept and algorithm, he can have 
rough but good enough estimation by hand calculation analysis. A more 
general approach is to use a general processor (PC or workstation) for 
software profiling. Although the analysis results differ when the software is 
running on different platforms, the analysis data still provide designers a 
good starting point to understand the complexity of the system and each 
module. The profiling tools can be, for example, common run time profile 
tools on workstation and PC, instruction profiling tools, iprof [10], or Intel® 
VtuneTM Analyzer, etc. It is important to know what we want through the 
analysis data. If the final implementation is not on these general processors, 
the profiling data from that are just for reference. The percentage and the 
order of those numbers are more important than exact numbers. 

3.2 Architecture Exploration 

3.2.1 Design alternatives overview 

The design space of signal processing ICs is wide and colorful. There have 
been various hardware architectures explored in the literature, and the 
exploration steps still keep going. Although some variants may exist in 
different architectures, the design alternatives can be mainly classified as 
follows. The two extremes of the design space are processor-based design 
and fully application specific IC (ASIC) design. In between, there are 
architectures such as platform-based, FPGA, digital signal processor, 
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multimedia processor, application specific DSP, and some others that 
combine different architecture as part of the system [11]. 

Processor-based design provides better programmability and lower 
performance for video coding, while the ASIC design provides best 
performance with little flexibility. General purposed processors are too 
general to handle the loading of video coding. Adding application specific 
instructions and/or dedicated accelerators can greatly improve its 
performance for video coding. Approaches like that are application specific 
DSP (ASDSP) and video/media processors. At the same time, general FPGA 
also try to embed more dedicated arithmetic units to boost their capability. 

3.2.2 Application specific architecture 

There are many arguments over the pros and cons of different architectures. 
Basically, what an optimal architecture should be depends on applications and 
the overall system considerations. The guideline is to provide just enough 
computing resources at the lowest design cost and time. In this chapter, there 
is not enough space and it is not our intention to introduce the whole design 
spectrum, either. What we will focus on are the analysis and design on the 
dedicated architecture for the key modules and possible complete codecs.  

An image/video-specific architecture is optimal for computational 
performance. Digital image and video, as killer applications, deserve a 
special treatment. Video coding needs to process many data, and the 
complexity of algorithm keeps soaring. Even for a processor- or platform- 
based design, designers also have to understand the design of a dedicated 
architecture so that they will be able to enhance their processor architecture. 
Therefore, in the following part of this chapter, the dedicated architecture 
design of a video codec is discussed. Though the content is more ASIC 
oriented discussions, the ideas in dedicated architecture design actually are 
also foundations for other programmable design alternatives to enhance the 
performance with specific instructions, co-processors, or accelerators. 

3.3 Design Issues and Techniques 

3.3.1 Speed 

For image and video applications, the speed requirement is usually the most 
urgent issue. Actually, for on-line video applications, the first priority of an 
implementation is to meet the real-time specification.  

Since there is a large amount of data to be processed within a tight time 
constraint, general processors, which execute the computations sequentially, 
cannot afford such high computational load. Only raising the working 
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frequency is not a good approach to solve the problem. Working fast but not 
efficiently is of course not an optimal way. Also, high power consumption is 
a problem at higher frequency especially for battery-powered portable 
appliances. Therefore, for image and video codec designs, ASIC designers 
usually do not pursue very high operating frequencies. On the contrary, 
designers look for more efficient architectures to be operated at lower clock 
rate. SIMD (Single Instruction, Multiple Data), VLIW (Very-Long 
Instruction Word), and array processor designs are examples of higher 
computational efficiency. 

3.3.2 Area 

IC designers always look for compact architectures since smaller die area 
means lower cost. A more compact design will have better competitiveness. 
In a dedicated accelerator design, parallel architecture is usually adopted to 
achieve the required specification while lowering the required working 
frequency. Area is used to trade with frequency. 

Parallel architecture results in higher area cost. Therefore, hardware 
utilization is an index that designers should take care of and check. Simply 
duplicating multiple processing elements and memories may not be an 
optimal way if some of these resources are with low hardware utilization rate. 
The optimization goal should be a just enough parallelism with as higher as 
possible hardware utilization. Algorithm-level optimization, hardware 
sharing and folding are example techniques for chip area optimization. 

The fact that process technology keeps improving rapidly is really good 
news for parallel architecture design. Although area cost is always an issue, 
the weight per transistor becomes lower and lower in a million or even 
billion transistors level SoC. Actually, designers now are facing a bigger 
problem on how to bridge the gap between the design and the process 
capability, not just keeping an eye on the minor optimization of several 
hundreds or thousands gates. 

3.3.3 Power 

The power issue becomes one of the most important problems in a SoC 
design. As with the process development, a chip can provide more and more 
transistors, but the allowed power consumption in a chip will not increase. 
The emerging portable multimedia devices ask for more restricted power 
consumption. Besides, the heat due to high power consumption will also 
cause the reliability problem. 

To cope with the power problem, a design should be carefully examined 
not only in architecture level but also in algorithm and circuit levels. 
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Actually, the higher-level optimization usually provides more gain in power 
saving. The development of fast algorithms with lower complexity, and 
algorithms with lower data bandwidth are examples of this. Designers have 
to understand the algorithm characteristics by detailed analysis.  

At architecture level, designers have to look into the detailed operations 
of each module or even each gate, and its power consumption behavior. 
High hardware utilization architecture will be more power-efficient since the 
power will not be wasted on idle gates. Memory is also a big source of 
power consumption. Therefore, memory hierarchy and arrangement will 
play an important role on a low power design. At last, the algorithm and 
architecture characteristics can be combined with circuit level techniques 
such as clock gating and dynamic voltage scaling, etc. 

Besides the low power issue, power aware design is another trend. In 
image and video coding, there are multiple modes and tools. Also, different 
algorithms with different computational complexity results in different 
quality level. The basic power aware design concept is the rate-distortion-
complexity optimization. That is, a codec can dynamically decide the 
operating points based on the available power budget. Take ME for example, 
different ME algorithms can be mapped to a reconfigurable architecture. 
This architecture then have multiple operating points that have different 
power consumption and quality of MV search. 

3.3.4 Bandwidth and storage 

Memory bandwidth and on-chip memory capacity are limiting factors for 
many multimedia applications. Today, in many designs, on-chip memory has 
already occupied more than 50% of total chip area. Good memory 
management and area-, power-, and yield-efficient memory implementations, 
become important for a successful SoC solution. 

The memory management is to provide an efficient memory hierarchy 
that consists of off-chip memory, on-chip memory, and registers [12], as 
shown in Figure 8. Different memory types have different features. Off-chip 
memory, usually DRAM, offers a large amount of storage size but consumes 
the most power. The off-chip memory and I/O access may dominate the 
power budget. The embedded DRAM is developed to reduce the I/O access 
by integrating large on-chip DRAM. However, the embedded DRAM 
technology is not very mature because the yield issue, design methodology, 
and many physical design challenges still need to be solved. Besides, 
embedded compression (EC) technique can be applied to reduce the off-chip 
memory bandwidth and size for a video codec design. The on-chip memory, 
usually implemented by SRAM, provides faster access and less power-
consumption than the off-chip memory, but the memory cell size is much  
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Figure 8. Memory hierarchy: trade-offs and characteristics 

larger. Registers can be faster than on-chip memory and provide more 
flexible data storage. However, the size of a register is the largest. Registers 
are more suitable for the implementation of smaller-size buffers. 

Memory management can be organized from two different levels: algorithm-
level and architecture-level. The embedded DRAM is one kind of circuit-level 
improvement. But even integrating large embedded DRAM, the access power is 
still larger than smaller on-chip SRAM. The algorithm-level memory hierarchy 
optimization is to modify the coding system algorithm to improve some system 
parameters, like power or area, and some other parameters, like coding 
performance, become the trade-off. The EC and hierarchical search ME belong 
to algorithm-level memory optimization. On the other hand, the architecture-
level memory organization can optimize the memory hierarchy from modifying 
hardware architecture, such as Level A to D data reuse schemes in ME 
architecture design that will be discussed in a later section in this chapter. 

Video codecs face a big problem of the increasing bandwidth and storage 
requirements. The resolution of image and video keep increasing since 
people are endlessly pursuing higher quality. The input and output of image 
data itself has already been a large bandwidth request. Besides that, the 
module such as ME consumes even more bandwidth due to the block-
matching process among multiple image frames. Since the data moving 
between modules and modules and between modules and memory is so 
frequent, dedicated bus between modules is a better solution and local 
memory is required to reduce the bandwidth requirement between modules 
and memory. Since the trend shows that memory may dominate most of the 
designs, it is therefore important to optimize the memory size not only 
because of the area issue but also for lower power consumption. 

3.3.5 Perceptual quality 

Video is for human eyes, not for computers. The perception of human eyes 
determines the quality requirement of video signal processing. For digital 
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video, larger dynamic range of each word means better quality, but with 
larger hardware cost. Designers have to make decisions based on product 
specification. Another good reference is the saturation point of quality 
improvement when the bit width is increasing. 

Besides the trade-off between area cost and quality, computational 
complexity can also be lowered at some cost of quality degradation. ME is 
the most time consuming part. Instead of the full search, there are many 
possible lossy ways for ME. These fast ME algorithms can dramatically 
reduce the required computational power, while the quality is still kept 
within an acceptable range. 

4. MODULE-LEVEL DESIGN 

An image/video codec system can be intuitively partitioned to modules 
based on the functionality. Although there are different image and video 
coding standards, the basic framework is similar. For image coding, 
standards like JPEG, JPEG 2000, and MPEG-4 Visual Texture Coding (VTC) 
are all composed of transform, quantization, and entropy coding modules. As 
for video coding standards, such as H.261, H.263, MPEG-2, MPEG-4, and 
H.264/AVC, they are motion compensation (MC) and DCT based hybrid-
coding framework.  

Since most image and video codecs share the same or similar key 
components like DCT/DWT, ME, and entropy coder, modulized design 
concept is usually highlighted for module-level IP optimization and design 
reuse. For a fully dedicated codec design, each module is mapped to 
hardwired architecture, and the system is built based on these functional 
modules to form a processing pipeline. For a platform-based design, key 
modules can be accelerators attached to the system bus and controlled by a 
processor. 

4.1 Design Issues 

The most critical module deserves more efforts on optimization. Also, 
different modules have different operation characteristics, so different 
techniques should be applied for optimization. Although we are discussing 
the module level design here, designers should always keep the system view 
in mind. The integration of several so-called optimized modules at module 
level may not always guarantee an optimized architecture at system level. 

To start designing a module, designers have to have a specification from 
a system. Then, a detailed analysis about the complexity and operation type 
is the key before architecture design. 
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Parallel and pipeline are the two general and basic but important 
techniques for architecture design. The specification and complexity will 
determine how many parallelisms are needed. The computational flow is 
then smoothed and pipelined to have better timing performance. 

Interface among modules is important since each module has to work 
with other parts of the system. Sometimes, the interface considerations will 
be more critical than the internal design of a module. If, for example, each 
module pushes some of the design problems to external world, each module 
is only optimized at that assumed environment. The integration of these 
modules may pay more costs on the interface design to connect them. 

In the following sections, four main functional modules are discussed. 
The first topic is the ME. It is the most time-consuming part in a video 
encoder. The second topic is transform. Both DCT and DWT will be 
included. The third topic is about entropy coding and decoding modules, 
including Huffman coder and Arithmetic coder. Finally, the design of 
bitstream parser in a decoder is introduced. 

4.2 Motion Estimation 

Motion estimation is the core of a video codec.  
The design of a motion estimator is so attractive because of two 

characteristics: high complexity and high flexibility. The operations of ME are 
regular but the computational complexity of ME is very high. For a software 
codec, the ME is the most time-consuming module, and for a hardware codec, 
the ME consumes most of the resources including gates, bandwidth and power. 
It is so critical that an optimized ME architecture usually will dominate the 
factors in a successful video codec architecture design.  

ME is flexible in algorithm level, since video standards only specify the 
decoding part. How the motion vectors are searched, what the matching 
criterion is, and which candidate macroblock should be the chosen one are 
not standardized. Therefore, the large room for the development of fast 
algorithms and the application of proprietary tricks make the design space of 
a motion estimator even broader. 

The ME design [13] deserves the first-priority concern and more space 
for discussions. We will describe several types of ME algorithms first. Then, 
the associated architecture designs are presented, followed by a discussion 
about the bandwidth issues in a motion estimator.  

4.2.1 Algorithms 

The block-matching ME [13] is composed of seven loops, as shown in 
Figure 9. The first loop, frame-level loop, is the number of frames in a video  
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for  Number-of-Frame    ( Frame-level loop )

      for  Number-of-MBv    ( MB-level loop in the vertical direction)
      for  Number-of-MBh    ( MB-level loop in the horizontal direction)

     for  Number-of-SRv    ( SR-level loop in the vertical direction)
     for  Number-of-SRh   ( SR-level loop in the horizontal direction)

    for  Number-of-CBv   ( CurBlock-level loop in the vertical direction)
    for  Number-of-CBh   ( CurBlock-level loop in the horizontal direction)
          … …

   …
    end of  Number-of-CBh
    end of  Number-of-CBv

     end of  Number-of-SRh
     end of  Number-of-SRv

      end of  Number-of-MB h
      end of  Number-of-MB v

end of  Number-of-Frame
 

Figure 9. The loops of a block-matching ME procedure 

sequence. The second and third loops (MB-level loops in the vertical and 
horizontal directions) are the number of current MBs in one frame. The 
search region level loops (SR-level loops) are the number of search 
candidates in a search region, and the last two loops (CurBlock-level loops) 
are the number of pixels in one current MB for the computation of SAD. 

For the full search block-matching algorithm (FSBMA), all candidates in 
a search range are examined, and the candidate with the smallest distortion 
in the search range will be selected as the final motion vector. Exhausted 
search guarantees a globally minimum SAD in the search range. However, 
the computation complexity is very high. For example, a real-time ME for 
CIF, 30 frames per second (fps) video with the (-16, 16) search range 
requires 9.3 Giga-operation per second (GOPS). If the frame is D1-size and 
the search range is (-32, 32), the complexity is increased to 127 GOPS. 
Therefore, many fast algorithms, which apply specific strategies in different 
loops, are proposed to reduce the required computational complexity. 

In the following, several fast algorithms are reviewed. We start by 
describing the fast full search algorithms, which do reduce some 
computations of the full search while the block matching result is the same 
as full search. That is why we call it fast full search. Sometimes, it is still 
hard to achieve the real-time computation with fast full search, especially for 
a large frame size or search range. Therefore, fast search algorithms that 
require much less computations at a cost of certain extent of quality drop are 
developed.  
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4.2.1.1 Fast full search 
Is it possible to reduce some computations of FSBMA but without any 
quality drop? The answer is yes. The main idea is to detect and skip 
unnecessary computations earlier in the CurBlock-level loop of the ME 
procedure. The partial distortion elimination (PDE) [14] algorithm and the 
successive elimination algorithm (SEA) [15] are two typical examples. 

The PDE algorithm is based on the observation that during the search if the 
accumulated absolute difference (partial SAD) of this search candidate has 
already been larger than the current minimum SAD, this candidate is 
guaranteed not the optimal one. Therefore, the accumulation of the partial 
SAD for this candidate position can be terminated immediately and we can 
move to the next search candidate. The concept of PDE is simple and effective. 

In SEA, the absolute difference between the sum of pixels in the current 
block and the sum of pixels in a search candidate is used as a criterion to 
help early skip some candidates so that the calculations of the SADs of these 
candidate blocks can be completely saved. It is based on the inequality 
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If S’ is larger than the current minimum SAD, then the SAD of this 
candidate block is also larger than the current minimum SAD. Hence, the 
computation of the SAD for this search candidate can be skipped. On the 
contrary, if S’ is smaller than the current minimum SAD, the SAD for this 
search candidate has to be computed. The sum of current pixels in the 
current block is only computed once and can be reused for all search 
candidates. The sum of reference pixels for different search candidates can 
be easily calculated by reusing the partial result. Because the computational 
complexity of this detecting procedure is relatively small, the overall 
computational complexity of SEA-based full search can be reduced. 

For both PDE and SEA, a good initial search candidate can provide a 
better computation reduction ratio. If the current minimum SAD is closer 
than the final minimum and found early, the reduction ratio will be higher. 
The motion vector predictor or spiral scan technique is usually adopted as an 
enhancement of the PDE algorithm and the SEA. 

4.2.1.2 Fast search by the simplification of matching criterion 
Fast search by the simplification of matching criterion is a CurBlock-level 
loop simplification. Subsampling [16][17] is an approach that not all pixels 
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in the current block are used to calculate the SADs for each search candidate. 
Another approach is pixel truncation [18], which means a reduction of the 
number of bits of each pixel during SAD computation. 

4.2.1.3 Fast search by the reduction on search candidates 
The second type of fast search is the reduction of search candidates. It is a 
SR-level reduction. These algorithms assume that the distortion 
monotonically decreases as the search candidate approaches to the optimal 
one. That is, even if we did not match all the search candidates, the optimal 
search candidate can be achieved by following the search candidate with the 
smaller distortion.  

This category is the major part of fast search algorithms. Typical variants 
are center-based diamond search [19][20], advanced diamond zonal search 
[21][22], three-step search [23], two dimensional logarithmic search [24], 
one dimensional full search [25], new three step search [26], four step search 
[27], block-based gradient descent search [28], predictive line search [29], 
and so on. The Diamond search is illustrated below as an example. 

Figure 10 shows the searching procedure of diamond search, and the 
candidate search pattern. In the searching procedure, the large diamond is 
applied until the center search candidate of the large diamond has the 
smallest distortion among nine candidates, and then the small diamond is 
used to refine the searching result.  

Large Diamond
Small DiamondThe 1st step

The 2nd step
The 3rd step

The 4th step
The 5th step

 

Figure 10. The search procedure (left) and the search pattern (right) of the diamond  
search. The arrow is the direction that a large diamond moves toward, and after the result  

of large diamond converges in the fourth step, the small diamond is adopted to refine the results 
in the fifth step 
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4.2.1.4 Predictive search 
Predictive search helps fast search algorithms not to be trapped by local 
minimum SAD. It uses the motion information of neighboring blocks in the 
spatial or temporal space for the initial guess of the starting point. That is, 
the information of MB-level loop and Frame-level loop is utilized to predict 
the motion vector of this current MB and save the computations of SR-level 
loop. For example, the initial search candidate can be the motion vectors of 
the blocks on the top, left, and top-right, their median, zero motion vector, 
the motion vector of the collocated block in the previous frame, or the 
accelerated motion vector of the collocated block in the previous two frames. 
By this way, the search range can be reduced and constrained, so not only 
the computational complexity but also the bit-rate of motion vector can be 
saved. 

4.2.1.5 Hierarchical search 
Hierarchical search [30][31] is a multi-resolution search scheme. An initial 
estimation at the coarse level (subsampled resolution) is processed first, and 
then a refinement at the fine level is executed. Usually, two-level or three-
level hierarchical search is adopted. At the coarse level, because of the 
subsampling in current MB and search region, the computational complexity 
becomes smaller and full search is usually adopted to find the optimal MV in 
the subsampled search region. Take the search result at the coarse level as 
the initial search candidate, the search range at the fine level can be reduced, 
and computational complexity can be saved. In general, hierarchical search 
is mostly adopted for high resolution and fast motion that requires large 
search ranges. 

4.2.2 ME architecture 

The computational complexity of ME is very high but the operations are 
quite regular. ME algorithm itself is with large extent of parallelism. 
Therefore, highly parallel array processor design is a common view for ME 
designers. An simplified functional view of ME architecture consists of two 
parts (Figure 11), the processing element (PE) array, which is responsible for 
the calculation of SAD, and the on-chip memory, which is used to store the 
data of search region and supports data reuse. For each MB, PE array will 
update the data in the on-chip Memory through data bus. After the required 
data are ready, PE array starts to compute the SADs.  

Based on different ME algorithms and adopted search range data reuse 
schemes, the design of PE array, the size of on-chip memory and the 
memory bandwidth requirement will be very different. In the following, 
several typical ME architectures for different ME algorithms are introduced  
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Figure 11. The simplified diagram of motion estimation architecture 

first, where we assume for simplicity that the search range is (-2, 2) and the 
current block size is 2×2. After that, the trade-off between on-chip memory 
size and the required memory bandwidth in different search region data 
reuse schemes is discussed. 

4.2.2.1 Full search ME architecture 
Inter-level architectures and intra-level architectures are two types of full 
search ME architectures. The former is to compute the search candidates in 
parallel with the SR-level loop and sequentially estimate the distortions of all 
current pixels in the CurBlock-level loop. On the contrary, the latter is to 
compute the search candidates in sequential in the SR-level loop and parallel 
estimate the distortions of all current pixels in the CurBlock-level loop. In 
general, the former has a short critical path with a large register, and the 
latter has a long critical path but fewer registers. Moreover, the former 
requires fewer data inputs by broadcasting the reference pixels and 
propagating the current pixels, and the latter requires much more data input 
than the former does. 

Figure 12 shows an inter-level architecture [32]. The inter-level ME 
architecture computes the search candidates in the SR-level loop in parallel, and 
sequentially estimate the distortions in the CurBlock-level loop. The PE in the 
inter-level architecture is responsible for the computing the differences of all 
current pixels in the current block and the accumulation of SAD for a candidate 
pixel by pixel. This PE array is a one-dimensional inter-level architecture that 
can compute all search candidates in a row at the same time. For example, in  
Figure 12 (b), there are four processing elements for four search candidates in a 
row, when the search region in the horizontal direction is (-2, 2).  

The data flow is as follows. Current pixels are inputted in the raster scan 
order and propagated by the shift registers. Reference pixels are also 
inputted in the raster scan order to each reference pixel input, Ref.Pixel0 and 
so on, and broadcasted into all PEs by the selection signals, Sel0, Sel1, and 
so on. In each cycle, each PE calculates the distortion between one current 
pixel and one reference pixel and accumulates this distortion to the partial 
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Figure 12. (a) The PE of inter-level ME architecture (b) the inter-level ME architecture 

SAD of its search candidate. After 2×2 cycles, the first PE, PE0, will generate 
the SAD of the top-left search candidate. And in the following cycles, the 
SADs of search candidates from left to right in a row will be generated 
sequentially. The PEs which have generated the SADs in a row will process 
the search candidates in the next row until all search candidates are processed. 

The intra-level architecture is another kind of architecture for FSBMA. In 
intra-level architectures, the current pixels in the CurBlock-level loop are 
processed at the same time, and the search candidates in the SR-level loop 
are computed one by one. The AB2 architecture in [33] is a two-dimensional 
intra-level architecture. The PE in this architecture is responsible for the 
distortion between one specific current pixel and the corresponding reference 
pixel for all search candidates, as shown in Figure 13 (a). Because AB2 is a 
two-dimensional intra-level architecture, there are four intra-level PEs, 
which are corresponding to 2 × 2 current pixels in the current block in this 
architecture, as shown in Figure 13 (b). 
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Figure 13. (a) The PE of intra-level architecture. (b) The intra-level ME architecture 
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The data flow of the intra-level architecture is as follows. Current pixels 
are stored in corresponding PEs, and reference pixels are propagated PE by 
PE in the horizontal direction. The two partial column SADs are propagated 
and accumulated in the vertical direction first. After the vertical propagation, 
two column SADs are propagated in the horizontal direction. In each PE, the 
distortion of a current pixel in current MB is computed and added with the 
partial column SAD, which is propagated in PEs from top to bottom in the 
vertical direction. In the horizontal propagation, two column SADs are 
accumulated one by one by two adders and four registers. 

4.2.2.2 Fast search ME architecture 
Although the computational complexity of fast search and fast full search 
algorithms is much smaller than that of FSBMA, the design challenges of 
VLSI architectures for fast search and fast full search algorithms is much 
more difficult than that of FSBMA. This is because the data flow of fast 
search and fast full search algorithms is irregular, and the processing order of 
search candidates is dynamic, which is dependent on the last searching result. 
For example, in three-step search or diamond search, you do not know the 
center position of the next searching step until the minimum of this 
searching step is found. Therefore, latency and pipelining bubble cycles are 
becoming critical issues. A good fast search ME architecture should have a 
short latency, support random access of search candidates efficiently, and 
have no pipelining bubbles cycles when skipping some search candidates. 

Tree-based architecture [34] has the above-mentioned advantages.  
Figure 14 shows the tree-based architectures with different degrees of 
parallelism. The tree-based architecture is similar to the intra-level 
architecture. It can not only compute the distortions of the current pixels in 
the CurBlock-level loop in parallel but also process the search candidates in 
the SR-level loop at the same time, which means that the processing order in 
the CurBlock-level loop and SR-level loop can be reordered for different 
degrees of parallelism in tree-based architectures. For example, if the degree 
of parallelism in the tree-based architecture is two dimensions of current 
block, the tree-based architecture is equal to the intra-type architecture. If the 
degree of parallelism is only one dimension of current block, then it only 
processes the distortions of current pixels in a row at the same time. In the 
following, we take these two examples to illustrate the data flow of tree-
based architectures. 

In the first case, as shown in Figure 14 (a), each PE in tree-based 
architectures is corresponding to one current pixel and is responsible for the 
calculation of the distortion between one current pixel and one 
corresponding reference pixel for all search candidates. In this architecture, 
it can generate the SAD of one search candidate in one cycle. The latency of 
this architecture is dependent on the memory access of reference pixels,  
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Figure 14. (a) The architecture of a tree (b) The architecture of a ½ tree 

which can be shortened with the interleaved memory arrangement in [34]. 
Moreover, no pipelining bubble cycles and no data dependency between the 
current and the next search candidates exist in this architecture. It is suitable 
for the hardware implementation of fast search algorithms that require the 
property of random access in the search region. 

If the degree of parallelism in the tree-based architecture is only one 
dimension or less of current block, as shown in Figure 14 (b), the tree-based 
architecture is a hybrid architecture of inter-type and intra-type architectures. 
For example, folding the architecture in Figure 14 (a) by 2 (N) derives the 
architecture in Figure 14 (b). Then, it can calculate one row SAD of the 
search candidates in one cycle, and after generating and accumulating all 
row SADs in 2 (N) cycles, the total SAD of one search candidate can be 
derived. In this architecture, PDE can be easily integrated. The comparison 
between the partial SAD and the current minimum SAD of PDE is changed 
from the distortion of one pixel to one row SAD.  

The tree-based architecture has a good flexibility to support various 
reordering or rescheduling in the CurBlock-level loop and SR-level loop, so 
it is usually adopted for fast search algorithms. In [35], a tree-based 
architecture is adopted to support the diamond search and fast full search. 
There are many duplicated search candidates in diamond search, as shown in 
Figure 10. After each moving of the large diamond pattern, only five or three 
search candidates are required to be calculated and the others are calculated 
at the last large diamond pattern. An ROM-based solution is proposed in [35] 
to avoid the duplicated search candidates and save 24.4% search candidates 
in the Diamond Search algorithm. 

This architecture also supports the fast full search algorithms, such as 
PDE and SEA. The computation of SEA for one search candidate is 
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executed by the processor platform first and then the SAD of this search 
candidate is calculated in this architecture. The degree of parallelism in this 
architecture is only half row (N/2), so the PDE is easily integrated with less 
overhead, and the unit of comparison between the partial SAD and the 
current minimum SAD is changed to half row SAD. 

4.2.3 Block-level data reuse for search region 

The required memory bandwidth of ME is very huge. Several block-level 
data reuse schemes [36][37][38] for the search region have been explored 
and analyzed in the literature to save the required memory bandwidth. In 
the following, the redundancy access factor, Ra, is used to represent the 
required memory access of different data reuse schemes. The redundancy 
access factor, Ra, is defined as Total memory bandwidth for reference 
frame / minumum memory bandwidth (pixel count in total), which means 
that if we want to process one current pixel, how many reference pixels are 
required.  

The first scheme, Level A scheme, is the data reuse of the SR-level loop 
in the horizontal direction, and reuses the overlapped region between two 
reference blocks of two successive search candidates in the horizontal 
direction. As shown in Figure 15 (a), two reference blocks have a large 
common region, N × (N-1), and only N pixels are different. Therefore, only 
N reference pixels are required to be updated for the next search candidate in 
the horizontal direction. Therefore, for a current MB, the required memory 
access, RaLevel A, will be 
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where N is the current block size, and SRH (=2PH) and SRV (=2Pv) are the 
search range in the horizontal and vertical directions, respectively. In Level 
A scheme, because only N × (N-1) reference pixels are reused, the on-chip 
memory size is only N × (N-1) reference pixels. Level A scheme can totally 
reuse the overlapped region between two reference blocks of two successive 
search candidates in the horizontal direction. 

Level B scheme improves the data reuse of search region in the Level A 
scheme. Level B scheme presents the data reuse of the SR-level loop in the 
horizontal and vertical directions, so Level B scheme can not only totally 
reuse the overlapped region in the horizontal direction but also reuse the 
overlapped region in the vertical direction, as shown in Figure 15(b). For one 
current block, the search range is inputted once.   
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Figure 15. Data reuse schemes (a) Level A scheme (b) Level B scheme (c) Level C scheme  
(d) Level C+ Scheme for FSBMA, where the heavy gray region is the overlapped and 

reused region 

Level A and Level B schemes reuse the overlapped region between the 
reference block of the successive search candidates in the SR-level loop. 
However, this kind of data reuse schemes still requires a lot of memory 
bandwidth, and may not be enough for a practical system. Therefore, Level C 
scheme is discussed to reuse the overlapped search region between two 
successive current blocks. Level C scheme is similar to Level A scheme but 
for the data reuse of the MB-level loop. As shown in Figure 15(c), there is a 
large overlapped region between two search regions of two successive current 
blocks in the horizontal direction. For two horizontal successive current blocks, 
only N × (SRV+N-1) reference pixels are different and required to be updated.  

An extension of Level C is possible, and it is named Level C+ scheme. 
By using stripe scan, not only the overlapped search region in the horizontal 
direction can be fully reused, but also the overlapped search region in the 
vertical direction can be partially reused, as shown in Figure 15(d). That is, 
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several successive current MBs in the vertical direction are stitched, and the 
search region of these current MBs is loaded, simultaneously. Thus, only N 
× (SRV+nN-1) pixels are required to be loaded from external memory if n 
successive vertical current MBs are stitched together, which is called  
n-stitched MBs. 

Compared to the relationship between Level C and Level A schemes, 
Level D scheme is also similar to Level B scheme but for the MB-level loop. 
Level D scheme focuses on the data reuse of MB-level loop, so Level D 
scheme is the ultimate data reuse scheme of search region for one frame, 
which can fully reuse the overlapped search region not only in the horizontal 
direction but also in the vertical direction. However, because Level D 
scheme reuses the overlapped search region in both directions, the required 
on-chip memory size is very large, (SRV - 1) × (SRH + W - 1) pixels. The 
redundancy access factor, RaLevel D, is 1. 

Through the discussions above, we see the design trade-off between the 
required memory access and the on-chip memory size. Table 1 summarizes 
the bandwidth and on-chip memory requirements of these reuse schemes, 
and Table 2 shows the comparison of different data reuse schemes when the 
block size is 16 × 16, the search range is (-64,64) in both directions, and the 
frame format is D1 30fps. In order to reduce the intensive memory access for 
ME operations, the larger the on-chip memory size is required. 

 

Table 1. The comparison of different data reuse schemes 

 External Memory Bandwidth of Reference 
Frame (data access/pixel) 

On-chip memory Size 

Level A SRV × (1 + SRH  / N) N × ( N - 1) 
Level B (1 + SRV / N) ×  (1 + SRH  / N) (SRH + N - 1) × (N - 1) 
Level C 1 + SRV / N (SRH + N - 1) × (SRV + N - 1) 
Level C+ 1 + SRV / nN (SRH + N - 1) × (SRV + nN - 1)
Level D 1 (SRH + W - 1) × (SRV - 1) 

n is the number of stitched vertical current blocks. 
 

Table 2. The comparison of different data reuse schemes for ME (the block size is 16×16, the 
search range is (-64,64) in both directions, and the frame format is D1 30fps) 

 External Memory Bandwidth of Reference Frame On-chip Memory Size
Reuse scheme (Data access/pixel) (MB/sec) (pixels) 
Level A 1,152 11,943.9 240
Level B 81 839.8 2,145
Level C 9 93.3 20,499
Level C+ (n=2) 5 51.8 22,737
Level D 1 10.4 107,569
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4.3 Transform Coding 

4.3.1 DCT 

The 8×8 2-D DCT/IDCT is a widely used transform kernel in both image 
and video coding. It is also a computation-intensive module, and there are 
plenty of DCT/IDCT architectures in the literature. 

Most DCT/IDCT architectures are based on fast algorithms instead of a 
direct mapping of Eqs. (1)−(2), each requires 4,096 (84) multiply-accumulate 
operations. Since DCT is a separable transform, row-column decomposition 
based architecture (Figure 16) is a commonly used architecture. The design 
in [39] is a good example to illustrate a complete design and optimization 
process of a row-column based DCT/IDCT processor. By row-column 
decomposition and the symmetry property, the number of multiplies is 
reduced to 512 (83). Therefore, the 1-D DCT/IDCT unit in the row-column 
decomposition architecture [39] needs to compute only eight multiplies per 
input sample with some simple changes of data sequences. This example 
again shows us that algorithm optimization before architecture mapping is 
significant and crucial. 

The architecture optimization process usually can be partitioned into PE 
part, memory part and control part. For the PE optimization, in this case 
study, the architecture is compact since the horizontal and vertical 1-D DCTs 
are folded on one 1-D DCT unit. Also, the multipliers are hardwired ones 
since the DCT coefficients are constant. Furthermore, the signed digit 
representation of the DCT coefficients is adopted. This technique reduces the 
nonzero bits, and hence minimizes the number of adders required for the 
implementation of a hardwired multiplier. At last, finite wordlength 
simulation is necessary to decide the required wordlength to guarantee the 
computation precision. Figure 17 shows the row-column decomposition 
based 2-D DCT architecture. 

The memory issue in a DCT/IDCT design is not very significant. In row-
column decomposition architecture, a 64 words transpose memory is 
required. Since it is not a big memory, the optimization issue of this memory 
is minor. As for the control, the DCT/IDCT can operate seamlessly with the  
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Figure 16. Row-column decomposition 
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Figure 17. Row-column decomposition based 2-D DCT [39] 

ability of one data per cycle of both the input data rate and the throughput 
rate. Therefore, the control signals are quite easy, and the I/O interface of the 
DCT/IDCT IP core is clear. 

There are many other alternatives [41] for DCT/IDCT architecture. 
Besides the parallel multiplier-based design discussed above, architectures 
such as Distributed Arithmetic (DA) based, and digit-/bit-serial based ones, 
etc, are also widely discussed. Also, the direct 2-D architecture is another 
alternative for higher throughput. The design trade-offs are mainly among 
dimensions of the throughput, area, and control complexity, etc. 

4.3.2 DWT 

The design of a DWT consists of two parts, the 1-D PE design and the  
2-D dataflow and scheduling. For the 1-D PE design, convolution-based and 
lifting-based implementations are two common approaches. Different 
approaches result in different numbers of multipliers and adders required. 
For the 2-D DWT, how 1-D DWT units are integrated and scheduled to 
perform 2-D DWT is a key that makes more significant architecture 
differences. 

A direct mapping of the dataflow in Figure 3 is not efficient since the 
hardware cost is high and the hardware utilization is low. Usually, folded 
architecture is adopted. Different decomposition levels or horizontal and 
vertical filtering are mapped onto the shared PEs. Similar to the row-
column decomposition 2-D DCT, a transpose buffer is required between 
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the two 1-D DWT modules. However, the transpose buffer in DWT is a big 
issue, since the size of the buffer required for the transpose purpose in a 
DWT is usually much larger than that of a DCT. Take JPEG 2000 as 
example, typical tile sizes for DWT are 128×128 or 256×256, which is 
much larger than a small 8×8 DCT block. In the following, three design 
alternatives [43] are discussed: direct 2-D, line-based and block-based 
architectures. 

Direct 2-D architecture allocates one set of low-pass and high-pass 
filters (Figure 18). The PE performs one direction’s 1-D filtering first, then 
another direction’s filtering, and the process continues for the next 
decomposition levels, if any. The characteristic of this architecture is that 
only single 1D DWT PE is required, and all the data accesses from the tile 
memory. That is, the tile memory is also used for the transpose purpose, 
and no extra buffer is required for intermediate results. If the tile memory 
is an off-chip memory, the intensive data access of the external memory 
will be the main concern. 

For line-based architecture (Figure 19), there are two 1-D DWT PEs, 
one for the vertical 1-D DWT and the other for the horizontal 1-D DWT. 
Several lines of buffers are required for the transpose function, since this 
architecture schedules the second direction’s filtering to start as early as 
possible when the filtering of the first direction has generated enough 
coefficients. How many lines are required for a line-based DWT 
architecture depends on the number of filter taps, and the length of a line 
depends on the image (a tile in JPEG 2000) width. The size of line buffers 
is much less than that of a whole tile, and are more feasible to be on-chip 
ones. The data access of the off-chip title memory will be less at the cost of 
one more 1-D DWT PE and several line buffers. This cost is usually worth 
paying since the bandwidth problem is usually more critical, and the power 
consumption of external memory access is much larger than the on-chip 
access. 

1-D DWT
External
Frame

Memory

 

Figure 18. Direct 2-D DWT 
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Figure 19. Line-based multi-level 2-D DWT (J levels in this illustration) 

Block-based 2-D DWT architecture is another alternative. The main 
consideration is to match the output data order of a DWT with the required 
input data order of the module after DWT. When a DWT process an image 
data in raster scan, the output will also be in raster scan order. However, in 
image coding, the coding flow of the module after the DWT may not be a 
raster way. In JPEG 2000, Embedded Block Coding with Optimized 
Truncation (EBCOT) is the module after DWT. The DWT coefficients of a 
tile are partitioned into non-overlapped code-blocks, which are the basic 
coding units of EBOCT. If the DWT output can be block-wise, then the 
buffer between DWT and EBCOT will be less compared with line-based 
architecture. The cost is that the input data order for the DWT has to be 
carefully controlled, and some extra buffer other than the size of a single 
code-block or repeated calculations will be necessary since the DWT 
filtering process requires some data across a code-block boundary. 

4.4 Entropy Coder and Decoder 

Different from the computation-intensive characteristic of the ME and 
DCT/IDCT, entropy coding consists of serial and more control-oriented bit-
level operations. Therefore, an efficient entropy coder should have efficient 
bit-manipulation capability. 

4.4.1 Huffman coder 

Huffman encoding is a process to map fixed length symbols to variable 
length codewords, and the decoding is the inverse process. The throughput 
of tree-based VLC and VLD are low and not constant. For high speed image 
and video processing, parallel VLC and VLD architectures, which guarantee 
one symbol encoding and decoding per cycle, are better approaches.  
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The design of a VLC coder and a VLC decoder can be partitioned into 
two parts. One part is the table-lookup procedure, and the other part is the 
bit-manipulation for the variable-to-fixed concatenation in a VLC coder 
or the extraction of variable-length bits from the bitstream in a VLC 
decoder. 

For a given Huffman table, the design of the table-lookup process in 
both VLC coder and VLC decoder is simple and straightforward. In most 
video coding standards, Huffman tables are usually fixed ones, so both 
the encoder and decoder know the Huffman tables in the beginning. In 
JPEG, user-customized Huffman tables are supported. Therefore,  
a general VLC decoder has to extract the Huffman table information from 
the JPEG bitstream in order to support the decoding of user-defined 
Huffman tables [44]. 

In a VLC coder, after the symbols are transformed to Huffman 
codewords, these variable length codes have to be packed into fixed length 
ones, said integer bytes. In a VLC decoder, the decoded bits have to be 
moved out from the bitstream, and the following bits have to be fetched for 
the next decoding process. The design in [45] provides good reference for 
high throughput VLC coder and decoder architectures. 

4.4.2 Arithmetic coder 

For the arithmetic coding in image and video standards, binary arithmetic 
coding is usually used. To further improve the coding performance, a context-
based adaptive scheme is adopted. This characteristic of the context-based 
scheme is that context information requires some computation based on some 
previous coded data and some information has to be stored for later reference. 
Besides, due to the adaptive scheme, parallel architecture for arithmetic coding 
is difficult. The coding of a symbol depends on the updated probability, so 
symbols with some context cannot be parallel processed. 

In standards, arithmetic coding is an iterative process of conditional 
branches and arithmetic, which are usually represented by a flowchart. With 
the well-defined data flow at hand, the first step of design process is simply to 
map the data flow directly into logic gates. This direct mapping is functionally 
correct but usually cannot meet the critical path constraint. Then, pipelining 
techniques are applied to shorten the critical path to meet the target operational 
frequency and throughput. The key optimization is to apply techniques to 
break some long paths to short ones, and also to conquer the loop operations 
by the technique similar to the design concept of the carry select adder. 

Figure 20 shows a generic three-stage pipelined adaptive arithmetic 
encoder. There is a feedback loop between stage 0 and stage 1. Stage 1 
updates the probability information based on the information from stage 0,  
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Figure 20. Generic three-stage pipelined context-based adaptive arithmetic coder architecture 

and then passes the related updated information back to stage 0. When two 
successive symbols are with the same contexts, both the two possible 
branches are implemented, and the feed back information selects the correct 
branch result. 

5. CODEC DESIGN: CASE STUDIES 

To design an image or video codec system, detailed system analysis is the 
first key step and then the codec system can be divided and conquered by 
module-level design and optimization. Under the modulized design concept, 
once the key modules are available, the design of a codec is a process to 
integrate those modules. The key is to have a smooth data flow so that large 
amount of image/video data can flow through the processing pipeline as 
seamlessly as possible. In this case, the codec system can buffer less 
intermediate data among modules and reduce data access back and forth 
between processing elements and memories. 

In image coding, the complexity of encoding and decoding are similar. 
In video coding, it is an asymmetric coding in the sense that the complexity 
of encoding is much higher than that of decoding due the ME process in 
the encoding side. The encoder design has more room for optimization. 
Also, among the multiple parameters, modes, and tools provided in a 
standard, an encoder can selectively implement some of them based on the 
application requirements and rate-distortion-complexity trade-offs. 
However, for a general decoder, it has to support all specifications and 
parameters defined in a profile and level in order to claim standard 
compliant. 

Based on the discussions of some basic components in the previous 
section, the analysis and design of image and video codec IPs of JPEG, 
JPEG 2000 and H.264/AVC will be discussed in the following. Here, we 
will focus more on the system architecture rather than individual module 
designs. 



Multimedia IP Development 53
 
5.1 Case Study 1: Baseline JPEG Codec 

JPEG is widely used for digital image compression. As the population of 
DSC, JPEG codec becomes an important design. Figure 21 shows the 
simplified functional block diagram of JPEG. Fast JPEG encoding and 
decoding can be easily achieved in modern PC. However, in consumer 
products without such high frequency and powerful processor, JPEG 
encoding and decoding can be a tough job especially when the resolution of 
DSC keeps increasing and the request of continuous photo shooting. 
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Figure 21. Simplified baseline JPEG functional block diagram 

There have been many JPEG codec architecture proposed in the literature 
and in the market. Since there are no complicated loops between functional 
modules in JPEG, a fully pipelined JPEG architecture is feasible. A fully 
pipelined architecture feature is that it can encode or decode one pixel per 
cycle. That is, operated at x MHz, the encoder can process x Msamples per 
second, and the decoder can decode x Msamples per second.  

In [42], a fully pipelined baseline JPEG encoder (JAGUAR architecture, 
Figure 22) is first presented. That paper presents a complete design from 
DCT to the data packer with detailed description of each module’s 
architecture. That fully pipelined and modulized architecture sets a good 
example for reference. Each module can be replaced or modified with some 
tricks for improvement. For example, designers can choose any DCT 
architecture that is capable of one data input per cycle and one data output 
per cycle from many available alternatives. 

Figure 23 shows a micrograph of a JPEG encoder prototype chip [44] for 
reference. It is implemented by TSMC 0.6μm 1P3M technology. The chip 
area is 5.38 × 5.35 mm2. The encoder works up to 40 MHz. A fully pipelined 
baseline JPEG encoder does not require many memories. The minimum 
memory requirement is one for DCT transpose memory, one for zigzag  
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Figure 22. JAGUAR architecture [42] 

reorder buffering, and one for quantization tables. The gate count of the 
JPEG encoder is around 33,000 logic gates [44]. The complexity of JPEG 
encoder and decoder are similar. A general JPEG decoder supporting user-
defined Huffman table requires about 40,000 gates. 

Besides the core part, the architecture can be extended more at the front 
end and the back end to have a completely stand-alone JPEG encoder IP. In 
that case, the stand-alone IP does not require any help from processors. In 
the front end, the color conversion of RGB to YcbCr can be considered. Also, 
since the basic coding unit of JPEG is an 8 × 8 block, a raster to block scan  
 

 

Figure 23. JPEG Encoder Chip micrograph [46] 
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conversion buffer is required. As for the back end processing after data packer, 
the packed data stream has to be checked and modified to avoid the 
ambiguous marker code due to data packing. Also, for applications that only 
require limited parameters for the user to select, only several fields in the 
bitstream header is variable. Therefore, a hardwired header generator can also 
be embedded. With these enhancements, the system processor can just provide 
an image in RGB format, and signal the JPEG encoder IP to start coding. Then, 
after processing, a standard compliant JPEG file is outputted by the JPEG IP. 
The processor is completely off-loaded from the JPEG processing. 

5.2 Case Study 2: JPEG 2000 Codec 

5.2.1 JPEG 2000 introduction 

JPEG 2000 is the latest image coding standard. It is well known for its 
excellent coding efficiency as well as numerous useful features such as 
region of interest (ROI) coding and various types of scalability. Unlike 
JPEG, JPEG 2000 uses the Discrete Wavelet Transform (DWT) as the 
transformation algorithm and Embedded Block Coding with Optimized 
Truncation (EBCOT) as the entropy-coding algorithm. EBCOT can produce 
finely embedded bit streams that enable post-compression Rate-Distortion 
(R-D) optimization. 

The design complexity of JPEG 2000 is much higher than JPEG. There 
are three critical issues to design a high throughput encoder. First, the DWT 
requires high memory bandwidth and enormous computational power. 
Second, the EBCOT requires extremely complicated control and sequential 
processing. Third, R-D optimization requires a large memory for storing the 
lossless code-stream and R-D information. All of the above requires high 
operating frequency, huge memory size, and high memory bandwidth for 
chip implementation. 

5.2.2 81MS/s JPEG 2000 single-chip encoder with rate-distortion 
optimization [47] 

We take the encoder design in [47] for the case study of JPEG 2000. The 
block diagram of the encoder is shown in Figure 24. The encoder consists of 
a main controller, a DWT module, a pre-compression R-D optimization 
controller, a parallel EBCOT module, and a dedicated Bit Stream Formatter 
(BSF). It is a tile-level pipelined architecture. Two 24 KB off-chip SRAMs 
are required. The input format is raw image data and the output is the JPEG 
2000 code-stream.  
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Figure 24. Block diagram of the JPEG 2000 encoder [47] 

For the design of the DWT module, the recursive operations in the LL 
subband makes the data flow more complicated compared with DCT. Also, 
since a DWT tile is usually larger than a DCT 8 × 8 block, the memory issue is 
more problematic than DCT, as discussed in Section 4.3.2. The line-based 
DWT architecture is used in this design. The data buffer, which requires 1.5 
lines of pixel data, stores the intermediate decomposition coefficients after the 
1-D row DWT. The coefficients are then read by the 1-D column DWT to 
produce the 2-D results. The temporal buffer stores the intermediate data for the 
1-D column DWT module, which requires 2 lines of pixel data for the (5,3) 
filter. Two 1-level 2-D line-based DWT modules are cascaded to implement 
the 2-level 2-D DWT decomposition and achieve a throughput of two pixels 
per cycle. Figure 25 shows the block diagram of the DWT module. The 1-D 
row and column DWT modules are implemented using a lifting scheme. 8,512 
bits of on-chip memory, implemented by registers and on-chip SRAM, is 
required to accommodate the 128x128 tile size. 
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Figure 25. Block diagram of DWT module. [47] 
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The most critical design challenge of a high performance JPEG 2000 
encoder is the design of a high throughput EBCOT module (Table 3, [48]). 
EBCOT is a bit-plane coder based on the context-based adaptive arithmetic 
coding. The operations are in bit-level. The equivalent input data rate is 
dramatically increased since a word (a DWT coefficient) now becomes many 
bits to be processed. The irregular fractional bit-plane coding order further 
complicates the data flow. Also, the interface between DWT and EBCOT is 
another issue, since there are two mismatches between the two modules. First, 
DWT is working in word-level while the EBCOT is working in bit-level. 
Second, the coding unit of DWT is a tile, while that of EBCOT is a code-block. 
Considerable buffer size and data access are therefore necessary if the two 
modules are directly connected. 

Table 3. Run time profiling of JPEG 2000 encoding (The simulation is under JPEG 2000 VM 
7.2 with image size 1792 x 1200, 5-level DWT and single layer, at PIII-733 PC.) 

 Run Time Percentage (%) 
 Gray Scale Image Color Image 
Operation Lossless coding Lossy coding Lossless coding Lossy coding 
Color Transform N.A. N.A. 0.91 14.12 
DWT 10.81 26.38 11.90 23.97 
Quantization N.A. 6.42 N.A. 5.04 
EBCOT Tier-1 71.63 52.26 69.29 43.85 

Pass 1 14.89 14.82 13.90 12.39 
Pass 2 10.85 7.00 10.94 5.63 
Pass 3 26.14 16.09 25.12 13.77 

Arithmetic coding 19.75 14.35 19.33 12.06 
EBCOT Tier-2 17.56 14.95 17.90 13.01 

In EBCOT sequential coding mode, there is only limited parallelism for 
speed-up. What ASIC designers can do is to do a parallel check to decide 
which pass a bit should belong to. Sample skipping, group-of-column 
skipping, and pass-skipping schemes [48] are some of the techniques that 
can hide some of the bubble cycles in a sequential implementation. However, 
there is a fundamental limit of the throughput enhancement by these schemes. 
More parallelism in different levels should be explored for high speed 
encoding and decoding requirements such as motion JPEG 2000. 

In this work, the EBCOT is operated in parallel mode. The proposed 
architecture can process a DWT coefficient in parallel, regardless of bit-
width. Three techniques are applied to achieve this feature. First, a parallel 
context modelin g approa ch inste ad  of tradition al bit plane-by -bit
plane,  is  taken  to increase  the  processing  speed. Second, a reconfigurable
FIFO (First-In First-Out) architecture that reduces bubble cycles is obtained 
by exploiting the features of the EBCOT and the DWT. Third, a folded 
Arithmetic Encoder (AE) architecture is devised to reduce the area. 
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The parallel EBCOT architecture is shown in Figure 26. It is capable of 
processing one 11-bit DWT coefficient per cycle. This architecture can 
process 28 passes in parallel, and therefore can operate at 1/28th the 
frequency of a traditional architecture. The state variables for context 
formation are calculated on the fly for each bit plane of each coefficient, so 
the 16kb state variable memory is no longer necessary. The folding 
technique reduces the hardware cost of the AE by 99 K gates. 

The hardware implementation of the rate control function is also 
addressed in this design. For lossy coding, there are two drawbacks of the 
recommended post-compression R-D optimization algorithm in the reference 
software. First, the computational power and the processing time are wasted 
since the source image must be losslessly coded regardless of the target bit 
rate. Second, a large temporary memory is required to buffer the bit stream 
and side information for rate control. A pre-compression R-D optimization 
algorithm is proposed to solve these problems. The idea is to estimate the 
rate information of a pass before it is arithmetic coded. With a good model, 
the R-D optimization point can be approximated before EBCOT coding. 
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Figure 26. Word-parallel EBCOT architecture [47] 

The flowchart of the proposed pre-compression R-D optimization 
algorithm is shown in Figure 27. It is comprised of two stages: accumulation 
and decision. During accumulation the distortion and bit-count are calculated 
and accumulated. In the decision stage the truncation points are determined 
according to the normalized distortion and estimated bit rate. The proposed 
algorithm allows the truncation point of a code-block to be determined 
before EBCOT encoding. Hence, only required coding passes are processed  
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Figure 27. Flow chart of the pre-compression rate-distortion optimization algorithm [47] 

which reduces the computational power as the compression ratio increases 
(e.g., compression ratio of 8 requires 8 times less EBCOT computation). In 
addition, the memory for lossless code-stream and R-D information is 
eliminated. The performance of the proposed pre-compression algorithm only 
degrades 0.3 dB on average compared with the post-compression algorithm. 

Figure 28 is the micrograph of the 81 M samples/sec JPEG 2000 single 
chip encoder, which is implemented on a 5.5mm2 die in 0.25μm CMOS  
 

 

Figure 28. Die micrograph [47] 
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technology. The chip contains 163k gates and 11kb of SRAM. The processor 
consumes 348mW @ 2.5V when operating at 81 MHz. The detailed chip 
features are shown in Table 4. 

Table 4. Chip specification 

Technology TSMC 0.25-μm 1P5M CMOS 
Supply voltage 2.8V 
Core area 2.73 × 2.02mm2 
Logic gates 162.5 K (2-input NAND gate) 
SRAM 7 K bits 
Operating frequency 81 MHz 
Power 348 mW 
Package PGA 256 
Image size Up to 32K × 32K 
Processing rate 81 M samples/sec 
DWT (5,3) filter, 2-level decomposition 
Tile size 128 × 128 
Code-block size 64 × 64 
 

5.2.3 Exploration of parallelism 

Many JPEG 2000 codec designs are proposed to speed up the processing. 
The common idea among them is to explore more feasible parallelism at 
different levels, especially in the critical EBCOT design. Basically, 
according to the EBCOT algorithm, parallelism can be considered in 
several hierarchical levels: code-block level, bit plane level, pass level, 
symbol level, etc.  

The previous case study is an extreme bit-plane parallel architecture, 
in which all bits of a coefficient are processed in parallel. One can view 
this block-coding engine as a word-level processor. The original word-
level to bit-level mismatch between DWT and EBC is resolved. 
Therefore, no extra word-to-bit conversion and buffer is required. Also, 
since bits are processed in parallel, the state variable information can be 
processed on the fly, and therefore the state variable memories are not 
necessary. 

For other alternatives, in [49] (Figure 29), a 2-plane parallel, 3-pass 
parallel, and 4-symbol parallel EBCOT architecture are implemented. The 
three-code-block parallel architecture [50][51] (Figure 30) is also a common 
solution. It tries to balance the throughput and input data rate between DWT 
and EBCOT. A double-encoder architecture is proposed in [52] to achieve 
real-time HD-movie encoding. 
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Figure 29. EBCOT parallel architecture [49] 

R-D Opt.
 Controller

CodeStreamPixel

Context
Formation

Arithmetic
Coder

EBC

Memory
Interface

Header
Formatter/

Parser

BSC

Context
Formation

Arithmetic
Coder

EBC

Context
Formation

Arithmetic
Coder

EBC

Bit Stream
Buffer

DWT

Filter Core

Memory
Interface

Controller

System Bus

SDRAM

Main Controller
Codec Chip

 

Figure 30. JPEG 2000 codec based on three-code-block parallel architecture 
 

5.3 Case Study 3: H.264/AVC Codec 

5.3.1 H.264/AVC introduction 

Figure 31 shows the functional block diagram of the H.264/AVC 
[53][54][55] and highlights the features of some modules. Compared to 
MPEG-4, H.263, and MPEG-2, H.264/AVC can achieve 39%, 49%, and  
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Figure 31. Block diagram of H.264/AVC video coding system 

64% of bit-rate reduction, respectively [56]. The high compression 
performance comes mainly from the new prediction techniques used to 
efficiently remove temporal and spatial redundancies. Intra prediction, 
unlike the previous standards, is done in spatial domain and has multiple 
modes. Inter prediction is enhanced by ME with quarter-pixel accuracy, 
variable block sizes (VBS), multiple reference frames (MRF), weighted  
bi-prediction and improved spatial/temporal direct mode. Moreover, the 
advanced entropy coding tools use content adaptivity to further reduce 
statistic redundancy. The perceptual quality is improved by in-loop de-
blocking filter. Meanwhile there is no mismatch between decoder and 
encoder for integer transform scheme. 

5.3.2 System analysis 

The coding performance of H.264/AVC comes at the price of huge 
computational complexity. According to the instruction profiling with 
HDTV specification, H.264/AVC decoding process requires the computation 
of 83 Giga-instructions per second (GIPS) and memory access requirement 
of 70 Giga-bytes per second. As for H.264/AVC encoder, up to 3.6 Tera-
instructions per second (TIPS) and 5.6 Tera-bytes per second computational 
resources are required. Dedicated hardware is a must to make most of 
H.264/AVC applications feasible.  

It is a tough job to map the H.264/AVC procedures into the efficient 
system architecture. In addition to extraordinary huge computational  
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complexity and memory access requirement, the coding path including 
prediction, reconstruction, and entropy coding is very long. The involved 
functionalities are not only abundant but also complex. Therefore, an 
efficient task partition with pipelining structure is required. Besides, an 
efficient memory hierarchy with data reuse scheme is essential to reduce the 
bandwidth requirement.  

Furthermore, the architecture design for the significant modules is also 
very challenging. Figure 32 and 33 shows the run time profile of 
H.264/AVC encoding and decoding, respectively. The inter prediction takes 
97.32% of the computational load, and obviously is the processing 
bottleneck of an H.264/AVC encoder. For a decoder, the inter prediction and 
de-blocking filter contribute the most computation time (39% and 36%), 
while IQ/IDCT, entropy decoding, and intra prediction occupy the rest.  
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Figure 32. Run time profile of H.264/AVC inter frame coding 
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Figure 33. Run time profile of H.264/AVC decoding 
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The reference software adopts many sequential processing of each block 
in the macroblock (MB), which restricts the parallel processing. The coding 
tools involve with many data dependencies to enhance the coding 
performance, but the considerable storage space is the penalty. The block-
level reconstruction loop caused by intra prediction will induce the bubble 
cycles and decrease the hardware utilization and throughput. Last but not 
least, there are functionalities that have multiplex modes, and the re-
configurable engine to achieve resource sharing is a key for efficient 
implementation. 

5.3.3 Architecture design 

The encoder design in [57] and the decoder design in [58] are chosen for our 
case study of H.264/AVC codec. 

For the encoder part, the traditional two-stage MB pipeline, prediction 
(ME) and block engine (MC+DCT+Q+IQ+IDCT+VLC), is not suitable 
because of the long critical path and feedback loop. Figure 34 shows the 
four-stage macroblock pipelining architecture of the encoder. According to 
the analysis in [57], five major functions are extracted and mapped into four-
stage MB pipelining structure with dedicated task scheduling. As for the 
decoder, Figure 35 shows the hybrid task pipelining architecture for the 
decoder. A hybrid task pipelining scheme, a balanced schedule with block-
level, MB-level, and frame-level pipelining, is proposed to greatly reduce the 
internal memory size and bandwidth. 

Moreover, the design consideration and optimization for its significant 
modules including bandwidth optimized motion compensation (MC) engine,  
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Figure 34. Block diagram of the H.264/AVC encoding system [57] 
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Figure 35. Block diagram of the H.264/AVC decoding system [58] 

re-configurable intra predictor generator, parallel integer ME (IME) and 
fractional ME (FME) architectures are involved. The design shows that,  
by combining these efficient architecture and bandwidth reduction  
scheme, efficient implementation for H.264/AVC video coding system is 
achievable. 

5.3.4 Prototype implementation 

Detailed implementation data of both the encoder and decoder are provided 
here for reference. 

5.3.4.1 H.264/AVC encoder 
The encoder targets the baseline profile up to level 3.1. The maximum 
computational capability is real time encoding of SDTV 30fps with four 
reference frames or HDTV 30fps with one reference frame. The maximum 
processing capability is 108K MB/sec. This specification has 3.604 TOPS of 
computational complexity and 5.66 TByte/sec memory access requirement 
according to the profiling of the reference software implementation without 
any simplification.  

Table 5 shows the logic gate count profile synthesized at 120 MHz. The 
total logic gate count is about 923K. Similar to the instruction profile, the 
prediction engine, including IME, FME, and INTRA stages, dominates 90% 
of logic area. As for on-chip SRAM requirement, 46 memory blocks, totally 
34.72 K Bytes, are required. A prototype chip is fabricated by UMC 0.18µm 
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1P6M CMOS process. Figure 36 shows the chip micrograph, and the chip 
specification is in Table 6. 

Table 5. Gate count profile of the H.264/AVC encoder [57] 

Functional block Gate counts Percentage
Central control 34,151 3.7 %
IME stage 305,211 33.08 %
FME stage 401,885 43.55 %
INTRA stage 121,012 13.11 %
EC stage 29,332 3.18 %
DB stage 20,152 2.18 %
RAM BIST 11,025 1.19 %
Total  922,768 100%

 

 

Figure 36. Chip micrograph of the H.264/AVC encoder [57] 

Table 6. Chip specification of the H.264/AVC encoder [57] 

Technology UMC 0.18μm 1P6M CMOS 
Pad/Core voltage 1.8V 
Core area 7.68 × 4.13 mm2 
Logic gates 922.8 K (2-input NAND gate) 
SRAM 34.72 KByte 
Encoding features All baseline profile compression tools 
Max. number of ref. frames 4 
Max. search range (ref. 0) H[-64,+63], V[-32,+31] 
Max. search range (ref. 1-3) H[-32,+31], V[-16,+15] 
Operating frequency 81 MHz for D1 (4 ref. frames, Max. search range) 
 108 MHz for HDTV 720p (1 ref. frame, Max. search range) 
Power consumption 581 mW for D1 
 785 mW for HDTV 720p 
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5.3.4.2 H.264/AVC decoder 
The specification of this decoder is baseline profile at level 4.1. It can 
support real-time decoding of 2048 × 1024 video with 5 reference frames. 
The maximum operational frequency of this prototype chip is 120 MHz. 

Table 7 shows the logic gate count profile. The total logic gate count is 
217 K. 10 K bytes of on-chip SRAM are required. Figure 37 shows the 
layout view of the decoder. The core size is 2.19 × 2.19 mm2. For highest 
specification, the power consumption is 186.4 mW for 2048 × 1024 30fps 
video format with 120 MHz operating frequency. For low power 
applications, the power consumption is 1.18 mW for QCIF (176 × 144) 
15fps video format with 1.5 MHz operating frequency. The detailed chip 
specification is shown in Table 8. 

Table 7. Gate count profile of the H.264/AVC decoder [58] (synthesized at 120 MHz 
operating frequency) 

Functional block Gate counts Percentage
Central control 22,695 10.4 %
Entropy decoder 21,121 9.7 %
MC engine 69,695 32.1 %
Intra engine 28,707 13.2 %
IQ/IT 19,792 9.1 %
De-blocking filter 35,437 16.3 %
SRAM BIST 8,973 4.1 %
Misc. 11,043 5.1 %
Total 217,428 100 %

 

 

Figure 37. Chip layout of the H.264/AVC decoder [58] 



68 Chen et al.
 
Table 8. Chip specification of the H.264/AVC decoder [58] 

Technology TSMC 0.18μm 1P6M CMOS 
Pad/Core voltage 1.8V 
Core area 2.19 × 2.19 mm2 
Logic gates 21.743 K (2-input NAND gate) 
SRAM 9.98 KByte 
Support features All baseline profile compression tools 
Maximum number of ref. Frames 5 
Maximum search range H[-2048,+2047], V[-512,+511] 
Operating frequency 120 MHz for 2048×1024 30fps 
Power consumption 186.4 mW for 2048×1024 30fps 
 1.18 mW for 176×144 15fps 

6. SUMMARY 

Multimedia IP development is one of the most important issues in a 
multimedia SOC design. In this chapter, an overview on how to design 
efficient image and video codecs are described. From theory to practice, the 
design methodologies and case studies are presented. Since the properties of 
high computation and high bandwidth requirement of image and video 
codecs, dedicated parallel hardware architecture can provide most powerful 
and efficient design. Even if a programmable solution is being considered, 
the know-how of dedicated architecture design will be the foundation for the 
programmable architecture to enhance its processing ability.  
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Abstract: As the increasing integration density of various IPs into the SoC, the memory 
system becomes a dominant role to determine the final performance, area, and 
power consumption of SoC. The memory system design involves various 
aspects, from bottom level on-chip or off-chip memory technologies, to the 
high level memory optimization and management. Between the two levels is 
the memory controller to efficiently deliver the required data within the power 
and delay constraints. The PC-driven off-chip memory continues its high 
density and high bandwidth development track. However, it also adapts its 
interface and power to be either fast random access or low power consumption 
to fit into the divergent needs of various SoC applications. The embedded 
memory now is driven by the SoC and thus becomes more integration friendly, 
either at the interface or at the process technologies. Memory optimization and 
management optimizes the memory access by high level reordering, 
remapping and memory size compression. Power of the memory system can 
be further reduced by transition reduction of memory bus and dynamic power 
management of memory systems. Further optimization of memory access 
needs the memory controller to fully utilize the available bandwidth. Since the 
components in SoC have divergent needs, either bandwidth sensitive, or 
latency sensitive, the memory controller design also quick evolves to be a 
more intelligent one to provide the different quality and latency guaranteed 
access. The optimization of memory system is part of the complex SoC design 
problem, which can only be analyzed and solved within the target applications 

Keywords: SoC memory system, memory controller 

Recently multimedia and wired/wireless communication technologies 
have fundamentally changed the way we create, communicate, and consume 
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audiovisual information. These technologies have not only transformed 
existing applications and services like the distribution of entertainment video 
to the home but also spawned brand new industries and services like video-
conferencing, direct-to-home satellite distribution, digital video recording, 
video-on-demand services, high-definition TV, video on mobile devices, 
streaming video, etc. Realization of these applications relies on VLSI for 
cost-effective implementation. 

Researches on architecture design have shown that 50-80% of the area 
cost in (application-specific) architectures for real-time multi-dimensional 
signal processing is due to memory components, e.g., embedded SRAMs, 
and register files1. The International Technology Roadmap for 
Semiconductors (ITRS) also shows that memory already accounts for over 
50 percent of a typical SoC, and will grow to 94% by the year 20142. Also 
the power consumption is heavily dominated by memory access both in 
custom hardware3 and in processors4. Table 1 shows the relative energy of 
different operations3,5. Data transfer and memory access operations consume 
much more power than a data-path operation. For example, fetching an 
operand from an off-chip memory for an addition operation consumes 33 
times more power than the addition itself in case of a processor. Furthermore, 
memory access performance, including latency and bandwidth, could 
significant affect system performance6,7,8. This is especially true in high-
performance, memory-intensive applications, such as those for multimedia 
processing. Obviously, a promising avenue for further optimization of SoC 
design under various design constraints must take data transfer and memory 
subsystems into consideration. 

In this chapter, we will discuss and review the issues and status of SoC 
memory systems from three aspects, under layer memory technology, upper 
layer memory optimization and management, and memory controller. First, 
we will review the current status and development trend of memory 
technology, used inside the chips or for the off-chip memory, and how they 
affect the SoC design. The latest development of embedded memory focuses 
on the smaller area size and technology-friendly integration, whereas the off-
chip memory continues its development on two tracks: high density and high 
bandwidth, or the ultra low power memory for portable SoC applications.  
 
Table 1. Relative energy per operation at a 1.5V supply in 0.8μm CMOS technology 

Operation Relative energy/op 
16b carry-select adder 1 
16b multiplier 3.6 
8×128×16 SRAM (read) 4.4 
8×128×16 SRAM (write) 8.9 
External I/O access 10 
16b memory transfer 33 



SoC Memory System Design 75
 
These new developments bring new transfer characteristics and also new 
access limitation to the SoC designer. At the second part, we will review the 
current status of several memory optimization techniques, including 
memory-aware techniques and low power optimization for memory systems, 
especially their applications on the memory and bandwidth demanding 
multimedia chips. The final part reviews the recent development of the 
memory controller design. The development of memory controller is 
evolved from a simple protocol translation role to the smart bandwidth 
provider with different quality and latency guaranteed scheduling. 

1. MEMORY TECHNOLOGY 

Today’s consumer electronics products process massive amounts of data for 
audio and video and other applications. Thus it demands variety of memory 
devices and memory size to work together, from volatile DRAM for run-
time storage and nonvolatile flash for massive data and program storage. As 
the devices become portable, specialized low power memory, such as mobile 
pseudo SRAM or mobile DRAM emerges to support these battery-powered 
applications. Besides, as the target application of the embedded system 
diverges, the memory requirements are also diverse: graphics chips favor 
streaming, while networking equipment favors fast random access latency of 
40-byte (IP) packets or 53-byte (ATM) packets. If the memory size demand 
is small enough, several megabytes, embedded memory can provide another 
high bandwidth solution that off-chip memories cannot offer, which is a 
solution that current high bandwidth demanded graphics chip or video 
encoder adopts. Divergent needs mean divergent technologies and thus 
heterogeneous integrations. These divergent memories will be reviewed in 
this section, first on the external memory especially the DRAM system, and 
then on the embedded memories. Since many books and papers have 
covered the memory technologies, our focus will be the development trend 
and the integration issues of these memory technologies. The discussion will 
more bias to RAMs instead of ROM or flash since they store the time-
varying data and thus significantly affect the overall area, speed and power. 

1.1 Off-Chip Memories 

Traditionally, DRAM roadmap is largely driven by the PC products. These 
mainstream PC-favored DRAMs constitute more than 90% of total 
production, achieving the lowest price per MB, and thus widely supported 
and used in other domains. The development trends of PC-based DRAMs 
focus on supporting higher bandwidth, as defined by JEDEC. Most of the 
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modern DRAM development is based on SDRAM. A typical SDRAM 
accesses one data at the positive clock edge. To improve its throughput, 
DDR SDRAM (Double data rate SDRAM) enables two (2n) instead of one 
(1n) data prefetch for one bus cycle by adopting double clock edge data 
sampling. Thus, the data transfer rate of DDR is twice of that in SDRAM. 
Furthermore, the latest DDR2 SDRAM enables 4n-prefetch, in contrast to 
2n-prefetch realised in DDR. It means, in fact, that at each memory bus 
cycle, DDR2 transmits 4 (instead of 2) bits of information from logical 
(internal) memory chip banks into I/O buffers using one data interface line. 
This makes DDR2 SDRAM be able to provide quadruple bandwidth than 
SDRAM with the same core operating frequency. DDR2 SDRAM also 
added the features of posted CAS and additive latency to prevent DRAM 
command bus conflict. To operate at the high frequency, DDR2 SDRAM 
adopts the on-die termination to avoid signal reflections induced delay along 
the signal bus lines. The overall operating voltage is also reduced from 2.5V 
to 1.8V to save the power consumption and allow higher frequency 
operations. Due to the lowest cost-per-bit advantage, SDRAM and DDR 
SDRAM have been widely used in the low and medium bandwidth SoC 
system. For high bandwidth applications, DDR2 SDRAM will be a suitable 
solution. 

The new development of DRAM improves the burst bandwidth. However, 
the random access latency almost remains unchanged for years. This 
bandwidth favor improvement partly is due to the cost-reduction centric 
improvement of DRAM industry, and partly is due to of the inherent DRAM 
architecture: one row access can get parallel data from the sense amplifier by 
selecting different column address. Patterson9 has concluded that “bandwidth 
is improved by at least the square of the improvement in latency”. This 
imposes the design challenge to the SoC designer: how to efficiently take 
advantage of the burst access bandwidth while supporting the low latency 
activities.  

Thus, how to select the proper DRAM types for the SoC systems depends 
on the application needs. For streaming applications like video and audio 
processing, conventional DRAM is quite suitable. However, for the latency 
sensitive applications like networking, low latency DRAMs can satisfy both 
the latency and bandwidth needs. 

Specialized low latency DRAMs like RLDRAM (reduced latency 
DRAM), or FCRAM (fast cycle RAM) have been developed for such special 
networking purpose10. The low latency DRAM improves the random access 
time by pipelining the memory access into three-stage: the address decoder, 
the memory array, and the I/O buffer. In a typical DRAM, the DRAM must 
first decode the row address, find the location in the memory array and then 
read/write the data from/to the I/O buffer. Since all functions are in series,  
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a conventional DRAM cannot start the next row address sequence before 
completing all three stages. By pipelining these three functions, FCRAM is 
able to start a new row address access following previous one. The result is a 
random cycle time of 20 to 30 ns for FCRAM compared with 60 to 70 ns for 
other types of DRAMs, such as DDR SDRAM. 

