
Youn-Long Steve Lin
Editor

Essential Issues
in SOC Design

Designing Complex
Systems-on-Chip

Essential Issues in SOC Design

Essential Issues
in SOC Design
Designing Complex Systems-on-Chip

Edited by

SteveYoun-Long Lin
National Tsing Hua University, Taiwan

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-5351-7 (HB)
ISBN-13 978-1-4020-5351-1 (HB)
ISBN-10 1-4020-5352-5 (e-book)
ISBN-13 978-1-4020-5352-8 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved
© 2006 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

v

Table of Contents

Contributing Authors vii

Chapter 1
Essential Issues in System-on-a-Chip Design
Youn-Long Lin 1

Chapter 2

A SOC Controller for Digital Still Camera
Jiing-Yuang Lin, Chien-Liang Chen and Youn-Long Lin 7

Chapter 3

Multimedia IP Development – Image and Video Codecs
Liang-Gee Chen, Chung-Jr Lian, Ching-Yeh Chen,
and Tung-Chien Chen 19

Chapter 4

SoC Memory System Design
Kun-Bin Lee and Tian-Sheuan Chang 73

Chapter 5

Embedded Software
Tai-Yi Huang, Shiao-Li Tsao, Le-Chun Wu,
Edward T.-H Chu, and Ko-Yun Liu 119

Chapter 6

Energy Management Techniques for SOC Design
Hiroto Yasuura, Tohru Ishihara and Masanori Muroyama 177

Chapter 7

SoC Prototyping and Verification
Moo-Kyoung Chung, Young-Il Kim, Jae-Gon Lee,
Wooseung Yang, Ando Ki, and Chong-Min Kyung 225

Chapter 8

SoC Testing and Design for Testability
Cheng-Wen Wu and Chih-Tsun Huang 265

Chapter 9

Physical Design for System-on-a-Chip
Yao-Wen Chang, Tung-Chieh Chen and Huang-Yu Chen 311

vii

Contributing Authors

Tian-Sheuan Chang, National Chiao-Tung University
Yao-Wen Chang, National Taiwan University
Chien-Liang Chen, Global UniChip Corp.
Ching-Yeh Chen, National Taiwan University
Huang-Yu Chen, National Taiwan University
Liang-Gee Chen, National Taiwan University
Tung-Chieh Chen, National Taiwan University
Edward T.-H Chu, National Tsing Hua University
Moo-Kyoung Chung, Korea Advanced Institute of Science and Technology
Chih-Tsun Huang, National Tsing Hua University
Tai-Yi Huang, National Tsing Hua University
Tohru Ishihara, Kyushu University
Ando Ki, Dynalith Systems Co., Ltd.
Young-Il Kim, Dynalith Systems Co., Ltd.
Chong-Min Kyung, Korea Advanced Institute of Science and Technology
Jae-Gon Lee, Korea Advanced Institute of Technology
Kun-Bin Lee, Mediatek Inc.
Chung-Jr Lian, National Taiwan University
Jiing-Yuang Lin, Global UniChip Corp.
Youn-Long Lin, National Tsing Hua University
Ko-Yun Liu, National Tsing Hua University
Masanori Muroyama, Kyushu University
Shiao-Li Tsao, National Chiao-Tung University
Cheng-Wen Wu, National Tsing Hua University
Le-Chun Wu, National Taiwan University
Wooseung Yang, Dynalith Systems Co., Ltd.
Hiroto Yasuura, Kyushu University

1

Chapter 1

ESSENTIAL ISSUES IN SYSTEM-ON-A-CHIP
DESIGN

Youn-Long Lin
Department of Computer Science, National Tsing Hua University, Hsin-Chu, TAIWAN

Abstract: Due to advance in semiconductor manufacturing technology, integration of
whole electronics system on a single chip is feasible. Starting with baseline
CMOS logic, semiconductor wafer manufacturers have gradually added to
their portfolio embedded memory (SRAM, OPT, Flash), mixed signal devices,
RF devices, and even MEMS. Because it offers many advantages over
traditional multiple-chip solutions, system-on-a-chip (SOC) has drawn great
attention from both academia and industry. We expect an SOC solution to be
smaller, less expense, more energy efficient, more reliable, etc. However,
designing an SOC for successful mass production is much more complicated
than that of traditional simpler logic, memory, or analog chips. This chapter
outlines some important issues that face an SOC design team and give brief
introduction to each chapter of this book

`

Keywords: System-On-a-Chip, SOC Design Foundry, Multimedia SOC

1. INTRODUCTION

Since the integrated circuit was invented in 1958, the number of devices that
can be massively-produced on a chip has been increased following the
Moore’s Law, that is, the number of transistors on a chip doubles every
18 months or so. In the old days when a chip contains only smaller number
of transistors, an electronics system consists of a large number of chips
housed in many printed-circuit boards which in turn are put into a cabinet.
Hence, we can call them system-on-boards. Nowadays, semiconductor

S.Y.-L . Lin (ed.), Essential Issues in SOC Design, 1–5.
© 2006 Springer.

2 Lin

manufacturing process can give us a billion-transistor chip for a few US
dollars. This makes possible applications that were previously either
impossible or unaffordable.

Ever increasing computational demand from the application side and very
deep submicron semiconductor processing from the technology side together
make system-on-chip (SOC) reality and necessary.

To design an SOC for successful mass production, we have to coupe with
many technical and management issues. Here we focus on the technical
aspect.

Let’s begin with what constitute an SOC. Like a typical electronics
system, an SOC consists of processing elements, I/O devices, storage
elements and interconnection structure linking all of them together.

Processing elements could be processors that run embedded software or
functional-specific hardware accelerators. There are two popular processor
categories: microprocessor for control and management function, and digital
signal processor (DSP) for signal processing-specific function. Recently,
there are academic and industrial efforts in the so called Application-
Specific Instruction set Processor (ASIP), which allows instruction set
extension by the users according to the target applications. It is quite
common that multiple types and multiple instances of processors are used in
a single SOC project. For example, in the TI-OMAP SOC, an ARM
microprocessor and a TI DSP core co-exist.

When a software approach cannot deliver adequate performance for an
application, we turn to dedicated hardware blocks. Typical accelerators
include JPEG image Codec, MPEG-4 Video Codec, Viterbi Decoder, Turbo
Code Decoder, AES Encryption/Decryption engines, etc.

To communicate with outside, an SOC usually consists of many types of
standard I/O devices. Commonly found I/O IPs include Ethernet MAC and
Phy, USB1.1/2.0 Device Controller and Phy, other high-speed serial links
such as LVDS (Low Voltage Differential Signaling), Audio/Video Output,
Memory Controller, etc.

Both internal and external memories are important to SOC. A typical SOC
utilizes hundreds of internal memory blocks. They may be SRAM, ROM,
Flash or OTP (One-Time Programmable). Their configurations in terms of
number of words, word length, number of read/write access ports, and access
speed are all tailor made to fit the applications.

When a memory block is too large to be effectively made on chip, we
usually put it off-chip and integrate it with the SOC using a system-in-
package (SiP) solution. Commonly used external memory includes
DRAM and Non-Volatile Flash Memory. Very often we will find an SiP
packed in an SDRAM or DDR-II die. Therefore, the SOC has to include
memory controller for SDRAM, DDR, SD Card, MMC Card, Compact
Flash, etc.

Essential Issues in System-on-a-Chip Design 3

With all components available, we need a communication structure to
put them all together. This is called on-chip-communication or on-chip-
bus. Just like the PCI-bus of the PC system allows easy plug-and-play of
memory cards, graphics cards, etc, the SOC community has proposed
several on-chip-bus standards. One of the most popular bus architecture
is the Advanced Microprocessor Bus Architecture (AMBA) by
ARM.

As on-chip communication traffic exponentially increases and deep
submicron effect makes transferring signals difficult in single cycle,
researchers have proposed Network-on-Chip (NoC) communication
architecture to cope with the problem. An NoC brings the computer
networking technology (i.e., packet routing) to the SOC in order to simplify
the design and management of communication among IPs in an SOC.

To design a complex SOC, we have to deal with the following essential
issues: (1) Availability of components, (2) System integration and
verification, and (3) Physical implementation.

Components used in an SOC are also called silicon intellectual property
(IP). The SOC development team has to decide on which IP to use or design.
There are many IP vendors each serving some segments of the IP market.
For processor IP, software compatibility must be taken into account. For
memory and I/O IPs, whether they have mass-production record is the main
concern.

In case there are not suitable, ready to use IPs, we have to modify an
existing one or develop a new one. Longer turn-around time, higher risk, and
greater resource needs must be taken into account.

After we put all components together into a system, we have to verify its
functional and timing correctness. In the old days when the chip was small,
we usually relied on simulation tools for verification. However, for complex
SOC which have high gate count and longer simulation pattern, simulation
alone cannot give us sufficient confidence level. Moreover, as processors are
integrated, we have to perform software/hardware co-verification down to
cycle-accurate level. To cope with this challenge, emulation based
prototyping is needed.

Physical implementation of SOC is also more difficult than that of traditional
ASIC. Complex SOCs are usually targeted towards advanced nanometer
technology (90nm and below). As feature size shrinks, process variation
becomes relatively significant. Variation-aware analysis and optimization of
timing and power consumption must be introduced into the implementation
flow. Design for manufacturability consideration becomes a must.

In the case where system-in-package is chosen, chip and package co-
design is inevitable.

After an SOC is tape-out, the design team should work closely with the
testing team and the processing engineers to enhance the yield.

4 Lin

2. BOOK OVERVIEW

This book brings together experts from different research areas to present
their knowledge in various topics related to SOC design. We hope that they
have pointed to possible solutions and research directions for those who are
either designing SOCs or are considering entering the field.

Chapter 2 describes “An SOC Controller for Digital Still Camera.” This is
a real industrial case. The authors present their experience in defining
specification with system house, taking IP from third parties, integrating the
SOC and, finally, ramping up for mass production of millions of units.

Chapter 3 presents “Multimedia IP Development – Image and Video
Codec.” The authors describe their academic experience in developing JPEG,
JPEG2000 and MPEG4 codec IPs that find their ways into industrial
applications.

Chapter 4 deals with “SOC Memory System Design.” Memory will
account for majority of silicon area in most SOCs. There is trade-off
between memory usage and memory traffic. Careful algorithm and
architecture designs will gain significantly in terms of area, performance and
power consumption.

Chapter 5 describes “Embedded Software.” Contemporary SOCs all
contain one or more microprocessors and DSPs. Both system software and
application software are important. Unlike traditional PC-based software,
embedded software must have small foot-print and consume less power.
Moreover, their interaction with hardware devices and hardware accelerators
is more closely coupled.

Chapter 6 presents “Energy Management Techniques for SOC Design.”
Since most SOC solutions are for portable devices, which have limited
battery life, power efficiency is a major concern. It is well known that the
power of a circuit is linearly proportional to the frequency and quadratic
proportional to the supply voltage. Depending on the characteristics of
applications, we can run circuits at various clock rates to just meet the
deadline. Consequently, slow circuit needs only small supply voltage.
Dynamically scheduling the frequency and voltage will result in significant
energy saving.

Chapter 7 describes “SOC Prototyping and Verification.” It takes a long
time and huge costs to get a complex SOC manufactured. We cannot afford
to make any mistakes during the design process. Complete verification of
functionality and timing is a must for any SOC project. To speed up the
verification process, prototyping is a popular approach. This chapter presents
an industrial strength verification strategy.

Chapter 8 deals with “SOC Testing and Design for Testability.” Testing is
the key to a high quality product. In a complex SOC, we should be able to

Essential Issues in System-on-a-Chip Design 5

test every IP in the shortest possible test application time. Therefore, test
integration and scheduling are important issues. Moreover, design for
testability enhancement is also a common practice. For example, memory
BIST has to be inserted into every memory macros.

Chapter 9 describes “Physical Design for SOC.” In the nanometer
semiconductor manufacturing process, chip complexity and process
variation together make physical implementation challenging. High
complexity calls for hierarchical divide-and-conquer approach, while
process variation calls for statistical-based analysis and optimization. A chip
should be laid out such that it is manufacturable (i.e., high yield). Therefore,
physical design should be aware of a mask making process and the
manufacturing process.

7

Chapter 2

A SOC CONTROLLER
FOR DIGITAL STILL CAMERA

Jiing-Yuang Lin,* Chien-Liang Chen,* and Youn-Long Lin**
*Global UniChip Corp., Hsin-Chu, TAIWAN

 ** Department of Computer Science, National Tsing Hua University, Hsin-Chu, TAIWAN

Abstract: We present our experience of designing a single-chip multimedia SOC for
advanced digital still camera from specification all the way to mass production.
The process involves collaboration with camera system designer, IP vendors,
EDA vendors, silicon wafer foundry, package & testing houses, and camera
maker. We also co-work with academic research groups to develop a JPEG
codec IP and memory BIST and SOC testing methodology. In this presentation,
we cover the problems encountered, our solutions, and lessons learned. This
case study shows the feasibility of expanding semiconductor wafer foundry
service to electronics manufacturing service (EMS) providers who in general
have very limited IC design capability/experience. We also point out possible
directions for future research

Keywords: System-On-a-Chip, SOC Design Foundry, Multimedia SOC, Silicon
Intellectual Property, Design for Manufacturability

1. INTRODUCTION

Ever increasing computational demand from the application side and very
deep submicron semiconductor processing from the technology side together
make system-on-chip (SOC) reality and necessary. Makers of such
electronics systems as PDA, cellular phone handsets, digital still camera,
portal music player, etc., need Application-Specific Integrated Circuits
(ASIC) solutions in order to differentiate themselves from the competition,

Lin (ed.), Essential Issues in SOC Design, 7–17.
© 2006 Springer.

S.Y.-L .

8 Lin, Chen and Lin

to increase product value, and to reduce cost. On the other hand,
semiconductor wafer foundry has to expand its service scope from wafer
manufacturing to mask tooling, cell & I/O library, memory compiler, and up
to silicon intellectual properties (IP) such as Phase-Lock Loop (PLL),
Digital-to-Analog Converter (DAC), and Analog-to-Digital Converter
(ADC). Therefore, there is a need to bridge the gap between electronic
system houses and wafer foundry. We call such company SOC design
service provider.

An SOC design service provider takes as its inputs from the electronics
system house a specification or partially-designed prototype and delivers to its
customer layout database in GDSII format ready for manufacturing as depicted
in Figure 1. It is also called a fabless ASIC vendor if packaged and tested chips
are delivered instead. Close collaboration is needed among all parties in order to
successfully bring a competitive product to the market in time.

Figure 1. SOC design foundry

System houses are also called Electronics Manufacturing Service (EMS)
as they do design and manufacture but they do not sell products under their
own brands. Instead, their customers are those brand-name companies.
Presently, almost all IT products including PC, Notebook, cellular phone,
PDA, digital camera, music player, etc., are all operated under this business
model. EMS usually does not have IC design capability. Instead, they buy
chips from IC design houses and differentiate from one another in system
board level design and software. As chip integration level increase, the room
for differentiation in the board level shrinks. Therefore, it is natural for them
to search for their own chip solutions (ASIC). As EMS usually command
huge volume in the order of tens of millions units per year, it is reasonable

Chip

Spec
SOC
Design
Foundry

System
Houses

IP
Vendors

Wafer
Foundry

IP
Lib

A Soc Controller for Digital Still Camera 9

and economically feasible for spinning their own chips. However, chip
design is not their core business. Hence, partnership with a chip design
service provider becomes essential to an EMS’s competitiveness.

In the semiconductor manufacturing side, the industry is divided into three
segments: wafer foundry, packaging and testing houses. In the past, a
semiconductor wafer foundry takes GDSII layout database from its customer
and delivers manufactured wafers. As technology advances and design
complexity grows, more and more customers cannot afford expensive
infrastructure and investment required to produce GDSII in house. Wafer
foundry can expand its reach of service to those who cannot submit GDSII
by teaming up with an SOC design service provider.

For package and testing houses, it is beneficial to co-work with a design
service provider too. It is already well known that design for testability is
commonly accepted practice. Presently, heterogeneous integration of logic,
memory, and radio frequency (RF) devices, makes testing and diagnosis
more complicated. Therefore, it is essential to involve testing houses in an
SOC design project. As package technology advances, substrate design, pin-
to-pad routing, thermal aware package design, layout-package co-design all
become very important. Moreover, system-in-a-package (SiP) is gaining
momentum. It is very common to pack an SOC together with a DRAM
and/or a Flash in a same package. Therefore, cooperation between SOC
design service foundry and packaging service providers is also essential.

One of the promising approaches to cope with high design complexity is
reusing existing design from previous projects or external sources. Such
reusable object is called silicon intellectual property (IP). There are many IP
vendors specializing in microprocessor (i.e., ARM, MIPS, Tensilica), digital
signal processor (DSP), embedded memory (SRAM, 1T-RAM, ROM
compilers), standard interface (USB, Ethernet), analog blocks (PLL, ADC,
DAC), accelerators (JPEG, MPEG), etc. We have also seen organization that
promotes inter-operability of IPs (e.g., OCP-IP). Usually, it is a tedious
process for an SOC project manager to put together all appropriate IPs
because there are many uncertainty and ambiguity in diverse IP from diverse
sources. It is beneficial to have a one-stop-shopping service such as an SOC
design service foundry, which has multiple experiences with various IP.
Therefore, productivity is increased and risk reduced.

Digital still camera (DSC) is one of the fastest growing consumer
electronics products over the past few years. Due to the success of the JPEG
image compression standard, advance in CMOS image sensing and
availability of high capacity yet low cost flash memory cards, DSC has
virtually taken over the traditional film-based camera in just a few years.
Moreover, DSC also penetrates quickly into cellular phone sets, which have
become the convergent target of PDA, MP3 audio player, etc. Ever
increasing picture resolution and advanced features such as video clip
recording requires ultra low power and small form factor integration of all

10 Lin, Chen and Lin

needed functionality. Therefore, an SOC solution is very attractive to the
camera makers.

We describe our experience with designing an SOC for DSC controller
applications including IP preparation, system integration and verification,
chip implementation, manufacturing, failure analysis and yield enhancement
during million-units mass production. In Section 2, we first give the chip
specification defined by the camera system maker. Then, we list all the
intellectual properties (IP) used and difficulty encountered. The integration
and verification of the whole system in a chip is then described. Section 3
presents our chip implementation flow from RTL synthesis down to GDSII
layout ready for manufacturing. Then, we describe mass-production-related
issues including yield ramp-up and failure analysis. Section 4 describes
recent development based on the presented project. Finally, we summarize
this chapter in Section 5.

2. A DIGITAL STILL CAMERA SOC

Our objective was to design a single chip controller for 2-million-pixel and
3-million-pixel grade DSC for mass production of 3.5 million units in a span
of about 18 months in year 2002 and 2003. In order to satisfy required
functionality at a very aggressive cost set to help proliferating the entry-level
high-resolution camera, the SOC was specified to include the following IPs:

 A microprocessor capable of both traditional 32-bit RISC and DSP
functionality

 A hardwired JPEG encoding and decoding accelerator
 A hardwired custom logic for color image processing
 A USB 1.1. device controller with min-host function and its

transceiver PHY
 A dual mode SD/MMC flash memory card host interface
 An SDRAM controller interface
 An LCD interface controller for view-finder
 An NTSC/PAL TV signal encoder for viewing photos on TV
 A 10-bit Video DAC for TV
 An 8-bit LCD DAC
 Two PLLs for clock sources
 30 SRAM macros for internal buffering

The IP cores come from multiple sources for different reasons. Each of
them posts different challenges to the project team. To help their
development, to verify the functionality of each individual IP as well as
customize some of the IP for the project, we built an SOC platform as
depicted in Figure 2. In the platform, some IPs are existing ICs, some are
soft cores that can be configured and programmed into the FPGA. All IPs

A Soc Controller for Digital Still Camera 11

are interconnected together with an AMBA-AHB/APB on-chip bus system.
Because most of the IPs on the platform have been proven many times in
previous projects, for each new SOC project we only have to concentrate on
verifying newly added or customized IPs. Moreover, whole system
verification is also easy due to the readiness of system-level verification
bench. This platform approach greatly increase our productivity of IP
development, IP qualification, and system verification.

Figure 2. SOC and IP development platform

The hybrid RISC/DSP implements both a typical 32-bit RISC instruction
set and a DSP-specific instruction set in a unified instruction set architecture
to simplify the programming interface. It was not an IP at all. Actually it was
a stand alone processor chip used in the previous generations of cameras. For
software compatibility concern, we have no option but to replace it with any
other IP-style microprocessor such as ARM or MIPS cores. To meet high
speed requirement (133MHz @ 0.25um), we have to make it a hard core
before integration with other parts of the SOC. To integrate it into the SOC,
we have to collaborate with the original vendor to create synthesis,
simulation and test models in addition to hardening the processor into a
high-speed hard macro.

The USB1.1 device controller and the SD card (secure digital flash
memory card) controller are supplied by a third party vendor. They are in

12 Lin, Chen and Lin

VHDL RTL instead of more locally popular Verilog. Therefore, mixed-
language simulation environment has to be set up. Only FPGA prototyping
was performed at the time of SOC integration. Moreover, the synthesis
scripts and testbenches were less than ideal. Therefore, close intensive co-
work/co-debugging was carried remotely.

To meet processing speed requirement of 3M pixels @ 0.1Sec and long
battery life, the JPEG codec function has been implemented in a hardware
accelerator. We collaborated with a university research laboratory. The effort
we spent was in bridging the gap between university prototype and industrial
strength design. Also there was discrepancy among the interpretation of the
JPEG standard by the system house and the IP developers. Therefore, we
added a wrapper around it as depicted in Figure 3. Extensive regressive test
of more than 1,000 pictures from different origins was conducted for every
change made.

Figure 3. Wrapping a JPEG codec for the SOC platform

There is a block of custom logic for color image processing. Its function
includes auto focusing, auto white-balancing, color image quality
enhancement, etc. It was supplied by the camera maker in Verilog RTL.

There were more than 30 SRAM macros used in the SOC. We have
jointly developed a memory BIST (Built-In Self Test) generator, again
with a university laboratory. The generated BIST circuit performs testing

A Soc Controller for Digital Still Camera 13

of 100% coverage without patterns from the tester machines. Therefore,
testing cost is greatly reduced during production.

After all IP models are made ready, whole system integration and
verification is an even bigger challenge. We encountered the problem of
in-consistent and in-sufficient testbenches. Therefore, developing testbench
as the project goes is very important.

Our verification set up is a mixture of simulation and FPGA/chip co-
emulation.

3. CHIP IMPLEMENTATION

Figure 4 depicts our chip implementation flow from RTL to GDSII ready
for tape-out. The DSC controller consists of 240K gates excluding
memory macros. After whole system verification with hybrid
emulation/simulation, it was implemented in TSMC 0.25um 1P5M
CMOS process and packed in TFBGA256 package. It took three months
for a team of six engineers to complete the Netlist-to-GDSII
implementation. During the course, there are 3 spec changes involving
re-synthessi and FF modification, 10 netlist changes involving ECO of
combinational logic, 3 ECO changes to fix setup/hold time violation, and
13 versions of pin assignments to simplify the substrate design.

There are 30 embedded memory macros in the controller. We use an in-
house memory BIST circuit generator to insert one common BIST
controller, multiple sequencers, and 30 pattern generators. The MBIST is
from collaboration between us and a university research laboratory. After
scan insertion, the fault coverage was 93%.

The physical design of the chip was done with timing-driven placement
and routing, physical synthesis, formal verification and STA QoR check.

During chip implementation, we encountered several problems:

 During the course, there are 3 spec changes involving re-synthessi and
FF modification, 10 netlist changes involving ECO of combinational
logic, 3 ECO changes to fix setup/hold time violation, and 13 versions
of pin assignments.

 There existed inconsistency between simulators/versions among
customer, IP vendors and ourselve. The customer used PC-based
Verilog/Modelsim while we used NC-Verilog. This lead to extra twist
during ASIC sign-off.

 IP quality is less than ideal. We have to clean up many DRC/LVS
violation in the database provided by the IP vendors.

 The USB IP was delivered in FPGA-targeted RTL. No robust synthesis

14 Lin, Chen and Lin

Figure 4. RTL to GDSII design flow

script was available and the first RTL level simulation was failed. We
had to co-work with the IP vendor over 10 versions of RTL code
modification or synthesis constraint updates.

 Because there is no automation tool available, we manually performed
many versions of pin assignments to reduce the number of substrate
layers from four to two resulting in packaging cost saving.

After overcoming all of the above problems, we were able to tape-out
on time. Figure 5 shows the layout image of the chip. We achieved the
first silicon work.

During mass production, manufacturing tests uncovered that the yield
killer (5% loss) was in the insufficient driving strength of an output
buffer in the CPU. The chip also went through reliability tests including
ESD performance test, temperature cycle test, high/low temperature
storage test and humidity/temperature test.
 The mass production yield was enhanced from 82.7% initially to very
close to the foundry yield model of 93.4% over a period of 8 months. Our
measures include optimizing probe card overdrive spec, optimizing
power relay waiting time, and retargeting Isat and Vth by optimizing poly
CD in the foundry according to results from corner lot splitting.

A Soc Controller for Digital Still Camera 15

Figure 5. Layout drawing of the DSC controller SOC

We have been asked to perform failure analysis on 20 returned chips that
have pins shorted to GND. After checking substrate delaminating and
popped-corner using scanning acoustics tomography, we found no
abnormality. Finally, by sinking 400mA of current to the corresponding pin
of a good chip we concluded that the failure was due to a system board bug.

4. RECENT DEVELOPMENT

We went on to produce over three million of the chips over 18 months. Our
system customer was able take about 8% of world-wide market share in the
2 and 3 million pixels segment during that period. We have also migrated the
chip from 0.25um process to 0.18um one, achieving 20% saving in die cost.
The migration was easy because we have been familiar with the design and
the design flow.

The project has demonstrated that it is feasible to bridge the gap between
the need of an electronics system house without IC design capability and the
production capacity of a semiconductor foundry with an SOC design service
provider. We have been able to leverage the experience gained and lesson
learned to serve more customers and more projects such as DVD player,
cellular phone set, electronics photo display, etc.

16 Lin, Chen and Lin

As both applications and technology become more advanced, we have
expanded our IP portfolio to include MPEG-4 Encoder/Decoder/Codec,
USB2.0 Device Controller, USB On-The-Go (OTG), SerDes I/O and
embedded non-volatile memory such as flash and one-time-programmable
(OTP). We have also enhanced our EDA flow to be able to simultaneously
handle dozens of multi-million gate design at 0.13um and 90nm processes.

Current complex SOC projects require virtual prototyping, signal integrity
check (crosstalk, electron-migration, dynamic IR drop, de-coupling cell
insertion), design for manufacturability (intra-die process variation modeling,
double via, dummy metal insertion), STA sign-off with in-die variation analysis,
hierarchical DFT and physical implementation, low power solution (multi
Vt/VDD cell library, gated clock, power down isolation) and flip-chip solution.

We have extended the development of memory BIST to more complicated
SOC testing. In an SOC employing multiple IPs, each with test sequence,
effective integration of all tests with necessary additional circuitry and test
schedule is very important.

We have also extended the multimedia IP development from JPEG to
JPEG2000, MPEG-4 and H.264/AVC standards. Although there are many
software or ASIP approaches, we focused on pure hardwired approach
because cost is a very important factor in mass consumer market. Figure 6
depicts the block diagram of an H.264/AVC decoder.

Figure 6. An H.264/AVC main profile video decoder

A Soc Controller for Digital Still Camera 17

5. CONCLUSION

We have presented a new business model called SOC design foundry along
with a case study of putting together resources and IP from both industry and
academia, from multiple countries to implement a successful SOC for digital
still camera all the way to mass production.

As applications are becoming more demanding and process technology is
becoming more advanced, we expect to see more and more complex SOC
integration. We will see advanced video such as H.264/AVC and wireless
communication function being integrated together. Dealing with more IP
sources is certainly more complicated but unavoidable.

A mass-production-proven SOC platform including IP, system, chip
implementation to GDSII, and production methodologies will be a feasible
approach to response to the challenge.

REFERENCES

1. C. L. Chen, J. Y. Lin, and Y. L. Lin, “Integration, Verification and Layout of a Complex
Multimedia SOC,” DATE-2005, Munich, Germany, March 2005.

2. C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 Still Image Coding
System – An Overview,” IEEE Transactions on Consumer Electronics, 2000.

3. C. J. Lian, Y. W. Huang, H. C. Fang, Y. C. Chang and L. G. Chen, ‘‘JPEG, MPEG-4,
and H.264 Codec IP Development” DATE-2005, Munich, Germany, March 2005.

4. C. W. Wu, “SOC Testing Methodology and Practice,” DATE-2005, Munich, Germany,
March 2005.

5. G. K. Wallace and M. Maynard, “The JPEG Still Picture Compression Standard,”
Communications of the ACM, 1991.

19

Chapter 3

MULTIMEDIA IP DEVELOPMENT
Image and video codecs

Liang-Gee Chen, Chung-Jr Lian, Ching-Yeh Chen, and Tung-Chien Chen
Graduate Institute of Electronics Engineering and Department of Electrical Engineering,
National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC

Abstract: Multimedia intellectual property (IP) cores play a critical role in a successful
multimedia SOC design. This chapter will focus on the design of image and
video codec IPs, which usually requires lots of computational power. From
theory to practice and from algorithm to hardware architecture, design
methodologies toward an optimized architecture and also real design cases will
be presented. Both top-down system analysis and bottom-up core module
design are emphasized. Following theoretical discussions of the overall
scenario, key building blocks of image and video codecs proposed in literature
are reviewed. Examples will cover motion estimation, discrete cosine
transform, discrete wavelet transform, and entropy coder. Then, complete
image and video codec designs are explored. JPEG, JPEG 2000, and
H.264/AVC are the three case studies. This chapter is intended to provide an
overview, from theory to practice, on how to design efficient multimedia IPs

Keywords: image; video; compression, codec; architecture; intellectual property (IP)

1. INTRODUCTION

In this chapter, the design issues and methodologies of image and video
codec IPs are discussed. Driven by cost and performance, system-on-a-chip
(SoC) is a design trend. Intellectual Property (IP) integration is a must for
designers to bridge the gap between design productivity and technology
advances. In the post-PC era, there are more and more multimedia consumer
products. In a complex multimedia SoC, the development of an optimized
image/video codec IP is a critical point.

Digital image/video compression and decompression require many
computing and bandwidth resources. To cope with the design challenges of

Lin (ed.), Essential Issues in SOC Design, 19–72.
© 2006 Springer.

S.Y.-L .

20 Chen et al.

high-specification image and video codecs, dedicated architecture is chosen
to provide the most efficient implementation. No matter the final integration
is in the form of a platform-based design with dedicated accelerators in
module level or a fully hardwired codec system, dedicated hardware does
efficiently off-load the processor in a complex SoC.

This chapter is organized as follows. Section 2 is a brief introduction of
digital image and video coding. Section 3 is a comprehensive discussion
about the design issues and methodology for the development of a good
codec IP. In Section 4, some module-level design cases are presented. These
critical modules are the basic building blocks of a codec system. In Section 5,
the JPEG [1], JPEG 2000 [2] and H.264/AVC [3] codec designs are
discussed. Finally, Section 6 summarizes this chapter.

2. DIGITAL IMAGE AND VIDEO CODING

2.1 Applications

We start by talking about applications since it is the application that drives
the advances of technologies. There are more and more multimedia products
in our daily life. Consumers continue to look for not only convenient but
also fancier appliances (Figure 1), such as digital still camera (DSC), digital
camcorder, multimedia phone, DVD player, digital TV, etc. Digital image
and video become one of the most attractive features.

As we continuously pursue higher quality digital image and video, the
huge amount of digital image and video data become a problem. Unlike

Figure 1. Digital image and video applications

Multimedia IP Development 21

voice or text data, whose data size is not that large, both the transmission and
storage of image and video data are big issues since high resolution and high
quality image and video always result in large data size. To transmit or store
the uncompressed raw data is wasteful in the view of time and cost. To
alleviate these problems, image and video compression are important
enabling technologies for multimedia products.

Thanks to the advances of IC technologies, modern multimedia products
can be light, thin, and small. In the old days, a system consists of many chips.
Nowadays, more functions can be integrated on a single chip. The form
factor of IC and hence the overall product become smaller. Less cost and
higher performance are achieved. Successful and on-going examples such as

– DVD chips that integrate the MPEG core, the servo control, and related
signal processing.

– DSC chips that integrate the JPEG, the image processing pipeline, and
the camera control.

– Multimedia phone chips that integrate the multimedia engine (audio,
video and graphics), the base-band processor and system control.

2.2 Image and Video Coding Basics

The basic concept of image and video compression is redundancy removal.
The types of redundancy can be classified as spatial, temporal, statistical, and
visual redundancy. By some mathematical algorithm and human visual system
(HVS) characteristics, the digital image and video information can be
manipulated and represented in a more compact way. That is what digital
image and video coding (compression) does to shrink the data size.

It will be a long story to talk all the techniques on image and video
compression. Readers are referred to some other books [4][5][6] that have
more detailed introduction of image and video coding algorithms and
standards. This section only provides a brief overview of some basic
techniques that are more representative. In the following, transform coding,
quantization, entropy coding, motion estimation (ME) and motion
compensation (MC) will be briefly introduced.

2.2.1 Transform coding: Discrete Cosine Transform (DCT) and
Discrete Wavelet Transform (DWT)

Transform coding is to transform the image data from the spatial domain to
the frequency domain. After the transformation, there is an advantage of
signal energy compaction, which is better for data compression. Also, the
HVS characteristic of the sensitivity on different frequency components can
be used for quantization.

22 Chen et al.

Transform coding forms the basis of image and video coding standards.
For image coding standards, JPEG selects DCT [7] as its transformation, and
JPEG 2000 adopts DWT. For current video coding standards, DCT is the
mainstream. The DWT is adopted for the temporal filtering in the emerging
scalable video coding (SVC) standard.

For an 8 × 8 block x(m,n), where 0 ≦ m, n < 8, the forward and inverse
2D DCT equations are

16
)12(cos

16
)12(cos),()()(

4
1),(

7

0

7

0

qnpmnmxqpqpZ
m n

−
×

−
×= ∑∑

= =

 (1)

16
)12(cos

16
)12(cos),()()(

4
1),(

7

0

7

0

qnpmqpZqpnmx
p q

−
×

−
×= ∑∑

= =

 (2)

where 0 ≦ m, n, p, q < 8, α(0) = 1/ 2 , and α(i) = 1 for i ≠0. Figure 2 (a)
shows the result of a Lena image after 8 × 8 DCT. The Z(0,0) of each block
is the DC coefficient, whose energy is usually higher. The other 63
coefficients are AC coefficients, which contain higher frequency information.
Their values are usually small, and may be quantized to zero at high
compression level.

The 2-D DWT is a series of low pass, high pass filtering and subsampling
in both horizontal and vertical directions. The spatial domain data are
transformed into the LL (horizontal low pass, vertical low pass), HL
(horizontal high pass, vertical low pass), LH (horizontal low pass, vertical
high pass) and HH (horizontal high pass, vertical high pass) sub-band signals

(a) (b) (c)

Figure 2. Transform coding. (a) original Lena image (b) Lena image after 8 × 8 DCT (c) Lena
image after two-level DWT

π

π

π

π

π

Multimedia IP Development 23

in the frequency domain. In image coding, Mallat structure is usually
adopted. That is, the LL sub-bands in each resolution can be further
decomposed into four sub-bands. Figure 3 shows a 2-level 2-D DWT
dataflow, and the result of a Lena image after the DWT of two-level dyadic
decomposition is shown in Figure 2 (b). In JPEG 2000 Part 1, two filters are
supported. The (5,3) filter is for lossless coding and the (9,7) filter is for
lossy coding.

H(z) 2
H(z) 2

G(z) 2

G(z) 2
H(z) 2

G(z) 2 HH

HL

LH

LL

H(z) 2
H(z) 2

G(z) 2

G(z) 2
H(z) 2

G(z) 2 LLHH

LLHL

LLLH

LLLL

horizontal
vertical

horizontal
vertical

Level 1 Level 2

Figure 3. Two-level 2-D DWT. H(z): low-pass filter, G(z): high-pass filter

2.2.2 Quantization

Quantization is the main scheme to control the compression ratio. Lossless
compression can only achieve limited compression ratio. By quantization,
the range of compression ratio is widened, and can be adjusted by specifying
different quantization extent.

In JPEG, 8×8 quantization matrices are used, and each entry of the
quantization matrices can be specified by a user. The uniform quantizer of
JPEG is defined as Zq(m,n) = round(Z(m,n) / Q(m,n)), where Z(m,n) is the
DCT coefficients, Q(m,n) is the quantizer step size, and Zq(m,n) is the
quantized DCT coefficient, normalized by the quantizer step size. The
dequantization is defined by Zdeq = Zq(m,n) × Q(m,n). For JPEG 2000,
a specific quantization step can be defined for each subband. In MPEG video
coding, the quantization step size is chosen by the quantization parameter
QP defined in standards. In H.264/AVC, 52 different QPs are supported, and
when the QP increases by one, the required data rate will decrease
approximately 12.5%.

Quantization is a lossy operation where some information is selectively
discarded and cannot be recovered at the decoding side. Therefore, there will

24 Chen et al.

be differences between the reconstructed image and the original one. The
peak signal-to-noise ratio (PSNR) is a common index for objective quality
evaluation. Quantization is based on rate-distortion model and HVS
characteristics. Since human eyes are less sensitive to high frequency
components, the quantization extent of higher frequency parts can be larger.
In this case, the lost information is less apparent to human eyes.

2.2.3 Entropy coding: Huffman coding and arithmetic coding

Statistical redundancy can be removed by entropy coding. It is a lossless
coding process based on the concept that more frequent symbols can be
assigned shorter code words, and less frequent ones can be assigned longer
code words. The average code length of the variable length coded data will
therefore be shorter than fixed length codes. Huffman coding and arithmetic
coding are the two main entropy coders used in image and video coding
standards.

The implementation complexity of a Huffman coder is less than that of
an arithmetic coder, while the compression performance of an arithmetic
coder is usually better than a Huffman coder. In baseline JPEG [8] and
MPEG-1/-2/-4, the Huffman coding is adopted. In JPEG, user-customized
Huffman tables are supported, while in video coding, Huffman tables are
fixed and predefined in the standards. In JPEG 2000 [9] and MPEG-4 Visual
Texture Coding (VTC) tool, the binary arithmetic coding is adopted. The
latest H.264/AVC standard supports both Huffman coding and Arithmetic
coding as its coding tools. In baseline profile, context-based adaptive
variable length coding (CAVLC) is supported, while in main profile,
context-based adaptive binary arithmetic coding (CABAC) is adopted.

2.2.4 Motion Estimation (ME) and Motion Compensation (MC)

ME and MC are the most important techniques for the inter frame video
coding to remove the temporal redundancy. They provide tens to hundreds
more compression ratio compared with intra-only techniques. In a video
sequence, the successive frames are similar since the time period between
them is short. For a 30 frames per second video, the time differences
between two frames are 1/30 second. The concept of ME and MC is to find a
predictor in the reference frame(s) that can best predict the current frame
data, and therefore, compensate the frame differences.

Block-matching ME is adopted in all video coding standards to find the
best matched prediction data. A current frame is divided into macroblocks
(MBs), and each MB in the current frame (current MB) is matched within
the search range of the reference frame (Figure 4) by a matching criterion. The

Multimedia IP Development 25

current MB

search range

reference MB
with min. SADMV

Figure 4. Block-matching motion estimation to find the motion vector (MV) of a MB.

sum of absolute differences (SAD) between a current MB and a reference
MB is usually adopted as the matching criterion, which is defined by

∑∑
= =

++−=
N

i

N

j
pjkirefjicurpkSAD

1 1
),(),(),(,

where N is the block size of a MB, cur(i, j) is the pixel value in the current
MB, ref(i+k, j+p) is the pixel value in the reference block, the search range
is [-PH, PH) and [-PV, PV) in the horizontal and vertical direction, and (k, p) is
the position of the search candidate (a reference block) in the search range, -
PH ≦ k ＜ PH and -PV ≦ p ＜ PV. After the search, the search candidate with
the smallest SAD is selected as the best reference MB, and the associated
MB position is the motion vector of this current MB. The motion vectors are
variable length coded, and the prediction error (residue) between the current
MB and the reference MB is coded by JPEG-like intra coding.

2.3 Standards

The standardization of image and video coding algorithms make data
exchange easier. We have briefly described some basic compression
techniques in the previous subsection, and there are actually more techniques
than those basic techniques. A proprietary algorithm can be a combination of
any basic component among them. Interoperability becomes an issue when
we want to share the compressed data with others.

Interoperability of the coded data is a key issue of the product popularity
and cost. Therefore, international organizations start to standardize image
and video coding standards. In the digital image field, JPEG should be the
best model of standardization. It is so successful and popular that current
DSCs all support JPEG compression. As for the digital video field, the big

26 Chen et al.

success of MPEG-2 is another good model. The DVD market is growing
rapidly for the big entertainment requirement.

The advances of digital image and video coding standards keep going.
The JPEG, MPEG and VCEG under ISO/IEC and ITU-T international
organizations are the three groups consisting of many image and video
experts who have long been devoted to the development of coding
algorithms and standardizing them. Figure 5 shows the progress of some
classical and state-of-the-art standards. Different standards focus on different
applications. The trend is that the compression performance advances at the
cost of higher complexity. Also, more features and functions are provided to
fulfill the demands.

ITU-T Video Coding Experts Group (VCEG)

H.261 (1990) H.263 (1995) H.263++ (1998)

H.26L (1999)

MPEG-1 (1992) MPEG-2 (1994) MPEG-4 (1999)

H.264/AVC (2001)ISO Motion Picture Experts Group (MPEG)

Joint Video Team (JVT)

Short-Term

Long-Term

ISO Joint Photographic Experts Group (JPEG)

JPEG(1991) JPEG 2000 (2000)

Figure 5. Advances of image and video coding standards.

Figure 6 shows the basic framework of image coding. Baseline JPEG [8] is a
DCT and Huffman coding based coder, while JPEG 2000 [9] and MPEG-4
VTC is based on DWT and arithmetic coding. Figure 7 is the basic
framework of a video coder. Besides the intra frame coding part (DCT,
quantization and entropy coding), which is similar to a still image coder, the
ME/MC is used for inter frame coding, and all this forms the hybrid coding
architecture of most MPEG and H.26x standards. There is a decoder
embedded in a video encoder, and a coding loop is formed in a video
encoder. This is just a basic and simplified diagram. Different video coding
standards have some specific features on some functional modules. Besides,
in standards like H.264/AVC, there is an in-loop de-blocking filter.

The standard does not standardize everything. The scope of these image
and video coding standards is only the detailed definition of the syntax and
semantics of the bitstream and the decoding process. Standards still leave
large room for the optimization of a codec design.

Multimedia IP Development 27

Transform Quantization Entropy
Coding

Discrete
Cosine
Transform

Scalar
Quantization

Huffman
Coding

Discrete
Wavelet
Transform

Scalar
Quantization

Arithmetic
Coding

JPEG

MPEG-4 VTC
JPEG 2000

Source
Compressed

data

Figure 6. Basic framework of image coding

Transform

Motion
Estimation

Frame
buffer

+

-

+
+

Quantization

Inverse
Quantization

Inverse
Transform

Motion
Compensation

Entropy
Encoder bitstream

Motion Vector

Video
Sequence

Figure 7. Basic framework of MPEG video coding standards

2.4 Characteristics of Image and Video Coding

The first step to design a good image/video codec is to understand the
characteristics of image and video coding.

The standardized coding flows do not mean the standardized codec
implementation. The design of a good image/video codec is not just a trivial
mapping of standard algorithms to architectures but an optimization problem
of timing, cost, power, etc., that requires many efforts. Besides the general
IC design knowledge and techniques, we need to have an insight of the
characteristics of the video data we need to process and the algorithms we
are going to use. With deeper domain knowledge of image and video coding,
designers can design better codec architectures.

Since an image or video codec has to process large raw data and
compress them into smaller size, a codec itself also faces the large storage
and bandwidth problem. For image encoding, the input is a huge amount of

28 Chen et al.

raw data. For an M × N 24-bit color image, there will be M × N × 24 bits or
M × N × 3 bytes. If the image is sub-sampled to YUV 4:2:0 format, the size
becomes M × N × 1.5 bytes. Take a 5-million pixels DSC for example, one
raw image size is about 7.5 Mbytes. Unlike video’s real time requirement,
there is no exact time budget for the processing of an image. The guideline is
to process an image as fast as possible to avoid the compression engine
becoming the bottleneck, compared with other system components such as
flash memory access time.

For 30 frames per second (4:2:0, resolution M × N) video data, the input
data rate will be M × N × 12 x 30 bits/s. For real time applications such as
video conferencing and broadcasting, the compression and decompression of
a frame has to be done within 1/30 second. Also, the processing delay should
be kept as low as possible.

Different modules have different operation characteristics. In the
transform and motion estimation stage, it is a block-based operation. Image
and video data are partitioned into blocks. Typical DCT block is of size 8 × 8,
and ME macroblock is of size 16 × 16. The computational complexity of
transform coding and motion estimation dominates the video codec. These
operations are more regular since operations basically are done in the block-
based coding units. Therefore, parallelism exists inherently in these
algorithms, and high parallel array processor can handle this loading. In the
later entropy coding stage, usually it is a bit-level processing. There are no
complex mathematical operations but fine and delicate variable-rate and
variable-length data processing.

Besides the objective analysis of data and algorithm characteristics,
human visual perception also plays an important role on image and video
coding. The key is that the video is for human eyes, not for computers. What
people see is a beautiful image, not the binary digits and numbers. Since
human visual system (HVS) is more sensitive to low-frequency signals than
high-frequency ones, quantization is based on this characteristic. Also, the
trade-off between computational complexity and quality is feasible.

In summary, for the image/video codec design, we see something good:

• Standardization of algorithms
• Regular and simple computation: DCT/DWT, ME, … except entropy

coding
• Regular data flow
• Human perceptual tolerance

At the same time, we see something bad:
• Real time requirements especially for multimedia communications:

scheduling, timing
• Resource limitation, especially for portable applications: computing

power, battery energy, storage, channel, …

Multimedia IP Development 29

• High data rate
• Multi-mode multimedia requirements: JPEG, JPEG 2000, MPEG-1/-2/-4,

H.263, H.264/AVC, SVC, MP3, AAC, CELP, …

3. DESIGN METHODOLOGY

3.1 System Analysis

Before hardware architecture design, system analysis was the most
important step to have an insight into the design problem designers will face.
The goal of system analysis is to find out the bottleneck of a video codec
design so that designers can focus on it and get an optimal design.

Computational complexity and memory access are the basic and
important data we want to get from system analysis. There are many
different approaches and tools for system analysis. For a designer who is
somewhat familiar with the video coding concept and algorithm, he can have
rough but good enough estimation by hand calculation analysis. A more
general approach is to use a general processor (PC or workstation) for
software profiling. Although the analysis results differ when the software is
running on different platforms, the analysis data still provide designers a
good starting point to understand the complexity of the system and each
module. The profiling tools can be, for example, common run time profile
tools on workstation and PC, instruction profiling tools, iprof [10], or Intel®
VtuneTM Analyzer, etc. It is important to know what we want through the
analysis data. If the final implementation is not on these general processors,
the profiling data from that are just for reference. The percentage and the
order of those numbers are more important than exact numbers.

3.2 Architecture Exploration

3.2.1 Design alternatives overview

The design space of signal processing ICs is wide and colorful. There have
been various hardware architectures explored in the literature, and the
exploration steps still keep going. Although some variants may exist in
different architectures, the design alternatives can be mainly classified as
follows. The two extremes of the design space are processor-based design
and fully application specific IC (ASIC) design. In between, there are
architectures such as platform-based, FPGA, digital signal processor,

30 Chen et al.

multimedia processor, application specific DSP, and some others that
combine different architecture as part of the system [11].

Processor-based design provides better programmability and lower
performance for video coding, while the ASIC design provides best
performance with little flexibility. General purposed processors are too
general to handle the loading of video coding. Adding application specific
instructions and/or dedicated accelerators can greatly improve its
performance for video coding. Approaches like that are application specific
DSP (ASDSP) and video/media processors. At the same time, general FPGA
also try to embed more dedicated arithmetic units to boost their capability.

3.2.2 Application specific architecture

There are many arguments over the pros and cons of different architectures.
Basically, what an optimal architecture should be depends on applications and
the overall system considerations. The guideline is to provide just enough
computing resources at the lowest design cost and time. In this chapter, there
is not enough space and it is not our intention to introduce the whole design
spectrum, either. What we will focus on are the analysis and design on the
dedicated architecture for the key modules and possible complete codecs.

An image/video-specific architecture is optimal for computational
performance. Digital image and video, as killer applications, deserve a
special treatment. Video coding needs to process many data, and the
complexity of algorithm keeps soaring. Even for a processor- or platform-
based design, designers also have to understand the design of a dedicated
architecture so that they will be able to enhance their processor architecture.
Therefore, in the following part of this chapter, the dedicated architecture
design of a video codec is discussed. Though the content is more ASIC
oriented discussions, the ideas in dedicated architecture design actually are
also foundations for other programmable design alternatives to enhance the
performance with specific instructions, co-processors, or accelerators.

3.3 Design Issues and Techniques

3.3.1 Speed

For image and video applications, the speed requirement is usually the most
urgent issue. Actually, for on-line video applications, the first priority of an
implementation is to meet the real-time specification.

Since there is a large amount of data to be processed within a tight time
constraint, general processors, which execute the computations sequentially,
cannot afford such high computational load. Only raising the working

Multimedia IP Development 31

frequency is not a good approach to solve the problem. Working fast but not
efficiently is of course not an optimal way. Also, high power consumption is
a problem at higher frequency especially for battery-powered portable
appliances. Therefore, for image and video codec designs, ASIC designers
usually do not pursue very high operating frequencies. On the contrary,
designers look for more efficient architectures to be operated at lower clock
rate. SIMD (Single Instruction, Multiple Data), VLIW (Very-Long
Instruction Word), and array processor designs are examples of higher
computational efficiency.

3.3.2 Area

IC designers always look for compact architectures since smaller die area
means lower cost. A more compact design will have better competitiveness.
In a dedicated accelerator design, parallel architecture is usually adopted to
achieve the required specification while lowering the required working
frequency. Area is used to trade with frequency.

Parallel architecture results in higher area cost. Therefore, hardware
utilization is an index that designers should take care of and check. Simply
duplicating multiple processing elements and memories may not be an
optimal way if some of these resources are with low hardware utilization rate.
The optimization goal should be a just enough parallelism with as higher as
possible hardware utilization. Algorithm-level optimization, hardware
sharing and folding are example techniques for chip area optimization.

The fact that process technology keeps improving rapidly is really good
news for parallel architecture design. Although area cost is always an issue,
the weight per transistor becomes lower and lower in a million or even
billion transistors level SoC. Actually, designers now are facing a bigger
problem on how to bridge the gap between the design and the process
capability, not just keeping an eye on the minor optimization of several
hundreds or thousands gates.

3.3.3 Power

The power issue becomes one of the most important problems in a SoC
design. As with the process development, a chip can provide more and more
transistors, but the allowed power consumption in a chip will not increase.
The emerging portable multimedia devices ask for more restricted power
consumption. Besides, the heat due to high power consumption will also
cause the reliability problem.

To cope with the power problem, a design should be carefully examined
not only in architecture level but also in algorithm and circuit levels.

32 Chen et al.

Actually, the higher-level optimization usually provides more gain in power
saving. The development of fast algorithms with lower complexity, and
algorithms with lower data bandwidth are examples of this. Designers have
to understand the algorithm characteristics by detailed analysis.

At architecture level, designers have to look into the detailed operations
of each module or even each gate, and its power consumption behavior.
High hardware utilization architecture will be more power-efficient since the
power will not be wasted on idle gates. Memory is also a big source of
power consumption. Therefore, memory hierarchy and arrangement will
play an important role on a low power design. At last, the algorithm and
architecture characteristics can be combined with circuit level techniques
such as clock gating and dynamic voltage scaling, etc.

Besides the low power issue, power aware design is another trend. In
image and video coding, there are multiple modes and tools. Also, different
algorithms with different computational complexity results in different
quality level. The basic power aware design concept is the rate-distortion-
complexity optimization. That is, a codec can dynamically decide the
operating points based on the available power budget. Take ME for example,
different ME algorithms can be mapped to a reconfigurable architecture.
This architecture then have multiple operating points that have different
power consumption and quality of MV search.

3.3.4 Bandwidth and storage

Memory bandwidth and on-chip memory capacity are limiting factors for
many multimedia applications. Today, in many designs, on-chip memory has
already occupied more than 50% of total chip area. Good memory
management and area-, power-, and yield-efficient memory implementations,
become important for a successful SoC solution.

The memory management is to provide an efficient memory hierarchy
that consists of off-chip memory, on-chip memory, and registers [12], as
shown in Figure 8. Different memory types have different features. Off-chip
memory, usually DRAM, offers a large amount of storage size but consumes
the most power. The off-chip memory and I/O access may dominate the
power budget. The embedded DRAM is developed to reduce the I/O access
by integrating large on-chip DRAM. However, the embedded DRAM
technology is not very mature because the yield issue, design methodology,
and many physical design challenges still need to be solved. Besides,
embedded compression (EC) technique can be applied to reduce the off-chip
memory bandwidth and size for a video codec design. The on-chip memory,
usually implemented by SRAM, provides faster access and less power-
consumption than the off-chip memory, but the memory cell size is much

Multimedia IP Development 33

Off-Chip
Memory

On-Chip
Memory

On-Chip
Memory

Reg Reg

Reg Reg

Reg Reg

Access Speed, Flexibility, Access Power
GoodBad

Cell Density, Storage Capacity
BadGood

Figure 8. Memory hierarchy: trade-offs and characteristics

larger. Registers can be faster than on-chip memory and provide more
flexible data storage. However, the size of a register is the largest. Registers
are more suitable for the implementation of smaller-size buffers.

Memory management can be organized from two different levels: algorithm-
level and architecture-level. The embedded DRAM is one kind of circuit-level
improvement. But even integrating large embedded DRAM, the access power is
still larger than smaller on-chip SRAM. The algorithm-level memory hierarchy
optimization is to modify the coding system algorithm to improve some system
parameters, like power or area, and some other parameters, like coding
performance, become the trade-off. The EC and hierarchical search ME belong
to algorithm-level memory optimization. On the other hand, the architecture-
level memory organization can optimize the memory hierarchy from modifying
hardware architecture, such as Level A to D data reuse schemes in ME
architecture design that will be discussed in a later section in this chapter.

Video codecs face a big problem of the increasing bandwidth and storage
requirements. The resolution of image and video keep increasing since
people are endlessly pursuing higher quality. The input and output of image
data itself has already been a large bandwidth request. Besides that, the
module such as ME consumes even more bandwidth due to the block-
matching process among multiple image frames. Since the data moving
between modules and modules and between modules and memory is so
frequent, dedicated bus between modules is a better solution and local
memory is required to reduce the bandwidth requirement between modules
and memory. Since the trend shows that memory may dominate most of the
designs, it is therefore important to optimize the memory size not only
because of the area issue but also for lower power consumption.

3.3.5 Perceptual quality

Video is for human eyes, not for computers. The perception of human eyes
determines the quality requirement of video signal processing. For digital

34 Chen et al.

video, larger dynamic range of each word means better quality, but with
larger hardware cost. Designers have to make decisions based on product
specification. Another good reference is the saturation point of quality
improvement when the bit width is increasing.

Besides the trade-off between area cost and quality, computational
complexity can also be lowered at some cost of quality degradation. ME is
the most time consuming part. Instead of the full search, there are many
possible lossy ways for ME. These fast ME algorithms can dramatically
reduce the required computational power, while the quality is still kept
within an acceptable range.

4. MODULE-LEVEL DESIGN

An image/video codec system can be intuitively partitioned to modules
based on the functionality. Although there are different image and video
coding standards, the basic framework is similar. For image coding,
standards like JPEG, JPEG 2000, and MPEG-4 Visual Texture Coding (VTC)
are all composed of transform, quantization, and entropy coding modules. As
for video coding standards, such as H.261, H.263, MPEG-2, MPEG-4, and
H.264/AVC, they are motion compensation (MC) and DCT based hybrid-
coding framework.

Since most image and video codecs share the same or similar key
components like DCT/DWT, ME, and entropy coder, modulized design
concept is usually highlighted for module-level IP optimization and design
reuse. For a fully dedicated codec design, each module is mapped to
hardwired architecture, and the system is built based on these functional
modules to form a processing pipeline. For a platform-based design, key
modules can be accelerators attached to the system bus and controlled by a
processor.

4.1 Design Issues

The most critical module deserves more efforts on optimization. Also,
different modules have different operation characteristics, so different
techniques should be applied for optimization. Although we are discussing
the module level design here, designers should always keep the system view
in mind. The integration of several so-called optimized modules at module
level may not always guarantee an optimized architecture at system level.

To start designing a module, designers have to have a specification from
a system. Then, a detailed analysis about the complexity and operation type
is the key before architecture design.

Multimedia IP Development 35

Parallel and pipeline are the two general and basic but important
techniques for architecture design. The specification and complexity will
determine how many parallelisms are needed. The computational flow is
then smoothed and pipelined to have better timing performance.

Interface among modules is important since each module has to work
with other parts of the system. Sometimes, the interface considerations will
be more critical than the internal design of a module. If, for example, each
module pushes some of the design problems to external world, each module
is only optimized at that assumed environment. The integration of these
modules may pay more costs on the interface design to connect them.

In the following sections, four main functional modules are discussed.
The first topic is the ME. It is the most time-consuming part in a video
encoder. The second topic is transform. Both DCT and DWT will be
included. The third topic is about entropy coding and decoding modules,
including Huffman coder and Arithmetic coder. Finally, the design of
bitstream parser in a decoder is introduced.

4.2 Motion Estimation

Motion estimation is the core of a video codec.
The design of a motion estimator is so attractive because of two

characteristics: high complexity and high flexibility. The operations of ME are
regular but the computational complexity of ME is very high. For a software
codec, the ME is the most time-consuming module, and for a hardware codec,
the ME consumes most of the resources including gates, bandwidth and power.
It is so critical that an optimized ME architecture usually will dominate the
factors in a successful video codec architecture design.

ME is flexible in algorithm level, since video standards only specify the
decoding part. How the motion vectors are searched, what the matching
criterion is, and which candidate macroblock should be the chosen one are
not standardized. Therefore, the large room for the development of fast
algorithms and the application of proprietary tricks make the design space of
a motion estimator even broader.

The ME design [13] deserves the first-priority concern and more space
for discussions. We will describe several types of ME algorithms first. Then,
the associated architecture designs are presented, followed by a discussion
about the bandwidth issues in a motion estimator.

4.2.1 Algorithms

The block-matching ME [13] is composed of seven loops, as shown in
Figure 9. The first loop, frame-level loop, is the number of frames in a video

36 Chen et al.

for Number-of-Frame (Frame-level loop)

 for Number-of-MBv (MB-level loop in the vertical direction)
 for Number-of-MBh (MB-level loop in the horizontal direction)

 for Number-of-SRv (SR-level loop in the vertical direction)
 for Number-of-SRh (SR-level loop in the horizontal direction)

 for Number-of-CBv (CurBlock-level loop in the vertical direction)
 for Number-of-CBh (CurBlock-level loop in the horizontal direction)
 … …

 …
 end of Number-of-CBh
 end of Number-of-CBv

 end of Number-of-SRh
 end of Number-of-SRv

 end of Number-of-MB h
 end of Number-of-MB v

end of Number-of-Frame

Figure 9. The loops of a block-matching ME procedure

sequence. The second and third loops (MB-level loops in the vertical and
horizontal directions) are the number of current MBs in one frame. The
search region level loops (SR-level loops) are the number of search
candidates in a search region, and the last two loops (CurBlock-level loops)
are the number of pixels in one current MB for the computation of SAD.

For the full search block-matching algorithm (FSBMA), all candidates in
a search range are examined, and the candidate with the smallest distortion
in the search range will be selected as the final motion vector. Exhausted
search guarantees a globally minimum SAD in the search range. However,
the computation complexity is very high. For example, a real-time ME for
CIF, 30 frames per second (fps) video with the (-16, 16) search range
requires 9.3 Giga-operation per second (GOPS). If the frame is D1-size and
the search range is (-32, 32), the complexity is increased to 127 GOPS.
Therefore, many fast algorithms, which apply specific strategies in different
loops, are proposed to reduce the required computational complexity.

In the following, several fast algorithms are reviewed. We start by
describing the fast full search algorithms, which do reduce some
computations of the full search while the block matching result is the same
as full search. That is why we call it fast full search. Sometimes, it is still
hard to achieve the real-time computation with fast full search, especially for
a large frame size or search range. Therefore, fast search algorithms that
require much less computations at a cost of certain extent of quality drop are
developed.

Multimedia IP Development 37

4.2.1.1 Fast full search
Is it possible to reduce some computations of FSBMA but without any
quality drop? The answer is yes. The main idea is to detect and skip
unnecessary computations earlier in the CurBlock-level loop of the ME
procedure. The partial distortion elimination (PDE) [14] algorithm and the
successive elimination algorithm (SEA) [15] are two typical examples.

The PDE algorithm is based on the observation that during the search if the
accumulated absolute difference (partial SAD) of this search candidate has
already been larger than the current minimum SAD, this candidate is
guaranteed not the optimal one. Therefore, the accumulation of the partial
SAD for this candidate position can be terminated immediately and we can
move to the next search candidate. The concept of PDE is simple and effective.

In SEA, the absolute difference between the sum of pixels in the current
block and the sum of pixels in a search candidate is used as a criterion to
help early skip some candidates so that the calculations of the SADs of these
candidate blocks can be completely saved. It is based on the inequality

'),(),(

),(),(),(

1 11 1

1 1

Spjkirefjicur

pjkirefjicurpkSAD

M

i

N

j

N

i

N

j

N

i

N

j

≡++−≥

++−=

∑∑∑∑

∑∑

= == =

= =

If S’ is larger than the current minimum SAD, then the SAD of this
candidate block is also larger than the current minimum SAD. Hence, the
computation of the SAD for this search candidate can be skipped. On the
contrary, if S’ is smaller than the current minimum SAD, the SAD for this
search candidate has to be computed. The sum of current pixels in the
current block is only computed once and can be reused for all search
candidates. The sum of reference pixels for different search candidates can
be easily calculated by reusing the partial result. Because the computational
complexity of this detecting procedure is relatively small, the overall
computational complexity of SEA-based full search can be reduced.

For both PDE and SEA, a good initial search candidate can provide a
better computation reduction ratio. If the current minimum SAD is closer
than the final minimum and found early, the reduction ratio will be higher.
The motion vector predictor or spiral scan technique is usually adopted as an
enhancement of the PDE algorithm and the SEA.

4.2.1.2 Fast search by the simplification of matching criterion
Fast search by the simplification of matching criterion is a CurBlock-level
loop simplification. Subsampling [16][17] is an approach that not all pixels

38 Chen et al.

in the current block are used to calculate the SADs for each search candidate.
Another approach is pixel truncation [18], which means a reduction of the
number of bits of each pixel during SAD computation.

4.2.1.3 Fast search by the reduction on search candidates
The second type of fast search is the reduction of search candidates. It is a
SR-level reduction. These algorithms assume that the distortion
monotonically decreases as the search candidate approaches to the optimal
one. That is, even if we did not match all the search candidates, the optimal
search candidate can be achieved by following the search candidate with the
smaller distortion.

This category is the major part of fast search algorithms. Typical variants
are center-based diamond search [19][20], advanced diamond zonal search
[21][22], three-step search [23], two dimensional logarithmic search [24],
one dimensional full search [25], new three step search [26], four step search
[27], block-based gradient descent search [28], predictive line search [29],
and so on. The Diamond search is illustrated below as an example.

Figure 10 shows the searching procedure of diamond search, and the
candidate search pattern. In the searching procedure, the large diamond is
applied until the center search candidate of the large diamond has the
smallest distortion among nine candidates, and then the small diamond is
used to refine the searching result.

Large Diamond
Small DiamondThe 1st step

The 2nd step
The 3rd step

The 4th step
The 5th step

Figure 10. The search procedure (left) and the search pattern (right) of the diamond
search. The arrow is the direction that a large diamond moves toward, and after the result

of large diamond converges in the fourth step, the small diamond is adopted to refine the results
in the fifth step

Multimedia IP Development 39

4.2.1.4 Predictive search
Predictive search helps fast search algorithms not to be trapped by local
minimum SAD. It uses the motion information of neighboring blocks in the
spatial or temporal space for the initial guess of the starting point. That is,
the information of MB-level loop and Frame-level loop is utilized to predict
the motion vector of this current MB and save the computations of SR-level
loop. For example, the initial search candidate can be the motion vectors of
the blocks on the top, left, and top-right, their median, zero motion vector,
the motion vector of the collocated block in the previous frame, or the
accelerated motion vector of the collocated block in the previous two frames.
By this way, the search range can be reduced and constrained, so not only
the computational complexity but also the bit-rate of motion vector can be
saved.

4.2.1.5 Hierarchical search
Hierarchical search [30][31] is a multi-resolution search scheme. An initial
estimation at the coarse level (subsampled resolution) is processed first, and
then a refinement at the fine level is executed. Usually, two-level or three-
level hierarchical search is adopted. At the coarse level, because of the
subsampling in current MB and search region, the computational complexity
becomes smaller and full search is usually adopted to find the optimal MV in
the subsampled search region. Take the search result at the coarse level as
the initial search candidate, the search range at the fine level can be reduced,
and computational complexity can be saved. In general, hierarchical search
is mostly adopted for high resolution and fast motion that requires large
search ranges.

4.2.2 ME architecture

The computational complexity of ME is very high but the operations are
quite regular. ME algorithm itself is with large extent of parallelism.
Therefore, highly parallel array processor design is a common view for ME
designers. An simplified functional view of ME architecture consists of two
parts (Figure 11), the processing element (PE) array, which is responsible for
the calculation of SAD, and the on-chip memory, which is used to store the
data of search region and supports data reuse. For each MB, PE array will
update the data in the on-chip Memory through data bus. After the required
data are ready, PE array starts to compute the SADs.

Based on different ME algorithms and adopted search range data reuse
schemes, the design of PE array, the size of on-chip memory and the
memory bandwidth requirement will be very different. In the following,
several typical ME architectures for different ME algorithms are introduced

40 Chen et al.

Processing Element
(PE) Array

On-Chip Memory

D
at

a
Bu

s

Figure 11. The simplified diagram of motion estimation architecture

first, where we assume for simplicity that the search range is (-2, 2) and the
current block size is 2×2. After that, the trade-off between on-chip memory
size and the required memory bandwidth in different search region data
reuse schemes is discussed.

4.2.2.1 Full search ME architecture
Inter-level architectures and intra-level architectures are two types of full
search ME architectures. The former is to compute the search candidates in
parallel with the SR-level loop and sequentially estimate the distortions of all
current pixels in the CurBlock-level loop. On the contrary, the latter is to
compute the search candidates in sequential in the SR-level loop and parallel
estimate the distortions of all current pixels in the CurBlock-level loop. In
general, the former has a short critical path with a large register, and the
latter has a long critical path but fewer registers. Moreover, the former
requires fewer data inputs by broadcasting the reference pixels and
propagating the current pixels, and the latter requires much more data input
than the former does.

Figure 12 shows an inter-level architecture [32]. The inter-level ME
architecture computes the search candidates in the SR-level loop in parallel, and
sequentially estimate the distortions in the CurBlock-level loop. The PE in the
inter-level architecture is responsible for the computing the differences of all
current pixels in the current block and the accumulation of SAD for a candidate
pixel by pixel. This PE array is a one-dimensional inter-level architecture that
can compute all search candidates in a row at the same time. For example, in
Figure 12 (b), there are four processing elements for four search candidates in a
row, when the search region in the horizontal direction is (-2, 2).

The data flow is as follows. Current pixels are inputted in the raster scan
order and propagated by the shift registers. Reference pixels are also
inputted in the raster scan order to each reference pixel input, Ref.Pixel0 and
so on, and broadcasted into all PEs by the selection signals, Sel0, Sel1, and
so on. In each cycle, each PE calculates the distortion between one current
pixel and one reference pixel and accumulates this distortion to the partial

Multimedia IP Development 41

|Cur. – Ref. |

Cur. pixel Ref. pixel

+

16x16 SAD

D

PE0

PE1D

PE2D

PE3D

Cur. PixelRef. Pixel0

Sel0

Sel1

Sel2

Sel3

C
om

pa
ra

to
r

Ref. Pixel2

Ref. Pixel1

(a) (b)

Figure 12. (a) The PE of inter-level ME architecture (b) the inter-level ME architecture

SAD of its search candidate. After 2×2 cycles, the first PE, PE0, will generate
the SAD of the top-left search candidate. And in the following cycles, the
SADs of search candidates from left to right in a row will be generated
sequentially. The PEs which have generated the SADs in a row will process
the search candidates in the next row until all search candidates are processed.

The intra-level architecture is another kind of architecture for FSBMA. In
intra-level architectures, the current pixels in the CurBlock-level loop are
processed at the same time, and the search candidates in the SR-level loop
are computed one by one. The AB2 architecture in [33] is a two-dimensional
intra-level architecture. The PE in this architecture is responsible for the
distortion between one specific current pixel and the corresponding reference
pixel for all search candidates, as shown in Figure 13 (a). Because AB2 is a
two-dimensional intra-level architecture, there are four intra-level PEs,
which are corresponding to 2 × 2 current pixels in the current block in this
architecture, as shown in Figure 13 (b).

PE2 PE3

Add Add

D

D D

2D

C
om

pa
ra

to
r

PE0 PE1D

D D

Ref.Pixel0

Ref.Pixel1

Generated
SAD

Cur.
pixel

Ref.
pixel

-

Distortion

D

(a) (b)

Figure 13. (a) The PE of intra-level architecture. (b) The intra-level ME architecture

42 Chen et al.

The data flow of the intra-level architecture is as follows. Current pixels
are stored in corresponding PEs, and reference pixels are propagated PE by
PE in the horizontal direction. The two partial column SADs are propagated
and accumulated in the vertical direction first. After the vertical propagation,
two column SADs are propagated in the horizontal direction. In each PE, the
distortion of a current pixel in current MB is computed and added with the
partial column SAD, which is propagated in PEs from top to bottom in the
vertical direction. In the horizontal propagation, two column SADs are
accumulated one by one by two adders and four registers.

4.2.2.2 Fast search ME architecture
Although the computational complexity of fast search and fast full search
algorithms is much smaller than that of FSBMA, the design challenges of
VLSI architectures for fast search and fast full search algorithms is much
more difficult than that of FSBMA. This is because the data flow of fast
search and fast full search algorithms is irregular, and the processing order of
search candidates is dynamic, which is dependent on the last searching result.
For example, in three-step search or diamond search, you do not know the
center position of the next searching step until the minimum of this
searching step is found. Therefore, latency and pipelining bubble cycles are
becoming critical issues. A good fast search ME architecture should have a
short latency, support random access of search candidates efficiently, and
have no pipelining bubbles cycles when skipping some search candidates.

Tree-based architecture [34] has the above-mentioned advantages.
Figure 14 shows the tree-based architectures with different degrees of
parallelism. The tree-based architecture is similar to the intra-level
architecture. It can not only compute the distortions of the current pixels in
the CurBlock-level loop in parallel but also process the search candidates in
the SR-level loop at the same time, which means that the processing order in
the CurBlock-level loop and SR-level loop can be reordered for different
degrees of parallelism in tree-based architectures. For example, if the degree
of parallelism in the tree-based architecture is two dimensions of current
block, the tree-based architecture is equal to the intra-type architecture. If the
degree of parallelism is only one dimension of current block, then it only
processes the distortions of current pixels in a row at the same time. In the
following, we take these two examples to illustrate the data flow of tree-
based architectures.

In the first case, as shown in Figure 14 (a), each PE in tree-based
architectures is corresponding to one current pixel and is responsible for the
calculation of the distortion between one current pixel and one
corresponding reference pixel for all search candidates. In this architecture,
it can generate the SAD of one search candidate in one cycle. The latency of
this architecture is dependent on the memory access of reference pixels,

Multimedia IP Development 43

PE0 PE0

Add

Add

Comparator

Cur0
Ref0

Cur1
Ref1

D

PE0 PE0 PE0 PE0

Add Add

Add

Comparator

Cur0
Ref0

Cur1
Ref1

Cur2
Ref2

Cur3
Ref3

(a) (b)

Figure 14. (a) The architecture of a tree (b) The architecture of a ½ tree

which can be shortened with the interleaved memory arrangement in [34].
Moreover, no pipelining bubble cycles and no data dependency between the
current and the next search candidates exist in this architecture. It is suitable
for the hardware implementation of fast search algorithms that require the
property of random access in the search region.

If the degree of parallelism in the tree-based architecture is only one
dimension or less of current block, as shown in Figure 14 (b), the tree-based
architecture is a hybrid architecture of inter-type and intra-type architectures.
For example, folding the architecture in Figure 14 (a) by 2 (N) derives the
architecture in Figure 14 (b). Then, it can calculate one row SAD of the
search candidates in one cycle, and after generating and accumulating all
row SADs in 2 (N) cycles, the total SAD of one search candidate can be
derived. In this architecture, PDE can be easily integrated. The comparison
between the partial SAD and the current minimum SAD of PDE is changed
from the distortion of one pixel to one row SAD.

The tree-based architecture has a good flexibility to support various
reordering or rescheduling in the CurBlock-level loop and SR-level loop, so
it is usually adopted for fast search algorithms. In [35], a tree-based
architecture is adopted to support the diamond search and fast full search.
There are many duplicated search candidates in diamond search, as shown in
Figure 10. After each moving of the large diamond pattern, only five or three
search candidates are required to be calculated and the others are calculated
at the last large diamond pattern. An ROM-based solution is proposed in [35]
to avoid the duplicated search candidates and save 24.4% search candidates
in the Diamond Search algorithm.

This architecture also supports the fast full search algorithms, such as
PDE and SEA. The computation of SEA for one search candidate is

44 Chen et al.

executed by the processor platform first and then the SAD of this search
candidate is calculated in this architecture. The degree of parallelism in this
architecture is only half row (N/2), so the PDE is easily integrated with less
overhead, and the unit of comparison between the partial SAD and the
current minimum SAD is changed to half row SAD.

4.2.3 Block-level data reuse for search region

The required memory bandwidth of ME is very huge. Several block-level
data reuse schemes [36][37][38] for the search region have been explored
and analyzed in the literature to save the required memory bandwidth. In
the following, the redundancy access factor, Ra, is used to represent the
required memory access of different data reuse schemes. The redundancy
access factor, Ra, is defined as Total memory bandwidth for reference
frame / minumum memory bandwidth (pixel count in total), which means
that if we want to process one current pixel, how many reference pixels are
required.

The first scheme, Level A scheme, is the data reuse of the SR-level loop
in the horizontal direction, and reuses the overlapped region between two
reference blocks of two successive search candidates in the horizontal
direction. As shown in Figure 15 (a), two reference blocks have a large
common region, N × (N-1), and only N pixels are different. Therefore, only
N reference pixels are required to be updated for the next search candidate in
the horizontal direction. Therefore, for a current MB, the required memory
access, RaLevel A, will be

)1()()1(
N

SRSR
NN

SRNSRNRa H
V

VH
LevelA +×≈

×
×−+×

≈ ,

where N is the current block size, and SRH (=2PH) and SRV (=2Pv) are the
search range in the horizontal and vertical directions, respectively. In Level
A scheme, because only N × (N-1) reference pixels are reused, the on-chip
memory size is only N × (N-1) reference pixels. Level A scheme can totally
reuse the overlapped region between two reference blocks of two successive
search candidates in the horizontal direction.

Level B scheme improves the data reuse of search region in the Level A
scheme. Level B scheme presents the data reuse of the SR-level loop in the
horizontal and vertical directions, so Level B scheme can not only totally
reuse the overlapped region in the horizontal direction but also reuse the
overlapped region in the vertical direction, as shown in Figure 15(b). For one
current block, the search range is inputted once.

Multimedia IP Development 45

SRH + N - 1

SRV

+
N-1

1 1N-1

N

SRH + N - 1

SRV

+
N-1

1

1

N-1

N

SRH-1

CB 0

Search
Region 0

CB 1

Search
Region 1

SRV
+

N-1

NN

(a) (b)

(c)

SR
H
-1

CB 0

Search Region
0,1

CB 2

Search Region
2,3

SR
V

+
2N-1

NN

CB 1 CB 3

(d)

Figure 15. Data reuse schemes (a) Level A scheme (b) Level B scheme (c) Level C scheme
(d) Level C+ Scheme for FSBMA, where the heavy gray region is the overlapped and

reused region

Level A and Level B schemes reuse the overlapped region between the
reference block of the successive search candidates in the SR-level loop.
However, this kind of data reuse schemes still requires a lot of memory
bandwidth, and may not be enough for a practical system. Therefore, Level C
scheme is discussed to reuse the overlapped search region between two
successive current blocks. Level C scheme is similar to Level A scheme but
for the data reuse of the MB-level loop. As shown in Figure 15(c), there is a
large overlapped region between two search regions of two successive current
blocks in the horizontal direction. For two horizontal successive current blocks,
only N × (SRV+N-1) reference pixels are different and required to be updated.

An extension of Level C is possible, and it is named Level C+ scheme.
By using stripe scan, not only the overlapped search region in the horizontal
direction can be fully reused, but also the overlapped search region in the
vertical direction can be partially reused, as shown in Figure 15(d). That is,

46 Chen et al.

several successive current MBs in the vertical direction are stitched, and the
search region of these current MBs is loaded, simultaneously. Thus, only N
× (SRV+nN-1) pixels are required to be loaded from external memory if n
successive vertical current MBs are stitched together, which is called
n-stitched MBs.

Compared to the relationship between Level C and Level A schemes,
Level D scheme is also similar to Level B scheme but for the MB-level loop.
Level D scheme focuses on the data reuse of MB-level loop, so Level D
scheme is the ultimate data reuse scheme of search region for one frame,
which can fully reuse the overlapped search region not only in the horizontal
direction but also in the vertical direction. However, because Level D
scheme reuses the overlapped search region in both directions, the required
on-chip memory size is very large, (SRV - 1) × (SRH + W - 1) pixels. The
redundancy access factor, RaLevel D, is 1.

Through the discussions above, we see the design trade-off between the
required memory access and the on-chip memory size. Table 1 summarizes
the bandwidth and on-chip memory requirements of these reuse schemes,
and Table 2 shows the comparison of different data reuse schemes when the
block size is 16 × 16, the search range is (-64,64) in both directions, and the
frame format is D1 30fps. In order to reduce the intensive memory access for
ME operations, the larger the on-chip memory size is required.

Table 1. The comparison of different data reuse schemes

 External Memory Bandwidth of Reference
Frame (data access/pixel)

On-chip memory Size

Level A SRV × (1 + SRH / N) N × (N - 1)
Level B (1 + SRV / N) × (1 + SRH / N) (SRH + N - 1) × (N - 1)
Level C 1 + SRV / N (SRH + N - 1) × (SRV + N - 1)
Level C+ 1 + SRV / nN (SRH + N - 1) × (SRV + nN - 1)
Level D 1 (SRH + W - 1) × (SRV - 1)

n is the number of stitched vertical current blocks.

Table 2. The comparison of different data reuse schemes for ME (the block size is 16×16, the
search range is (-64,64) in both directions, and the frame format is D1 30fps)

 External Memory Bandwidth of Reference Frame On-chip Memory Size
Reuse scheme (Data access/pixel) (MB/sec) (pixels)
Level A 1,152 11,943.9 240
Level B 81 839.8 2,145
Level C 9 93.3 20,499
Level C+ (n=2) 5 51.8 22,737
Level D 1 10.4 107,569

Multimedia IP Development 47

4.3 Transform Coding

4.3.1 DCT

The 8×8 2-D DCT/IDCT is a widely used transform kernel in both image
and video coding. It is also a computation-intensive module, and there are
plenty of DCT/IDCT architectures in the literature.

Most DCT/IDCT architectures are based on fast algorithms instead of a
direct mapping of Eqs. (1)−(2), each requires 4,096 (84) multiply-accumulate
operations. Since DCT is a separable transform, row-column decomposition
based architecture (Figure 16) is a commonly used architecture. The design
in [39] is a good example to illustrate a complete design and optimization
process of a row-column based DCT/IDCT processor. By row-column
decomposition and the symmetry property, the number of multiplies is
reduced to 512 (83). Therefore, the 1-D DCT/IDCT unit in the row-column
decomposition architecture [39] needs to compute only eight multiplies per
input sample with some simple changes of data sequences. This example
again shows us that algorithm optimization before architecture mapping is
significant and crucial.

The architecture optimization process usually can be partitioned into PE
part, memory part and control part. For the PE optimization, in this case
study, the architecture is compact since the horizontal and vertical 1-D DCTs
are folded on one 1-D DCT unit. Also, the multipliers are hardwired ones
since the DCT coefficients are constant. Furthermore, the signed digit
representation of the DCT coefficients is adopted. This technique reduces the
nonzero bits, and hence minimizes the number of adders required for the
implementation of a hardwired multiplier. At last, finite wordlength
simulation is necessary to decide the required wordlength to guarantee the
computation precision. Figure 17 shows the row-column decomposition
based 2-D DCT architecture.

The memory issue in a DCT/IDCT design is not very significant. In row-
column decomposition architecture, a 64 words transpose memory is
required. Since it is not a big memory, the optimization issue of this memory
is minor. As for the control, the DCT/IDCT can operate seamlessly with the

1-D
DCT/IDCT

Transpose
Memory

1-D
DCT/IDCT

Figure 16. Row-column decomposition

48 Chen et al.

LIFO SUB

ADD

MUL
G

MUL
E

MUL
D

MUL
B

MUL
A

MUL
C

MUL
F

ACC
7

ACC
5

ACC
3

ACC
1

ACC
6

ACC
4

ACC
2

ACC
0

LIFO

Transpose
Memory

CONTROL

8

11

D

D

D

D

D

D

D

D

Figure 17. Row-column decomposition based 2-D DCT [39]

ability of one data per cycle of both the input data rate and the throughput
rate. Therefore, the control signals are quite easy, and the I/O interface of the
DCT/IDCT IP core is clear.

There are many other alternatives [41] for DCT/IDCT architecture.
Besides the parallel multiplier-based design discussed above, architectures
such as Distributed Arithmetic (DA) based, and digit-/bit-serial based ones,
etc, are also widely discussed. Also, the direct 2-D architecture is another
alternative for higher throughput. The design trade-offs are mainly among
dimensions of the throughput, area, and control complexity, etc.

4.3.2 DWT

The design of a DWT consists of two parts, the 1-D PE design and the
2-D dataflow and scheduling. For the 1-D PE design, convolution-based and
lifting-based implementations are two common approaches. Different
approaches result in different numbers of multipliers and adders required.
For the 2-D DWT, how 1-D DWT units are integrated and scheduled to
perform 2-D DWT is a key that makes more significant architecture
differences.

A direct mapping of the dataflow in Figure 3 is not efficient since the
hardware cost is high and the hardware utilization is low. Usually, folded
architecture is adopted. Different decomposition levels or horizontal and
vertical filtering are mapped onto the shared PEs. Similar to the row-
column decomposition 2-D DCT, a transpose buffer is required between

Multimedia IP Development 49

the two 1-D DWT modules. However, the transpose buffer in DWT is a big
issue, since the size of the buffer required for the transpose purpose in a
DWT is usually much larger than that of a DCT. Take JPEG 2000 as
example, typical tile sizes for DWT are 128×128 or 256×256, which is
much larger than a small 8×8 DCT block. In the following, three design
alternatives [43] are discussed: direct 2-D, line-based and block-based
architectures.

Direct 2-D architecture allocates one set of low-pass and high-pass
filters (Figure 18). The PE performs one direction’s 1-D filtering first, then
another direction’s filtering, and the process continues for the next
decomposition levels, if any. The characteristic of this architecture is that
only single 1D DWT PE is required, and all the data accesses from the tile
memory. That is, the tile memory is also used for the transpose purpose,
and no extra buffer is required for intermediate results. If the tile memory
is an off-chip memory, the intensive data access of the external memory
will be the main concern.

For line-based architecture (Figure 19), there are two 1-D DWT PEs,
one for the vertical 1-D DWT and the other for the horizontal 1-D DWT.
Several lines of buffers are required for the transpose function, since this
architecture schedules the second direction’s filtering to start as early as
possible when the filtering of the first direction has generated enough
coefficients. How many lines are required for a line-based DWT
architecture depends on the number of filter taps, and the length of a line
depends on the image (a tile in JPEG 2000) width. The size of line buffers
is much less than that of a whole tile, and are more feasible to be on-chip
ones. The data access of the off-chip title memory will be less at the cost of
one more 1-D DWT PE and several line buffers. This cost is usually worth
paying since the bandwidth problem is usually more critical, and the power
consumption of external memory access is much larger than the on-chip
access.

1-D DWT
External
Frame

Memory

Figure 18. Direct 2-D DWT

50 Chen et al.

1-D DWT

1-D DWT

Data Buffer
(Line Buffer, J Related)

Temporal Buffer
(Line Buffer, J Related)

M
U
X

Input Image

(LL) LL,...,LL
J-2

(LL) LL,
J-1

(LL) LH,...,LH
J-1

(LL) HL,...,HL
J-1

(LL) HH,...,HH
J-1

Figure 19. Line-based multi-level 2-D DWT (J levels in this illustration)

Block-based 2-D DWT architecture is another alternative. The main
consideration is to match the output data order of a DWT with the required
input data order of the module after DWT. When a DWT process an image
data in raster scan, the output will also be in raster scan order. However, in
image coding, the coding flow of the module after the DWT may not be a
raster way. In JPEG 2000, Embedded Block Coding with Optimized
Truncation (EBCOT) is the module after DWT. The DWT coefficients of a
tile are partitioned into non-overlapped code-blocks, which are the basic
coding units of EBOCT. If the DWT output can be block-wise, then the
buffer between DWT and EBCOT will be less compared with line-based
architecture. The cost is that the input data order for the DWT has to be
carefully controlled, and some extra buffer other than the size of a single
code-block or repeated calculations will be necessary since the DWT
filtering process requires some data across a code-block boundary.

4.4 Entropy Coder and Decoder

Different from the computation-intensive characteristic of the ME and
DCT/IDCT, entropy coding consists of serial and more control-oriented bit-
level operations. Therefore, an efficient entropy coder should have efficient
bit-manipulation capability.

4.4.1 Huffman coder

Huffman encoding is a process to map fixed length symbols to variable
length codewords, and the decoding is the inverse process. The throughput
of tree-based VLC and VLD are low and not constant. For high speed image
and video processing, parallel VLC and VLD architectures, which guarantee
one symbol encoding and decoding per cycle, are better approaches.

Multimedia IP Development 51

The design of a VLC coder and a VLC decoder can be partitioned into
two parts. One part is the table-lookup procedure, and the other part is the
bit-manipulation for the variable-to-fixed concatenation in a VLC coder
or the extraction of variable-length bits from the bitstream in a VLC
decoder.

For a given Huffman table, the design of the table-lookup process in
both VLC coder and VLC decoder is simple and straightforward. In most
video coding standards, Huffman tables are usually fixed ones, so both
the encoder and decoder know the Huffman tables in the beginning. In
JPEG, user-customized Huffman tables are supported. Therefore,
a general VLC decoder has to extract the Huffman table information from
the JPEG bitstream in order to support the decoding of user-defined
Huffman tables [44].

In a VLC coder, after the symbols are transformed to Huffman
codewords, these variable length codes have to be packed into fixed length
ones, said integer bytes. In a VLC decoder, the decoded bits have to be
moved out from the bitstream, and the following bits have to be fetched for
the next decoding process. The design in [45] provides good reference for
high throughput VLC coder and decoder architectures.

4.4.2 Arithmetic coder

For the arithmetic coding in image and video standards, binary arithmetic
coding is usually used. To further improve the coding performance, a context-
based adaptive scheme is adopted. This characteristic of the context-based
scheme is that context information requires some computation based on some
previous coded data and some information has to be stored for later reference.
Besides, due to the adaptive scheme, parallel architecture for arithmetic coding
is difficult. The coding of a symbol depends on the updated probability, so
symbols with some context cannot be parallel processed.

In standards, arithmetic coding is an iterative process of conditional
branches and arithmetic, which are usually represented by a flowchart. With
the well-defined data flow at hand, the first step of design process is simply to
map the data flow directly into logic gates. This direct mapping is functionally
correct but usually cannot meet the critical path constraint. Then, pipelining
techniques are applied to shorten the critical path to meet the target operational
frequency and throughput. The key optimization is to apply techniques to
break some long paths to short ones, and also to conquer the loop operations
by the technique similar to the design concept of the carry select adder.

Figure 20 shows a generic three-stage pipelined adaptive arithmetic
encoder. There is a feedback loop between stage 0 and stage 1. Stage 1
updates the probability information based on the information from stage 0,

52 Chen et al.

Read State Interval
Update

Code
Update

stage 0 stage 1 stage 2

Bit Streams

Update State

Figure 20. Generic three-stage pipelined context-based adaptive arithmetic coder architecture

and then passes the related updated information back to stage 0. When two
successive symbols are with the same contexts, both the two possible
branches are implemented, and the feed back information selects the correct
branch result.

5. CODEC DESIGN: CASE STUDIES

To design an image or video codec system, detailed system analysis is the
first key step and then the codec system can be divided and conquered by
module-level design and optimization. Under the modulized design concept,
once the key modules are available, the design of a codec is a process to
integrate those modules. The key is to have a smooth data flow so that large
amount of image/video data can flow through the processing pipeline as
seamlessly as possible. In this case, the codec system can buffer less
intermediate data among modules and reduce data access back and forth
between processing elements and memories.

In image coding, the complexity of encoding and decoding are similar.
In video coding, it is an asymmetric coding in the sense that the complexity
of encoding is much higher than that of decoding due the ME process in
the encoding side. The encoder design has more room for optimization.
Also, among the multiple parameters, modes, and tools provided in a
standard, an encoder can selectively implement some of them based on the
application requirements and rate-distortion-complexity trade-offs.
However, for a general decoder, it has to support all specifications and
parameters defined in a profile and level in order to claim standard
compliant.

Based on the discussions of some basic components in the previous
section, the analysis and design of image and video codec IPs of JPEG,
JPEG 2000 and H.264/AVC will be discussed in the following. Here, we
will focus more on the system architecture rather than individual module
designs.

