
Lean
Software
Development
in Action

Andrea Janes
Giancarlo Succi

Lean Software Development in Action

Andrea Janes • Giancarlo Succi

Lean Software Development
in Action

123

Andrea Janes
Giancarlo Succi
Libera UniversitJa di Bolzano
Bolzano
Italy

ISBN 978-3-662-44178-7 ISBN 978-3-642-00503-9 (eBook)
DOI 10.1007/978-3-642-00503-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014953961

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

We wrote this book with the idea to show a practical implementation of Lean
software development, gluing together well-proven tools to provide a way to
develop Lean. The message this book wants to convey is the utilization of goal-
oriented, automated measurement for the creation of a Lean organization and the
facilitation of Lean software development.

Since its conception in the mid-1950s, Lean thinking has been very successful in
manufacturing: it has helped organizations to focus on value-providing activities, to
identify unnecessary ones, and therefore to increase the efficiency and effectiveness
of the overall process. There are several proposals on how to translate Lean
principles into software engineering practices, starting from the Agile Manifesto
and the pioneering work of Kent Beck (see Chap. 4), of Mary and Tom Poppendieck
(see Chap. 6), and of many others.

It is a fact that to be successful, a Lean orientation of software development
has to go hand in hand with the business strategy of the company as a whole. To
achieve such a goal, there are two interrelated aspects that require special attention:
measurement and experience management.

Measurement means to describe real-world processes according to clearly
defined rules to understand, control, and improve (see Chap. 9). Now, “Lean
software company thinking” requires a comprehensive measurement program:
measurement is a cornerstone of Lean thinking, as well evidenced by the founders
of the Lean approach, such as Taiichi Ōno, James P. Womack, and Daniel T. Jones
(see Chap. 1).

Managers of software companies have often perceived measurement as a waste
of time, mostly because the measurement process required a lot of effort from
developers and managers, and often the results of a measurement program could not
be used to steer effectively the direction of the business. In the last decade, a new
approach to software measurement has emerged, where, on one side, it has become
evident that a successful software measurement program ought to be introduced
in a company-wide measurement approach to promote process improvement, as
discussed by the CMMI (see Chap. 3) and several other recent software process

v

vi Preface

improvement initiatives, and, on the other side, the measurement process has
become much less invasive and therefore effort consuming (see Chap. 9).

Measurement is a necessary step in systematic quality approaches like Six
Sigma or in performance management instruments like the Balanced Scorecard
(see Chap. 3). A methodical approach to measurement as proposed in this book
will allow to introduce quality and performance management instruments that rely
on it.

The second aspect requiring special attention is experience, i.e., valuable, stored,
specific knowledge that was acquired in a previous problem-solving situation (see
Chap. 8).

Software development organizations have always been concerned with collecting
and institutionalizing the experience of its developers and engineers, so that it would
not be too dependent on its key people and the turnover would not affect it too much.
The experience of these years have shown that Lean software organizations are even
more dependent on the skills of individual people.

It appears therefore critical to promote the institutionalization of experience
across the entire company. The studies that the authors have done on the field have
evidenced that the collected software measures can be extremely instrumental to
achieve such a goal.

Altogether, in this book the authors provide the necessary knowledge to establish
“Lean software company thinking” taking advantage of the most recent approaches
to software measurement.

The main target group of the book consists of people working in the field
of software engineering that want to understand how to obtain an efficient and
effective software development process. This group includes developers, managers,
and students following an M.Sc. curriculum in software engineering.

This book particularly applies to small and medium enterprises—the dominating
organizational form in the European software sector—that do not have the resources
to put in place the mentioned processes of collecting and institutionalizing the
experience of its developers and engineers. This creates a high dependency on its
key people, and turnover can severely challenge the ability to continue to provide
a given product or service to the market. Additionally, not institutionalizing the
own experiences means wasting an important opportunity for small and medium
enterprises to maintain or improve their position in the market.

A comprehensive, company-wide measurement approach is exactly what (even
very small) companies need to align the performed activities to the needs of
the stakeholders, to the business strategy, etc. With the automatic, non-invasive
measurement proposed in this book—this is what we mean by “Lean Software
Development in action”—more companies will be able to optimize their software
development process towards Lean.

The discussion on how to transfer Lean concepts into software development is
still ongoing. To support this process, we aim to inspire others to follow our line
of research to apply measurement to understand the effects of introduced changes
in the software development process even at an early stage. Measurement helps

Preface vii

to understand and to reason about the obtained desired and undesired changes.
Moreover, it points out opportunities to improve.