For mobile applications, low power consumption becomes one of the 
major concerns. SRAM has been the choice since it does not have a leaking 
per-cell charge-storage capacitor that requires periodic refreshing and draws 
the standby current. However, as more and more functions are squeezed into 
the system, the required amount of code and data storage also increases 
exponentially. Thus, the cost-per-bit advantage of DRAM over SRAM 
becomes apparent. To address both needs, size and power, specialized low 
power memory like mobile DDR SDRAM or pseudo SRAM have been 
developed.  

Mobile DDR SDRAM incorporates several low power functionalities 
into DDR SDRAM to reduce the standby current. First, the supply voltage is 
reduced to 1.8V from 2.5V, providing half of the power reduction. Second, it 
now can support partial array self refresh (PASR), only half or one-fourth, 
instead of whole DRAM array. Thus, only the array with the valid data will 
be refreshed to avoid unnecessary self refresh current.  To further reduce the 
self refresh current, it also lengthens the refresh period for lower temperature, 
called temperature compensated self refresh (TCSR). Finally, when the 
DRAM is not used, e.g., the standby mode in the mobile devices, these low 
power DRAMs can enter into the deep power down mode to completely turn 
off the self-refresh operation.  

Pseudo SRAM, as its name suggests, combines advantages of the low 
cost DRAM cell and the simple traditional SRAM interface, non-
multiplexed address bus. To solve the power consumption of DRAM cells, 
low power techniques adopted in mobile DDR SDRAM are also applied to 
the pseudo SRAM designs. Furthermore, to work like traditional SRAM, 
non-multiplexed address bus provides high speed random access time, and 
the internal self-refresh logic eliminates the refresh needs of DRAM cell.  

The integration of off-chip memories is divergent from system-on-board 
level to the system-in-package level. Traditional system-on-board level 
integration has its advantage of well-established practices for years, 
including chip testing, assembly and board testing. However, as the system 
is getting higher operating frequency and smaller former factor, system-in-
package (SiP) approach has also attracted designer’s attention11. SiP 
integrates the required bare die of logic, memory and analog parts together 
into the same package. Since different components can use its best suitable 
technology, the component performance will not be sacrificed and on-same-
package connections have much lower capacitive loading and thus lower 
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delay than off-chip communications. The SiP integration could be a 2-D flat 
or 3-D vertical integration or mixed 2-D/3D. The 2-D flat style places all 
dies on the flat silicon and connects each other. The 3-D vertical style stacks 
all dies for connection. Since many dies are integrated in a small area, the 
heat dissipation and chip testing has to be considered for the overall package. 
How to design an effective system chip using either SoC, or SiP needs 
detailed evaluations on the cost, technologies and functional partitioning for 
the optimal integration.   

1.2 Embedded Memories 

With the VLSI technology stepping into the deep submicron era, hundreds of 
millions of transistors can be integrated into a single chip. Though more 
logic can be integrated into the chip, however, most of the transistors go to 
the memory, ranging from half to estimated 90% of the silicon real estate, 
according to ITRS. Embedded memory brings a lot of benefits but may not 
be cheaper and naturally coexist with other logic on the same chip. 

Embedded memory offers the major benefits of low power, high 
bandwidth, high speed, and enhanced flexibility and the side benefits of 
minimal board space, and increased reliability. The embedded memory can 
offer flexible customized granular size like 66KB for the target application 
without the power-of-two size restriction like 16MB in the external memory. 
When the memory is integrated into the chip, all the high loaded and limited 
off-chip interconnections are replaced by a small loaded and almost 
unlimited on-chip communications. Thus, the power consumption and 
performance are improved significantly. This wide bandwidth is especially 
useful and attractive for bandwidth demanding applications like video and 
graphics, a major user for large embedded memories12,13. 

However, how to integrate these embedded memories with other logic 
circuits requires tradeoff on process compatibility and performance. Logic 
and memory are fundamentally different technologies with sometimes-
contradict demands, from the interconnection requirement to the cell 
structure14. Logic usually scatters across the chip in an irregular fashion and 
requires more metal layers, six or more, for interconnection, while memory 
array is more symmetrical and repetitive and requires far less 
interconnection than logic. On the other hand, standard memory process 
requires four or more polysilicon layers for floating gate of EPROM, 
EEPROM, and flash memory, the resisters of a 4T SRAM cell, and the 
stacked-capacitor’s DRAM cells, while logic process usually uses one or two 
polysilicon layers, just for transistors. An extra metal or polysilicon layer 
adds cost, complexity, and fabrication time. In addition, standard logic 
transistors have thin oxides with low threshold for fast switching time while 
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many memory technologies prefer the thick oxides and high threshold for 
small leakage current. A compromise for logic or DRAM process will make 
logic slower or memory high leakage current. Beyond the process, the fast 
switching logic introduces noise to the sensitive memory core. The flash 
memory might require high voltage for programming and erasing. All of 
these issues have to be considered and clarified for integration. 

In general, the integration approach can be classified into two approaches: 
logic process compatible embedded memories and dedicated process 
embedded memories15.  

Commonly used logic process compatible embedded memories are ROM 
and 6T (six-transistor) SRAM. ROM cells are much smaller than RAM cells. 
Due to its read-only features, its application is also limited to permanent 
lookup table or programs. 6T SRAM uses cross coupled and regenerative 
structure to offer high speed but also result in lower density. Thus it is 
preferred used in frequently access, time-critical storage or small amount of 
storage, like caches or local buffers. Beyond speed, power is also a concern 
for large embedded SRAMs. Since dynamic power of SRAM is linearly 
proportional to its size, N-bank partition can reduce the power by N-fold. 
For deep submicron process like 130nm and smaller feature size process, the 
leakage current will become a source of power consumption, which can be 
reduced by changing the SRAM circuit design or turning off the power 
supply for SRAM blocks to suppress the leakage current16.  

Dedicated process embedded memories usually add the extra processing 
steps for memory fabrication into the logic process. The required steps 
depend on the targeted memory technologies and design.  

For SRAM, since traditional 6T SRAM occupies large area, small area 
SRAMs cell like 1T SRAM17 have been developed to offer DRAM like 
density, about 1/4 or 1/5 area of 6T SRAM. 1T SRAM uses one transistor 
with one plane capacitor to avoid a complex extra process to build the stack 
or trench capacitor in conventional DRAMs. The plane capacitor can be built 
by adding one extra mask into the common logic process, which is more 
logic process compatible but also less charge. The required refresh operation 
is transparent to the user. An internal refresh timer is included into the 
design to generate periodic refresh requests to the memory banks. The 
refresh operation will be delayed if any access is active. 

Direct porting the dedicated DRAM macro into logic process will require 
a lot of extra masks and processing steps, about 13 to 20 steps. Embedded 
DRAM suppliers reduce the cost added to the logic process by using an array 
of DRAM technologies ranging from traditional stacked and trench 
capacitors, to simple logic compatible planar capacitors, shallow trench 
capacitors and MIM (Metal-Insulator-Metal) capacitors. On the horizon is 
the development of capacitor-less DRAMs18. The latest development of 
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embedded DRAM tries to be more logic process friendly and explore the 
unique benefit of the embedded environment, unlimited pin access, to 
enhance the access speed. The capacitor-less DRAMs exploit the floating 
gate effect to store the charge in the devices’s body. This eliminates any 
extra processing steps. The trench capacitor based embedded DRAM can 
bury the capacitor under the logic and thus requires no extra process after the 
capacitor is fabricated. The embedded DRAM such as NEC eDRAM19 
changes the embedded DRAM interface into the non-multiplexed address 
and achieves the single cycle SRAM-like fast random access. The 
conventional SDRAM access commands are also simplified to be SRAM-
like access. The whole embedded DRAM works like SRAM with the 
DRAM cell. Thus, the only extra work to do is the refresh operation. To be 
logic process friendly, the capacitor structure is also changed from the 
conventional high temperature PIP (Poly-Insulator-Poly) in the DRAM 
process to the low temperature MIS (Metal-Insulator-Silicon) or MIM 
(Metal-Insulator-Metal) capacitor structure. Low temperature process whose 
temperature is below that used in a normal CMOS logic process reduces the 
required thermal cycling that would otherwise cause transistor performance 
degradation during the fabrication.  

Embedded nonvolatile memories have attracted many applications in 
modern SoCs, ranging from industrial, consumer, networking, office 
automation, to smart cards and RFID tags. They provide nonvolatile storage 
for frequently read but rarely written configuration information. However, 
the embedded nonvolatile memory still adds the process complexity by the 
introduction of the floating gate for the charge storage and retention, high-
voltage transistors, as well as designs for routing the required high voltages 
to the memory array; and the complexity of decoding, sensing, timing 
circuits, and algorithms stored in state machines. For SoC integration, the 
new development diverges from the commodity flash to logic process 
compatible design, like SST’s split-gate (SuperFlash) cell design20.  

Disregarding the underlying process, the integration of embedded 
memories is still a problem since the large area blocks will impose large 
blockage areas that place-and-route tools must detour around to connect the 
I/O and core logic areas. To be SoC friendly integration and with the aid of 
multiple level of metal layers, the latest embedded memories allow active 
signals to pass over the macros, and thus the router can take the shortest path 
between the I/O and core areas. This helps layout designers maintain signal 
integrity, and easily optimize critical timing paths. To avoid the signal 
interferences with the capacitance values of the embedded memories, these 
embedded memory macros or the designers usually have to add one grounded 
metal layer over the macro to isolate the macro. Since the number of metal 
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layers for the embedded memory is usually no more than four, the modern up 
to seven metal layer process still provides enough extra layers for routing. 

With the integration into the chips, the memory architecture is also more 
flexible to be adaptive to the target function. Various techniques can be 
applied here, like extending the memory hierarchy, memory partitioning, and 
bandwidth optimization. For more details, readers can refer to the survey 
papers by Benini et al.15.  

2. MEMORY OPTIMIZATION AND 
MANAGEMENT  

Advanced VLSI techniques make both density and speed of logic 
manufacture processing much improved. But advanced manufacture 
processing of memory improves more in density and less in speed. This 
makes memory system become the bottleneck of the whole system 
performance, especially for those memory systems mainly using off-chip 
DRAMs. To improve memory peak bandwidth, approaches such as wider 
data buses, higher frequencies, double data rates or packetized protocols 
(e.g., Rambus DRAM and SLDRAM) are used. Moreover, these approaches 
are independent of the applications. Another kind of approach to improve 
memory system performance is to hoist the utilization of available 
bandwidth. This approach usually takes either or both of the characteristics 
of the memory system and the memory access behavior of applications into 
consideration. When considering image processing applications, for 
example, their behaviors are usually modeled as operations, such as 
transforming and filtering, on data arrays. Due to the native massive data of 
arrays, these arrays are often stored in off-chip DRAMs. While DRAMs are 
cheaper, they are slower and have memory access penalties (e.g., page miss 
and bank miss) that reduce the utilization of memory bandwidth. Thus 
simple one-to-one mapping between the array variables and the memory 
leads to an inefficient design. A lot of proposals to improve bandwidth 
utilization are based on the loop manipulations by exploiting the regularity 
and locality of application’s memory access behavior with the characteristics 
of memory system. These loop manipulations include loop interchange, 
reversal, skewing, splitting, merging, and padding, whereas the target 
memory systems cover caches, scratch-pad memories, and DRAMs. 

2.1 Reordering and Remapping 

In this section, we briefly review two schemes, reordering and remapping, 
for memory access improvement. In the former approach, memory access 
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can be statically or dynamically reordered. Ayukawa21 uses a dynamic 
access-sequence control scheme to enhance random-access performance of 
embedded multibank DRAM macro. This scheme hides the page-miss 
penalty by reordering the access, if possible. The same authors design an 
access optimizer for embedded DRAM22. The access optimizer uses inter-
bank, non-blocking access scheme to decide the sequence of data from 
different masters to reduce the influence of miss penalty while the sequence 
from data for the same master is kept unchanged. McKee et al.23 propose a 
hardware-assisted access reordering by exploit page-mode operation of 
DRAM for vector computations to maximize the efficiency of the system 
memory bus. They also extend their work for systems with multiprocessors24 
and Direct Rambus memory25. Panda et al.26 incorporate EDO DRAM access 
model into high-level synthesis and use loop transform to statically reorder 
the memory access to obtain better memory bandwidth utilization. They also 
extend their work for SDRAM27, which exploits two new features of 
SDRAM, burst mode access and multiple bank architecture, to gain 
performance improvement. 

Unlike memory access reordering that changes the order of accessed 
data, remapping changes the positions of data but keeps the access order 
unchanged. This may save buffers and reduce design complexity needed in 
reordering approaches. However, in some cases, such as random access, we 
do need reordering schemes to get better memory bandwidth utilization. On 
the other hand, if the characteristics of memory access can be predetermined, 
remapping approaches are usually a better way to gain more efficient 
memory access. Some works in this area are briefly introduced here. Panda 
and Dutt28 propose a tile-based memory mapping to lower power through 
reducing address bus activity. Tile-based memory mapping is also used to 
tailor some specific applications, such as MPEG-2 video decoding29, for 
SDRAM to reduce page breaks. Gleerup30 uses both a tile-based rendering 
algorithm and a round-robin manner for memory bank accessing to hide the 
page open/close operations and hence achieve high memory bandwidth 
utilization. Chang and Lin31 allocate arrays to different banks of SDRAM by 
utilizing SDRAM’s multi-bank characteristic, though their assumption to 
allocate one row of any array to a memory page may not be practical enough 
when the row size of an array is either too small or too large. Schmit and 
Thomas32 have presented faster and less hardware techniques for generating 
addresses for multiple single-dimensional arrays that have certain layout and 
size relationships.  

One point must be noted is that the DRAM access ownership of each 
functional unit in multi-core systems also has to be guarded for a reasonable 
duration. Otherwise, the advantages of remapping are diminished. 
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2.2 Transition Reduction of Memory Buses 

As mentioned earlier, memory accesses take a significant part of power 
consumption. Therefore, techniques to reduce this part of power dissipation 
are appreciated. A lot of works are investigated on the topics of reducing 
memory traffic33 or reducing memory bus activity. As for reducing memory 
bus activity5,7, optimized mapping of data28, scheduling of memory access26, 
and bus coding schemes34,35 are proposed. Except for bus coding schemes, 
most of these techniques are also helpful in performance improvement. 

To reduce transition of memory buses, including data bus and address 
bus, coding techniques are widely investigated. Due to the high correlation 
between consecutive addresses, most coding techniques focus on address 
buses, especially for instruction address buses. Gray coding36 was proposed 
to minimize the transitions on the instruction address bus, such that there is 
only one transition between two consecutive addressees. However this 
coding scheme does not work well for data buses because these buses are 
typically not sequential. As for data buses, the bus-invert coding37 and its 
variants38,39 are more applicable. In bus-invert coding, for example, the total 
number of transitions occurring between the newly arrived data and the 
present data on the bus is first calculated. If this number is more than half the 
number of bus wires, then the data is inverted and sent on the bus. Otherwise, 
the data is sent as is. The inversion of the bus is signaled through an extra bit 
line. This extra bit, however, is not acceptable in some systems. To avoid the 
use of extra signals, Mamidipaka et al.40 propose adaptive schemes based on 
self-organizing lists to exploit the spatial and temporal locality of the 
addresses. This approach reduces the transition activity of up to 54% in data 
address busses and up to 59% in multiplexed address busses. 

To employ bus coding techniques, several issues must be considered, i.e., 
latency, extra control signals, and power consumption overhead of the 
chosen technique. Because the protocols of commodity memory cannot be 
modified, the space of practical coding schemes for memory buses is limited.  

2.3 Reduction in Memory Size 

Most embedded systems have tight bounds on memory space. Various 
techniques, therefore, have been investigated to conquer this issue. 
Compression is one of the ways of reducing memory footprint. Note that, if 
used correctly, compression can also improve the execution cycles and 
reduce power consumption as it reduces the amount of data that needs to be 
accessed from the memory and needs to be communicated over the bus. 
Furthermore, the smaller size of memory also dissipates less power. 
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Code compressions are widely applied to various processor architectures, 
including RISC, DSP and VLIW, etc. The compression granularity also 
ranges extensively from an instruction, a cache line, a basic block, and a 
function. Most compression schemes strive to produce the smallest possible 
encoding of their inputs. Program compaction is stressed by an extra 
condition: the compacted representation itself is executable. This condition 
severely limits the compression techniques that can be applied to compact 
code, and consequently results in poorer compression ratios than 
unconstrained compression schemes can achieve. Furthermore, when 
compressing a series of instructions, certain information needs to be 
retrieved at will. For example, branching and function entry points must be 
able to be decompressed on demand. This problem has led to the efforts 
aimed at designing processors with execution modes in shorter instruction 
formats (e.g., ARM Thumb and MIPS16).  

Compression on data may be subjected to different constraints, such that 
a lossy compression scheme sometimes is acceptable. For example, lossy 
compressions41,42 for recompressing the reconstructed reference frames are 
acceptable for maintaining the random access capability of motion-
compensated video coding scheme, such as MPEG-4 and H.264/AVC. 
Instead of using recompression schemes, a simpler way to reduce the size of 
the frame buffer is to store scaled pictures43,44. Without the memory 
reduction schemes for the reconstructed reference frames, about 8.9 Mbytes 
of frame memory could be required for three video frames, each has a frame 
size of 1920×1080 and 4:2:0 sampling format. As for H.264/AVC, the size 
of the frame buffer is even more demanding, due to the more reference 
frames, the more bits per sample, and the larger frame size could be encoded. 
Therefore, memory reduction schemes for frame buffer will be a more 
interesting topic for this advanced video coding standard. The tradeoff 
among picture quality degradation, random access capability, hardware 
complexity for the reduction schemes, and the latency of reference data 
extraction should be carefully investigated. 

2.4 Dynamic Power Management 

Dynamic power management can also be applied to the memory system45. In 
addition to the traditional clock gating approach, Farrahi46 et al. propose a 
memory segmentation (also called partitioning) scheme that reduces power 
by exposing idleness in memory access. Whenever a memory segment is idle, 
which is the duration when no useful information is stored into it, the 
memory segment can be put in the sleep mode. Therefore, its clock can be 
stopped, or its refresh signal can be shut down, thereby minimizing its power 
dissipation.  
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Farrahi et al. also propose a worst-case exponential time algorithm for 
solving the optimization problem of finding the optimum assignments of 
variables to memory segments that maximize the total idle time of all 
segments. In their original proposal, instantiating memory segments 
increases the number of memory components, the area and the wiring 
overhead. However, this kind of memory segmentation scheme can be 
considerable without worrying about the aforementioned drawbacks when a 
DRAM with partial-array self-refresh47 (PASR) capability is available. 
PASR capability is already widely supported in mobile RAMs and will be 
adopted in DDR3 DRAMs. 

2.5 Constraint-Aware Target for Memory Systems 

We define the constraint-aware target as one in which meeting the constraint 
goal is a significant design consideration and in which the target modifies its 
behavior based on current constraint information. As for a traditional target, 
it is shielded from the detailed information of constraint or has no 
knowledge of the constraint. Therefore, a constraint-aware target 
aggressively meets the constraint, whereas the constraint-unaware targets 
have little improvement or even violate the optimization goals. 

For example, Grun et al. present a memory-aware compiler approach that 
exploits efficient memory access modes by extracting accurate timing 
information, allowing the compiler’s scheduler to perform global code 
reordering to better hide the latency of memory operations. Their compiler 
generates aggressive schedules that are on the average 24% smaller than one 
that assumes no knowledge of memory timing. Marchal et al. propose 
SDRAM-energy-aware memory allocation for multimedia applications such 
that the tasks’ data is assigned to the available SDRAM banks, thereby 
reducing the number of page-misses and thus the energy consumption. Lee 
et al. present a quality-aware memory controller that can meet quality-of-
service (QoS) guarantees, which are defined as providing different memory 
access requirements for fair distribution of bandwidth and shortest possible 
transaction latency. This memory controller will be introduced in detail in 
the next section. 

3. MEMORY CONTROLLER 

As aforementioned, memory access is becoming an important limiting factor 
with respect to the system performance. It becomes even more critical when 
data transfer is to off-chip memory. In fact, off-chip memory bandwidth is 
regarded as the most ‘scarce’ or ‘expensive’ resource in Nexperia-DVP 
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products50. Unlike the on-chip communication, there are more restrictions on 
the available ‘channels’ and protocols for the off-chip memory access. For 
on-chip communication, the number of physical channels is much more 
easily increased by using more wires. The protocols for on-chip 
communication are also more flexible, efficient, and free (i.e., independent). 
For example, split-transaction or out-of-order returns can be supported 
whenever necessary. In contrast, the protocols of off-chip memory are 
administrated by the memory venders and organizations. In addition, the 
performance of off-chip memory is also significantly affected by the internal 
architecture of the off-chip memory. It becomes especially critical when 
DRAMs are used as off-chip memories. 

In this section, we first identify the requirement of memory sub-system 
and the limitations of conventional designs. Then, we introduce the basics of 
off-chip SDRAM to understand the characteristics of SDRAM access. 
Finally we present the architecture of our multi-layered quality-aware 
memory controller. To evaluate the design, we show some experiment 
results, including some constrained random experiments under different 
parameters and a simplified STB SoC to examine the QoS performance of 
several DRAM controllers. 

3.1 Memory Sub-System Requirement 

Multimedia processing technologies have been widely applied in many 
systems. These technologies have not only provided existing applications 
like desktop video/audio but also spawned brand new industries and services 
like digital video recording, video-on-demand services, high-definition TV, 
etc. The confluence of hardware and software technologies has given 
computers the ability to process dynamic media (video, animation, music, 
etc) where before they could handle only static media data (text, images, and 
so on). To support complex multimedia applications, architectures of 
multimedia systems must provide high computing power and high data 
bandwidth. Furthermore, a multimedia operation system should support real-
time scheduling and fast interrupt processing51. 

The tremendous progress in VLSI technology provides an ever-increasing 
number of transistors and routing resource on a single chip, and hence allows 
integrating heterogeneous control and computing functions to realize SoCs, 
the improvement of off-chip communication is limited due to the number of 
available I/O pins and the physical design issues of these pins. As many recent 
studies have shown, the off-chip memory system is one of the primary 
performance bottlenecks in current systems. For example, Hennessy and 
Patterson show that while microprocessor performance improved 35% per 
year until 1986, and 55% per year since 1987, the access time to DRAM has 
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been improving about 5% per year52. Rattner illustrates that whereas a Pentium 
Pro requires 70 instruction cycles for a DRAM access, a Pentium 4 running at 
2 GHz takes 500 to 600 cycles53. Even the performance of DRAM is ever-
improved, the system overheads like turnaround time and request queuing 
account for a significant portion of inefficiencies in memory access. 
Schumann reports that 30–60% of primary memory latency is attributable to 
system overhead rather than to latency of DRAM components in Alpha 
workstations54. For multi-core SoC designs, the performance of memory 
subsystem is even more important, due to the share of memory bus with 
different access requirements of these heterogeneous cores. 

Recognizing the importance of high performance off-chip DRAM 
communication as a key to a successful system design, several SDRAM 
controllers and schedulers have been proposed to make the most efficient use 
of the off-chip DRAM memory subsystem. For single-processor 
environments, several approaches have been presented to improve memory 
bandwidth utilization. McKee’s Stream Memory Controller (SMC) reorders 
memory references among streams55, whereas Rixner’s memory bank 
controller for each DRAM chip reorders both memory references among 
streams and within a single stream56. Several problems come with reordering 
the DRAM accesses within a single stream. First, the reordering efficiency is 
quite sensitive to the number of accesses visible to the access scheduler 
during each clock cycle. Hence, a large amount of register files are needed to 
hold the arriving DRAM accesses, which inevitably increase the area of the 
design. Second, since the DRAM accesses may be completed out of order, 
extra circuits are required to reorder the read data back to the original order 
to maintain data consistency, which in turn might lead to a reduction in the 
efficiency of the reorder scheme on the memory bandwidth improvement. 
Furthermore, these extra circuits also increase the area overhead. Addressing 
to the aforementioned problem of out-of-order return of read data, Kazushige 
Ayukawa’s21 access-sequence control scheme allocates an access ID to each 
DRAM access. Therefore, the processor can identify the original order of the 
read data according to the access ID. This solution, however, is only suitable 
for specific bus protocols and processing units (PUs) that have the capability 
to assign and identify access IDs.  

Instead to reorder memory accesses, Tetsuro Takizawa presented a 
memory arbiter to increase the bandwidth utilization by reducing bank 
conflicts (i.e., row miss) and read/write turnarounds for the multi-core 
environment57. The arbiter lowers the priority of a DRAM access if the 
access is addressed to the same bank as the previous granted access, or the 
access direction (read or write) is different from that of the previous granted 
one. Hence, the possibility of bank conflicts and read/write turnarounds can 
be diminished. 
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For the multi-processor vector machine with multi-port memory system, 
Corbal proposed Command Vector Memory System (CVMS) to reduce the 
processor to memory address bandwidth by sending commands to the 
memory controllers as opposed to sending individual addresses58. In CVMS, 
a command, including a base address and a stride, is expanded into the 
appropriate sequence of references by each off-chip memory bank controller. 

The above-mentioned SDRAM controller designs only address to the 
improvement of the overall bandwidth utilization. However, PUs in a 
heterogeneous system usually require different services of memory access 
bandwidth and latency. Therefore, these SDRAM controllers need to 
cooperate with DRAM schedulers to provide proper DRAM services for 
these PUs. In our observation, traditional DRAM scheduler designs have one 
or more of the following limitations:  

• the unawareness of DRAM status leading to low scheduling efficiency on 
both DRAM bandwidth utilization and access latency,  

• the lack of control over the bandwidth allocation for different PUs (e.g., 
fixed-priority scheduler) leading to starvation of low-priority PUs in 
some situations, and 

• the significant access latencies due to the fair scheduling policies (e.g., 
round-robin scheduler) leading to unbearable long access latencies for 
high-priority PUs. 

Knowing the above limitations of the conventional DRAM scheduler 
designs, Sonics’ MemMax memory scheduler provides quality-of-service 
guarantees of a single, shared off-chip DRAM memory subsystem for 
multiple heterogeneous functional units by using a tiered filtering system59. 
However, MemMax is deeply coupled with Sonics’ SiliconBackplane 
µNetwork that is time-shared with these functional units. Access ownership 
of SiliconBackplane µNetwork is determined by a two-level arbitration 
scheme: the first level of arbitration is based on a Time-Division 
Multiplexing (TDM) mechanism, while a second, lower priority access 
scheme is based on a round-robin token passing mechanism60. Due to the 
inherent latency limitations of the TDM on-chip communication 
mechanism61, MemMax cannot effectively provide short latency services 
and only has better improvement on bandwidth utilization. Similarly, a 
three-level memory arbitration scheme proposed by Harmsze62 can be used 
for systems where both continuous high-throughput and random low-latency 
requests present. However, this three-level memory arbitration scheme does 
not take the status of SDRAM into account. In addition, the first-come-first-
serve scheme used for the arbitration of the continuous streams also lowers 
the memory bandwidth utilization. 

Instead of using a single-port architecture to connect to system bus, 
Denali’s Databahn has a multi-port architecture to ensure memory is 
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shared efficiently among many high-bandwidth client modules63. Databahn 
has three serial-connected engines to maximize memory access 
performance:  

• a priority engine to prioritize and weight  port traffics by selecting among 
bandwidth-weighted algorithms, 

• an ordering engine to reorder commands to optimize bandwidth while 
maintaining relative priority and memory coherency, and 

• a sequencing engine to sequence data commands to minimize lost 
transaction cycles and latency. 

However, since the architectures are proprietary, underlying algorithms are 
unknown. 

 The aforementioned critical issues in integrating heterogeneous control 
and computing functions into a single chip motivate us to explore an 
efficient solution of off-chip SDRAM memory controller for multimedia 
platform SoCs64. The goal of this memory controller is to provide not only 
the high utilization of DRAM bandwidth bus also the quality-of-service 
(QoS) guarantees, which are defined as: 

• fair distribution of bandwidth over bandwidth-sensitive PUs 
• shortest possible transaction latency for latency-sensitive PUs. 

In addition, most multimedia PUs have regular address patterns. Having 
built-in address generators in the memory controller can reduce the address 
bus traffic and therefore increase the efficiency of on-chip communication. 
On the other hand, because not every system needs the same requirement of 
memory usage, a well-partitioned architecture of a memory controller can let 
system designers choose and integrate the required functionality of the 
memory controller into their systems. Based on these requirements, a multi-
layered, quality-aware memory controller with the following features will be 
presented in this section.  

• A layered architecture of the memory controller that can efficiently 
decouple different functionality, including memory-specific control, 
quality-aware scheduling, and built-in address generators into different 
layers of the memory controller. Different combinations of these layers 
can produce memory controllers with different capabilities to meet 
distinct system requirements. 

• A high efficient and flexible SDRAM memory interface socket (MIS) to 
take charge of SDRAM-specific control and make the best use of 
SDRAM bandwidth by supporting parallel access of each bank within 
SDRAM. In addition, MIS can respond to the requests from the SDRAM 
scheduler immediately to furthermore make the best use of SDRAM 
command and data bus. On the other hand, the flexibility of MIS is based 
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on the configurable, shared-state FSM design that can easily be adjusted 
for different complex timing control latencies of SDRAM. 

• A quality-aware scheduler (QAS) that not only improves the SDRAM 
bandwidth utilization by considering the SDRAM status and the relations 
of SDRAM accesses, but also provides QoS guarantees, i.e., minimum 
access latency and guaranteed bandwidth services based on the memory 
access requirements of different PUs. 

3.2 SDRAM Basics 

Figure 1 shows a simplified architecture of a two-bank SDRAM. All 
memory banks share the data and address bus, whereas each bank has its 
own row decoder, column decoder and row buffer. The mode register stores 
several SDRAM operation modes such as burst length, burst type, CAS 
(column address strobe) latency, etc. An m-bank SDRAM has a similar 
architecture. A complete SDRAM access may consist of several commands 
including row-activation, column-access (read/write) and precharge, as 
shown in Figure 2. A row-activation command, together with the row and 
bank address, is used to open (or called activate) a specific row in a 
particular bank, and copy all data in the selected row into the selected bank’s 
row buffer for the subsequent column accesses. After accepting this 
command, SDRAM needs a latency called tRCD (ACTIVE to column access 
delay) to accomplish the command. No other commands can be issued to this 
bank during this latency. However, commands to other banks are permissible  
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Figure 1. A simplified architecture of a two-bank SDRAM 
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due to the independent parallel processing capability of each bank. Once a 
row of a particular bank has been opened, a column-access command can be 
issued to read/write data from/to the addressed word(s) within the row buffer. 
To issue either a read or write column-access command, DRAM address bus is 
also required to indicate the column address of the open row in that bank. For 
a write access, DRAM data bus is needed to transfer write data from the time 
the command is issued until the whole burst transfer is completed. As for a 
read access, DRAM data bus is used to transfer data after a latency called CAS, 
which is the time from the read column-access command is registered to the 
first read datum is available. The precharge command, together with the 
information on address bus, can be used to deactivate a single open row in a 
particular bank or all rows in all banks. While processing the precharge 
command, the addressed bank or banks are not allowed to accept any other 
commands during a time called tRP (PRECHARGE command period.) 

Figure 2. (a) Simplified bank state diagram, and (b) access latencies of different access statuses 

SDRAM bandwidth utilization and latency is lower and longer 
respectively when more commands are required for a SDRAM access. The 
number of commands needed for a complete SDRAM access deeply depends 
on the state of the bank addressed by the SDRAM access. Figure 2(a) and 
Figure 2(b) show a simplified bank state diagram and the access latencies 
due to different access statuses: bank miss, row miss, and row hit. In a bank 
miss status, an incoming access is addressed to a bank in the IDLE state, 
therefore it must first activate the target row and then issue the column 
access command. For a row miss status, the addressed bank is in ACTIVE 
state and the row address of its activated row is not identical to that of an 
incoming access. In this case, the incoming access has to first precharge the 
bank, then activate the target row, and finally issue column-access 
commands. As for a row hit status, the addressed bank is in ACTIVE state 
and the row address of its activated row is the same as that of the incoming 
access. Hence, column-access commands can be directly issued. The above 
discussion is only based on a simplified condition. A more complete 
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discussion on various access latencies of a SDRAM access can be found in 
Lee’s paper65. 

3.3 Multi-Layered, Quality-Aware Memory Controller 

Figure 3 shows the configurations of different layers of the proposed memory 
controller. Layer 0 memory interface socket (MIS) is a configurable, 
programmable, and high-efficient SDRAM-specific controller for basic 
SDRAM operations, such as SDRAM initialization, refresh function, etc. 
Basically, MIS accepts access requests and translates them into proper 
command sequences according to the DRAM access status mentioned in the 
preceding section. We65 have designed a self-generating, tool-independent 
MIS silicon intellectual property (IP) to alleviate the burden for system 
designers. This IP, called MIS-I in this paper, is featured with its 
parameterized and blockwised design which is characterized by a rich set of 
choices of functionality, performance, interface and testbench. To improve 
SDRAM bandwidth utilization and access latency, an improved MIS-I, called 
MIS-II, is presented in this paper. Together with Layer 1 quality-aware 
scheduler (QAS), the memory controller also has the capability to provide 
QoS guarantees for heterogeneous control and computing functional units in 
multimedia SoC designs. Moreover, Layer 2 built-in address generator (BAG) 
designed for multimedia PUs can effectively reduce the address bus traffic and 
therefore further increase the efficiency of on-chip communication. 
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Figure 3. Configurations of different layers of the proposed memory controller 

3.3.1 Configurable, shared-state FSM design 

Traditionally each control state of a FSM occupies one state of the FSM. 
However, this design style makes the FSM less flexible when there are many 
repeated control states in a FSM. For example, to complete a SDRAM read 
access with burst length of four in the row miss status, the timing diagram 
and a conventional FSM design for this access are shown in Figure 2(b) and 
Figure 4(a) respectively. These control latencies depend on both the 
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specification provided by the SDRAM vendor and the clock frequency the 
memory is clocked. In addition, the unit of these latencies specified in the 
SDRAM datasheet is on the basis of real time (e.g., nanoseconds and 
microseconds), whereas the design of FSM that controls this sequence is 
clock cycle based. When the system clock is varied, these control latencies 
are varied in terms of clock cycle count. Conventional FSM design manually 
calculates the control latencies from the relation between the timing 
constraints in the datasheet and the clock frequency of the target system, and 
then fixes these latencies as states shown in Figure 4(a). Changes in the 
control latencies or the numbers of access data force us to manually modify 
the design of FSM. For a flexible and reusable design, these hard-coded 
states should be reduced or eliminated. 
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Figure 4. FSM design in (a) traditional DRAM controller, and (b) MIS-I 

To make FSM more flexible, MIS unifies the repeated control states into 
a single control state of FSM as indicated in Figure 4(b). Numerous ‘wait’ 
states are needed to handle DRAM command latencies. In MIS-I, these 
states are all mapped to one ‘NOP’ (No OPeration) state. Before entering the 
NOP state, several registers have to be set by the command states (gray 
ones). These registers are NOP_count (the cycle count which is needed to 
stay in the NOP state), NOP_code (operation mode of MIS while in NOP 
state), and return state. In addition to wait states, data transfer states can also 
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be mapped to NOP state and NOP_count now becomes the programmed 
DRAM burst length. Since MIS combines all wait and data transfer states 
into a NOP state and loads the command latencies or burst length into 
NOP_count dynamically, it is very easy to parameterize the command 
latencies without redesigning the FSM. If control latencies are determined 
and fixed before synthesis, they become hardwired logic after synthesis. 
These control latencies and other related SDRAM timing constraints are 
automatically converted from absolute timing to cycle count through built-in 
mathematical equation in a Verilog script file. In contrast, if there is a 
requirement of change in memory or clock frequency after the whole system 
is designed, control and status registers are allocated for these latencies to 
enable the ability to program them dynamically. 

3.3.2 MIS-II 

In MIS-I, it is clear that when the first DRAM access request is handled by 
the single, shared FSM, the second one has to wait until the first access has 
been completed. This procedure works fine for successive accesses 
addressed to the same bank since DRAM can’t process them at the same 
time. However, for those accesses addressed to different banks, memory 
bandwidth loss is unavoidable. Because all repeated states of MIS-I are 
merged into a single shared NOP state, the performance of MIS-I is 
constrained by its poor capability of parallel processing accesses addressed 
to different banks. Figure 5(a) shows how MIS-I processes two row-miss 
accesses addressed to different banks. It is obvious that before the command 
latency of a registered command has been met, no other commands can be 
issued. Hence, long access latencies and low bandwidth utilization are 
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Figure 6. (a) Quality-aware memory controller architecture, and (b) MIS-II architecture 

expectable. By using bank controllers and the master controller, MIS-II 
effectively fixes these problems (see Figure 5(b)) and still inherits the 
advantages of MIS-I. As indicated in Figure 6(b), each internal bank of 
SDRAM is allocated one bank controller to process accesses addressed to 
that bank. After accepting an access from the input port, the bank controller 
generates appropriate SDRAM commands according to the timing 
information provided by the time wheel. SDRAM commands from all bank 
controllers are collected by the master controller, which then issues the most 
proper command to SDRAM according to the information from time wheel 
and QAS. Master controller is also responsible for all of the other control 
procedures such as power-up, refresh, etc. To regulate the processing and 
sequencing of all control within and among bank controllers and the master 
controller, the time wheel has to be carefully designed. Roughly speaking, 
MIS-I can be treated as MIS-II with only one bank controller. 

To enhance the parallel processing of QAS, the access channels are 
connected as a star topology, which is widely used in practical SoC 
platforms, such as ARM’s PrimeXsys platforms66 and Palmchip’s 
CoreFrame architecture67. Each channel has a dedicated bus connected to 
each port of QAS, while several PUs may share a channel. The share of a 
channel is basically based on the memory access characteristics of PUs, 
which will be illustrated in detail later. 

Another mechanism that makes MIS-II more efficient than MIS-I is to 
separate burst transfer control from bank controllers. As mentioned earlier, 
data transfer states of MIS-I is merged into the shared NOP state. After all 
burst data have been transferred, the FSM returns to IDLE state and readies 
for accepting the next access. If the next access has already been pending, it 
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still has to wait at least one clock cycle on state transition after the current 
access is completed. In addition, preparation cycles are sometimes needed 
for DRAM controllers to preprocess an access. These two types of delay 
result in unwanted bandwidth loss. In MIS-II design, the burst transfer 
control is handled by the master controller. After issuing the column-access 
command, the bank controller can return to IDLE state and accept the next 
access. Master controller will generate signals needed during the burst 
transfer cycles. Hence, the state transition and preparation cycles can be 
overlapped with the burst transfer cycles and the bandwidth loss is mitigated. 
In brief, MIS-II is designed to respond to the DRAM access requests 
immediately to furthermore make the best use of SDRAM command and 
data bus. Therefore, SDRAM bandwidth utilization is raised whereas access 
latency is diminished. 

3.3.3 Built-in address generator 

The efficiency of on-chip communication plays an important role on system 
performance. For PUs having regular access behaviors, (e.g., image 
processing unit, audio/video codec, etc.) the addresses of their DRAM 
accesses can be obtained in advance or through a simple translation. BAG is 
designed to generate access addresses locally for some multimedia 
processing units. BAG can be connected either to QAS or MIS. Without 
transferring address information for every DRAM access, the address bus 
traffic of on-chip channel can be effectively reduced. Currently, the 
following address generators are supported in our design. 

• 1-D (linear) address generator: By giving the start address and access 
length, the 1-D address generator can automatically generate addresses 
for PUs whose address mapping schemes are linear, e.g., audio codec, 
according to the programmed DRAM burst length. 

• 2-D block based address generator: The 2-D block based address 
generator is designed for block based processing units such as MPEG-2 
motion compensation, DCT, etc. Tile-based mapping of behavioral array 
references to physical memory locations is used to minimize power 
consumption on address bus transitions28 and improve DRAM 
utilization57. 

3.4 Quality-Aware Scheduling 

Access conflicts of shared resources are an old problem in hardware design. 
Mechanisms such as semaphores and scheduling are conveniently applied to 
eliminate these conflicts. Two common used scheduling policies are round-
robin and fixed-priority scheme. Round-robin policy can fairly allocate 
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DRAM bandwidth to all channels. However, lacking priority nature makes it 
hard to guarantee access latency for any channel. Fixed priority policy may 
solve the problem of access latency. However, the lower-priority channels 
may suffer starvation due to high access rates of higher priority channels. 
Thus, it is obvious that neither of these two scheduling policies can 
effectively provide QoS guarantees. This problem can be especially fatal to 
some applications such as multimedia system designs. For example, signal 
processing units such as video codec may require guaranteed bandwidth, 
whereas CPU may concern about the access latency more when waiting for a 
cache line fetch. To effectively solve this problem, we propose a quality-
aware scheduler whose scheduling policy can provide not only high DRAM 
utilization but also QoS guarantees. In the proposed quality-aware scheduler 
design, channels are put into three categories: latency-sensitive, bandwidth-
sensitive, and don’t care.  

1) Latency-Sensitive Channel: Latency-sensitive channels are for PUs that 
are highly concerned about latencies of DRAM accesses. Accesses issued 
through latency-sensitive channels are called latency-sensitive accesses. 
Normally latency-sensitive accesses will be granted with the highest priority. 
Even though in this case, access latencies may still be long due to DRAM’s 
status. For example, if a latency-sensitive access is addressed to a DRAM bank 
that is currently busy in serving another access, it won’t be granted until the 
bank returns to standby status when using DRAM controllers with conventional 
schedulers, such as MemMax DRAM scheduler59. Even when the addressed 
bank is at standby status, the command or the data bus of DRAM may be 
occupied by other accesses having been granted to access to other banks. The 
situation is more severe when DRAM is set at long burst mode. In order to 
reduce those latencies caused by the aforementioned conditions, QAS provides 
two services to shorten the DRAM access latencies of latency-sensitive accesses: 
preemptive and column-access-inhibition (CAI) services. 

• Preemptive service 
Preemptive service is used to issue latency-sensitive accesses as soon as 
possible by suspending the processed access from a bandwidth-sensitive 
or don’t care channel. This indicates that preemptive service may reduce 
the average bandwidth utilization. The problem is worse when the 
previous access has already activated a distinct row in the same bank. 
Naturally, latency-sensitive accesses that are being processed will be 
protected and won’t be suspended by other latency-sensitive ones. 

• Column-access-inhibition service 
CAI service is used to preserve the data bus for latency-sensitive accesses 
by inhibiting issuing column-access commands from bandwidth-sensitive 
and don’t care channels, and therefore eliminate latencies resulted  
from data bus congestion. Again, the overall bandwidth utilization is 
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diminished when CAI service is applied since the data bus is not 
optimally utilized.  

Besides the above two services, the bank controller which is processing 
latency-sensitive accesses also has the highest priority to use DRAM 
command bus to avoid possible latencies caused by waiting for the command 
bus. Because optimizing the access latencies for some particular channels is 
harmful to the overall bandwidth utilization, preemptive and CAI service for 
latency-sensitive channels are only guaranteed within an allocated DRAM 
bandwidth. Access requests beyond this allocated bandwidth will change the 
channel to don’t-care type. The trade-off between high bandwidth utilization 
and short access latencies for some particular channels should be thoroughly 
considered by the system designers. 

2) Bandwidth-Sensitive Channel: Bandwidth-sensitive channels are for 
PUs that concern only about bandwidth. Since accesses through these types 
of channels are insensitive to latency, they are scheduled by DRAM status 
(i.e., access status and Read/Write turnaround) to achieve the highest 
bandwidth utilization. For example, a row-hit access will have higher 
priority than a row-miss access. If two accesses have the same bank status, 
QAS will grant them according to round-robin scheduling policy that can 
fairly favor all accesses in different channels. QAS also gives those accesses 
having the same access type (read or write) as the previously granted one the 
higher priority to prevent bandwidth loss due to SDRAM data bus 
turnaround cycles. The access requests within the allocated bandwidth will 
be fulfilled by QAS to provide guaranteed bandwidth for each channel. 
Access requests beyond the allocated bandwidth, however, will change the 
channel to don’t-care type. 

3) Don’t-Care Channel: Don’t-care channels are for PUs that care about 
neither latency nor bandwidth. Accesses through these types of channels won’t 
be guaranteed any bandwidth or latency. They are processed only when extra 
bandwidth is left over by the first two types of channels. The same as 
bandwidth-sensitive channels, accesses through don’t-care channels are 
scheduled by DRAM status and may be suspended by preemptive service. 

The bandwidth allocation for latency-sensitive and bandwidth-sensitive 
channels is on the basis of service cycle. Service cycles are cycles in which 
data are transferred to/from DRAM. As shown in Figure 7, a service period  
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Figure 7. Definition of service cycle and service period 



SoC Memory System Design 99
 
is a union of N service cycles. System integrators can configure the number 
of service cycles for different channel types in one service period by using 
the scheme originally proposed for bus management68. By assigning service 
cycles for latency- and bandwidth-sensitive channels, users can have fine-
grained control over the bandwidth allocated to these types of PUs.  

Figure 8 shows the pseudo-code of the proposed quality-aware 
scheduling. At the beginning of a service period, all channel services are 
enabled. These services won’t be disabled until running out of the allocated 
bandwidths (service cycles actually) in a service period. At each cycle, QAS 
checks requests from all channels C. Requests from latency-sensitive 
channels CLS_list are served first. When there are multiple requests from 
CLS_list, they are scheduled by round-robin scheduling policy to decide the 
final unique request Cwinner. If there is already a latency-sensitive access 
which is being served, Cwinner stays in pending status. Otherwise, Cwinner is 
served with preemptive and CAI services. When there is no request from 
CLS_list, requests from bandwidth-sensitive channels CBS_list are served. When  
 

check_channel_request(C); 
 
if (LS_channel_assert) { //latency sensitive channel 
  for (Ci in CLS_list) 
    if (check_allocated_BW(Ci) ==NULL) 
       change_channel_type(donot_care, Ci); 
  Cwinner=round_robin(CLS_list); 
  if (preemptive_service_running or CAI_service_running) 
     MIS_service(pending, Cwinner); 
  else 
     MIS_service(preemptive, CAI, Cwinner); 
} 
else if (BS_channel_assert) { //bandwidth-sensitive channel 
  for (Ci in CBS_list) 
    if (check_allocated_BW(Ci) ==NULL) 
       change_channel_type(donot_care, Ci); 
  sorted_by_DRAM_status(CBS_list); 
  Cwinner=round_robin(CBS_list); 
  MIS_service(normal, Cwinner); 
} 
else if (donot_care_channel_assert) { 
  sorted_by_DRAM_status(Cdonot_care_list); 
  Cwinner=round_robin(Cdonot_care_list); 
  MIS_service(donot_care, Cwinner); 
} 
 
if (end_of_a_service_period) 
  reset_all_channel_setting(); 

Figure 8. Quality-aware scheduling 
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there are multiple requests from CBS_list, they are scheduled by DRAM status. 
Round-robin scheduling policy is then applied to those requests with the 
same DRAM status to decide the final unique request Cwinner. Finally, 
requests from don’t-care channels are accomplished only when no requests 
from CLS_list and CBS_list, and the final unique request Cwinner of these requests 
is decided in a similar manner for CBS_list. 

3.5 Experimental Result 

In this section, we present the experimental framework used to evaluate 
several SDRAM controllers. We will describe a system test-bed and the use of 
each component in this test-bed. First, several constrained random 
experiments are conducted under different configuration parameters to 
measure the average SDRAM bandwidth utilization and the access latencies 
for the highest priority access channels or latency-sensitive channels of the 
considered SDRAM controllers. Then, a simplified STB SoC is simulated to 
examine the QoS performance of each SDRAM controller. 

3.5.1 Experimental framework setup 

Figure 9 shows the test-bed used to evaluate the considered SDRAM 
controllers. Each access initiator generates different SDRAM access 
behaviors for each channel connected to the SDRAM controller according to 
three control parameters: process_period indicates how many clock cycles 
an access initiator needs to process the read data; access_num indicates how 
many accesses an initiator issues every process_period; access_behaviors 
specifies different access patterns: constrained random, 1-D linear, 2D block 
base, 2-D interlace, and 2-D block base with unpredictable start address. The 
simulation coordinator is responsible for generating all control signals 
needed in the experiments and dumping the simulation results for further 
analysis. Two types of on-chip bus (OCB) model are used in the  
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Figure 9. Test-bed for SDRAM controller performance evaluation 
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experiments: a single shared bus and multiple dedicated buses. The single 
shared bus model is used to connect a single-channel SDRAM controller and 
the access initiators. In this model, a bus arbiter is included to grant accesses 
from access initiators with one clock cycle bus handover. The applied 
arbitration policies are round-robin and fixed-priority. Multiple dedicated 
buses are used to connect a multi-channel SDRAM controller and the access 
initiators. Seven different SDRAM controllers listed in Table 1 will be 
compared in the following experiments. The SDRAM model used in this 
experiment is Micron’s mt48lc8m16a2 SDR-SDRAM69. Some key parameters 
of this SDRAM are listed in Table 2. 

Table 2. SDRAM controllers used in the experiments 

Controller Descriptions 
SIG-RR-MIS-I Single-channel MIS-I controller with round-robin OCB arbiter  
SIG-FP-MIS-I Single-channel MIS-I controller with fixed-priority OCB arbiter 
SIG-RR-MIS-II Single-channel MIS-II controller with round-robin OCB arbiter 
SIG-FP-MIS-II Single-channel MIS-II controller with fixed-priority OCB arbiter 
MUL-RR-MIS-II Multi-channel MIS-II controller with round-robin DRAM scheduler 
MUL-FP-MIS-II Multi-channel MIS-II controller with fixed-priority DRAM scheduler 
QA-MIS-II Multi-channel MIS-II controller with quality-aware DRAM scheduler 

Table 3. Key parameters of SDRAM model 

Parameters Values Parameters Values 
Clock rate 100 MHz tRCD 2 cycles 
Data bus width 16 bit tRP 2 cycles 
Num. of bank 4 tRAS 5 cycles 
Burst length 1, 2, 4, 8 CAS latency 2 cycles 

3.5.2 Performance evaluation of constrained random access streams 

Performance evaluation of constrained random access streams looks at the 
performance variations of SDRAM controllers when some control parameters 
are changed. The default control parameters are listed in Table 3, whereas 
some of them may vary in different experiments. In every experiment, the 
bandwidth utilization provided by each SDRAM controller will be observed. 
Besides, to measure the shortest access latency (denoted as min_latency) 
provided by each SDRAM controller, we assume that access from initiator 0 
will be granted with the highest priority in fixed-priority controllers and set as 
the latency-sensitive channel in the quality-aware controllers. For round-robin 
controllers, no particular settings are needed due to the fair scheduling. 

 
1) Effect of Available Bank  
For the SDRAM containing multiple banks, the capability of SDRAM 
controllers to handle parallel bank access can severely affect the DRAM 
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bandwidth utilization. Figure 10(a) illustrates the bandwidth provided by 
each SDRAM controller when the number of available banks varies from 
one to four. Some key points are listed as followed.  

• For single-channel MIS-I controllers, increasing the DRAM banks 
obviously contributes nothing to bandwidth utilization. It is mainly 
because that MIS-I does not support parallel bank access. Furthermore, 
FP-MIS-I controller has better performance than RR-MIS-I controller 
has. This is evident since fixed-priority policy allows high-priority access 
initiators to occupy the MIS-I longer and hence avoids wasted cycles due 
to frequent bus handover.  

• For one-bank SDRAM, since every SDRAM access cannot be issued 
until the previous one is completed, bus handover cycles shorter than the 
burst length have totally no influence on the bandwidth utilization. 
Hence, all MIS-II controllers provide the same bandwidth. However, the 
 

Figure 10. The effects of number of available bank on (a) bandwidth utilization, and  
(b) min_latency 



SoC Memory System Design 103
 

 hidden bus handover and scheduling cycles can still make MIS-II 
controllers provide better bandwidth utilization than MIS-I controllers 
do. 

• The bandwidth utilization of MIS-II controllers increases when the 
number of available banks increases. Compared to single-channel MIS-II 
controllers, multi-channel controllers have more improvement on 
bandwidth due to the support of high-efficient parallel bank access.  

The effect of bank number on min_latency of each SDRAM controller is 
shown in Figure 10(b). We make the following observations from this figure. 

• min_latency of single-channel MIS-I controllers are insensitive to the 
number of available bank since no parallel bank access is supported. In 
contrast, min_latency of single-channel MIS-II controllers are reduced 
when the number of available banks is increased. 

• For the MUL-FP-MIS-II controller, increasing the available banks makes 
the access latencies longer. This is because multi-channel controllers 
allow accesses addressed to a free bank to be processed as soon as 
possible to optimally utilize the DRAM bandwidth. Hence, low-priority 
accesses and high-priority ones may be processed at the same time. This 
condition unavoidably makes the command and data bus congestion 
more serious, which in turn leads to longer min_latency. This problem is 
effectively eliminated by the preemptive and CAI services used in QA-
MIS-II controller. 

 
2) Effect of Burst Length 
Generally speaking, increasing the burst length comes with higher 
bandwidth utilization since each column-access command can transfer more 
data and therefore bandwidth loss due to bus handover and turnaround is 
reduced. Figure 11(a) depicts the bandwidth provided by different SDRAM 
controllers when the burst length varies from one to eight. As we can see, 
single-channel MIS-II controllers can provide almost the same bandwidth 
utilization as the multi-channel controllers can when the burst length was 
programmed to eight. It is reasonable since the burst transfer cycle is long 
enough for single-channel controllers to hide all bus handover cycles and 
command latencies.  

Figure 11(b) illustrates min_latency of initiator 0. For single-channel 
controllers, increasing burst length results in longer access latency since the 
time to wait for the completion of the previous accesses is longer. As for 
multi-channel controllers, increasing the burst length can be taken as 
increasing the data bus congestion. Hence, the access latencies is also longer. 
Compared to MUL-FP-MIS-II, min_latency of QA-MIS-II is reduced by 46% 
and 30% when the burst length is programmed to eight and four respectively. 
These improvements are due to that SDRAM data bus congestion problem  
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Figure 11. The effects of burst length on (a) bandwidth utilization, and (b) min_latency 
 
happened to multi-channel controllers and are again eliminated by the 
preemptive and CAI services. 

 
3) Effect of Number of Access Initiators  
Figure 12(a) and Figure 12(b) show the effects of the number of access 
initiators on bandwidth utilization and min_latency respectively. When the 
number of initiators is less than two, the total bandwidth requirement can be 
fulfilled by all controllers. The performance difference starts to be obvious 
when more than three initiators are concurrently issuing DRAM accesses. 
Single-channel MIS-I and MIS-II controllers encounter their performance 
bound when the number of initiators is three and four respectively. In 
contrast, multi-channel controllers still have some available bandwidth for 
initiators more than four and the bandwidth utilization even goes higher with 
more access initiators. Figure 12(b) shows min_latency of each SDRAM 
controller. It is clear that when the number of the initiators increases, the 
access latencies become longer. Compared to MUL-FP-MIS-II, min_latency  
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Figure 12. The effects of channel number on (a) bandwidth utilization, and (b) min_latency 
 
of QA-MIS-II is reduced up to 30% because the congestion problem can be 
solved by preemptive and CAI services. 

 
4) Effect of Preemptive and CAI Service  
As shown in Figure 13, we take a look at how preemptive and CAI services 
affect the overall system performance. Compared to MUL-FP-MIS-II, any 
configuration of QA-MIS-II can provide higher bandwidth utilization due to 
the high-efficient scheduling for accesses from bandwidth-sensitive channels. 
When both the preemptive and CAI services are enabled, the bandwidth 
degradation is most severe compared to other configurations. The second
 severe

 
degradation of bandwidth occurs when only CAI service is enabled

 since  this service preserves the DRAM data bus for latency-sensitive   
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Figure 13. Bandwidth comparison between MUL-FP-MIS-II and QA-MIS-II with 
different services 

channels to prevent data bus congestion problem and therefore results in low bus 
utilization. When only preemptive service is enabled, the bandwidth degradation 
is minor. This is because preemptive service can make accesses from initiator 0 
be processed as soon as possible and then free QAS to grant other requests from 
non-latency-sensitive channels. This higher efficient scheduling is helpful to 
increase bandwidth utilization and hence can neutralize the bandwidth loss 
resulted from preemptive service. 

Figure 14 illustrates min_latency of MUL-FP-MIS-II and QA-MIS-II 
with different services. It is obvious that optimizing the access latency of a 
particular channel is harmful to that of other channels. Note when both 
preemptive and CAI services are disabled, min_latency of QA-MUL-II is 
 

 

Figure 14. Latency comparison between MUL-FP-MIS-II and QA-MIS-II with different 
services 
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slightly longer than that of MUL-FP-MIS-II. This is because the higher 
bandwidth utilization of QA-MIS-II also makes the data bus congestion 
more severe. The access latency of other channels of MUL-FP-MIS-II is 
higher than that of QA-MIS-II because it is dominated by access latencies of 
low-priority channels. 

 
5) Summary 
The above experiments clearly indicate that multi-channel SDRAM 
controllers can provide much higher bandwidth than single-channel 
controllers when high-efficient parallel bank access is supported. 
Furthermore, these experiments also show that maximizing the bandwidth 
utilization can be harmful to access latency for some particular initiators 
because of the possible command and data bus congestions. This problem can 
be effectively solved by preemptive and CAI service provided by QA-MIS-II. 
Hence, only QA-MIS-II can successfully provide both high bandwidth 
utilization and short access latency services. 

3.5.3 Performance evaluation of set-top-box emulation environment 

In this section, we simulate several events that may occur in a digital STB 
chip, which is a good example of multimedia SoC design. The basic 
hardware components of a STB SoC may include a CPU, audio/video codec, 
network devices, etc. Various demands on DRAM service cause it difficult 
to design a memory controller that fulfills different requirements of these 
components. Some new features supported by digital STB, such as the 
interactive television (ITV) service, make the situation even worse due to the 
drastic change in the requirement of DRAM bandwidth. ITV service allows 
users to not just sit in front of the TV but interact with the broadcasting 
programs, such as online betting, home shopping, etc. Therefore, the DRAM 
bandwidth required by CPU might vary when CPU performs different 
application programs. 

 
1) System Setup 
In this experiment, seven PUs with configuration listed in Table 4 share  
a unified off-chip SDRAM. To assure low-latency access for CPU’s cache  
line fetch, CPU is taken as latency-sensitive PU in the quality-aware controller 
and the highest priority in fixed-priority controllers. Besides, because users  
are less sensitive to the efficiency of download speed, wireless LAN controller 
is set as the lowest priority and don’t care PU in fixed-priority and  
quality-aware controllers respectively. Since round-robin controllers fairly 
schedule accesses from all PUs, no special configuration is needed. Figure 15 
shows some events that may occur when the STB operates. Most of the  
time the user just watches TV programs. Therefore, the total bandwidth 
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Table 4. Control parameters in constrained random experiments 

Parameters Values 
No. of access initiators 7 
No. of bank used 4 
Burst length 4 
Process_period 60 
access_no 3 
Bandwidth requested by each initiator 32.4 MB/s 

 
requirement of the STB system is rather steady. While watching the 
program, the user also downloads some files through wireless LAN, e.g., 
video clips or MP3 files. Two events that cause variation of SDRAM 
bandwidth requirement are on-screen display (OSD) and ITV events. The 
OSD event activated by the user to setup the functionality of the STB has 
happened during cycle 5,000-10,000. An ITV event is triggered when the 
user wants to browse the player files during watching a basketball game. 
After the ITV application has been activated, CPU requests a large amount 
of bandwidth instantly to process the application. The user then paused the 
TV program temporarily during cycle 21,000-31,000 to browse the 
information offered by the broadcaster. 

 
2) Simulation Results 
To examine the QoS performance, we look at the fulfillment of bandwidth 
allocation first. The latency of CPU is assessed later. For round- 
robin controllers shown in Figure 16(a) and Figure 16(b), the limited 
bandwidth provided by SIG-RR-MIS-I and SIG-RR-MIS-II obviously 
cannot fulfill the requirement of STB SoC. As for MUL-RR-MIS-II shown 
in Figure 16(c), although the overall bandwidth utilization is much better, the 
bandwidth allocation for each PU is unacceptable. As mentioned above,  
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Figure 15. Bandwidth requirement of each PU in the STB SoC 
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Table 5. Configuration of PUs in the STB system 

PU Fixed-priority Quality-aware 
CPU 1st priority Latency-sensitive 
Transport stream 2nd priority Bandwidth-sensitive 
DSP 3rd priority Bandwidth-sensitive 
OSD 4th priority Bandwidth-sensitive 
Video decoder 5th priority Bandwidth-sensitive 
Display 6th priority Bandwidth-sensitive 
Wireless LAN 7th priority Don’t-care 
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(g) 
Figure 16. Bandwidth utilization of (a) SIG-RR-MIS-I, (b) SIG-RR-MIS-II, (c) MUL-RR-

MIS-II, (d) SIG-FP-MIS-I, (e) SIG-FP-MIS-II, (f) MUL-FP-MIS-II, and (g) QA-MIS-II 

round-robin controllers evenly allocate total bandwidth to each PU. Thus, 
both OSD and ITV events may result in quality degradation of the 
broadcasting program. Take the ITV event for example, CPU requests a 
large bandwidth instantly and some bandwidth for the video decoder and the 
display unit is allocated to CPU. Therefore, the guaranteed bandwidth 
requirements of these two PUs are ruined.  

As for fixed-priority controllers shown in Figure 16(d) and Figure 16(e), 
the single-channel fixed-priority controllers can provide higher bandwidth 
utilization than single-channel round-robin controllers can. This is because 
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they allow high priority PUs to access DRAM uninterruptedly and hence can 
avoid bandwidth loss due to bus handover and frequent row reopening. 
However, the provided bandwidth is still not enough. For example, no 
bandwidth is allocated to wireless LAN controller during the normal 
operation period. The bandwidth provided by MUL-FP-MIS-II is much 
higher. However, as indicated in Figure 16(f), the bandwidth allocation 
problem still exists. During the ITV event, CPU takes a large portion of 
bandwidth. This severely degrades the quality of the broadcasting program 
and is therefore unacceptable.  

Figure 16(g) illustrates the simulation result of quality-aware controller. 
As we can see, the bandwidths allocated for all bandwidth-sensitive PUs are 
well guaranteed. When ITV event happens, the bandwidth for wireless LAN 
controller is taken first. The quality of the broadcasting program remains 
unchanged when the user is still watching the program. After the TV 
program has been paused, CPU takes the spared bandwidth released by the 
video decoder for the ITV program. In addition, accesses from the wireless 
LAN controller can be served as much as possible during this period. 

In Figure 17, CPU access latency is measured separately when CPU 
operates during the normal operation period and the ITV event. First we take 
a look at the normal operation period. As expected, round-robin controllers 
have the longest access latencies compared to other controllers due to the 
fair scheduling, which apparently cannot fit CPU’s low latency requirement. 
By granting accesses from CPU with the highest priority, fixed-priority 
controllers can effectively reduce the access latencies. Among these fixed-
priority controllers, MUL-FP-MIS-II has the longest CPU access latency 
because its high bandwidth utilization causes serious SDRAM command and 
data bus congestion. The congestion problem is effectively eliminated in  
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Figure 17. CPU access latency in different operation mode of each SDRAM controller 
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QA-MIS-II. With preemptive and CAI services, CPU access latency of QA-
MIS-II is reduced by about 19% and 37% compared to SIG-FP-MIS-II and 
MUL-FP-MIS-II respectively. 

During the ITV event, CPU access latencies of round-robin controllers 
are lower than those latencies of round-robin controllers during normal 
operation mode, since the video decoder is paused in cycle 21,000-30,000. 
Similarly, fixed-priority controllers also have shorter CPU access latency 
during the ITV event. This is because the high request rate of CPU blocks 
other PUs to access DRAM and hence preserves most DRAM resources for 
CPU. In contrast, the latency of QA-MIS-II is longer than that of fixed-
priority controllers since the bandwidth requirement of the ITV applications 
is taken as don’t care type. This is acceptable because users are often less 
sensitive to the execution speed of ITV applications.  

3.6 Summary 

We have presented a multi-layer, quality-aware SDRAM controller for 
multimedia platform SoCs. The layered architecture is motivated by the 
awareness of that not every system needs the same requirement of memory 
usage. Therefore, we well partition the functionality of a memory controller 
into proper layers such that designers have the flexibility to adopt the best 
fitting layers for various applications. By appropriately categorizing 
channels into three types, QAS is able to provide the best DRAM services 
including short access latency and guaranteed bandwidth for each type of 
channels. DRAM bandwidth utilization is improved by the support of 
parallel access of each bank within SDRAM and the ability to issue every 
DRAM command at the earliest time available. The configurability of MIS, 
based on the shared-state FSM design, can alleviate the burden for system 
designers by rapid integration of SDRAM subsystem. Some recently 
developed systems, especially those for portable applications, have power 
management with the ability to control the system clock frequency in 
adjusting system performance to just fit to the requirement. Programmability 
of DRAM control latencies enables the power management to dynamically 
lower the clock frequency of MIS. 

The results of STB experiment show that the access latency of the 
latency-sensitive channel can be reduced by 37% and 65% compared to 
conventional multi-channel fixed-priority and round-robin controllers 
respectively. Furthermore, the memory bandwidths can be precisely allocated to 
bandwidth-sensitive channels with a high degree of control and no bandwidth- 
sensitive channel suffers starvation in all simulated STB events. In summary, 
the presented memory controller can achieve high DRAM utilization while 
still meeting different memory access requirements of bandwidth and latency. 



114 Lee and Chang
 
4. CONCLUSION 

Memory represents a critical driver in terms of cost, performance and power 
for embedded systems. To address this problem, a large variety of memory 
technologies and memory access managements have been proposed. On one 
hand the application is characterized by a variety of access patterns. On the 
other hand, new memory devices and organizations provide a set of features. 
To find the best match between the application characteristics and the 
memory organization features, the designer needs to explore different 
memory configurations in combination with different design architectures. 
Furthermore, the growing number of cycles required for memory accesses 
also caused designers to implement latency-tolerance techniques such as 
prefetching and out-of-order execution. Farther in the future, new memory-
centric architectures, tools and design methodologies may be developed 
specifically to improve the cost, power and performance of memory systems. 
Most of these solutions will eventually be used synergistically to meet the 
severe requirements of embedded systems. 

Due to the advance of hardware, more complex algorithms and systems 
are now investigated or already available to promote new functionality or 
better services. These complex designs also create a new requirement of 
memory optimization. For example, more algorithms explore bit-level 
optimization for better performance. While in the past the main effort has 
been to optimize designs at word level or sub-word level, new and 
unexplored degrees of freedom become available when design optimization 
is explored at the bit level70,71,72. In addition to bit-level processing, non-
multiple of eight bits per data sample is widely adopted in video applications, 
such as high quality television signal and high profiles of H.264/AVC73. This 
size of data sample also creates design challenges of memory system, which 
is traditionally used for data sample with a size of multiple of eight. 

While we conjecture that algorithmic designs will remain based on 
human intuition and ingenuity, we believe that the parameter tuning and 
search of an optimal architecture in a restricted domain can be at least 
methodized or partially automated. The formulation of rigorous theories and 
optimization techniques for memory system designs is an exciting area for 
future research. 

 

REFERENCES 

1. G. Goossens, et al, “Synthesis of flexible IC architectures for medium throughput  
real-time signal processing,” J. VLSI signal processing, vol.5, no.4, Kluwer Academic 
Publishers, Boston, 1993. 



SoC Memory System Design 115
 
2. Denali Memory Report, vol 1, issue 4, May 2002. 
3. T. H. Meng, B. Gordon, E. Tsern, and A. Hung, “Portable video-on-demand in wireless 

communication,” in Proc. of the IEEE, Vol.83, No.4, pp.659-680, Apr. 1995. 
4. V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: a first step 

towards software power minimization,” in Proc. ICCAD, pp.384-390, Nov. 1994. 
5. F. Catthoor et al. Custom Memory Management Methodology: Exploration of Memory 

Organization for Embedded Multimedia System Design. Kluwer Academic Publishers, 
1998. 

6. D. Burger, J. R. Goodman, and A. Kagi, “Limited bandwidth to affect processor design,” 
IEEE Micro, 17(6): pp. 55--62, Nov./Dec. 1997. 

7. P. R. Panda, N. Dutt, and A. Nicolau, Memory issues in embedded systems-on-chip: 
optimizations and exploration, Kluwer Academic Publishers, Boston, 1999. 

8. C. Natarajan, B. Christenson, and F. Briggs, “A study of performance impact of memory 
controller features in multi-processor server environment,” in Proc. of the 3rd workshop 
on Memory performance issues, pp. 80-87, 2004.  

9. D. A. Patterson, “Latency lags bandwidth”, Communication of the ACM, vol. 47. no. 10, 
pp. 71-75, Oct. 2004. 

10. K. Kilbuck, “FCRAM 101 Part 1: Understanding the Basics”, CommsDesign, 2002. 
[Online]. Available: http://www.commsdesign.com/printableArticle/?articleID=16504491 

11. N. C. C. Lu, “Emerging technology and business solutions for system chips,” ISSCC Dig. 
Tech. Papers, pp.25-31, Feb. 2004. 

12. A. K. Khan, et al., “A 150-MHz graphics rendering processor with 256-Mb embedded 
DRAM”, IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1775-1784, Nov. 2001. 

13.  M. Takahashi, et al., “A 60-MHz 240-mW MPEG-4 videophone LSI with 16-Mb 
embedded DRAM”, IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1713-1721, Nov. 
2000. 

14. B. Dipert, “Embedded Memory: The All Purpose Core”, EDN Magazine, Mar. 1998. 
[Online]. Available: http://www.ednmag.com/reg/1998/031398/06cs.cfm 

15.  L. Benini, A. Macii, and M. Poncino, “Energy-aware design of embedded memories: a 
survey of technologies, architectures and optimization techniques”, ACM Trans. 
Embedded Computing Systems, vol. 2, no. 1. pp. 5-32, Feb. 2003. 

16. K. Nii, et al., “A 90-nm low-Power 32-kB embedded SRAM with gate leakage 
suppression circuit for mobile Applications”, IEEE J. Solid-State Circuits, vol. 39, no. 4, 
pp. 684-692, Apr. 2004. 

17. W. Leung, F. C. Hsu, and M. E. Jones, “The ideal SoC memory: 1T-SRAM” Proc. IEEE 
ASIC/SoC Conf., pp. 32-36, 2000. 

18. P.C. Fazan, et al., . “A simple 1-transistor capacitor-less memory cell for high 
performance embedded DRAMs”, Proc. IEEE CICC, pp.99-102 , 2002 

19. NEC, “New ASIC Process Technology Makes Embedded DRAM Practical Choice For 
High-Performance Applications”, [Online]. Available: http://www.necel.com/en/process/ 
pdf/eDRAMwhitepaper3.7.pdf 

20. SST, “SuperFlash EEPROM technology”, [Online]. Available: http://www.sst.com/ 
downloads/tech_papers/701.pdf 

21. K. Ayukawa, T. Watanabe and S. Narita, “An access-sequence control scheme to 
enhance random-access performance of embedded DRAM’s,” IEEE J. Solid-State 
Circuits, vol. 33, no. 5, pp. 800-806, May 1998. 

22. T. Watanabe et al., “Access optimizer to overcome the future walls of embedded 
DRAMs in the era of systems on silicon,” in Proc ISSCC99, pp. 370 -371, 15-17  
Feb. 1999. 



116 Lee and Chang
 
23. S. A. McKee et al, “Experimental implementation of dynamic access ordering,” in Proc. 

of the 27th Hawaii International Conference on System Sciences, pp. 431-440, Jan. 1994. 
24. S. A. McKee and Wm. A. Wulg, “A memory controller for improved performance of 

streamed computations on symmetric multiprocessors,” in Proc IPPS '96, pp. 159-165. 
25. S. I. Hong et al., “Access order and effective bandwidth for streams on a Direct Rambus 

memory,” in Proc. of the 5th HPCA, pp. 80-89, Jan. 1999. 
26. P. R. Panda, N. D. Dutt, and A. Nicolau, “Incorporating DRAM access modes into  

high-level synthesis,” IEEE Trans. CAD, vol. 17, no. 2, pp. 96-109, Feb. 1998. 
27. A. Khare, P. R. Panda, N. D. Dutt, and A. Nicolau, “High-level synthesis with 

synchronous and RAMBUS DRAMs,” in Proc. SASIMI '98, pp.186-193, 1998. 
28. P. R Panda and N. D. Dutt, “Low-power memory mapping through reducing address bus 

activity,” IEEE Trans. VLSI Syst, vol. 7, pp. 309-320, Sept. 1999. 
29. M. Winzker, P. Pirsch and J. Reimers, “Architecture and memory requirements for 

stand-alone and hierarchical MPEG2 HDTV-decoders with synchronous DRAMs,” in 
Proc ISCAS95, pp. 609 -612, Jan. 1995. 