Multimedia IP Development 53

5.1 Case Study 1: Baseline JPEG Codec

JPEG is widely used for digital image compression. As the population of
DSC, JPEG codec becomes an important design. Figure 21 shows the
simplified functional block diagram of JPEG. Fast JPEG encoding and
decoding can be easily achieved in modern PC. However, in consumer
products without such high frequency and powerful processor, JPEG
encoding and decoding can be a tough job especially when the resolution of
DSC keeps increasing and the request of continuous photo shooting.

Q Tables

Data

Tables
Headers

Huffman
Decoder

Inverse
Quantizer IDCT

H Tables

DCT Quantizer Huffman
Coder Data

Tables
HeadersQ Tables H Tables

JPEG File

JPEG File

Raw
Image

Decoded
image

Figure 21. Simplified baseline JPEG functional block diagram

There have been many JPEG codec architecture proposed in the literature
and in the market. Since there are no complicated loops between functional
modules in JPEG, a fully pipelined JPEG architecture is feasible. A fully
pipelined architecture feature is that it can encode or decode one pixel per
cycle. That is, operated at x MHz, the encoder can process x Msamples per
second, and the decoder can decode x Msamples per second.

In [42], a fully pipelined baseline JPEG encoder (JAGUAR architecture,
Figure 22) is first presented. That paper presents a complete design from
DCT to the data packer with detailed description of each module’s
architecture. That fully pipelined and modulized architecture sets a good
example for reference. Each module can be replaced or modified with some
tricks for improvement. For example, designers can choose any DCT
architecture that is capable of one data input per cycle and one data output
per cycle from many available alternatives.

Figure 23 shows a micrograph of a JPEG encoder prototype chip [44] for
reference. It is implemented by TSMC 0.6μm 1P3M technology. The chip
area is 5.38 × 5.35 mm2. The encoder works up to 40 MHz. A fully pipelined
baseline JPEG encoder does not require many memories. The minimum
memory requirement is one for DCT transpose memory, one for zigzag

54 Chen et al.

DCT

Quantization

Reordering logic

Zero-runlength encoder

Category selection circuit

Huffman encoder

Data packer

Q-tables

Huffman
tables

Figure 22. JAGUAR architecture [42]

reorder buffering, and one for quantization tables. The gate count of the
JPEG encoder is around 33,000 logic gates [44]. The complexity of JPEG
encoder and decoder are similar. A general JPEG decoder supporting user-
defined Huffman table requires about 40,000 gates.

Besides the core part, the architecture can be extended more at the front
end and the back end to have a completely stand-alone JPEG encoder IP. In
that case, the stand-alone IP does not require any help from processors. In
the front end, the color conversion of RGB to YcbCr can be considered. Also,
since the basic coding unit of JPEG is an 8 × 8 block, a raster to block scan

Figure 23. JPEG Encoder Chip micrograph [46]

Multimedia IP Development 55

conversion buffer is required. As for the back end processing after data packer,
the packed data stream has to be checked and modified to avoid the
ambiguous marker code due to data packing. Also, for applications that only
require limited parameters for the user to select, only several fields in the
bitstream header is variable. Therefore, a hardwired header generator can also
be embedded. With these enhancements, the system processor can just provide
an image in RGB format, and signal the JPEG encoder IP to start coding. Then,
after processing, a standard compliant JPEG file is outputted by the JPEG IP.
The processor is completely off-loaded from the JPEG processing.

5.2 Case Study 2: JPEG 2000 Codec

5.2.1 JPEG 2000 introduction

JPEG 2000 is the latest image coding standard. It is well known for its
excellent coding efficiency as well as numerous useful features such as
region of interest (ROI) coding and various types of scalability. Unlike
JPEG, JPEG 2000 uses the Discrete Wavelet Transform (DWT) as the
transformation algorithm and Embedded Block Coding with Optimized
Truncation (EBCOT) as the entropy-coding algorithm. EBCOT can produce
finely embedded bit streams that enable post-compression Rate-Distortion
(R-D) optimization.

The design complexity of JPEG 2000 is much higher than JPEG. There
are three critical issues to design a high throughput encoder. First, the DWT
requires high memory bandwidth and enormous computational power.
Second, the EBCOT requires extremely complicated control and sequential
processing. Third, R-D optimization requires a large memory for storing the
lossless code-stream and R-D information. All of the above requires high
operating frequency, huge memory size, and high memory bandwidth for
chip implementation.

5.2.2 81MS/s JPEG 2000 single-chip encoder with rate-distortion
optimization [47]

We take the encoder design in [47] for the case study of JPEG 2000. The
block diagram of the encoder is shown in Figure 24. The encoder consists of
a main controller, a DWT module, a pre-compression R-D optimization
controller, a parallel EBCOT module, and a dedicated Bit Stream Formatter
(BSF). It is a tile-level pipelined architecture. Two 24 KB off-chip SRAMs
are required. The input format is raw image data and the output is the JPEG
2000 code-stream.

56 Chen et al.

Filter
Core

MEM I/F

DWT
Context

Formation

EBC

Off-Chip Memory Interface

RDO

Pixel
18

FIFO

MEM I/F

Arithmetic
Encoder

Codestream
Formation

MEM I/F

BSF

Main Control
(Finite State Machine)

24KB SRAM 24KB SRAM

24 24

32

Code-
stream

Figure 24. Block diagram of the JPEG 2000 encoder [47]

For the design of the DWT module, the recursive operations in the LL
subband makes the data flow more complicated compared with DCT. Also,
since a DWT tile is usually larger than a DCT 8 × 8 block, the memory issue is
more problematic than DCT, as discussed in Section 4.3.2. The line-based
DWT architecture is used in this design. The data buffer, which requires 1.5
lines of pixel data, stores the intermediate decomposition coefficients after the
1-D row DWT. The coefficients are then read by the 1-D column DWT to
produce the 2-D results. The temporal buffer stores the intermediate data for the
1-D column DWT module, which requires 2 lines of pixel data for the (5,3)
filter. Two 1-level 2-D line-based DWT modules are cascaded to implement
the 2-level 2-D DWT decomposition and achieve a throughput of two pixels
per cycle. Figure 25 shows the block diagram of the DWT module. The 1-D
row and column DWT modules are implemented using a lifting scheme. 8,512
bits of on-chip memory, implemented by registers and on-chip SRAM, is
required to accommodate the 128x128 tile size.

1-D DWT 1-D DWTData Buffer
(128x1.5x12 bits)

Temporal Buffer
(128x2x12 bits)

Image
imput

LL

HL, LH, HH

1-D DWT Data Buffer
(64x1.5x14 bits)

Temporal Buffer
(64x2x14 bits)

LLLH, LLHH
LLLL, LLHL

1-D DWT

Figure 25. Block diagram of DWT module. [47]

Multimedia IP Development 57

The most critical design challenge of a high performance JPEG 2000
encoder is the design of a high throughput EBCOT module (Table 3, [48]).
EBCOT is a bit-plane coder based on the context-based adaptive arithmetic
coding. The operations are in bit-level. The equivalent input data rate is
dramatically increased since a word (a DWT coefficient) now becomes many
bits to be processed. The irregular fractional bit-plane coding order further
complicates the data flow. Also, the interface between DWT and EBCOT is
another issue, since there are two mismatches between the two modules. First,
DWT is working in word-level while the EBCOT is working in bit-level.
Second, the coding unit of DWT is a tile, while that of EBCOT is a code-block.
Considerable buffer size and data access are therefore necessary if the two
modules are directly connected.

Table 3. Run time profiling of JPEG 2000 encoding (The simulation is under JPEG 2000 VM
7.2 with image size 1792 x 1200, 5-level DWT and single layer, at PIII-733 PC.)

 Run Time Percentage (%)
 Gray Scale Image Color Image
Operation Lossless coding Lossy coding Lossless coding Lossy coding
Color Transform N.A. N.A. 0.91 14.12
DWT 10.81 26.38 11.90 23.97
Quantization N.A. 6.42 N.A. 5.04
EBCOT Tier-1 71.63 52.26 69.29 43.85

Pass 1 14.89 14.82 13.90 12.39
Pass 2 10.85 7.00 10.94 5.63
Pass 3 26.14 16.09 25.12 13.77

Arithmetic coding 19.75 14.35 19.33 12.06
EBCOT Tier-2 17.56 14.95 17.90 13.01

In EBCOT sequential coding mode, there is only limited parallelism for
speed-up. What ASIC designers can do is to do a parallel check to decide
which pass a bit should belong to. Sample skipping, group-of-column
skipping, and pass-skipping schemes [48] are some of the techniques that
can hide some of the bubble cycles in a sequential implementation. However,
there is a fundamental limit of the throughput enhancement by these schemes.
More parallelism in different levels should be explored for high speed
encoding and decoding requirements such as motion JPEG 2000.

In this work, the EBCOT is operated in parallel mode. The proposed
architecture can process a DWT coefficient in parallel, regardless of bit-
width. Three techniques are applied to achieve this feature. First, a parallel
context modelin g approa ch inste ad of tradition al bit plane-by -bit
plane, is taken to increase the processing speed. Second, a reconfigurable
FIFO (First-In First-Out) architecture that reduces bubble cycles is obtained
by exploiting the features of the EBCOT and the DWT. Third, a folded
Arithmetic Encoder (AE) architecture is devised to reduce the area.

58 Chen et al.

The parallel EBCOT architecture is shown in Figure 26. It is capable of
processing one 11-bit DWT coefficient per cycle. This architecture can
process 28 passes in parallel, and therefore can operate at 1/28th the
frequency of a traditional architecture. The state variables for context
formation are calculated on the fly for each bit plane of each coefficient, so
the 16kb state variable memory is no longer necessary. The folding
technique reduces the hardware cost of the AE by 99 K gates.

The hardware implementation of the rate control function is also
addressed in this design. For lossy coding, there are two drawbacks of the
recommended post-compression R-D optimization algorithm in the reference
software. First, the computational power and the processing time are wasted
since the source image must be losslessly coded regardless of the target bit
rate. Second, a large temporary memory is required to buffer the bit stream
and side information for rate control. A pre-compression R-D optimization
algorithm is proposed to solve these problems. The idea is to estimate the
rate information of a pass before it is arithmetic coded. With a good model,
the R-D optimization point can be approximated before EBCOT coding.

0

Line Buffer

1
2
3
4
5
6
7
8
9

Sign

CF0
CF1
CF2
CF3
CF4
CF5
CF6
CF7
CF8
CF9

10-Bit-plane Parallel

GRB

DWT
Coefficient

L0
L1

Reconfigurable
FIFO

AE4
AE3
AE2
AE1
AE0

S0
S1
S2
S3
S4
S5
S6
S7

Saved Area

Folded AE

3 Pass Parallel

41
%

MPC

99
K

 G
at

es

Figure 26. Word-parallel EBCOT architecture [47]

The flowchart of the proposed pre-compression R-D optimization
algorithm is shown in Figure 27. It is comprised of two stages: accumulation
and decision. During accumulation the distortion and bit-count are calculated
and accumulated. In the decision stage the truncation points are determined
according to the normalized distortion and estimated bit rate. The proposed
algorithm allows the truncation point of a code-block to be determined
before EBCOT encoding. Hence, only required coding passes are processed

Multimedia IP Development 59

Pass2?

DWT Coefficient

Pass3
Negligible?

Compute Distortion
Increase Bit Count

DWT
Finish?

No

Yes

Normalize Distortion
Estimate Bit Rate

Truncation Point
Decision

Truncation
Points

Quality Index

No No

Yes Yes

Accumulation
Stage

Decision
Stage

Figure 27. Flow chart of the pre-compression rate-distortion optimization algorithm [47]

which reduces the computational power as the compression ratio increases
(e.g., compression ratio of 8 requires 8 times less EBCOT computation). In
addition, the memory for lossless code-stream and R-D information is
eliminated. The performance of the proposed pre-compression algorithm only
degrades 0.3 dB on average compared with the post-compression algorithm.

Figure 28 is the micrograph of the 81 M samples/sec JPEG 2000 single
chip encoder, which is implemented on a 5.5mm2 die in 0.25μm CMOS

Figure 28. Die micrograph [47]

60 Chen et al.

technology. The chip contains 163k gates and 11kb of SRAM. The processor
consumes 348mW @ 2.5V when operating at 81 MHz. The detailed chip
features are shown in Table 4.

Table 4. Chip specification

Technology TSMC 0.25-μm 1P5M CMOS
Supply voltage 2.8V
Core area 2.73 × 2.02mm2
Logic gates 162.5 K (2-input NAND gate)
SRAM 7 K bits
Operating frequency 81 MHz
Power 348 mW
Package PGA 256
Image size Up to 32K × 32K
Processing rate 81 M samples/sec
DWT (5,3) filter, 2-level decomposition
Tile size 128 × 128
Code-block size 64 × 64

5.2.3 Exploration of parallelism

Many JPEG 2000 codec designs are proposed to speed up the processing.
The common idea among them is to explore more feasible parallelism at
different levels, especially in the critical EBCOT design. Basically,
according to the EBCOT algorithm, parallelism can be considered in
several hierarchical levels: code-block level, bit plane level, pass level,
symbol level, etc.

The previous case study is an extreme bit-plane parallel architecture,
in which all bits of a coefficient are processed in parallel. One can view
this block-coding engine as a word-level processor. The original word-
level to bit-level mismatch between DWT and EBC is resolved.
Therefore, no extra word-to-bit conversion and buffer is required. Also,
since bits are processed in parallel, the state variable information can be
processed on the fly, and therefore the state variable memories are not
necessary.

For other alternatives, in [49] (Figure 29), a 2-plane parallel, 3-pass
parallel, and 4-symbol parallel EBCOT architecture are implemented. The
three-code-block parallel architecture [50][51] (Figure 30) is also a common
solution. It tries to balance the throughput and input data rate between DWT
and EBCOT. A double-encoder architecture is proposed in [52] to achieve
real-time HD-movie encoding.

Multimedia IP Development 61

Code
Block
buffer

Pass 1

Pass 2

Pass 3

Context
and

Decision
buffer

AE
AE
AE
AE

Pass 1

Pass 2

Pass 3

Context
and

Decision
buffer

AE
AE
AE
AE

Bit-
Stream
buffer

DWT BSF

upper bit plane

lower bit plane

Figure 29. EBCOT parallel architecture [49]

R-D Opt.
 Controller

CodeStreamPixel

Context
Formation

Arithmetic
Coder

EBC

Memory
Interface

Header
Formatter/

Parser

BSC

Context
Formation

Arithmetic
Coder

EBC

Context
Formation

Arithmetic
Coder

EBC

Bit Stream
Buffer

DWT

Filter Core

Memory
Interface

Controller

System Bus

SDRAM

Main Controller
Codec Chip

Figure 30. JPEG 2000 codec based on three-code-block parallel architecture

5.3 Case Study 3: H.264/AVC Codec

5.3.1 H.264/AVC introduction

Figure 31 shows the functional block diagram of the H.264/AVC
[53][54][55] and highlights the features of some modules. Compared to
MPEG-4, H.263, and MPEG-2, H.264/AVC can achieve 39%, 49%, and

62 Chen et al.

No Mismatch
Between Encoder and

Decoder

1/4-Pixel Accuracy, Variable Block Sizes, Multiple Reference
Frames, B-Picture with Temporal or Spatial Direct Mode

In the DPCM-Loop Required at
both encoder and decoder

Intra Prediction Modes
9 I4MB & 4 I16MB
& 4 IChroma modes
= 13 modes

Rate-Distortion
Optimized Mode

Decision

4x4
Integer

Transform

Video Source
Transform Quantization

Quantization step sizes increased
at a compounding rate of
approximately 12.5%

Quantized Transform
Coefficients

Inverse
Quantization

Inverse
Transform

Entropy
Coding

Exp-Golomb VLC &
Context-Based Adaptive
Variable Length Coding

(CAVLC)
OR

Context-Based Adaptive
Binary Arithmetic Coding

(CABAC)

Motion/Intra
Compensation

BitStream Out

+

+

Predicted Frame

Motion
Estimation

Intra
Prediction

Reference
Frame Buffer

Reconstruct
Frame Buffer

Deblocking
Filter

Mode
Decision

+

-

Coding Mode
Information

Entropy
Decoding

BitStream In

Decoded
Video

Decoder
Scope

Encoder
Scope

Figure 31. Block diagram of H.264/AVC video coding system

64% of bit-rate reduction, respectively [56]. The high compression
performance comes mainly from the new prediction techniques used to
efficiently remove temporal and spatial redundancies. Intra prediction,
unlike the previous standards, is done in spatial domain and has multiple
modes. Inter prediction is enhanced by ME with quarter-pixel accuracy,
variable block sizes (VBS), multiple reference frames (MRF), weighted
bi-prediction and improved spatial/temporal direct mode. Moreover, the
advanced entropy coding tools use content adaptivity to further reduce
statistic redundancy. The perceptual quality is improved by in-loop de-
blocking filter. Meanwhile there is no mismatch between decoder and
encoder for integer transform scheme.

5.3.2 System analysis

The coding performance of H.264/AVC comes at the price of huge
computational complexity. According to the instruction profiling with
HDTV specification, H.264/AVC decoding process requires the computation
of 83 Giga-instructions per second (GIPS) and memory access requirement
of 70 Giga-bytes per second. As for H.264/AVC encoder, up to 3.6 Tera-
instructions per second (TIPS) and 5.6 Tera-bytes per second computational
resources are required. Dedicated hardware is a must to make most of
H.264/AVC applications feasible.

It is a tough job to map the H.264/AVC procedures into the efficient
system architecture. In addition to extraordinary huge computational

Multimedia IP Development 63

complexity and memory access requirement, the coding path including
prediction, reconstruction, and entropy coding is very long. The involved
functionalities are not only abundant but also complex. Therefore, an
efficient task partition with pipelining structure is required. Besides, an
efficient memory hierarchy with data reuse scheme is essential to reduce the
bandwidth requirement.

Furthermore, the architecture design for the significant modules is also
very challenging. Figure 32 and 33 shows the run time profile of
H.264/AVC encoding and decoding, respectively. The inter prediction takes
97.32% of the computational load, and obviously is the processing
bottleneck of an H.264/AVC encoder. For a decoder, the inter prediction and
de-blocking filter contribute the most computation time (39% and 36%),
while IQ/IDCT, entropy decoding, and intra prediction occupy the rest.

Exp-Golomb
VLC + CAVLC

0.119%

Interpolation
8.079%

Deblocking
0.027%

Sub-Pixel ME
37.207%

Integer ME
52.034%

Mode Decision
1.542%

Intra Prediction
0.544%

DCT+Q+IQ+IDC
T+MC
0.447%

Figure 32. Run time profile of H.264/AVC inter frame coding

Others
8.610%

Intra Prediction
1.210%

Entropy Decoding
5.890%

Inter Prediction
38.920%

Deblocking Filter
36.050%

Inverse Transform and
Inverse Quantization

9.320%

Figure 33. Run time profile of H.264/AVC decoding

64 Chen et al.

The reference software adopts many sequential processing of each block
in the macroblock (MB), which restricts the parallel processing. The coding
tools involve with many data dependencies to enhance the coding
performance, but the considerable storage space is the penalty. The block-
level reconstruction loop caused by intra prediction will induce the bubble
cycles and decrease the hardware utilization and throughput. Last but not
least, there are functionalities that have multiplex modes, and the re-
configurable engine to achieve resource sharing is a key for efficient
implementation.

5.3.3 Architecture design

The encoder design in [57] and the decoder design in [58] are chosen for our
case study of H.264/AVC codec.

For the encoder part, the traditional two-stage MB pipeline, prediction
(ME) and block engine (MC+DCT+Q+IQ+IDCT+VLC), is not suitable
because of the long critical path and feedback loop. Figure 34 shows the
four-stage macroblock pipelining architecture of the encoder. According to
the analysis in [57], five major functions are extracted and mapped into four-
stage MB pipelining structure with dedicated task scheduling. As for the
decoder, Figure 35 shows the hybrid task pipelining architecture for the
decoder. A hybrid task pipelining scheme, a balanced schedule with block-
level, MB-level, and frame-level pipelining, is proposed to greatly reduce the
internal memory size and bandwidth.

Moreover, the design consideration and optimization for its significant
modules including bandwidth optimized motion compensation (MC) engine,

Rec. MB SRAM Deblock SRAM

Residue MB
SRAM

Bitstream
SRAM

Luma Ref. Pels SRAMs

Cur. Luma & Chroma MB
SRAM

MC Luma MB SRAM

Main Controller
System Bus Interface

Local Bus Interface

Upper Ref. & MV SRAM

Cur. Luma MB
Reg.

MC Chroma MB
SRAM

Upper Pels & I4MB
SRAM

Total Coeff. SRAM

Upper MB QP & Intra
Flag SRAM

IME Engine FME Engine

Encoder Chip

1st Stage 2nd Stage 3rd Stage 4th Stage

EC Engine

DB Engine
IP Engine

3MB Local
External Memory

(Ref. Frames)

AHB Master/Slave DRAM Controller

AHB
RISCVideo Input System External

Memory

Figure 34. Block diagram of the H.264/AVC encoding system [57]

Multimedia IP Development 65

Intra reconstructed /
Inter-Residue
MB buf SRAM

Inter-Predicted
MB buf SRAM

CAVLD buffer reg

Inverse
Quantization/

Inverse
Transform

INTER_PRED

IQ/IT buffer reg
Upper Pels SRAM

DB SRAM DB Engine

Motion Info SRAM

QP InIntra SRAM

Motion Info
SRAM

IntraMode
SRAM

Motion Vector
Prediction

IntraMode
Prediction

IntraMode Reg.

Motion Info Reg.

MB IsIntra SRAM

INTRA_PRED
Exp-golomb

decoding
engine

PARSER
CAVLD engine

Total Coeff. SRAM

Sum and
clipping

Main Controller

Local Bus Interface

4x4-block Pipeline

Macroblock Pipeline

Macroblock/
Frame Pipeline

16MB Local
External
Memory

(Ref. frames)

Bitstream SRAM

System Bus Interface

System
Bus

Decoder Chip
System
External
Memory

Figure 35. Block diagram of the H.264/AVC decoding system [58]

re-configurable intra predictor generator, parallel integer ME (IME) and
fractional ME (FME) architectures are involved. The design shows that,
by combining these efficient architecture and bandwidth reduction
scheme, efficient implementation for H.264/AVC video coding system is
achievable.

5.3.4 Prototype implementation

Detailed implementation data of both the encoder and decoder are provided
here for reference.

5.3.4.1 H.264/AVC encoder
The encoder targets the baseline profile up to level 3.1. The maximum
computational capability is real time encoding of SDTV 30fps with four
reference frames or HDTV 30fps with one reference frame. The maximum
processing capability is 108K MB/sec. This specification has 3.604 TOPS of
computational complexity and 5.66 TByte/sec memory access requirement
according to the profiling of the reference software implementation without
any simplification.

Table 5 shows the logic gate count profile synthesized at 120 MHz. The
total logic gate count is about 923K. Similar to the instruction profile, the
prediction engine, including IME, FME, and INTRA stages, dominates 90%
of logic area. As for on-chip SRAM requirement, 46 memory blocks, totally
34.72 K Bytes, are required. A prototype chip is fabricated by UMC 0.18µm

66 Chen et al.

1P6M CMOS process. Figure 36 shows the chip micrograph, and the chip
specification is in Table 6.

Table 5. Gate count profile of the H.264/AVC encoder [57]

Functional block Gate counts Percentage
Central control 34,151 3.7 %
IME stage 305,211 33.08 %
FME stage 401,885 43.55 %
INTRA stage 121,012 13.11 %
EC stage 29,332 3.18 %
DB stage 20,152 2.18 %
RAM BIST 11,025 1.19 %
Total 922,768 100%

Figure 36. Chip micrograph of the H.264/AVC encoder [57]

Table 6. Chip specification of the H.264/AVC encoder [57]

Technology UMC 0.18μm 1P6M CMOS
Pad/Core voltage 1.8V
Core area 7.68 × 4.13 mm2
Logic gates 922.8 K (2-input NAND gate)
SRAM 34.72 KByte
Encoding features All baseline profile compression tools
Max. number of ref. frames 4
Max. search range (ref. 0) H[-64,+63], V[-32,+31]
Max. search range (ref. 1-3) H[-32,+31], V[-16,+15]
Operating frequency 81 MHz for D1 (4 ref. frames, Max. search range)
 108 MHz for HDTV 720p (1 ref. frame, Max. search range)
Power consumption 581 mW for D1
 785 mW for HDTV 720p

Multimedia IP Development 67

5.3.4.2 H.264/AVC decoder
The specification of this decoder is baseline profile at level 4.1. It can
support real-time decoding of 2048 × 1024 video with 5 reference frames.
The maximum operational frequency of this prototype chip is 120 MHz.

Table 7 shows the logic gate count profile. The total logic gate count is
217 K. 10 K bytes of on-chip SRAM are required. Figure 37 shows the
layout view of the decoder. The core size is 2.19 × 2.19 mm2. For highest
specification, the power consumption is 186.4 mW for 2048 × 1024 30fps
video format with 120 MHz operating frequency. For low power
applications, the power consumption is 1.18 mW for QCIF (176 × 144)
15fps video format with 1.5 MHz operating frequency. The detailed chip
specification is shown in Table 8.

Table 7. Gate count profile of the H.264/AVC decoder [58] (synthesized at 120 MHz
operating frequency)

Functional block Gate counts Percentage
Central control 22,695 10.4 %
Entropy decoder 21,121 9.7 %
MC engine 69,695 32.1 %
Intra engine 28,707 13.2 %
IQ/IT 19,792 9.1 %
De-blocking filter 35,437 16.3 %
SRAM BIST 8,973 4.1 %
Misc. 11,043 5.1 %
Total 217,428 100 %

Figure 37. Chip layout of the H.264/AVC decoder [58]

68 Chen et al.

Table 8. Chip specification of the H.264/AVC decoder [58]

Technology TSMC 0.18μm 1P6M CMOS
Pad/Core voltage 1.8V
Core area 2.19 × 2.19 mm2
Logic gates 21.743 K (2-input NAND gate)
SRAM 9.98 KByte
Support features All baseline profile compression tools
Maximum number of ref. Frames 5
Maximum search range H[-2048,+2047], V[-512,+511]
Operating frequency 120 MHz for 2048×1024 30fps
Power consumption 186.4 mW for 2048×1024 30fps
 1.18 mW for 176×144 15fps

6. SUMMARY

Multimedia IP development is one of the most important issues in a
multimedia SOC design. In this chapter, an overview on how to design
efficient image and video codecs are described. From theory to practice, the
design methodologies and case studies are presented. Since the properties of
high computation and high bandwidth requirement of image and video
codecs, dedicated parallel hardware architecture can provide most powerful
and efficient design. Even if a programmable solution is being considered,
the know-how of dedicated architecture design will be the foundation for the
programmable architecture to enhance its processing ability.

ACKNOWLEDGEMENTS

The authors would like to thank all students and alumni of DSP/IC Design
Lab, National Taiwan University for their research contributions and help
about the writing of this chapter. The authors also thank the National Science
Council (NSC), R.O.C., the Ministry of Education (MOE), R.O.C., the
MediaTek Foundation and the SiS Education Foundation for their support of
research, and thank the National Chip Implementation Center (CIC) for their
service and support of IC implementation.

REFERENCES

1. ISO/IEC, Int. Standard DIS 10918, “Digital compression and coding of continuous-tone
still images.”

2. ISO/IEC 15444-1:2000, “Information technology – JPEG 2000 image coding system –
Part 1: Core coding system.”

Multimedia IP Development 69

3. ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC, Draft ITU-T

Recommendation and Final Draft International Standard of Joint Video Specification,
2003.

4. W. Kou, Digital image compression algorithms and standards, Norwell, MA: Kluwer
Academic Publishers, 1995.

5. V. Bhaskaran and K. Konstantinides. Image and Video Compression Standards:
Algorithms and Architectures. Norwell, MA: Kluwer Academic Publishers, 1997.

6. Y. Q. Shi, H. Sun, Image and Video Compression for Multimedia Engineering:
Fundamentals, Algorithms, and Standards, CRC Press, 1999.

7. K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications.
New York: Academic, 1990.

8. W. P. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard.
New York: Van Nostrand Reinhold, 1992.

9. D. S. Taubman and M. W. Marcellin, JPEG2000 image compression fundamentals,
standards and practice. Norwell, MA: Kluwer Academic Publishers, 2002.

10. P. Kuhn, “Acomplexity analysis tool: iprof (ver 0.41),” ISO/IEC JTC/SC29/WG11,
Dublin (Ireland), Doc. M3551, July 1998.

11. Iain E.G. Richardson, Video codec design: developing image and video compression
systems, Chichester: Wiley, 2002.

12. F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappele,
Custom memory management methodology: exploration of memory organization for
embedded multimedia system design, Norwell, MA: Kluwer Academic Publishers,
1998.

13. Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G. Chen, “Survey on Block
Matching Motion Estimation Algorithms and Architectures with New Results” to
Appear, IEEE Journal of VLSI Signal Processing.

14. Digital Video Coding Group, ITU-T recommendation H.263 software implementation,
Telenor R&D, 1995.

15. W. Li and E. Salari, “Successive elimination algorithm for motion estimation,” IEEE
Trans. Image Processing, vol. 4, no. 1, pp. 105-107, Jan. 1995.

16. M. Bierling, “Displacement estimation by hierarchical block matching,” Proc. of SPIE
Visual Commun. Image Processing (VCIP'88), 1988, pp. 942-951.

17. B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion
vectors,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, no. 2, pp. 148-157,
Apr. 1993.

18. Z. L. He, C. Y. Tsui, K. K. Chan, and M. L. Liou, “Low-power VLSI design for motion
estimation using adaptive pixel truncation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 10, no. 5, pp. 669-678, Aug. 2000.

19. J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel unrestricted
center-biased diamond search algorithm for block motion estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 8, no. 4, pp. 369-377, Aug. 1998.

20. S. Zhu and K. K. Ma, “A new diamond search algorithm for fast blockmatching motion
estimation,” IEEE Trans. Image Processing, vol. 9, no. 2, pp. 287-290, Feb. 2000.

21. A. M. Tourapis, O. C. Au, M. L. Liou, G. Shen, and I. Ahmad, “Optimizing the mpeg-4
encoder – advanced diamond zonal search,” Proc. of IEEE Int. Symp. Circuits Syst.
(ISCAS'00), 2000, pp. 674-677.

22. A. M. Tourapis, O. C. Au, and M. L. Liu, “Highly efficient predictive zonal algorithms
for fast block-matching motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 12, no. 10, pp. 934-947, Oct. 2002.

70 Chen et al.

23. T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion compensated inter

frame coding for video conferencing,” Proc. Nat. Telecom-mun. Conf., 1981,
pp. C9.6.1-C9.6.5.

24. J. Jain and A. Jain, “Displacement measurement and its application in internal image
coding,” IEEE Trans. Commun., vol. COM-29, no. 12, pp. 1799-1808, Dec. 1981.

25. M. J. Chen, L. G. Chen, and T. D. Chiueh, “One-dimensional full search motion
estimation algorithm for video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 4,
no. 5, pp. 504-509, June 1994.

26. R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for block motion
estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 4, pp. 438-442,
Aug. 1994.

27. L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion
estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp. 313-317,
June 1996.

28. L. K. Liu and E. Feig, “A block-based gradient descent search algorithm for block motion
estimation in video coding,” IEEE Trans. Circuits Syst.Video Technol., vol. 6, no. 4,
pp. 419-422, Aug. 1996.

29. Y.W. Huang, S. Y. Ma, C. F. Shen, and L. G. Chen, “Predictive line search: an efficient
motion estimation algorithm for mpeg-4 encoding systems on multimedia processors,”
IEEE Trans. Circuits and Syst. Video Technol., vol. 13, no. 1, pp. 111-117, Jan. 2003.

30. D. Tzovaras, M. G. Strintzis, and H. Sahinolou, “Evaluation of multiresolution block
matching techniques for motion and disparity estimation,” Signal Processing: Image
Commun., vol. 6, pp. 56-67, 1994.

31. J. H. Lee, K. W. Lim, B. C. Song, and J. B. Ra, “A fast multi-resolution block matching
algorithm and its VLSI architecture for low bit-rate video coding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 11, no. 12, pp. 1289-1301, Dec. 2001.

32. K. M. Yang, M. T. Sun, and L. Wu, “A family of VLSI designs for the motion
compensation block-matching algorithm,” IEEE Trans. Circuits Syst., vol. 36, no. 2,
pp. 1317-1325, Oct. 1989.

33. T. Komarek and P. Pirsch, “Array architectures for block matching algorithms,” IEEE
Trans. Circuits Syst., vol. 36, no. 2, pp. 1301-1308, Oct. 1989.

34. Y. S. Jehng, L. G. Chen, and T. D. Chiueh, “An efficient and simple VLSI tree
architecture for motion estimation algorithms,” IEEE Trans. Signal Processing, vol. 41,
no. 2, pp. 889-900, Feb. 1993.

35. W.-M. Chao, C.-W. Hsu, Y.-C. Chang, and L.-G. Chen, “A novel motion estimator
supporting diamond search and fast full search,” Proc. of IEEE Int. Symp. Circuits Syst.
(ISCAS’02), 2002, pp. 492-495.

36. M.-Y. Hsu, “Scalable module-based architecture for MPEG-4 BMA motion estimation,”
M.S. thesis, National Taiwan Univ., June 2000.

37. J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory bandwidth
analysis for full-search block-matching VLSI architecture,” IEEE Trans. CSVT, vol. 12,
no. 1, pp. 61-72, Jan. 2002.

38. C.-T. Huang, C.-Y. Chen, Y.-H. Chen, and L.-G. Chen, “Memory analysis of VLSI
architecture for 5/3 and 1/3 motion-compensated temporal filtering,” Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2005.

39. A. Madisetti and A. N. Willson, “A 100 MHz 2-D 8×8 DCT/IDCT processor for HDTV
applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 2, pp. 158-165,
Apr. 1995.

40. W. Chen et al., “A fast computational algorithm for the discrete cosine transform,” IEEE
Trans. Commun., vol. COM-25, pp. 1004-1009, Sept. 1977.

Multimedia IP Development 71

41. G. S. Taylor and G. M. Blair, “Design for the discrete cosine transform in VLSI,” IEE

Proc. Comput. Digit. Tech., vol. 145, no. 2, pp. 127-133, Mar. 1998.
42. M. Kovac and N. Ranganathan, “JAGUAR: a full pipelined VLSI architecture for JPEG

image compression standard,” Proc.of the IEEE, vol. 83, no. 2, pp. 247-258, Feb. 1995.
43. C.-T. Huang, P.-C.Tseng, L.-G. Chen, “Analysis and VLSI architecture for 1-D and 2-D

discrete wavelet transform,” IEEE Trans. Signal Processing, vol. 53, no. 4,
pp. 1575-1586, Apr. 2005.

44. C.-J. Lian, H.-C. Chang, K.-F. Chen, and L.-G. Chen, “A JPEG decoder IP Core
supporting user-defined Huffman table decoding,” Proc. of the 9th International
Symposium on Integrated Circuits, Devices and Systems (ISIC-2001), Singapore,
pp. 497-500, Sep. 2001.

45. S.-M. Lei and M.-T. Sun, “An entropy coding system for digital HDTV applications,”
IEEE Trans. Circuits Syst. Video Technol., vol. 1, no. 1, pp. 147-155, Mar. 1991.

46. C.-J. Lian, L.-G. Chen, H.-C. Chang, and Y.-C. Chang, “Design and implementation of
JPEG encoder IP core,” Proc. of Asia and South Pacific Design Automation Conf.
(ASP-DAC 2001), Yokohama, Japan, pp. 29-30, Jan 2001.

47. H.-C. Fang, et al., “81MS/s JPEG2000 single-chip encoder with rate-distortion
optimization,” Digest of Technical Papers, 2004 IEEE International Solid-State Circuits
Conference (ISSCC 2004), pp. 328-531 Vol.1

48. C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G.Chen, “Analysis and architecture design of
block-coding engine for EBCOT in JPEG 2000,” IEEE Trans. Circuits and Syst. For
Video Technol., vol. 13, no. 3, pp. 219-230, Mar. 2003.

49. H. Yamauchi, S. Okada, K. Taketa, T. Ohyama, Y. Matsuda, T. Mori, S. Okada,
T. Watanabe, Y. Matsuo, Y. Yamada, T. Ichikawa, Y. Matsushita, “Image processor
capable of block-noise-free JPEG2000 compression with 30 frames/s for digital camera
applications,” Digest of Technical Papers, 2003 IEEE International Solid-State Circuits
Conference (ISSCC 2003), pp. 476-477 vol.1.

50. K. Andra, C. Chakrabarti, T. Acharya, “A high-performance JPEG2000 architecture,”
IEEE Trans. Circuits and Systems for Video Technology, Vol. 13, no. 3, pp. 209-218,
Mar. 2003.

51. B.-F. Wu, C.-F. Lin, “An efficient architecture for JPEG2000 coprocessor,” IEEE Trans.
on Consumer Electronics, vol. 50, no. 4, pp. 1183-1189, Nov. 2004.

52. H. Yamauchi, S. Okada, K. Taketa, Y. Matsuda, T. Mori, T. Watanabe, Y. Matsuo,
Y. Matsushita, “1440 × 1080 pixel, 30 frames per second motion-JPEG 2000 codec for
HD-movie transmission,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 331-341,
Jan. 2005.

53. T. Wiegand, G. J. Sullivan, G. Bjntegaard, A. Luthra, “Overview of the H.264/AVC
video coding standard,” IEEE Trans. on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 560-576, Jul. 2003.

54. J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer,
T. Wedi, “Video coding with H.264/AVC: tools, performance, and complexity,” IEEE
Magazine on Circuits and Systems, vol. 4, no. 1, pp. 7-28, first quarter, 2004.

55. A. Puri, X. Chen, and A. Luthra, “Video coding using the H.264/MPEG-4 AVC
compression standard,” Trans. on Signal Processing: Image Communication, vol. 19,
no. 9, pp. 793-849, Oct. 2004.

56. A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G. J. Sullivan, “Performance
comparison of video coding standards using Lagragian coder control,” Proc. of 2002
International Conference on Image Processing (ICIP 2002), 2002, pp. 501-504.

57. Y.-W. Huang, T.-C. Chen, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, C.-S. Chen, C.-F. Shen,
S.-Y. Ma, T.-C. Wang, B.-Y. Hsieh, H.-C. Fang, L.-G. Chen, “A 1.3TOPS H.264/AVC

72 Chen et al.

single-chip encoder for HDTV applications,” Digest of Technical Papers, 2005 IEEE
International Solid-State Circuits Conference (ISSCC 2005), 2005, pp. 128-130

58. T.-W. Chen, Y.-W. Huang, T.-C. Chen, Y.-H. Chen, C.-Y. Tsai, L.-G. Chen,,
“Architecture design of H.264/AVC decoder with hybrid task pipelining for high
definition videos,” Proc. of 2005 International Symposium on Circuits and Systems
(ISCAS 2005), 2005, pp. 2931-2934.

73

Chapter 4

SoC MEMORY SYSTEM DESIGN

Kun-Bin Lee, and Tian-Sheuan Chang

MediaTek Inc.,5F, No.1-2, Innovation RD.1,Science-based Industrial Park, Hsin-chu City,
Taiwan 300, R.O.C.
Dept. Electronics Engineering, National Chiao-Tung University, 1001 Ta-Hsueh Rd.,
Hsinchu, Taiwan

Abstract: As the increasing integration density of various IPs into the SoC, the memory
system becomes a dominant role to determine the final performance, area, and
power consumption of SoC. The memory system design involves various
aspects, from bottom level on-chip or off-chip memory technologies, to the
high level memory optimization and management. Between the two levels is
the memory controller to efficiently deliver the required data within the power
and delay constraints. The PC-driven off-chip memory continues its high
density and high bandwidth development track. However, it also adapts its
interface and power to be either fast random access or low power consumption
to fit into the divergent needs of various SoC applications. The embedded
memory now is driven by the SoC and thus becomes more integration friendly,
either at the interface or at the process technologies. Memory optimization and
management optimizes the memory access by high level reordering,
remapping and memory size compression. Power of the memory system can
be further reduced by transition reduction of memory bus and dynamic power
management of memory systems. Further optimization of memory access
needs the memory controller to fully utilize the available bandwidth. Since the
components in SoC have divergent needs, either bandwidth sensitive, or
latency sensitive, the memory controller design also quick evolves to be a
more intelligent one to provide the different quality and latency guaranteed
access. The optimization of memory system is part of the complex SoC design
problem, which can only be analyzed and solved within the target applications

Keywords: SoC memory system, memory controller

Recently multimedia and wired/wireless communication technologies
have fundamentally changed the way we create, communicate, and consume

Lin (ed.), Essential Issues in SOC Design, 73–118.
© 2006 Springer.

S.Y.-L .

74 Lee and Chang

audiovisual information. These technologies have not only transformed
existing applications and services like the distribution of entertainment video
to the home but also spawned brand new industries and services like video-
conferencing, direct-to-home satellite distribution, digital video recording,
video-on-demand services, high-definition TV, video on mobile devices,
streaming video, etc. Realization of these applications relies on VLSI for
cost-effective implementation.

Researches on architecture design have shown that 50-80% of the area
cost in (application-specific) architectures for real-time multi-dimensional
signal processing is due to memory components, e.g., embedded SRAMs,
and register files1. The International Technology Roadmap for
Semiconductors (ITRS) also shows that memory already accounts for over
50 percent of a typical SoC, and will grow to 94% by the year 20142. Also
the power consumption is heavily dominated by memory access both in
custom hardware3 and in processors4. Table 1 shows the relative energy of
different operations3,5. Data transfer and memory access operations consume
much more power than a data-path operation. For example, fetching an
operand from an off-chip memory for an addition operation consumes 33
times more power than the addition itself in case of a processor. Furthermore,
memory access performance, including latency and bandwidth, could
significant affect system performance6,7,8. This is especially true in high-
performance, memory-intensive applications, such as those for multimedia
processing. Obviously, a promising avenue for further optimization of SoC
design under various design constraints must take data transfer and memory
subsystems into consideration.

In this chapter, we will discuss and review the issues and status of SoC
memory systems from three aspects, under layer memory technology, upper
layer memory optimization and management, and memory controller. First,
we will review the current status and development trend of memory
technology, used inside the chips or for the off-chip memory, and how they
affect the SoC design. The latest development of embedded memory focuses
on the smaller area size and technology-friendly integration, whereas the off-
chip memory continues its development on two tracks: high density and high
bandwidth, or the ultra low power memory for portable SoC applications.

Table 1. Relative energy per operation at a 1.5V supply in 0.8μm CMOS technology

Operation Relative energy/op
16b carry-select adder 1
16b multiplier 3.6
8×128×16 SRAM (read) 4.4
8×128×16 SRAM (write) 8.9
External I/O access 10
16b memory transfer 33

SoC Memory System Design 75

These new developments bring new transfer characteristics and also new
access limitation to the SoC designer. At the second part, we will review the
current status of several memory optimization techniques, including
memory-aware techniques and low power optimization for memory systems,
especially their applications on the memory and bandwidth demanding
multimedia chips. The final part reviews the recent development of the
memory controller design. The development of memory controller is
evolved from a simple protocol translation role to the smart bandwidth
provider with different quality and latency guaranteed scheduling.

1. MEMORY TECHNOLOGY

Today’s consumer electronics products process massive amounts of data for
audio and video and other applications. Thus it demands variety of memory
devices and memory size to work together, from volatile DRAM for run-
time storage and nonvolatile flash for massive data and program storage. As
the devices become portable, specialized low power memory, such as mobile
pseudo SRAM or mobile DRAM emerges to support these battery-powered
applications. Besides, as the target application of the embedded system
diverges, the memory requirements are also diverse: graphics chips favor
streaming, while networking equipment favors fast random access latency of
40-byte (IP) packets or 53-byte (ATM) packets. If the memory size demand
is small enough, several megabytes, embedded memory can provide another
high bandwidth solution that off-chip memories cannot offer, which is a
solution that current high bandwidth demanded graphics chip or video
encoder adopts. Divergent needs mean divergent technologies and thus
heterogeneous integrations. These divergent memories will be reviewed in
this section, first on the external memory especially the DRAM system, and
then on the embedded memories. Since many books and papers have
covered the memory technologies, our focus will be the development trend
and the integration issues of these memory technologies. The discussion will
more bias to RAMs instead of ROM or flash since they store the time-
varying data and thus significantly affect the overall area, speed and power.

1.1 Off-Chip Memories

Traditionally, DRAM roadmap is largely driven by the PC products. These
mainstream PC-favored DRAMs constitute more than 90% of total
production, achieving the lowest price per MB, and thus widely supported
and used in other domains. The development trends of PC-based DRAMs
focus on supporting higher bandwidth, as defined by JEDEC. Most of the

76 Lee and Chang

modern DRAM development is based on SDRAM. A typical SDRAM
accesses one data at the positive clock edge. To improve its throughput,
DDR SDRAM (Double data rate SDRAM) enables two (2n) instead of one
(1n) data prefetch for one bus cycle by adopting double clock edge data
sampling. Thus, the data transfer rate of DDR is twice of that in SDRAM.
Furthermore, the latest DDR2 SDRAM enables 4n-prefetch, in contrast to
2n-prefetch realised in DDR. It means, in fact, that at each memory bus
cycle, DDR2 transmits 4 (instead of 2) bits of information from logical
(internal) memory chip banks into I/O buffers using one data interface line.
This makes DDR2 SDRAM be able to provide quadruple bandwidth than
SDRAM with the same core operating frequency. DDR2 SDRAM also
added the features of posted CAS and additive latency to prevent DRAM
command bus conflict. To operate at the high frequency, DDR2 SDRAM
adopts the on-die termination to avoid signal reflections induced delay along
the signal bus lines. The overall operating voltage is also reduced from 2.5V
to 1.8V to save the power consumption and allow higher frequency
operations. Due to the lowest cost-per-bit advantage, SDRAM and DDR
SDRAM have been widely used in the low and medium bandwidth SoC
system. For high bandwidth applications, DDR2 SDRAM will be a suitable
solution.

The new development of DRAM improves the burst bandwidth. However,
the random access latency almost remains unchanged for years. This
bandwidth favor improvement partly is due to the cost-reduction centric
improvement of DRAM industry, and partly is due to of the inherent DRAM
architecture: one row access can get parallel data from the sense amplifier by
selecting different column address. Patterson9 has concluded that “bandwidth
is improved by at least the square of the improvement in latency”. This
imposes the design challenge to the SoC designer: how to efficiently take
advantage of the burst access bandwidth while supporting the low latency
activities.

Thus, how to select the proper DRAM types for the SoC systems depends
on the application needs. For streaming applications like video and audio
processing, conventional DRAM is quite suitable. However, for the latency
sensitive applications like networking, low latency DRAMs can satisfy both
the latency and bandwidth needs.

Specialized low latency DRAMs like RLDRAM (reduced latency
DRAM), or FCRAM (fast cycle RAM) have been developed for such special
networking purpose10. The low latency DRAM improves the random access
time by pipelining the memory access into three-stage: the address decoder,
the memory array, and the I/O buffer. In a typical DRAM, the DRAM must
first decode the row address, find the location in the memory array and then
read/write the data from/to the I/O buffer. Since all functions are in series,

SoC Memory System Design 77

a conventional DRAM cannot start the next row address sequence before
completing all three stages. By pipelining these three functions, FCRAM is
able to start a new row address access following previous one. The result is a
random cycle time of 20 to 30 ns for FCRAM compared with 60 to 70 ns for
other types of DRAMs, such as DDR SDRAM.

For mobile applications, low power consumption becomes one of the
major concerns. SRAM has been the choice since it does not have a leaking
per-cell charge-storage capacitor that requires periodic refreshing and draws
the standby current. However, as more and more functions are squeezed into
the system, the required amount of code and data storage also increases
exponentially. Thus, the cost-per-bit advantage of DRAM over SRAM
becomes apparent. To address both needs, size and power, specialized low
power memory like mobile DDR SDRAM or pseudo SRAM have been
developed.

Mobile DDR SDRAM incorporates several low power functionalities
into DDR SDRAM to reduce the standby current. First, the supply voltage is
reduced to 1.8V from 2.5V, providing half of the power reduction. Second, it
now can support partial array self refresh (PASR), only half or one-fourth,
instead of whole DRAM array. Thus, only the array with the valid data will
be refreshed to avoid unnecessary self refresh current. To further reduce the
self refresh current, it also lengthens the refresh period for lower temperature,
called temperature compensated self refresh (TCSR). Finally, when the
DRAM is not used, e.g., the standby mode in the mobile devices, these low
power DRAMs can enter into the deep power down mode to completely turn
off the self-refresh operation.

Pseudo SRAM, as its name suggests, combines advantages of the low
cost DRAM cell and the simple traditional SRAM interface, non-
multiplexed address bus. To solve the power consumption of DRAM cells,
low power techniques adopted in mobile DDR SDRAM are also applied to
the pseudo SRAM designs. Furthermore, to work like traditional SRAM,
non-multiplexed address bus provides high speed random access time, and
the internal self-refresh logic eliminates the refresh needs of DRAM cell.

The integration of off-chip memories is divergent from system-on-board
level to the system-in-package level. Traditional system-on-board level
integration has its advantage of well-established practices for years,
including chip testing, assembly and board testing. However, as the system
is getting higher operating frequency and smaller former factor, system-in-
package (SiP) approach has also attracted designer’s attention11. SiP
integrates the required bare die of logic, memory and analog parts together
into the same package. Since different components can use its best suitable
technology, the component performance will not be sacrificed and on-same-
package connections have much lower capacitive loading and thus lower

78 Lee and Chang

delay than off-chip communications. The SiP integration could be a 2-D flat
or 3-D vertical integration or mixed 2-D/3D. The 2-D flat style places all
dies on the flat silicon and connects each other. The 3-D vertical style stacks
all dies for connection. Since many dies are integrated in a small area, the
heat dissipation and chip testing has to be considered for the overall package.
How to design an effective system chip using either SoC, or SiP needs
detailed evaluations on the cost, technologies and functional partitioning for
the optimal integration.

1.2 Embedded Memories

With the VLSI technology stepping into the deep submicron era, hundreds of
millions of transistors can be integrated into a single chip. Though more
logic can be integrated into the chip, however, most of the transistors go to
the memory, ranging from half to estimated 90% of the silicon real estate,
according to ITRS. Embedded memory brings a lot of benefits but may not
be cheaper and naturally coexist with other logic on the same chip.

Embedded memory offers the major benefits of low power, high
bandwidth, high speed, and enhanced flexibility and the side benefits of
minimal board space, and increased reliability. The embedded memory can
offer flexible customized granular size like 66KB for the target application
without the power-of-two size restriction like 16MB in the external memory.
When the memory is integrated into the chip, all the high loaded and limited
off-chip interconnections are replaced by a small loaded and almost
unlimited on-chip communications. Thus, the power consumption and
performance are improved significantly. This wide bandwidth is especially
useful and attractive for bandwidth demanding applications like video and
graphics, a major user for large embedded memories12,13.

However, how to integrate these embedded memories with other logic
circuits requires tradeoff on process compatibility and performance. Logic
and memory are fundamentally different technologies with sometimes-
contradict demands, from the interconnection requirement to the cell
structure14. Logic usually scatters across the chip in an irregular fashion and
requires more metal layers, six or more, for interconnection, while memory
array is more symmetrical and repetitive and requires far less
interconnection than logic. On the other hand, standard memory process
requires four or more polysilicon layers for floating gate of EPROM,
EEPROM, and flash memory, the resisters of a 4T SRAM cell, and the
stacked-capacitor’s DRAM cells, while logic process usually uses one or two
polysilicon layers, just for transistors. An extra metal or polysilicon layer
adds cost, complexity, and fabrication time. In addition, standard logic
transistors have thin oxides with low threshold for fast switching time while

SoC Memory System Design 79

many memory technologies prefer the thick oxides and high threshold for
small leakage current. A compromise for logic or DRAM process will make
logic slower or memory high leakage current. Beyond the process, the fast
switching logic introduces noise to the sensitive memory core. The flash
memory might require high voltage for programming and erasing. All of
these issues have to be considered and clarified for integration.

In general, the integration approach can be classified into two approaches:
logic process compatible embedded memories and dedicated process
embedded memories15.

Commonly used logic process compatible embedded memories are ROM
and 6T (six-transistor) SRAM. ROM cells are much smaller than RAM cells.
Due to its read-only features, its application is also limited to permanent
lookup table or programs. 6T SRAM uses cross coupled and regenerative
structure to offer high speed but also result in lower density. Thus it is
preferred used in frequently access, time-critical storage or small amount of
storage, like caches or local buffers. Beyond speed, power is also a concern
for large embedded SRAMs. Since dynamic power of SRAM is linearly
proportional to its size, N-bank partition can reduce the power by N-fold.
For deep submicron process like 130nm and smaller feature size process, the
leakage current will become a source of power consumption, which can be
reduced by changing the SRAM circuit design or turning off the power
supply for SRAM blocks to suppress the leakage current16.

Dedicated process embedded memories usually add the extra processing
steps for memory fabrication into the logic process. The required steps
depend on the targeted memory technologies and design.

For SRAM, since traditional 6T SRAM occupies large area, small area
SRAMs cell like 1T SRAM17 have been developed to offer DRAM like
density, about 1/4 or 1/5 area of 6T SRAM. 1T SRAM uses one transistor
with one plane capacitor to avoid a complex extra process to build the stack
or trench capacitor in conventional DRAMs. The plane capacitor can be built
by adding one extra mask into the common logic process, which is more
logic process compatible but also less charge. The required refresh operation
is transparent to the user. An internal refresh timer is included into the
design to generate periodic refresh requests to the memory banks. The
refresh operation will be delayed if any access is active.

Direct porting the dedicated DRAM macro into logic process will require
a lot of extra masks and processing steps, about 13 to 20 steps. Embedded
DRAM suppliers reduce the cost added to the logic process by using an array
of DRAM technologies ranging from traditional stacked and trench
capacitors, to simple logic compatible planar capacitors, shallow trench
capacitors and MIM (Metal-Insulator-Metal) capacitors. On the horizon is
the development of capacitor-less DRAMs18. The latest development of

80 Lee and Chang

embedded DRAM tries to be more logic process friendly and explore the
unique benefit of the embedded environment, unlimited pin access, to
enhance the access speed. The capacitor-less DRAMs exploit the floating
gate effect to store the charge in the devices’s body. This eliminates any
extra processing steps. The trench capacitor based embedded DRAM can
bury the capacitor under the logic and thus requires no extra process after the
capacitor is fabricated. The embedded DRAM such as NEC eDRAM19
changes the embedded DRAM interface into the non-multiplexed address
and achieves the single cycle SRAM-like fast random access. The
conventional SDRAM access commands are also simplified to be SRAM-
like access. The whole embedded DRAM works like SRAM with the
DRAM cell. Thus, the only extra work to do is the refresh operation. To be
logic process friendly, the capacitor structure is also changed from the
conventional high temperature PIP (Poly-Insulator-Poly) in the DRAM
process to the low temperature MIS (Metal-Insulator-Silicon) or MIM
(Metal-Insulator-Metal) capacitor structure. Low temperature process whose
temperature is below that used in a normal CMOS logic process reduces the
required thermal cycling that would otherwise cause transistor performance
degradation during the fabrication.

Embedded nonvolatile memories have attracted many applications in
modern SoCs, ranging from industrial, consumer, networking, office
automation, to smart cards and RFID tags. They provide nonvolatile storage
for frequently read but rarely written configuration information. However,
the embedded nonvolatile memory still adds the process complexity by the
introduction of the floating gate for the charge storage and retention, high-
voltage transistors, as well as designs for routing the required high voltages
to the memory array; and the complexity of decoding, sensing, timing
circuits, and algorithms stored in state machines. For SoC integration, the
new development diverges from the commodity flash to logic process
compatible design, like SST’s split-gate (SuperFlash) cell design20.

Disregarding the underlying process, the integration of embedded
memories is still a problem since the large area blocks will impose large
blockage areas that place-and-route tools must detour around to connect the
I/O and core logic areas. To be SoC friendly integration and with the aid of
multiple level of metal layers, the latest embedded memories allow active
signals to pass over the macros, and thus the router can take the shortest path
between the I/O and core areas. This helps layout designers maintain signal
integrity, and easily optimize critical timing paths. To avoid the signal
interferences with the capacitance values of the embedded memories, these
embedded memory macros or the designers usually have to add one grounded
metal layer over the macro to isolate the macro. Since the number of metal

SoC Memory System Design 81

layers for the embedded memory is usually no more than four, the modern up
to seven metal layer process still provides enough extra layers for routing.

With the integration into the chips, the memory architecture is also more
flexible to be adaptive to the target function. Various techniques can be
applied here, like extending the memory hierarchy, memory partitioning, and
bandwidth optimization. For more details, readers can refer to the survey
papers by Benini et al.15.

2. MEMORY OPTIMIZATION AND
MANAGEMENT

Advanced VLSI techniques make both density and speed of logic
manufacture processing much improved. But advanced manufacture
processing of memory improves more in density and less in speed. This
makes memory system become the bottleneck of the whole system
performance, especially for those memory systems mainly using off-chip
DRAMs. To improve memory peak bandwidth, approaches such as wider
data buses, higher frequencies, double data rates or packetized protocols
(e.g., Rambus DRAM and SLDRAM) are used. Moreover, these approaches
are independent of the applications. Another kind of approach to improve
memory system performance is to hoist the utilization of available
bandwidth. This approach usually takes either or both of the characteristics
of the memory system and the memory access behavior of applications into
consideration. When considering image processing applications, for
example, their behaviors are usually modeled as operations, such as
transforming and filtering, on data arrays. Due to the native massive data of
arrays, these arrays are often stored in off-chip DRAMs. While DRAMs are
cheaper, they are slower and have memory access penalties (e.g., page miss
and bank miss) that reduce the utilization of memory bandwidth. Thus
simple one-to-one mapping between the array variables and the memory
leads to an inefficient design. A lot of proposals to improve bandwidth
utilization are based on the loop manipulations by exploiting the regularity
and locality of application’s memory access behavior with the characteristics
of memory system. These loop manipulations include loop interchange,
reversal, skewing, splitting, merging, and padding, whereas the target
memory systems cover caches, scratch-pad memories, and DRAMs.

2.1 Reordering and Remapping

In this section, we briefly review two schemes, reordering and remapping,
for memory access improvement. In the former approach, memory access

82 Lee and Chang

can be statically or dynamically reordered. Ayukawa21 uses a dynamic
access-sequence control scheme to enhance random-access performance of
embedded multibank DRAM macro. This scheme hides the page-miss
penalty by reordering the access, if possible. The same authors design an
access optimizer for embedded DRAM22. The access optimizer uses inter-
bank, non-blocking access scheme to decide the sequence of data from
different masters to reduce the influence of miss penalty while the sequence
from data for the same master is kept unchanged. McKee et al.23 propose a
hardware-assisted access reordering by exploit page-mode operation of
DRAM for vector computations to maximize the efficiency of the system
memory bus. They also extend their work for systems with multiprocessors24
and Direct Rambus memory25. Panda et al.26 incorporate EDO DRAM access
model into high-level synthesis and use loop transform to statically reorder
the memory access to obtain better memory bandwidth utilization. They also
extend their work for SDRAM27, which exploits two new features of
SDRAM, burst mode access and multiple bank architecture, to gain
performance improvement.

Unlike memory access reordering that changes the order of accessed
data, remapping changes the positions of data but keeps the access order
unchanged. This may save buffers and reduce design complexity needed in
reordering approaches. However, in some cases, such as random access, we
do need reordering schemes to get better memory bandwidth utilization. On
the other hand, if the characteristics of memory access can be predetermined,
remapping approaches are usually a better way to gain more efficient
memory access. Some works in this area are briefly introduced here. Panda
and Dutt28 propose a tile-based memory mapping to lower power through
reducing address bus activity. Tile-based memory mapping is also used to
tailor some specific applications, such as MPEG-2 video decoding29, for
SDRAM to reduce page breaks. Gleerup30 uses both a tile-based rendering
algorithm and a round-robin manner for memory bank accessing to hide the
page open/close operations and hence achieve high memory bandwidth
utilization. Chang and Lin31 allocate arrays to different banks of SDRAM by
utilizing SDRAM’s multi-bank characteristic, though their assumption to
allocate one row of any array to a memory page may not be practical enough
when the row size of an array is either too small or too large. Schmit and
Thomas32 have presented faster and less hardware techniques for generating
addresses for multiple single-dimensional arrays that have certain layout and
size relationships.

One point must be noted is that the DRAM access ownership of each
functional unit in multi-core systems also has to be guarded for a reasonable
duration. Otherwise, the advantages of remapping are diminished.

SoC Memory System Design 83

2.2 Transition Reduction of Memory Buses

As mentioned earlier, memory accesses take a significant part of power
consumption. Therefore, techniques to reduce this part of power dissipation
are appreciated. A lot of works are investigated on the topics of reducing
memory traffic33 or reducing memory bus activity. As for reducing memory
bus activity5,7, optimized mapping of data28, scheduling of memory access26,
and bus coding schemes34,35 are proposed. Except for bus coding schemes,
most of these techniques are also helpful in performance improvement.

To reduce transition of memory buses, including data bus and address
bus, coding techniques are widely investigated. Due to the high correlation
between consecutive addresses, most coding techniques focus on address
buses, especially for instruction address buses. Gray coding36 was proposed
to minimize the transitions on the instruction address bus, such that there is
only one transition between two consecutive addressees. However this
coding scheme does not work well for data buses because these buses are
typically not sequential. As for data buses, the bus-invert coding37 and its
variants38,39 are more applicable. In bus-invert coding, for example, the total
number of transitions occurring between the newly arrived data and the
present data on the bus is first calculated. If this number is more than half the
number of bus wires, then the data is inverted and sent on the bus. Otherwise,
the data is sent as is. The inversion of the bus is signaled through an extra bit
line. This extra bit, however, is not acceptable in some systems. To avoid the
use of extra signals, Mamidipaka et al.40 propose adaptive schemes based on
self-organizing lists to exploit the spatial and temporal locality of the
addresses. This approach reduces the transition activity of up to 54% in data
address busses and up to 59% in multiplexed address busses.

To employ bus coding techniques, several issues must be considered, i.e.,
latency, extra control signals, and power consumption overhead of the
chosen technique. Because the protocols of commodity memory cannot be
modified, the space of practical coding schemes for memory buses is limited.

2.3 Reduction in Memory Size

Most embedded systems have tight bounds on memory space. Various
techniques, therefore, have been investigated to conquer this issue.
Compression is one of the ways of reducing memory footprint. Note that, if
used correctly, compression can also improve the execution cycles and
reduce power consumption as it reduces the amount of data that needs to be
accessed from the memory and needs to be communicated over the bus.
Furthermore, the smaller size of memory also dissipates less power.

84 Lee and Chang

Code compressions are widely applied to various processor architectures,
including RISC, DSP and VLIW, etc. The compression granularity also
ranges extensively from an instruction, a cache line, a basic block, and a
function. Most compression schemes strive to produce the smallest possible
encoding of their inputs. Program compaction is stressed by an extra
condition: the compacted representation itself is executable. This condition
severely limits the compression techniques that can be applied to compact
code, and consequently results in poorer compression ratios than
unconstrained compression schemes can achieve. Furthermore, when
compressing a series of instructions, certain information needs to be
retrieved at will. For example, branching and function entry points must be
able to be decompressed on demand. This problem has led to the efforts
aimed at designing processors with execution modes in shorter instruction
formats (e.g., ARM Thumb and MIPS16).

Compression on data may be subjected to different constraints, such that
a lossy compression scheme sometimes is acceptable. For example, lossy
compressions41,42 for recompressing the reconstructed reference frames are
acceptable for maintaining the random access capability of motion-
compensated video coding scheme, such as MPEG-4 and H.264/AVC.
Instead of using recompression schemes, a simpler way to reduce the size of
the frame buffer is to store scaled pictures43,44. Without the memory
reduction schemes for the reconstructed reference frames, about 8.9 Mbytes
of frame memory could be required for three video frames, each has a frame
size of 1920×1080 and 4:2:0 sampling format. As for H.264/AVC, the size
of the frame buffer is even more demanding, due to the more reference
frames, the more bits per sample, and the larger frame size could be encoded.
Therefore, memory reduction schemes for frame buffer will be a more
interesting topic for this advanced video coding standard. The tradeoff
among picture quality degradation, random access capability, hardware
complexity for the reduction schemes, and the latency of reference data
extraction should be carefully investigated.

2.4 Dynamic Power Management

Dynamic power management can also be applied to the memory system45. In
addition to the traditional clock gating approach, Farrahi46 et al. propose a
memory segmentation (also called partitioning) scheme that reduces power
by exposing idleness in memory access. Whenever a memory segment is idle,
which is the duration when no useful information is stored into it, the
memory segment can be put in the sleep mode. Therefore, its clock can be
stopped, or its refresh signal can be shut down, thereby minimizing its power
dissipation.

SoC Memory System Design 85

Farrahi et al. also propose a worst-case exponential time algorithm for
solving the optimization problem of finding the optimum assignments of
variables to memory segments that maximize the total idle time of all
segments. In their original proposal, instantiating memory segments
increases the number of memory components, the area and the wiring
overhead. However, this kind of memory segmentation scheme can be
considerable without worrying about the aforementioned drawbacks when a
DRAM with partial-array self-refresh47 (PASR) capability is available.
PASR capability is already widely supported in mobile RAMs and will be
adopted in DDR3 DRAMs.

2.5 Constraint-Aware Target for Memory Systems

We define the constraint-aware target as one in which meeting the constraint
goal is a significant design consideration and in which the target modifies its
behavior based on current constraint information. As for a traditional target,
it is shielded from the detailed information of constraint or has no
knowledge of the constraint. Therefore, a constraint-aware target
aggressively meets the constraint, whereas the constraint-unaware targets
have little improvement or even violate the optimization goals.

For example, Grun et al. present a memory-aware compiler approach that
exploits efficient memory access modes by extracting accurate timing
information, allowing the compiler’s scheduler to perform global code
reordering to better hide the latency of memory operations. Their compiler
generates aggressive schedules that are on the average 24% smaller than one
that assumes no knowledge of memory timing. Marchal et al. propose
SDRAM-energy-aware memory allocation for multimedia applications such
that the tasks’ data is assigned to the available SDRAM banks, thereby
reducing the number of page-misses and thus the energy consumption. Lee
et al. present a quality-aware memory controller that can meet quality-of-
service (QoS) guarantees, which are defined as providing different memory
access requirements for fair distribution of bandwidth and shortest possible
transaction latency. This memory controller will be introduced in detail in
the next section.

3. MEMORY CONTROLLER

As aforementioned, memory access is becoming an important limiting factor
with respect to the system performance. It becomes even more critical when
data transfer is to off-chip memory. In fact, off-chip memory bandwidth is
regarded as the most ‘scarce’ or ‘expensive’ resource in Nexperia-DVP

86 Lee and Chang

products50. Unlike the on-chip communication, there are more restrictions on
the available ‘channels’ and protocols for the off-chip memory access. For
on-chip communication, the number of physical channels is much more
easily increased by using more wires. The protocols for on-chip
communication are also more flexible, efficient, and free (i.e., independent).
For example, split-transaction or out-of-order returns can be supported
whenever necessary. In contrast, the protocols of off-chip memory are
administrated by the memory venders and organizations. In addition, the
performance of off-chip memory is also significantly affected by the internal
architecture of the off-chip memory. It becomes especially critical when
DRAMs are used as off-chip memories.

In this section, we first identify the requirement of memory sub-system
and the limitations of conventional designs. Then, we introduce the basics of
off-chip SDRAM to understand the characteristics of SDRAM access.
Finally we present the architecture of our multi-layered quality-aware
memory controller. To evaluate the design, we show some experiment
results, including some constrained random experiments under different
parameters and a simplified STB SoC to examine the QoS performance of
several DRAM controllers.

3.1 Memory Sub-System Requirement

Multimedia processing technologies have been widely applied in many
systems. These technologies have not only provided existing applications
like desktop video/audio but also spawned brand new industries and services
like digital video recording, video-on-demand services, high-definition TV,
etc. The confluence of hardware and software technologies has given
computers the ability to process dynamic media (video, animation, music,
etc) where before they could handle only static media data (text, images, and
so on). To support complex multimedia applications, architectures of
multimedia systems must provide high computing power and high data
bandwidth. Furthermore, a multimedia operation system should support real-
time scheduling and fast interrupt processing51.

The tremendous progress in VLSI technology provides an ever-increasing
number of transistors and routing resource on a single chip, and hence allows
integrating heterogeneous control and computing functions to realize SoCs,
the improvement of off-chip communication is limited due to the number of
available I/O pins and the physical design issues of these pins. As many recent
studies have shown, the off-chip memory system is one of the primary
performance bottlenecks in current systems. For example, Hennessy and
Patterson show that while microprocessor performance improved 35% per
year until 1986, and 55% per year since 1987, the access time to DRAM has

SoC Memory System Design 87

been improving about 5% per year52. Rattner illustrates that whereas a Pentium
Pro requires 70 instruction cycles for a DRAM access, a Pentium 4 running at
2 GHz takes 500 to 600 cycles53. Even the performance of DRAM is ever-
improved, the system overheads like turnaround time and request queuing
account for a significant portion of inefficiencies in memory access.
Schumann reports that 30–60% of primary memory latency is attributable to
system overhead rather than to latency of DRAM components in Alpha
workstations54. For multi-core SoC designs, the performance of memory
subsystem is even more important, due to the share of memory bus with
different access requirements of these heterogeneous cores.

Recognizing the importance of high performance off-chip DRAM
communication as a key to a successful system design, several SDRAM
controllers and schedulers have been proposed to make the most efficient use
of the off-chip DRAM memory subsystem. For single-processor
environments, several approaches have been presented to improve memory
bandwidth utilization. McKee’s Stream Memory Controller (SMC) reorders
memory references among streams55, whereas Rixner’s memory bank
controller for each DRAM chip reorders both memory references among
streams and within a single stream56. Several problems come with reordering
the DRAM accesses within a single stream. First, the reordering efficiency is
quite sensitive to the number of accesses visible to the access scheduler
during each clock cycle. Hence, a large amount of register files are needed to
hold the arriving DRAM accesses, which inevitably increase the area of the
design. Second, since the DRAM accesses may be completed out of order,
extra circuits are required to reorder the read data back to the original order
to maintain data consistency, which in turn might lead to a reduction in the
efficiency of the reorder scheme on the memory bandwidth improvement.
Furthermore, these extra circuits also increase the area overhead. Addressing
to the aforementioned problem of out-of-order return of read data, Kazushige
Ayukawa’s21 access-sequence control scheme allocates an access ID to each
DRAM access. Therefore, the processor can identify the original order of the
read data according to the access ID. This solution, however, is only suitable
for specific bus protocols and processing units (PUs) that have the capability
to assign and identify access IDs.

Instead to reorder memory accesses, Tetsuro Takizawa presented a
memory arbiter to increase the bandwidth utilization by reducing bank
conflicts (i.e., row miss) and read/write turnarounds for the multi-core
environment57. The arbiter lowers the priority of a DRAM access if the
access is addressed to the same bank as the previous granted access, or the
access direction (read or write) is different from that of the previous granted
one. Hence, the possibility of bank conflicts and read/write turnarounds can
be diminished.

88 Lee and Chang

For the multi-processor vector machine with multi-port memory system,
Corbal proposed Command Vector Memory System (CVMS) to reduce the
processor to memory address bandwidth by sending commands to the
memory controllers as opposed to sending individual addresses58. In CVMS,
a command, including a base address and a stride, is expanded into the
appropriate sequence of references by each off-chip memory bank controller.

The above-mentioned SDRAM controller designs only address to the
improvement of the overall bandwidth utilization. However, PUs in a
heterogeneous system usually require different services of memory access
bandwidth and latency. Therefore, these SDRAM controllers need to
cooperate with DRAM schedulers to provide proper DRAM services for
these PUs. In our observation, traditional DRAM scheduler designs have one
or more of the following limitations:

• the unawareness of DRAM status leading to low scheduling efficiency on
both DRAM bandwidth utilization and access latency,

• the lack of control over the bandwidth allocation for different PUs (e.g.,
fixed-priority scheduler) leading to starvation of low-priority PUs in
some situations, and

• the significant access latencies due to the fair scheduling policies (e.g.,
round-robin scheduler) leading to unbearable long access latencies for
high-priority PUs.

Knowing the above limitations of the conventional DRAM scheduler
designs, Sonics’ MemMax memory scheduler provides quality-of-service
guarantees of a single, shared off-chip DRAM memory subsystem for
multiple heterogeneous functional units by using a tiered filtering system59.
However, MemMax is deeply coupled with Sonics’ SiliconBackplane
µNetwork that is time-shared with these functional units. Access ownership
of SiliconBackplane µNetwork is determined by a two-level arbitration
scheme: the first level of arbitration is based on a Time-Division
Multiplexing (TDM) mechanism, while a second, lower priority access
scheme is based on a round-robin token passing mechanism60. Due to the
inherent latency limitations of the TDM on-chip communication
mechanism61, MemMax cannot effectively provide short latency services
and only has better improvement on bandwidth utilization. Similarly, a
three-level memory arbitration scheme proposed by Harmsze62 can be used
for systems where both continuous high-throughput and random low-latency
requests present. However, this three-level memory arbitration scheme does
not take the status of SDRAM into account. In addition, the first-come-first-
serve scheme used for the arbitration of the continuous streams also lowers
the memory bandwidth utilization.

Instead of using a single-port architecture to connect to system bus,
Denali’s Databahn has a multi-port architecture to ensure memory is

SoC Memory System Design 89

shared efficiently among many high-bandwidth client modules63. Databahn
has three serial-connected engines to maximize memory access
performance:

• a priority engine to prioritize and weight port traffics by selecting among
bandwidth-weighted algorithms,

• an ordering engine to reorder commands to optimize bandwidth while
maintaining relative priority and memory coherency, and

• a sequencing engine to sequence data commands to minimize lost
transaction cycles and latency.

However, since the architectures are proprietary, underlying algorithms are
unknown.

 The aforementioned critical issues in integrating heterogeneous control
and computing functions into a single chip motivate us to explore an
efficient solution of off-chip SDRAM memory controller for multimedia
platform SoCs64. The goal of this memory controller is to provide not only
the high utilization of DRAM bandwidth bus also the quality-of-service
(QoS) guarantees, which are defined as:

• fair distribution of bandwidth over bandwidth-sensitive PUs
• shortest possible transaction latency for latency-sensitive PUs.

In addition, most multimedia PUs have regular address patterns. Having
built-in address generators in the memory controller can reduce the address
bus traffic and therefore increase the efficiency of on-chip communication.
On the other hand, because not every system needs the same requirement of
memory usage, a well-partitioned architecture of a memory controller can let
system designers choose and integrate the required functionality of the
memory controller into their systems. Based on these requirements, a multi-
layered, quality-aware memory controller with the following features will be
presented in this section.

• A layered architecture of the memory controller that can efficiently
decouple different functionality, including memory-specific control,
quality-aware scheduling, and built-in address generators into different
layers of the memory controller. Different combinations of these layers
can produce memory controllers with different capabilities to meet
distinct system requirements.

• A high efficient and flexible SDRAM memory interface socket (MIS) to
take charge of SDRAM-specific control and make the best use of
SDRAM bandwidth by supporting parallel access of each bank within
SDRAM. In addition, MIS can respond to the requests from the SDRAM
scheduler immediately to furthermore make the best use of SDRAM
command and data bus. On the other hand, the flexibility of MIS is based

90 Lee and Chang

on the configurable, shared-state FSM design that can easily be adjusted
for different complex timing control latencies of SDRAM.

• A quality-aware scheduler (QAS) that not only improves the SDRAM
bandwidth utilization by considering the SDRAM status and the relations
of SDRAM accesses, but also provides QoS guarantees, i.e., minimum
access latency and guaranteed bandwidth services based on the memory
access requirements of different PUs.

3.2 SDRAM Basics

Figure 1 shows a simplified architecture of a two-bank SDRAM. All
memory banks share the data and address bus, whereas each bank has its
own row decoder, column decoder and row buffer. The mode register stores
several SDRAM operation modes such as burst length, burst type, CAS
(column address strobe) latency, etc. An m-bank SDRAM has a similar
architecture. A complete SDRAM access may consist of several commands
including row-activation, column-access (read/write) and precharge, as
shown in Figure 2. A row-activation command, together with the row and
bank address, is used to open (or called activate) a specific row in a
particular bank, and copy all data in the selected row into the selected bank’s
row buffer for the subsequent column accesses. After accepting this
command, SDRAM needs a latency called tRCD (ACTIVE to column access
delay) to accomplish the command. No other commands can be issued to this
bank during this latency. However, commands to other banks are permissible

R
ow

D
ec

od
er

R
ow

D
ec

od
er

Column
Decoder

Address
bus

Data
bus

reg

reg

row buffer

row buffer

Control
Logic

reg

Bank 0

Bank 1

B
ur

st
C

ou
nt

er

Mode
Register

Command
bus

Figure 1. A simplified architecture of a two-bank SDRAM

SoC Memory System Design 91

due to the independent parallel processing capability of each bank. Once a
row of a particular bank has been opened, a column-access command can be
issued to read/write data from/to the addressed word(s) within the row buffer.
To issue either a read or write column-access command, DRAM address bus is
also required to indicate the column address of the open row in that bank. For
a write access, DRAM data bus is needed to transfer write data from the time
the command is issued until the whole burst transfer is completed. As for a
read access, DRAM data bus is used to transfer data after a latency called CAS,
which is the time from the read column-access command is registered to the
first read datum is available. The precharge command, together with the
information on address bus, can be used to deactivate a single open row in a
particular bank or all rows in all banks. While processing the precharge
command, the addressed bank or banks are not allowed to accept any other
commands during a time called tRP (PRECHARGE command period.)

Figure 2. (a) Simplified bank state diagram, and (b) access latencies of different access statuses

SDRAM bandwidth utilization and latency is lower and longer
respectively when more commands are required for a SDRAM access. The
number of commands needed for a complete SDRAM access deeply depends
on the state of the bank addressed by the SDRAM access. Figure 2(a) and
Figure 2(b) show a simplified bank state diagram and the access latencies
due to different access statuses: bank miss, row miss, and row hit. In a bank
miss status, an incoming access is addressed to a bank in the IDLE state,
therefore it must first activate the target row and then issue the column
access command. For a row miss status, the addressed bank is in ACTIVE
state and the row address of its activated row is not identical to that of an
incoming access. In this case, the incoming access has to first precharge the
bank, then activate the target row, and finally issue column-access
commands. As for a row hit status, the addressed bank is in ACTIVE state
and the row address of its activated row is the same as that of the incoming
access. Hence, column-access commands can be directly issued. The above
discussion is only based on a simplified condition. A more complete

92 Lee and Chang

discussion on various access latencies of a SDRAM access can be found in
Lee’s paper65.

3.3 Multi-Layered, Quality-Aware Memory Controller

Figure 3 shows the configurations of different layers of the proposed memory
controller. Layer 0 memory interface socket (MIS) is a configurable,
programmable, and high-efficient SDRAM-specific controller for basic
SDRAM operations, such as SDRAM initialization, refresh function, etc.
Basically, MIS accepts access requests and translates them into proper
command sequences according to the DRAM access status mentioned in the
preceding section. We65 have designed a self-generating, tool-independent
MIS silicon intellectual property (IP) to alleviate the burden for system
designers. This IP, called MIS-I in this paper, is featured with its
parameterized and blockwised design which is characterized by a rich set of
choices of functionality, performance, interface and testbench. To improve
SDRAM bandwidth utilization and access latency, an improved MIS-I, called
MIS-II, is presented in this paper. Together with Layer 1 quality-aware
scheduler (QAS), the memory controller also has the capability to provide
QoS guarantees for heterogeneous control and computing functional units in
multimedia SoC designs. Moreover, Layer 2 built-in address generator (BAG)
designed for multimedia PUs can effectively reduce the address bus traffic and
therefore further increase the efficiency of on-chip communication.

MIS MIS

QAS

MIS

BAG

MIS

BAG

QAS

DRAM

Data
Cmd/
Addr

DRAM

Data
Cmd/
Addr

DRAM

Data
Cmd/
Addr

DRAM

Data
Cmd/
Addr

System Bus

System Bus System Bus

System Bus

Figure 3. Configurations of different layers of the proposed memory controller

3.3.1 Configurable, shared-state FSM design

Traditionally each control state of a FSM occupies one state of the FSM.
However, this design style makes the FSM less flexible when there are many
repeated control states in a FSM. For example, to complete a SDRAM read
access with burst length of four in the row miss status, the timing diagram
and a conventional FSM design for this access are shown in Figure 2(b) and
Figure 4(a) respectively. These control latencies depend on both the

SoC Memory System Design 93

specification provided by the SDRAM vendor and the clock frequency the
memory is clocked. In addition, the unit of these latencies specified in the
SDRAM datasheet is on the basis of real time (e.g., nanoseconds and
microseconds), whereas the design of FSM that controls this sequence is
clock cycle based. When the system clock is varied, these control latencies
are varied in terms of clock cycle count. Conventional FSM design manually
calculates the control latencies from the relation between the timing
constraints in the datasheet and the clock frequency of the target system, and
then fixes these latencies as states shown in Figure 4(a). Changes in the
control latencies or the numbers of access data force us to manually modify
the design of FSM. For a flexible and reusable design, these hard-coded
states should be reduced or eliminated.

PRE

wait 1

wait 2 ACT

READ

data 1

data 2

data 3 data 4

wait 3

wait 4

wait 5

wait 6

(a)

NOP

IDLE

1 2

3
4

5

6

7

READ

set NOP_count = burst length
 NOP_code = RB
 return state = IDLE
 next state= NOP

set NOP_count = ACT to READ/WRITE latency
 NOP_code = nop
 return state = READ
 next state= NOP

ACT

PRE

set NOP_count = Precharge to Active latency
 NOP_code = nop
 return state = ACT
 next state= NOP

(b)

Figure 4. FSM design in (a) traditional DRAM controller, and (b) MIS-I

To make FSM more flexible, MIS unifies the repeated control states into
a single control state of FSM as indicated in Figure 4(b). Numerous ‘wait’
states are needed to handle DRAM command latencies. In MIS-I, these
states are all mapped to one ‘NOP’ (No OPeration) state. Before entering the
NOP state, several registers have to be set by the command states (gray
ones). These registers are NOP_count (the cycle count which is needed to
stay in the NOP state), NOP_code (operation mode of MIS while in NOP
state), and return state. In addition to wait states, data transfer states can also

94 Lee and Chang

be mapped to NOP state and NOP_count now becomes the programmed
DRAM burst length. Since MIS combines all wait and data transfer states
into a NOP state and loads the command latencies or burst length into
NOP_count dynamically, it is very easy to parameterize the command
latencies without redesigning the FSM. If control latencies are determined
and fixed before synthesis, they become hardwired logic after synthesis.
These control latencies and other related SDRAM timing constraints are
automatically converted from absolute timing to cycle count through built-in
mathematical equation in a Verilog script file. In contrast, if there is a
requirement of change in memory or clock frequency after the whole system
is designed, control and status registers are allocated for these latencies to
enable the ability to program them dynamically.

3.3.2 MIS-II

In MIS-I, it is clear that when the first DRAM access request is handled by
the single, shared FSM, the second one has to wait until the first access has
been completed. This procedure works fine for successive accesses
addressed to the same bank since DRAM can’t process them at the same
time. However, for those accesses addressed to different banks, memory
bandwidth loss is unavoidable. Because all repeated states of MIS-I are
merged into a single shared NOP state, the performance of MIS-I is
constrained by its poor capability of parallel processing accesses addressed
to different banks. Figure 5(a) shows how MIS-I processes two row-miss
accesses addressed to different banks. It is obvious that before the command
latency of a registered command has been met, no other commands can be
issued. Hence, long access latencies and low bandwidth utilization are

bank1

NOP PRE PRE

bank2

ACT

bank1

row19

read

bank1

NOP

col22

ACT

bank2

row8

Data1_1 Data1_2

read

bank2

col7

NOP

Data2_1 Data2_2

PRENOP ACTNOP read

bank1bank1bank1

row19

NOP

Data1_1 Data1_2

NOP PRE ACTNOP readNOP

Data2_1 Data2_2

bank2 bank2

row8

bank2

col7col22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NOP

(a)

(b)

System Clock

Bank Address

Row / Column
Address

Command Bus

Data Bus

Bank Address

Row / Column
Address

Command Bus

Data Bus

Figure 5. Two row-miss accesses (in different banks) processed by (a) MIS-I, and (b) MIS-II

SoC Memory System Design 95

Access to bank 0

...

DRAM status

Write data
Read data

Master
Controller

Address

Access information

Time Wheel

Bank 0
Controller

Access
command

...

Command
Sequence

Access
command

MISQAS
off-chip
DRAM

Addr/ctrl

data

access info.
memory status

write data

read data

channel 0 port 0

port N

port 1

.

.

.

channel 1

channel N

channel 2

.

.

.

quality-aware memory controller
(a)

(b)
Access to bank M

Bank M
Controller

Figure 6. (a) Quality-aware memory controller architecture, and (b) MIS-II architecture

expectable. By using bank controllers and the master controller, MIS-II
effectively fixes these problems (see Figure 5(b)) and still inherits the
advantages of MIS-I. As indicated in Figure 6(b), each internal bank of
SDRAM is allocated one bank controller to process accesses addressed to
that bank. After accepting an access from the input port, the bank controller
generates appropriate SDRAM commands according to the timing
information provided by the time wheel. SDRAM commands from all bank
controllers are collected by the master controller, which then issues the most
proper command to SDRAM according to the information from time wheel
and QAS. Master controller is also responsible for all of the other control
procedures such as power-up, refresh, etc. To regulate the processing and
sequencing of all control within and among bank controllers and the master
controller, the time wheel has to be carefully designed. Roughly speaking,
MIS-I can be treated as MIS-II with only one bank controller.

To enhance the parallel processing of QAS, the access channels are
connected as a star topology, which is widely used in practical SoC
platforms, such as ARM’s PrimeXsys platforms66 and Palmchip’s
CoreFrame architecture67. Each channel has a dedicated bus connected to
each port of QAS, while several PUs may share a channel. The share of a
channel is basically based on the memory access characteristics of PUs,
which will be illustrated in detail later.

Another mechanism that makes MIS-II more efficient than MIS-I is to
separate burst transfer control from bank controllers. As mentioned earlier,
data transfer states of MIS-I is merged into the shared NOP state. After all
burst data have been transferred, the FSM returns to IDLE state and readies
for accepting the next access. If the next access has already been pending, it

96 Lee and Chang

still has to wait at least one clock cycle on state transition after the current
access is completed. In addition, preparation cycles are sometimes needed
for DRAM controllers to preprocess an access. These two types of delay
result in unwanted bandwidth loss. In MIS-II design, the burst transfer
control is handled by the master controller. After issuing the column-access
command, the bank controller can return to IDLE state and accept the next
access. Master controller will generate signals needed during the burst
transfer cycles. Hence, the state transition and preparation cycles can be
overlapped with the burst transfer cycles and the bandwidth loss is mitigated.
In brief, MIS-II is designed to respond to the DRAM access requests
immediately to furthermore make the best use of SDRAM command and
data bus. Therefore, SDRAM bandwidth utilization is raised whereas access
latency is diminished.

3.3.3 Built-in address generator

The efficiency of on-chip communication plays an important role on system
performance. For PUs having regular access behaviors, (e.g., image
processing unit, audio/video codec, etc.) the addresses of their DRAM
accesses can be obtained in advance or through a simple translation. BAG is
designed to generate access addresses locally for some multimedia
processing units. BAG can be connected either to QAS or MIS. Without
transferring address information for every DRAM access, the address bus
traffic of on-chip channel can be effectively reduced. Currently, the
following address generators are supported in our design.

• 1-D (linear) address generator: By giving the start address and access
length, the 1-D address generator can automatically generate addresses
for PUs whose address mapping schemes are linear, e.g., audio codec,
according to the programmed DRAM burst length.

• 2-D block based address generator: The 2-D block based address
generator is designed for block based processing units such as MPEG-2
motion compensation, DCT, etc. Tile-based mapping of behavioral array
references to physical memory locations is used to minimize power
consumption on address bus transitions28 and improve DRAM
utilization57.

3.4 Quality-Aware Scheduling

Access conflicts of shared resources are an old problem in hardware design.
Mechanisms such as semaphores and scheduling are conveniently applied to
eliminate these conflicts. Two common used scheduling policies are round-
robin and fixed-priority scheme. Round-robin policy can fairly allocate

SoC Memory System Design 97

DRAM bandwidth to all channels. However, lacking priority nature makes it
hard to guarantee access latency for any channel. Fixed priority policy may
solve the problem of access latency. However, the lower-priority channels
may suffer starvation due to high access rates of higher priority channels.
Thus, it is obvious that neither of these two scheduling policies can
effectively provide QoS guarantees. This problem can be especially fatal to
some applications such as multimedia system designs. For example, signal
processing units such as video codec may require guaranteed bandwidth,
whereas CPU may concern about the access latency more when waiting for a
cache line fetch. To effectively solve this problem, we propose a quality-
aware scheduler whose scheduling policy can provide not only high DRAM
utilization but also QoS guarantees. In the proposed quality-aware scheduler
design, channels are put into three categories: latency-sensitive, bandwidth-
sensitive, and don’t care.

1) Latency-Sensitive Channel: Latency-sensitive channels are for PUs that
are highly concerned about latencies of DRAM accesses. Accesses issued
through latency-sensitive channels are called latency-sensitive accesses.
Normally latency-sensitive accesses will be granted with the highest priority.
Even though in this case, access latencies may still be long due to DRAM’s
status. For example, if a latency-sensitive access is addressed to a DRAM bank
that is currently busy in serving another access, it won’t be granted until the
bank returns to standby status when using DRAM controllers with conventional
schedulers, such as MemMax DRAM scheduler59. Even when the addressed
bank is at standby status, the command or the data bus of DRAM may be
occupied by other accesses having been granted to access to other banks. The
situation is more severe when DRAM is set at long burst mode. In order to
reduce those latencies caused by the aforementioned conditions, QAS provides
two services to shorten the DRAM access latencies of latency-sensitive accesses:
preemptive and column-access-inhibition (CAI) services.