We present our approach to Lean Software Development in three parts:

1. The first part illustrates what the term “Lean Production” means, why we think
it is useful to transfer Lean concepts into software engineering, and which
approaches exist to transfer the Lean concept into software engineering.

2. The second part illustrates the tools we use to achieve Lean Software Develop-
ment: Non-invasive Measurement, the Goal Question Metric approach, and the
Experience Factory.

3. The third part illustrates how we combined the different tools to enable Lean
Thinking in software development.

Background Knowledge

Whenever we thought that some background knowledge is interesting or
useful in a particular part of the text, we added it in a box like this.

A last but important note: throughout this book, wherever the masculine form is
used, it applies to the feminine form as well.

Andrea Janes
Bozen, Italy Giancarlo Succi
May 2014

Acronyms

ABC Activity Based Costing
AJAX Asynchronous JavaScript and XML
ANSI American National Standards Institute
API Application Programming Interface
PMI Project Management Institute
AT&T American Telephone and Telegraph Company
BC Before Christ
CC Cyclomatic Complexity
CD Compact Disk
CIO Chief Information Officer
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
DAD Disciplined Agile Delivery
DMAIC Define, Measure, Analyze, Improve, Control
DSDM Dynamic Systems Development Method
ETL Extract Transform Load
FSS Flagship Software Services, a company in our fictional story
GQM Goal Question Metrics
GUI Graphical User Interface
HTML HyperText Markup Language
IBM International Business Machines
ICSE International Conference on Software Engineering
ISO International Organization for Standardization
IT Information Technology
IQ Intelligence Quotient
JSP Java Server Pages
LOC Lines Of Code
NASA National Aeronautics and Space Administration
NPV Net Present Value
PC Process Costing
PDCA Plan Do Check Act

ix

x Acronyms

PDSA Plan Do Study Act
PSP Personal Software Process
QIP Quality in Practice
RCA Resource Consumption Accounting
REST REpresentational State Transfer
RFID Radio-frequency identification
RAD Rapid Application Development
ROI Return on Investment
SOA Service Oriented Architecture
SWOT Strengths, Weaknesses, Opportunities, and Threats
UML Unified Modeling Language
VP Vice President
WMC Weighted Methods per Class
WWI World War I
WWII World War II
XP Extreme Programming
XXX The boss in our fictional story

Contents

Part I Motivation for Lean Software Development

1 Introduction . 3
1.1 Introduction .. 4
1.2 Tame and Wicked Problems . 8
1.3 Software Development Is a Wicked Problem . 10
1.4 Taylorism and Software Development . 11
1.5 Summary.. 15
Problems . 16
References .. 16

2 The Lean Revolution . 19
2.1 Introduction .. 20
2.2 Henry Ford. 23
2.3 Taiichi Ōno and the Toyota Production System.. 26
2.4 Creating a “Radiography” of the Production Process 27
2.5 Worker Involvement .. 31
2.6 “Pull” and Not “Push” . 33
2.7 The Right Parts at the Right Moment at the Right Place 35
2.8 The Right Information at the Right Moment at the Right Place . . . 39
2.9 Quality Management .. 41
2.10 Summary.. 45
Problems . 46
References .. 47

3 Towards Lean Thinking in Software Engineering . 49
3.1 Introduction .. 51
3.2 Value . 52

3.2.1 Risk as a Value-Maximizing Strategy . 54
3.3 Knowledge .. 57
3.4 Improvement.. 59

xi

xii Contents

3.5 “Push” vs. “Pull” in Software Engineering:
“Requirements-First” Development . 62

3.6 “Push” vs. “Pull” in Software Engineering:
“Bottom-Up” Development .. 64

3.7 Summary.. 65
Problems . 66
References .. 66

4 Agile Methods . 69
4.1 Introduction .. 72
4.2 Keeping the Process Under Control . 76
4.3 Job Enrichment .. 79
4.4 Endogenous and Exogenous Control Mechanisms 81
4.5 Synchronizing the Flow of Work of Multiple People.. 82
4.6 Extreme Programming (XP): A Paradigmatic Example

of Agile Methods . 83
4.7 The Building Blocks of XP . 84
4.8 The XP Practices . 87

4.8.1 Business Practices . 89
4.8.2 Integration Practices . 89
4.8.3 Planning Practices . 89
4.8.4 Programming Practices . 91
4.8.5 Team Practices . 92
4.8.6 Uncategorized, Generic Practices . 93

4.9 Control and Coordination Mechanisms . 95
4.10 Summary.. 99
Problems . 99
References .. 100

5 Issues in Agile Methods . 103
5.1 Introduction or “the Hype of Agile”. 105
5.2 The Dark Side of Agile . 110
5.3 The Skepticism Towards Agile Methods . 116
5.4 The Zen of Agile . 120
5.5 Summary or “What Stops us from Moving from Agile