30. T. Gleerup et al., “Memory architecture for efficient utilization of SDRAM: a case study 
of the computation/memory access trade-off,” in Proc. of the 8th International Workshop 
on Hardware/Software Codesign, pp. 51-55, 2000. 

31. H.-K. Chang and Y.-L. Lin, “Array allocation taking into account SDRAM 
characteristics,” in Proc. ASP-DAC, pp. 497-502, Jan. 2000. 

32. H. Schmit and D. E. Thomas, Jr., “Address generation for memories containing multiple 
arrays,” IEEE Trans. CAD, vol. 17, issue 5, pp.377 -385, May 1998. 

33. A. Jantsch, et al., “Hardware/software partitioning and minimizing memory interface 
traffic,” Proc. of the EuroDAC, pp.226-231, 1994. 

34. N. Chang, K. Kim, J. Cho and H. Shin, “Bus encoding for low-power high-performance 
memory systems,” in Proc. DAC2000, pp. 800-805, Jun 2000. 

35. W.-C. Cheng and M. Pedram, “Power-optimal encoding for DRAM address bus,” in 
Proc. International Symposium on Low Power Electronics and Design, pp. 250-252, 
2000. 

36. C. L. Su, C. Y. Tsui, and A. M. Despain, “Saving power in the control path of embedded 
processors,” IEEE Design and Test of Computers, vol. 11, pp. 24-30, 1994. 

37. M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,” IEEE Trans. 
VLSI Syst., vol. 3, no. 1, pp. 49-58, Mar. 1995. 

38. Y. Shin, S. Chae, and K. Choi, “Reduction of bus-transitions with partial bus-invert 
coding,” IEE Electronics Letters, vol.34, no. 7, pp.642-643, Apr. 1998. 

39. S. Hong, T. Kim, U. Narayanan, and K. S. Chung, “Decomposition of bus-invert coding 
for low power I/O,” J. Circuits, Syst., Comput., vol. 10, pp. 101-111, 2000. 

40. M. Mamidipaka, D. Hirschberg, and N. Dutt, “Low power address encoding using  
self-organizing lists,” in Proc. ISLPED'01, pp. 188-193, Aug. 2001. 

41. P. With, P. Frencken, and M. Schaar-Mitrea, “An MPEG decoder with embedded 
compression for memory reduction,” IEEE Trans. Consumer Electron., vol. 44,  
pp. 545-555, Aug. 1998. 

42. T. Y. Lee, “A new frame-recompression algorithm and its hardware design for MPEG-2 
video decoders,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 529-534, June 
2003. 

43. S.-B. Ng, Lower Resolution HDTV Receivers, US patent 5262854, Nov. 1993. 
44. W. Zhu, K. H. Yang, and F. A. Faryar, “A fast and memory efficient algorithm for 

down-conversion of an HDTV bitstream to an SDTV signal,” IEEE Trans. Consumer 
Electron., vol. 45-1, pp. 57-61, Feb. 1999. 



S C Memory System Design 117
 
45. L. Benini and G. D. Micheli, Dynamic Power Management: Design Techniques and 

CAD Tools. Kluwer Academic Publishers, 1998. 
46. A. H. Farrahi, G. E. Téllez, and M. Sarrafzadeh, “Memory segmentation to exploit sleep 

mode operation,” in Proc DAC95, pp.36-41, June 1995. 
47. H. Heske, Mobile RAMs can help save power, Portable Design Magazine, July 2002. 

[Online]. Available: http://www.electronicsforu.com/electronicsforu/articles/hits.asp?id=369 
48. R. Goering, “Philips design team wins EDAC award,” EEdesign, May 30, 2002. 
49. S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor SoC for advanced  

set-top box and digital TV systems,” IEEE Des. Test. Comput., vol. 18, no. 5, pp. 21-31, 
Sept.-Oct. 2001. 

50. G. Martin and H. Chang, Winning the SoC Revolution: Experiences in Real Design, 
Kluwer Academic Publishers, Boston, Jun. 2003. 

51. B. Furht, “Multimedia systems: an overview,” IEEE Multimedia, vol. 1, no. 1, Spring 
1994, pp. 47-59. 

52. J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach, 3rd 
ed., Morgan Kaufmann Publishers, San Francisco, 2002. 

53. A. Cataldo, MPU designers target memory to battle bottlenecks, EE Times, (10/19/01). 
[Online]. Available: http://www.siliconstrategies.com/ story/OEG20011019S0125 

54. R. C. Schumann, “Design of the 21174 memory controller for DIGITAL personal 
workstations,” Digital Technical Journal, vol. 9, no. 2, pp. 57-70, 1997. 

55. J. Carter et al., “Impulse: Building a smarter memory controller,” in Proc. HPCA 1999, 
pp. 70-79, Jan. 1999. 

56. S. Rixner, et al., “Memory access scheduling,” in Proc. ISCA 2000, Vancouver, Canada, 
June 2000, pp. 128-138. 

57. T. Takizawa and M. Hirasawa, “An efficient memory arbitration algorithm for a single 
chip MPEG2 AV decoder,” IEEE Trans. Consumer Electron., vol. 47, no.3, pp. 660-665, 
Aug. 2001. 

58. J. Corbal, R. Espasa, and M. Valero, “Command vector memory systems: High 
performance at low cost,” in Proceedings of the 1998 International Conference on 
Parallel Architectures and Compilation Techniques, pp. 68-77, Oct. 1998. 

59. Sonics, Efficient Shared DRAM Subsystems for SoCs, 2001. [Online]. Available: http:// 
www.sonicsinc.com/sonics/products/memmax/productinfo/docs/DRAM_Scheduler.pdf 

60. Sonics, SoCCreator Guide Design Flow. [Online]. Available: http://www.socworks.com/ 
socworks/support/documentation/html/ 

61. K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS: a new high-
performance communication architecture for system-on-chip designs,” in Proc. Design 
Automation Conference, pp.15-20, Jun. 2001. 

62. F. J. Harmsze, A. H. Timmer, and J. L. van Meerbergen, “Memory arbitration and cache 
management in stream-based systems,” in Proc. DATE 2000, Mar. 2000, pp. 257-262. 

63. Denali Software Inc., Databahn product information, [Online]. Available: 
http://www.denali.com/products_databahn_dram.html. 

64. K.-B. Lee, T.-C. Lin, and C.-W. Jen, “An efficient quality-aware memory controller for 
multimedia platform SoC,” IEEE Trans. Circuits Syst. Video Technol., vol. 15,  
pp. 620-633, May. 2005. 

65. K.-B. Lee and C.-W. Jen, “Design and verification for configurable memory controller - 
Memory interface socket soft IP,” Journal of the Chinese Institute of Electrical 
Engineering, vol. 8, no. 4, pp.309-323, 2001. 

66. ARM, Inc. PrimeXsys Platforms. [Online]. Available: http://www.arm.com/armtech/ 
PrimeXsys?OpenDocument 

o



118 Lee and Chang
 
67. Bill Cordan, “An efficient bus architecture for system-on-chip design,” IEEE Custom 

Integrated Circuits, San Diego, USA, May 1999, pp. 623 -626. 
68. S. Hosseini-Khayat and A.D. Bovopoulos, “A simple and efficient bus management 

scheme that supports continuous streams,” ACM Trans. Computer Systems, vol. 13, no. 
2, pp. 122-140, 1995. 

69. Micron Technology, Inc. mt48lc16m16a2 256Mb SDRAM, Jan 2003. [Online]. 
Available: http://www.micron.com/products/datasheet.jsp?path=/DRAM/SDRAM&fileID=10 

70. M.-Y. Chiu, K.-B. Lee, and C.-W. Jen, “Optimal data transfer and buffering schemes for 
JPEG2000 encoder,” in Proc. SIPS 2003, pp.177-182, Aug. 2003. 

71. K.-B. Lee et al., “Optimal frame memory and data transfer scheme for MPEG-4 shape 
coding,” IEEE Trans. Consumer Electron., vol. 50, no.1, pp. 342-348, Feb. 2004. 

72. A. Erturk and S. Erturk, “Two-bit transform for binary block motion estimation,” IEEE 
Trans. Circuits Syst. Video Technol., vol. 15, Issue 7, pp. 938-946, July 2005. 

73. G. J. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC advanced video coding 
standard: overview and introduction to the fidelity range extensions,” in Proc. SPIE, 
Denver, Aug. 2004. 

 



 

119 

Chapter 5 

EMBEDDED SOFTWARE 
 

Tai-Yi Huang*, Shiao-Li Tsao﹢, Le-Chun Wu＃, Edward T.-H Chu*,  
and Ko-Yun Liu* 

*National Tsing-Hua  University 
﹢National Chiao-Tung University 
＃National Taiwan University 

1. INTRODUCTION 

The advancement of semiconductor manufacturing technology makes it 
practical to place a traditional board-level embedded system on a single chip. 
The evolvement of system-on-chip (SoC) techniques presents new 
challenges on integrated circuit (IC) designs as well as embedded software 
and systems. A SoC system usually has limited hardware resource or 
functionality such as battery capacity, slower processors, and small memory, 
which induce the complexity of embedded software design. Traditional 
system software cannot simply be directly deployed on a SoC system to fully 
utilize its capabilities without considerable modifications in design and 
implementation. Software development tools, such as compilers, linkers, 
loaders, assemblers, debuggers, and simulators, have therefore become an 
integral part of the SoC system design. The requirement and design 
methodology of these tools are quite different from those on the general-
purpose computing systems. In addition, conventional approaches to 
developing software usually cannot proceed until the hardware is ready and 
fully tested. In contrast, hardware/software co-design becomes a crucial step 
in the development of SoC embedded software. It significantly speeds up the 
design and implementation process of hardware and software of an 
embedded system. In this chapter, we first discuss low-power scheduling of 
embedded software, which is a core issue in an embedded system design. It 
includes an in-depth and broad introduction on low-power task scheduling 
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and device scheduling. We later investigate the development framework for 
device drivers and hardware/software co-design methodology. Finally, we 
look into the topics in compiler and software development toolchains.  

Modern embedded systems, such as sensors and portable and wireless 
devices, are often powered by batteries. Due to its limited capacity of energy, 
the problem of reducing energy consumption has become a main concern in 
embedded system design. In addition, tasks running on such a system often 
impose real-time constraints that require a response to be returned before a 
deadline. A task that fails to complete its execution before its deadline 
results in the failure of the task and the whole system. Examples of power-
aware real-time embedded systems include, but are not limited to, cell 
phones, digital cameras, and sensor devices. A voice package must be sent 
within a time period to provide good-quality communication and avoid 
jittered delay. The operation of a sensor network requires that the sensed 
data be returned before a deadline to complete a multi-sensor decision. Data 
that arrives after the decision is made presents no value at all in many 
scenarios. Without energy-hungry components such as disks and CD-ROMs, 
the processor constitutes a major source of energy consumption on an 
embedded device. For this reason, the problem of low-power real-time task 
scheduling that arranges task execution for minimum energy consumption 
has received a lot of attentions recently.  

Dynamic Voltage Scaling (DVS) is a commonly-used technique for 
reducing processor energy consumption. However, reducing the supply 
voltage of a processor leads to a linear extension of the execution time of a 
task. Therefore, the issue of minimizing total energy consumption without 
violating any real-time constraint becomes the main challenge in the design 
of a low-power real-time system. A real-time DVS algorithm makes use of 
slack time to speed down the processor and reduce its energy consumption. 
Slack time is an amount of time a job can be delayed without causing any 
job to miss its deadline. A number of real-time DVS algorithms have been 
developed over the past few years to calculate available slack time and speed 
down the processor. Section 2 investigates several typical real-time DVS 
algorithms and its latest development. 

I/O subsystems have recently become a major source of energy 
consumption in embedded systems (Simunic et al., 2001; Choi et al., 2002; 
HP Lab and Alto, 2003). Dynamic Power Management (DPM) is gaining 
importance due to constraints on power budgets of these systems. DPM puts 
idle devices into a low-power and low-performance state to save energy. 
However, because it takes extra time and energy to change power states of a 
device, whether a DPM policy switches on or off a device requires careful 
analysis and calculation on each device’s idle interval. Many algorithms had 
been proposed for the prediction of a device’s idle interval. The 
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experimental results show that, when idle intervals of devices are accurately 
predicted, DPM can significantly reduce the energy consumption of devices. 
Because real-time operating systems (RTOS) are used in many modern 
embedded systems, the problem of applying DPM without violating real-
time constraints also needs to be addressed. Finally, there exists a demand 
for a hybrid power management that integrates both DVS and DPM to 
reduce system-wide energy consumption. Section 3 gives an overview and 
classification of latest DPM technology. 

Device drivers play an important role in the embedded software design 
because an embedded system is generally equipped with various peripheral 
devices, and handles external events through input/output (I/O) channels. Device 
drivers can significantly impact performance and real-time properties of an 
embedded system. The path of an interrupt service in a system with OS behaves 
extremely different from the one in a system without OS. How to improve the 
efficiency and interrupt latency of a device driver under different system 
configurations becomes an important issue (Jerraya et al., 2003; Labrosse, 2002; 
Li and Yao, 2003). On the other hand, hardware/software co-design becomes 
more and more important in device driver development. An efficiency co-design 
methodology can considerably reduce the development and debugging time of 
device drivers, but there are still a number of challenges needed for further 
research. Section 4 presents the characteristics, operations and design issues of a 
device driver for an embedded system. The section first summarizes 
characteristics of device drivers and the differences between a device driver for 
a general-purpose system and one for an embedded system. It is then followed 
by the discussion of a list of important issues in hardware/software (HW/SW) 
co-design flow, such as portability, testability and so on. 

Software development tools have long been used extensively for 
construction, debugging, and testing of software code. A well designed and 
easy-to-use toolchain can help developers to cut down the software 
implementation time significantly and therefore reduce the total design cost. 
While the structures and functionalities of toolchains for embedded systems 
are essentially no different from those for general-computing systems, due to 
the limited resources of embedded systems, different sets of challenges are 
presented when designing embedded tools. Among all the software toolchain 
components, the compiler is probably considered the most important. 
Besides relieving the software developers of the burden of assembly code 
writing, the compiler is especially pivotal in making sure the software code 
meets the system requirements. Unlike general-purpose compilers where 
run-time performance is often the foremost concern when generating and 
optimizing code, because of hardware resource constraints and time-to-
market pressure, other factors such as power consumption, code size, and 
retargetability are as important as performance when generating embedded 
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code. Section 5 begins with an overview of embedded software development 
tools and their basic structures, followed by discussions of several important 
research issues for embedded compilers. 

2. LOW-POWER TASK SCHEDULING 

The technique of dynamic voltage scaling (DVS) is considered the most 
efficient and important approach for reducing the energy consumption of 
processors. In this section, we first briefly explain DVS and its real-time 
extension. We next describe a set of mechanisms to utilize unused CPU 
bandwidth to speed down the processor. We finally present and classify a list 
of real-time DVS algorithms.  

2.1 Real-Time Dynamic Voltage Scaling 

The power consumption of a processor is dominated by its dynamic power 
dissipation, denoted by P. That is,  

 SVaCP df
2=  

where a is the average activity factor, Cf is the effective switched capacitance, 
Vd is the supply voltage, and S is the processor speed. Furthermore, the 
processor speed S is nearly linearly related to the supply voltage Vd as 

 d

td

V
VVkS

α)( −
=  

where k is a constant specific to a given technology, Vt is the threshold 
voltage, and α is the velocity saturation index, 1 < α < 2. DVS makes use of 
these characteristics to reduce P, the power consumption of a processor, 
cubically by lowering Vd, its supply voltage, for most processors. 

However, reducing the supply voltage of a processor leads to a linear 
extension of the execution time of a task. Because the total energy 
consumption of a task equals to the multiplication of the power consumption 
and the execution time of the task, we only reduce the energy consumption 
of a task quadratically when scaling down the supply voltage. On the other 
hand, a real-time system requires completing each task before its deadline. 
Therefore, the issue of minimizing total energy consumption without 
violating any real-time constraint becomes the main challenge in the design 
of a low-power real-time system. 
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2.2 Slack Time Usage 

Slack time is an amount of time a job can be delayed without causing any job 
to miss its deadline. Slack time is available when the sum of task utilizations is 
less than 100% or a task completes earlier than its worst-case execution time 
(WCET). The former available time is called static slack time as it can be 
calculated off-line. The latter is called dynamic slack time which cannot be 
determined until run-time.  A real-time DVS algorithm makes use of slack 
time to speed down the processor and reduce its energy consumption.  

We divide the discussion of slack time usage for reducing processor 
speed into two parts: static slack usage and dynamic slack usage. The 
common methods used to utilize static slack are minimum constant speed, 
priority-monotonic, essential interval, and EDF transformation. The common 
methods used to utilize dynamic slack are NTA stretching, priority-based 
slack stealing, work-demand analysis, and utilization update. 

2.2.1 Static slack time usage 

Minimum constant speed 

The most popular way of utilizing static slack time is to calculate the total 
workload and, based on this workload, determine a minimum processor speed. 
Every task is executed constantly at this speed to ensure that no task misses its 
deadline. The calculation of this minimum constant speed varies on different 
algorithms. We will describe the details and differences later when needed. 

Priority-monotonic 

This method applies to a system consisting of periodic tasks. It assigns 
processor speeds to tasks in monotonic priority order. A task with a higher 
priority is assigned with a same or faster processor speed than a task with a 
lower priority. That is, the processor speed for a task τi is not slower than the 
speed for τj, if the priority of τi is the same or higher than τj. To determine the 
processor speed for τi, we first identify its critical period (i.e., the one that 
starts at a critical instant). We next calculate the utilization at each interval 
ending with slack time in this critical period. Let w denote the workload of 
an interval. That is, w is set to the sum of the execution time of higher-
priority jobs than τi in this interval. The utilization of this interval is defined 
to be the value of w divided by the length of the interval. We define the 
critical interval of τi as the interval of the maximum utilization. The 
processor speed for τi, denoted by Si, is set to the utilization of its critical 
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interval. If this speed is slower than τi+1’s speed, we simply set it to τi+1’s 
speed, in order to comply with the monotonic order. 

Figure 1 gives an example to illustrate the priority-monotonic approach. 
There are 3 periodic tasks, τ1, τ2, and τ3, that are released at t = 0. The critical 
period of τ1 is [0, 5] and its critical interval is also [0, 5]. The workload w of 
this interval is 3. Thus, S1 is set to 0.6. The critical period of τ2 is [0, 7]. The 
critical interval is [0, 5] and its utilization is 0.8. Accordingly, S2 is set to 0.8. 
The critical period of τ3 is [0, 21]. The intervals ending with slack time are [0, 
10], [0, 14], and [0, 20] and their utilizations are 0.9, 0.86, and 0.8, 
respectively. Therefore, the critical interval is [0, 20] and S3 is set to 0.8. To 
comply with the monotonic order, we set S1 = S2 = S3 = 0.8.  

 

Figure 1.  The usage of static slack time in the priority-monotonic approach 

Essential interval 

The essential-interval approach treats each job as an independent job. Each 
job Ji is denoted by (ri, ei, di), where ri is its release time, ei is its WCET at 
the maximum processor speed, and di is its absolute deadline. The essential 
interval of Ji is defined to be [rs, di], where rs is the release time of a job Js. Js 
is selected such that s ≤ i,  rs ≤ ri < ds, and [rs, di] has the maximum 
utilization among all possible s. We then set the processor speed of this 
essential interval to be its utilization in order to fully utilize available static 
slack time. Figure 2 shows a 4-job example where J1 has the highest priority 
and J4 has the lowest priority. The essential interval of J4 is [rs, 20], where s 
can be 2 or 3. The utilization of the interval [r2, 20] is 0.7 and the utilization 
of the interval [r3, 20] is 0.47. As a result, the essential interval of J4 is  
[10, 20] and its processor speed is set to 0.7. 
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Figure 2.  The essential interval of J4 

EDF transformation 

This technique utilizes available slack time by first transforming a fixed-
priority set of jobs into a conforming set of EDF jobs and scheduling them 
by a known optimal DVS-capable EDF scheduling algorithm. If the fixed-
priority assignment of jobs is the same as an EDF schedule, we simply 
schedule them with the optimal EDF algorithm. Figure 3(a) shows a case of 
such a set of jobs, J1, J2, and J3, that have the same priority order in both 
fixed-priority assignments and EDF scheduling. If a set of jobs have a 
different priority order than EDF scheduling but there is no interference 
between these jobs, we still schedule them with the optimal EDF algorithm. 
Figure 3(b) shows a case of such jobs where J1 has a fixed higher priority 
than J3 but J3 has a deadline earlier than the release time of J1. For other sets 
of jobs, their deadlines are modified to create an EDF schedule without 
violating original priority assignments. One kind of transformation is shown 
in Figure 3(c) to set the deadlines of J2 and J3 at the same time as the release 
time of J1 in Figure 3(d). The transformed set of jobs are scheduled by the 
optimal DVS-capable EDF algorithm to make use of available static slack 
time. 

2.2.2 Dynamic slack time usage 

NTA stretching 

The approach of NTA stretching utilizes available static and dynamic slack 
time to execute tasks at a constant reduced speed between the current  
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Figure 3. The approach of EDF transformation 

instant and the earliest deadline. Let tc denote the current instant and td 
denote the next task arrival. Let w denote the worst-case workload in [tc, td]. 
The available slack time at tc is equal to (td − tc − w). This approach executes 
jobs in the interval of [tc, td] at the speed of w/(td − tc) to fully utilize 
available slack time. For example, in Figure 4, τ1 and τ2 are released at t = 0, 
and the next task arrival is at t = 10. We set the speed at t = 0 to (3 + 5)/ 
(10 − 0) = 0.8 to utilize static slack time. When τ1 completes earlier at t = 2, 
we recalculate the available slack time to take dynamic slack into account 
and set the speed to 5/(10 − 2) = 0.625. 

Priority-based slack stealing 

The priority-based stack-stealing approach calculates available slack time at the 
completion of each job. If a job completes earlier than its WCET, the available 
dynamic slack time will be assigned to a released job and this job will be 
executed at a reduced processor speed. When the assignment of slack time 
follows a priority-based manner, we call such a method a priority-based stack-
stealing algorithm. 

Figure 5 shows an example of 3 tasks all released at t = 0. Their executing 
speed is set to 1 initially. When τ1 completes earlier at t = 0.5, as shown in 
Figure 5(a), the 0.5 dynamic slack is assigned to τ2, a released job  
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Figure 4. The approach of NTA stretching 

 

Figure 5. The priority-based slack-stealing approach 
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with the next lower priority. τ2 makes use of this dynamic slack to reduce its 
processor speed to 2/2.5 = 0.8. When τ2 completes earlier at t = 2, as shown 
in Figure 5(b), the 1 dynamic slack is assigned to τ3. τ3 reduces its processor 
speed to 1/2 = 0.5. When τ1 preempts τ3 at t = 3, as shown in Figure 5(c), it 
executes at its initial full speed. 

Work-demand analysis 

The work-demand analysis online calculates available slack time at the 
beginning of each job. The slack time includes both static and dynamic slack 
time to the deadline of this job. This job makes use of all available slack 
time to execute at a reduced processor speed. Figure 6 shows an example of 
3 tasks all released at t = 0. Each task executes at the full-speed initially. 
When τ1 begins at t = 0, it has 5 − (1 + 1 + 1) = 2 static slack before its 
deadline at t = 5. τ1 makes use of this slack to reduce its processor speed to 
0.33, as shown in Figure 6(b). When τ1 completes earlier at t = 2, τ2 
calculates that it has 1 dynamic slack before its deadline at t = 6. 
Accordingly, τ2 reduces its processor speed to 0.5, as shown in Figure 6(c). 

 

 

Figure 6. The work-demand analysis 
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Utilization update 

The actual processor utilization during run-time is often lower than the 
worst-case processor utilization. The technique of utilization update 
estimates the required processor performance at the current scheduling 
instant by recalculating the expected worst-case processor utilization using 
the actual execution times of completed jobs. The executing processor speed 
is adjusted according to the updated processor utilization. 

2.3 Real-Time DVS Scheduling algorithms 

Among all related work, Yao et al. (1995) first presented an off-line optimal 
algorithm of O(N2) to schedule real-time tasks using DVS in a dynamic-
priority system, where N denotes the number of tasks. The following 
introduction of DVS algorithms is divided into two parts: dynamic-priority 
DVS algorithms and static-priority DVS algorithms. Referred dynamic-
priority algorithms include Shin et al. (2000),  Pillai and Shin (2001), Kim et 
al. (2002), Aydin et al. (2004), and Lee and Shin (2004). Referred static-
priority algorithms include Shin and Choi (1999), Shin et al. (2000), Krishna 
and Lee (2003), Pillai and Shin (2001), Quan and Hu (2001), Quan and Hu 
(2002), Kim et al. (2003), Yun and Kim (2003), Saewong et al. (2003), and 
Mochocki et al. (2005). 

2.3.1 Dynamic-priority DVS algorithms 

lppsEDF (Shin et al., 2000) 

This algorithm, called lppsEDF, assumes a workload of periodic tasks and 
earliest-deadline-first (EDF) (Liu and Layland, 1973) real-time scheduling. 
This algorithm offline uses the method of minimum constant speed to 
determine a minimum processor speed equal to its total utilization and 
initially execute each task at this speed. When tasks run at their WCET, no 
processor idle time exists. This algorithm applies the technique of NTA 
stretching to utilize available dynamic slack. One restriction of lppsEDF is 
that dynamic slack calculation only takes place when there is only one job in 
the ready queue.   

 ccEDF (Pillai and Shin, 2001) 

This paper proposed an efficient algorithm for calculating a minimum 
processor speed at completion of each job. The calculation is based on the 
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method of utilization update. Because such calculation is only carried out at 
completion of a job, it may not fully utilize processor utilization. 
Furthermore, this approach does not adapt well to a dynamic workload 
where tasks carry a wide range of execution times.  

To improve the performance of ccEDF, this paper proposed another 
aggressive algorithm, called LA-EDF. This algorithm first calculates the 
workload that must be done before the next deadline. It then sets the lowest 
possible speed to complete this minimum workload and defer as much 
workload as possible. The deferred workload is scheduled to be executed at a 
higher processor speed to avoid missing deadline. However, when a task 
completes earlier than its WCET, such a raise of speed may not be necessary. 
As a result, it adapts well to a dynamic workload and exhibits a better 
utilization of slack time.  

A real-time DVS algorithm achieves better energy saving in a processor 
assuming a continuous range of speeds than one assuming a discrete range of 
speeds. However, in reality, a processor supports only a limited set of speeds. 
This paper (Rao et al., 2004) presented a method called Pseudo-Level 
Generating Algorithm (PLG) to be used in conjunction with any real-time 
DVS algorithm. This method partitions the execution of task into several 
slots and determines a processor speed for each slot. The result is stored in 
an array to be used in a table-lookup way during run-time. The method of 
PLG is integrated into LA-EDF to improve its energy saving by 25%.  

lpSHE (Kim et al., 2002) 

The approach of lpSHE also assumes a periodic workload and EDF 
scheduling. When a high-priority task completes earlier than its WCET, its 
available slack is allocated to low-priority tasks. The calculation of slack 
time is online and involves the techniques of minimum constant speed, NTA 
stretching, and priority-based slack stealing. The time complexity of this 
algorithm is O(N) and its space requirement is marginal. The experimental 
results show that this algorithm reduces energy consumption by 20~40% 
over the lppsEDF algorithm. 

AGR (Aydin et al., 2004) 

This paper first proved that solving a real-time DVS problem is equivalent to 
solving a reward-based scheduling problem with concave reward functions. 
By transforming real-time DVS scheduling to reward-based scheduling, it 
proposed an optimal static solution for a real-time DVS scheduling problem 
where each task executes at their WCET. In addition, an online speed 
reduction algorithm called AGR is presented. Similar to LA-EDF, AGR 
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chooses a lower processor speed first and later switches to a higher speed to 
complete deferred work. The amount of deferred work is customizable. The 
reduction in energy consumption is not directly related to the amount of 
deferred work. It requires careful analysis on distributions of actual execution 
times to determine deferred work for minimum energy consumption.  

OLDVS (Lee and Shin, 2004) 

OLDVS is an on-line real-time DVS algorithm that assumes no periodic 
workload or any priori information such as periods and arrival times of tasks.  
This algorithm first uses the method of minimum constant speed to 
determine an initial processor speed. At each completion of a task or 
preemption from a higher-priority task, it allocates available dynamic slack 
to the highest-priority task in the ready queue. The calculation of dynamic 
slack is based on the method of utilization update. Such calculation and 
allocation of dynamic slack is carried out in O(1). The experimental results 
show that its performance is considerably better than previous real-time 
dynamic-priority DVS algorithms.  

2.3.2 Fixed-priority DVS algorithms 

lppsRM (Shin, et al., 2000) 

This algorithm assumes a periodic workload that is initially scheduled by 
Rate-Monotonic scheduling (Liu and Layland, 1973). This algorithm consists 
of an off-line and an on-line component. The off-line component calculates 
available static slack and uses the method of minimum constant speed to set an 
initial processor speed. The on-line component uses the technique of priority-
based stack stealing to determine available slack and reduce the processor 
speed accordingly. 

Figure 7 shows an example of three tasks initially scheduled by RM. It 
first calculates a speed scaling factor, denoted by ηi, for each task τi. This 
process is illustrated below  

η1 = min(C1/P1) = 0.5 , 

η2 = min{(C1+C2)/P1, (2C1+C2)/P2 } = 0.7 , 

η3 = min{(C1+C2+C3)/P1 , (2C1+C2+C3)/P2 , (3C1+2C2+C3)/P3 ) = 0.67 , 

η = max(η1, η2, η3) = 0.7 . 
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Figure 7. A task set 

where Ci and Pi denotes the WCET and period of τi, respectively. Figure 8 
shows the schedule and processor speeds of each task after obtaining all 
speed scaling factors.  The process of on-line slack stealing only takes place 
when there is only one job in the ready queue.  

ccRM (Pillai  and Shin, 2001) 

This algorithm is also based on a periodic workload executed by RM. It also 
consists of an off-line and an on-line component. The off-line component 
uses the method of minimum constant speed. The on-line component uses 
the method of NTA stretching. Because this algorithm speeds down the 
processor whenever there is slack time, without restriction on the number of 
ready jobs as demanded by lppsRM, it consumes less energy than lppsRM.  

We use the same workload shown in Figure 7 to illustrate the process of 
ccRM. We first calculate a constant speed, denoted Si, for each task τi. The 
initial speed, denoted by S, is next set to the maximum of all calculated speeds.  

 

Figure 8. lppsRM 
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We use f(t) to denote the processor speed at time t and D to denote the 
first deadline after the current scheduling instant. This algorithm divides the 
total workload in the interval [t, D] by (D – t) to obtain f(t). 
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 (Krishna and Lee, 2003) 

This paper proposed an on-line real-time DVS algorithm for a cyclic system 
where each task has the same period and deadline. Each task is assigned a 
fixed priority and is executed either at the lowest possible speed or at the 
highest possible speed. At completion of each job, it first calculates available 
slack time. It next speeds down the processor to the lowest possible speed to 
execute the next job for a longest period of time at the condition of keeping 
its deadline. They conducted a comprehensive experiment to the 
performance of the proposed algorithm. The experimental results show that, 
for a workload of a wide range of execution times, a processor with an 
infinite number of speed levels actually consumes more energy than a 
processor with only two speed levels. A similar result was also presented in 
Ishihara et al. (1988). They concluded that two levels of speeds are sufficient 
for most power-aware embedded systems.  
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lpWDA (Kim, et al., 2003) 

Similar to previous work, this algorithm still focuses its discussion on a 
periodic workload executed by RM. It first proposes the technique of work-
demand analysis for slack time estimation. When a job is ready to execute, this 
technique carefully examines every other job before its deadline to determine 
available slack. Such analysis obtains more slack time than previous work that 
includes less information in their estimation. Consequently, it delivers better 
energy saving by the utilization of more slack time. Its run-time complexity is 
at O(n) and can be reduced to O(1) in some cases.  

Figure 9 uses the task set shown in Figure 7 to illustrate the operation 
of this algorithm. Let τi denote the job to be executed at the current 
instant t, di denote its deadline, and wi denote its remaining workload. Let 
Hi(t) and Li(t) denote the workload of higher-priority and lower-priority 
jobs in [t, di], respectively. Again, we use f(t) to denote the processor 
speed at time t. The calculation of processor speeds by lpWDA is shown 
below. 
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Figure 9. lpWDA 
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PMclock (Saewong et al., 2003) 

This algorithm adopts a periodic workload executed by RM. It uses the 
technique of priority monotonic to make use of slack time. This algorithm 
intends to use a faster processor speed for a higher-priority task. For each 
task τi, it first statically determines the amount of static slack claimed from 
any higher-priority task in a critical interval. The slack time is used to speed 
down the processor for τi. However, if such a calculation results in a faster 
speed for a lower-priority task than a higher-priority task, the former will be 
executed at the same speed as the latter to comply with its priority-
monotonic requirement. The available dynamic slack is simply allocated to 
the next lower-priority job to be executed. For the example shown in  
Figure 7, this algorithm sets S1 = S2 = 0.7 and S3 = 0.67. Since there is 
dynamic slack between [28, 30], τ3 makes use of it to speed down S3 to 0.3.  

VSLP (Quan and Hu, 2001) 

This algorithm is based on a non-periodic workload where each task has a 
fixed priority. It utilizes the technique of essential interval to speed down a 
processor for energy saving. A 2-step iterative process is deployed to 
determine a processor speed for each interval. First, an essential interval for 
each job is located. Among all intervals, the one with the largest utilization is 
scheduled to be executed at a speed equal to its utilization. Let this interval 
belong to a job Ji. Secondly, Ji and every higher-priority job released in this 
interval are removed from the workload. For each of the rest jobs overlapped 
with this interval, either its deadline is shifted to the beginning of the interval 
or its release time is deferred to the end of this interval. Finally, this interval 
is removed from the schedule and the iterative process continues to locate 
the next essential interval.  

OPT_FP (Quan and Hu, 2002) 

This algorithm adopts a non-periodic workload where each task has a fixed 
priority. It uses the technique of EDF transformation to utilize slack time for 
speed reduction. This algorithm first presents a heuristic approach to 
transform a set of fixed-priority jobs into an equivalent set of EDF-based 
jobs by adjusting their deadlines. However, the same execution order is 
maintained in the new set. The new set of jobs is next executed by an 
optimal low-power EDF scheduling algorithm. This paper proved that an 
optimal low-power EDF schedule of the EDF-transformed set is the same as 
an optimal DVS schedule of the original set. Finally, the time complexity of 
EDF transformation is O(N!). 
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FP_TAS (Yun and Kim, 2003) 

This algorithm adopts a non-periodic fixed-priority workload. The 
contributions of this paper are two folds. First, it proves that the problem of 
optimal real-time DVS for a fixed-priority workload is NP-hard. Secondly, it 
uses dynamic-programming formulation to reduce the time complexity of EDF 
transformation to O(N3), compared to O(N!) required by the OPT_FP 
algorithm.  

3. LOW-POWER DEVICE SCHEDULING 

Dynamic Power Management (DPM) has been widely used in both 
commercial embedded systems and research work to reduce the power 
consumption of the I/O subsystem. In this section, we first describe several 
classical DPM policies. We next present DPM policies for real-time systems. 
The discussion continues to include energy-ware device scheduling and 
hybrid power management. Finally, we describe a couple of industry-design 
standards. 

3.1 Classical DPM Policies 

The basic idea of DPM is to switch idle devices to a low power state if the 
energy saving of this decision can compensate state transition overhead. The 
minimum length of an idle interval to save power is called the break-even 
time, denoted by Tbe (Lu and Micheli, 2001). It is a characteristic of a device 
and independent of its workload. The accuracy of prediction on idle length 
becomes an important factor since a device can be put to a low power state if 
its idle period is longer than Tbe. Figure 10 shows an example where a task 

iτ issues an I/O request on a device kx in [t0, t1] and [t2, t3]. We assume that 
the idle interval [t1, t2] is longer than kx’s break-even time. kx is put in to  
 

 

Figure 10. The concept of dynamic power management 
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sleep mode for energy saving during [t1, t2]. Let zx and wx denote the 
shutdown and wakeup latency of kx. The example shows that, in order to 
save energy and avoid delay of execution by an unready device, the accuracy 
of idle-time prediction is important for a DPM policy. 

Existing DPM policies are classified into three categories: timeout-based, 
predictive, and stochastic. A timeout-based policy is widely used in 
embedded systems due to its simplicity. It puts a device in a low-power state 
when its idle interval is longer than a predefined threshold. The main 
drawbacks are that the device wastes energy during the idle interval and the 
device may not remain in idle for at least Tbe. Karlin et al. (1994) proposed to 
use Tbe  as a timeout interval and showed that this choice leads to an energy 
consumption at worst twice the energy consumed by an ideal policy.  

Predictive policies are investigated to improve the performance of timeout-
based policies. If an idle period of a device is predicted to be longer than its 
break-even time, the device switches to a low-power state right after it 
becomes idle. Such a policy uses past information to predict the length of the 
next idle period. The L-shape policy (Srivastava and Chandrakasan, 1996), the 
adaptive learning tree (Chung et al., 1999) and the exponential-average policy 
(Hwang and Wu, 1997) are three classical predictive algorithms. S. Irani et al. 
(2003) presented a deterministic online DPM policy on multi-state devices and 
proved that its performance is 2-competitive to an optimal algorithm. Its 
experimental results show that this algorithm delivers the best performance, in 
comparison to other known predictive DPM algorithms.  

Timeout-based and predictive policies are often formulated heuristically. 
Stochastic policies (Benini et al., 1999) model the arrival times of requests 
and device power-state changes as a stochastic process, such as a Markov 
process. This work solves the problem of finding optimal tradeoff between 
performance and power as a stochastic optimization problem. Finally, two 
excellent surveys and performance comparison for these DPM policies can 
be found in Lu and Micheli (2001) and Benini et al. (2000).  

Lu and Micheli (2001) used the technique of filter driver to implement 
and evaluate a number of DPM policies. A filter driver is inserted between 
the operating system kernel and a low-level device driver. It intercepts 
communications between these two software layers and issues switching 
decisions on behalf of a DPM policy. They proposed six criteria to evaluate 
a DPM policy: power, number of shutdowns, shutdown accuracy, interactive 
performance, and memory requirements. The experimental results show that 
no existing DPM policy achieves an A grade in all columns. Particularly, a 
policy with the best power efficiency performance results in low interactive 
performance and requires more memory. A designer can make use of such 
information to select an appropriate DPM policy for their specific hardware 
and software requirement.  
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3.2 DPM Policies for Real-Time Systems 

Many embedded systems are designed to meet real-time constraints, such as 
automobile, avionics, medical applications, multimedia, defense applications, 
and telecommunication. These systems are required to meet both functional 
and timing requirements. Classical DPM policies cannot directly be applied 
to these systems because of their non-deterministic nature. A real-time DPM 
policy must carefully consider each power characteristic of a device, such as 
its break-even time, wake-up latency, and power consumption at different 
operational modes. Switching off devices at a wrong time can potentially 
result in a task missing its deadline.  

3.2.1 Hard real-time DPM polices 

For hard real-time system, one straightforward approach of DPM is to 
statically construct a huge switching-decision table for each device in a 
hyper period according to each task's worst-case execution time (WCET) 
and static I/O access-pattern. We use this table during runtime to switch on 
or off a device at each scheduling instant. Swaminathan et al. (2003) 
proposed a similar static approach, called LEDES, for a tick-driven 
scheduling system that assumes each task has a fixed execution time. 
LEDES considers each slice of a job as an independent workload with the 
identical device-usage list.  LEDES also assumes that each device’s power-
mode transition latency is less than or equal to the execution time of the 
shortest job. By making this assumption, LEDES safely determines a 
switching decision by looking ahead only one job without considering the 
device's break-even time. LEDES may consume more energy when an idle 
period of a device is less than its break-even time. In addition, it is 
applicable only for a deterministic system equipped with a large amount of 
memory. This paper also presented another algorithm called MUSCLES to 
handle devices with more than two power states. MUSCLES estimates the 
number of scheduling instants before a device is accessed and switches it on 
at the latest scheduling instant without missing a deadline. Both approaches 
rely on static information such as a constant processor speed and a fixed 
execution time. Consequently, they cannot make use of dynamic run-time 
information such as an adjustable processor speed, variable execution time, 
and a configurable task set.  

Liu and Chou (2004) found out that the break-even analysis is crucial for 
energy saving only when a device has two power states. However, many 
modern electronic devices support multiple power states and, thus, the 
break-even analysis only achieves sub-optimal solution. This paper 
presented a new approach to calculating an optimal switching sequence of 
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each device for a given deterministic task set. The result is stored in a lookup 
table to be retrieved during run-time for Θ(1) lookup performance. 

3.2.2 Soft real-time DPM policies 

For soft real-time systems, several commercial RTOS vendors have already 
supported DPM in their products. IBM and Montavista proposed an 
architecture supporting aggressive DPM for embedded systems (Brock and 
Rajamani, 2003). Developers can assign different weights to tasks, such that 
RTOS executes a task at a power/performance level matching its assigned 
weight. For example, a multimedia playback application requiring real-time 
performance can demand a high-power high-performance weight while other 
non-real-time tasks execute at a low-power state. This module  is maintained 
as an open-source project at http://dynamicpower.sourceforge.net/. It 
provides Linux 2.6 kernel patches and setup scripts for a list of supported 
platforms. The code and documentation found at this URL address may be 
useful for gaining the latest information and future directions for DPM 
support in Linux kernel.  

QNX proposed an application-driven model that enables fine-grained 
power consumption control of each I/O subsystem (Ethier, 2003). A user-
mode power manager issues power-state changes requested by applications. 
When an application requests the power manager to switch off a device, this 
request will be filtered by the power manager to make sure it will not block 
another application accessing the same device. This mechanism allows a 
designer to create a customized power management policy without 
modification on the level of kernel code or device drivers. 

3.3 Energy-Aware Device Scheduling 

A DPM policy saves energy by putting idle devices to a low-power state. By 
putting together tasks that access the same devices, we can create more 
switch-off opportunities and achieve better energy saving. We present here 
several approaches of reordering the execution sequence such that idle 
periods are grouped instead of scattered. 

3.3.1 Soft real-time device scheduling 

Lu et al. (2000) proposed an on-line low-power device scheduling for 
non-real-time systems. At each scheduling instant, it first selects a task 
whose device usage list is the same as the previous task. If such a task 
cannot be found, it next finds a task that creates a switch-off opportunity. 
When both steps fail, it selects a task with the best potential of providing 
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switch-off opportunity in the future. The experimental results show that 
this approach saves up to 33% energy and reduces around 40% power-
state changes.  

Weiseel et al. (2002) presented Coop-I/O, a power-management interface 
specially designed for energy-aware applications. Through Coop-IO, an 
application can declare open, read, and write operations as deferrable or 
abortable. An operating system makes use of this information to delay and 
cluster I/O requests in order to reduce the number of power-state changes and 
keep a device in a low-power state for as much as possible. Coop-IO was 
implemented into the IDE disk driver and Ext2 file system of Linux kernel. 
Several practical scenarios are presented to utilize this new I/O interface. The 
experimental results show that this mechanism can save energy by up to 50%.  

The major difference between Weiseel’s (2002) and Lu’s (2000) method 
is that Coop-I/O enables an application to pass the delay time of an I/O 
request when it is issued; programmers require no global knowledge of all 
I/O requests for their programs. On the other hand, Lu’s approach arranges 
the execution order of tasks to create energy-efficient device-access pattern, 
while Coop-I/O schedules device requests directly without involving the task 
scheduler.  

Cai and Lu (2005) presented a method to combine memory and disk 
power management for achieving better energy saving. They identified a 
tradeoff between memory and disk energy consumption. The disk can spin 
down longer to save energy at the increase of memory size. However, such 
an energy saving may not compensate the power consumption by the 
additional memory. In this paper, they proposed an algorithm to predict the 
number and inter-arrival time of disk I/O under different memory size. This 
information becomes necessary for a power manager to determine the size of 
memory and the timeout interval for shutting down a hard disk.  

3.3.2 Real-time device scheduling 

Device scheduling in a real-time system requires sophisticated analysis to 
consume minimum energy without violating any timing constraint.  
Figure 12 shows an example to illustrate the complexity of this problem. 
There are two periodic tasks T1 and T2. T1 requests device 1 and T2 requests 
device 2. T1’s priority is higher that T2. Figure 11 shows an inefficient way of 
accessing both devices while Figure 12 clusters requests of a same device. 
Obviously, Figure 12 exists more opportunities to switch off idle devices. 

Finding a feasible low-power device schedule for a real-time task set that 
consumes minimum energy had been proved NP-complete. The main idea of 
proof is to reduce this problem to the problems of sequencing within  
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Figure 11. The execution of two periodic tasks 

 

Figure 12. Energy-efficient device scheduling 

intervals (Swaminathan and Chakrabarty, 2005). Swaminathan and 
Chakrabarty (2002) proposed an algorithm called EDS to find an optimal 
solution for this NP-complete problem. They use a pruning technique to 
generate a schedule tree and iteratively prune branches in which the optimal 
solution does not exist. The schedule tree is pruned based on two factors – 
time and energy. Temporal pruning is performed when a partial schedule of 
jobs causes missed deadlines. Energy pruning is performed when a partial 
schedule induces higher energy consumption. Eventually, the pruning 
process leads to a leaf node with least energy. The energy-optimal device 
schedule can be obtained by backward tracing the path from the leaf node to 
the root node. However, the proposed method requires a lot of memory and 
computation time for a large-scale system. It is only suitable for small 
embedded systems. 

Due to the high complexity of EDS, Tian and Arslan (2003) proposed a 
Genetic-Based algorithm to generate a near-optimal device schedule for a set 
of real-time tasks. When compared with other algorithms, the genetic 
algorithm requires less memory and computation time and is more suitable 
for a large-scale system.  
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SURE (Slack Utilization for Reduces Energy) is an on-line real-time 
algorithm for a dynamic-priority system (Krishnapura et al., 2004). If a 
device is switched on, ready-queue jobs accessing this device are executed 
first. Alternatively, if a device is in sleeping mode, jobs that access this 
device will be delayed for as long as possible at the condition of meeting its 
deadline. This method reduces the number of power-state changes and keeps 
a device in the idle state for a longest period of time. The SURE algorithm 
can be executed offline to generate a cyclic schedule for online execution. It 
can also be executed online to adapt to a dynamic workload and achieve 
better energy saving. The major side-effect of EDS, Genetic-Based, and 
SURE is that jobs of the same task may execute one after the other. Such an 
arrangement maximizes the activation jitter of a task. In certain real-time 
control systems that demand smooth playback, this is not a desirable feature. 

3.4 Hybrid Power Management Technique 

The current leakage in standby mode is increasing with the advances of 
CMOS technology and must also be taken into account. The technique of 
dynamic voltage scaling (DVS), although reducing the processor energy 
consumption, extends the execution time of a task and increases the energy 
consumption of the I/O subsystem. There exists a trade-off between DVS 
and DPM scheme. A combined approach is needed to address the issue of 
reducing system-wide energy consumption.  

3.4.1 Hybrid scheduling for real-time systems 

Kim and Ha (2001) proposed the first approach that integrates the techniques 
of DVS and DPM for real-time systems. It partitions the execution of a task 
into a sequence of time slots and switches off idle devices on a slot-by-slot 
basis. They identified that there is a significant trade-off between DPM and 
DVS under different scheduling conditions. The main idea is to switch off a 
device if the time to the beginning of the next period is greater than its 
break-even time. For simplicity, the proposed method ignores device-
transition latency and leaves a device in sleeping mode until needed. It also 
assumes that the power consumption in standby mode (i.e., a device is on but 
not serving requests) is the same as that in active mode (i.e., a device is on 
and serving requests).   

Jejurikar and Gupta (2004) developed an off-line algorithm to consider 
both processor energy leakage and standby energy consumption of devices 
in determining a processor speed of each task. This algorithm first computes 
the critical speed for each task. If it is infeasible to schedule this task set at 
this speed, it next increases the processor speed to achieve feasibility. An 
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iterative heuristic method is used to select a task and its processor speed. 
However, this approach completely ignores the impact of DVS on device 
power management.  

Chu et al. (2005) present COLORS, a composite low-power real-time 
scheduling algorithm that applies DVS on top of a novel real-time DPM 
policy. COLORS is an on-line algorithm that adapts well to dynamic 
workloads resulted from variable execution times. It utilizes slack time and 
DVS to maximize opportunities for switching off idle devices. In addition, 
the development of COLORS takes a practical approach to consider every 
parameter of a device. A couple of matrices are identified to primarily 
determine the performance of real-time DPM. When compared with a 
theoretical optimized version which assumes knowledge of actual workloads, 
COLORS still delivers comparable performance. 

3.4.2 DVS during I/O 

In order to explore the impact of DVS on device activities, Acquaviva  
et al. (2001) described a software-controlled approach to adaptively minimize 
energy consumption in real-time multimedia embedded systems. This approach 
optimizes energy consumption by dynamically adjusting the processor speed to 
the frame rate requirements of incoming multimedia streams. It uses offline 
application profiling to obtain a performance-frequency mapping that is used to 
calculate an optimal speed for energy saving. In contrast, Choi et. al (2004) 
adopted a monitoring unit to perform workload decomposition.  The profiling 
report obtained by the monitoring unit reveals how and when the CPU is stalled 
during the execution of each application. Based on this information, we can 
determine a suitable processor speed for each task to reduce energy consumption 
while minimizing the impact on its runtime performance. 

3.5 Industry Design Standard 

In 1997, ACPI (Advanced Configuration and Power Interface) was proposed 
by a number of major industry players, including Hewlett-Packard, Intel, 
Microsoft, Phoenix, and Toshiba, as an open industry specification (Hewlett-
Packard, et al., 1997). ACPI establishes industry-standard interfaces for power 
management on laptops, desktops, and servers. This set of defined interfaces 
enables new power management technology to evolve independently in 
system libraries, operating systems, and hardware. Figure 13 lays out the 
software and hardware components relevant to ACPI and their 
architecture. This specification describes the interfaces between each 
component. With the availability of ACPI, several commercial operating  
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Figure 13. ACPI architecture 

systems start to implement ACPI-compliant device power management. 
Examples include, but are not limited to, Microsoft OnNow (Microsoft, 2001) 
and ACPI4Linux (SourceForge, 2002) projects. However, due to its 
complexity, it is hard to implement the whole set of ACPI interfaces on 
small embedded systems. The latest information of ACPI can be found at 
http://www.acpi.info/.  

Anand et al. (2004) provided a new set of interfaces that allows 
application-level information to be used in a DPM policy. Such interfaces are 
not available in the ACPI standard. These interfaces allow an application to 
not only query power information of I/O devices but also provide information 
on application behaviors for better power management. For example, when a 
disk is in standby mode, an adaptive application would rather fetch a small file 
from a networked machine if such an operation incurs less energy. On the 
other hand, for a large file, an application should retrieve from a local disk 
since reading from a networked machine will demand more energy. The 
availability of these interfaces enables an application to issue an appropriate 
DPM decision after carefully examining its own execution behavior.  

4. DEVICE DRIVER DEVELOPMENT 

An embedded system is generally equipped with various peripheral devices, 
and handles external events through input/output (I/O) channels. I/O jobs 
constitute a large proportion of tasks processed by an embedded system. 
Therefore, software drivers controlling I/O devices play a very important 
role in the embedded software design, and also significantly impact the 
efficiency, performance and real-time properties of an embedded system. 
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This section presents the characteristics, operations and design issues of a 
device driver for an embedded system.  

4.1 Characteristics and Operations of Embedded Device 
Drivers 

Embedded software markedly differs from general-purpose software. It works 
tightly with embedded hardware, and handles interactive and  
real-time events. A device driver controlling a specific hardware device 
cooperates with an embedded OS (EOS), enabling embedded applications  
to process external events quickly and efficiently. The interrupt- 
handling procedures of an EOS and the device drive designs significantly affect 
the efficiency, the functional and real-time correctness of an embedded system. 
Unlike a general-purpose OS focusing on flexibility, portability, configurability 
and layered structures, an embedded device driver and its related EOS functions, 
such as interrupt handlers and I/O subsystems, aim to improve the efficiency and 
effectiveness of the execution, code size and real-time characteristics. Figure 14 
shows an example of the I/O procedures of a general-purpose OS. During the 
driver initiation phase, a device driver must first associate its interfaces, such as 
dev_open(), dev_read(), dev_write() and  dev_close(), to the 
generic interfaces of a standard I/O subsystem of the OS, such as 
open(),read(),write(),close(). The procedure maps the I/O  
 

 
 Figure 14. I/O procedures of a general-purpose OS 
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subsystem to the specific driver and device. Additionally, the device driver 
must attach its interrupt service routine (ISR) to the interrupt handler, which 
is defined by the OS. The ISR can then be invoked to process the external 
event triggered by a particular device. Once an application requests I/O 
operations such as write() or read () through the system call 
interface, these requests are forwarded to the I/O subsystem. Depending on 
the OS implementations, the I/O subsystem might have an internal I/O 
scheduler to merge or shuffle I/O requests in order to improve the I/O 
efficiency. After the application generates an I/O request, the application is 
set to idle, and waits the I/O response if the I/O request can not be finished 
immediately. The scheduler is then called to pick up another task in the 
ready queue to run. If an interruption occurs, the CPU (Central Processing 
Unit) is forced to stop its current execution, and jumps to the ISR to process 
the event. This interruption event might change the states of tasks. For 
instance, if a read request is finished and an interruption occurs, then the task 
waiting for the read response is moved from the waiting queue to the ready 
queue and can be scheduled again. Notably, the design aims of the 
interruption-handling mechanism, device driver, and I/O subsystem of a 
general-purpose OS focus mainly on the structured and the standardized 
interfaces to facilitate the development and operations of the device drivers. 
The improvements of efficiency and real-time characteristics of a device 
driver for embedded software and embedded OSs are described next.  

Typically, the embedded software of an embedded system can be 
implemented by two approaches, non-OS-based and EOS-based. Non-OS-based 
implementation implies that no OS is involved in embedded software. The 
programmers must write a control program, device drivers and other supporting 
routines to perform the embedded software functions. Non-OS-based 
implementation is more efficient than EOS-based implementations in terms of 
code size and execution speed, but requires programmers to handle every detail 
of the embedded software. Non-OS-based implementation is generally applied 
to simple embedded systems. Conversely, embedded software based on the 
EOS-based implementation relies on the services offered by an EOS. Although 
EOS-based embedded software requires extra execution memory space, needs 
more flash memory to store the program image, and involves EOS overhead, it 
significantly reduces the development time and the complexity of the embedded 
software. The EOS-based approach is suitable for complex embedded systems, 
where it speeds up the development process. Figures 15 and 16 show the 
software architectures of non-OS-based and EOS-based embedded software, 
respectively, and also illustrate the interrupt timing diagrams.  

Figure 15 shows an example of I/O procedures for a non-OS-based 
embedded software system. An embedded application, which is a control 
program, accesses peripheral devices via device drivers. A device driver  
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Figure 15. I/O procedures and interrupt timing diagram based on a non-OS implementation 

implements an interrupt service routine (ISR) that handles the interrupts 
from the device. The ISR can implement I/O schedulers inside to further 
merge or re-schedule the I/O requests for a better performance. The 
procedures to process an I/O request once an interrupt arises are: 

1. The CPU must finish the instruction that is currently executed, and 
stops executing the current embedded application.  

2. The CPU pushes the CPU contexts, such as the current program 
counter and the stack point, to the stack. The extra CPU contexts such 
as registers might also be automatically saved, depending on the 
embedded processor design. If the CPU does not push certain contexts 
that might be used during ISR to a stack, the ISR itself must save these 
CPU contexts. Furthermore, to prevent incoming interruptions 
confusing CPU states, the hardware disables all interruptions when an 
interruption occurs.  

3. Before the ISR is executed, the CPU must lookup the ISR address stored 
in an interruption vendor table. This table-lookup task is performed by 
either hardware or software, depending on the CPU design. After the 
CPU obtains the ISR entry address, the CPU starts to run the ISR. The 
time between the interruption and the execution of the first instruction of 
ISR is defined as interruption latency. For a real-time embedded system, 
the interruption latency should be determined. The ISR might soon 
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enable interruptions again to allow incoming interruptions, to prevent the 
loss of interruptions. However, ISRs are generally non-reentry, so the 
interruption currently being processed by the ISR is disabled.  

4. The ISR is finished, and the CPU context is restored.  
5. The embedded application is then resumed.  

 The other implementation approach of the embedded software uses an 
EOS. Figure 16 shows an example of I/O procedures for an EOS-based 
embedded software. Entities denoted by blocks with dotted lines indicate 
that the entities might not exist for all EOSs, depending on the EOS 
implementations. An EOS might remove the wrapper layers and I/O 
subsystem layers within the kernel to improve the efficiency of I/Os 
processing. For instance, the drivers and programs in TinyOS are defined as 
components. Three possible component types exist in TinyOS, i.e. hardware 
abstraction, synthetic hardware and high-level software. Each component 
exports its own commands and then components are tightly integrated 
together. The I/O subsystem and wrapper functions are eliminated in TinyOS 
(Hill et al., 2000). Unlike the non-OS approach, the embedded AP running 
on top of EOS is an OS task. The task makes system calls, and the I/O 
requests are then passed to the I/O subsystem or directly mapped to the 
specific driver. A general-purpose OS might separate the interrupt service 
routine into two parts, i.e. top half and bottom half. The top half is a non-
reentry, fast and small piece of code handling critical hardware actions. The 
bottom half, or so-called the deferred work, which is executed after the top 
half, supports program reentry, and can spend more time than the top half to 
process the rest part of the request. Not all EOS separates ISRs into two 
halves. The procedures handling the I/O request once an interrupt arises are: 

1. As in the non-OS approach, a CPU finishes the instruction that is 
currently being executed, and stop running the current task.  

2. The CPU pushes the current program counter, stack points or other 
related CPU contexts to a stack, and disables all incoming interruptions. 
The CPU then looks up the entry address of the ISR stored in an 
interruption vendor table.   

3. Before executing the ISR, a kernel ISR entry function must be invoked 
to notify the kernel that an ISR is in progress. The kernel can then track 
the interruption nesting.  

4. The CPU jumps to the entry address of the ISR, and the ISR starts to 
execute. Some EOSs separate the ISR execution into two halves, 
especially while the ISR needs more time to process an I/O request. To 
avoid blocking interruptions for a long period, the bottom half ISR is set 
to interruptable by all interruptions. No clear line exists between the top 
and bottom halves. Generally, the top half ISR must perform very fast, 
and can not be interrupted by the same interruption. Conversely, the 
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bottom half generally spends more CPU time but it is interruptable by 
the same external events.  

5. To ensure that the interruption processing can be finished as soon as 
possible, the bottom half is invoked immediately after the top half is 
completed. Unlike a top-half ISR, the same interruption is enabled while 
executing the bottom half.  

6. For a preemptive EOS, an interruption can preempt the current executed 
task. Therefore, after the ISR is finished, the scheduler is then called to 
pick up the most appropriate task to execute.  

7. If the interruption picks up the original execution task, the CPU returns to 
it. Otherwise, a context switch to another task is required. For a non-
preemptive EOS, the CPU must return to the original task after the 
interrupt is finished. The scheduler executes and picks up a new task to run 
after the original task releases the CPU or the allocated time slice expires. 
In this case, the embedded application suffers from a longer delay in 
responding to the interruption event than that in a preemptive EOS.  

8. The original task is then resumed if it is picked up by the scheduler. 
Otherwise, another task is executed.  

 

 
Figure 16. I/O procedures and interrupt timing diagram based on an EOS-based 

implementation 
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An embedded device driver and its related EOS kernel functions mainly 
concern the accurate control and real-time properties of the interrupt-
handling procedures and the efficiency of the interrupt service routines.  

4.2 Device Driver and Hardware/Software (HW/SW) 
Co-Design 

Peripheral devices of an embedded system are often customized, and the 
hardware and software must be specifically designed. Conventional 
approaches to develop software generally can not proceed until the hardware 
is ready and fully tested. Such separated development methodologies lead to 
a long development time. Hardware/software (HW/SW) co-design technique 
can be applied to speed up the design and implementation process of 
hardware and software of an embedded device (Jerraya et al., 2003; Wang  
et al., 2003). Figure 17 shows an example of the embedded device design 
according to the co-design technique. The design process can be partitioned 
into three phases: the high-level design phase, the low-level design phase, 
and the implementation, integration and testing phase. The system designers 
first describe the embedded peripheral device from a high-level requirement 
perspective. Languages such as UML and SpecC can be used for high-level 
specification (Honda and Takada, 2003). The high-level design must 
describe the functionalities, features, timing, interactions and interfaces 
between the hardware and software of the device based on the requirements.  

 Figure 17. HW/SW co-design flow of an embedded device and its driver 
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No clear boundary exists between the hardware and software of an 
embedded device. A function block may be implemented on hardware to 
satisfy the requirements of the execution constraints, or may be 
implemented on software to fully use the computation power of an 
embedded processor, thereby reducing the hardware cost. The partition of 
HW/SW, particularly for a complex embedded system, needs a 
comprehensive and systematic analysis and investigation. After confirming 
the functional partitions of HW/SW, the interfaces between HW/SW can 
also be specified. The system level description based on UML or SpecC 
provides a high-level description of the hardware, software and their 
interfaces. The hardware and software design of the embedded device 
beyond the high-level design can be separated. The hardware low-level 
design according to the high-level description can be divided into the 
interface logic design and the I/O and device hardware design. The 
interface logic is a glue logic that maps the high-level interface 
descriptions to the precise hardware logic of the devices. Meanwhile, the 
device driver can be designed according to the high-level description of 
software. First, the device driver interfaces must be specified based on both 
HW/SW interfaces, and must also refer to the EOS interruption and 
interruption-handling mechanisms. The interface to the hardware is 
employed to control the hardware, and the interface to EOS is adopted to 
realize the device drive and interrupt service routines. Some reconfigurable 
embedded OSs, such as eCos, generailize the interfaces between hardware 
and software (Massa, 2002). For instance, the hardware abstraction layer 
(HAL) that lies between hardware and software in eCos provides an 
abstraction view, aiding the software development and providing re-
configurability and flexibility. A uniform device driver (UDI) provides a 
reference model for the standardized interfaces between an OS and a 
device driver, and benefits the design and portability of the driver (Barned 
and Richards, 2002). However, current EOSs do not implement UDI but 
have their own mechanisms and interfaces to manage drivers and 
interruptions.  

The implementation can proceed after the low-level design process is 
completed. Devices for general-purpose system could apply automatic code 
generation based on high-level and low-level designs. However, to improve 
performance and efficiency, manual implementation to optimize the codes is 
encouraged for embedded devices. Hardware and software of the embedded 
device testing is another critical task. The testing of embedded devices can 
be split into several stages. First, each HW/SW functional block is tested. 
Integrated hardware devices and software drivers are then verified separately. 
Finally, the HW/SW are integrated and tested. Hardware testing is fairly 
straightforward, and can be performed using various well-established 
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hardware verification and validation methodologies. Conventional software 
engineering methodologies on software verification and validation, such as 
block box testing and white box testing, do not work well on embedded 
device drivers. Device drivers that work on kernel level and are tightly 
coupled with hardware are difficult to test offline. Testing over the target 
takes a long time but provides accurate test results. Device drivers can be 
tested by hardware simulation, but the simulations detail to timing behaviors 
is not easy to develop. The verification and validation technologies of 
embedded device driver, particularly hardware-software co-simulation, must 
be further studied.  

The co-design method can significantly cut the development and 
debugging time of the embedded device, but has a number of challenges. 
First, the system methodologies to determine the HW/SW partition need to 
be established. Second, the verification and validation of embedded devices, 
particularly for hardware-software co-simulation, is another important 
research topic.    

4.3 Improving the Efficiency and Interruption Latency 
of a Device Driver 

An embedded system that handles frequent I/O events must consider the 
driver efficiency and interruption latency. The deterministic interruption 
latency is particularly important for a real-time embedded system. The 
interruption latency is fairly easy to determine in the non-OS approach 
(Weinberg, 2004), since software architecture consisting only of an 
embedded control program and interruption service routines is simple 
compared with the EOS-based implementation. When an interruption occurs, 
the CPU first completes the current instruction, pushes CPU contexts to a 
stack and then jumps to the specific ISR. For instance, the worse case fast 
interrupt (FIQ) latency in ARM6 is determined from:  the time for the FIQ 
to pass through the CPU, which takes 3 clocks;  the time to wait the CPU 
finishing the longest CPU instruction, which takes 20 clocks, and  the time 
for higher priority task and FIQ entry sequence, which takes 5 clocks. The 
time spent on these procedures has worst cases, and the interruption latency 
is determined. The internal interruption handler and scheduler design of the 
EOS-based approach influence the interruption delay suffered by the control 
program running in the application mode. The schedule hierarchy of an EOS 
design must be understood to identify the interrupt schedule behaviors and 
obtain the worse case interruption latency (Regehr et al., 2003). Figure 18 
shows the schedule hierarchy of an embedded Linux kernel. The exception 
has the highest priority, and the hardware interruptions have the 2nd priority. 
Embedded Linux splits ISRs into top halves and bottom halves, so the top 
half of the ISR, i.e. irq_action(), is performed first. The interruption  
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 Figure 18. Execution priorities in an embedded Linux kernel 

 
handled by the ISR is masked during the top half of ISR. After the top half, 
the bottom half, i.e. do_softirq(), is invoked immediately to reduce the 
total ISR execution time. The interruption processed by the top half is 
enabled during the bottom half. Versions 2.4 and above of Linux are 
preemptive kernels. Hence, the scheduler is invoked to pick up the highest 
priority task to run, after the ISR. Kernel threads gain higher priority than 
user threads in Linux. If an external IRQ has the highest physical priority, 
and the control program for that event is implemented at the ISR level, then 
the interruption latency can be determined easily. Otherwise, the worse case 
interruption time from the interruption occurring to when the specific 
program is invoked must consider other interrupt sources and other 
executing processes on the CPU. Factors determining the interruption 
latency include: the use of preemptive or non-preemptive kernels; use of 
single or split ISRs; interruption enable/disable period, physical parameters 
such as the CPU context saving time, and the time of the longest CPU 
instruction.  

Interruptions might occur very frequently. For instance, a network packet 
arrival to a network interface card can generates considerable workload for 
an embedded system in handling external events.  This phenomenon leads to 
interruption overloading that might starve other important tasks running on 
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the CPU. Several techniques can be applied to prevent interruption overload 
(Regehr and Duongsaa, 2005). The first technique is to disable the 
interruption for a period. System designers set either this period or its inverse, 
the interruption frequency, and then can determine the maximum 
interruption frequency that an embedded system would like to handle. The 
second method is to activate the interruption frequency control mechanism 
when the interruption overload is observed. Alternatively, hardware that 
schedules or arbitrates the I/O interrupts can be implemented to ease the 
interruption loading. As well as the embedded software improvement, 
hardware can also be specifically designed to reduce the interruption latency. 
ARM CPUs support fast interrupt (FIQ) architecture providing more banked 
registers than normal mode or other operation modes (Furber, 2000). FIQ is 
generally designed to support a direct memory access (DMA) transfer. The 
ARM CPU offers sufficient private registers to remove the need to save 
registers in applications that perform data transfer, thereby improving the 
response time and minimizing context switching overhead.  

4.4 Embedded Device Driver and Power Management 

Embedded systems, such as handsets, networked sensors and battery 
operated devices, are power sensitive. Previous studies indicate that the 
energy consumed by peripheral devices contributes a significant portion of 
the total power consumption of an embedded system. For instance, the LCD 
(Liquid Crystal Display) and wireless interfaces of a wireless 
communication PDA can consume 50% to 70% of the total energy in active 
mode (Nakamoto, 2004). For networked sensors, the radio and other 
peripheral devices consume more than 20mA, and a microprocessor 
consumes only 4mA during active mode (Hill et al., 2000). The peripheral 
devices consume more energy than the CPU, even in the inactive mode. 
Therefore, the power management of the embedded device driver should 
elaborate the low-power hardware designs and facilitate upper-layer 
applications to control the power usage. A number of research projects are 
working on a power-aware scheduler for embedded systems, concerning 
mainly the CPU resource and considering the current work load to adjust 
CPU speeds. One possible method is to utilize CPU dynamic voltage/clock 
scaling and change the CPU clock or voltage according to the current work 
load, thus saving power and achieving the performance requirement. Like 
the CPU design, the peripheral devices provide various operation modes, and 
each mode implies different numbers of active hardware components. For 
instance, the IEEE 802.11 WLAN network interface card supports at least 
two modes, the continuous access mode (CAM), which is always on and can 
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achieve the best performance, and the power saving mode (PSM), which 
only wakes up if packets are transmitting or need to receive. PSM offers 
fewer throughputs than CAM. LCD also supports different operation modes, 
which provide the LCD different level backlights and brightness. Based on 
the hardware designs, the device driver can thus employ the hardware low-
power features to export flexible power management functions to upper-
layer EOS or embedded software (Vaddagir et al., 2004). Moreover, device 
drivers or system modules can implement low-power schemes to reduce 
energy consumption. The schemes in device drivers or system modules 
further optimize the power consumption for particular applications or usage 
models. For instance, the device can dynamically switch on and off, or set 
itself to different modes, according to the usage pattern. Also, a device driver 
or I/O subsystem might need to reschedule or merge I/O requests to 
eliminate redundant requests to save energy. For instance, the previous study 
optimized power consumption for TCP/IP over WLAN, web access over 
WLAN and voice over WLAN. These designs can be implemented on 
device drivers or system modules.  

The power management interface of an EOS is also important. The APIs 
(Application Programming Interfaces) generalize the power management 
features that are provided by peripheral devices, and offer a single interface 
to an EOS. Advanced Configuration and Power Interface (ACPI) 
specification is well-known power management interface defined for 
general-purpose PCs, but only provides static power management which 
suspends/resumes the devices. IBM and MontaVista Software have jointly 
developed a dynamic power management (DPM) architecture for embedded 
systems, enabling the embedded software to optimize the power according to 
its needs (IBM and MontaVista, 2002). Figure 19 shows a possible 
implementation of dynamic power management on an embedded system. 
The CPU and peripheral devices physically support low-power functions at 
the lowest layer. The power-aware device drivers and a power-aware CPU 
scheduler are implemented based on the hardware features. A particular CPU 
mode and a peripheral device mode are combined to form a policy. This 
policy design benefits upper-layer EOS and embedded applications to 
manage the power-aware embedded system easily. The policy manager 
implemented in the EOS kernel wraps the policies to upper-layer 
applications. Therefore, embedded applications can employ DPM APIs to 
optimize the power consumption according to their own needs. The DPM 
strategies for an embedded application are the power management method 
particularly for the embedded application. An embedded application 
typically has pre-determined behaviors, so the power consumption can 
usually be predicted and fully controlled in all situations. The power 
management strategy can be realized by investigating all application running 
states, each having its own CPU and peripheral modes, and calling the policy 
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management to change the modes dynamically. The dotted line shown in  

 
 Figure 19. Implementation of dynamic power management of embedded software 

Figure 19 denotes the flow of the DPM operations. EOSs that do not 
implement DPM and have their own power management APIs can be 
directly invoked by the embedded application. The power management APIs 
can be employed to minimize the power consumption of these embedded 
systems. 

5. EMBEDDED SOFTWARE TOOLCHAIN 

With the benefits of shorter time-to-market and future modifiability and 
extensibility, a lot of designs in the embedded systems have shifted to the 
software side. Software development tools, such as compilers, linkers, 
loaders, assemblers, debuggers, and simulators, have become an integral part 
of the embedded system design. 