• Preemptive service
Preemptive service is used to issue latency-sensitive accesses as soon as
possible by suspending the processed access from a bandwidth-sensitive
or don’t care channel. This indicates that preemptive service may reduce
the average bandwidth utilization. The problem is worse when the
previous access has already activated a distinct row in the same bank.
Naturally, latency-sensitive accesses that are being processed will be
protected and won’t be suspended by other latency-sensitive ones.

• Column-access-inhibition service
CAI service is used to preserve the data bus for latency-sensitive accesses
by inhibiting issuing column-access commands from bandwidth-sensitive
and don’t care channels, and therefore eliminate latencies resulted
from data bus congestion. Again, the overall bandwidth utilization is

98 Lee and Chang

diminished when CAI service is applied since the data bus is not
optimally utilized.

Besides the above two services, the bank controller which is processing
latency-sensitive accesses also has the highest priority to use DRAM
command bus to avoid possible latencies caused by waiting for the command
bus. Because optimizing the access latencies for some particular channels is
harmful to the overall bandwidth utilization, preemptive and CAI service for
latency-sensitive channels are only guaranteed within an allocated DRAM
bandwidth. Access requests beyond this allocated bandwidth will change the
channel to don’t-care type. The trade-off between high bandwidth utilization
and short access latencies for some particular channels should be thoroughly
considered by the system designers.

2) Bandwidth-Sensitive Channel: Bandwidth-sensitive channels are for
PUs that concern only about bandwidth. Since accesses through these types
of channels are insensitive to latency, they are scheduled by DRAM status
(i.e., access status and Read/Write turnaround) to achieve the highest
bandwidth utilization. For example, a row-hit access will have higher
priority than a row-miss access. If two accesses have the same bank status,
QAS will grant them according to round-robin scheduling policy that can
fairly favor all accesses in different channels. QAS also gives those accesses
having the same access type (read or write) as the previously granted one the
higher priority to prevent bandwidth loss due to SDRAM data bus
turnaround cycles. The access requests within the allocated bandwidth will
be fulfilled by QAS to provide guaranteed bandwidth for each channel.
Access requests beyond the allocated bandwidth, however, will change the
channel to don’t-care type.

3) Don’t-Care Channel: Don’t-care channels are for PUs that care about
neither latency nor bandwidth. Accesses through these types of channels won’t
be guaranteed any bandwidth or latency. They are processed only when extra
bandwidth is left over by the first two types of channels. The same as
bandwidth-sensitive channels, accesses through don’t-care channels are
scheduled by DRAM status and may be suspended by preemptive service.

The bandwidth allocation for latency-sensitive and bandwidth-sensitive
channels is on the basis of service cycle. Service cycles are cycles in which
data are transferred to/from DRAM. As shown in Figure 7, a service period

service period

service cycle

1 2 3 N
Time

Figure 7. Definition of service cycle and service period

SoC Memory System Design 99

is a union of N service cycles. System integrators can configure the number
of service cycles for different channel types in one service period by using
the scheme originally proposed for bus management68. By assigning service
cycles for latency- and bandwidth-sensitive channels, users can have fine-
grained control over the bandwidth allocated to these types of PUs.

Figure 8 shows the pseudo-code of the proposed quality-aware
scheduling. At the beginning of a service period, all channel services are
enabled. These services won’t be disabled until running out of the allocated
bandwidths (service cycles actually) in a service period. At each cycle, QAS
checks requests from all channels C. Requests from latency-sensitive
channels CLS_list are served first. When there are multiple requests from
CLS_list, they are scheduled by round-robin scheduling policy to decide the
final unique request Cwinner. If there is already a latency-sensitive access
which is being served, Cwinner stays in pending status. Otherwise, Cwinner is
served with preemptive and CAI services. When there is no request from
CLS_list, requests from bandwidth-sensitive channels CBS_list are served. When

check_channel_request(C);

if (LS_channel_assert) { //latency sensitive channel
 for (Ci in CLS_list)
 if (check_allocated_BW(Ci) ==NULL)
 change_channel_type(donot_care, Ci);
 Cwinner=round_robin(CLS_list);
 if (preemptive_service_running or CAI_service_running)
 MIS_service(pending, Cwinner);
 else
 MIS_service(preemptive, CAI, Cwinner);
}
else if (BS_channel_assert) { //bandwidth-sensitive channel
 for (Ci in CBS_list)
 if (check_allocated_BW(Ci) ==NULL)
 change_channel_type(donot_care, Ci);
 sorted_by_DRAM_status(CBS_list);
 Cwinner=round_robin(CBS_list);
 MIS_service(normal, Cwinner);
}
else if (donot_care_channel_assert) {
 sorted_by_DRAM_status(Cdonot_care_list);
 Cwinner=round_robin(Cdonot_care_list);
 MIS_service(donot_care, Cwinner);
}

if (end_of_a_service_period)
 reset_all_channel_setting();

Figure 8. Quality-aware scheduling

100 Lee and Chang

there are multiple requests from CBS_list, they are scheduled by DRAM status.
Round-robin scheduling policy is then applied to those requests with the
same DRAM status to decide the final unique request Cwinner. Finally,
requests from don’t-care channels are accomplished only when no requests
from CLS_list and CBS_list, and the final unique request Cwinner of these requests
is decided in a similar manner for CBS_list.

3.5 Experimental Result

In this section, we present the experimental framework used to evaluate
several SDRAM controllers. We will describe a system test-bed and the use of
each component in this test-bed. First, several constrained random
experiments are conducted under different configuration parameters to
measure the average SDRAM bandwidth utilization and the access latencies
for the highest priority access channels or latency-sensitive channels of the
considered SDRAM controllers. Then, a simplified STB SoC is simulated to
examine the QoS performance of each SDRAM controller.

3.5.1 Experimental framework setup

Figure 9 shows the test-bed used to evaluate the considered SDRAM
controllers. Each access initiator generates different SDRAM access
behaviors for each channel connected to the SDRAM controller according to
three control parameters: process_period indicates how many clock cycles
an access initiator needs to process the read data; access_num indicates how
many accesses an initiator issues every process_period; access_behaviors
specifies different access patterns: constrained random, 1-D linear, 2D block
base, 2-D interlace, and 2-D block base with unpredictable start address. The
simulation coordinator is responsible for generating all control signals
needed in the experiments and dumping the simulation results for further
analysis. Two types of on-chip bus (OCB) model are used in the

Access
initiatorTest Pattern

Pattern
generator

Simulation
coordimator

Dump file

OCB
model

DRAM
Controller PAD SDRAM

model

Figure 9. Test-bed for SDRAM controller performance evaluation

SoC Memory System Design 101

experiments: a single shared bus and multiple dedicated buses. The single
shared bus model is used to connect a single-channel SDRAM controller and
the access initiators. In this model, a bus arbiter is included to grant accesses
from access initiators with one clock cycle bus handover. The applied
arbitration policies are round-robin and fixed-priority. Multiple dedicated
buses are used to connect a multi-channel SDRAM controller and the access
initiators. Seven different SDRAM controllers listed in Table 1 will be
compared in the following experiments. The SDRAM model used in this
experiment is Micron’s mt48lc8m16a2 SDR-SDRAM69. Some key parameters
of this SDRAM are listed in Table 2.

Table 2. SDRAM controllers used in the experiments

Controller Descriptions
SIG-RR-MIS-I Single-channel MIS-I controller with round-robin OCB arbiter
SIG-FP-MIS-I Single-channel MIS-I controller with fixed-priority OCB arbiter
SIG-RR-MIS-II Single-channel MIS-II controller with round-robin OCB arbiter
SIG-FP-MIS-II Single-channel MIS-II controller with fixed-priority OCB arbiter
MUL-RR-MIS-II Multi-channel MIS-II controller with round-robin DRAM scheduler
MUL-FP-MIS-II Multi-channel MIS-II controller with fixed-priority DRAM scheduler
QA-MIS-II Multi-channel MIS-II controller with quality-aware DRAM scheduler

Table 3. Key parameters of SDRAM model

Parameters Values Parameters Values
Clock rate 100 MHz tRCD 2 cycles
Data bus width 16 bit tRP 2 cycles
Num. of bank 4 tRAS 5 cycles
Burst length 1, 2, 4, 8 CAS latency 2 cycles

3.5.2 Performance evaluation of constrained random access streams

Performance evaluation of constrained random access streams looks at the
performance variations of SDRAM controllers when some control parameters
are changed. The default control parameters are listed in Table 3, whereas
some of them may vary in different experiments. In every experiment, the
bandwidth utilization provided by each SDRAM controller will be observed.
Besides, to measure the shortest access latency (denoted as min_latency)
provided by each SDRAM controller, we assume that access from initiator 0
will be granted with the highest priority in fixed-priority controllers and set as
the latency-sensitive channel in the quality-aware controllers. For round-robin
controllers, no particular settings are needed due to the fair scheduling.

1) Effect of Available Bank
For the SDRAM containing multiple banks, the capability of SDRAM
controllers to handle parallel bank access can severely affect the DRAM

102 Lee and Chang

bandwidth utilization. Figure 10(a) illustrates the bandwidth provided by
each SDRAM controller when the number of available banks varies from
one to four. Some key points are listed as followed.

• For single-channel MIS-I controllers, increasing the DRAM banks
obviously contributes nothing to bandwidth utilization. It is mainly
because that MIS-I does not support parallel bank access. Furthermore,
FP-MIS-I controller has better performance than RR-MIS-I controller
has. This is evident since fixed-priority policy allows high-priority access
initiators to occupy the MIS-I longer and hence avoids wasted cycles due
to frequent bus handover.

• For one-bank SDRAM, since every SDRAM access cannot be issued
until the previous one is completed, bus handover cycles shorter than the
burst length have totally no influence on the bandwidth utilization.
Hence, all MIS-II controllers provide the same bandwidth. However, the

Figure 10. The effects of number of available bank on (a) bandwidth utilization, and
(b) min_latency

SoC Memory System Design 103

 hidden bus handover and scheduling cycles can still make MIS-II
controllers provide better bandwidth utilization than MIS-I controllers
do.

• The bandwidth utilization of MIS-II controllers increases when the
number of available banks increases. Compared to single-channel MIS-II
controllers, multi-channel controllers have more improvement on
bandwidth due to the support of high-efficient parallel bank access.

The effect of bank number on min_latency of each SDRAM controller is
shown in Figure 10(b). We make the following observations from this figure.

• min_latency of single-channel MIS-I controllers are insensitive to the
number of available bank since no parallel bank access is supported. In
contrast, min_latency of single-channel MIS-II controllers are reduced
when the number of available banks is increased.

• For the MUL-FP-MIS-II controller, increasing the available banks makes
the access latencies longer. This is because multi-channel controllers
allow accesses addressed to a free bank to be processed as soon as
possible to optimally utilize the DRAM bandwidth. Hence, low-priority
accesses and high-priority ones may be processed at the same time. This
condition unavoidably makes the command and data bus congestion
more serious, which in turn leads to longer min_latency. This problem is
effectively eliminated by the preemptive and CAI services used in QA-
MIS-II controller.

2) Effect of Burst Length
Generally speaking, increasing the burst length comes with higher
bandwidth utilization since each column-access command can transfer more
data and therefore bandwidth loss due to bus handover and turnaround is
reduced. Figure 11(a) depicts the bandwidth provided by different SDRAM
controllers when the burst length varies from one to eight. As we can see,
single-channel MIS-II controllers can provide almost the same bandwidth
utilization as the multi-channel controllers can when the burst length was
programmed to eight. It is reasonable since the burst transfer cycle is long
enough for single-channel controllers to hide all bus handover cycles and
command latencies.

Figure 11(b) illustrates min_latency of initiator 0. For single-channel
controllers, increasing burst length results in longer access latency since the
time to wait for the completion of the previous accesses is longer. As for
multi-channel controllers, increasing the burst length can be taken as
increasing the data bus congestion. Hence, the access latencies is also longer.
Compared to MUL-FP-MIS-II, min_latency of QA-MIS-II is reduced by 46%
and 30% when the burst length is programmed to eight and four respectively.
These improvements are due to that SDRAM data bus congestion problem

104 Lee and Chang

Figure 11. The effects of burst length on (a) bandwidth utilization, and (b) min_latency

happened to multi-channel controllers and are again eliminated by the
preemptive and CAI services.

3) Effect of Number of Access Initiators
Figure 12(a) and Figure 12(b) show the effects of the number of access
initiators on bandwidth utilization and min_latency respectively. When the
number of initiators is less than two, the total bandwidth requirement can be
fulfilled by all controllers. The performance difference starts to be obvious
when more than three initiators are concurrently issuing DRAM accesses.
Single-channel MIS-I and MIS-II controllers encounter their performance
bound when the number of initiators is three and four respectively. In
contrast, multi-channel controllers still have some available bandwidth for
initiators more than four and the bandwidth utilization even goes higher with
more access initiators. Figure 12(b) shows min_latency of each SDRAM
controller. It is clear that when the number of the initiators increases, the
access latencies become longer. Compared to MUL-FP-MIS-II, min_latency

SoC Memory System Design 105

Figure 12. The effects of channel number on (a) bandwidth utilization, and (b) min_latency

of QA-MIS-II is reduced up to 30% because the congestion problem can be
solved by preemptive and CAI services.

4) Effect of Preemptive and CAI Service
As shown in Figure 13, we take a look at how preemptive and CAI services
affect the overall system performance. Compared to MUL-FP-MIS-II, any
configuration of QA-MIS-II can provide higher bandwidth utilization due to
the high-efficient scheduling for accesses from bandwidth-sensitive channels.
When both the preemptive and CAI services are enabled, the bandwidth
degradation is most severe compared to other configurations. The second
 severe

degradation of bandwidth occurs when only CAI service is enabled

 since this service preserves the DRAM data bus for latency-sensitive

106 Lee and Chang

Figure 13. Bandwidth comparison between MUL-FP-MIS-II and QA-MIS-II with
different services

channels to prevent data bus congestion problem and therefore results in low bus
utilization. When only preemptive service is enabled, the bandwidth degradation
is minor. This is because preemptive service can make accesses from initiator 0
be processed as soon as possible and then free QAS to grant other requests from
non-latency-sensitive channels. This higher efficient scheduling is helpful to
increase bandwidth utilization and hence can neutralize the bandwidth loss
resulted from preemptive service.

Figure 14 illustrates min_latency of MUL-FP-MIS-II and QA-MIS-II
with different services. It is obvious that optimizing the access latency of a
particular channel is harmful to that of other channels. Note when both
preemptive and CAI services are disabled, min_latency of QA-MUL-II is

Figure 14. Latency comparison between MUL-FP-MIS-II and QA-MIS-II with different
services

SoC Memory System Design 107

slightly longer than that of MUL-FP-MIS-II. This is because the higher
bandwidth utilization of QA-MIS-II also makes the data bus congestion
more severe. The access latency of other channels of MUL-FP-MIS-II is
higher than that of QA-MIS-II because it is dominated by access latencies of
low-priority channels.

5) Summary
The above experiments clearly indicate that multi-channel SDRAM
controllers can provide much higher bandwidth than single-channel
controllers when high-efficient parallel bank access is supported.
Furthermore, these experiments also show that maximizing the bandwidth
utilization can be harmful to access latency for some particular initiators
because of the possible command and data bus congestions. This problem can
be effectively solved by preemptive and CAI service provided by QA-MIS-II.
Hence, only QA-MIS-II can successfully provide both high bandwidth
utilization and short access latency services.

3.5.3 Performance evaluation of set-top-box emulation environment

In this section, we simulate several events that may occur in a digital STB
chip, which is a good example of multimedia SoC design. The basic
hardware components of a STB SoC may include a CPU, audio/video codec,
network devices, etc. Various demands on DRAM service cause it difficult
to design a memory controller that fulfills different requirements of these
components. Some new features supported by digital STB, such as the
interactive television (ITV) service, make the situation even worse due to the
drastic change in the requirement of DRAM bandwidth. ITV service allows
users to not just sit in front of the TV but interact with the broadcasting
programs, such as online betting, home shopping, etc. Therefore, the DRAM
bandwidth required by CPU might vary when CPU performs different
application programs.

1) System Setup
In this experiment, seven PUs with configuration listed in Table 4 share
a unified off-chip SDRAM. To assure low-latency access for CPU’s cache
line fetch, CPU is taken as latency-sensitive PU in the quality-aware controller
and the highest priority in fixed-priority controllers. Besides, because users
are less sensitive to the efficiency of download speed, wireless LAN controller
is set as the lowest priority and don’t care PU in fixed-priority and
quality-aware controllers respectively. Since round-robin controllers fairly
schedule accesses from all PUs, no special configuration is needed. Figure 15
shows some events that may occur when the STB operates. Most of the
time the user just watches TV programs. Therefore, the total bandwidth

108 Lee and Chang

Table 4. Control parameters in constrained random experiments

Parameters Values
No. of access initiators 7
No. of bank used 4
Burst length 4
Process_period 60
access_no 3
Bandwidth requested by each initiator 32.4 MB/s

requirement of the STB system is rather steady. While watching the
program, the user also downloads some files through wireless LAN, e.g.,
video clips or MP3 files. Two events that cause variation of SDRAM
bandwidth requirement are on-screen display (OSD) and ITV events. The
OSD event activated by the user to setup the functionality of the STB has
happened during cycle 5,000-10,000. An ITV event is triggered when the
user wants to browse the player files during watching a basketball game.
After the ITV application has been activated, CPU requests a large amount
of bandwidth instantly to process the application. The user then paused the
TV program temporarily during cycle 21,000-31,000 to browse the
information offered by the broadcaster.

2) Simulation Results
To examine the QoS performance, we look at the fulfillment of bandwidth
allocation first. The latency of CPU is assessed later. For round-
robin controllers shown in Figure 16(a) and Figure 16(b), the limited
bandwidth provided by SIG-RR-MIS-I and SIG-RR-MIS-II obviously
cannot fulfill the requirement of STB SoC. As for MUL-RR-MIS-II shown
in Figure 16(c), although the overall bandwidth utilization is much better, the
bandwidth allocation for each PU is unacceptable. As mentioned above,

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Time (1000 cycle)

P
ea

k
 b

an
d

w
id

th
 u

ti
li

za
ti

o
n

 (
%

)

CPU

Transport stream

OSD

Display

Video decoder

DSP (Audio)

Wireless LAN

Total

Figure 15. Bandwidth requirement of each PU in the STB SoC

SoC Memory System Design 109

Table 5. Configuration of PUs in the STB system

PU Fixed-priority Quality-aware
CPU 1st priority Latency-sensitive
Transport stream 2nd priority Bandwidth-sensitive
DSP 3rd priority Bandwidth-sensitive
OSD 4th priority Bandwidth-sensitive
Video decoder 5th priority Bandwidth-sensitive
Display 6th priority Bandwidth-sensitive
Wireless LAN 7th priority Don’t-care

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Tim e (1000 c yc le)

Pe
ak

 b
an

dw
id

th
 u

til
iz

at
io

n
(%

)

(a)

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Time (1000 cycle)

P
ea

k
ba

nd
w

id
th

 u
ti

li
za

ti
on

 (
%

)

 (b)

110 Lee and Chang

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Ti me (1 0 0 0 c y c l e)

P
e

a
k

 b
a

n
d

w
i
d

t
h

u

t
il

iz
a

t
io

n
 (

%
)

 (c)

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Time (1000 cycle)

P
ea

k
ba

nd
w

id
th

 u
ti

li
za

ti
on

 (
%

)

(d)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Ti me (1 0 0 0 c y c l e)

P
e

a
k

 b
a

n
d

w
i
d

t
h

u

ti
l
iz

a
ti

o
n

 (
%

)

(e)

SoC Memory System Design 111

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Time (1000 cycle)

P
ea

k
ba

nd
w

id
th

 u
ti

li
za

ti
on

 (
%

)

(f)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Time (1000 cycle)

P
ea

k
ba

nd
w

id
th

 u
ti

li
za

ti
on

 (
%

)

(g)
Figure 16. Bandwidth utilization of (a) SIG-RR-MIS-I, (b) SIG-RR-MIS-II, (c) MUL-RR-

MIS-II, (d) SIG-FP-MIS-I, (e) SIG-FP-MIS-II, (f) MUL-FP-MIS-II, and (g) QA-MIS-II

round-robin controllers evenly allocate total bandwidth to each PU. Thus,
both OSD and ITV events may result in quality degradation of the
broadcasting program. Take the ITV event for example, CPU requests a
large bandwidth instantly and some bandwidth for the video decoder and the
display unit is allocated to CPU. Therefore, the guaranteed bandwidth
requirements of these two PUs are ruined.

As for fixed-priority controllers shown in Figure 16(d) and Figure 16(e),
the single-channel fixed-priority controllers can provide higher bandwidth
utilization than single-channel round-robin controllers can. This is because

112 Lee and Chang

they allow high priority PUs to access DRAM uninterruptedly and hence can
avoid bandwidth loss due to bus handover and frequent row reopening.
However, the provided bandwidth is still not enough. For example, no
bandwidth is allocated to wireless LAN controller during the normal
operation period. The bandwidth provided by MUL-FP-MIS-II is much
higher. However, as indicated in Figure 16(f), the bandwidth allocation
problem still exists. During the ITV event, CPU takes a large portion of
bandwidth. This severely degrades the quality of the broadcasting program
and is therefore unacceptable.

Figure 16(g) illustrates the simulation result of quality-aware controller.
As we can see, the bandwidths allocated for all bandwidth-sensitive PUs are
well guaranteed. When ITV event happens, the bandwidth for wireless LAN
controller is taken first. The quality of the broadcasting program remains
unchanged when the user is still watching the program. After the TV
program has been paused, CPU takes the spared bandwidth released by the
video decoder for the ITV program. In addition, accesses from the wireless
LAN controller can be served as much as possible during this period.

In Figure 17, CPU access latency is measured separately when CPU
operates during the normal operation period and the ITV event. First we take
a look at the normal operation period. As expected, round-robin controllers
have the longest access latencies compared to other controllers due to the
fair scheduling, which apparently cannot fit CPU’s low latency requirement.
By granting accesses from CPU with the highest priority, fixed-priority
controllers can effectively reduce the access latencies. Among these fixed-
priority controllers, MUL-FP-MIS-II has the longest CPU access latency
because its high bandwidth utilization causes serious SDRAM command and
data bus congestion. The congestion problem is effectively eliminated in

0

10

20

30

40

50

60

70

SIG-RR-

MIS-II

SIG-RR-

MIS-II

MUL-RR-

MIS-II

SIG-FP-

MIS-I

SIG-FP-

MIS-II

MUL-FP-

MIS-II

QA-MIS-II

L
at

en
cy

 (
cy

cl
e)

Normal operation
mode

ITV service mode

Figure 17. CPU access latency in different operation mode of each SDRAM controller

SoC Memory System Design 113

QA-MIS-II. With preemptive and CAI services, CPU access latency of QA-
MIS-II is reduced by about 19% and 37% compared to SIG-FP-MIS-II and
MUL-FP-MIS-II respectively.

During the ITV event, CPU access latencies of round-robin controllers
are lower than those latencies of round-robin controllers during normal
operation mode, since the video decoder is paused in cycle 21,000-30,000.
Similarly, fixed-priority controllers also have shorter CPU access latency
during the ITV event. This is because the high request rate of CPU blocks
other PUs to access DRAM and hence preserves most DRAM resources for
CPU. In contrast, the latency of QA-MIS-II is longer than that of fixed-
priority controllers since the bandwidth requirement of the ITV applications
is taken as don’t care type. This is acceptable because users are often less
sensitive to the execution speed of ITV applications.

3.6 Summary

We have presented a multi-layer, quality-aware SDRAM controller for
multimedia platform SoCs. The layered architecture is motivated by the
awareness of that not every system needs the same requirement of memory
usage. Therefore, we well partition the functionality of a memory controller
into proper layers such that designers have the flexibility to adopt the best
fitting layers for various applications. By appropriately categorizing
channels into three types, QAS is able to provide the best DRAM services
including short access latency and guaranteed bandwidth for each type of
channels. DRAM bandwidth utilization is improved by the support of
parallel access of each bank within SDRAM and the ability to issue every
DRAM command at the earliest time available. The configurability of MIS,
based on the shared-state FSM design, can alleviate the burden for system
designers by rapid integration of SDRAM subsystem. Some recently
developed systems, especially those for portable applications, have power
management with the ability to control the system clock frequency in
adjusting system performance to just fit to the requirement. Programmability
of DRAM control latencies enables the power management to dynamically
lower the clock frequency of MIS.

The results of STB experiment show that the access latency of the
latency-sensitive channel can be reduced by 37% and 65% compared to
conventional multi-channel fixed-priority and round-robin controllers
respectively. Furthermore, the memory bandwidths can be precisely allocated to
bandwidth-sensitive channels with a high degree of control and no bandwidth-
sensitive channel suffers starvation in all simulated STB events. In summary,
the presented memory controller can achieve high DRAM utilization while
still meeting different memory access requirements of bandwidth and latency.

114 Lee and Chang

4. CONCLUSION

Memory represents a critical driver in terms of cost, performance and power
for embedded systems. To address this problem, a large variety of memory
technologies and memory access managements have been proposed. On one
hand the application is characterized by a variety of access patterns. On the
other hand, new memory devices and organizations provide a set of features.
To find the best match between the application characteristics and the
memory organization features, the designer needs to explore different
memory configurations in combination with different design architectures.
Furthermore, the growing number of cycles required for memory accesses
also caused designers to implement latency-tolerance techniques such as
prefetching and out-of-order execution. Farther in the future, new memory-
centric architectures, tools and design methodologies may be developed
specifically to improve the cost, power and performance of memory systems.
Most of these solutions will eventually be used synergistically to meet the
severe requirements of embedded systems.

Due to the advance of hardware, more complex algorithms and systems
are now investigated or already available to promote new functionality or
better services. These complex designs also create a new requirement of
memory optimization. For example, more algorithms explore bit-level
optimization for better performance. While in the past the main effort has
been to optimize designs at word level or sub-word level, new and
unexplored degrees of freedom become available when design optimization
is explored at the bit level70,71,72. In addition to bit-level processing, non-
multiple of eight bits per data sample is widely adopted in video applications,
such as high quality television signal and high profiles of H.264/AVC73. This
size of data sample also creates design challenges of memory system, which
is traditionally used for data sample with a size of multiple of eight.

While we conjecture that algorithmic designs will remain based on
human intuition and ingenuity, we believe that the parameter tuning and
search of an optimal architecture in a restricted domain can be at least
methodized or partially automated. The formulation of rigorous theories and
optimization techniques for memory system designs is an exciting area for
future research.

REFERENCES

1. G. Goossens, et al, “Synthesis of flexible IC architectures for medium throughput
real-time signal processing,” J. VLSI signal processing, vol.5, no.4, Kluwer Academic
Publishers, Boston, 1993.

SoC Memory System Design 115

2. Denali Memory Report, vol 1, issue 4, May 2002.
3. T. H. Meng, B. Gordon, E. Tsern, and A. Hung, “Portable video-on-demand in wireless

communication,” in Proc. of the IEEE, Vol.83, No.4, pp.659-680, Apr. 1995.
4. V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: a first step

towards software power minimization,” in Proc. ICCAD, pp.384-390, Nov. 1994.
5. F. Catthoor et al. Custom Memory Management Methodology: Exploration of Memory

Organization for Embedded Multimedia System Design. Kluwer Academic Publishers,
1998.

6. D. Burger, J. R. Goodman, and A. Kagi, “Limited bandwidth to affect processor design,”
IEEE Micro, 17(6): pp. 55--62, Nov./Dec. 1997.

7. P. R. Panda, N. Dutt, and A. Nicolau, Memory issues in embedded systems-on-chip:
optimizations and exploration, Kluwer Academic Publishers, Boston, 1999.

8. C. Natarajan, B. Christenson, and F. Briggs, “A study of performance impact of memory
controller features in multi-processor server environment,” in Proc. of the 3rd workshop
on Memory performance issues, pp. 80-87, 2004.

9. D. A. Patterson, “Latency lags bandwidth”, Communication of the ACM, vol. 47. no. 10,
pp. 71-75, Oct. 2004.

10. K. Kilbuck, “FCRAM 101 Part 1: Understanding the Basics”, CommsDesign, 2002.
[Online]. Available: http://www.commsdesign.com/printableArticle/?articleID=16504491

11. N. C. C. Lu, “Emerging technology and business solutions for system chips,” ISSCC Dig.
Tech. Papers, pp.25-31, Feb. 2004.

12. A. K. Khan, et al., “A 150-MHz graphics rendering processor with 256-Mb embedded
DRAM”, IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1775-1784, Nov. 2001.

13. M. Takahashi, et al., “A 60-MHz 240-mW MPEG-4 videophone LSI with 16-Mb
embedded DRAM”, IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1713-1721, Nov.
2000.

14. B. Dipert, “Embedded Memory: The All Purpose Core”, EDN Magazine, Mar. 1998.
[Online]. Available: http://www.ednmag.com/reg/1998/031398/06cs.cfm

15. L. Benini, A. Macii, and M. Poncino, “Energy-aware design of embedded memories: a
survey of technologies, architectures and optimization techniques”, ACM Trans.
Embedded Computing Systems, vol. 2, no. 1. pp. 5-32, Feb. 2003.

16. K. Nii, et al., “A 90-nm low-Power 32-kB embedded SRAM with gate leakage
suppression circuit for mobile Applications”, IEEE J. Solid-State Circuits, vol. 39, no. 4,
pp. 684-692, Apr. 2004.

17. W. Leung, F. C. Hsu, and M. E. Jones, “The ideal SoC memory: 1T-SRAM” Proc. IEEE
ASIC/SoC Conf., pp. 32-36, 2000.

18. P.C. Fazan, et al., . “A simple 1-transistor capacitor-less memory cell for high
performance embedded DRAMs”, Proc. IEEE CICC, pp.99-102 , 2002

19. NEC, “New ASIC Process Technology Makes Embedded DRAM Practical Choice For
High-Performance Applications”, [Online]. Available: http://www.necel.com/en/process/
pdf/eDRAMwhitepaper3.7.pdf

20. SST, “SuperFlash EEPROM technology”, [Online]. Available: http://www.sst.com/
downloads/tech_papers/701.pdf

21. K. Ayukawa, T. Watanabe and S. Narita, “An access-sequence control scheme to
enhance random-access performance of embedded DRAM’s,” IEEE J. Solid-State
Circuits, vol. 33, no. 5, pp. 800-806, May 1998.

22. T. Watanabe et al., “Access optimizer to overcome the future walls of embedded
DRAMs in the era of systems on silicon,” in Proc ISSCC99, pp. 370 -371, 15-17
Feb. 1999.

116 Lee and Chang

23. S. A. McKee et al, “Experimental implementation of dynamic access ordering,” in Proc.

of the 27th Hawaii International Conference on System Sciences, pp. 431-440, Jan. 1994.
24. S. A. McKee and Wm. A. Wulg, “A memory controller for improved performance of

streamed computations on symmetric multiprocessors,” in Proc IPPS '96, pp. 159-165.
25. S. I. Hong et al., “Access order and effective bandwidth for streams on a Direct Rambus

memory,” in Proc. of the 5th HPCA, pp. 80-89, Jan. 1999.
26. P. R. Panda, N. D. Dutt, and A. Nicolau, “Incorporating DRAM access modes into

high-level synthesis,” IEEE Trans. CAD, vol. 17, no. 2, pp. 96-109, Feb. 1998.
27. A. Khare, P. R. Panda, N. D. Dutt, and A. Nicolau, “High-level synthesis with

synchronous and RAMBUS DRAMs,” in Proc. SASIMI '98, pp.186-193, 1998.
28. P. R Panda and N. D. Dutt, “Low-power memory mapping through reducing address bus

activity,” IEEE Trans. VLSI Syst, vol. 7, pp. 309-320, Sept. 1999.
29. M. Winzker, P. Pirsch and J. Reimers, “Architecture and memory requirements for

stand-alone and hierarchical MPEG2 HDTV-decoders with synchronous DRAMs,” in
Proc ISCAS95, pp. 609 -612, Jan. 1995.

30. T. Gleerup et al., “Memory architecture for efficient utilization of SDRAM: a case study
of the computation/memory access trade-off,” in Proc. of the 8th International Workshop
on Hardware/Software Codesign, pp. 51-55, 2000.

31. H.-K. Chang and Y.-L. Lin, “Array allocation taking into account SDRAM
characteristics,” in Proc. ASP-DAC, pp. 497-502, Jan. 2000.

32. H. Schmit and D. E. Thomas, Jr., “Address generation for memories containing multiple
arrays,” IEEE Trans. CAD, vol. 17, issue 5, pp.377 -385, May 1998.

33. A. Jantsch, et al., “Hardware/software partitioning and minimizing memory interface
traffic,” Proc. of the EuroDAC, pp.226-231, 1994.

34. N. Chang, K. Kim, J. Cho and H. Shin, “Bus encoding for low-power high-performance
memory systems,” in Proc. DAC2000, pp. 800-805, Jun 2000.

35. W.-C. Cheng and M. Pedram, “Power-optimal encoding for DRAM address bus,” in
Proc. International Symposium on Low Power Electronics and Design, pp. 250-252,
2000.

36. C. L. Su, C. Y. Tsui, and A. M. Despain, “Saving power in the control path of embedded
processors,” IEEE Design and Test of Computers, vol. 11, pp. 24-30, 1994.

37. M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,” IEEE Trans.
VLSI Syst., vol. 3, no. 1, pp. 49-58, Mar. 1995.

38. Y. Shin, S. Chae, and K. Choi, “Reduction of bus-transitions with partial bus-invert
coding,” IEE Electronics Letters, vol.34, no. 7, pp.642-643, Apr. 1998.

39. S. Hong, T. Kim, U. Narayanan, and K. S. Chung, “Decomposition of bus-invert coding
for low power I/O,” J. Circuits, Syst., Comput., vol. 10, pp. 101-111, 2000.

40. M. Mamidipaka, D. Hirschberg, and N. Dutt, “Low power address encoding using
self-organizing lists,” in Proc. ISLPED'01, pp. 188-193, Aug. 2001.

41. P. With, P. Frencken, and M. Schaar-Mitrea, “An MPEG decoder with embedded
compression for memory reduction,” IEEE Trans. Consumer Electron., vol. 44,
pp. 545-555, Aug. 1998.

42. T. Y. Lee, “A new frame-recompression algorithm and its hardware design for MPEG-2
video decoders,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 529-534, June
2003.

43. S.-B. Ng, Lower Resolution HDTV Receivers, US patent 5262854, Nov. 1993.
44. W. Zhu, K. H. Yang, and F. A. Faryar, “A fast and memory efficient algorithm for

down-conversion of an HDTV bitstream to an SDTV signal,” IEEE Trans. Consumer
Electron., vol. 45-1, pp. 57-61, Feb. 1999.

S C Memory System Design 117

45. L. Benini and G. D. Micheli, Dynamic Power Management: Design Techniques and

CAD Tools. Kluwer Academic Publishers, 1998.
46. A. H. Farrahi, G. E. Téllez, and M. Sarrafzadeh, “Memory segmentation to exploit sleep

mode operation,” in Proc DAC95, pp.36-41, June 1995.
47. H. Heske, Mobile RAMs can help save power, Portable Design Magazine, July 2002.

[Online]. Available: http://www.electronicsforu.com/electronicsforu/articles/hits.asp?id=369
48. R. Goering, “Philips design team wins EDAC award,” EEdesign, May 30, 2002.
49. S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor SoC for advanced

set-top box and digital TV systems,” IEEE Des. Test. Comput., vol. 18, no. 5, pp. 21-31,
Sept.-Oct. 2001.

50. G. Martin and H. Chang, Winning the SoC Revolution: Experiences in Real Design,
Kluwer Academic Publishers, Boston, Jun. 2003.

51. B. Furht, “Multimedia systems: an overview,” IEEE Multimedia, vol. 1, no. 1, Spring
1994, pp. 47-59.

52. J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach, 3rd
ed., Morgan Kaufmann Publishers, San Francisco, 2002.

53. A. Cataldo, MPU designers target memory to battle bottlenecks, EE Times, (10/19/01).
[Online]. Available: http://www.siliconstrategies.com/ story/OEG20011019S0125

54. R. C. Schumann, “Design of the 21174 memory controller for DIGITAL personal
workstations,” Digital Technical Journal, vol. 9, no. 2, pp. 57-70, 1997.

55. J. Carter et al., “Impulse: Building a smarter memory controller,” in Proc. HPCA 1999,
pp. 70-79, Jan. 1999.

56. S. Rixner, et al., “Memory access scheduling,” in Proc. ISCA 2000, Vancouver, Canada,
June 2000, pp. 128-138.

57. T. Takizawa and M. Hirasawa, “An efficient memory arbitration algorithm for a single
chip MPEG2 AV decoder,” IEEE Trans. Consumer Electron., vol. 47, no.3, pp. 660-665,
Aug. 2001.

58. J. Corbal, R. Espasa, and M. Valero, “Command vector memory systems: High
performance at low cost,” in Proceedings of the 1998 International Conference on
Parallel Architectures and Compilation Techniques, pp. 68-77, Oct. 1998.

59. Sonics, Efficient Shared DRAM Subsystems for SoCs, 2001. [Online]. Available: http://
www.sonicsinc.com/sonics/products/memmax/productinfo/docs/DRAM_Scheduler.pdf

60. Sonics, SoCCreator Guide Design Flow. [Online]. Available: http://www.socworks.com/
socworks/support/documentation/html/

61. K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERYBUS: a new high-
performance communication architecture for system-on-chip designs,” in Proc. Design
Automation Conference, pp.15-20, Jun. 2001.

62. F. J. Harmsze, A. H. Timmer, and J. L. van Meerbergen, “Memory arbitration and cache
management in stream-based systems,” in Proc. DATE 2000, Mar. 2000, pp. 257-262.

63. Denali Software Inc., Databahn product information, [Online]. Available:
http://www.denali.com/products_databahn_dram.html.

64. K.-B. Lee, T.-C. Lin, and C.-W. Jen, “An efficient quality-aware memory controller for
multimedia platform SoC,” IEEE Trans. Circuits Syst. Video Technol., vol. 15,
pp. 620-633, May. 2005.

65. K.-B. Lee and C.-W. Jen, “Design and verification for configurable memory controller -
Memory interface socket soft IP,” Journal of the Chinese Institute of Electrical
Engineering, vol. 8, no. 4, pp.309-323, 2001.

66. ARM, Inc. PrimeXsys Platforms. [Online]. Available: http://www.arm.com/armtech/
PrimeXsys?OpenDocument

o

118 Lee and Chang

67. Bill Cordan, “An efficient bus architecture for system-on-chip design,” IEEE Custom

Integrated Circuits, San Diego, USA, May 1999, pp. 623 -626.
68. S. Hosseini-Khayat and A.D. Bovopoulos, “A simple and efficient bus management

scheme that supports continuous streams,” ACM Trans. Computer Systems, vol. 13, no.
2, pp. 122-140, 1995.

69. Micron Technology, Inc. mt48lc16m16a2 256Mb SDRAM, Jan 2003. [Online].
Available: http://www.micron.com/products/datasheet.jsp?path=/DRAM/SDRAM&fileID=10

70. M.-Y. Chiu, K.-B. Lee, and C.-W. Jen, “Optimal data transfer and buffering schemes for
JPEG2000 encoder,” in Proc. SIPS 2003, pp.177-182, Aug. 2003.

71. K.-B. Lee et al., “Optimal frame memory and data transfer scheme for MPEG-4 shape
coding,” IEEE Trans. Consumer Electron., vol. 50, no.1, pp. 342-348, Feb. 2004.

72. A. Erturk and S. Erturk, “Two-bit transform for binary block motion estimation,” IEEE
Trans. Circuits Syst. Video Technol., vol. 15, Issue 7, pp. 938-946, July 2005.

73. G. J. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC advanced video coding
standard: overview and introduction to the fidelity range extensions,” in Proc. SPIE,
Denver, Aug. 2004.

119

Chapter 5

EMBEDDED SOFTWARE

Tai-Yi Huang*, Shiao-Li Tsao﹢, Le-Chun Wu＃, Edward T.-H Chu*,
and Ko-Yun Liu*

*National Tsing-Hua University
﹢National Chiao-Tung University
＃National Taiwan University

1. INTRODUCTION

The advancement of semiconductor manufacturing technology makes it
practical to place a traditional board-level embedded system on a single chip.
The evolvement of system-on-chip (SoC) techniques presents new
challenges on integrated circuit (IC) designs as well as embedded software
and systems. A SoC system usually has limited hardware resource or
functionality such as battery capacity, slower processors, and small memory,
which induce the complexity of embedded software design. Traditional
system software cannot simply be directly deployed on a SoC system to fully
utilize its capabilities without considerable modifications in design and
implementation. Software development tools, such as compilers, linkers,
loaders, assemblers, debuggers, and simulators, have therefore become an
integral part of the SoC system design. The requirement and design
methodology of these tools are quite different from those on the general-
purpose computing systems. In addition, conventional approaches to
developing software usually cannot proceed until the hardware is ready and
fully tested. In contrast, hardware/software co-design becomes a crucial step
in the development of SoC embedded software. It significantly speeds up the
design and implementation process of hardware and software of an
embedded system. In this chapter, we first discuss low-power scheduling of
embedded software, which is a core issue in an embedded system design. It
includes an in-depth and broad introduction on low-power task scheduling

Lin (ed.), Essential Issues in SOC Design, 119–175.
© 2006 Springer.

S.Y.-L .

120 Huang et al.

and device scheduling. We later investigate the development framework for
device drivers and hardware/software co-design methodology. Finally, we
look into the topics in compiler and software development toolchains.

Modern embedded systems, such as sensors and portable and wireless
devices, are often powered by batteries. Due to its limited capacity of energy,
the problem of reducing energy consumption has become a main concern in
embedded system design. In addition, tasks running on such a system often
impose real-time constraints that require a response to be returned before a
deadline. A task that fails to complete its execution before its deadline
results in the failure of the task and the whole system. Examples of power-
aware real-time embedded systems include, but are not limited to, cell
phones, digital cameras, and sensor devices. A voice package must be sent
within a time period to provide good-quality communication and avoid
jittered delay. The operation of a sensor network requires that the sensed
data be returned before a deadline to complete a multi-sensor decision. Data
that arrives after the decision is made presents no value at all in many
scenarios. Without energy-hungry components such as disks and CD-ROMs,
the processor constitutes a major source of energy consumption on an
embedded device. For this reason, the problem of low-power real-time task
scheduling that arranges task execution for minimum energy consumption
has received a lot of attentions recently.

Dynamic Voltage Scaling (DVS) is a commonly-used technique for
reducing processor energy consumption. However, reducing the supply
voltage of a processor leads to a linear extension of the execution time of a
task. Therefore, the issue of minimizing total energy consumption without
violating any real-time constraint becomes the main challenge in the design
of a low-power real-time system. A real-time DVS algorithm makes use of
slack time to speed down the processor and reduce its energy consumption.
Slack time is an amount of time a job can be delayed without causing any
job to miss its deadline. A number of real-time DVS algorithms have been
developed over the past few years to calculate available slack time and speed
down the processor. Section 2 investigates several typical real-time DVS
algorithms and its latest development.

I/O subsystems have recently become a major source of energy
consumption in embedded systems (Simunic et al., 2001; Choi et al., 2002;
HP Lab and Alto, 2003). Dynamic Power Management (DPM) is gaining
importance due to constraints on power budgets of these systems. DPM puts
idle devices into a low-power and low-performance state to save energy.
However, because it takes extra time and energy to change power states of a
device, whether a DPM policy switches on or off a device requires careful
analysis and calculation on each device’s idle interval. Many algorithms had
been proposed for the prediction of a device’s idle interval. The

Embedded Software 121

experimental results show that, when idle intervals of devices are accurately
predicted, DPM can significantly reduce the energy consumption of devices.
Because real-time operating systems (RTOS) are used in many modern
embedded systems, the problem of applying DPM without violating real-
time constraints also needs to be addressed. Finally, there exists a demand
for a hybrid power management that integrates both DVS and DPM to
reduce system-wide energy consumption. Section 3 gives an overview and
classification of latest DPM technology.

Device drivers play an important role in the embedded software design
because an embedded system is generally equipped with various peripheral
devices, and handles external events through input/output (I/O) channels. Device
drivers can significantly impact performance and real-time properties of an
embedded system. The path of an interrupt service in a system with OS behaves
extremely different from the one in a system without OS. How to improve the
efficiency and interrupt latency of a device driver under different system
configurations becomes an important issue (Jerraya et al., 2003; Labrosse, 2002;
Li and Yao, 2003). On the other hand, hardware/software co-design becomes
more and more important in device driver development. An efficiency co-design
methodology can considerably reduce the development and debugging time of
device drivers, but there are still a number of challenges needed for further
research. Section 4 presents the characteristics, operations and design issues of a
device driver for an embedded system. The section first summarizes
characteristics of device drivers and the differences between a device driver for
a general-purpose system and one for an embedded system. It is then followed
by the discussion of a list of important issues in hardware/software (HW/SW)
co-design flow, such as portability, testability and so on.

Software development tools have long been used extensively for
construction, debugging, and testing of software code. A well designed and
easy-to-use toolchain can help developers to cut down the software
implementation time significantly and therefore reduce the total design cost.
While the structures and functionalities of toolchains for embedded systems
are essentially no different from those for general-computing systems, due to
the limited resources of embedded systems, different sets of challenges are
presented when designing embedded tools. Among all the software toolchain
components, the compiler is probably considered the most important.
Besides relieving the software developers of the burden of assembly code
writing, the compiler is especially pivotal in making sure the software code
meets the system requirements. Unlike general-purpose compilers where
run-time performance is often the foremost concern when generating and
optimizing code, because of hardware resource constraints and time-to-
market pressure, other factors such as power consumption, code size, and
retargetability are as important as performance when generating embedded

122 Huang et al.

code. Section 5 begins with an overview of embedded software development
tools and their basic structures, followed by discussions of several important
research issues for embedded compilers.

2. LOW-POWER TASK SCHEDULING

The technique of dynamic voltage scaling (DVS) is considered the most
efficient and important approach for reducing the energy consumption of
processors. In this section, we first briefly explain DVS and its real-time
extension. We next describe a set of mechanisms to utilize unused CPU
bandwidth to speed down the processor. We finally present and classify a list
of real-time DVS algorithms.

2.1 Real-Time Dynamic Voltage Scaling

The power consumption of a processor is dominated by its dynamic power
dissipation, denoted by P. That is,

 SVaCP df
2=

where a is the average activity factor, Cf is the effective switched capacitance,
Vd is the supply voltage, and S is the processor speed. Furthermore, the
processor speed S is nearly linearly related to the supply voltage Vd as

 d

td

V
VVkS

α)(−
=

where k is a constant specific to a given technology, Vt is the threshold
voltage, and α is the velocity saturation index, 1 < α < 2. DVS makes use of
these characteristics to reduce P, the power consumption of a processor,
cubically by lowering Vd, its supply voltage, for most processors.

However, reducing the supply voltage of a processor leads to a linear
extension of the execution time of a task. Because the total energy
consumption of a task equals to the multiplication of the power consumption
and the execution time of the task, we only reduce the energy consumption
of a task quadratically when scaling down the supply voltage. On the other
hand, a real-time system requires completing each task before its deadline.
Therefore, the issue of minimizing total energy consumption without
violating any real-time constraint becomes the main challenge in the design
of a low-power real-time system.

Embedded Software 123

2.2 Slack Time Usage

Slack time is an amount of time a job can be delayed without causing any job
to miss its deadline. Slack time is available when the sum of task utilizations is
less than 100% or a task completes earlier than its worst-case execution time
(WCET). The former available time is called static slack time as it can be
calculated off-line. The latter is called dynamic slack time which cannot be
determined until run-time. A real-time DVS algorithm makes use of slack
time to speed down the processor and reduce its energy consumption.

We divide the discussion of slack time usage for reducing processor
speed into two parts: static slack usage and dynamic slack usage. The
common methods used to utilize static slack are minimum constant speed,
priority-monotonic, essential interval, and EDF transformation. The common
methods used to utilize dynamic slack are NTA stretching, priority-based
slack stealing, work-demand analysis, and utilization update.

2.2.1 Static slack time usage

Minimum constant speed

The most popular way of utilizing static slack time is to calculate the total
workload and, based on this workload, determine a minimum processor speed.
Every task is executed constantly at this speed to ensure that no task misses its
deadline. The calculation of this minimum constant speed varies on different
algorithms. We will describe the details and differences later when needed.

Priority-monotonic

This method applies to a system consisting of periodic tasks. It assigns
processor speeds to tasks in monotonic priority order. A task with a higher
priority is assigned with a same or faster processor speed than a task with a
lower priority. That is, the processor speed for a task τi is not slower than the
speed for τj, if the priority of τi is the same or higher than τj. To determine the
processor speed for τi, we first identify its critical period (i.e., the one that
starts at a critical instant). We next calculate the utilization at each interval
ending with slack time in this critical period. Let w denote the workload of
an interval. That is, w is set to the sum of the execution time of higher-
priority jobs than τi in this interval. The utilization of this interval is defined
to be the value of w divided by the length of the interval. We define the
critical interval of τi as the interval of the maximum utilization. The
processor speed for τi, denoted by Si, is set to the utilization of its critical

124 Huang et al.

interval. If this speed is slower than τi+1’s speed, we simply set it to τi+1’s
speed, in order to comply with the monotonic order.

Figure 1 gives an example to illustrate the priority-monotonic approach.
There are 3 periodic tasks, τ1, τ2, and τ3, that are released at t = 0. The critical
period of τ1 is [0, 5] and its critical interval is also [0, 5]. The workload w of
this interval is 3. Thus, S1 is set to 0.6. The critical period of τ2 is [0, 7]. The
critical interval is [0, 5] and its utilization is 0.8. Accordingly, S2 is set to 0.8.
The critical period of τ3 is [0, 21]. The intervals ending with slack time are [0,
10], [0, 14], and [0, 20] and their utilizations are 0.9, 0.86, and 0.8,
respectively. Therefore, the critical interval is [0, 20] and S3 is set to 0.8. To
comply with the monotonic order, we set S1 = S2 = S3 = 0.8.

Figure 1. The usage of static slack time in the priority-monotonic approach

Essential interval

The essential-interval approach treats each job as an independent job. Each
job Ji is denoted by (ri, ei, di), where ri is its release time, ei is its WCET at
the maximum processor speed, and di is its absolute deadline. The essential
interval of Ji is defined to be [rs, di], where rs is the release time of a job Js. Js
is selected such that s ≤ i, rs ≤ ri < ds, and [rs, di] has the maximum
utilization among all possible s. We then set the processor speed of this
essential interval to be its utilization in order to fully utilize available static
slack time. Figure 2 shows a 4-job example where J1 has the highest priority
and J4 has the lowest priority. The essential interval of J4 is [rs, 20], where s
can be 2 or 3. The utilization of the interval [r2, 20] is 0.7 and the utilization
of the interval [r3, 20] is 0.47. As a result, the essential interval of J4 is
[10, 20] and its processor speed is set to 0.7.

Embedded Software 125

Figure 2. The essential interval of J4

EDF transformation

This technique utilizes available slack time by first transforming a fixed-
priority set of jobs into a conforming set of EDF jobs and scheduling them
by a known optimal DVS-capable EDF scheduling algorithm. If the fixed-
priority assignment of jobs is the same as an EDF schedule, we simply
schedule them with the optimal EDF algorithm. Figure 3(a) shows a case of
such a set of jobs, J1, J2, and J3, that have the same priority order in both
fixed-priority assignments and EDF scheduling. If a set of jobs have a
different priority order than EDF scheduling but there is no interference
between these jobs, we still schedule them with the optimal EDF algorithm.
Figure 3(b) shows a case of such jobs where J1 has a fixed higher priority
than J3 but J3 has a deadline earlier than the release time of J1. For other sets
of jobs, their deadlines are modified to create an EDF schedule without
violating original priority assignments. One kind of transformation is shown
in Figure 3(c) to set the deadlines of J2 and J3 at the same time as the release
time of J1 in Figure 3(d). The transformed set of jobs are scheduled by the
optimal DVS-capable EDF algorithm to make use of available static slack
time.

2.2.2 Dynamic slack time usage

NTA stretching

The approach of NTA stretching utilizes available static and dynamic slack
time to execute tasks at a constant reduced speed between the current

126 Huang et al.

Figure 3. The approach of EDF transformation

instant and the earliest deadline. Let tc denote the current instant and td
denote the next task arrival. Let w denote the worst-case workload in [tc, td].
The available slack time at tc is equal to (td − tc − w). This approach executes
jobs in the interval of [tc, td] at the speed of w/(td − tc) to fully utilize
available slack time. For example, in Figure 4, τ1 and τ2 are released at t = 0,
and the next task arrival is at t = 10. We set the speed at t = 0 to (3 + 5)/
(10 − 0) = 0.8 to utilize static slack time. When τ1 completes earlier at t = 2,
we recalculate the available slack time to take dynamic slack into account
and set the speed to 5/(10 − 2) = 0.625.

Priority-based slack stealing

The priority-based stack-stealing approach calculates available slack time at the
completion of each job. If a job completes earlier than its WCET, the available
dynamic slack time will be assigned to a released job and this job will be
executed at a reduced processor speed. When the assignment of slack time
follows a priority-based manner, we call such a method a priority-based stack-
stealing algorithm.

Figure 5 shows an example of 3 tasks all released at t = 0. Their executing
speed is set to 1 initially. When τ1 completes earlier at t = 0.5, as shown in
Figure 5(a), the 0.5 dynamic slack is assigned to τ2, a released job

Embedded Software 127

Figure 4. The approach of NTA stretching

Figure 5. The priority-based slack-stealing approach

128 Huang et al.

with the next lower priority. τ2 makes use of this dynamic slack to reduce its
processor speed to 2/2.5 = 0.8. When τ2 completes earlier at t = 2, as shown
in Figure 5(b), the 1 dynamic slack is assigned to τ3. τ3 reduces its processor
speed to 1/2 = 0.5. When τ1 preempts τ3 at t = 3, as shown in Figure 5(c), it
executes at its initial full speed.

Work-demand analysis

The work-demand analysis online calculates available slack time at the
beginning of each job. The slack time includes both static and dynamic slack
time to the deadline of this job. This job makes use of all available slack
time to execute at a reduced processor speed. Figure 6 shows an example of
3 tasks all released at t = 0. Each task executes at the full-speed initially.
When τ1 begins at t = 0, it has 5 − (1 + 1 + 1) = 2 static slack before its
deadline at t = 5. τ1 makes use of this slack to reduce its processor speed to
0.33, as shown in Figure 6(b). When τ1 completes earlier at t = 2, τ2
calculates that it has 1 dynamic slack before its deadline at t = 6.
Accordingly, τ2 reduces its processor speed to 0.5, as shown in Figure 6(c).

Figure 6. The work-demand analysis

Embedded Software 129

Utilization update

The actual processor utilization during run-time is often lower than the
worst-case processor utilization. The technique of utilization update
estimates the required processor performance at the current scheduling
instant by recalculating the expected worst-case processor utilization using
the actual execution times of completed jobs. The executing processor speed
is adjusted according to the updated processor utilization.

2.3 Real-Time DVS Scheduling algorithms

Among all related work, Yao et al. (1995) first presented an off-line optimal
algorithm of O(N2) to schedule real-time tasks using DVS in a dynamic-
priority system, where N denotes the number of tasks. The following
introduction of DVS algorithms is divided into two parts: dynamic-priority
DVS algorithms and static-priority DVS algorithms. Referred dynamic-
priority algorithms include Shin et al. (2000), Pillai and Shin (2001), Kim et
al. (2002), Aydin et al. (2004), and Lee and Shin (2004). Referred static-
priority algorithms include Shin and Choi (1999), Shin et al. (2000), Krishna
and Lee (2003), Pillai and Shin (2001), Quan and Hu (2001), Quan and Hu
(2002), Kim et al. (2003), Yun and Kim (2003), Saewong et al. (2003), and
Mochocki et al. (2005).

2.3.1 Dynamic-priority DVS algorithms

lppsEDF (Shin et al., 2000)

This algorithm, called lppsEDF, assumes a workload of periodic tasks and
earliest-deadline-first (EDF) (Liu and Layland, 1973) real-time scheduling.
This algorithm offline uses the method of minimum constant speed to
determine a minimum processor speed equal to its total utilization and
initially execute each task at this speed. When tasks run at their WCET, no
processor idle time exists. This algorithm applies the technique of NTA
stretching to utilize available dynamic slack. One restriction of lppsEDF is
that dynamic slack calculation only takes place when there is only one job in
the ready queue.

 ccEDF (Pillai and Shin, 2001)

This paper proposed an efficient algorithm for calculating a minimum
processor speed at completion of each job. The calculation is based on the

130 Huang et al.

method of utilization update. Because such calculation is only carried out at
completion of a job, it may not fully utilize processor utilization.
Furthermore, this approach does not adapt well to a dynamic workload
where tasks carry a wide range of execution times.

To improve the performance of ccEDF, this paper proposed another
aggressive algorithm, called LA-EDF. This algorithm first calculates the
workload that must be done before the next deadline. It then sets the lowest
possible speed to complete this minimum workload and defer as much
workload as possible. The deferred workload is scheduled to be executed at a
higher processor speed to avoid missing deadline. However, when a task
completes earlier than its WCET, such a raise of speed may not be necessary.
As a result, it adapts well to a dynamic workload and exhibits a better
utilization of slack time.

A real-time DVS algorithm achieves better energy saving in a processor
assuming a continuous range of speeds than one assuming a discrete range of
speeds. However, in reality, a processor supports only a limited set of speeds.
This paper (Rao et al., 2004) presented a method called Pseudo-Level
Generating Algorithm (PLG) to be used in conjunction with any real-time
DVS algorithm. This method partitions the execution of task into several
slots and determines a processor speed for each slot. The result is stored in
an array to be used in a table-lookup way during run-time. The method of
PLG is integrated into LA-EDF to improve its energy saving by 25%.

lpSHE (Kim et al., 2002)

The approach of lpSHE also assumes a periodic workload and EDF
scheduling. When a high-priority task completes earlier than its WCET, its
available slack is allocated to low-priority tasks. The calculation of slack
time is online and involves the techniques of minimum constant speed, NTA
stretching, and priority-based slack stealing. The time complexity of this
algorithm is O(N) and its space requirement is marginal. The experimental
results show that this algorithm reduces energy consumption by 20~40%
over the lppsEDF algorithm.

AGR (Aydin et al., 2004)

This paper first proved that solving a real-time DVS problem is equivalent to
solving a reward-based scheduling problem with concave reward functions.
By transforming real-time DVS scheduling to reward-based scheduling, it
proposed an optimal static solution for a real-time DVS scheduling problem
where each task executes at their WCET. In addition, an online speed
reduction algorithm called AGR is presented. Similar to LA-EDF, AGR

Embedded Software 131

chooses a lower processor speed first and later switches to a higher speed to
complete deferred work. The amount of deferred work is customizable. The
reduction in energy consumption is not directly related to the amount of
deferred work. It requires careful analysis on distributions of actual execution
times to determine deferred work for minimum energy consumption.

OLDVS (Lee and Shin, 2004)

OLDVS is an on-line real-time DVS algorithm that assumes no periodic
workload or any priori information such as periods and arrival times of tasks.
This algorithm first uses the method of minimum constant speed to
determine an initial processor speed. At each completion of a task or
preemption from a higher-priority task, it allocates available dynamic slack
to the highest-priority task in the ready queue. The calculation of dynamic
slack is based on the method of utilization update. Such calculation and
allocation of dynamic slack is carried out in O(1). The experimental results
show that its performance is considerably better than previous real-time
dynamic-priority DVS algorithms.

2.3.2 Fixed-priority DVS algorithms

lppsRM (Shin, et al., 2000)

This algorithm assumes a periodic workload that is initially scheduled by
Rate-Monotonic scheduling (Liu and Layland, 1973). This algorithm consists
of an off-line and an on-line component. The off-line component calculates
available static slack and uses the method of minimum constant speed to set an
initial processor speed. The on-line component uses the technique of priority-
based stack stealing to determine available slack and reduce the processor
speed accordingly.

Figure 7 shows an example of three tasks initially scheduled by RM. It
first calculates a speed scaling factor, denoted by ηi, for each task τi. This
process is illustrated below

η1 = min(C1/P1) = 0.5 ,

η2 = min{(C1+C2)/P1, (2C1+C2)/P2 } = 0.7 ,

η3 = min{(C1+C2+C3)/P1 , (2C1+C2+C3)/P2 , (3C1+2C2+C3)/P3) = 0.67 ,

η = max(η1, η2, η3) = 0.7 .

132 Huang et al.

Figure 7. A task set

where Ci and Pi denotes the WCET and period of τi, respectively. Figure 8
shows the schedule and processor speeds of each task after obtaining all
speed scaling factors. The process of on-line slack stealing only takes place
when there is only one job in the ready queue.

ccRM (Pillai and Shin, 2001)

This algorithm is also based on a periodic workload executed by RM. It also
consists of an off-line and an on-line component. The off-line component
uses the method of minimum constant speed. The on-line component uses
the method of NTA stretching. Because this algorithm speeds down the
processor whenever there is slack time, without restriction on the number of
ready jobs as demanded by lppsRM, it consumes less energy than lppsRM.

We use the same workload shown in Figure 7 to illustrate the process of
ccRM. We first calculate a constant speed, denoted Si, for each task τi. The
initial speed, denoted by S, is next set to the maximum of all calculated speeds.

Figure 8. lppsRM

Embedded Software 133

8.0),,max(

,67.0

,8.0
**

,5.0
*

321

3

3
3

3
2

2

3
1

1

3

3

2

2
2

2
1

1

2

2

1

1
1

1

1

==

=
⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡

=

=
⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡

=

=
⎥⎥
⎤

⎢⎢
⎡

=

SSSS
P

CP
PCP

PCP
P

S

P

CP
PCP

P

S

P

CP
P

S

We use f(t) to denote the processor speed at time t and D to denote the
first deadline after the current scheduling instant. This algorithm divides the
total workload in the interval [t, D] by (D – t) to obtain f(t).

.5.0)20(,30 ,20

,7.0)10(,20 ,10

,8.0)0(,10 ,0

1

1

1

21

1

321

===⇒=

=
+

==⇒=

=
++

==⇒=

P
CSDt

P
CCSDt

P
CCCSDt

 (Krishna and Lee, 2003)

This paper proposed an on-line real-time DVS algorithm for a cyclic system
where each task has the same period and deadline. Each task is assigned a
fixed priority and is executed either at the lowest possible speed or at the
highest possible speed. At completion of each job, it first calculates available
slack time. It next speeds down the processor to the lowest possible speed to
execute the next job for a longest period of time at the condition of keeping
its deadline. They conducted a comprehensive experiment to the
performance of the proposed algorithm. The experimental results show that,
for a workload of a wide range of execution times, a processor with an
infinite number of speed levels actually consumes more energy than a
processor with only two speed levels. A similar result was also presented in
Ishihara et al. (1988). They concluded that two levels of speeds are sufficient
for most power-aware embedded systems.

134 Huang et al.

lpWDA (Kim, et al., 2003)

Similar to previous work, this algorithm still focuses its discussion on a
periodic workload executed by RM. It first proposes the technique of work-
demand analysis for slack time estimation. When a job is ready to execute, this
technique carefully examines every other job before its deadline to determine
available slack. Such analysis obtains more slack time than previous work that
includes less information in their estimation. Consequently, it delivers better
energy saving by the utilization of more slack time. Its run-time complexity is
at O(n) and can be reduced to O(1) in some cases.

Figure 9 uses the task set shown in Figure 7 to illustrate the operation
of this algorithm. Let τi denote the job to be executed at the current
instant t, di denote its deadline, and wi denote its remaining workload. Let
Hi(t) and Li(t) denote the workload of higher-priority and lower-priority
jobs in [t, di], respectively. Again, we use f(t) to denote the processor
speed at time t. The calculation of processor speeds by lpWDA is shown
below.

,71.0
)20()20(

)20(,20

,5.0
)10()10(

)10(,10

,0.1
)8()8(

)8(,8

,625.0
)0()0(

)0(,0

111

1

111

1

222

2

111

1

=
−−−

=⇒=

=
−−−

=⇒=

=
−−−

=⇒=

=
−−−

=⇒=

LHtd
wSt

LHtd
wSt

LHtd
wSt

LHtd
wSt

Figure 9. lpWDA

Embedded Software 135

PMclock (Saewong et al., 2003)

This algorithm adopts a periodic workload executed by RM. It uses the
technique of priority monotonic to make use of slack time. This algorithm
intends to use a faster processor speed for a higher-priority task. For each
task τi, it first statically determines the amount of static slack claimed from
any higher-priority task in a critical interval. The slack time is used to speed
down the processor for τi. However, if such a calculation results in a faster
speed for a lower-priority task than a higher-priority task, the former will be
executed at the same speed as the latter to comply with its priority-
monotonic requirement. The available dynamic slack is simply allocated to
the next lower-priority job to be executed. For the example shown in
Figure 7, this algorithm sets S1 = S2 = 0.7 and S3 = 0.67. Since there is
dynamic slack between [28, 30], τ3 makes use of it to speed down S3 to 0.3.

VSLP (Quan and Hu, 2001)

This algorithm is based on a non-periodic workload where each task has a
fixed priority. It utilizes the technique of essential interval to speed down a
processor for energy saving. A 2-step iterative process is deployed to
determine a processor speed for each interval. First, an essential interval for
each job is located. Among all intervals, the one with the largest utilization is
scheduled to be executed at a speed equal to its utilization. Let this interval
belong to a job Ji. Secondly, Ji and every higher-priority job released in this
interval are removed from the workload. For each of the rest jobs overlapped
with this interval, either its deadline is shifted to the beginning of the interval
or its release time is deferred to the end of this interval. Finally, this interval
is removed from the schedule and the iterative process continues to locate
the next essential interval.

OPT_FP (Quan and Hu, 2002)

This algorithm adopts a non-periodic workload where each task has a fixed
priority. It uses the technique of EDF transformation to utilize slack time for
speed reduction. This algorithm first presents a heuristic approach to
transform a set of fixed-priority jobs into an equivalent set of EDF-based
jobs by adjusting their deadlines. However, the same execution order is
maintained in the new set. The new set of jobs is next executed by an
optimal low-power EDF scheduling algorithm. This paper proved that an
optimal low-power EDF schedule of the EDF-transformed set is the same as
an optimal DVS schedule of the original set. Finally, the time complexity of
EDF transformation is O(N!).

136 Huang et al.

FP_TAS (Yun and Kim, 2003)

This algorithm adopts a non-periodic fixed-priority workload. The
contributions of this paper are two folds. First, it proves that the problem of
optimal real-time DVS for a fixed-priority workload is NP-hard. Secondly, it
uses dynamic-programming formulation to reduce the time complexity of EDF
transformation to O(N3), compared to O(N!) required by the OPT_FP
algorithm.

3. LOW-POWER DEVICE SCHEDULING

Dynamic Power Management (DPM) has been widely used in both
commercial embedded systems and research work to reduce the power
consumption of the I/O subsystem. In this section, we first describe several
classical DPM policies. We next present DPM policies for real-time systems.
The discussion continues to include energy-ware device scheduling and
hybrid power management. Finally, we describe a couple of industry-design
standards.

3.1 Classical DPM Policies

The basic idea of DPM is to switch idle devices to a low power state if the
energy saving of this decision can compensate state transition overhead. The
minimum length of an idle interval to save power is called the break-even
time, denoted by Tbe (Lu and Micheli, 2001). It is a characteristic of a device
and independent of its workload. The accuracy of prediction on idle length
becomes an important factor since a device can be put to a low power state if
its idle period is longer than Tbe. Figure 10 shows an example where a task

iτ issues an I/O request on a device kx in [t0, t1] and [t2, t3]. We assume that
the idle interval [t1, t2] is longer than kx’s break-even time. kx is put in to

Figure 10. The concept of dynamic power management

Embedded Software 137

sleep mode for energy saving during [t1, t2]. Let zx and wx denote the
shutdown and wakeup latency of kx. The example shows that, in order to
save energy and avoid delay of execution by an unready device, the accuracy
of idle-time prediction is important for a DPM policy.

Existing DPM policies are classified into three categories: timeout-based,
predictive, and stochastic. A timeout-based policy is widely used in
embedded systems due to its simplicity. It puts a device in a low-power state
when its idle interval is longer than a predefined threshold. The main
drawbacks are that the device wastes energy during the idle interval and the
device may not remain in idle for at least Tbe. Karlin et al. (1994) proposed to
use Tbe as a timeout interval and showed that this choice leads to an energy
consumption at worst twice the energy consumed by an ideal policy.

Predictive policies are investigated to improve the performance of timeout-
based policies. If an idle period of a device is predicted to be longer than its
break-even time, the device switches to a low-power state right after it
becomes idle. Such a policy uses past information to predict the length of the
next idle period. The L-shape policy (Srivastava and Chandrakasan, 1996), the
adaptive learning tree (Chung et al., 1999) and the exponential-average policy
(Hwang and Wu, 1997) are three classical predictive algorithms. S. Irani et al.
(2003) presented a deterministic online DPM policy on multi-state devices and
proved that its performance is 2-competitive to an optimal algorithm. Its
experimental results show that this algorithm delivers the best performance, in
comparison to other known predictive DPM algorithms.

Timeout-based and predictive policies are often formulated heuristically.
Stochastic policies (Benini et al., 1999) model the arrival times of requests
and device power-state changes as a stochastic process, such as a Markov
process. This work solves the problem of finding optimal tradeoff between
performance and power as a stochastic optimization problem. Finally, two
excellent surveys and performance comparison for these DPM policies can
be found in Lu and Micheli (2001) and Benini et al. (2000).

Lu and Micheli (2001) used the technique of filter driver to implement
and evaluate a number of DPM policies. A filter driver is inserted between
the operating system kernel and a low-level device driver. It intercepts
communications between these two software layers and issues switching
decisions on behalf of a DPM policy. They proposed six criteria to evaluate
a DPM policy: power, number of shutdowns, shutdown accuracy, interactive
performance, and memory requirements. The experimental results show that
no existing DPM policy achieves an A grade in all columns. Particularly, a
policy with the best power efficiency performance results in low interactive
performance and requires more memory. A designer can make use of such
information to select an appropriate DPM policy for their specific hardware
and software requirement.

138 Huang et al.

3.2 DPM Policies for Real-Time Systems

Many embedded systems are designed to meet real-time constraints, such as
automobile, avionics, medical applications, multimedia, defense applications,
and telecommunication. These systems are required to meet both functional
and timing requirements. Classical DPM policies cannot directly be applied
to these systems because of their non-deterministic nature. A real-time DPM
policy must carefully consider each power characteristic of a device, such as
its break-even time, wake-up latency, and power consumption at different
operational modes. Switching off devices at a wrong time can potentially
result in a task missing its deadline.

3.2.1 Hard real-time DPM polices

For hard real-time system, one straightforward approach of DPM is to
statically construct a huge switching-decision table for each device in a
hyper period according to each task's worst-case execution time (WCET)
and static I/O access-pattern. We use this table during runtime to switch on
or off a device at each scheduling instant. Swaminathan et al. (2003)
proposed a similar static approach, called LEDES, for a tick-driven
scheduling system that assumes each task has a fixed execution time.
LEDES considers each slice of a job as an independent workload with the
identical device-usage list. LEDES also assumes that each device’s power-
mode transition latency is less than or equal to the execution time of the
shortest job. By making this assumption, LEDES safely determines a
switching decision by looking ahead only one job without considering the
device's break-even time. LEDES may consume more energy when an idle
period of a device is less than its break-even time. In addition, it is
applicable only for a deterministic system equipped with a large amount of
memory. This paper also presented another algorithm called MUSCLES to
handle devices with more than two power states. MUSCLES estimates the
number of scheduling instants before a device is accessed and switches it on
at the latest scheduling instant without missing a deadline. Both approaches
rely on static information such as a constant processor speed and a fixed
execution time. Consequently, they cannot make use of dynamic run-time
information such as an adjustable processor speed, variable execution time,
and a configurable task set.

Liu and Chou (2004) found out that the break-even analysis is crucial for
energy saving only when a device has two power states. However, many
modern electronic devices support multiple power states and, thus, the
break-even analysis only achieves sub-optimal solution. This paper
presented a new approach to calculating an optimal switching sequence of

Embedded Software 139

each device for a given deterministic task set. The result is stored in a lookup
table to be retrieved during run-time for Θ(1) lookup performance.

3.2.2 Soft real-time DPM policies

For soft real-time systems, several commercial RTOS vendors have already
supported DPM in their products. IBM and Montavista proposed an
architecture supporting aggressive DPM for embedded systems (Brock and
Rajamani, 2003). Developers can assign different weights to tasks, such that
RTOS executes a task at a power/performance level matching its assigned
weight. For example, a multimedia playback application requiring real-time
performance can demand a high-power high-performance weight while other
non-real-time tasks execute at a low-power state. This module is maintained
as an open-source project at http://dynamicpower.sourceforge.net/. It
provides Linux 2.6 kernel patches and setup scripts for a list of supported
platforms. The code and documentation found at this URL address may be
useful for gaining the latest information and future directions for DPM
support in Linux kernel.

QNX proposed an application-driven model that enables fine-grained
power consumption control of each I/O subsystem (Ethier, 2003). A user-
mode power manager issues power-state changes requested by applications.
When an application requests the power manager to switch off a device, this
request will be filtered by the power manager to make sure it will not block
another application accessing the same device. This mechanism allows a
designer to create a customized power management policy without
modification on the level of kernel code or device drivers.

3.3 Energy-Aware Device Scheduling

A DPM policy saves energy by putting idle devices to a low-power state. By
putting together tasks that access the same devices, we can create more
switch-off opportunities and achieve better energy saving. We present here
several approaches of reordering the execution sequence such that idle
periods are grouped instead of scattered.

3.3.1 Soft real-time device scheduling

Lu et al. (2000) proposed an on-line low-power device scheduling for
non-real-time systems. At each scheduling instant, it first selects a task
whose device usage list is the same as the previous task. If such a task
cannot be found, it next finds a task that creates a switch-off opportunity.
When both steps fail, it selects a task with the best potential of providing

140 Huang et al.

switch-off opportunity in the future. The experimental results show that
this approach saves up to 33% energy and reduces around 40% power-
state changes.

Weiseel et al. (2002) presented Coop-I/O, a power-management interface
specially designed for energy-aware applications. Through Coop-IO, an
application can declare open, read, and write operations as deferrable or
abortable. An operating system makes use of this information to delay and
cluster I/O requests in order to reduce the number of power-state changes and
keep a device in a low-power state for as much as possible. Coop-IO was
implemented into the IDE disk driver and Ext2 file system of Linux kernel.
Several practical scenarios are presented to utilize this new I/O interface. The
experimental results show that this mechanism can save energy by up to 50%.

The major difference between Weiseel’s (2002) and Lu’s (2000) method
is that Coop-I/O enables an application to pass the delay time of an I/O
request when it is issued; programmers require no global knowledge of all
I/O requests for their programs. On the other hand, Lu’s approach arranges
the execution order of tasks to create energy-efficient device-access pattern,
while Coop-I/O schedules device requests directly without involving the task
scheduler.

Cai and Lu (2005) presented a method to combine memory and disk
power management for achieving better energy saving. They identified a
tradeoff between memory and disk energy consumption. The disk can spin
down longer to save energy at the increase of memory size. However, such
an energy saving may not compensate the power consumption by the
additional memory. In this paper, they proposed an algorithm to predict the
number and inter-arrival time of disk I/O under different memory size. This
information becomes necessary for a power manager to determine the size of
memory and the timeout interval for shutting down a hard disk.

3.3.2 Real-time device scheduling

Device scheduling in a real-time system requires sophisticated analysis to
consume minimum energy without violating any timing constraint.
Figure 12 shows an example to illustrate the complexity of this problem.
There are two periodic tasks T1 and T2. T1 requests device 1 and T2 requests
device 2. T1’s priority is higher that T2. Figure 11 shows an inefficient way of
accessing both devices while Figure 12 clusters requests of a same device.
Obviously, Figure 12 exists more opportunities to switch off idle devices.

Finding a feasible low-power device schedule for a real-time task set that
consumes minimum energy had been proved NP-complete. The main idea of
proof is to reduce this problem to the problems of sequencing within

Embedded Software 141

Figure 11. The execution of two periodic tasks

Figure 12. Energy-efficient device scheduling

intervals (Swaminathan and Chakrabarty, 2005). Swaminathan and
Chakrabarty (2002) proposed an algorithm called EDS to find an optimal
solution for this NP-complete problem. They use a pruning technique to
generate a schedule tree and iteratively prune branches in which the optimal
solution does not exist. The schedule tree is pruned based on two factors –
time and energy. Temporal pruning is performed when a partial schedule of
jobs causes missed deadlines. Energy pruning is performed when a partial
schedule induces higher energy consumption. Eventually, the pruning
process leads to a leaf node with least energy. The energy-optimal device
schedule can be obtained by backward tracing the path from the leaf node to
the root node. However, the proposed method requires a lot of memory and
computation time for a large-scale system. It is only suitable for small
embedded systems.

Due to the high complexity of EDS, Tian and Arslan (2003) proposed a
Genetic-Based algorithm to generate a near-optimal device schedule for a set
of real-time tasks. When compared with other algorithms, the genetic
algorithm requires less memory and computation time and is more suitable
for a large-scale system.

142 Huang et al.

SURE (Slack Utilization for Reduces Energy) is an on-line real-time
algorithm for a dynamic-priority system (Krishnapura et al., 2004). If a
device is switched on, ready-queue jobs accessing this device are executed
first. Alternatively, if a device is in sleeping mode, jobs that access this
device will be delayed for as long as possible at the condition of meeting its
deadline. This method reduces the number of power-state changes and keeps
a device in the idle state for a longest period of time. The SURE algorithm
can be executed offline to generate a cyclic schedule for online execution. It
can also be executed online to adapt to a dynamic workload and achieve
better energy saving. The major side-effect of EDS, Genetic-Based, and
SURE is that jobs of the same task may execute one after the other. Such an
arrangement maximizes the activation jitter of a task. In certain real-time
control systems that demand smooth playback, this is not a desirable feature.

3.4 Hybrid Power Management Technique

The current leakage in standby mode is increasing with the advances of
CMOS technology and must also be taken into account. The technique of
dynamic voltage scaling (DVS), although reducing the processor energy
consumption, extends the execution time of a task and increases the energy
consumption of the I/O subsystem. There exists a trade-off between DVS
and DPM scheme. A combined approach is needed to address the issue of
reducing system-wide energy consumption.

3.4.1 Hybrid scheduling for real-time systems

Kim and Ha (2001) proposed the first approach that integrates the techniques
of DVS and DPM for real-time systems. It partitions the execution of a task
into a sequence of time slots and switches off idle devices on a slot-by-slot
basis. They identified that there is a significant trade-off between DPM and
DVS under different scheduling conditions. The main idea is to switch off a
device if the time to the beginning of the next period is greater than its
break-even time. For simplicity, the proposed method ignores device-
transition latency and leaves a device in sleeping mode until needed. It also
assumes that the power consumption in standby mode (i.e., a device is on but
not serving requests) is the same as that in active mode (i.e., a device is on
and serving requests).

Jejurikar and Gupta (2004) developed an off-line algorithm to consider
both processor energy leakage and standby energy consumption of devices
in determining a processor speed of each task. This algorithm first computes
the critical speed for each task. If it is infeasible to schedule this task set at
this speed, it next increases the processor speed to achieve feasibility. An

Embedded Software 143

iterative heuristic method is used to select a task and its processor speed.
However, this approach completely ignores the impact of DVS on device
power management.

Chu et al. (2005) present COLORS, a composite low-power real-time
scheduling algorithm that applies DVS on top of a novel real-time DPM
policy. COLORS is an on-line algorithm that adapts well to dynamic
workloads resulted from variable execution times. It utilizes slack time and
DVS to maximize opportunities for switching off idle devices. In addition,
the development of COLORS takes a practical approach to consider every
parameter of a device. A couple of matrices are identified to primarily
determine the performance of real-time DPM. When compared with a
theoretical optimized version which assumes knowledge of actual workloads,
COLORS still delivers comparable performance.

3.4.2 DVS during I/O

In order to explore the impact of DVS on device activities, Acquaviva
et al. (2001) described a software-controlled approach to adaptively minimize
energy consumption in real-time multimedia embedded systems. This approach
optimizes energy consumption by dynamically adjusting the processor speed to
the frame rate requirements of incoming multimedia streams. It uses offline
application profiling to obtain a performance-frequency mapping that is used to
calculate an optimal speed for energy saving. In contrast, Choi et. al (2004)
adopted a monitoring unit to perform workload decomposition. The profiling
report obtained by the monitoring unit reveals how and when the CPU is stalled
during the execution of each application. Based on this information, we can
determine a suitable processor speed for each task to reduce energy consumption
while minimizing the impact on its runtime performance.

3.5 Industry Design Standard

In 1997, ACPI (Advanced Configuration and Power Interface) was proposed
by a number of major industry players, including Hewlett-Packard, Intel,
Microsoft, Phoenix, and Toshiba, as an open industry specification (Hewlett-
Packard, et al., 1997). ACPI establishes industry-standard interfaces for power
management on laptops, desktops, and servers. This set of defined interfaces
enables new power management technology to evolve independently in
system libraries, operating systems, and hardware. Figure 13 lays out the
software and hardware components relevant to ACPI and their
architecture. This specification describes the interfaces between each
component. With the availability of ACPI, several commercial operating

144 Huang et al.

Figure 13. ACPI architecture

systems start to implement ACPI-compliant device power management.
Examples include, but are not limited to, Microsoft OnNow (Microsoft, 2001)
and ACPI4Linux (SourceForge, 2002) projects. However, due to its
complexity, it is hard to implement the whole set of ACPI interfaces on
small embedded systems. The latest information of ACPI can be found at
http://www.acpi.info/.

Anand et al. (2004) provided a new set of interfaces that allows
application-level information to be used in a DPM policy. Such interfaces are
not available in the ACPI standard. These interfaces allow an application to
not only query power information of I/O devices but also provide information
on application behaviors for better power management. For example, when a
disk is in standby mode, an adaptive application would rather fetch a small file
from a networked machine if such an operation incurs less energy. On the
other hand, for a large file, an application should retrieve from a local disk
since reading from a networked machine will demand more energy. The
availability of these interfaces enables an application to issue an appropriate
DPM decision after carefully examining its own execution behavior.

4. DEVICE DRIVER DEVELOPMENT

An embedded system is generally equipped with various peripheral devices,
and handles external events through input/output (I/O) channels. I/O jobs
constitute a large proportion of tasks processed by an embedded system.
Therefore, software drivers controlling I/O devices play a very important
role in the embedded software design, and also significantly impact the
efficiency, performance and real-time properties of an embedded system.

Embedded Software 145

This section presents the characteristics, operations and design issues of a
device driver for an embedded system.

4.1 Characteristics and Operations of Embedded Device
Drivers

Embedded software markedly differs from general-purpose software. It works
tightly with embedded hardware, and handles interactive and
real-time events. A device driver controlling a specific hardware device
cooperates with an embedded OS (EOS), enabling embedded applications
to process external events quickly and efficiently. The interrupt-
handling procedures of an EOS and the device drive designs significantly affect
the efficiency, the functional and real-time correctness of an embedded system.
Unlike a general-purpose OS focusing on flexibility, portability, configurability
and layered structures, an embedded device driver and its related EOS functions,
such as interrupt handlers and I/O subsystems, aim to improve the efficiency and
effectiveness of the execution, code size and real-time characteristics. Figure 14
shows an example of the I/O procedures of a general-purpose OS. During the
driver initiation phase, a device driver must first associate its interfaces, such as
dev_open(), dev_read(), dev_write() and dev_close(), to the
generic interfaces of a standard I/O subsystem of the OS, such as
open(),read(),write(),close(). The procedure maps the I/O

 Figure 14. I/O procedures of a general-purpose OS

146 Huang et al.

subsystem to the specific driver and device. Additionally, the device driver
must attach its interrupt service routine (ISR) to the interrupt handler, which
is defined by the OS. The ISR can then be invoked to process the external
event triggered by a particular device. Once an application requests I/O
operations such as write() or read () through the system call
interface, these requests are forwarded to the I/O subsystem. Depending on
the OS implementations, the I/O subsystem might have an internal I/O
scheduler to merge or shuffle I/O requests in order to improve the I/O
efficiency. After the application generates an I/O request, the application is
set to idle, and waits the I/O response if the I/O request can not be finished
immediately. The scheduler is then called to pick up another task in the
ready queue to run. If an interruption occurs, the CPU (Central Processing
Unit) is forced to stop its current execution, and jumps to the ISR to process
the event. This interruption event might change the states of tasks. For
instance, if a read request is finished and an interruption occurs, then the task
waiting for the read response is moved from the waiting queue to the ready
queue and can be scheduled again. Notably, the design aims of the
interruption-handling mechanism, device driver, and I/O subsystem of a
general-purpose OS focus mainly on the structured and the standardized
interfaces to facilitate the development and operations of the device drivers.
The improvements of efficiency and real-time characteristics of a device
driver for embedded software and embedded OSs are described next.

Typically, the embedded software of an embedded system can be
implemented by two approaches, non-OS-based and EOS-based. Non-OS-based
implementation implies that no OS is involved in embedded software. The
programmers must write a control program, device drivers and other supporting
routines to perform the embedded software functions. Non-OS-based
implementation is more efficient than EOS-based implementations in terms of
code size and execution speed, but requires programmers to handle every detail
of the embedded software. Non-OS-based implementation is generally applied
to simple embedded systems. Conversely, embedded software based on the
EOS-based implementation relies on the services offered by an EOS. Although
EOS-based embedded software requires extra execution memory space, needs
more flash memory to store the program image, and involves EOS overhead, it
significantly reduces the development time and the complexity of the embedded
software. The EOS-based approach is suitable for complex embedded systems,
where it speeds up the development process. Figures 15 and 16 show the
software architectures of non-OS-based and EOS-based embedded software,
respectively, and also illustrate the interrupt timing diagrams.

Figure 15 shows an example of I/O procedures for a non-OS-based
embedded software system. An embedded application, which is a control
program, accesses peripheral devices via device drivers. A device driver

Embedded Software 147

Figure 15. I/O procedures and interrupt timing diagram based on a non-OS implementation

implements an interrupt service routine (ISR) that handles the interrupts
from the device. The ISR can implement I/O schedulers inside to further
merge or re-schedule the I/O requests for a better performance. The
procedures to process an I/O request once an interrupt arises are:

1. The CPU must finish the instruction that is currently executed, and
stops executing the current embedded application.

2. The CPU pushes the CPU contexts, such as the current program
counter and the stack point, to the stack. The extra CPU contexts such
as registers might also be automatically saved, depending on the
embedded processor design. If the CPU does not push certain contexts
that might be used during ISR to a stack, the ISR itself must save these
CPU contexts. Furthermore, to prevent incoming interruptions
confusing CPU states, the hardware disables all interruptions when an
interruption occurs.

3. Before the ISR is executed, the CPU must lookup the ISR address stored
in an interruption vendor table. This table-lookup task is performed by
either hardware or software, depending on the CPU design. After the
CPU obtains the ISR entry address, the CPU starts to run the ISR. The
time between the interruption and the execution of the first instruction of
ISR is defined as interruption latency. For a real-time embedded system,
the interruption latency should be determined. The ISR might soon

148 Huang et al.

enable interruptions again to allow incoming interruptions, to prevent the
loss of interruptions. However, ISRs are generally non-reentry, so the
interruption currently being processed by the ISR is disabled.

4. The ISR is finished, and the CPU context is restored.
5. The embedded application is then resumed.

 The other implementation approach of the embedded software uses an
EOS. Figure 16 shows an example of I/O procedures for an EOS-based
embedded software. Entities denoted by blocks with dotted lines indicate
that the entities might not exist for all EOSs, depending on the EOS
implementations. An EOS might remove the wrapper layers and I/O
subsystem layers within the kernel to improve the efficiency of I/Os
processing. For instance, the drivers and programs in TinyOS are defined as
components. Three possible component types exist in TinyOS, i.e. hardware
abstraction, synthetic hardware and high-level software. Each component
exports its own commands and then components are tightly integrated
together. The I/O subsystem and wrapper functions are eliminated in TinyOS
(Hill et al., 2000). Unlike the non-OS approach, the embedded AP running
on top of EOS is an OS task. The task makes system calls, and the I/O
requests are then passed to the I/O subsystem or directly mapped to the
specific driver. A general-purpose OS might separate the interrupt service
routine into two parts, i.e. top half and bottom half. The top half is a non-
reentry, fast and small piece of code handling critical hardware actions. The
bottom half, or so-called the deferred work, which is executed after the top
half, supports program reentry, and can spend more time than the top half to
process the rest part of the request. Not all EOS separates ISRs into two
halves. The procedures handling the I/O request once an interrupt arises are:

1. As in the non-OS approach, a CPU finishes the instruction that is
currently being executed, and stop running the current task.

2. The CPU pushes the current program counter, stack points or other
related CPU contexts to a stack, and disables all incoming interruptions.
The CPU then looks up the entry address of the ISR stored in an
interruption vendor table.

3. Before executing the ISR, a kernel ISR entry function must be invoked
to notify the kernel that an ISR is in progress. The kernel can then track
the interruption nesting.

4. The CPU jumps to the entry address of the ISR, and the ISR starts to
execute. Some EOSs separate the ISR execution into two halves,
especially while the ISR needs more time to process an I/O request. To
avoid blocking interruptions for a long period, the bottom half ISR is set
to interruptable by all interruptions. No clear line exists between the top
and bottom halves. Generally, the top half ISR must perform very fast,
and can not be interrupted by the same interruption. Conversely, the

Embedded Software 149

bottom half generally spends more CPU time but it is interruptable by
the same external events.

5. To ensure that the interruption processing can be finished as soon as
possible, the bottom half is invoked immediately after the top half is
completed. Unlike a top-half ISR, the same interruption is enabled while
executing the bottom half.

6. For a preemptive EOS, an interruption can preempt the current executed
task. Therefore, after the ISR is finished, the scheduler is then called to
pick up the most appropriate task to execute.

7. If the interruption picks up the original execution task, the CPU returns to
it. Otherwise, a context switch to another task is required. For a non-
preemptive EOS, the CPU must return to the original task after the
interrupt is finished. The scheduler executes and picks up a new task to run
after the original task releases the CPU or the allocated time slice expires.
In this case, the embedded application suffers from a longer delay in
responding to the interruption event than that in a preemptive EOS.