Towards Lean Software Engineering?” . 125
Problems . 126
References .. 126

6 Enabling Lean Software Development . 129
6.1 Introduction .. 130
6.2 Existing Proposals to Create “Lean Software Development” 130
6.3 Share a Common Vision . 134
6.4 Deprive Gurus of Their Power . 142
6.5 Disarm Extremists . 146
6.6 Summary.. 146

Contents xiii

Problems . 147
References .. 147

Part II The Pillars of Lean Software Development

7 The GQMCStrategies Approach . 151
7.1 Introduction .. 152
7.2 What Can We Measure? . 154
7.3 What Should We Measure? . 155
7.4 Applying the GQM Step-By-Step . 160
7.5 Alignment . 164
7.6 Summary.. 168
Problems . 169
References .. 169

8 The Experience Factory . 171
8.1 Introduction .. 172
8.2 Why Plan-Do-Study-Act Does Not Work

in Software Engineering . 172
8.3 The Experience Factory . 174

8.3.1 Work Distribution. 175
8.4 The QIP Step-by-Step .. 177
8.5 The Role of Measurement . 181
8.6 Summary.. 183
Problems . 183
References .. 184

9 Non-invasive Measurement . 187
9.1 Introduction .. 188
9.2 Does Measurements Collection Pay Off? . 195
9.3 Non-Invasive Measurement . 197
9.4 Implementing Non-invasive Measurement . 207
9.5 The “Big-Brother” Effect of Non-invasive Measurement 211
9.6 Summary.. 214
Problems . 214
References .. 215

Part III Lean Software Development in Action

10 The Integrated Approach . 221
10.1 Introduction .. 222
10.2 The Role of Autonomation . 228
10.3 Closing the Loop with an Andon Board for Lean

Software Development .. 237
10.3.1 Visualizing the “Right” Data . 239
10.3.2 Visualizing Data “Right” . 240
10.3.3 Putting the Pieces Together . 243

xiv Contents

10.4 Summary.. 245
Problems . 246
References .. 246

11 Lean Software Development in Action . 249
11.1 Introduction .. 249
11.2 Evaluating Action Research . 254
11.3 Introducing Measurement Programs in Companies 256

11.3.1 Plan . 257
11.3.2 Act . 258
11.3.3 Observe . 261
11.3.4 Reflect . 263
11.3.5 Revise Plan. 264

11.4 Case 1: Exploration or Exploitation? .. 264
11.4.1 Theoretical Framework .. 266
11.4.2 The Study . 270
11.4.3 Results . 277
11.4.4 Discussion . 278

11.5 Case 2: Non-invasive Cost Accounting . 279
11.5.1 Theoretical Framework .. 289
11.5.2 The Study . 291
11.5.3 The Role of the Experience Factory

in Cost Accounting . 317
11.5.4 Results . 318
11.5.5 Discussion . 318

11.6 Case 3: Developing a Lean GQM Graph . 319
11.6.1 Theoretical Framework .. 319
11.6.2 The Study . 321
11.6.3 Results . 348
11.6.4 Discussion . 348

11.7 Summary.. 349
Problems . 349
References .. 350

12 Conclusion . 355
12.1 Introduction .. 355

12.1.1 Lessons Learned . 356
Problems . 357
References .. 357

A If Architects Had to Work Like Software Developers 359

B A Possible Architecture for a Measurement Framework 361
B.1 Scenarios. 362
B.2 Logical View . 364
B.3 Physical View. 372

Contents xv

B.4 Process View . 373
B.5 Development View . 373

Solutions . 375
References .. 389

Index . 391

Part I
Motivation for Lean Software Development

The first part illustrates what the term “Lean Production” means in manufacturing,
why we think its useful to transfer Lean concepts into software engineering,
and which existing approaches exist to transfer the Lean concept into software
engineering.

Chapter 1
Introduction

God grant me the serenity to accept the things I cannot change;
The courage to change the things I can;
And the wisdom to know the difference.

Francis of Assisi

It was a rainy say. Uli was walking on the street and meditating.
He just had a morning session and a lunch with his senior software architects.

They worked intensively to revise the architecture of the system according to the new
specs; they restructured the old model into a new one, which appeared solid enough;
lastly they put together a reasonable Gantt to meet the incoming deadline—they still
had eight weeks but they did not want to end up as the last 4 times working 24/7 and
still having delays and missing functionalities. Neither they wanted the pain to work
under such stress, nor they wanted that their company, Flagship Software Services
(FSS), got a bad reputation.