This section begins with an overview of the embedded software 
development toolchains, including compilers, linkers, loaders, debuggers, 
and simulators. It is then followed by the discussion of some important 
issues when compiling code for embedded systems. 
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5.1 Overview of the Embedded Software Development 
Toolchains 

Development tools such as compilers, assemblers, debuggers, and simulators are 
no strangers to software developers. Unlike tools for general-purpose computing 
systems, the embedded software tools are often for cross development. In a cross 
development environment, the system where software is developed (usually 
called the host system) is different from the target system on which the 
developed software will run. The target embedded processor is usually not 
appropriate for software development due to lack of user-friendly OS, software 
interfaces, and/or limited hardware resources. 

The basic structure of a typical software development toolchain is shown in 
Figure 20. Programs written in high-level languages (usually C) or assembly 
languages are compiled or assembled into object files, which, along with some 
libraries, are linked together to produce executable files. The generated executable 
files can be executed through a simulator on the host machine. Or they can be 
loaded to the actual target device and run there. During the course of the 
development process, the executables can also run under a debugger (which can 
run on the actual target device or through a simulator as well). 

Compilers 

Compilers have long been considered the most important tool in software 
development on general-purpose computing systems. In the embedded system 
domain, compilers were not as important in the past because it was often 
necessary to write applications in assembly languages due to embedded 
processors' special instruction sets, tight code size constraints, and performance 
concerns. However, with the increasing complexity of applications and the 
growing popularity of general programmable processors, more and more 
embedded applications and algorithms are implemented in high-level languages 
to avoid time-consuming and error-prone assembly programming. Compilers, 
especially optimizing compilers, are therefore becoming a key component in 
embedded software development. 

Figure 21 depicts the basic structure of a typical optimizing compiler. A 
compiler normally consists of two major pieces: a front-end and a back-end. 
The front-end translates high-level languages to compiler internal 
representations (IR), on which the subsequent components of the compiler will 
operate. A compiler might have multiple front-end modules, one for each 
high-level language that it supports. The back-end performs optimization and 
generates target machine code (or assembly code). The optimizations 
performed by the back-end can be further classified into two categories: (1) 
high-level optimizations (HLO), which deal with machine-independent 
optimizations such as loop transformations, dead code elimination, 
 



158 Huang et al.
 

 

 

Figure 20. Basic structure of a typical software development toolchain 

copy/constant propagation, among others, and (2) low-level optimizations 
(LLO), which focus on machine-dependent optimizations such as instruction 
scheduling, register allocation, and any other code transformation that relies 
on the knowledge of the target machine architecture. Details for the compiler 
structure and common code generation and optimization techniques can be 
found in various compiler books (Aho et al., 1986; Cooper and Torczon, 2004; 
Muchnick, 1997). 

Linkers and loaders 

Linkers and loaders perform highly-related but different works (Levine, 
1999). Linkers combine object files (generated by compilers or assemblers)  
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Figure 21. Basic structure of a typical optimizing compiler 

and library files into executables. When combining object files, a linker 
resolves symbol references, verifies that all external references are satisfied, 
and performs relocation, among other duties. In some of the memory-
constrained embedded systems where overlays are required, the linker’s job 
is more complicated than the case where virtual memory is supported. 

Linkage can happen statically or dynamically. For static linking, all 
constituent components of an executable must be present at link time and 
there cannot be unresolved external references. (Such an executable is 
sometimes called an archive-bound executable.) On the other hand, dynamic 
linking defers resolution of some external references until run time. 
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Although dynamic linking is faster at link time and can support better code 
sharing at run time, it is rarely used in the embedded software due to the 
substantial performance cost and potential run time errors that may not show 
up in testing. 

In a software development toolchain, the linker is often the only 
component that can see all pieces of a program (as most of the compilers 
only work on a single source file at a time). Therefore the linker becomes a 
idea place to perform whole-program analysis and optimization. While 
performing optimization at link time has the advantages of seeing the whole 
program and being able to handle code without source files, due to lack of 
source code information, the link-time optimizer often cannot be as 
aggressive as the compiler in certain optimizations that require the 
knowledge of the source program structures. The optimizations that show 
great promise at link time include dead code/data removal, branch 
optimization, calling convention optimization, data layout optimization, and 
so on (Srivastava and Wall, 1994; Haber et al., 2003; De Bus et al., 2004). 

Loaders, usually part of the OS, bring a program from secondary storage 
into main memory, sometimes with relocation, so that the program can run. 
Unlike in the general-purpose computing systems where handling 
dynamically linked libraries is considered one of the most important jobs for 
loaders, in the embedded systems, loaders usually focus more on the areas 
such as decompression of the code and data. 

Debuggers 

During the course of a software development project, generally more time is 
spent in testing and debugging than in code writing. With good use of 
debuggers, which allow the developers to examine and modify the state of a 
running program, the software development time can be shortened 
substantially. 

In the embedded development environment, the debugger usually runs on 
the host machine while the debugged software runs on the target system. 
This is called cross debugging (as opposed to native debugging where the 
debugger and the software are running on the same machine). Cross 
debugging is considered more difficult than native debugging. In cross 
debugging, besides the necessity of pre-negotiated communication protocols 
between the target system and the debugger on the host system, the target 
processor (and sometimes the system board) often needs to provide the 
architectural supports for debugging as well. 

Here is an example that shows the difficulty with cross debugging. When 
setting a breakpoint in a native debugger, the normal practice is for the 
debugger to replace the instruction where the breakpoint is set with a 
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hardware break instruction (or a branch instruction that jumps to a 
breakpoint handling routine). However, in an embedded system, if the code 
is in read-only memory (ROM), instructions cannot be replaced at run time. 
One way to solve this problem is to use a system debugging tool called In-
Circuit Emulator (ICE). Basically the emulator substitutes the processor in 
the target system (sometimes with the target processor being removed from 
the system board), replicates the processor’s operations, and provides the 
ability to examine and change the contents of registers, memory and I/O. 
Normal arrangement for an ICE is shown in Figure 22, where the ICE is 
plugged into the target system (board) on one side and connected to the host 
system on the other. When working with an emulator, the debugger does not 
need to change the code for a user-set breakpoint. Instead, the emulator stops 
the code when it sees the address (at which the breakpoint is set) is about to 
be executed. 

 

Figure 22. Normal in-circuit emulator connection 

However, with the advent of SoC where the processor is not by itself an 
independent chip, it is very difficult (if not impossible) to replace the 
processor with an ICE. Several embedded processors, such as ARM (Furber, 
2000), have therefore added architectural features that provide debug 
supports comparable with what was offered by an ICE. 

Simulators 

Simulators are important tools for both software developers and architecture 
designers alike. In the course of embedded system design, a simulator can 
support software testing and verification even before the target silicon exists. 
It can also provide an experiment platform for the architecture designers to 
explore design alternatives. 

The accuracy and granularity of information provided by simulators can 
range from detailed timing analysis, cycle accurate simulation, to behavioral 
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simulation. Normally (and intuitively), the more detailed information a 
simulator provides, the slower it runs. 

When writing simulators, in particular instruction-set simulators, one can 
choose to use interpreted or compiled simulation (Fisher et al., 2005). 
Traditional interpreted simulation (such as widely-used SimpleScalar 
simulator (2004)) is flexible, straightforward, and easy to implement, but, 
due to its interpretive nature, is very slow. In an interpreted simulation, the 
simulator is basically an interpreter with a main loop that fetches, decodes 
and executes (simulates) instructions from the simulated application program 
one by one, as shown in Figure 23 (Reshadi et al., 2003). 

 

Figure 23. Interpreted simulation work flow 

Compiled simulator, on the other hand, runs a lot faster but lacks flexibility. 
There have been several compiled simulation techniques proposed in the past 
(Reshadi et al., 2003; Živojnović et al., 1995; Pees et al., 1997; Maurer and 
Wang, 1991; Nohl et al., 2002). Conceptually, in a compiled simulation  
(as shown in Figure 24), the simulated application program is first decoded 
and translated into another program in high-level language (most likely C). 
The translated program is then compiled into host native code by the compiler 
on the host machine. Executing this host native program is a simulation of the 
application program running on the target system. 

5.2 Important Issues for Embedded Compilers 

While the embedded compilers are in general no different from the general-
purpose compilers structurally, there are nonetheless several compilation issues 
specific to the embedded compilers. These issues are understandably all in the 
backend (especially machine dependent) modules. For general-purpose compilers, 
run-time performance is probably the foremost concern when generating and 
optimizing code. However, in the embedded world, speed is not the only concern 
(sometimes not even the most important goal) for compilers. Due to the 
hardware resource constraints and time-to-market pressure, other factors such as 
power consumption, code size, and retargetability are as important (if not more) as  
 

Simulated 
Program 

Fetch Decode Execute 



Embedded Software 163
 

 

 
Figure 24. Compiled simulation work flow 

performance when generating embedded code. While many classic 
optimization techniques can equally benefit performance, power, and code 
size (e.g. common subexpression elimination (Muchnick, 1997) would reduce 
power and code size while speeding up the code), a lot of time these goals are 
conflicting and the compiler designers (or even the compiler users) will need 
to make tradeoff. In fact, in order to strike a better balance among these 
conflicting considerations, integer linear programming is widely used in code 
generation and optimization (especially in instruction selection/scheduling and 
register allocation) for embedded compilers (Kessler and Bednarski, 2002; 
Naik and Palsberg, 2002; Kong and Wilken, 1998). 

In the rest of this subsection we will look at some compilation issues 
specific to the embedded systems. 

Code size reduction 

In the embedded systems, software often has to run under constrained 
memory resource. Smaller code footprints can also have a positive effect on 
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the (instruction) cache performance. Reducing the code size of application 
programs has therefore become one of the important compilation goals. In 
general, code size can be reduced either through optimization or code 
compression. 

 
1. Optimization 

 
A lot of classic scalar optimization techniques focus on reducing code size. 
Most of these techniques are trying to remove dead, unnecessary, or 
redundant code from the program. Among some of the most well-known and 
straightforward optimizations are dead/unreachable code removal, common 
subexpression elimination, copy/constant propagation, and strength 
reduction (Muchnick, 1997). 

Besides removal of dead and redundant code, other advanced optimizations 
were proposed to better utilize the architecture features in order to reduce the 
number of instructions generated. For example, instruction selection in code 
generation phase often plays an important role in final code size as there could 
be several different code sequences to choose from when generating code for a 
particular operation. Another architecture feature that can be exploited to cut 
down code size is the auto-increment (or auto-decrement) addressing mode of 
memory operations. In unoptimized code, each memory access instruction (i.e. 
load/store) normally requires an arithmetic instruction to set up its address, as 
shown in the example in Figure 25 (a). In this example, both load instructions 
(I2 and I4) need arithmetic instructions (I1 and I3) to set up their addresses. If 
the target architecture supports auto-increment/decrement addressing mode, the 
compiler can arrange for the first load (I2) to modify its address register through 
auto-increment so that the modified address register value corresponds to the 
memory address used by the second instruction (I4), as shown in Figure 25 (b). 
This way the arithmetic instruction that calculate the second load’s address is no 
longer needed and can be removed. 

 

Figure 25. Exploit auto-increment addressing mode to reduce code size 

I1: add a = t + 4 

I2: load x = *(a) 

I3: add b = t + 8 
I4: load y = *(b) 

 

(a) 

I1: add a = t + 4 

I2: load x = *(a)+ 

I4: load y = *(a) 
 

 

(b) 
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Given a code sequence like the example in Figure 25 (a), it is relatively 
easy to convert memory instructions to the ones with auto-
increment/decrement addressing mode. A more difficult problem is how to 
allocate memory locations to variables so that we can maximize the 
opportunities of performing auto-increment/decrement optimization. This 
storage allocation problem is called offset assignment problem (Liao et al., 
1996). One popular solution is to model the variable access order as a graph 
and the objective is to find the maximum weight path cover (Liao et al., 
1996). This approach has been enhanced later to reduce cost or improve 
performance (Rao and Pande, 1999; Zhuang et al., 2003). 

Note that in the cases where code size is the most important factor for 
compiling the applications, optimization techniques, such as loop unrolling, 
procedure inlining, tail duplication, etc., will need to be turned off as they 
only benefit performance but hurt code size tremendously. 

 
2. Code Compression 

 
Reduction in code size can also be achieved by compressing the code. While 
there are many popular file-level data compression techniques, they are not 
suitable for code compression on embedded processors as the programs can 
have branches/jumps which often require us to be able to decompress the code 
at any point. Many code compression schemes proposed are dictionary based 
(Lekatsas and Wolf, 1998; Lefurgy et al., 1997; Thuresson and Stenstrom, 
2005). In a dictionary based compression scheme, a program is analyzed 
statically and the instructions that appear more frequently are identified and 
replaced with codewords that are much smaller than the original instructions. 
At run-time, a codeword fetched is first used for referencing the dictionary and 
then replaced by the original instruction recorded in the dictionary. 

Decompression can happen before the code is brought into the cache 
(Wolfe and A. Chanin, 1992; Lekatsas and Wolf, 1998). This way the 
instruction fetch unit of the processor still fetches the normal uncompressed 
code and the decompression only happens when there is an instruction cache 
miss. Or decompression can happen in the decode stage in the processor 
pipeline (Ros and Sutton, 2003) as depicted in Figure 26. In this scheme, when 
an instruction is fetched, the hardware needs to determine whether to send the 
instruction to the decompressor if it is compressed, or whether to simply pass 
it on to the decode stage. 

Several embedded architectures, such as ARM (Furber, 2000) and MIPS 
(MIPS Technologies, 2001), provide instruction set support for code 
compression. For example, the ARM architecture, which is arguably the 
most popular embedded architecture, supports 32-bit RISC instruction set.  
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Figure 26. Datapath for code decompression 

Most of the recent implementations of the ARM architecture support a 16-bit 
instruction set extension called Thumb. The Thumb instruction set provides 
the most commonly used ARM instructions in 16-bit format. The 
instructions are dynamically decompressed (into normal ARM instructions) 
in the processor pipeline. How the Thumb decompressor fits in the pipeline 
is very similar to the datapath diagram shown in Figure 26. 

Unfortunately the use of Thumb instructions doesn’t come without cost. 
For a program, the dynamic count of instructions executed increases when 
Thumb instructions are used. This usually leads to longer execution time. 
Some study was done on how to better generate mixed ARM and Thumb 
code guided by profile information so that the code size reduction can be 
achieved without loss in performance (Krishnaswamy and Gupta, 2002). 

Optimization for low power 

Reducing energy usage has always been an important challenge for the 
embedded system designers. The approaches to address energy problems 
comprise techniques ranging from circuit design, architecture design, 
operating system support, to compiler support. While the power saving 
schemes based on hardware design and/or OS supports have been working 
effectively, it is equally important to design energy-aware compilation 
techniques in order to achieve the best energy-efficient systems. 

In CMOS circuits, power dissipation is proportional to the square of input 
voltage (Chandrakasan and Brodersen, 1995). Therefore any reduction in the 
input voltage will have quadratic effect on energy saving. However, 
reducing voltage would have a negative impact on the clock frequency and 
cause a program to run slower. A lot of software based approaches have 
therefore focused on when (or where) to scale (reduce) the input voltage for 
the running programs in a system so that the timing constraints can still be 
met. While the operating system appears to be a better place to control the 
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voltage scaling (due to its ability to see all the running processes in the 
system), compiler based approaches can often provide finer granularity of 
control. For example, Hsu and Kremer (2002) proposed techniques that can 
identify program regions where the processor can be slowed down. The 
speed for each region is set accordingly. Saputra et al. (2002) proposed two 
energy optimizations based on both static and dynamic voltage scaling. In 
static scaling, loop-level optimization technique was leveraged to create 
opportunities for voltage scaling. In dynamic scaling, integer linear 
programming was exploited to select different supply voltage for different 
parts of the code to accommodate both energy and performance constraints. 
AbouGhazaleh et al. (2003) presented a hybrid compiler/OS scheme for 
dynamic voltage scaling. In their approach, power management hints are 
inserted in the application code by the compiler so that the operating system 
has fine-grained, path-specific information to adjust processor performance 
and energy consumption. 

Several phases of the compiler backend could be easily made more energy 
conscious (instead of only focusing on the performance). For example, the 
cost functions and heuristics that are used for instruction selection and 
scheduling during code generation could be modified to take into account the 
power consumed by each instruction (or instruction sequence). 

Retargetable compilers 

Unlike their counterparts in the desktop domain, embedded processors have 
far more variations and flavors in the architecture design. Even for the same 
instruction set architecture (ISA) family, new features and instructions (such 
as multi-media or network extensions) are constantly added to the existing 
architecture to meet the demands spawned from the ever-changing new 
applications in the embedded world. In addition, the microarchitecture is 
frequently changed to take advantage of the rapid advancement in 
semiconductor process technology. Such changes, however small, would 
often leave the existing software development tools, especially compilers, 
inadequate or even unusable. The embedded processor vendors are therefore 
forced to re-design and re-implement the compilers. Such practice is 
unfortunately time-consuming and often too costly. It is hence desirable (if 
not imperative) to have an easily retargetable compiler that can quickly adapt 
to a new architecture extension or a microarchitecture enhancement. 

In the heart of a retargetable compiler is the architecture/machine 
description language (ADL). The backend of a retargetable compiler is 
usually made orthogonal (independent) to any specific architecture and 
driven by the ADL. In fact, other components of the development toolchain, 
such as assemblers and simulators, can also be made ADL driven. With this 
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approach, whenever a change is made to the ISA or microarchitecture, the 
tool designers need only to modify the machine descriptions written in the 
provided ADL and the new development tools will be quickly available. The 
tool design cost, as a result, will be greatly reduced. 

Several ADLs have been proposed to support retargetable toolchains. 
Among the most famous and widely used are LISA from Aachen University 
of Technology in Germany (Pees et al., 2000), EXPRESSION from 
University of California, Irvine (Halambi et al., 1999), and nML developed 
at Tech. University Berlin (Fauth et al., 1995). Some popular general-
purpose compilers, such as GNU gcc compiler and IMPACT compiler from 
University of Illinois (Gyllenhaal et al., 1996), have their own machine 
description languages as well to drive their compiler backend. One thing to 
keep in mind is that it is almost impossible to design an ADL that can 
properly describe and model architectures across all application domains. An 
ADL is easier to design if it is targeted only at processors specialized for a 
particular application domain. 

A lot of retargetable compilers are part of bigger hardware/software co-
design projects (Halambi et al., 1999; Lanneer et al., 1995; Hoffmann et al., 
2001; Aditya et al., 1999). The methodology of co-design approaches often 
requires iterative process of hardware modification, co-simulation, and 
system evaluation until design criteria are met. Retargetable compilers are 
therefore fundamental in this co-design scheme in order for different design 
choices to be quickly explored and evaluated. 

6. CONCLUSIONS AND FUTURE DIRECTIONS 

With the requirement of shorter time-to-market and feature modifiability and 
extensibility, many designs in the embedded systems have shifted to the 
software side. Conventional software development mythology cannot be 
applied to embedded software directly because embedded software works 
tightly with specific hardware. In this chapter, we discussed the most 
important components of embedded software, including low-power task 
scheduling, low-power device scheduling, the development framework for 
device drivers, and embedded software toolchain.  

DVS is widely used to speed down the processor and reduce its energy 
consumption. A real-time DVS algorithm minimizes energy consumption 
while keeping timing constraints. Section 2 first described a list of mechanism
to use slack time and next introduced several referred real-time DVS 
scheduling algorithms. Each algorithm is unique in its way of calculating 
available slack time and allocating slack to available tasks. In addition, the 
tradeoff between energy-saving performance and complexity was also well 
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studied. To further enhance the performance of real-time DVS, many issues 
remain to be addressed, such as the impact of data dependency, static current 
leakage, and context switches. Finally, an efficient integration of DVS and 
DPM deserves more research efforts to consider all aspects of power 
consumption from a system-wide viewpoint.  

DPM is a powerful methodology for reducing energy consumption in 
modern embedded systems where peripheral devices consume more energy 
than the processor. Section 3 introduced and classified existing DMP 
policies and latest development. Due to the extreme complexity of this 
problem, there are still many issues left to be solved in designing an efficient 
real-time DPM policy. Finally, a complete energy-profiling tool at the level 
of an operating system is needed for designers to collect power-performance 
statistics on real systems. The availability of this data is essential in the 
design of the next-generation power management mechanism. 

Section 4 introduced the impact of I/O devices and their drivers on the 
functionalities, performance, and efficiency of an embedded system. The 
hardware/software co-design method saves the development time of the 
embedded device, but there are still many issues, such as methodologies and 
tools for HW/SW co-design and HW/SW co-simulation, needed to be resolved. 
Regarding device driver development, two approaches, i.e. non-OS-based and 
EOS-based, are commonly used. The non-OS-based implementation is more 
efficient and requires less memory than the EOS-based approach, but 
embedded software based on the EOS-based implementation utilizes the 
services offered by an EOS, and thus can reduce the development time and the 
complexity of the embedded software significantly. System designers should 
tradeoff these parameters during the driver design and implementation. 
Besides the above development issues, further research on device driver 
frameworks and interrupt handling processes in EOSs is highly required to 
guarantee the real-time characteristics especially for hard real-time systems.  

Software development tools are instrumental in the successful roll-out of 
an embedded system. While several tools such as assemblers, debuggers, and 
linkers are generally considered mature technology, they actually deserve 
more attention in the research community so that the design process of 
embedded software can be made faster and more smoothly. Compilers, on 
the other hand, have garnered a lot of interests recently in the academic and 
industrial communities alike due to the shift from assembly languages to 
high-level languages in embedded software development. Besides the 
important research topics such as energy saving, code size reduction, and 
retargetability mentioned in Section 5, other compilation issues, such as how 
to strike a good balance among various code generation factors and how to 
work better with the architecture and OS supports, still need to be further 
studied and investigated.  
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Abstract:  One of the biggest problems in complicated and high-performance SoC design 
is management of energy and/or power consumption. In this chapter, we 
present energy management techniques in system design including HW and 
SW, SoC architecture and logic design. Dynamic power consumption is the 
major factor of energy consumption in the current CMOS digital circuits. The 
dynamic power consumption is affected by supply voltage, load capacitance 
and switching activity. We present approaches to controlling supply voltage, 
load capacitance and switching activity dynamically and statically in system 
architecture and algorithm design levels.  We also discuss about the memory 
architecture for reducing power and energy in HW and SW co-design of SoC. 
In the future CMOS technology, leakage power consumption becomes 
dominant, because the threshold voltages are scaled as the transistor size 
shrinks.  We summarize the techniques for reducing leakage power in system 
architecture design. The contents of the chapter include the following issues; 
(1) power and energy consumptions in SoC design, (2) tradeoff between 
energy and performance, (3) tradeoff among energy, QoS (i.e., latency and 
computational precision), reliability, and flexibility (4) techniques for reducing 
dynamic power consumption, and (5) leakage power reduction techniques  

Keywords: Energy consumption, Power consumption, Reliability, Quality of service, HW  
and SW co-design 

1. INTRODUCTION 

In past years, the most serious concerns for the VLSI designer were 
performance, cost, and reliability. Recently, however, this paradigm has 

Lin (ed.), Essential Issues in SOC Design, 177–223.
© 2006 Springer.

S.Y.-L .

and 
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shifted. More specifically, reducing power and/or energy consumption has 
become one of the most important themes in SoC design. The driving factors 
of the paradigm shift include the following.  

• Popularization of portable electronic devices 
• Raising demand for reliable and stable computer systems 
• Worldwide environmental destruction 

One of the biggest factors which motivate the need for low power SoC is the 
popularization of portable electronics. The typical power consumption for a 
portable multimedia terminal is around the range of 10-50 [W] when 
employed chips are not optimized for low-power.  Assuming a battery yielding 
around 65 watt-hours per kilogram is used, the terminal would require 
unacceptable six kilograms of batteries for ten hours operation between 
recharges. If we use 500 grams of batteries, the terminal operates only one 
hour without recharges. Therefore, it is clear that the power consumption has a 
strong impact on a value of the portable electronic products. 

The second need for low power comes from a strong pressure for 
designers of high-end products to reduce their temperature. In [Black69], 
Black mentioned that the Mean Time To Failure (MTTF) of aluminum 
interconnects exponentially decreases as the temperature of a chip increases.  
Therefore, cooling down the chip temperature is essential for a reliable and 
stable operation of computer systems. Contemporary performance-optimized 
microprocessors dissipate as much as 15-50W at 100-200MHz clock rates. 
The leakage power issue makes this situation worse, because the leakage 
power increases exponentially as the temperature of the chip increases. In 
the future, it is expected that a 10 cm2 microprocessor with 500MHz clock 
frequency consumes about 300W.  The cost for cooling such chips is huge. 
Consequently, there is a clear advantage to reducing the power consumed in 
computer systems. Especially for consumer products whose sales are 
strongly affected by its price, lowering the power is indispensable. 

 Worldwide environmental destruction drives the strong need for low 
power electronic devices. Although the power consumption of each 
electronic device is small (around the range of 10-50W), they are used 
anywhere and anytime in today’s highly information oriented society.  
Assuming coverage of such electronic devices in the world is 50%,  
3.3 billions of people waste 500 billions of watts of power. In addition, 
rising IT population accelerates this situation. If we reduce the energy 
consumption of the electronic devices by 10%, we can save 65 mega tons of 
oil used in gas turbine power plants per a year or can reduce 50 nuclear 
power units. In 10-20 years from now, we need to come up with innovative 
solutions which drastically save the energy of the electronic devices with 
accelerating the growth of IT population.  

Recently, many energy reduction techniques at various levels of 
abstraction, such as at device, circuit, layout, architectural, and software  



Energy Management Techniques for SoC Design 179
 
levels are proposed. Regarding the physical design, energy optimization 
techniques are well studied. However, there is much scope left to study in 
the system level such as architectural, algorithm, or software level. In this 
chapter, we present system level energy reduction techniques which might 
be essential in SoC design.  

The rest of the chapter is organized in the following way. In Section 2, 
we explain mechanisms of power and energy dissipations in CMOS circuits 
and summarize basic strategy for reducing power and energy consumptions.  
Section 3 presents techniques for lowering supply voltage statically or 
dynamically considering several design tradeoffs. Section 4 presents 
techniques for reducing switching activity without sacrificing quality of 
services (QoS). In Section 5, we present techniques for reducing the product 
of switching activity and load capacitance. Section 6 presents strategies for 
reducing leakage power and shows several examples in detail. Section 7 
summarizes techniques for reducing energy consumption by customizing 
hardware for the target application. Section 8 concludes this chapter.  

2. POWER AND ENERGY CONSUMPTIONS  
IN SOC 

The energy consumption of a system, E, can be defined as the summation of 
both spatial and temporal power consumption of circuits [Weste93] as 
shown in (1) and (2). 

∑
∈

+⋅⋅=+=
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P: Power consumption of the target system 
Pdynamic: Dynamic power consumption of the target system 
Pleak: Leakage power consumption of the target system 
SA(g): switching activity of gate g (expected number of 0–>1 transitions 
per second) 
CL(g): load capacitance of g 
VDD(g): operation voltage of g 
t: Execution time of an application program 
 

We treat the energy consumption, E, as an objective function to be optimized, 
because the energy consumption is closely related to the heat and reliability 
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of chips, battery life time of portable devices, and the number of nuclear and 
gas turbine power stations required. The main approach is detecting a spatial 
and temporal hot spot and reducing the power consumption of the spot. 
Since the power consumption, P, dynamically changes according to the 
behavior of the software running on a chip and a location of the logic gate on 
the chip as shown in Figures 1 and 2, both the software and the hardware 
should be taken into account for reducing the energy consumption of a SoC 
chip. As one can see from Equations (2.1) and (2.2), we can reduce the 
energy consumption of the SoC chip by lowering SA(g), CL(g), VDD(g), 
Pleak(g) and t. However, lowering these parameters sometimes causes an 
increase of the execution time, a degradation of computational quality, 
system reliability and design flexibility. The key point of the energy 
reduction in SoC design is considering design tradeoffs among energy 
consumption, performance, computational quality, system reliability and 
design flexibility. The goal is minimizing the energy consumption under the 
constraint of performance, computational quality, system reliability and/or 
design flexibility.  
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Figure 1. Local Power Dissipation 
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There is a third source of power consumption, short-circuit power, which 
results from a short-circuit current-path between the power supply and 
ground during switching. Short-circuit power is projected to be constant 
around 10% of total power consumption for succeeding technologies 
[Chatterjee96]. We ignore it throughout this chapter. 

There are many techniques proposed for reducing the execution time t, 
and some of them are very effective for reducing the energy consumption of 
the SoC chip. In this chapter, however, we do not focus on the techniques 
which mainly aim to reduce the execution time. Instead, we summarize 
techniques which consider the execution time as a design constraint. In this 
chapter, we will make a brief survey on approaches to reducing SA(g), CL(g), 
VDD(g), and Pleak(g) in SoC design. We will also clarify the basic strategy 
underlying the approaches and show several examples in detail. 

3. TECHNIQUES FOR LOWERING OPERATING 
VOLTAGE 

Since energy dissipation is quadratically proportional to supply voltage (see 
equation (2.1)), lowering the VDD has a strong impact on the energy 
reduction. However, the following drawbacks should be taken into account; 

1. loss of compatibility to external voltage standards, 
2. performance degradation, and 
3. reliability issues (very low voltage). 

3.1 Compatibility of Different Voltage Standards 

Whenever one circuit has to drive an input of another circuit operating at a 
higher supply voltage, a level conversion is needed at the interface. Suppose 
we have two different voltages, VDH and VDL (VDH > VDL). If the output of a 
circuit operating at VDL is connected directly to the input of a circuit 
operating at VDH, the static current flows in the input cells operating at VDH, 
because the PMOS of the input cells cannot be cut-off as shown in Figure 3. 

In these days, it is common to have level shifting cells in a cell library for 
accepting multiple signal levels on a chip. Usami et al. proposed a clustered 
voltage scaling technique which assumes two different voltages available 
and finds the optimal voltage assignment to each cell considering the 
overhead of level shifting cells [Usami95]. Johnson et al. proposed a 
multiple voltage scheduling technique for reducing the energy consumption 
of a data path circuit considering an energy overhead of level shifting 
circuits [Johnson97]. 
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Figure 3. Static Current in Low Voltage Circuits 

3.2 Power-Delay Tradeoff 

Although lowering the supply voltage is the most effective way for reducing 
the energy consumption of SoC chip, this causes an increase of circuit delay, 
τ, which determines the maximum clock frequency of synchronous circuits. 
The delay τ of a CMOS circuit can be approximately formulated as (3.1), 

( )
 1

2
DDthDD

DD

VVV
V

≅
−

∝τ  (3.1) 

where Vth is the threshold voltage of CMOS transistors used in the circuit.  
Basically, we have the following three ways for lowering the operating 

voltage without sacrificing the performance of the system. 
 

1. Parallelize tasks so that the performance does not degrade even in a low 
voltage operation. We refer this approach as static voltage scaling. 

2. Use the maximum available supply voltage for gates on a critical-path 
and use a lower supply voltage for the other gates. We refer this approach 
as multiple voltage assignment. 

3. Lower the clock frequency and operating voltage when the maximum 
performance is not needed. We refer this approach as dynamic voltage 
scaling. 

3.2.1 Static Voltage Scaling 

Suppose we have four sequential tasks as shown in Figure 4 (a) and we have 
two processing units each of which can complete each task per a unit time 
TUNIT when 5.0V is used. If the tasks can be concurrently run on the 
processing units as shown in Figure 4 (b), the clock frequency and operating 
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voltage of the processing units can be reduced by half without degradation of 
system performance. Although switching activities per a unit time may 
increase up to twice, we can reduce the number of cycles and VDD by half. 
As a result, energy consumption can be quarter without performance 
degradation. 
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Figure 4. Energy Reduction by Parallel Computation 

A lot of researchers have proposed methods that incorporate 
architectural-level voltage scaling. Chandrakasan et al. proposed HYPER-LP 
which optimizes dataflow graph generated from a target application program 
for reducing the power consumption of data-path circuits [Chandrakasan95]. 
Other methods try to transform the target circuit during scheduling, module 
selection, resource binding, etc., for minimizing power consumption 
[Raghunathan94][Raghunathan95][Coodby94][Kumar95][Martin95]. All of 
the methods mentioned above try to exploit parallelism in the algorithm to 
shorten critical paths so that lower supply voltage can be used. Although this 
is a very attractive approach, parallelization of the computation is generally 
difficult because some computations are inherently sequential. 

3.2.2 Multiple Voltage Assignment 

Most voltage scaling techniques assume that the circuit operates at a single 
supply voltage. Although substantial energy savings can be achieved with a 
single minimum supply voltage, one cannot always take full advantage of 
available schedule slack to reduce the supply voltage. Since path delays in 
the circuit are not uniform, supply voltage of gates on a non-critical path can 
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be lowered until the path delay meets with the clock period. When there are 
nun-uniform path delays, the critical path delay determines the clock period. 
In this case, non-critical paths use only part of a clock period. The slack time 
within these clock periods goes to waste. Additional voltages make it 
possible to use the entire clock period. The basic idea is to assign lower VDDs 
to the non-critical paths in a way that the delays of the paths meet with the 
clock period as shown in Figure 5.  

Low VDD

High VDDCritical Path

Level Converters

 

Figure 5. An Example of the Multiple Voltage Assignment 

Usami et al. proposed a voltage assignment algorithm which finds the 
optimal voltage assignment to each cell considering a level shifting cell 
between different voltages [Usami95]. The algorithm performs backward 
graph-traversal for a given netlist from the primary outputs toward the 
primary inputs using the Depth-First-Search (DFS) algorithm. Each time the 
algorithm visits a cell and tries to replace a high VDD cell with low VDD cell. 
If the timing constraint is still met even after the replacement, the cell is 
replaced. This process is repeated until all the cells are visited. Their 
experiments demonstrated that the energy consumption can be reduced by 
20% using two voltages 5V and 3V. 

The idea can be extended to a multiple voltage datapath scheduling 
technique in high level synthesis. The main idea is to minimize energy 
consumption by assigning operations to time steps with various supply 
voltages under a given time or resource, or both constraints. We use Figure 6 
to illustrate the multiple-voltage scheduling technique. Assume the energy 
consumption of an addition operation is 1.0 at 1.2V and 2.0 at 1.7V. It 
requires 2 time steps at 1.2V but only 1 step is sufficient when 1.7V is 
applied. The area required for the adder module is 1.0. Similarly, the energy  
consumption of a multiplication operation is 2.0 at 1.2V and 4.0 at 1.7V. It 
requires 2 time steps and 1 step at 1.2V and 1.7V, respectively. The area 
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required is 2.0. Suppose we have a control flow graph as shown in Figure 6 
(a). It needs 3 steps and the energy consumption is 14. Since we can share 
the resources, we only need one adder circuit and one multiplier circuit in 
this case. As a result, the area required is 3. Since operations *1 and +2 are 
not located on a critical path, we can assign lower voltage to them as shown 
in Figure 6 (d). In this case, energy consumption can be reduced to 11.  If we 
relax the time constraint to 5, we can reduce the energy consumption to 8 as 
shown in Figure 6 (b). This idea is extended in the following papers 
[Johnson97][Raje95][Lin97][Chang96] so as to fit with more practical 
situations. 
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Figure 6. Multiple-Voltage Scheduling in High Level Synthesis 

Raje et al. proposed a datapath scheduling technique which schedules the 
datapath operations, selects voltages from a predetermined set of voltages 
and assigns the voltages to the datapath operations simultaneously so as to 
minimize power consumption [Raje95]. Lin et al. used an integer linear 
programming approach to schedule datapath operations, choose voltages 
from a list of candidates, and assign voltages to each operation considering 
timing and resource constraints together [Lin97]. Johnson et al. used an 
integer linear programming approach to choose voltages from a list of 
candidates, schedule datapath operations, and assign voltages to each 
operation considering the energy overhead of level converters [Johnson97]. 
Chang et al. proposed a dynamic programming approach to optimize non-

Energy Management Techniques for SOC Design 



186 Yasuura, Ishihara and Muroyama
 
pipelined datapaths and modified list scheduler to handle functionally 
pipelined datapaths [Chang96]. 

3.2.3 Dynamic Voltage Scaling 

More aggressive approach is dynamic voltage scaling. Since the 
computational load is not constant during the execution of given tasks, we 
can control computational power according to the computational load. The 
basic idea is assigning different operating voltages to the tasks in a way that 
any of the tasks does not violate a timing constraint. The assignment can be 
done statically or dynamically. 

Figure 7 shows motivational example of the dynamic voltage scaling. 
Suppose we have a processor which uses three different supply voltages, 5.0V, 
4.0V, and 2.5V. A task which takes 1 billion cycles to complete runs on the 
processor. The energy consumptions for the task are 10nJ/cycle, 25nJ/cycle 
and 40nJ/cycle at 2.5V, 4.0V and 5.0V, respectively. The computational 
speeds of the processor at 5.0V, 4.0V, and 2.5V are 50 million cycles per 
second, 40 million cycles per second, and 25 million cycles per second, 
respectively. This assumption follows the Equations (2.1), (2.2) and (3.1). 
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Figure 7. Motivational Example 
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In Figure 7 (A), the processor uses the maximum supply voltage, 5.0V, 
for the entire execution of the task. In this case, the total energy consumption 
is 40J. If the processor uses 2.5V and 5.0V in a way that the completion time 
of the task meets with a given time constraint, the energy consumption can 
be reduced to 32.5J as shown in Figure 7 (B). Figure 7 (C) shows the best 
case of this example. If the processor uses a single supply voltage which 
adjusts the completion time just to the time constraint, the total energy 
consumption is minimized. 

In [Ishihara98], Ishihara and Yasuura proved the following theorem; if 
the processor uses a voltage, videal, and completes a given task just at a timing 
constraint Tconst, the videal is the ideal voltage which minimizes energy 
consumption for the task. The example shown in Figure 7 demonstrates that 
reducing the energy consumption of the processor is fundamentally 
equivalent to exploiting idle intervals of the processor. Thus, we should first 
identify sources of idle intervals to efficiently reduce the power consumption 
of the processor. There are three major sources as follows; 

 

1. The first one occurs when a system is not tightly designed for a given 
processor. In other words, there is a room for design change or 
improvement such as introducing more tasks, replacing certain tasks with 
their version up, using lower performance processors and so on.  

2. The second source comes from a nature of a fixed-priority scheduling. 
The idle intervals inhere in the fixed-priority scheduling, because the 
priorities statically assigned to the tasks are not always optimal for the 
tasks.  

3. The third source comes from run-time variation of execution time. Since most 
of tasks complete its execution much earlier than the worst case execution time, 
the slack time will be yielded depending on input data for the task. 

 

Consider the three tasks given in Table in Figure 8. Ti, Di and Ci denote 
period, deadline and the worst case execution time (WCET) of each task, 
respectively. Priorities are assigned in row order as shown in the fifth 
column of the table. Assume all tasks are released simultaneously at time 0. 
A typical schedule, which assumes that tasks run at their WCETs (Ci), is 
shown in Figure 8 (a). Note that this system is designed to meet its 
schedulability. For example, if τ2 takes a little longer to complete, τ3 would 
miss its deadline at time 100. Even though the system is tightly designed, 
there are still some idle time intervals, as shown in Figure 8 (a). At time 160 
in the figure, when the request for τ2 arrives, the run-time task scheduler 
knows that there will be no requests for any tasks until time 200, which is 
the time when requests for τ2 and τ3 will arrive. As a consequence, we can 
save power by reducing the speed of the processor by lowering the clock 
frequency and supply voltage. When tasks are completed earlier than their 
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WCET, we have more chances to apply the same mechanism. For the 
example of Figure 8 (b), we can slow down the processor at time 50 because 
the first instances of τ2 and τ3 complete their execution earlier than the 
second request for τ1 arrives. Since the execution time of each task 
frequently deviates from its WCET during the operation of the system, we 
have many chances to slow down the processor as shown in Figure 8. 
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Figure 8. An Example of Task Scheduling on a Variable Voltage Processor 

Weiser et al. proposed a scheduling method for dynamically variable 
voltage processors [Weiser94]. Yao et al. proposed real-time task scheduling 
methods for the dynamically variable voltage processors [Yao95]. Both of 
them assume a fixed amount of execution time and exploit the first source of 
idle intervals only.  

In [Shin99], Shin et al. proposed a fixed-priority scheduling method 
which exploits the second and third sources of idle intervals mentioned 
above. They extended this work and proposed off-line and on-line 
algorithms for exploiting all of idle intervals mentioned above [Shin00]. The 
off-line algorithm finds the lowest possible voltage which guarantees time 
constraints of all tasks. The on-line algorithm dynamically varies the 
processor speed along with the supply voltage in order to exploit execution 
time variations and idle intervals.  
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In [Okuma99], Okuma et al. proposed a real-time task scheduling 
algorithms for the dynamically variable voltage processor. Their approach 
based on the Earliest Deadline First (EDF) algorithm. Similar to [Shin00], 
their approach exploits the first and third sources of the idle intervals 
mentioned above. However, they assume to choose voltages from a limited 
number of candidates, while [Shin00] assumes to use continuous values of 
voltage and clock frequency which is practically impossible. 

3.3 Power-Reliability Tradeoff 

Since the voltage scaling technique reduces voltage margins, it is impossible 
to discuss about low-power design techniques without considering reliability 
issues. Most circuit designers have to determine supply voltage of the target 
circuit to ensure that all circuits operate correctly even in the worst-case 
operating environment. There are three measure voltage margins as follows 
[Austin04]. 

 

1. Process Margin 
This ensures that performance uncertainties resulting from manufacturing
 variations  in  transistor do  not  prevent  slower  devices  from  completing
 computation within a clock period. 

2. Ambient Margin 
   This ensures correct operation at the worst-case temperature. 
3. Noise Margin 

This protects against a variety of noise sources that introduce uncertainty 
in supply and signal voltage levels, such as di/dt noise in the supply 
voltage and cross-coupling noise in logic signals. 
 

The sum of these voltages defines the minimum supply voltage that ensures 
correct circuit operation even in the worst-case condition. As mentioned 
before, the energy consumption of CMOS circuit is quadratically 
proportional to the supply voltage. Therefore, it is clear that there is a trade-
off between reliability and energy consumption. 

Worm et al. proposed an interconnect system which uses low-swing 
signaling, error detection codes, and a retransmission scheme [Worm02]. 
This technique optimally finds the interconnect voltage swing and frequency 
with subject to workload requirements and signal to noise conditions. The 
most straightforward way to reduce the energy consumption for the 
communication is lowering the voltage swing of signals propagated through 
interconnects. This however causes an increase of sensitivity to noise 
sources because of the decreased noise margins. Their technique monitors bit 
error rates of the interconnect on the fly as shown in Figure 9 and 
dynamically finds the optimal swing level which minimizes energy 
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consumption while satisfying the reliability constraint. Their simulation 
results show that the energy consumption can be reduced by 56% over a 
conventional interconnect with more robustness to large variations in actual 
workload, noise and technology quality. 
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Figure 9. Dynamic Voltage Scaling for Reliable Data Transmission 

Bertozzi et al. evaluated energy efficiency of several error resilient 
techniques such as error correcting codes, a data retransmission technique 
and so on [Bertozzi02]. Their experiments demonstrated that retransmission 
strategies are more effective than the error-correction-based technique in 
terms of energy efficiency.  

Austin et al. proposed Razor, a voltage scaling technique based on dynamic 
detection and correction of circuit timing errors [Austin04]. The technique 
eliminates unnecessary voltage margins that the traditional worst-case design 
methodologies require. In some cases, computations may fail and require 
additional time and energy for recovery. However, the overall computation 
consumes significantly less energy than traditional worst-case design. 

3.4 Commercial Products 

There has been a lot of power management software released before. Early 
power management software used the BIOS to determine whether a device 
had been idle long enough to shift a sleep state. With the introduction of 
Advanced Power Management (APM) the OS began to control the power 
settings and timings. With the Advanced Configuration and Power Interface 
(ACPI) specification, all power management moved from the BIOS to the 
hardware and operating system. In today’s low-power oriented computer 
systems, chipsets support ACPI power and thermal management functions to 
control various system-level and processor-level power and sleep states, and 
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they also still support APM. However, neither APM nor ACPI supports 
dynamic voltage scaling of chipsets. Recently, many computer systems 
including laptop PCs, PDAs, cellular phones, and etc. introduced the 
dynamic voltage scaling technique. The following power management 
software support dynamic voltage scaling.  
 

• SpeedStepTM, Extended SpeedStepTM (Intel) 
• PowerNow! TM (AMD) 
• LongHaulTM (VIA Technologies) 
• LongRunTM, LongRun2TM (Transmeta) 
• SmartReflexTM (TI) 
• IEMTM (ARM) 
 

Most of the above software products are based on the dynamic voltage 
scaling techniques mentioned in this section. Some of them also support a 
dynamic body biasing technique which can dynamically control the 
threshold voltage of transistors for reducing the leakage power consumption 
of a chip. The detailed explanation of the dynamic body biasing technique 
will be provided in Section 6. 

3.5 Conclusions 

In this section we addressed several techniques for lowering supply voltage 
of chips considering voltage compatibility, a power-delay tradeoff and a 
power-reliability tradeoff. As mentioned above, lowering supply voltage has 
the biggest impact on power reduction. The techniques can be applied to 
many kinds of SoC implementations like multi-chip module (MCM), 
network on chip (NoC), system in package (SiP), chip multi processor 
(CMP) and so on. However, it becomes more difficult in future to control 
supply voltage due to the reliability issues. Breakthrough will  appear if we 
can tolerate negative effects of process variations, temperature variations, 
soft errors and noises even in ultra low-voltage operation. 

4. TECHNIQUES FOR REDUCING SWITCHING 
ACTIVITY 

Lowering the switching activity is a very promising way of decreasing the 
power consumption. There are numerous researches on this issue. In this 
section, we introduce system level approaches for reducing the switching 
activity. System level switching activity reduction can be categorized as 
follows: 
 

• Turn off unused HW modules. 
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• Adjust datapath, the bit width of buses and operational units in a system. 
• Trade precision for low power (Use narrow bit width). 
• Compiler based instruction scheduling. 

 

Practical strategies we pick up in this section are shutting down unused 
modules, adjusting datapath width to minimize power consumption and 
compiler optimization techniques for reducing the switching activity.  

There are two main shutting down strategies: clock gating and power 
gating as summarized in Figure 10. Power gating is mainly used for reducing 
leakage power. Section 6 describes the power gating in more detail. The 
best-known technique for reducing the switching activity is clock gating.  
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LargeSmallOverhead (power & area)

DifficultEasyHardware support

Power GatingClock Gating

Power GatingClock Gating

PLL DC-DC

     MTCMOS
(sleep transistor)

 

Figure 10. Comparison of Clock Gating and Power Gating 

Clock network power can account for as much as 75 percent of the total 
switching power of a chip, and sequential cells driven by clocks can account 
for as much as 70 percent of the total clock power. Clock gating essentially 
disables the clock to a circuit to save power by both preventing unnecessary 
activity in logic modules and by eliminating power dissipation on clock 
network. Using a simple AND or OR gate (depending on the edge on which 
flip-flops are triggered) with the enable and clock signals as inputs, produces 
a gated clock as output. One can also employ a level-sensitive latch to hold 
the enable signal from the active edge until the inactive edge of the clock. 
Clock gating can be applied in either fine-grained or coarse-grained manner. 
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Fine-grained allows us to reach miscellaneous small units in clock sinks and 
aggressively save their dynamic power even for a few cycles. Coarse-grained 
gating saves power from higher level of the clock tree by removing all clock 
switching from its down-stream units. 

Another strategy for reducing switching activity is datapath width 
adjustment. Since datapath width, the bit width of buses and operational 
units in a system, strongly affects the size of circuits and memories in a 
system, the power consumption of a system also depends on the width of 
the datapath. In design of embedded systems and System-On-a-Chip 
(SOC), designers have to consider the trade off among system 
performance, cost and power consumption. Bitwidth of data, the length of 
data, computed in the system is one of the most important design 
parameters related with performance, cost and power of the system. The 
bitwidth of datapath and the size of memories strongly depend on the 
bitwidth of data. Providing more datapath width for computation than 
required, will consume more dynamic power and leakage power than 
necessary by the extra bits. 

Typical algorithms defined in C/C++ or SystemC will initially not 
contain definitions of the actual bit width for operations and storage 
elements. For algorithm selection, the design team often relies on floating 
point and straight integer calculations. Based on the stimulus which is 
applied to the design under optimization users can assess the minimum 
and maximum values on specific operations and then choose the optimal 
bit width accordingly. This allows users to understand the impact of bit 
width on energy and is a step towards trade offs between quality, which 
may be higher in a video application using higher bit width, vs. energy 
which decreases with lower bit width in the operations. In quality driven 
design, both higher and lower bits of data can be reduced. From the 
requirements on the output quality, lower bits of data may be omitted in 
the datapath width adjustment (See Figure 11). This means that there is 
potential for further energy reduction by decreasing computation 
accuracy. 

In this section, we describe dynamic power management by using the 
shutting down strategy, the datapath width adjustment strategy, and 
instruction scheduling. 

4.1 Dynamic Power Management (DPM) 

System level dynamic power management (DPM) has gained considerable 
attention in recent years as a way to save energy in devices that can be 
turned on and off. DPM dynamically reconfigures systems to provide the 
requested services and performance levels with a minimum number of active 

Energy Management Techniques for SOC Design 



194 Yasuura, Ishihara and Muroyama
 
components or a minimum load on such components. The fundamental 
premise for the applicability of DPM is that systems and their components 
experience non-uniform workload during operation time and that it is 
possible predict, with a certain degree of confidence, the fluctuations of 
workload. There are two power reduction methodologies with idle modes: 
voltage scaling with frequency scaling and clock gating. Only clock gating 
methodology is introduced. 

int func(v1, v2) 

{ 

  int  x0, x1, x2, x3, x3; 

  char xdfgp,  leergre; 

 

  x0 = v1 + v2; 

  x1 = v2 – v1; 

  df   0 * 1  
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ALU 

Upper lower 

Program 

 

Figure 11. Datapath Adjustment 

The control procedure is often called policy. An example of a simple 
policy, ubiquitously used for laptops and palmtops, is the timeout policy, 
which shuts down components after a fixed inactivity time, under the 
assumption that it is highly likely that a component remains idle if it has 
been idle for the timeout time. Power could be shut off or gated to 
functional blocks when operating in a standby mode and restored as needed. 
The gated circuit would not dissipate any power when turned off. 
Additional circuit would be required to monitor the need for these 
functional blocks. A problem with power gating is the latency between 
when the signal to turn a unit on arrives and when the unit is ready to 
operate. Retention flip-flops on an isolated power supply could be used to 
save the logic state of all sequential elements when a chip is powered down, 
eliminating the need to reinitialize the device when it comes out of standby 
mode. Some products support multiple levels of standby (soft off, nap and 
sleep) which differ in terms of the amount of power saving and latency 
(See Figure 12). 
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Figure 12. Dynamic Power Managament 

4.2 Datapath Width Adjustment (Bit-width 
optimization) 

Processor-based systems treat various data with different bit width. It is 
efficient in power reduction not only to determine datapath width statically 
but also to control the active datapath width dynamically. 

First, we introduce static optimization, which adjusts datapath width. Bit-
width analysis is performed to extract information on the required bit width 
of variables in programs and algorithms. For hardware design, using the 
result of bit-width analysis, one can determine the length of registers, the 
size of operation units, and the width of memory words on the datapath of a 
system to minimize the meaningless power consumption by the useless bits. 
Shorter registers and operation units reduce switching activity and the 
leakage of extra bits on the datapath. However, the trade-off between power 
consumption and execution time needs to be resolved. Generally, narrowing 
the datapath width reduces the area and power of the processor, but degrades 
the performance. The number of execution cycles increases, since some 
single-precision operations should be replaced with double or more precision 
operations in order to preserve the accuracy of the computation. Single-
precision operation are those whose precision is smaller than that of the 
datapath width. For example, an addition of two 32-bit data is a single-
precision operation whose datapath width is equal to or greater than 32 bits, 
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while it is a double precision operation on 16-bit processors. Changing the 
datapath width affects the size of data memory (RAM) and instruction 
memory, which is mostly implemented by ROM in embedded systems. Let us 
consider a program including two variables x and y, and assume that two 
variables x and y require at most 18 bits and 26 bits, respectively (see  
Figure 13). When the datapath width is 32 bits, two words are required to 
store these two variables, and the amount of the data memory is 64 bits. 
Since the minimum bit size required to store the variables is only 44 bits 
(18+26), 20 bits of the memory (about 30%) are unused. By reducing the 
datapath width to 26 bits, one can reduce the unused bits to 8 bits. Unused 
bits, however, increase to 31 bits, if a 25-bit datapath is adopted, because y 
requires two words. When the datapath width is 9 bits, two words and three 
words are required for x and y, respectively, and the unused area is only 1 bit. 
Many unused bits in the data memory can be eliminated by datapath-width 
optimization. 

main()
{
  int18 x;
  int26 y;
  ..........
}

32 bits x 2 words = 64 bits

26 bits x 2 words = 52 bits

9 bits x 5 words = 45 bits

Datapath width is 32

Datapath width is 26

Datapath width is 9

 

Figure 13. An Example of Datapath Width Adjustment 

 
Second, dynamic approach, which controls active datapath width, is 

introduced. This approach is called value-based clock gating. There is a fact 
that “narrow-width” data is common not only in multimedia codes, but also 
in more general workloads. For example, over half the integer operation 
executions require 16 bits or less on a 64-bit processor. Basic mechanism to 
reduce power consumption is operand-value-based clock gating to turn off 
portions of memories, buses, and arithmetic units that will be unused by 
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narrow-width operations. This optimization results in around 50% reductions 
in the data bus and integer unit power consumption. By applying this for 
data memory, 80% power reduction can be achieved. However, this 
approach requires hardware cost for detecting dynamically operation widths 
and turning off the unused units. As shown in Figure 14, if there is a 7-bit 
width data, only the lower data memory (D0) is accessed. 
 

 

Figure 14. A Data Memory Example Using Operand Based Clock Gating 

4.3 Compiler Optimization 

Compiler optimization is also effective for reducing the switching. In 
[Tomiyama1998], they proposed an instruction scheduling technique to 
reduce power consumption due to off-chip driving. Their technique reduces 
transitions on a data bus between an on-chip cache and a main memory, and 
as a result, power consumed by off-chip drives in the main memory, and is 
reduced. Let us consider an example in Figure 15, and assume 8-bit 
instruction width and 32-bit cache line size. There are four instructions  
(a)-(d) in the memory block. When the memory block is sent to the cache, 
the instruction (a) is sent first. At the time, four bits switch from high- to low-
level. At the next cycle, (b) is sent to the cache and six bits switch to 
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opposite level. As a result, the cache miss invokes twenty four transitions 
totally in the data bus. If changing the positions of two instructions (b) and 
(c) keeps the meaning of the program, it reduces bus transitions by 25%, 
from twenty four to eighteen bus transitions (See Figure 15). Thus the 
instruction scheduling can reduce transitions on the bus. Tomiyama et al. 
reported that the scheduling algorithm achieves significant reduction in 
transitions on the data bus, up to 28% of reduction, and runs efficiently. 

(a) 10010011
(b) 11101000
(c) 10111011
(d) 01110100

     11111111

(a) 10010011

(b) 11101000

(c) 10111011

(d) 01110100

     11111111

Main Memory Value on Data Bus Switching bits

4

6

4

6

4

Total: 24

(a) 10010011
(c) 10111011
(b) 11101000
(d) 01110100

     11111111

(a) 10010011

(c) 10111011

(b) 11101000

(d) 01110100

     11111111

Main Memory Value on Data Bus Switching bits

4

2

4

4

4

Total: 18

(1) Bus transitions
w/o optimization

(2) Bus transitions
w/ scheduling  

Figure 15. An Example of Instruction Scheduling for Low Power 

4.4 Commercial Products 

 
The Pentium 4 processor uses the clock gating technology. Every unit on the 
chip has a power reduction plan, and almost every functional unit block 
contains clock gating logic. 

 

4.5 Conclusions 

In this section, we summarized system level switching activity reduction 
strategies. The basic strategies are clock gating and datapath width 
adjustment. Analyzing statically and dynamically system requirements, 
unnecessary switching activity reduction can be achieved. 
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5. TECHNIQUES FOR REDUCING THE PRODUCT 

OF SWITCHING ACTIVITY AND A LOAD 
CAPACITANCE 

A major contributor to the system budget is the memory-processor interface. 
Ko et al. mentioned that the power dissipation of an external memory access 
is at least an order of magnitude higher than that of an on-chip access 
[Liu94][Ko98]. For this reason, a lot of techniques for reducing energy 
consumption of the off-chip buses have been proposed. The basic idea is 
reducing the switching activities (SA) of hardware modules whose load 
capacitance (CL) is large even if the SAs of low-CL modules are increased. 
Suppose we have a processor system including a CPU core, cache memories, 
an off-chip memory, and a processor-memory interface as shown in Figure 
16. The energy dissipation of the memory-processor interface, Einterface, can 
be expressed by (5.1), 

( )overheadmemorydataaddressinterface EEEENE +++⋅=  (5.1) 

where N, Eaddress, Edata, Ememory, and Eoverhead, represent the number of memory 
accesses, the energy dissipation in address buses per access, that in data 
buses per access, that in a memory module per access and energy overhead 
per access, respectively. There may exist the energy overhead if the 
memory-processor interface is modified for reducing the energy 
consumption in off-chip buses. As one can see, we can reduce the energy 
dissipation of the processor-memory interface by decreasing N, Eaddress, Edata, 
Ememory, and Eoverhead. The problem of minimizing the total energy 
consumption of the processor system is basically equivalent to finding the 
best tradeoff point between on-chip computational energy and off-chip 
communication energy. 

CPU
core

D-Cache
Memory

Eaddress

Ebuses

Ememory

Eoverhead

I-Cache

 

Figure 16. Energy Dissipation of Processor-Memory Interface 
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There are the following three major approaches for reducing the energy 
required for the communication between a memory and a processor.  
 

• Cache miss reduction 
• Bus encoding 
• Code compression 

5.1 Cache Miss Reduction 

Since cache miss rate is associated with the number of off-chip memory 
access, reducing cache miss rate leads to a reduction of the energy 
dissipation for the off-chip memory accesses. The most straightforward way 
for reducing the cache miss rate is to employ larger cache memory on a chip. 
Many techniques have been proposed for optimizing cache configuration 
considering tradeoff between energy consumption of off-chip memory and 
cache memory [Su95][Hicks97][Li98][Shine99][Malik00]. All these 
techniques are based on the fact that while a bigger cache consumes more 
energy per access, it can reduce the number of cache misses and as a result 
can reduce the energy consumption for the off-chip accesses. Suppose we 
have a processor with on-chip cache memory which can be resized for the 
target application as shown in Figure 17. 

Caches

CPU core Program Memory
  (Flash Memory)

Resizable Cache

Processor

 

Figure 17. An Example of Resizable Cache 

If we optimize the cache size for the target application, the energy 
consumption for memory accesses can be drastically reduced. For example, 
based on the experiment in [Ishihara05], the optimal cache size for the 
SPEC95 benchmark program, “Compress”, is 2kB as shown in Figure 18. If 
we use the 4kB cache instead of 2kB power consumption of the cache 
becomes very large. Conversely, if the 1kB cache is used, the power 
consumption of off-chip memory becomes huge due to the large number of 
cache misses. In the optimal case, the power consumption can be reduced by 
85% compared to the result for 1kB cache memory. Note that the leakage 
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power of the cache memory is assumed to be 10% of its dynamic power 
consumption. 
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Figure 18. Cache Optimization for Low Power 

Li and Henkel proposed Avalanche framework which simultaneously 
evaluates the tradeoffs of energy dissipations of caches and main memory 
[Li98]. The trade-off between system performance and energy dissipation is 
also explored in the framework. Their experiments demonstrated significant 
improvements (up to 95% energy saving) in energy dissipation. 

Another approach to reducing the number of cache misses is a compiler-
based approach [McFarling89][Hwu89][Tomiyama96][Panda96] [Hashemi97] 
[Ghosh99]. The idea is to modify the place of basic blocks, procedures, or 
global variables in the address space so that the number of cache conflict 
misses is minimized. This can significantly reduce the number of cache misses 
and energy consumption of memory subsystems. We first explain the idea 
behind the typical code and data placement technique. Consider a direct-
mapped cache of size C (= 2m words) whose cache line size is L words, i.e., L 
consecutive words are fetched from the main memory on a cache read miss. In 
a direct-mapped cache, the cache line containing a word located at memory 
address M can be calculated by (⎣M/L⎦ mod C/L). Therefore, two memory 
locations Mi and Mj will be mapped onto the same cache line if the following 
condition holds, 

0  mod  =⎟
⎠

⎞
⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢−⎥⎦

⎥
⎢⎣
⎢

L
C

L
M

L
M ji

 (5.1) 
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Several code and data placement techniques have used the above formula 
[5.6-5.13]. Assume a direct mapped instruction cache with 4 cache-lines, 
where each cache-line is 32 bytes as shown in Figure 19. Functions A, B, C 
and D are placed in the main memory as shown in the left side of Figure 19. 
If functions A, B, and D are accessed in a loop, conflict misses occur 
because A and D are mapped onto the same cache line. If the locations of C 
and D are swapped as shown in the right side of Figure 19, the cache conflict 
is resolved. Code placement techniques modify the placement of basic 
blocks or functions in the address space so that the total number of cache 
conflict misses is minimized. Similar to the code placement techniques, data 
placement techniques modify the placement of global variables in the 
address space so as to reduce the number of data cache misses. 

......

cache line memory block
(32 bytes)

A function
(104 bytes)

(L=32 bytes)

S=4

main memoryI-cache

conflict misses
in cache-line 1  

Figure 19. An Example of Code Placement 

Kulkarni et al. proposed a data placement algorithm which finds the 
optimal locations of global variables in the main memory [Kulkarni01]. The 
algorithm also explores different cache sizes considering trade-offs among 
performance, energy consumption and chip area. In the first step, they 
measure the cache miss rates for different cache sizes. Once the miss rates 
are obtained, the algorithm performs data placement for each cache size and 
estimate the energy consumption including energies for on-chip accesses and 
off-chip accesses. Depending on the design constraints, the designer can 
either choose a lower power solution with some overhead in size and vice 
versa. Their experiments demonstrated that the total energy consumption can 
be reduced by 10.6% with 26% performance overhead and 7% area overhead. 

 Scratchpad memory can be used as a design alternative for the on-chip 
cache memory. Current embedded processors particularly in the area of 
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multimedia applications and graphic controllers have on-chip scratchpad 
memories. In cache memory systems, the mapping of program elements is 
done during runtime, while in scratchpad memory systems this is done by 
the programmer or the compiler. Unlike the cache memory, the scratchpad 
memory does not need tag search operations and, as a result, it is more 
power efficient than the cache memory if programmers or compilers can 
optimally allocate code and data on the scratchpad memory.  

Ishihara and Yasuura proposed a code allocation technique which finds a 
size of an on-chip scratchpad memory and a code allocation to the 
scratchpad memory simultaneously so as to minimize the total energy 
required for fetching instructions [Ishihara00]. Their experiments showed 
that the energy consumption for the instruction fetching can be reduced by 
50%. Benini et al. presented a novel solution for the design hierarchy of low-
power embedded systems [Benini00]. The idea is mapping the most 
frequently accessed data onto a small memory, called application-specific 
memory (ASM) which is placed vary close to the processor. The 
experimental results on a set of typical embedded programs have shown that 
the energy consumption can be reduced by 68% with respect to equivalent 
caches having different sizes, organizations and configurations. Banakar et al. 
proposed an approach for selection of on-chip memory configuration from 
various sizes of cache and scratch pad memories [Bankar02]. Their 
experiments show that scratchpad based compile-time memory outperforms 
cache-based run-time memory on almost all aspects. For example, the total 
energy consumption of scratchpad based systems is less than that of cache-
based systems by 40% on an average. 

5.2 Bus Encoding 

Bus encoding techniques reduce communication power by changing the 
format of the information in a way that the total communication power is 
minimized. The basic strategy is to reduce switching activity of off-chip 
buses by encoding data transmitted between a processor and a memory. We 
have to consider a tradeoff between the energy consumed in buses and the 
energy overhead of encoding and decoding circuits. Suppose we have an 
original data format, Format-A, and low-switching format, Format-B as 
shown in Figure 20.  Energy consumption for sending data using Format-A 
and Format-B is EA and EB, respectively. The energy overhead for encoding 
and decoding (i.e., translating Format-A into Format-B and vice versa) is 
Eoverhead. Bus encoding techniques are effective only when the following 
inequality holds, 

.overheadEEBEA +>  
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Format-A Format-AFormat-B Format-B

Sender
off-chip

Receiver

 

Figure 20. Low-Power Bus Encoding 

The bus-invert coding is one of the most popular approaches [Stan95]. In 
the bus-invert coding, if the Hamming distance (the number of switched bits) 
between the new pattern to be transferred and the old one currently on the 
bus is larger than half the bus width, the new pattern is transferred with each 
bit inverted. An additional invert bit is used to inform the receiver side 
whether the pattern is inverted or not. The experiments demonstrated that the 
bus-invert coding technique decreases the I/O peak power dissipation by 
50% and the I/O average power dissipation by 25%. 

For instruction address patterns, where consecutive patterns are often 
sequential, the Cray code is efficient [Su94]. The Gray code has only one-bit 
difference in consecutive number for addressing. Due to locality of program 
reference, Gray code addressing can significantly reduce the number of bit 
switches. The experimental results showed that for typical programs running 
on a RISC microprocessor, using Gray code addressing reduce the switching 
activity at the address lines by 30-50% compared to conventional binary 
code addressing. 

In the T0 code [Benini97], the bus transitions are further reduced by 
freezing the address lines when consecutive patterns are detected to be 
sequential. An extra bus line is employed to inform the receiver side whether 
or not the current pattern is sequential.  

In special purpose applications, where the information about the 
sequence of patterns available a priori, the characteristics of patterns can be 
exploited to efficiently reduce bus transitions. The Beach Solution 
[Benini97-2] makes clusters of bus lines based on statistical information of 
address patterns and then generates an encoding function for each cluster 
such that the encoded version of each cluster results in less transitions. 

For data address patterns which are less sequential than instruction 
address patterns and less random than data patterns, the Partial Bus-Invert 
code [Shin98] performs better. It applies the bus-invert coding to a pre-
defined sub-group of bus lines thereby avoiding unnecessary inversion of 
relatively inactive and/or uncorrelated bus lines. The experiments on 
benchmark examples indicate that the partial bus-invert coding reduces the 
total bus transitions by 62.6% on the average, compared to that of the 
unencoded patterns. 
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5.3 Code Compression 

An alternative approach to bus encoding is code compression. The basic 
strategy is to use narrow instruction codes for reducing the switching 
activity when the instructions are transmitted from a program memory to 
 a CPU.  

One of the best known instruction compression approaches is the 
“Thumb” instruction set of the ARM microprocessor family [Segars95]. 
ARM cores can be programmed using a reduced set of 16-bit instructions 
instead of standard 32-bit RISC instructions, which reduces required 
instruction memory occupation and bandwidth by a factor of 2. 

Yoshida et al. proposed a code compression technique as depicted in 
Figure 21 [Yoshida97]. Suppose we have an object code and the number of 
distinct instructions appeared in the code is N. In this case, we can express 
all those instruction codes using ⎡ ⎤Nlog -bit binary patterns. Since the 
firmware running on a given embedded processor normally uses only a small 
subset of the instructions supported by the processor, a ⎡ ⎤Nlog -bit is much 
smaller than original instruction width. As a result, we can reduce the energy 
consumption for fetching instruction. According to this idea, the object code 
is stored in memory in compressed format, i.e., each instruction is replaced 
with a ⎡ ⎤Nlog -bit binary pattern which is in one-to-one correspondence 
with the original instruction. Every time an instruction is fetched from the 
program memory, it is decompressed (i.e., the original format is restored) 
using an instruction decompression table (IDT) and then passed to the 
processor’s decoding logic. This architecture is motivated by the fact that 
software programs normally use only a subset of all possible instructions 
offered by the processor’s instruction set. Since ⎡ ⎤Nlog  (where N is the 
number of distinct instructions) is usually much smaller than the original 
instruction width, this approach reduces both memory energy and bus power 
consumption.  

Memory

Core

32bits

Addresses

32

Memory

bits

Addresses

IDT

32

logN

Core

logN

 

Figure 21. An Example of Code Compression 
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Although, in principle, the solution depicted above offers good 
opportunities for energy reduction, it often happens that the number of 
distinct instructions, N, used by a program is not small. In such a situation, 
the size of the Instruction Decompression Table (IDT) becomes very large, 
and therefore area and power dissipation of the IDT would be very large as 
well. As a solution of the problem, Benini et al. proposed a selective 
instruction compressing technique [Benini99]. Their idea is to compress only 
a subset of fixed cardinality (256 elements) of the instructions used by a 
program, namely, those that are executed more often. This approach is 
motivated by the observation that the 256 most frequently used instructions 
are always executed for at least 50% and up to 99.99% of the time. The idea 
can be implemented as shown in Figure 22. This approach guarantees a fixed 
and limited size for the IDT and reduces energy and area overhead for 
decompressing the instructions. 
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Figure 22. Selective Code Compression 

5.4 Conclusions 

We addressed several techniques for lowering switching activity of off-chip 
buses considering tradeoff between the power consumption for on-chip 
computation and that for off-chip communication. Other than the techniques 
addressed in this section, there have been proposed a lot of techniques which 
reduce switching activity of high capacitance nodes. Specifically, circuit 
level approaches like logic synthesis techniques, placing and routing 
techniques, and high-level synthesis techniques which reduce transitions of 
high capacitance modules are well studied. On the other hand, there is much 
scope left to study on source-level design techniques which modify an 
application program in a way that power-hungry hardware components are 
less frequently used without sacrificing performance, computational quality 
and system reliability.  
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6. TECHNIQUES FOR REDUCING REAKAGE 

POWER 

For mobile/portable devices with a high standby-to-active ratio, leakage 
current may be the dominant factor in determining overall battery life. The 
three primary sources of leakage current (See Figure 23) are sub-threshold 
(Isub) or source-to-drain leakage current which grows exponential with  
 

 

Figure 23. Sources of Leakage Current 

lowering Vt and increasing temperature, reverse bias junction band-to-band 
tunneling current (Ib-b), and gate oxide tunneling current (Igate). Reducing of 
gate oxide thickness results in an increase in the field across the oxide. The 
high electric field coupled with low oxide thickness results in tunneling of 
electrons from substrate to gate and also from gate to substrate through the 
gate oxide, resulting in the gate oxide tunneling current. Most of the interests 
have focused on the leakage caused by sub-threshold current and gate oxide 
tunneling current in terms of system level leakage management. Due to the 
leakage mechanisms described above, leakage current increases dramatically 
in the scaled devices. Particularly, with reduction of threshold voltage to 
achieve high performance, leakage power becomes a significant component 
of the total power consumption in both active and standby modes of 
operation. Since in the sleep mode Igate will likely be dominant, two 
approaches may be considered: (1) reduce the threshold voltage of the sleep 
device somewhat (e.g. 100mV) to minimize the delay penalty associated 
with an extra series device; this allows the use of smaller sleep devices to 
simultaneously reduce Igate, dynamic power, and layout area while not 
penalizing standby mode leakage since Isub << Igate or (2) incorporate a multi-
Tox process was proposed.  
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A key difference between the state dependence of Isub and Igate is that the 
magnitude of Isub primarily depends of the number of on vs. off transistors in 
a stack, while Igate also depends strongly on the position of the on/off 
transistors. 

Leakage power can be expressed as follows [6-2]: 
 

DDleakleak VInP ⋅⋅= , )e)(V/V(I THDD V/V
TTHleak

−−∝ 1α  (6-1) 
 

where n indicates the number of transistors, VT denotes thermal voltage 
which is about 25mV at room temperature and increases linearly as 
temperature increases. According to this relationship, leakage current and 
therefore power dissipation increases exponentially with decreasing 
threshold voltage (VTH) and with increasing temperature. Equation (6-1) 
suggests two ways to reduce Pleak. First, we could turn off the supply voltage. 
That is, set VDD to zero so that the factor in parentheses also becomes zero. 
Second, we could increase the threshold voltage, which (because it appears 
as a negative exponent) can have a dramatic effect in even small increments. 
Of course using high-VT  transistors will degrade performance. A solution is 
to have mixture of high and low VT  transistors. Use low VT  transistors on 
timing-critical paths and high Vt transistors on non-critical paths. This 
approach is referred to as dual VT  design. Multi-Threshold CMOS 
(MTCMOS) cells can be used to control leakage power (See Figure 24). 
Low VT  transistors are used to implement gates for high speed, while high 
VT  transistors are added to form virtual rails. These high VT  transistors 
suppress the leakage current when the sleep signal is activated. Of course, 
there needs to be a sleep control mechanism. 
 