8. The original task is then resumed if it is picked up by the scheduler.
Otherwise, another task is executed.

Figure 16. I/O procedures and interrupt timing diagram based on an EOS-based

implementation

150 Huang et al.

An embedded device driver and its related EOS kernel functions mainly
concern the accurate control and real-time properties of the interrupt-
handling procedures and the efficiency of the interrupt service routines.

4.2 Device Driver and Hardware/Software (HW/SW)
Co-Design

Peripheral devices of an embedded system are often customized, and the
hardware and software must be specifically designed. Conventional
approaches to develop software generally can not proceed until the hardware
is ready and fully tested. Such separated development methodologies lead to
a long development time. Hardware/software (HW/SW) co-design technique
can be applied to speed up the design and implementation process of
hardware and software of an embedded device (Jerraya et al., 2003; Wang
et al., 2003). Figure 17 shows an example of the embedded device design
according to the co-design technique. The design process can be partitioned
into three phases: the high-level design phase, the low-level design phase,
and the implementation, integration and testing phase. The system designers
first describe the embedded peripheral device from a high-level requirement
perspective. Languages such as UML and SpecC can be used for high-level
specification (Honda and Takada, 2003). The high-level design must
describe the functionalities, features, timing, interactions and interfaces
between the hardware and software of the device based on the requirements.

 Figure 17. HW/SW co-design flow of an embedded device and its driver

Embedded Software 151

No clear boundary exists between the hardware and software of an
embedded device. A function block may be implemented on hardware to
satisfy the requirements of the execution constraints, or may be
implemented on software to fully use the computation power of an
embedded processor, thereby reducing the hardware cost. The partition of
HW/SW, particularly for a complex embedded system, needs a
comprehensive and systematic analysis and investigation. After confirming
the functional partitions of HW/SW, the interfaces between HW/SW can
also be specified. The system level description based on UML or SpecC
provides a high-level description of the hardware, software and their
interfaces. The hardware and software design of the embedded device
beyond the high-level design can be separated. The hardware low-level
design according to the high-level description can be divided into the
interface logic design and the I/O and device hardware design. The
interface logic is a glue logic that maps the high-level interface
descriptions to the precise hardware logic of the devices. Meanwhile, the
device driver can be designed according to the high-level description of
software. First, the device driver interfaces must be specified based on both
HW/SW interfaces, and must also refer to the EOS interruption and
interruption-handling mechanisms. The interface to the hardware is
employed to control the hardware, and the interface to EOS is adopted to
realize the device drive and interrupt service routines. Some reconfigurable
embedded OSs, such as eCos, generailize the interfaces between hardware
and software (Massa, 2002). For instance, the hardware abstraction layer
(HAL) that lies between hardware and software in eCos provides an
abstraction view, aiding the software development and providing re-
configurability and flexibility. A uniform device driver (UDI) provides a
reference model for the standardized interfaces between an OS and a
device driver, and benefits the design and portability of the driver (Barned
and Richards, 2002). However, current EOSs do not implement UDI but
have their own mechanisms and interfaces to manage drivers and
interruptions.

The implementation can proceed after the low-level design process is
completed. Devices for general-purpose system could apply automatic code
generation based on high-level and low-level designs. However, to improve
performance and efficiency, manual implementation to optimize the codes is
encouraged for embedded devices. Hardware and software of the embedded
device testing is another critical task. The testing of embedded devices can
be split into several stages. First, each HW/SW functional block is tested.
Integrated hardware devices and software drivers are then verified separately.
Finally, the HW/SW are integrated and tested. Hardware testing is fairly
straightforward, and can be performed using various well-established

152 Huang et al.

hardware verification and validation methodologies. Conventional software
engineering methodologies on software verification and validation, such as
block box testing and white box testing, do not work well on embedded
device drivers. Device drivers that work on kernel level and are tightly
coupled with hardware are difficult to test offline. Testing over the target
takes a long time but provides accurate test results. Device drivers can be
tested by hardware simulation, but the simulations detail to timing behaviors
is not easy to develop. The verification and validation technologies of
embedded device driver, particularly hardware-software co-simulation, must
be further studied.

The co-design method can significantly cut the development and
debugging time of the embedded device, but has a number of challenges.
First, the system methodologies to determine the HW/SW partition need to
be established. Second, the verification and validation of embedded devices,
particularly for hardware-software co-simulation, is another important
research topic.

4.3 Improving the Efficiency and Interruption Latency
of a Device Driver

An embedded system that handles frequent I/O events must consider the
driver efficiency and interruption latency. The deterministic interruption
latency is particularly important for a real-time embedded system. The
interruption latency is fairly easy to determine in the non-OS approach
(Weinberg, 2004), since software architecture consisting only of an
embedded control program and interruption service routines is simple
compared with the EOS-based implementation. When an interruption occurs,
the CPU first completes the current instruction, pushes CPU contexts to a
stack and then jumps to the specific ISR. For instance, the worse case fast
interrupt (FIQ) latency in ARM6 is determined from: the time for the FIQ
to pass through the CPU, which takes 3 clocks; the time to wait the CPU
finishing the longest CPU instruction, which takes 20 clocks, and the time
for higher priority task and FIQ entry sequence, which takes 5 clocks. The
time spent on these procedures has worst cases, and the interruption latency
is determined. The internal interruption handler and scheduler design of the
EOS-based approach influence the interruption delay suffered by the control
program running in the application mode. The schedule hierarchy of an EOS
design must be understood to identify the interrupt schedule behaviors and
obtain the worse case interruption latency (Regehr et al., 2003). Figure 18
shows the schedule hierarchy of an embedded Linux kernel. The exception
has the highest priority, and the hardware interruptions have the 2nd priority.
Embedded Linux splits ISRs into top halves and bottom halves, so the top
half of the ISR, i.e. irq_action(), is performed first. The interruption

Embedded Software 153

CPUHigh priorities

Low priorities

Hardware IRQs

Exceptions

Interrupt handler routines
(irq_action())

Soft-IRQs
(do_softirq())

Kernel threads

User threads

Non-maskable

Could be masked

Could be interrupted by
other IRQs

Could be interrupted by
IRQs

Scheduled by CPU, could
be interrupted by IRQs

 Figure 18. Execution priorities in an embedded Linux kernel

handled by the ISR is masked during the top half of ISR. After the top half,
the bottom half, i.e. do_softirq(), is invoked immediately to reduce the
total ISR execution time. The interruption processed by the top half is
enabled during the bottom half. Versions 2.4 and above of Linux are
preemptive kernels. Hence, the scheduler is invoked to pick up the highest
priority task to run, after the ISR. Kernel threads gain higher priority than
user threads in Linux. If an external IRQ has the highest physical priority,
and the control program for that event is implemented at the ISR level, then
the interruption latency can be determined easily. Otherwise, the worse case
interruption time from the interruption occurring to when the specific
program is invoked must consider other interrupt sources and other
executing processes on the CPU. Factors determining the interruption
latency include: the use of preemptive or non-preemptive kernels; use of
single or split ISRs; interruption enable/disable period, physical parameters
such as the CPU context saving time, and the time of the longest CPU
instruction.

Interruptions might occur very frequently. For instance, a network packet
arrival to a network interface card can generates considerable workload for
an embedded system in handling external events. This phenomenon leads to
interruption overloading that might starve other important tasks running on

154 Huang et al.

the CPU. Several techniques can be applied to prevent interruption overload
(Regehr and Duongsaa, 2005). The first technique is to disable the
interruption for a period. System designers set either this period or its inverse,
the interruption frequency, and then can determine the maximum
interruption frequency that an embedded system would like to handle. The
second method is to activate the interruption frequency control mechanism
when the interruption overload is observed. Alternatively, hardware that
schedules or arbitrates the I/O interrupts can be implemented to ease the
interruption loading. As well as the embedded software improvement,
hardware can also be specifically designed to reduce the interruption latency.
ARM CPUs support fast interrupt (FIQ) architecture providing more banked
registers than normal mode or other operation modes (Furber, 2000). FIQ is
generally designed to support a direct memory access (DMA) transfer. The
ARM CPU offers sufficient private registers to remove the need to save
registers in applications that perform data transfer, thereby improving the
response time and minimizing context switching overhead.

4.4 Embedded Device Driver and Power Management

Embedded systems, such as handsets, networked sensors and battery
operated devices, are power sensitive. Previous studies indicate that the
energy consumed by peripheral devices contributes a significant portion of
the total power consumption of an embedded system. For instance, the LCD
(Liquid Crystal Display) and wireless interfaces of a wireless
communication PDA can consume 50% to 70% of the total energy in active
mode (Nakamoto, 2004). For networked sensors, the radio and other
peripheral devices consume more than 20mA, and a microprocessor
consumes only 4mA during active mode (Hill et al., 2000). The peripheral
devices consume more energy than the CPU, even in the inactive mode.
Therefore, the power management of the embedded device driver should
elaborate the low-power hardware designs and facilitate upper-layer
applications to control the power usage. A number of research projects are
working on a power-aware scheduler for embedded systems, concerning
mainly the CPU resource and considering the current work load to adjust
CPU speeds. One possible method is to utilize CPU dynamic voltage/clock
scaling and change the CPU clock or voltage according to the current work
load, thus saving power and achieving the performance requirement. Like
the CPU design, the peripheral devices provide various operation modes, and
each mode implies different numbers of active hardware components. For
instance, the IEEE 802.11 WLAN network interface card supports at least
two modes, the continuous access mode (CAM), which is always on and can

Embedded Software 155

achieve the best performance, and the power saving mode (PSM), which
only wakes up if packets are transmitting or need to receive. PSM offers
fewer throughputs than CAM. LCD also supports different operation modes,
which provide the LCD different level backlights and brightness. Based on
the hardware designs, the device driver can thus employ the hardware low-
power features to export flexible power management functions to upper-
layer EOS or embedded software (Vaddagir et al., 2004). Moreover, device
drivers or system modules can implement low-power schemes to reduce
energy consumption. The schemes in device drivers or system modules
further optimize the power consumption for particular applications or usage
models. For instance, the device can dynamically switch on and off, or set
itself to different modes, according to the usage pattern. Also, a device driver
or I/O subsystem might need to reschedule or merge I/O requests to
eliminate redundant requests to save energy. For instance, the previous study
optimized power consumption for TCP/IP over WLAN, web access over
WLAN and voice over WLAN. These designs can be implemented on
device drivers or system modules.

The power management interface of an EOS is also important. The APIs
(Application Programming Interfaces) generalize the power management
features that are provided by peripheral devices, and offer a single interface
to an EOS. Advanced Configuration and Power Interface (ACPI)
specification is well-known power management interface defined for
general-purpose PCs, but only provides static power management which
suspends/resumes the devices. IBM and MontaVista Software have jointly
developed a dynamic power management (DPM) architecture for embedded
systems, enabling the embedded software to optimize the power according to
its needs (IBM and MontaVista, 2002). Figure 19 shows a possible
implementation of dynamic power management on an embedded system.
The CPU and peripheral devices physically support low-power functions at
the lowest layer. The power-aware device drivers and a power-aware CPU
scheduler are implemented based on the hardware features. A particular CPU
mode and a peripheral device mode are combined to form a policy. This
policy design benefits upper-layer EOS and embedded applications to
manage the power-aware embedded system easily. The policy manager
implemented in the EOS kernel wraps the policies to upper-layer
applications. Therefore, embedded applications can employ DPM APIs to
optimize the power consumption according to their own needs. The DPM
strategies for an embedded application are the power management method
particularly for the embedded application. An embedded application
typically has pre-determined behaviors, so the power consumption can
usually be predicted and fully controlled in all situations. The power
management strategy can be realized by investigating all application running
states, each having its own CPU and peripheral modes, and calling the policy

156 Huang et al.

management to change the modes dynamically. The dotted line shown in

 Figure 19. Implementation of dynamic power management of embedded software

Figure 19 denotes the flow of the DPM operations. EOSs that do not
implement DPM and have their own power management APIs can be
directly invoked by the embedded application. The power management APIs
can be employed to minimize the power consumption of these embedded
systems.

5. EMBEDDED SOFTWARE TOOLCHAIN

With the benefits of shorter time-to-market and future modifiability and
extensibility, a lot of designs in the embedded systems have shifted to the
software side. Software development tools, such as compilers, linkers,
loaders, assemblers, debuggers, and simulators, have become an integral part
of the embedded system design.

This section begins with an overview of the embedded software
development toolchains, including compilers, linkers, loaders, debuggers,
and simulators. It is then followed by the discussion of some important
issues when compiling code for embedded systems.

Embedded Software 157

5.1 Overview of the Embedded Software Development
Toolchains

Development tools such as compilers, assemblers, debuggers, and simulators are
no strangers to software developers. Unlike tools for general-purpose computing
systems, the embedded software tools are often for cross development. In a cross
development environment, the system where software is developed (usually
called the host system) is different from the target system on which the
developed software will run. The target embedded processor is usually not
appropriate for software development due to lack of user-friendly OS, software
interfaces, and/or limited hardware resources.

The basic structure of a typical software development toolchain is shown in
Figure 20. Programs written in high-level languages (usually C) or assembly
languages are compiled or assembled into object files, which, along with some
libraries, are linked together to produce executable files. The generated executable
files can be executed through a simulator on the host machine. Or they can be
loaded to the actual target device and run there. During the course of the
development process, the executables can also run under a debugger (which can
run on the actual target device or through a simulator as well).

Compilers

Compilers have long been considered the most important tool in software
development on general-purpose computing systems. In the embedded system
domain, compilers were not as important in the past because it was often
necessary to write applications in assembly languages due to embedded
processors' special instruction sets, tight code size constraints, and performance
concerns. However, with the increasing complexity of applications and the
growing popularity of general programmable processors, more and more
embedded applications and algorithms are implemented in high-level languages
to avoid time-consuming and error-prone assembly programming. Compilers,
especially optimizing compilers, are therefore becoming a key component in
embedded software development.

Figure 21 depicts the basic structure of a typical optimizing compiler. A
compiler normally consists of two major pieces: a front-end and a back-end.
The front-end translates high-level languages to compiler internal
representations (IR), on which the subsequent components of the compiler will
operate. A compiler might have multiple front-end modules, one for each
high-level language that it supports. The back-end performs optimization and
generates target machine code (or assembly code). The optimizations
performed by the back-end can be further classified into two categories: (1)
high-level optimizations (HLO), which deal with machine-independent
optimizations such as loop transformations, dead code elimination,

158 Huang et al.

Figure 20. Basic structure of a typical software development toolchain

copy/constant propagation, among others, and (2) low-level optimizations
(LLO), which focus on machine-dependent optimizations such as instruction
scheduling, register allocation, and any other code transformation that relies
on the knowledge of the target machine architecture. Details for the compiler
structure and common code generation and optimization techniques can be
found in various compiler books (Aho et al., 1986; Cooper and Torczon, 2004;
Muchnick, 1997).

Linkers and loaders

Linkers and loaders perform highly-related but different works (Levine,
1999). Linkers combine object files (generated by compilers or assemblers)

High-level
Program

Assembly
Program

Compiler Assembler

Object
Files Librarie

Linker

Executable

Target system Simulator

Debugger

Embedded Software 159

Figure 21. Basic structure of a typical optimizing compiler

and library files into executables. When combining object files, a linker
resolves symbol references, verifies that all external references are satisfied,
and performs relocation, among other duties. In some of the memory-
constrained embedded systems where overlays are required, the linker’s job
is more complicated than the case where virtual memory is supported.

Linkage can happen statically or dynamically. For static linking, all
constituent components of an executable must be present at link time and
there cannot be unresolved external references. (Such an executable is
sometimes called an archive-bound executable.) On the other hand, dynamic
linking defers resolution of some external references until run time.

160 Huang et al.

Although dynamic linking is faster at link time and can support better code
sharing at run time, it is rarely used in the embedded software due to the
substantial performance cost and potential run time errors that may not show
up in testing.

In a software development toolchain, the linker is often the only
component that can see all pieces of a program (as most of the compilers
only work on a single source file at a time). Therefore the linker becomes a
idea place to perform whole-program analysis and optimization. While
performing optimization at link time has the advantages of seeing the whole
program and being able to handle code without source files, due to lack of
source code information, the link-time optimizer often cannot be as
aggressive as the compiler in certain optimizations that require the
knowledge of the source program structures. The optimizations that show
great promise at link time include dead code/data removal, branch
optimization, calling convention optimization, data layout optimization, and
so on (Srivastava and Wall, 1994; Haber et al., 2003; De Bus et al., 2004).

Loaders, usually part of the OS, bring a program from secondary storage
into main memory, sometimes with relocation, so that the program can run.
Unlike in the general-purpose computing systems where handling
dynamically linked libraries is considered one of the most important jobs for
loaders, in the embedded systems, loaders usually focus more on the areas
such as decompression of the code and data.

Debuggers

During the course of a software development project, generally more time is
spent in testing and debugging than in code writing. With good use of
debuggers, which allow the developers to examine and modify the state of a
running program, the software development time can be shortened
substantially.

In the embedded development environment, the debugger usually runs on
the host machine while the debugged software runs on the target system.
This is called cross debugging (as opposed to native debugging where the
debugger and the software are running on the same machine). Cross
debugging is considered more difficult than native debugging. In cross
debugging, besides the necessity of pre-negotiated communication protocols
between the target system and the debugger on the host system, the target
processor (and sometimes the system board) often needs to provide the
architectural supports for debugging as well.

Here is an example that shows the difficulty with cross debugging. When
setting a breakpoint in a native debugger, the normal practice is for the
debugger to replace the instruction where the breakpoint is set with a

Embedded Software 161

hardware break instruction (or a branch instruction that jumps to a
breakpoint handling routine). However, in an embedded system, if the code
is in read-only memory (ROM), instructions cannot be replaced at run time.
One way to solve this problem is to use a system debugging tool called In-
Circuit Emulator (ICE). Basically the emulator substitutes the processor in
the target system (sometimes with the target processor being removed from
the system board), replicates the processor’s operations, and provides the
ability to examine and change the contents of registers, memory and I/O.
Normal arrangement for an ICE is shown in Figure 22, where the ICE is
plugged into the target system (board) on one side and connected to the host
system on the other. When working with an emulator, the debugger does not
need to change the code for a user-set breakpoint. Instead, the emulator stops
the code when it sees the address (at which the breakpoint is set) is about to
be executed.

Figure 22. Normal in-circuit emulator connection

However, with the advent of SoC where the processor is not by itself an
independent chip, it is very difficult (if not impossible) to replace the
processor with an ICE. Several embedded processors, such as ARM (Furber,
2000), have therefore added architectural features that provide debug
supports comparable with what was offered by an ICE.

Simulators

Simulators are important tools for both software developers and architecture
designers alike. In the course of embedded system design, a simulator can
support software testing and verification even before the target silicon exists.
It can also provide an experiment platform for the architecture designers to
explore design alternatives.

The accuracy and granularity of information provided by simulators can
range from detailed timing analysis, cycle accurate simulation, to behavioral

Host system

In-Circuit
Emulator

Target system

162 Huang et al.

simulation. Normally (and intuitively), the more detailed information a
simulator provides, the slower it runs.

When writing simulators, in particular instruction-set simulators, one can
choose to use interpreted or compiled simulation (Fisher et al., 2005).
Traditional interpreted simulation (such as widely-used SimpleScalar
simulator (2004)) is flexible, straightforward, and easy to implement, but,
due to its interpretive nature, is very slow. In an interpreted simulation, the
simulator is basically an interpreter with a main loop that fetches, decodes
and executes (simulates) instructions from the simulated application program
one by one, as shown in Figure 23 (Reshadi et al., 2003).

Figure 23. Interpreted simulation work flow

Compiled simulator, on the other hand, runs a lot faster but lacks flexibility.
There have been several compiled simulation techniques proposed in the past
(Reshadi et al., 2003; Živojnović et al., 1995; Pees et al., 1997; Maurer and
Wang, 1991; Nohl et al., 2002). Conceptually, in a compiled simulation
(as shown in Figure 24), the simulated application program is first decoded
and translated into another program in high-level language (most likely C).
The translated program is then compiled into host native code by the compiler
on the host machine. Executing this host native program is a simulation of the
application program running on the target system.

5.2 Important Issues for Embedded Compilers

While the embedded compilers are in general no different from the general-
purpose compilers structurally, there are nonetheless several compilation issues
specific to the embedded compilers. These issues are understandably all in the
backend (especially machine dependent) modules. For general-purpose compilers,
run-time performance is probably the foremost concern when generating and
optimizing code. However, in the embedded world, speed is not the only concern
(sometimes not even the most important goal) for compilers. Due to the
hardware resource constraints and time-to-market pressure, other factors such as
power consumption, code size, and retargetability are as important (if not more) as

Simulated
Program

Fetch Decode Execute

Embedded Software 163

Figure 24. Compiled simulation work flow

performance when generating embedded code. While many classic
optimization techniques can equally benefit performance, power, and code
size (e.g. common subexpression elimination (Muchnick, 1997) would reduce
power and code size while speeding up the code), a lot of time these goals are
conflicting and the compiler designers (or even the compiler users) will need
to make tradeoff. In fact, in order to strike a better balance among these
conflicting considerations, integer linear programming is widely used in code
generation and optimization (especially in instruction selection/scheduling and
register allocation) for embedded compilers (Kessler and Bednarski, 2002;
Naik and Palsberg, 2002; Kong and Wilken, 1998).

In the rest of this subsection we will look at some compilation issues
specific to the embedded systems.

Code size reduction

In the embedded systems, software often has to run under constrained
memory resource. Smaller code footprints can also have a positive effect on

Application
program

Simulation
compiler

Translated
program in C

Host C
Compiler

Host native
program

164 Huang et al.

the (instruction) cache performance. Reducing the code size of application
programs has therefore become one of the important compilation goals. In
general, code size can be reduced either through optimization or code
compression.

1. Optimization

A lot of classic scalar optimization techniques focus on reducing code size.
Most of these techniques are trying to remove dead, unnecessary, or
redundant code from the program. Among some of the most well-known and
straightforward optimizations are dead/unreachable code removal, common
subexpression elimination, copy/constant propagation, and strength
reduction (Muchnick, 1997).

Besides removal of dead and redundant code, other advanced optimizations
were proposed to better utilize the architecture features in order to reduce the
number of instructions generated. For example, instruction selection in code
generation phase often plays an important role in final code size as there could
be several different code sequences to choose from when generating code for a
particular operation. Another architecture feature that can be exploited to cut
down code size is the auto-increment (or auto-decrement) addressing mode of
memory operations. In unoptimized code, each memory access instruction (i.e.
load/store) normally requires an arithmetic instruction to set up its address, as
shown in the example in Figure 25 (a). In this example, both load instructions
(I2 and I4) need arithmetic instructions (I1 and I3) to set up their addresses. If
the target architecture supports auto-increment/decrement addressing mode, the
compiler can arrange for the first load (I2) to modify its address register through
auto-increment so that the modified address register value corresponds to the
memory address used by the second instruction (I4), as shown in Figure 25 (b).
This way the arithmetic instruction that calculate the second load’s address is no
longer needed and can be removed.

Figure 25. Exploit auto-increment addressing mode to reduce code size

I1: add a = t + 4

I2: load x = *(a)

I3: add b = t + 8
I4: load y = *(b)

(a)

I1: add a = t + 4

I2: load x = *(a)+

I4: load y = *(a)

(b)

Embedded Software 165

Given a code sequence like the example in Figure 25 (a), it is relatively
easy to convert memory instructions to the ones with auto-
increment/decrement addressing mode. A more difficult problem is how to
allocate memory locations to variables so that we can maximize the
opportunities of performing auto-increment/decrement optimization. This
storage allocation problem is called offset assignment problem (Liao et al.,
1996). One popular solution is to model the variable access order as a graph
and the objective is to find the maximum weight path cover (Liao et al.,
1996). This approach has been enhanced later to reduce cost or improve
performance (Rao and Pande, 1999; Zhuang et al., 2003).

Note that in the cases where code size is the most important factor for
compiling the applications, optimization techniques, such as loop unrolling,
procedure inlining, tail duplication, etc., will need to be turned off as they
only benefit performance but hurt code size tremendously.

2. Code Compression

Reduction in code size can also be achieved by compressing the code. While
there are many popular file-level data compression techniques, they are not
suitable for code compression on embedded processors as the programs can
have branches/jumps which often require us to be able to decompress the code
at any point. Many code compression schemes proposed are dictionary based
(Lekatsas and Wolf, 1998; Lefurgy et al., 1997; Thuresson and Stenstrom,
2005). In a dictionary based compression scheme, a program is analyzed
statically and the instructions that appear more frequently are identified and
replaced with codewords that are much smaller than the original instructions.
At run-time, a codeword fetched is first used for referencing the dictionary and
then replaced by the original instruction recorded in the dictionary.

Decompression can happen before the code is brought into the cache
(Wolfe and A. Chanin, 1992; Lekatsas and Wolf, 1998). This way the
instruction fetch unit of the processor still fetches the normal uncompressed
code and the decompression only happens when there is an instruction cache
miss. Or decompression can happen in the decode stage in the processor
pipeline (Ros and Sutton, 2003) as depicted in Figure 26. In this scheme, when
an instruction is fetched, the hardware needs to determine whether to send the
instruction to the decompressor if it is compressed, or whether to simply pass
it on to the decode stage.

Several embedded architectures, such as ARM (Furber, 2000) and MIPS
(MIPS Technologies, 2001), provide instruction set support for code
compression. For example, the ARM architecture, which is arguably the
most popular embedded architecture, supports 32-bit RISC instruction set.

166 Huang et al.

Figure 26. Datapath for code decompression

Most of the recent implementations of the ARM architecture support a 16-bit
instruction set extension called Thumb. The Thumb instruction set provides
the most commonly used ARM instructions in 16-bit format. The
instructions are dynamically decompressed (into normal ARM instructions)
in the processor pipeline. How the Thumb decompressor fits in the pipeline
is very similar to the datapath diagram shown in Figure 26.

Unfortunately the use of Thumb instructions doesn’t come without cost.
For a program, the dynamic count of instructions executed increases when
Thumb instructions are used. This usually leads to longer execution time.
Some study was done on how to better generate mixed ARM and Thumb
code guided by profile information so that the code size reduction can be
achieved without loss in performance (Krishnaswamy and Gupta, 2002).

Optimization for low power

Reducing energy usage has always been an important challenge for the
embedded system designers. The approaches to address energy problems
comprise techniques ranging from circuit design, architecture design,
operating system support, to compiler support. While the power saving
schemes based on hardware design and/or OS supports have been working
effectively, it is equally important to design energy-aware compilation
techniques in order to achieve the best energy-efficient systems.

In CMOS circuits, power dissipation is proportional to the square of input
voltage (Chandrakasan and Brodersen, 1995). Therefore any reduction in the
input voltage will have quadratic effect on energy saving. However,
reducing voltage would have a negative impact on the clock frequency and
cause a program to run slower. A lot of software based approaches have
therefore focused on when (or where) to scale (reduce) the input voltage for
the running programs in a system so that the timing constraints can still be
met. While the operating system appears to be a better place to control the

Decompressor

Instruction
Fetch

M
U
X

Instruction
Decode

Select

Embedded Software 167

voltage scaling (due to its ability to see all the running processes in the
system), compiler based approaches can often provide finer granularity of
control. For example, Hsu and Kremer (2002) proposed techniques that can
identify program regions where the processor can be slowed down. The
speed for each region is set accordingly. Saputra et al. (2002) proposed two
energy optimizations based on both static and dynamic voltage scaling. In
static scaling, loop-level optimization technique was leveraged to create
opportunities for voltage scaling. In dynamic scaling, integer linear
programming was exploited to select different supply voltage for different
parts of the code to accommodate both energy and performance constraints.
AbouGhazaleh et al. (2003) presented a hybrid compiler/OS scheme for
dynamic voltage scaling. In their approach, power management hints are
inserted in the application code by the compiler so that the operating system
has fine-grained, path-specific information to adjust processor performance
and energy consumption.

Several phases of the compiler backend could be easily made more energy
conscious (instead of only focusing on the performance). For example, the
cost functions and heuristics that are used for instruction selection and
scheduling during code generation could be modified to take into account the
power consumed by each instruction (or instruction sequence).

Retargetable compilers

Unlike their counterparts in the desktop domain, embedded processors have
far more variations and flavors in the architecture design. Even for the same
instruction set architecture (ISA) family, new features and instructions (such
as multi-media or network extensions) are constantly added to the existing
architecture to meet the demands spawned from the ever-changing new
applications in the embedded world. In addition, the microarchitecture is
frequently changed to take advantage of the rapid advancement in
semiconductor process technology. Such changes, however small, would
often leave the existing software development tools, especially compilers,
inadequate or even unusable. The embedded processor vendors are therefore
forced to re-design and re-implement the compilers. Such practice is
unfortunately time-consuming and often too costly. It is hence desirable (if
not imperative) to have an easily retargetable compiler that can quickly adapt
to a new architecture extension or a microarchitecture enhancement.

In the heart of a retargetable compiler is the architecture/machine
description language (ADL). The backend of a retargetable compiler is
usually made orthogonal (independent) to any specific architecture and
driven by the ADL. In fact, other components of the development toolchain,
such as assemblers and simulators, can also be made ADL driven. With this

168 Huang et al.

approach, whenever a change is made to the ISA or microarchitecture, the
tool designers need only to modify the machine descriptions written in the
provided ADL and the new development tools will be quickly available. The
tool design cost, as a result, will be greatly reduced.

Several ADLs have been proposed to support retargetable toolchains.
Among the most famous and widely used are LISA from Aachen University
of Technology in Germany (Pees et al., 2000), EXPRESSION from
University of California, Irvine (Halambi et al., 1999), and nML developed
at Tech. University Berlin (Fauth et al., 1995). Some popular general-
purpose compilers, such as GNU gcc compiler and IMPACT compiler from
University of Illinois (Gyllenhaal et al., 1996), have their own machine
description languages as well to drive their compiler backend. One thing to
keep in mind is that it is almost impossible to design an ADL that can
properly describe and model architectures across all application domains. An
ADL is easier to design if it is targeted only at processors specialized for a
particular application domain.

A lot of retargetable compilers are part of bigger hardware/software co-
design projects (Halambi et al., 1999; Lanneer et al., 1995; Hoffmann et al.,
2001; Aditya et al., 1999). The methodology of co-design approaches often
requires iterative process of hardware modification, co-simulation, and
system evaluation until design criteria are met. Retargetable compilers are
therefore fundamental in this co-design scheme in order for different design
choices to be quickly explored and evaluated.

6. CONCLUSIONS AND FUTURE DIRECTIONS

With the requirement of shorter time-to-market and feature modifiability and
extensibility, many designs in the embedded systems have shifted to the
software side. Conventional software development mythology cannot be
applied to embedded software directly because embedded software works
tightly with specific hardware. In this chapter, we discussed the most
important components of embedded software, including low-power task
scheduling, low-power device scheduling, the development framework for
device drivers, and embedded software toolchain.

DVS is widely used to speed down the processor and reduce its energy
consumption. A real-time DVS algorithm minimizes energy consumption
while keeping timing constraints. Section 2 first described a list of mechanism
to use slack time and next introduced several referred real-time DVS
scheduling algorithms. Each algorithm is unique in its way of calculating
available slack time and allocating slack to available tasks. In addition, the
tradeoff between energy-saving performance and complexity was also well

Embedded Software 169

studied. To further enhance the performance of real-time DVS, many issues
remain to be addressed, such as the impact of data dependency, static current
leakage, and context switches. Finally, an efficient integration of DVS and
DPM deserves more research efforts to consider all aspects of power
consumption from a system-wide viewpoint.

DPM is a powerful methodology for reducing energy consumption in
modern embedded systems where peripheral devices consume more energy
than the processor. Section 3 introduced and classified existing DMP
policies and latest development. Due to the extreme complexity of this
problem, there are still many issues left to be solved in designing an efficient
real-time DPM policy. Finally, a complete energy-profiling tool at the level
of an operating system is needed for designers to collect power-performance
statistics on real systems. The availability of this data is essential in the
design of the next-generation power management mechanism.

Section 4 introduced the impact of I/O devices and their drivers on the
functionalities, performance, and efficiency of an embedded system. The
hardware/software co-design method saves the development time of the
embedded device, but there are still many issues, such as methodologies and
tools for HW/SW co-design and HW/SW co-simulation, needed to be resolved.
Regarding device driver development, two approaches, i.e. non-OS-based and
EOS-based, are commonly used. The non-OS-based implementation is more
efficient and requires less memory than the EOS-based approach, but
embedded software based on the EOS-based implementation utilizes the
services offered by an EOS, and thus can reduce the development time and the
complexity of the embedded software significantly. System designers should
tradeoff these parameters during the driver design and implementation.
Besides the above development issues, further research on device driver
frameworks and interrupt handling processes in EOSs is highly required to
guarantee the real-time characteristics especially for hard real-time systems.

Software development tools are instrumental in the successful roll-out of
an embedded system. While several tools such as assemblers, debuggers, and
linkers are generally considered mature technology, they actually deserve
more attention in the research community so that the design process of
embedded software can be made faster and more smoothly. Compilers, on
the other hand, have garnered a lot of interests recently in the academic and
industrial communities alike due to the shift from assembly languages to
high-level languages in embedded software development. Besides the
important research topics such as energy saving, code size reduction, and
retargetability mentioned in Section 5, other compilation issues, such as how
to strike a good balance among various code generation factors and how to
work better with the architecture and OS supports, still need to be further
studied and investigated.

170 Huang et al.

REFERENCES

AbouGhazaleh, N., Childers, B., Mosse, D., Melhem, R., and Craven, M., 2003, Energy
management for real-time embedded applications with compiler support, in Proceedings of
the 2003 ACM SIGPLAN Conference on Language, Compiler, and Tool for Embedded
Systems, pp. 284-293.

Acquaviva, A., Benini, L., and Ricco, B., 2001, Software-controlled processor speed setting
for low-power streaming multimedia, IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, 20(11), pp. 1283-1292.

Aditya, S., Rau, B. R., and Kathail, V., 1999, Automatic architectural synthesis of VLIW and
EPIC processors, in Proceedings of the 12th international symposium on System synthesis,
p.107.

Aho, A. V., Sethi R., and Ullman J. D., 1986, Compilers: Principles, Techniques, and Tools,
Addison Wesley.

Anand, M., Nightingale, E. B., and Flinn, J., 2004, Ghosts in the machine: interfaces for better
power management, in Proceedings of the second international Conference on Mobile
systems, Applications, and Services. pp. 23-35.

Aydin, H., Melhem, R., Moss´e, D. and -Alvarez, P. M., 2001, Dynamic and aggressive
scheduling techniques for power-aware real-time systems, in Proceedings of the 22nd
IEEE Real-Time Systems Symposium, pp. 95-105.

Aydin, H., Melhem, R., Mosse, D., and -Alvarez, P. M., 2004, Power-aware scheduling for
periodic real-Time tasks, IEEE Trans. on Computers, 53(5), pp. 584-600.

Barned, R. M., and Richards, R. J., 2002, Uniform Driver Interface (UDI) reference
implementation and determinism, Proceedings of Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 301-310.

Benini, L., Bogliolo, A., Paleologo, G. A., and Micheli, G. D., 1999, Policy optimization for
dynamic power management, IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, 18(6), pp. 813-833.

Benini, L., Bogliolo, A., and Micheli, G. D., 2000, A survey of design techniques for system-
level dynamic power management, IEEE Trans. VLSI Systems, 8(3), pp. 299-316.

Brock, B., and Rajamani, K., 2003, Dynamic power management for embedded systems. In
Proceedings of the 2003 IEEE International SOC Conference.

Cai, L., and Lu, Y. H., 2005, Joint power management of memory and disk, in Proceedings
of Design, Automation and Test in Europe, pp. 86-91.

Chandrakasan, A. P., and Brodersen, R. W., 1995, Low Power Digital CMOS Design,
Kluwer Academic Publishers, Norwell, MA.

Choi, I., Shim, H., and Chang, N., 2002, Low-power color TFT LCD display for hand-held
embedded systems, in Proceedings of the 2002 International Symposium on Low Power
Electronics and Design, pp. 112-117.

Choi, K., Soma, R., and Pedram, M., 2004, Dynamic voltage and frequency scaling based on
workload decomposition, in Proceedings of the 2004 International Symposium on Low
Power Electronics and Design, pp. 174-179.

Chu, E. T.-H., Huang, T. Y., Liu, K. Y., Tsai, C. H., and Chen, P. Y., 2006, COLORS: A real-
time DPM policy with DVS support, submitted to Proceedings of Design, Automation and
Test in Europe.

Chung, E. Y., Benini, L., and Micheli, G. D., 1999, Dynamic power management using
adaptive learning tree, in Proceedings of the 1999 IEEE/ACM international conference on
Computer-aided design, pp. 274-279.

Cooper, K. D. and Torczon, L., 2004, Engineering a Compiler, Morgan Kaufmann.

Embedded Software 171

De Bus, B., De Sutter, B., Van Put, L., Chanet, D., De Bosschere, K., 2004, Link-time
optimization of ARM binaries, ACM SIGPLAN Notices, v.39 n.7, July.

Ethier, S., 2003, Application-driven power management, QNX Software Systems Ltd.
Fauth, A., Van Praet, J., and Freericks, M., 1995, Describing instruction set processors using

nML, in Proceedings of the 1995 European conference on Design and Test, page 503.
Fisher, J. A., Faraboschi, P., Young, C., 2005, Embedded Computing: A VLIW Approach to

Architecture, Compilers and Tools, Morgan Kaufmann.
Furber, S., 2000, ARM System-on-Chip Architecture, 2nd ed., Addison Wesley.
Gyllenhaal, J. C., Hwu, W.-m. W., and Rau, B. R., 1996, HMDES version 2 specification,

IMPACT Technical report, IMPACT-96-03, University of Illinois, Urbana IL.
Haber, G., Klausner, M., Eisenberg, V., Mendelson, B., and Gurevich, M., 2003,

Optimization opportunities created by global data reordering, in Proceedings of the
International Symposium on Code Generation and Optimization, pp. 228-237.

Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., and Nicolau, A., 1999,
EXPRESSION: a language for architecture exploration through compiler/simulator
retargetability, in Proceedings of the conference on Design, automation and test in Europe,
Article No. 100.

Hill, Jason, and et al., 2000, System architecture directions for networked sensors,
Proceedings of the ninth international conference on Architectural support for
programming languages and operating systems.

Hoffmann, A., Kogel, T., Nohl, A., Braun, G., Schliebusch, O., Wahlen, O., Wieferink, A.,
and Meyr, H., 2001, A novel methodology for the design of application specific
instruction set processors (ASIP) using a machine description language, IEEE
Transactions on Computer-Aided Design, 20(11):1338-1354.

Honda, S., and Takada, H., 2003, Evaluation of applying SpecC to the integrated design
method of device driver and device, Design, Automation and Test in Europe Conference
and Exhibition.

Hsu, C.-H. and Kremer, U., 2002, Single vs. multiple regions: A comparison of different
compiler-directed dynamic voltage scheduling approaches, in Proceedings of Power-
Aware Computer Systems Workshop.

HP, Intel, Microsoft, Phoenix, and Toshiba; http://www.acpi.info/
HP Labs and P. Alto, Power evaluation of a handheld computer, 2003, Micro IEEE, 23(1),

pp. 66-74.
Hwang, C. H., and Wu, A. C., 1997, A predictive system shutdown method for energy saving

of event-driven computation, in Proceedings of the 1997 IEEE/ACM international
conference on Computer-aided design, pp. 28-32.

IBM and MontaVista Software, 2002, Dynamic Power Management for Embedded System;
http://www.research.ibm.com/arl/publications/papers/DPM_V1.1.pdf.

Irani, S., Shukla, S., and Gupta, R., 2003, Online strategies for dynamic power management
in systems with multiple power-saving states, ACM Trans. on Embedded Computing
Systems, 2(3), pp. 325-346.

Ishihara, T.,and Yasuura, H., 1998, Voltage scheduling problem for dynamically variable
voltage processors, in Proceedings of ACM International Symposium on Low-Power
Electronics and Design, pp. 197-199.

Jejurikar, R., and Gupta, R. K., 2004, Dynamic voltage scaling for system-wide energy
minimization in real-time embedded systems, in Proceedings of the 2004 International
Symposium on Low Power Electronics and Design, pp. 78-81.

Jejurikar, R., Pereira, C., and Gupta, R. K., 2004, Leakage aware dynamic voltage scaling for real-
time embedded systems, in Annual ACM IEEE Design Automation Conference, pp. 275-280.

172 Huang et al.

Jejurikar, R., and Gupta, R. K., 2004, Procrastination scheduling in fixed priority real-time
systems, ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools in
Embedded Systems, pp. 57-66.

Jerraya, A., and et al., 2003, Embedded Software for SOC, Kluwer Academic Publishers,
Norwell, MA.

Karlin, A., Manasse, M., McGeoch, L., and Owicki, S., 1994, Competitive randomized
algorithms for nonuniform problems, Algorithmica, 11(6), pp. 542-571.

Kessler, C. W., and Bednarski, A., 2002, Optimal integrated code generation for clustered
VLIW architectures, in Proceedings of the 2002 Joint Conference on Languages,
Compilers, and Tools for Embedded Systems & Software and Compilers for Embedded
Systems, pp. 102-111.

Kim, M., and Ha, S., 2001, Hybrid run-time power management technique for real-time
embedded system with voltage scalable processor, in Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Embedded Systems, pp. 11-19.

Kim, W., Kim, J., and Min, S. L., 2002, A dynamic voltage scaling algorithm for dynamic
priority hard real-time systems using slack time analysis, in proceedings of the conference
on design, automation and test in europe, pp. 788-794.

Kim, W., Kim, J., and Min, S. L., 2003, Dynamic voltage scaling algorithm for fixed priority
real-time systems using work-demand analysis, in proceedings of the 2003 international
symposium on low power electronics and design, pp. 396-401.

Kong, T. and Wilken, K. D., 1998, Precise register allocation for irregular architectures, in
Proceedings of the 31st annual ACM/IEEE international symposium on Microarchitecture,
pp. 297-307.

Krishna, C. M., and Lee, Y. H., 2003, Voltage-clock-scaling adaptive scheduling techniques
for low power in hard real-time systems, IEEE Trans. on Computers, 52(12),
pp. 1586-1593.

Krishnaswamy, A. and Gupta, R., 2002, Profile guided selection of ARM and thumb
instructions, in Proceedings of the 2002 Joint Conference on Languages, Compilers, and
Tools for Embedded Systems & Software and Compilers for Embedded Systems, pp. 56-64.

Krishnapura, R., Goddard, and Qadi, A., 2004, A dynamic real-time scheduling algorithm for
reduced energy consumption, Technical Report TR-UNL-CSE-2004-0009, University of
Nebraska Lincoln.

Labrosse, Jean J., 2002, MicroC OS II: The Real Time Kernel, CMP Books.
Lanneer, D., Van Praet, J., Kifli, A., Schoofs, K., Geurts, W., Thoen, F., and Goossens, G., 1995,

CHESS: Retargetable code generation for embedded DSP processors, in Code Generation
for Embedded Processors, Kluwer Academic Publishers Norwell, MA, pp. 85-102.

Lee, C. H., and Shin, K, G., 2004, On-line dynamic voltage scaling for hard real-time systems
using the EDF algorithm. In Proceedings of the 25th IEEE Real-Time Systems Symposium.

Lefurgy, C., Bird, P., Chen, I-C., and Mudge, T., 1997, Improving code density using
compression techniques, in Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, pp. 194-203.

Lekatsas, H. and Wolf, W., 1998, Code compression for embedded systems, in Proceedings
of the 35th annual conference on Design automation, pp. 516-521.

Levine, J. R., 1999, Linkers and Loaders, Morgan Kaufmann.
Liao, S., Devadas, S., Keutzer, K., Tjiang, S., and Wang, A., 1996, Storage assignment to

decrease code size, ACM Transactions on Programming Languages and Systems, Volume
18, Issue 3, pp. 235-253.

Li, Qing, and Yao, Caroline, 2003, Real-Time Concepts for Embedded Systems, CMP Books.

Embedded Software 173

Liu, C. L., and Layland, J., 1973, Scheduling algorithms for multiprogramming in a hard real-
time environment, Journal of the ACM, 10(1), pp. 46-61.

Liu, J., and Chou, P. H., 2004, Optimizing mode transition sequences in idle intervals for
component-level and system-level energy minimization, in Proceedings of 2004
International Conference on Computer Aided Design, pp. 21-28.

Lu, Y. H., Benini, L., and Micheli, G. D., 2000, Low-power task scheduling for multiple
devices, in Proceedings of the eighth international workshop on Hardware/software
codesign, pp. 39-43.

Lu, Y. H., and Micheli, G. D., 2001, Comparing system-level power management policies,
IEEE Design & Test of Computers, 18(2), pp. 10-19.

Massa, Anthony J, 2002, Embedded Software Development with eCos, Prentice Hall.
Maurer, P. M., and Wang, Z., 1991, Techniques for unit-delay compiled simulation, in

Proceedings of the 27th Conference on Design Automation, pp. 480-484.
Microsoft; http://www.microsoft.com/whdc/system/pnppwr/powermgmt/devicepm.mspx
Mochocki, B., Hu, X. S., and Quan, G., 2005, Practical on-line DVS scheduling for fixed-

priority real-time system, in the 11th IEEE Real-Time and Embedded Technology and
Applications Symposium.

MIPS Technologies, 2001, MIPS32 Architecture for Programmers Volume IV-a: The MIPS16
Application Specific Extension to the MIPS32 Architecture, March.

Muchnick, S. S., 1997, Advanced Compiler Design and Implementation, Morgan
Kaufmann.

Naik, M. and Palsberg, J., 2002, Compiling with code-size constraints, in Proceedings of the
2002 Joint Conference on Languages, Compilers, and Tools for Embedded Systems &
Software and Compilers for Embedded Systems, pp. 120-129.

Nakamoto, Y., 2004, Toward mobile phone Linux, Proceedings of the Asia and South Pacific
Design Automation Conference, pp. 117-124.

Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H., and Hoffmann, A., 2002,
A universal techniques for fast and flexible instruction-set architecture simulation, in
Proceedings of the 39th Conference on Design Automation, pp. 22-27.

Pees, S., Živojnović, V., Ropers, A., and Meyr, H., 1997, Fast simulation of the TI TMS
320C54x DSP, in Proceedings of the International Conference on Signal Processing
Applications and Technology, pp. 995-999.

Pees, S., Hoffmann, A., and Meyr, H., 2000, Retargeting of compiled simulators for digital
signal processors using a machine description language, in Proceedings of the conference
on Design, automation and test in Europe, pp. 669-673.

Pillai, P., and Shin, K. G., 2001, Real-time dynamic voltage scaling for low-power embedded
operating systems, in proceedings of the eighteenth ACM symposium on Operating
systems principles, pp. 89-102.

Quan, G., and Hu, X. S., 2001, Energy efficient fixed-priority scheduling for real time
systems on variable voltage processors, in Annual ACM IEEE Design Automation
Conference, pp. 828-833.

Quan, G., and Hu, X. S., 2002, Minimum energy fixed-priority scheduling for variable
voltage processors, in Proceedings of the conference on Design, automation and test in
Europe, pp. 782.

Quan, G., Niu, L., Hu, X. S., and B. Mochocki, 2004, Fixed priority scheduling for reducing
overall energy on variable voltage processors, in Proceeding of the 25th IEEE
International Real-Time Systems Symposium, pp. 309-318.

174 Huang et al.

Rao, V., Singhal, G., and Kumar, A., 2004, Real time dynamic voltage scaling for embedded
systems, in Proceedings of 17th International Conference on VLSI Design.
pp. 650-653.

Regehr, John, and Duongsaa, Usit, 2005, Preventing interrupt overload, Proceedings of the
2005 ACM conference on Languages, compilers, and tools for embedded systems.

Regehr, John, and et al., 2003, Evolving real-time systems using hierarchical scheduling and
concurrency analysis, Proceedings of the 24th IEEE Real-Time Systems Symposium,
Cancun, Mexico.

Reshadi, M., Mishra, P., and Dutt, N., 2003, Instruction set compiled simulation: A technique
for fast and flexible instruction set simulation, in Proceedings of Design Automation
Conference, pp. 758-763.

Rao, A. and Pande, S., 1999, Storage assignment optimizations to generate compact and
efficient code on embedded DSPs, in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 128-138.

Ros, M. and Sutton, P., 2003, Compiler optimization and ordering effects on VLIW code
compression, in Proceedings of the International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, pp. 95-103.

Saewong, S., and Rajkumar, R., 2003, Practical voltage-scaling for fixed-priority RT-systems,
in The 9th IEEE Real-Time and Embedded Technology and Applications Symposium,
pp. 106.

Saputra, H., Kandemir, M., Vijaykrishnan, N., Irwin, M. J., Hu, J. S., Hsu, C.-H., and Kremer,
U., 2002, Energy-conscious compilation based on voltage scaling, in Proceedings of the
2002 Joint Conference on Languages, Compilers, and Tools for Embedded Systems &
Software and Compilers for Embedded Systems, pp. 2-11.

Shin, Y., and Choi, K., 1999, Power conscious fixed priority scheduling for hard real time
systems, in Annual ACM IEEE Design Automation Conference, pp. 134-139.

Shin, Y., Choi, K., and Sakurai, T., 2000, Power optimization of real-time embedded systems
on variable speed processors, in Proceedings of the 2000 IEEE/ACM international
conference on Computer-aided design, pp. 365-368.

SimpleScalar simulator, 2004, http://www.simplescalar.com.
Simunic, T., Benini, L., Acquaviva, A., Glynn, P., and Micheli, G. D., 2001, Dynamic voltage

scaling and power management for portable systems, in Proceedings of the 38th
Conference on Design Automation, pp. 524-529.

SourceForge; http://acpi.sourceforge.net/
Srivastava, A. and Wall, D. W., 1994, Link-time optimization of address calculation on a

64-bit architecture, in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 49-60.

Srivastava, M. B., and Chandrakasan, A. P., 1996, Predictive system shutdown and other
architecture techniques for energy efficient programmable computation, IEEE Trans. VLSI
Systems, 4(1), pp. 42-55.

Swaminathan, V., and Chakrabarty, K., 2002, Pruning-based energy-optimal device
scheduling for hard real-time systems, in Proceedings of the 10th International Symposium
on Hardware/Software Codesign, pp. 175-180

Swaminathan, V. and Chakrabarty, K., 2003, Energy-conscious, deterministic I/O device
scheduling in hard real-time systems, IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, 22(7), pp. 813-833.

Swaminathan, V., and Chakrabarty, K., 2005, Pruning-based, energy-optimal, deterministic
I/O device scheduling for hard real-time systems, ACM Trans. on Embedded Computing
Systems, 4(1), pp. 141-167.

Embedded Software 175

Thuresson, M. and Stenstrom, P., 2005, Evaluation of extended dictionary-based static code
compression schemes, in Proceedings of the 2nd conference on Computing frontiers,
pp. 77-86.

Tian, L., and Arslan, T., 2003, A genetic algorithm for energy efficient device scheduling in
real-time systems, in Proceedings of 2003 conference on Genetic and evolutionary
computation, pp. 1614-1615.

Vaddagir, Srivatsa, and et al., 2004, Power management in Linux-based systems, Linux
Journa

Wang, Shaojie, Malik S., and Bergamaschi, R.A., 2003, Modeling and integration of
peripheral devices in embedded systems, Design, Automation and Test in Europe
Conference and Exhibition.

Weinberg, Bill, 2004, Porting RTOS device drivers to embedded Linux, Linux Journal.
Weissel, A., Beutel, B., and Bellosa, F., 2002, Cooperative I/O—a novel I/O semantics for

energy-aware applications, in Proceedings of 5th Symposium on Operating Systems
Design and Implementation.

Wolfe, A. and Chanin, A., 1992, Executing compressed programs on an embedded RISC
architecture, in Proceedings of the 25th International Symposium on Microarchitecture,
pp. 81-91.

Yao, F., Demers, A., and Shenker, S., 1995, A scheduling model for reduced CPU energy, in
IEEE Annual Foundations of Computer Science, pp. 374-382.

Yun, H. S., and Kim, J., 2003, On energy-optimal voltage scheduling for fixed-priority hard
real-time systems, in ACM Trans. on Embedded Computing Systems, 2(3), pp. 393-430.

Zhuang, X., Lau, C., and Pande, S., 2003, Storage assignment optimizations through variable
coalescence for embedded processors, in Proceedings of the ACM SIGPLAN conference
on Language, compiler, and tool for embedded systems, pp. 220-231.

Živojnović, V., Tjiang, S., and Meyr, H., 1995, Compiled simulation of programmable DSP
architectures, in Proceedings of IEEE Workshop on VLSI Signal Processing, pp. 187-196.

177

Chapter 6

ENERGY MANAGEMENT TECHNIQUES
FOR SOC DESIGN

Hiroto Yasuura, Tohru Ishihara, Masanori Muroyama
System LSI Research Center, Kyushu University, 3-8-33, Momochihama, Sawara-ku,
Fukuoka, 814-0001, JAPAN

Abstract: One of the biggest problems in complicated and high-performance SoC design
is management of energy and/or power consumption. In this chapter, we
present energy management techniques in system design including HW and
SW, SoC architecture and logic design. Dynamic power consumption is the
major factor of energy consumption in the current CMOS digital circuits. The
dynamic power consumption is affected by supply voltage, load capacitance
and switching activity. We present approaches to controlling supply voltage,
load capacitance and switching activity dynamically and statically in system
architecture and algorithm design levels. We also discuss about the memory
architecture for reducing power and energy in HW and SW co-design of SoC.
In the future CMOS technology, leakage power consumption becomes
dominant, because the threshold voltages are scaled as the transistor size
shrinks. We summarize the techniques for reducing leakage power in system
architecture design. The contents of the chapter include the following issues;
(1) power and energy consumptions in SoC design, (2) tradeoff between
energy and performance, (3) tradeoff among energy, QoS (i.e., latency and
computational precision), reliability, and flexibility (4) techniques for reducing
dynamic power consumption, and (5) leakage power reduction techniques

Keywords: Energy consumption, Power consumption, Reliability, Quality of service, HW
and SW co-design

1. INTRODUCTION

In past years, the most serious concerns for the VLSI designer were
performance, cost, and reliability. Recently, however, this paradigm has

Lin (ed.), Essential Issues in SOC Design, 177–223.
© 2006 Springer.

S.Y.-L .

and

178 Yasuura, Ishihara and Muroyama

shifted. More specifically, reducing power and/or energy consumption has
become one of the most important themes in SoC design. The driving factors
of the paradigm shift include the following.

• Popularization of portable electronic devices
• Raising demand for reliable and stable computer systems
• Worldwide environmental destruction

One of the biggest factors which motivate the need for low power SoC is the
popularization of portable electronics. The typical power consumption for a
portable multimedia terminal is around the range of 10-50 [W] when
employed chips are not optimized for low-power. Assuming a battery yielding
around 65 watt-hours per kilogram is used, the terminal would require
unacceptable six kilograms of batteries for ten hours operation between
recharges. If we use 500 grams of batteries, the terminal operates only one
hour without recharges. Therefore, it is clear that the power consumption has a
strong impact on a value of the portable electronic products.

The second need for low power comes from a strong pressure for
designers of high-end products to reduce their temperature. In [Black69],
Black mentioned that the Mean Time To Failure (MTTF) of aluminum
interconnects exponentially decreases as the temperature of a chip increases.
Therefore, cooling down the chip temperature is essential for a reliable and
stable operation of computer systems. Contemporary performance-optimized
microprocessors dissipate as much as 15-50W at 100-200MHz clock rates.
The leakage power issue makes this situation worse, because the leakage
power increases exponentially as the temperature of the chip increases. In
the future, it is expected that a 10 cm2 microprocessor with 500MHz clock
frequency consumes about 300W. The cost for cooling such chips is huge.
Consequently, there is a clear advantage to reducing the power consumed in
computer systems. Especially for consumer products whose sales are
strongly affected by its price, lowering the power is indispensable.

 Worldwide environmental destruction drives the strong need for low
power electronic devices. Although the power consumption of each
electronic device is small (around the range of 10-50W), they are used
anywhere and anytime in today’s highly information oriented society.
Assuming coverage of such electronic devices in the world is 50%,
3.3 billions of people waste 500 billions of watts of power. In addition,
rising IT population accelerates this situation. If we reduce the energy
consumption of the electronic devices by 10%, we can save 65 mega tons of
oil used in gas turbine power plants per a year or can reduce 50 nuclear
power units. In 10-20 years from now, we need to come up with innovative
solutions which drastically save the energy of the electronic devices with
accelerating the growth of IT population.

Recently, many energy reduction techniques at various levels of
abstraction, such as at device, circuit, layout, architectural, and software

Energy Management Techniques for SoC Design 179

levels are proposed. Regarding the physical design, energy optimization
techniques are well studied. However, there is much scope left to study in
the system level such as architectural, algorithm, or software level. In this
chapter, we present system level energy reduction techniques which might
be essential in SoC design.

The rest of the chapter is organized in the following way. In Section 2,
we explain mechanisms of power and energy dissipations in CMOS circuits
and summarize basic strategy for reducing power and energy consumptions.
Section 3 presents techniques for lowering supply voltage statically or
dynamically considering several design tradeoffs. Section 4 presents
techniques for reducing switching activity without sacrificing quality of
services (QoS). In Section 5, we present techniques for reducing the product
of switching activity and load capacitance. Section 6 presents strategies for
reducing leakage power and shows several examples in detail. Section 7
summarizes techniques for reducing energy consumption by customizing
hardware for the target application. Section 8 concludes this chapter.

2. POWER AND ENERGY CONSUMPTIONS
IN SOC

The energy consumption of a system, E, can be defined as the summation of
both spatial and temporal power consumption of circuits [Weste93] as
shown in (1) and (2).

∑
∈

+⋅⋅=+=
Gg

leakDDleakdynamic gPgVgCLgSAPPP)()()()(2 (2.1)

∫=
t

PdtE
0

 (2.2)

P: Power consumption of the target system
Pdynamic: Dynamic power consumption of the target system
Pleak: Leakage power consumption of the target system
SA(g): switching activity of gate g (expected number of 0–>1 transitions
per second)
CL(g): load capacitance of g
VDD(g): operation voltage of g
t: Execution time of an application program

We treat the energy consumption, E, as an objective function to be optimized,
because the energy consumption is closely related to the heat and reliability

180 Yasuura, Ishihara and Muroyama

of chips, battery life time of portable devices, and the number of nuclear and
gas turbine power stations required. The main approach is detecting a spatial
and temporal hot spot and reducing the power consumption of the spot.
Since the power consumption, P, dynamically changes according to the
behavior of the software running on a chip and a location of the logic gate on
the chip as shown in Figures 1 and 2, both the software and the hardware
should be taken into account for reducing the energy consumption of a SoC
chip. As one can see from Equations (2.1) and (2.2), we can reduce the
energy consumption of the SoC chip by lowering SA(g), CL(g), VDD(g),
Pleak(g) and t. However, lowering these parameters sometimes causes an
increase of the execution time, a degradation of computational quality,
system reliability and design flexibility. The key point of the energy
reduction in SoC design is considering design tradeoffs among energy
consumption, performance, computational quality, system reliability and
design flexibility. The goal is minimizing the energy consumption under the
constraint of performance, computational quality, system reliability and/or
design flexibility.

Po
w

er
 C

on
su

m
pt

io
n

Location of Gates

Hot point

Cool point

Figure 1. Local Power Dissipation

add r1 r2,r1
sub r2 r2,r1
jmp #1024

Po
w

er
 C

on
su

m
pt

io
n

Time

Figure 2. Power Dissipation vs. Energy Dissipation

Energy Management Techniques for SOC Design 181

There is a third source of power consumption, short-circuit power, which
results from a short-circuit current-path between the power supply and
ground during switching. Short-circuit power is projected to be constant
around 10% of total power consumption for succeeding technologies
[Chatterjee96]. We ignore it throughout this chapter.

There are many techniques proposed for reducing the execution time t,
and some of them are very effective for reducing the energy consumption of
the SoC chip. In this chapter, however, we do not focus on the techniques
which mainly aim to reduce the execution time. Instead, we summarize
techniques which consider the execution time as a design constraint. In this
chapter, we will make a brief survey on approaches to reducing SA(g), CL(g),
VDD(g), and Pleak(g) in SoC design. We will also clarify the basic strategy
underlying the approaches and show several examples in detail.

3. TECHNIQUES FOR LOWERING OPERATING
VOLTAGE

Since energy dissipation is quadratically proportional to supply voltage (see
equation (2.1)), lowering the VDD has a strong impact on the energy
reduction. However, the following drawbacks should be taken into account;

1. loss of compatibility to external voltage standards,
2. performance degradation, and
3. reliability issues (very low voltage).

3.1 Compatibility of Different Voltage Standards

Whenever one circuit has to drive an input of another circuit operating at a
higher supply voltage, a level conversion is needed at the interface. Suppose
we have two different voltages, VDH and VDL (VDH > VDL). If the output of a
circuit operating at VDL is connected directly to the input of a circuit
operating at VDH, the static current flows in the input cells operating at VDH,
because the PMOS of the input cells cannot be cut-off as shown in Figure 3.

In these days, it is common to have level shifting cells in a cell library for
accepting multiple signal levels on a chip. Usami et al. proposed a clustered
voltage scaling technique which assumes two different voltages available
and finds the optimal voltage assignment to each cell considering the
overhead of level shifting cells [Usami95]. Johnson et al. proposed a
multiple voltage scheduling technique for reducing the energy consumption
of a data path circuit considering an energy overhead of level shifting
circuits [Johnson97].

182 Yasuura, Ishihara and Muroyama

VDH

PMOS

VDL

VDL

cannot
cut-off

Figure 3. Static Current in Low Voltage Circuits

3.2 Power-Delay Tradeoff

Although lowering the supply voltage is the most effective way for reducing
the energy consumption of SoC chip, this causes an increase of circuit delay,
τ, which determines the maximum clock frequency of synchronous circuits.
The delay τ of a CMOS circuit can be approximately formulated as (3.1),

()
 1

2
DDthDD

DD

VVV
V

≅
−

∝τ (3.1)

where Vth is the threshold voltage of CMOS transistors used in the circuit.
Basically, we have the following three ways for lowering the operating

voltage without sacrificing the performance of the system.

1. Parallelize tasks so that the performance does not degrade even in a low
voltage operation. We refer this approach as static voltage scaling.

2. Use the maximum available supply voltage for gates on a critical-path
and use a lower supply voltage for the other gates. We refer this approach
as multiple voltage assignment.

3. Lower the clock frequency and operating voltage when the maximum
performance is not needed. We refer this approach as dynamic voltage
scaling.

3.2.1 Static Voltage Scaling

Suppose we have four sequential tasks as shown in Figure 4 (a) and we have
two processing units each of which can complete each task per a unit time
TUNIT when 5.0V is used. If the tasks can be concurrently run on the
processing units as shown in Figure 4 (b), the clock frequency and operating

183

voltage of the processing units can be reduced by half without degradation of
system performance. Although switching activities per a unit time may
increase up to twice, we can reduce the number of cycles and VDD by half.
As a result, energy consumption can be quarter without performance
degradation.

o1

o2

o3

o4

t2

t3

t4

t1

t0

o1

o2

o3

o4

5.0V

5.0V

5.0V

5.0V

2.5V 2.5V

2.5V 2.5V

(a) sequential (b) parallel

Energy = 100J Energy = 25J

Figure 4. Energy Reduction by Parallel Computation

A lot of researchers have proposed methods that incorporate
architectural-level voltage scaling. Chandrakasan et al. proposed HYPER-LP
which optimizes dataflow graph generated from a target application program
for reducing the power consumption of data-path circuits [Chandrakasan95].
Other methods try to transform the target circuit during scheduling, module
selection, resource binding, etc., for minimizing power consumption
[Raghunathan94][Raghunathan95][Coodby94][Kumar95][Martin95]. All of
the methods mentioned above try to exploit parallelism in the algorithm to
shorten critical paths so that lower supply voltage can be used. Although this
is a very attractive approach, parallelization of the computation is generally
difficult because some computations are inherently sequential.

3.2.2 Multiple Voltage Assignment

Most voltage scaling techniques assume that the circuit operates at a single
supply voltage. Although substantial energy savings can be achieved with a
single minimum supply voltage, one cannot always take full advantage of
available schedule slack to reduce the supply voltage. Since path delays in
the circuit are not uniform, supply voltage of gates on a non-critical path can

Energy Management Techniques for SOC Design

184 Yasuura, Ishihara and Muroyama

be lowered until the path delay meets with the clock period. When there are
nun-uniform path delays, the critical path delay determines the clock period.
In this case, non-critical paths use only part of a clock period. The slack time
within these clock periods goes to waste. Additional voltages make it
possible to use the entire clock period. The basic idea is to assign lower VDDs
to the non-critical paths in a way that the delays of the paths meet with the
clock period as shown in Figure 5.

Low VDD

High VDDCritical Path

Level Converters

Figure 5. An Example of the Multiple Voltage Assignment

Usami et al. proposed a voltage assignment algorithm which finds the
optimal voltage assignment to each cell considering a level shifting cell
between different voltages [Usami95]. The algorithm performs backward
graph-traversal for a given netlist from the primary outputs toward the
primary inputs using the Depth-First-Search (DFS) algorithm. Each time the
algorithm visits a cell and tries to replace a high VDD cell with low VDD cell.
If the timing constraint is still met even after the replacement, the cell is
replaced. This process is repeated until all the cells are visited. Their
experiments demonstrated that the energy consumption can be reduced by
20% using two voltages 5V and 3V.

The idea can be extended to a multiple voltage datapath scheduling
technique in high level synthesis. The main idea is to minimize energy
consumption by assigning operations to time steps with various supply
voltages under a given time or resource, or both constraints. We use Figure 6
to illustrate the multiple-voltage scheduling technique. Assume the energy
consumption of an addition operation is 1.0 at 1.2V and 2.0 at 1.7V. It
requires 2 time steps at 1.2V but only 1 step is sufficient when 1.7V is
applied. The area required for the adder module is 1.0. Similarly, the energy
consumption of a multiplication operation is 2.0 at 1.2V and 4.0 at 1.7V. It
requires 2 time steps and 1 step at 1.2V and 1.7V, respectively. The area

185

required is 2.0. Suppose we have a control flow graph as shown in Figure 6
(a). It needs 3 steps and the energy consumption is 14. Since we can share
the resources, we only need one adder circuit and one multiplier circuit in
this case. As a result, the area required is 3. Since operations *1 and +2 are
not located on a critical path, we can assign lower voltage to them as shown
in Figure 6 (d). In this case, energy consumption can be reduced to 11. If we
relax the time constraint to 5, we can reduce the energy consumption to 8 as
shown in Figure 6 (b). This idea is extended in the following papers
[Johnson97][Raje95][Lin97][Chang96] so as to fit with more practical
situations.

+1

*2

+3

*1

+2 Adder at 1.2V

Multiplier at 1.2V

1.0
2.0

2.0
2.0

1.0
2.0

Module Area (A) Delay (D) Energy (E)

Adder at 1.7V

Multiplier at 1.7V

1.0
2.0

1.0
1.0

2.0
4.0

1 step

A: 3

(a)

(b) (c) (d)

D: 3
E: 14

+1

*2

+3

*1

+2

A: 6
D: 4
E: 9 +1

*2

+3

*1 +2

A: 6
D: 3
E:11

+1

*2

+3

*1

+2

A: 4
D: 5
E: 8

Figure 6. Multiple-Voltage Scheduling in High Level Synthesis

Raje et al. proposed a datapath scheduling technique which schedules the
datapath operations, selects voltages from a predetermined set of voltages
and assigns the voltages to the datapath operations simultaneously so as to
minimize power consumption [Raje95]. Lin et al. used an integer linear
programming approach to schedule datapath operations, choose voltages
from a list of candidates, and assign voltages to each operation considering
timing and resource constraints together [Lin97]. Johnson et al. used an
integer linear programming approach to choose voltages from a list of
candidates, schedule datapath operations, and assign voltages to each
operation considering the energy overhead of level converters [Johnson97].
Chang et al. proposed a dynamic programming approach to optimize non-

Energy Management Techniques for SOC Design

186 Yasuura, Ishihara and Muroyama

pipelined datapaths and modified list scheduler to handle functionally
pipelined datapaths [Chang96].

3.2.3 Dynamic Voltage Scaling

More aggressive approach is dynamic voltage scaling. Since the
computational load is not constant during the execution of given tasks, we
can control computational power according to the computational load. The
basic idea is assigning different operating voltages to the tasks in a way that
any of the tasks does not violate a timing constraint. The assignment can be
done statically or dynamically.

Figure 7 shows motivational example of the dynamic voltage scaling.
Suppose we have a processor which uses three different supply voltages, 5.0V,
4.0V, and 2.5V. A task which takes 1 billion cycles to complete runs on the
processor. The energy consumptions for the task are 10nJ/cycle, 25nJ/cycle
and 40nJ/cycle at 2.5V, 4.0V and 5.0V, respectively. The computational
speeds of the processor at 5.0V, 4.0V, and 2.5V are 50 million cycles per
second, 40 million cycles per second, and 25 million cycles per second,
respectively. This assumption follows the Equations (2.1), (2.2) and (3.1).

1000M cycle

40MHz

Time constraint

2.5

5.0

50MHz

25J

32.5J

time[sec]

2510 time[sec]

2

201550

2510 201550

2510 201550

2

time[sec]

4.02

40J

50MHz

750M cycle

1000M cycle

5.02

En
er

gy
 C

on
su

m
pt

io
n

(

 V
)

2 D
D

(A)

(B)

(C)
5.02

25MHz
250M cycle

Figure 7. Motivational Example

187

In Figure 7 (A), the processor uses the maximum supply voltage, 5.0V,
for the entire execution of the task. In this case, the total energy consumption
is 40J. If the processor uses 2.5V and 5.0V in a way that the completion time
of the task meets with a given time constraint, the energy consumption can
be reduced to 32.5J as shown in Figure 7 (B). Figure 7 (C) shows the best
case of this example. If the processor uses a single supply voltage which
adjusts the completion time just to the time constraint, the total energy
consumption is minimized.

In [Ishihara98], Ishihara and Yasuura proved the following theorem; if
the processor uses a voltage, videal, and completes a given task just at a timing
constraint Tconst, the videal is the ideal voltage which minimizes energy
consumption for the task. The example shown in Figure 7 demonstrates that
reducing the energy consumption of the processor is fundamentally
equivalent to exploiting idle intervals of the processor. Thus, we should first
identify sources of idle intervals to efficiently reduce the power consumption
of the processor. There are three major sources as follows;

1. The first one occurs when a system is not tightly designed for a given
processor. In other words, there is a room for design change or
improvement such as introducing more tasks, replacing certain tasks with
their version up, using lower performance processors and so on.

2. The second source comes from a nature of a fixed-priority scheduling.
The idle intervals inhere in the fixed-priority scheduling, because the
priorities statically assigned to the tasks are not always optimal for the
tasks.

3. The third source comes from run-time variation of execution time. Since most
of tasks complete its execution much earlier than the worst case execution time,
the slack time will be yielded depending on input data for the task.

Consider the three tasks given in Table in Figure 8. Ti, Di and Ci denote
period, deadline and the worst case execution time (WCET) of each task,
respectively. Priorities are assigned in row order as shown in the fifth
column of the table. Assume all tasks are released simultaneously at time 0.
A typical schedule, which assumes that tasks run at their WCETs (Ci), is
shown in Figure 8 (a). Note that this system is designed to meet its
schedulability. For example, if τ2 takes a little longer to complete, τ3 would
miss its deadline at time 100. Even though the system is tightly designed,
there are still some idle time intervals, as shown in Figure 8 (a). At time 160
in the figure, when the request for τ2 arrives, the run-time task scheduler
knows that there will be no requests for any tasks until time 200, which is
the time when requests for τ2 and τ3 will arrive. As a consequence, we can
save power by reducing the speed of the processor by lowering the clock
frequency and supply voltage. When tasks are completed earlier than their

Energy Management Techniques for SOC Design

188 Yasuura, Ishihara and Muroyama

WCET, we have more chances to apply the same mechanism. For the
example of Figure 8 (b), we can slow down the processor at time 50 because
the first instances of τ2 and τ3 complete their execution earlier than the
second request for τ1 arrives. Since the execution time of each task
frequently deviates from its WCET during the operation of the system, we
have many chances to slow down the processor as shown in Figure 8.

τ 1

Ti

τ 2

τ 3

50

80

100

Di

50

80

100

Ci

10

20

40

Priority

1

2

3

(a)

(b)

100

80 160 240 320

0

0

200 300

100 200 30050 150 250

80 160 240 320

100 200 30050 150 250

100 200 300

Figure 8. An Example of Task Scheduling on a Variable Voltage Processor

Weiser et al. proposed a scheduling method for dynamically variable
voltage processors [Weiser94]. Yao et al. proposed real-time task scheduling
methods for the dynamically variable voltage processors [Yao95]. Both of
them assume a fixed amount of execution time and exploit the first source of
idle intervals only.

In [Shin99], Shin et al. proposed a fixed-priority scheduling method
which exploits the second and third sources of idle intervals mentioned
above. They extended this work and proposed off-line and on-line
algorithms for exploiting all of idle intervals mentioned above [Shin00]. The
off-line algorithm finds the lowest possible voltage which guarantees time
constraints of all tasks. The on-line algorithm dynamically varies the
processor speed along with the supply voltage in order to exploit execution
time variations and idle intervals.

189

In [Okuma99], Okuma et al. proposed a real-time task scheduling
algorithms for the dynamically variable voltage processor. Their approach
based on the Earliest Deadline First (EDF) algorithm. Similar to [Shin00],
their approach exploits the first and third sources of the idle intervals
mentioned above. However, they assume to choose voltages from a limited
number of candidates, while [Shin00] assumes to use continuous values of
voltage and clock frequency which is practically impossible.

3.3 Power-Reliability Tradeoff

Since the voltage scaling technique reduces voltage margins, it is impossible
to discuss about low-power design techniques without considering reliability
issues. Most circuit designers have to determine supply voltage of the target
circuit to ensure that all circuits operate correctly even in the worst-case
operating environment. There are three measure voltage margins as follows
[Austin04].

1. Process Margin
This ensures that performance uncertainties resulting from manufacturing
 variations in transistor do not prevent slower devices from completing
 computation within a clock period.

2. Ambient Margin
 This ensures correct operation at the worst-case temperature.
3. Noise Margin

This protects against a variety of noise sources that introduce uncertainty
in supply and signal voltage levels, such as di/dt noise in the supply
voltage and cross-coupling noise in logic signals.

The sum of these voltages defines the minimum supply voltage that ensures
correct circuit operation even in the worst-case condition. As mentioned
before, the energy consumption of CMOS circuit is quadratically
proportional to the supply voltage. Therefore, it is clear that there is a trade-
off between reliability and energy consumption.

Worm et al. proposed an interconnect system which uses low-swing
signaling, error detection codes, and a retransmission scheme [Worm02].
This technique optimally finds the interconnect voltage swing and frequency
with subject to workload requirements and signal to noise conditions. The
most straightforward way to reduce the energy consumption for the
communication is lowering the voltage swing of signals propagated through
interconnects. This however causes an increase of sensitivity to noise
sources because of the decreased noise margins. Their technique monitors bit
error rates of the interconnect on the fly as shown in Figure 9 and
dynamically finds the optimal swing level which minimizes energy

Energy Management Techniques for SOC Design

190 Yasuura, Ishihara and Muroyama

consumption while satisfying the reliability constraint. Their simulation
results show that the energy consumption can be reduced by 56% over a
conventional interconnect with more robustness to large variations in actual
workload, noise and technology quality.

Controller

vchFch

FIFO

Sender ReceiverEn
co

de
r

D
ec

od
er

vch

Error rates

Error
Detector

Figure 9. Dynamic Voltage Scaling for Reliable Data Transmission

Bertozzi et al. evaluated energy efficiency of several error resilient
techniques such as error correcting codes, a data retransmission technique
and so on [Bertozzi02]. Their experiments demonstrated that retransmission
strategies are more effective than the error-correction-based technique in
terms of energy efficiency.

Austin et al. proposed Razor, a voltage scaling technique based on dynamic
detection and correction of circuit timing errors [Austin04]. The technique
eliminates unnecessary voltage margins that the traditional worst-case design
methodologies require. In some cases, computations may fail and require
additional time and energy for recovery. However, the overall computation
consumes significantly less energy than traditional worst-case design.

3.4 Commercial Products

There has been a lot of power management software released before. Early
power management software used the BIOS to determine whether a device
had been idle long enough to shift a sleep state. With the introduction of
Advanced Power Management (APM) the OS began to control the power
settings and timings. With the Advanced Configuration and Power Interface
(ACPI) specification, all power management moved from the BIOS to the
hardware and operating system. In today’s low-power oriented computer
systems, chipsets support ACPI power and thermal management functions to
control various system-level and processor-level power and sleep states, and

191

they also still support APM. However, neither APM nor ACPI supports
dynamic voltage scaling of chipsets. Recently, many computer systems
including laptop PCs, PDAs, cellular phones, and etc. introduced the
dynamic voltage scaling technique. The following power management
software support dynamic voltage scaling.

• SpeedStepTM, Extended SpeedStepTM (Intel)
• PowerNow! TM (AMD)
• LongHaulTM (VIA Technologies)
• LongRunTM, LongRun2TM (Transmeta)
• SmartReflexTM (TI)
• IEMTM (ARM)

Most of the above software products are based on the dynamic voltage
scaling techniques mentioned in this section. Some of them also support a
dynamic body biasing technique which can dynamically control the
threshold voltage of transistors for reducing the leakage power consumption
of a chip. The detailed explanation of the dynamic body biasing technique
will be provided in Section 6.

3.5 Conclusions

In this section we addressed several techniques for lowering supply voltage
of chips considering voltage compatibility, a power-delay tradeoff and a
power-reliability tradeoff. As mentioned above, lowering supply voltage has
the biggest impact on power reduction. The techniques can be applied to
many kinds of SoC implementations like multi-chip module (MCM),
network on chip (NoC), system in package (SiP), chip multi processor
(CMP) and so on. However, it becomes more difficult in future to control
supply voltage due to the reliability issues. Breakthrough will appear if we
can tolerate negative effects of process variations, temperature variations,
soft errors and noises even in ultra low-voltage operation.

4. TECHNIQUES FOR REDUCING SWITCHING
ACTIVITY

Lowering the switching activity is a very promising way of decreasing the
power consumption. There are numerous researches on this issue. In this
section, we introduce system level approaches for reducing the switching
activity. System level switching activity reduction can be categorized as
follows:

• Turn off unused HW modules.

Energy Management Techniques for SOC Design

192 Yasuura, Ishihara and Muroyama

• Adjust datapath, the bit width of buses and operational units in a system.
• Trade precision for low power (Use narrow bit width).
• Compiler based instruction scheduling.

Practical strategies we pick up in this section are shutting down unused
modules, adjusting datapath width to minimize power consumption and
compiler optimization techniques for reducing the switching activity.

There are two main shutting down strategies: clock gating and power
gating as summarized in Figure 10. Power gating is mainly used for reducing
leakage power. Section 6 describes the power gating in more detail. The
best-known technique for reducing the switching activity is clock gating.

LargeModerateEnergy efficiency

LargeSmallOverhead (delay)

LargeSmallOverhead (power & area)

DifficultEasyHardware support

Power GatingClock Gating

Power GatingClock Gating

PLL DC-DC

 MTCMOS
(sleep transistor)

Figure 10. Comparison of Clock Gating and Power Gating

Clock network power can account for as much as 75 percent of the total
switching power of a chip, and sequential cells driven by clocks can account
for as much as 70 percent of the total clock power. Clock gating essentially
disables the clock to a circuit to save power by both preventing unnecessary
activity in logic modules and by eliminating power dissipation on clock
network. Using a simple AND or OR gate (depending on the edge on which
flip-flops are triggered) with the enable and clock signals as inputs, produces
a gated clock as output. One can also employ a level-sensitive latch to hold
the enable signal from the active edge until the inactive edge of the clock.
Clock gating can be applied in either fine-grained or coarse-grained manner.

193

Fine-grained allows us to reach miscellaneous small units in clock sinks and
aggressively save their dynamic power even for a few cycles. Coarse-grained
gating saves power from higher level of the clock tree by removing all clock
switching from its down-stream units.

Another strategy for reducing switching activity is datapath width
adjustment. Since datapath width, the bit width of buses and operational
units in a system, strongly affects the size of circuits and memories in a
system, the power consumption of a system also depends on the width of
the datapath. In design of embedded systems and System-On-a-Chip
(SOC), designers have to consider the trade off among system
performance, cost and power consumption. Bitwidth of data, the length of
data, computed in the system is one of the most important design
parameters related with performance, cost and power of the system. The
bitwidth of datapath and the size of memories strongly depend on the
bitwidth of data. Providing more datapath width for computation than
required, will consume more dynamic power and leakage power than
necessary by the extra bits.

Typical algorithms defined in C/C++ or SystemC will initially not
contain definitions of the actual bit width for operations and storage
elements. For algorithm selection, the design team often relies on floating
point and straight integer calculations. Based on the stimulus which is
applied to the design under optimization users can assess the minimum
and maximum values on specific operations and then choose the optimal
bit width accordingly. This allows users to understand the impact of bit
width on energy and is a step towards trade offs between quality, which
may be higher in a video application using higher bit width, vs. energy
which decreases with lower bit width in the operations. In quality driven
design, both higher and lower bits of data can be reduced. From the
requirements on the output quality, lower bits of data may be omitted in
the datapath width adjustment (See Figure 11). This means that there is
potential for further energy reduction by decreasing computation
accuracy.

In this section, we describe dynamic power management by using the
shutting down strategy, the datapath width adjustment strategy, and
instruction scheduling.

4.1 Dynamic Power Management (DPM)

System level dynamic power management (DPM) has gained considerable
attention in recent years as a way to save energy in devices that can be
turned on and off. DPM dynamically reconfigures systems to provide the
requested services and performance levels with a minimum number of active

Energy Management Techniques for SOC Design

194 Yasuura, Ishihara and Muroyama

components or a minimum load on such components. The fundamental
premise for the applicability of DPM is that systems and their components
experience non-uniform workload during operation time and that it is
possible predict, with a certain degree of confidence, the fluctuations of
workload. There are two power reduction methodologies with idle modes:
voltage scaling with frequency scaling and clock gating. Only clock gating
methodology is introduced.

int func(v1, v2)

{

 int x0, x1, x2, x3, x3;

 char xdfgp, leergre;

 x0 = v1 + v2;

 x1 = v2 – v1;

 df 0 * 1

Variables

Datapath

D/A

Output

ALU

Upper lower

Program

Figure 11. Datapath Adjustment

The control procedure is often called policy. An example of a simple
policy, ubiquitously used for laptops and palmtops, is the timeout policy,
which shuts down components after a fixed inactivity time, under the
assumption that it is highly likely that a component remains idle if it has
been idle for the timeout time. Power could be shut off or gated to
functional blocks when operating in a standby mode and restored as needed.
The gated circuit would not dissipate any power when turned off.
Additional circuit would be required to monitor the need for these
functional blocks. A problem with power gating is the latency between
when the signal to turn a unit on arrives and when the unit is ready to
operate. Retention flip-flops on an isolated power supply could be used to
save the logic state of all sequential elements when a chip is powered down,
eliminating the need to reinitialize the device when it comes out of standby
mode. Some products support multiple levels of standby (soft off, nap and
sleep) which differ in terms of the amount of power saving and latency
(See Figure 12).

195

Figure 12. Dynamic Power Managament

4.2 Datapath Width Adjustment (Bit-width
optimization)

Processor-based systems treat various data with different bit width. It is
efficient in power reduction not only to determine datapath width statically
but also to control the active datapath width dynamically.

First, we introduce static optimization, which adjusts datapath width. Bit-
width analysis is performed to extract information on the required bit width
of variables in programs and algorithms. For hardware design, using the
result of bit-width analysis, one can determine the length of registers, the
size of operation units, and the width of memory words on the datapath of a
system to minimize the meaningless power consumption by the useless bits.
Shorter registers and operation units reduce switching activity and the
leakage of extra bits on the datapath. However, the trade-off between power
consumption and execution time needs to be resolved. Generally, narrowing
the datapath width reduces the area and power of the processor, but degrades
the performance. The number of execution cycles increases, since some
single-precision operations should be replaced with double or more precision
operations in order to preserve the accuracy of the computation. Single-
precision operation are those whose precision is smaller than that of the
datapath width. For example, an addition of two 32-bit data is a single-
precision operation whose datapath width is equal to or greater than 32 bits,

Energy Management Techniques for SOC Design

196 Yasuura, Ishihara and Muroyama

while it is a double precision operation on 16-bit processors. Changing the
datapath width affects the size of data memory (RAM) and instruction
memory, which is mostly implemented by ROM in embedded systems. Let us
consider a program including two variables x and y, and assume that two
variables x and y require at most 18 bits and 26 bits, respectively (see
Figure 13). When the datapath width is 32 bits, two words are required to
store these two variables, and the amount of the data memory is 64 bits.
Since the minimum bit size required to store the variables is only 44 bits
(18+26), 20 bits of the memory (about 30%) are unused. By reducing the
datapath width to 26 bits, one can reduce the unused bits to 8 bits. Unused
bits, however, increase to 31 bits, if a 25-bit datapath is adopted, because y
requires two words. When the datapath width is 9 bits, two words and three
words are required for x and y, respectively, and the unused area is only 1 bit.
Many unused bits in the data memory can be eliminated by datapath-width
optimization.

main()
{
 int18 x;
 int26 y;

}

32 bits x 2 words = 64 bits

26 bits x 2 words = 52 bits

9 bits x 5 words = 45 bits

Datapath width is 32

Datapath width is 26

Datapath width is 9

Figure 13. An Example of Datapath Width Adjustment

Second, dynamic approach, which controls active datapath width, is

introduced. This approach is called value-based clock gating. There is a fact
that “narrow-width” data is common not only in multimedia codes, but also
in more general workloads. For example, over half the integer operation
executions require 16 bits or less on a 64-bit processor. Basic mechanism to
reduce power consumption is operand-value-based clock gating to turn off
portions of memories, buses, and arithmetic units that will be unused by

197

narrow-width operations. This optimization results in around 50% reductions
in the data bus and integer unit power consumption. By applying this for
data memory, 80% power reduction can be achieved. However, this
approach requires hardware cost for detecting dynamically operation widths
and turning off the unused units. As shown in Figure 14, if there is a 7-bit
width data, only the lower data memory (D0) is accessed.

Figure 14. A Data Memory Example Using Operand Based Clock Gating

4.3 Compiler Optimization

Compiler optimization is also effective for reducing the switching. In
[Tomiyama1998], they proposed an instruction scheduling technique to
reduce power consumption due to off-chip driving. Their technique reduces
transitions on a data bus between an on-chip cache and a main memory, and
as a result, power consumed by off-chip drives in the main memory, and is
reduced. Let us consider an example in Figure 15, and assume 8-bit
instruction width and 32-bit cache line size. There are four instructions
(a)-(d) in the memory block. When the memory block is sent to the cache,
the instruction (a) is sent first. At the time, four bits switch from high- to low-
level. At the next cycle, (b) is sent to the cache and six bits switch to

Energy Management Techniques for SOC Design

198 Yasuura, Ishihara and Muroyama

opposite level. As a result, the cache miss invokes twenty four transitions
totally in the data bus. If changing the positions of two instructions (b) and
(c) keeps the meaning of the program, it reduces bus transitions by 25%,
from twenty four to eighteen bus transitions (See Figure 15). Thus the
instruction scheduling can reduce transitions on the bus. Tomiyama et al.
reported that the scheduling algorithm achieves significant reduction in
transitions on the data bus, up to 28% of reduction, and runs efficiently.

(a) 10010011
(b) 11101000
(c) 10111011
(d) 01110100

 11111111

(a) 10010011

(b) 11101000

(c) 10111011

(d) 01110100

 11111111

Main Memory Value on Data Bus Switching bits

4

6

4

6

4

Total: 24

(a) 10010011
(c) 10111011
(b) 11101000
(d) 01110100

 11111111

(a) 10010011

(c) 10111011

(b) 11101000

(d) 01110100

 11111111

Main Memory Value on Data Bus Switching bits

4

2

4

4

4

Total: 18

(1) Bus transitions
w/o optimization

(2) Bus transitions
w/ scheduling

Figure 15. An Example of Instruction Scheduling for Low Power

4.4 Commercial Products

The Pentium 4 processor uses the clock gating technology. Every unit on the
chip has a power reduction plan, and almost every functional unit block
contains clock gating logic.

4.5 Conclusions

In this section, we summarized system level switching activity reduction
strategies. The basic strategies are clock gating and datapath width
adjustment. Analyzing statically and dynamically system requirements,
unnecessary switching activity reduction can be achieved.

199

5. TECHNIQUES FOR REDUCING THE PRODUCT

OF SWITCHING ACTIVITY AND A LOAD
CAPACITANCE

A major contributor to the system budget is the memory-processor interface.
Ko et al. mentioned that the power dissipation of an external memory access
is at least an order of magnitude higher than that of an on-chip access
[Liu94][Ko98]. For this reason, a lot of techniques for reducing energy
consumption of the off-chip buses have been proposed. The basic idea is
reducing the switching activities (SA) of hardware modules whose load
capacitance (CL) is large even if the SAs of low-CL modules are increased.
Suppose we have a processor system including a CPU core, cache memories,
an off-chip memory, and a processor-memory interface as shown in Figure
16. The energy dissipation of the memory-processor interface, Einterface, can
be expressed by (5.1),

()overheadmemorydataaddressinterface EEEENE +++⋅= (5.1)

where N, Eaddress, Edata, Ememory, and Eoverhead, represent the number of memory
accesses, the energy dissipation in address buses per access, that in data
buses per access, that in a memory module per access and energy overhead
per access, respectively. There may exist the energy overhead if the
memory-processor interface is modified for reducing the energy
consumption in off-chip buses. As one can see, we can reduce the energy
dissipation of the processor-memory interface by decreasing N, Eaddress, Edata,
Ememory, and Eoverhead. The problem of minimizing the total energy
consumption of the processor system is basically equivalent to finding the
best tradeoff point between on-chip computational energy and off-chip
communication energy.

CPU
core

D-Cache
Memory

Eaddress

Ebuses

Ememory

Eoverhead

I-Cache

Figure 16. Energy Dissipation of Processor-Memory Interface

Energy Management Techniques for SOC Design

200 Yasuura, Ishihara and Muroyama

There are the following three major approaches for reducing the energy
required for the communication between a memory and a processor.