So far the project had been quite hard. ADE Inc., the customer, had changed
its mind a few times; nonetheless, it was pressing to see soon tangible results.
Moreover, the boss of ADE, XXX, expressed several times his technical opinion
on the project suggesting (ehm, imposing) his technical view he claimed he was
a software engineer and he knew the subject. Indeed he was a software engineer,
but the last time he had a technical task was in the late eighties and he had no
knowledge whatsoever of what UML, SOA, Web-Services, REST interfaces, etc. are.
So Uli had a hard time tutoring XXX in these new technologies.

Also Uli had to explain in details to XXX why the results were late and the
importance to spend enough time at the beginning of the project on defining
the requirements in a sound and complete way, designing a robust architecture,
prototyping the critical part of the system. XXX wanted the results now but Uli said
he needed to be patient and to grant them enough time for the work to be done.
A bit more work now would have resulted in a far better system later. Each time
the discussion reached this point, XXX started shouting that he was not paying for

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__1

3

4 1 Introduction

requirement documents, architectures, prototypes and all these “useless stuff” (well,
XXX used a more colored expression), but for only one thing, a “running system.”
And each time XXX said such things, Uli had a spike in his stomach, started
repeating his mantra (better not to detail it here), smiled, and with his best effort
to be calm, claimed that he was a professional not a wizard, he could not produce
buggy or inconsistent solutions, and that at the end of the project and for the 20
years to come XXX would have thanked him for the robust, adaptable, simple,
efficient, and effective system he produced.

Uli suffered for some turnover in his team: the people were stressed and
unmotivated, so someone left. Since Uli clearly divided the competencies in the team
to have what he believed was a more effective organization, sometimes turnover was
hard, especially when the only owner of a technology left. However, he managed
to keep the core of the team in place. He claimed several times that the senior
management was supporting their effort, that the project was of strategic importance
for the company, and that at the end of the project FSS would have granted everyone
an extra bonus.

The phone rang. Athi was calling; she was the boss of Uli, the VP Engineering
of FSS.

“Uli, I have a good news and a bad news.” “Athi, the good news first, please.”
“You do not loose your job.” Uli imagined the bad news. . . “The bad news is that J
decided to cut the project and to restructure your team.” “You must be joking.” but
he knew she was not it was just to express his anger. . . “I am not, sorry. I am very
sorry, indeed. But there was nothing to do. XXX called J and said that they did not
want to go ahead this way any more. They could consider going on with the project,
but only if you were replaced. Since your team is loyal to you, J thought it is better
to assign the project to another team . . . Uli . . . Uli . . . Are you there?”

1.1 Introduction

Software development has always been problematic, and yet it is.
From the first days of computers, it was acknowledged that telling a computer

what to do was not easy. One important step was the abstraction of the complexity
of the hardware through programming languages, which helped to improve quality
and productivity [3, 10].

Consequently, in the late 1950s and in the 1960s, the research on programming
languages flourished, producing several languages that we still use, either as is or in
new forms. Among these languages there were BASIC, Fortran, LISP, C, ALGOL,
and so on [10].

1.1 Introduction 5

Indeed, moving to more sophisticated languages improved the situation, but
unfortunately, the ultimate, prettiest, and coolest programming languages could not
simplify significantly how software was produced [3].

According to the popular wisdom, when people face problems they cannot solve,
they establish committees who, in turn, create definitions, and the books say that
in 1968, a group of scientists met in Garmisch (Germany), in the mountains near
Munich, and coined a few terms, among which are “software crisis,” “software gap,”
and “software engineering” [9].

The doctors sat in front of the sick and analyzed the symptoms: the software gap,
the gap that occurred between ambitions and achievements. Based on the symptoms,
they diagnosed the software crisis, that is, the inability to produce software as one
would have liked. And luckily, they found the therapy: software engineering, the
application of sound engineering principles to the production of software.

Still, 40C years later we are here discussing the software gap, the software crisis,
and the role of software engineering. Here below there are some facts.

In a survey of the Cutter Consortium of 2008, about 12 % of the analyzed
software projects were canceled before they delivered anything; of the remaining,
more than 20 % were found to deliver only poorly or fairly in at least one of the
success criteria: user satisfaction, ability to meet budget targets, ability to meet
schedule targets, product quality, and staff productivity [6].

A study evaluating 412 projects in the United Kingdom in 2007 found that 9 % of
the projects were abandoned, 5 % were over-budget, and 18 % were over time [14].

The Standish Group regularly studies projects in large, medium, and small cross-
industry US companies [8]. Their results indicate that in 2012, about 18 % of the
projects are canceled before completion or never implemented, and about 43 % of
the projects were challenged: completed and operational, but over-budget or over
the time estimate, or with fewer features and functions than initially specified [15].