Figure 24. Multi-Threshold CMOS (MTCMOS) 
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Variable Threshold CMOS (VTCMOS) is a body biasing technique that 
controls effective threshold voltage by applying substrate bias to MOS 
transistors (See Figure 25). This technique is applicable at runtime. In the 
active mode, a zero body bias is applied. In standby mode, the effective 
threshold voltage is made to be larger by applying a reverse substrate bias to 
block the leakage current. Transistor performance in the active mode is kept 
the same as that in the conventional design by utilizing low VDD and low VT . 
However, triple well technology is required. 

Figure 25. Variable-Threshold CMOS (VTCMOS) 

In addition to above approaches, area reduction also reduces leakage 
power. Datapath width adjustment described in Section 6.4 is also effective 
for reducing the leakage power. The power dissipation of the whole system 
not only dynamic power but also leakage power is drastically reduced by 
tuning the parameters of processors and memories tailored for the 
applications. 

Reducing the number of transistors and controlling power supply voltage, 
VT , or temperature dynamically can reduce the leakage. Basic strategies are 
shown below. Some system level methodologies related using the strategies 
are shown in this section. 

 

 using high threshold voltage for non-critical paths 
 shifting the circuit to the low leakage mode 
 cooling high temperature parts, 
 reducing the number of transistors. 

 

Many techniques [Ishihara2002, Kaxiras2000, Powell2000, Sato2004] 
proposed to address leakage power have focused on cache memory that is a 
major leakage consumer of the entire system because leakage power is a 
function of the number of transistors. For example, StrongARM processor 
uses 60% of the die area for cache memories [Manne1998]. 
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6.1 Multiple Vth CMOS and Dual Vth Techniques 

One way to increase the threshold voltage is to use Multiple Threshold 
Circuits with sleep transistors [Calhoun2003]. This involves isolating a leaky 
circuit element by connecting it to a pair of virtual power supplies that are 
linked to its actual power supplies through sleep transistors (Figure 24). 
When the circuit is active, the sleep transistors are activated, connecting the 
circuit to its power supplies. However, when the circuit is inactive, the sleep 
transistors are deactivated, thus disconnecting the circuit from its power 
supplies. In this inactive state, almost no leakage passes through the circuit 
because the sleep transistors have high threshold voltages. This technique 
effectively confines the leakage to one part of the circuit, but is tricky to 
implement for several reasons. The sleep transistors must be sized properly 
to minimize the overhead of activating them. They cannot be turned on and 
off too frequently. Moreover, this technique does not readily apply to 
memories, because memories lose data when their power supplies are cut. 

 Another way to increase the threshold is to employ dual threshold 
circuits. Dual threshold circuits [Liu2004, Wei1998, Ho2004] reduce 
leakage by using high threshold (low leakage) transistors on non-critical 
paths and leakage by using low threshold transistors on critical paths, the 
idea being that non-critical paths can execute instructions more slowly 
without impairing performance.  
 

6.2 Dynamic Power Management for Reducing Leakage 

Adaptive body biasing technique [Seta1995, Kobayashi1994,Nose2002] is a 
runtime technique that reduces leakage power by dynamically adjusting the 
threshold voltages of circuits depending on whether the circuits are active. 
When a circuit is not active, the technique increases its threshold voltage, thus 
saving leakage power exponentially, although at the expense of a delay in 
circuit operation. When the circuit is active, the technique decreases the 
threshold voltage to avoid slowing it down. To adjust the threshold voltage, 
adaptive body biasing applies a voltage to the transistor’s body known as a 
body bias voltage (Figure 25).  Vt is dynamically controlled through software 
depending on the workload of a processor. The Vth-hopping scheme 
[Nose2002] can achieve 82% power saving compared with the fixed low-Vth 
circuits.  In order to efficiently suppress the leakage power, combining the 
adaptive body biasing technique and the dual Vt technique could be useful 
(See Figure 26). In this case, the adaptive body biasing is used only in the 
critical paths. On the other hand, Vt of the non-critical paths gates is set to a 
considerably higher value (high-Vt), which is not changed for the entire time. 
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Figure 26. Combining VTCMOS and Dual Vth Technologies 

6.3 Thermal Management 

Several cooling techniques have been developed since the 1960s. Some 
below cold air into the circuit, while others refrigerate the processor 
[Schmidt2002], sometimes even by costly means such as circulating 
cryogenic fluids like liquid nitrogen [Krane1988]. These techniques have 
three advantages. First, they significantly reduce subthreshold leakage. In 
fact, a recent study [Schmidt2002] showed that cooling a memory cell by  
50 degrees Celsius reduces the leakage power by five times. Second, these 
techniques allow a circuit to work faster because electricity encounters less 
resistance at lower temperatures. Third, cooling eliminates some negative 
effects of high temperatures, namely the degradation of a chip’s reliability 
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and life expectancy. Recently, the reliability is a much more significant issue 
in design. Despite these advantages, there are issues to consider, such as the 
costs of the hardware used to cool the circuit. Moreover, cooling techniques 
are insufficient if they result in wide temperature variations in different parts 
of a circuit. Rather, one needs to prevent “hotspots” by distributing heat 
evenly throughout a chip.  

Reliability and leakage power are both strongly affected by system 
temperature. In [Simunic], they proposed a joint reliability and power 
management optimization.  Their approach achieved a significant 
improvement in energy consumption (40%) in tandem with meeting 
reliability constraint for all operating temperatures. 

Another thermal management is a temperature aware task scheduling 
[Hung2005], which is task scheduling such that the temperature of HW is 
minimized. 

6.4 Bitwidth Optimization for Reducing Leakage 

Cao et. al. [Cao2002] reported a bitwidth optimization technique for 
reducing not only dynamic and leakage power at system level design. For 
Lempel-Ziv algorithm, they got dynamic power saving of 59.2% and leakage 
power saving of 64.3 at the optimal datapath width of 15bits; for ADPCM 
encoder, dynamic power saving is 44.2% and leakage power saving is 4.74% 
at the optimal datapath width of 19bits; for MPEG-2 AAC audio decoder, 
the dynamic power saving is 14.5% and leakage power saving is 18.1% at 
the optimal datapath width of 24bits and MPEG2 video decoder, the 
dynamic power saving is 18.3% and leakage power is 19.1% at the optimal 
datapath width of 28bits. For different application, the number of variables is 
different and the effective size of variables is also different, therefore the 
optimal datapath width of minimal power is different. Note that this is under 
the assumption ActTime : InactTime = 1 : 1. ActiTime is the application 
execution time, which is called active time and InactTime is the idle time, 
which is called inactive time. 

6.5 Commercial Products 

In [Mutoh1996], they presented a power management processor, which uses 
MTCMOS technology. 

Toshiba used the mixed MTCMOS and Dual VT  method to reduce the 
leakage power in a DSP core for W-CDMA cell phones. Cell phones spend a 
significant amount of time in the standby mode. Toshiba also presented a 
low power single-chip MPEG4 video-phone LSI. The VTCMOS technology 
is employed to reduce a standby leakage current, which is only 17% of the 
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conventional CMOS design [ISSCC A 60MHz 240mW MPEG-4 video-
phone LSI with 16Mbit embedded DRAM]. 

6.6 Conclusions 

This section describes leakage power reduction methodologies. There are 
four basic strategies: using high-VT on non-critical paths, shifting low 
leakage mode, cooling high temperature parts, and reducing the number of 
transistors. 

7. POWER REDUCTION TECHNIQUES USING 
APPLICATION SPECIFIC HARDWARE 

The ultimate way for energy reduction is creating application-specific 
integrated circuits (ASICs) that implement their algorithms directly in 
dedicated, fixed-function logic. The most energy-efficient type of 
processor core is the “application-specific instruction processor” (ASIP). 
These processors are custom designed for the application at hand. Today, 
however, a few companies offer automated tools that generate ASIPs based 
on parameters supplied by the system designer. ASIC designers can also 
achieve good energy efficiency by starting with a processor core and then 
customizing the core to the needs of their application. The processor cores 
offered by ARC and Tensilica are specifically designed for customization 
by the system designer. Both companies' offerings allow the system 
designer to add custom instructions that can produce massive energy 
efficiency gains. 

7.1 Energy-Flexibility Tradeoff 

Power consumption heavily depends on an implementation style and its 
flexibility [Rabaey00]. In Figure 27, the tradeoff between energy 
consumption and flexibility for different architectures is shown. As one can 
see, the dedicated hardware (ASICs) is 4 orders of magnitude more power 
efficient than embedded processors. Therefore, if there is no need for 
flexibility, the ASIC implementation is preferred. In practice, however, 
many systems require flexibility of the system in order to support not only 
existing applications but also upcoming ones. 

We can broadly categorize system architectures which concurrently 
satisfy high flexibility and low energy consumption as follows, 
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Figure 27. Energy-Flexibility Tradeoff 

1. A hybrid architecture which consists of embedded processor or DSP and 
dedicated hardware, and 

2. A configurable processor. 

7.2 Hybrid Architecture 

A hybrid-architecture consists of a microprocessor core, a set of standard 
cores, and a set of application specific cores as shown in Figure 28. The 
design goal using the hybrid-architecture is to partition a given application 
into the microprocessor core and the application specific cores in order to 
minimize the total energy consumption.   
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Figure 28. An Example of a Hybrid-Architecture 

Hardware/software partitioning is the process of dividing an application 
into software running on a microprocessor and dedicated hardware. This 
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approach is a well-established design methodology with the goal to increase 
the performance and to decrease the energy consumption of a system as 
described.  

Dave et al. proposed a hardware/software co-design technique, called 
COSYN, which targets embedded systems consisting of general-purpose 
processors, ASICs and FPGAs [Dave97]. Functions of COSYN include 
allocation, scheduling, performance estimation, and power optimization. 
COSYN finds hardware/software partitioning based on the performance and 
power estimation of a processing element.  

Henkel proposed a hardware/software partitioning technique for low-
power core-based systems [Henkel99]. The technique considers the power 
consumption of a whole embedded system consisting of a microprocessor 
core, application specific cores, cache cores and a memory core. The 
technique is based on a fine-grained (instruction/operation-level) analysis of 
energy consumption. The experimental results demonstrated high reductions 
of power consumption between 35% and 94% at the cost of a relatively 
small additional hardware overhead.  

7.3 Configurable Processor 

A configurable processor core is a fully functional processor design that can 
be customized or expanded to meet the performance and/or energy 
efficiency needs of applications [Wei05]. There are four general ways a 
processor can be configured:  

 

• By selecting from standard configuration options, such as bus widths, 
interfaces, memories, floating-point units, etc.  

• By adding custom instructions that describe new registers, register files 
and custom data types, such as 56-bit data for security processing or 256-
bit data types for packet processing.  

• By adding custom, high-performance interfaces that exceed the 
bandwidth abilities of the more common shared-bus architectures of 
conventional RISC and DSP cores.  
 

Configurable processors are typically delivered as synthesizable RTL code, 
and can be easily mapped onto an FPGA or SoC design. Some configurable 
processors are provided with automatically tailored software-development 
tools (the compiler, assembler, debugger, linker, and profiler), EDA 
synthesis scripts, and verification test benches that reflect the designer-
defined architectural extensions so that no additional effort is required to 
ready the configured core for SoC development.  

The ability to add custom instructions of any width allows an SoC 
designer to use a configurable processor core to implement datapath 
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operations that closely match the abilities of a manually designed RTL 
block. Since the configurable processor does not have a feature for 
dynamically reconfiguring the structure of the processor, it is more energy 
efficient than a reconfigurable processor. In the configurable processor core, 
the datapaths are implemented using the base processor's integer pipeline, 
plus additional execution units, registers, and other functions added by the 
chip architect or SoC designer for a target application.  

Energy efficiency of the configurable processor typically comes from the 
following three features [Wei05], 

 

1. Configuration of the instruction set permits a much closer fit of the 
processor to the target application, 

2. Configuring the processor removes unneeded hardware features like 
larger cache memories than needed, unused register files and extra bits of 
datapath [Inoue00], and 

3. Automatic processor generation tools enable logic optimization, signal 
switching activity reduction, and seamless mapping into low-voltage 
circuits. 

 

A lot of configurable processors and their optimization methodologies are 
proposed. However, only a few of them focus on methodologies for lowering 
energy consumption. 

In [Inoue00], Inoue et al. proposed a flexible SoC architecture and its 
optimization framework, called FlexSys, which allows system designers to 
customize datapath width and memory size for a target application. A key of 
the FlexSys technology is that it allows designers to customize the core 
processor for the target application by replacing a few photomasks used for 
via layers only, which results in a low-cost customization of the processor 
for a target application. The experiments using DSPstone benchmark 
programs demonstrated that the energy consumption can be reduced by 54% 
compared to the normal RISC processor-based system which has a CPU core 
with 32-bit datapath and the fixed number of memory words. 

7.4 Conclusions 

In this section we introduced a concept of energy-flexibility tradeoff. We 
showed that system designers can drastically reduce energy consumption by 
trading flexibility for energy consumption. However, in practice, it is very 
important to preserve system flexibility in case of future upgrade or 
modification in a target application. Therefore, we have to find the best 
compromising point between high flexibility and low energy consumption. 
We can broadly categorize system-level methodologies which satisfy high 
flexibility with low energy consumption as follows,  
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1. hardware/software partitioning for a hybrid architecture which consists of 

a microprocessor core and dedicated hardware and 
2. exploiting customizability of configurable processors.  

 

These strategies allow system designers to explore SoC architectures 
considering tradeoff between flexibility and energy consumption. As a result, 
system designers can find the best tradeoff point which compromises 
between high flexibility and low energy consumption. 

8. SUMMARY 

This chapter addressed several key methodologies for reducing power 
and/or energy consumption of SoCs which consist of hardware and 
software running on it.  Each of those methodologies takes design tradeoffs 
into consideration. In Section 3, we introduced an energy-delay tradeoff 
and an energy-reliability tradeoff in SoC design. Section 4 discussed on a 
tradeoff between energy consumption and quality of services (QoS). The 
QoS, in this chapter includes precision (or computational quality) and 
latency (or response time). In section 5, a tradeoff between computational 
energy and communication energy is considered. Section 6 summarized 
several leakage reduction techniques considering the energy-delay tradeoff 
and the energy-QoS tradeoff. In Section 7, we introduced an energy-
flexibility tradeoff. The key point of the energy reduction techniques is to 
take the tradeoffs into consideration according to a design objective and 
design constraints.  

The problem of how to model and evaluate complicated SoCs in terms 
of energy, performance, QoS, reliability and flexibility becomes more 
attractive to tackle. As the supply voltage and threshold voltage of chips is 
lowered down along with the transistor scaling, sensitivity to temperature 
variation, process variation, sources of soft error and noise sources is 
increased.  This results in model uncertainty and makes evaluation of SoC 
difficult. Increasing size, complexity, and functionality integrated on SoC 
causes this problem to become more difficult. In the near future, modeling 
and evaluation of SoC dynamically and/or statically taking the model 
uncertainty into account is one of the most important themes for low-
energy SoC design.  
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Abstract: Verification of System-On-a-Chip (SoC) poses us a serious challenge as it involves 
not only high chip complexity but also hardware/software co-verification along 
with short design time-to-market. Traditional IC design verification technologies 
based on simulation, emulation, and prototyping often fall short of meeting this 
challenge of SoC verification. This chapter starts with an introduction of SoC 
design verification flow. To reduce the time-to-market it is crucial to provide the 
system-level model for each hardware block, software component and 
communication channel in the very early stage of the SoC design process. It can be 
best addressed by performing the so-called ‘soft prototyping.’ System-level 
modeling using SystemC is explained as it is expected to be widely employed as a 
reference model. Software part of the SoC is run on Instruction Set Simulation 
(ISS), which is interfaced to hardware models described in either software (like 
HDL or SystemC) or physical hardware. We explained the hybrid SoC design 
verification technique which incorporates both simulation and prototyping in a 
single verification environment to maximally exploit the merits of both approaches. 
Simulation acceleration and emulation are explained followed by the introduction 
of HW/SW co-simulation and FPGA-based co-emulation techniques. These 
techniques based on initial system-level modeling of high-level abstract behavior 
followed by gradual refinement and verification by comparing with the reference 
model, enables fast and error-free SoC design closure 

Keywords: SoC, Prototype, Verification, Soft Prototype, Hard Prototype, Co-Simulation, 
Instruction Set Simulator (ISS) 

1. INTRODUCTION 

There are clear trends in SoC design; increasing chip size, increasing complexity 
of functionality, embedding processing cores, supporting multi-media features, 

S.Y.-L. Lin (ed.), Essential Issues in SOC Design, 225–264.
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decreasing time-to-market, and decreasing power consumption. Due to 
increasing size and complexity, pure software-based simulation easily fails 
to deliver sufficient performance. Thus, speed-up techniques such as raising 
abstract level or adopting hardware accelerator are necessary. Due to 
embedding processing cores, hardware and software co-verification is 
inevitable. Due to supporting multi-media features, more realistic test-bench 
is required, which sometimes includes real hardware. Due to decreasing 
time-to-market, validation of functions and features and verification of 
chosen architecture must be done at early design stage. Due to decreasing 
power consumption, low power design and optimum hardware-software 
partitioning need to be considered as well. 

Figure 1 depicts an SoC design flow and its verification environment. 
The first step is idea validation where idea has to be validated in terms of 
technology viability, resource availability, and market requirements. The 
second step is system-level design where all functionalities are considered 
without notion of hardware and software and, then, possible architectures are 
exploited in order to choose optimum or reasonable one. After fixing 
architecture, hardware and software developments are carried out in parallel. 
Other steps are fairly similar to the conventional design flow. 

In order to carry out system-level design and hardware-software  
co-development, SoC model is required, where the SoC model should be 
flexible enough to easily change its configuration, provide full visibility to 
monitor its behavior and provide performance statistics. The SoC model in 
these steps is called ‘soft prototype’, in which most components are modeled 
using software including C/C++, SystemC, HDL and so on. As a design 
makes its progress, abstraction level of blocks is lowered. This causes the 
software prototype to run slow as the lower-level model entails more details. In 
order to cope with this performance degradation problem, hardware-assisted 
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Figure 1. SoC design flow and verification environment 
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approaches are widely used, e.g., hardware acceleration, hardware emulation, 
and even FPGA prototyping. In this context, the term ‘hard prototype’ is 
used for solutions utilizing hardware. In the heart of hardware-software co-
verification, hardware-software co-simulation is one of the most important 
techniques since it provides an environment of running software on top of 
model of SoC hardware sub-system. 

Although the top-down approach as shown in Figure 1 starting from 
system specification down to gate-level and executable code level through 
hardware-software co-development is very logical, meet-in-the-middle 
approach is more widely used in SoC design. This is so called platform-
based design (Chang et al., 1999), where platform is a pre-designed 
architecture that designers can use to build SoC for a given range of 
applications. Therefore, a large portion of SoC design is not designed from 
scratch, but rather often derived from pre-designed ones. Building soft and 
hard prototypes can be built from the platform. 

This chapter covers the following topics in the context of SoC 
prototyping and verification. Firstly, soft prototyping is explained. Secondly, 
hardware-software co-verification is addressed. Thirdly, hard prototyping is 
presented. 

2. SOFT PROTOTYPING 

The first step in designing SoC is to build soft-model of the target system in 
the early design stage. As can be noticed from the notation, it is mainly built as 
a form of a software-based simulation. This method is fast and efficient to 
build and easy to manipulate, which makes it best for early-stage prototyping 
where lots of design turn-around is mandatory. In this chapter, we use the term 
‘soft prototyping’ for this stage. In the past, there was no golden rule for 
building soft prototyping. Each designer or design team built their soft 
prototypes for his/her particular purpose. Usually they are based on 
programming languages, typically C-based languages. But as there were no 
standards for the use of the languages, soft prototypes from different teams 
couldn’t run together. Recently, the introduction of SystemC standardized the 
soft prototyping stage, which made it possible to encapsulate highly abstracted 
IP models just like we handle RTL IP cores. This chapter starts from 
introduction to SoC design flow and handles major issues of soft prototyping. 

2.1 SoC Design Flow 

The design step of SoC is composed of several steps with different 
abstraction levels. The design starts with a highly abstracted description of 
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the target system and is refined until the hardware part is ready for synthesis 
and the software part is ready for compilation. Figure 2 shows the 
conventional design steps. SoC design starts with a specification that roughly 
describes the operations and performance requirements of the target SoC. 
The specification is usually described in natural languages with block 
diagrams, tables and mathematical equations. The process of obtaining the 
specification is far from automatic procedures commonly found in the 
following design steps. Rather, it is a manual process with discussions and 
speculations among engineers. 

When the specification is fixed, the algorithm of the target system is 
verified. This is called algorithm-level reference model verification. This 
model confirms the algorithm of the target SoC. It is described with 
programming languages, which can concentrate on the flow of data not 
worrying about its implementation. Among many programming languages C 
and C++ are the most popular as many engineers are familiar with the two 
 

Abstraction Level Description Language

Algorithm-level Reference model

RTL-C (Golden model)

Microarchitectural TLM

RTL (Register Transfer Level)
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SystemC

SystemC, HDL (Verilog/VHDL)

HDL (Gate level description)

Architectural TLM

Behavioral level

SystemC

SystemC, HDL (Verilog/VHDL)

 

Figure 2. SoC Design steps and description languages 
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languages, while MATLAB is also frequently used. In algorithm-level 
reference model, floating point data types that are used as the flow of data, 
not its implementation,  is of major concern. 

The next step is to validate the implementation of the algorithm. It is 
called RTL-C, or more often as “Golden model.” RTL-C roughly models the 
structure of the target system with programming languages. Unlike 
algorithm-level reference model, fixed point data types are used in RTL-C. 
Simulation time can be introduced here even though cycle-accurate behavior 
is not yet modeled. Usually, RTL-C model is used as a reference model for 
the following design steps, especially RTL design, which requires lots of 
design time and efforts. 

In the conventional design steps, the next step is behavioral level 
description. Behavioral level description models the behavior, or interfaces, 
of each building block. The structure of each block is not modeled in 
behavioral level description. The simulation time is modeled in a cycle-
accurate manner in this level. High-level synthesis tools provide automatic 
translation from behavioral level description to gate level netlist. But, 
usually behavioral level description is further refined to RTL for better 
results. This is because high-level synthesis tools cannot as efficiently utilize 
the time and space as RTL model. RTL model describes all the internal and 
external structure of each block in a full cycle accurate manner. It is ready to 
be synthesized to gate level netlist. 

With conventional design steps we can get cycle-accurate model only 
after behavior-level description is obtained. As behavioral level 
descriptions are not used very often, it can be as late as until RTL model is 
available. In other words, we cannot have cycle-accurate SoC models in 
the early design steps. This can be a serious problem as we cannot predict 
the performance of the target system until significant design time is 
consumed. This is becoming a more serious problem as the portion of 
embedded software becomes larger. Even today, the embedded software 
accounts for more than half of the total expected functionality of the circuit 
and very often most of the modifications that occur during the design of a 
chip based on an existing platform are software updates as shown by Miller 
(2003). An obvious consequence of this is that the critical path for the 
development of such a circuit is the software, not the hardware. Enabling 
software development to start very early in the development cycle is, 
therefore, crucial to reduce the time-to-market. 

There have been a number of attempts to solve this problem with 
conventional design steps. Firstly, algorithmic model was used for system 
level modeling. Even though algorithmic model runs extremely fast as it 
only captures the algorithm, algorithmic model does not have a notion of 
simulation time or concepts of hardware and software blocks. Secondly, 
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C-based dialects with hardware modeling concepts emerged. This enabled 
cycle-accurate behavior in the early design steps. But, the cycle-accurate 
model ended up being only an order of magnitude faster than the equivalent 
RTL simulation, which is very similar to the speed of cycle based 
VHDL/Verilog. And much of the information captured in such a model was 
not available in the IP documentation but only in the designer's mind. The 
resulting model was in only slightly higher abstraction level than RTL. We 
need more abstracted model of the target system while still keeping cycle 
accuracy. 

2.2 Transaction Level Modeling 

Grotker (2003) defined Transaction-level modeling (TLM) as a style for 
modeling digital systems focusing on external functional behavior of each 
block and inter-block communications without excessive implementation 
details. The function stands for behavior or operation of each building block 
described in high abstraction level with variables, arithmetic operations and 
sub-routine calls. TLM does not directly handle signals and registers, 
although the variables may be correlated to signal values of RTL designs. 
Even if the high-level modeling of the operations of each block resembles 
that of untimed algorithm-level description, TLM is different from untimed 
algorithm-level description in that block boundaries are defined and 
communications between building blocks are explicitly declared with 
transactions and each building block is modeled as a separate module while 
communications are modeled with transactions between them. 

Transaction is a high-level abstraction of transition activity of interface 
signals between two or more building blocks. When a block (A) needs to 
communicate with other block (B), the block A invokes transactions to be 
serviced by the block B. The transaction can be a read transaction or a write 
transaction. It can also be a read transaction and a write transaction at the 
same time. 

Clouard et al. (2003) divided TLM into two categories, i.e., architectural 
TLM and micro-architectural TLM, according to the abstraction level of 
simulation time. In architectural TLM, simulation time is roughly modeled, 
which is, therefore, called pseudo cycle-accurate. Transactions in this 
method are highly-abstracted information about communications between 
blocks. This method is suitable for early-stage prototyping of SoC designs 
where cycle-accurate behavior is either undefined or unnecessary. In micro-
architectural TLM, the simulation time is modeled in a fully cycle-accurate 
manner. In this method, transactions are communication events between 
blocks while they can be easily correlated to a single signal event in the RTL 
design. Single transaction of the architectural TLM can be decomposed into 
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multiple micro-architectural transactions. With micro-architectural TLM, we 
can verify operations of SoC design in a 100% clock cycle-accurate manner 
in the early design stage when its RTL model is not yet available as noted by 
Caldari (2003). 

2.2.1 SystemC 

Conventional hardware description languages are not suitable for handling 
TLM. SystemC is a set of C++ class definitions and methodologies for using 
these classes. The primary goal of SystemC is to enable system-level 
modeling encompassing software algorithm, hardware architecture, and 
interfaces of SoC. SystemC was first released in 1999 by Open SystemC 
Initiative (OSCI) with version 0.9. Since then there were multiple releases. 
Now SystemC version 2.1 is available (OSCI, 2005). SystemC class library 
adds necessary components for system level modeling to standard C++ 
language. These include modeling of simulation time, concurrency, and 
reactive behavior. Each building block of the system is modeled with an 
object of a particular C++ class. This includes modules, channels, and ports. 
As lots of building blocks share common features, these C++ classes are 
constructed in a hierarchical way. At the same time, SystemC retains native 
features of C++ language. This means that system designer can easily merge 
SystemC environment with native C++ software environments. In addition, 
system designers who are already familiar with C++ can use SystemC 
without any additional training. 

In SystemC, each building block is modeled as a module or a channel. 
Modules can call interfaces provided by channels. This is called interface 
method call (IMC), which corresponds to a single transaction. A module can 
be a channel, and a channel can be a module, too. Usually, a transaction 
service routine of a channel, also called an interface method, activates 
another transaction, which activates yet another transaction service routine, 
and so on. Like chain reactions, sequential activations of interface methods 
form a simulation. 

With SystemC, system designers can quickly simulate their designs, 
validate and optimize them, explore various algorithms, and provide the 
hardware and software development teams with an executable specification 
of the system. The executable specification removes the gap between the 
literal specification and RTL implementation shown in Figure 2. In the 
conventional design flow, engineers read the literal specifications and 
manually convert them to implementation, which tends to introduce lots of 
mistakes and misunderstandings. This method also suffers from the fact that 
the system model is built on environments totally different from HDL 
environments. Finally, the conventional method needs multiple system 
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verifications for each abstraction level. As test vectors that are created to 
validate the C model typically cannot be run against the HDL model, test 
vectors should be created for HDL model. SystemC design methodology 
offers many advantages by providing a unified environment for multiple 
abstraction levels. The specification itself is designed as an executable 
specification so that there is no misunderstanding of the specification from the 
beginning. As SystemC can cover abstraction levels from the specification to 
RTL models, high abstraction level models can be gradually refined during the 
design process. In addition, test vectors used in the early design stages can be 
reused in the final design stages as a single language is used. 

2.2.2 Characteristics of TLM 

TLM is useful for early stage system design. The system designer can verify 
cycle-accurate behavior of target system with transaction-level models long 
before RTL designs are available. As the implementation details are not 
handled in TLM, the simulation speed is much faster than that of RTL 
simulation. Transaction-level (TL) models typically run at least two orders 
of magnitude faster than RTL models as shown by Clouard (2002). 
Simulation speeds of several hundred kilocycles per second for a complete 
system simulation is readily achievable with TLM compared to several 
hundred cycles per second in RTL models as shown by Clouard et al. (2003). 
This means that by using TLM we can validate a design against more test 
vectors than using RTL model in the same amount of time. 

The debugging of TLM is much easier than that of RTL model because 
one can concentrate on the system-level operations without being harassed 
by excessive implementation details. Once verified, the TL model becomes a 
reference model for the following low-level implementations. Refer to 
Wieferink (2004) and Cai (2003) for further information. TLM typically 
includes adapters for converting transactions to/from transition activities of 
interface signals so that one can mix TL models with RTL models in a single 
simulation environment. This enables gradual refinement from TL model to 
RTL model as design evolves from high-level specification to low-level 
implementation. 

AMBA AHB Cycle Level Interface (AHB CLI) Specification (ARM, 
2003) sets a standard for modeling AMBA AHB bus in micro-architectural 
TLM with SystemC. The specification defines basic building blocks of 
AMBA bus: master, slave, arbiter, decoder and bus itself, and interfaces 
provided by them. The interface method call can be directly correlated to AHB 
signal events. In addition, the evaluation sequences of the blocks and data 
types used by the bus models are specified in the AHB CLI specification. 
System Studio from Synopsys and ConvergenSC from CoWare already 
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support AHB CLI specification in the form of CLI-compliant ARM and AHB 
bus models in SystemC along with SystemC simulator kernels.  

2.3 Case Study 

Figure 3 shows an implementation of JPEG decoder in transaction-level 
modeling with SystemC. We used MaxSim of ARM to realize the JPEG 
system composed of a single ARM946 processor, Inverse Discrete Cosine 
Transfer (IDCT), Variable Length Decoder (VLD), two memory models, 
and a single AHB bus model. Transaction-level modeling makes it possible 
to interconnect building blocks in transaction-level rather than pin-level. 
Each building block, itself, is modeled in transaction-level; IDCT and VLD 
models are derived from algorithmic-level models and processor model and 
bus model are provided as a form of a simulation model with MaxSim. With 
pseudo cycle-accurate simulation model, we could achieve a simulation 
performance of 334kcycles/sec with JPEG decoder. 

We can implement the same system with other SystemC-based 
simulation systems as well. These include ConvergenSC from CoWare, 
System Studio from Synopsys and OSCI reference SystemC simulator. 

 

Figure 3. Implementation of JPEG decoder with MaxSim® 
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3. HW-SW CO-VERIFICATION 

In HW-SW co-verification, software that will be running on the target processor is 
simulated with hardware models that mimic the target hardware system. Software 
engineers usually develop software code and verify its functionalities in a host 
machine by compiling and running the target software code on the host machine, 
so-called native code execution, at the beginning. It is, however, not enough to 
develop hardware-dependent software such as boot loader or device drivers 
without hardware models. Through the HW-SW co-verification, software 
engineers are now able to develop and debug their software by simulating it at 
system level with the target hardware system even when prototypes are not 
available yet. Co-verification with the target hardware model also makes it 
possible to evaluate performance or estimate energy consumption of the target 
system in the early stage of the design process, which is essential for software 
optimization considering the target architecture. In other words, the software 
verification and optimization step that is traditionally followed on prototyping step 
in the design process is able to progress simultaneously with hardware verification 
step; as a result, design time is much reduced. HW-SW co-verification also 
benefits hardware engineers. Each hardware component is usually verified with 
synthetic HDL test-benches that are made by the hardware engineers at the 
beginning; it cannot provide comprehensive test coverage. Through the  
co-verification, hardware engineers are able to verify the hardware components 
with large stimulus that is much closer to real system. 

Important metrics of co-verification are simulation speed, accuracy and 
visibility. HW-SW co-verification is accompanied by simulation performance 
degradation due to a number of simulation models and communication overhead 
between the models. Slow simulation speed is a problem especially to the 
software engineers. Sometimes, it is necessary to co-simulate the target system 
all day long for OS booting in order to find a software bug in an application. 
Accurate simulation is important for hardware engineers who design a hardware 
block while imagining signal transitions cycle by cycle. The most important 
feature of simulation that is much better than that of emulation (prototyping) is 
visibility, which is indispensable for both software and hardware engineers to 
debug their design. Besides, system profiling features, such as bus and cache 
monitoring, is useful to find critical path and optimize design. 

This subchapter introduces processor modeling techniques, and then 
describes various combinations of simulators for co-verification. 

3.1 Processor Simulation 

A processor can be modeled as an Instruction Set Simulator (ISS) that 
fetches instructions from memory (or memory model) and simulates each 
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instruction behavior sequentially. ISS is a widely used design and validation 
tool for both hardware and software engineers. It is useful to evaluate 
instruction set architectures (ISA’s) during the architecture exploration and 
to validate the compiler, operating system, or application software when the 
actual silicon is not yet available. ISS is also used in HW-SW co-verification 
for processor models, that is, to execute target software. There are three 
methods in modeling a processor: interpretive ISS, static compiled ISS and 
dynamic compiled ISS. 

3.1.1 Interpretive ISS 

The basic method for the ISS is interpretation. The interpretive ISS executes 
an instruction simulation loop, “fetch-decode-execute,” as having the state of 
the target processor in memory as shown in Figure 4, which is similar to the 
activities of single issue processors. Interpretive ISS is widely used due to 
easy implementation and high flexibility. 

Typically interpretive ISS is two orders of magnitude slower than 
native execution where target code is compiled for host processor and run 
on the host machine, as several tens of host instructions are executed to 
simulate a single target instruction. As the time for instruction fetch and 
decode, line 2 and line 3 in Figure 4 consumes a large portion of 
simulation time, some researches attempt to speed up these steps using 
various techniques. Nohl et al. (2002) introduced so-called just-in-time 
cache, which is a simulation buffer saving decoded information of recently 
simulated instructions. There is no need to fetch and decode instructions 
that were used before and are still in the cache. Another reason for the low 
speed of interpretive ISS is that an interpretive simulation should perform 
some time-consuming operation that can be redundant owing to lack of the 
knowledge of future events. For instance, overflow calculations performed 
for every data processing instructions are not necessary if following 
instructions do not use it.  

for ( ; ; ) {
    inst = fetch( PC );
    decode( inst, &opcode, &op1, &op2, &op3 );
    swtich( opcode ) {
        case ADD:
            op1 = op2 + op3;
            break;
        case MOV:
        ... 
}}  

Figure 4. Simulation loop of interpretive ISS 
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3.1.2 Static Compiled ISS 

Static compiled ISS is much faster than the interpretive ISS because the 
fetch and decode steps are performed as a batch in the start-up procedure. 
The static compiled method translates the whole target program, which is an 
executable binary for the target machine, into the target simulation program 
running on the host machine. This means each target program will be a 
unique simulator. 

There are two translation schemes: One is binary translation that is the 
direct replacement of target instructions by host instructions, while the other 
scheme goes through high-level language generation and compilation stages. 
Figure 5 shows those simulator generation schemes. If the target and host 
machine have the similar instruction  architecture, the implementation of the 
former method, binary translation is relatively easy. Otherwise, the binary 
translation can be difficult and accurate simulation cannot be guaranteed 
because, in some cases, there is no way to simulate a target behavior with a 
combination of host instructions. Moreover, the binary translation does not 
have host compatibility. The latter method is easier to implement and can be 
applied independently of the host machine, since it uses C (high-level) 
language. The static compiled ISS that uses the C intermediate code is 
introduced by Zivojnovic et al. (1995). Another advantage is in simulation 
speed. The host C compiler removes the redundant operations through 
various optimization techniques, such as dead code elimination. 

Although static compiled ISS is faster than interpretive ISS, almost all 
the commercially available ISS’s are, however, interpretative because of the 
following limitations. First, the static compiled method has a considerable 
start-up cost due to the generation of simulation code and its compilation, 
which can be a major drawback for large software simulation. Even for the 
 

Figure 5. Static compiled ISS 
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partial modification of the target software, user should go through all the 
simulator generation processes. All instructions in the target binary code are 
translated into C simulation code one by one, so the simulation C code becomes 
a large, complex and unstructured C function with labels and ‘goto’ statements 
for all branches. The compilation time of the C simulation code increases in a 
super-linear way with the size of the function. Therefore, it is necessary to 
divide the generated C simulation code into many suitable size functions to 
reduce the compile time. To do this, the unstructured C code should be 
translated into C code having structured control flow by resolving the 
destinations of each branch. Chung and Kyung (2004) proposed object-based 
compiled ISS. Object files holding symbol information are used to generate C 
simulation code instead of the binary, so it is possible to generate C code having 
the same function structure, and, as a result, the compilation time is increased. 
Incremental compilation is also possible since each source file is processed 
separately. Figure 6 shows the incremental compilation of compiled ISS. 

Figure 6. Compilation of object-based static compiled ISS 

Second, the static compiled ISS has restrictions on flexibility. Since the 
static compiled method assumes that the complete program code is known 
before the simulation starts, it cannot support the dynamic code that is not 
predictable prior to the runtime. For example, external memory code, self-
modifying code, and dynamic program code provided by operating systems 
or external devices cannot be addressed by the static compiled ISS.  

3.1.3 Dynamic Compiled ISS 

The dynamic compiled method moves the compilation process to run-time. 
Each chunk of the target binary is translated into host execution code on the 
fly (Cmelik et al., 1994). Since C compiler is not adaptable to compiling the 
chunk of the C code supplied dynamically, the binary translation method is 
usually taken. Figure 7 shows the main simulation loop and an example of 
binary translation (Witchel and Rosenblum, 1996). 

Instruction fetch, decode and translation steps are time-consuming and 
can be reduced by cache in the same way as interpretive ISS. To maximize 
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Figure 7. Dynamic compiled ISS and an example of binary translation 

simulation speed, it is necessary to simulate target architecture directly 
utilizing the resource of host machine rather than simulating it. For example, 
in Figure 7, the registers of the target processor are modeled with array 
variable, i.e., TargetReg[ ], in the host memory. However, some of the host 
registers can be allocated for simulating the target registers without host 
memory access. Zhu and Gajski (2002) aggressively utilize the host machine 
resources through register allocation API’s in order to get the faster 
simulation speed. 

3.1.4 Native Code Execution 

Native code execution (or direct execution or host execution) is used for 
functional verification of software in the early stage of design process. Fast 
running speed and plenty of debugging tools are beneficial to software 
engineers. However, the simulation accuracy is poor because the host 
processor usually has different architecture from the target processor, e.g., 
different instructions, MMU, cache, etc. It supports only high-level language, 
such as C, where processor architecture is transparent to the user for the 
same reason. Even for the functionality verification with native code 
execution, the following should be considered. Bit width of data types 
should be identical. For instance, bit width of an integer variable can be 16 
or 32, which depends on the bit width of data path. A program verified on 
the 32-bit host processor may cause overflow in 16 bit embedded processor. 
Floating point operations and endian of memory layout should be considered 
as the same way. Embedded processors may not have floating point unit and 
different endian from the host processor. 

Delay annotation allows extracting the timing information of the target 
processor from native code execution (Bammi et al., 2000). ‘delay(cycle)’ 
function accumulating time consumption (cycle) of the target processor is 



SoC Prototyping and Verification 239
 
inserted after each C statement or basic block in the target application code. 
One can obtain the time consumption by analyzing the C source code or cross-
compiled target executable at static time ahead of simulation. However, the 
accuracy is not guaranteed. It is difficult to find the exact time consumption 
due to target compiler optimization and instructions that consume a variable 
cycle count depending on its operands. Lee and Park (2003) annotate the delay 
in intermediate representation (IR) of portable host compiler to increase the 
accuracy of the time consumption and portability. Most optimization of 
compile process is performed before the machine code from IR. 

Another problem of native code execution besides inaccuracy is how to 
hook input/output (IO) activities from/to external hardware components 
simulated by other simulator. This issue will be addressed in section 3.2.5. 
Table 1 summarizes the advantages and disadvantages of each processor 
modeling method. 

 
Table1. Comparison of processor modeling methods 

 
Interpretive Static 

compiled 
Dynamic 
compiled 

Native 
code 
execution 

HDL 
model 

Simulation speed 
(IPS) 

1~10 M 10~100 M 10~100 M > 1 G 10~100 

Accuracy Good Good Good Worst Best 
Stat-up cost Small Large Small Small Large 
Flexibility Good Bad Good Good Good 
Debug ability Good Good Good Best Bad 
Simplicity Good Bad Bad Best Worst 
Co-simulation with 
other HDL simulator 

Good Good Good Bad Best 

3.1.5 Other Issues on ISS 

To develop application-optimized processor or DSP cores rather than to 
bring in off-the-shelf cores often gives us the optimal system for a specific 
embedded application. In this case, one can evaluate the various alternatives 
of instruction set architectures by using ISS. To allow early evaluation of the 
architecture along with software optimization, on-the-fly generation of ISS 
or retargetable ISS has been introduced. One can add instructions and/or 
modify the behavior of instructions by simply modifying descriptions of 
instruction set architecture, which can automatically generate the 
corresponding ISS (Pees et al., 1999 and Schnarr et al., 2001.) Besides, 
automatic generation of assembly and C compiler and debugging tool for the 
generated ISS is quite effective to meet the time-to-market. 
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In addition to the core modeling, it is necessary to simulate other 
components in the data path, such as memory management/protection unit  
(MMU/MPU), cache, etc. One can simulate these components by simply 
appending their simulation models to the data path of the processor. 
However, it is not easy to model parallel activities of hardware by sequential 
software execution. Fast and accurate simulation of advanced processor 
architecture, such as out-of-order execution, superscalar or multithreaded 
architecture is an issue of ISS. Especially for the static compiled ISS having 
static execution sequence, it is a pending problem, since actual execution 
sequence is determined at run time to maximize the performance. 

3.2 Co-Verification 

Native code execution or ISS undertakes software simulation while a logic 
simulator performs hardware component simulation. For the HW-SW co-
verification, either a simulator models both hardware and software, or the 
two simulators, for HW and SW respectively, work together while 
communicating with each other. This section introduces alternatives of 
simulator combinations for co-verification. 

3.2.1 ISS with C Hardware Model 

ISS mainly offers C API (Application Programming Interface) to support 
user C object working together with the processor model through dynamic 
linking library. In general, it is used for simulation of hardware stubs without 
hardware simulator or for profiling the application running on the ISS. There 
are many problems on modeling concurrent hardware with sequentially 
executed C language. In addition, the C hardware modeling can become a 
useless job, because the C model cannot be seamlessly translated into lower 
abstracted HDL code yet. For those reasons, ISS with C stubs as shown in 
Figure 8 is an inefficient way for system-level simulation, where all system 
components are simulated with real applications. 

Although the C stubs are very abstracted and not proper for top-down 
design refinement process of hardware design, it is very useful for software 
engineers. Simple peripherals, such as timer or PIC (Programmable Interrupt 
Controller) can be easily modeled with C language and embedded in the 
processor model. Typically hardware components necessary for embedded 
software to run are simple peripherals, e.g., timer required for operating 
system or UART for serial communication. Consequently, software 
engineers can simulate and debug their software using C stubs for minimal 
hardware components. Software debugging has become easier since most 
processor vendors now provide ISS with various debugging features. 
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Figure 8. ISS with C stubs of hardware components 

3.2.2 HDL Simulator with HDL Processor Model 

It is also possible to co-simulate the target system only with an HDL logic 
simulator including both hardware components and processor modules, if the 
target processor logic is available. If the simulation of processor behavior is 
purely in logic level and the communication to the hardware components are 
bit-accurate, HDL logic simulation is the most accurate simulation method. 
However, the simulation speed is poor, typically several tens of instructions 
per second, which is almost useless for software development. Rather than 
system-level co-simulation, it is beneficial to hardware logic debugging 
including processor with short test-bench programs. 

Instruction-level debugging is feasible through waveforms of processor 
registers and memory contents, but remote debugging tools are required for 
source-level debugging. Many software debuggers support remote debugging 
features when the software is not running on a host computer but on a remote 
machine whose resources (memory or storage devices) and/or user interfaces 
(keyboard or display) are not sufficient for self-debugging. Hence, the source-
level debugging is possible using the remote debugger attached to the HDL 
processor model instead of the remote machine. Figure 9 shows the  
co-simulation with HDL processor model and remote debugging. 

GUN Debugger (gdb) supports remote debugging features for various 
target processors. As all debugging features of gdb are based on software 
implementation, there is no need to make additional hardware logic for 
debugging such as scan chain. The only thing user has to do for the gdb 
connection is make a trap hander of the target processor responding to gdb 
commands, i.e., register/memory read/write through gdb remote protocol. 
Because these software-based debugging techniques execute additional  
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Figure 9. HDL simulator with HDL processor model 

processor instructions and make bus transactions and memory accesses, 
which do not occur in normal mode, there are differences in hardware 
activities between the debugging and normal mode. Therefore, a fault in 
normal mode sometimes does not occur in the debugging mode, and vice 
versa, especially when the hardware is not stabilized yet.  

3.2.3 ISS with HDL Simulator 

ISS and HDL simulator combination is a popular co-simulation method 
many co-simulation tools support. The co-simulation tools take charge of 
synchronization and communication between the two existing simulators, so 
both software and hardware engineers can keep using familiar simulation 
environments for co-simulation. Since each simulator occupies a process of 
host operating system, IPC (Inter-Process Communication) is used for 
connecting them. There are two communication methods with different 
abstraction levels of the communicating data: one is transaction level, i.e., 
bus transaction (read/write) information without detailed signal information 
and the other is signal-level communication, transferring bus/pin signal 
values. In general, instruction-accurate ISS’s represent bus activities through 
transactions without detailed description on pin signal information. In this 
case, bus functional model (BFM) in the logic simulator translates bus 
transactions between transaction level and signal level. If the ISS is cycle-
accurate and port activities are available, then the signal-level 
communication is more appropriate. Proxy module of the processor mimics 
the HDL processor module communicating with the ISS. Figure 10 shows 
both combinations. 
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Figure 10. Instruction-accurate ISS and cycle-accurate ISS with HDL simulator 

The slowness of the execution speed of the slower simulator, i.e., HDL 
simulator, and the time for synchronization and communication between two 
simulators are the bottlenecks in the performance of the co-simulation. 
Especially for the signal-level communication, the values of the port signals 
need to be shared every clock cycle; thereby the simulation performance is 
limited by the communication overhead. Now, co-simulation is also facing 
the same problem as the traditional simulators had to, i.e., trade off between 
accuracy and speed.  

As mentioned above, debugging facilities for software and hardware 
component design are also available for the co-simulation. Many co-simulation 
tools offer various profiling features helpful for early design optimization, such 
as analyzing time-critical portion of software code, cache profiling, and bus 
monitoring, i.e., delay or contention profiling. 

3.2.4 ISS with SystemC 

SystemC is a C++ class library for hardware description and simulation, 
HDL simulator in the ISS-HDL simulator combination can be replaced by 
SystemC model (Benini et al., 2003). Processor class is a shell of processor 
model communicating ISS, and no PLI interfacing is needed since the 
SystemC model is based on C++ language. gdb commands can be used for 
interfacing two simulators through pipe without interface protocol setup as 
shown in Figure 11. An advantage of this combination is that SystemC is  
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Figure 11. ISS with SystemC hardware models 

better to describe hardware at higher level of abstraction, which is important 
to meet the time-to-market. In addition, gradual refinement to HDL code is 
possible since today’s HDL simulators support simulating HDL-SystemC 
mixed design. 

Co-simulation with a single simulator for both hardware and software allows 
faster simulation and seamless design flow. SystemC allows hardware engineers 
to use the C/C++ language for modeling hardware, and both hardware and 
software models can be simulated in a single host process with the SystemC 
simulation kernel. There are, however, difficulties in simulating the software 
running on the target processor, because SystemC does not have any processor 
models. Figure 12 shows solutions: one is embedding ISS in SystemC processor 
module, and an alternative is to use native code execution instead of the ISS. 

3.2.5 Native Code Execution with SystemC 

SystemC is a proper language for high-level design, so the combination of 
the native code execution and SystemC is most suitable for high-level  
co-simulation and design exploration with much faster simulation speed 
(Blaurock, 2004 and Chung et al., 2005). There are two problems for the 
combination: synchronization and communication. To synchronize with 
hardware clock events, native code execution should be stopped at certain 
points and wait for corresponding clock events of the hardware model.  
A solution is to annotate delay functions into the source code as mentioned 
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Figure 12. Embedded ISS and native code execution with SystemC 

in section 3.1.4 of this chapter. Although the calculated cycle consumptions 
cannot be exact due to the target compiler optimization, it is generally 
enough for the purpose of high-level simulation.  

To solve the communication problem, read and write operations of native 
code should be translated into bus transactions of the hardware model. There are 
three methods for this, i.e., how to hook IO access from native code execution. 
One is to replace IO access code with a function that accesses hardware 
component model. It can be done either when preprocessing through C code 
modification before compilation or during compile time through machine code 
replacement. Another method is to use a trap of the host machine. One can make 
the IO variable access initiate software trap, and the trap handler generates bus 
transactions to the appropriate hardware model and returns to the software 
execution flow with the obtained data to continue execution. The third method is 
to use operator overloading of C++ language, which allows a class to rebuild the 
behavior of operators related to the class instance. One can make an IO variable 
class, such that read/write from/to the IO variable class initiates bus transactions 
of SystemC hardware model using the operator overloading. 

3.2.6 Heterogeneous Simulation Environment 

System components of today’s complex SoC design can be modeled with 
various languages and run on various simulators, such as ISS, HDL 
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simulator, SystemC, hardware-based simulator and prototype board. In 
order to validate the design at system level, more than two simulators 
often work together with their clocks synchronized and pin signals shared. 
In this heterogeneous simulation environment, synchronization and 
communication overhead between the simulators degrades simulation 
performance, which becomes one of the most important issues in the 
system-level simulation of SoC as the complexity of SoC increases as it 
should. 

4. HARD PROTOTYPING 

This section covers general issues on hard prototyping. By the term ‘hard 
prototyping’, we emphasize the prototyping systems actually utilizing the 
hardware components. However, in this chapter we extend the meaning 
of the hard prototyping to include the software part integrated into one 
unified environment. 

We will first summarize conventional hardware-assisted verification 
tools for logic-centric LSI chips. Then, additional requirements for the 
SoC verification will be explained. General issues of the hard 
prototyping will then be addressed with some highlight on the 
debugging issues. The efforts on standardizing emulation systems will 
also be addressed. 

4.1 Classification of Hard Prototyping 

The three major categories of classical verification techniques assisted with 
hardware equipments are hardware acceleration, hardware emulation and 
prototyping as shown in Figure 13. References can be found in Keating 
(1999), Rashinkar (2001) and Staunstrup (1997). All three verification 
techniques are utilizing hardware equipments as a vehicle to run all or part of 
the DUV (Design Under Verification). However, the focus of verification is 
slightly different among them. 

Although hard prototyping is classified in this section, it is hard to 
strictly differentiate among these categories. For example, the 
acceleration equipments can be used for emulation if the speed is fast 
enough and the external connection is available to interface with existing 
development boards. The emulation equipment can also be used as a 
prototyping system if it is small enough and cost-effective. Especially 
for SoC development and verification, the boundary between emulation 
and prototyping is ever smearing, since software takes ever more 
portion in SoC. 
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Figure 13. Classification of hard prototyping 

4.1.1 Acceleration 

The acceleration, which usually is an abbreviation of the simulation 
acceleration, is focusing on increasing the speed of simulation while keeping 
the environment as similar as possible to the simulation environment. 
Originally, it was invented to accelerate time-consuming simulation jobs 
such as gate-level simulation or fault simulation as explained in Eiriksson 
(1990). However, as the design size increases with enhanced process 
technologies, it becomes useful also for the RTL or higher-level logic 
simulation. One extreme application area of acceleration technique is to 
accelerate the simulation of algorithmic models or architectural models 
described in MATLAB. 

For the acceleration of RTL logic simulation, maintaining the same test 
bench structure as one used for the simulation and providing higher visibility 
are very important. 

4.1.2 Emulation 

The emulation is used to verify the functionality of complex DUT (Design 
Under Test) using specialized hardware equipments in the context of 
realistic operation environment. Usually massive array of FPGA is used to 
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accommodate the functionality of the DUT, but specialized processor array 
is also adopted in nowadays high-end emulation systems. The main focus of 
verification is on the behavior or functionality of the DUT itself. Therefore, 
the emulation technique is often used in conjunction with existing test board 
slowed down to meet the speed of emulation equipment. In such a case, the 
emulation equipment provides a way to mechanically plug itself into the 
existing board, so it is called ‘in-circuit’ emulator. The confidence level of 
the emulation is higher than that of the acceleration in the sense that more 
realistic test environment is used for the test and longer verification scenario 
is applied to the DUT. 

4.1.3 Prototyping 

The prototyping is used to verify and demonstrate the functionality of the 
whole system including the chip. It is concentrating more on the software-
side. After the chip design is nearly completed, and before the chip is taped-
out, the prototyping enables the software engineers to start software 
development and/or verification. At this stage, therefore, not only the 
behavior of the chip, but also the operation of the whole board should be 
quite near the final product.  

Prototyping is more than simple chip design, i.e., prototyping realizes a 
concept or a design rapidly prior to the final production or mass production, 
to see the functionality, visualize the shapes, estimate the cost, or analyze the 
potential defects. Sometimes the form factor or physical dimension matters 
more in prototyping compared to the emulation which is more focused on 
functional aspects. In addition, the cost-effectiveness is emphasized more in 
the prototyping than in the emulation. 

4.1.4 Requirements of hard prototyping 

The requirements for the hard prototyping can be summarized as follows. 

• Gate-capacity: the gate capacity of the equipment must be sufficient to 
contain the whole design. Usually hard prototyping equipments using 
large number of FPGA require bigger gate capacity than actual design 
size because of the overhead incurred by the inter-FPGA partitioning.  

• Speed: the operating clock frequency of the hard prototyping equipment 
must be high enough to run the application code with a sufficient time 
margin. Often, typically for emulation, the target system needs to be 
slowed down to meet the performance of the emulation equipments. 

• Configuration time: in most hard prototyping equipments it is needed to 
configure all the programmable devices to work as a part of user design, 
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before starting execution. This configuration time should be kept short 
enough compared to the actual running time of the simulation/emulation. 

• Compile time: a fair amount of time is spent to prepare the configuration 
data for the programmable devices. Typically this includes partitioning 
time, synthesis time, mapping time and placement and routing time. All 
of these components are linearly or exponentially proportional to the 
number of the programmable devices used. Therefore, there is a trade-off 
in choosing the number of programmable devices, between gate capacity 
and compile time. Parallel or distributed compilation techniques and 
incremental compilation techniques can be applied to enhance the 
compile time. 

• Visibility: for the debugging of the user logic, it is essential to provide a 
way to record and show the events internal to the programmable devices. 
Generally increasing the visibility will cause negative effects on other 
metrics such as the gate-capacity, the operation speed, the compilation 
time etc. 

Other issues which need to be considered include extensibility, scalability, 
maintainability, ease of use, cost and so on. 

4.1.5 Examples of conventional hard prototyping system 

Many EDA vendors are eager to have their own tool chain starting from 
conceptual design seamlessly connected to the hard prototyping. 
Commercial products are typically focused on acceleration and emulation.  

The most well-known FPGA based emulator is System Realizer family 
from Quickturn, part of Cadence Design Systems. It used massive array of 
FPGAs with the custom emulation software that enables distributed 
compilation for the FPGA and debugging. Quickturn also had a custom 
processor-based emulation system, CoBALT and Palladium which is now a 
major emulator product line of Cadence. These systems use an array of 
custom processors that can be configured to the end-user design with 
compilation. Each custom-processor approach shows a slightly slower speed 
than FPGA but has more flexibility, so that the processor-based emulators 
can be used as a simulation accelerator. Mentor Graphics also has a custom 
processor-based emulation system family, Celaro. 

Axis (Cadence) used hybrid approach that utilizes FPGA, but instead of 
directly mapping user design into FPGA, maps synthesizable processor core 
called RCC (Re-Configurable Computing) to the FPGA and executes 
compiled codes of the user design in the processor. 

The prototyping is usually done by the end user or as a technical service 
due to its dependency on the final product. One noticeable exception can be 
found from Aptix. The System Explorer series is a prototyping platform 
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providing flexible interconnection network using their own custom 
interconnection chip, FPIC (Field-programmable interconnect chip) among 
several PCB modules, some of them pre-designed while others customer-
provided. The pre-designed modules cover FPGA modules mounting recent 
devices from major FPGA vendors and system modules mounting 
microprocessors, DSPs, interface circuits, analog circuits, etc. 

There is an extreme case of emulation that utilizes behavioral-level 
model and connects it to the real target board (Kim et al., 1998 and Dynalith, 
2000). The behavioral-level model is usually written in the C language. With 
this approach, SoC chip model in algorithmic representation can be verified 
along with actual target board. 

4.2 Evolution Toward SoC Verification 

For the verification of SoC, further requirements need to be provided by the 
acceleration, emulation, and prototyping equipment. 

4.2.1 Processor modeling/integration 

For the verification of SoC, the hard prototyping system must be able to 
handle the target processor used in the SoC. One way is to use the behavioral 
model for the processor. The other way is to attach actual processor 
implemented in discrete component to the hard prototyping system (Dynalith, 
2004a). The former which is discussed in section 3 of this chapter, is rather 
essential and easier for debugging, but slower than the latter. In addition, the 
latter is only applicable when the compatible discrete chip is available and 
also its modeling accuracy will be limited by the I/O interfaces and the bus 
structure of the discrete chip. 

4.2.2 Large memory modeling/emulation 

Large memory elements are used in SoC design for several purposes such as 
code memory, data memory, FIFO memory for inter-module data 
communication, etc. The most straightforward way to support them is to 
provide many discrete memory components having the same or larger size 
than required. These discrete memory components are useful for not only 
modeling the memory internal to the SoC, but also providing off-chip 
storage in final SoC system. Unfortunately, the type and size of the discrete 
memory components are so various that it is impossible to adopt all kinds of 
memory devices.  

One way to overcome this is to provide a generic memory wrapper model 
to mimic the interface of specific memory standard (Gharsalli, 2002). With 
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this scheme, one large physical memory device can be shared among several 
logical memory devices of different types.  

Another general way to solve the memory problem is to use software 
simulation model for the memory. This will be slightly slower but provides 
better visibility and flexibility 

4.2.3 Integration with simulator 

As the complexity of SoC and its corresponding test bench increase, it 
becomes necessary to run the hard prototyping environment in cooperation 
with the software simulator. Its purpose was mainly to accelerate simulation 
by running already verified IP’s in the hardware and running only part of the 
design under verification in the simulator with enhanced visibility of the 
software simulation.  

Nowadays, it becomes more popular even in the emulation or prototyping 
systems, to run all or part of the design in the hard prototyping system and 
connect them with the simulator to use the enhanced features of the 
simulators for the test bench modeling, system modeling, coverage analysis 
and formal techniques. 

4.2.4 Co-work with behavioral-level model 

In SoC design and verification, ever-increasing is the need for the 
continuous design flow from the high abstraction-level modeling to the gate-
level implementation. For this, it is required to interconnect the high 
abstraction-level model written in various languages to the hard prototyping 
system.  

The purpose and usage of the behavioral model varies depending on the 
verification methodologies. For example, the behavioral model for the part 
of the design running in the hard prototyping equipments can also be run for 
the generation of test results to be compared with the output of the DUT. Or 
they can be used as models for not-yet implemented DUT modules. 

Usually, the behavioral models are lacking detailed timing information. 
Therefore, some additional efforts are required to bridge the ‘un-timed’ or 
‘roughly-timed’ behavioral model to the ‘full-timed’ or ‘exact-timed’ models 
such as hardware equipments. 

4.2.5 Case study 1: ARM-based prototyping solution - ARM 
RealView Integrator and Versatile 

ARM RealView Integrator and Versatile is the typical prototyping system 
where designers can evaluate the target microprocessor within the real 
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hardware environment incorporating configurable bus and peripherals such 
as UART, LCD, memory, Ethernet and so on (ARM, 2004, 2005).  

In this platform, software and hardware designers can work together to 
integrate and emulate the whole design. The software designer can compile 
her program and download executable code into its memory to run and test 
application programs. The hardware designer can build various AMBA bus 
system architectures in FPGA. In addition, real hardware peripheral IO even 
increases the confidence of the verification.  

The PCB board basically can be expanded by installing daughter boards 
through stacking interconnection. The designer can simply use various ARM 
core families by exchanging ARM core daughter board and expand 
configurable logic by installing additional FPGA daughter board. 

4.2.6 Case study 2: Bridging emulator to the test bench in iPROVE 

As a typical example of the hard prototyping system for the SoC verification, 
iPROVE from Dynalith Systems (2002) provides enhanced communication 
channel to the host computer in various abstraction-level mode. iPROVE is a 
PCI-based single-FPGA emulation/acceleration solution for medium scale 
ASIC SoC design. By adopting only one FPGA, iPROVE can still cover 
most practical user designs, either IP or the whole chip, as the gate capacity 
of a single FPGA exceeds several tens of million gates, and it eliminates 
needs for partitioning user design and minimizes the compile time overhead. 
However, if user design exceeds the capacity of the FPGA, it still can be 
applied for partial design verification, which is a compromise between the 
speed and gate capacity of the verification model. 

iPROVE provides three different types of operation mode for co-working 
with host computer, i.e., running HDL simulators, instruction set simulators 
or behavioral model in high-level language. 

• Cycle-level mode: in this mode, the design in the FPGA and the HDL 
simulator in the host computer can communicate in clock-cycle-accurate 
manner. In addition to HDL, SystemC (Ki et al., 2003) or pure C/C++ 
can be used as a part of system model. Various coverage tools or test 
automation tools such as SpecMan, e, Vera or TestBuilder can be used 
along with the HDL simulator greatly enhancing the verification quality. 

• Transaction-level mode: in this mode, the design in the FPGA 
communicates with the test bench or behavior model in the host 
computer using FIFO style data channel. It requires a special hardware 
called ‘transactor’ to be designed to adapt the interface of the user design 
to the FIFO. Once it is designed, user can achieve several orders of 
magnitude faster operation speeds than in cycle-level mode. Also it can 
be re-used for design with similar interface protocol. 
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• Abstract bus mode: this mode is a special case of the transaction-level mode. 

In SoC design, a few bus standards are dominating all the interface standards. 
For such a standard bus, pre-provided ‘transactor’ hardware and 
corresponding API functions accessing it can be prepared to help user 
building the behavioral model in high-level language or connecting to the 
instruction set simulator for the processor. iPROVE is provided with the 
abstract bus mode for the AMBA bus system, which helps rapid build-up 
and verification of ARM processor-based SoC design (Dynalith, 2004b). 

4.3 Issues on Hardware/Software Co-emulation 

4.3.1 Synchronization 

In order to perform two different levels of designs (e.g. C and Verilog 
design) working together, there are two methods: hardware/software  
co-simulation and hardware/software co-emulation. These two methods have 
the same capability of performing hardware and software models at the same 
time. However, they are different in that hardware/software co-simulation 
model is running on fully-software environment. On the contrary,  
co-emulation method incorporates not only processor but also hardware 
emulator. The processor takes care of the software model while the hardware 
emulator performs hardware model. 

In most cases, co-simulation is referred to the system incorporating 
instruction set simulator (ISS) for software side and HDL simulator for 
hardware side. While software side of co-emulation could contain ISS, HDL 
simulator, native C code or any other software model, while the hardware 
side of co-emulation is composed of hardware accelerator or emulation 
incorporating FPGA, real-chip or real target board. 

The hardware and software co-emulation method splits the coupled 
models into software and hardware sides. To let these models work together, 
a means of communication between them is necessary. In co-emulation, the 
communication between hardware and software is called synchronization. 
Through the synchronization process, heterogeneous models in different 
processing engines can communicate with each other and run together.  

In this section, several levels of communication technique for 
communication time reduction are explained. 

4.3.2 Level of communication 

The communication in co-emulation system can be classified according to 
the level of communication. Here, the “level” means the “level of abstraction 
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of communication data.” There are several factors that could specify the 
level of abstraction. 

• Abstraction in terms of time  
• Abstraction in terms of data 

According to the above factors, there can be several levels of communication. 
Two levels of abstractions are commonly exploited; cycle-level and 
transaction-level communication.  

4.3.2.1 Cycle-level 
The cycle-level communication is clock-cycle-accurate in terms of time and 
pin-signal-accurate in terms of data. That means that every single bit of 
signals is transferred at every clock cycles through co-emulation interface. 
For example, when hardware and software are interconnected through 
AMBA AHB interface, HADDR, HDATA, HSEL, HWRITE and all other 
AHB signals are transferred at every HCLK clock cycle.  

As the cycle-level communication is cycle-accurate and pin-accurate it 
requires the communication time of sending all the pin signal values at every 
clock cycle: There is no ‘free lunch’ as we all know. 

4.3.2.2 Transaction-level 
The transaction-level communication is higher-abstraction level than cycle-
level communication in terms of time and data. The communication data is 
just composed of the essential information for communication. In the 
example of AMBA AHB interface, we just transfer only address value, data 
value and type of transfer such as read or write. The basic unit of meaningful 
essential information is referred to transaction. The one transaction may 
have the information for more than one cycle. Thus, the communication 
needs not to be performed at every clock cycle in transaction-level 
communication. 

The transaction-level communication is effective to reduce the 
communication time. However, it might have some mismatches in terms of 
time or data due to the high-abstraction communication. For example, when 
the bus error occurs during the burst transfer of AHB, we can detect the error 
event after the end of the bus transaction. 

4.3.3 Communication time reduction 

There are several purposes of the hardware and software co-emulation. The 
first purpose is to confirm the design by actually executing design in real 
hardware in connection with the associated embedded software. Another 
purpose is the acceleration of verification speed. Moving some of design into 
real hardware emulator can reduce the simulation overall execution time 
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while the communication overhead offsets the benefits of hardware 
emulation. Therefore, to achieve the second purpose, it is necessary to 
reduce the communication overhead. In this sub-section, several such 
techniques are explained. 

4.3.3.1 Reducing the amount of communication 
The simplest and most straightforward method to reduce the communication 
time is to reduce the amount of communication data. To reduce the 
communication data, we can apply the following techniques. 

• Raising abstraction level 
We can reduce the amount of communication by sending only essential 
information for communication. In this method, communication is done 
by transferring a series of commands containing type and data rather than 
all of the signals (Bauer, 1999). 

• Using value change detection 

In traditional cycle-level interface, it sends all of the pin signal values at 
every clock cycle. But not all of the signals are always changed at every 
cycle. Thus we can send only changed signal values to reduce the amount of 
communication. Although the concept of the method is simple, there are 
some issues to solve in its implementation. To indicate whether a signal is 
changed or not, we need to send the changed flag first before sending the 
actual pin signal values. But sending flags increase the size of 
communication data. To reduce the flag overhead, we can group some 
signals to share a single flag. Using protocol awareness, we can make a more 
efficient group (Ki and Kim, 2005). 

4.3.3.2 Storing stimuli patterns for fast regression test 
Another method stores input port data in the memory located in the emulator. 
When we perform additional simulation, system applies the pre-stored 
patterns to DUT and compares the outputs with the expected values. This 
method can remove communication overhead by not interacting with long 
test-bench. Although this method can be useful for fast regression test, we 
have to perform co-simulation at least once to get input port values and the 
expected results. Moreover, it can not be applied to the design which is self-
driven or one that has non-deterministic behavior. 

4.3.3.3 Partitioning in terms of communication efficiency 
Most commonly, the partitioning criteria between software and hardware in co-
emulation system is whether the design can be synthesizable to be applicable to 
the hardware emulator. However, these criteria might be inefficient in 
communication time point of view. Using the technique converting any code 
into synthesizable one, we can be free from the synthesizability limitation 
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when we partition the hardware and software in co-emulation system, which 
can bring more communication-efficient partition of co-emulation system 
(Bauer, 1998). 

4.3.3.4 Utilizing channel characteristics 
This method is used to reduce the communication time while maintaining 
cycle accuracy. Instead of modifying the communication data, it utilizes the 
channel characteristics. Most communication channels can achieve high data 
bandwidth in burst data transfer while it is inefficient in single or small data 
transfer. But the cycle-level communication method inherently exchanges 
input primary port value and output primary port value at every clock cycle, 
which is not communication-efficient because of the size limitation of the data 
that can be exchanged in a single transfer, i.e., the bit-width of input and 
output primary port limit the burst size of communication. To increase the 
burst size of the data transfer, this method moves some part of test-bench into 
the hardware emulator to remove the data dependency between the output port 
and input port within test-bench. Without data dependency, test-bench can 
apply a large amount of input port values corresponding to many clock cycles 
without receiving output port value from the emulator (Kim et al., 2004). 

4.4 General Issues in Hard Prototyping 

This section covers general issues in hard prototyping ranging from the 
physical problems such as clocks and routing, to the architectural issues. 

4.4.1 Processor-based vs. FPGA-based 

Most hard prototyping systems are implemented using FPGA. FPGA are 
usually used for rapid prototyping purpose but they are also useful for end-
product in small-size market. FPGA have a massive array of configurable 
logic cells which are very useful in emulating behavior of user design logics. 
FPGA also have configurable I/O cells arranged along the four sides of the 
chip. They can be used in various ways in interconnecting FPGA with 
external peripheral devices. Mapping user logic directly to the FPGA cells 
has limitation in debugging. 

Hard prototyping system may be implemented using special purpose 
processors. In this case, each processor simulates the behavior of some part 
of user design, i.e. there is no one-to-one relation between user logic and the 
simulating processor. There is a great flexibility in the size of design that can 
be emulated. Code debugging can be done at the same time with the 
behavior emulation of original logic. The drawback of the processor-based 
hard prototyping is extremely high costs. 



SoC Prototyping and Verification 257
 
4.4.2 Clocks and global resources 

In FPGA-based hard prototyping systems, each functional module in user 
design is one-to-one mapped to the logic cells of the FPGA. For the clock lines, 
the global resources should be used to deliver the clock signals to all the 
sequential logic elements throughout the whole FPGA with minimum skew 
and delay. Because the clock resources are limited in number and some of 
them are occupied by the system operation, users have to carefully utilize the 
clock resources. This is applied also for other global signals such as ‘reset’. 

The problem is more difficult when using multiple FPGAs. If a clock 
domain sourcing one clock signal is partitioned into different FPGAs, the 
clock source should be distributed to the FPGA with minimum skew so that 
the set-up and hold time constraints for all the flip-flops spanned in multiple 
FPGAs can be met. The set-up time constraint can be relaxed by slowing 
down the operation speed, but the hold time constraint can not be satisfied 
without controlling the phase of the skewed clock or inserting special 
holding logic. 

In processor-based hard prototyping systems, this kind of physical 
problems can be avoided by mimicking the behavior of simulator using 
specialized processor instead of implementing the circuit in hardware. 

4.4.3 I/O types 

FPGA provides various types of I/O technologies in a configurable way. 
However, this flexibility is reduced while the FPGA is mounted in the PCB 
in a specific circuit configuration. This is one of the biggest obstacles in 
making universal verification equipment. When developing or using the hard 
prototyping system along with external hardware components, users have to 
survey the I/O types of the external components and its pin number carefully.  

4.4.4 Partitioning & routing 

In both processor-based and FPGA-based hard prototyping, partitioning the 
given user design into several pieces is a very time-consuming but important 
step. Ill-partitioned design will consume more area and routing resources and 
take more time to synchronize data between partitions. 