• Cache miss reduction
• Bus encoding
• Code compression

5.1 Cache Miss Reduction

Since cache miss rate is associated with the number of off-chip memory
access, reducing cache miss rate leads to a reduction of the energy
dissipation for the off-chip memory accesses. The most straightforward way
for reducing the cache miss rate is to employ larger cache memory on a chip.
Many techniques have been proposed for optimizing cache configuration
considering tradeoff between energy consumption of off-chip memory and
cache memory [Su95][Hicks97][Li98][Shine99][Malik00]. All these
techniques are based on the fact that while a bigger cache consumes more
energy per access, it can reduce the number of cache misses and as a result
can reduce the energy consumption for the off-chip accesses. Suppose we
have a processor with on-chip cache memory which can be resized for the
target application as shown in Figure 17.

Caches

CPU core Program Memory
 (Flash Memory)

Resizable Cache

Processor

Figure 17. An Example of Resizable Cache

If we optimize the cache size for the target application, the energy
consumption for memory accesses can be drastically reduced. For example,
based on the experiment in [Ishihara05], the optimal cache size for the
SPEC95 benchmark program, “Compress”, is 2kB as shown in Figure 18. If
we use the 4kB cache instead of 2kB power consumption of the cache
becomes very large. Conversely, if the 1kB cache is used, the power
consumption of off-chip memory becomes huge due to the large number of
cache misses. In the optimal case, the power consumption can be reduced by
85% compared to the result for 1kB cache memory. Note that the leakage

201

power of the cache memory is assumed to be 10% of its dynamic power
consumption.

0

5

10

15

20

25

16 8 4 2 1
Instrucation Cache Size [kB]

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]
Leakage power
of cache memory
Dynamic power
of cache memory
Power dissipation
of main memory

Figure 18. Cache Optimization for Low Power

Li and Henkel proposed Avalanche framework which simultaneously
evaluates the tradeoffs of energy dissipations of caches and main memory
[Li98]. The trade-off between system performance and energy dissipation is
also explored in the framework. Their experiments demonstrated significant
improvements (up to 95% energy saving) in energy dissipation.

Another approach to reducing the number of cache misses is a compiler-
based approach [McFarling89][Hwu89][Tomiyama96][Panda96] [Hashemi97]
[Ghosh99]. The idea is to modify the place of basic blocks, procedures, or
global variables in the address space so that the number of cache conflict
misses is minimized. This can significantly reduce the number of cache misses
and energy consumption of memory subsystems. We first explain the idea
behind the typical code and data placement technique. Consider a direct-
mapped cache of size C (= 2m words) whose cache line size is L words, i.e., L
consecutive words are fetched from the main memory on a cache read miss. In
a direct-mapped cache, the cache line containing a word located at memory
address M can be calculated by (⎣M/L⎦ mod C/L). Therefore, two memory
locations Mi and Mj will be mapped onto the same cache line if the following
condition holds,

0 mod =⎟
⎠

⎞
⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢−⎥⎦

⎥
⎢⎣
⎢

L
C

L
M

L
M ji

 (5.1)

Energy Management Techniques for SOC Design

202 Yasuura, Ishihara and Muroyama

Several code and data placement techniques have used the above formula
[5.6-5.13]. Assume a direct mapped instruction cache with 4 cache-lines,
where each cache-line is 32 bytes as shown in Figure 19. Functions A, B, C
and D are placed in the main memory as shown in the left side of Figure 19.
If functions A, B, and D are accessed in a loop, conflict misses occur
because A and D are mapped onto the same cache line. If the locations of C
and D are swapped as shown in the right side of Figure 19, the cache conflict
is resolved. Code placement techniques modify the placement of basic
blocks or functions in the address space so that the total number of cache
conflict misses is minimized. Similar to the code placement techniques, data
placement techniques modify the placement of global variables in the
address space so as to reduce the number of data cache misses.

......

cache line memory block
(32 bytes)

A function
(104 bytes)

(L=32 bytes)

S=4

main memoryI-cache

conflict misses
in cache-line 1

Figure 19. An Example of Code Placement

Kulkarni et al. proposed a data placement algorithm which finds the
optimal locations of global variables in the main memory [Kulkarni01]. The
algorithm also explores different cache sizes considering trade-offs among
performance, energy consumption and chip area. In the first step, they
measure the cache miss rates for different cache sizes. Once the miss rates
are obtained, the algorithm performs data placement for each cache size and
estimate the energy consumption including energies for on-chip accesses and
off-chip accesses. Depending on the design constraints, the designer can
either choose a lower power solution with some overhead in size and vice
versa. Their experiments demonstrated that the total energy consumption can
be reduced by 10.6% with 26% performance overhead and 7% area overhead.

 Scratchpad memory can be used as a design alternative for the on-chip
cache memory. Current embedded processors particularly in the area of

203

multimedia applications and graphic controllers have on-chip scratchpad
memories. In cache memory systems, the mapping of program elements is
done during runtime, while in scratchpad memory systems this is done by
the programmer or the compiler. Unlike the cache memory, the scratchpad
memory does not need tag search operations and, as a result, it is more
power efficient than the cache memory if programmers or compilers can
optimally allocate code and data on the scratchpad memory.

Ishihara and Yasuura proposed a code allocation technique which finds a
size of an on-chip scratchpad memory and a code allocation to the
scratchpad memory simultaneously so as to minimize the total energy
required for fetching instructions [Ishihara00]. Their experiments showed
that the energy consumption for the instruction fetching can be reduced by
50%. Benini et al. presented a novel solution for the design hierarchy of low-
power embedded systems [Benini00]. The idea is mapping the most
frequently accessed data onto a small memory, called application-specific
memory (ASM) which is placed vary close to the processor. The
experimental results on a set of typical embedded programs have shown that
the energy consumption can be reduced by 68% with respect to equivalent
caches having different sizes, organizations and configurations. Banakar et al.
proposed an approach for selection of on-chip memory configuration from
various sizes of cache and scratch pad memories [Bankar02]. Their
experiments show that scratchpad based compile-time memory outperforms
cache-based run-time memory on almost all aspects. For example, the total
energy consumption of scratchpad based systems is less than that of cache-
based systems by 40% on an average.

5.2 Bus Encoding

Bus encoding techniques reduce communication power by changing the
format of the information in a way that the total communication power is
minimized. The basic strategy is to reduce switching activity of off-chip
buses by encoding data transmitted between a processor and a memory. We
have to consider a tradeoff between the energy consumed in buses and the
energy overhead of encoding and decoding circuits. Suppose we have an
original data format, Format-A, and low-switching format, Format-B as
shown in Figure 20. Energy consumption for sending data using Format-A
and Format-B is EA and EB, respectively. The energy overhead for encoding
and decoding (i.e., translating Format-A into Format-B and vice versa) is
Eoverhead. Bus encoding techniques are effective only when the following
inequality holds,

.overheadEEBEA +>

Energy Management Techniques for SOC Design

204 Yasuura, Ishihara and Muroyama

EncoderEncoder DecoderDecoder

Format-A Format-AFormat-B Format-B

Sender
off-chip

Receiver

Figure 20. Low-Power Bus Encoding

The bus-invert coding is one of the most popular approaches [Stan95]. In
the bus-invert coding, if the Hamming distance (the number of switched bits)
between the new pattern to be transferred and the old one currently on the
bus is larger than half the bus width, the new pattern is transferred with each
bit inverted. An additional invert bit is used to inform the receiver side
whether the pattern is inverted or not. The experiments demonstrated that the
bus-invert coding technique decreases the I/O peak power dissipation by
50% and the I/O average power dissipation by 25%.

For instruction address patterns, where consecutive patterns are often
sequential, the Cray code is efficient [Su94]. The Gray code has only one-bit
difference in consecutive number for addressing. Due to locality of program
reference, Gray code addressing can significantly reduce the number of bit
switches. The experimental results showed that for typical programs running
on a RISC microprocessor, using Gray code addressing reduce the switching
activity at the address lines by 30-50% compared to conventional binary
code addressing.

In the T0 code [Benini97], the bus transitions are further reduced by
freezing the address lines when consecutive patterns are detected to be
sequential. An extra bus line is employed to inform the receiver side whether
or not the current pattern is sequential.

In special purpose applications, where the information about the
sequence of patterns available a priori, the characteristics of patterns can be
exploited to efficiently reduce bus transitions. The Beach Solution
[Benini97-2] makes clusters of bus lines based on statistical information of
address patterns and then generates an encoding function for each cluster
such that the encoded version of each cluster results in less transitions.

For data address patterns which are less sequential than instruction
address patterns and less random than data patterns, the Partial Bus-Invert
code [Shin98] performs better. It applies the bus-invert coding to a pre-
defined sub-group of bus lines thereby avoiding unnecessary inversion of
relatively inactive and/or uncorrelated bus lines. The experiments on
benchmark examples indicate that the partial bus-invert coding reduces the
total bus transitions by 62.6% on the average, compared to that of the
unencoded patterns.

205

5.3 Code Compression

An alternative approach to bus encoding is code compression. The basic
strategy is to use narrow instruction codes for reducing the switching
activity when the instructions are transmitted from a program memory to
 a CPU.

One of the best known instruction compression approaches is the
“Thumb” instruction set of the ARM microprocessor family [Segars95].
ARM cores can be programmed using a reduced set of 16-bit instructions
instead of standard 32-bit RISC instructions, which reduces required
instruction memory occupation and bandwidth by a factor of 2.

Yoshida et al. proposed a code compression technique as depicted in
Figure 21 [Yoshida97]. Suppose we have an object code and the number of
distinct instructions appeared in the code is N. In this case, we can express
all those instruction codes using ⎡ ⎤Nlog -bit binary patterns. Since the
firmware running on a given embedded processor normally uses only a small
subset of the instructions supported by the processor, a ⎡ ⎤Nlog -bit is much
smaller than original instruction width. As a result, we can reduce the energy
consumption for fetching instruction. According to this idea, the object code
is stored in memory in compressed format, i.e., each instruction is replaced
with a ⎡ ⎤Nlog -bit binary pattern which is in one-to-one correspondence
with the original instruction. Every time an instruction is fetched from the
program memory, it is decompressed (i.e., the original format is restored)
using an instruction decompression table (IDT) and then passed to the
processor’s decoding logic. This architecture is motivated by the fact that
software programs normally use only a subset of all possible instructions
offered by the processor’s instruction set. Since ⎡ ⎤Nlog (where N is the
number of distinct instructions) is usually much smaller than the original
instruction width, this approach reduces both memory energy and bus power
consumption.

Memory

Core

32bits

Addresses

32

Memory

bits

Addresses

IDT

32

logN

Core

logN

Figure 21. An Example of Code Compression

Energy Management Techniques for SOC Design

206 Yasuura, Ishihara and Muroyama

Although, in principle, the solution depicted above offers good
opportunities for energy reduction, it often happens that the number of
distinct instructions, N, used by a program is not small. In such a situation,
the size of the Instruction Decompression Table (IDT) becomes very large,
and therefore area and power dissipation of the IDT would be very large as
well. As a solution of the problem, Benini et al. proposed a selective
instruction compressing technique [Benini99]. Their idea is to compress only
a subset of fixed cardinality (256 elements) of the instructions used by a
program, namely, those that are executed more often. This approach is
motivated by the observation that the 256 most frequently used instructions
are always executed for at least 50% and up to 99.99% of the time. The idea
can be implemented as shown in Figure 22. This approach guarantees a fixed
and limited size for the IDT and reduces energy and area overhead for
decompressing the instructions.

Memory

Core

32bits

Addresses

32

Memory

8 bits

Addresses

32

CNTR

IDT

32

8

0
1

Core

Figure 22. Selective Code Compression

5.4 Conclusions

We addressed several techniques for lowering switching activity of off-chip
buses considering tradeoff between the power consumption for on-chip
computation and that for off-chip communication. Other than the techniques
addressed in this section, there have been proposed a lot of techniques which
reduce switching activity of high capacitance nodes. Specifically, circuit
level approaches like logic synthesis techniques, placing and routing
techniques, and high-level synthesis techniques which reduce transitions of
high capacitance modules are well studied. On the other hand, there is much
scope left to study on source-level design techniques which modify an
application program in a way that power-hungry hardware components are
less frequently used without sacrificing performance, computational quality
and system reliability.

207

6. TECHNIQUES FOR REDUCING REAKAGE

POWER

For mobile/portable devices with a high standby-to-active ratio, leakage
current may be the dominant factor in determining overall battery life. The
three primary sources of leakage current (See Figure 23) are sub-threshold
(Isub) or source-to-drain leakage current which grows exponential with

Figure 23. Sources of Leakage Current

lowering Vt and increasing temperature, reverse bias junction band-to-band
tunneling current (Ib-b), and gate oxide tunneling current (Igate). Reducing of
gate oxide thickness results in an increase in the field across the oxide. The
high electric field coupled with low oxide thickness results in tunneling of
electrons from substrate to gate and also from gate to substrate through the
gate oxide, resulting in the gate oxide tunneling current. Most of the interests
have focused on the leakage caused by sub-threshold current and gate oxide
tunneling current in terms of system level leakage management. Due to the
leakage mechanisms described above, leakage current increases dramatically
in the scaled devices. Particularly, with reduction of threshold voltage to
achieve high performance, leakage power becomes a significant component
of the total power consumption in both active and standby modes of
operation. Since in the sleep mode Igate will likely be dominant, two
approaches may be considered: (1) reduce the threshold voltage of the sleep
device somewhat (e.g. 100mV) to minimize the delay penalty associated
with an extra series device; this allows the use of smaller sleep devices to
simultaneously reduce Igate, dynamic power, and layout area while not
penalizing standby mode leakage since Isub << Igate or (2) incorporate a multi-
Tox process was proposed.

Energy Management Techniques for SOC Design

208 Yasuura, Ishihara and Muroyama

A key difference between the state dependence of Isub and Igate is that the
magnitude of Isub primarily depends of the number of on vs. off transistors in
a stack, while Igate also depends strongly on the position of the on/off
transistors.

Leakage power can be expressed as follows [6-2]:

DDleakleak VInP ⋅⋅= ,)e)(V/V(I THDD V/V
TTHleak

−−∝ 1α (6-1)

where n indicates the number of transistors, VT denotes thermal voltage
which is about 25mV at room temperature and increases linearly as
temperature increases. According to this relationship, leakage current and
therefore power dissipation increases exponentially with decreasing
threshold voltage (VTH) and with increasing temperature. Equation (6-1)
suggests two ways to reduce Pleak. First, we could turn off the supply voltage.
That is, set VDD to zero so that the factor in parentheses also becomes zero.
Second, we could increase the threshold voltage, which (because it appears
as a negative exponent) can have a dramatic effect in even small increments.
Of course using high-VT transistors will degrade performance. A solution is
to have mixture of high and low VT transistors. Use low VT transistors on
timing-critical paths and high Vt transistors on non-critical paths. This
approach is referred to as dual VT design. Multi-Threshold CMOS
(MTCMOS) cells can be used to control leakage power (See Figure 24).
Low VT transistors are used to implement gates for high speed, while high
VT transistors are added to form virtual rails. These high VT transistors
suppress the leakage current when the sleep signal is activated. Of course,
there needs to be a sleep control mechanism.

Figure 24. Multi-Threshold CMOS (MTCMOS)

209

Variable Threshold CMOS (VTCMOS) is a body biasing technique that
controls effective threshold voltage by applying substrate bias to MOS
transistors (See Figure 25). This technique is applicable at runtime. In the
active mode, a zero body bias is applied. In standby mode, the effective
threshold voltage is made to be larger by applying a reverse substrate bias to
block the leakage current. Transistor performance in the active mode is kept
the same as that in the conventional design by utilizing low VDD and low VT .
However, triple well technology is required.

Figure 25. Variable-Threshold CMOS (VTCMOS)

In addition to above approaches, area reduction also reduces leakage
power. Datapath width adjustment described in Section 6.4 is also effective
for reducing the leakage power. The power dissipation of the whole system
not only dynamic power but also leakage power is drastically reduced by
tuning the parameters of processors and memories tailored for the
applications.

Reducing the number of transistors and controlling power supply voltage,
VT , or temperature dynamically can reduce the leakage. Basic strategies are
shown below. Some system level methodologies related using the strategies
are shown in this section.

 using high threshold voltage for non-critical paths
 shifting the circuit to the low leakage mode
 cooling high temperature parts,
 reducing the number of transistors.

Many techniques [Ishihara2002, Kaxiras2000, Powell2000, Sato2004]
proposed to address leakage power have focused on cache memory that is a
major leakage consumer of the entire system because leakage power is a
function of the number of transistors. For example, StrongARM processor
uses 60% of the die area for cache memories [Manne1998].

Energy Management Techniques for SOC Design

210 Yasuura, Ishihara and Muroyama

6.1 Multiple Vth CMOS and Dual Vth Techniques

One way to increase the threshold voltage is to use Multiple Threshold
Circuits with sleep transistors [Calhoun2003]. This involves isolating a leaky
circuit element by connecting it to a pair of virtual power supplies that are
linked to its actual power supplies through sleep transistors (Figure 24).
When the circuit is active, the sleep transistors are activated, connecting the
circuit to its power supplies. However, when the circuit is inactive, the sleep
transistors are deactivated, thus disconnecting the circuit from its power
supplies. In this inactive state, almost no leakage passes through the circuit
because the sleep transistors have high threshold voltages. This technique
effectively confines the leakage to one part of the circuit, but is tricky to
implement for several reasons. The sleep transistors must be sized properly
to minimize the overhead of activating them. They cannot be turned on and
off too frequently. Moreover, this technique does not readily apply to
memories, because memories lose data when their power supplies are cut.

 Another way to increase the threshold is to employ dual threshold
circuits. Dual threshold circuits [Liu2004, Wei1998, Ho2004] reduce
leakage by using high threshold (low leakage) transistors on non-critical
paths and leakage by using low threshold transistors on critical paths, the
idea being that non-critical paths can execute instructions more slowly
without impairing performance.

6.2 Dynamic Power Management for Reducing Leakage

Adaptive body biasing technique [Seta1995, Kobayashi1994,Nose2002] is a
runtime technique that reduces leakage power by dynamically adjusting the
threshold voltages of circuits depending on whether the circuits are active.
When a circuit is not active, the technique increases its threshold voltage, thus
saving leakage power exponentially, although at the expense of a delay in
circuit operation. When the circuit is active, the technique decreases the
threshold voltage to avoid slowing it down. To adjust the threshold voltage,
adaptive body biasing applies a voltage to the transistor’s body known as a
body bias voltage (Figure 25). Vt is dynamically controlled through software
depending on the workload of a processor. The Vth-hopping scheme
[Nose2002] can achieve 82% power saving compared with the fixed low-Vth
circuits. In order to efficiently suppress the leakage power, combining the
adaptive body biasing technique and the dual Vt technique could be useful
(See Figure 26). In this case, the adaptive body biasing is used only in the
critical paths. On the other hand, Vt of the non-critical paths gates is set to a
considerably higher value (high-Vt), which is not changed for the entire time.

211

High Vt
for non-critical paths

Variable Vt
for critical paths

VBBP

VBBN

GND

VDD

GND

VDD

Backgate
Bias (Vt)
Controller

Frequency
Controller

Target Processor

Power Control Block

f, f/2,..

Figure 26. Combining VTCMOS and Dual Vth Technologies

6.3 Thermal Management

Several cooling techniques have been developed since the 1960s. Some
below cold air into the circuit, while others refrigerate the processor
[Schmidt2002], sometimes even by costly means such as circulating
cryogenic fluids like liquid nitrogen [Krane1988]. These techniques have
three advantages. First, they significantly reduce subthreshold leakage. In
fact, a recent study [Schmidt2002] showed that cooling a memory cell by
50 degrees Celsius reduces the leakage power by five times. Second, these
techniques allow a circuit to work faster because electricity encounters less
resistance at lower temperatures. Third, cooling eliminates some negative
effects of high temperatures, namely the degradation of a chip’s reliability

Energy Management Techniques for SOC Design

212 Yasuura, Ishihara and Muroyama

and life expectancy. Recently, the reliability is a much more significant issue
in design. Despite these advantages, there are issues to consider, such as the
costs of the hardware used to cool the circuit. Moreover, cooling techniques
are insufficient if they result in wide temperature variations in different parts
of a circuit. Rather, one needs to prevent “hotspots” by distributing heat
evenly throughout a chip.

Reliability and leakage power are both strongly affected by system
temperature. In [Simunic], they proposed a joint reliability and power
management optimization. Their approach achieved a significant
improvement in energy consumption (40%) in tandem with meeting
reliability constraint for all operating temperatures.

Another thermal management is a temperature aware task scheduling
[Hung2005], which is task scheduling such that the temperature of HW is
minimized.

6.4 Bitwidth Optimization for Reducing Leakage

Cao et. al. [Cao2002] reported a bitwidth optimization technique for
reducing not only dynamic and leakage power at system level design. For
Lempel-Ziv algorithm, they got dynamic power saving of 59.2% and leakage
power saving of 64.3 at the optimal datapath width of 15bits; for ADPCM
encoder, dynamic power saving is 44.2% and leakage power saving is 4.74%
at the optimal datapath width of 19bits; for MPEG-2 AAC audio decoder,
the dynamic power saving is 14.5% and leakage power saving is 18.1% at
the optimal datapath width of 24bits and MPEG2 video decoder, the
dynamic power saving is 18.3% and leakage power is 19.1% at the optimal
datapath width of 28bits. For different application, the number of variables is
different and the effective size of variables is also different, therefore the
optimal datapath width of minimal power is different. Note that this is under
the assumption ActTime : InactTime = 1 : 1. ActiTime is the application
execution time, which is called active time and InactTime is the idle time,
which is called inactive time.

6.5 Commercial Products

In [Mutoh1996], they presented a power management processor, which uses
MTCMOS technology.

Toshiba used the mixed MTCMOS and Dual VT method to reduce the
leakage power in a DSP core for W-CDMA cell phones. Cell phones spend a
significant amount of time in the standby mode. Toshiba also presented a
low power single-chip MPEG4 video-phone LSI. The VTCMOS technology
is employed to reduce a standby leakage current, which is only 17% of the

213

conventional CMOS design [ISSCC A 60MHz 240mW MPEG-4 video-
phone LSI with 16Mbit embedded DRAM].

6.6 Conclusions

This section describes leakage power reduction methodologies. There are
four basic strategies: using high-VT on non-critical paths, shifting low
leakage mode, cooling high temperature parts, and reducing the number of
transistors.

7. POWER REDUCTION TECHNIQUES USING
APPLICATION SPECIFIC HARDWARE

The ultimate way for energy reduction is creating application-specific
integrated circuits (ASICs) that implement their algorithms directly in
dedicated, fixed-function logic. The most energy-efficient type of
processor core is the “application-specific instruction processor” (ASIP).
These processors are custom designed for the application at hand. Today,
however, a few companies offer automated tools that generate ASIPs based
on parameters supplied by the system designer. ASIC designers can also
achieve good energy efficiency by starting with a processor core and then
customizing the core to the needs of their application. The processor cores
offered by ARC and Tensilica are specifically designed for customization
by the system designer. Both companies' offerings allow the system
designer to add custom instructions that can produce massive energy
efficiency gains.

7.1 Energy-Flexibility Tradeoff

Power consumption heavily depends on an implementation style and its
flexibility [Rabaey00]. In Figure 27, the tradeoff between energy
consumption and flexibility for different architectures is shown. As one can
see, the dedicated hardware (ASICs) is 4 orders of magnitude more power
efficient than embedded processors. Therefore, if there is no need for
flexibility, the ASIC implementation is preferred. In practice, however,
many systems require flexibility of the system in order to support not only
existing applications but also upcoming ones.

We can broadly categorize system architectures which concurrently
satisfy high flexibility and low energy consumption as follows,

Energy Management Techniques for SOC Design

214 Yasuura, Ishihara and Muroyama

Dedicated HW
ASICs

Reconfigurable HW

ASIPs, DSPs

Embedded Processors SA110
400MIPS/W

DSP: 3000MOPS/W

10,000 to 50,000 MOPS/W

100,000 to 1,000,000 MOPS/W

Flexibility

MOPS/W

Figure 27. Energy-Flexibility Tradeoff

1. A hybrid architecture which consists of embedded processor or DSP and
dedicated hardware, and

2. A configurable processor.

7.2 Hybrid Architecture

A hybrid-architecture consists of a microprocessor core, a set of standard
cores, and a set of application specific cores as shown in Figure 28. The
design goal using the hybrid-architecture is to partition a given application
into the microprocessor core and the application specific cores in order to
minimize the total energy consumption.

MPU

Dedicated HW

Dedicated HW

I-Cache

D-Cache

Application

Figure 28. An Example of a Hybrid-Architecture

Hardware/software partitioning is the process of dividing an application
into software running on a microprocessor and dedicated hardware. This

215

approach is a well-established design methodology with the goal to increase
the performance and to decrease the energy consumption of a system as
described.

Dave et al. proposed a hardware/software co-design technique, called
COSYN, which targets embedded systems consisting of general-purpose
processors, ASICs and FPGAs [Dave97]. Functions of COSYN include
allocation, scheduling, performance estimation, and power optimization.
COSYN finds hardware/software partitioning based on the performance and
power estimation of a processing element.

Henkel proposed a hardware/software partitioning technique for low-
power core-based systems [Henkel99]. The technique considers the power
consumption of a whole embedded system consisting of a microprocessor
core, application specific cores, cache cores and a memory core. The
technique is based on a fine-grained (instruction/operation-level) analysis of
energy consumption. The experimental results demonstrated high reductions
of power consumption between 35% and 94% at the cost of a relatively
small additional hardware overhead.

7.3 Configurable Processor

A configurable processor core is a fully functional processor design that can
be customized or expanded to meet the performance and/or energy
efficiency needs of applications [Wei05]. There are four general ways a
processor can be configured:

• By selecting from standard configuration options, such as bus widths,
interfaces, memories, floating-point units, etc.

• By adding custom instructions that describe new registers, register files
and custom data types, such as 56-bit data for security processing or 256-
bit data types for packet processing.

• By adding custom, high-performance interfaces that exceed the
bandwidth abilities of the more common shared-bus architectures of
conventional RISC and DSP cores.

Configurable processors are typically delivered as synthesizable RTL code,
and can be easily mapped onto an FPGA or SoC design. Some configurable
processors are provided with automatically tailored software-development
tools (the compiler, assembler, debugger, linker, and profiler), EDA
synthesis scripts, and verification test benches that reflect the designer-
defined architectural extensions so that no additional effort is required to
ready the configured core for SoC development.

The ability to add custom instructions of any width allows an SoC
designer to use a configurable processor core to implement datapath

Energy Management Techniques for SOC Design

216 Yasuura, Ishihara and Muroyama

operations that closely match the abilities of a manually designed RTL
block. Since the configurable processor does not have a feature for
dynamically reconfiguring the structure of the processor, it is more energy
efficient than a reconfigurable processor. In the configurable processor core,
the datapaths are implemented using the base processor's integer pipeline,
plus additional execution units, registers, and other functions added by the
chip architect or SoC designer for a target application.

Energy efficiency of the configurable processor typically comes from the
following three features [Wei05],

1. Configuration of the instruction set permits a much closer fit of the
processor to the target application,

2. Configuring the processor removes unneeded hardware features like
larger cache memories than needed, unused register files and extra bits of
datapath [Inoue00], and

3. Automatic processor generation tools enable logic optimization, signal
switching activity reduction, and seamless mapping into low-voltage
circuits.

A lot of configurable processors and their optimization methodologies are
proposed. However, only a few of them focus on methodologies for lowering
energy consumption.

In [Inoue00], Inoue et al. proposed a flexible SoC architecture and its
optimization framework, called FlexSys, which allows system designers to
customize datapath width and memory size for a target application. A key of
the FlexSys technology is that it allows designers to customize the core
processor for the target application by replacing a few photomasks used for
via layers only, which results in a low-cost customization of the processor
for a target application. The experiments using DSPstone benchmark
programs demonstrated that the energy consumption can be reduced by 54%
compared to the normal RISC processor-based system which has a CPU core
with 32-bit datapath and the fixed number of memory words.

7.4 Conclusions

In this section we introduced a concept of energy-flexibility tradeoff. We
showed that system designers can drastically reduce energy consumption by
trading flexibility for energy consumption. However, in practice, it is very
important to preserve system flexibility in case of future upgrade or
modification in a target application. Therefore, we have to find the best
compromising point between high flexibility and low energy consumption.
We can broadly categorize system-level methodologies which satisfy high
flexibility with low energy consumption as follows,

217

1. hardware/software partitioning for a hybrid architecture which consists of

a microprocessor core and dedicated hardware and
2. exploiting customizability of configurable processors.

These strategies allow system designers to explore SoC architectures
considering tradeoff between flexibility and energy consumption. As a result,
system designers can find the best tradeoff point which compromises
between high flexibility and low energy consumption.

8. SUMMARY

This chapter addressed several key methodologies for reducing power
and/or energy consumption of SoCs which consist of hardware and
software running on it. Each of those methodologies takes design tradeoffs
into consideration. In Section 3, we introduced an energy-delay tradeoff
and an energy-reliability tradeoff in SoC design. Section 4 discussed on a
tradeoff between energy consumption and quality of services (QoS). The
QoS, in this chapter includes precision (or computational quality) and
latency (or response time). In section 5, a tradeoff between computational
energy and communication energy is considered. Section 6 summarized
several leakage reduction techniques considering the energy-delay tradeoff
and the energy-QoS tradeoff. In Section 7, we introduced an energy-
flexibility tradeoff. The key point of the energy reduction techniques is to
take the tradeoffs into consideration according to a design objective and
design constraints.

The problem of how to model and evaluate complicated SoCs in terms
of energy, performance, QoS, reliability and flexibility becomes more
attractive to tackle. As the supply voltage and threshold voltage of chips is
lowered down along with the transistor scaling, sensitivity to temperature
variation, process variation, sources of soft error and noise sources is
increased. This results in model uncertainty and makes evaluation of SoC
difficult. Increasing size, complexity, and functionality integrated on SoC
causes this problem to become more difficult. In the near future, modeling
and evaluation of SoC dynamically and/or statically taking the model
uncertainty into account is one of the most important themes for low-
energy SoC design.

REFERENCES

[Black69] J. R. Black, “Electromigration Failure Modes in Aluminum Metallization for
Semiconductor Devices, ” in Proc. of IEEE, vol. 57, no. 9, pp. 1587-1594, Sep. 1969.

Energy Management Techniques for SOC Design

218 Yasuura, Ishihara and Muroyama

[Weste93] N. Weste and K. Eshraghian, “Principles of CMOS VLSI design”, Addison-

Wesley, 1993.
[Chatterjee96] A. Chatterjee, M. Nandakumar, and I. Chen, “An Investigation of the Impact

of Technology Scaling on Power Wasted as Short-Circuit Current in Low Voltage Static
CMOS Circuits,” in Proc. ISLPED, pp. 145-150, Aug. 1996.

[Usami95] K. Usami, and M. Horowitz, “Clustered Voltage Scaling Techniue for Low-Power
Design”, in Proc. of Int’l Symposium on Low Power Design, pp. 3-8, April, 1995.

[Johnson97] M. C. Johnson and K. Roy, “Datapath Scheduling with Multiple Supply Voltages
and Level Converters,” ACM TODAES, vol.2, no.3, pp. 227-248, July, 1997.

[Chandrakasan95] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R. W. Brodersen, “Optimizing Power Using Transformations,” IEEE Trans. on CAD,
vol.14, no.1, pp. 12-31, Jan., 1995.

[Raghunathan94] A. Raghunathan and H. K. Jha, “Behavioral Synthesis for Low Power”, in
Proc. of Int’l Conference on Computer Design, pp. 318-322, Oct., 1994.

[Raghunathan95] A. Raghunathan and H. K. Jha, “An Iterative Improvement Algorithm for
Low Power Data Path Synthesis”, in Proc. of Int’l Conference on Computer Aided Design,
pp. 597-602, Nov., 1995.

[Goodby94] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitectural Synthesis of
Performance-Constrained Low-Power VLSI Designs”, In Proc. of Int’l Conference on
Computer Design, pp. 323-326, Oct., 1994.

[Kumar95] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-Driven Behavioral
Synthesis for Low-Power VLSI Systems”, IEEE Design & Test, vol.12, no.3, pp. 70-84,
Fall, 1995.

[Martin95] R. S. Martin, and J. P. Knight, “Power-Profiler: Optimizing ASICs Power
Consumption at the Behavioral Level”, In Proc. of Design Automation Conference,
pp. 42-47, June, 1995.

[Raje95] S. Raje, and M. Sarrafzadeh, “Variable Voltage Scheduling”, in Proc. of Int’l
Symposium on Low Power Design, pp. 9-14, April, 1995.

[Lin97] Y. R. Lin, C. T. Hwang and A. C.-H. Wu, “Scheduling Techniques for Variable
Voltage Low Power Designs”, ACM TODAES, vol.2, no.2, pp. 81-97, April, 1997.

[Chang96] J. Chang and M. Pedram, “Energy Minimization Using Multiple Supply
Voltages”, in Proc. of Int’l Symposium on Low Power Electronics and Design,
pp. 157-162, Aug., 1996.

[Ishihara98] T. Ishihara, and H. Yasuura, “Voltage Scheduling Problem for Dynamically
Variable Voltage Processors”, in Proc. of Int’l Symposium on Low Power Electronics and
Design, pp. 197-202, Aug. 1998.

[Weiser94] M. Weiser, B. Welch, A. Demers and S. Shenker, “Scheduling for Reduced CPU
Energy”, in Proc. of Symposium on Operating Systems Design and Imprementation, pp.
13-23, Nov., 1994.

[Yao95] F. Yao, A. Demers and S. Shenker, “A Scheduling Model for Reduced CPU Energy”,
in Proc. of Symposium on Faundations of Cumputer Science, pp. 374-382, Oct., 1995.

[Shin99] Y. Shin and K. Choi, “Power Conscious Fixed Priority Scheduling for Hard Real-
Time Systems”, in Proc. of Design Automation Conference, pp. 134-139, June, 1999.

[Shin00] Y. Shin, K. Choi and T. Sakurai, “Power Optimization of Real-Time Embedded
Systems on Variable Speed Processors”, in Proc. of Int’l Conference on Computer Aided
Design, pp. 365-368, Nov., 2000.

[Okuma99] T. Okuma, T. Ishihara, and H. Yasuura, “Real-Time Task Scheduling for a
Variable Voltage Processor”, in Proc. of Int’l Symposium on System Synthesis, pp. 24-29,
Nov., 1999.

219

[Austin04] T. Austin, D. Blaauw, T. Mudge and K. Flautner, “Making Typical Silicon Matter

with Razor”, IEEE Computer Magazien, pp. 57-65, March 2004.
[Bertozzi02] D. Bertozzi, L. Benini and G. De Micheli, “Low-Power Error-Resilient

Encoding for On-Chip Data Busses”, in Proc of Dasign Automation and Test in Europe
Conference, pp. 102-109, March, 2002.

[Worm02] F. Worm, P. Lenne, P. Thiran and G. De Micheli, “An adaptive low-power
transmission scheme for on-chip networks”, in Proc. of Int’l symposium on system
synthesis, pp. 92-100, Oct. 2002

[Cao2003] Y. Cao, and H. Yasuura, “Quality-Driven Design by Bitwidth Optimization for
Video Applications,” in Proc. Asia and South Pacific Design Automation Conference, pp. ,
2003.

[Alalusi2000] S. Alalusi, and B. Victor, “Variable Word Width Computation for Low
Power,” CS 252 Computer Architecture, 2000.

[Stephenson2000] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth Analysis with
Application to Silicon Compilation,” in Proc. ACM SIGPLAN 2000 Conference on
Programming language design and implementation, pp. 198-120, 2000.

[Canal2000] R. Canal, A. Gonzalez, and J. E. Smith, “Very Low Power Pipelines using
Significance Compression,” in Proc. of International Symposium on Microarchitecture, pp.
181-190, 2000.

[Brooks2000] D. Brooks, and M. Martonosi, “Value-Based Clock Gating and Operation
Packing: Dynamic Strategies for Improving Processor Power and Performance,” in ACM
Transactions on Computer Systems, vol. 18, no. 2, pp. 89-126, May 2000.

[Bhunia2003] H. Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy, “Deterministic
Clock Gating for Microprocessor Power Reduction,” in Proc. of International Symposium
on High-Performance Computer Architecture, pp. 113, 2003.

[Bellas1999] N. Bellas, I. Haji, and C. Polychronopoulos, “Using Dynamic Cache
Management Techniques to Reduce Energy in a High-Performance Processor,” in Proc. of
International Symposium on Low Power Electronics and Design, pp. 64-69, 1999.

[Benini1998] L. Benini, A. Bogliolo, S. Cavallucci, and B. Ricco, “Monitoring Systems
Activity or OS-Directed Dynamic Power Management,” in Proc. of International
Symposium on Low Power Electronics and Design, pp. 185-190, 1998.

[Wong2004] J. L. Wong, G. Qu, and M. Potkonjak, “Power Minimization in QoS Sensitive
Systems,” in IEEE Transactions on Very Large Scale Integration Systems, vol. 12, no. 6,
pp. 553-561, 2004.

[Qiu2001] Q. Qiu, Q. Wu, and M. Pedram, “Dynamic Power Management in a Mobile
Multimedia System with Guaranteed Quality-of-Service,” in Proc of Design Automation
Conference, pp. 834-839, 2001.

[Yardi2005] S. M. Yardi, M. S. Hsiao, T. L. Martin, and D. S. Ha, “Quality-Driven Proactive
Computation Elimination for Power-Aware Multimedia Processing,” in Proc of DATE, pp.
340-345 , 2005.

[Pokam2004] G. Pokam, O. Rochecouste, A. Seznec, and F. Bodin, “Speculative Software
Management of Datapath-width for Energy Optimization,” in Proc. of LCTES, pp. 78-87,
2004.

[Sinha2002] A. Sinha, A. Wang, and A. Chandrakasan,“Energy Scalable System Design,” in
IEEE Transactions on Very Large Scale Integration Systems, vol. 10, no. 2, 2002.

[Bellosa1999] F. Bellosa, “OS-Directed Throttling of Processor Activity for Dynamic Power
Management,” Tech. Report, 1999.

[Muroyama2003] M. Muroyama, A. Hyodo, T. Okuma, and H. Yasuura, “A Power
Reduction Scheme for Data Buses by Dynamic Detection of Active Bits,” in Proc. of

Energy Management Techniques for SOC Design

220 Yasuura, Ishihara and Muroyama

Euromicro Symposium on Digital System Design - Architectures, Methods and Tools -,
pp. 408-415, 2003.

[Okuma2002] T. Okuma, Y. Cao, M. Muroyama, and H. Yasuura, “Reducing Access
Energy of On-Chip Data Memory Considering Active Data Bitwidth,” in Proc. of
International Symposium on Low Power Electronics and Design, pp. 88-91, 2002.

[Xanthopoulos2000] T. Xanthopoulos, and A. P. Chandrakasan, “A Low-Power DCT Core
Using Adaptive Bitwidth and Arithmetic Activity Exploiting Signal Correlations and
Quantization,” in IEEE Jounal of Solid-State Circuits, vol. 5, no. 5, 2000.

[Liu94] D. Liu and C. Svensson, “Power Consumption Estimation in CMOS VLSI Chips,”
IEEE Journal of Solid-State Circuits, vol.29, no.6, pp. 663-670, June 1994.

[Ko98] U. Ko, P. T. Balsara, and A. K. Nanda, “Energy Optimization of Multilevel Cache
Architectures for RISC and CISC Processors,” IEEE Trans. on VLSI Systems, vol.6,
no.2, pp. 299-308, June 1998.

[Su95] C. L. Su and A. M. Despain, “Cache Design Trade-offs for Power and Performance
Optimization: A Case Study”, in Proc. of ISLPED, pp. 63-68, August 1995.

[Hicks97] P. Hicks, M. Walnock, and R. M. Owens, “Analysis of Power Consumption in
Memory Hierarchies”, in Proc. of ISLPED, pp. 239-242, August 1997.

[Li98] Y. Li, and J. Henkel, “A Framework for Estimating and Minimizing Energy
Dissipation of Embedded HW/SW Systems”, in Proc. of DAC, pp. 188-193, June,
 1998.

[Shine99] W. T. Shine, and C. Chacrabarti, “Memory Exploration for Low Power,
Embedded Systems”, in Proc. of DAC, pp. 140-145, June, 1999.

[Malik00] A. Malik, B. Moyer and D. Cermak, “A Low Power Unified Cache Architecture
Providing Power and Performance Flexibility”, in Proc. of ISLPED, pp. 241-243, July
2000.

[Ishihara05] T. Ishihara and F. Fallah, “A Non-Uniform Cache Architecture for Low Power
System Design”, in Proc. of ISLPED, pp. 363-368, Aug., 2005.

[McFarling89] S. McFarling, “Program Optimization for Instruction Caches”, In Proc. of
Int’l Conference on Architecture Support for Programming Languages and Operating
Systems, pp. 183-191, April 1989.

[Hwu89] W. W. Hwu and P. P. Chang, “Achieving High Instruction Cache Performance
with an Optimizing Compiler”, in Proc. of ISCA, pp. 242-251, May 1989.

[Tomiyama96] H. Tomiyama and H. Yasuura, “Optimal Code Placement of Embedded
Software for Instruction Caches”, in Proc. of European Design and Test Conference, pp.
96-101, March, 1996.

[Panda96] P. Panda, N. Dutt, and A. Nicolau, “Memory Organization for Improved Data
Cache Performance in Embedded Processors”, in Proc. of the 9th Int’l Symposium on
System Synthesis, pp. 90-95, November 1996.

[Hashemi97] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient Procedure Mapping
Using Cache Line Coloring”, in Proc. of Programming Language Design and
Implementation, pp. 171-182, June, 1997.

[Ghosh99] S. Ghosh, M. Martonosi, and S. Malik, “Cache Miss Equations: A Compiler
Framework for Analyzing and Tuning Memory Behavior”, ACM Trans. on
Programming Languages and Systems, vol.21, no.4, pp. 703-746, July, 1999.

[Kulkarni01] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor, H. De Man, “Cache
Conscious Data Layout Organization for Conflict Miss Reduction in Embedded
Multimedia Applications,” in Proc. of DATE 2001, pp. 686-691, March 2001.

[Bankar02] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad Memory : A Design Alternative for Cache On-Chip Memory in Embedded
Systems”, in Proc. of CODES, pp. 73-78, May, 2002.

221

[Stan95] M. R. Stan and W. P. Burleson, “Bus-Invert Coding for Low-Power I/O,” IEEE

Trans. on VLSI Systems, vol. 3, pp. 49-58, March, 1995.
[Su94] C. L. Su, C. Y. Tsui, and A. M. Despain, “Low Power Architecture Design and

Compilation Technique for High-Performance Processors,” in Proc. IEEE COMPCON, pp.
209-214, Feb., 1994.

[Benini97] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Asymptotic
Zero-Transition Activity Encoding for Address Busses in Low-Power Microprocessor-
Based Systems,” in Proc. of Great Lakes Symposium on VLSI, pp. 77-82, March, 1997.

[Benini97-2] L. Benini, G. De Micheli, E. Macii, M. Poncino, and S. Quer, “System-Level
Power Optimization of Special Purpose Applications: The Beach Solution,” in Proc. of
Int’l Symposium on Low Power Electronics and Design, pp. 24-29, August, 1997.

[Shin98] Y. Shin, S. Chae, and K. Choi, “Partial Bus-Invert Coding for Power Optimization
of System Level Bus,” in Proc. of Int’l Symposium on Low Power Electronics and Design,
pp. 127-129, August, 1998.

[Benini00] L. Benini, A. Macii, E. Macii, and M. Poncino, “Synthesis of Application Specific
Memories for Power Optimization in Embedded Systems”, in Proc. of Design Automation
Conference, pp. 300-303, June, 2000.

[Ishihara00] T. Ishihara, and H. Yasuura, “A Power Reduction Technique with Object Code
Merging for Application Specific Embedded Processors”, in Proc. of Design Automation
and Test in Europe Conference, pp. 617-623, March, 2000.

[Segars95] S. Segars, K. Clarke, L. Goudge, “Embedded Control Problems, Thumb and the
ARM7TDMI,” IEEE Micro, vol.15, no.5, pp. 22-30, Oct., 1995.

[Yoshida97] Y. Yoshida, B. Y. Song, H. Okuhata, T. Onoye, and I. Shirakawa, “An Object
Code Compression Approach to Embedded Processors,” in Proc. of Int’l Symposium on
Low Power Electronics and Design, pp. 285-288, August, 1997.

[Benini99] L. Benini, A. Macii, E. Macii, and M. Poncino, “Selective Instruction
Compression for Memory Energy Reduction in Embedded Systems”, in Proc. of Int’l
Symposium on Low Power Electronics and Design, pp. 206-211, August, 1997.

[Powell2000] M. D. Powell, S. Yang, B. Falsafi, K. Roy, T. N. Vijaykumar, “Gated-Vdd: A
Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memories,” in Proc. of
International Symposium on Low Power Electronics and Design, pp. 90-95, 2000.

[Yan2005] L. Yan, J. Luo, and N. K. Jha, “Joint Dynamic Voltage Scaling and Adaptive
Body Biasing for Heterogeneous Distributed Real-Time Embedded Systems,” IEEE Trans.
on CAD, vol.24, no.7, pp. 1030-1041, July 2005.

[Tsai2004] Y.-F. Tsai, D. E. Duarte, N. Vijaykrishnan, and M. J. Irwin, “Characterization
and Modeling of Run-Time Techniques for Leakage Power Reduction,” in IEEE
Transactions on Very Large Scale Integration Systems, vol. 12, no. 11, 2004.

[Cao2002] Y. Cao, and H. Yasuura, “Leakage Power Reduction Using Bitwidth
Optimization,” in Proc. of the 6th World Multiconference on Systemics, Cybernetics and
Informatics., 2002.

[Li2005] P. Li, Y. Deng, and L. T. Pileggi, “Temperature-Dependent Optimization of Cache
Leakage Power Dissipation,” in Proc. of ICCD, 2005.

[Khouri2002] “Leakage Aware Synthesis,” in Proc. of TVLSI 2002.
[Ynag2001] P. Yang, C. Wung,...“Energy-Aware Runtime Scheduling for Embedded

Multiprocessor SoCs,” in IEEE Design and Test of Computers, 2001.
[Ishihara2002] T. Ishihara, and K. Asada, “An architectural level energy reduction technique

for deep-submicron cache memories,” in Proc. of Asia and South Pacific Design
Automation Conference, 2002.

Energy Management Techniques for SOC Design

222 Yasuura, Ishihara and Muroyama

[Kaxiras2000] S. Kaxiras, Z. Hu, G. Narlikar, and R. McLellan, “Cache-line decay: a

mechanism to reduce cache leakage power,” in Proc. of Workshop on Power Aware
Computer Systems, 2000.

[Manne1998] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: speculation control
for energy reduction,” in Proc. of International Symposium on Computer Architecture,
1998.

[Sato2004] H. Sato, and T. Sato, “A Static and Dynamic Energy Reduction Technique for I-
Cache and BTB in Embedded Processors,” in Proc. of Asia South Design Automation
Conference, 2004.

[Schmidt2002] R. Schmidt, and B. Notohardjono, “High-end Server Low-Temperature
Cooling,” in IBM Journal of Research and Development, pp. 739-751, 2002.

[Krane1988] R. Krane, J. Parsons, and A. Bar-Cohen, “Design of a candidate thermal control
system for a cryogenically cooled computer,” in IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, vol. 11, no. 4, pp. 545-556, 1988.

[Calhoun2003] B. H. Calhoun, F. A. Honore, and A. Chandrakasan, “Design methodology for
fine-grained leakage control in MTCMOS,” in Proc. of International Symposium on Low
Power Electronics and Design, pp. 104-109, 2003.

[Liu2004] M. Liu, W.-S. Wang, and M. Orshansky, “Leakage Power Reduction by Dual-Vth
Designs under Probabilistic Analysis of Vth Variation,” in Proc. of International
Symposium on Low Power Electronics and Design, pp. 2-7, 2004

[Wei1998] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, “Design and Optimization of
Low Voltage High Performance Dual Threshold CMOS Circuits,” in Proc. of Design
Automation Conference, pp. 489-494.

[Ho2004] Y.-T Ho, and T.-T. Hwang, “Low Power Design using Dual Threshold Voltage,” in
Proc. of Asia and South Pacific Design Automation Conference, pp. 205-208, 2004.

[Seta1995] K. Seta, H. Hara, T. Kuroda, M. Kakumu, and T. Sakurai, “50% Active-Power
Saving without Speed Degradation using Standby Power Reduction (SPR) circuit,” in Proc.
of ISSCC, pp. 318-319, 1995.

[Kobayashi1994] Kobayashi, and T. Sakurai, “Self-Adjusting Threshold Voltage Scheme
(SATS) for Low-Voltage High-Speed Operation,” in Proc. of CICC, pp. 271-274, 1994.

[Claasen] T. Claasen,... in Proc. of ISSCC99.
[Budiu2002] M. Budiu, “Application-Specific Hardware,” in Proc. International Conference

on Field Programmable Logic and Applications, pp. 853-863, 2002.
[Ranpara1999] S. Ranpara et al., “A Low-Power Viterbi Decoder Design for Wireless

Communications Applications,” in Proc. ASIC, 1999.
[Gilbert2001] F. Gilbert et al. “Low Power Implementation of a Turbo-Decoder on

Programmable Architectures” in Proc. ASP-DAC, 2001.
[Usami] K. Usami et al. “Design Methodology of Ultra Low-power MPEG4 Codec Core

Exploiting Voltage Scaling Techniques”
[Lee2003] R. B. Lee, “Challenges in the Design of Security-Aware Processors,” in Proc.

Application-Specific Systems, Architectures, and Processors, pp. , 2003.
[Udayakumaran2002] S. Udayakumaran, B. Narahari, R. Simha, “Application-Specific

Memory Partitioning for Low Power Consumption,” COLP 2002.
[Rabaey00] J. M. Rabaey, “Low Power Silicon Architecture for Wireless Communications,”

in Proc. of Asia South Pacific Design Automation Conference, pp. 377-380, January,
2000.

[Wei05] J. Wei, and C. Rowen, “Implementing Low-Power Configurable Processors –
Practical Options and Tradeoffs,” in Proc. of Design Automation Conference, pp. 706-711,
June, 2005.

223

[Dave97] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-Software Co-

Synthesis of Embedded Systems,” in Proc. of Design Automation Conference, pp. 703-
708, June, 1997.

[Henkel99] J. Henkel, “A Low Power Hardware/Software Partitioning Approach for Core-
based Embedded Systems,” in Proc. of Design Automation Conference, pp. 122-127, June,
1999.

[Inoue00] A. Inoue, T. Ishihara, and H. Yasuura, “Flexible System LSI for Embedded
Systems and Its Optimization Techniques”, in H. Yasuura, editors, Journal of Design
Automation for Embedded Systems, Vol.5, No.2, pp. 179-205, Kluwer Academic
Publishers, Jun. 2000.

Energy Management Techniques for SOC Design

225

Chapter 7

SoC PROTOTYPING AND VERIFICATION

Moo-Kyoung Chung†, Young-Il Kim‡, Jae-Gon Lee†, Wooseung Yang‡,
Ando Ki‡, and Chong-Min Kyung†
† Korea Advanced Institute of Science and Technology; ‡ Dynalith Systems Co., Ltd.

Abstract: Verification of System-On-a-Chip (SoC) poses us a serious challenge as it involves
not only high chip complexity but also hardware/software co-verification along
with short design time-to-market. Traditional IC design verification technologies
based on simulation, emulation, and prototyping often fall short of meeting this
challenge of SoC verification. This chapter starts with an introduction of SoC
design verification flow. To reduce the time-to-market it is crucial to provide the
system-level model for each hardware block, software component and
communication channel in the very early stage of the SoC design process. It can be
best addressed by performing the so-called ‘soft prototyping.’ System-level
modeling using SystemC is explained as it is expected to be widely employed as a
reference model. Software part of the SoC is run on Instruction Set Simulation
(ISS), which is interfaced to hardware models described in either software (like
HDL or SystemC) or physical hardware. We explained the hybrid SoC design
verification technique which incorporates both simulation and prototyping in a
single verification environment to maximally exploit the merits of both approaches.
Simulation acceleration and emulation are explained followed by the introduction
of HW/SW co-simulation and FPGA-based co-emulation techniques. These
techniques based on initial system-level modeling of high-level abstract behavior
followed by gradual refinement and verification by comparing with the reference
model, enables fast and error-free SoC design closure

Keywords: SoC, Prototype, Verification, Soft Prototype, Hard Prototype, Co-Simulation,
Instruction Set Simulator (ISS)

1. INTRODUCTION

There are clear trends in SoC design; increasing chip size, increasing complexity
of functionality, embedding processing cores, supporting multi-media features,

S.Y.-L. Lin (ed.), Essential Issues in SOC Design, 225–264.
© 2006 Springer.

226 Chung et al.

decreasing time-to-market, and decreasing power consumption. Due to
increasing size and complexity, pure software-based simulation easily fails
to deliver sufficient performance. Thus, speed-up techniques such as raising
abstract level or adopting hardware accelerator are necessary. Due to
embedding processing cores, hardware and software co-verification is
inevitable. Due to supporting multi-media features, more realistic test-bench
is required, which sometimes includes real hardware. Due to decreasing
time-to-market, validation of functions and features and verification of
chosen architecture must be done at early design stage. Due to decreasing
power consumption, low power design and optimum hardware-software
partitioning need to be considered as well.

Figure 1 depicts an SoC design flow and its verification environment.
The first step is idea validation where idea has to be validated in terms of
technology viability, resource availability, and market requirements. The
second step is system-level design where all functionalities are considered
without notion of hardware and software and, then, possible architectures are
exploited in order to choose optimum or reasonable one. After fixing
architecture, hardware and software developments are carried out in parallel.
Other steps are fairly similar to the conventional design flow.

In order to carry out system-level design and hardware-software
co-development, SoC model is required, where the SoC model should be
flexible enough to easily change its configuration, provide full visibility to
monitor its behavior and provide performance statistics. The SoC model in
these steps is called ‘soft prototype’, in which most components are modeled
using software including C/C++, SystemC, HDL and so on. As a design
makes its progress, abstraction level of blocks is lowered. This causes the
software prototype to run slow as the lower-level model entails more details. In
order to cope with this performance degradation problem, hardware-assisted

Idea
Validation

System
Level

Design

SW development

HW development

Backend Fab.
System

Integration
testing

Soft-prototyping

HW-SW co-
verificaiton

Hard-prototyping

SoC
Design
Flow

SoC
Verification
Environment

Figure 1. SoC design flow and verification environment

SoC Prototyping and Verification 227

approaches are widely used, e.g., hardware acceleration, hardware emulation,
and even FPGA prototyping. In this context, the term ‘hard prototype’ is
used for solutions utilizing hardware. In the heart of hardware-software co-
verification, hardware-software co-simulation is one of the most important
techniques since it provides an environment of running software on top of
model of SoC hardware sub-system.

Although the top-down approach as shown in Figure 1 starting from
system specification down to gate-level and executable code level through
hardware-software co-development is very logical, meet-in-the-middle
approach is more widely used in SoC design. This is so called platform-
based design (Chang et al., 1999), where platform is a pre-designed
architecture that designers can use to build SoC for a given range of
applications. Therefore, a large portion of SoC design is not designed from
scratch, but rather often derived from pre-designed ones. Building soft and
hard prototypes can be built from the platform.

This chapter covers the following topics in the context of SoC
prototyping and verification. Firstly, soft prototyping is explained. Secondly,
hardware-software co-verification is addressed. Thirdly, hard prototyping is
presented.

2. SOFT PROTOTYPING

The first step in designing SoC is to build soft-model of the target system in
the early design stage. As can be noticed from the notation, it is mainly built as
a form of a software-based simulation. This method is fast and efficient to
build and easy to manipulate, which makes it best for early-stage prototyping
where lots of design turn-around is mandatory. In this chapter, we use the term
‘soft prototyping’ for this stage. In the past, there was no golden rule for
building soft prototyping. Each designer or design team built their soft
prototypes for his/her particular purpose. Usually they are based on
programming languages, typically C-based languages. But as there were no
standards for the use of the languages, soft prototypes from different teams
couldn’t run together. Recently, the introduction of SystemC standardized the
soft prototyping stage, which made it possible to encapsulate highly abstracted
IP models just like we handle RTL IP cores. This chapter starts from
introduction to SoC design flow and handles major issues of soft prototyping.

2.1 SoC Design Flow

The design step of SoC is composed of several steps with different
abstraction levels. The design starts with a highly abstracted description of

228 Chung et al.

the target system and is refined until the hardware part is ready for synthesis
and the software part is ready for compilation. Figure 2 shows the
conventional design steps. SoC design starts with a specification that roughly
describes the operations and performance requirements of the target SoC.
The specification is usually described in natural languages with block
diagrams, tables and mathematical equations. The process of obtaining the
specification is far from automatic procedures commonly found in the
following design steps. Rather, it is a manual process with discussions and
speculations among engineers.

When the specification is fixed, the algorithm of the target system is
verified. This is called algorithm-level reference model verification. This
model confirms the algorithm of the target SoC. It is described with
programming languages, which can concentrate on the flow of data not
worrying about its implementation. Among many programming languages C
and C++ are the most popular as many engineers are familiar with the two

Abstraction Level Description Language

Algorithm-level Reference model

RTL-C (Golden model)

Microarchitectural TLM

RTL (Register Transfer Level)

Gate level

Specification Natural language
Mathematical equations

C/C++ (floating point data type)

C/C++ (fixed point data type)

SystemC

SystemC, HDL (Verilog/VHDL)

HDL (Gate level description)

Architectural TLM

Behavioral level

SystemC

SystemC, HDL (Verilog/VHDL)

Figure 2. SoC Design steps and description languages

SoC Prototyping and Verification 229

languages, while MATLAB is also frequently used. In algorithm-level
reference model, floating point data types that are used as the flow of data,
not its implementation, is of major concern.

The next step is to validate the implementation of the algorithm. It is
called RTL-C, or more often as “Golden model.” RTL-C roughly models the
structure of the target system with programming languages. Unlike
algorithm-level reference model, fixed point data types are used in RTL-C.
Simulation time can be introduced here even though cycle-accurate behavior
is not yet modeled. Usually, RTL-C model is used as a reference model for
the following design steps, especially RTL design, which requires lots of
design time and efforts.

In the conventional design steps, the next step is behavioral level
description. Behavioral level description models the behavior, or interfaces,
of each building block. The structure of each block is not modeled in
behavioral level description. The simulation time is modeled in a cycle-
accurate manner in this level. High-level synthesis tools provide automatic
translation from behavioral level description to gate level netlist. But,
usually behavioral level description is further refined to RTL for better
results. This is because high-level synthesis tools cannot as efficiently utilize
the time and space as RTL model. RTL model describes all the internal and
external structure of each block in a full cycle accurate manner. It is ready to
be synthesized to gate level netlist.

With conventional design steps we can get cycle-accurate model only
after behavior-level description is obtained. As behavioral level
descriptions are not used very often, it can be as late as until RTL model is
available. In other words, we cannot have cycle-accurate SoC models in
the early design steps. This can be a serious problem as we cannot predict
the performance of the target system until significant design time is
consumed. This is becoming a more serious problem as the portion of
embedded software becomes larger. Even today, the embedded software
accounts for more than half of the total expected functionality of the circuit
and very often most of the modifications that occur during the design of a
chip based on an existing platform are software updates as shown by Miller
(2003). An obvious consequence of this is that the critical path for the
development of such a circuit is the software, not the hardware. Enabling
software development to start very early in the development cycle is,
therefore, crucial to reduce the time-to-market.

There have been a number of attempts to solve this problem with
conventional design steps. Firstly, algorithmic model was used for system
level modeling. Even though algorithmic model runs extremely fast as it
only captures the algorithm, algorithmic model does not have a notion of
simulation time or concepts of hardware and software blocks. Secondly,

230 Chung et al.

C-based dialects with hardware modeling concepts emerged. This enabled
cycle-accurate behavior in the early design steps. But, the cycle-accurate
model ended up being only an order of magnitude faster than the equivalent
RTL simulation, which is very similar to the speed of cycle based
VHDL/Verilog. And much of the information captured in such a model was
not available in the IP documentation but only in the designer's mind. The
resulting model was in only slightly higher abstraction level than RTL. We
need more abstracted model of the target system while still keeping cycle
accuracy.

2.2 Transaction Level Modeling

Grotker (2003) defined Transaction-level modeling (TLM) as a style for
modeling digital systems focusing on external functional behavior of each
block and inter-block communications without excessive implementation
details. The function stands for behavior or operation of each building block
described in high abstraction level with variables, arithmetic operations and
sub-routine calls. TLM does not directly handle signals and registers,
although the variables may be correlated to signal values of RTL designs.
Even if the high-level modeling of the operations of each block resembles
that of untimed algorithm-level description, TLM is different from untimed
algorithm-level description in that block boundaries are defined and
communications between building blocks are explicitly declared with
transactions and each building block is modeled as a separate module while
communications are modeled with transactions between them.

Transaction is a high-level abstraction of transition activity of interface
signals between two or more building blocks. When a block (A) needs to
communicate with other block (B), the block A invokes transactions to be
serviced by the block B. The transaction can be a read transaction or a write
transaction. It can also be a read transaction and a write transaction at the
same time.

Clouard et al. (2003) divided TLM into two categories, i.e., architectural
TLM and micro-architectural TLM, according to the abstraction level of
simulation time. In architectural TLM, simulation time is roughly modeled,
which is, therefore, called pseudo cycle-accurate. Transactions in this
method are highly-abstracted information about communications between
blocks. This method is suitable for early-stage prototyping of SoC designs
where cycle-accurate behavior is either undefined or unnecessary. In micro-
architectural TLM, the simulation time is modeled in a fully cycle-accurate
manner. In this method, transactions are communication events between
blocks while they can be easily correlated to a single signal event in the RTL
design. Single transaction of the architectural TLM can be decomposed into

SoC Prototyping and Verification 231

multiple micro-architectural transactions. With micro-architectural TLM, we
can verify operations of SoC design in a 100% clock cycle-accurate manner
in the early design stage when its RTL model is not yet available as noted by
Caldari (2003).

2.2.1 SystemC

Conventional hardware description languages are not suitable for handling
TLM. SystemC is a set of C++ class definitions and methodologies for using
these classes. The primary goal of SystemC is to enable system-level
modeling encompassing software algorithm, hardware architecture, and
interfaces of SoC. SystemC was first released in 1999 by Open SystemC
Initiative (OSCI) with version 0.9. Since then there were multiple releases.
Now SystemC version 2.1 is available (OSCI, 2005). SystemC class library
adds necessary components for system level modeling to standard C++
language. These include modeling of simulation time, concurrency, and
reactive behavior. Each building block of the system is modeled with an
object of a particular C++ class. This includes modules, channels, and ports.
As lots of building blocks share common features, these C++ classes are
constructed in a hierarchical way. At the same time, SystemC retains native
features of C++ language. This means that system designer can easily merge
SystemC environment with native C++ software environments. In addition,
system designers who are already familiar with C++ can use SystemC
without any additional training.

In SystemC, each building block is modeled as a module or a channel.
Modules can call interfaces provided by channels. This is called interface
method call (IMC), which corresponds to a single transaction. A module can
be a channel, and a channel can be a module, too. Usually, a transaction
service routine of a channel, also called an interface method, activates
another transaction, which activates yet another transaction service routine,
and so on. Like chain reactions, sequential activations of interface methods
form a simulation.

With SystemC, system designers can quickly simulate their designs,
validate and optimize them, explore various algorithms, and provide the
hardware and software development teams with an executable specification
of the system. The executable specification removes the gap between the
literal specification and RTL implementation shown in Figure 2. In the
conventional design flow, engineers read the literal specifications and
manually convert them to implementation, which tends to introduce lots of
mistakes and misunderstandings. This method also suffers from the fact that
the system model is built on environments totally different from HDL
environments. Finally, the conventional method needs multiple system

232 Chung et al.

verifications for each abstraction level. As test vectors that are created to
validate the C model typically cannot be run against the HDL model, test
vectors should be created for HDL model. SystemC design methodology
offers many advantages by providing a unified environment for multiple
abstraction levels. The specification itself is designed as an executable
specification so that there is no misunderstanding of the specification from the
beginning. As SystemC can cover abstraction levels from the specification to
RTL models, high abstraction level models can be gradually refined during the
design process. In addition, test vectors used in the early design stages can be
reused in the final design stages as a single language is used.

2.2.2 Characteristics of TLM

TLM is useful for early stage system design. The system designer can verify
cycle-accurate behavior of target system with transaction-level models long
before RTL designs are available. As the implementation details are not
handled in TLM, the simulation speed is much faster than that of RTL
simulation. Transaction-level (TL) models typically run at least two orders
of magnitude faster than RTL models as shown by Clouard (2002).
Simulation speeds of several hundred kilocycles per second for a complete
system simulation is readily achievable with TLM compared to several
hundred cycles per second in RTL models as shown by Clouard et al. (2003).
This means that by using TLM we can validate a design against more test
vectors than using RTL model in the same amount of time.

The debugging of TLM is much easier than that of RTL model because
one can concentrate on the system-level operations without being harassed
by excessive implementation details. Once verified, the TL model becomes a
reference model for the following low-level implementations. Refer to
Wieferink (2004) and Cai (2003) for further information. TLM typically
includes adapters for converting transactions to/from transition activities of
interface signals so that one can mix TL models with RTL models in a single
simulation environment. This enables gradual refinement from TL model to
RTL model as design evolves from high-level specification to low-level
implementation.

AMBA AHB Cycle Level Interface (AHB CLI) Specification (ARM,
2003) sets a standard for modeling AMBA AHB bus in micro-architectural
TLM with SystemC. The specification defines basic building blocks of
AMBA bus: master, slave, arbiter, decoder and bus itself, and interfaces
provided by them. The interface method call can be directly correlated to AHB
signal events. In addition, the evaluation sequences of the blocks and data
types used by the bus models are specified in the AHB CLI specification.
System Studio from Synopsys and ConvergenSC from CoWare already

SoC Prototyping and Verification 233

support AHB CLI specification in the form of CLI-compliant ARM and AHB
bus models in SystemC along with SystemC simulator kernels.

2.3 Case Study

Figure 3 shows an implementation of JPEG decoder in transaction-level
modeling with SystemC. We used MaxSim of ARM to realize the JPEG
system composed of a single ARM946 processor, Inverse Discrete Cosine
Transfer (IDCT), Variable Length Decoder (VLD), two memory models,
and a single AHB bus model. Transaction-level modeling makes it possible
to interconnect building blocks in transaction-level rather than pin-level.
Each building block, itself, is modeled in transaction-level; IDCT and VLD
models are derived from algorithmic-level models and processor model and
bus model are provided as a form of a simulation model with MaxSim. With
pseudo cycle-accurate simulation model, we could achieve a simulation
performance of 334kcycles/sec with JPEG decoder.

We can implement the same system with other SystemC-based
simulation systems as well. These include ConvergenSC from CoWare,
System Studio from Synopsys and OSCI reference SystemC simulator.

Figure 3. Implementation of JPEG decoder with MaxSim®

234 Chung et al.

3. HW-SW CO-VERIFICATION

In HW-SW co-verification, software that will be running on the target processor is
simulated with hardware models that mimic the target hardware system. Software
engineers usually develop software code and verify its functionalities in a host
machine by compiling and running the target software code on the host machine,
so-called native code execution, at the beginning. It is, however, not enough to
develop hardware-dependent software such as boot loader or device drivers
without hardware models. Through the HW-SW co-verification, software
engineers are now able to develop and debug their software by simulating it at
system level with the target hardware system even when prototypes are not
available yet. Co-verification with the target hardware model also makes it
possible to evaluate performance or estimate energy consumption of the target
system in the early stage of the design process, which is essential for software
optimization considering the target architecture. In other words, the software
verification and optimization step that is traditionally followed on prototyping step
in the design process is able to progress simultaneously with hardware verification
step; as a result, design time is much reduced. HW-SW co-verification also
benefits hardware engineers. Each hardware component is usually verified with
synthetic HDL test-benches that are made by the hardware engineers at the
beginning; it cannot provide comprehensive test coverage. Through the
co-verification, hardware engineers are able to verify the hardware components
with large stimulus that is much closer to real system.

Important metrics of co-verification are simulation speed, accuracy and
visibility. HW-SW co-verification is accompanied by simulation performance
degradation due to a number of simulation models and communication overhead
between the models. Slow simulation speed is a problem especially to the
software engineers. Sometimes, it is necessary to co-simulate the target system
all day long for OS booting in order to find a software bug in an application.
Accurate simulation is important for hardware engineers who design a hardware
block while imagining signal transitions cycle by cycle. The most important
feature of simulation that is much better than that of emulation (prototyping) is
visibility, which is indispensable for both software and hardware engineers to
debug their design. Besides, system profiling features, such as bus and cache
monitoring, is useful to find critical path and optimize design.

This subchapter introduces processor modeling techniques, and then
describes various combinations of simulators for co-verification.

3.1 Processor Simulation

A processor can be modeled as an Instruction Set Simulator (ISS) that
fetches instructions from memory (or memory model) and simulates each

SoC Prototyping and Verification 235

instruction behavior sequentially. ISS is a widely used design and validation
tool for both hardware and software engineers. It is useful to evaluate
instruction set architectures (ISA’s) during the architecture exploration and
to validate the compiler, operating system, or application software when the
actual silicon is not yet available. ISS is also used in HW-SW co-verification
for processor models, that is, to execute target software. There are three
methods in modeling a processor: interpretive ISS, static compiled ISS and
dynamic compiled ISS.

3.1.1 Interpretive ISS

The basic method for the ISS is interpretation. The interpretive ISS executes
an instruction simulation loop, “fetch-decode-execute,” as having the state of
the target processor in memory as shown in Figure 4, which is similar to the
activities of single issue processors. Interpretive ISS is widely used due to
easy implementation and high flexibility.

Typically interpretive ISS is two orders of magnitude slower than
native execution where target code is compiled for host processor and run
on the host machine, as several tens of host instructions are executed to
simulate a single target instruction. As the time for instruction fetch and
decode, line 2 and line 3 in Figure 4 consumes a large portion of
simulation time, some researches attempt to speed up these steps using
various techniques. Nohl et al. (2002) introduced so-called just-in-time
cache, which is a simulation buffer saving decoded information of recently
simulated instructions. There is no need to fetch and decode instructions
that were used before and are still in the cache. Another reason for the low
speed of interpretive ISS is that an interpretive simulation should perform
some time-consuming operation that can be redundant owing to lack of the
knowledge of future events. For instance, overflow calculations performed
for every data processing instructions are not necessary if following
instructions do not use it.

for (; ;) {
 inst = fetch(PC);
 decode(inst, &opcode, &op1, &op2, &op3);
 swtich(opcode) {
 case ADD:
 op1 = op2 + op3;
 break;
 case MOV:
 ...
}}

Figure 4. Simulation loop of interpretive ISS

236 Chung et al.

3.1.2 Static Compiled ISS

Static compiled ISS is much faster than the interpretive ISS because the
fetch and decode steps are performed as a batch in the start-up procedure.
The static compiled method translates the whole target program, which is an
executable binary for the target machine, into the target simulation program
running on the host machine. This means each target program will be a
unique simulator.

There are two translation schemes: One is binary translation that is the
direct replacement of target instructions by host instructions, while the other
scheme goes through high-level language generation and compilation stages.
Figure 5 shows those simulator generation schemes. If the target and host
machine have the similar instruction architecture, the implementation of the
former method, binary translation is relatively easy. Otherwise, the binary
translation can be difficult and accurate simulation cannot be guaranteed
because, in some cases, there is no way to simulate a target behavior with a
combination of host instructions. Moreover, the binary translation does not
have host compatibility. The latter method is easier to implement and can be
applied independently of the host machine, since it uses C (high-level)
language. The static compiled ISS that uses the C intermediate code is
introduced by Zivojnovic et al. (1995). Another advantage is in simulation
speed. The host C compiler removes the redundant operations through
various optimization techniques, such as dead code elimination.

Although static compiled ISS is faster than interpretive ISS, almost all
the commercially available ISS’s are, however, interpretative because of the
following limitations. First, the static compiled method has a considerable
start-up cost due to the generation of simulation code and its compilation,
which can be a major drawback for large software simulation. Even for the

Figure 5. Static compiled ISS

SoC Prototyping and Verification 237

partial modification of the target software, user should go through all the
simulator generation processes. All instructions in the target binary code are
translated into C simulation code one by one, so the simulation C code becomes
a large, complex and unstructured C function with labels and ‘goto’ statements
for all branches. The compilation time of the C simulation code increases in a
super-linear way with the size of the function. Therefore, it is necessary to
divide the generated C simulation code into many suitable size functions to
reduce the compile time. To do this, the unstructured C code should be
translated into C code having structured control flow by resolving the
destinations of each branch. Chung and Kyung (2004) proposed object-based
compiled ISS. Object files holding symbol information are used to generate C
simulation code instead of the binary, so it is possible to generate C code having
the same function structure, and, as a result, the compilation time is increased.
Incremental compilation is also possible since each source file is processed
separately. Figure 6 shows the incremental compilation of compiled ISS.

Figure 6. Compilation of object-based static compiled ISS

Second, the static compiled ISS has restrictions on flexibility. Since the
static compiled method assumes that the complete program code is known
before the simulation starts, it cannot support the dynamic code that is not
predictable prior to the runtime. For example, external memory code, self-
modifying code, and dynamic program code provided by operating systems
or external devices cannot be addressed by the static compiled ISS.

3.1.3 Dynamic Compiled ISS

The dynamic compiled method moves the compilation process to run-time.
Each chunk of the target binary is translated into host execution code on the
fly (Cmelik et al., 1994). Since C compiler is not adaptable to compiling the
chunk of the C code supplied dynamically, the binary translation method is
usually taken. Figure 7 shows the main simulation loop and an example of
binary translation (Witchel and Rosenblum, 1996).

Instruction fetch, decode and translation steps are time-consuming and
can be reduced by cache in the same way as interpretive ISS. To maximize

238 Chung et al.

Figure 7. Dynamic compiled ISS and an example of binary translation

simulation speed, it is necessary to simulate target architecture directly
utilizing the resource of host machine rather than simulating it. For example,
in Figure 7, the registers of the target processor are modeled with array
variable, i.e., TargetReg[], in the host memory. However, some of the host
registers can be allocated for simulating the target registers without host
memory access. Zhu and Gajski (2002) aggressively utilize the host machine
resources through register allocation API’s in order to get the faster
simulation speed.

3.1.4 Native Code Execution

Native code execution (or direct execution or host execution) is used for
functional verification of software in the early stage of design process. Fast
running speed and plenty of debugging tools are beneficial to software
engineers. However, the simulation accuracy is poor because the host
processor usually has different architecture from the target processor, e.g.,
different instructions, MMU, cache, etc. It supports only high-level language,
such as C, where processor architecture is transparent to the user for the
same reason. Even for the functionality verification with native code
execution, the following should be considered. Bit width of data types
should be identical. For instance, bit width of an integer variable can be 16
or 32, which depends on the bit width of data path. A program verified on
the 32-bit host processor may cause overflow in 16 bit embedded processor.
Floating point operations and endian of memory layout should be considered
as the same way. Embedded processors may not have floating point unit and
different endian from the host processor.

Delay annotation allows extracting the timing information of the target
processor from native code execution (Bammi et al., 2000). ‘delay(cycle)’
function accumulating time consumption (cycle) of the target processor is

SoC Prototyping and Verification 239

inserted after each C statement or basic block in the target application code.
One can obtain the time consumption by analyzing the C source code or cross-
compiled target executable at static time ahead of simulation. However, the
accuracy is not guaranteed. It is difficult to find the exact time consumption
due to target compiler optimization and instructions that consume a variable
cycle count depending on its operands. Lee and Park (2003) annotate the delay
in intermediate representation (IR) of portable host compiler to increase the
accuracy of the time consumption and portability. Most optimization of
compile process is performed before the machine code from IR.

Another problem of native code execution besides inaccuracy is how to
hook input/output (IO) activities from/to external hardware components
simulated by other simulator. This issue will be addressed in section 3.2.5.
Table 1 summarizes the advantages and disadvantages of each processor
modeling method.

Table1. Comparison of processor modeling methods

Interpretive Static

compiled
Dynamic
compiled

Native
code
execution

HDL
model

Simulation speed
(IPS)

1~10 M 10~100 M 10~100 M > 1 G 10~100

Accuracy Good Good Good Worst Best
Stat-up cost Small Large Small Small Large
Flexibility Good Bad Good Good Good
Debug ability Good Good Good Best Bad
Simplicity Good Bad Bad Best Worst
Co-simulation with
other HDL simulator

Good Good Good Bad Best

3.1.5 Other Issues on ISS

To develop application-optimized processor or DSP cores rather than to
bring in off-the-shelf cores often gives us the optimal system for a specific
embedded application. In this case, one can evaluate the various alternatives
of instruction set architectures by using ISS. To allow early evaluation of the
architecture along with software optimization, on-the-fly generation of ISS
or retargetable ISS has been introduced. One can add instructions and/or
modify the behavior of instructions by simply modifying descriptions of
instruction set architecture, which can automatically generate the
corresponding ISS (Pees et al., 1999 and Schnarr et al., 2001.) Besides,
automatic generation of assembly and C compiler and debugging tool for the
generated ISS is quite effective to meet the time-to-market.

240 Chung et al.

In addition to the core modeling, it is necessary to simulate other
components in the data path, such as memory management/protection unit
(MMU/MPU), cache, etc. One can simulate these components by simply
appending their simulation models to the data path of the processor.
However, it is not easy to model parallel activities of hardware by sequential
software execution. Fast and accurate simulation of advanced processor
architecture, such as out-of-order execution, superscalar or multithreaded
architecture is an issue of ISS. Especially for the static compiled ISS having
static execution sequence, it is a pending problem, since actual execution
sequence is determined at run time to maximize the performance.

3.2 Co-Verification

Native code execution or ISS undertakes software simulation while a logic
simulator performs hardware component simulation. For the HW-SW co-
verification, either a simulator models both hardware and software, or the
two simulators, for HW and SW respectively, work together while
communicating with each other. This section introduces alternatives of
simulator combinations for co-verification.

3.2.1 ISS with C Hardware Model

ISS mainly offers C API (Application Programming Interface) to support
user C object working together with the processor model through dynamic
linking library. In general, it is used for simulation of hardware stubs without
hardware simulator or for profiling the application running on the ISS. There
are many problems on modeling concurrent hardware with sequentially
executed C language. In addition, the C hardware modeling can become a
useless job, because the C model cannot be seamlessly translated into lower
abstracted HDL code yet. For those reasons, ISS with C stubs as shown in
Figure 8 is an inefficient way for system-level simulation, where all system
components are simulated with real applications.

Although the C stubs are very abstracted and not proper for top-down
design refinement process of hardware design, it is very useful for software
engineers. Simple peripherals, such as timer or PIC (Programmable Interrupt
Controller) can be easily modeled with C language and embedded in the
processor model. Typically hardware components necessary for embedded
software to run are simple peripherals, e.g., timer required for operating
system or UART for serial communication. Consequently, software
engineers can simulate and debug their software using C stubs for minimal
hardware components. Software debugging has become easier since most
processor vendors now provide ISS with various debugging features.

SoC Prototyping and Verification 241

Figure 8. ISS with C stubs of hardware components

3.2.2 HDL Simulator with HDL Processor Model

It is also possible to co-simulate the target system only with an HDL logic
simulator including both hardware components and processor modules, if the
target processor logic is available. If the simulation of processor behavior is
purely in logic level and the communication to the hardware components are
bit-accurate, HDL logic simulation is the most accurate simulation method.
However, the simulation speed is poor, typically several tens of instructions
per second, which is almost useless for software development. Rather than
system-level co-simulation, it is beneficial to hardware logic debugging
including processor with short test-bench programs.

Instruction-level debugging is feasible through waveforms of processor
registers and memory contents, but remote debugging tools are required for
source-level debugging. Many software debuggers support remote debugging
features when the software is not running on a host computer but on a remote
machine whose resources (memory or storage devices) and/or user interfaces
(keyboard or display) are not sufficient for self-debugging. Hence, the source-
level debugging is possible using the remote debugger attached to the HDL
processor model instead of the remote machine. Figure 9 shows the
co-simulation with HDL processor model and remote debugging.

GUN Debugger (gdb) supports remote debugging features for various
target processors. As all debugging features of gdb are based on software
implementation, there is no need to make additional hardware logic for
debugging such as scan chain. The only thing user has to do for the gdb
connection is make a trap hander of the target processor responding to gdb
commands, i.e., register/memory read/write through gdb remote protocol.
Because these software-based debugging techniques execute additional

242 Chung et al.

Figure 9. HDL simulator with HDL processor model

processor instructions and make bus transactions and memory accesses,
which do not occur in normal mode, there are differences in hardware
activities between the debugging and normal mode. Therefore, a fault in
normal mode sometimes does not occur in the debugging mode, and vice
versa, especially when the hardware is not stabilized yet.

3.2.3 ISS with HDL Simulator

ISS and HDL simulator combination is a popular co-simulation method
many co-simulation tools support. The co-simulation tools take charge of
synchronization and communication between the two existing simulators, so
both software and hardware engineers can keep using familiar simulation
environments for co-simulation. Since each simulator occupies a process of
host operating system, IPC (Inter-Process Communication) is used for
connecting them. There are two communication methods with different
abstraction levels of the communicating data: one is transaction level, i.e.,
bus transaction (read/write) information without detailed signal information
and the other is signal-level communication, transferring bus/pin signal
values. In general, instruction-accurate ISS’s represent bus activities through
transactions without detailed description on pin signal information. In this
case, bus functional model (BFM) in the logic simulator translates bus
transactions between transaction level and signal level. If the ISS is cycle-
accurate and port activities are available, then the signal-level
communication is more appropriate. Proxy module of the processor mimics
the HDL processor module communicating with the ISS. Figure 10 shows
both combinations.

SoC Prototyping and Verification 243

HDL Simulator

Hardware
Models

Instruction
-Accurate

ISS

Target
Software
Debugger

C
API

IPC

Transaction-Level
Messages
(read/write)

Cycle-
Accurate

ISS

Target
Software
Debugger

C
API

(BFM) Port Signal
Messages

Bus
Signal

C
API
(PLI)

C
API
(PLI)

Proxy
Module

for
Processor

 BFM

Waveform Viewer
Signal Traces

VCD file

IPC

Figure 10. Instruction-accurate ISS and cycle-accurate ISS with HDL simulator

The slowness of the execution speed of the slower simulator, i.e., HDL
simulator, and the time for synchronization and communication between two
simulators are the bottlenecks in the performance of the co-simulation.
Especially for the signal-level communication, the values of the port signals
need to be shared every clock cycle; thereby the simulation performance is
limited by the communication overhead. Now, co-simulation is also facing
the same problem as the traditional simulators had to, i.e., trade off between
accuracy and speed.

As mentioned above, debugging facilities for software and hardware
component design are also available for the co-simulation. Many co-simulation
tools offer various profiling features helpful for early design optimization, such
as analyzing time-critical portion of software code, cache profiling, and bus
monitoring, i.e., delay or contention profiling.

3.2.4 ISS with SystemC

SystemC is a C++ class library for hardware description and simulation,
HDL simulator in the ISS-HDL simulator combination can be replaced by
SystemC model (Benini et al., 2003). Processor class is a shell of processor
model communicating ISS, and no PLI interfacing is needed since the
SystemC model is based on C++ language. gdb commands can be used for
interfacing two simulators through pipe without interface protocol setup as
shown in Figure 11. An advantage of this combination is that SystemC is

244 Chung et al.

SystemC

ISS
Target

Software
Debugger

Processor
ModuleBFM

IPC

ISS
Target

Software
Debugger gdb

commands

Bus
Signal

gdb
agent

Processor
Module

with
BFM

Pipe

Channels

Waveform Viewer
Signal Traces

VCD file

Host
Software
Debugger

Hardware
Models

Figure 11. ISS with SystemC hardware models

better to describe hardware at higher level of abstraction, which is important
to meet the time-to-market. In addition, gradual refinement to HDL code is
possible since today’s HDL simulators support simulating HDL-SystemC
mixed design.

Co-simulation with a single simulator for both hardware and software allows
faster simulation and seamless design flow. SystemC allows hardware engineers
to use the C/C++ language for modeling hardware, and both hardware and
software models can be simulated in a single host process with the SystemC
simulation kernel. There are, however, difficulties in simulating the software
running on the target processor, because SystemC does not have any processor
models. Figure 12 shows solutions: one is embedding ISS in SystemC processor
module, and an alternative is to use native code execution instead of the ISS.

3.2.5 Native Code Execution with SystemC

SystemC is a proper language for high-level design, so the combination of
the native code execution and SystemC is most suitable for high-level
co-simulation and design exploration with much faster simulation speed
(Blaurock, 2004 and Chung et al., 2005). There are two problems for the
combination: synchronization and communication. To synchronize with
hardware clock events, native code execution should be stopped at certain
points and wait for corresponding clock events of the hardware model.
A solution is to annotate delay functions into the source code as mentioned

SoC Prototyping and Verification 245

SystemC

Processor
Module

Processor
Module

Bus
Signal

Channels

Waveform Viewer
Signal Traces

VCD file

Host
Software
Debugger

Hardware
Models

ISS (Library)Target Software
Debugger (gdb) gdb Remote

Interface

Native Code
Execution TLM

Functions

Figure 12. Embedded ISS and native code execution with SystemC

in section 3.1.4 of this chapter. Although the calculated cycle consumptions
cannot be exact due to the target compiler optimization, it is generally
enough for the purpose of high-level simulation.

To solve the communication problem, read and write operations of native
code should be translated into bus transactions of the hardware model. There are
three methods for this, i.e., how to hook IO access from native code execution.
One is to replace IO access code with a function that accesses hardware
component model. It can be done either when preprocessing through C code
modification before compilation or during compile time through machine code
replacement. Another method is to use a trap of the host machine. One can make
the IO variable access initiate software trap, and the trap handler generates bus
transactions to the appropriate hardware model and returns to the software
execution flow with the obtained data to continue execution. The third method is
to use operator overloading of C++ language, which allows a class to rebuild the
behavior of operators related to the class instance. One can make an IO variable
class, such that read/write from/to the IO variable class initiates bus transactions
of SystemC hardware model using the operator overloading.

3.2.6 Heterogeneous Simulation Environment

System components of today’s complex SoC design can be modeled with
various languages and run on various simulators, such as ISS, HDL

246 Chung et al.

simulator, SystemC, hardware-based simulator and prototype board. In
order to validate the design at system level, more than two simulators
often work together with their clocks synchronized and pin signals shared.
In this heterogeneous simulation environment, synchronization and
communication overhead between the simulators degrades simulation
performance, which becomes one of the most important issues in the
system-level simulation of SoC as the complexity of SoC increases as it
should.

4. HARD PROTOTYPING

This section covers general issues on hard prototyping. By the term ‘hard
prototyping’, we emphasize the prototyping systems actually utilizing the
hardware components. However, in this chapter we extend the meaning
of the hard prototyping to include the software part integrated into one
unified environment.

We will first summarize conventional hardware-assisted verification
tools for logic-centric LSI chips. Then, additional requirements for the
SoC verification will be explained. General issues of the hard
prototyping will then be addressed with some highlight on the
debugging issues. The efforts on standardizing emulation systems will
also be addressed.

4.1 Classification of Hard Prototyping

The three major categories of classical verification techniques assisted with
hardware equipments are hardware acceleration, hardware emulation and
prototyping as shown in Figure 13. References can be found in Keating
(1999), Rashinkar (2001) and Staunstrup (1997). All three verification
techniques are utilizing hardware equipments as a vehicle to run all or part of
the DUV (Design Under Verification). However, the focus of verification is
slightly different among them.

Although hard prototyping is classified in this section, it is hard to
strictly differentiate among these categories. For example, the
acceleration equipments can be used for emulation if the speed is fast
enough and the external connection is available to interface with existing
development boards. The emulation equipment can also be used as a
prototyping system if it is small enough and cost-effective. Especially
for SoC development and verification, the boundary between emulation
and prototyping is ever smearing, since software takes ever more
portion in SoC.

SoC Prototyping and Verification 247

Physical
hardwareSoftware

Test-
bench

Soft prototype: Simulation

Design
under

verification

Software

Test-
bench

Design
under

verification

Hard prototype: Acceleration

Software
Physical
hardware

Test-
bench

Design
under

verification

Hard prototype: Emulation

Physical hardware

Test-
bench

Hard prototype: Prototype

Design
under

verification

Figure 13. Classification of hard prototyping

4.1.1 Acceleration

The acceleration, which usually is an abbreviation of the simulation
acceleration, is focusing on increasing the speed of simulation while keeping
the environment as similar as possible to the simulation environment.
Originally, it was invented to accelerate time-consuming simulation jobs
such as gate-level simulation or fault simulation as explained in Eiriksson
(1990). However, as the design size increases with enhanced process
technologies, it becomes useful also for the RTL or higher-level logic
simulation. One extreme application area of acceleration technique is to
accelerate the simulation of algorithmic models or architectural models
described in MATLAB.

For the acceleration of RTL logic simulation, maintaining the same test
bench structure as one used for the simulation and providing higher visibility
are very important.

4.1.2 Emulation

The emulation is used to verify the functionality of complex DUT (Design
Under Test) using specialized hardware equipments in the context of
realistic operation environment. Usually massive array of FPGA is used to

248 Chung et al.

accommodate the functionality of the DUT, but specialized processor array
is also adopted in nowadays high-end emulation systems. The main focus of
verification is on the behavior or functionality of the DUT itself. Therefore,
the emulation technique is often used in conjunction with existing test board
slowed down to meet the speed of emulation equipment. In such a case, the
emulation equipment provides a way to mechanically plug itself into the
existing board, so it is called ‘in-circuit’ emulator. The confidence level of
the emulation is higher than that of the acceleration in the sense that more
realistic test environment is used for the test and longer verification scenario
is applied to the DUT.

4.1.3 Prototyping

The prototyping is used to verify and demonstrate the functionality of the
whole system including the chip. It is concentrating more on the software-
side. After the chip design is nearly completed, and before the chip is taped-
out, the prototyping enables the software engineers to start software
development and/or verification. At this stage, therefore, not only the
behavior of the chip, but also the operation of the whole board should be
quite near the final product.