We show some studies in Fig. 1.1.1 We see that the reported values for canceled
and challenged projects are higher in Standish Group reports than in others. Some
researchers (e.g., [7,14]) claim that this is because the definitions, e.g., for “success”
or “cost overrun,” differ between the Standish Group reports and other reports, and
other researchers claim that the numbers are wrong [1,8]. Nevertheless, the Standish
Group reports are highly cited in the research community, which shows that many
researchers think they are relevant.

According to a study performed by Emam and Koru, some reasons why software
development projects fail are [6]:

1The here reported list of studies is not exhaustive. We want to illustrate that the problem of
canceled, over-budget, and overtime projects existed and still exists today.

6 1 Introduction

0 10 20 30 40 50 60 70 80 90 100

Standish Group 1994

Standish Group 1996

Standish Group 1998

Standish Group 2000

Standish Group 2004

Standish Group 2006

Sauer et al. 2007

El Emam and Koru 2008

Standish Group 2009

Standish Group 2010

Standish Group 2012

Canceled Challenged Successful

Fig. 1.1 Comparison of the results of studies about the success rate in software development
projects [8, 15]

1. the senior management not sufficiently involved;
2. there are too many requirements and scope changes;
3. there is a lack of management skills;
4. the development costs are higher than planned;
5. there is a lack of technical skills;
6. the system is not anymore needed;
7. the development time is longer than planned;
8. there is a lack of experience with a technology;
9. not enough staff;

10. critical quality problems with software; or
11. the end users were not sufficiently involved.

So, what went wrong? The term “engineering” has a lot to say. When we say:
“we engineer a device,” we often mean that:

1. we understand the (physical) laws underneath the device and its operational
environment,

2. we use mathematics to model the (physical) laws and to optimize the behavior of
such device in its environment, and

3. we produce a perfected device.

All such activities go in the direction of understanding better what the device is
(1), making a plan how to obtain our goals using the device (2), and optimizing its
production process based on the previous two steps (3).

There is nothing wrong in the process of engineering a device; on the contrary, it
works marvelously well, provided we really follow the three steps above, especially
the first, understanding the (physical) laws underneath.

1.1 Introduction 7

Unfortunately, software engineering has often been done without understanding
point 1, that is, without understanding the complexity of the process of creating
ideas, that is, programs. Too often people thought that producing ideas was like
growing tomatoes. Now, growing tomatoes is really great, but a tomato is not a
computer program: growing tomatoes is quite a repeatable process that is based on
a sequence of well-known activities that are clearly observable and, for the most
part, controllable.

The challenges of building software stem from our intrinsic lack of understanding
it, and the essential difficulties of building software can be divided into the following
four categories [3]:

1. Complexity: software systems consist of a multiplicity of unlike parts that can
assume a large number of different states. This makes it difficult to conceive,
describe, and test software;

2. Conformity: software has to be integrated with previously developed software
systems and laws and conform to the way people are used to work. These
dependencies increase the likelihood that the software has to be changed in the
future;

3. Changeability: all successful software gets changed—as new uses of a software
product are found, stakeholders push for modifications. Moreover, successful
software survives the life cycle of the environment (e.g., operating system,
hardware, etc.) it was written for. This means software has to be updated to the
new needs or environments it has to run in;

4. Invisibility: the invisibility of software and the difficulties in visualizing it make
it difficult to reason and to communicate about it.

In his groundbreaking book, Brooks concludes that “building software will
always be hard. There is inherently no silver bullet” [3].

We wrote this book because we think that we can do something about it.
As we will see, we will address all four aspects in this book: we will see how Lean

software development tackles complexity through an iterative, “customer-value-
focused mindset/philosophy [1].” Lean software development is based on an Agile,
flexible development approach (see Chap. 4) and therefore alleviates the conformity
and changeability problem. We will also see how Lean software development
continuously aims to improve, becoming more and more efficient. Indeed, Lean
wants to create a learning organization which knows how to measure its own
performance and to decide what to do next. In this journey, also the invisibility
of software has to be addressed through measurement. We will look at this aspect in
Chap. 9.

In respect to the mentioned four problems, this book presents and combines past
achievements and—as said in the preface—wants to show a practical implementa-
tion of Lean software development, gluing together well-proven tools to provide a
way to develop Lean. The message this book wants to convey is the utilization of
goal-oriented, automated measurement for creation of a Lean organization and the
facilitation of Lean software development.