Partitioning can be done in gate-level or in RTL. Classical emulation or 
acceleration equipments usually partitions design in gate-level. However, 
recent hard prototyping systems support RTL partitioning to enhance the 
debugging feature. RTL partitioning allows the hierarchical structure of the 
design be used as a guidance to partition the design, which also helps  
re-constructing the waveform in user-readable form than in gate-level. 
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After partitioning, the routing phase follows. The routing may be 
statically fixed in PCB or programmable using special hardware resources. 
One example of programmable routing resource is a special chip called field-
programmable interconnection IC (FPIC). In statically routed emulation 
hardware, the routing is done by allocating proper PAD location for each 
FPGA. The routing flexibility is limited while the physical characteristics of 
the routing channel are better than using programmable routing hardware. 

A frequently used technique when the number of routing resource is 
smaller than required, is to multiplex multiple signals in one FPGA, transmit 
using one physical signal line, and de-multiplex it in the other FPGA. 

4.4.5 FPGA-dependency 

Each FPGA family provides various advanced features for managing clocks, 
high-speed interface, and specialized hardware for multipliers and DSP 
circuits, etc. When using FPGA for hard prototyping, the selection of FPGA 
model significantly affects the final features of the hard prototyping system. 
For example, the Excalibur from Altera integrates ARM9 processor core and 
several configurable peripheral IP’s with programmable logic devices. It is a 
good candidate for ARM-based SoC modeling, although it has limitation that 
its AHB bus architecture is fixed by hardware. Xilinx also provides PPC 
cores with Viretex-2pro and Virtex-4 family. 

4.5 Debugging Issues 

Debugging is one of the most important issues in hard prototyping. In 
classical logic-centric chip design, the main debugging target was logic and 
timing problem. The timing bug is said to exist in a circuit that does not 
satisfy timing constraint given to the combinational logic path to guarantee 
proper operation in a specific operating frequency range. The timing bug can 
be detected by timing simulation which is a logic simulation considering the 
cell delays and routing delays of the chip. This can be done only in 
processor-based simulation acceleration. 

The logical bug is typically related with the logical flaw caused by illegal 
initialization, bit-width mishandling, typing error, wrong Boolean equation 
or conditional statements, unexpected synthesis tool behavior, etc and 
undetected in simulation. 

Logic analyzer is the most essential debugging equipment for logic and 
timing debugging. Most logic analyzers provide high speed data link with 
hard prototyping equipment in probe type or connector type. The operating 
frequency of the contemporary logic analyzers is very high and various 
triggering modes and large amount of memory for data capture are provided, 
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which enables detailed timing analysis on off-chip signal. However, logic 
analyzers require physical connection with debug target and signals internal 
to the chip should be extracted to the external pads for debugging, which is 
very tedious and bug-prone. 

FPGA vendors provide built-in logic analyzer features utilizing unused 
internal logic and memory resources. It simplifies debugging by eliminating 
messy coupling with logic analyzer, but its capacity is limited by the amount 
of spare resources. Many hard prototyping equipments have extra hardware 
resources dedicated for logic debugging. 

The software debugging in SoC verification highly depends on the 
processor type used and the debugging features provided with the specific 
processor model. Most embedded processor vendors promote the debugging 
hardware and debugging tools specific to the processor. For example ARM 
processor is provided with the embedded trace module that enables the trace 
of instruction and data processed in the processor. In SoC verification,  
a means to correlate the trace data generated by the processor debugging tool 
and the signal dump gathered for the hardware is necessary. 

4.6 Standard of Co-Emulation Modeling 

4.6.1 Background 

The benefit of hardware acceleration/emulation is the reduction of 
verification time, which would in turn help meet the ever-shrinking time-to-
market requirements. Hardware-software co-emulation technique is used 
when only some part of design could be applicable to hardware 
acceleration/emulation while the rest of design remains in software part. In 
this configuration of design, software and hardware parts co-exist and 
interact with each other to realize the whole design functionality. 
Verification of this kind of design needs specialized platform which mainly 
incorporates two parts, in which host processor executes the software-side 
design and hardware accelerator/emulator takes care of hardware-side design. 
This verification platform is called co-emulation system and the target 
design under co-emulation system is considered as co-emulation modeling.  

Co-emulation system, on the other hand, requires much time and effort to 
develop the whole co-emulation platform. It is, therefore, not efficient to 
develop a new co-emulation platform whenever we need to verify a new 
design. In most cases, designers utilize the commercial 3rd party  
co-emulation system or reuse the existing customized platform.  

The co-emulation system is composed of not only a main processing engine 
(host processor and accelerator/emulation) but also implementation-specific 
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components such as communication channel between processor and 
accelerator/emulator, device driver, API, bus interface and so on. These 
components can be different among particular system implementations 
according to emulation system vendor and model. 

This implementation-specific feature affects co-emulation modeling. 
Accelerator/emulator vendors have proprietary APIs. Hardware-side of 
design under verification is required to be modified to interface with 
platform-dependent communication channel and bus interface. 

Verification engineers need to learn these platform-dependent API and 
hardware interface to model and implement his/her design on the specific  
co-emulation platform. Sometimes, we need to change co-emulation 
platform to satisfy the special requirement. Then, re-modeling of the 
previous co-emulation model is needed due to the mismatches of API and 
hardware interface between the previous and current co-emulation system. 

Co-emulation platform itself has implementation-specific portions, which 
is totally dispensable to the verification engineer. One does not have to 
understand the details of implementation of co-emulation system but just need 
to verify one’s design on this platform. To hide the implementation-specific 
things, co-emulation system should be based on the layered architecture. 
Moreover, to avoid the re-modeling efforts when possible change of co-
emulation system, interface between the layers need to be defined well. 
According to these needs of EDA industry, Accellera announced Standard Co-
Emulation Modeling Interface (SCE-MI) (Accellera 2003). 

4.6.2 SCE-MI layered architecture 

Co-emulation system based on SCE-MI also incorporates two processing 
engines, which are processor and hardware accelerator/emulator. To hide the 
implementation-dependent details and increase productivity from design 
reuse, it has a layered architecture as shown in Figure 14. Moreover, to 
reduce communication overhead between processor and hardware emulator, 
communication is done in message-based transfer rather than cycle-accurate 
signal level. Thus, transactor is located in the hardware emulator where 
message is decoded and resolved into cycle-accurate signals. 

The architecture has four layers. Each layer performs a well-defined 
function. We will discuss each layer of the architecture in turn, starting from 
the top layer. From the application layer view point, test-bench is directly 
connected to DUT, but the test-bench is usually described in test case-
oriented un-timed model ignoring detailed signal protocol. For example, 
when DUT is a kind of memory device, test-bench can just care about which 
data to store in memory without concerning about detailed memory interface 
protocol signals. DUT is described in cycle-accurate signal-level model such 
as RTL (Register-Transfer Level) model. The protocol layer is responsible 
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for abstraction-level conversion. Socket creates a message from the stimuli 
of a test-bench. The transactor decodes the message which in turn is resolved 
into the detailed cycle-accurate signals.  The infrastructure layer is 
responsible for transferring messages. Messages are transferred through 
several independent logical channels, each of which connects a software API 
with an associated port macro. The physical layer coordinates the functions 
required to transmit a bit stream over a physical medium such as PCI bus. 

 

 

Figure 14. Layered architecture of SCE-MI 

In this layered architecture, user can design transactor without 
considering the detailed emulator implementations. Emulation user can 
simply link between transactor and software test-bench through the standard 
transactor interface without the knowledge of emulation-dependent interface 
protocol. 

4.6.3 Automatic Generation of Co-Emulation Interface  

In the SCE-MI approach, emulator users don’t have to be concerned about 
the emulator-system-dependent things using automated process which 
generate two bottom layers shown in Figure 14. Designs in protocol layer 
should be provided by the designer of protocol which is used for DUT 
interface. SCE-MI defines API function prototypes for software test-bench 
and protocol definition of macro module for standard transactor interface. 
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However, as these are just wrappers, we still need to complete the actual 
design of API and hardware macro. 

To perform co-emulation in this environment, emulator user has to 
prepare bridge netlist, interconnects DUT, transactor and standard macro 
modules in RTL description using Verilog or VHDL.  

Through the instantiated standard macros, user can connect transactor to 
the software test bench without knowledge of the detailed implementation of 
emulation system, i.e., users don't need to know the operation of emulation-
dependent interface protocol for interconnection between processor and 
emulator. Actual interconnection is done by the automated processes as 
described in Dynalith Systems SCE-MI package (Dynalith, 2003). Through 
automated infrastructure linking process, emulator user can perform  
co-emulation modeling without concerning about implementation-dependent 
details and remodeling efforts in possible emulator change. 

5. SUMMARY 

In this chapter, SoC design flow and environment was addressed in terms of 
functional verification. In early design phase, soft prototype provides a 
working system model, where soft prototype consists of components models 
written in software including HDL, C/C++, SystemC and so on. With soft 
prototype, the technique of raising abstract-level is used in order to get 
reasonable simulation speed. One of the upcoming techniques is TLM based 
on SystemC. As one of prominent aspects of SoC is embedding processing 
cores, HW-SW co-simulation is an inevitable feature, where ISS simulates 
application software supposed to be run by the embedded processor. Several 
techniques are available for ISS, which include interpretive, static-compiled 
and dynamic-compiled. While design progresses, some or whole parts of 
SoC are replaced with hardware since the soft prototype can fail to deliver 
enough simulation performance. Hardware assisted techniques are called 
hard prototype comparing to the soft prototype. Hard prototype includes 
acceleration, emulation and prototype. 
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SoC TESTING AND DESIGN FOR TESTABILITY
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Abstract: Integrating reusable cores from multiple sources is essential in system-on-chip 
(SOC) design. Testing these cores as well as the integrated system chip 
requires not just the conventional design-for-testability (DFT) methodologies, 
but also new ones. SOC testing involves applying test patterns to and 
analyzing the corresponding response from each and every core. In addition, 
the user-defined logic as well as the final integrated chip has to be tested. 
There are new challenges and issues, such as core isolation, test access, test 
pattern translation (from core to chip), test integration and scheduling, test 
automation, etc. This chapter discusses in detail the challenges and solutions in 
core-based SOC testing. We also briefly describe the IEEE 1500 that 
standardizes the test interface (called the Test Wrapper) between a core and its 
SOC host, and the Core Test Language (CTL) for test automation. We present 
a novel SOC test integration platform, solving real problems in test 
scheduling, test IO reduction, timing of functional test, scan IO sharing, 
embedded memory built-in self-test (BIST), etc. We also present a memory 
BIST compiler that provides a complete solution for SOCs with heterogeneous 
memory cores 

Keywords: built-in self-test (BIST), Core Test Language (CTL), design-for-testability 
(DFT), IEEE 1500, memory testing, SOC testing, test access mechanism 
(TAM), test wrapper 

1. INTRODUCTION 

Testing is not a new engineering area, nor is it specific to electronic circuits. 
Not only man-made products (materials, devices, equipments, systems, etc.) 
but also natural goods need to be tested for their functionality and/or 
performance before we are confident of using them. The advent of 
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semiconductor-based integrated circuit (IC) in 1958 created a new class of 
man-made products that require special techniques to test them. Over the 
years, electronic testing has evolved itself into one of the major electrical 
engineering fields, and produced industries in equipment, software tool, 
service, etc. Today, as we are entering the deep-submicron (DSM) age in the 
21 century, system-on-chip (SOC) is becoming a reality. VLSI circuit chips 
are becoming so complex that their testing cost soars. Without continued 
research and development in test methodologies and technologies, test cost 
can rise to a level that becomes the bottleneck of developing and 
manufacturing new generations of VLSI circuits. In this chapter we will 
discuss the techniques and methodologies of SOC testing. 

In addition to functionality and performance, the main purpose of VLSI 
testing is to guarantee the quality and reliability of the shipped parts of the 
circuit under test (CUT). Apparently, for that purpose we need to know 
what we are testing, i.e., we need to know 1) the types of defects and faults 
that can occur in a VLSI circuit, and 2) the types of circuits and circuit 
modules we are testing (digital, analog, memory, etc.). We then have to 
figure out how to test the defects and faults, and develop methods and tools 
to do that. This involves, in general, test pattern generation, test pattern 
application, and response evaluation. We also need to know the costs and 
effects of the methods and tools we develop. Specifically, the test quality 
and test cost have to be evaluated, i.e., we need to identify the relationship 
among the test cost, test coverage, and product quality and reliability. 
Developing cost-effective techniques, methodologies, and tools to 
guarantee product quality and reliability is the ultimate objectives of test 
development. 

It is generally accepted that core-based and platform-based design 
methodologies are available for SOC design based on today’s technology. 
As to SOC testing, test reuse and platform-based test methodologies still 
require investigation [1][2]. For an SOC, the design and test engineers may 
have to test the cores under a very limited knowledge of the core test 
information. The issues of core access and isolation are being addressed by 
the IEEE 1500 [3][4]. The IEEE 1450 [5] and IEEE P1450.6 [6] define the 
standard test interface language (STIL) and core test language (CTL), 
respectively, and provide a solution for test information exchange. 
Although the standards try to unify the core test wrappers and test 
information exchange format, the test controller, test architecture, test 
access mechanism (TAM), and test integration are left to the user—the 
SOC integrator. 

Many TAM architectures (e.g., [7][8][9][10][11]) and test scheduling 
algorithms (e.g., [10][12][13][14][15]) have been proposed, however, there 
is little discussion that address test scheduling and TAM architecture at the 
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same time. Most of the previous test scheduling works put emphasis on the 
reduction of test time without considering test architecture and TAM. 
Without considering practical test architecture, the test scheduling problem 
becomes unrealistic, where the cores can be accessed and tested at any time 
in any order. The scheduling result obtained that way is usually optimistic 
and impractical, requiring a complicated test controller, TAM bus arbiter, 
and/or massive test IOs. In our previous work [10], good scheduling result 
is obtained by using the session-based test scheduling approach and the 
Test Access Control System (TACS). However, the test time calculation in 
[10] is still too optimistic for real applications. The TestRail reported in [9] 
does not discuss the test controller and its complexity. Although the 
scheduling result is good, each TestRail requires its dedicated Wrapper 
Serial Control (WSC) signals. As a result, the number of test IOs can be 
high. Some other approaches such as the addressable test port (ATP) [8], 
CAS-BUS [7], and HD-BIST [11] provide flexible TAM and test 
architectures, but the drawback is high performance impact and area 
overhead. 

In this chapter, we stress major issues in practical SOC test integration. 
First of all, test scheduling is defined by using a more precise model based 
on TACS. The realistic test time formulation reduces the complexity of test 
operations. With TACS, both the TAM bus arbitration and the control of test 
IOs can easily be done, and fewer test IOs are needed. The improved 
session-based test scheduling considers not only the realistic test control 
architecture and TAM bus, but also test IO limit. Issues on sharing and 
distribution of the test clocks and test enable signals are also discussed. 
Secondly, the coexistence of scan test and functional test is discussed in 
detail. The major challenge in applying functional patterns using the test 
wrapper is the timing requirement. Scan pattern application is relatively 
simple and straightforward by the 1500 parallel TAM, but at-speed 
functional pattern application is not as easy. We present a methodology to 
deliver the functional test patterns by using the scan architecture. In a legacy 
core the scan and functional IOs are usually shared, so there are timing 
problems in applying the tests through the 1500 Wrapper Boundary Register 
(WBR). With a minor modification of the WBR, we can solve the timing 
issues. The Test Access Port (TAP) Controller is extended and used as the 
Test Controller of the system chip, which is used to apply the scan tests, 
functional tests, or both to the embedded cores. 

In addition to testing logic cores, we also discuss memory testing. 
Embedded memories are among the most common cores in system-on-chip 
(SOC) designs. The increasing demand for data bandwidth and the 
continuous decline in hardware cost makes embedded memory cores more 
and more popular for SOC applications. However, testing embedded 
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memories is still a challenge since testing memory cores is much more 
difficult than testing commodity memories due to the limitation in available 
pins that can be used to access the cores, the increase in speed (due to the 
removal of off-chip loading), the increase in address and data bus widths, the 
availability of customized specifications and configurations of the memory 
cores, etc. 

In addition to testing embedded memories using expensive external 
memory testers, built-in self-test (BIST) is considered a good alternative 
solution (see, e.g., [33][34][35][36][37][38][39]). With BIST, the overall 
test time can be minimized by parallel testing of the memory banks or 
blocks, and the external memory tester time can be greatly reduced. Since 
the test requirement is minimized, the cost of the tester reduces. However, 
a simple go/no-go BIST has limited applications because of the lack of 
diagnosis capability. Being able to provide the information such as the 
address and behavior of the faulty cells is an important feature that helps 
the user improve the memory design and process integration. 

Embedded memories, unlike the commodity ones, are usually customized 
for different ASIC or SOC applications. The BIST circuits also need to be 
customized in such a case. An automatic BIST circuit generation tool will be 
required to increase productivity when embedded memory cores are 
frequently used. Several tools have been proposed for memory BIST circuit 
generation in the past. For example, a tool was proposed in [40] for 
automatic generation of both BIST and transparent BIST designs for 
memories. The methodology presented in [41] provides the automatic BIST 
design creation based on the popular march-based algorithms [35][42]. The 
BIST circuit detects port-coupling faults in multi-port RAM in addition to 
other common faults. A memory synthesis framework was proposed in 
[43][44], which can automatically generate, verify and insert programmable 
or non-programmable BIST circuitry in a short time. A memory BIST 
description language was used to help the integration of BIST and memory 
cores. Another example is our previous work—a simple programmable BIST 
compiler for EDO DRAM is reported in [45]. Almost all the proposed 
frameworks and existing commercial tools are designed for SRAM BIST 
only. We present a BIST compiler that supports both SRAM and DRAM. 

Finally, we show at the end of the chapter an industrial SOC design that 
is developed using a test integration platform—SOC Test Aid Console 
(STEAC). The previous version of STEAC [16] has been greatly enhanced 
to support automation of test scheduling, test circuitry insertion and test 
pattern translation under the practical constraints as discussed above. Under 
the IO resource constraint, experimental results show that this approach is 
cost-effective. In addition, the cores with both scan and functional tests are 
supported by the enhanced TAP Controller and WBR. 
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2. IEEE 1500 AND TEST ACCESS CONTROL 

SYSTEM 

Before discussing the test integration issues the IEEE 1500 Test Wrapper and 
Test Access Control System (TACS) [16] are briefly reviewed. We will show 
how to apply core test patterns, and present test time calculation under TACS. 

2.1 IEEE 1500 [4] 

To solve the problems mentioned above and for easy test automation, a 
standard test interface for the cores is required. A generic scalable 
architecture for SOC test is shown in Figure 1. [3], which was proposed by 
the IEEE 1500 Standard Working Group. The IEEE 1500 tries to standardize 
the Core Test Wrapper and the Core Test Language (CTL). The scalable 
architecture consists of 

• the user-defined parallel test access mechanism (TAM) for delivering the 
test patterns and responses in parallel, 

• standard core test wrappers that can isolate the cores and provide 
different test modes, and 

• a user-defined test controller for controlling the wrapper and TAM [3]. 
 

Figure 1. IEEE 1500 scalable architecture for SOC test 
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Off- or on-chip Source and Sink generate the test patterns and evaluate the 
test responses, respectively. Serial test access can always be done by using 
the Serial Interface Layer (SIL) provided by the 1500 Test Wrapper, which 
is mandatory. Note that adopting common test integration and optimization 
procedure is not necessary, and usually not possible, since the requirements 
and goals of the core providers, SOC integrators, and chip fabricators in the 
testing domain are different. Therefore, the TAM and test controller are user-
defined. Among these components, the IEEE 1500 Standard Working Group 
only standardizes the test wrapper, and other components are designed by 
the SOC integrator. 

Figure 2 gives the architecture of the IEEE 1500 Test Wrapper, which 
includes the following elements: 

• Wrapper Instruction Register (WIR). This register decodes various test 
modes defined by mandatory and user instructions, and controls the 
operation of the WBR. 

• Wrapper Bypass Register (WBY). Normally only 1-bit, this register 
directly connects the Wrapper Serial Input (WSI) to the Wrapper Serial 
Output (WSO). We use it to bypass the current core when we are testing 
other cores. If the core is not selected, we connect the output of WBY to 
WSO. 

Figure 2. IEEE 1500 Test Wrapper architecture 
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• Wrapper Boundary Register (WBR). This register consists of the Wrapper 

Boundary Cells (WBCs) that wrap the cores’ normal I/O pins, adding 
control, observation, and isolation capabilities to the cores’ normal functions. 

The Test Wrapper connects all functional inputs, scan chains, and functional 
outputs such that the test data can be shifted in through WSI and the test 
response can be shifted out from WSO. In general, the Test Wrapper has 
four major operation modes: 

1. normal mode, in which the wrapper is transparent and the core operates 
normally; 

2. inward-facing mode, in which the test access is for the core itself; 
3. outward-facing mode, in which the test access is for the external 

circuitry; and 
4. safe mode, in which the WBCs force the inputs of the core to a fixed 

pattern. 

The first three modes are mandatory, and the last one is recommended. The 
IEEE 1500 also supports parallel test access to speed up the test process. In 
Figure 2, TAMIN and TAMOUT are parallel input and output ports, 
respectively. They are usually connected to a bus for parallel test data 
transfer. All inputs, outputs, and scan chains are connected to their assigned 
TAM bus lines, as shown in Figure 3. Note that TAMIN will connect the 
primary inputs (PI), scan chains, and primary outputs (PO) in the order 
shown. In this way, PI and PO can be overlapped to shorten the test time. In 
what follows, we assume the test data is transferred through TAMIN and 
TAMOUT, and the Test Wrapper is as shown in Figure 3. 

At the chip level, we need to optimize the TAM and schedule the core 
tests [17]. Test wrapper and TAM co-optimization is important for the 
SOC integrator, since it has direct impact on the area overhead and ATE 
vector memory depth. The TAM is designed under the routing constraints 
between the cores and the system-level power constraints. The core tests 
are scheduled such that the total SOC test time can be minimized, subject 
to the testing power and area overhead constraints [18]. Test time 
reduction is done by exploring parallelism at both the chip and core 
levels [17]. 

2.2 Test Access Control System (TACS) 

To speed up the development of system-on-chip (SOC), large and complex 
cores are being reused by designers. While design reuse is widely believed 
to effectively improve the productivity, test reuse is still a task that needs 
more effort than the designer can afford in general. The testing of SOC  
and the reusable cores (from different sources) has created some new 
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Figure 3. TAM routing example 

challenges [1][2][21] for the designers and test engineers, such as 1) to test 
the cores with a very limited knowledge about the details of their test 
methodologies; 2) to access and isolate the deeply embedded core; and 3) to 
integrate and translate core tests to form the final SOC test. A typical SOC 
test design flow is shown in Figure 4. In the figure, we can see that the test 
issues include test information exchange, test wrapper generation, test access 
mechanism (TAM) design, test controller design, test scheduling, test 
integration, etc. The IEEE 1500 [3][4] defines the standard wrapper cells to 
support core test reuse and isolation. In [5][6], the standard test interface 
language (STIL) and core test language (CTL) are shown to provide the 
solution for test information exchange. 

The TAM transports test patterns from the test source to the core-under-
test (CUT), and transports the test responses from the CUT to the test  
sink. The TAM architecture affects the design of test wrapper and test 
controller, as well as the test scheduling algorithm. There were many TAM 
architectures proposed previously [8][22][23][24][25][26]. TAM architectures 
for cores with scan test were classified into multiplexing, daisy-chain, 
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Figure 4. A typical SOC test design flow 

and distribution architectures in [22]. In the multiplexing architecture,  
a multiplexer is added to the system to select the core to be connected to 
the TAM. In this architecture, only one core is tested at a time, resulting in 
long test time. In the distribution architecture, each core has one dedicated 
TAM, and can be tested at the same time without TAM resource limitation. 
In the daisy-chain architecture, the TAM forms a long scan chain over all 
cores. Bypass multiplexers are used to reduce the length of the shift path. 
With the bypass multiplexers, the cores can be tested in parallel, partly in 
parallel, or in series. It is more flexible than the distribution or 
multiplexing architecture. There are some other TAM architectures, e.g.,  
a dedicated bus can be used for core test [23], and the on-chip system bus 
also can be reused as the TAM [24]. Also, in [25], the TestRail was 
proposed to combine the strength of both the test bus and boundary scan 
test. In TestRail, the multiplexing or daisy-chain architecture can be used. 
In addition, each core can have a dedicated TestRail, resulting in a 
distribution architecture. Other architectures such as addressable test port 
[8] and CAS-BUS [7] were proposed for high scalability and flexibility. 
They introduce higher hardware cost and performance impact. The choice 
of the TAM depends on the requirements of the SOC under test, including 
test time, performance penalty, area overhead, ease of test translation and 
test integration, etc. Some previous works have focused on the scheduling 
of core tests to reduce test time, subject to certain test resource and test 
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power constraints [27][28][29][30]. The test scheduling problem has been 
reduced to some well known problems, e.g., the integer linear 
programming (ILP) problem, placement problem, and rectangle packing 
problem. However, so far little attention has been paid to on test 
integration at the system level. 

In this sub-section, we present the Test Access Control System 
(TACS) that allows easy test integration for SOC. Based on the IEEE 
1500 Test Wrapper, a TAM and the associated test controller are 
proposed, which are used to develop a test scheduling tool for optimizing 
the test time and/or TAM utilization. After test scheduling, the TACS 
hardware (including the core test wrappers, the TAM, and test controller) 
is automatically generated that meets the system test requirements. TACS 
also translate and integrate the core tests to the final system-level test 
automatically. It can be controlled via the IEEE 1149.1 Test Access Port 
(TAP) interface [19] or the IEEE 1500 Wrapper Interface Port (WIP). 
The TACS software has been developed based on the IEEE 1450 
Standard Test Interface Language (STIL) and 1450.6 Core Test Language 
(CTL). The design specifications and test information of the cores and 
SOC are obtained from the user and the related CAD tools, while the test 
schedule is generated by our scheduling tool. The final SOC test is 
written in standard HDL and STIL for further use in physical design and 
ATE programming. 

TACS contains a simple Test Controller that is compliant to the IEEE 
1149.1 TAP Controller [32], and multiplexer-based TAM buses. The Test 
Controller will generate the WSC signals to operate the 1500 Test 
Wrapper for shift, capture, transfer, and update operations. The Test 
Controller also arbitrates the TAM bus for core test switching. 

TACS is intended for managing three test tasks: 1) to control the core 
test wrapper operations, 2) to configure the TAM, and 3) to send the test 
patterns and receive the test responses. Although the Serial Interface Layer 
(SIL) defined in IEEE 1500 provides a standard test access mechanism for 
the cores, it is slow. A parallel TAM can be used to save the test time. In 
this section we will present the TACS hardware, including a hybrid TAM 
architecture and a test controller. Due to the similarity between SIL and 
IEEE 1149.1 TAP, reusing the TAP Controller as the SOC test controller is 
considered feasible [26][31]. However, the original TAP Controller does 
not handle hierarchical system test properly. The mixed use of TAPed 
cores and 1500 wrapped cores also complicates the test controller. The 
proposed TACS test controller has a unified interface for both the TAPed 
and 1500 wrapped cores. 

Figure 5 shows an SOC architecture based on the proposed TACS, which 
consists of a system-level test controller (labeled TACS in the figure) and a 
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 Figure 5. A TACS-based SOC architecture 

 
parallel TAM (a test bus). To support hierarchical system test,all control 
signals of both the IEEE 1500 WIP and IEEE 1149.1 TAP are broadcast to 
the cores. 

2.3 Test Pattern Application 

Figure 6 gives the waveform regarding test data application in TACS. 
The figure describes how we handle the scan protocol by TAP states [32]. 
First, the TAP Controller enters the Pause-DR state by controlling TMS 
and enabling ShiftWR to operate the WBR cells in the shift mode (Load-
Unload). After data are shifted completely, the TAP enters Exit2-DR and 
asserts UpdateWR so that the WBR cells update the core inputs (Force-
PI). Then, the TAP goes to Capture-DR and asserts CaptureWR so that 
the WBR cells capture test response from core outputs (Measure-PO). 
After Measure-PO, the TAP enters Exit1-DR, and the scan clock is 
pulsed. Finally, the Controller returns to Pause-DR.  

In Figure 6, TSE stands for test scan enable that controls all scan 
enable signals of the cores, and ScanClk and FuncClk are scan test clock 
and functional clock, respectively. Scan and input data are shifted in 
through TAMIN, while scan and output responses are shifted out through 
TAMOUT. Note that to fit the input timing of functional patterns, the 
Force-PI step takes 3 cycles to apply a functional input, and the 
functional clock (FuncClk) is applied during these three cycles. 



276 Wu and Huang
 

 
Figure 6. Test data application waveform 

2.4 Test Time Calculation 

If test time calculation does not reflect a realistic test application flow, the 
test time based on the scheduling result may not be really minimized. The 
test scheduler should calculate the test time based on the test application 
flow discussed above. 

Test time calculation also depends on wrapper routing. Figure 3 gives a 
TAM routing example. Since loading the test input from PI and generating 
test response to PO can be done simultaneously, as shown in Figure 7, the 
shift length of the ith-bit of TAM, Li, is Li=Max{PIi,POi}+Si, where PIi, POi, 

and Si are the numbers of PIs, POs, and scan flip-flops connected to the ith-
bit of the TAM, respectively. For a single core, the maximum Li is the time 
to Load-Unload a test vector. After Load-Unload, it takes 5 cycles to capture 
output response (Force-PI, Measure-PO, and Pulse-Clock). If there is only 
one core in a test session, the test time of this session is T=P × (L+5) + L, 
where P is the number of test vectors and L is the maximum shift length of 
TAM assigned to this core. In previous scheduling works [12][13][14][15], it 
is assumed that only 1 cycle is needed to capture the output response. For 
scan patterns, since the scan chains may be long, the number of cycles to 
capture output responses can be ignored. However, when functional patterns 
are considered, the number of available IOs is normally small, so the number 
of cycles to capture output responses is relatively large and will affect the 
scheduling results.  



SoC Testing and Design for Testability 277
 

However, if there are multiple cores in a test session, test time calculation 
is different. Because all WBR cells are controlled by the global WSC 
signals, the cores with less test data must wait for other cores before the data 
are shifted completely. An example with two cores (A and B) in a test 
session is shown in Figure 7. Assume PA (PB) is the number of test vectors 
for Core A (Core B), and LA (LB) the number of cycles to transfer test data 
for Core A (Core B). Also, LA>LB. If PA>PB, the test time is the same as 
when only Core A is in this test session and there is no “Core B only” part in 
Figure 7. Each test vector needs LA cycles to load and unload test data, and  
5 cycles to apply Force-PI, Measure-PO, and Pulse-Clock. The test time is  

 
 AAA LLPT ++= )5(  (1) 

 
If, on the other hand, PB>PA, the first PA test vectors need LA cycles to 

load and unload test data, while the remaining PB-PA test vectors need LB 
cycles to load and unload test data. The test time is then  

 
 )5)(()5( +−+++= BABAAA LPPLLPT  (2) 

 
Based on the realistic test time calculation, we can schedule the core tests 

to really minimize the test time. 
 
 

Figure 7. Test time calculation 
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3. TEST INTEGRATION ISSUES AND SOLUTIONS 

Some test integration issues are discussed here. First, the session-based test 
scheduling should consider not only realistic test architectures and TAM bus 
arbitration, but also test IO resource constraints. As we have a limited 
number of test IO pins, it is important to share the test clock, test reset, and 
scan enable signals where possible. Reducing the test IO pins can increase 
utilization of the TAM bus for test data, leading to shorter test time. Another 
issue is how to apply functional patterns by the 1500 Test Wrapper, where 
timing is considered. The current 1500 core test environment is mainly 
designed for scan test. We will present an approach to delivering the 
functional tests by using the scan architecture in a more effective way, so far 
as timing is concerned. Finally, if some cores share scan and function IOs, 
there may exist timing problems when we apply the tests through the 1500 
WBR. With a little modification of the WBR, we can solve the issue with 
minimum timing impact. 

3.1 Scheduling Consideration  

Most previous works on SOC test scheduling calculate the core test time as 
the product of the number of test vectors and shift-path length, assuming 
each of the cores can be tested at any time [12][13][14][15][10]. This 
assumption normally results in a shorter test time than the real case. The test 
time can be achieved only if each core has its dedicated WSC signals, which 
we normally cannot afford. On the other hand, if the WBRs share the WSC 
signals to reduce the test IOs, then the cores with shorter tests must wait for 
others before the test data can be shifted completely. Therefore, the test time 
is not really minimized. Another issue is that a complex test controller and 
TAM bus arbitration scheme would have been needed to switch the TAM 
bus among the cores in such an ideal case. 

Our test scheduling method partitions cores into several test sessions to 
simplify the Test Controller design and TAM bus routing complexity. We 
use only a few test control IOs (i.e., TCK, TRST, TMS, TDI, and TDO) for 
test application. The WSC signals are broadcast to all cores, so all the WBRs 
shift, update, and capture data concurrently. The cores must wait for each 
other until all core test data are shifted completely, then they will do Force-
PI, Measure-PO, and Pulse-Clock together. Only when all cores in one test 
session finish the test can we start another test session. Given the same TAM 
bus width, this approach results in longer test time than previously predicted 
[12][13][14][15][10]. However, the test IOs are also one key factor when 
considering the test cost. To implement the scheduling result as reported in 
previous works, many test IOs will be needed. With IO resource constraints, 
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the test scheduling process is done in two steps: 1) a coarse scheduling is 
done to determine the number of test IOs and available TAM bus width; then 
2) a detailed scheduling is done to optimize the test time. In general, the 
wider the TAM bus, the shorter the test time. Later we will compare the test 
time under the same IO resource constraint to justify TACS and the 
proposed session-based test scheduling approach. 

3.2 Test IO Reduction  

The clock, reset, and other test pins should be easily controllable for IP test, 
but the limited number of test IOs usually makes it a critical issue. For 
example, the p22810 benchmark of the ITC02 SOC benchmark suite [20] 
has 28 cores. Among these cores, there are 22 cores with scan chains. It 
means that at least 22 clock signals, 22 reset signals and 22 scan enable (SE) 
signals are needed to test these cores, if all cores are of single clock domain. 
In general, some cores have multiple clock, reset, and test signals. In that 
case, the number of chip IOs may be too small to accommodate the test IOs. 
In addition, test IO reduction will also reduce test cost, because the tester 
cost can be reduced, and under the same IO resource constraint, more IOs 
can be used for the TAM bus, so the overall test time can be reduced. 

In TACS, all test pins (defined by TACS) of the cores are shared 
with functional IO pins (defined by designer). Dedicated test enable 
pins are not necessary—they can be generated by the Test Controller. 
We can share the test clock and reset signals for cores tested in different 
sessions. In Figure 8, the scheduling result allows 3 cores at most to be 
tested concurrently, assuming each core has only one clock domain. 
Only three test scan clocks (TSCs) are needed, i.e., core 1 (C1) and core 
4 (C4) share TSC0, C2 and C5 share TSC1, and C3 has its own TSC3. 
In Session 0, TSC0, TSC1, and TSC2 are used to control C1, C2, and 
C3, respectively. While in Session 1, TSC0 and TSC1 are used to 
control C4 and C5, respectively. The test reset signals are similar to 
scan clocks. As the cores are isolated by the 1500 Test Wrappers, they 
will not be damaged due to shared test clocks or reset signals. By sharing 
the test clocks and reset signals, the number of test IOs is reduced. 

To further reduce the number of test IOs, all scan enable (SE) signals are 
shared thanks to uniform test procedure in scan test. In general, the SE is 
enabled during the Load-Unload step and is disabled during Pulse-Clock 
(see Core 1 in Figure 9(a)). However, in some cases, the SE is still enabled 
even when the clock is pulsed (see Core 2 in Figure 9(a)). To share SE 
between both cores, we need to pulse the clocks of Core 1 and Core 2 in 
different cycles. The chip level test patterns are translated to pulse Clock1 in 
the Exit1-DR state and Clock2 in the Shift-DR state, just like the waveform 
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Figure 8. An example for test scan clock sharing 

 
shown in Figure 9(b). This results in one-cycle test time overhead per scan 
vector. In general, hundreds or thousands of cycles are needed to shift in one 
scan vector, so the overall test time overhead is small. 

Note that the translated test pattern is not exactly the same as the original 
test pattern. In the Force-PI and Measure-PO steps, the SE is disabled after 
translation, which is different from the original one. In most cases, the SE is 
simply used to switch the scan registers between the scan and normal modes. 
The slight difference of the test patterns does not affect the output response. 
If in a certain core the output response is sensitized by SE, then the core 
should have a dedicated SE. 

Sharing SE signal may introduce another problem. In the Pulse-Clock 
step, if the SE is disabled, the scan cells will capture the data from the  
 

 
Figure 9. Problem and solution regarding shared SE signal 
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combinational block, otherwise each scan cell will capture the data from the 
previous scan cell (like shifting). For Core 1 and Core 2 in Figure 9(a), if the 
entered vector is ABC followed by D at the scan input, then after the Pulse-
Clock step, the scan cells in Core 1 will store the data from the 
combinational part of Core 1, i.e., EFG. However, the scan cells in Core 2 
will shift by one cycle, and the first scan cell will capture data D, so the data 
shifted out is BCD. When the TAM width assigned to this core is less than 
the number of scan chains, multiple scan chains are cascaded, and the scan 
data are sent through a one-bit TAM. To apply data D to the cascaded scan 
chains, a flip-flop is inserted in between any two cascaded scan chains. The 
vector shifted in becomes ABCD, while data D is stored in the additional 
flip-flop and is shifted into the scan chain after the Pulse-Clock step. 

3.3 Timing Issues in Functional Test  

During core internal testing, the WIR will generate shifting, updating and 
capturing control signals based on the WSC signals to all WBR cells 
concurrently, so the WBR cells will shift, update, and capture test data in 
synchrony. However, all inputs of the functional patterns do not always have 
the same timing waveform. Consider the inputs IN_A, IN_B and IN_C as 
shown in Figure 10. IN_A is available before the rising clock transition; 
IN_B is available after the rising clock transition; and IN_C is available after 
the falling clock transition. To satisfy the timing relationship, a delay  
 

 
Figure 10. The timing of cycle-based functional patterns 
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element is added to the updating control signal connected to the WBR cells 
of IN_B and IN_C. Figure 11 shows the modification, where i_u is the 
updating control signal for the input wrapper cells generated by WIR. With 
the delay element, the test data of IN_B and IN_C will be updated with 
one- and two-cycle delays, respectively. The system clock rises between 
the updating times of IN_A and IN_B, and falls between the updating 
times of IN_B and IN_C. Figure 10(b) shows the waveform of the 
transformed test vectors. With the additional delay elements, the input data 
are available in the corresponding order. If the input data are available after 
the output is strobed (see, e.g., IN_C in Figure 10(c)), the data of the 
previous vector are used. The SOC Test Aid Console (STEAC) [16][18] is a 
test integration tool that supports the flow shown in Figure 4. It parses the 
functional patterns to get the input timing information, and connects the 
updating control signals with corresponding delay to each input WBR cell 
to fit the input timing. 

Note that it is impossible to update the test input data at exactly the same 
time as the original waveform, because the WBR control signal generation is 
aligned with the clock cycles. Therefore, we just present a solution to 
applying the functional patterns in the scan-based test environment. Note 
also that the test clock is not applied at system speed, as the scan patterns of 
other cores in the same test session are applied at a lower speed. More effort 
is needed to verify the timing of functional test. 

Another issue of functional patterns is the clock signal in the first vector. 
In Figure 12, before output strobe, the clock signal rises in the first vector, 
and toggles in the following vectors. Test pattern translation must also check  
 

 

Figure 11. Test Wrapper supporting functional patterns 
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Figure 12. First two vectors of the functional pattern 

 
the initial state of the clock signal to keep the translated waveform the same 
as the original functional waveform. In this way, TACS supports any 
functional patterns with different input timing.  

3.4 Scan and Functional IO Sharing 

In most legacy cores, the scan chains and functional IOs may share the core 
IO pins. This is for reducing the number of original chip IO pins. However, 
when a legacy core is integrated into the SOC, IO sharing of the legacy core 
becomes a problem during test pattern application. Figure 13 gives a few 
examples for IO sharing between scan chains and functional IOs. In the 
figure, we assume scan1 and scan2 are cascaded by TAMIN1 and 
TAMOUT1, while TAMIN0 and TAMOUT0 connect all WBR cells of the 
PIs and POs. Figure 13(a) shows the solution for output sharing between the 
scan chains and functional IOs. In this example, scan1 and scan2 share the 
outputs PO1 and PO2 with the functional IOs. The PO2 terminal is wrapped 
by the WBR cell, WBRC4, and is also connected to the scan-in terminal of 
scan2. The PO1 terminal is wrapped by WBR3 and is also connected to 
TAM-out. In the Measure-PO step, WBRC3 and WBRC4 capture the 
functional outputs of PO1 and PO2. In the Load-Unload step, the scan data 
of scan1 are shifted out to scan2 through PO1, while the scan data of scan2 
are shifted out to TAM output through PO2. These shared outputs are used 
as either the functional data outputs or scan data outputs in different steps. 
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Figure 13. IO sharing: (a) output sharing, (b) input sharing with only scan tests, (c) input 

sharing with both scan and functional tests, and (d) modified WBR cell 

The solutions for scan/function input sharing are dependent on the type 
of test patterns. If there are only scan patterns, a flip-flip is added to the 
shared pin, in addition to the WBR cell. Figure 13(b) shows an example, 
where scan1 and scan2 share the inputs PI3 and PI4 with the functional IOs. 
In the Force-PI step, the data of PI3 input can be applied by TAMIN1, but 
the data of PI4 input can not. To apply the PI4 data, a register cell (the R 
flip-flop as shown in Figure 13(b)) is added in between scan1 and scan2. The 
input data of PI4 is shifted in with the scan data and is applied by the added 
flip-flop. If there are scan and functional patterns, the solution is shown in 
Figure 13(c) (the routing example) and Figure 13(d) (the modified WBR 
cell). PI3 and PI4 are wrapped with the modified WBR cells, labeled as 
WBR_m1 and WBR_m2. The additional path from ScanIN to CFO allows 
the scan data to be shifted in through this type of WBR cell. The additional 
multiplexer is controlled by the ShiftWR signal. During the Load-Unload 
step, the ShiftWR signal is enabled and the functional IO data can be shifted 
in through the CTI-CTO path, while the scan data can be shifted in through 
the ScanIn-CFO path. In the Force-PI step, the ShiftWR signal is disabled 
and the functional data is updated through the Update flip-flop to CFO. With 
the modified WBR cell, the test vectors can be shifted in correctly even 



SoC Testing and Design for Testability 285
 
when the scan chains share inputs with the functional IOs, and the delay 
between CFI and CFO is reduced to a multiplexer delay. 

The second solution also can be used for a core with only scan patterns. 
In this case, the first solution will make the scan length one-bit longer, while 
the second solution will increase the area overhead a little (by using the 
modified WBR cell). 

3.5 STEAC: SOC Test Aid Console 

Figure 14 shows the SOC test integration system called STEAC—SOC Test 
Aid Console [16], which consists of four modules: the STIL Parser, Core 
Test Scheduler, Test Insertion Tool, and Pattern Translator. It solves the test 
integration issues discussed above.  

The STIL Parser parses the test information of each IP. The test 
information is written in STIL and is generated by commercial ATPG tools. 
Therefore, STEAC can be integrated into a typical design flow easily. The 
test information includes IO ports, scan structure (number of scan chains,  
 

 

 
Figure 14. Test integration flow of STEAC [16] 
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length of each scan chain, etc.), and test vectors. With the core test 
information, Core Test Scheduler will schedule the core tests to reduce the 
overall test time. The Scheduler partitions core tests into several test 
sessions, and assigns the TAM wires to each core to meet the power and IO 
resource constraints. If the IP is a soft core, the scan chains can be 
reconfigured. The Core Test Scheduler will then rebalance scan chains for 
each assigned TAM width. The results can be fed back to the SOC integrator 
to reconfigure the scan chains to balance the chain length. The scheduling 
results are also used to generate the Test Controller, TAM bus, and Test 
Wrapper. Finally, the generated test circuitry is inserted into the original 
SOC netlist automatically. A new SOC design with DFT will be ready in 
minutes. 

The core test patterns are generated at the core level. After the cores are 
wrapped, the test patterns must be translated to the wrapper level and then to 
the chip level. The test patterns are cycle based, which can be applied by 
external ATE easily. 

3.6 BRAINS 

As embedded memories are handled in a different way from that for logic 
cores, we also present here a memory BIST compiler called BRAINS 
(BIST for RAM in Seconds), which supports SRAM and DRAM by using 
a novel BIST template approach. It generates the BIST design in 
synthesizable Verilog HDL upon receiving the memory specifications 
and test requirements provided by the user. The synthesizable BIST core 
can then be optimized for different fabrication processes. BRAINS also 
generates scripts for a commercial synthesis tool that performs timing 
validation for the BIST circuit during the synthesis process. The BIST 
design provides at-speed testing and diagnosis support, and is 
programmable for various march tests. BRAINS thus can be used for 
generating BIST circuits that target different RAM-core architectures and 
configurations. 

In addition, BRAINS supports automatic test integration of multiple 
and heterogeneous memory cores in an SOC environment. The BIST 
architecture is improved for parallel testing, multi-core diagnosis, and on-
chip bus (OCB) interface [48]. The proposed test grouping and 
scheduling (TGS) algorithm facilitates BIST generation under various test 
constraints, such as test time, test power, and other user-defined 
constraints. Finally, BRAINS is equipped with a graphical user interface 
(GUI), and the BIST generator can be integrated with a memory compiler 
to form an IP (intellectual property) generator for various memory 
configurations. 
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3.6.1 BRAINS Templates 

BRAINS generates BIST circuits by using various BIST templates that 
provide building blocks for march-based testing. In practice, design 
migration cannot be done by simply changing the parameters. It usually 
requires detailed adjustment, especially for DRAM cores. The allowed 
adjustment space for the BIST compiler has to be defined within the BIST 
templates. Three different templates are defined: 1) the Controller, 2) the 
Sequencer, and 3) the Test Pattern Generator (TPG). We use the templates 
to construct the BIST architecture for the embedded memories, as shown in 
Figure 15. 
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Figure 15. BIST architecture using the templates 

During a march test, the Sequencer generates the address sequence 
(either ascending ⇑ or descending ⇓ [35]) and various memory access 
commands based on the specifications of the memory under test. For 
example, the Sequencer may generate the read, write, refresh, precharge, 
load_mode_register, active, and nop (no operation) commands for an 
SDRAM, and the read, write, and nop commands for a single-port SRAM. 
Some standard memory access commands for typical memory types are 
defined in the memory library, but customized commands specified by 
the user can be included as well. The Sequencer generates high-level 
commands rather than the low-level (physical) access commands. 

The Sequencer architecture is shown in Figure 16. The Control 
Module receives march commands from the Controller. It controls the 
Address Generator, Sequence Generator, and Memory Command 
Generator. The Address Generator generates ascending and descending 
address sequences as specified by the march elements. The Sequence 
Generator generates the access sequence in the march elements. The 
optional Error Handling Modules in the Sequencer and the TPG are used 
to scan out the error address, error signature, and the corresponding 
march operation that activated the fault to the external tester for diagnosis 
and analysis. 
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Figure 16. Block diagram of the Sequencer 

 
The TPG converts high-level memory access commands from the 

Sequencer to low-level (physical) timing, address, and data sequences 
that can be sent directly to the memory core. The timing, address, and 
data sequences can be high-speed, double-edge triggered, packetized, or 
even of different signal levels. The TPG also compares the data output (Q) 
from the memory with the original data pattern (D) to determine whether 
an error exists. In the diagnosis mode, the Error Handling Modules are 
used to scan the error signature out. Both the Sequencer and the Test 
Pattern Generator are highly modularized. 

3.6.2 Configuring the BIST Templates 

BRAINS can generate the BIST circuit according to configurations 
specified by the user, such as fast access mode and diagnosis support. For 
example, to maximize the data bus utilization, an interleaved access mode 
in SDRAM BIST can be specified. The timing sequence (waveform) of a 
read-write march element (e.g., )( araw⇑ ) is shown in Figure 17 for a 
four-bank SDRAM which has shared D and Q bus and a CAS latency of 3. 
Three nop operations are required between the read operation and the write 
operation if the march element is performed linearly as shown in Figure 17. 
In the figure, the column address changes from i to i+3. The user can 
specify interleaved bank access as shown in Figure 18, which reduces the 
test time. In the figure, four consecutive read operations are performed 
before the four consecutive write operations by interleaving the bank 
addresses, so only three nop operations are required in between.  

Table 1 lists the clock cycles required for accessing four addresses. We 
compares the non-interleaved and the interleaved cases for two different 
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Figure 17. Non-interleaved bank access for the SDRAM example 
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Figure 18. Interleaved bank access for the SDRAM example 

 
march elements (i.e., araw  and araraw , where a can be 0 or 1) and two 
different CAS latencies (i.e., 3 and 2). In the case of separate D and Q buses, 
however, the non-interleaved bank access should be used since it results in a 
smaller area overhead with the same test time. The BIST templates can be 
configured under different timing constraints to minimize the hardware and 
test costs. This is very useful for customized memory cores. 

Another option in BRIANS is the diagnosis support (for circuit debugging 
and/or repair analysis). If diagnosis is specified, the Error Handling Module 
 

 
Table 1. Clock cycle comparison of four-address read-write operations for a four-bank 
SDRAM 

 CAS Latency = 3 CAS Latency = 2 
March 
Element 

Non-
Interleaved 

Interleaved Reduction Non-
Interleaved 

Interleaved Reduction 

araw  20 11 45% 16 10 37.5% 
araraw  24 15 37.5% 20 14 30% 
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will be inserted. The user will then be able to switch between the BIST mode 
and the diagnosis mode by using different test commands. In the BIST mode, 
the BIST circuit accesses the memory in a pipelined way and only reports the 
go/no-go result (i.e., whether the memory functions correctly or not). In the 
diagnosis mode, if an error occurs, the Error Handling Module will scan out 
the error address, error signature and the corresponding march operation 
through the MSO pin, when MBO is pulled down that indicates the scan out 
operation (see Figure 15 and Figure 16). 

3.6.3 BIST Architecture for Multiple Memory Cores 

Figure 19 shows the BIST architecture for multiple memory cores. The 
external tester can access all the memories via a single shared BIST 
controller. One or more Sequencers can be used to generate march-based test 
algorithms [35][50]. Each TPG attached to the memory will translate the 
march-based test commands to the respective RAM signals. 
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Figure 19. BIST architecture for multiple memory cores 
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Memory cores with similar timing specifications can share the same 
Sequencer to reduce hardware overhead. Moreover, memories close to each 
other can be grouped, subject to user-specified constraints. The TPGs can 
test the corresponding memories concurrently 

The Controller is shown in Figure 20, which consists of a Control State 
Machine and a Command Storage Chain. The Control State Machine has 
four states: Idle, Select, Scan, and Run. A unified BIST interface makes 
future extension possible, reducing the control complexity of the test host 
[39][47]. The Command Storage Chain is basically a serial-to-parallel FIFO. 
For the purpose of SOC memory core testing, the command storage consists 
of six fields: 1) Mode—to select the operation mode, such as parallel test, 
individual test, diagnosis, or repair support; 2) Sequencer ID—to activate the 
target Sequencer; 3) Group ID—to activate the target group in the Sequencer; 
4) Member ID—used when testing an individual memory; 5) Data 
Background—an encoded pattern for the march test; and 6) March 
Commands—encoded march elements as presented in [39][47] 

The Controller receives test commands and generates error signatures 
serially to reduce IO overhead. However, the serial data requires additional 
serial-to-parallel and parallel-to-serial converters. For SOC designs, it is 
more feasible to access the BIST by an embedded test host, such as the 
processor. With an OCB wrapper, the BIST can be attached to the existing 
OCB. During the diagnostic process, the parallel bus-based interface 
simplifies the control complexity and saves the test time dramatically. 

We present an OCB interface for the popular Advanced Microprocessor 
Bus Architecture (AMBA) as an example. Note that AMBA is an open 
standard [49]. Figure 21 shows the AMBA-based interface for an Advanced 
Peripheral Bus (APB, part of AMBA) wrapper. The APB wrapper  
 

 
Figure 20. Block diagram of the Controller 
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Figure 21. An OCB interface example: the APB wrapper 

 
implements the standard three-state protocol to transfer commands and data 
between the test host and the BIST Controller. The Status Registers block 
stores the test data such as test commands and error signatures. Four 
different status registers are defined: 1) MPI—to load the test commands in 
parallel; 2) STATUS—to indicate the Go/No-Go, handshaking, and BIST 
internal status; 3) Interrupt—to keep track of the interrupts; and 4) MPO1 
and MPO2— to store the error signatures. The width of the APB data is 16 
bits, so are the status registers, but they can be extended easily. For example, 
in Figure 21, there are two MPO registers for the 29-bit error signature using 
the 16-bit APB bus. The number of registers varies according to the width of 
test commands and error signatures. The overhead is very small since most 
of the registers share the flip-flops with the signals from the Controller 

The Sequencer (see Figure 22) receives test and control commands from 
the Controller and generates march sequences for the TPG. Additionally, the 
TPG Selection Module is for selecting the proper TPGs and RAMs. It 
enables and disables the proper memories according to the address space and 
cycle time for the respective march tests. The OR Module merges the 
Go/No-Go signals from the TPGs. When in diagnostic mode, the Sequencer 
has to capture the error signatures from the defective memory through the 
optional Error Handling Module. 

The TPG receives march sequences from the Sequencer and accesses the 
associated memory core directly. Figure 23 illustrates the configurable 
architecture of the TPG. The Command Converter translates the march 
sequences into RAM signals, while the Command Buffer adjusts the timing 
delays of the outputs. The Port Selection Module enables and disables the 
port under test. The outputs from the memory are also buffered before 
entering the TPG. The additional command and data buffers allow the BIST 
to run at speed in a pipelined fashion. 
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Figure 22. Block diagram of the Sequencer 

 
The Comparator detects the faulty outputs and produces the Go/No-Go 

signal. The optional Error Handling Module captures the error signature for 
diagnosis. The error information is scanned out to reduce routing overhead. 
The target memory cores are accessed one by one in the diagnosis mode. 
Finally, the optional Test Collar allows the memory to switch between 
normal and test modes. Note that the collar usually is integrated with the 
memory core to reduce performance penalty. 
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Figure 23. Block diagram of the TPG 
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The TPG needs slight modification to handle dual-port SRAM, multi-port 
SRAM, and n-read-m-write register files. Figure 24 shows the connection 
configurations between the Command Buffer and the memory for three 
different memory types. For a dual-port memory, the shared TPG performs 
the test one port at a time. Testing the multiple-port memories is similar. For 
an n-read-m-write register file, a pair of read port and write port forms aread-
write port during the testing process. Note that a shared TPG architecture has 
a lower area overhead, but it does not detect complex inter-port faults. 

 
Figure 24. Modification of the TPG for different memory types 
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3.6.4 Test Grouping and Scheduling 

The purpose of test grouping and scheduling is to minimize the overall 
testing time for all the memory cores, given limited test resources. The 
test grouping and scheduling (TGS) algorithm requires slight 
modification of the BIST design. It has simple control and negligible 
hardware overhead. 

For each memory we define four attributes: 1) the size of the address 
space aS  (i.e., the maximum address); 2) the number of data background 
words Bn  for testing the word-oriented memory (normally ⎡ ⎤wlog  for a 
w-bit word); 3) the port index Pn  (i.e., the number of read-write ports); 
and 4) the schedule step sE  (i.e., ⎡ ⎤aSlog2 ). For each test group, we denote 
the maximum aS  among the memories in the group as mS , and the size 
of the schedule space as ⎡ ⎤mS

sS log2= . In the schedule space, each 
memory can be scheduled only by its step size sE , and the number of 
step points is ( )⎣ ⎦sm ES / . The TGS algorithm is shown as follows (see 
also Figure 25). 

 
 

Anymore

No more
memory?

iB ?<Bntest groups
corresponding
Reschedule the

Completed

iB++

scheduling queue
Construct the

test group
Schedule for a new

Change to another

AnyYes

Yes

No

No

No

Yes

backgroud,

background?

 
Figure 25. Flowchart for the TGS algorithm 
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1. Select the solid (all-0) background, and let the background index 
0=Bi . Let Π be the pool of all k unscheduled memories jM , 

10 −≤≤ kj . 
2. Schedule a new test group: 

(a) Get a memory with the largest aS  from Π. Remove the 
memory from Π. Let am SS =  and calculate sS  for the test 
group. 

(b) Get a memory from Π according to the priority of aS  and Pn  
(i.e., high aS  to low aS  for multi-port memories first, and 
then high aS  to low aS  for single-port ones). Search among 
the schedule space. For a single-port memory, start the search 
from the origin of the schedule space, while for a multi-port 
one, start the search from the end of the last scheduled 
memory test. This is done under some user-defined constraints 
such as power and area overhead. If the schedule is 
unsuccessful, put the memory back to Π and select the next 
one. 

(c) For a successful schedule, 1−= PP nn . If 0=Pn , remove the 
memory from Π. 

Repeat (a)-(c) until no more memory can be scheduled for the 
current test group. If all the unscheduled memories can be tested 
concurrently under the given constraints, scheduling is neglected for 
the test group to reduce the control overhead. 

3. Repeat Step 2 until all memories are grouped. 
4. Schedule the test for another data background, and 1+= BB ii . Let 

the test groups be the same as for the previous background. 
5. If there are memories in a group such that BB in < , remove all such 

memories from that group. For each test group whose mS  decreases, 
apply Step 2(b) to reschedule the group, and if the reschedule is 
unsuccessful, increase its sS  by the smallest sE  in the test group 
and repeat Step 2(b) again. 

6. Repeat Steps 4 and 5 for all data backgrounds. 

Figure 26 shows an example of the TGS algorithm for a five-memory case. 
Assume the power weights of memories A to E are 200, 150, 140, 130, and 
100 units, respectively, and the power limit (constraint) is 400 unit. For the 
solid background, the mS  and sS  of Group 0 are both 8 (from memory A), 
as shown in Figure 26(a). The dual-port memory B is then scheduled at time 
0 (i.e., the address counter has a value 0), and its port index Pn  is 
decremented. Memory C is scheduled at time 4 after the schedule space 
search, under the power constraint. Memories B, D, and E are then put into 
Group 1 without scheduling, since their total power consumption is only  
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Figure 26. An automatic scheduling example 

 

380units. In Group 1 the memories are accessed in parallel, so the control 
circuit is simplified. For the second background, testing the bit-oriented 
memories A and D is unnecessary. After removing memories A and D, 
Group 0 is rescheduled to reduce the test time, while Group 1 remains the 
same. The Sequencer will generate the control signals to enable or 
disable the memory cores based on the scheduling result. Consequently, 
the proposed TGS algorithm provides a systematic way to grouping and 
scheduling the entire test process efficiently. 

3.6.5 BIST Circuit Compilation Flow 

The BIST circuit compilation flow using BRAINS is given in Figure 27. The 
memory specifications and test requirements are provided via the user-
interface. The memory specifications include the timing parameters, memory 
architecture (synchronous/asynchronous SRAM, single-port/multi-port 
SRAM and register file, EDO DRAM, SDRAM, 1T-SRAM, flash memory, 
etc.), memory configuration (data width, address width), etc. The test 
requirements include the test algorithm requirements (which affect the 
choice of the march elements and the programmability), address ordering 
(counting or pseudo-random, interleaved or non-interleaved), supported test 
modes (go/no-go test, burn-in test, diagnosis test), etc. 

The interface of BRAINS is flexible—the user can generate the BIST 
circuit using the GUI (see Figure 28) or command shell, and evaluate the  
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Figure 27. The BIST compilation flow using BRAINS 

 
memory test efficiency among different designs easily. BRAINS can also 
be integrated with a memory compiler to deliver BISTed memory IPs. 

The BIST Intermediate Description (BID) Constructor translates the 
user-defined parameters to an internal format with memory specifications 
and test requirements. BRAINS uses an object-oriented BID structure as 
shown in Figure 29, which is reusable and flexible for processing the 
memory specifications and test requirements. Future extension is 
straightforward. The BIST object consists of global parameters (clock 
rate, diagnosis requirement, etc.) and other sub-objects. The March object 
defines the test requirements, while the Schedule object records the 
grouping and scheduling information. 
In this figure the dashed box defines a single memory object. Multiple 
Memory objects can be inherited or defined. Common memory 
specifications are predefined in the memory library. The user can access 
existing Memory objects and construct the target one with slightly 
modification. Using the presented BIST architecture as the template, the 
compiler generates the BIST design, control signals, and necessary scripts 
for synthesis and integration. The process can be integrated into an existing 
logic design flow easily. With TGS, test time can be further reduced, under 
certain given constraints. The rapid generation process makes the system 
handy at the early design phase of a system chip. 
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Figure 28. The graphic user interface 

 
After the BID format is generated, the user can also customize the BIST 

circuit by changing the description. The compiler kernel then parses the 
BID file and loads the BIST templates to generate the Controller, 
Sequencer, and Test Pattern Generator. The compiler engine configures the 
programmability of the BIST circuit and refines the memory access timing 
according to the timing specifications and test requirements. It generates 
the synthesizable RTL model for the BIST circuit, BIST activation 
sequence, test-bench, synthesis scripts, and the UNIX Makefile for 
integrated command-level operations. The synthesizable BIST model is in 
the Verilog format. The BIST activation sequence can be used to control 
the BIST from a simple tester interface. Different test algorithms can be 
applied during field test. The test-bench contains stimulus that can be used 
for behavior-level and gate-level simulations. Automatic synthesis can be 
done by a synthesis tool using the synthesis scripts. The generated logic 
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Figure 29. The BID architecture 

 
circuit (in the netlist level) is then simulated and compared with the 
behavior-level result for design verification. 

4. EXPERIMENTAL RESULTS  

A test chip has been implemented and fabricated to verify the proposed 
approaches. The test time was analyzed and compared for both the session-
based and non-session-based test scheduling methods. This test chip is an 
industrial digital still camera (DSC) chip, implemented with a standard 
0.25μm CMOS technology. The digital part of the chip mainly includes a 
processor, JPEG codec, TV encoder, USB, external memory interface, and 
tens of single-port and two-port synchronous SRAMs with different sizes. 
Figure 30 gives the block diagram of this test chip. There are 37 input pins 
and 70 output pins. 

The IPs to be wrapped in this test chip include the USB, TV encoder, and 
JPEG cores. The USB core has 4 clock domains, 3 reset signals, 1 SE signal, 
and 6 test signals. There are 4 scan chains with dedicated scan input and 
output for each clock domain. The TV encoder has both scan and functional.  
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Figure 30. Block diagram of the test chip 

 

tests. The test pins include one clock, reset, SE, and test enable signals 
There are two scan chains in the TV encoder, where one scan chain 
shares the output with a functional output. The JPEG core has only 
functional patterns and one clock domain. The clock signals for the IPs 
are generated by an internal PLL. The detailed test information of the IPs, 
including the number of test IOs (TI & TO), primary IOs (PI & PO), scan 
chains, and test patterns, is shown in   Table 2. In the scan-test mode, the 
USB core has 2 scan vectors that are enabled by SE during Pulse-Clock, 
while the TV encoder has only one. 
 

  Table 2. Test information of the cores 

Core TI TO PI PO Scan chains (Lengths) Patterns (Type) 
USB 18 4 221 104 4 (1,629, 78, 293, 45) 716 (Scan) 

229 (Scan) 
TV 6 1 25 40 2 (577,576) 

202,673 (Func.) 
JPEG 1 0 165 104 No scan 235,696 (Func.) 

 
 
Figure 31 shows the functional-pattern waveforms of the TV encoder 

and JPEG cores. To apply the functional patterns for the TV encoder and 
JPEG cores, the updating control signal is delayed. For the TV encoder, 
the input WBR cells with Timing 1 waveform (see Figure 31) are 
controlled by the updating signals with 2-cycle delay. Other input WBR 
cells are with Timing 2 waveform, and are controlled by the updating 
signals with 1-cycle delay. Functional pattern application for the JPEG 
core is similar. 
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Figure 31. Functional-pattern waveforms of the (a) TV encoder and (b) JPEG cores 

4.1 Test Time Analysis 

In this section, we analyze the test time of the session-based and non-session-
based test scheduling approaches under the IO resource constraints. In non-
session-based test scheduling the cores can be scheduled at any time; while the 
session-based test scheduling groups the cores into several test sessions. All 
core tests in the same session start at the same time, and the next session 
cannot start until all tests in the current one finish. In our test chip, there are 
only 37 PIs and 70 POs. All test IOs share these chip IOs, and one additional 
pin is added to switch between the functional mode and test mode. Since we 
have more test inputs than test outputs, we discuss only the number of needed 
test inputs. We consider three cases under this IO limitation—Case A and 
Case B use the proposed session-based test scheduling approach under TACS, 
while Case C uses a non-session-based test schedulilng approach with 
dedicated WSC signals to control the core test wrappers. 

For Cases A and B, the TRST signal of the IEEE 1149.1 TAP is also 
used to switch between the functional mode and test mode. When TRST=0, 
the chip is in functional mode. It is in test mode when TRST=1, where all 
test IOs are connected to the chip IO pins. The multiplexed pins are 
controlled by TRST. To reduce the test idle time during shifting, scan and 
functional tests are placed in different test sessions. The TAP requires 3 chip 
inputs—TCK, TMS, and TDI. In Case A, a coarse test scheduling is shown 
in Figure 32(a). The coarse test scheduling only partitions core tests into 
several test sessions, without TAM assignment. In this case, the needed test 
clock and test reset signals are dominated by Session 1. Five test clock 
signals (four clock signals for USB core and one for TV encoder) and four 
reset signals (three reset signals for USB and one for TV encoder) are,  
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Figure 32. Scheduling results of the test chip: (a) Case A—session-based, with USB and TV 
encoder tested in parallel, (b) Case B—session-based, with USB and TV encoder tested in 

serial, and (c) Case C—non-session-based, with dedicated WSC signals 

 

required. The test clock and test reset signals take 9 chip inputs. In 
addition the TSE takes one chip input to control the SE signals of all 
cores. Other test enable signals and WSC signals are generated by the 
Test Controller, which requires no chip input. The rest (37-3-9-1=24) of 
the chip inputs can be used as the TAM inputs. The second step of test 
scheduling assigns this TAM of width 24 to the IPs based on the coarse 
scheduling result. The final TAM assignment is shown in Figure 32(a). 
The numbers of clock cycles to loadand unload test data are 9 and 1629 
for Session 0 and Session 1, respectively. From (1) and (2), the test time 
is about 4.4M clock cycles. The detailed test time figures are shown in 
Table 3. 
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Table 3. Test time comparison 

Case A: session-based (Figure 32(a)) 

Session0: 235,696 (9+5)+9=3,299,753 
Session1: 716 (1,629+5)+1,629=1,171,573 
Total: 3,299,753+1,171,573=4,471,326 (0.948) 

Case B: session-based (Figure 32(b)) 

Session0: 235,696 (8+5)+8=3,064,056 
Session1: 229 (577+7+5)+(577+7)=135,465 
Session2: 716 (1,629+5)+1,629=1,171,573 
Total: 3,064,056+135,465+1,171,573=4,371,194 (0.927) 

Case C: non-session-based (Figure 32(c)) 

USB: 716 (1,629+5)+1,629=1,171,573 
TV: 202,673 (10+5)+10+ 
 229 (587+50)+587=3,176,260 
JPEG: 235,696 (15+5)+15=4,713,935 
Total: 4,713,935 (1) (dominated by JPEG) 

 
The difference between Case A and Case B is whether USB and TV 

encoder are tested concurrently or not. Case B is shown in Figure 32(b), 
where USB and TV encoder are tested sequentially, requiring only 4 test 
clock signals and 3 test reset signals. The test control IOs take only 11 chip 
inputs (TCK, TMS, TDI, TSE, 4 test clock signals, and 3 reset signals), and 
there are 26 chip inputs that can be used as the TAM inputs. The final TAM 
assignment is also shown in Figure 32(b), and the test time is about 4.3M 
clock cycles. The detailed test time figures are also shown in  

Table 3. 
Both Case A and Case B are session-based test scheduling. When the test 

IO resource constraint is considered, parallel testing (Case A) may not be 
better than serial testing (Case B). This is because more test control IOs are 
needed for parallel testing, so fewer IO pins can be used as the test data IOs 
(i.e., TAM IOs). Since there are also cases when parallel testing leads to 
shorter test time than serial testing, it is important to take chip IO pins into 
consideration so far as test time evaluation is concerned. 

We now discuss the test time of non-session-based test scheduling under 
the same IO resource constraint (Case C). The test time calculation follows 
the assumption as in previous works [12][13][14][15][10], i.e., 1) the core 
test time is the product of test vector count and the time to load-unload a test 
vector, and 2) each of the cores can be tested at any time. The coarse 
scheduling result of Case C is shown in Figure 32(c). In this case, the TAM 
IOs are partitioned into two groups, one for the JPEG core and another for 
the USB and TV encoder cores. Since the USB and TV encoder cores are not 
tested concurrently, they can share the same clock, reset, SE signals and 
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TAM inputs. One chip input is used to switch the shared signals between 
these two cores. Five chip inputs are used for the scan clocks, 3 chip inputs 
for test reset, and 1 chip input for the SE signal. However, to test the JPEG 
and TV encoder (or USB) cores concurrently, 2 groups of WSC signals are 
needed. One is for JPEG and another is for TV encoder and USB. Note that 
WRCK, and WRSTN can be shared by these two groups, but other signals 
can not. A total of 12 WSC signals are needed. Only 15 chip inputs can be 
used as TAM inputs in this case. The TAM assignment result also is shown 
in Figure 32(c). The test time comparison of the three cases is given in  

Table 3. The test time of Case C is 4.7M clock cycles, which is obviously 
longer than either Case A or Case B, i.e., the session-based approaches. The 
normalized total test time for each case is also shown in  

Table 3, inside the parentheses. Case B has more than 7% test time 
improvement over Case C. Although non-session-based test scheduling has 
no idle time that appears in the results of session-based test scheduling, it 
requires more test control IOs. This reduces the number of TAM IOs, and 
may lead to longer test time. The proposed session-based approach and test 
controller design use fewer test control IOs, so more test IOs can be 
allocated for the test data (as TAM IOs), resulting in shorter test time. 

 Table 4 summarizes the numbers of test inputs used in the three 
schedules. The total test IOs of these three cores are 19, including 6 clock 
signals, 4 reset signals, 7 test enable signals, and 2 SE signals. With 
shared test IOs, the test control IO counts are reduced to 10, 8, and 9 for 
Case A, Case B, and Case C, respectively. This also shows that the 
proposed test IO reduction method can reduce the number of test control 
IOs, and thus the test cost. 

 Table 4. Numbers of test inputs for the 3 cases 

Shared Test IO 
 Switch TAP 

Clock Reset SE 
Dedicated 

WSC 
TAM 

Case A No 3 5 4 1 No 24 
Case B No 3 4 3 1 No 26 
Case C 1 No 5 3 1 12 15 

4.2 Area Overhead and Test Result 

With STEAC, the Test Wrappers, TAM, and Test Controller have been 
automatically generated and inserted into the original test chip design in 5 
minutes, using a SUN Blade 1000 workstation with dual 750MHz processors 
and 2GB RAM. The area of the WBR cell, WC_SD1_CII_UD, is equivalent 
to 26 two-input NAND gates. The Test Controller and TAM multiplexer 
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require about 371 and 132 gates, respectively—their hardware overhead is 
only about 0.3%. The total hardware overhead is 14.08% as shown in Table 5. 
The overhead is dominated by the WBR cells, which are dedicated cells in 
this experiment. The overhead can be reduced by, e.g., sharing the WBR and 
core IO registers or customizing the WBR cell design. 

 
Table 5. Area overhead of the test circuitry 

 USB TV JPEG TACS TAM Total 
Original 34,781 21,554 70,794 — — 127,129 
Test Circuit 8,580 1,716.0 7,101.6 371 132 17397.6 
Overhead 24.67% 7.96% 10.03% — — 14.08% 

  

 

4.3 Experimental Results for BRAINS 

Based on BRAINS, Table 6 gives the area overhead for a test chip, which 
consists of 6 single-port SRAM cores, using a 0.15μm CMOS process 
technology. The BIST design supports diagnosis and programmable test 
algorithm, and has a built-in March CW word-oriented test algorithm 
[46][50]. With shared Controller and Sequencer, the overhead is about 2% 
and the test time is reduced by 59% (the test time is 667,648 clock cycles, as 
compared with 1,641,472 when testing the memories serially). 