Prototyping is more than simple chip design, i.e., prototyping realizes a
concept or a design rapidly prior to the final production or mass production,
to see the functionality, visualize the shapes, estimate the cost, or analyze the
potential defects. Sometimes the form factor or physical dimension matters
more in prototyping compared to the emulation which is more focused on
functional aspects. In addition, the cost-effectiveness is emphasized more in
the prototyping than in the emulation.

4.1.4 Requirements of hard prototyping

The requirements for the hard prototyping can be summarized as follows.

• Gate-capacity: the gate capacity of the equipment must be sufficient to
contain the whole design. Usually hard prototyping equipments using
large number of FPGA require bigger gate capacity than actual design
size because of the overhead incurred by the inter-FPGA partitioning.

• Speed: the operating clock frequency of the hard prototyping equipment
must be high enough to run the application code with a sufficient time
margin. Often, typically for emulation, the target system needs to be
slowed down to meet the performance of the emulation equipments.

• Configuration time: in most hard prototyping equipments it is needed to
configure all the programmable devices to work as a part of user design,

SoC Prototyping and Verification 249

before starting execution. This configuration time should be kept short
enough compared to the actual running time of the simulation/emulation.

• Compile time: a fair amount of time is spent to prepare the configuration
data for the programmable devices. Typically this includes partitioning
time, synthesis time, mapping time and placement and routing time. All
of these components are linearly or exponentially proportional to the
number of the programmable devices used. Therefore, there is a trade-off
in choosing the number of programmable devices, between gate capacity
and compile time. Parallel or distributed compilation techniques and
incremental compilation techniques can be applied to enhance the
compile time.

• Visibility: for the debugging of the user logic, it is essential to provide a
way to record and show the events internal to the programmable devices.
Generally increasing the visibility will cause negative effects on other
metrics such as the gate-capacity, the operation speed, the compilation
time etc.

Other issues which need to be considered include extensibility, scalability,
maintainability, ease of use, cost and so on.

4.1.5 Examples of conventional hard prototyping system

Many EDA vendors are eager to have their own tool chain starting from
conceptual design seamlessly connected to the hard prototyping.
Commercial products are typically focused on acceleration and emulation.

The most well-known FPGA based emulator is System Realizer family
from Quickturn, part of Cadence Design Systems. It used massive array of
FPGAs with the custom emulation software that enables distributed
compilation for the FPGA and debugging. Quickturn also had a custom
processor-based emulation system, CoBALT and Palladium which is now a
major emulator product line of Cadence. These systems use an array of
custom processors that can be configured to the end-user design with
compilation. Each custom-processor approach shows a slightly slower speed
than FPGA but has more flexibility, so that the processor-based emulators
can be used as a simulation accelerator. Mentor Graphics also has a custom
processor-based emulation system family, Celaro.

Axis (Cadence) used hybrid approach that utilizes FPGA, but instead of
directly mapping user design into FPGA, maps synthesizable processor core
called RCC (Re-Configurable Computing) to the FPGA and executes
compiled codes of the user design in the processor.

The prototyping is usually done by the end user or as a technical service
due to its dependency on the final product. One noticeable exception can be
found from Aptix. The System Explorer series is a prototyping platform

250 Chung et al.

providing flexible interconnection network using their own custom
interconnection chip, FPIC (Field-programmable interconnect chip) among
several PCB modules, some of them pre-designed while others customer-
provided. The pre-designed modules cover FPGA modules mounting recent
devices from major FPGA vendors and system modules mounting
microprocessors, DSPs, interface circuits, analog circuits, etc.

There is an extreme case of emulation that utilizes behavioral-level
model and connects it to the real target board (Kim et al., 1998 and Dynalith,
2000). The behavioral-level model is usually written in the C language. With
this approach, SoC chip model in algorithmic representation can be verified
along with actual target board.

4.2 Evolution Toward SoC Verification

For the verification of SoC, further requirements need to be provided by the
acceleration, emulation, and prototyping equipment.

4.2.1 Processor modeling/integration

For the verification of SoC, the hard prototyping system must be able to
handle the target processor used in the SoC. One way is to use the behavioral
model for the processor. The other way is to attach actual processor
implemented in discrete component to the hard prototyping system (Dynalith,
2004a). The former which is discussed in section 3 of this chapter, is rather
essential and easier for debugging, but slower than the latter. In addition, the
latter is only applicable when the compatible discrete chip is available and
also its modeling accuracy will be limited by the I/O interfaces and the bus
structure of the discrete chip.

4.2.2 Large memory modeling/emulation

Large memory elements are used in SoC design for several purposes such as
code memory, data memory, FIFO memory for inter-module data
communication, etc. The most straightforward way to support them is to
provide many discrete memory components having the same or larger size
than required. These discrete memory components are useful for not only
modeling the memory internal to the SoC, but also providing off-chip
storage in final SoC system. Unfortunately, the type and size of the discrete
memory components are so various that it is impossible to adopt all kinds of
memory devices.

One way to overcome this is to provide a generic memory wrapper model
to mimic the interface of specific memory standard (Gharsalli, 2002). With

SoC Prototyping and Verification 251

this scheme, one large physical memory device can be shared among several
logical memory devices of different types.

Another general way to solve the memory problem is to use software
simulation model for the memory. This will be slightly slower but provides
better visibility and flexibility

4.2.3 Integration with simulator

As the complexity of SoC and its corresponding test bench increase, it
becomes necessary to run the hard prototyping environment in cooperation
with the software simulator. Its purpose was mainly to accelerate simulation
by running already verified IP’s in the hardware and running only part of the
design under verification in the simulator with enhanced visibility of the
software simulation.

Nowadays, it becomes more popular even in the emulation or prototyping
systems, to run all or part of the design in the hard prototyping system and
connect them with the simulator to use the enhanced features of the
simulators for the test bench modeling, system modeling, coverage analysis
and formal techniques.

4.2.4 Co-work with behavioral-level model

In SoC design and verification, ever-increasing is the need for the
continuous design flow from the high abstraction-level modeling to the gate-
level implementation. For this, it is required to interconnect the high
abstraction-level model written in various languages to the hard prototyping
system.

The purpose and usage of the behavioral model varies depending on the
verification methodologies. For example, the behavioral model for the part
of the design running in the hard prototyping equipments can also be run for
the generation of test results to be compared with the output of the DUT. Or
they can be used as models for not-yet implemented DUT modules.

Usually, the behavioral models are lacking detailed timing information.
Therefore, some additional efforts are required to bridge the ‘un-timed’ or
‘roughly-timed’ behavioral model to the ‘full-timed’ or ‘exact-timed’ models
such as hardware equipments.

4.2.5 Case study 1: ARM-based prototyping solution - ARM
RealView Integrator and Versatile

ARM RealView Integrator and Versatile is the typical prototyping system
where designers can evaluate the target microprocessor within the real

252 Chung et al.

hardware environment incorporating configurable bus and peripherals such
as UART, LCD, memory, Ethernet and so on (ARM, 2004, 2005).

In this platform, software and hardware designers can work together to
integrate and emulate the whole design. The software designer can compile
her program and download executable code into its memory to run and test
application programs. The hardware designer can build various AMBA bus
system architectures in FPGA. In addition, real hardware peripheral IO even
increases the confidence of the verification.

The PCB board basically can be expanded by installing daughter boards
through stacking interconnection. The designer can simply use various ARM
core families by exchanging ARM core daughter board and expand
configurable logic by installing additional FPGA daughter board.

4.2.6 Case study 2: Bridging emulator to the test bench in iPROVE

As a typical example of the hard prototyping system for the SoC verification,
iPROVE from Dynalith Systems (2002) provides enhanced communication
channel to the host computer in various abstraction-level mode. iPROVE is a
PCI-based single-FPGA emulation/acceleration solution for medium scale
ASIC SoC design. By adopting only one FPGA, iPROVE can still cover
most practical user designs, either IP or the whole chip, as the gate capacity
of a single FPGA exceeds several tens of million gates, and it eliminates
needs for partitioning user design and minimizes the compile time overhead.
However, if user design exceeds the capacity of the FPGA, it still can be
applied for partial design verification, which is a compromise between the
speed and gate capacity of the verification model.

iPROVE provides three different types of operation mode for co-working
with host computer, i.e., running HDL simulators, instruction set simulators
or behavioral model in high-level language.

• Cycle-level mode: in this mode, the design in the FPGA and the HDL
simulator in the host computer can communicate in clock-cycle-accurate
manner. In addition to HDL, SystemC (Ki et al., 2003) or pure C/C++
can be used as a part of system model. Various coverage tools or test
automation tools such as SpecMan, e, Vera or TestBuilder can be used
along with the HDL simulator greatly enhancing the verification quality.

• Transaction-level mode: in this mode, the design in the FPGA
communicates with the test bench or behavior model in the host
computer using FIFO style data channel. It requires a special hardware
called ‘transactor’ to be designed to adapt the interface of the user design
to the FIFO. Once it is designed, user can achieve several orders of
magnitude faster operation speeds than in cycle-level mode. Also it can
be re-used for design with similar interface protocol.

SoC Prototyping and Verification 253

• Abstract bus mode: this mode is a special case of the transaction-level mode.

In SoC design, a few bus standards are dominating all the interface standards.
For such a standard bus, pre-provided ‘transactor’ hardware and
corresponding API functions accessing it can be prepared to help user
building the behavioral model in high-level language or connecting to the
instruction set simulator for the processor. iPROVE is provided with the
abstract bus mode for the AMBA bus system, which helps rapid build-up
and verification of ARM processor-based SoC design (Dynalith, 2004b).

4.3 Issues on Hardware/Software Co-emulation

4.3.1 Synchronization

In order to perform two different levels of designs (e.g. C and Verilog
design) working together, there are two methods: hardware/software
co-simulation and hardware/software co-emulation. These two methods have
the same capability of performing hardware and software models at the same
time. However, they are different in that hardware/software co-simulation
model is running on fully-software environment. On the contrary,
co-emulation method incorporates not only processor but also hardware
emulator. The processor takes care of the software model while the hardware
emulator performs hardware model.

In most cases, co-simulation is referred to the system incorporating
instruction set simulator (ISS) for software side and HDL simulator for
hardware side. While software side of co-emulation could contain ISS, HDL
simulator, native C code or any other software model, while the hardware
side of co-emulation is composed of hardware accelerator or emulation
incorporating FPGA, real-chip or real target board.

The hardware and software co-emulation method splits the coupled
models into software and hardware sides. To let these models work together,
a means of communication between them is necessary. In co-emulation, the
communication between hardware and software is called synchronization.
Through the synchronization process, heterogeneous models in different
processing engines can communicate with each other and run together.

In this section, several levels of communication technique for
communication time reduction are explained.

4.3.2 Level of communication

The communication in co-emulation system can be classified according to
the level of communication. Here, the “level” means the “level of abstraction

254 Chung et al.

of communication data.” There are several factors that could specify the
level of abstraction.

• Abstraction in terms of time
• Abstraction in terms of data

According to the above factors, there can be several levels of communication.
Two levels of abstractions are commonly exploited; cycle-level and
transaction-level communication.

4.3.2.1 Cycle-level
The cycle-level communication is clock-cycle-accurate in terms of time and
pin-signal-accurate in terms of data. That means that every single bit of
signals is transferred at every clock cycles through co-emulation interface.
For example, when hardware and software are interconnected through
AMBA AHB interface, HADDR, HDATA, HSEL, HWRITE and all other
AHB signals are transferred at every HCLK clock cycle.

As the cycle-level communication is cycle-accurate and pin-accurate it
requires the communication time of sending all the pin signal values at every
clock cycle: There is no ‘free lunch’ as we all know.

4.3.2.2 Transaction-level
The transaction-level communication is higher-abstraction level than cycle-
level communication in terms of time and data. The communication data is
just composed of the essential information for communication. In the
example of AMBA AHB interface, we just transfer only address value, data
value and type of transfer such as read or write. The basic unit of meaningful
essential information is referred to transaction. The one transaction may
have the information for more than one cycle. Thus, the communication
needs not to be performed at every clock cycle in transaction-level
communication.

The transaction-level communication is effective to reduce the
communication time. However, it might have some mismatches in terms of
time or data due to the high-abstraction communication. For example, when
the bus error occurs during the burst transfer of AHB, we can detect the error
event after the end of the bus transaction.

4.3.3 Communication time reduction

There are several purposes of the hardware and software co-emulation. The
first purpose is to confirm the design by actually executing design in real
hardware in connection with the associated embedded software. Another
purpose is the acceleration of verification speed. Moving some of design into
real hardware emulator can reduce the simulation overall execution time

SoC Prototyping and Verification 255

while the communication overhead offsets the benefits of hardware
emulation. Therefore, to achieve the second purpose, it is necessary to
reduce the communication overhead. In this sub-section, several such
techniques are explained.

4.3.3.1 Reducing the amount of communication
The simplest and most straightforward method to reduce the communication
time is to reduce the amount of communication data. To reduce the
communication data, we can apply the following techniques.

• Raising abstraction level
We can reduce the amount of communication by sending only essential
information for communication. In this method, communication is done
by transferring a series of commands containing type and data rather than
all of the signals (Bauer, 1999).

• Using value change detection

In traditional cycle-level interface, it sends all of the pin signal values at
every clock cycle. But not all of the signals are always changed at every
cycle. Thus we can send only changed signal values to reduce the amount of
communication. Although the concept of the method is simple, there are
some issues to solve in its implementation. To indicate whether a signal is
changed or not, we need to send the changed flag first before sending the
actual pin signal values. But sending flags increase the size of
communication data. To reduce the flag overhead, we can group some
signals to share a single flag. Using protocol awareness, we can make a more
efficient group (Ki and Kim, 2005).

4.3.3.2 Storing stimuli patterns for fast regression test
Another method stores input port data in the memory located in the emulator.
When we perform additional simulation, system applies the pre-stored
patterns to DUT and compares the outputs with the expected values. This
method can remove communication overhead by not interacting with long
test-bench. Although this method can be useful for fast regression test, we
have to perform co-simulation at least once to get input port values and the
expected results. Moreover, it can not be applied to the design which is self-
driven or one that has non-deterministic behavior.

4.3.3.3 Partitioning in terms of communication efficiency
Most commonly, the partitioning criteria between software and hardware in co-
emulation system is whether the design can be synthesizable to be applicable to
the hardware emulator. However, these criteria might be inefficient in
communication time point of view. Using the technique converting any code
into synthesizable one, we can be free from the synthesizability limitation

256 Chung et al.

when we partition the hardware and software in co-emulation system, which
can bring more communication-efficient partition of co-emulation system
(Bauer, 1998).

4.3.3.4 Utilizing channel characteristics
This method is used to reduce the communication time while maintaining
cycle accuracy. Instead of modifying the communication data, it utilizes the
channel characteristics. Most communication channels can achieve high data
bandwidth in burst data transfer while it is inefficient in single or small data
transfer. But the cycle-level communication method inherently exchanges
input primary port value and output primary port value at every clock cycle,
which is not communication-efficient because of the size limitation of the data
that can be exchanged in a single transfer, i.e., the bit-width of input and
output primary port limit the burst size of communication. To increase the
burst size of the data transfer, this method moves some part of test-bench into
the hardware emulator to remove the data dependency between the output port
and input port within test-bench. Without data dependency, test-bench can
apply a large amount of input port values corresponding to many clock cycles
without receiving output port value from the emulator (Kim et al., 2004).

4.4 General Issues in Hard Prototyping

This section covers general issues in hard prototyping ranging from the
physical problems such as clocks and routing, to the architectural issues.

4.4.1 Processor-based vs. FPGA-based

Most hard prototyping systems are implemented using FPGA. FPGA are
usually used for rapid prototyping purpose but they are also useful for end-
product in small-size market. FPGA have a massive array of configurable
logic cells which are very useful in emulating behavior of user design logics.
FPGA also have configurable I/O cells arranged along the four sides of the
chip. They can be used in various ways in interconnecting FPGA with
external peripheral devices. Mapping user logic directly to the FPGA cells
has limitation in debugging.

Hard prototyping system may be implemented using special purpose
processors. In this case, each processor simulates the behavior of some part
of user design, i.e. there is no one-to-one relation between user logic and the
simulating processor. There is a great flexibility in the size of design that can
be emulated. Code debugging can be done at the same time with the
behavior emulation of original logic. The drawback of the processor-based
hard prototyping is extremely high costs.

SoC Prototyping and Verification 257

4.4.2 Clocks and global resources

In FPGA-based hard prototyping systems, each functional module in user
design is one-to-one mapped to the logic cells of the FPGA. For the clock lines,
the global resources should be used to deliver the clock signals to all the
sequential logic elements throughout the whole FPGA with minimum skew
and delay. Because the clock resources are limited in number and some of
them are occupied by the system operation, users have to carefully utilize the
clock resources. This is applied also for other global signals such as ‘reset’.

The problem is more difficult when using multiple FPGAs. If a clock
domain sourcing one clock signal is partitioned into different FPGAs, the
clock source should be distributed to the FPGA with minimum skew so that
the set-up and hold time constraints for all the flip-flops spanned in multiple
FPGAs can be met. The set-up time constraint can be relaxed by slowing
down the operation speed, but the hold time constraint can not be satisfied
without controlling the phase of the skewed clock or inserting special
holding logic.

In processor-based hard prototyping systems, this kind of physical
problems can be avoided by mimicking the behavior of simulator using
specialized processor instead of implementing the circuit in hardware.

4.4.3 I/O types

FPGA provides various types of I/O technologies in a configurable way.
However, this flexibility is reduced while the FPGA is mounted in the PCB
in a specific circuit configuration. This is one of the biggest obstacles in
making universal verification equipment. When developing or using the hard
prototyping system along with external hardware components, users have to
survey the I/O types of the external components and its pin number carefully.

4.4.4 Partitioning & routing

In both processor-based and FPGA-based hard prototyping, partitioning the
given user design into several pieces is a very time-consuming but important
step. Ill-partitioned design will consume more area and routing resources and
take more time to synchronize data between partitions.

Partitioning can be done in gate-level or in RTL. Classical emulation or
acceleration equipments usually partitions design in gate-level. However,
recent hard prototyping systems support RTL partitioning to enhance the
debugging feature. RTL partitioning allows the hierarchical structure of the
design be used as a guidance to partition the design, which also helps
re-constructing the waveform in user-readable form than in gate-level.

258 Chung et al.

After partitioning, the routing phase follows. The routing may be
statically fixed in PCB or programmable using special hardware resources.
One example of programmable routing resource is a special chip called field-
programmable interconnection IC (FPIC). In statically routed emulation
hardware, the routing is done by allocating proper PAD location for each
FPGA. The routing flexibility is limited while the physical characteristics of
the routing channel are better than using programmable routing hardware.

A frequently used technique when the number of routing resource is
smaller than required, is to multiplex multiple signals in one FPGA, transmit
using one physical signal line, and de-multiplex it in the other FPGA.

4.4.5 FPGA-dependency

Each FPGA family provides various advanced features for managing clocks,
high-speed interface, and specialized hardware for multipliers and DSP
circuits, etc. When using FPGA for hard prototyping, the selection of FPGA
model significantly affects the final features of the hard prototyping system.
For example, the Excalibur from Altera integrates ARM9 processor core and
several configurable peripheral IP’s with programmable logic devices. It is a
good candidate for ARM-based SoC modeling, although it has limitation that
its AHB bus architecture is fixed by hardware. Xilinx also provides PPC
cores with Viretex-2pro and Virtex-4 family.

4.5 Debugging Issues

Debugging is one of the most important issues in hard prototyping. In
classical logic-centric chip design, the main debugging target was logic and
timing problem. The timing bug is said to exist in a circuit that does not
satisfy timing constraint given to the combinational logic path to guarantee
proper operation in a specific operating frequency range. The timing bug can
be detected by timing simulation which is a logic simulation considering the
cell delays and routing delays of the chip. This can be done only in
processor-based simulation acceleration.

The logical bug is typically related with the logical flaw caused by illegal
initialization, bit-width mishandling, typing error, wrong Boolean equation
or conditional statements, unexpected synthesis tool behavior, etc and
undetected in simulation.

Logic analyzer is the most essential debugging equipment for logic and
timing debugging. Most logic analyzers provide high speed data link with
hard prototyping equipment in probe type or connector type. The operating
frequency of the contemporary logic analyzers is very high and various
triggering modes and large amount of memory for data capture are provided,

SoC Prototyping and Verification 259

which enables detailed timing analysis on off-chip signal. However, logic
analyzers require physical connection with debug target and signals internal
to the chip should be extracted to the external pads for debugging, which is
very tedious and bug-prone.

FPGA vendors provide built-in logic analyzer features utilizing unused
internal logic and memory resources. It simplifies debugging by eliminating
messy coupling with logic analyzer, but its capacity is limited by the amount
of spare resources. Many hard prototyping equipments have extra hardware
resources dedicated for logic debugging.

The software debugging in SoC verification highly depends on the
processor type used and the debugging features provided with the specific
processor model. Most embedded processor vendors promote the debugging
hardware and debugging tools specific to the processor. For example ARM
processor is provided with the embedded trace module that enables the trace
of instruction and data processed in the processor. In SoC verification,
a means to correlate the trace data generated by the processor debugging tool
and the signal dump gathered for the hardware is necessary.

4.6 Standard of Co-Emulation Modeling

4.6.1 Background

The benefit of hardware acceleration/emulation is the reduction of
verification time, which would in turn help meet the ever-shrinking time-to-
market requirements. Hardware-software co-emulation technique is used
when only some part of design could be applicable to hardware
acceleration/emulation while the rest of design remains in software part. In
this configuration of design, software and hardware parts co-exist and
interact with each other to realize the whole design functionality.
Verification of this kind of design needs specialized platform which mainly
incorporates two parts, in which host processor executes the software-side
design and hardware accelerator/emulator takes care of hardware-side design.
This verification platform is called co-emulation system and the target
design under co-emulation system is considered as co-emulation modeling.

Co-emulation system, on the other hand, requires much time and effort to
develop the whole co-emulation platform. It is, therefore, not efficient to
develop a new co-emulation platform whenever we need to verify a new
design. In most cases, designers utilize the commercial 3rd party
co-emulation system or reuse the existing customized platform.

The co-emulation system is composed of not only a main processing engine
(host processor and accelerator/emulation) but also implementation-specific

260 Chung et al.

components such as communication channel between processor and
accelerator/emulator, device driver, API, bus interface and so on. These
components can be different among particular system implementations
according to emulation system vendor and model.

This implementation-specific feature affects co-emulation modeling.
Accelerator/emulator vendors have proprietary APIs. Hardware-side of
design under verification is required to be modified to interface with
platform-dependent communication channel and bus interface.

Verification engineers need to learn these platform-dependent API and
hardware interface to model and implement his/her design on the specific
co-emulation platform. Sometimes, we need to change co-emulation
platform to satisfy the special requirement. Then, re-modeling of the
previous co-emulation model is needed due to the mismatches of API and
hardware interface between the previous and current co-emulation system.

Co-emulation platform itself has implementation-specific portions, which
is totally dispensable to the verification engineer. One does not have to
understand the details of implementation of co-emulation system but just need
to verify one’s design on this platform. To hide the implementation-specific
things, co-emulation system should be based on the layered architecture.
Moreover, to avoid the re-modeling efforts when possible change of co-
emulation system, interface between the layers need to be defined well.
According to these needs of EDA industry, Accellera announced Standard Co-
Emulation Modeling Interface (SCE-MI) (Accellera 2003).

4.6.2 SCE-MI layered architecture

Co-emulation system based on SCE-MI also incorporates two processing
engines, which are processor and hardware accelerator/emulator. To hide the
implementation-dependent details and increase productivity from design
reuse, it has a layered architecture as shown in Figure 14. Moreover, to
reduce communication overhead between processor and hardware emulator,
communication is done in message-based transfer rather than cycle-accurate
signal level. Thus, transactor is located in the hardware emulator where
message is decoded and resolved into cycle-accurate signals.

The architecture has four layers. Each layer performs a well-defined
function. We will discuss each layer of the architecture in turn, starting from
the top layer. From the application layer view point, test-bench is directly
connected to DUT, but the test-bench is usually described in test case-
oriented un-timed model ignoring detailed signal protocol. For example,
when DUT is a kind of memory device, test-bench can just care about which
data to store in memory without concerning about detailed memory interface
protocol signals. DUT is described in cycle-accurate signal-level model such
as RTL (Register-Transfer Level) model. The protocol layer is responsible

SoC Prototyping and Verification 261

for abstraction-level conversion. Socket creates a message from the stimuli
of a test-bench. The transactor decodes the message which in turn is resolved
into the detailed cycle-accurate signals. The infrastructure layer is
responsible for transferring messages. Messages are transferred through
several independent logical channels, each of which connects a software API
with an associated port macro. The physical layer coordinates the functions
required to transmit a bit stream over a physical medium such as PCI bus.

Figure 14. Layered architecture of SCE-MI

In this layered architecture, user can design transactor without
considering the detailed emulator implementations. Emulation user can
simply link between transactor and software test-bench through the standard
transactor interface without the knowledge of emulation-dependent interface
protocol.

4.6.3 Automatic Generation of Co-Emulation Interface

In the SCE-MI approach, emulator users don’t have to be concerned about
the emulator-system-dependent things using automated process which
generate two bottom layers shown in Figure 14. Designs in protocol layer
should be provided by the designer of protocol which is used for DUT
interface. SCE-MI defines API function prototypes for software test-bench
and protocol definition of macro module for standard transactor interface.

262 Chung et al.

However, as these are just wrappers, we still need to complete the actual
design of API and hardware macro.

To perform co-emulation in this environment, emulator user has to
prepare bridge netlist, interconnects DUT, transactor and standard macro
modules in RTL description using Verilog or VHDL.

Through the instantiated standard macros, user can connect transactor to
the software test bench without knowledge of the detailed implementation of
emulation system, i.e., users don't need to know the operation of emulation-
dependent interface protocol for interconnection between processor and
emulator. Actual interconnection is done by the automated processes as
described in Dynalith Systems SCE-MI package (Dynalith, 2003). Through
automated infrastructure linking process, emulator user can perform
co-emulation modeling without concerning about implementation-dependent
details and remodeling efforts in possible emulator change.

5. SUMMARY

In this chapter, SoC design flow and environment was addressed in terms of
functional verification. In early design phase, soft prototype provides a
working system model, where soft prototype consists of components models
written in software including HDL, C/C++, SystemC and so on. With soft
prototype, the technique of raising abstract-level is used in order to get
reasonable simulation speed. One of the upcoming techniques is TLM based
on SystemC. As one of prominent aspects of SoC is embedding processing
cores, HW-SW co-simulation is an inevitable feature, where ISS simulates
application software supposed to be run by the embedded processor. Several
techniques are available for ISS, which include interpretive, static-compiled
and dynamic-compiled. While design progresses, some or whole parts of
SoC are replaced with hardware since the soft prototype can fail to deliver
enough simulation performance. Hardware assisted techniques are called
hard prototype comparing to the soft prototype. Hard prototype includes
acceleration, emulation and prototype.

REFERENCES

Accellera, 2003, Standard co-emulation modeling interface reference manual, version 1.0;
http://www.eda.org/itc.

ARM, 2002, ARM System-Level Modeling; http://www.arm.com.
ARM, 2003, AMBA AHB Cycle Level Interface (AHB CLI) Specification;

http://www.arm.com.
ARM, 2004, ARM RealView Versatile Family Flyer; http://www.arm.com.
ARM, 2005, ARM RealView Integrator Family Flyer; http://www.arm.com.

S C Prototyping and Verification 263

Bammi, J. R., Harcourt, E., Kruijtzer, W., Lavagno, L. and Lazarescu, M. T., 2000, Software

performance estimation strategies in a system-level design tool, Proceedings of
International Workshop on Hardware/Software Codesign, pp. 82-86.

Bauer, M., Echer, E., Henftling, R., and Zinn, A., 1999, A method for accelerating test
environments, EUROMICRO Conference.

Bauer, J., Bershteyn, M., Kaplan, I., and Vyedin, P., 1998, A reconfigurable logic machine for
fast event-driven simulation, Design Automation Conference (DAC).

Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fummi, F. and Poncino, M., 2003, SystemC
cosimulation and emulation of multiprocessor SoC designs, IEEE Computer, 36(4):53-59

Blaurock, O., 2004, A systemc-based modular design and verification framework for C-model
reuse in a HW/SW-codesign flow, Proceedings of International Conference on Distributed
Computing Systems Workshops, pp. 838-843.

Cai, L. and Gajski, D., 2003, Transaction Level Modeling: An Overview. In Proc.
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS'03), Newport Beach CA USA, pp. 19-24.

Caldari, M., Conti, M., Coppolar, M., Curaba, S., Pieralisi, L., and Turchetti, 2003,
Transaction-level models for AMBA bus architecture using SystemC 2.0, In Proc. Design,
Automation and Test in Europe and Exhibition (DATE'03), Munich Germany, pp. 26-31.

Chang, H., Cooke, L., Hunt, M., Martin, G., McNelly, A., and Todd, L., 1999, Surviving SOC
Revolution: A Guide To Platform-Based Design, Kluwer Academic Publishers.

Chung, M. K. and Kyung, C. M., 2004, Improvement of compiled instruction set simulator by
increasing flexibility and reducing compile time, Proceedings of International Workshop
on Rapid System Prototyping, pp. 38-44.

Chung, M. K., Yang, S., Lee, S. H. and Kyung, C. M., 2005, System-level HW/SW
co-simulation framework for multiprocessor and multithread SoC, Proceedings of
International Symposium on VLSI Design, Automation and Test, IEEE, pp. 177-180.

Clouard, A., 2002, Experiences and Challenges of Transaction-Level Modeling with SystemC
2.0, ST Microelectronics, presentation at the 5th European SystemC User Group Meeting.

Clouard, A. Jain, K., Ghensassia, F., Maillet-Contoz, L., Strassen, J.-P., 2003, SystemC:
Methodology and Applications, Muller, W., Rosenstiel, W., and Ruf, J., ed., Kluwer
Academic Publishers.

Cmelik, B. and Keppel, D., 1994, Shade: a fast instruction-set simulator for execution
profiling, Proceedings of International Conference on Measurement and Modeling of
Computer Systems, ACM SIGMETRICS, pp. 128-137.

Dynalith Systems, 2000, iSAVE User Manual, http://www.dynalith.com.
Dynalith Systems, 2002, iPROVE User Manual, http://www.dynalith.com.
Dynalith Systems, 2003, iPROVE SCE-MI Coemulation Manual, http://www.dynalith.com.
Dynalith Systems, 2004a, PhysicalModler, http://www.dynalith.com.
Dynalith Systems, 2004b, iPROVE AMBA Package Manual, http://www.dynalith.com.
Eiriksson, A.T., 1990, Mixed-level simulation with a Zycad simulation engine, ASIC Seminar

and Exhibit, 1990. pp. P5/1.1-P5/1.5.
Gharsalli, F.; Meftali, S.; Rousseau, F.; Jerraya, A.A., 2002, Automatic generation of

embedded memory wrapper for multiprocessor SoC, Design Automation Conference,
pp. 596-601.

Grotker, T., Liao, S., Martin, G., and Swan, S., 2002, Chapter 8 Transaction-level modeling,
in: System Design with SystemC. Kluwer Academic Publishers.

Keating, M. and Bricaud, P., 1999, Reuse Methodology Manual for System-On-a-Chip
Designs, 2nd ed., Kluwer Academic Publishers, pp. 224-247.

Ki, A., Park, B.I., Lee, J.G., and Kyung, C.M., 2003, Cycle-accurate co-emulation with
SystemC, SoC Design Conference, COEX ASEM Hall, Seoul Korea.

o

264 Chung et al.

Ki, A. and Kim, Y.I., 2005, Reducing lock-step overhead of hardware-assisted simulation

acceleration using protocol awareness, International SoC Conference, Seoul Korea.
Kim, N., Choi, H., Lee, S., Park, I.-C. And Kyung C.M., 1998, Virtual Chip:Making

Functional Models Work on Real Target Systems, Design Automation Conference (DAC),
pp.170-173.

Kim, Y.I., Yang, W., Kwon, Y.S., and Kyung, C.M., 2004, Communication-efficient
hardware acceleration for fast functional simulation, Design Automation Conference
(DAC), pp. 293-298.

Lee, J. Y. and Park, I. C., 2003, Timed compiled-code functional simulation of embedded
software for performance analysis of SOC design, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 22(1):1-14

Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H. and Hoffmann A., 2002,
A universal technique for fast and flexible instruction-set architecture simulation,
Proceedings of Design Automation Conference, pp. 22-27.

OSCI, 2005, Draft Standard SystemC Language Reference Manual, http://www.systemc.org.
Pasricha, S., 2002, Transaction level modeling of SoC with SystemC 2.0, In Synopsys Users

Group Conference India (SNUG'02), India.
Pees, S., Hoffmann, A., Zivojnovic, V. and Meyr, H., 1999, LISA-machine description

language for cycle-accurate models of programmable DSP architectures, Proceedings of
Design Automation Conference, pp. 933-938.

Rashinkar, P., Paterson, P., and Singh, L., 2001, 5.8 Simulation acceleration, in: System-
on-a-chip Verification: Methodology and Techniques, 1st ed., Kluwer Academic
Publishers, pp. 223-234.

Rosenstiel W., 2000, Chapter 3 Prototyping and emulation, in: Hardware/Software
Co-Design: Principles and Practice, Staunstrup, J. and Wolf, W., ed., 1st ed., Kluwer
Academic Publishers, pp. 75-78.

Schnarr, E. C., Hill, M. D. and Larus, J. R., 2001, Facile: a language and compiler for high-
performance processor simulators, Proceedings of Programming Language Design and
Implementation, ACM SIGPLAN, pp. 321-331.

Synopsys, 2003a, CoCentric System Studio User Guide, Version U-2003.03; http://
www.synopsys.com.

Synopsys, 2003b, DesignWare AMBA SystemC Library User Guide; http://www.synopsys.com.
Synopsys, 2003c, DesignWare ARM SystemC Library User Guide; http://www.synopsys.com.
Wieferink, A., Kogel, T., Leupers, R., Ascheid, G., and Meyr, H., 2004, A system level

processor/communication co-exploration methodology for multi-processor system-on-chip
platforms. In Proc. Design, Automation and Test in Europe and Exhibition (DATE'04),
Paris France, pp. 1256-1261.

Witchel, E. and Rosenblum, M., 1996, Embra: fast and flexible machine simulation,
Proceedings of International Conference on Measurement and Modeling of Computer
Systems, ACM SIGMETRICS, pp. 68-79.

Zhu, J. and Gajski, D. D., 2002, An ultra-fast instruction set simulator, IEEE Transactions on
Very Large Scale Integration Systems, 10(3): 363-373.

Zivojnovic, V., Tjiang, S. and Meyr, H., 1995, Compiled simulation of programmable DSP
architectures, Proceedings of Workshop on VLSI Signal Processing, IEEE, pp. 187-196.

265

Chapter 8

SoC TESTING AND DESIGN FOR TESTABILITY

Cheng-Wen Wu and Chih-Tsun Huang
National Tsing Hua University, Taiwan

Abstract: Integrating reusable cores from multiple sources is essential in system-on-chip
(SOC) design. Testing these cores as well as the integrated system chip
requires not just the conventional design-for-testability (DFT) methodologies,
but also new ones. SOC testing involves applying test patterns to and
analyzing the corresponding response from each and every core. In addition,
the user-defined logic as well as the final integrated chip has to be tested.
There are new challenges and issues, such as core isolation, test access, test
pattern translation (from core to chip), test integration and scheduling, test
automation, etc. This chapter discusses in detail the challenges and solutions in
core-based SOC testing. We also briefly describe the IEEE 1500 that
standardizes the test interface (called the Test Wrapper) between a core and its
SOC host, and the Core Test Language (CTL) for test automation. We present
a novel SOC test integration platform, solving real problems in test
scheduling, test IO reduction, timing of functional test, scan IO sharing,
embedded memory built-in self-test (BIST), etc. We also present a memory
BIST compiler that provides a complete solution for SOCs with heterogeneous
memory cores

Keywords: built-in self-test (BIST), Core Test Language (CTL), design-for-testability
(DFT), IEEE 1500, memory testing, SOC testing, test access mechanism
(TAM), test wrapper

1. INTRODUCTION

Testing is not a new engineering area, nor is it specific to electronic circuits.
Not only man-made products (materials, devices, equipments, systems, etc.)
but also natural goods need to be tested for their functionality and/or
performance before we are confident of using them. The advent of

Lin (ed.), Essential Issues in SOC Design, 265–310.
© 2006 Springer.

S.Y.-L .

266 Wu and Huang

semiconductor-based integrated circuit (IC) in 1958 created a new class of
man-made products that require special techniques to test them. Over the
years, electronic testing has evolved itself into one of the major electrical
engineering fields, and produced industries in equipment, software tool,
service, etc. Today, as we are entering the deep-submicron (DSM) age in the
21 century, system-on-chip (SOC) is becoming a reality. VLSI circuit chips
are becoming so complex that their testing cost soars. Without continued
research and development in test methodologies and technologies, test cost
can rise to a level that becomes the bottleneck of developing and
manufacturing new generations of VLSI circuits. In this chapter we will
discuss the techniques and methodologies of SOC testing.

In addition to functionality and performance, the main purpose of VLSI
testing is to guarantee the quality and reliability of the shipped parts of the
circuit under test (CUT). Apparently, for that purpose we need to know
what we are testing, i.e., we need to know 1) the types of defects and faults
that can occur in a VLSI circuit, and 2) the types of circuits and circuit
modules we are testing (digital, analog, memory, etc.). We then have to
figure out how to test the defects and faults, and develop methods and tools
to do that. This involves, in general, test pattern generation, test pattern
application, and response evaluation. We also need to know the costs and
effects of the methods and tools we develop. Specifically, the test quality
and test cost have to be evaluated, i.e., we need to identify the relationship
among the test cost, test coverage, and product quality and reliability.
Developing cost-effective techniques, methodologies, and tools to
guarantee product quality and reliability is the ultimate objectives of test
development.

It is generally accepted that core-based and platform-based design
methodologies are available for SOC design based on today’s technology.
As to SOC testing, test reuse and platform-based test methodologies still
require investigation [1][2]. For an SOC, the design and test engineers may
have to test the cores under a very limited knowledge of the core test
information. The issues of core access and isolation are being addressed by
the IEEE 1500 [3][4]. The IEEE 1450 [5] and IEEE P1450.6 [6] define the
standard test interface language (STIL) and core test language (CTL),
respectively, and provide a solution for test information exchange.
Although the standards try to unify the core test wrappers and test
information exchange format, the test controller, test architecture, test
access mechanism (TAM), and test integration are left to the user—the
SOC integrator.

Many TAM architectures (e.g., [7][8][9][10][11]) and test scheduling
algorithms (e.g., [10][12][13][14][15]) have been proposed, however, there
is little discussion that address test scheduling and TAM architecture at the

SoC Testing and Design for Testability 267

same time. Most of the previous test scheduling works put emphasis on the
reduction of test time without considering test architecture and TAM.
Without considering practical test architecture, the test scheduling problem
becomes unrealistic, where the cores can be accessed and tested at any time
in any order. The scheduling result obtained that way is usually optimistic
and impractical, requiring a complicated test controller, TAM bus arbiter,
and/or massive test IOs. In our previous work [10], good scheduling result
is obtained by using the session-based test scheduling approach and the
Test Access Control System (TACS). However, the test time calculation in
[10] is still too optimistic for real applications. The TestRail reported in [9]
does not discuss the test controller and its complexity. Although the
scheduling result is good, each TestRail requires its dedicated Wrapper
Serial Control (WSC) signals. As a result, the number of test IOs can be
high. Some other approaches such as the addressable test port (ATP) [8],
CAS-BUS [7], and HD-BIST [11] provide flexible TAM and test
architectures, but the drawback is high performance impact and area
overhead.

In this chapter, we stress major issues in practical SOC test integration.
First of all, test scheduling is defined by using a more precise model based
on TACS. The realistic test time formulation reduces the complexity of test
operations. With TACS, both the TAM bus arbitration and the control of test
IOs can easily be done, and fewer test IOs are needed. The improved
session-based test scheduling considers not only the realistic test control
architecture and TAM bus, but also test IO limit. Issues on sharing and
distribution of the test clocks and test enable signals are also discussed.
Secondly, the coexistence of scan test and functional test is discussed in
detail. The major challenge in applying functional patterns using the test
wrapper is the timing requirement. Scan pattern application is relatively
simple and straightforward by the 1500 parallel TAM, but at-speed
functional pattern application is not as easy. We present a methodology to
deliver the functional test patterns by using the scan architecture. In a legacy
core the scan and functional IOs are usually shared, so there are timing
problems in applying the tests through the 1500 Wrapper Boundary Register
(WBR). With a minor modification of the WBR, we can solve the timing
issues. The Test Access Port (TAP) Controller is extended and used as the
Test Controller of the system chip, which is used to apply the scan tests,
functional tests, or both to the embedded cores.

In addition to testing logic cores, we also discuss memory testing.
Embedded memories are among the most common cores in system-on-chip
(SOC) designs. The increasing demand for data bandwidth and the
continuous decline in hardware cost makes embedded memory cores more
and more popular for SOC applications. However, testing embedded

268 Wu and Huang

memories is still a challenge since testing memory cores is much more
difficult than testing commodity memories due to the limitation in available
pins that can be used to access the cores, the increase in speed (due to the
removal of off-chip loading), the increase in address and data bus widths, the
availability of customized specifications and configurations of the memory
cores, etc.

In addition to testing embedded memories using expensive external
memory testers, built-in self-test (BIST) is considered a good alternative
solution (see, e.g., [33][34][35][36][37][38][39]). With BIST, the overall
test time can be minimized by parallel testing of the memory banks or
blocks, and the external memory tester time can be greatly reduced. Since
the test requirement is minimized, the cost of the tester reduces. However,
a simple go/no-go BIST has limited applications because of the lack of
diagnosis capability. Being able to provide the information such as the
address and behavior of the faulty cells is an important feature that helps
the user improve the memory design and process integration.

Embedded memories, unlike the commodity ones, are usually customized
for different ASIC or SOC applications. The BIST circuits also need to be
customized in such a case. An automatic BIST circuit generation tool will be
required to increase productivity when embedded memory cores are
frequently used. Several tools have been proposed for memory BIST circuit
generation in the past. For example, a tool was proposed in [40] for
automatic generation of both BIST and transparent BIST designs for
memories. The methodology presented in [41] provides the automatic BIST
design creation based on the popular march-based algorithms [35][42]. The
BIST circuit detects port-coupling faults in multi-port RAM in addition to
other common faults. A memory synthesis framework was proposed in
[43][44], which can automatically generate, verify and insert programmable
or non-programmable BIST circuitry in a short time. A memory BIST
description language was used to help the integration of BIST and memory
cores. Another example is our previous work—a simple programmable BIST
compiler for EDO DRAM is reported in [45]. Almost all the proposed
frameworks and existing commercial tools are designed for SRAM BIST
only. We present a BIST compiler that supports both SRAM and DRAM.

Finally, we show at the end of the chapter an industrial SOC design that
is developed using a test integration platform—SOC Test Aid Console
(STEAC). The previous version of STEAC [16] has been greatly enhanced
to support automation of test scheduling, test circuitry insertion and test
pattern translation under the practical constraints as discussed above. Under
the IO resource constraint, experimental results show that this approach is
cost-effective. In addition, the cores with both scan and functional tests are
supported by the enhanced TAP Controller and WBR.

SoC Testing and Design for Testability 269

2. IEEE 1500 AND TEST ACCESS CONTROL

SYSTEM

Before discussing the test integration issues the IEEE 1500 Test Wrapper and
Test Access Control System (TACS) [16] are briefly reviewed. We will show
how to apply core test patterns, and present test time calculation under TACS.

2.1 IEEE 1500 [4]

To solve the problems mentioned above and for easy test automation, a
standard test interface for the cores is required. A generic scalable
architecture for SOC test is shown in Figure 1. [3], which was proposed by
the IEEE 1500 Standard Working Group. The IEEE 1500 tries to standardize
the Core Test Wrapper and the Core Test Language (CTL). The scalable
architecture consists of

• the user-defined parallel test access mechanism (TAM) for delivering the
test patterns and responses in parallel,

• standard core test wrappers that can isolate the cores and provide
different test modes, and

• a user-defined test controller for controlling the wrapper and TAM [3].

Figure 1. IEEE 1500 scalable architecture for SOC test

270 Wu and Huang

Off- or on-chip Source and Sink generate the test patterns and evaluate the
test responses, respectively. Serial test access can always be done by using
the Serial Interface Layer (SIL) provided by the 1500 Test Wrapper, which
is mandatory. Note that adopting common test integration and optimization
procedure is not necessary, and usually not possible, since the requirements
and goals of the core providers, SOC integrators, and chip fabricators in the
testing domain are different. Therefore, the TAM and test controller are user-
defined. Among these components, the IEEE 1500 Standard Working Group
only standardizes the test wrapper, and other components are designed by
the SOC integrator.

Figure 2 gives the architecture of the IEEE 1500 Test Wrapper, which
includes the following elements:

• Wrapper Instruction Register (WIR). This register decodes various test
modes defined by mandatory and user instructions, and controls the
operation of the WBR.

• Wrapper Bypass Register (WBY). Normally only 1-bit, this register
directly connects the Wrapper Serial Input (WSI) to the Wrapper Serial
Output (WSO). We use it to bypass the current core when we are testing
other cores. If the core is not selected, we connect the output of WBY to
WSO.

Figure 2. IEEE 1500 Test Wrapper architecture

SoC Testing and Design for Testability 271

• Wrapper Boundary Register (WBR). This register consists of the Wrapper

Boundary Cells (WBCs) that wrap the cores’ normal I/O pins, adding
control, observation, and isolation capabilities to the cores’ normal functions.

The Test Wrapper connects all functional inputs, scan chains, and functional
outputs such that the test data can be shifted in through WSI and the test
response can be shifted out from WSO. In general, the Test Wrapper has
four major operation modes:

1. normal mode, in which the wrapper is transparent and the core operates
normally;

2. inward-facing mode, in which the test access is for the core itself;
3. outward-facing mode, in which the test access is for the external

circuitry; and
4. safe mode, in which the WBCs force the inputs of the core to a fixed

pattern.

The first three modes are mandatory, and the last one is recommended. The
IEEE 1500 also supports parallel test access to speed up the test process. In
Figure 2, TAMIN and TAMOUT are parallel input and output ports,
respectively. They are usually connected to a bus for parallel test data
transfer. All inputs, outputs, and scan chains are connected to their assigned
TAM bus lines, as shown in Figure 3. Note that TAMIN will connect the
primary inputs (PI), scan chains, and primary outputs (PO) in the order
shown. In this way, PI and PO can be overlapped to shorten the test time. In
what follows, we assume the test data is transferred through TAMIN and
TAMOUT, and the Test Wrapper is as shown in Figure 3.

At the chip level, we need to optimize the TAM and schedule the core
tests [17]. Test wrapper and TAM co-optimization is important for the
SOC integrator, since it has direct impact on the area overhead and ATE
vector memory depth. The TAM is designed under the routing constraints
between the cores and the system-level power constraints. The core tests
are scheduled such that the total SOC test time can be minimized, subject
to the testing power and area overhead constraints [18]. Test time
reduction is done by exploring parallelism at both the chip and core
levels [17].

2.2 Test Access Control System (TACS)

To speed up the development of system-on-chip (SOC), large and complex
cores are being reused by designers. While design reuse is widely believed
to effectively improve the productivity, test reuse is still a task that needs
more effort than the designer can afford in general. The testing of SOC
and the reusable cores (from different sources) has created some new

272 Wu and Huang

Figure 3. TAM routing example

challenges [1][2][21] for the designers and test engineers, such as 1) to test
the cores with a very limited knowledge about the details of their test
methodologies; 2) to access and isolate the deeply embedded core; and 3) to
integrate and translate core tests to form the final SOC test. A typical SOC
test design flow is shown in Figure 4. In the figure, we can see that the test
issues include test information exchange, test wrapper generation, test access
mechanism (TAM) design, test controller design, test scheduling, test
integration, etc. The IEEE 1500 [3][4] defines the standard wrapper cells to
support core test reuse and isolation. In [5][6], the standard test interface
language (STIL) and core test language (CTL) are shown to provide the
solution for test information exchange.

The TAM transports test patterns from the test source to the core-under-
test (CUT), and transports the test responses from the CUT to the test
sink. The TAM architecture affects the design of test wrapper and test
controller, as well as the test scheduling algorithm. There were many TAM
architectures proposed previously [8][22][23][24][25][26]. TAM architectures
for cores with scan test were classified into multiplexing, daisy-chain,

SoC Testing and Design for Testability 273

Figure 4. A typical SOC test design flow

and distribution architectures in [22]. In the multiplexing architecture,
a multiplexer is added to the system to select the core to be connected to
the TAM. In this architecture, only one core is tested at a time, resulting in
long test time. In the distribution architecture, each core has one dedicated
TAM, and can be tested at the same time without TAM resource limitation.
In the daisy-chain architecture, the TAM forms a long scan chain over all
cores. Bypass multiplexers are used to reduce the length of the shift path.
With the bypass multiplexers, the cores can be tested in parallel, partly in
parallel, or in series. It is more flexible than the distribution or
multiplexing architecture. There are some other TAM architectures, e.g.,
a dedicated bus can be used for core test [23], and the on-chip system bus
also can be reused as the TAM [24]. Also, in [25], the TestRail was
proposed to combine the strength of both the test bus and boundary scan
test. In TestRail, the multiplexing or daisy-chain architecture can be used.
In addition, each core can have a dedicated TestRail, resulting in a
distribution architecture. Other architectures such as addressable test port
[8] and CAS-BUS [7] were proposed for high scalability and flexibility.
They introduce higher hardware cost and performance impact. The choice
of the TAM depends on the requirements of the SOC under test, including
test time, performance penalty, area overhead, ease of test translation and
test integration, etc. Some previous works have focused on the scheduling
of core tests to reduce test time, subject to certain test resource and test

274 Wu and Huang

power constraints [27][28][29][30]. The test scheduling problem has been
reduced to some well known problems, e.g., the integer linear
programming (ILP) problem, placement problem, and rectangle packing
problem. However, so far little attention has been paid to on test
integration at the system level.

In this sub-section, we present the Test Access Control System
(TACS) that allows easy test integration for SOC. Based on the IEEE
1500 Test Wrapper, a TAM and the associated test controller are
proposed, which are used to develop a test scheduling tool for optimizing
the test time and/or TAM utilization. After test scheduling, the TACS
hardware (including the core test wrappers, the TAM, and test controller)
is automatically generated that meets the system test requirements. TACS
also translate and integrate the core tests to the final system-level test
automatically. It can be controlled via the IEEE 1149.1 Test Access Port
(TAP) interface [19] or the IEEE 1500 Wrapper Interface Port (WIP).
The TACS software has been developed based on the IEEE 1450
Standard Test Interface Language (STIL) and 1450.6 Core Test Language
(CTL). The design specifications and test information of the cores and
SOC are obtained from the user and the related CAD tools, while the test
schedule is generated by our scheduling tool. The final SOC test is
written in standard HDL and STIL for further use in physical design and
ATE programming.

TACS contains a simple Test Controller that is compliant to the IEEE
1149.1 TAP Controller [32], and multiplexer-based TAM buses. The Test
Controller will generate the WSC signals to operate the 1500 Test
Wrapper for shift, capture, transfer, and update operations. The Test
Controller also arbitrates the TAM bus for core test switching.

TACS is intended for managing three test tasks: 1) to control the core
test wrapper operations, 2) to configure the TAM, and 3) to send the test
patterns and receive the test responses. Although the Serial Interface Layer
(SIL) defined in IEEE 1500 provides a standard test access mechanism for
the cores, it is slow. A parallel TAM can be used to save the test time. In
this section we will present the TACS hardware, including a hybrid TAM
architecture and a test controller. Due to the similarity between SIL and
IEEE 1149.1 TAP, reusing the TAP Controller as the SOC test controller is
considered feasible [26][31]. However, the original TAP Controller does
not handle hierarchical system test properly. The mixed use of TAPed
cores and 1500 wrapped cores also complicates the test controller. The
proposed TACS test controller has a unified interface for both the TAPed
and 1500 wrapped cores.

Figure 5 shows an SOC architecture based on the proposed TACS, which
consists of a system-level test controller (labeled TACS in the figure) and a

SoC Testing and Design for Testability 275

 Figure 5. A TACS-based SOC architecture

parallel TAM (a test bus). To support hierarchical system test,all control
signals of both the IEEE 1500 WIP and IEEE 1149.1 TAP are broadcast to
the cores.

2.3 Test Pattern Application

Figure 6 gives the waveform regarding test data application in TACS.
The figure describes how we handle the scan protocol by TAP states [32].
First, the TAP Controller enters the Pause-DR state by controlling TMS
and enabling ShiftWR to operate the WBR cells in the shift mode (Load-
Unload). After data are shifted completely, the TAP enters Exit2-DR and
asserts UpdateWR so that the WBR cells update the core inputs (Force-
PI). Then, the TAP goes to Capture-DR and asserts CaptureWR so that
the WBR cells capture test response from core outputs (Measure-PO).
After Measure-PO, the TAP enters Exit1-DR, and the scan clock is
pulsed. Finally, the Controller returns to Pause-DR.

In Figure 6, TSE stands for test scan enable that controls all scan
enable signals of the cores, and ScanClk and FuncClk are scan test clock
and functional clock, respectively. Scan and input data are shifted in
through TAMIN, while scan and output responses are shifted out through
TAMOUT. Note that to fit the input timing of functional patterns, the
Force-PI step takes 3 cycles to apply a functional input, and the
functional clock (FuncClk) is applied during these three cycles.

276 Wu and Huang

Figure 6. Test data application waveform

2.4 Test Time Calculation

If test time calculation does not reflect a realistic test application flow, the
test time based on the scheduling result may not be really minimized. The
test scheduler should calculate the test time based on the test application
flow discussed above.

Test time calculation also depends on wrapper routing. Figure 3 gives a
TAM routing example. Since loading the test input from PI and generating
test response to PO can be done simultaneously, as shown in Figure 7, the
shift length of the ith-bit of TAM, Li, is Li=Max{PIi,POi}+Si, where PIi, POi,

and Si are the numbers of PIs, POs, and scan flip-flops connected to the ith-
bit of the TAM, respectively. For a single core, the maximum Li is the time
to Load-Unload a test vector. After Load-Unload, it takes 5 cycles to capture
output response (Force-PI, Measure-PO, and Pulse-Clock). If there is only
one core in a test session, the test time of this session is T=P × (L+5) + L,
where P is the number of test vectors and L is the maximum shift length of
TAM assigned to this core. In previous scheduling works [12][13][14][15], it
is assumed that only 1 cycle is needed to capture the output response. For
scan patterns, since the scan chains may be long, the number of cycles to
capture output responses can be ignored. However, when functional patterns
are considered, the number of available IOs is normally small, so the number
of cycles to capture output responses is relatively large and will affect the
scheduling results.

SoC Testing and Design for Testability 277

However, if there are multiple cores in a test session, test time calculation
is different. Because all WBR cells are controlled by the global WSC
signals, the cores with less test data must wait for other cores before the data
are shifted completely. An example with two cores (A and B) in a test
session is shown in Figure 7. Assume PA (PB) is the number of test vectors
for Core A (Core B), and LA (LB) the number of cycles to transfer test data
for Core A (Core B). Also, LA>LB. If PA>PB, the test time is the same as
when only Core A is in this test session and there is no “Core B only” part in
Figure 7. Each test vector needs LA cycles to load and unload test data, and
5 cycles to apply Force-PI, Measure-PO, and Pulse-Clock. The test time is

 AAA LLPT ++=)5((1)

If, on the other hand, PB>PA, the first PA test vectors need LA cycles to

load and unload test data, while the remaining PB-PA test vectors need LB
cycles to load and unload test data. The test time is then

)5)(()5(+−+++= BABAAA LPPLLPT (2)

Based on the realistic test time calculation, we can schedule the core tests

to really minimize the test time.

Figure 7. Test time calculation

278 Wu and Huang

3. TEST INTEGRATION ISSUES AND SOLUTIONS

Some test integration issues are discussed here. First, the session-based test
scheduling should consider not only realistic test architectures and TAM bus
arbitration, but also test IO resource constraints. As we have a limited
number of test IO pins, it is important to share the test clock, test reset, and
scan enable signals where possible. Reducing the test IO pins can increase
utilization of the TAM bus for test data, leading to shorter test time. Another
issue is how to apply functional patterns by the 1500 Test Wrapper, where
timing is considered. The current 1500 core test environment is mainly
designed for scan test. We will present an approach to delivering the
functional tests by using the scan architecture in a more effective way, so far
as timing is concerned. Finally, if some cores share scan and function IOs,
there may exist timing problems when we apply the tests through the 1500
WBR. With a little modification of the WBR, we can solve the issue with
minimum timing impact.

3.1 Scheduling Consideration

Most previous works on SOC test scheduling calculate the core test time as
the product of the number of test vectors and shift-path length, assuming
each of the cores can be tested at any time [12][13][14][15][10]. This
assumption normally results in a shorter test time than the real case. The test
time can be achieved only if each core has its dedicated WSC signals, which
we normally cannot afford. On the other hand, if the WBRs share the WSC
signals to reduce the test IOs, then the cores with shorter tests must wait for
others before the test data can be shifted completely. Therefore, the test time
is not really minimized. Another issue is that a complex test controller and
TAM bus arbitration scheme would have been needed to switch the TAM
bus among the cores in such an ideal case.

Our test scheduling method partitions cores into several test sessions to
simplify the Test Controller design and TAM bus routing complexity. We
use only a few test control IOs (i.e., TCK, TRST, TMS, TDI, and TDO) for
test application. The WSC signals are broadcast to all cores, so all the WBRs
shift, update, and capture data concurrently. The cores must wait for each
other until all core test data are shifted completely, then they will do Force-
PI, Measure-PO, and Pulse-Clock together. Only when all cores in one test
session finish the test can we start another test session. Given the same TAM
bus width, this approach results in longer test time than previously predicted
[12][13][14][15][10]. However, the test IOs are also one key factor when
considering the test cost. To implement the scheduling result as reported in
previous works, many test IOs will be needed. With IO resource constraints,

SoC Testing and Design for Testability 279

the test scheduling process is done in two steps: 1) a coarse scheduling is
done to determine the number of test IOs and available TAM bus width; then
2) a detailed scheduling is done to optimize the test time. In general, the
wider the TAM bus, the shorter the test time. Later we will compare the test
time under the same IO resource constraint to justify TACS and the
proposed session-based test scheduling approach.

3.2 Test IO Reduction

The clock, reset, and other test pins should be easily controllable for IP test,
but the limited number of test IOs usually makes it a critical issue. For
example, the p22810 benchmark of the ITC02 SOC benchmark suite [20]
has 28 cores. Among these cores, there are 22 cores with scan chains. It
means that at least 22 clock signals, 22 reset signals and 22 scan enable (SE)
signals are needed to test these cores, if all cores are of single clock domain.
In general, some cores have multiple clock, reset, and test signals. In that
case, the number of chip IOs may be too small to accommodate the test IOs.
In addition, test IO reduction will also reduce test cost, because the tester
cost can be reduced, and under the same IO resource constraint, more IOs
can be used for the TAM bus, so the overall test time can be reduced.

In TACS, all test pins (defined by TACS) of the cores are shared
with functional IO pins (defined by designer). Dedicated test enable
pins are not necessary—they can be generated by the Test Controller.
We can share the test clock and reset signals for cores tested in different
sessions. In Figure 8, the scheduling result allows 3 cores at most to be
tested concurrently, assuming each core has only one clock domain.
Only three test scan clocks (TSCs) are needed, i.e., core 1 (C1) and core
4 (C4) share TSC0, C2 and C5 share TSC1, and C3 has its own TSC3.
In Session 0, TSC0, TSC1, and TSC2 are used to control C1, C2, and
C3, respectively. While in Session 1, TSC0 and TSC1 are used to
control C4 and C5, respectively. The test reset signals are similar to
scan clocks. As the cores are isolated by the 1500 Test Wrappers, they
will not be damaged due to shared test clocks or reset signals. By sharing
the test clocks and reset signals, the number of test IOs is reduced.

To further reduce the number of test IOs, all scan enable (SE) signals are
shared thanks to uniform test procedure in scan test. In general, the SE is
enabled during the Load-Unload step and is disabled during Pulse-Clock
(see Core 1 in Figure 9(a)). However, in some cases, the SE is still enabled
even when the clock is pulsed (see Core 2 in Figure 9(a)). To share SE
between both cores, we need to pulse the clocks of Core 1 and Core 2 in
different cycles. The chip level test patterns are translated to pulse Clock1 in
the Exit1-DR state and Clock2 in the Shift-DR state, just like the waveform

280 Wu and Huang

Figure 8. An example for test scan clock sharing

shown in Figure 9(b). This results in one-cycle test time overhead per scan
vector. In general, hundreds or thousands of cycles are needed to shift in one
scan vector, so the overall test time overhead is small.

Note that the translated test pattern is not exactly the same as the original
test pattern. In the Force-PI and Measure-PO steps, the SE is disabled after
translation, which is different from the original one. In most cases, the SE is
simply used to switch the scan registers between the scan and normal modes.
The slight difference of the test patterns does not affect the output response.
If in a certain core the output response is sensitized by SE, then the core
should have a dedicated SE.

Sharing SE signal may introduce another problem. In the Pulse-Clock
step, if the SE is disabled, the scan cells will capture the data from the

Figure 9. Problem and solution regarding shared SE signal

SoC Testing and Design for Testability 281

combinational block, otherwise each scan cell will capture the data from the
previous scan cell (like shifting). For Core 1 and Core 2 in Figure 9(a), if the
entered vector is ABC followed by D at the scan input, then after the Pulse-
Clock step, the scan cells in Core 1 will store the data from the
combinational part of Core 1, i.e., EFG. However, the scan cells in Core 2
will shift by one cycle, and the first scan cell will capture data D, so the data
shifted out is BCD. When the TAM width assigned to this core is less than
the number of scan chains, multiple scan chains are cascaded, and the scan
data are sent through a one-bit TAM. To apply data D to the cascaded scan
chains, a flip-flop is inserted in between any two cascaded scan chains. The
vector shifted in becomes ABCD, while data D is stored in the additional
flip-flop and is shifted into the scan chain after the Pulse-Clock step.

3.3 Timing Issues in Functional Test

During core internal testing, the WIR will generate shifting, updating and
capturing control signals based on the WSC signals to all WBR cells
concurrently, so the WBR cells will shift, update, and capture test data in
synchrony. However, all inputs of the functional patterns do not always have
the same timing waveform. Consider the inputs IN_A, IN_B and IN_C as
shown in Figure 10. IN_A is available before the rising clock transition;
IN_B is available after the rising clock transition; and IN_C is available after
the falling clock transition. To satisfy the timing relationship, a delay

Figure 10. The timing of cycle-based functional patterns

282 Wu and Huang

element is added to the updating control signal connected to the WBR cells
of IN_B and IN_C. Figure 11 shows the modification, where i_u is the
updating control signal for the input wrapper cells generated by WIR. With
the delay element, the test data of IN_B and IN_C will be updated with
one- and two-cycle delays, respectively. The system clock rises between
the updating times of IN_A and IN_B, and falls between the updating
times of IN_B and IN_C. Figure 10(b) shows the waveform of the
transformed test vectors. With the additional delay elements, the input data
are available in the corresponding order. If the input data are available after
the output is strobed (see, e.g., IN_C in Figure 10(c)), the data of the
previous vector are used. The SOC Test Aid Console (STEAC) [16][18] is a
test integration tool that supports the flow shown in Figure 4. It parses the
functional patterns to get the input timing information, and connects the
updating control signals with corresponding delay to each input WBR cell
to fit the input timing.

Note that it is impossible to update the test input data at exactly the same
time as the original waveform, because the WBR control signal generation is
aligned with the clock cycles. Therefore, we just present a solution to
applying the functional patterns in the scan-based test environment. Note
also that the test clock is not applied at system speed, as the scan patterns of
other cores in the same test session are applied at a lower speed. More effort
is needed to verify the timing of functional test.

Another issue of functional patterns is the clock signal in the first vector.
In Figure 12, before output strobe, the clock signal rises in the first vector,
and toggles in the following vectors. Test pattern translation must also check

Figure 11. Test Wrapper supporting functional patterns

SoC Testing and Design for Testability 283

Figure 12. First two vectors of the functional pattern

the initial state of the clock signal to keep the translated waveform the same
as the original functional waveform. In this way, TACS supports any
functional patterns with different input timing.

3.4 Scan and Functional IO Sharing

In most legacy cores, the scan chains and functional IOs may share the core
IO pins. This is for reducing the number of original chip IO pins. However,
when a legacy core is integrated into the SOC, IO sharing of the legacy core
becomes a problem during test pattern application. Figure 13 gives a few
examples for IO sharing between scan chains and functional IOs. In the
figure, we assume scan1 and scan2 are cascaded by TAMIN1 and
TAMOUT1, while TAMIN0 and TAMOUT0 connect all WBR cells of the
PIs and POs. Figure 13(a) shows the solution for output sharing between the
scan chains and functional IOs. In this example, scan1 and scan2 share the
outputs PO1 and PO2 with the functional IOs. The PO2 terminal is wrapped
by the WBR cell, WBRC4, and is also connected to the scan-in terminal of
scan2. The PO1 terminal is wrapped by WBR3 and is also connected to
TAM-out. In the Measure-PO step, WBRC3 and WBRC4 capture the
functional outputs of PO1 and PO2. In the Load-Unload step, the scan data
of scan1 are shifted out to scan2 through PO1, while the scan data of scan2
are shifted out to TAM output through PO2. These shared outputs are used
as either the functional data outputs or scan data outputs in different steps.

284 Wu and Huang

Figure 13. IO sharing: (a) output sharing, (b) input sharing with only scan tests, (c) input

sharing with both scan and functional tests, and (d) modified WBR cell

The solutions for scan/function input sharing are dependent on the type
of test patterns. If there are only scan patterns, a flip-flip is added to the
shared pin, in addition to the WBR cell. Figure 13(b) shows an example,
where scan1 and scan2 share the inputs PI3 and PI4 with the functional IOs.
In the Force-PI step, the data of PI3 input can be applied by TAMIN1, but
the data of PI4 input can not. To apply the PI4 data, a register cell (the R
flip-flop as shown in Figure 13(b)) is added in between scan1 and scan2. The
input data of PI4 is shifted in with the scan data and is applied by the added
flip-flop. If there are scan and functional patterns, the solution is shown in
Figure 13(c) (the routing example) and Figure 13(d) (the modified WBR
cell). PI3 and PI4 are wrapped with the modified WBR cells, labeled as
WBR_m1 and WBR_m2. The additional path from ScanIN to CFO allows
the scan data to be shifted in through this type of WBR cell. The additional
multiplexer is controlled by the ShiftWR signal. During the Load-Unload
step, the ShiftWR signal is enabled and the functional IO data can be shifted
in through the CTI-CTO path, while the scan data can be shifted in through
the ScanIn-CFO path. In the Force-PI step, the ShiftWR signal is disabled
and the functional data is updated through the Update flip-flop to CFO. With
the modified WBR cell, the test vectors can be shifted in correctly even

SoC Testing and Design for Testability 285

when the scan chains share inputs with the functional IOs, and the delay
between CFI and CFO is reduced to a multiplexer delay.

The second solution also can be used for a core with only scan patterns.
In this case, the first solution will make the scan length one-bit longer, while
the second solution will increase the area overhead a little (by using the
modified WBR cell).

3.5 STEAC: SOC Test Aid Console

Figure 14 shows the SOC test integration system called STEAC—SOC Test
Aid Console [16], which consists of four modules: the STIL Parser, Core
Test Scheduler, Test Insertion Tool, and Pattern Translator. It solves the test
integration issues discussed above.

The STIL Parser parses the test information of each IP. The test
information is written in STIL and is generated by commercial ATPG tools.
Therefore, STEAC can be integrated into a typical design flow easily. The
test information includes IO ports, scan structure (number of scan chains,

Figure 14. Test integration flow of STEAC [16]

286 Wu and Huang

length of each scan chain, etc.), and test vectors. With the core test
information, Core Test Scheduler will schedule the core tests to reduce the
overall test time. The Scheduler partitions core tests into several test
sessions, and assigns the TAM wires to each core to meet the power and IO
resource constraints. If the IP is a soft core, the scan chains can be
reconfigured. The Core Test Scheduler will then rebalance scan chains for
each assigned TAM width. The results can be fed back to the SOC integrator
to reconfigure the scan chains to balance the chain length. The scheduling
results are also used to generate the Test Controller, TAM bus, and Test
Wrapper. Finally, the generated test circuitry is inserted into the original
SOC netlist automatically. A new SOC design with DFT will be ready in
minutes.

The core test patterns are generated at the core level. After the cores are
wrapped, the test patterns must be translated to the wrapper level and then to
the chip level. The test patterns are cycle based, which can be applied by
external ATE easily.

3.6 BRAINS

As embedded memories are handled in a different way from that for logic
cores, we also present here a memory BIST compiler called BRAINS
(BIST for RAM in Seconds), which supports SRAM and DRAM by using
a novel BIST template approach. It generates the BIST design in
synthesizable Verilog HDL upon receiving the memory specifications
and test requirements provided by the user. The synthesizable BIST core
can then be optimized for different fabrication processes. BRAINS also
generates scripts for a commercial synthesis tool that performs timing
validation for the BIST circuit during the synthesis process. The BIST
design provides at-speed testing and diagnosis support, and is
programmable for various march tests. BRAINS thus can be used for
generating BIST circuits that target different RAM-core architectures and
configurations.

In addition, BRAINS supports automatic test integration of multiple
and heterogeneous memory cores in an SOC environment. The BIST
architecture is improved for parallel testing, multi-core diagnosis, and on-
chip bus (OCB) interface [48]. The proposed test grouping and
scheduling (TGS) algorithm facilitates BIST generation under various test
constraints, such as test time, test power, and other user-defined
constraints. Finally, BRAINS is equipped with a graphical user interface
(GUI), and the BIST generator can be integrated with a memory compiler
to form an IP (intellectual property) generator for various memory
configurations.

SoC Testing and Design for Testability 287

3.6.1 BRAINS Templates

BRAINS generates BIST circuits by using various BIST templates that
provide building blocks for march-based testing. In practice, design
migration cannot be done by simply changing the parameters. It usually
requires detailed adjustment, especially for DRAM cores. The allowed
adjustment space for the BIST compiler has to be defined within the BIST
templates. Three different templates are defined: 1) the Controller, 2) the
Sequencer, and 3) the Test Pattern Generator (TPG). We use the templates
to construct the BIST architecture for the embedded memories, as shown in
Figure 15.

Generator

MCK
MSI

MSO

MBC
MBS
MBO
MRD
MBR

Signature

Command
Activation
Sequencer

Handshaking

Error

Sequencer

Memory
Command

Address

Signature
Error

Data in

Data out

Address

Memory
Access
Sequence

Controller Test Pattern

Figure 15. BIST architecture using the templates

During a march test, the Sequencer generates the address sequence
(either ascending ⇑ or descending ⇓ [35]) and various memory access
commands based on the specifications of the memory under test. For
example, the Sequencer may generate the read, write, refresh, precharge,
load_mode_register, active, and nop (no operation) commands for an
SDRAM, and the read, write, and nop commands for a single-port SRAM.
Some standard memory access commands for typical memory types are
defined in the memory library, but customized commands specified by
the user can be included as well. The Sequencer generates high-level
commands rather than the low-level (physical) access commands.

The Sequencer architecture is shown in Figure 16. The Control
Module receives march commands from the Controller. It controls the
Address Generator, Sequence Generator, and Memory Command
Generator. The Address Generator generates ascending and descending
address sequences as specified by the march elements. The Sequence
Generator generates the access sequence in the march elements. The
optional Error Handling Modules in the Sequencer and the TPG are used
to scan out the error address, error signature, and the corresponding
march operation that activated the fault to the external tester for diagnosis
and analysis.

288 Wu and Huang

Encode Data
Control
Module

Memory Command
Generator

Error Handling Module

Command
Memory

shaking
Hand-

Sequencer
Activation
Command

Address Generator

Sequence Generator

Address

Error SignatureMessage
Error

Figure 16. Block diagram of the Sequencer

The TPG converts high-level memory access commands from the

Sequencer to low-level (physical) timing, address, and data sequences
that can be sent directly to the memory core. The timing, address, and
data sequences can be high-speed, double-edge triggered, packetized, or
even of different signal levels. The TPG also compares the data output (Q)
from the memory with the original data pattern (D) to determine whether
an error exists. In the diagnosis mode, the Error Handling Modules are
used to scan the error signature out. Both the Sequencer and the Test
Pattern Generator are highly modularized.

3.6.2 Configuring the BIST Templates

BRAINS can generate the BIST circuit according to configurations
specified by the user, such as fast access mode and diagnosis support. For
example, to maximize the data bus utilization, an interleaved access mode
in SDRAM BIST can be specified. The timing sequence (waveform) of a
read-write march element (e.g.,)(araw⇑) is shown in Figure 17 for a
four-bank SDRAM which has shared D and Q bus and a CAS latency of 3.
Three nop operations are required between the read operation and the write
operation if the march element is performed linearly as shown in Figure 17.
In the figure, the column address changes from i to i+3. The user can
specify interleaved bank access as shown in Figure 18, which reduces the
test time. In the figure, four consecutive read operations are performed
before the four consecutive write operations by interleaving the bank
addresses, so only three nop operations are required in between.

Table 1 lists the clock cycles required for accessing four addresses. We
compares the non-interleaved and the interleaved cases for two different

SoC Testing and Design for Testability 289

Column Address i+2

nopnop nopwrite read
D1 Q2

Q3 D3

nopnopnop nop nop nop

Q0 D0

writeread
Q0 Q1D0

read

Q1 D1

write
D3nopnop nopwrite read

D2 Q3

Q2 D2

Memory
Access
Command

DQ

Bank

Address

CLK

Bank Address

Column Address i+1Column Address i Column Address i+3

Figure 17. Non-interleaved bank access for the SDRAM example

nop nop nop

Q0 Q1 Q2 Q3 D0 D1 D2 D3

readread
Q0

read read write write write write
Q2 Q3 D0 D1 D2 D3Q1

Memory
Access
Command

DQ

Bank

Address

B0 B1 B2 B3 B0 B1 B2 B3

Column Address i

CLK

Figure 18. Interleaved bank access for the SDRAM example

march elements (i.e., araw and araraw , where a can be 0 or 1) and two
different CAS latencies (i.e., 3 and 2). In the case of separate D and Q buses,
however, the non-interleaved bank access should be used since it results in a
smaller area overhead with the same test time. The BIST templates can be
configured under different timing constraints to minimize the hardware and
test costs. This is very useful for customized memory cores.

Another option in BRIANS is the diagnosis support (for circuit debugging
and/or repair analysis). If diagnosis is specified, the Error Handling Module

Table 1. Clock cycle comparison of four-address read-write operations for a four-bank
SDRAM

 CAS Latency = 3 CAS Latency = 2
March
Element

Non-
Interleaved

Interleaved Reduction Non-
Interleaved

Interleaved Reduction

araw 20 11 45% 16 10 37.5%
araraw 24 15 37.5% 20 14 30%

290 Wu and Huang

will be inserted. The user will then be able to switch between the BIST mode
and the diagnosis mode by using different test commands. In the BIST mode,
the BIST circuit accesses the memory in a pipelined way and only reports the
go/no-go result (i.e., whether the memory functions correctly or not). In the
diagnosis mode, if an error occurs, the Error Handling Module will scan out
the error address, error signature and the corresponding march operation
through the MSO pin, when MBO is pulled down that indicates the scan out
operation (see Figure 15 and Figure 16).

3.6.3 BIST Architecture for Multiple Memory Cores

Figure 19 shows the BIST architecture for multiple memory cores. The
external tester can access all the memories via a single shared BIST
controller. One or more Sequencers can be used to generate march-based test
algorithms [35][50]. Each TPG attached to the memory will translate the
march-based test commands to the respective RAM signals.

External Tester

MBS MBR MCK
Controller

Sequencer

TPG TPG TPGTPG

Sequencer

TPG

RAM RAM RAM RAM RAM

Sequencer

TPG

RAM

MSI MBO MRD MSO MBC

Memory
BIST

Figure 19. BIST architecture for multiple memory cores

SoC Testing and Design for Testability 291

Memory cores with similar timing specifications can share the same
Sequencer to reduce hardware overhead. Moreover, memories close to each
other can be grouped, subject to user-specified constraints. The TPGs can
test the corresponding memories concurrently

The Controller is shown in Figure 20, which consists of a Control State
Machine and a Command Storage Chain. The Control State Machine has
four states: Idle, Select, Scan, and Run. A unified BIST interface makes
future extension possible, reducing the control complexity of the test host
[39][47]. The Command Storage Chain is basically a serial-to-parallel FIFO.
For the purpose of SOC memory core testing, the command storage consists
of six fields: 1) Mode—to select the operation mode, such as parallel test,
individual test, diagnosis, or repair support; 2) Sequencer ID—to activate the
target Sequencer; 3) Group ID—to activate the target group in the Sequencer;
4) Member ID—used when testing an individual memory; 5) Data
Background—an encoded pattern for the march test; and 6) March
Commands—encoded march elements as presented in [39][47]

The Controller receives test commands and generates error signatures
serially to reduce IO overhead. However, the serial data requires additional
serial-to-parallel and parallel-to-serial converters. For SOC designs, it is
more feasible to access the BIST by an embedded test host, such as the
processor. With an OCB wrapper, the BIST can be attached to the existing
OCB. During the diagnostic process, the parallel bus-based interface
simplifies the control complexity and saves the test time dramatically.

We present an OCB interface for the popular Advanced Microprocessor
Bus Architecture (AMBA) as an example. Note that AMBA is an open
standard [49]. Figure 21 shows the AMBA-based interface for an Advanced
Peripheral Bus (APB, part of AMBA) wrapper. The APB wrapper

Figure 20. Block diagram of the Controller

292 Wu and Huang

APB

Status Registers

int_clk

int_rstn

int_we

int_en

int_addr

int_wdata

int_rdata

PCLK
PSELx

PRESETn
PENABLE

PADDR
PWDATA
PRDATA

PWRITE

bist_clk
bist_rstn
bist_do
bist_busy
bist_outack
bist_outdone

bist_msi

bist_mso

bist_done
bist_mbs

bist_signals

MBS
MBC
MRD
MBO
ACK

MSI
MSO
MCK
MBR

Read/Write Read Only Not Used

ESB

MPO2

MPO1

Interrupts

STATUS

MPI

Wrapper
Translator

Figure 21. An OCB interface example: the APB wrapper

implements the standard three-state protocol to transfer commands and data
between the test host and the BIST Controller. The Status Registers block
stores the test data such as test commands and error signatures. Four
different status registers are defined: 1) MPI—to load the test commands in
parallel; 2) STATUS—to indicate the Go/No-Go, handshaking, and BIST
internal status; 3) Interrupt—to keep track of the interrupts; and 4) MPO1
and MPO2— to store the error signatures. The width of the APB data is 16
bits, so are the status registers, but they can be extended easily. For example,
in Figure 21, there are two MPO registers for the 29-bit error signature using
the 16-bit APB bus. The number of registers varies according to the width of
test commands and error signatures. The overhead is very small since most
of the registers share the flip-flops with the signals from the Controller

The Sequencer (see Figure 22) receives test and control commands from
the Controller and generates march sequences for the TPG. Additionally, the
TPG Selection Module is for selecting the proper TPGs and RAMs. It
enables and disables the proper memories according to the address space and
cycle time for the respective march tests. The OR Module merges the
Go/No-Go signals from the TPGs. When in diagnostic mode, the Sequencer
has to capture the error signatures from the defective memory through the
optional Error Handling Module.

The TPG receives march sequences from the Sequencer and accesses the
associated memory core directly. Figure 23 illustrates the configurable
architecture of the TPG. The Command Converter translates the march
sequences into RAM signals, while the Command Buffer adjusts the timing
delays of the outputs. The Port Selection Module enables and disables the
port under test. The outputs from the memory are also buffered before
entering the TPG. The additional command and data buffers allow the BIST
to run at speed in a pipelined fashion.

SoC Testing and Design for Testability 293

Figure 22. Block diagram of the Sequencer

The Comparator detects the faulty outputs and produces the Go/No-Go

signal. The optional Error Handling Module captures the error signature for
diagnosis. The error information is scanned out to reduce routing overhead.
The target memory cores are accessed one by one in the diagnosis mode.
Finally, the optional Test Collar allows the memory to switch between
normal and test modes. Note that the collar usually is integrated with the
memory core to reduce performance penalty.

Converter

MBS

Comparator

Address

Error Handling

Command
Memory

Error
Signature

Go

Data

Data

Address
Back-

Physical
Timing

Command

quencer
Se-

ground

In(D)

To RAM Controller

RAM

Buffer
Test Collar

Module
Port Selection

Data
Buffer

Out(Q)

Command

Module

Figure 23. Block diagram of the TPG

294 Wu and Huang

The TPG needs slight modification to handle dual-port SRAM, multi-port
SRAM, and n-read-m-write register files. Figure 24 shows the connection
configurations between the Command Buffer and the memory for three
different memory types. For a dual-port memory, the shared TPG performs
the test one port at a time. Testing the multiple-port memories is similar. For
an n-read-m-write register file, a pair of read port and write port forms aread-
write port during the testing process. Note that a shared TPG architecture has
a lower area overhead, but it does not detect complex inter-port faults.

Figure 24. Modification of the TPG for different memory types

SoC Testing and Design for Testability 295

3.6.4 Test Grouping and Scheduling

The purpose of test grouping and scheduling is to minimize the overall
testing time for all the memory cores, given limited test resources. The
test grouping and scheduling (TGS) algorithm requires slight
modification of the BIST design. It has simple control and negligible
hardware overhead.

For each memory we define four attributes: 1) the size of the address
space aS (i.e., the maximum address); 2) the number of data background
words Bn for testing the word-oriented memory (normally ⎡ ⎤wlog for a
w-bit word); 3) the port index Pn (i.e., the number of read-write ports);
and 4) the schedule step sE (i.e., ⎡ ⎤aSlog2). For each test group, we denote
the maximum aS among the memories in the group as mS , and the size
of the schedule space as ⎡ ⎤mS

sS log2= . In the schedule space, each
memory can be scheduled only by its step size sE , and the number of
step points is ()⎣ ⎦sm ES / . The TGS algorithm is shown as follows (see
also Figure 25).

Anymore

No more
memory?

iB ?<Bntest groups
corresponding
Reschedule the

Completed

iB++

scheduling queue
Construct the

test group
Schedule for a new

Change to another

AnyYes

Yes

No

No

No

Yes

backgroud,

background?

Figure 25. Flowchart for the TGS algorithm

296 Wu and Huang

1. Select the solid (all-0) background, and let the background index
0=Bi . Let Π be the pool of all k unscheduled memories jM ,

10 −≤≤ kj .
2. Schedule a new test group:

(a) Get a memory with the largest aS from Π. Remove the
memory from Π. Let am SS = and calculate sS for the test
group.

(b) Get a memory from Π according to the priority of aS and Pn
(i.e., high aS to low aS for multi-port memories first, and
then high aS to low aS for single-port ones). Search among
the schedule space. For a single-port memory, start the search
from the origin of the schedule space, while for a multi-port
one, start the search from the end of the last scheduled
memory test. This is done under some user-defined constraints
such as power and area overhead. If the schedule is
unsuccessful, put the memory back to Π and select the next
one.

(c) For a successful schedule, 1−= PP nn . If 0=Pn , remove the
memory from Π.

Repeat (a)-(c) until no more memory can be scheduled for the
current test group. If all the unscheduled memories can be tested
concurrently under the given constraints, scheduling is neglected for
the test group to reduce the control overhead.

3. Repeat Step 2 until all memories are grouped.
4. Schedule the test for another data background, and 1+= BB ii . Let

the test groups be the same as for the previous background.
5. If there are memories in a group such that BB in < , remove all such

memories from that group. For each test group whose mS decreases,
apply Step 2(b) to reschedule the group, and if the reschedule is
unsuccessful, increase its sS by the smallest sE in the test group
and repeat Step 2(b) again.

6. Repeat Steps 4 and 5 for all data backgrounds.

Figure 26 shows an example of the TGS algorithm for a five-memory case.
Assume the power weights of memories A to E are 200, 150, 140, 130, and
100 units, respectively, and the power limit (constraint) is 400 unit. For the
solid background, the mS and sS of Group 0 are both 8 (from memory A),
as shown in Figure 26(a). The dual-port memory B is then scheduled at time
0 (i.e., the address counter has a value 0), and its port index Pn is
decremented. Memory C is scheduled at time 4 after the schedule space
search, under the power constraint. Memories B, D, and E are then put into
Group 1 without scheduling, since their total power consumption is only

SoC Testing and Design for Testability 297

Figure 26. An automatic scheduling example

380units. In Group 1 the memories are accessed in parallel, so the control
circuit is simplified. For the second background, testing the bit-oriented
memories A and D is unnecessary. After removing memories A and D,
Group 0 is rescheduled to reduce the test time, while Group 1 remains the
same. The Sequencer will generate the control signals to enable or
disable the memory cores based on the scheduling result. Consequently,
the proposed TGS algorithm provides a systematic way to grouping and
scheduling the entire test process efficiently.

3.6.5 BIST Circuit Compilation Flow

The BIST circuit compilation flow using BRAINS is given in Figure 27. The
memory specifications and test requirements are provided via the user-
interface. The memory specifications include the timing parameters, memory
architecture (synchronous/asynchronous SRAM, single-port/multi-port
SRAM and register file, EDO DRAM, SDRAM, 1T-SRAM, flash memory,
etc.), memory configuration (data width, address width), etc. The test
requirements include the test algorithm requirements (which affect the
choice of the march elements and the programmability), address ordering
(counting or pseudo-random, interleaved or non-interleaved), supported test
modes (go/no-go test, burn-in test, diagnosis test), etc.

The interface of BRAINS is flexible—the user can generate the BIST
circuit using the GUI (see Figure 28) or command shell, and evaluate the

298 Wu and Huang

Simulation/Synthesis/P&R Flow

BID ConstructorMemory
Library

Memory Spec
Test Requirement

BIST
Intermediate
Description

Compiler KernelBIST
Templates

Memory
Compiler

IP
Generators Scripts

Command

BIST Design
Activation Sequences
Testbench
Integration Scripts

GUI

brains

gbrains

Figure 27. The BIST compilation flow using BRAINS

memory test efficiency among different designs easily. BRAINS can also
be integrated with a memory compiler to deliver BISTed memory IPs.

The BIST Intermediate Description (BID) Constructor translates the
user-defined parameters to an internal format with memory specifications
and test requirements. BRAINS uses an object-oriented BID structure as
shown in Figure 29, which is reusable and flexible for processing the
memory specifications and test requirements. Future extension is
straightforward. The BIST object consists of global parameters (clock
rate, diagnosis requirement, etc.) and other sub-objects. The March object
defines the test requirements, while the Schedule object records the
grouping and scheduling information.
In this figure the dashed box defines a single memory object. Multiple
Memory objects can be inherited or defined. Common memory
specifications are predefined in the memory library. The user can access
existing Memory objects and construct the target one with slightly
modification. Using the presented BIST architecture as the template, the
compiler generates the BIST design, control signals, and necessary scripts
for synthesis and integration. The process can be integrated into an existing
logic design flow easily. With TGS, test time can be further reduced, under
certain given constraints. The rapid generation process makes the system
handy at the early design phase of a system chip.

SoC Testing and Design for Testability 299

Figure 28. The graphic user interface

After the BID format is generated, the user can also customize the BIST

circuit by changing the description. The compiler kernel then parses the
BID file and loads the BIST templates to generate the Controller,
Sequencer, and Test Pattern Generator. The compiler engine configures the
programmability of the BIST circuit and refines the memory access timing
according to the timing specifications and test requirements. It generates
the synthesizable RTL model for the BIST circuit, BIST activation
sequence, test-bench, synthesis scripts, and the UNIX Makefile for
integrated command-level operations. The synthesizable BIST model is in
the Verilog format. The BIST activation sequence can be used to control
the BIST from a simple tester interface. Different test algorithms can be
applied during field test. The test-bench contains stimulus that can be used
for behavior-level and gate-level simulations. Automatic synthesis can be
done by a synthesis tool using the synthesis scripts. The generated logic

300 Wu and Huang

Figure 29. The BID architecture

circuit (in the netlist level) is then simulated and compared with the
behavior-level result for design verification.

4. EXPERIMENTAL RESULTS

A test chip has been implemented and fabricated to verify the proposed
approaches. The test time was analyzed and compared for both the session-
based and non-session-based test scheduling methods. This test chip is an
industrial digital still camera (DSC) chip, implemented with a standard
0.25μm CMOS technology. The digital part of the chip mainly includes a
processor, JPEG codec, TV encoder, USB, external memory interface, and
tens of single-port and two-port synchronous SRAMs with different sizes.
Figure 30 gives the block diagram of this test chip. There are 37 input pins
and 70 output pins.

The IPs to be wrapped in this test chip include the USB, TV encoder, and
JPEG cores. The USB core has 4 clock domains, 3 reset signals, 1 SE signal,
and 6 test signals. There are 4 scan chains with dedicated scan input and
output for each clock domain. The TV encoder has both scan and functional.

SoC Testing and Design for Testability 301

Figure 30. Block diagram of the test chip

tests. The test pins include one clock, reset, SE, and test enable signals
There are two scan chains in the TV encoder, where one scan chain
shares the output with a functional output. The JPEG core has only
functional patterns and one clock domain. The clock signals for the IPs
are generated by an internal PLL. The detailed test information of the IPs,
including the number of test IOs (TI & TO), primary IOs (PI & PO), scan
chains, and test patterns, is shown in Table 2. In the scan-test mode, the
USB core has 2 scan vectors that are enabled by SE during Pulse-Clock,
while the TV encoder has only one.

 Table 2. Test information of the cores

Core TI TO PI PO Scan chains (Lengths) Patterns (Type)
USB 18 4 221 104 4 (1,629, 78, 293, 45) 716 (Scan)

229 (Scan)
TV 6 1 25 40 2 (577,576)

202,673 (Func.)
JPEG 1 0 165 104 No scan 235,696 (Func.)

Figure 31 shows the functional-pattern waveforms of the TV encoder

and JPEG cores. To apply the functional patterns for the TV encoder and
JPEG cores, the updating control signal is delayed. For the TV encoder,
the input WBR cells with Timing 1 waveform (see Figure 31) are
controlled by the updating signals with 2-cycle delay. Other input WBR
cells are with Timing 2 waveform, and are controlled by the updating
signals with 1-cycle delay. Functional pattern application for the JPEG
core is similar.