8 1 Introduction

The first, most significant step that we have to take is to understand the
specificity of software development and to acknowledge that traditional engineering
approaches fall short of providing suitable solutions to it. The second step is to
define a “software-specific” approach to “engineer” the development of software
systems.

The next sections of this chapter deals with the first question, and the remaining
of the book with the second.

1.2 Tame and Wicked Problems

Planning theory distinguishes tame and wicked problems. In this section we present
the decalogue that Rittel and Webber have proposed to classify a problem either as
tame or wicked.

Tame problems are those problems that can be easily engineered; they can
be formulated exhaustively and stated containing all the information needed for
understanding and solving the problem.

Not all problems are tame. There are also wicked problems. The information
needed to describe the wicked problem depends on the idea to solve it.

An example for a wicked problem is: “how can we reduce the crime in the
streets?” The causes of this problem are not completely clear. For example, a high
unemployment rate could be the reason for a high crime rate, as it could be a weak
educational system. It is difficult to develop a strategy to solve the problem if the
factors influencing that problem are not clear. So in this case, the information needed
to implement a given strategy depend on the factors considered influencing the final
result.

Thus, the formulation of a wicked problem is the problem itself. Once we know
what we need to do to achieve our goal, the solution itself is clear. If we could
identify low unemployment as the only reason for crime in the streets, trivially, we
will try to rise employment. As a consequence, wicked problems have no stopping
rule: since we do not know if and how our actions contribute to the goal, it is difficult
to understand when to stop with one action and to proceed with another action.

As a result, there is no unambiguous criteria to decide if a wicked problem is
solved or not. In fact, for wicked problems, it is not even possible to tell how good
the adopted solution will be, since every solution creates a set of consequences that
cannot be fully evaluated in advance. Let us consider the case that we propose to
lower the unemployment rate to reduce the crime in the streets. We could create
new working places by lowering the minimum wage, so it would be cheaper for
companies to hire people and unemployment would be lower. But this could lead
to a situation where more and more workers are hired with the new minimum wage
and the situation could get even worse than at the beginning, as now even working
people would not have enough to eat and would turn into gamblers, burglars, thieves,
etc. We could end up with even more crime in the streets.

1.2 Tame and Wicked Problems 9

The unforeseeable (and not revertible) consequences occurring after an attempt
to solve a wicked problem make it even more difficult to devise a solution.

To simplify the identification of wicked problems, Rittel and Webber have built a
decalogue [12], which Mary and Tom Poppendieck also use as a starting point when
they discuss Lean software development [11]:

1. Wicked projects cannot provide a definitive, analytical formulation of the
problem they target. Formulating the project and the solution is essentially the
same task. Each time you attempt to create a solution, you get a new, hopefully
better, understanding of the project.

2. Wicked projects have no a stopping rule telling when the problem they target
has been solved. Since you cannot define the problem, it is almost impossible to
tell when it has been resolved. The problem-solving process proceeds iteratively
and ends when resources are depleted and/or stakeholders lose interest in a
further refinement of the currently proposed solution.

3. Solutions to problems in wicked projects are not true or false, but good or bad.
Since there are no unambiguous criteria for deciding if the project is resolved,
getting all stakeholders to agree that a resolution is “good enough” can be a
challenge.

4. There is no immediate or ultimate test of a solution to the targeted problem in
a wicked project. Solutions to such projects generate waves of consequences,
and it is impossible to know how these waves will eventually play out.

5. Each solution to the problem targeted by a wicked project has irreversible
consequences. Care must be placed in managing assumed solutions. Once the
website is published or the new customer service package goes live, you cannot
take back what was online or revert to the former customer database.

6. Wicked projects do not have a well-described, widely accepted set of potential
solutions. The various stakeholders may have differing views of what are
acceptable solutions. It is a matter of judgment as to when enough potential
solutions have emerged and which should be pursued.

7. Each wicked project is essentially unique. There are no well-defined “classes”
of solutions that can be applied to a specific case. It is not easy to find analogous
projects, previously solved and well documented, so that their solution could be
duplicated.

8. The problem targeted by a wicked project can be considered a symptom of
another problem. A wicked project deals with a set of interlocking issues and
constraints that change over time, embedded in a dynamic and evolving context.

9. The causes of a problem targeted by a wicked project can be explained in
several ways. There are several stakeholders who have various and changing
ideas about what is the project, its nature, its causes, and the associated solution.

10. The project must not go wrong. Mistake is not an option here. Despite the
inability to express the project solution analytically, it is not allowed to fail
the project.

Now, the first step to solve a wicked problem is to identify its wickedness and
not to try to solve it as if it were tame!

10 1 Introduction

1.3 Software Development Is a Wicked Problem

Software engineers have to understand the problem, design a solution that solves
the problem, and implement the solution.