 
Table 6. The BIST area overhead for a test chip 

BIST (μm2) Memory 
Config. Ctrl. Seq. TPG Total 

Memory 
(μm2) 

Area 
Overhead

16K ×
32 11905.44 

12K ×
24 9443.30 

8K × 64 23099.77 
4K ×
128 41389.96 

1K × 8 3930.25 
512x16 

4541.96 6514.73 

6530.03 

107378 5301800 2.025% 

5. CONCLUSIONS 

We have presented a practical session-based test scheduling model 
considering IO resource constraints. It results in shorter test time than non-
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session-based test scheduling. The test cost and test time can be further 
reduced with test IO reduction. We also have presented an improved Test 
Wrapper architecture. With the proposed WBR cells and enhanced TAP 
Controller, the IEEE 1500 Test Wrapper supports both scan and functional 
tests, even when the scan and functional IOs are shared. The complex timing 
of the functional patterns can be applied through our Test Controller easily. 
As a result, this work solved the major issues of practical SOC test 
integration. Without addressing these issues, the test scheduling, test control, 
Test Wrapper and TAM architecture design would have been impractical. 
The test integration platform, STEAC, has been used to develop an industrial 
SOC design. From the experimental results, we have shown that the test 
scheduling and test IO reduction effectively lead to shorter test time. The 
area overhead for Test Controller and TAM is about 0.3% in the case, 
justifying the effectiveness of the approach. 

For embedded memories, BRAINS generates the synthesizable RTL 
code for the BIST circuit in Verilog, as well as its activation sequence, 
test-bench, and synthesis scripts. It supports programmable march tests. 
The improved BIST architecture extends the ability of system-level test 
integration, multi-port and multi-memory support, and test grouping and 
scheduling for parallel testing. It provides at-speed testing and diagnosis 
of the RAM under test. BRAINS can be used for a wide range of RAM 
architectures and configurations. Using the OCB interface, the test 
control and observation for diagnostics are simple and flexible, which is 
especially important in an SOC design. The BIST access can be parallel 
for easy test control, or serial for simple IO interface, depending on the 
test requirement. The proposed TGS algorithm facilitates test grouping 
and scheduling at the system level under various user-defined constraints. 
Future extension can easily be implemented. The flexibility is fulfilled by 
using the novel BID format. 
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1. INTRODUCTION 

This chapter is focused on the physical design for system-on-a-chip (SOC). 
Physical design refers to all synthesis steps that convert a circuit 
representation (gates, transistors) into a geometric representation (polygons 
and theirs shapes). See Figure 1 for an illustration. The geometric 
representation, also called layout, is used to design masks and then 
manufacture a chip. As a very complicated design process, modern 
physical design is typically divided into three major steps: floorplanning, 
placement, and routing. Floorplanning is an essential design step for 
hierarchical, building block design methodology. Given a set of hard 
blocks (whose shapes cannot be changed) and/or soft blocks (whose shapes 
can be adjusted) and a netlist, floorplanning determine the shapes of soft 
blocks and assemble the blocks into a rectangle (chip) such that a 
predefined cost metric (such as the chip area, wirelength, wire congestion) 
is optimized. Placement is the process of assigning the circuit components 
into a chip region. It can be considered as a restricted floorplanning 
problem for hard blocks with some dimension similarity. Following 
placement, the routing process defines the precise paths for conductors that 
carry electrical signals on the chip layout to interconnect all pins that are 
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electrically equivalent. After routing, some physical verification processes 
(such as design rule checking (DRC), performance checking, and 
reliability checking) are performed to verify if all geometric patterns, 
circuit timing, and electrical effects satisfy the design rules and 
specifications.  
 

 
Figure 1.  The function of physical design 

 
With the continued improvement of the nanometer IC technologies, 

modern VLSI designers can integrate a whole system with large-scale 
logic/functional blocks (e.g., multimedia blocks, communication blocks, 
microprocessors, embedded memory) in a single chip, and interconnect 
those blocks to provide high capability and flexibility for different needs. 
This is called system-on-a-chip (SOC) design. See Figure 2 for an example 
of SOC architecture.  

 

 
Figure 2.  A typically SOC system 
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As the technology advances at a breathtaking speed, feature sizes and 
voltage levels are decreasing while die sizes, operating frequency, design 
complexities, and packing density are increasing, all drastically for modern 
SOC design. Physical design for such a system needs to consider the 
integration of large-scale digital and analog (mixed-signal) circuit blocks, 
the design of system interconnections/buses, and the optimization of circuit 
performance, area, power consumption, and signal and power integrity. On 
one hand, designs with billion transistors are already in production, IP 
blocks are widely reused, and a large number of buffer blocks are used for 
delay optimization as well as noise reduction in nanometer 
interconnect-driven design, which all drive the need of a modern physical 
design tool to handle large-scale designs. On the other hand, the highly 
competitive IC market requires faster design convergence, faster incremental 
design turnaround, and better silicon area utilization. Efficient and effective 
design methodology and tools capable of handling optimizing large-scale 
blocks are essential for modern SOC designs.  

In this chapter, we focus on the recent development on floorplanning, 
placement, and routing, with special treatments on the impacts of the modern 
SOC design on these design steps. Specifically, we introduce the 
state-of-the-art design algorithms, frameworks, and methodology for 
handling the design complexity, timing closure, and signal/power integrity 
arising from modern SOC designs for faster design convergence.  

2. FLOORPLANNING 

2.1 Introduction 
Floorplanning is an essential design step for hierarchical, building-block 
design methodology. Floorplanning gives early feedback that suggests 
architectural modifications, estimates the chip area, and estimates delay and 
congestion due to wiring. As technology advances, design complexity is 
increasing and the circuit size is getting larger. To cope with the increasing 
design complexity, hierarchical design and IP blocks are widely used. This 
trend makes floorplanning much more critical to the quality of a VLSI 
design than ever.  

An SOC design often consists of large-scale functional blocks. Designs 
with billions of transistors are even already in production. To cope with the 
increasing design complexity, IP blocks are widely reused for large-scale 
designs. Therefore, efficient and effective design methodology and tools 
capable of placing and optimizing large-scale blocks are essential for 
modern chip designs. The floorplanning frameworks are evolving to tackle 
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the challenges with constantly increasing design complexity. Three major 
frameworks have been extensively studied in the literature: the flat, 
hierarchical, and multilevel frameworks.  

In this section, we first introduce two most popular floorplan 
representations, B*-tree [17] and Sequence Pair [88]. Then, three types of 
floorplanning frameworks are introduced in Section 2.4. Two important 
issues for modern SOC floorplanning, substrate noise and bus planning, are 
discussed in Section 2.5 and Section 2.6, respectively.  

2.2 Problem Definition 
To make this chapter self-contained, we shall start with the definition of 
the floorplanning problem. Let 1 2{ }mB b b b= , ,...,  be a set of m  
rectangular blocks whose respective width, height, and area are denoted by 

iw , ih , and ,ia  1 .i m≤ ≤  Each block is free to rotate. Let ( )i ix y,  

denote the coordinate of the bottom-left corner of block ib , 1 i m≤ ≤ , on 
a chip. A floorplan P is an assignment of ( )i ix y,  for each ib , 1 i m≤ ≤ , 
such that no two blocks overlap. The goal of floorplanning is to optimize a 
predefined cost metric such as a combination of the area (i.e., the minimum 
bounding rectangle of P) and wirelength (i.e., the summation of half 
bounding box of interconnections) induced by a placement.  

2.3 Floorplanning Representations 
We introduce the B*-tree [17] and Sequence Pair [88] floorplan 
representations, which are generally considered as the two most popular 
representations [14].  

2.3.1 B*-tree 

B*-trees are based on ordered binary trees and the admissible placement [48], 
for which no block can be moved to bottom and left, i.e., a bottom-left 
compacted placement. Inheriting from the nice properties of ordered binary 
trees, B*-trees are very easy for implementation and can perform the 
respective primitive tree operations search, insertion, and deletion in only 
constant, constant, and linear times. There exists a one-to-one 
correspondence between an admissible placement and its induced B*-tree; 
further, the transformation between them takes only amortized linear time.  

Given an admissible placement, we can represent it by a unique 
B*-tree T . (See Figure 3(b) for the B*-tree representing the placement of 
Figure 3(a).) A B*-tree is an ordered binary tree whose root corresponds to the 
block on the bottom-left corner. Similar to the DFS procedure, we construct 
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the B*-tree T  for an admissible placement P in a recursive fashion: Starting 
from the root, we first recursively construct the left subtree and then the right 
subtree. Let iR  denote the set of blocks located on the right-hand side and 
adjacent to ib . The left child of the node in  corresponds to the lowest block 

in iR  that is unvisited. The right child of in  represents the lowest block 

located above and with its x -coordinate equal to that of ib . 
 

 

 
Figure 3.  (a) An admissible placement. (b) The B*-tree representing the placement 

 

Given a B*-tree ,T  we shall compute the x - and y -coordinates for each 
block associated with a node in the tree. Since the root of T  represents the 
bottom-left block, the x - and y -coordinates of the block associated with the 
root ( ) (0 0)root rootx y, = , . The B*-tree keeps the geometric relationship 
between two blocks as follows. If node jn  is the left child of node in , block 

jb  must be located on the right-hand side and adjacent to block ib  in the 

admissible placement; i.e., j i ix x w= + . Besides, if node jn  is the right child 

of in , block jb  must be located above, with the x -coordinate of jb  equal to 

that of ib ; i.e., j ix x= . Therefore, given a B*-tree, the x -coordinates of all 
blocks can be determined by traversing the tree once in linear time.  

To efficiently compute the y -coordinate from a B*-tree, the contour 
data structure presented in [48] is used to facilitate the operations on blocks. 
The contour structure is a doubly linked list for blocks, describing the 
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contour curve in the current compaction direction by bookkeeping the 
x -range of each block and its corresponding y -coordinate of the top 
boundary. A horizontal contour (see Figure 4) can be used to reduce the 
running time for finding the y -coordinate of a newly inserted block. 
Without the contour, the running time for determining the y -coordinate of a 
newly inserted block would be linear to the number of blocks. By 
maintaining the contour structure, however, the y -coordinate of a block can 
be computed in amortized (1)O  time [48], resulting in an overall packing 
evaluation of amortized linear time. Figure 4 illustrates how to update the 
horizontal contour after inserting a new block.  

 

 
Figure 4.  Adding a new block on the top, we search the horizontal contour from left to right 

and update it with the top boundary of the new block 

2.3.2 Sequence pair 

Sequence Pair (SP) [88] uses an ordered pair of block name sequences to 
model a general floorplan. Given an SP ( )+ −Γ ,Γ , blocks ib  and jb  are 

related in exactly one of four ways: jb  is after/before ib  in ( )+ −Γ ,Γ . 
The geometric relation of blocks can be derived from an SP as follows. 
Block ib  is left (right) to block jb  if ib  appears before (after) jb  in 

both +Γ  and −Γ . Block ib  is below (above) block jb  if ib  appears 

after (before) jb  in +Γ  and ib  appears before (after) jb  in −Γ .  
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It is easily seen that the constraint imposed on the packing by a sequence 
pair is unique, and the constraint is always satisfiable. We can consider an 
m m×  grid. Label the horizontal and vertical grid lines with block names along 

+Γ  and −Γ  from top and from left, respectively. A cross point of the 
horizontal grid line of label i  and the vertical grid line of label j  is referred to 
by ( )i j, . Then, rotate the resultant grid by 45 degrees counter-clockwise to get 
an oblique grid. (See Figure 5.) Put each block ib  with its center being on 
( )i i, . Expand the separation of grid lines enough to eliminate overlapping of 
blocks. (The expansion is enough if the separation is 2  times larger than the 
longest width/height over blocks.) The resultant packing trivially satisfies the 
constraint implied by the given SP. An example with 
( ) ( )ecadfb fcbead+ −Γ ,Γ = ,  is shown in Figure 5.  

Given ( )+ −Γ ,Γ , one of the optimal packing under the constraint can be 
obtained in 2( )O n  time by applying the well-known longest-path algorithm on 
a node-weighted directed acyclic graphs with n  nodes. The process is given 
below.  

Based on “left of” constraint of ( )+ −Γ ,Γ , a directed and node-weighted 
graph ( )HG V E, , where V  is the node set and E  is the edge set, called the 
horizontal-constraint graph, is constructed as follows. 

• V : source s , sink t , and m  nodes labelled with block names.  
• E : ( )s i,  and ( )i t,  for each block ib , and ( )i j,  if and only if ib  

appears before (after) jb  in both +Γ  and −Γ  (“left of” constraint).  
• Node-weight: zero for s  and t , width of block ib  for the other 

nodes.  

 
Figure 5.  A packing on an oblique grid for ( ) ( )ecadfb fcbead+ −Γ ,Γ = ,  
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Similarly, the vertical-constraint graph ( )VG V E,  is constructed using the 
“below” constraint and the height of each block.  

Neither of these graphs contains any directed cycle. We set the 
x -coordinate of ib  to be the longest-path length from s  to i  in .HG  The 
y -coordinate of ib  is set independently using VG . If two blocks ib  and jb  

have a horizontal relation, then there is an edge between i  and j  in HG  to 
guarantee that they do not overlap horizontally in the resultant placement. 
Similarly, if ib  and jb  have a vertical relation, they do not overlap vertically. 
Thus no two blocks overlap each other in the resultant placement because any 
pair of blocks are either in horizontal or vertical relation.  

The width and the height of the chip is determined by the longest-path 
length between the source and the sink in HG  and VG , respectively. Since 
the width and the height of the chip is independently minimized, the 
resultant packing is the best of all the packings under the constraint. The 
longest-path length calculation on each graph can be done in 2( )O n  time, 
where n  is the number of nodes in the graph. The packing time of 
Sequence Pair can be reduced to ( lglg )O n n  time by resorting to the 
longest common subsequence formulation [102].  

As an example, HG  and VG  are shown in Figure 6 for 
( ) ( ).ecadfb fcbead+ −Γ ,Γ = ,  The resultant placement after the longest 
path length calculation is shown in Figure 7.  

 

Figure 6.  (a) The horizontal constraint graph .HG  (b) The vertical constraint graph .VG  
(Transitive edges are not shown in both graphs for simplicity) 
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Figure 7.  A best packing under the constraint implied by 

( ) ( )ecadfb fcbead+ −Γ ,Γ = ,  

2.4 Floorplanning Frameworks 
To handle large-scale building block designs for SOCs, directly applying 
simulated annealing to find a good floorplan is often not feasible. Thus, 
multilevel approaches are applied to handle large-scale floorplanning. In the 
following, we first introduce the flat floorplanning framework, and then 
describe the multilevel floorplanning approaches.  

2.4.1 Flat approaches 

Simulated annealing (SA for short) [71] is widely used for floorplan 
optimization. It is an optimization scheme with non-zero probability for 
accepting inferior (uphill) solutions. The probability depends on the 
difference of the solution quality and the temperature. The probability is 
defined as follows: 
 

 
0
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 (1) 

 

where CΔ  is the difference of the cost of the new solution and that of the 
current solution, and T  is the current temperature. Thus, at a very high 
temperature, say T →∞ , the probability approaches 1. In contrast, when 

0,T →  the probability C Te−Δ /  approaches 0.  
There are four basic ingredients for SA: solution space, neighborhood 

structure, cost function, and annealing schedule. Here, we use the B*-tree 
representation as an example to model a floorplan. The solution space 
consists of all B*-trees with the given nodes (blocks). To find a neighboring 
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solution, we perturb a B*-tree to get another B*-tree by the following 
operations:  

• Op1: Rotate a block.  
• Op2: Move a node/block to another place.  
• Op3: Swap two nodes/blocks.  

For Op1, we rotate a block for a B*-tree node. For Op2, we delete a node 
and move it to another place in the B*-tree. For Op3, we swap two nodes in 
the B*-tree. After packing for the B*-tree, we obtain a new floorplan. 
Whether or not we take the new solution depends on the aforementioned 
probability which depends on its cost function. The cost function is defined 
based on problem requirements. For example, we may adopt the following 
cost function to optimize the wirelength and the area of a floorplan:  
 
 (1 )Cost A Wα α= + − ,  (2) 
 
where A  is the current area, W  is the current wirelength, and the 
user-specified α  controls the weights for area and wirelength.  

To determine the initial temperature ,T  a sequence of random moves 
are performed, and the average cost change avgΔ  for all uphill moves is 

computed. Then, the initial temperature T  can be determined by lnavg PΔ / , 
where P  is the initial probability of accepting an uphill move and is set 
very close to 1 (say, 0.9). We obtain another floorplan by perturbing the 
B*-tree. If the new floorplan is better than the current one, we simply take it. 
On the other hand, if the new floorplan is worse, we accept it with a 
non-zero probability according to the current temperature.  

The best results can be obtained when the floorplan achieves 
“equilibrium" at each value of T  of the annealing process [96]. The 
“stopping criterion" is satisfied when the value of the cost function remains 
the same after several stages of the annealing process. The updating function 
for T  is given below:  
 
 0 1new oldT Tλ λ= , < < .  (3) 
 
In the classical annealing schedule, the λ  value is set to a fixed value [92]. 
A recommended value of λ  is λ  = 0.85. For better results, 
TimberWolf [96] set the initial λ  to 0.8. The value of λ  is gradually 
increased from its lowest value to its highest value (approximately 0.95), and 
is then gradually decreased back to its lowest value.  

Chen and Chang propose a Fast Simulated Annealing (Fast-SA) process 
to integrate the random search with hill climbing more efficiently [22]. 
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Unlike the classical SA [71] and the TimberWolf SA [96], the fast annealing 
process consists of three stages: (1) The high-temperature random search 
stage, (2) the pseudo-greedy local search stage, and (3) the hill-climbing 
search stage. At the first stage, it lets the temperature T →∞  so that the 
probability of accepting an inferior solution approaches 1. The process is 
like a random search to find the best solution. At the second stage, it makes 

0T → . Since the temperature is very low, it only accepts a very small 
number of inferior solutions, which is like a greedy local search. The third 
stage is the hill-climbing search stage. The temperature raises again to 
facilitate the hill climbing. Thus, it can escape from the local minimum and 
search for better solutions. The temperature reduces gradually, and very 
likely it finally converges to a globally optimal solution.  
 

 
Figure 8.  Floorplanning using simulated annealing 

2.4.2 The Λ -shaped multilevel floorplanning 

The Λ -shaped multilevel framework adopts a two-stage technique, 
bottom-up coarsening followed by top-down uncoarsening. We take 
MB*-tree [76] for an example. Figure 9 illustrates the MB*-tree based 
Λ -shaped multilevel framework.  
The clustering stage iteratively groups a set of (primitive or cluster) blocks 
(say, two blocks) based on a cost metric defined by area utilization, wirelength, 
and connectivity among blocks, and at the same time establishes the geometric 
relations among the newly clustered blocks by constructing a corresponding 
B*-subtree. The clustering procedure repeats until a single cluster containing 
all blocks is formed (or the number of blocks is smaller than a predefined 
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threshold), denoted by a one-node B*-tree that bookkeeps the entire clustering 
scheme. We shall first consider the clustering metric.  

 
Figure 9.  The Λ -shaped multilevel framework of MB*-tree 

 

The clustering metric is defined by the two criteria: area utilization (dead 
space) and the connectivity density among blocks.  

• Dead space: The area utilization for clustering two blocks im  and 

jm  can be measured by the resulting dead space ijs , representing the 

unused area after clustering im  and .jm  Let tots  denote the dead 

space in the final floorplan .P  We have 
i

tot tot im M
s A A

∈
= −∑ , 

where iA  denotes the area of block im  and totA  the area of the 

final enclosing rectangle of .P  Since 
i

im M
A

∈∑  is a constant, 

minimizing totA  is equivalent to minimizing the dead space tots . For 

the example shown in Figure 10, 12 0s = , 13 36s = , and 36tots = .  
• Connectivity density: Let the connectivity ijc  denote the number of 

nets between two (primitive or cluster) blocks im  and .jm  The 

connectivity density ijd  between two blocks im  and jm  is given by  
 

 ( )ij ij i jd c n n= / + ,  (4) 
 

where in  ( jn ) denotes the number of primitive blocks in im  ( jm ). Often a 
bigger  cluster implies a larger number of connections. The connectivity 
density considers not only the connectivity but also the sizes of clusters 
between two blocks to avoid possible biases. For the example shown in 
Figure 11, we apply the clustering scheme 1 2 3 4{{ } { }}m m m m, , ,  (based on 
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connectivity density), instead of 1 2 3 4{{{ } } }m m m m, , ,  (based on 
connectivity). 

 
Figure 10.  A cluster with the four primitive blocks, a b c, , , and .d  The placement can 

be obtained by applying the clustering scheme 1 2 3 4{{ } { }}m m m m, , , , resulting in a dead 
space of 36 units 

 

 
Figure 11.  An example connectivity between each pair of blocks. We apply the clustering 

scheme 1 2 3 4{{ } { }}m m m m, , ,  based on connectivity density, instead of 

1 2 3 4{{{ } } }m m m m, , ,  (based on connectivity) 

 
Obviously, the cost function of dead space is for area optimization while 

that of connectivity density is for timing and wiring area optimization. 
Therefore, the metric for clustering two (primitive or cluster) blocks im  and 

jm , { } {0}i jm mφ +: , →ℜ ∪ , is then given by  
 

 ({ }) ˆ ˆiji j
ij

Km m s
d

βφ α, = + ,  (5) 
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where ˆijs  and ˆ ijK d/  are respective normalized costs for ijs  and ijK d/ , 

α β,  and K  are user-specified parameters/constants. We set 

ij ijK s d= /∑ ∑  to normalize the dead space and the connectivity cost, 
i.e., to make the ranges of the two normalized costs about the same. Note 
that we shall normalize the dead space and connectivity density to 
equally weigh the two costs. To calculate the normalization factors for 

i js ,  and i jd , , we can preprocess using simulated annealing to derive the 
initial temperature and then obtain the approximate ranges of the 
resulting area and connectivity density to normalize the costs. For 
example, we may perform 100 runs of simulated annealing to obtain the 
approximate ranges of the resulting costs (i.e., area and connectivity 
density here) and derive the factors (weights) to equally weigh the costs 
by making the ranges of the two costs about the same. By doing so, it is 
more meaningful to weigh the area and connectivity density costs 
through the controlling factors α  and .β   

The declustering stage iteratively ungroups a set of previously clustered 
blocks (i.e., expanding a node into a subtree according to the B*-tree 
topology constructed at the clustering stage) and then refines the floorplan 
solution based on a simulated annealing scheme. The refinement shall lead 
to a “better” B*-tree structure that guides the declustering at the next level. It 
is important to note that we always keep only one B*-tree for processing at 
each iteration, and the agglomeratively multilevel B*-tree based floorlanner 
preserves the geometric relations among blocks during declustering (i.e., the 
tree expansion), which makes the B*-tree an ideal data structure for the 
multilevel floorplanning framework.  

The declustering metric is defined by the two creiteria: area utilization 
(dead space) and the wirelength among blocks.  

• Dead space: Same as that defined in the clustering stage.  
• Wire length: The wirelength of a net is measured by half the 

bounding box of all the pins of the net, or by the length of the 
center-to-center interconnections between the blocks if no pin 
positions are specified. The wirelength for clustering two blocks im  

and jm , ijw , is measured by the total wirelength interconnecting 

the two blocks. The total wirelength in the final floorplan ,P  totw , 
is the summation of the length of the wires interconnecting all 
blocks.  

Obviously, the cost function of dead space is for area optimization while that 
of wirelength is for timing and wiring area optimization. Therefore, the 
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metric for refining a floorplan solution during declustering, 

{0}tot Mψ +: →ℜ ∪ , is then given by  
 
 ˆ ˆtot tottot s wψ γ δ= + ,  (6) 
 
where ˆtots  and ˆ totw  are respective normalized costs for tots  and totw , and 
γ  and δ  are user-specified parameters. Note that the normalization 
procedure for tots  and totw  is similar to that used for clustering.  

MB*-tree scales very well as the circuit size increases. The capability of 
the MB*-tree shows its promise in handling large-scale designs with 
complex constraints.  

2.4.3 The V-Shaped multilevel floorplanning 

We describe the V-shaped multilevel floorplanning of top-down partitioning 
followed by bottom-up merging. Figure 12 illustrates a V-shaped 
interconnect-driven multilevel floorplanning framework (IMF for short) 
proposed by Chen, Chang, and Lin in [21].  
 

    

 
Figure 12.  The V-shaped multilevel framework of IMF 

At the initial level, the locations of all blocks are set to the center of the chip 
region. To prevent from generating sub-regions of large aspect ratios, we choose 
the longer side to divide the region into two sub-regions. After the shapes of two 
sub-regions are determined, we move the blocks to the two centers of the two 
sub-regions to minimize the half-perimeter wirelength (HPWL).  

The block-location determination problem can be formulated as a 
hypergraph partitioning problem. We first derive an exact net-weight 
modeling to map the HPWL cost exactly to the min-cut cost. With the exact 
modeling, in other words, minimizing HPWL is equivalent to finding the 
min-cut cost. Therefore, the given hypergraph is partitioned using a min-cut 
bipartitioner to obtain the minimum HPWL. The new locations of the blocks 
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are thus determined by the partitioner, and each sub-partition corresponds to 
a sub-region.  

The partitioning stage continues until the number of blocks in each 
partition is smaller than a threshold. Then, the partitioned floorplan is 
obtained.  

In the merging stage, we first use fixed-outline floorplanning to pack the 
blocks in the partition, and then merge two neighboring regions into one 
larger region. The fixed-outline floorplanning is applied again to 
legalize/refine the floorplan.  

Each region has its own height and width, and all blocks in the region 
must fit into the region to generate a feasible floorplan. We treat the blocks 
and I/O pads outside the current region as fixed terminals. Fixed-outline 
floorplanning is applied to every region. Simulated annealing is used to 
find a feasible floorplan to fit all blocks into the region and minimize the 
wirelength. Then, two neighboring regions are merged into one larger 
region, and fixed-outline floorplanning is used again to refine the 
floorplan.  

The cost function Φ  can be defined as follows:  
 

 

2

1 2 3
, ,
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 (7) 

 

where FA  is the current floorplan area, F normA ,  is the area normalization 
factor, LW  is the current wirelength, L normW ,  is the wirelength 
normalization factor, FW  is the current floorplan width, FH  is the current 
floorplan height, RW  is the width of the region, RH  is the height of the 
region, and 1,k  2 ,k  3k  are user-specified parameters. To calculate the 
area/wirelength normalization factors, several times of random perturbations 
are performed before simulated annealing starts, and F normA ,  ( L normW , ) is set 
to the average value of FA  ( LW ).  

If the fixed-outline floorplanning cannot find a feasible floorplan 
within the bounding box, we still keep the solution. In the next 
refinement level, two partitioned regions are merged. To merge two 
vertical regions, we make the root of the B*-tree for the upper 
sub-floorplan as the right child of the right-most node of the B*-tree for 
the bottom sub-floorplan. Figure 13 shows an example of vertical 
merging. After merging, the root 0n  of 1T  becomes the right child of 
the right-most node 6n  of 2T . The width of the merged floorplan is 
equal to the maximum width of the sub-floorplans, and the height of the 
floorplan is less than or equal to the sum of the two sub-floorplan’s 
heights due to the packing. To merge two horizontal regions, we first find 
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the node which corresponds to the right-most block of the left 
sub-floorplan. Then, we make the root of the B*-tree for the right 
sub-floorplan as the left child of the node we found. Figure 14 shows an 
example of horizontal merging. The node 3n  corresponds to the 
right-most block of the left sub-floorplan. The root 4n  of 2T  becomes 
the left child of the node 3n  of 1T . The height of the merged floorplan is 
equal to the maximum height of the two sub-floorplans, and the width of 
the merged floorplan is equal to the sum of the two sub-floorplan’s 
widths.  

 

 
Figure 13.  An example of vertical merging. (a) Two sub-floorplans. (b) The corresponding 

B*-trees. (c) The merged floorplan. (d) The merged B*-tree 

 
The merging stage iteratively merges two previously partitioned regions 

and then refines the floorplan solution based on fixed-outline simulated 
annealing. The merging stage continues until all regions are merged into one 
top-most region, and the final floorplan is obtained.  

2.4.4 Framework comparison 

In addition to the multilevel frameworks, hierarchical approaches are 
also proposed to cope with the scalability problem. The hierarchical 
approaches recursively divide a floorplanning region into a set of 
sub-regions and solve those sub-problems independently. Adya et al. [2] 
propose a “floorplacement” framework (used in their program Capo 9) 
that combines partitioning and floorplanning techniques to handle both 
floorplanning and placement problems. It first partitions a floorplan and 
then finds legal sub-floorplans. Cong et al. [34] present a fast 
floorplanner called PATOMA using look-ahead enabled recursive 
bipartitioning. It partitions a floorplan and uses row-oriented block 
(ROB) packing and zero-dead space (ZDS) floorplanning to find legal 
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sub-floorplans. Both the floorplacement and PATOMA are based on the 
hierarchical framework in which the floorplanning stage is only used for 
legalization and overlap removal. The top-down hierarchical technique 
is efficient in handling large-scale problems. Nevertheless, a drawback 
of the hierarchical approaches is that they might lack the global 
information for the floorplanning interaction among different 
sub-regions, for which the multilevel frameworks are proposed to 
remedy the deficiency. 

 
 
 

 
Figure 14.  An example of horizontal merging. (a) Two sub-floorplans. (b) The 

corresponding B*-trees. (c) The merged floorplan. (d) The merged B*-tree 

 
 

Table 1 lists the characteristics of the Capo floorplacement [2] and 
the PATOMA frameworks [34], the MB*-tree multilevel framework [76], 
and the IMF multilevel framework [21]. The IMF framework and the 
MB*-tree framework are based on the multilevel framework while the 
Capo floorplacement and the PATOMA frameworks are based on the 
hierarchical framework. Although Capo and PATOMA use partitioning, 
unlike IMF, they do not have the refinement stage to further improve 
their results.  
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Table 1. Framework comparisons. 

Framework Characteristics 

The Capo floorplacement 
framework in [2] 

‧ Use the top-down hierarchical framework. 
‧ Use partitioning and fixed-outline 

floorplanning. 
‧ Minimize the wirelength under the given 

chip-outline. 
‧ Do not have a refinement stage. 

The PATOMA framework 
in [34] 

‧ Use the top-down hierarchical framework. 
‧ Use partitioning and ZDS/ROB fast 

look-ahead floorplanning. 
‧ Minimize the wirelength under the given 

chip-outline. 
‧ Do not have a refinement stage. 

The MB*-tree multilevel 
framework in [76] 

‧ Use the Λ -shaped multilevel framework.. 
‧ Use bottom-up clustering followed by 

top-down declustering. 
‧ Deal with variable dies and cannot guarantee 

to satisfy an outline constraint. 
‧ Need to specify the weights for area and 

wirelength by the user. 

The IMF multilevel 
framework in [21] 

‧ Use the V-shaped multilevel framework. 
‧ Use top-down partitioning followed by 

bottom-up merging. 
‧ Handle fixed-die constraints. 
‧ Minimize the wirelength under the given area 

constraint. 
 

2.5 Floorplanning Considering Substrate Noise 
More and more SOC designs require the integration of analog and digital 
circuits on a single chip and would therefore suffer from substrate noise 
coupling. With the growing of system frequency, some existing techniques 
designed for reducing substrate noise may not work well. Considering 
substrate noise in early floorplanning is thus desirable. We introduce in this 
section a pioneering work along this direction by Cho, Shin, and Pan [27].  

For efficient simulation of large SOCs, a simple model that accurately 
predicts substrate coupling must be used. The substrate coupling model used 
in [27] is scalable with contact shapes, dimensions, and separations. It also 
considers the issues related to package parasitic, backplane connections, and 
noise suppression techniques. The substrate is modelled by a two-port 
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lumped resistor network as shown in Figure 15, but it is only valid for 
frequency below a few gigahertz. The resistance values are determined by 
characterizing the substrate either through device simulations or through 
measurements of the substrate. The scalable macro-model is based on 
Z -parameters from the derived resistances as follows:  
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where A DA D DA A DG G G G G G= + +� . 11 22( )Z Z  can be expressed as [90]  
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where 1 2 3K K and K,  are process parameters. 12Z  is given by  
 

 12
xZ e βα −= ,  (10) 

 
where x  is the distance between contacts and α  and β  are process 
parameters.  The substrate coupling can be calculated from the value of 
resistors in the two-port lumped network shown in Figure 15 The substrate 
coupling if i -th digital block to j -th analog block, ijSC  is given by  
 

 12

22

A DA
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A DA DA A

R G ZSC
R R G G Z

= = = .
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 (11) 

 

 
Figure 15.  Macro-model for the substrate 
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Because of the frequency-dependent characteristics of noise source and 
sensor block, we should consider frequency when calculating substrate noise. 
Based on a functional analog block description, it is possible to determine, 
with reasonable accuracy, the type of frequently used analog blocks. We 
consider only substrate noise due to power/ground (P/G) bounces, and use 
the P/G bounce limits as a means of early substrate noise characterization of 
a digital block.  

The substrate noise of j -th analog block from the switching of i -th 
digital block, i jN , , can be approximated by [10]  
 

 2 2( ) ( ( ) ( ))
freq_high

i j i j i jfreq_low
j

N SC S f N f df, ,= ⋅ ⋅ ,∑ ∫  (12) 

 
where ( )iS f  ( ( )jN f ) can be derived from typical sensitivity characteristics 
of analog (digital) blocks. The total noise from all digital blocks is  
 
 total i j

i j

N N ,= .∑∑  (13) 

 

In the substrate noise model, some important variables determine substrate 
noise. These variables contain process parameters, areas and perimeters of 
blocks, distance between blocks and frequency-dependent characteristics of 
the noise source and sensor block. In the early floorplanning, we may 
minimize substrate noise by changing the distance between blocks and the 
perimeter of a block (soft block) and consider characteristics of a block at 
the same time.  

2.5.1  Block preference directed graph 

The substrate noise model described above is one of the most compact 
models  with high scalability and accuracy, but it is  still  computationally 
expensive to perform a substrate noise estimation. For fast substrate noise 
estimation, we can construct a block preference directed graph (BPDG for 
short) [27]. The BPDG construction consists of substrate noise table 
construction, analog block ordering, digital block ordering, and BPDG 
construction.  

To eliminate the effect of distance, we assume that the nominal distance 
is fixed. With fixed distance, the substrate noise between a digital and an 
analog block purely depends on frequency coupling and geometric 
properties like area and shape. For example, Table 2 quantifies the substrate 
noise with fixed distance. 
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   Table 2.  Substrate noise table 

 D1 D2 D3 D4 D5 D6

A1 5 2 6 3 10 1 
A2 2 1 3 10 8 5 
A3 3 8 7 11 9 12

 
Based on the substrate noise table, analog blocks can be sorted for each 

digital block by descending order of substrate noise. Figure 16 gives an 
example based on Table 2.  

 

 
Figure 16.  Analog block orderings 

 
Based on the substrate noise table, digital blocks can be sorted for each 

analog block by the ascending order of substrate noise.  
 

 
Figure 17.  Analog block orderings 

 

Then, we can construct BPDG (see Figure 18) by the 
BPDG_Construction algorithm listed  in  Figure 19. Lines 1 and 2 initialize  
 

 

 
Figure 18.  Block preference directed graph 
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aG  and dG  to be empty. Lines 3–7 check if iA  is before jA  in all aO  
and add a directed edge from jA  to iA  in aG  if it is true. It means that if 
there is an edge from jA  to iA , iA  should be farther than jA  to all 
digital blocks. Lines 8–12 check if iD  is before jD  in all dO  and add a 
directed edge from jD  to iD  in dG  if it is true. If there is an edge from 

jD  to iD , iD  should be closer than jD  to all analog blocks. Line 13 add 
a virtual vertex 0D  that contains aG . Line 14 connects the relation 
between analog and digital blocks.  

 

 
Figure 19.  The BPDG construction algorithm 

2.5.2 Sequence pair with BPDG 

The substrate noise aware floorplanning presented in [27] is based on the 
sequence pair floorplan representation. According to the properties of 
sequence pair, we have the following theorem.  
 
Theorem 1  A block aB  is guaranteed to have shorter distance to the 

left-bottom corner than a block bB  under a completely packed floorplan, if 
either of the following conditions is satisfied.  
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1. There is no block sB  satisfying 1 1( )LCS X Y, = ∅  in a sequence 
pair ( )P N, = 1 1( , )a s b s a bB X B B B Y B B… … … … … . 

2. There is no block sB  satisfying 2 2( )LCS X Y, = ∅  in a sequence 

pair ( )P N, =  2 2( , )b s a s a bB B X B B Y B B… … … … … … .  
 

In the Sequence_Pair_Checking_with_BPDG algorithm listed in Figure 20, 
line 1 initializes the violation number to zero. Lines 2–10 check that, for 
each directed edge from block bB  to aB  in G , the violation number 

would be increased if aB  and bB  do not hold for any of the cases in 
Theorem 1. To speed up the process, the checking is performed 
incrementally. If the movement which may happen in 1 2 1X X Y, , , and 2Y  of 
Theorem 1, the checking result would be the same as the previous one.  
 

 
Figure 20.  Sequence Pair Checking with BPDG 

 

2.5.3 Fast substrate noise-aware floorplanning 

Figure 21 shows the fast  substrate  noise-aware  floorplanning  algorithm. 
Line 1 performs  the  floorplanning  with analog blocks first to bind all the 
analog blocks together. Line 2 allocates a guard ring around the analog block 
cluster to mitigate the substrate noise. Line 3 takes all the analog blocks as a 
virtual block vB . Line 4 performs the floorplanning for all digital blocks and 

vB . The cost function is  
 

 
r r

F NVCost
F NV

α β= + ,  (14) 
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Figure 21.  Fast Substrate Noise-Aware Floorplanning 

where F  is the cost of conventional digital floorplanning, NV  is the 
number of violations. Fr  and NVr  are reference values for each cost 
factor. α  and β  are coefficients for balancing two cost factors. NV  is 
returned by the Sequence Pair checking with BPDG algorithm shown in 
Figure 20 after a perturbation.  
 

2.6 Bus-Driven Floorplanning 
An SOC design needs to integrate various IP blocks, and the communication 
among those blocks are often conducted on system buses. Floorplanning 
with bus planning is one of the most challenging modern floorplanning 
problems because it needs to consider the constraints with interconnect and 
block positions simultaneously. In this section, we introduce the B*-tree 
based bus-driven floorplanning algorithm presented in [22].  

2.6.1 Bus-driven floorplanning formulation 

We consider a chip with multiple metal layers, and buses are assigned on the 
top two layers. The orientation of buses is either horizontal or vertical. The 
problem of bus-driven floorplanning (BDF) is defined as follows [106]:  

Given n  rectangular macro blocks B  = { 1ib i n| = ,..., } and m  buses 

U  = { 1iu i m| = ,..., }, each bus iu  has a width it  and goes through a set 

of blocks ,iB  where iB B⊆  and iB| |  = .ik  Decide the positions of 
macro blocks and buses such that there is no overlap between any two 
blocks or between any two horizontal (vertical) buses, and bus iu  goes 

through all of its ik  blocks. At the same time, the chip area and the bus area 
are minimized.  
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For convenience, let 1{ }kg t b b< , , ,..., >  represent a bus u  where 
{ }g H V∈ ,  is the orientation, t  is the bus width, and 1ib i k, = ,..., , are 

the blocks that the bus goes through. For short, a bus is represented by 
1{ }.kb b,...,  Figure 22 shows a feasible horizontal bus.  

 

 

Figure 22.  A feasible horizontal bus 1 2 3{ }u H t b b b=< , , , , >  

 

2.6.2 B*-tree properties for bus constraints 

The blocks that a bus goes through must locate in an alignment range, 
i.e., the vertical or horizontal overlap of the blocks has to be larger than the 
bus width. For a B*-tree, the left child jn  of the node in  represents the 

lowest adjacent block jb  which is right to the block ib  (i.e. j i ix x w= + ). 
So, the blocks have horizontal relationships in a left-skewed sub-tree.  
 
Property 1  In a B*-tree, the nodes in a left-skewed sub-tree may satisfy a 
horizontal bus constraint.   
 

Blocks are compacted to the bottom and left after packing. So the blocks 
associated with a left-skewed sub-tree of a B*-tree may be aligned together if 
no block falls down during packing. We introduce dummy blocks to solve the 
falling down problem. In Figure 23(a), the blocks 2b  and 4b  are displaced 
because they fall down during packing. We add dummy blocks right  
below the displaced blocks. The dummy blocks have the same x -coordinates 
as the displaced blocks, and the widths are also the same. In Figure 23(b), we 
adjust the heights of dummy blocks to shift the displaced blocks to  
satisfy the bus constraint. After adjusting the heights of dummy blocks, we  
can guarantee that the blocks are feasible with the horizontal bus  
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Figure 23.  (a) An infeasible floorplan since the block-overlap range is less than the bus 
width t . (b) Inserting dummy blocks, the bus 1 2 3 4{ }H t b b b b< , , , , , >  is satisfied 

constraint. The height iΔ  of the dummy block iD  can be computed by the 
following equation:  
 

 
( ) ( ) if ( ) ( )

0 otherwise
min i i min i i

i

y t y h y t y h+ − + , + > +⎧
Δ = ⎨ , ,⎩

 (15) 

 
where ix  ( iy ) is the x ( y )-coordinate of block ,ib  and 

max{ 1 2 }min iy y i k= | = , ,...,  for a bus 1{ }kb b, ..., . Figure 24 shows an 

example of a feasible horizontal bus by inserting dummy blocks 5D  and 6D .  
 
 

 
Figure 24.  (a) The B*-tree with a left-skewed sub-tree after inserting dummy 
nodes. (b) The corresponding feasible horizontal bus 3 5 6{ }H t b b b< , , , , >  
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Property 2  By inserting dummy blocks of appropriate heights, we can 
guarantee the feasibility of a horizontal bus with blocks whose 
corresponding B*-tree nodes are in a left-skewed sub-tree.   
 

For a B*-tree, the right child jn  of the node in  represents the closest 

upper block jb  which has the same x -coordinate as the block ib  (i.e 

j ix x= ). Therefore, the blocks in the right-skewed sub-tree are aligned with 
the x -coordinate. Assume the minimum width of the macro blocks that the 
bus goes through is larger than the bus width. The structure forms a vertical 
bus. In the example shown in Figure 25, the nodes 3n  and 5n  is in the 

right-skewed sub-tree of 0n , so the blocks 0b , 3b , and 5b  satisfy the 
vertical bus constraint.  
 
Property 3  In a B*-tree, the nodes in a right-skewed sub-tree can 
guarantee the feasibility of a vertical bus.   
 

Note that the vertical bus is not constrained to be at the right sub-tree of 
the node corresponding to the lowest block among the set. According to 
Property 3, the nodes in a right-skewed sub-tree can guarantee the feasibility 
of a vertical bus, but it is not always true vice versa.  

 
Figure 25.  (a) A right-skewed sub-tree. (b) The corresponding feasible vertical bus 

0 4 5{ }u V t b b b=< , , , , >  

2.6.3 The twisted-bus structure 

Consider two buses simultaneously, we cannot always fix the horizontal bus 
constraints by inserting dummy blocks. As the example shown in Figure 26, 
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two buses are considered: 0 3{ }u b b= ,  and 2 6{ }.v b b= ,  We can add the 
dummy block 0D  ( 2D ) below 0b  ( 2b ) to satisfy the horizontal bus u  ( v ). 
However, we cannot satisfy two horizontal bus constraints at the same time 
since two buses are twisted. The idea to discard B*-trees with twisted-bus 
structures is to reduce the solution space and make the solution searching 
more efficient. Note that it is impossible to fix a twisted-bus structure by 
inserting dummy blocks. Discarding such a configuration will not remove 
any feasible solutions. We directly examine the twisted-bus structure by 
checking the B*-tree nodes. Consider two buses u  and v . If one node of 
bus u  is in the right-skewed sub-tree of one node of bus v , and one node 
of bus v  is in the right-skewed sub-tree of one node of bus u , then it will 
incur a twisted-bus structure. Therefore, we shall discard a B*-tree with such 
an infeasible tree topology during solution perturbation. Note that not all 
potential twisted-bus structures are checked through the aforementioned 
procedure. Figure 26 shows a twisted-bus structure where 3n  is in the 
right-skewed sub-tree of 2n , and 6n  is in the right-skewed sub-tree of 0n .  
 

 

Figure 26.  An infeasible floorplan for two buses, 0 3{ }u b b= ,  and 2 6{ }.v b b= ,   

(a) A twisted-bus structure where 3n  is in the right sub-tree of 2n , and 6n  is in the right 

sub-tree of 0.n  (b) The corresponding floorplan. The two twisted-bus cannot be satisfied 
simultaneously by inserting dummy blocks 

2.6.4 Bus overlapping 

When multiple buses are considered, we need to avoid overlaps between 
buses. For example, in Figure 27, two horizontal buses are to be assigned. 
The buses 0 4{ }u b b= ,  ( 2 3{ }v b b= , ) are feasible when we consider only one 
bus. However, the vertical space is not large enough for fitting two buses. In 
this case, we compute the minimum shifting distance for the block 2b , and  
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Figure 27.  Two horizontal buses, 0 4{ }u b b= ,  and 2 3{ }v b b= , . (a) Two buses 
overlap. (b) By inserting a dummy block, we can get a feasible floorplan without 

bus-overlapping 

insert a dummy block 2D  right below 2b .  Thus, the two buses can be 
assigned at the same time by inserting the dummy block. In their 
implementation, they check the buses one by one using the order in the 
benchmark. When one bus is examined, we also allocate the space for the 
bus according to the bus width and the block positions. If we find the space 
of one bus overlapping with another bus, we will let the new bus be on top 
of the other and insert dummy blocks to avoid overlaps.  

2.6.5 Fixed I/O ports 

Sometimes buses are connected to I/O ports that are fixed on the boundary. 
If the I/O ports to which the bus connects are at the top/bottom side of the 
chip, only the vertical bus may be feasible. Similarly, if the I/O ports to 
which the bus connected are at the left/right side of the chip, only the 
horizontal bus may be feasible. Thus, the directions of buses can be fixed, 
and we do not need to check the directions when deciding the bus locations. 
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To avoid the block falling down problem with fixed I/O ports, we need to set 
the heights of dummy blocks considering the positions of fixed I/O ports. 
We can directly set miny  in Equation (18) to the y -coordinate value of the 
fixed I/O port to which the bus connects. By doing so, it will try to align 
blocks with the fixed I/O port to make the horizontal bus feasible.  

Figure 28 shows an example of inserting dummy blocks, considering a 
fixed I/O port F . The heights for dummy blocks 3D , 5D , and 6D  are 

3 3( ) ( ),Fy t y h+ − +  5 5( ) ( ),Fy t y h+ − +  and 6 6( ) ( ),Fy t y h+ − +  

respectively, where iy  is the y -coordinate of block i , and t  is the bus 

width. The bus 3 5 6{ }b b b F, , ,  is feasible after inserting dummy blocks.  
 

 

Figure 28.  A horizontal bus connects to a fixed I/O port F , 3 5 6{ }u b b b F= , , , . (a) 
The B*-tree after inserting dummy nodes. (b) The corresponding feasible horizontal bus 

2.6.6 Algorithm 

The bus-driven floorplanning algorithm applies simulated annealing 
based on the B*-tree representation. Figure 29 summarizes the algorithm. 
First, we initialize the B*-tree as a complete binary tree and start with the 
Fast-SA process. After each perturbation and non-dummy block packing, 
we check if there exists a “twisted-bus structure” in the B*-tree. If any, 
we simply discard the current solution and perturb the B*-tree again. 
This checking can save time to find feasible solutions. If there is no 
twisted-bus structure in the B*-tree, we insert the dummy blocks to the 
appropriate nodes to fix the horizontal bus constraints and 
bus-overlapping. After adjusting the heights of dummy blocks, we pack 
the B*-tree again. Then, we decide the bus locations so that there is no 
overlap between buses. After adjusting the heights of dummy blocks and 
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re-packing the floorplan, some buses still may not be feasible. We refer 
to these buses as unassigned buses.  

Since the objective function of bus-driven floorplanning is to satisfy all 
bus constraints so that the chip area and the total bus area are minimized, we 
define the cost function Ψ  for a floorplan solution F  with the set of buses 
U  as follows:  
 

 ( )F U A B Mα β γΨ , = + + ,  (16) 
 

where A  is the chip area, B  is the bus area, M  is the number of 
unassigned buses, and α , β , and γ  are user-specified parameters.  

In the SA process, we record the floorplan solution with the most 
number of feasible buses and the lowest cost. After the SA process stops, 
we report the lowest cost with the least number of unassigned buses. 
Thus, we can find the desired floorplan with the most feasible buses.  

Suppose we are given m  buses and n  blocks. According to Figure 29, 
the combination of the pseudo code from line 4 to line 13 makes one  
 

 
Figure 29.  The bus-driven floorplanning algorithm 
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perturbation and evaluation of the B*-tree. Line 4 takes (1)O  time for 
perturbation, and Line 5 takes ( )O n  time for B*-tree packing. In line 6, the 
time complexity for fixing horizontal bus constraints and bus overlap 
checking are ( )O mn  and 2( )O m n , respectively. Line 9 takes ( )O n  time 
for packing, Line 10 takes 2( )O m n  time for deciding the bus locations, and 

Lines 11–13 take (1)O  time. Thus, the total time complexity is 2( ).O m n   
 

2.7 Conclusion 
Floorplanning is an essential design step for hierarchical, building-block 
design methodology. It provides valuable insights into the hardware decision 
and estimation of various costs. The most popular floorplanning method 
resorts to the modelling of the floorplan structure and then optimizing the 
floorplan solutions using simulated annealing. There exist many floorplan 
representations in the literature. Yet, B*-tree and Sequence Pair have been 
recognized as the two most valuable representations due to their superior 
simplicity, effectiveness, efficiency, and flexibility.  

To handle the challenges in modern SOC designs with large-scale 
circuit blocks, the multilevel floorplanning frameworks are desired. Two 
types of multilevel frameworks, the Λ - and V -shaped frameworks, 
have recently been studied in the literature. Both are based on two-stage 
techniques. The Λ -shaped framework adopts bottom-up coarsening 
followed by top-down uncoarsening, while the V -shaped framework 
proceeds with top-down uncoarsening and followed by bottom-up 
coarsening. Since the V -shaped framework processes global layout 
regions first, it tends to obtain better solutions for those with global 
effects such as wirelength and timing. In contrast, the Λ -shaped 
framework tends to achieve better solutions for local effects such as area 
optimization.  

An SOC typically consists of various digital and analog functional 
blocks and interconnects them with system buses and/or global wiring. 
Therefore, it is crucial to consider the floorplanning with both digital and 
analog blocks and plan the system bus as early as possible. This section 
provides underlying ideas for handling the SOC floorplanning problems 
using the B*-tree and Sequence Pair formulations. Future research on SOC 
floorplanning lies in the considerations of various placement constraints 
(position constraints, thermal electrical constraints, etc.) and the 
co-synthesis of floorplan with other design targets (power/ground network, 
timing, noise, etc.).  
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3. PLACEMENT 

3.1 Introduction 
As the process technology advances, the feature size is getting smaller and 
smaller, which makes it possible to integrate an entire system with one 
billion transistors on a single chip. Two challenges arise due to this design 
complexity. First, the Intellectual Property (IP) blocks and pre-designed 
macro blocks (such as embedded memories, analog blocks, pre-designed 
datapaths, etc.) are often reused, and thus many IC’s contain thousands of 
macro blocks and millions of cells. Second, timing optimization becomes 
more challenging due to the design complexity and the scaling of devices 
and interconnects.  

The traditional placement problem seeks to minimize wirelength under 
the constraint that cells/macros do not overlap with each other. Three types 
of most popular techniques are used in the current state-of-the-art placers: 
(1) the partitioning based approach [2,25,70], (2) the simulated annealing 
based approach, and (3) the analytical approach [66,15]. Based on the 
techniques, many mixed-size placement algorithms are developed, which 
can be classified into three categories. The first category places macros and 
standard cells simultaneously, such as APlace [66], Feng Shui [70], 
mPG-MS [16], mPL [15], and UPlace [108]. The second category 
combines floorplanning and placement techniques, such as Capo [2]. The 
third category works in two stages: first place the macros and then the 
standard cells, such as the algorithm presented in [4].  

In this chapter, we introduce wirelength- and timing-driven placement 
with various constraints for SOC designs, which usually has large-scale, 
mixed-size cells/blocks.  

3.2 Problem Definition 
We are given a set of m  rectangular blocks (circuit blocks or cells) 

1 2{ }pB b b b= , ,...,  whose width, height, and area are denoted by iw , ih , 

and ia , 1 ,i p≤ ≤  a netlist 1 2{ , , , },kN n n n= …  and a set of locations 

(slots) 1 2{ , , , }qL l l l= … , p q≤ . The placement problem is to assign each 

ib B∈  to a unique location ( )j i iP x y= ,  on the chip layout such that no 
two blocks overlap with each other (i.e., legalization constraint) and some 
objective (such as the total wirelength, congestion, timing) is optimized. 
There exist a few popular estimations for the wirelength; for example, half 
bounding box of the interconnection (also known as the semi-perimeter 
method), minimum spanning tree approximation, squared Euclidean distance 



Physical Design for System-on-a-Chip 345
 
(squares of all pairwise terminal distances in a net using a quadratic cost 
function) [72], the log-sum-exp method [44], etc.  

3.3 Approaches to Placement 
Three types of most popular techniques are used in the state-of-the-art 
placers: (1) the partitioning based approach, (2) the simulated annealing 
based approach, and (3) the analytical approach. Independent of the 
placement techniques used, most modern placers consist of three major steps: 
(1) global placement, (2) cell legalization, and (3) detailed placement (see 
Figure 30). We detail these approaches in the following.  
 

 
Figure 30.  Three major steps in placement 

3.3.1 Partitioning-based methods 

Among academic placement tools, all the leading top-down methods rely on 
variants of recursive circuit partitioning in someway. An early work on 
partitioning-based placement was proposed by Dunlop and Kernighan [41]. 
Most modern methods, including Capo [13], Feng Shui [109], and 
NTUplace [25,61], have exploited further advances in fast algorithms for 
hypergraph partitioning to push these frameworks beyond their original 
capabilities. Fast, high-quality ( )O n  partitioning algorithms give top-down 
partitioning attractive ( lg )O n n  scalability overall, where n  is the 
problem size.  

In the following, we introduce the underlying ideas of the three major 
steps of the NTUplace partitioning-based placer: (1) global placement, (2) 
cell legalization, and (3) detailed placement.  
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A. Global Placement   

A.1. Cutline Determination   

At each level of global placement, NTUplace determines the cutline 
position at each partitioning step for better bi-partitioning with more 
balanced cell density. The cutline position has a significant impact on the 
chip density and the accuracy of terminal propagation. To find a better 
cutline position and perform more accurate terminal propagation, we 
pre-partition a circuit with a relaxed balance factor. Then, it moves the 
cutline to make the free space ratio of the two subregions equal to the size 
ratio of the min-cut pre-partitioning result. The cutline is then used to guide 
the exact net-weight modeling with terminal propagation [21]. Finally, it 
reapplies the min-cut partitioning with a tighter balance factor to obtain the 
final partitioning solution.  

A.2. Exact Net-Weight Partitioning   

Simple recursive bisection with a cutsize objective can be used quite 
effectively with simple Fiduccia-Matheysses (FM)-style [46] iterations. At a 
given level, each region is considered separately from the others in some 
arbitrary order. A spatial cutline for the region, either horizontal or vertical, 
can be carefully chosen. Given some initial partition, subsets of cells are 
moved across the cutline to reduce the total weight of hyperedges cut 
without violating a given balance constraint. This constraint can be set 
loosely initially and then gradually tightened. As the recursion proceeds, cell 
subsets become smaller, and the cell-area distribution over the placement 
region becomes more uniform. A small example of partitioning-based 
placement is shown in Figure 31.  
 

 
Figure 31.  An example of partitioning-based placement (a) Given circuit and placement 

region. (b) Partition the circuit and find the corresponding cutline. (c) Assign partitions into 
subregions 
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A.2.1. Multilevel Partitioning   

Traditional graph partitioning algorithms compute a partition of a graph by 
operating directly on the original graph. These algorithms are often too slow 
and/or produce partitioning solutions. Multilevel partitioning algorithms, on 
the other hand, have been shown to be very scalable and effective [68]. 
These algorithms, as illustrated in Figure 32, consist of three phases.  
 

 
Figure 32.  Multilevel partitioning framework 

 
• Coarsening Phase. The purpose of coarsening is to create a smaller 

hypergraph, such that a good bisection of the smaller hypergraph is 
not significantly worse than the bisection directly obtained for the 
original hypergraph. It recursively groups together vertices based on 
some connectivity metric (each vertex is highly connected with at 
least one other vertex in the group) level by level until the number of 
vertices is less than a threshold. At each level, hypergraph 
coarsening helps reducing the size of the hyperedges. That is, after 
several levels of coarsening, large hyperedges are contracted to 
hyperedges connecting just a few vertices.  

• Initial Partitioning Phase. After a small hypergraph is obtained, we 
may apply the FM [46] heuristic or even balanced random bisection 
to obtain an initial partitioning result efficiently.  

• Uncoarsening Phase. During the uncoarsening phase, it declusters 
the hypergraph while applying a partitioning refinement algorithm 
(e.g., the FM heuristic) to improve the quality level by level. At each 
level, a partitioning of the coarser hypergraph is used to obtain a 
partitioning for the finer graph. This is done by successively 
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projecting the partitioning to the next-level finer hypergraph and 
using a partitioning refinement algorithm to reduce the cut and thus 
improve the quality of the partitioning. Since the next-level finer 
hypergraph has more degrees of freedom, such refinement 
algorithms, say the FM heuristic, tend to improve the quality.  

A.2.2. Terminal Propagation   

Connections between subregions can be modelled by terminal 
propagation [41], in which the usual cutsize objective is augmented by terms 
incorporating the effect of connections to external subregions. Figure 33 
shows the effect of the terminal propagation. A proper terminal propagation 
leads to a better solution.  
 

 
Figure 33.  An example of the effect of terminal propagation 

 
Since the net weight in the traditional terminal propagation for the 

min-cut based placement is a constant value, the weight with the change in 
HPWL cannot be exactly modelled, whether a net is cut or not. The 
underlying idea for exact net-weight modeling (terminal propagation) 
presented by Chen, Chang, and Lin in [21] is that we want to map the 
min-cut cost exactly to the HPWL change. Another net-weighting method 
was proposed in [25]; they discussed the net-weighting method for 
partitioning based on four cases. However, they can obtain exact modeling 
only for two-terminal nets, i.e., they can only obtain suboptimal results for 
multi-terminal nets. Unlike the previous work that exhaustively enumerates 
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of potential cases, the following unified model presented in [21] assigns the 
net weights to map the HPWL value exactly. The HPWL modeling not only 
can be applied to vertical-cut or horizontal-cut partitioning, but can also be 
applied to placement feedback (repartitioning) [63]. Further, the unified 
HPWL model can even apply to the partitioning associated with two 
non-adjacent regions.  

A circuit is modelled as a hypergraph. Each node in the hypergraph 
corresponds to a block inside the target region, with the node weight being 
set to the area of the corresponding block. Each hyperedge denotes a two- or 
multi-terminal net in the circuit, with the hyperedge weight being set to the 
value of the HPWL contribution if the hyperedge is cut.  

Let 1w  be the HPWL when all blocks are at the side closer to the span 
of the terminals, 2w  be the HPWL when all blocks are at the opposite 

side, and 12w  be the HPWL when blocks are at the both sides. See 

Figure 34 for an illustration. Let cutn  be the cutsize of the net for the 

corresponding hypergraph. So, we have 12 2 1w w w≥ ≥ . Then, we 
introduce a partitioning hypergraph with two fixed nodes to represent the 
two sides and movable nodes to represent the movable blocks. We then 
add two hyperedges 1e  and 2e  into the hypergraph. The hyperedge 

weight can be determined as follows. We introduce 1e  to connect the 
fixed node corresponding to the side closer to the span of terminals and all 
movable nodes and 2e  to connect between all movable nodes. We then 
assign the weight of the hyperedge 1e  as the value 2 1w w−  (note that 

2 1w w≥ ), and that of the hyperedge 2e  as the value 12 2.w w−  
Partitioning the resulting hypergraph can determine to which partition the 
block belongs. Based on the exact net-weight model, we have the 
following theorems [21]:  

 
Theorem 1 With the unified net-weight modeling, we have HPWL 1 cutw n= + . 
 
Theorem 2  The unified net-weight modeling exactly maps HPWL to the 
min-cut cost.  

B. Cell Legalization   

NTUplace extends the method proposed in [64] to handle cell 
legalization. Cells are sorted according to their coordinates, and then  
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Figure 34.  An example of determining a net weight. (a), (b), and (c) are three possible 

partitioning results. (d), (e), and (f) are corresponding partitioning hypergraphs 

 
each cell is placed to the closest available position. In addition to the sorting 
in left-to-right ordering and right-to-left ordering, we add a 
center-to-two-sides ordering starting from the most congested column, 
which sorts all cells according to their distance to the chip center. Finally, 
we take the best among the three legalization results.  
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C. Detailed Placement   

In the detailed placement stage, three techniques are applied to improve the 
final placement result: (1) window-based detailed placement,  
(2) branch-and-bound cell swapping, and (3) horizontal whitespace 
distribution.  

In window-based detailed placement (WDP for short), it first creates 
windows according to the given window size and the overlap range between 
two windows. In each window, WDP finds a group of exchangeable cells. 
The cost of assigning each cell to a legal position (e.g., the displacement) is 
calculated, and a transportation formulation is applied to find an optimal 
assignment [38]. In their implementation, they iteratively change the 
window size and the overlap range between two windows to perform WDP 
until no significant improvement is achieved or the given runtime limitation 
is met.  

For branch-and-bound cell swapping, it selects k  cells each time to find 
the best ordering of cells by enumerating all possible orderings using the 
branch-and-bound algorithm. Here, k  is a user-specified parameter. This 
process is repeated until all standard cells are processed.  

Horizontal whitespace distribution optimally arranges the whitespace in 
a row without changing the cell ordering [62,65]. Given m  ordered cells 
and a row of width n , an m n×  table is constructed and the optimal 
positions of each cell can be determined through a dynamic programming 
algorithm. For the placer, horizontal whitespace distribution is applied row 
by row to optimize the cell locations.  

D. Other Techniques for Partitioning-Based Placement   

Careful consideration of the order and manner in which subregions are 
selected for partitioning can be significant. For example, a dynamic 
programming approach to cutline selection can improve overall results by 
5% or more [110]. In the multi-way partitioning framework, intermediate 
results from the partitioning of each subregion are used to influence the final 
partitioning of others. Explicit use of multi-way partitioning at each stage 
can in some cases bring the configuration closer to a global optimum than is 
possible by recursive bisection alone [109]. Cell replication and iterative 
deletion have been used for this purpose. Rather than attempting to find the 
best subregion in which to place a cell, we can replicate the cell to place it 
once in every subregion, then iteratively delete only the worst choices. These 
iterations may continue until only one choice remains, or they may be 
terminated earlier, allowing a small pool of candidates to be propagated to 
and replicated at finer levels. By postponing further deletion decisions until 
better information becomes available, spurious effects from locally optimal 
subregion partitions can be diminished and the global result improved.  
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The partitioning solution can be improved by combining min-cut 
objective with an analytical (quadratic programming) technique. For each 
partitioning region, we use springs to model the connectivity of the circuit. 
The total potential energy of those springs is a quadratic function of their 
length. An initial placement solution can be obtained by solving the 
quadratic placement problem. According to the initial placement solution, 
the cells far from the centerline of the partitioning region are temporarily 
fixed during this level of global placement (see Figure 35). The fixed cell 
locations also provide other partitioning regions with more accurate terminal 
propagation information than traditional terminal propagation which 
assumes cells to be placed in the center of their regions.  
 

 
Figure 35.  An example of the cell positions inside a partitioning region after wirelength 
optimization by quadratic programming. Cells in gray will be fixed at the corresponding 

regions during this level of partitioning 

 

3.3.2 Simulated annealing based placement 

Perhaps the best known simulated-annealing based placement algorithm is 
TimberWolf [96]. It consists of two stages. At Stage 1, blocks are moved 
between different rows as well as within the same row. Blocks overlap are 
allowed at this stage, and will be removed at the second stage. When the 
temperature is reached below a certain value, Stage 2 begins. At Stage 2, we 
remove any overlaps and continue the annealing process, but only interchange 
adjacent blocks within the same row. The solution perturbations are based on 
three types of moves:  

• M1: Displace a block to a new location.  
• M2: Interchange two blocks.  
• M3: Change the orientation of a block.  
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TimberWolf first tries to select a move between M1 and M2 with the 
probabilities 0.8 and 0.2 for M1 and M2, respectively. If a move of type 
M1 is chosen and it is rejected, then a move of type M3 for the same 
block will be chosen with the probability 0.1. TimberWolf applies a 
range limiter (window size) to define the row that a block can be 
displaced and the pairs of blocks that can be interchanged. At the 
beginning, the width and height of the window is big enough to contain 
the whole chip. The window size shrinks proportionally to log( )T  as the 
temperature T  decreases. Stage 2 begins when the window size is so 
small that no inter-row block interchanges are possible. TimberWolf can 
handle up to tens of thousands of blocks well. With millions of 
blocks/cells in modern SOC design, a state-of-the-art placement 
algorithm that can deal with large-scale circuit sizes is desired.  

In the following, we introduce a more recent simulated-annealing based 
placement tool, called Dragon, presented in [101]. Figure 36 shows its 
placement flow. Dragon integrates the partitioning and 
simulated-annealing techniques to cope with large-scale placement. A 
circuit is recursively partitioned alternatively along horizontal and vertical 
cut lines. The subcircuits after partitioning are assigned to rectangular bins. 
The bin-based simulated annealing that moves blocks in the bins is 
performed to improve the current placement solution. Such a procedure 
terminates when a certain stop criteria (e.g., average number of cells per 
bin is less than a given number) is met. An adjustment step is then 
executed to fit the bin-based placement into row structures. The next step 
is a cell-based simulated annealing. The bin structure still exists and the 
cells are moved between the centers of bins. The locations of these centers 
can be changed during annealing. The final step simply spreads overlapped 
cells and makes local improvements to obtain the detailed placement.  

To handle the high complexity of the problem, the input netlist is 
recursively divided into two partitions using a state-of-the-art min- cut 
partitioner, hMetis [68], such that the number of cuts across the partitions is 
minimized and the sizes of two partitioned sets satisfy some predefined 
balance constraint.  

A major drawback of the min-cut, partitioning based placement is its 
irreversibility. Once a cell is assigned to one side of the cut line, it will 
never move to the other side to improve the placement. Multilevel 
simulated annealing is applied to help placements move out of the local 
minima. The key idea is to reduce the number of movable objects in 
annealing. Low-temperature annealing is adopted at each level and the 
number of levels is not fixed. At the final placement stage, a fast greedy 
improvement is used to speed up the process. Both bin annealing and cell 
annealing uses the same cost function of total wirelength and the same 
cooling schedule. Swapping is the main move in both types of annealing  
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Figure 36.  The Dragon placement flow 

 
while shifting is used a little bit in cell annealing. Although it tries to 
reduce the time-consuming annealing by bin-based approach, the 
running-time cost is still very high.  

3.3.3 Analytical placement 

A force-directed method for global placement was introduced  
in [42]. The global placer is named Kraftwerk. In addition  
to the well-known wirelength dependent forces, Kraftwerk uses 
additional forces to reduce cell overlaps and to consider the  
placement area. The wirelength dependent quadratic objective function 
to minimize is described as follows. Let n  be the number of  
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movable cells in the circuit and ( )i ix y,  be the coordinates of cell i .  
A placement of the circuit can be described by the 2n -dimensional 
vector 1 1( ) .T

i n i np x x x y y y= ,..., ,..., , ,..., ,...,
ur

 The circuit connectivity is 
modelled as a graph. Cells are modelled as vertices, nets are modelled as 
edges, and hyperedges are modelled as cliques. The cost of an edge is 
modelled as the squared Euclidean distance between its adjacent vertices 
multiplied with the weights of the edges. The squared Euclidean distance 
between cells i  and j  is 2 2( ) ( )i y i jx x y y− + − . The objective function 
sums up the cost of all edges and can be written in matrix notation as  
 

 
1
2

T TC p p constp d+ + .
ur urur ur

 (17) 

 
This objective function is minimized by solving the linear equation system  
 
 0C p d+ = .

ur ur
 (18) 

 
Additional constant forces are introduced in [42] to distribute the cells more 
evenly in the layout region.  
 0C p d e+ + = .

ur ur r
 (19) 

 
The force vector e

r
 contains additional forces working on each cell in the 

x  and y  directions. These additional forces try to move the cells from 
high-density regions to low-density regions in the layout, thus attempting to 
reduce the overlaps. The algorithm described in [42] is iterative and 
determines the additional forces according to the current placement. In each 
iteration, the forces acting on the cells are assumed constant and are used to 
calculate a new placement. The new placement is the base for the next 
iteration step and so on. Each step of the algorithm is called a placement 
transformation. The transformation step can be applied to fully overlapping 
placements as well as nearly legal placements. Thus, the algorithm renders 
itself very elegantly to ECO style placement requirements.  

It is argued in [42] that their algorithm is able to handle large mixed-size 
placement problems without treating macros and standard cells differently. 
However, if applied from scratch on constrained mixed-size designs with 
less whitespace, this algorithm frequently produces placements with large 
overlaps [4].  

Recently, the force-directed placement framework has been generalized 
to a more rigorous mathematical formulation and adapted to a multilevel 
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implementation in mPL5 [15]. An overview of the mPL5 formulation is 
given here.  

Placement objectives and constraints are approximated by smooth 
functions. A bounding-box weighted wirelength objective is approximated 
by the log-sum-exp model[44,67].  
 

nets nodes nodes nodes nodes

( ) log log log logk k k k

k k k k

x x y y

e E v e v e v e v e

W x y e e e eγ γ γ γγ
⎛ ⎞
⎜ ⎟/ − / / − /⎜ ⎟
⎜ ⎟
⎜ ⎟∈ ∈ ∈ ∈ ∈⎝ ⎠

, = + + + ,∑ ∑ ∑ ∑ ∑
  (20) 
 
where x  and y  denote the vectors of cell’s x - and y -coordinates. The 
smaller the parameter ,γ  the more accurate the approximation. Letting 
D ij+  denote the cell area density of bin ijB  and K  the total cell area 
divided by the total placement area, the area-density constraints are initially 
expressed simply as ijD K=  over all bins .ijB  Viewing the ijD  as a 

discretization of the smooth density function ( )d x y, , these constraints are 
smoothed by approximating d  by the solution ψ  to the Helmholtz 
equation  
 

 
( ) ( ) ( )

0 ( )

x y d x y x y R

x y R

φ εψ
ψ
ν

Δ − , = , , , ∈⎧
⎪

∂⎨
= , , ∈∂⎪ ∂⎩

 (21) 

 
where 0ε > , ν  is the outer unit normal, R∂  is the boundary of the 
placement region ,R  ( )d x y,  is the continuous density function at a point 

( ) ,x y R, ∈  and Δ  is the Laplacian operator 
2 2

2 2x y
∂ ∂
∂ ∂

Δ ≡ + . The 

smoothing operator 1 ( )d x yε
−Δ ,  defined by solving Equation (21) is well 

defined, because Equation (21) has a unique solution for any 0ε > . Since 
the solution of 24 has two more derivatives [45] than ( )d x y, , ψ  is a 
smoothed version of d . Discretized versions of 21 can be solved rapidly by 
fast multilevel numerical methods. Recasting the density constraints as a 
discretization of ψ  gives the nonlinear programming problem  
 

 
Minimize ( )
Subject to 1 1ij

W x y
K i m j nψ ε

,
= − / , ≤ ≤ , ≤ ≤ ,

 (22) 
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where ijψ  is obtained by solving Equation (24) with the discretization 
defined by the given bin grid. This nonlinear-programming problem is solved 
by the Uzawa iterative algorithm [8], which does not require second 
derivatives or large linear-system solves:  
 

 

1 1

1
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( )

k k k
ij ij

i j
k k
ij ij ij
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K
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∇ , + ∇ =
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∑
 (23) 

 

where λ  is the Lagrange multiplier, 0 0,λ =  α  is a parameter to control 
the rate of convergence, and gradients of ijψ  are approximated by simple 

forward finite differences 1i j i j

k xx ij h
ψ ψψ , + ,−∇ = ,  1i j i j

k yy ij h
ψ ψψ + , ,−∇ =  when the 

center of cell kv  is inside ijB  and is set to zero otherwise. The nonlinear 

equation for 1 1( )k kx y+ +,  is recast as an ordinary differential equation and 
solved by an explicit Euler method [87].  