302 Wu and Huang

Figure 31. Functional-pattern waveforms of the (a) TV encoder and (b) JPEG cores

4.1 Test Time Analysis

In this section, we analyze the test time of the session-based and non-session-
based test scheduling approaches under the IO resource constraints. In non-
session-based test scheduling the cores can be scheduled at any time; while the
session-based test scheduling groups the cores into several test sessions. All
core tests in the same session start at the same time, and the next session
cannot start until all tests in the current one finish. In our test chip, there are
only 37 PIs and 70 POs. All test IOs share these chip IOs, and one additional
pin is added to switch between the functional mode and test mode. Since we
have more test inputs than test outputs, we discuss only the number of needed
test inputs. We consider three cases under this IO limitation—Case A and
Case B use the proposed session-based test scheduling approach under TACS,
while Case C uses a non-session-based test schedulilng approach with
dedicated WSC signals to control the core test wrappers.

For Cases A and B, the TRST signal of the IEEE 1149.1 TAP is also
used to switch between the functional mode and test mode. When TRST=0,
the chip is in functional mode. It is in test mode when TRST=1, where all
test IOs are connected to the chip IO pins. The multiplexed pins are
controlled by TRST. To reduce the test idle time during shifting, scan and
functional tests are placed in different test sessions. The TAP requires 3 chip
inputs—TCK, TMS, and TDI. In Case A, a coarse test scheduling is shown
in Figure 32(a). The coarse test scheduling only partitions core tests into
several test sessions, without TAM assignment. In this case, the needed test
clock and test reset signals are dominated by Session 1. Five test clock
signals (four clock signals for USB core and one for TV encoder) and four
reset signals (three reset signals for USB and one for TV encoder) are,

SoC Testing and Design for Testability 303

Figure 32. Scheduling results of the test chip: (a) Case A—session-based, with USB and TV
encoder tested in parallel, (b) Case B—session-based, with USB and TV encoder tested in

serial, and (c) Case C—non-session-based, with dedicated WSC signals

required. The test clock and test reset signals take 9 chip inputs. In
addition the TSE takes one chip input to control the SE signals of all
cores. Other test enable signals and WSC signals are generated by the
Test Controller, which requires no chip input. The rest (37-3-9-1=24) of
the chip inputs can be used as the TAM inputs. The second step of test
scheduling assigns this TAM of width 24 to the IPs based on the coarse
scheduling result. The final TAM assignment is shown in Figure 32(a).
The numbers of clock cycles to loadand unload test data are 9 and 1629
for Session 0 and Session 1, respectively. From (1) and (2), the test time
is about 4.4M clock cycles. The detailed test time figures are shown in
Table 3.

304 Wu and Huang

Table 3. Test time comparison

Case A: session-based (Figure 32(a))

Session0: 235,696 (9+5)+9=3,299,753
Session1: 716 (1,629+5)+1,629=1,171,573
Total: 3,299,753+1,171,573=4,471,326 (0.948)

Case B: session-based (Figure 32(b))

Session0: 235,696 (8+5)+8=3,064,056
Session1: 229 (577+7+5)+(577+7)=135,465
Session2: 716 (1,629+5)+1,629=1,171,573
Total: 3,064,056+135,465+1,171,573=4,371,194 (0.927)

Case C: non-session-based (Figure 32(c))

USB: 716 (1,629+5)+1,629=1,171,573
TV: 202,673 (10+5)+10+
 229 (587+50)+587=3,176,260
JPEG: 235,696 (15+5)+15=4,713,935
Total: 4,713,935 (1) (dominated by JPEG)

The difference between Case A and Case B is whether USB and TV

encoder are tested concurrently or not. Case B is shown in Figure 32(b),
where USB and TV encoder are tested sequentially, requiring only 4 test
clock signals and 3 test reset signals. The test control IOs take only 11 chip
inputs (TCK, TMS, TDI, TSE, 4 test clock signals, and 3 reset signals), and
there are 26 chip inputs that can be used as the TAM inputs. The final TAM
assignment is also shown in Figure 32(b), and the test time is about 4.3M
clock cycles. The detailed test time figures are also shown in

Table 3.
Both Case A and Case B are session-based test scheduling. When the test

IO resource constraint is considered, parallel testing (Case A) may not be
better than serial testing (Case B). This is because more test control IOs are
needed for parallel testing, so fewer IO pins can be used as the test data IOs
(i.e., TAM IOs). Since there are also cases when parallel testing leads to
shorter test time than serial testing, it is important to take chip IO pins into
consideration so far as test time evaluation is concerned.

We now discuss the test time of non-session-based test scheduling under
the same IO resource constraint (Case C). The test time calculation follows
the assumption as in previous works [12][13][14][15][10], i.e., 1) the core
test time is the product of test vector count and the time to load-unload a test
vector, and 2) each of the cores can be tested at any time. The coarse
scheduling result of Case C is shown in Figure 32(c). In this case, the TAM
IOs are partitioned into two groups, one for the JPEG core and another for
the USB and TV encoder cores. Since the USB and TV encoder cores are not
tested concurrently, they can share the same clock, reset, SE signals and

SoC Testing and Design for Testability 305

TAM inputs. One chip input is used to switch the shared signals between
these two cores. Five chip inputs are used for the scan clocks, 3 chip inputs
for test reset, and 1 chip input for the SE signal. However, to test the JPEG
and TV encoder (or USB) cores concurrently, 2 groups of WSC signals are
needed. One is for JPEG and another is for TV encoder and USB. Note that
WRCK, and WRSTN can be shared by these two groups, but other signals
can not. A total of 12 WSC signals are needed. Only 15 chip inputs can be
used as TAM inputs in this case. The TAM assignment result also is shown
in Figure 32(c). The test time comparison of the three cases is given in

Table 3. The test time of Case C is 4.7M clock cycles, which is obviously
longer than either Case A or Case B, i.e., the session-based approaches. The
normalized total test time for each case is also shown in

Table 3, inside the parentheses. Case B has more than 7% test time
improvement over Case C. Although non-session-based test scheduling has
no idle time that appears in the results of session-based test scheduling, it
requires more test control IOs. This reduces the number of TAM IOs, and
may lead to longer test time. The proposed session-based approach and test
controller design use fewer test control IOs, so more test IOs can be
allocated for the test data (as TAM IOs), resulting in shorter test time.

 Table 4 summarizes the numbers of test inputs used in the three
schedules. The total test IOs of these three cores are 19, including 6 clock
signals, 4 reset signals, 7 test enable signals, and 2 SE signals. With
shared test IOs, the test control IO counts are reduced to 10, 8, and 9 for
Case A, Case B, and Case C, respectively. This also shows that the
proposed test IO reduction method can reduce the number of test control
IOs, and thus the test cost.

 Table 4. Numbers of test inputs for the 3 cases

Shared Test IO
 Switch TAP

Clock Reset SE
Dedicated

WSC
TAM

Case A No 3 5 4 1 No 24
Case B No 3 4 3 1 No 26
Case C 1 No 5 3 1 12 15

4.2 Area Overhead and Test Result

With STEAC, the Test Wrappers, TAM, and Test Controller have been
automatically generated and inserted into the original test chip design in 5
minutes, using a SUN Blade 1000 workstation with dual 750MHz processors
and 2GB RAM. The area of the WBR cell, WC_SD1_CII_UD, is equivalent
to 26 two-input NAND gates. The Test Controller and TAM multiplexer

306 Wu and Huang

require about 371 and 132 gates, respectively—their hardware overhead is
only about 0.3%. The total hardware overhead is 14.08% as shown in Table 5.
The overhead is dominated by the WBR cells, which are dedicated cells in
this experiment. The overhead can be reduced by, e.g., sharing the WBR and
core IO registers or customizing the WBR cell design.

Table 5. Area overhead of the test circuitry

 USB TV JPEG TACS TAM Total
Original 34,781 21,554 70,794 — — 127,129
Test Circuit 8,580 1,716.0 7,101.6 371 132 17397.6
Overhead 24.67% 7.96% 10.03% — — 14.08%

4.3 Experimental Results for BRAINS

Based on BRAINS, Table 6 gives the area overhead for a test chip, which
consists of 6 single-port SRAM cores, using a 0.15μm CMOS process
technology. The BIST design supports diagnosis and programmable test
algorithm, and has a built-in March CW word-oriented test algorithm
[46][50]. With shared Controller and Sequencer, the overhead is about 2%
and the test time is reduced by 59% (the test time is 667,648 clock cycles, as
compared with 1,641,472 when testing the memories serially).

Table 6. The BIST area overhead for a test chip

BIST (μm2) Memory
Config. Ctrl. Seq. TPG Total

Memory
(μm2)

Area
Overhead

16K ×
32 11905.44

12K ×
24 9443.30

8K × 64 23099.77
4K ×
128 41389.96

1K × 8 3930.25
512x16

4541.96 6514.73

6530.03

107378 5301800 2.025%

5. CONCLUSIONS

We have presented a practical session-based test scheduling model
considering IO resource constraints. It results in shorter test time than non-

SoC Testing and Design for Testability 307

session-based test scheduling. The test cost and test time can be further
reduced with test IO reduction. We also have presented an improved Test
Wrapper architecture. With the proposed WBR cells and enhanced TAP
Controller, the IEEE 1500 Test Wrapper supports both scan and functional
tests, even when the scan and functional IOs are shared. The complex timing
of the functional patterns can be applied through our Test Controller easily.
As a result, this work solved the major issues of practical SOC test
integration. Without addressing these issues, the test scheduling, test control,
Test Wrapper and TAM architecture design would have been impractical.
The test integration platform, STEAC, has been used to develop an industrial
SOC design. From the experimental results, we have shown that the test
scheduling and test IO reduction effectively lead to shorter test time. The
area overhead for Test Controller and TAM is about 0.3% in the case,
justifying the effectiveness of the approach.

For embedded memories, BRAINS generates the synthesizable RTL
code for the BIST circuit in Verilog, as well as its activation sequence,
test-bench, and synthesis scripts. It supports programmable march tests.
The improved BIST architecture extends the ability of system-level test
integration, multi-port and multi-memory support, and test grouping and
scheduling for parallel testing. It provides at-speed testing and diagnosis
of the RAM under test. BRAINS can be used for a wide range of RAM
architectures and configurations. Using the OCB interface, the test
control and observation for diagnostics are simple and flexible, which is
especially important in an SOC design. The BIST access can be parallel
for easy test control, or serial for simple IO interface, depending on the
test requirement. The proposed TGS algorithm facilitates test grouping
and scheduling at the system level under various user-defined constraints.
Future extension can easily be implemented. The flexibility is fulfilled by
using the novel BID format.

REFERENCES

[1] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core-based system chips”,
IEEE Computer, vol. 32, no. 6, pp. 52–60, June 1999.

[2] C.-W. Wu, J.-F. Li, and C.-T. Huang, “Core-based system-on-chip testing: Challenges and
opportunities”, J. Chinese Institute of Electrical Engineering, vol. 8, no. 4, pp. 335–353,
Nov. 2001.

[3] E. Marinissen, R. Kapur, and Y. Zorian, “On using IEEE 1500 SECT for test plug-n-play”,
in Proc. Int. Test Conf. (ITC), 2000, pp. 770–777.

[4] IEEE, IEEE Standard Testability Method for Embedded Core-based Integrated Circuits,
IEEE Standards Department, Piscataway, Aug. 2005.

[5] IEEE, IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data, IEEE
Standards Department, Piscataway, Sept. 1999.

308 Wu and Huang

[6] R. Kapur, M. Lousberg, T. Taylor, B. Keller, P. Reuter, and D. Kay, “CTL: the language

for describing core-based test”, in Proc. Int. Test Conf. (ITC), 2001, pp. 131–139.
[7] M. Benabdenbi, W. Maroufi, and M. Marzouki, “CAS-BUS: a scalable and reconfigurable

test access mechanism for systems on a chip”, in Proc. Design, Automation and Test in
Europe (DATE), Paris, Mar. 2000, pp. 141–145.

[8] L. Whetsel, “Addressable test ports—an approach to testing embedded cores”, in Proc. Int.
Test Conf. (ITC), 1999, pp. 1055–1061.

[9] E. J. Marinissen and S. K. Goel, “Analysis of test bandwidth utilization in test bus and
TestRail architectures for SOCs”, in Proc. IEEE Int. Workshop on Design and Diagnostics
of Electronic Circuits and Systems (DDECS), Apr. 2002, pp. 52–60.

[10] H.-S. Hsu, J.-R. Huang, K.-L. Cheng, C.-W. Wang, C.-T. Huang, C.-W. Wu, and
 Y.-L. Lin, “Test scheduling and test access architecture optimization for system-on-
chips”, in Proc. 11th IEEE Asian Test Symp. (ATS), Guam, Nov. 2002, pp. 411–416.

[11] A. Benso, S. Di Carlo, P. Prinetto, and Y. Zorian, “A hierarchical infrastructure for SoC
 test management”, IEEE Design & Test of Computers, vol. 20, no. 4, pp. 32–39, Jul.-
 Aug. 2003.

[12] K. Chakrabarty, “Test scheduling for core-based systems using mixed-integer linear
 programming”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
 vol. 19, no. 10, pp. 1163–1174, Oct. 2000.

[13] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test access
 mechanism co-optimization for system-on-chip”, J. Electronic Testing: Theory and
 Applications, vol. 18, pp. 213–230, Apr. 2002.

[14] C.-P. Su and C.-W. Wu, “Graph-based power-constrained test scheduling for SOC”, in
 Proc. IEEE Int. Workshop on Design and Diagnostics of Electronic Circuits and Systems
 (DDECS), Brno, Czech Republic, Apr. 2002, pp. 61–68.

[15] S. K. Goel and E. J. Marinissen, “Effective and efficient test architecture design for
 SOCs”, in Proc. Int. Test Conf. (ITC), Baltimore, Oct. 2002, pp. 529–538.

[16] C.-W. Wang, J.-R. Huang, K.-L. Cheng, H.-S. Hsu, C.-T. Huang, C.-W. Wu, and Y.-L.
 Lin, “A test access control and test integration system for system-on-chip”, in Proc. Sixth
 IEEE Int. Workshop on Testing Embedded Core-Based System-Chips (TECS), Monterey,
 California, May 2002, pp. P2.1–P2.8.

[17] J.-F. Li, H.-J. Huang, J.-B. Chen, C.-P. Su, C.-W. Wu, C. Cheng, S.-I Chen,
 C.-Y. Hwang, and H.-P. Lin, “A hierarchical test methodology for system-on-chip”,
 IEEE Micro, vol. 22, no. 5, pp. 69-81, Sept./Oct. 2002.

[18] K.-L. Cheng, J.-R. Huang, C.-W. Wang, C.-Y. Lo, L.-M. Denq, C.-T. Huang, C.-W. Wu,
 S.-W. Hung, and J.-Y. Lee, “An SOC test integration platform and its industrial
 realization”, in Proc. Int. Test Conf. (ITC), Charlotte, Oct. 2004.

[19] IEEE, IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture, IEEE
 Standards Department, Piscataway, May 1990.

[20] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “ITC’02 SOC test benchmarks”,
 http://www.extra.research.philips.com/itc02socbenchm/, 2002.

[21] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, “Towards a standard
 for embedded core test: An example”, in Proc. Int. Test Conf. (ITC), 1999, pp. 616–626.

[22] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction in core-based
 ICs”, in Proc. Int. Test Conf. (ITC), 1998, pp. 448–457.

[23] P. Varma and S. Bhatia, “A structured test reuse methodology for core-based system
 chips”, in Proc. Int. Test Conf. (ITC), 1998, pp. 294–302.

[24] P. Harrod, “Testing reusable IP—a case study”, in Proc. Int. Test Conf. (ITC), 1999, pp.
 493–498.

S C Testing and Design for Testability 309

[25] E. J. Marinissen, R. Arendsen, and G. Bos, “A structured and scalable mechanism for test

 access to embedded reusable cores”, in Proc. Int. Test Conf. (ITC), 1998, pp. 284–293.
[26] M. Benabdenbi, W. Maroufi, and M. Marzouki, “Testing TAPed cores and wrapped

 cores with the same test access mechanism”, in Proc. Design, Automation and Test in
 Europe (DATE), Munich, Mar. 2001, pp. 150–155.

[27] K. Chakrabarty, “Design of system-on-a-chip test access architecture using integer linear
 programming”, in Proc. IEEE VLSI Test Symp. (VTS), 2000, pp. 127–134.

[28] E. Larsson and Z. Peng, “An integrated system-on-chip test framework”, in Proc. Design,
 Automation and Test in Europe (DATE), Munich, Mar. 2001, pp. 138–144.

[29] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test access
 mechanism cooptimization for system-on-chip”, in Proc. Int. Test Conf. (ITC), Baltimore,
 Oct. 2001, pp. 1023–1032.

[30] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan, and S. M.
 Reddy, “Resource allocation and test scheduling for concurrent test of core-based SOC
 design”, in Proc. Tenth IEEE Asian Test Symp. (ATS), Kyoto, Nov. 2001, pp. 265–270.

[31] L. Whetsel, “A IEEE 1149.1 base test access architecture for ICs with embedded cores”,
 in Proc. Int. Test Conf. (ITC), 1997, pp. 69–78.

[32] IEEE, IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture, IEEE
 Standards Department, Piscataway, May 1990.

[33]K. K. Saluja, S. H. Sng, and K. Kinoshita, “Built-in self-testing RAM: A practical
 alternative”, IEEE Design & Test of Computers, vol. 4, no. 1, pp. 42–51, Feb. 1987.

[34]R. Dekker, F. Beenker, and L. Thijssen, “A realistic self-test machine for static random
 access memories”, in Proc. Int. Test Conf. (ITC), 1988, pp. 353–361.

[35]A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice, John Wiley &
 Sons, Chichester, England, 1991.

[36]B. F. Cockburn and Y.-F. Nicole Sat, “Synthesized transparent BIST for detecting
scrambled patternsensitive faults in RAMs”, in Proc. Int. Test Conf. (ITC), Oct. 1995,
pp. 23–32.

[37]J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Processor-based built-in self-test for
 embedded DRAM”, IEEE Journal of Solid-State Circuits, pp. 1731–1740, Nov. 1998.

[38]C.-W. Wu, “Testing embedded memories: Is BIST the ultimate solution?”, in Proc.
 Seventh IEEE Asian Test Symp. (ATS), Singapore, Dec. 1998, pp. 516–517.

[39]C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, “A programmable
 BIST core for embedded DRAM”, IEEE Design & Test of Computers, vol. 16, no. 1, pp.
 59–70, Jan.-Mar. 1999.

[40]O. Kebichi and M. Nicolaidis, “A tool for automatic generation of BISTed and
 transparent BISTed RAMs”, in Proc. IEEE Int. Conf. Computer Design (ICCD), Oct.
 1992, pp. 570–575.

[41]R. Rajsuman, “RAMBIST builder: A methodology for automatic built-in self-test design
 of embedded RAMs”, in Proc. IEEE Int. Workshop on Memory Technology, Design and
 Testing (MTDT), 1996, pp. 50–56.

[42]M. Marinescu, “Simple and efficient algorithms for functional RAM testing”, in Proc.
 Int. Test Conf. (ITC), 1982, pp. 236–239.

[43]K. Zarrineh and S. J. Upadhyaya, “Programmable memory BIST and a new synthesis
 framework”, in Proc. Int. Symp. Fault Tolerant Computing (FTCS), Montreal, June 1999,
 pp. 352–355.

[44]K. Zarrineh and S. J. Upadhyaya, “On programmable memory built-in self test
 architecutres”, in Proc. Design, Automation and Test in Europe (DATE), Paris, Mar.
 1999, pp. 708–713.

o

310 Wu and Huang

[45]K.-J. Lin and C.-W. Wu, “PMBC: a programmable BIST compiler for memory cores”, in

 Third IEEE Int. Workshop on Testing Embedded Core-Based System-Chips, Dana Point,
 Apr. 1999, pp. P2.1–P2.6.

[46]C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based test algorithm
 generation for random access memories”, in Proc. IEEE VLSI Test Symp. (VTS),
 Montreal, Apr. 2000, pp. 291–296.

[47]C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, “BRAINS:
 A BIST complier for embedded memories”, In Proc. IEEE Int. Symp. Defect and Fault
 Tolerance in VLSI Systems (DFT), pages 299–307, Yamanashi, Oct. 2000.

[48]K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh, C.-T. Huang, and C.-W. Wu,
 “Automatic generation of memory built-in self-test cores for system-on-chip”, in Proc.
 Tenth IEEE Asian Test Symp. (ATS), Kyoto, Nov. 2001, pp. 91-96.

[49]D. Flynn, “AMBA: Enabling reusable on-chip designs”, IEEE Micro, 17(4):20–27,
 July/Aug. 1997.

[50]C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator”, In
 Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), pages 165–
 173, Albuquerque, Nov. 1999.

Chapter 9

PHYSICAL DESIGN FOR SYSTEM-ON-A-CHIP

Yao-Wen Chang1, Tung-Chieh Chen2, and Huang-Yu Chen2
1Graduate Institute of Electronics Engineering, National Taiwan University
2Department of Electrical Engineering and Graduate Institute of Electronics Engineering,
National Taiwan University
Emails: ywchang@cc.ee.ntu.edu.tw; {donnie, yellowfish}@eda.ee.ntu.edu.tw

1. INTRODUCTION

This chapter is focused on the physical design for system-on-a-chip (SOC).
Physical design refers to all synthesis steps that convert a circuit
representation (gates, transistors) into a geometric representation (polygons
and theirs shapes). See Figure 1 for an illustration. The geometric
representation, also called layout, is used to design masks and then
manufacture a chip. As a very complicated design process, modern
physical design is typically divided into three major steps: floorplanning,
placement, and routing. Floorplanning is an essential design step for
hierarchical, building block design methodology. Given a set of hard
blocks (whose shapes cannot be changed) and/or soft blocks (whose shapes
can be adjusted) and a netlist, floorplanning determine the shapes of soft
blocks and assemble the blocks into a rectangle (chip) such that a
predefined cost metric (such as the chip area, wirelength, wire congestion)
is optimized. Placement is the process of assigning the circuit components
into a chip region. It can be considered as a restricted floorplanning
problem for hard blocks with some dimension similarity. Following
placement, the routing process defines the precise paths for conductors that
carry electrical signals on the chip layout to interconnect all pins that are

311

S.Y.-L. Lin (ed.), Essential Issues in SOC Design, 311–403.
© 2006 Springer.

312 Chang, Chen and Chen

electrically equivalent. After routing, some physical verification processes
(such as design rule checking (DRC), performance checking, and
reliability checking) are performed to verify if all geometric patterns,
circuit timing, and electrical effects satisfy the design rules and
specifications.

Figure 1. The function of physical design

With the continued improvement of the nanometer IC technologies,

modern VLSI designers can integrate a whole system with large-scale
logic/functional blocks (e.g., multimedia blocks, communication blocks,
microprocessors, embedded memory) in a single chip, and interconnect
those blocks to provide high capability and flexibility for different needs.
This is called system-on-a-chip (SOC) design. See Figure 2 for an example
of SOC architecture.

Figure 2. A typically SOC system

Physical Design for System-on-a-Chip 313

As the technology advances at a breathtaking speed, feature sizes and
voltage levels are decreasing while die sizes, operating frequency, design
complexities, and packing density are increasing, all drastically for modern
SOC design. Physical design for such a system needs to consider the
integration of large-scale digital and analog (mixed-signal) circuit blocks,
the design of system interconnections/buses, and the optimization of circuit
performance, area, power consumption, and signal and power integrity. On
one hand, designs with billion transistors are already in production, IP
blocks are widely reused, and a large number of buffer blocks are used for
delay optimization as well as noise reduction in nanometer
interconnect-driven design, which all drive the need of a modern physical
design tool to handle large-scale designs. On the other hand, the highly
competitive IC market requires faster design convergence, faster incremental
design turnaround, and better silicon area utilization. Efficient and effective
design methodology and tools capable of handling optimizing large-scale
blocks are essential for modern SOC designs.

In this chapter, we focus on the recent development on floorplanning,
placement, and routing, with special treatments on the impacts of the modern
SOC design on these design steps. Specifically, we introduce the
state-of-the-art design algorithms, frameworks, and methodology for
handling the design complexity, timing closure, and signal/power integrity
arising from modern SOC designs for faster design convergence.

2. FLOORPLANNING

2.1 Introduction
Floorplanning is an essential design step for hierarchical, building-block
design methodology. Floorplanning gives early feedback that suggests
architectural modifications, estimates the chip area, and estimates delay and
congestion due to wiring. As technology advances, design complexity is
increasing and the circuit size is getting larger. To cope with the increasing
design complexity, hierarchical design and IP blocks are widely used. This
trend makes floorplanning much more critical to the quality of a VLSI
design than ever.

An SOC design often consists of large-scale functional blocks. Designs
with billions of transistors are even already in production. To cope with the
increasing design complexity, IP blocks are widely reused for large-scale
designs. Therefore, efficient and effective design methodology and tools
capable of placing and optimizing large-scale blocks are essential for
modern chip designs. The floorplanning frameworks are evolving to tackle

314 Chang, Chen and Chen

the challenges with constantly increasing design complexity. Three major
frameworks have been extensively studied in the literature: the flat,
hierarchical, and multilevel frameworks.

In this section, we first introduce two most popular floorplan
representations, B*-tree [17] and Sequence Pair [88]. Then, three types of
floorplanning frameworks are introduced in Section 2.4. Two important
issues for modern SOC floorplanning, substrate noise and bus planning, are
discussed in Section 2.5 and Section 2.6, respectively.

2.2 Problem Definition
To make this chapter self-contained, we shall start with the definition of
the floorplanning problem. Let 1 2{ }mB b b b= , ,..., be a set of m
rectangular blocks whose respective width, height, and area are denoted by

iw , ih , and ,ia 1 .i m≤ ≤ Each block is free to rotate. Let ()i ix y,

denote the coordinate of the bottom-left corner of block ib , 1 i m≤ ≤ , on
a chip. A floorplan P is an assignment of ()i ix y, for each ib , 1 i m≤ ≤ ,
such that no two blocks overlap. The goal of floorplanning is to optimize a
predefined cost metric such as a combination of the area (i.e., the minimum
bounding rectangle of P) and wirelength (i.e., the summation of half
bounding box of interconnections) induced by a placement.

2.3 Floorplanning Representations
We introduce the B*-tree [17] and Sequence Pair [88] floorplan
representations, which are generally considered as the two most popular
representations [14].

2.3.1 B*-tree

B*-trees are based on ordered binary trees and the admissible placement [48],
for which no block can be moved to bottom and left, i.e., a bottom-left
compacted placement. Inheriting from the nice properties of ordered binary
trees, B*-trees are very easy for implementation and can perform the
respective primitive tree operations search, insertion, and deletion in only
constant, constant, and linear times. There exists a one-to-one
correspondence between an admissible placement and its induced B*-tree;
further, the transformation between them takes only amortized linear time.

Given an admissible placement, we can represent it by a unique
B*-tree T . (See Figure 3(b) for the B*-tree representing the placement of
Figure 3(a).) A B*-tree is an ordered binary tree whose root corresponds to the
block on the bottom-left corner. Similar to the DFS procedure, we construct

Physical Design for System-on-a-Chip 315

the B*-tree T for an admissible placement P in a recursive fashion: Starting
from the root, we first recursively construct the left subtree and then the right
subtree. Let iR denote the set of blocks located on the right-hand side and
adjacent to ib . The left child of the node in corresponds to the lowest block

in iR that is unvisited. The right child of in represents the lowest block

located above and with its x -coordinate equal to that of ib .

Figure 3. (a) An admissible placement. (b) The B*-tree representing the placement

Given a B*-tree ,T we shall compute the x - and y -coordinates for each
block associated with a node in the tree. Since the root of T represents the
bottom-left block, the x - and y -coordinates of the block associated with the
root () (0 0)root rootx y, = , . The B*-tree keeps the geometric relationship
between two blocks as follows. If node jn is the left child of node in , block

jb must be located on the right-hand side and adjacent to block ib in the

admissible placement; i.e., j i ix x w= + . Besides, if node jn is the right child

of in , block jb must be located above, with the x -coordinate of jb equal to

that of ib ; i.e., j ix x= . Therefore, given a B*-tree, the x -coordinates of all
blocks can be determined by traversing the tree once in linear time.

To efficiently compute the y -coordinate from a B*-tree, the contour
data structure presented in [48] is used to facilitate the operations on blocks.
The contour structure is a doubly linked list for blocks, describing the

316 Chang, Chen and Chen

contour curve in the current compaction direction by bookkeeping the
x -range of each block and its corresponding y -coordinate of the top
boundary. A horizontal contour (see Figure 4) can be used to reduce the
running time for finding the y -coordinate of a newly inserted block.
Without the contour, the running time for determining the y -coordinate of a
newly inserted block would be linear to the number of blocks. By
maintaining the contour structure, however, the y -coordinate of a block can
be computed in amortized (1)O time [48], resulting in an overall packing
evaluation of amortized linear time. Figure 4 illustrates how to update the
horizontal contour after inserting a new block.

Figure 4. Adding a new block on the top, we search the horizontal contour from left to right

and update it with the top boundary of the new block

2.3.2 Sequence pair

Sequence Pair (SP) [88] uses an ordered pair of block name sequences to
model a general floorplan. Given an SP ()+ −Γ ,Γ , blocks ib and jb are

related in exactly one of four ways: jb is after/before ib in ()+ −Γ ,Γ .
The geometric relation of blocks can be derived from an SP as follows.
Block ib is left (right) to block jb if ib appears before (after) jb in

both +Γ and −Γ . Block ib is below (above) block jb if ib appears

after (before) jb in +Γ and ib appears before (after) jb in −Γ .

Physical Design for System-on-a-Chip 317

It is easily seen that the constraint imposed on the packing by a sequence
pair is unique, and the constraint is always satisfiable. We can consider an
m m× grid. Label the horizontal and vertical grid lines with block names along

+Γ and −Γ from top and from left, respectively. A cross point of the
horizontal grid line of label i and the vertical grid line of label j is referred to
by ()i j, . Then, rotate the resultant grid by 45 degrees counter-clockwise to get
an oblique grid. (See Figure 5.) Put each block ib with its center being on
()i i, . Expand the separation of grid lines enough to eliminate overlapping of
blocks. (The expansion is enough if the separation is 2 times larger than the
longest width/height over blocks.) The resultant packing trivially satisfies the
constraint implied by the given SP. An example with
() ()ecadfb fcbead+ −Γ ,Γ = , is shown in Figure 5.

Given ()+ −Γ ,Γ , one of the optimal packing under the constraint can be
obtained in 2()O n time by applying the well-known longest-path algorithm on
a node-weighted directed acyclic graphs with n nodes. The process is given
below.

Based on “left of” constraint of ()+ −Γ ,Γ , a directed and node-weighted
graph ()HG V E, , where V is the node set and E is the edge set, called the
horizontal-constraint graph, is constructed as follows.

• V : source s , sink t , and m nodes labelled with block names.
• E : ()s i, and ()i t, for each block ib , and ()i j, if and only if ib

appears before (after) jb in both +Γ and −Γ (“left of” constraint).
• Node-weight: zero for s and t , width of block ib for the other

nodes.

Figure 5. A packing on an oblique grid for () ()ecadfb fcbead+ −Γ ,Γ = ,

318 Chang, Chen and Chen

Similarly, the vertical-constraint graph ()VG V E, is constructed using the
“below” constraint and the height of each block.

Neither of these graphs contains any directed cycle. We set the
x -coordinate of ib to be the longest-path length from s to i in .HG The
y -coordinate of ib is set independently using VG . If two blocks ib and jb

have a horizontal relation, then there is an edge between i and j in HG to
guarantee that they do not overlap horizontally in the resultant placement.
Similarly, if ib and jb have a vertical relation, they do not overlap vertically.
Thus no two blocks overlap each other in the resultant placement because any
pair of blocks are either in horizontal or vertical relation.

The width and the height of the chip is determined by the longest-path
length between the source and the sink in HG and VG , respectively. Since
the width and the height of the chip is independently minimized, the
resultant packing is the best of all the packings under the constraint. The
longest-path length calculation on each graph can be done in 2()O n time,
where n is the number of nodes in the graph. The packing time of
Sequence Pair can be reduced to (lglg)O n n time by resorting to the
longest common subsequence formulation [102].

As an example, HG and VG are shown in Figure 6 for
() ().ecadfb fcbead+ −Γ ,Γ = , The resultant placement after the longest
path length calculation is shown in Figure 7.

Figure 6. (a) The horizontal constraint graph .HG (b) The vertical constraint graph .VG
(Transitive edges are not shown in both graphs for simplicity)

Physical Design for System-on-a-Chip 319

Figure 7. A best packing under the constraint implied by

() ()ecadfb fcbead+ −Γ ,Γ = ,

2.4 Floorplanning Frameworks
To handle large-scale building block designs for SOCs, directly applying
simulated annealing to find a good floorplan is often not feasible. Thus,
multilevel approaches are applied to handle large-scale floorplanning. In the
following, we first introduce the flat floorplanning framework, and then
describe the multilevel floorplanning approaches.

2.4.1 Flat approaches

Simulated annealing (SA for short) [71] is widely used for floorplan
optimization. It is an optimization scheme with non-zero probability for
accepting inferior (uphill) solutions. The probability depends on the
difference of the solution quality and the temperature. The probability is
defined as follows:

0
0

},1min{
1

)'(Pr / >Δ
≤Δ

⎩
⎨
⎧

=→
Δ− Cif

Cif
e

SSob TC
 (1)

where CΔ is the difference of the cost of the new solution and that of the
current solution, and T is the current temperature. Thus, at a very high
temperature, say T →∞ , the probability approaches 1. In contrast, when

0,T → the probability C Te−Δ / approaches 0.
There are four basic ingredients for SA: solution space, neighborhood

structure, cost function, and annealing schedule. Here, we use the B*-tree
representation as an example to model a floorplan. The solution space
consists of all B*-trees with the given nodes (blocks). To find a neighboring

320 Chang, Chen and Chen

solution, we perturb a B*-tree to get another B*-tree by the following
operations:

• Op1: Rotate a block.
• Op2: Move a node/block to another place.
• Op3: Swap two nodes/blocks.

For Op1, we rotate a block for a B*-tree node. For Op2, we delete a node
and move it to another place in the B*-tree. For Op3, we swap two nodes in
the B*-tree. After packing for the B*-tree, we obtain a new floorplan.
Whether or not we take the new solution depends on the aforementioned
probability which depends on its cost function. The cost function is defined
based on problem requirements. For example, we may adopt the following
cost function to optimize the wirelength and the area of a floorplan:

 (1)Cost A Wα α= + − , (2)

where A is the current area, W is the current wirelength, and the
user-specified α controls the weights for area and wirelength.

To determine the initial temperature ,T a sequence of random moves
are performed, and the average cost change avgΔ for all uphill moves is

computed. Then, the initial temperature T can be determined by lnavg PΔ / ,
where P is the initial probability of accepting an uphill move and is set
very close to 1 (say, 0.9). We obtain another floorplan by perturbing the
B*-tree. If the new floorplan is better than the current one, we simply take it.
On the other hand, if the new floorplan is worse, we accept it with a
non-zero probability according to the current temperature.

The best results can be obtained when the floorplan achieves
“equilibrium" at each value of T of the annealing process [96]. The
“stopping criterion" is satisfied when the value of the cost function remains
the same after several stages of the annealing process. The updating function
for T is given below:

 0 1new oldT Tλ λ= , < < . (3)

In the classical annealing schedule, the λ value is set to a fixed value [92].
A recommended value of λ is λ = 0.85. For better results,
TimberWolf [96] set the initial λ to 0.8. The value of λ is gradually
increased from its lowest value to its highest value (approximately 0.95), and
is then gradually decreased back to its lowest value.

Chen and Chang propose a Fast Simulated Annealing (Fast-SA) process
to integrate the random search with hill climbing more efficiently [22].

Physical Design for System-on-a-Chip 321

Unlike the classical SA [71] and the TimberWolf SA [96], the fast annealing
process consists of three stages: (1) The high-temperature random search
stage, (2) the pseudo-greedy local search stage, and (3) the hill-climbing
search stage. At the first stage, it lets the temperature T →∞ so that the
probability of accepting an inferior solution approaches 1. The process is
like a random search to find the best solution. At the second stage, it makes

0T → . Since the temperature is very low, it only accepts a very small
number of inferior solutions, which is like a greedy local search. The third
stage is the hill-climbing search stage. The temperature raises again to
facilitate the hill climbing. Thus, it can escape from the local minimum and
search for better solutions. The temperature reduces gradually, and very
likely it finally converges to a globally optimal solution.

Figure 8. Floorplanning using simulated annealing

2.4.2 The Λ -shaped multilevel floorplanning

The Λ -shaped multilevel framework adopts a two-stage technique,
bottom-up coarsening followed by top-down uncoarsening. We take
MB*-tree [76] for an example. Figure 9 illustrates the MB*-tree based
Λ -shaped multilevel framework.
The clustering stage iteratively groups a set of (primitive or cluster) blocks
(say, two blocks) based on a cost metric defined by area utilization, wirelength,
and connectivity among blocks, and at the same time establishes the geometric
relations among the newly clustered blocks by constructing a corresponding
B*-subtree. The clustering procedure repeats until a single cluster containing
all blocks is formed (or the number of blocks is smaller than a predefined

322 Chang, Chen and Chen

threshold), denoted by a one-node B*-tree that bookkeeps the entire clustering
scheme. We shall first consider the clustering metric.

Figure 9. The Λ -shaped multilevel framework of MB*-tree

The clustering metric is defined by the two criteria: area utilization (dead
space) and the connectivity density among blocks.

• Dead space: The area utilization for clustering two blocks im and

jm can be measured by the resulting dead space ijs , representing the

unused area after clustering im and .jm Let tots denote the dead

space in the final floorplan .P We have
i

tot tot im M
s A A

∈
= −∑ ,

where iA denotes the area of block im and totA the area of the

final enclosing rectangle of .P Since
i

im M
A

∈∑ is a constant,

minimizing totA is equivalent to minimizing the dead space tots . For

the example shown in Figure 10, 12 0s = , 13 36s = , and 36tots = .
• Connectivity density: Let the connectivity ijc denote the number of

nets between two (primitive or cluster) blocks im and .jm The

connectivity density ijd between two blocks im and jm is given by

 ()ij ij i jd c n n= / + , (4)

where in (jn) denotes the number of primitive blocks in im (jm). Often a
bigger cluster implies a larger number of connections. The connectivity
density considers not only the connectivity but also the sizes of clusters
between two blocks to avoid possible biases. For the example shown in
Figure 11, we apply the clustering scheme 1 2 3 4{{ } { }}m m m m, , , (based on

Physical Design for System-on-a-Chip 323

connectivity density), instead of 1 2 3 4{{{ } } }m m m m, , , (based on
connectivity).

Figure 10. A cluster with the four primitive blocks, a b c, , , and .d The placement can

be obtained by applying the clustering scheme 1 2 3 4{{ } { }}m m m m, , , , resulting in a dead
space of 36 units

Figure 11. An example connectivity between each pair of blocks. We apply the clustering

scheme 1 2 3 4{{ } { }}m m m m, , , based on connectivity density, instead of

1 2 3 4{{{ } } }m m m m, , , (based on connectivity)

Obviously, the cost function of dead space is for area optimization while

that of connectivity density is for timing and wiring area optimization.
Therefore, the metric for clustering two (primitive or cluster) blocks im and

jm , { } {0}i jm mφ +: , →ℜ ∪ , is then given by

 ({ }) ˆ ˆiji j
ij

Km m s
d

βφ α, = + , (5)

324 Chang, Chen and Chen

where ˆijs and ˆ ijK d/ are respective normalized costs for ijs and ijK d/ ,

α β, and K are user-specified parameters/constants. We set

ij ijK s d= /∑ ∑ to normalize the dead space and the connectivity cost,
i.e., to make the ranges of the two normalized costs about the same. Note
that we shall normalize the dead space and connectivity density to
equally weigh the two costs. To calculate the normalization factors for

i js , and i jd , , we can preprocess using simulated annealing to derive the
initial temperature and then obtain the approximate ranges of the
resulting area and connectivity density to normalize the costs. For
example, we may perform 100 runs of simulated annealing to obtain the
approximate ranges of the resulting costs (i.e., area and connectivity
density here) and derive the factors (weights) to equally weigh the costs
by making the ranges of the two costs about the same. By doing so, it is
more meaningful to weigh the area and connectivity density costs
through the controlling factors α and .β

The declustering stage iteratively ungroups a set of previously clustered
blocks (i.e., expanding a node into a subtree according to the B*-tree
topology constructed at the clustering stage) and then refines the floorplan
solution based on a simulated annealing scheme. The refinement shall lead
to a “better” B*-tree structure that guides the declustering at the next level. It
is important to note that we always keep only one B*-tree for processing at
each iteration, and the agglomeratively multilevel B*-tree based floorlanner
preserves the geometric relations among blocks during declustering (i.e., the
tree expansion), which makes the B*-tree an ideal data structure for the
multilevel floorplanning framework.

The declustering metric is defined by the two creiteria: area utilization
(dead space) and the wirelength among blocks.

• Dead space: Same as that defined in the clustering stage.
• Wire length: The wirelength of a net is measured by half the

bounding box of all the pins of the net, or by the length of the
center-to-center interconnections between the blocks if no pin
positions are specified. The wirelength for clustering two blocks im

and jm , ijw , is measured by the total wirelength interconnecting

the two blocks. The total wirelength in the final floorplan ,P totw ,
is the summation of the length of the wires interconnecting all
blocks.

Obviously, the cost function of dead space is for area optimization while that
of wirelength is for timing and wiring area optimization. Therefore, the

Physical Design for System-on-a-Chip 325

metric for refining a floorplan solution during declustering,

{0}tot Mψ +: →ℜ ∪ , is then given by

 ˆ ˆtot tottot s wψ γ δ= + , (6)

where ˆtots and ˆ totw are respective normalized costs for tots and totw , and
γ and δ are user-specified parameters. Note that the normalization
procedure for tots and totw is similar to that used for clustering.

MB*-tree scales very well as the circuit size increases. The capability of
the MB*-tree shows its promise in handling large-scale designs with
complex constraints.

2.4.3 The V-Shaped multilevel floorplanning

We describe the V-shaped multilevel floorplanning of top-down partitioning
followed by bottom-up merging. Figure 12 illustrates a V-shaped
interconnect-driven multilevel floorplanning framework (IMF for short)
proposed by Chen, Chang, and Lin in [21].

Figure 12. The V-shaped multilevel framework of IMF

At the initial level, the locations of all blocks are set to the center of the chip
region. To prevent from generating sub-regions of large aspect ratios, we choose
the longer side to divide the region into two sub-regions. After the shapes of two
sub-regions are determined, we move the blocks to the two centers of the two
sub-regions to minimize the half-perimeter wirelength (HPWL).

The block-location determination problem can be formulated as a
hypergraph partitioning problem. We first derive an exact net-weight
modeling to map the HPWL cost exactly to the min-cut cost. With the exact
modeling, in other words, minimizing HPWL is equivalent to finding the
min-cut cost. Therefore, the given hypergraph is partitioned using a min-cut
bipartitioner to obtain the minimum HPWL. The new locations of the blocks

326 Chang, Chen and Chen

are thus determined by the partitioner, and each sub-partition corresponds to
a sub-region.

The partitioning stage continues until the number of blocks in each
partition is smaller than a threshold. Then, the partitioned floorplan is
obtained.

In the merging stage, we first use fixed-outline floorplanning to pack the
blocks in the partition, and then merge two neighboring regions into one
larger region. The fixed-outline floorplanning is applied again to
legalize/refine the floorplan.

Each region has its own height and width, and all blocks in the region
must fit into the region to generate a feasible floorplan. We treat the blocks
and I/O pads outside the current region as fixed terminals. Fixed-outline
floorplanning is applied to every region. Simulated annealing is used to
find a feasible floorplan to fit all blocks into the region and minimize the
wirelength. Then, two neighboring regions are merged into one larger
region, and fixed-outline floorplanning is used again to refine the
floorplan.

The cost function Φ can be defined as follows:

2

1 2 3
, ,

- ,F L F R

F norm L norm F R

A W W Wk k k
A W H H

⎛ ⎞
Φ = + + ⎜ ⎟

⎝ ⎠
 (7)

where FA is the current floorplan area, F normA , is the area normalization
factor, LW is the current wirelength, L normW , is the wirelength
normalization factor, FW is the current floorplan width, FH is the current
floorplan height, RW is the width of the region, RH is the height of the
region, and 1,k 2 ,k 3k are user-specified parameters. To calculate the
area/wirelength normalization factors, several times of random perturbations
are performed before simulated annealing starts, and F normA , (L normW ,) is set
to the average value of FA (LW).

If the fixed-outline floorplanning cannot find a feasible floorplan
within the bounding box, we still keep the solution. In the next
refinement level, two partitioned regions are merged. To merge two
vertical regions, we make the root of the B*-tree for the upper
sub-floorplan as the right child of the right-most node of the B*-tree for
the bottom sub-floorplan. Figure 13 shows an example of vertical
merging. After merging, the root 0n of 1T becomes the right child of
the right-most node 6n of 2T . The width of the merged floorplan is
equal to the maximum width of the sub-floorplans, and the height of the
floorplan is less than or equal to the sum of the two sub-floorplan’s
heights due to the packing. To merge two horizontal regions, we first find

Physical Design for System-on-a-Chip 327

the node which corresponds to the right-most block of the left
sub-floorplan. Then, we make the root of the B*-tree for the right
sub-floorplan as the left child of the node we found. Figure 14 shows an
example of horizontal merging. The node 3n corresponds to the
right-most block of the left sub-floorplan. The root 4n of 2T becomes
the left child of the node 3n of 1T . The height of the merged floorplan is
equal to the maximum height of the two sub-floorplans, and the width of
the merged floorplan is equal to the sum of the two sub-floorplan’s
widths.

Figure 13. An example of vertical merging. (a) Two sub-floorplans. (b) The corresponding

B*-trees. (c) The merged floorplan. (d) The merged B*-tree

The merging stage iteratively merges two previously partitioned regions

and then refines the floorplan solution based on fixed-outline simulated
annealing. The merging stage continues until all regions are merged into one
top-most region, and the final floorplan is obtained.

2.4.4 Framework comparison

In addition to the multilevel frameworks, hierarchical approaches are
also proposed to cope with the scalability problem. The hierarchical
approaches recursively divide a floorplanning region into a set of
sub-regions and solve those sub-problems independently. Adya et al. [2]
propose a “floorplacement” framework (used in their program Capo 9)
that combines partitioning and floorplanning techniques to handle both
floorplanning and placement problems. It first partitions a floorplan and
then finds legal sub-floorplans. Cong et al. [34] present a fast
floorplanner called PATOMA using look-ahead enabled recursive
bipartitioning. It partitions a floorplan and uses row-oriented block
(ROB) packing and zero-dead space (ZDS) floorplanning to find legal

328 Chang, Chen and Chen

sub-floorplans. Both the floorplacement and PATOMA are based on the
hierarchical framework in which the floorplanning stage is only used for
legalization and overlap removal. The top-down hierarchical technique
is efficient in handling large-scale problems. Nevertheless, a drawback
of the hierarchical approaches is that they might lack the global
information for the floorplanning interaction among different
sub-regions, for which the multilevel frameworks are proposed to
remedy the deficiency.

Figure 14. An example of horizontal merging. (a) Two sub-floorplans. (b) The

corresponding B*-trees. (c) The merged floorplan. (d) The merged B*-tree

Table 1 lists the characteristics of the Capo floorplacement [2] and
the PATOMA frameworks [34], the MB*-tree multilevel framework [76],
and the IMF multilevel framework [21]. The IMF framework and the
MB*-tree framework are based on the multilevel framework while the
Capo floorplacement and the PATOMA frameworks are based on the
hierarchical framework. Although Capo and PATOMA use partitioning,
unlike IMF, they do not have the refinement stage to further improve
their results.

Physical Design for System-on-a-Chip 329

Table 1. Framework comparisons.

Framework Characteristics

The Capo floorplacement
framework in [2]

‧ Use the top-down hierarchical framework.
‧ Use partitioning and fixed-outline

floorplanning.
‧ Minimize the wirelength under the given

chip-outline.
‧ Do not have a refinement stage.

The PATOMA framework
in [34]

‧ Use the top-down hierarchical framework.
‧ Use partitioning and ZDS/ROB fast

look-ahead floorplanning.
‧ Minimize the wirelength under the given

chip-outline.
‧ Do not have a refinement stage.

The MB*-tree multilevel
framework in [76]

‧ Use the Λ -shaped multilevel framework..
‧ Use bottom-up clustering followed by

top-down declustering.
‧ Deal with variable dies and cannot guarantee

to satisfy an outline constraint.
‧ Need to specify the weights for area and

wirelength by the user.

The IMF multilevel
framework in [21]

‧ Use the V-shaped multilevel framework.
‧ Use top-down partitioning followed by

bottom-up merging.
‧ Handle fixed-die constraints.
‧ Minimize the wirelength under the given area

constraint.

2.5 Floorplanning Considering Substrate Noise
More and more SOC designs require the integration of analog and digital
circuits on a single chip and would therefore suffer from substrate noise
coupling. With the growing of system frequency, some existing techniques
designed for reducing substrate noise may not work well. Considering
substrate noise in early floorplanning is thus desirable. We introduce in this
section a pioneering work along this direction by Cho, Shin, and Pan [27].

For efficient simulation of large SOCs, a simple model that accurately
predicts substrate coupling must be used. The substrate coupling model used
in [27] is scalable with contact shapes, dimensions, and separations. It also
considers the issues related to package parasitic, backplane connections, and
noise suppression techniques. The substrate is modelled by a two-port

330 Chang, Chen and Chen

lumped resistor network as shown in Figure 15, but it is only valid for
frequency below a few gigahertz. The resistance values are determined by
characterizing the substrate either through device simulations or through
measurements of the substrate. The scalable macro-model is based on
Z -parameters from the derived resistances as follows:

 11 12

21 22

1 D DA DA

DA A DA

z z G G G
Z

z z G G G

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

+
= = ,

+Δ
 (8)

where A DA D DA A DG G G G G G= + +� . 11 22()Z Z can be expressed as [90]

 11
1 2 3

1Z
K Area K Perimeter K

= ,
+ +

 (9)

where 1 2 3K K and K, are process parameters. 12Z is given by

 12
xZ e βα −= , (10)

where x is the distance between contacts and α and β are process
parameters. The substrate coupling can be calculated from the value of
resistors in the two-port lumped network shown in Figure 15 The substrate
coupling if i -th digital block to j -th analog block, ijSC is given by

 12

22

A DA
ij

A DA DA A

R G ZSC
R R G G Z

= = = .
+ +

 (11)

Figure 15. Macro-model for the substrate

Physical Design for System-on-a-Chip 331

Because of the frequency-dependent characteristics of noise source and
sensor block, we should consider frequency when calculating substrate noise.
Based on a functional analog block description, it is possible to determine,
with reasonable accuracy, the type of frequently used analog blocks. We
consider only substrate noise due to power/ground (P/G) bounces, and use
the P/G bounce limits as a means of early substrate noise characterization of
a digital block.

The substrate noise of j -th analog block from the switching of i -th
digital block, i jN , , can be approximated by [10]

 2 2() (() ())
freq_high

i j i j i jfreq_low
j

N SC S f N f df, ,= ⋅ ⋅ ,∑ ∫ (12)

where ()iS f (()jN f) can be derived from typical sensitivity characteristics
of analog (digital) blocks. The total noise from all digital blocks is

 total i j

i j

N N ,= .∑∑ (13)

In the substrate noise model, some important variables determine substrate
noise. These variables contain process parameters, areas and perimeters of
blocks, distance between blocks and frequency-dependent characteristics of
the noise source and sensor block. In the early floorplanning, we may
minimize substrate noise by changing the distance between blocks and the
perimeter of a block (soft block) and consider characteristics of a block at
the same time.

2.5.1 Block preference directed graph

The substrate noise model described above is one of the most compact
models with high scalability and accuracy, but it is still computationally
expensive to perform a substrate noise estimation. For fast substrate noise
estimation, we can construct a block preference directed graph (BPDG for
short) [27]. The BPDG construction consists of substrate noise table
construction, analog block ordering, digital block ordering, and BPDG
construction.

To eliminate the effect of distance, we assume that the nominal distance
is fixed. With fixed distance, the substrate noise between a digital and an
analog block purely depends on frequency coupling and geometric
properties like area and shape. For example, Table 2 quantifies the substrate
noise with fixed distance.

332 Chang, Chen and Chen

 Table 2. Substrate noise table

 D1 D2 D3 D4 D5 D6

A1 5 2 6 3 10 1
A2 2 1 3 10 8 5
A3 3 8 7 11 9 12

Based on the substrate noise table, analog blocks can be sorted for each

digital block by descending order of substrate noise. Figure 16 gives an
example based on Table 2.

Figure 16. Analog block orderings

Based on the substrate noise table, digital blocks can be sorted for each

analog block by the ascending order of substrate noise.

Figure 17. Analog block orderings

Then, we can construct BPDG (see Figure 18) by the
BPDG_Construction algorithm listed in Figure 19. Lines 1 and 2 initialize

Figure 18. Block preference directed graph

Physical Design for System-on-a-Chip 333

aG and dG to be empty. Lines 3–7 check if iA is before jA in all aO
and add a directed edge from jA to iA in aG if it is true. It means that if
there is an edge from jA to iA , iA should be farther than jA to all
digital blocks. Lines 8–12 check if iD is before jD in all dO and add a
directed edge from jD to iD in dG if it is true. If there is an edge from

jD to iD , iD should be closer than jD to all analog blocks. Line 13 add
a virtual vertex 0D that contains aG . Line 14 connects the relation
between analog and digital blocks.

Figure 19. The BPDG construction algorithm

2.5.2 Sequence pair with BPDG

The substrate noise aware floorplanning presented in [27] is based on the
sequence pair floorplan representation. According to the properties of
sequence pair, we have the following theorem.

Theorem 1 A block aB is guaranteed to have shorter distance to the

left-bottom corner than a block bB under a completely packed floorplan, if
either of the following conditions is satisfied.

334 Chang, Chen and Chen

1. There is no block sB satisfying 1 1()LCS X Y, = ∅ in a sequence
pair ()P N, = 1 1(,)a s b s a bB X B B B Y B B… … … … … .

2. There is no block sB satisfying 2 2()LCS X Y, = ∅ in a sequence

pair ()P N, = 2 2(,)b s a s a bB B X B B Y B B… … … … … … .

In the Sequence_Pair_Checking_with_BPDG algorithm listed in Figure 20,
line 1 initializes the violation number to zero. Lines 2–10 check that, for
each directed edge from block bB to aB in G , the violation number

would be increased if aB and bB do not hold for any of the cases in
Theorem 1. To speed up the process, the checking is performed
incrementally. If the movement which may happen in 1 2 1X X Y, , , and 2Y of
Theorem 1, the checking result would be the same as the previous one.

Figure 20. Sequence Pair Checking with BPDG

2.5.3 Fast substrate noise-aware floorplanning

Figure 21 shows the fast substrate noise-aware floorplanning algorithm.
Line 1 performs the floorplanning with analog blocks first to bind all the
analog blocks together. Line 2 allocates a guard ring around the analog block
cluster to mitigate the substrate noise. Line 3 takes all the analog blocks as a
virtual block vB . Line 4 performs the floorplanning for all digital blocks and

vB . The cost function is

r r

F NVCost
F NV

α β= + , (14)

Physical Design for System-on-a-Chip 335

Figure 21. Fast Substrate Noise-Aware Floorplanning

where F is the cost of conventional digital floorplanning, NV is the
number of violations. Fr and NVr are reference values for each cost
factor. α and β are coefficients for balancing two cost factors. NV is
returned by the Sequence Pair checking with BPDG algorithm shown in
Figure 20 after a perturbation.

2.6 Bus-Driven Floorplanning
An SOC design needs to integrate various IP blocks, and the communication
among those blocks are often conducted on system buses. Floorplanning
with bus planning is one of the most challenging modern floorplanning
problems because it needs to consider the constraints with interconnect and
block positions simultaneously. In this section, we introduce the B*-tree
based bus-driven floorplanning algorithm presented in [22].

2.6.1 Bus-driven floorplanning formulation

We consider a chip with multiple metal layers, and buses are assigned on the
top two layers. The orientation of buses is either horizontal or vertical. The
problem of bus-driven floorplanning (BDF) is defined as follows [106]:

Given n rectangular macro blocks B = { 1ib i n| = ,..., } and m buses

U = { 1iu i m| = ,..., }, each bus iu has a width it and goes through a set

of blocks ,iB where iB B⊆ and iB| | = .ik Decide the positions of
macro blocks and buses such that there is no overlap between any two
blocks or between any two horizontal (vertical) buses, and bus iu goes

through all of its ik blocks. At the same time, the chip area and the bus area
are minimized.

336 Chang, Chen and Chen

For convenience, let 1{ }kg t b b< , , ,..., > represent a bus u where
{ }g H V∈ , is the orientation, t is the bus width, and 1ib i k, = ,..., , are

the blocks that the bus goes through. For short, a bus is represented by
1{ }.kb b,..., Figure 22 shows a feasible horizontal bus.

Figure 22. A feasible horizontal bus 1 2 3{ }u H t b b b=< , , , , >

2.6.2 B*-tree properties for bus constraints

The blocks that a bus goes through must locate in an alignment range,
i.e., the vertical or horizontal overlap of the blocks has to be larger than the
bus width. For a B*-tree, the left child jn of the node in represents the

lowest adjacent block jb which is right to the block ib (i.e. j i ix x w= +).
So, the blocks have horizontal relationships in a left-skewed sub-tree.

Property 1 In a B*-tree, the nodes in a left-skewed sub-tree may satisfy a
horizontal bus constraint.

Blocks are compacted to the bottom and left after packing. So the blocks
associated with a left-skewed sub-tree of a B*-tree may be aligned together if
no block falls down during packing. We introduce dummy blocks to solve the
falling down problem. In Figure 23(a), the blocks 2b and 4b are displaced
because they fall down during packing. We add dummy blocks right
below the displaced blocks. The dummy blocks have the same x -coordinates
as the displaced blocks, and the widths are also the same. In Figure 23(b), we
adjust the heights of dummy blocks to shift the displaced blocks to
satisfy the bus constraint. After adjusting the heights of dummy blocks, we
can guarantee that the blocks are feasible with the horizontal bus

Physical Design for System-on-a-Chip 337

Figure 23. (a) An infeasible floorplan since the block-overlap range is less than the bus
width t . (b) Inserting dummy blocks, the bus 1 2 3 4{ }H t b b b b< , , , , , > is satisfied

constraint. The height iΔ of the dummy block iD can be computed by the
following equation:

() () if () ()

0 otherwise
min i i min i i

i

y t y h y t y h+ − + , + > +⎧
Δ = ⎨ , ,⎩

 (15)

where ix (iy) is the x (y)-coordinate of block ,ib and

max{ 1 2 }min iy y i k= | = , ,..., for a bus 1{ }kb b, ..., . Figure 24 shows an

example of a feasible horizontal bus by inserting dummy blocks 5D and 6D .

Figure 24. (a) The B*-tree with a left-skewed sub-tree after inserting dummy
nodes. (b) The corresponding feasible horizontal bus 3 5 6{ }H t b b b< , , , , >

338 Chang, Chen and Chen

Property 2 By inserting dummy blocks of appropriate heights, we can
guarantee the feasibility of a horizontal bus with blocks whose
corresponding B*-tree nodes are in a left-skewed sub-tree.

For a B*-tree, the right child jn of the node in represents the closest

upper block jb which has the same x -coordinate as the block ib (i.e

j ix x=). Therefore, the blocks in the right-skewed sub-tree are aligned with
the x -coordinate. Assume the minimum width of the macro blocks that the
bus goes through is larger than the bus width. The structure forms a vertical
bus. In the example shown in Figure 25, the nodes 3n and 5n is in the

right-skewed sub-tree of 0n , so the blocks 0b , 3b , and 5b satisfy the
vertical bus constraint.

Property 3 In a B*-tree, the nodes in a right-skewed sub-tree can
guarantee the feasibility of a vertical bus.

Note that the vertical bus is not constrained to be at the right sub-tree of
the node corresponding to the lowest block among the set. According to
Property 3, the nodes in a right-skewed sub-tree can guarantee the feasibility
of a vertical bus, but it is not always true vice versa.

Figure 25. (a) A right-skewed sub-tree. (b) The corresponding feasible vertical bus

0 4 5{ }u V t b b b=< , , , , >

2.6.3 The twisted-bus structure

Consider two buses simultaneously, we cannot always fix the horizontal bus
constraints by inserting dummy blocks. As the example shown in Figure 26,

Physical Design for System-on-a-Chip 339

two buses are considered: 0 3{ }u b b= , and 2 6{ }.v b b= , We can add the
dummy block 0D (2D) below 0b (2b) to satisfy the horizontal bus u (v).
However, we cannot satisfy two horizontal bus constraints at the same time
since two buses are twisted. The idea to discard B*-trees with twisted-bus
structures is to reduce the solution space and make the solution searching
more efficient. Note that it is impossible to fix a twisted-bus structure by
inserting dummy blocks. Discarding such a configuration will not remove
any feasible solutions. We directly examine the twisted-bus structure by
checking the B*-tree nodes. Consider two buses u and v . If one node of
bus u is in the right-skewed sub-tree of one node of bus v , and one node
of bus v is in the right-skewed sub-tree of one node of bus u , then it will
incur a twisted-bus structure. Therefore, we shall discard a B*-tree with such
an infeasible tree topology during solution perturbation. Note that not all
potential twisted-bus structures are checked through the aforementioned
procedure. Figure 26 shows a twisted-bus structure where 3n is in the
right-skewed sub-tree of 2n , and 6n is in the right-skewed sub-tree of 0n .

Figure 26. An infeasible floorplan for two buses, 0 3{ }u b b= , and 2 6{ }.v b b= ,

(a) A twisted-bus structure where 3n is in the right sub-tree of 2n , and 6n is in the right

sub-tree of 0.n (b) The corresponding floorplan. The two twisted-bus cannot be satisfied
simultaneously by inserting dummy blocks

2.6.4 Bus overlapping

When multiple buses are considered, we need to avoid overlaps between
buses. For example, in Figure 27, two horizontal buses are to be assigned.
The buses 0 4{ }u b b= , (2 3{ }v b b= ,) are feasible when we consider only one
bus. However, the vertical space is not large enough for fitting two buses. In
this case, we compute the minimum shifting distance for the block 2b , and

340 Chang, Chen and Chen

Figure 27. Two horizontal buses, 0 4{ }u b b= , and 2 3{ }v b b= , . (a) Two buses
overlap. (b) By inserting a dummy block, we can get a feasible floorplan without

bus-overlapping

insert a dummy block 2D right below 2b . Thus, the two buses can be
assigned at the same time by inserting the dummy block. In their
implementation, they check the buses one by one using the order in the
benchmark. When one bus is examined, we also allocate the space for the
bus according to the bus width and the block positions. If we find the space
of one bus overlapping with another bus, we will let the new bus be on top
of the other and insert dummy blocks to avoid overlaps.

2.6.5 Fixed I/O ports

Sometimes buses are connected to I/O ports that are fixed on the boundary.
If the I/O ports to which the bus connects are at the top/bottom side of the
chip, only the vertical bus may be feasible. Similarly, if the I/O ports to
which the bus connected are at the left/right side of the chip, only the
horizontal bus may be feasible. Thus, the directions of buses can be fixed,
and we do not need to check the directions when deciding the bus locations.

Physical Design for System-on-a-Chip 341

To avoid the block falling down problem with fixed I/O ports, we need to set
the heights of dummy blocks considering the positions of fixed I/O ports.
We can directly set miny in Equation (18) to the y -coordinate value of the
fixed I/O port to which the bus connects. By doing so, it will try to align
blocks with the fixed I/O port to make the horizontal bus feasible.

Figure 28 shows an example of inserting dummy blocks, considering a
fixed I/O port F . The heights for dummy blocks 3D , 5D , and 6D are

3 3() (),Fy t y h+ − + 5 5() (),Fy t y h+ − + and 6 6() (),Fy t y h+ − +

respectively, where iy is the y -coordinate of block i , and t is the bus

width. The bus 3 5 6{ }b b b F, , , is feasible after inserting dummy blocks.

Figure 28. A horizontal bus connects to a fixed I/O port F , 3 5 6{ }u b b b F= , , , . (a)
The B*-tree after inserting dummy nodes. (b) The corresponding feasible horizontal bus

2.6.6 Algorithm

The bus-driven floorplanning algorithm applies simulated annealing
based on the B*-tree representation. Figure 29 summarizes the algorithm.
First, we initialize the B*-tree as a complete binary tree and start with the
Fast-SA process. After each perturbation and non-dummy block packing,
we check if there exists a “twisted-bus structure” in the B*-tree. If any,
we simply discard the current solution and perturb the B*-tree again.
This checking can save time to find feasible solutions. If there is no
twisted-bus structure in the B*-tree, we insert the dummy blocks to the
appropriate nodes to fix the horizontal bus constraints and
bus-overlapping. After adjusting the heights of dummy blocks, we pack
the B*-tree again. Then, we decide the bus locations so that there is no
overlap between buses. After adjusting the heights of dummy blocks and

342 Chang, Chen and Chen

re-packing the floorplan, some buses still may not be feasible. We refer
to these buses as unassigned buses.

Since the objective function of bus-driven floorplanning is to satisfy all
bus constraints so that the chip area and the total bus area are minimized, we
define the cost function Ψ for a floorplan solution F with the set of buses
U as follows:

 ()F U A B Mα β γΨ , = + + , (16)

where A is the chip area, B is the bus area, M is the number of
unassigned buses, and α , β , and γ are user-specified parameters.

In the SA process, we record the floorplan solution with the most
number of feasible buses and the lowest cost. After the SA process stops,
we report the lowest cost with the least number of unassigned buses.
Thus, we can find the desired floorplan with the most feasible buses.

Suppose we are given m buses and n blocks. According to Figure 29,
the combination of the pseudo code from line 4 to line 13 makes one

Figure 29. The bus-driven floorplanning algorithm

Physical Design for System-on-a-Chip 343

perturbation and evaluation of the B*-tree. Line 4 takes (1)O time for
perturbation, and Line 5 takes ()O n time for B*-tree packing. In line 6, the
time complexity for fixing horizontal bus constraints and bus overlap
checking are ()O mn and 2()O m n , respectively. Line 9 takes ()O n time
for packing, Line 10 takes 2()O m n time for deciding the bus locations, and

Lines 11–13 take (1)O time. Thus, the total time complexity is 2().O m n

2.7 Conclusion
Floorplanning is an essential design step for hierarchical, building-block
design methodology. It provides valuable insights into the hardware decision
and estimation of various costs. The most popular floorplanning method
resorts to the modelling of the floorplan structure and then optimizing the
floorplan solutions using simulated annealing. There exist many floorplan
representations in the literature. Yet, B*-tree and Sequence Pair have been
recognized as the two most valuable representations due to their superior
simplicity, effectiveness, efficiency, and flexibility.

To handle the challenges in modern SOC designs with large-scale
circuit blocks, the multilevel floorplanning frameworks are desired. Two
types of multilevel frameworks, the Λ - and V -shaped frameworks,
have recently been studied in the literature. Both are based on two-stage
techniques. The Λ -shaped framework adopts bottom-up coarsening
followed by top-down uncoarsening, while the V -shaped framework
proceeds with top-down uncoarsening and followed by bottom-up
coarsening. Since the V -shaped framework processes global layout
regions first, it tends to obtain better solutions for those with global
effects such as wirelength and timing. In contrast, the Λ -shaped
framework tends to achieve better solutions for local effects such as area
optimization.

An SOC typically consists of various digital and analog functional
blocks and interconnects them with system buses and/or global wiring.
Therefore, it is crucial to consider the floorplanning with both digital and
analog blocks and plan the system bus as early as possible. This section
provides underlying ideas for handling the SOC floorplanning problems
using the B*-tree and Sequence Pair formulations. Future research on SOC
floorplanning lies in the considerations of various placement constraints
(position constraints, thermal electrical constraints, etc.) and the
co-synthesis of floorplan with other design targets (power/ground network,
timing, noise, etc.).

344 Chang, Chen and Chen

3. PLACEMENT

3.1 Introduction
As the process technology advances, the feature size is getting smaller and
smaller, which makes it possible to integrate an entire system with one
billion transistors on a single chip. Two challenges arise due to this design
complexity. First, the Intellectual Property (IP) blocks and pre-designed
macro blocks (such as embedded memories, analog blocks, pre-designed
datapaths, etc.) are often reused, and thus many IC’s contain thousands of
macro blocks and millions of cells. Second, timing optimization becomes
more challenging due to the design complexity and the scaling of devices
and interconnects.

The traditional placement problem seeks to minimize wirelength under
the constraint that cells/macros do not overlap with each other. Three types
of most popular techniques are used in the current state-of-the-art placers:
(1) the partitioning based approach [2,25,70], (2) the simulated annealing
based approach, and (3) the analytical approach [66,15]. Based on the
techniques, many mixed-size placement algorithms are developed, which
can be classified into three categories. The first category places macros and
standard cells simultaneously, such as APlace [66], Feng Shui [70],
mPG-MS [16], mPL [15], and UPlace [108]. The second category
combines floorplanning and placement techniques, such as Capo [2]. The
third category works in two stages: first place the macros and then the
standard cells, such as the algorithm presented in [4].

In this chapter, we introduce wirelength- and timing-driven placement
with various constraints for SOC designs, which usually has large-scale,
mixed-size cells/blocks.

3.2 Problem Definition
We are given a set of m rectangular blocks (circuit blocks or cells)

1 2{ }pB b b b= , ,..., whose width, height, and area are denoted by iw , ih ,

and ia , 1 ,i p≤ ≤ a netlist 1 2{ , , , },kN n n n= … and a set of locations

(slots) 1 2{ , , , }qL l l l= … , p q≤ . The placement problem is to assign each

ib B∈ to a unique location ()j i iP x y= , on the chip layout such that no
two blocks overlap with each other (i.e., legalization constraint) and some
objective (such as the total wirelength, congestion, timing) is optimized.
There exist a few popular estimations for the wirelength; for example, half
bounding box of the interconnection (also known as the semi-perimeter
method), minimum spanning tree approximation, squared Euclidean distance

Physical Design for System-on-a-Chip 345

(squares of all pairwise terminal distances in a net using a quadratic cost
function) [72], the log-sum-exp method [44], etc.

3.3 Approaches to Placement
Three types of most popular techniques are used in the state-of-the-art
placers: (1) the partitioning based approach, (2) the simulated annealing
based approach, and (3) the analytical approach. Independent of the
placement techniques used, most modern placers consist of three major steps:
(1) global placement, (2) cell legalization, and (3) detailed placement (see
Figure 30). We detail these approaches in the following.

Figure 30. Three major steps in placement

3.3.1 Partitioning-based methods

Among academic placement tools, all the leading top-down methods rely on
variants of recursive circuit partitioning in someway. An early work on
partitioning-based placement was proposed by Dunlop and Kernighan [41].
Most modern methods, including Capo [13], Feng Shui [109], and
NTUplace [25,61], have exploited further advances in fast algorithms for
hypergraph partitioning to push these frameworks beyond their original
capabilities. Fast, high-quality ()O n partitioning algorithms give top-down
partitioning attractive (lg)O n n scalability overall, where n is the
problem size.

In the following, we introduce the underlying ideas of the three major
steps of the NTUplace partitioning-based placer: (1) global placement, (2)
cell legalization, and (3) detailed placement.

346 Chang, Chen and Chen

A. Global Placement

A.1. Cutline Determination

At each level of global placement, NTUplace determines the cutline
position at each partitioning step for better bi-partitioning with more
balanced cell density. The cutline position has a significant impact on the
chip density and the accuracy of terminal propagation. To find a better
cutline position and perform more accurate terminal propagation, we
pre-partition a circuit with a relaxed balance factor. Then, it moves the
cutline to make the free space ratio of the two subregions equal to the size
ratio of the min-cut pre-partitioning result. The cutline is then used to guide
the exact net-weight modeling with terminal propagation [21]. Finally, it
reapplies the min-cut partitioning with a tighter balance factor to obtain the
final partitioning solution.

A.2. Exact Net-Weight Partitioning

Simple recursive bisection with a cutsize objective can be used quite
effectively with simple Fiduccia-Matheysses (FM)-style [46] iterations. At a
given level, each region is considered separately from the others in some
arbitrary order. A spatial cutline for the region, either horizontal or vertical,
can be carefully chosen. Given some initial partition, subsets of cells are
moved across the cutline to reduce the total weight of hyperedges cut
without violating a given balance constraint. This constraint can be set
loosely initially and then gradually tightened. As the recursion proceeds, cell
subsets become smaller, and the cell-area distribution over the placement
region becomes more uniform. A small example of partitioning-based
placement is shown in Figure 31.

Figure 31. An example of partitioning-based placement (a) Given circuit and placement

region. (b) Partition the circuit and find the corresponding cutline. (c) Assign partitions into
subregions

Physical Design for System-on-a-Chip 347

A.2.1. Multilevel Partitioning

Traditional graph partitioning algorithms compute a partition of a graph by
operating directly on the original graph. These algorithms are often too slow
and/or produce partitioning solutions. Multilevel partitioning algorithms, on
the other hand, have been shown to be very scalable and effective [68].
These algorithms, as illustrated in Figure 32, consist of three phases.

Figure 32. Multilevel partitioning framework

• Coarsening Phase. The purpose of coarsening is to create a smaller

hypergraph, such that a good bisection of the smaller hypergraph is
not significantly worse than the bisection directly obtained for the
original hypergraph. It recursively groups together vertices based on
some connectivity metric (each vertex is highly connected with at
least one other vertex in the group) level by level until the number of
vertices is less than a threshold. At each level, hypergraph
coarsening helps reducing the size of the hyperedges. That is, after
several levels of coarsening, large hyperedges are contracted to
hyperedges connecting just a few vertices.

• Initial Partitioning Phase. After a small hypergraph is obtained, we
may apply the FM [46] heuristic or even balanced random bisection
to obtain an initial partitioning result efficiently.

• Uncoarsening Phase. During the uncoarsening phase, it declusters
the hypergraph while applying a partitioning refinement algorithm
(e.g., the FM heuristic) to improve the quality level by level. At each
level, a partitioning of the coarser hypergraph is used to obtain a
partitioning for the finer graph. This is done by successively

348 Chang, Chen and Chen

projecting the partitioning to the next-level finer hypergraph and
using a partitioning refinement algorithm to reduce the cut and thus
improve the quality of the partitioning. Since the next-level finer
hypergraph has more degrees of freedom, such refinement
algorithms, say the FM heuristic, tend to improve the quality.

A.2.2. Terminal Propagation

Connections between subregions can be modelled by terminal
propagation [41], in which the usual cutsize objective is augmented by terms
incorporating the effect of connections to external subregions. Figure 33
shows the effect of the terminal propagation. A proper terminal propagation
leads to a better solution.

Figure 33. An example of the effect of terminal propagation

Since the net weight in the traditional terminal propagation for the

min-cut based placement is a constant value, the weight with the change in
HPWL cannot be exactly modelled, whether a net is cut or not. The
underlying idea for exact net-weight modeling (terminal propagation)
presented by Chen, Chang, and Lin in [21] is that we want to map the
min-cut cost exactly to the HPWL change. Another net-weighting method
was proposed in [25]; they discussed the net-weighting method for
partitioning based on four cases. However, they can obtain exact modeling
only for two-terminal nets, i.e., they can only obtain suboptimal results for
multi-terminal nets. Unlike the previous work that exhaustively enumerates

Physical Design for System-on-a-Chip 349

of potential cases, the following unified model presented in [21] assigns the
net weights to map the HPWL value exactly. The HPWL modeling not only
can be applied to vertical-cut or horizontal-cut partitioning, but can also be
applied to placement feedback (repartitioning) [63]. Further, the unified
HPWL model can even apply to the partitioning associated with two
non-adjacent regions.

A circuit is modelled as a hypergraph. Each node in the hypergraph
corresponds to a block inside the target region, with the node weight being
set to the area of the corresponding block. Each hyperedge denotes a two- or
multi-terminal net in the circuit, with the hyperedge weight being set to the
value of the HPWL contribution if the hyperedge is cut.

Let 1w be the HPWL when all blocks are at the side closer to the span
of the terminals, 2w be the HPWL when all blocks are at the opposite

side, and 12w be the HPWL when blocks are at the both sides. See

Figure 34 for an illustration. Let cutn be the cutsize of the net for the

corresponding hypergraph. So, we have 12 2 1w w w≥ ≥ . Then, we
introduce a partitioning hypergraph with two fixed nodes to represent the
two sides and movable nodes to represent the movable blocks. We then
add two hyperedges 1e and 2e into the hypergraph. The hyperedge

weight can be determined as follows. We introduce 1e to connect the
fixed node corresponding to the side closer to the span of terminals and all
movable nodes and 2e to connect between all movable nodes. We then
assign the weight of the hyperedge 1e as the value 2 1w w− (note that

2 1w w≥), and that of the hyperedge 2e as the value 12 2.w w−
Partitioning the resulting hypergraph can determine to which partition the
block belongs. Based on the exact net-weight model, we have the
following theorems [21]:

Theorem 1 With the unified net-weight modeling, we have HPWL 1 cutw n= + .

Theorem 2 The unified net-weight modeling exactly maps HPWL to the
min-cut cost.

B. Cell Legalization

NTUplace extends the method proposed in [64] to handle cell
legalization. Cells are sorted according to their coordinates, and then

350 Chang, Chen and Chen

Figure 34. An example of determining a net weight. (a), (b), and (c) are three possible

partitioning results. (d), (e), and (f) are corresponding partitioning hypergraphs

each cell is placed to the closest available position. In addition to the sorting
in left-to-right ordering and right-to-left ordering, we add a
center-to-two-sides ordering starting from the most congested column,
which sorts all cells according to their distance to the chip center. Finally,
we take the best among the three legalization results.

Physical Design for System-on-a-Chip 351

C. Detailed Placement

In the detailed placement stage, three techniques are applied to improve the
final placement result: (1) window-based detailed placement,
(2) branch-and-bound cell swapping, and (3) horizontal whitespace
distribution.

In window-based detailed placement (WDP for short), it first creates
windows according to the given window size and the overlap range between
two windows. In each window, WDP finds a group of exchangeable cells.
The cost of assigning each cell to a legal position (e.g., the displacement) is
calculated, and a transportation formulation is applied to find an optimal
assignment [38]. In their implementation, they iteratively change the
window size and the overlap range between two windows to perform WDP
until no significant improvement is achieved or the given runtime limitation
is met.

For branch-and-bound cell swapping, it selects k cells each time to find
the best ordering of cells by enumerating all possible orderings using the
branch-and-bound algorithm. Here, k is a user-specified parameter. This
process is repeated until all standard cells are processed.

Horizontal whitespace distribution optimally arranges the whitespace in
a row without changing the cell ordering [62,65]. Given m ordered cells
and a row of width n , an m n× table is constructed and the optimal
positions of each cell can be determined through a dynamic programming
algorithm. For the placer, horizontal whitespace distribution is applied row
by row to optimize the cell locations.

D. Other Techniques for Partitioning-Based Placement

Careful consideration of the order and manner in which subregions are
selected for partitioning can be significant. For example, a dynamic
programming approach to cutline selection can improve overall results by
5% or more [110]. In the multi-way partitioning framework, intermediate
results from the partitioning of each subregion are used to influence the final
partitioning of others. Explicit use of multi-way partitioning at each stage
can in some cases bring the configuration closer to a global optimum than is
possible by recursive bisection alone [109]. Cell replication and iterative
deletion have been used for this purpose. Rather than attempting to find the
best subregion in which to place a cell, we can replicate the cell to place it
once in every subregion, then iteratively delete only the worst choices. These
iterations may continue until only one choice remains, or they may be
terminated earlier, allowing a small pool of candidates to be propagated to
and replicated at finer levels. By postponing further deletion decisions until
better information becomes available, spurious effects from locally optimal
subregion partitions can be diminished and the global result improved.

352 Chang, Chen and Chen

The partitioning solution can be improved by combining min-cut
objective with an analytical (quadratic programming) technique. For each
partitioning region, we use springs to model the connectivity of the circuit.
The total potential energy of those springs is a quadratic function of their
length. An initial placement solution can be obtained by solving the
quadratic placement problem. According to the initial placement solution,
the cells far from the centerline of the partitioning region are temporarily
fixed during this level of global placement (see Figure 35). The fixed cell
locations also provide other partitioning regions with more accurate terminal
propagation information than traditional terminal propagation which
assumes cells to be placed in the center of their regions.

Figure 35. An example of the cell positions inside a partitioning region after wirelength
optimization by quadratic programming. Cells in gray will be fixed at the corresponding

regions during this level of partitioning

3.3.2 Simulated annealing based placement

Perhaps the best known simulated-annealing based placement algorithm is
TimberWolf [96]. It consists of two stages. At Stage 1, blocks are moved
between different rows as well as within the same row. Blocks overlap are
allowed at this stage, and will be removed at the second stage. When the
temperature is reached below a certain value, Stage 2 begins. At Stage 2, we
remove any overlaps and continue the annealing process, but only interchange
adjacent blocks within the same row. The solution perturbations are based on
three types of moves:

• M1: Displace a block to a new location.
• M2: Interchange two blocks.
• M3: Change the orientation of a block.

Physical Design for System-on-a-Chip 353

TimberWolf first tries to select a move between M1 and M2 with the
probabilities 0.8 and 0.2 for M1 and M2, respectively. If a move of type
M1 is chosen and it is rejected, then a move of type M3 for the same
block will be chosen with the probability 0.1. TimberWolf applies a
range limiter (window size) to define the row that a block can be
displaced and the pairs of blocks that can be interchanged. At the
beginning, the width and height of the window is big enough to contain
the whole chip. The window size shrinks proportionally to log()T as the
temperature T decreases. Stage 2 begins when the window size is so
small that no inter-row block interchanges are possible. TimberWolf can
handle up to tens of thousands of blocks well. With millions of
blocks/cells in modern SOC design, a state-of-the-art placement
algorithm that can deal with large-scale circuit sizes is desired.

In the following, we introduce a more recent simulated-annealing based
placement tool, called Dragon, presented in [101]. Figure 36 shows its
placement flow. Dragon integrates the partitioning and
simulated-annealing techniques to cope with large-scale placement. A
circuit is recursively partitioned alternatively along horizontal and vertical
cut lines. The subcircuits after partitioning are assigned to rectangular bins.
The bin-based simulated annealing that moves blocks in the bins is
performed to improve the current placement solution. Such a procedure
terminates when a certain stop criteria (e.g., average number of cells per
bin is less than a given number) is met. An adjustment step is then
executed to fit the bin-based placement into row structures. The next step
is a cell-based simulated annealing. The bin structure still exists and the
cells are moved between the centers of bins. The locations of these centers
can be changed during annealing. The final step simply spreads overlapped
cells and makes local improvements to obtain the detailed placement.

To handle the high complexity of the problem, the input netlist is
recursively divided into two partitions using a state-of-the-art min- cut
partitioner, hMetis [68], such that the number of cuts across the partitions is
minimized and the sizes of two partitioned sets satisfy some predefined
balance constraint.

A major drawback of the min-cut, partitioning based placement is its
irreversibility. Once a cell is assigned to one side of the cut line, it will
never move to the other side to improve the placement. Multilevel
simulated annealing is applied to help placements move out of the local
minima. The key idea is to reduce the number of movable objects in
annealing. Low-temperature annealing is adopted at each level and the
number of levels is not fixed. At the final placement stage, a fast greedy
improvement is used to speed up the process. Both bin annealing and cell
annealing uses the same cost function of total wirelength and the same
cooling schedule. Swapping is the main move in both types of annealing

354 Chang, Chen and Chen

Figure 36. The Dragon placement flow

while shifting is used a little bit in cell annealing. Although it tries to
reduce the time-consuming annealing by bin-based approach, the
running-time cost is still very high.

3.3.3 Analytical placement

A force-directed method for global placement was introduced
in [42]. The global placer is named Kraftwerk. In addition
to the well-known wirelength dependent forces, Kraftwerk uses
additional forces to reduce cell overlaps and to consider the
placement area. The wirelength dependent quadratic objective function
to minimize is described as follows. Let n be the number of

Physical Design for System-on-a-Chip 355

movable cells in the circuit and ()i ix y, be the coordinates of cell i .
A placement of the circuit can be described by the 2n -dimensional
vector 1 1() .T

i n i np x x x y y y= ,..., ,..., , ,..., ,...,
ur

 The circuit connectivity is
modelled as a graph. Cells are modelled as vertices, nets are modelled as
edges, and hyperedges are modelled as cliques. The cost of an edge is
modelled as the squared Euclidean distance between its adjacent vertices
multiplied with the weights of the edges. The squared Euclidean distance
between cells i and j is 2 2() ()i y i jx x y y− + − . The objective function
sums up the cost of all edges and can be written in matrix notation as

1
2

T TC p p constp d+ + .
ur urur ur

 (17)

This objective function is minimized by solving the linear equation system

 0C p d+ = .

ur ur
 (18)

Additional constant forces are introduced in [42] to distribute the cells more
evenly in the layout region.
 0C p d e+ + = .

ur ur r
 (19)

The force vector e

r
 contains additional forces working on each cell in the

x and y directions. These additional forces try to move the cells from
high-density regions to low-density regions in the layout, thus attempting to
reduce the overlaps. The algorithm described in [42] is iterative and
determines the additional forces according to the current placement. In each
iteration, the forces acting on the cells are assumed constant and are used to
calculate a new placement. The new placement is the base for the next
iteration step and so on. Each step of the algorithm is called a placement
transformation. The transformation step can be applied to fully overlapping
placements as well as nearly legal placements. Thus, the algorithm renders
itself very elegantly to ECO style placement requirements.

It is argued in [42] that their algorithm is able to handle large mixed-size
placement problems without treating macros and standard cells differently.
However, if applied from scratch on constrained mixed-size designs with
less whitespace, this algorithm frequently produces placements with large
overlaps [4].

Recently, the force-directed placement framework has been generalized
to a more rigorous mathematical formulation and adapted to a multilevel

356 Chang, Chen and Chen

implementation in mPL5 [15]. An overview of the mPL5 formulation is
given here.

Placement objectives and constraints are approximated by smooth
functions. A bounding-box weighted wirelength objective is approximated
by the log-sum-exp model[44,67].

nets nodes nodes nodes nodes

() log log log logk k k k

k k k k

x x y y

e E v e v e v e v e

W x y e e e eγ γ γ γγ
⎛ ⎞
⎜ ⎟/ − / / − /⎜ ⎟
⎜ ⎟
⎜ ⎟∈ ∈ ∈ ∈ ∈⎝ ⎠

, = + + + ,∑ ∑ ∑ ∑ ∑
 (20)

where x and y denote the vectors of cell’s x - and y -coordinates. The
smaller the parameter ,γ the more accurate the approximation. Letting
D ij+ denote the cell area density of bin ijB and K the total cell area
divided by the total placement area, the area-density constraints are initially
expressed simply as ijD K= over all bins .ijB Viewing the ijD as a

discretization of the smooth density function ()d x y, , these constraints are
smoothed by approximating d by the solution ψ to the Helmholtz
equation

() () ()

0 ()

x y d x y x y R

x y R

φ εψ
ψ
ν

Δ − , = , , , ∈⎧
⎪

∂⎨
= , , ∈∂⎪ ∂⎩

 (21)

where 0ε > , ν is the outer unit normal, R∂ is the boundary of the
placement region ,R ()d x y, is the continuous density function at a point

() ,x y R, ∈ and Δ is the Laplacian operator
2 2

2 2x y
∂ ∂
∂ ∂

Δ ≡ + . The

smoothing operator 1 ()d x yε
−Δ , defined by solving Equation (21) is well

defined, because Equation (21) has a unique solution for any 0ε > . Since
the solution of 24 has two more derivatives [45] than ()d x y, , ψ is a
smoothed version of d . Discretized versions of 21 can be solved rapidly by
fast multilevel numerical methods. Recasting the density constraints as a
discretization of ψ gives the nonlinear programming problem

Minimize ()
Subject to 1 1ij

W x y
K i m j nψ ε

,
= − / , ≤ ≤ , ≤ ≤ ,

 (22)

Physical Design for System-on-a-Chip 357

where ijψ is obtained by solving Equation (24) with the discretization
defined by the given bin grid. This nonlinear-programming problem is solved
by the Uzawa iterative algorithm [8], which does not require second
derivatives or large linear-system solves:

1 1

1

() 0

()

k k k
ij ij

i j
k k
ij ij ij

W x y

K

λ ψ

λ λ α ψ ε

+ +

,

+

∇ , + ∇ =

= + + /

∑
 (23)

where λ is the Lagrange multiplier, 0 0,λ = α is a parameter to control
the rate of convergence, and gradients of ijψ are approximated by simple

forward finite differences 1i j i j

k xx ij h
ψ ψψ , + ,−∇ = , 1i j i j

k yy ij h
ψ ψψ + , ,−∇ = when the

center of cell kv is inside ijB and is set to zero otherwise. The nonlinear

equation for 1 1()k kx y+ +, is recast as an ordinary differential equation and
solved by an explicit Euler method [87].

3.3.4 Combining floorplanning and placement for mixed-size designs

The work in [3,5] proposes a three-stage floorplanning/placement flow to
handle mixed-size placement. First, they shred the macros into small fake
cells connected by fake wires with sufficient high weights. Then the
Capo [13] standard cell placer is used to obtain an initial placement.
Second, the initial location of a macro is the average of respective fake
cells. The small standard cells are clustered into soft blocks to perform
fixed-outline floorplanning with macros. Finally, all macros are fixed and
the soft blocks are decomposed into small cells. Capo is used again to
place small cells.