However, in doing so, they are confronted by exactly those aspects that haunt
them if they approach wicked problems. It is very hard to understand the problem
completely upfront (i.e., collect all requirements) and therefore also hard to devise a
complete solution when starting with the implementation. Moreover, it is unknown
how users will accept the new solution and which further requirements will be
needed later. During the software development, it is difficult to assess how good
the implemented solution will be and how close we are to the solution. Also, the
languages, the operating systems, the APIs, and the databases on which we plan to
develop the software are likely to evolve in an unforeseeable way.

Here are some examples (compare with the indicators of wicked projects above):

1. It is very hard to plan a software development project upfront considering all
eventualities.

2. A software product is hardly perfect or finished; as soon as users use it, new
requirements will arise.

3. There does not exist the one single solution to a software engineering problem.
4. We cannot determine how well an implementation solves the requirements until

we implement it.
5. Choices are sometimes very costly to reverse. The last option is to throw away

the existing product and start from scratch.
6. There are infinite ways to solve a software development problem.
7. Every software development project is essentially unique.
8. Software engineering is a wicked problem on multiple levels: choosing the

“best” database system, user interface, operating system, hardware, etc. is also
a wicked problem.

9. The problem a software system aims to solve is seen differently by the
stakeholders of the system: users, developers, maintainers, database operators,
etc.

10. Software development (i.e., to try to solve the problem) means to spend
resources. To be wrong, i.e., to deliver a solution that the users retain not useful,
is not considered an option.

The invisibility of software mentioned above amplifies the difficulties with
wicked problems: it makes it difficult to understand if our actions help to progress
in the desired direction, as well as it makes it difficult to assess the actual
situation. These difficulties arise from the fact that the primary output of a software
development process is invisible [13]. An invisible output is hard to describe and
also the constraints affecting it. The invisibility of the output and of the constraints
that influence the output lead to a number of consequences.

The lack of physical constraints can lead to a perception that everything is
possible with IT, although software development is governed by real constraint.

1.4 Taylorism and Software Development 11

In fact, the nature of constraints in software engineering tends to be abstract and
multidimensional, therefore difficult to understand and communicate.

In comparison, the physical constraints and the costs faced when requesting
modifications to a building can be communicated and understood by all stakehold-
ers. The difficulty of communication between stakeholders can result in not clearly
understanding the limitations of IT and as a consequence in unrealistic expectations
and overambitious projects [3].

Moreover, since the output of the process is not tangible, it is very easy for
the project to continue for a considerable time before problems become apparent
and without the possibility to verify that the project is progressing in the desired
direction [13].

The lack of physical constraints does not limit the way software is produced and
used as much as in other engineering fields. As a result, software is used to approach
problems never solved before. Moreover, software is used to solve old problems in
new, more efficient ways, which leads to development embarking into research (as
was discovered in 1968 [9]), trying to cope with complexities never approached
before. Not knowing which functionalities are needed makes it difficult to meet
budget and schedule targets.

In summary, we claim that software development is a wicked problem (see
also [4, 11]). When Brooks says that “there is inherently no silver bullet,” he just
reconfirms the wickedness of software. In this book we want to show how a Lean
approach can address the wickedness of software:

1. The iterative, customer-oriented approach reduces the need of detailed planning,
which reduces complexity. Moreover, it is also harder to fail the project since
the client, the one that defines what “failure” means, keeps the control over the
output of the project during the development.

2. An approach based on measurement and collaboration helps to understand if the
team is going towards the right direction and to balance the needs of different
stakeholders (see Chap. 9).

3. A flexible, Agile approach helps to keep the costs of change low (see Chap. 4)
which lowers the need to find the “best” solution immediately and allows to find
a solution that fits the specific context.

4. Just-in-time production (see Chap. 2) maximizes the chances to know how well
an implementation solves the requirements.

5. An approach that systematically collects experience and reuses it in future
projects helps to collect “best practices” for a specific context (see Chap. 8).

1.4 Taylorism and Software Development

The first approaches to software engineering have been mostly guided by the ideas
of Scientific Management by Frederick W. Taylor (see Fig. 1.2): the construction of
the final outcome based on a thorough plan, the division of a project in different

12 1 Introduction

Fig. 1.2 Frederick Winslow
Taylor (image courtesy of
Wikipedia [17])

steps, etc. When we talk about “engineering” a solution, we do not do much other
than applying Taylorism—Taylor was indeed an engineer.

Frederick W. Taylor did not trust that people can work efficiently on their own.
He wrote: “When the same workman returns to work on the following day, instead
of using every effort to turn out the largest possible amount of work, in a majority
of the cases this man deliberately plans to do as little as he safely can to turn out far
less work than he is well able to do in many instances to do not more than one-third
to one-half of a proper day’s work [16].”