3.3.4 Combining floorplanning and placement for mixed-size designs 

The work in [3,5] proposes a three-stage floorplanning/placement flow to 
handle mixed-size placement. First, they shred the macros into small fake 
cells connected by fake wires with sufficient high weights. Then the 
Capo [13] standard cell placer is used to obtain an initial placement. 
Second, the initial location of a macro is the average of respective fake 
cells. The small standard cells are clustered into soft blocks to perform 
fixed-outline floorplanning with macros. Finally, all macros are fixed and 
the soft blocks are decomposed into small cells. Capo is used again to 
place small cells.  

Recent improvements to Capo include the incorporation of fixed-outline 
floorplanning to improve the handling of large macro blocks in mixed-size 
placement [2]. Min-cut placement proceeds as described above until 
certain ad-hoc tests suggest that legalization of a subset of blocks and cells 
within their assigned subregion may be difficult. At that point, the cells in 
that subregion are aggregated into soft clusters, and annealing-based 
fixed-outline floorplanning is applied to the given subproblem [3]. If it 
succeeds, the macro locations in its solution are fixed. If it fails, it must be 
merged with its sibling subproblem, and the merged parent subproblem 
must then be floorplanned. This step therefore initiates a recursive 
backtracking through ever larger ancestor subproblems. The backtracking 
terminates as soon as one of these ancestor subproblems is successfully 
floorplanned. The ad-hoc tests are chosen to prevent long backtracking 
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sequences on most test cases, as the floorplanner does not scale well to 
large subproblems. Adya et al. [2] observe that it is typically possible to 
define the ad-hoc tests so that the transition from min-cut partitioning to 
fixed-outline floorplanning does not impair scalability. However, as the 
algorithm cannot ensure the legalizability of the subproblems it generates 
by min-cut partitioning, it cannot prevent the possibility of a long 
backtracking sequence or a failure, especially on difficult low-whitespace 
instances.  
 

3.4 Timing-Driven Placement 
Timing-driven placement algorithms can be classified into two major 
categories: (1) path-based and (2) net-based methods. The path-based 
algorithms try to control critical path delays directly, and the net-based 
methods transfer the timing constraint of each path into the weight of each 
net.  

3.4.1 Path-based algorithms 

Typical methods in this category consist of two steps: (1) formulate the 
problem as a linear or non-linear programming problem by introducing 
auxiliary variables [50,58,99], and (2) minimize the length of a set of critical 
paths [100]. All path-based algorithms share the advantage of a more 
accurate control over the timing of the critical paths. However, they usually 
require substantial computation resources due to the exponential number of 
paths that need simultaneous optimization.  

3.4.2 Net-based algorithms 

In net-based algorithms, timing constraints are first translated into net 
weights [12,40] or delay budgets [89,94,107,112]. Net weights are used 
to distinguish timing-critical nets (assigned with larger weights) from 
non-critical ones (assigned with smaller weights). The weakness of this 
approach is that the net weights alone cannot control the placement 
results well. The goal of delay budgeting is to assign the allowable delays 
or constraints on individual nets such that the target timing can be met if 
all the constraints are satisfied. In practice, due to the intractability of 
placement problems and the way the constraints are assigned, it is 
possible that a placer might not find a feasible solution which satisfies all 
the constraints. It is often the case that some nets are assigned 
unnecessarily large budgets while others’ budgets may be slightly 
changed. The reason is that initially the delay-budgeting process lacks a 
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clear picture of the final placement. Therefore, it often cannot budget 
delays accurately on individual nets.  

3.5 Conclusion 
The traditional placement problem seeks to minimize wirelength under the 
constraint that cells/macros do not overlap with each other. We have 
introduced three types of the most popular techniques used in the 
state-of-the-art placers: (1) the partitioning based approach, (2) the 
simulated annealing based approach, and (3) the analytical approach. The 
partitioning based approach has great scalability for large-scale designs 
and is easier for cell density control. However, if the chip utilization rate is 
low (i.e., large deadspace), a partitioning-based placer might not minimize 
the wirelength well; in contrast, the analytical approach is more suitable 
for the instances with low utilization rate since it aims to compute the best 
cell locations first. The simulated annealing based approach can obtain 
high-quality solutions for manageable problem sizes, but it may be 
prohibitively time-consuming for current simulated annealing based 
placers to work on very large-scale designs.  

In SOC designs, large-scale mixed macro and standard-cell placement 
and timing-driven placement are two major challenges. Many mixed-size 
placement algorithms are reported in the literature recently, and they can be 
classified into three categories: The first category places macros and 
standard cells simultaneously, such as APlace [66], Feng Shui [70], 
mPG-MS [16], mPL [15], and UPlace [108]. The second category combines 
floorplanning and placement techniques, such as Capo [2]. The third 
category works in two stages: first place the macros and then the standard 
cells, such as the algorithm presented in [4]. With the dramatic increase in 
the design complexity, more effective large-scale mixed-size placement 
algorithms are desirable.  

For timing-driven placement, existing algorithms can be classified into 
two major categories of the path-based and the net-based methods. The 
path-based algorithms try to control critical path delays directly, and the 
net-based methods transfer the timing constraint of each path into the weight 
of each net. The net-based algorithm has much less complexity than the 
path-based one. To effectively weight each net, we must consider two 
important issues: how many paths share this net and the criticality of it. 
Existing algorithms such as the PATH algorithm presented in [73] can 
consider these two issues, but need to use Static Timing Analysis (STA) to 
evaluate the net criticality. It is time-consuming and cannot handle 
large-scale designs efficiently. Hence, it is desirable to develop more 
efficient algorithms to evaluate the criticality of each net without STA.  
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4. ROUTING 

4.1 Introduction 
The continuous increasing SOC design complexity imposes severe 
challenges for modern router design. As pointed out in [29], a 2.5 ×  
2.5 2cm  chip in the 70-nm technology may have over 360,000 horizontal 
and vertical routing tracks. In addition, the 90-nm technology node has design 
rules in the high hundreds to low thousands, whereas the forthcoming 65-nm 
node may have several thousand design rules. To tackle the challenges, the 
routing frameworks are evolving from the flat framework to the hierarchical 
and multilevel frameworks. We detail the three routing frameworks in the 
following.  
 

4.2 Flat Routing Framework 
Routing is typically a very complex problem. In order to make it manageable, 
a traditional routing system usually uses the two-stage flat framework of 
global routing followed by detailed routing. Global routing first partitions 
the entire routing region into tiles (or channels) and decides tile-to-tile paths 
for all nets while attempting to optimize some specified objective functions 
(e.g., the total wirelength and the critical timing constraints). Then, guided 
by the results of global routing, detailed routing determines actual tracks and 
vias for all nets according to the design rules.  

Many routing algorithms adopt this two-stage flat framework. These 
algorithms can be classified into sequential and concurrent approaches.  

4.2.1 Sequential approach 

Perhaps the most straightforward strategy for routing is to select a specific 
order and then to route nets sequentially in that order. The main advantage of 
this approach is that the congestion information for previously routed nets 
can be taken into consideration while routing a given net. The drawback of 
sequential approach is that the quality of the routing solution greatly depends 
on the order, and it is hard to find a good net ordering. In [1], Abel has 
concluded that there is no single net ordering technique that performs better 
than any other ordering method in all routing problems. Since the net 
ordering problem may cause unroutable nets, a rip-up/reroute procedure is 
often used to refine the solution.  

One basic subproblem in sequential routing is to find a path connecting 
two pins in the presence of wiring blockages. Many algorithms have been 



Physical Design for System-on-a-Chip 361
 
proposed for this subproblem, and these algorithms can be classified into 
maze-searching and line-searching approaches.  

A. Maze searching   

Lee [75] proposed the first maze-searching algorithm, which adopts a 
two-phase approach of wave propagation followed by retrace. In the wave 
propagation phase, starting from the source vertex S , the accumulated 
length from the source to each vertex is labelled one by one according to the 
wavefront until the target vertex T  is reached. The shortest length path is 
then traced back from T  to S  in the retrace phase. Figure 37 illustrates the 
process of Lee’s maze-search algorithm. The Lee’s algorithm guarantees to 
find a connection between two terminals if it does exist and the connection is 
the shortest path. However, in practice, the maze-searching algorithm is slow 
and has large memory requirements; therefore, it cannot be applied to large 
designs directly.  

Many efforts have attempted to improve its speed and memory usage. 
Akers [6] proposed a coding sequence technique to reduce memory 
requirements. Instead of wavefront numbers, Hadlock [49] used detour 
numbers for wave labelling to substantially reduce the search space and 
running time. Soukup [98] combined breadth-first search and depth-first 
search approaches to the wave propagation; with this approach, the 
maze-searching algorithm can speed up 10–50 times than Lee’s algorithm, 
but the disadvantage is that it does not guarantee to find the shortest path. 
Some techniques such as starting point selection, double fan-out, and  
 
 
 

 
Figure 37.  Lee’s maze-search algorithm. (a) Wave propagation. (b) Retrace 
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framing are proposed to reduce the search space of wave propagation and 
therefore to speed up the running time considerably [92]. 

Although there exists some disadvantages in this maze-search method, 
the maze-search approach still plays an important role and is usually 
incorporated into other existing routing algorithms. For example, Cong and 
Madden [33] integrated maze routing and the iterative deletion technique to 
develop a performance-driven multilayer area router for printed circuit board 
(PCB) and multi-chip block (MCM) designs.  

B. Line searching   

As mentioned earlier, the major drawbacks of the maze-searching 
algorithm are the high amount of memory required and long running time. 
The line-search algorithm overcomes these drawbacks by using line 
segments to represent the routing space and paths.  

Mikami and Tabuchi [86] proposed the first line-search algorithm. As 
opposed to the maze-searching algorithm, which mainly proceeds in a 
breadth-first manner, the line-searching algorithm performs a depth-first 
search. The line-searching algorithm initially sets the source S  and the 
target T  as base points, and then generates four (two horizontal and two 
vertical) line segments passing through these base points. These line 
segments are extended until they hit the design boundary or obstacles. 
Then, the intersections of these line segments are iteratively set as new 
base points, and four new line segments are generated for these new base 
points. This process repeats until a segment generated from S  intersects a 
segment generated from T , and a connection can be found by tracing from  
 
 
 

 
Figure 38. Line-searching algorithms. (a) Mikami-Tabuchi’s algorithm. (b) Hightower’s 

algorithm. The crossing points denote the base points, and the numbers denote the sequence 
of the search process 
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this intersection point to both S  and .T  Figure 38(a) gives an example of 
the Mikami-Tabuchi’s line-searching algorithm. Like Lee’s maze-searching 
algorithm, Mikami-Tabuchi’s line-searching algorithm also guarantees to 
find a path if one exists, but it may not always be the shortest. The 
line-searching technique significantly reduces both memory requirements 
and execution times.  

Later, Hightower [52] proposed another line-searching algorithm, which 
is similar to Mikami-Tabuchi’s algorithm. The difference is that Hightower’s 
algorithm only considers those line segments that are extendable beyond 
obstacles, and each line segment has at most two base points. Figure 38(b) 
illustrates Hightower’s line-searching algorithm. Because fewer line 
segments are considered, Hightower’s algorithm has more dramatic memory 
saving than Mikami-Tabuchi’s algorithm. However, Hightower’s algorithm 
might fail to find a path even if one exists. To remedy the deficiencies, it 
needs backtracking procedures to choose the right base points, and therefore, 
the running time does not improve very much more than Lee’s 
maze-searching algorithm in practice.  

 

4.2.2 Concurrent approach 

The major drawback of the sequential approach is that it suffers from the 
net-ordering problem. Under any net ordering, it is more difficult to route 
the nets that are considered later because they are subject to more 
blockages. In addition, if the sequential routing fails to find a feasible 
solution, it is not clear whether this is because of no feasible solution 
existing or because of a bad selection of net order. Moreover, when the 
sequential routing does find a feasible solution, we do not know whether or 
not this solution is optimal, or how far it is from the optimal solution. 
These questions may be answered if we solve the routing problem with the 
concurrent approach.  

One common concurrent approach is to formulate global routing as a 0-1 
integer linear programming (0-1 ILP) problem. The layout is first modeled 
as a routing graph ( ),G V E,  where each node represents a tile and each 
edge denotes the boundary between two adjacent tiles. Each edge e E∈  is 
assigned a capacity, denoted by ,ec  which represents the number of tracks 
belonging to that boundary. Given a net, all of its possible routing patterns 
can be enumerated. Let the variable {0 1}i jx , ∈ ,  indicate if the routing 

pattern i jR ,  is selected from the set of routing patterns iR  of net iN . 

Consequently, for a routing graph ( )G V E,  with netlist N , the 
congestion-driven global routing can be formulated as a 0-1 ILP problem  
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as follows: 
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The first and the second constraints require that only one routing pattern can 
be chosen for each net, and the third constraint with the objective together 
ensure to minimize the maximum congestion. If a solution of ˆ 1λ ≤  exists, 
an optimal global routing solution (the maximum congestion is minimized) 
can be achieved.  

Because the 0-1 ILP is NP-complete, the high time complexity greatly 
limits the feasible problem size. An alternative approach to this problem is to 
first solve the continuous linear programming (LP) relaxation, obtained by 
replacing the second constraint with [0 1]i jx , = , , because LP problems can 
be solved in polynomial time. Then, the fractional solution obtained may be 
transformed to integer solutions through rounding techniques such as 
randomized rounding [91]. However, this approximation would inevitably 
lose the optimality.  

In practice, the 0-1 ILP concurrent routing technique is often 
embedded into a larger overall global routing strategy with a 
divide-and-conquer manner, such as solving a subproblem, where the 
complexity of computing the optimal solution is manageable.  

 

4.3 Hierarchical Routing Framework 
The major problem of the flat frameworks lies in their scalability for handling 
larger designs. To cope with the increasing complexity, researchers proposed 
to use hierarchical frameworks to handle the problem. The hierarchical routing 
frameworks use systematic divide-and-conquer approach by transforming a 
large and complicated routing problem into a series smaller and simpler 
subproblems and then proceed in a top-down, bottom-up, or hybrid manner.  

4.3.1 Top-down hierarchical approach 

Burstein and Pelavin [11] proposed the first prominent top-down 
hierarchical global routing framework. They recursively divide the routing 
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regions into successively smaller sub-regions, named super cells, and nets at 
each hierarchical level are routed sequentially or concurrently and are 
refined in the subsequent levels. An example of global routing by the 
top-down hierarchical approach is illustrated in Figure 39. Figure 39(a) gives 
a global-routing instance with a 3-pin net. Figure 39(b) depicts the process 
of top-down hierarchical global routing, in which the routing region is 
recursively bisected into smaller super cells, and at each level, the net is 
routed in terms of these super cells at that level. This process is performed in 
a top-down manner until the super cells reduce to the actual global routing 
cells.  
 

 
Figure 39.  An example global routing using the hierarchical top-down approach. (a) A 

global routing instance with a 3-pin net. (b) The level-by-level top-down hierarchical global 
routing 

Marek-Sadowska [84] proposed another top-down hierarchical 
framework based on a bisection and the linear assignment technique. 
When a super cell is bisected by a cut line c , any net n  that must cross 
c  is then partitioned into two subnets 1n  and 2n  by inserting a pseudo 
pin on c , such that if n  crosses c  through this pseudo pin, no capacity 
overflow would occur and the wirelength is minimized. Then, the subnets 

1n  and 2n  can be solved independently in the subsequent levels. This 
bisection and insertion process is performed recursively in the subregions 
until the smallest subregions is manageable for global routing. In [84], the 
problem of finding a pseudo pin for each crossing net is formulated and 
solved as a linear assignment problem. For the global-routing instance in 
Figure 39(a), Figure 40 shows the bisection and pseudo-pin insertion  
 
 

 
Figure 40.  An example of top-down hierarchical global routing by the bisection and 

pseudo-pin insertion process. The dots represent the inserted pseudo pins 
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process at each hierarchical level. Recently, Chang et al. [19] also applied 
the linear assignment to develop a hierarchical, concurrent global and 
detailed router for field programmable gate arrays (FPGAs).  

An advantage of hierarchical top-down approach is that the higher-level 
decisions are used to guide the solution at lower levels, thus reducing the 
net-ordering problem in sequential routing.  

4.3.2 Bottom-up hierarchical approach 

The first bottom-up hierarchical global routing method is described by 
Marek-Sadowska [83]. Initially, the routing region is partitioned into an 
array of 2 2×  super cells. At each hierarchical level, the global routing is 
restrained within each super cell individually. When the routing at the 
current level is finished, every four super cells are merged to form a new 
larger super cell at the next higher level. This process continues until the top 
level containing only one 2 2×  array is reached. Figure 41 illustrates this 
bottom-up approach. Figure 41(a) gives a global-routing instance with a 
7-pin net. Figure 41(b) depicts the process of bottom-up hierarchical global 
routing, in which the solid rectangles represent the super cells, and the dots 
denote the merging points where two routing subsolutions of the previous 
level are merged together. In [57], Hu and Shing formulated the problem of 
finding merging points as a linear programming problem.  
 
 

 
Figure 41.  An example global routing using the bottom-up hierarchical approach. (a) A 

global routing instance with a 7-pin net. (b) The level-by-level bottom-up hierarchical global 
routing. The solid rectangles represent super cells, and the dots denote merging points 

 

4.3.3 Hybrid hierarchical approach 

The deficiency in the top-down and bottom-up hierarchical approaches is 
that the routing decision made at one hierarchical level may be suboptimal 
for the subsequent levels. In order to alleviate this problem, Lin et al. [80] 
proposed the first hybrid hierarchical approach that combines the bounded 
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maze-searching algorithm with both top-down and bottom-up hierarchical 
methods into a unified routing framework.  

Their algorithm consists of three phases: (1) neighboring propagation, 
(2) preference partition, and (3) bounded routing. Phase 1 performs 
bounded maze-searching by propagating W  circles of waves out of each 
terminal, where W  is a user-defined parameter. If the connection is not 
found, phase 2 recursively maps the terminal and blockages onto the 
adjacent upper level (Figure 42 (a)) and calls the bounded maze-search 
algorithm until a path is found. Then, the connected path is mapped back 
to the lower level to form the preferred region (Figure 42 (b)). Phase 3 
performs the routing by taking the preference information into 
consideration (Figure 42 (c)). By means of a parameter-controlled 
technique, their hybrid routing demonstrates a fast speed comparable to a 
hierarchical router and produces routing solutions with quality similar to 
a maze router.  
 
 

 
Figure 42.  An example global routing using the hybrid hierarchical approach. (a) Mapping 

pins and blockages up one level. (b) Making connection on the upper-level and mapping 
down the preferred region. (c) Performing the routing within the preferred region 

 
Later on, Hayashi and Tsukiyama [51] proposed another hybrid 

hierarchical global routing algorithm. The flow of their algorithm consists of 
two loops for the hierarchical levels, with a top-down hierarchical inner loop 
embedded in a bottom-up hierarchical outer loop. Specifically, the global 
routing mainly proceeds in a bottom-up manner, but an additional top-down 
refinement procedure is applied when an initial routing at each hierarchial 
level is obtained.  

Compared with pure top-down or bottom-up hierarchical routing, the 
hybrid hierarchial approach has more information to generate better routing 
solutions.  
 

4.4 Multilevel Routing Framework 
Although the hierarchical approach can scale to larger designs, it has the 
drawbacks that the interactions among different routing subregions are 
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lacking and the routing decision at a level is irreversible (i.e., cannot be 
refined at later stages), thus limiting the solution quality. To remedy the 
deficiencies, researchers have proposed various multilevel frameworks to 
handle large-scale routing problems. In this section, we introduce two 
state-of-the-art multilevel routing frameworks: (1) the Λ -shaped multilevel 
framework, and (2) the V-shaped multilevel framework.  

4.4.1 Multilevel routing model 

Both multilevel routing frameworks need to model the routing resource as a 
multilevel routing graph. At beginning, the routing region is partitioned into 
an array of rectangular subregions, each of which may accommodate tens of 
routing tracks in each dimension (see Figure 43). These subregions are 
usually called global cells ( GCs ). A node in the routing graph represents a 
GC  in the chip, whereas an edge denotes the boundary between two 
adjacent GCs . Each edge is assigned a capacity according to the physical 
area or the size of a GC . This routing graph is called multilevel routing 
graph of level 0,  denoted by 0G , where subscript represents the level.  
 

 
Figure 43.  The multilevel routing graph 

 
The multilevel routing algorithm consists of two stages: bottom-up 

coarsening, and top-down uncoarsening. The coarsening stage is a 
bottom-up approach that iteratively groups a set of GCs  in the multilevel 
routing graph. This process starts from the finest level (level 0 ) to the 
coarsest level; at each level k , four adjacent kGC  of kG  are merged 

into a larger 1kGC +  of 1kG +  and at the same time perform resource 
estimation for use at the 1k +  level. Coarsening continues until the 
number of GCs  at a level is below a threshold. In contrast, the coarsening 
stage iteratively ungroups a set of previously clustered GCs  in a 
top-down manner. It proceeds from the coarsest level to the finest level; at 
each level k , a kGC  are decomposed into four smaller 1kGC + . 
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Uncoarsening continues until the finest level is reached. Figure 44 depicts 
an example multilevel framework consisting of a coarsening stage 
followed by an uncoarsening stage.  
 

 
Figure 44.  The Λ -shaped multilevel routing framework 

 

4.4.2 Λ -Shaped multilevel routing framework 

The Λ -shaped multilevel routing framework consists of bottom-up 
coarsening followed by top-down uncoarsening. Cong et al. [30,35] 
proposed the first Λ -shaped multilevel approach for full-chip 
routability-driven global routing. Their framework starts by recursively 
coarsening global cells, and an estimation of routing resources is computed 
at each level. When the coarsening is finished, a multicommodity flow 
algorithm is used to obtain an initial global routing solution. Then, the 
uncoarsening stage performs a modified maze-searching algorithm to further 
improve the routing solution level by level. Their experiments show better 
routing quality and running times than the traditional flat and hierarchical 
approaches.  

Later, Lin and Chang [18,79] proposed an enhanced full-chip Λ -shaped 
multilevel global and detailed routing system considering both routability 
and performance, and their routing system show the best routability among 
previous works. Figure 44 illustrates their framework.  

Given a netlist, they first run the minimum spanning tree (MST) 
algorithm to construct the topology for each net, and then decompose each 
net into two-pin connections, with each connection corresponding to an edge 
of the minimum spanning tree. At each level k  during the coarsening stage, 
they first perform global routing for the local two-pin connections (those 
connections that entirely sit inside a kGC ), and then the detailed router is 
used to determine the exact wiring. The global routing is based on the 
approach used for pattern routing [69]. Let the multilevel routing graph of 



370 Chang, Chen and Chen
 
level 0  be 0 0 0( )G V E= ,  and the global routing result for a local 
connection c  be 0{ |  is the edge chosen for routing}eR e E e= ∈ . For 

the congestion control, the cost function 0Eα : →ℜ  is applied to guide 
the routing:  
 
 ( )

e

e e
e R

R cα
∈

= ,∑  (25) 

 
where ec  is the congestion of edge e  and is defined by  
 
 ( )1 2 e ep d

ec −= / ,  
 
where ep  and ed  are the capacity and density associated with e , 
respectively. By dynamic density, pattern routing uses an L-shaped (1-bend) 
or Z-shaped (2-bend) route to make the connection, which gives the 
shortest-path length between two points. Therefore, the wirelength is 
minimum, and thus the wirelength is not included in the cost function at this 
stage. This cost function can guide the global router to select a path with 
smaller maximum congestion.  

After the global routing is completed, they apply the simultaneous 
pathlength and via minimization (SPVM) algorithm to perform detailed 
maze routing to find a shortest path with the minimum number of bends/vias, 
if such a path exists. When the global and detailed routing are performed at 
level ,k  four adjacent kGC  are merged into a larger 1kGC +  and at the 
same time resource estimation is performed for use at the next level 1.k +  
Since the global routing, detailed routing, and resource estimation are 
integrated together at each level, the routing resource estimation is more 
accurate than [30,35], thus facilitating the solution refinement (e.g., the 
rip-up and reroute processes) at the uncoarsening stage.  

Many works have been proposed to deal with different routing objectives 
based on this multilevel framework. Ho et al. [54] developed a Λ -shaped 
multilevel full-chip routing system with antenna avoidance, Chen et al. [23] 
presented Λ -shaped multilevel full-chip gridless routing to consider optical 
proximity correction (OPC) optimization, and Li et al. [77] applied the 
Λ -shaped multilevel framework to full-chip routing for testability and yield 
enhancement.  

In [55,56], Ho et al. integrated an intermediate stage into the Λ -shaped 
multilevel routing framework to develop a full-chip multilevel routing 
system considering crosstalk optimization. The framework adopts a 
three-stage technique of a bottom-up congestion-driven global pattern 
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routing stage, followed by an intermediate stage of layer/track assignment 
for crosstalk optimization, and then followed by a top-down point-to-path 
detailed routing stage. Figure 45 illustrates this framework. By performing 
layer/track assignment at the intermediate stage, their routing system can 
preserve more flexibility to allocate nets for crosstalk optimization. Later on, 
Ho et al. [53] extended this multilevel framework to the routing problems on 
the X-architecture.  
 
 

 
Figure 45.  The Λ -shaped multilevel routing framework with an intermediate stage 

4.4.3 V-shaped multilevel routing framework 

Recently, Chen et al. [24] proposed a new V-shaped multilevel framework 
for large-scale full-chip gridless routing. Unlike the traditional Λ -shaped 
routing framework, the V-shaped one consists of top-down uncoarsening 
followed by bottom-up coarsening. The framework starts from the coarsest 
regions and then processes down to the finest ones level by level; at each 
level, it performs global and detailed routing and then estimates the routing 
resource for the next level. Then, the bottom-up coarsening stage performs 
global and detailed maze routing to reroute failed connections and refine the 
solution level by level from the finest level to the coarsest one. Figure 46 
illustrates the V-shaped multilevel routing framework.  

Different from the previous frameworks, they employ a dynamic 
congestion map to guide the global routing at all stages to alleviate the 
net-ordering problem in sequential routing. At beginning, they initialize the 
routing congestion information based on the pin distribution and the 
global-path prediction of all nets, and then keep a congestion map that is 
updated dynamically based on both the already-routed nets and the estimated  
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Figure 46. The V-shaped multilevel routing framework 

 
unrouted nets. As routing proceeds, the congestion map is updated, and the 
congestion information becomes more and more accurate. Therefore, the 
better congestion control can be achieved throughout the whole routing 
process.  

For a two-pin connection ,c  they use L- and Z-shaped pattern routes to 
determine the number of possible global routes ,cn  and evenly distribute 

the wire density of the connection c , cw , among all possible global routes. 
Therefore, the wire density of each possible global route equals c cw n/ . For 
each possible global route, the wire density of the possible global route is 
added to the edge density in the multilevel routing graph. After all two-pin 
connections finish the process, an initial congestion map is obtained. 
Figure 47 gives an example of global-path congestion prediction in the 
congestion map. As shown in Figure 47 (a), the connection c  has five 
possible L- and Z-shaped pattern routes from source s  to target t . The 
number of routes passing through each global cell boundary is given in 
Figure 47 (b), and the congestion estimation of c  in the multilevel routing 
graph is shown in Figure 47 (c). The experiments show that their router can  
 

 
Figure 47.  Global-path congestion prediction. (a) Two L-shaped and three Z-shaped pattern 

routes from s  to t . (b) The number of routes through each boundary. (c) The 
pre-estimation congestion in the multilevel routing graph 
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obtain significantly smaller wirelength and critical path delay than the 
previous works.  

4.4.4 Summary of multilevel routing frameworks 

It has been observed that the Λ -shaped multilevel framework can handle 
local circuit effects (such as routability, congestion and via minimization) 
better since it works in a bottom-up manner and deals with local routing 
regions first (i.e., route shorter local nets and then longer global 
nets) [69,18]. In contrast, the V-shaped multilevel framework is more 
suitable for handling global electrical effects (such as crosstalk and 
critical-path delay) since it works in a top-down manner and copes with 
global routing regions first [24]. By performing layer/track assignment 
after the global routing stage, the Λ -shaped multilevel framework with an 
intermediate stage has more flexibilities to optimize the nanometer 
electrical effects; however, it is harder to accurately estimate the routing 
resource since the global routing and detailed routing are performed 
separately. Table 3 compares the properties of these multilevel routing 
frameworks.  
 
Table 3. Comparison for multilevel routing frameworks 

 Advantage Disadvantage 
Λ -shaped multilevel 

framework 
More suitable to handle 
local effects 

Harder to handle global 
effects 

Λ -shaped multilevel 
framework with an 
intermediate stage 

Flexible for addressing 
nanometer electrical 
effects 

Harder to estimate 
routing resource 

V-shaped multilevel 
framework 

More suitable to handle 
global effects 

Harder to handle local 
effects 

5. METHODOLOGY SHIFT FOR SOC DESIGN 

In addition to design algorithms and frameworks, design methodology is 
crucial for tackling the design complexity and convergence problems which 
are more stringent for modern SOC designs than ever. In the following, we 
introduce two example design methodology shifts on timing closure and 
power integrity arising from modern SOC designs for faster design 
convergence. Specifically, we introduce the design methodology problems 
of buffer planning for interconnect-driven floorplanning and floorplan and 
power/ground network co-synthesis.  
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5.1 Buffer Planning for Interconnect-Driven 
Floorplanning 

5.1.1 Introduction 

For deep submicron and nanometer VLSI designs, interconnection 
dominates overall circuit performance. However, the conventional design 
flow often deals with interconnection optimization at the routing or the 
post-routing stage. When the interconnection complexity grows drastically, 
it is often too late to perform aggressive interconnection optimization during 
or after routing since most silicon and routing resources are occupied. 
Therefore, it is desirable to optimize interconnection as early as possible.  

Many techniques have been proposed for interconnection optimization. 
Some examples are wiring topology construction, buffer/repeater insertion 
and sizing, wire sizing and spacing [31]. Here, a buffer is composed of two 
inverters while a repeater is referred to as a buffer or an inverter. To simplify 
the discussions, we shall use buffer and repeater interchangeably throughout 
this chapter. Among these interconnection optimization techniques, buffer 
insertion is generally considered the most effective and popular technique to 
reduce interconnection delay, especially for global signals [7]. As an 
example, over 85%  global nets in Intel Itanium microprocessor are 
buffered to reshape signals [85]. Inserting buffers in a long interconnect can 
break the long interconnection into shorter ones such that the overall delay 
can be reduced. It has been shown that without buffer insertion, the 
interconnection delay for a wire increases quadratically in terms of the wire 
length, but it increases only linearly under proper buffer insertion [9,95]. For 
example, it is shown in [31] that the delay of a 2cm global interconnection 
can be reduced in a factor of 7×  by optimal buffer insertion. As the 
intrinsic delay of a buffer becomes smaller and the chip dimension gets 
larger, it is expected that a large number of buffers will be inserted for 
modern high-performance VLSI designs (e.g., about 800K for 50nm 
technology [32]). With so many buffers being added, the buffer positions 
should be planned as early as possible to ensure timing closure and design 
convergence. In particular, current VLSI designs do not allow buffers to be 
inserted inside a circuit block since they consume silicon resource and 
require connections to the power/ground network. Consequently, buffers are 
placed in channels and dead spaces of current floorplan and are often 
clustered to form buffer blocks between existing circuit blocks of the 
floorplan, which inevitably increases the chip area [32]. It is thus desirable to 
carefully plan for the buffers during/after floorplanning to minimize the area 
overhead and facilitate routing, which is referred to as the buffer block 
planning.  
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However, the existence of buffer blocks imposes more design constraints. 
Since buffers connect global nets, the routing regions where buffer blocks 
are located might be congested. Further, buffers might be placed in poor 
locations since buffers are clustered into blocks and thus the better location 
for a buffer is forbidden. To remedy this deficiency, distributing buffers 
more uniformly in a chip naturally spreads out global nets, and thus looks 
promising in coping with the aforementioned problems with wire congestion 
and buffer blockages. In contrast to the buffer block planning methodology, 
as a result, Alpert et al. propose the buffer site methodology that allocates a 
buffering resource within a block by inserting a buffer site which can 
accommodate buffers (or other logic gates if not used for buffering). For 
buffer site planning, we shall plan for the buffers during/after floorplanning 
such that the given buffer sites can accommodate buffers and the routing 
timing and congestion constraints are satisfied.  

To determine the optimal location for buffer insertion, we shall first consider 
the feasible region (FR) for a buffer, which is referred to as the maximum region 
where the buffer can be placed to satisfy the timing constraint. Figures 48(a) and 
(b) show respective FR’s for inserting one and multiple buffers into a net 
between a source and a sink, where the FR’s are shaded.  

The concepts of the feasible region come in two forms. Cong, Kong, 
and Pan in [32] first define the “feasible region” for buffer insertion to  
 

 
Figure 48.  Feasible regions for buffer insertion. (a) Single-buffer insertion.  

(b) Multiple-buffer insertion 
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be the region where a buffer can be placed in order to satisfy a target 
timing constraint, assuming that all the remaining buffers are optimally 
placed. In contrast, Sarkar, Sundararaman, and Koh [93] introduce the idea 
of independent feasible region (IFR) for buffer insertion, which is defined as 
the region where it can be placed such that the timing constraint of the net is 
satisfied, assuming that the other buffers are also located within their 
respective independent feasible regions.  

Before presenting the analytical formulae for computing the feasible 
regions, we shall first introduce the notation and delay model that will be used 
throughout this chapter. Each driver/buffer is modeled as a switch-level RC 
circuit [31], and each wire is modeled as a π -model. See Figure 49 for the 
buffer and wire models. We then use the Elmore delay model [43] for delay 
computation. The notation for the physical parameters of the interconnect and 
buffer is listed in Table 4.  
 

 
Figure 49.  Buffer and wire model. (a) Switch-level buffer model. (b) Wire model 

 
     Table 4.  Parameters of the interconnection and buffer 

Parameter Description 
r  wire resistance per unit length 
c  wire capacitance per unit length 

bT  intrinsic buffer delay 

bC  buffer input capacitance 

bR  buffer output resistance 
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Given a wire segment of length l  with driver output resistance R  and 
sink capacitance C , the Elmore delay of this segment is given by  
 

 2( ) ( )
2
rcD R C l l Rc rC l RC⎛ ⎞, , = + + + .⎜ ⎟

⎝ ⎠
 (26) 

 
Using the above expression, the Elmore delay of a single-source, 

single-sink net (i.e., two pin net) N  of length L  with n  buffers can be 
computed by  
 

1 2( )nD x x x L, , .... , =N

1
1 11

( ) ( ) ( )n
d b b s n b b i i bi

D R C x D R C L x D R C x x nT−

+=
, , + , , − + , , − + ,∑  

 
where dR  is the driver resistance, sC  is the sink capacitance, and ix  is 
the location of the i -th buffer. The optimal locations of the n  buffers for 
delay minimization of the net as shown in [7] are given by  
 
 å å å( 1) , {1 2 }i L Lx i y x i n= − + ∈ , ,.... ,  (27) 
where  
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+
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We denote the optimal delay for the net N , of length L , with n  

buffers by  
 
 å å å

1 2( ) ( )opt nD n L D x x x L, = , ,......, , .N N  

 
In the following subsection, we first discuss the computation of the 

feasible region and the independent feasible region on a one-dimensional 
line segment, and then extend the idea to the two-dimensional chip plane.  

5.1.2 Feasible regions 

For n  buffers inserted in a two-pin net N  as shown in Figure 48(b), [32] 
shows that its feasible region can be computed by the following theorem:  
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Theorem 3  For a two-pin net N  of the length L  and with n  buffers 
inserted and a given timing constraint tgtDN , the feasible region for the i -th 

buffer ( )i n≤  is [ ]i i min i maxx x x, ,∈ ,  with  

 i minx , = { }2
2 2 1 3

1

4
2max 0 K K K K

K
− −, ,  

 i maxx , = { }2
2 2 1 3
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4
2min K K K K

KL − +, ,  
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We denote the width of the feasible region for a given buffer by .FRW  

An analytical expression for FRW  is given in [32]. The following theorem 
presents an alternative but equivalent analytical expression.  
 
Theorem 4  For ( )tgt optD D n L≥ ,N N , the width of the feasible region for the 

i -th buffer ( i n≤ ) of the net N  is  
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5.1.3 Independent feasible regions 

As opposed to the definition of feasible region, the independent feasible 
region of a buffer is the region where it can be placed while meeting the 
timing specifications of the net, assuming that the other buffers are placed 
within their respective independent feasible regions.  

Formally, we define the independent feasible region (IFR) for the i -th 
buffer of a net N  as  
 
 å å( 2 2) (0 )i i IFR i IFRIFR x W x W L= − / , + / ∩ , ,  
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such that ∀ 1 2( )i nx x x x, , ....., ,.....  1 2 ,nIFR IFR IFR∈ × × ...×  

1 2( )n tgtD x x x L D, , ...., , ≤N N . Here, IFRW  and tgtDN  respectively denote the 

width of the independent feasible region iIFR  and the target delay 
associated with the net.  

Note that the final placement of a buffer in its IFR does not depend on 
the placement of the other buffers, so long as they are placed within their 
respective IFRs. To allocate an equal degree of freedom to each buffer in the 
net, we choose the IFR intervals to be of equal width, which is given by the 
following theorem.  
 
Theorem 5  For ( )tgt optD D n L≥ ,N N , the width of the independent feasible 

region for the i -th buffer ( i n≤ ) of the net N  is  
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5.1.4 Two-dimensional feasible region 

In the preceding discussions, we limit buffer insertion to occur along a 
one-dimensional line. Implicit in the discussions was the assumption that the 
routing from source to sink is specified by some global router. For buffer 
planning during floorplanning, however, no routing information is available. 
We typically assume that each net would be routed with a shortest path 
within the bounding box containing the two terminals. Therefore, we have to 
compute two-dimensional regions in which the buffers can be placed. The 
two-dimensional feasible region (or independent feasible region) of a buffer 
is defined as the union of the one-dimensional FRs (or IFRs) of that buffer 
on all monotonic Manhattan routes between source and sink. Therefore, 2-D 
FRs and 2-D IFRs are convex octilinear polygons with horizontal, vertical, 
and 1± -slope boundaries (see Figure 50).  

The feasible region of a buffer may be reduced by circuit blocks. 
Moreover, 2-D IFRs of buffers belonging to the same net are not completely 
independent of each other. As the widths and locations of a 2-D IFR are 
valid only under the assumption that a monotonic Manhattan route exists 
between the source and the sink, the assignments  of  buffers to locations 
within their respective 2-D IFRs should be made such that they constitute 
a monotone path from source to sink. In Figure 50, for example, the buffer 
assignments, which form a non-monotonic sequence from the source to the 
sink, violate the monotonicity constraint even though the buffers are within  
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Figure 50.  2-D feasible regions and their implications on buffer assignment 

 
their respective 2-D IFRs. Therefore, whenever the 2-D IFR of a buffer is 
modified, the 2-D IFRs for all other buffers in the net have to be updated if 
necessary.  
 

5.1.5 Buffer block planning 

The basic buffer block planning problem can be stated as follows:  

• Input: a given floorplan (or a set of circuit blocks) and a set of nets 
with feasible regions for buffer insertion to satisfy the given 
constraints (e.g., timing)  

• Output: the number of buffers blocks, the size and location of each 
buffer block, and the nets that use some buffer in this buffer block to 
optimize the timing.  

• Objective: determine the size of each buffer block and its optimal 
location such that the overall chip area and the number of buffer 
blocks after buffer insertion are minimized and the percentage of the 
satisfied timing constraints is maximized.  

 

Buffer blocks can be planned during post-floorplanning [32,30,39,93, 
103] or floorplanning [26,59,60,85]. Planning buffer blocks during 
post-floorplanning is more efficient, but is often limited by the quality of a 
given floorplan since the location and size of the space for buffer insertion is 
fixed. Further, the dead spaces for buffer blocks are typically treated as 
unwanted cost during floorplanning, so they are often avoided or minimized. 
As a result, the size and location of a buffer block may not be suitable for 
later buffer insertion. Therefore, researchers also try to integrate buffer block 
planning into floorplanning to fully utilize useful dead spaces for 
performance optimization. This approach typically enjoys higher design 
flexibility, but inevitably incurs higher time complexity.  
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Cong et al. first consider buffer block planning during post-floor- 
planning in [32]; they derive feasible region formulae to determine where 
to insert buffers to meet timing constraints and propose a greedy 
algorithm to plan buffer blocks in a slicing floorplan. Sarkar et al. also 
consider routability and address the concept of independent feasible 
regions in [93]. Moreover, [32,93] expand channels to provide more 
buffers if necessary. Based on a network-flow formulation, Tang and 
Wong in [103] optimally plan as many buffers into buffer blocks as 
possible for all nets, each with at most one buffer. Given an existing 
buffer block plan, Dragan et al. in [39] perform buffering of global nets. 
They route the nets using available buffer blocks, such that required 
upper and lower bounds on buffer intervals and the wirelength upper 
bounds per connection are satisfied.  

We describe the generic approach for buffer block planning at 
post-floorplanning as presented in [32]. First, it constructs a directed 
horizontal and a directed vertical constraint graphs for a given floorplan, 
denoted by HG  and ,VG  respectively. Each vertex v  in HG  corresponds 
to a vertical routing channel, and an edge 1 2( )e v v= ,  represents a circuit 
block whose respective left and right boundaries are adjacent to the routing 
channels 1v  and 2v . The weight of a vertex ,v  ( ),w v  represents the 
corresponding channel width while the weight of an edge e , ( )w e , 
represents the corresponding block width. The graph VG  can be constructed 

similarly. Applying a longest-path algorithm on HG  and ,VG  we can 
obtain the respective width cW  and height cH  of the chip.  

Then, we divide the dead spaces and routing channels into tiles to 
facilitate buffer block planning. For each tile, we compute its area slack with 
respect to the longest paths in HG  and VG . For those dead spaces and 
routing channels not on the critical paths in the constraint graph HG / VG , 
we will have some positive area slacks in width/height. If there is still some 
net that needs buffer(s) to meet the timing constraint, we will pick a best tile 
for buffer insertion and then insert proper buffers into this tile. By a best tile, 
we mean that the tile with a largest positive area slack. If there is no tile with 
positive area slack, then any buffer insertion will need to shift some circuit 
block and thus increase the overall chip area. This shifting will make room 
for other tiles, so we will have some new positive-slack tiles. We choose the 
dead space or the routing channel that has the maximum buffer insertion 
demand and pick one tile in it. For the selected tile, we insert desired buffers 
into it. In case there is not sufficient space in the tile for buffer insertion, we 
will expand the corresponding routing channel to make room for the buffers. 
After the buffer insertion for the tile, we update the information of the 
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constraint graphs, feasible regions, and the chip dimension and repeat the 
buffer insertion/clustering process until all buffers are placed.  

More recently, researchers try to perform simultaneous buffer block 
planning and floorplanning to fully utilize useful dead spaces for 
performance optimization [26,59,60,85]. Jiang, et al. in [59,60] provides a 
generic paradigm along this direction. The work presents an algorithm that 
simultaneously considers floorplanning and buffer block planning. The 
method adopts simulated annealing to refine a floorplan so that buffers can 
be inserted more effectively. In each iteration, we construct a routing tree for 
each net and calculate the longest path from the source to the sink in each 
routing tree. Based on the aforementioned formulae presented in preceding 
sections, we obtain the number of buffers needed for the longest path, the 
optimal distance from the source terminal to each buffer, and the width of 
independent feasible region. After allocating buffers for all nets, we make 
buffer blocks as soft circuit blocks into the constraint graphs. These buffer 
blocks may occupy dead spaces or be inserted into routing channels. After 
all buffers for all nets are allocated, the area of each buffer block is 
determined as the bounding area of inserted buffers. We then reshape the 
floorplan by Lagrangian relaxation. Unlike the work for buffer block 
planning after floorplanning that generates buffer blocks before buffer 
assignment, in particular, this work generates buffer blocks after buffer 
assignment, and thus the area of buffer blocks can properly be controlled, 
especially for the buffer blocks in routing channels.  
 

5.2 Floorplan and Power/Ground Network Co-Synthesis 

5.2.1 Introduction 

As technology advances, the metal width decreases while the global wire 
length increases. This trend makes the resistance of the power wire increase 
substantially. Further, the threshold voltage scales nonlinearly, raising the 
ratio of the threshold voltage to the supply voltage and making the voltage 
(IR) drop in the P/G network a serious challenge in modern SOC design [78]. 
Due to the IR-drop, supply voltage in logic may not be an ideal reference. 
This effect may weaken the driving capability of logic gates, reduce circuit 
performance, slow down slew rate (and thus increase power consumption), 
and lower noise margin [111].  

Figure 51(a) shows a chip floorplan of four blocks and the P/G network. 
As shown in the figure, we refer to a pad feeding supply voltage into the 
chip as a power pad, the power line enclosing the floorplan as a core ring, a 
power line branching from a core ring into blocks inside as a power trunk, an 
intersection of a vertical and a horizontal power lines a P/G node, and a pin  
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Figure 51.  (a) An instance of floorplan and its P/G network structure. The worst-case 
voltage at the P/G pins is about 26% of the supply voltage. (b) A floorplan with smaller 

worst-case voltage drops. The worst-case voltage drop is about only 5% 

 
in a block that absorbs current (connects to a core ring or a power trunk) as 
an P/G pin. To ensure  correct and reliable logic operation, we shall 
minimize the IR drops from the power pad to the P/G pins in a P/G network. 
Figure 51(a) shows an instance of voltage drop in the power supply line, in 
which the voltage drops by almost 26% at the rightmost P/G pin. As [111] 
pointed out that 5% IR drop in supply voltage may slow down circuit 
performance by as much as 15% or more. Therefore, IR drop is a first-order 
effect and can no longer be ignored during the design process, and it is 
desired to consider the P/G network synthesis during early physical design 
(e.g., floorplanning) for reliable circuit operation. 

The problem of P/G network synthesis has been studied extensively in 
the literature. An important problem of P/G network synthesis is to use the 
minimum amount of wiring area for a P/G network under the power integrity 
constraints such as IR drops and electromigration. There are two major tasks 
for the synthesis: (1) P/G network topology determination to plan the wiring 
topology of a P/G network [20] [97], etc. and (2) P/G wire sizing to meet the 
current density and reliability constraints [28] [104].  

As the design complexity increases dramatically, it is necessary to 
handle the IR-drop problem earlier in the design cycle for better design 
convergence. Most existing commercial tools deal with the IR-drop problem 
at the post-layout stage when entire chip design is completed and detailed 
layout and current information are known. It is, however, often very difficult 
and computationally expensive to fix the P/G network synthesis at the 
post-layout stage. Therefore, researchers started to consider the P/G network 
analysis at an earlier design stage [37] [105] [111].  

Dharchoudhury et al. proposed a design flow with different modes of 
power grid analysis incorporated between stages of the design flow [37]. The 
work shows that considering power integrity analysis at an earlier stage can 
significantly improve design convergence. Yim, Bae, and Kyung in [111] 
presented an early floorplan-based P/G network planning methodology. 
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Recently, Wu and Chang proposed a power integrity-driven design 
methodology of performing P/G network analysis after floorplanning [105].  

It is very reasonable that [37], [105], and [111] can significantly improve 
design convergence. At the floorplanning stage, a prototype of the chip is 
determined and the power consumption for each block and the positions for 
blocks and P/G pins become available, making the P/G network analysis 
feasible at this stage. Furthermore, it is intrinsically more flexible to fix any 
power integrity problem at this stage than at the post-layout stage when most 
block positions and wiring are fixed. However, there is a significant 
difficulty in doing the early P/G network analysis: Traditional P/G network 
analysis methods are often very computationally expensive and are thus not 
feasible to be incorporated into the floorplanning design. To make the power 
integrity-driven design flow feasible, we need a very efficient, yet 
sufficiently accurate P/G network analysis method.  

In this section, we introduce the method presented by Liu and Chang [82] 
for floorplan and P/G network co-synthesis based on an efficient, yet 
sufficiently accurate P/G network analysis scheme for the mesh P/G 
structure and the efficient B*-tree floorplan representation [17]. We 
introduce a P/G network aware method to reduce the floorplan solution 
space and thus speed up the co-synthesis, and then integrate the co-synthesis 
step into a commercial design flow to develop an effective power integrity 
(IR-drop) driven design flow for faster design convergence.  

5.2.2 Problem definition 

The problem of floorplan and P/G network co-synthesis is formulated as 
follows: Given a floorplan of m  blocks, the number of power pads for the 
whole chip and the power consumption for each block, the objective is to 
obtain a feasible floorplan and simultaneously generate a corresponding P/G 
network that satisfies the power constraints. Before presenting the power 
integrity constraints, we introduce the notations for describing a P/G 
network used in [105]: Let { }G N B= ,  be a P/G network with n  nodes 

{1,2, , }N n= …  and b  branches {1,2, , }B b= … . Each branch i  in B  
connects two nodes: 1i  and 2i  with current flowing from 1i  to 2i . Let il  

and iw  be the length and width of branch i , respectively. Let r̂  be the 

sheet resistivity (unit Ω  per square), and iV  ( iI ) be the voltage (current) 

at node i . Then the resistance ir  of branch i  is 
1 2

ˆ( )i i i i i ir V V I rl w= − / = / . 
At the early stage power analysis, we need a fast analysis for the P/G 
network. For this reason, a sophisticated model for the P/G network is often 
too time-consuming and thus infeasible for the co-synthesis. In this section, 
we use the resistive model for P/G networks and the static current source 
model. We consider the power integrity constraints as follows:  
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• The IR-drop constraints:   
For every P/G pin ,i  its corresponding voltage iV  must satisfy the 
following constraints:   

i min kV V ,≥  for each power pin i  of block ,k   

i max kV V ,≤  for each ground pin i  of block ,k   

where ( )min k max kV V, ,  is the minimum (maximum) voltage required 

at the injection point of a P/G network for block k .  
• The minimum width constraints:  

The width of a P/G line must be greater than the minimum width 
allowed in the given technology. The constraint is given by  

 

 
1 2

ˆ i i
i i min

i i

rl Iw w
V V ,= ≥ ,

−
 (30) 

 
where i minw ,  is the given constraint.  

• The electromigration constraints:   
 

1 2
ˆi i iV V rlσ| − |≤  (i.e., i iI w σ/ ≤ ), for each i B∈    

 
where σ  is a constant for a particular routing layer with a fixed 
thickness.  

 

5.2.3 The co-synthesis flow 

In this section, we describe the floorplan and power/ground network 
co-synthesis flow proposed by Liu and Chang [82], which is illustrated in 
Figure 52. The netlist is the circuit generated in high-level synthesis. It 
partitions the circuit into hard blocks (hard macros) and soft blocks (groups 
of standard cells). The P/G network and floorplan co-synthesis generates a 
P/G network and a floorplan that satisfy all power integrity constraints.  

With a feasible floorplan, it performs placement and routing which 
include detailed placement, P/G routing, clock tree synthesis, and detailed 
routing. Finally, the final P/G network is analyzed, and simulation is 
performed to check the correctness of the final design.  

5.2.4 Floorplan and P/G network co-synthesis 

In this section, we introduce the floorplan and P/G network co-synthesis 
algorithm. The floorplanning algorithm adopts the B*-tree floorplan  
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Figure 52.  The floorplan and power/ground network co-synthesis flow 

 
representation [17] and uses simulated annealing (SA). The SA algorithm 
requires a cost function to guide the optimization. To perform power 
integrity driven floorplanning, it adds a penalty for violating the power 
integrity constraints and the P/G mesh density cost in the cost function as 
follows:  

 2
pitch

AW A
D

α β γ ωΨ = + + Φ + ,  (31) 

      0 1 1α β γ ω α β γ ω< , , , < , + + + = ,  
 
where W  is the wirelength, A  is the area, Φ  is the penalty function of 
power integrity violations and pitchD  is the pitch of the P/G mesh which will 

be discussed in later sections, and ,α  ,β  ,γ  and ω  are weighting 
parameters. The term 2

pitchA D/  is the density cost of the P/G mesh which 
affects the routing resource. The cost function is calculated after packing a 
B*-tree to obtain a corresponding floorplan. To obtain the penalty function of 
power integrity violations, we first generate a P/G mesh for the floorplan and 
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then evaluate the P/G mesh. In the following sections, we discuss the P/G mesh 
generation and the evaluation method.  

A: P/G Mesh Generation   

In order to evaluate the performance of the actual P/G network of a floorplan 
at the floorplanning stage, it generates a conceptual P/G network for the 
floorplan. We use the mesh structure for the P/G network, since it is widely 
used in modern VLSI chips to reduce the IR-drop effects. By specifying the 
pitch of the power lines, it can determine the dimension of the P/G mesh. A 
uniform mesh can then be generated easily by evenly distributing the power 
lines. Figure 53(a) shows a uniform mesh.  

The pitch pitchD  of the P/G mesh is determined during the SA process 
and depends on the average value of the P/G network penalty function Φ . 
We will detail the determination of pitchD  later.   
 

 
Figure 53.  (a) A uniform P/G mesh. (b) A floorplan with a P/G mesh divided into regions 

 
The complexity of the P/G mesh analysis mainly depends on the number 

of nodes of the mesh. To reduce the complexity, it makes a reasonable 
approximation by attaching all current sources to the intersection nodes of 
the vertical and horizontal power lines. That is, every P/G pin is connected 
to its nearest node with a power strap, and the length of the strap is the 
Manhattan distance between the P/G pin and the node. For convenience, it 
divides the floorplan into n  regions, where n  is the number of the nodes. 
The divided floorplan is illustrated in Figure 53(b). The border line of two 
regions is the center line between the two nodes such that the node is the 
nearest one for any point in the region.  
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B: Macro Current Source Modelling   

In [74], it is shown that the result of static P/G analysis can be an upper 
bound for that of dynamic analysis by using the peak current. Therefore, 
they consider static analysis using constant current sources with the 
maximum current. We introduce how to estimate the maximum current 
consumption of hard and soft blocks. For hard blocks, it connects a P/G pin 
to the corresponding (center) node of the region where the pin is located, and 
the pin absorbs the estimated maximum current consumed by the pin, which 
is obtained by the pattern-based power simulation. At the floorplanning 
stage, it does not have the exact placement of the standard cells in the soft 
block. For soft blocks, therefore, its current model is based on the worst-case 
scenario. It uses the maximum possible current function, ()maxI , to 

determine the current assigned to the nodes. The definition of ( ),max rI A k,  
the maximum possible current in the specified region of the soft block k  
with size rA , is as follows:  
 

 
( )

( ) max ( )
r

n

max r cS A k i S

I A k I i
,

∀ ∈

⎛ ⎞
, = ,⎜ ⎟

⎝ ⎠
∑  (32) 

 
where ( )rS A k,  is the set of sets of standard cells in the soft block ,k  such 

that for each set ( ),n rS S A k∈ ,  ( )
n

ri S
A i

∀ ∈∑  rA≤  ( ( )rA i  is the area of 

the standard cell i ) and ( )cI i  is the maximum estimated current drawn by 

the cell i . The problem of solving ()maxI  can be formulated as a 0-1 
knapsack problem [36]: The area is the total weight that one can carry, the 
area of a cell is the weight of an item, and the current drawn by the cell is the 
value of the item. The goal is to take as valuable a load as possible while the 
total weight of items does not exceed a given total weight constraint. Since the 
0-1 knapsack problem is NP-complete [36], it is computationally expensive to 
solve the problem exactly. Therefore, they resort to an approximation by 
assuming that each standard cell can be divided freely. Then the maximum 
possible current can be approximated efficiently in linear time using the 
fractional knapsack algorithm [36]. As Figure 54 illustrates, for the soft block 
k  overlapping with the region ,n  ( ( ) )max ovI A n k k, ,  amount of current is 

assigned to the node ,n  where ( )ovA n k,  is the amount of the area k  
overlapping with .n  Taking the node n  as an example, its region (region n) 
contains two pins of the block A  and three pins of the block .B  Assume 
that the gray area is equal to the total area of 10 cells. Thus, there are 10 cells  
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Figure 54.  An example of the P/G analysis. The dashed lines denote the boundaries of the 

regions, and the gray area denotes the overlap of the soft block k  and the region .n  Each 
pin in the block A  absorbs 0 3A.  current and each pin in the block B  absorbs 0 5A.  

current. The soft block k  contains 30  standard cells of the same size. The largest 
current-consuming cell draws 30mA  current, the second one draws 29mA  current, and 

so on. Therefore the smallest cell draws 1mA  current 
 
with from 30 mA to 21 mA current of the block k  being attached to node 

.n  Therefore, the current source attached to the node n  consumes 
0 3 2 0 5 (0 03 0 021) 10 2 1 355A. × + . + . + . × / = .  current.  

Since the external voltage supply is typically connected to the ring, all 
voltage sources are assigned to the nodes on the ring. Then, the number of 
voltage supplies and the maximum current per supply node depend on the 
power budget of the design.  

C: P/G Networks Analysis   

After the P/G network is generated, it analyzes the P/G mesh with the 
floorplan. Traditional analysis for a complete and accurate P/G network is 
very computationally expensive and unaffordable for integrating with 
floorplanning. The objective for floorplan and P/G network co-synthesis is 
to derive an efficient scheme for the P/G network analysis based on the 
technology information available at the floorplanning stage. They apply 
the resistive P/G network model [81] and use the maximum current drawn 
by the blocks for static P/G network analysis. As the P/G mesh example 
shown in Figure 55, the chip is composed of four blocks. The P/G wires 
are modelled as resistors. A P/G pin in a hard block is modelled as a 
current source.   
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Figure 55.  A global power mesh and its equivalent circuit model 

 
The static analysis of a P/G network is formulated as follows [81]:  
 
 = ,Gx i  (33) 
 
where G is the conductance matrix for the resistor, x is the vector of node 
voltages, and i is the vector of current loads. The dimensions of i and x are 
equal to the number of nodes in the P/G network, and G is a sparse positive 
definite matrix for a general resistor network.  

They solve Equation (36) efficiently by using an iterative method for the 
sparse matrix such as the preconditioned conjugated gradient method and/or 
other Krylov subspace methods [47]. The time complexity of solving the 
equation is ( )O n , where n  is the number of the nodes in the mesh. As 
mentioned in the preceding section, we reduce the number of nodes by an 
approximation presented in the preceding subsection. Thus the number n  is 
within a tractable range.  

Once the voltage of each node is obtained, they estimate the voltage at each 
P/G pin based on the voltage of the closest (connected) node and the distance 
of the P/G pin. For a hard block, the voltage of a P/G pin is estimated by the 
voltage of the closest node minus the largest possible voltage drop over the 
strap connecting the node and the pin. For a P/G pin j  and its corresponding 
node i , the estimation is given by  
 

 ˆ ˆmax ij ij
j i j h v

hstrap vstrap

Dx Dy
V V I r r

w w
⎛ ⎞

= − , ,⎜ ⎟⎜ ⎟
⎝ ⎠

 (34) 

 

where v̂r  and ĥr  are the respective sheet resistivity of the vertical and 
horizontal metal layers, hstrapw  and vstrapw  are the widths of the respective 

vertical and horizontal straps, ijDx  and ijDy  are the respective vertical and 
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horizontal distances between pin j  and node i . For example, the left pin of 
the block B  in Figure 54 is estimated by the voltage of the node n , which 
is 1.78 V. The current consumption of the pin is 0 5A. , the horizontal sheet 
resistivity is 5mΩ/ unit square, the vertical sheet resistivity is 4mΩ/ unit 
square, the respective vertical and horizontal distances from the pin to the 
node n  are 5 m  and 3 m,  and  the  width of a strap is 1 m . The estimated

 voltage of the pin is  5 3
1 11 78 0 5 max (0 005 0 004 ) 1 77V. − . × . × , . × = . .

 
For

 a soft block, they  use the distance  between the center of the overlapping
 area and the node as the  length of the strap. The voltage is estimated by the
 lowest supply voltage of the soft  block k (a block may  be attached to more
 than one node) as follows:  
 

 ˆ ˆmin max
ov

ik ik
k i k i h vS

hstrap vstrap

Dx DyV V I r r
w w,

⎛ ⎞⎛ ⎞
= − , ,⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (35) 

where ovS  is the set of nodes responsible for the soft block k , k iI ,  is the 

current supplied by node ,i  and ikDx  and ikDy  are the respective 
horizontal and vertical distances between the node i  and the center of the 
overlapped area. Again let us take the node n  in  Figure 54  as  an

 example.
 

The vertical and horizontal distances between the center
 of the gray area and the  node n  are 6 mμ  and 0 ,μ  respectively.

 The  estimated  voltage  of  the block k  with respect to the node  n is 
10 6
2 11 78 ((0 03 0 021) ) 0 004 1 774V. − . + . × × . × = . . Assume that this is the 

lowest voltage among all the estimated voltages calculated from all regions 
overlapped with the block k . Thus, the estimated voltage of the block k  
is 1 774V. . Now it can verify the power integrity constraints. The IR-drop 
constraints is verified by checking the IR drop of each P/G pin, and the 
electromigration constraints can be verified by checking the current flowing 
through every branch of the P/G mesh.  

Now we can derive Φ , the penalty function of power integrity 
violations. The function Φ  is given as follows:  
 

 
| | (1 ) 0 1
| |

ii v

ii

pvpv Pem

lim pp P

vB
B V

θ θ θ∀ ∈

,∀ ∈

Φ = + − , < < ,
∑
∑

 (36) 

 
where θ  is a weighting parameter, emB  is the set of branches violating 
electromigration constraints, B  is the total branches of the P/G mesh, 

ipvv  

μ μ μ
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is the amount of the violation at the pin ipv , P  is the set of all P/G pins, 

vP  is the set of violating P/G pins, and 
ilim pV ,  is the IR-drop constraint of 

the P/G pin ip  (
imin pVdd V ,−  for a power pin and 

imax pV ,  for a ground 
pin). The first part of the right-hand side denotes the ratio of branches 
violating the electromigration constraints over total branches, and the second 
part denotes the ratio of the amount of IR-drop violation over the total 
amount of possible violations. The denominators are for the penalty 
normalization.  

D: P/G Network Co-synthesis Heuristic   

According to their experience, if the pitch is carefully chosen, the algorithm can 
find desired floorplans with very few constraint violations at high temperatures 
and continue to optimize wirelength and area at lower temperatures, leading to 
high-quality floorplan solutions. Note that IR drop and the current per branch 
decrease as the density of the mesh increases; therefore, the P/G violation 
penalty Φ  can be reduced by increasing the density of the mesh. Since the 
density of a P/G mesh is proportional to 2

pitchA D/ , we can control pitchD  

instead of the density for convenience. By controlling pitchD  during the SA 
process, it can obtain desired floorplan solutions. It updates the P/G mesh pitch 

pitchD  at each temperature by multiplying ik , which is defined as follows:  
 

 
ˆ

i
avg i

k
,

Φ
= ,
Φ

 (37) 

 
where avg i,Φ  is the average of Φ  at the temperature of the i th iteration 

during the SA process, and Φ̂  is expected average of Φ , which a 
user-specified parameter. The floorplans generated at the same temperature 
form a solution sub-space. Specifying Φ̂ , it can control the average Φ  of 
the solution sub-space and statistically control the proportion of the feasible 
solutions in the solution sub-space.  

E: Feasible B*-trees with Power Mesh Constraints   

They study the properties of the B*-tree with the P/G network considerations 
and develop techniques to reduce the solution space to speed up the search 
for desired floorplans. Finding the best positions of blocks to optimize the 
P/G mesh is a very complex problem. Their idea is motivated by the linear 
circuit theory: the IR drop of a P/G pin is proportional to the effective 
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resistance between the P/G pin and the power pad. Therefore, the closer the 
P/G pin is placed to the power pad, the smaller IR drop we can get. Based on 
this fact, it places the blocks which consume larger current near the 
boundary of the floorplan, and then place power pads close to them. To 
implement this idea, they sort the blocks by their power consumption and 
cluster the leading blocks, which are called power-hungry blocks to form 
groups. In their implementation, they chose 10%  of total blocks to be 
power-hungry blocks. The size of a group depends on the total size of the 
member blocks, which is a user specified parameter. Note that each group 
should contain at least one block. These groups are referred to as 
power-hungry groups. Each power-hungry group is assigned with a power 
pad and the number of the groups equals the number of available power pads. 
In order to reduce the IR drops of power-hungry groups, it prefers to place 
the blocks in the power-hungry groups along the boundary of the floorplan 
And it will place each pad next to a power-hungry group.  

There are two goals for the floorplan and power/ground network 
co-synthesis: (1) place power-hungry groups along the chip boundary, and (2) 
maintain all the power-hungry blocks in power-hungry groups, which can be 
accomplished by careful perturbations and will be discussed later. For the 
first goal, we should identify the boundary blocks of the floorplan. Now we 
explore the feasibility conditions of the B*-tree to search for desired 
floorplan solutions. Let the boundary ring Fϒ  ( Tϒ ) of the floorplan F  
(the B*-tree T ) be the ordered list of the boundary blocks in F  (T ) (say, 
in the counter-clockwise sequence starting from the block at the bottom-left 
corner). For example, 0 1 2 5 6 9 8 7 3F m m m m m m m m mϒ =< , , , , , , , , >  

( 0 1 2T n n nϒ =< , , ,  5 6 9 8 7 3n n n n n n, , , , , > ) in the floorplan F  (the B*-tree 
T ) of Figure 56. Notice that by the name “ring”, the succeeding element of 
the last element in the “list” can be treated as the first element of the list. 
For the example of Figure 56, 0m  ( 0n ) is the succeeding element of 3m  
( 3n ). We shall make all blocks of the power groups belong to the blocks in 
the boundary ring such that the blocks of the same power group are placed in 
the order according to the boundary “ring.”  

Extending the findings in [79] by Lin et al., they identify the blocks in 
the boundary ring based on the feasibility conditions of B*-trees for 
boundary blocks. Let the root of the B*-tree T  be r , the DFS order of the 
tree traversal on the leftmost and the bottom-left branches of T  be TL , and 
the DFS order of the tree traversal on the rightmost and the bottom-right 
branches of T  be TR . Let the reverse of a sequence L  be rL . Then, we 

have r
T T TL Rϒ = ⊕ . Here, “⊕ ” denotes the concatenation operation of two 

lists.  
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Figure 56.  Boundary blocks and their corresponding B*-tree branches 

 
Theorem 6  (Boundary Ring) r

T T TL Rϒ = ⊕ .  
 
According to Theorem 6, we shall make the nodes corresponding to the 
blocks of a power-hungry group in the boundary ring Tϒ . In other words, it 

prefers to make those nodes a sublist of the ring Tϒ  during the perturbation 
in simulated annealing. As shown in the example of Figure 57, the power 
group { 0 1 3}m m m, ,  ({ 6 8 9}m m m, , ) is placed on the left and the bottom 
(the right and the top) boundaries close to the bottom-left (top-right) corner, 
and they are adjacent blocks in the ring Fϒ . A floorplan is said to be 
 

 
Figure 57. An example of a power-feasible floorplan with two power groups: { 6 8 9}m m m, ,  

and { 0 1 3}m m m, , . The desired power pad locations are encircled by the dashed lines 
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power-feasible if the power-hungry blocks in each power-hungry group 
are blocks in the desired locations of the boundary ring. Therefore, it is 
desirable to keep a power-feasible floorplan during solution perturbation to 
achieve the second goal of the co-synthesis.   
While perturbing the tree, the power-feasibility of the B*-tree is maintained. 
The operations to perturb a B*-tree [17] with the IR-drop consideration are 
listed as follows:  

• Op1: Rotate a block.  
• Op2: Swap two blocks in the power-hungry groups or not in any 

power-hungry group.  
• Op3: Move a block to another place that maintains power-feasibility.  

Op1 only exchanges the width and height of a block without changing the 
B*-tree topology while Op2 and Op3 do. Therefore, in order to maintain the 
power-feasibility, it only swaps two blocks in power-hungry groups or not in 
any power-hungry group for Op2, and move a block to another place that 
maintains power-feasibility for Op3. Otherwise, it might need to transform 
the B*-tree to maintain the power-feasibility.  

F: The Co-Synthesis Algorithm   

Figure 58 summarizes the floorplaning algorithm. Given inputs of the block 
information, initial P/G pitch pitchD , and power integrity constraints, it starts 
with the simulated annealing process (see lines 2–24). At the beginning of 
simulated annealing, it randomly explores the solution space to get an 
average cost to normalize each objective in the cost function (line 3). Then it 
gets an initial solution and an initial temperature (lines 4–6) and launches the 
simulated annealing process. At each temperature, it anneals for N  times, 
where N  is a number proportional to the number of blocks (line 8). After 
each perturbation (line 9), it computes the coordinates of all blocks and 
constructs a P/G mesh (lines 10–11). Then it calculates the voltage of each 
node of the mesh by solving Equation (33) using their linear solver and 
estimates the IR drop of each P/G pin by Equations (34) and (35) (lines 
12–13). Then it calculates the P/G mesh penalty function Φ  and 
accumulates it for the average bookkeeping (line 14). Next it updates the 
cost function by Equation (31) and checks if the floorplan is accepted with 
the probability Te

−ΔΨ

 (lines 15–20). If the current floorplan S  has a lower 
cost than the best floorplan bestS  found so far, S  is chosen as the best 
floorplan (line 20). Next, it calculates avg i,Φ  and ik , and then updates the 

mesh pitch pitchD  by i pitchk D  to co-synthesize the P/G mesh (lines 21–22).  
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Figure 58.  The P/G network and floorplan co-synthesis algorithm 

 
At the end of the SA loop, it decreases the temperature T  by multiplying a 
constant r  (line 23).  

6. CONCLUSION 

We have introduced the state-of-the-art design algorithms and frameworks 
for the three major physical design steps: floorplanning, placement, and 
routing considering the impacts arising from modern SOC designs. With the 
breathtaking speed in which the design complexity increases, hierarchical 
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and multilevel frameworks are essential to handle the very large-scale SOC 
design and optimization. The traditional hierarchical framework can scale 
very well to large-scale design, but it may lose the global view for circuit 
optimization because of its lack of interactions among subregions after 
partitioning. Special treatments are needed to deal with the optimization of 
global circuit effects. Two types of multilevel frameworks, the Λ - and 
V -shaped frameworks, have recently been studied in the literature. Both are 
based on two-stage techniques. The Λ -shaped framework adopts bottom-up 
coarsening followed by top-down uncoarsening, while the V -shaped 
framework proceeds with top-down uncoarsening and followed by 
bottom-up coarsening. Since the V -shaped framework processes global 
circuit regions first, it tends to obtain better solutions for those with global 
effects such as wirelength, timing, and crosstalk. In contrast, the Λ -shaped 
framework tends to achieve better solutions for local effects such as area 
optimization.  

We have also introduced the interconnect-driven and signal/power 
integrity aware design methodologies for modern SOC designs to improve 
design convergence. When the complexity for interconnect and 
power/ground network designs grow drastically, it is often too late to 
perform aggressive interconnect and power/ground network optimization 
during or after routing since most silicon and routing resources are occupied. 
Therefore, it is desirable to optimize interconnect and power/ground network 
earlier at the flooprlanning/post-floorplanning stage. With the complexity 
continuing to grow for SOC design, we expect that more and more circuit 
effects will need to be handled earlier for fast design convergence.  

With the continued increase of on-chip packing density and the continued 
shrinking of component feature sizes due to the nanometer IC technologies, 
some other issues such as thermal, reliability (antenna effect, electrostatic 
discharge, electro-migration, etc.), manufacturability (optical proximity effect, 
phase-shift mask, metal fill, etc.), and yield (redundant via, process variation, 
etc.) will soon become first-order effects for SOC design, as comparably 
important as the traditional design metrics—timing, power, signal/power 
integrity, and area. These effects have imposed tremendous challenges and 
opened many research opportunities to modern physical design.  
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