Recent improvements to Capo include the incorporation of fixed-outline
floorplanning to improve the handling of large macro blocks in mixed-size
placement [2]. Min-cut placement proceeds as described above until
certain ad-hoc tests suggest that legalization of a subset of blocks and cells
within their assigned subregion may be difficult. At that point, the cells in
that subregion are aggregated into soft clusters, and annealing-based
fixed-outline floorplanning is applied to the given subproblem [3]. If it
succeeds, the macro locations in its solution are fixed. If it fails, it must be
merged with its sibling subproblem, and the merged parent subproblem
must then be floorplanned. This step therefore initiates a recursive
backtracking through ever larger ancestor subproblems. The backtracking
terminates as soon as one of these ancestor subproblems is successfully
floorplanned. The ad-hoc tests are chosen to prevent long backtracking

358 Chang, Chen and Chen

sequences on most test cases, as the floorplanner does not scale well to
large subproblems. Adya et al. [2] observe that it is typically possible to
define the ad-hoc tests so that the transition from min-cut partitioning to
fixed-outline floorplanning does not impair scalability. However, as the
algorithm cannot ensure the legalizability of the subproblems it generates
by min-cut partitioning, it cannot prevent the possibility of a long
backtracking sequence or a failure, especially on difficult low-whitespace
instances.

3.4 Timing-Driven Placement
Timing-driven placement algorithms can be classified into two major
categories: (1) path-based and (2) net-based methods. The path-based
algorithms try to control critical path delays directly, and the net-based
methods transfer the timing constraint of each path into the weight of each
net.

3.4.1 Path-based algorithms

Typical methods in this category consist of two steps: (1) formulate the
problem as a linear or non-linear programming problem by introducing
auxiliary variables [50,58,99], and (2) minimize the length of a set of critical
paths [100]. All path-based algorithms share the advantage of a more
accurate control over the timing of the critical paths. However, they usually
require substantial computation resources due to the exponential number of
paths that need simultaneous optimization.

3.4.2 Net-based algorithms

In net-based algorithms, timing constraints are first translated into net
weights [12,40] or delay budgets [89,94,107,112]. Net weights are used
to distinguish timing-critical nets (assigned with larger weights) from
non-critical ones (assigned with smaller weights). The weakness of this
approach is that the net weights alone cannot control the placement
results well. The goal of delay budgeting is to assign the allowable delays
or constraints on individual nets such that the target timing can be met if
all the constraints are satisfied. In practice, due to the intractability of
placement problems and the way the constraints are assigned, it is
possible that a placer might not find a feasible solution which satisfies all
the constraints. It is often the case that some nets are assigned
unnecessarily large budgets while others’ budgets may be slightly
changed. The reason is that initially the delay-budgeting process lacks a

Physical Design for System-on-a-Chip 359

clear picture of the final placement. Therefore, it often cannot budget
delays accurately on individual nets.

3.5 Conclusion
The traditional placement problem seeks to minimize wirelength under the
constraint that cells/macros do not overlap with each other. We have
introduced three types of the most popular techniques used in the
state-of-the-art placers: (1) the partitioning based approach, (2) the
simulated annealing based approach, and (3) the analytical approach. The
partitioning based approach has great scalability for large-scale designs
and is easier for cell density control. However, if the chip utilization rate is
low (i.e., large deadspace), a partitioning-based placer might not minimize
the wirelength well; in contrast, the analytical approach is more suitable
for the instances with low utilization rate since it aims to compute the best
cell locations first. The simulated annealing based approach can obtain
high-quality solutions for manageable problem sizes, but it may be
prohibitively time-consuming for current simulated annealing based
placers to work on very large-scale designs.

In SOC designs, large-scale mixed macro and standard-cell placement
and timing-driven placement are two major challenges. Many mixed-size
placement algorithms are reported in the literature recently, and they can be
classified into three categories: The first category places macros and
standard cells simultaneously, such as APlace [66], Feng Shui [70],
mPG-MS [16], mPL [15], and UPlace [108]. The second category combines
floorplanning and placement techniques, such as Capo [2]. The third
category works in two stages: first place the macros and then the standard
cells, such as the algorithm presented in [4]. With the dramatic increase in
the design complexity, more effective large-scale mixed-size placement
algorithms are desirable.

For timing-driven placement, existing algorithms can be classified into
two major categories of the path-based and the net-based methods. The
path-based algorithms try to control critical path delays directly, and the
net-based methods transfer the timing constraint of each path into the weight
of each net. The net-based algorithm has much less complexity than the
path-based one. To effectively weight each net, we must consider two
important issues: how many paths share this net and the criticality of it.
Existing algorithms such as the PATH algorithm presented in [73] can
consider these two issues, but need to use Static Timing Analysis (STA) to
evaluate the net criticality. It is time-consuming and cannot handle
large-scale designs efficiently. Hence, it is desirable to develop more
efficient algorithms to evaluate the criticality of each net without STA.

360 Chang, Chen and Chen

4. ROUTING

4.1 Introduction
The continuous increasing SOC design complexity imposes severe
challenges for modern router design. As pointed out in [29], a 2.5 ×
2.5 2cm chip in the 70-nm technology may have over 360,000 horizontal
and vertical routing tracks. In addition, the 90-nm technology node has design
rules in the high hundreds to low thousands, whereas the forthcoming 65-nm
node may have several thousand design rules. To tackle the challenges, the
routing frameworks are evolving from the flat framework to the hierarchical
and multilevel frameworks. We detail the three routing frameworks in the
following.

4.2 Flat Routing Framework
Routing is typically a very complex problem. In order to make it manageable,
a traditional routing system usually uses the two-stage flat framework of
global routing followed by detailed routing. Global routing first partitions
the entire routing region into tiles (or channels) and decides tile-to-tile paths
for all nets while attempting to optimize some specified objective functions
(e.g., the total wirelength and the critical timing constraints). Then, guided
by the results of global routing, detailed routing determines actual tracks and
vias for all nets according to the design rules.

Many routing algorithms adopt this two-stage flat framework. These
algorithms can be classified into sequential and concurrent approaches.

4.2.1 Sequential approach

Perhaps the most straightforward strategy for routing is to select a specific
order and then to route nets sequentially in that order. The main advantage of
this approach is that the congestion information for previously routed nets
can be taken into consideration while routing a given net. The drawback of
sequential approach is that the quality of the routing solution greatly depends
on the order, and it is hard to find a good net ordering. In [1], Abel has
concluded that there is no single net ordering technique that performs better
than any other ordering method in all routing problems. Since the net
ordering problem may cause unroutable nets, a rip-up/reroute procedure is
often used to refine the solution.

One basic subproblem in sequential routing is to find a path connecting
two pins in the presence of wiring blockages. Many algorithms have been

Physical Design for System-on-a-Chip 361

proposed for this subproblem, and these algorithms can be classified into
maze-searching and line-searching approaches.

A. Maze searching

Lee [75] proposed the first maze-searching algorithm, which adopts a
two-phase approach of wave propagation followed by retrace. In the wave
propagation phase, starting from the source vertex S , the accumulated
length from the source to each vertex is labelled one by one according to the
wavefront until the target vertex T is reached. The shortest length path is
then traced back from T to S in the retrace phase. Figure 37 illustrates the
process of Lee’s maze-search algorithm. The Lee’s algorithm guarantees to
find a connection between two terminals if it does exist and the connection is
the shortest path. However, in practice, the maze-searching algorithm is slow
and has large memory requirements; therefore, it cannot be applied to large
designs directly.

Many efforts have attempted to improve its speed and memory usage.
Akers [6] proposed a coding sequence technique to reduce memory
requirements. Instead of wavefront numbers, Hadlock [49] used detour
numbers for wave labelling to substantially reduce the search space and
running time. Soukup [98] combined breadth-first search and depth-first
search approaches to the wave propagation; with this approach, the
maze-searching algorithm can speed up 10–50 times than Lee’s algorithm,
but the disadvantage is that it does not guarantee to find the shortest path.
Some techniques such as starting point selection, double fan-out, and

Figure 37. Lee’s maze-search algorithm. (a) Wave propagation. (b) Retrace

362 Chang, Chen and Chen

framing are proposed to reduce the search space of wave propagation and
therefore to speed up the running time considerably [92].

Although there exists some disadvantages in this maze-search method,
the maze-search approach still plays an important role and is usually
incorporated into other existing routing algorithms. For example, Cong and
Madden [33] integrated maze routing and the iterative deletion technique to
develop a performance-driven multilayer area router for printed circuit board
(PCB) and multi-chip block (MCM) designs.

B. Line searching

As mentioned earlier, the major drawbacks of the maze-searching
algorithm are the high amount of memory required and long running time.
The line-search algorithm overcomes these drawbacks by using line
segments to represent the routing space and paths.

Mikami and Tabuchi [86] proposed the first line-search algorithm. As
opposed to the maze-searching algorithm, which mainly proceeds in a
breadth-first manner, the line-searching algorithm performs a depth-first
search. The line-searching algorithm initially sets the source S and the
target T as base points, and then generates four (two horizontal and two
vertical) line segments passing through these base points. These line
segments are extended until they hit the design boundary or obstacles.
Then, the intersections of these line segments are iteratively set as new
base points, and four new line segments are generated for these new base
points. This process repeats until a segment generated from S intersects a
segment generated from T , and a connection can be found by tracing from

Figure 38. Line-searching algorithms. (a) Mikami-Tabuchi’s algorithm. (b) Hightower’s

algorithm. The crossing points denote the base points, and the numbers denote the sequence
of the search process

Physical Design for System-on-a-Chip 363

this intersection point to both S and .T Figure 38(a) gives an example of
the Mikami-Tabuchi’s line-searching algorithm. Like Lee’s maze-searching
algorithm, Mikami-Tabuchi’s line-searching algorithm also guarantees to
find a path if one exists, but it may not always be the shortest. The
line-searching technique significantly reduces both memory requirements
and execution times.

Later, Hightower [52] proposed another line-searching algorithm, which
is similar to Mikami-Tabuchi’s algorithm. The difference is that Hightower’s
algorithm only considers those line segments that are extendable beyond
obstacles, and each line segment has at most two base points. Figure 38(b)
illustrates Hightower’s line-searching algorithm. Because fewer line
segments are considered, Hightower’s algorithm has more dramatic memory
saving than Mikami-Tabuchi’s algorithm. However, Hightower’s algorithm
might fail to find a path even if one exists. To remedy the deficiencies, it
needs backtracking procedures to choose the right base points, and therefore,
the running time does not improve very much more than Lee’s
maze-searching algorithm in practice.

4.2.2 Concurrent approach

The major drawback of the sequential approach is that it suffers from the
net-ordering problem. Under any net ordering, it is more difficult to route
the nets that are considered later because they are subject to more
blockages. In addition, if the sequential routing fails to find a feasible
solution, it is not clear whether this is because of no feasible solution
existing or because of a bad selection of net order. Moreover, when the
sequential routing does find a feasible solution, we do not know whether or
not this solution is optimal, or how far it is from the optimal solution.
These questions may be answered if we solve the routing problem with the
concurrent approach.

One common concurrent approach is to formulate global routing as a 0-1
integer linear programming (0-1 ILP) problem. The layout is first modeled
as a routing graph (),G V E, where each node represents a tile and each
edge denotes the boundary between two adjacent tiles. Each edge e E∈ is
assigned a capacity, denoted by ,ec which represents the number of tracks
belonging to that boundary. Given a net, all of its possible routing patterns
can be enumerated. Let the variable {0 1}i jx , ∈ , indicate if the routing

pattern i jR , is selected from the set of routing patterns iR of net iN .

Consequently, for a routing graph ()G V E, with netlist N , the
congestion-driven global routing can be formulated as a 0-1 ILP problem

364 Chang, Chen and Chen

as follows:

ˆMinimize
Subject to 1

{0 1}
ˆ

i j i

i j

i j i
R R

i j i i j i

i j e
i j e R

x N N

x N N R R

x c e E

λ

λ

,

,

,
∈

, ,

,
, : ∈

= , ∀ ∈

= , , ∀ ∈ ,∀ ∈

≤ , ∀ ∈

∑

∑

 (24)

The first and the second constraints require that only one routing pattern can
be chosen for each net, and the third constraint with the objective together
ensure to minimize the maximum congestion. If a solution of ˆ 1λ ≤ exists,
an optimal global routing solution (the maximum congestion is minimized)
can be achieved.

Because the 0-1 ILP is NP-complete, the high time complexity greatly
limits the feasible problem size. An alternative approach to this problem is to
first solve the continuous linear programming (LP) relaxation, obtained by
replacing the second constraint with [0 1]i jx , = , , because LP problems can
be solved in polynomial time. Then, the fractional solution obtained may be
transformed to integer solutions through rounding techniques such as
randomized rounding [91]. However, this approximation would inevitably
lose the optimality.

In practice, the 0-1 ILP concurrent routing technique is often
embedded into a larger overall global routing strategy with a
divide-and-conquer manner, such as solving a subproblem, where the
complexity of computing the optimal solution is manageable.

4.3 Hierarchical Routing Framework
The major problem of the flat frameworks lies in their scalability for handling
larger designs. To cope with the increasing complexity, researchers proposed
to use hierarchical frameworks to handle the problem. The hierarchical routing
frameworks use systematic divide-and-conquer approach by transforming a
large and complicated routing problem into a series smaller and simpler
subproblems and then proceed in a top-down, bottom-up, or hybrid manner.

4.3.1 Top-down hierarchical approach

Burstein and Pelavin [11] proposed the first prominent top-down
hierarchical global routing framework. They recursively divide the routing

Physical Design for System-on-a-Chip 365

regions into successively smaller sub-regions, named super cells, and nets at
each hierarchical level are routed sequentially or concurrently and are
refined in the subsequent levels. An example of global routing by the
top-down hierarchical approach is illustrated in Figure 39. Figure 39(a) gives
a global-routing instance with a 3-pin net. Figure 39(b) depicts the process
of top-down hierarchical global routing, in which the routing region is
recursively bisected into smaller super cells, and at each level, the net is
routed in terms of these super cells at that level. This process is performed in
a top-down manner until the super cells reduce to the actual global routing
cells.

Figure 39. An example global routing using the hierarchical top-down approach. (a) A

global routing instance with a 3-pin net. (b) The level-by-level top-down hierarchical global
routing

Marek-Sadowska [84] proposed another top-down hierarchical
framework based on a bisection and the linear assignment technique.
When a super cell is bisected by a cut line c , any net n that must cross
c is then partitioned into two subnets 1n and 2n by inserting a pseudo
pin on c , such that if n crosses c through this pseudo pin, no capacity
overflow would occur and the wirelength is minimized. Then, the subnets

1n and 2n can be solved independently in the subsequent levels. This
bisection and insertion process is performed recursively in the subregions
until the smallest subregions is manageable for global routing. In [84], the
problem of finding a pseudo pin for each crossing net is formulated and
solved as a linear assignment problem. For the global-routing instance in
Figure 39(a), Figure 40 shows the bisection and pseudo-pin insertion

Figure 40. An example of top-down hierarchical global routing by the bisection and

pseudo-pin insertion process. The dots represent the inserted pseudo pins

366 Chang, Chen and Chen

process at each hierarchical level. Recently, Chang et al. [19] also applied
the linear assignment to develop a hierarchical, concurrent global and
detailed router for field programmable gate arrays (FPGAs).

An advantage of hierarchical top-down approach is that the higher-level
decisions are used to guide the solution at lower levels, thus reducing the
net-ordering problem in sequential routing.

4.3.2 Bottom-up hierarchical approach

The first bottom-up hierarchical global routing method is described by
Marek-Sadowska [83]. Initially, the routing region is partitioned into an
array of 2 2× super cells. At each hierarchical level, the global routing is
restrained within each super cell individually. When the routing at the
current level is finished, every four super cells are merged to form a new
larger super cell at the next higher level. This process continues until the top
level containing only one 2 2× array is reached. Figure 41 illustrates this
bottom-up approach. Figure 41(a) gives a global-routing instance with a
7-pin net. Figure 41(b) depicts the process of bottom-up hierarchical global
routing, in which the solid rectangles represent the super cells, and the dots
denote the merging points where two routing subsolutions of the previous
level are merged together. In [57], Hu and Shing formulated the problem of
finding merging points as a linear programming problem.

Figure 41. An example global routing using the bottom-up hierarchical approach. (a) A

global routing instance with a 7-pin net. (b) The level-by-level bottom-up hierarchical global
routing. The solid rectangles represent super cells, and the dots denote merging points

4.3.3 Hybrid hierarchical approach

The deficiency in the top-down and bottom-up hierarchical approaches is
that the routing decision made at one hierarchical level may be suboptimal
for the subsequent levels. In order to alleviate this problem, Lin et al. [80]
proposed the first hybrid hierarchical approach that combines the bounded

Physical Design for System-on-a-Chip 367

maze-searching algorithm with both top-down and bottom-up hierarchical
methods into a unified routing framework.

Their algorithm consists of three phases: (1) neighboring propagation,
(2) preference partition, and (3) bounded routing. Phase 1 performs
bounded maze-searching by propagating W circles of waves out of each
terminal, where W is a user-defined parameter. If the connection is not
found, phase 2 recursively maps the terminal and blockages onto the
adjacent upper level (Figure 42 (a)) and calls the bounded maze-search
algorithm until a path is found. Then, the connected path is mapped back
to the lower level to form the preferred region (Figure 42 (b)). Phase 3
performs the routing by taking the preference information into
consideration (Figure 42 (c)). By means of a parameter-controlled
technique, their hybrid routing demonstrates a fast speed comparable to a
hierarchical router and produces routing solutions with quality similar to
a maze router.

Figure 42. An example global routing using the hybrid hierarchical approach. (a) Mapping

pins and blockages up one level. (b) Making connection on the upper-level and mapping
down the preferred region. (c) Performing the routing within the preferred region

Later on, Hayashi and Tsukiyama [51] proposed another hybrid

hierarchical global routing algorithm. The flow of their algorithm consists of
two loops for the hierarchical levels, with a top-down hierarchical inner loop
embedded in a bottom-up hierarchical outer loop. Specifically, the global
routing mainly proceeds in a bottom-up manner, but an additional top-down
refinement procedure is applied when an initial routing at each hierarchial
level is obtained.

Compared with pure top-down or bottom-up hierarchical routing, the
hybrid hierarchial approach has more information to generate better routing
solutions.

4.4 Multilevel Routing Framework
Although the hierarchical approach can scale to larger designs, it has the
drawbacks that the interactions among different routing subregions are

368 Chang, Chen and Chen

lacking and the routing decision at a level is irreversible (i.e., cannot be
refined at later stages), thus limiting the solution quality. To remedy the
deficiencies, researchers have proposed various multilevel frameworks to
handle large-scale routing problems. In this section, we introduce two
state-of-the-art multilevel routing frameworks: (1) the Λ -shaped multilevel
framework, and (2) the V-shaped multilevel framework.

4.4.1 Multilevel routing model

Both multilevel routing frameworks need to model the routing resource as a
multilevel routing graph. At beginning, the routing region is partitioned into
an array of rectangular subregions, each of which may accommodate tens of
routing tracks in each dimension (see Figure 43). These subregions are
usually called global cells (GCs). A node in the routing graph represents a
GC in the chip, whereas an edge denotes the boundary between two
adjacent GCs . Each edge is assigned a capacity according to the physical
area or the size of a GC . This routing graph is called multilevel routing
graph of level 0, denoted by 0G , where subscript represents the level.

Figure 43. The multilevel routing graph

The multilevel routing algorithm consists of two stages: bottom-up

coarsening, and top-down uncoarsening. The coarsening stage is a
bottom-up approach that iteratively groups a set of GCs in the multilevel
routing graph. This process starts from the finest level (level 0) to the
coarsest level; at each level k , four adjacent kGC of kG are merged

into a larger 1kGC + of 1kG + and at the same time perform resource
estimation for use at the 1k + level. Coarsening continues until the
number of GCs at a level is below a threshold. In contrast, the coarsening
stage iteratively ungroups a set of previously clustered GCs in a
top-down manner. It proceeds from the coarsest level to the finest level; at
each level k , a kGC are decomposed into four smaller 1kGC + .

Physical Design for System-on-a-Chip 369

Uncoarsening continues until the finest level is reached. Figure 44 depicts
an example multilevel framework consisting of a coarsening stage
followed by an uncoarsening stage.

Figure 44. The Λ -shaped multilevel routing framework

4.4.2 Λ -Shaped multilevel routing framework

The Λ -shaped multilevel routing framework consists of bottom-up
coarsening followed by top-down uncoarsening. Cong et al. [30,35]
proposed the first Λ -shaped multilevel approach for full-chip
routability-driven global routing. Their framework starts by recursively
coarsening global cells, and an estimation of routing resources is computed
at each level. When the coarsening is finished, a multicommodity flow
algorithm is used to obtain an initial global routing solution. Then, the
uncoarsening stage performs a modified maze-searching algorithm to further
improve the routing solution level by level. Their experiments show better
routing quality and running times than the traditional flat and hierarchical
approaches.

Later, Lin and Chang [18,79] proposed an enhanced full-chip Λ -shaped
multilevel global and detailed routing system considering both routability
and performance, and their routing system show the best routability among
previous works. Figure 44 illustrates their framework.

Given a netlist, they first run the minimum spanning tree (MST)
algorithm to construct the topology for each net, and then decompose each
net into two-pin connections, with each connection corresponding to an edge
of the minimum spanning tree. At each level k during the coarsening stage,
they first perform global routing for the local two-pin connections (those
connections that entirely sit inside a kGC), and then the detailed router is
used to determine the exact wiring. The global routing is based on the
approach used for pattern routing [69]. Let the multilevel routing graph of

370 Chang, Chen and Chen

level 0 be 0 0 0()G V E= , and the global routing result for a local
connection c be 0{ | is the edge chosen for routing}eR e E e= ∈ . For

the congestion control, the cost function 0Eα : →ℜ is applied to guide
the routing:

 ()

e

e e
e R

R cα
∈

= ,∑ (25)

where ec is the congestion of edge e and is defined by

 ()1 2 e ep d

ec −= / ,

where ep and ed are the capacity and density associated with e ,
respectively. By dynamic density, pattern routing uses an L-shaped (1-bend)
or Z-shaped (2-bend) route to make the connection, which gives the
shortest-path length between two points. Therefore, the wirelength is
minimum, and thus the wirelength is not included in the cost function at this
stage. This cost function can guide the global router to select a path with
smaller maximum congestion.

After the global routing is completed, they apply the simultaneous
pathlength and via minimization (SPVM) algorithm to perform detailed
maze routing to find a shortest path with the minimum number of bends/vias,
if such a path exists. When the global and detailed routing are performed at
level ,k four adjacent kGC are merged into a larger 1kGC + and at the
same time resource estimation is performed for use at the next level 1.k +
Since the global routing, detailed routing, and resource estimation are
integrated together at each level, the routing resource estimation is more
accurate than [30,35], thus facilitating the solution refinement (e.g., the
rip-up and reroute processes) at the uncoarsening stage.

Many works have been proposed to deal with different routing objectives
based on this multilevel framework. Ho et al. [54] developed a Λ -shaped
multilevel full-chip routing system with antenna avoidance, Chen et al. [23]
presented Λ -shaped multilevel full-chip gridless routing to consider optical
proximity correction (OPC) optimization, and Li et al. [77] applied the
Λ -shaped multilevel framework to full-chip routing for testability and yield
enhancement.

In [55,56], Ho et al. integrated an intermediate stage into the Λ -shaped
multilevel routing framework to develop a full-chip multilevel routing
system considering crosstalk optimization. The framework adopts a
three-stage technique of a bottom-up congestion-driven global pattern

Physical Design for System-on-a-Chip 371

routing stage, followed by an intermediate stage of layer/track assignment
for crosstalk optimization, and then followed by a top-down point-to-path
detailed routing stage. Figure 45 illustrates this framework. By performing
layer/track assignment at the intermediate stage, their routing system can
preserve more flexibility to allocate nets for crosstalk optimization. Later on,
Ho et al. [53] extended this multilevel framework to the routing problems on
the X-architecture.

Figure 45. The Λ -shaped multilevel routing framework with an intermediate stage

4.4.3 V-shaped multilevel routing framework

Recently, Chen et al. [24] proposed a new V-shaped multilevel framework
for large-scale full-chip gridless routing. Unlike the traditional Λ -shaped
routing framework, the V-shaped one consists of top-down uncoarsening
followed by bottom-up coarsening. The framework starts from the coarsest
regions and then processes down to the finest ones level by level; at each
level, it performs global and detailed routing and then estimates the routing
resource for the next level. Then, the bottom-up coarsening stage performs
global and detailed maze routing to reroute failed connections and refine the
solution level by level from the finest level to the coarsest one. Figure 46
illustrates the V-shaped multilevel routing framework.

Different from the previous frameworks, they employ a dynamic
congestion map to guide the global routing at all stages to alleviate the
net-ordering problem in sequential routing. At beginning, they initialize the
routing congestion information based on the pin distribution and the
global-path prediction of all nets, and then keep a congestion map that is
updated dynamically based on both the already-routed nets and the estimated

372 Chang, Chen and Chen

Figure 46. The V-shaped multilevel routing framework

unrouted nets. As routing proceeds, the congestion map is updated, and the
congestion information becomes more and more accurate. Therefore, the
better congestion control can be achieved throughout the whole routing
process.

For a two-pin connection ,c they use L- and Z-shaped pattern routes to
determine the number of possible global routes ,cn and evenly distribute

the wire density of the connection c , cw , among all possible global routes.
Therefore, the wire density of each possible global route equals c cw n/ . For
each possible global route, the wire density of the possible global route is
added to the edge density in the multilevel routing graph. After all two-pin
connections finish the process, an initial congestion map is obtained.
Figure 47 gives an example of global-path congestion prediction in the
congestion map. As shown in Figure 47 (a), the connection c has five
possible L- and Z-shaped pattern routes from source s to target t . The
number of routes passing through each global cell boundary is given in
Figure 47 (b), and the congestion estimation of c in the multilevel routing
graph is shown in Figure 47 (c). The experiments show that their router can

Figure 47. Global-path congestion prediction. (a) Two L-shaped and three Z-shaped pattern

routes from s to t . (b) The number of routes through each boundary. (c) The
pre-estimation congestion in the multilevel routing graph

Physical Design for System-on-a-Chip 373

obtain significantly smaller wirelength and critical path delay than the
previous works.

4.4.4 Summary of multilevel routing frameworks

It has been observed that the Λ -shaped multilevel framework can handle
local circuit effects (such as routability, congestion and via minimization)
better since it works in a bottom-up manner and deals with local routing
regions first (i.e., route shorter local nets and then longer global
nets) [69,18]. In contrast, the V-shaped multilevel framework is more
suitable for handling global electrical effects (such as crosstalk and
critical-path delay) since it works in a top-down manner and copes with
global routing regions first [24]. By performing layer/track assignment
after the global routing stage, the Λ -shaped multilevel framework with an
intermediate stage has more flexibilities to optimize the nanometer
electrical effects; however, it is harder to accurately estimate the routing
resource since the global routing and detailed routing are performed
separately. Table 3 compares the properties of these multilevel routing
frameworks.

Table 3. Comparison for multilevel routing frameworks

 Advantage Disadvantage
Λ -shaped multilevel

framework
More suitable to handle
local effects

Harder to handle global
effects

Λ -shaped multilevel
framework with an
intermediate stage

Flexible for addressing
nanometer electrical
effects

Harder to estimate
routing resource

V-shaped multilevel
framework

More suitable to handle
global effects

Harder to handle local
effects

5. METHODOLOGY SHIFT FOR SOC DESIGN

In addition to design algorithms and frameworks, design methodology is
crucial for tackling the design complexity and convergence problems which
are more stringent for modern SOC designs than ever. In the following, we
introduce two example design methodology shifts on timing closure and
power integrity arising from modern SOC designs for faster design
convergence. Specifically, we introduce the design methodology problems
of buffer planning for interconnect-driven floorplanning and floorplan and
power/ground network co-synthesis.

374 Chang, Chen and Chen

5.1 Buffer Planning for Interconnect-Driven
Floorplanning

5.1.1 Introduction

For deep submicron and nanometer VLSI designs, interconnection
dominates overall circuit performance. However, the conventional design
flow often deals with interconnection optimization at the routing or the
post-routing stage. When the interconnection complexity grows drastically,
it is often too late to perform aggressive interconnection optimization during
or after routing since most silicon and routing resources are occupied.
Therefore, it is desirable to optimize interconnection as early as possible.

Many techniques have been proposed for interconnection optimization.
Some examples are wiring topology construction, buffer/repeater insertion
and sizing, wire sizing and spacing [31]. Here, a buffer is composed of two
inverters while a repeater is referred to as a buffer or an inverter. To simplify
the discussions, we shall use buffer and repeater interchangeably throughout
this chapter. Among these interconnection optimization techniques, buffer
insertion is generally considered the most effective and popular technique to
reduce interconnection delay, especially for global signals [7]. As an
example, over 85% global nets in Intel Itanium microprocessor are
buffered to reshape signals [85]. Inserting buffers in a long interconnect can
break the long interconnection into shorter ones such that the overall delay
can be reduced. It has been shown that without buffer insertion, the
interconnection delay for a wire increases quadratically in terms of the wire
length, but it increases only linearly under proper buffer insertion [9,95]. For
example, it is shown in [31] that the delay of a 2cm global interconnection
can be reduced in a factor of 7× by optimal buffer insertion. As the
intrinsic delay of a buffer becomes smaller and the chip dimension gets
larger, it is expected that a large number of buffers will be inserted for
modern high-performance VLSI designs (e.g., about 800K for 50nm
technology [32]). With so many buffers being added, the buffer positions
should be planned as early as possible to ensure timing closure and design
convergence. In particular, current VLSI designs do not allow buffers to be
inserted inside a circuit block since they consume silicon resource and
require connections to the power/ground network. Consequently, buffers are
placed in channels and dead spaces of current floorplan and are often
clustered to form buffer blocks between existing circuit blocks of the
floorplan, which inevitably increases the chip area [32]. It is thus desirable to
carefully plan for the buffers during/after floorplanning to minimize the area
overhead and facilitate routing, which is referred to as the buffer block
planning.

Physical Design for System-on-a-Chip 375

However, the existence of buffer blocks imposes more design constraints.
Since buffers connect global nets, the routing regions where buffer blocks
are located might be congested. Further, buffers might be placed in poor
locations since buffers are clustered into blocks and thus the better location
for a buffer is forbidden. To remedy this deficiency, distributing buffers
more uniformly in a chip naturally spreads out global nets, and thus looks
promising in coping with the aforementioned problems with wire congestion
and buffer blockages. In contrast to the buffer block planning methodology,
as a result, Alpert et al. propose the buffer site methodology that allocates a
buffering resource within a block by inserting a buffer site which can
accommodate buffers (or other logic gates if not used for buffering). For
buffer site planning, we shall plan for the buffers during/after floorplanning
such that the given buffer sites can accommodate buffers and the routing
timing and congestion constraints are satisfied.

To determine the optimal location for buffer insertion, we shall first consider
the feasible region (FR) for a buffer, which is referred to as the maximum region
where the buffer can be placed to satisfy the timing constraint. Figures 48(a) and
(b) show respective FR’s for inserting one and multiple buffers into a net
between a source and a sink, where the FR’s are shaded.

The concepts of the feasible region come in two forms. Cong, Kong,
and Pan in [32] first define the “feasible region” for buffer insertion to

Figure 48. Feasible regions for buffer insertion. (a) Single-buffer insertion.

(b) Multiple-buffer insertion

376 Chang, Chen and Chen

be the region where a buffer can be placed in order to satisfy a target
timing constraint, assuming that all the remaining buffers are optimally
placed. In contrast, Sarkar, Sundararaman, and Koh [93] introduce the idea
of independent feasible region (IFR) for buffer insertion, which is defined as
the region where it can be placed such that the timing constraint of the net is
satisfied, assuming that the other buffers are also located within their
respective independent feasible regions.

Before presenting the analytical formulae for computing the feasible
regions, we shall first introduce the notation and delay model that will be used
throughout this chapter. Each driver/buffer is modeled as a switch-level RC
circuit [31], and each wire is modeled as a π -model. See Figure 49 for the
buffer and wire models. We then use the Elmore delay model [43] for delay
computation. The notation for the physical parameters of the interconnect and
buffer is listed in Table 4.

Figure 49. Buffer and wire model. (a) Switch-level buffer model. (b) Wire model

 Table 4. Parameters of the interconnection and buffer

Parameter Description
r wire resistance per unit length
c wire capacitance per unit length

bT intrinsic buffer delay

bC buffer input capacitance

bR buffer output resistance

Physical Design for System-on-a-Chip 377

Given a wire segment of length l with driver output resistance R and
sink capacitance C , the Elmore delay of this segment is given by

 2() ()
2
rcD R C l l Rc rC l RC⎛ ⎞, , = + + + .⎜ ⎟

⎝ ⎠
 (26)

Using the above expression, the Elmore delay of a single-source,

single-sink net (i.e., two pin net) N of length L with n buffers can be
computed by

1 2()nD x x x L, , , =N

1
1 11

() () ()n
d b b s n b b i i bi

D R C x D R C L x D R C x x nT−

+=
, , + , , − + , , − + ,∑

where dR is the driver resistance, sC is the sink capacitance, and ix is
the location of the i -th buffer. The optimal locations of the n buffers for
delay minimization of the net as shown in [7] are given by

 å å å(1) , {1 2 }i L Lx i y x i n= − + ∈ , ,.... , (27)
where

 å () ()1 ()
1

b d s b
L

n R R C Cx L
n r c

− −
= + + ,

+
 (28)

 å () ()1 ()
1

b d s b
L

R R C Cy L
n r c

− −
= − + .

+
 (29)

We denote the optimal delay for the net N , of length L , with n

buffers by

 å å å

1 2() ()opt nD n L D x x x L, = , ,......, , .N N

In the following subsection, we first discuss the computation of the

feasible region and the independent feasible region on a one-dimensional
line segment, and then extend the idea to the two-dimensional chip plane.

5.1.2 Feasible regions

For n buffers inserted in a two-pin net N as shown in Figure 48(b), [32]
shows that its feasible region can be computed by the following theorem:

378 Chang, Chen and Chen

Theorem 3 For a two-pin net N of the length L and with n buffers
inserted and a given timing constraint tgtDN , the feasible region for the i -th

buffer ()i n≤ is []i i min i maxx x x, ,∈ , with

 i minx , = { }2
2 2 1 3

1

4
2max 0 K K K K

K
− −, ,

 i maxx , = { }2
2 2 1 3

1

4
2min K K K K

KL − +, ,

where

1K = (1)
2 (1)

n rc
i n i
+
− + ,

2K = () ()
1

b d s bR R c C C r rcL
i n i
− − +

− ++ ,

3K = ()()
1(1) ((1)n i rL

b tgt d b b b bn inT D R i R C R n C−
− +− + + − + + −N

2 22 (1) () () ()

2(1) 2 2(1)) b d b si c R R n i r C CrcL
s sn i ir n i cC cL rLC − − − −

− + − ++ + + + − − .

We denote the width of the feasible region for a given buffer by .FRW

An analytical expression for FRW is given in [32]. The following theorem
presents an alternative but equivalent analytical expression.

Theorem 4 For ()tgt optD D n L≥ ,N N , the width of the feasible region for the

i -th buffer (i n≤) of the net N is

2(())(1)()

2
(1)

tgt opt
FR

D D n L n i i
W

rc n
− , − +

= ⋅ .
+

N N

5.1.3 Independent feasible regions

As opposed to the definition of feasible region, the independent feasible
region of a buffer is the region where it can be placed while meeting the
timing specifications of the net, assuming that the other buffers are placed
within their respective independent feasible regions.

Formally, we define the independent feasible region (IFR) for the i -th
buffer of a net N as

 å å(2 2) (0)i i IFR i IFRIFR x W x W L= − / , + / ∩ , ,

Physical Design for System-on-a-Chip 379

such that ∀ 1 2()i nx x x x, ,, ,..... 1 2 ,nIFR IFR IFR∈ × × ...×

1 2()n tgtD x x x L D, ,, , ≤N N . Here, IFRW and tgtDN respectively denote the

width of the independent feasible region iIFR and the target delay
associated with the net.

Note that the final placement of a buffer in its IFR does not depend on
the placement of the other buffers, so long as they are placed within their
respective IFRs. To allocate an equal degree of freedom to each buffer in the
net, we choose the IFR intervals to be of equal width, which is given by the
following theorem.

Theorem 5 For ()tgt optD D n L≥ ,N N , the width of the independent feasible

region for the i -th buffer (i n≤) of the net N is

()

2
(2 1)

tgt opt
IFR

D D n L
W

rc n
− ,

= ⋅ .
−

N N

5.1.4 Two-dimensional feasible region

In the preceding discussions, we limit buffer insertion to occur along a
one-dimensional line. Implicit in the discussions was the assumption that the
routing from source to sink is specified by some global router. For buffer
planning during floorplanning, however, no routing information is available.
We typically assume that each net would be routed with a shortest path
within the bounding box containing the two terminals. Therefore, we have to
compute two-dimensional regions in which the buffers can be placed. The
two-dimensional feasible region (or independent feasible region) of a buffer
is defined as the union of the one-dimensional FRs (or IFRs) of that buffer
on all monotonic Manhattan routes between source and sink. Therefore, 2-D
FRs and 2-D IFRs are convex octilinear polygons with horizontal, vertical,
and 1± -slope boundaries (see Figure 50).

The feasible region of a buffer may be reduced by circuit blocks.
Moreover, 2-D IFRs of buffers belonging to the same net are not completely
independent of each other. As the widths and locations of a 2-D IFR are
valid only under the assumption that a monotonic Manhattan route exists
between the source and the sink, the assignments of buffers to locations
within their respective 2-D IFRs should be made such that they constitute
a monotone path from source to sink. In Figure 50, for example, the buffer
assignments, which form a non-monotonic sequence from the source to the
sink, violate the monotonicity constraint even though the buffers are within

380 Chang, Chen and Chen

Figure 50. 2-D feasible regions and their implications on buffer assignment

their respective 2-D IFRs. Therefore, whenever the 2-D IFR of a buffer is
modified, the 2-D IFRs for all other buffers in the net have to be updated if
necessary.

5.1.5 Buffer block planning

The basic buffer block planning problem can be stated as follows:

• Input: a given floorplan (or a set of circuit blocks) and a set of nets
with feasible regions for buffer insertion to satisfy the given
constraints (e.g., timing)

• Output: the number of buffers blocks, the size and location of each
buffer block, and the nets that use some buffer in this buffer block to
optimize the timing.

• Objective: determine the size of each buffer block and its optimal
location such that the overall chip area and the number of buffer
blocks after buffer insertion are minimized and the percentage of the
satisfied timing constraints is maximized.

Buffer blocks can be planned during post-floorplanning [32,30,39,93,
103] or floorplanning [26,59,60,85]. Planning buffer blocks during
post-floorplanning is more efficient, but is often limited by the quality of a
given floorplan since the location and size of the space for buffer insertion is
fixed. Further, the dead spaces for buffer blocks are typically treated as
unwanted cost during floorplanning, so they are often avoided or minimized.
As a result, the size and location of a buffer block may not be suitable for
later buffer insertion. Therefore, researchers also try to integrate buffer block
planning into floorplanning to fully utilize useful dead spaces for
performance optimization. This approach typically enjoys higher design
flexibility, but inevitably incurs higher time complexity.

Physical Design for System-on-a-Chip 381

Cong et al. first consider buffer block planning during post-floor-
planning in [32]; they derive feasible region formulae to determine where
to insert buffers to meet timing constraints and propose a greedy
algorithm to plan buffer blocks in a slicing floorplan. Sarkar et al. also
consider routability and address the concept of independent feasible
regions in [93]. Moreover, [32,93] expand channels to provide more
buffers if necessary. Based on a network-flow formulation, Tang and
Wong in [103] optimally plan as many buffers into buffer blocks as
possible for all nets, each with at most one buffer. Given an existing
buffer block plan, Dragan et al. in [39] perform buffering of global nets.
They route the nets using available buffer blocks, such that required
upper and lower bounds on buffer intervals and the wirelength upper
bounds per connection are satisfied.

We describe the generic approach for buffer block planning at
post-floorplanning as presented in [32]. First, it constructs a directed
horizontal and a directed vertical constraint graphs for a given floorplan,
denoted by HG and ,VG respectively. Each vertex v in HG corresponds
to a vertical routing channel, and an edge 1 2()e v v= , represents a circuit
block whose respective left and right boundaries are adjacent to the routing
channels 1v and 2v . The weight of a vertex ,v (),w v represents the
corresponding channel width while the weight of an edge e , ()w e ,
represents the corresponding block width. The graph VG can be constructed

similarly. Applying a longest-path algorithm on HG and ,VG we can
obtain the respective width cW and height cH of the chip.

Then, we divide the dead spaces and routing channels into tiles to
facilitate buffer block planning. For each tile, we compute its area slack with
respect to the longest paths in HG and VG . For those dead spaces and
routing channels not on the critical paths in the constraint graph HG / VG ,
we will have some positive area slacks in width/height. If there is still some
net that needs buffer(s) to meet the timing constraint, we will pick a best tile
for buffer insertion and then insert proper buffers into this tile. By a best tile,
we mean that the tile with a largest positive area slack. If there is no tile with
positive area slack, then any buffer insertion will need to shift some circuit
block and thus increase the overall chip area. This shifting will make room
for other tiles, so we will have some new positive-slack tiles. We choose the
dead space or the routing channel that has the maximum buffer insertion
demand and pick one tile in it. For the selected tile, we insert desired buffers
into it. In case there is not sufficient space in the tile for buffer insertion, we
will expand the corresponding routing channel to make room for the buffers.
After the buffer insertion for the tile, we update the information of the

382 Chang, Chen and Chen

constraint graphs, feasible regions, and the chip dimension and repeat the
buffer insertion/clustering process until all buffers are placed.

More recently, researchers try to perform simultaneous buffer block
planning and floorplanning to fully utilize useful dead spaces for
performance optimization [26,59,60,85]. Jiang, et al. in [59,60] provides a
generic paradigm along this direction. The work presents an algorithm that
simultaneously considers floorplanning and buffer block planning. The
method adopts simulated annealing to refine a floorplan so that buffers can
be inserted more effectively. In each iteration, we construct a routing tree for
each net and calculate the longest path from the source to the sink in each
routing tree. Based on the aforementioned formulae presented in preceding
sections, we obtain the number of buffers needed for the longest path, the
optimal distance from the source terminal to each buffer, and the width of
independent feasible region. After allocating buffers for all nets, we make
buffer blocks as soft circuit blocks into the constraint graphs. These buffer
blocks may occupy dead spaces or be inserted into routing channels. After
all buffers for all nets are allocated, the area of each buffer block is
determined as the bounding area of inserted buffers. We then reshape the
floorplan by Lagrangian relaxation. Unlike the work for buffer block
planning after floorplanning that generates buffer blocks before buffer
assignment, in particular, this work generates buffer blocks after buffer
assignment, and thus the area of buffer blocks can properly be controlled,
especially for the buffer blocks in routing channels.

5.2 Floorplan and Power/Ground Network Co-Synthesis

5.2.1 Introduction

As technology advances, the metal width decreases while the global wire
length increases. This trend makes the resistance of the power wire increase
substantially. Further, the threshold voltage scales nonlinearly, raising the
ratio of the threshold voltage to the supply voltage and making the voltage
(IR) drop in the P/G network a serious challenge in modern SOC design [78].
Due to the IR-drop, supply voltage in logic may not be an ideal reference.
This effect may weaken the driving capability of logic gates, reduce circuit
performance, slow down slew rate (and thus increase power consumption),
and lower noise margin [111].

Figure 51(a) shows a chip floorplan of four blocks and the P/G network.
As shown in the figure, we refer to a pad feeding supply voltage into the
chip as a power pad, the power line enclosing the floorplan as a core ring, a
power line branching from a core ring into blocks inside as a power trunk, an
intersection of a vertical and a horizontal power lines a P/G node, and a pin

Physical Design for System-on-a-Chip 383

Figure 51. (a) An instance of floorplan and its P/G network structure. The worst-case
voltage at the P/G pins is about 26% of the supply voltage. (b) A floorplan with smaller

worst-case voltage drops. The worst-case voltage drop is about only 5%

in a block that absorbs current (connects to a core ring or a power trunk) as
an P/G pin. To ensure correct and reliable logic operation, we shall
minimize the IR drops from the power pad to the P/G pins in a P/G network.
Figure 51(a) shows an instance of voltage drop in the power supply line, in
which the voltage drops by almost 26% at the rightmost P/G pin. As [111]
pointed out that 5% IR drop in supply voltage may slow down circuit
performance by as much as 15% or more. Therefore, IR drop is a first-order
effect and can no longer be ignored during the design process, and it is
desired to consider the P/G network synthesis during early physical design
(e.g., floorplanning) for reliable circuit operation.

The problem of P/G network synthesis has been studied extensively in
the literature. An important problem of P/G network synthesis is to use the
minimum amount of wiring area for a P/G network under the power integrity
constraints such as IR drops and electromigration. There are two major tasks
for the synthesis: (1) P/G network topology determination to plan the wiring
topology of a P/G network [20] [97], etc. and (2) P/G wire sizing to meet the
current density and reliability constraints [28] [104].

As the design complexity increases dramatically, it is necessary to
handle the IR-drop problem earlier in the design cycle for better design
convergence. Most existing commercial tools deal with the IR-drop problem
at the post-layout stage when entire chip design is completed and detailed
layout and current information are known. It is, however, often very difficult
and computationally expensive to fix the P/G network synthesis at the
post-layout stage. Therefore, researchers started to consider the P/G network
analysis at an earlier design stage [37] [105] [111].

Dharchoudhury et al. proposed a design flow with different modes of
power grid analysis incorporated between stages of the design flow [37]. The
work shows that considering power integrity analysis at an earlier stage can
significantly improve design convergence. Yim, Bae, and Kyung in [111]
presented an early floorplan-based P/G network planning methodology.

384 Chang, Chen and Chen

Recently, Wu and Chang proposed a power integrity-driven design
methodology of performing P/G network analysis after floorplanning [105].

It is very reasonable that [37], [105], and [111] can significantly improve
design convergence. At the floorplanning stage, a prototype of the chip is
determined and the power consumption for each block and the positions for
blocks and P/G pins become available, making the P/G network analysis
feasible at this stage. Furthermore, it is intrinsically more flexible to fix any
power integrity problem at this stage than at the post-layout stage when most
block positions and wiring are fixed. However, there is a significant
difficulty in doing the early P/G network analysis: Traditional P/G network
analysis methods are often very computationally expensive and are thus not
feasible to be incorporated into the floorplanning design. To make the power
integrity-driven design flow feasible, we need a very efficient, yet
sufficiently accurate P/G network analysis method.

In this section, we introduce the method presented by Liu and Chang [82]
for floorplan and P/G network co-synthesis based on an efficient, yet
sufficiently accurate P/G network analysis scheme for the mesh P/G
structure and the efficient B*-tree floorplan representation [17]. We
introduce a P/G network aware method to reduce the floorplan solution
space and thus speed up the co-synthesis, and then integrate the co-synthesis
step into a commercial design flow to develop an effective power integrity
(IR-drop) driven design flow for faster design convergence.

5.2.2 Problem definition

The problem of floorplan and P/G network co-synthesis is formulated as
follows: Given a floorplan of m blocks, the number of power pads for the
whole chip and the power consumption for each block, the objective is to
obtain a feasible floorplan and simultaneously generate a corresponding P/G
network that satisfies the power constraints. Before presenting the power
integrity constraints, we introduce the notations for describing a P/G
network used in [105]: Let { }G N B= , be a P/G network with n nodes

{1,2, , }N n= … and b branches {1,2, , }B b= … . Each branch i in B
connects two nodes: 1i and 2i with current flowing from 1i to 2i . Let il

and iw be the length and width of branch i , respectively. Let r̂ be the

sheet resistivity (unit Ω per square), and iV (iI) be the voltage (current)

at node i . Then the resistance ir of branch i is
1 2

ˆ()i i i i i ir V V I rl w= − / = / .
At the early stage power analysis, we need a fast analysis for the P/G
network. For this reason, a sophisticated model for the P/G network is often
too time-consuming and thus infeasible for the co-synthesis. In this section,
we use the resistive model for P/G networks and the static current source
model. We consider the power integrity constraints as follows:

Physical Design for System-on-a-Chip 385

• The IR-drop constraints:
For every P/G pin ,i its corresponding voltage iV must satisfy the
following constraints:

i min kV V ,≥ for each power pin i of block ,k

i max kV V ,≤ for each ground pin i of block ,k

where ()min k max kV V, , is the minimum (maximum) voltage required

at the injection point of a P/G network for block k .
• The minimum width constraints:

The width of a P/G line must be greater than the minimum width
allowed in the given technology. The constraint is given by

1 2

ˆ i i
i i min

i i

rl Iw w
V V ,= ≥ ,

−
 (30)

where i minw , is the given constraint.

• The electromigration constraints:

1 2
ˆi i iV V rlσ| − |≤ (i.e., i iI w σ/ ≤), for each i B∈

where σ is a constant for a particular routing layer with a fixed
thickness.

5.2.3 The co-synthesis flow

In this section, we describe the floorplan and power/ground network
co-synthesis flow proposed by Liu and Chang [82], which is illustrated in
Figure 52. The netlist is the circuit generated in high-level synthesis. It
partitions the circuit into hard blocks (hard macros) and soft blocks (groups
of standard cells). The P/G network and floorplan co-synthesis generates a
P/G network and a floorplan that satisfy all power integrity constraints.

With a feasible floorplan, it performs placement and routing which
include detailed placement, P/G routing, clock tree synthesis, and detailed
routing. Finally, the final P/G network is analyzed, and simulation is
performed to check the correctness of the final design.

5.2.4 Floorplan and P/G network co-synthesis

In this section, we introduce the floorplan and P/G network co-synthesis
algorithm. The floorplanning algorithm adopts the B*-tree floorplan

386 Chang, Chen and Chen

Figure 52. The floorplan and power/ground network co-synthesis flow

representation [17] and uses simulated annealing (SA). The SA algorithm
requires a cost function to guide the optimization. To perform power
integrity driven floorplanning, it adds a penalty for violating the power
integrity constraints and the P/G mesh density cost in the cost function as
follows:

 2
pitch

AW A
D

α β γ ωΨ = + + Φ + , (31)

 0 1 1α β γ ω α β γ ω< , , , < , + + + = ,

where W is the wirelength, A is the area, Φ is the penalty function of
power integrity violations and pitchD is the pitch of the P/G mesh which will

be discussed in later sections, and ,α ,β ,γ and ω are weighting
parameters. The term 2

pitchA D/ is the density cost of the P/G mesh which
affects the routing resource. The cost function is calculated after packing a
B*-tree to obtain a corresponding floorplan. To obtain the penalty function of
power integrity violations, we first generate a P/G mesh for the floorplan and

Physical Design for System-on-a-Chip 387

then evaluate the P/G mesh. In the following sections, we discuss the P/G mesh
generation and the evaluation method.

A: P/G Mesh Generation

In order to evaluate the performance of the actual P/G network of a floorplan
at the floorplanning stage, it generates a conceptual P/G network for the
floorplan. We use the mesh structure for the P/G network, since it is widely
used in modern VLSI chips to reduce the IR-drop effects. By specifying the
pitch of the power lines, it can determine the dimension of the P/G mesh. A
uniform mesh can then be generated easily by evenly distributing the power
lines. Figure 53(a) shows a uniform mesh.

The pitch pitchD of the P/G mesh is determined during the SA process
and depends on the average value of the P/G network penalty function Φ .
We will detail the determination of pitchD later.

Figure 53. (a) A uniform P/G mesh. (b) A floorplan with a P/G mesh divided into regions

The complexity of the P/G mesh analysis mainly depends on the number

of nodes of the mesh. To reduce the complexity, it makes a reasonable
approximation by attaching all current sources to the intersection nodes of
the vertical and horizontal power lines. That is, every P/G pin is connected
to its nearest node with a power strap, and the length of the strap is the
Manhattan distance between the P/G pin and the node. For convenience, it
divides the floorplan into n regions, where n is the number of the nodes.
The divided floorplan is illustrated in Figure 53(b). The border line of two
regions is the center line between the two nodes such that the node is the
nearest one for any point in the region.

388 Chang, Chen and Chen

B: Macro Current Source Modelling

In [74], it is shown that the result of static P/G analysis can be an upper
bound for that of dynamic analysis by using the peak current. Therefore,
they consider static analysis using constant current sources with the
maximum current. We introduce how to estimate the maximum current
consumption of hard and soft blocks. For hard blocks, it connects a P/G pin
to the corresponding (center) node of the region where the pin is located, and
the pin absorbs the estimated maximum current consumed by the pin, which
is obtained by the pattern-based power simulation. At the floorplanning
stage, it does not have the exact placement of the standard cells in the soft
block. For soft blocks, therefore, its current model is based on the worst-case
scenario. It uses the maximum possible current function, ()maxI , to

determine the current assigned to the nodes. The definition of (),max rI A k,
the maximum possible current in the specified region of the soft block k
with size rA , is as follows:

()

() max ()
r

n

max r cS A k i S

I A k I i
,

∀ ∈

⎛ ⎞
, = ,⎜ ⎟

⎝ ⎠
∑ (32)

where ()rS A k, is the set of sets of standard cells in the soft block ,k such

that for each set (),n rS S A k∈ , ()
n

ri S
A i

∀ ∈∑ rA≤ (()rA i is the area of

the standard cell i) and ()cI i is the maximum estimated current drawn by

the cell i . The problem of solving ()maxI can be formulated as a 0-1
knapsack problem [36]: The area is the total weight that one can carry, the
area of a cell is the weight of an item, and the current drawn by the cell is the
value of the item. The goal is to take as valuable a load as possible while the
total weight of items does not exceed a given total weight constraint. Since the
0-1 knapsack problem is NP-complete [36], it is computationally expensive to
solve the problem exactly. Therefore, they resort to an approximation by
assuming that each standard cell can be divided freely. Then the maximum
possible current can be approximated efficiently in linear time using the
fractional knapsack algorithm [36]. As Figure 54 illustrates, for the soft block
k overlapping with the region ,n (())max ovI A n k k, , amount of current is

assigned to the node ,n where ()ovA n k, is the amount of the area k
overlapping with .n Taking the node n as an example, its region (region n)
contains two pins of the block A and three pins of the block .B Assume
that the gray area is equal to the total area of 10 cells. Thus, there are 10 cells

Physical Design for System-on-a-Chip 389

Figure 54. An example of the P/G analysis. The dashed lines denote the boundaries of the

regions, and the gray area denotes the overlap of the soft block k and the region .n Each
pin in the block A absorbs 0 3A. current and each pin in the block B absorbs 0 5A.

current. The soft block k contains 30 standard cells of the same size. The largest
current-consuming cell draws 30mA current, the second one draws 29mA current, and

so on. Therefore the smallest cell draws 1mA current

with from 30 mA to 21 mA current of the block k being attached to node

.n Therefore, the current source attached to the node n consumes
0 3 2 0 5 (0 03 0 021) 10 2 1 355A. × + . + . + . × / = . current.

Since the external voltage supply is typically connected to the ring, all
voltage sources are assigned to the nodes on the ring. Then, the number of
voltage supplies and the maximum current per supply node depend on the
power budget of the design.

C: P/G Networks Analysis

After the P/G network is generated, it analyzes the P/G mesh with the
floorplan. Traditional analysis for a complete and accurate P/G network is
very computationally expensive and unaffordable for integrating with
floorplanning. The objective for floorplan and P/G network co-synthesis is
to derive an efficient scheme for the P/G network analysis based on the
technology information available at the floorplanning stage. They apply
the resistive P/G network model [81] and use the maximum current drawn
by the blocks for static P/G network analysis. As the P/G mesh example
shown in Figure 55, the chip is composed of four blocks. The P/G wires
are modelled as resistors. A P/G pin in a hard block is modelled as a
current source.

390 Chang, Chen and Chen

Figure 55. A global power mesh and its equivalent circuit model

The static analysis of a P/G network is formulated as follows [81]:

 = ,Gx i (33)

where G is the conductance matrix for the resistor, x is the vector of node
voltages, and i is the vector of current loads. The dimensions of i and x are
equal to the number of nodes in the P/G network, and G is a sparse positive
definite matrix for a general resistor network.

They solve Equation (36) efficiently by using an iterative method for the
sparse matrix such as the preconditioned conjugated gradient method and/or
other Krylov subspace methods [47]. The time complexity of solving the
equation is ()O n , where n is the number of the nodes in the mesh. As
mentioned in the preceding section, we reduce the number of nodes by an
approximation presented in the preceding subsection. Thus the number n is
within a tractable range.

Once the voltage of each node is obtained, they estimate the voltage at each
P/G pin based on the voltage of the closest (connected) node and the distance
of the P/G pin. For a hard block, the voltage of a P/G pin is estimated by the
voltage of the closest node minus the largest possible voltage drop over the
strap connecting the node and the pin. For a P/G pin j and its corresponding
node i , the estimation is given by

 ˆ ˆmax ij ij
j i j h v

hstrap vstrap

Dx Dy
V V I r r

w w
⎛ ⎞

= − , ,⎜ ⎟⎜ ⎟
⎝ ⎠

 (34)

where v̂r and ĥr are the respective sheet resistivity of the vertical and
horizontal metal layers, hstrapw and vstrapw are the widths of the respective

vertical and horizontal straps, ijDx and ijDy are the respective vertical and

Physical Design for System-on-a-Chip 391

horizontal distances between pin j and node i . For example, the left pin of
the block B in Figure 54 is estimated by the voltage of the node n , which
is 1.78 V. The current consumption of the pin is 0 5A. , the horizontal sheet
resistivity is 5mΩ/ unit square, the vertical sheet resistivity is 4mΩ/ unit
square, the respective vertical and horizontal distances from the pin to the
node n are 5 m and 3 m, and the width of a strap is 1 m . The estimated

 voltage of the pin is 5 3
1 11 78 0 5 max (0 005 0 004) 1 77V. − . × . × , . × = . .

For

 a soft block, they use the distance between the center of the overlapping
 area and the node as the length of the strap. The voltage is estimated by the
 lowest supply voltage of the soft block k (a block may be attached to more
 than one node) as follows:

 ˆ ˆmin max
ov

ik ik
k i k i h vS

hstrap vstrap

Dx DyV V I r r
w w,

⎛ ⎞⎛ ⎞
= − , ,⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (35)

where ovS is the set of nodes responsible for the soft block k , k iI , is the

current supplied by node ,i and ikDx and ikDy are the respective
horizontal and vertical distances between the node i and the center of the
overlapped area. Again let us take the node n in Figure 54 as an

 example.

The vertical and horizontal distances between the center
 of the gray area and the node n are 6 mμ and 0 ,μ respectively.

 The estimated voltage of the block k with respect to the node n is
10 6
2 11 78 ((0 03 0 021)) 0 004 1 774V. − . + . × × . × = . . Assume that this is the

lowest voltage among all the estimated voltages calculated from all regions
overlapped with the block k . Thus, the estimated voltage of the block k
is 1 774V. . Now it can verify the power integrity constraints. The IR-drop
constraints is verified by checking the IR drop of each P/G pin, and the
electromigration constraints can be verified by checking the current flowing
through every branch of the P/G mesh.

Now we can derive Φ , the penalty function of power integrity
violations. The function Φ is given as follows:

| | (1) 0 1
| |

ii v

ii

pvpv Pem

lim pp P

vB
B V

θ θ θ∀ ∈

,∀ ∈

Φ = + − , < < ,
∑
∑

 (36)

where θ is a weighting parameter, emB is the set of branches violating
electromigration constraints, B is the total branches of the P/G mesh,

ipvv

μ μ μ

392 Chang, Chen and Chen

is the amount of the violation at the pin ipv , P is the set of all P/G pins,

vP is the set of violating P/G pins, and
ilim pV , is the IR-drop constraint of

the P/G pin ip (
imin pVdd V ,− for a power pin and

imax pV , for a ground
pin). The first part of the right-hand side denotes the ratio of branches
violating the electromigration constraints over total branches, and the second
part denotes the ratio of the amount of IR-drop violation over the total
amount of possible violations. The denominators are for the penalty
normalization.

D: P/G Network Co-synthesis Heuristic

According to their experience, if the pitch is carefully chosen, the algorithm can
find desired floorplans with very few constraint violations at high temperatures
and continue to optimize wirelength and area at lower temperatures, leading to
high-quality floorplan solutions. Note that IR drop and the current per branch
decrease as the density of the mesh increases; therefore, the P/G violation
penalty Φ can be reduced by increasing the density of the mesh. Since the
density of a P/G mesh is proportional to 2

pitchA D/ , we can control pitchD

instead of the density for convenience. By controlling pitchD during the SA
process, it can obtain desired floorplan solutions. It updates the P/G mesh pitch

pitchD at each temperature by multiplying ik , which is defined as follows:

ˆ

i
avg i

k
,

Φ
= ,
Φ

 (37)

where avg i,Φ is the average of Φ at the temperature of the i th iteration

during the SA process, and Φ̂ is expected average of Φ , which a
user-specified parameter. The floorplans generated at the same temperature
form a solution sub-space. Specifying Φ̂ , it can control the average Φ of
the solution sub-space and statistically control the proportion of the feasible
solutions in the solution sub-space.

E: Feasible B*-trees with Power Mesh Constraints

They study the properties of the B*-tree with the P/G network considerations
and develop techniques to reduce the solution space to speed up the search
for desired floorplans. Finding the best positions of blocks to optimize the
P/G mesh is a very complex problem. Their idea is motivated by the linear
circuit theory: the IR drop of a P/G pin is proportional to the effective

Physical Design for System-on-a-Chip 393

resistance between the P/G pin and the power pad. Therefore, the closer the
P/G pin is placed to the power pad, the smaller IR drop we can get. Based on
this fact, it places the blocks which consume larger current near the
boundary of the floorplan, and then place power pads close to them. To
implement this idea, they sort the blocks by their power consumption and
cluster the leading blocks, which are called power-hungry blocks to form
groups. In their implementation, they chose 10% of total blocks to be
power-hungry blocks. The size of a group depends on the total size of the
member blocks, which is a user specified parameter. Note that each group
should contain at least one block. These groups are referred to as
power-hungry groups. Each power-hungry group is assigned with a power
pad and the number of the groups equals the number of available power pads.
In order to reduce the IR drops of power-hungry groups, it prefers to place
the blocks in the power-hungry groups along the boundary of the floorplan
And it will place each pad next to a power-hungry group.

There are two goals for the floorplan and power/ground network
co-synthesis: (1) place power-hungry groups along the chip boundary, and (2)
maintain all the power-hungry blocks in power-hungry groups, which can be
accomplished by careful perturbations and will be discussed later. For the
first goal, we should identify the boundary blocks of the floorplan. Now we
explore the feasibility conditions of the B*-tree to search for desired
floorplan solutions. Let the boundary ring Fϒ (Tϒ) of the floorplan F
(the B*-tree T) be the ordered list of the boundary blocks in F (T) (say,
in the counter-clockwise sequence starting from the block at the bottom-left
corner). For example, 0 1 2 5 6 9 8 7 3F m m m m m m m m mϒ =< , , , , , , , , >

(0 1 2T n n nϒ =< , , , 5 6 9 8 7 3n n n n n n, , , , , >) in the floorplan F (the B*-tree
T) of Figure 56. Notice that by the name “ring”, the succeeding element of
the last element in the “list” can be treated as the first element of the list.
For the example of Figure 56, 0m (0n) is the succeeding element of 3m
(3n). We shall make all blocks of the power groups belong to the blocks in
the boundary ring such that the blocks of the same power group are placed in
the order according to the boundary “ring.”

Extending the findings in [79] by Lin et al., they identify the blocks in
the boundary ring based on the feasibility conditions of B*-trees for
boundary blocks. Let the root of the B*-tree T be r , the DFS order of the
tree traversal on the leftmost and the bottom-left branches of T be TL , and
the DFS order of the tree traversal on the rightmost and the bottom-right
branches of T be TR . Let the reverse of a sequence L be rL . Then, we

have r
T T TL Rϒ = ⊕ . Here, “⊕ ” denotes the concatenation operation of two

lists.

394 Chang, Chen and Chen

Figure 56. Boundary blocks and their corresponding B*-tree branches

Theorem 6 (Boundary Ring) r

T T TL Rϒ = ⊕ .

According to Theorem 6, we shall make the nodes corresponding to the
blocks of a power-hungry group in the boundary ring Tϒ . In other words, it

prefers to make those nodes a sublist of the ring Tϒ during the perturbation
in simulated annealing. As shown in the example of Figure 57, the power
group { 0 1 3}m m m, , ({ 6 8 9}m m m, ,) is placed on the left and the bottom
(the right and the top) boundaries close to the bottom-left (top-right) corner,
and they are adjacent blocks in the ring Fϒ . A floorplan is said to be

Figure 57. An example of a power-feasible floorplan with two power groups: { 6 8 9}m m m, ,

and { 0 1 3}m m m, , . The desired power pad locations are encircled by the dashed lines

Physical Design for System-on-a-Chip 395

power-feasible if the power-hungry blocks in each power-hungry group
are blocks in the desired locations of the boundary ring. Therefore, it is
desirable to keep a power-feasible floorplan during solution perturbation to
achieve the second goal of the co-synthesis.
While perturbing the tree, the power-feasibility of the B*-tree is maintained.
The operations to perturb a B*-tree [17] with the IR-drop consideration are
listed as follows:

• Op1: Rotate a block.
• Op2: Swap two blocks in the power-hungry groups or not in any

power-hungry group.
• Op3: Move a block to another place that maintains power-feasibility.

Op1 only exchanges the width and height of a block without changing the
B*-tree topology while Op2 and Op3 do. Therefore, in order to maintain the
power-feasibility, it only swaps two blocks in power-hungry groups or not in
any power-hungry group for Op2, and move a block to another place that
maintains power-feasibility for Op3. Otherwise, it might need to transform
the B*-tree to maintain the power-feasibility.

F: The Co-Synthesis Algorithm

Figure 58 summarizes the floorplaning algorithm. Given inputs of the block
information, initial P/G pitch pitchD , and power integrity constraints, it starts
with the simulated annealing process (see lines 2–24). At the beginning of
simulated annealing, it randomly explores the solution space to get an
average cost to normalize each objective in the cost function (line 3). Then it
gets an initial solution and an initial temperature (lines 4–6) and launches the
simulated annealing process. At each temperature, it anneals for N times,
where N is a number proportional to the number of blocks (line 8). After
each perturbation (line 9), it computes the coordinates of all blocks and
constructs a P/G mesh (lines 10–11). Then it calculates the voltage of each
node of the mesh by solving Equation (33) using their linear solver and
estimates the IR drop of each P/G pin by Equations (34) and (35) (lines
12–13). Then it calculates the P/G mesh penalty function Φ and
accumulates it for the average bookkeeping (line 14). Next it updates the
cost function by Equation (31) and checks if the floorplan is accepted with
the probability Te

−ΔΨ

 (lines 15–20). If the current floorplan S has a lower
cost than the best floorplan bestS found so far, S is chosen as the best
floorplan (line 20). Next, it calculates avg i,Φ and ik , and then updates the

mesh pitch pitchD by i pitchk D to co-synthesize the P/G mesh (lines 21–22).

396 Chang, Chen and Chen

Figure 58. The P/G network and floorplan co-synthesis algorithm

At the end of the SA loop, it decreases the temperature T by multiplying a
constant r (line 23).

6. CONCLUSION

We have introduced the state-of-the-art design algorithms and frameworks
for the three major physical design steps: floorplanning, placement, and
routing considering the impacts arising from modern SOC designs. With the
breathtaking speed in which the design complexity increases, hierarchical

Physical Design for System-on-a-Chip 397

and multilevel frameworks are essential to handle the very large-scale SOC
design and optimization. The traditional hierarchical framework can scale
very well to large-scale design, but it may lose the global view for circuit
optimization because of its lack of interactions among subregions after
partitioning. Special treatments are needed to deal with the optimization of
global circuit effects. Two types of multilevel frameworks, the Λ - and
V -shaped frameworks, have recently been studied in the literature. Both are
based on two-stage techniques. The Λ -shaped framework adopts bottom-up
coarsening followed by top-down uncoarsening, while the V -shaped
framework proceeds with top-down uncoarsening and followed by
bottom-up coarsening. Since the V -shaped framework processes global
circuit regions first, it tends to obtain better solutions for those with global
effects such as wirelength, timing, and crosstalk. In contrast, the Λ -shaped
framework tends to achieve better solutions for local effects such as area
optimization.

We have also introduced the interconnect-driven and signal/power
integrity aware design methodologies for modern SOC designs to improve
design convergence. When the complexity for interconnect and
power/ground network designs grow drastically, it is often too late to
perform aggressive interconnect and power/ground network optimization
during or after routing since most silicon and routing resources are occupied.
Therefore, it is desirable to optimize interconnect and power/ground network
earlier at the flooprlanning/post-floorplanning stage. With the complexity
continuing to grow for SOC design, we expect that more and more circuit
effects will need to be handled earlier for fast design convergence.

With the continued increase of on-chip packing density and the continued
shrinking of component feature sizes due to the nanometer IC technologies,
some other issues such as thermal, reliability (antenna effect, electrostatic
discharge, electro-migration, etc.), manufacturability (optical proximity effect,
phase-shift mask, metal fill, etc.), and yield (redundant via, process variation,
etc.) will soon become first-order effects for SOC design, as comparably
important as the traditional design metrics—timing, power, signal/power
integrity, and area. These effects have imposed tremendous challenges and
opened many research opportunities to modern physical design.

REFERENCES

[1] L. C. Abel. On the ordering of connections for automatic wire routing. IEEE
Transations on Computers, pages 1227-1233, November 1972.

[2] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov. Unification of
partitioning, placement and floorplanning. In Proceedings of IEEE/ACM
International Conference on Computer Aided Design, pages 550-557, 2004.

398 Chang, Chen and Chen

[3] S. N. Adya and I. L. Markov. Consistent placement of macroblock using

floorplanning and standard-cell placement. In Proceedings of ACM International
Symposium on Physical Design, pages 12-17, 2002.

[4] S. N. Adya and I. L. Markov. Combinatorial techniques for mixed-size placement.
ACM Transactions on Design Automation of Electronics Systems, 10(1):58-90,
January 2005.

[5] S. N. Adya, I. L. Markov, and P. G. Villarrubia. On whitespace in mixed-size
placement and physical synthesis. In Proceedings of IEEE/ACM International
Conference on Computer Aided Design, pages 311-318, 2003.

[6] S. B. Akers. A modification of Lee's path connection algorithm. IEEE Transations
on Electronic Computers, pages 97-98, February 1967.

[7] C. J. Alpert and A. Devgan. Wire segmenting for improved buffer insertion. In
Proceedings of ACM/IEEE Design Automation Conference, pages 588-593, June
1997.

[8] K. Arrow, L. Huriwicz, and H. Uzawa. Studies in Nonlinear Programming.
Stanford University Press, Stanford, Calif, 1958.

[9] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI.
Addison-Wesley, 1990.

[10] G. Blakiewicz, M. Jeske, M. Chrzanowska-Jeske, and J. S. Zhang. Substrate noise
modeling in early floorplanning of mixed-signal SOCs. In Proceedings of
IEEE/ACM Asia South Pacific Design Automation Conference, pages 819-823,
2005.

[11] M. Burstein and R. Pelavin. Hierarchical wire routing. IEEE Transations on
Computer-Aided Design of Integrated Circuits and Systems, CAD-2(4):223-234,
October 1983.

[12] M. Burstein and M. N. Youssef. Timing influenced layout design. In Proceedings
of ACM/IEEE Design Automation Conference, pages 124-130, 1985.

[13] A. Caldwell, A. Kahng, and I. Markov. Can recursive bisection alone produce
routable placement? In Proceedings of ACM/IEEE Design Automation Conference,
2000.

[14] H. H. Chan, S. N. Adya, and I. L. Markov. Are floorplan representations important
in digital design? In Proceedings of ACM International Symposium on Physical
Design, pages 129-136, 2005.

[15] T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for
circuit placement. In Proceedings of ACM International Symposium on Physical
Design, pages 185-192, 2005.

[16] C.-C. Chang, J. Cong, and X. Yuan. Multi-level placement for large-scale
mixed-size ic designs. In Proceedings of IEEE/ACM Asia South Pacific Design
Automation Conference, pages 325-330, 2003.

[17] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu. B*-trees: A new
representation for non-slicing floorplans. In Proceedings of ACM/IEEE Design
Automation Conference, pages 458-463, 2000.

[18] Y.-W. Chang and S.-P. Lin. MR: A new framework for multilevel full-chip routing.
IEEE Transations on Computer-Aided Design of Integrated Circuits and Systems,
23(5):793-800, May 2004.

[19] Y.-W. Chang, K. Zhu, and D.-F. Wong. Timing-driven routing for
symmetrical-array-based fpgas. ACM Transactions on Design Automation of
Electronics Systems, 5(3):433-450, July 2000.

[20] H. Chen, C.-K. Cheng, A. B. Kahng, M. Mori, and Q. Wang. Optimal planning for
mesh-based power distribution. In Proceedings of IEEE/ACM Asia South Pacific
Design Automation Conference, pages 444-449, 2004.

Physical Design for System-on-a-Chip 399

[21] T.-C. Chen and Y.-W. Chang. IMF: Interconnect-driven multilevel floorplanning

for large-scale building-module designs. In Proceedings of IEEE/ACM
International Conference on Computer Aided Design, 2005.

[22] T.-C. Chen and Y.-W. Chang. Modern floorplanning based on fast simulated
annealing. In Proceedings of ACM International Symposium on Physical Design,
pages 104-112, 2005.

[23] T.-C. Chen and Y.-W. Chang. Multilevel gridless routing considering optical
proximity correction. In Proceedings of IEEE/ACM Asia South Pacific Design
Automation Conference, pages 1160-1163, January 2005.

[24] T.-C. Chen, Y.-W. Chang, and S.-C. Lin. A novel framework for multilevel
full-chip gridless routing. In Proceedings of IEEE/ACM Asia South Pacific Design
Automation Conference, January 2006.

[25] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang. NTUplace: a ratio
partitioning based placement algorithm for large-scale mixed-size designs. In
Proceedings of ACM International Symposium on Physical Design, pages 236-238,
2005.

[26] Y.-H. Cheng and Y.-W. Chang. Integrating buffer planning with floorplanning for
simultaneous multi-objective optimization. In aspdac, pages 624-627, Piscataway,
NJ, USA, 2004. IEEE Press.

[27] M. Cho, H. Shin, and D. Z. Pan. Fast substrate noise-aware floorplanning with
preference directed graph for mixed-signal socs. In Proceedings of IEEE/ACM
Asia South Pacific Design Automation Conference, January 2006.

[28] S. Chowdhury. Optimum design of reliable ic power networks having general
graph topologies. In Proceedings of ACM/IEEE Design Automation Conference,
pages 787-790, 1989.

[29] J. Cong, J. Fang, M. Xie, and Y. Zhang. MARS-a multilevel full-chip gridless
routing system. IEEE Transations on Computer-Aided Design of Integrated
Circuits and Systems, 24(3):382-394, March 2005.

[30] J. Cong, J. Fang, and Y. Zhang. Multilevel approach to full-chip gridless routing. In
Proceedings of IEEE/ACM International Conference on Computer Aided Design,
pages 396-403, 2001.

[31] J. Cong, L. He, K.-Y. Khoo, C.-K. Koh, and Z. Pan. Interconnect design for deep
submicron ICs. In Proceedings of IEEE/ACM International Conference on
Computer Aided Design, pages 478-485, 1997.

[32] J. Cong, T. Kong, and D. Z. Pan. Buffer Block Planning for Interconnect-Driven
Floorplanning. Proceedings of IEEE/ACM International Conference on Computer
Aided Design, pages 358-363, 1999.

[33] J. Cong and P. H. Madden. Performance driven global routing for standard cell
design. In Proceedings of ACM International Symposium on Physical Design,
pages 73-80, April 1997.

[34] J. Cong, M. Romesis, and J. R. Shinnerl. Fast floorplanning by look-ahead enabled
recursive bipartitioning. In Proceedings of IEEE/ACM Asia South Pacific Design
Automation Conference, 2005.

[35] J. Cong, M. Xie, and Y. Zhang. An enhanced multilevel routing system. In
Proceedings of IEEE/ACM International Conference on Computer Aided Design,
pages 51-58, November 2002.

[36] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press/McGraw-Hill Book Company, 2nd edition, 2001.

[37] A. Dharchoudhury, R. Panda, D. Blaauw, R. Vaidyanathan, B. Tutuianu, and
D. Bearden. Design and analysis of power distribution networks in powerpc
microprocessors. In Proceedings of ACM/IEEE Design Automation
Conference, pages 738-743, 1998.

400 Chang, Chen and Chen

[38] K. Doll, F. M. Johannes, and K. J. Antreich. Iterative placement improvement by

network flow methods. IEEE Transations on Computer-Aided Design of Integrated
Circuits and Systems, 13(10):1189-1200, 1994.

[39] F. F. Dragan, A. B. Kahng, I. Mandoiu, S. Muddu, and A. Zelikovsky. Provably
good global buffering by multi-terminal multicommodity flow approximation. In
Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference,
pages 120-125, New York, NY, USA, 2001. ACM Press.

[40] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F. Jukl, P. Kozak, and M. Wiesel.
Chip layout optimization using critical path weighting. In Proceedings of
ACM/IEEE Design Automation Conference, pages 133-136, 1984.

[41] A. E. Dunlop and B. Kernighan. A procedure for placement of standard-cell VLSI
circuits. IEEE Transations on Computer-Aided Design of Integrated Circuits and
Systems, CAD-4, January 1985.

[42] H. Eisenmann and F. M. Johannes. Generic global placement and floorplanning. In
Proceedings of ACM/IEEE Design Automation Conference, pages 269-274, 1998.

[43] W. C. Elmore. The transient response of damped linear networks with particular
regard to wide-band amplifiers. Journal of Applied Physics, 19(1):55-63, Jan. 1948.

[44] W. N. et al. Non-linear optimization system and method for wire length and delay
optimization for an automatic electric circuit placer. In US Patent 6301693,
October 2001.

[45] L. C. Evans. Partial Diferential Equations. American Mathematical Society,
Providence, 2002.

[46] C. M. Fidducia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proceedings of ACM/IEEE Design Automation Conference,
pages 175-181, 1982.

[47] G. H. Golub and V. L. C. F. Matrix Computations. Johns Hopkins University Press,
1996.

[48] P.-N. Guo, C.-K. Cheng, and T. Yoshimura. An O-tree representation of
non-slicing floorplan and its applications. In Proceedings of ACM/IEEE Design
Automation Conference, pages 268-273, 1999.

[49] F. O. Hadlock. A shortest path algorithm for grid graphs. Networks, pages 323-334,
1977.

[50] T. Hamada, C. K. Cheng, and P. M. Chau. Prime: A placement tool using a piece
wise linear resistive network approach. In Proceedings of ACM/IEEE Design
Automation Conference, pages 531-536, 1993.

[51] M. Hayashi and S. Tsukiyama. A hybrid hierarchical approach for multi-layer
global routing. In Proceedings of European Design and Test Conference, pages
492-496, 1995.

[52] D. Hightower. A solution to line routing problems on the continuous plane. In
Proceedings of Design Automation Workshop, pages 1-24, 1969.

[53] T.-Y. Ho, C.-F. Chang, Y.-W. Chang, and S.-J. Chen. Multilevel full-chip routing for the
x-based architecture. In Proceedings of ACM/IEEE Design Automation Conference, pages
597-602, June 2005.

[54] T.-Y. Ho, Y.-W. Chang, and S.-J. Chen. Multilevel routing with antenna avoidance.
In Proceedings of ACM International Symposium on Physical Design, pages 34-40,
April 2004.

[55] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D.-T. Lee. A fast crosstalk- and
performance-driven multilevel routing system. In Proceedings of IEEE/ACM
International Conference on Computer Aided Design, pages 382-387, November
2003.

[56] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D.-T. Lee. Crosstalk- and
performance-driven multilevel full-chip routing. IEEE Transations on
Computer-Aided Design of Integrated Circuits and Systems, 24(6):869-878, 2005.

Physical Design for System-on-a-Chip 401

[57] T. C. Hu and M.-T. Shing. A decomposition algorithm for circuit routing. In VLSI

Circuit Layout: Theory and Design, pages 144-152. IEEE Press, New York, NY, 1985.
[58] M. Jackson and E. S. Kuh. Performance-driven placement of cell based IC's. In

Proceedings of ACM/IEEE Design Automation Conference, pages 370-375, 1989.

[59] H.-R. Jiang, Y.-W. Chang, J.-Y. Jou, and K.-Y. Chao. Simultaneous Floorplanning
and Buffer Block Planning. Proceedings of IEEE/ACM Asia South Pacific Design
Automation Conference, pages 431-434, 2003.

[60] H.-R. Jiang, Y.-W. Chang, J.-Y. Jou, and K.-Y. Chao. Simultaneous Floorplan and
Buffer Block Optimization. IEEE Transations on Computer-Aided Design of
Integrated Circuits and Systems, 23(5):694-703, 2004.

[61] Z.-W. Jiang, T.-C. Chen, T.-C. Hsu, H.-C. Hsu, and Y.-W. Chang. NTUplace2: a
hybrid placement tool using partitioning and analytical techniques. In Proceedings
of ACM International Symposium on Physical Design.

[62] A. B. Kahng, I. Markov, and S. Reda. On legalization of row-based placements. In
Proceedings of ACM Great Lakes Symposium on VLSI, pages 214-219, 2004.

[63] A. B. Kahng and S. Reda. Placement feedback: a concept and method for better
min-cut placements. In Proceedings of ACM/IEEE Design Automation
Conference, pages 357-362, 2004.

[64] A. B. Kahng, S. Reda, and Q. Wang. Architecture and details of a high quality,
large-scale analytical placer. In Proceedings of IEEE/ACM International
Conference on Computer Aided Design, pages 890-897, 2005.

[65] A. B. Kahng, P. Tucker, and A. Zelikovsky. Optimization of linear placements for
wirelength minimization with free sites. In Proceedings of IEEE/ACM Asia South
Pacific Design Automation Conference, pages 241-244, 1999.

[66] A. B. Kahng and Q. Wang. An analytic placer for mixed-size placement and
timing-driven placement. In Proceedings of IEEE/ACM International Conference
on Computer Aided Design, pages 565-572, 2004.

[67] A. B. Kahng and Q. Wang. An analytic placer for mixed-size placement and
timing-driven placement. In Proceedings of IEEE/ACM International Conference
on Computer Aided Design, pages 565-572, 2004.

[68] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph
partitioning: Application in vlsi domain. In Proceedings of ACM/IEEE Design
Automation Conference, page 526-529, 1997.

[69] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. Pattern routing: Use and theory
for increasing predictability and avoiding coupling. In IEEE Transations on
Computer-Aided Design of Integrated Circuits and Systems, pages 777-790,
November 2002.

[70] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C.-K. Koh, and P. H.
Madden. Recursive bisection based mixed block placement. In Proceedings of
ACM International Symposium on Physical Design, pages 84-89, 2004.

[71] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, 1983.

[72] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich. Gordian: Vlsi placement by
quadratic programming and slicing optimization. IEEE Transations on
Computer-Aided Design of Integrated Circuits and Systems, 10.

[73] T. Kong. A novel net weighting algorithm for timing-driven placement. In
Proceedings of IEEE/ACM International Conference on Computer Aided Design,
pages 172-176, 2002.

[74] D. Kouroussis and F. N. Najm. A static pattern-independent technique for power
grid voltage integrity verification. In Proceedings of ACM/IEEE Design
Automation Conference, pages 99-104, 2003.

[75] C. Y. Lee. An algorithm for path connection and its application. IRE Transactions
on Electronic Computer, EC-10, pages 346-365, 1961.

402 Chang, Chen and Chen

[76] H.-C. Lee, J.-M. Hsu, Y.-W. Chang, and H. Yang. Multilevel

floorplanning/placement for large-scale modules using b*-trees. In Proceedings of
ACM/IEEE Design Automation Conference, 2003.

[77] K. S.-M. Li, C.-L. Lee, Y.-W. Chang, C.-C. Su, and J. E. Chen. Multilevel full-chip
routing with testability and yield enhancement. In Proceedings of System Level
Interconnect Prediction Workshop, pages 236-238, April 2005.

[78] S. Lin and N. Chang. Challenges in power-ground integrity. In Proceedings of
IEEE International Conference on Computer Design, pages 651-654, 2001.

[79] S.-P. Lin and Y.-W. Chang. A novel framework for multilevel routing considering
routability and performance. In Proceedings of IEEE/ACM International
Conference on Computer Aided Design, pages 44-50, November 2002.

[80] Y.-L. Lin, Y.-C. Hsu, and F.-S. Tsai. Hybrid routing. IEEE Transations on
Computer-Aided Design of Integrated Circuits and Systems, 9(2):151-157,
February 1990.

[81] V. Litovski and M. Zwolinski. VLSI Circuit Simulation and Optimization.
Chapman & Hall, 1997.

[82] C.-W. Liu and Y.-W. Chang. Floorplan and power/ground network co-synthesis for
fast design convergence. In Proceedings of ACM International Symposium on
Physical Design, 2006.

[83] M. Marek-Sadowska. Global router for gate array. In Proceedings of IEEE
International Conference on Computer Design, pages 332-337, October 1984.

[84] M. Marek-Sadowska. Route planner for custom chip design. In Proceedings of
IEEE/ACM International Conference on Computer Aided Design, pages 246-249,
November 1986.

[85] R. McInerney, M. Page, K. Leeper, T. Hillie, H. Chan, and B. Basaran.
Methodology for repeater insertion management in the RTL, layout, floorplan, and
fullchip timing databases of the Itanium microprocessor. In Proceedings of ACM
International Symposium on Physical Design, pages 99-104, 2000.

[86] K. Mikami and K. Tabuchi. A computer program for optimal routing of printed
circuit connectors. In Proceedings of IFIP, pages 1475-1478, November 1968.

[87] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential
Equations. Cambridge University Press, 1994.

[88] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajatani. Rectangle-packing based
module placement. In Proceedings of IEEE/ACM International Conference on
Computer Aided Design, pages 472-479, 1995.

[89] R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa. Generation of performance
constraints for layout. IEEE Transations on Computer-Aided Design of Integrated
Circuits and Systems, 8:860-874, August 1989.

[90] B. Owens, S. Alduri, P. Birrer, R. Shreeve, S. K. Arunachalam, and K. Mayaram.
Simulation and measurement of supply and substrate noise in mixed-signal ICs.
IEEE Journal of Solid-State Circuits, 40, February 2005.

[91] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for
provably good algorithms and algorithmic proofs. In Proceedings of
Combinatorica, pages 365-374, 1987.

[92] S. M. Sait and H. Youssef. VLSI Physical Design Automation: Theory and
Practice. World Scientific Publishers, Singapore, 1999.

[93] P. Sarkar, V. Sundararaman, and C.-K. Koh. Routability-Driven Repeater Block
Planning for Interconnect-Centric Floorplanning. Proceedings of ACM
International Symposium on Physical Design, pages 186-191, 2000.

[94] M. Sarrafzadeh, D. A. Knol, and G. E. Tellez. A delay budgeting algorithm
ensuring maximum flexibility in placement. IEEE Transations on
Computer-Aided Design of Integrated Circuits and Systems, 16:1332-1341,
November 1997.

Physical Design for System-on-a-Chip 403

[95] P. Saxena, N. M. P. Cocchini, and D. Kirkpatrick. Repeater scaling and its impact

on cad. IEEE Transations on Computer-Aided Design of Integrated Circuits and
Systems, 23(4):451 - 463, 2004.

[96] C. Sechen and A. Sangiovanni-Vincentelli. The timberwolf placement and routing
package. IEEE Journal of Solid-State Circuits, 20.

[97] J. Singh and S. S. Sapatnekar. Topology optimization of structured power/ground
networks. In Proceedings of ACM International Symposium on Physical Design,
pages 116-123, 2004.

[98] J. Soukup. Fast maze router. In Proceedings of ACM/IEEE Design Automation
Conference, pages 100-102, June 1978.

[99] A. Srinivasan, K. Chaudhary, and E. S. Kuh. RITUAL: A performance driven
placement for small-cell IC's. In Proceedings of IEEE/ACM International
Conference on Computer Aided Design, pages 48-51, 1991.

[100] W. Swartz and C. Sechen. Timing driven placement for large standard cell circuits.
In Proceedings of ACM/IEEE Design Automation Conference, pages 211-215,
1995.

[101] T. Taghavi, X. Yang, and B.-K. Choi. Dragon2005: Large-scale mixed-size
placement tool. In Proceedings of ACM International Symposium on Physical
Design, pages 245-247, 2005.

[102] X. Tang, R. Tian, and D. F. Wong. Fast evaluation of sequence pair in block
placement by longest common subsequence computation. IEEE Transations on
Computer-Aided Design of Integrated Circuits and Systems, 20(12):1406-202,
2001.

[103] X. Tang and D. F. Wong. Planning Buffer Locations by Network Flows.
Proceedings of ACM International Symposium on Physical Design, pages 180-185,
2000.

[104] K. Wang and M. Marek-Sadowska. On-chip power supply network optimization
using multigrid-based technique. In Proceedings of ACM/IEEE Design Automation
Conference, pages 113-118, 2003.

[105] S.-W. Wu and Y.-W. Chang. Efficient power/ground network analysis for power
integrity-driven design methodology. In Proceedings of ACM/IEEE Design
Automation Conference, pages 177-180, 2004.

[106] H. Xiang, X. Tang, and M. D. F. Wong. Bus-driven floorplanning. In Proceedings
of IEEE/ACM International Conference on Computer Aided Design, pages 66-73,
2003.

[107] X. Yang, B. K. Choi, and M. Sarrafzadeh. Timing-driven placement using design
hierarchy guided constraint generation. In Proceedings of IEEE/ACM International
Conference on Computer Aided Design, 2002.

[108] B. Yao, H. Chen, C.-K. Cheng, N.-C. Chou, L.-T. Liu, and P. Suaris. Unified
quadratic programming approach for mixed mode placement. In Proceedings of
ACM International Symposium on Physical Design, pages 193-199, 2005.

[109] M. Yildiz and P. Madden. Global objectives for standard cell placement. In
Proceedings of ACM Great Lakes Symposium on VLSI, pages 68-72, 2001.

[110] M. Yildiz and P. Madden. Improved cut sequences for partitioning-based
placement. In Proceedings of ACM/IEEE Design Automation Conference, pages
776-779, 2001.

[111] J.-S. Yim, S.-O. Bae, and C.-M. Kyung. A floorplan-based planning methodology
for power and clock distribution in asics. In Proceedings of ACM/IEEE Design
Automation Conference, pages 766-771, 1999.

[112] H. Youssef, R. Lin, and E. Shragowitz. Bounds on net delays for VLSI circuits.
IEEE Transactions on Circuits and Systems, 39:815-824, November 1992.