Consequently, he claimed that for any company, the best is when each person
produces every day the highest possible efficiency: “no one can be found who will
deny that in the case of any single individual, the greatest prosperity can exist only
when that individual has reached his highest state of efficiency; that is, when he is
turning out his largest daily output [16].”

To achieve such efficiency, he proposes four key activities for managers:

1. They develop a science for each element of a man’s work, which replaces the old
rule-of-thumb method.

2. They scientifically select and then train, teach, and develop the workman,
whereas in the past, he chose his own work and trained himself as best as he
could.

3. They heartily cooperate with the men so as to insure all of the work is being done
in accordance with the principles of the science which has been developed.

4. There is an almost equal division of the work and the responsibility between the
management and the workmen. The management takes over all work for which
they are better fitted than the workmen, while in the past almost all of the work
and the greater part of the responsibility were thrown upon the men.

Notice that since Taylor does not trust much the individual workers, he thinks
that the know-how of each worker needs to be transferred to the managers. The

1.4 Taylorism and Software Development 13

know-how should be translated into “procedural knowledge” on how to do the work,
automated to the highest possible extent so that workers can be easily substituted.

Taylorism has deeply influenced what we consider “good management prac-
tices.” The following terms are often considered the cornerstones of any sound
organization:

• the rigid and detailed upfront planning division of labor and specialization of the
workforce and

• the clear formalization of a problem and division of a large problem in small
subproblems.

Who objects to divide the work and to specialize the skills of the workforce
accordingly? It would go against the common sense. Indeed it is important to have
adequate and specialized skills and that people need to master technology. Technical
excellence is indeed the prerequisite of an effective software organization. But
the growth in technology should not result in the creation of mutually exclusive
compartments of knowledge within an organization. Rather, it should cross-fertilize
the entire organization, where the individual skills of the individual developers
should synergistically build the success of the team.

Who dares to say that defining rules in details to manage the production may
disturb and even disrupt and kill an organization? We know that it is good to
define rules—the rules save us from chaos; we learned it in kindergarten. However,
only rules that naturally emerge from the production process help in organizing
a production process. Rules that are imposed externally to make the process
“aesthetically clean” and that are verified by an external inspector typically prevent
the process to flow naturally towards the end product.

Who dares to say that the formalization of a problem has to follow its understand-
ing and that the understanding sometimes (well, often and nearly always) follows
the first attempt to solve the problem? We were taught that we should first analyze
and then solve. Well, we have seen that wicked problems exist, so sometimes the
understanding of a problem comes with attempts to solve it.

Luckily, we have often broken the rules and we solved problems, real problems.
Software engineers are like Sherlock Holmes, the famous detective. Sherlock
Holmes faces problems that go beyond the usual complexity, where the typical
“divide and conquer” does not work. The solutions to a problem are uncertain, and
the causes can be multiple.

And any step he takes is irreversible—there is no way to go back 1 day or even
1 h if the delinquent discovered that Sherlock Holmes is after him.

Likewise, in most situations, software engineers have to be broad in their
knowledge, as they face new issues every day. They have to make several attempts
before finding the right solution. And if they fail, well, they have no way back.
Trying to help them and to make software development more effective by adding
rules and superimposing layers of organization is useless or worse; it may be
extremely detrimental.

14 1 Introduction

Yet, they are not wizards. Sherlock Holmes is not a wizard; he is a detective.
Likewise, software engineers are not hackers; they are serious engineers.

We understand now why the attempt of solving the software crisis by a
widespread adoption of tools like formal methods have not led anywhere. The
problem is not the inability of software engineers to capture requirements, design,
etc. in a formal way. Actually, software engineers use a very elaborate formal
language, the programming language. The problem is that in most of the cases,
requirements are fully captured only once the software has been shipped—or even
later; the design is clear only at the end of the project.

Life would be much easier if a very careful upfront analysis of the need of the
user, the widespread adoption of a complex-but-yet-very-sound formal language,
and a very detailed planning could solve the software crisis. People have often
thought that this was the case, and they have spent enormous effort in finding better
ways to collect requirements that would never change, to define a stellar formal
language, and to devise the ultimate planning technique and the associated tool.
Now, it is definitely good to have a better way to collect requirements, a stellar
formal language, and an ultimate planning tool. But it is not the answer to the
problem of the software crisis.

Lack of understanding is not caused by the superficiality of analysts, which is
addressable by the adoption of the coolest formal language. Unexpected changes are
not accidents that occur but are avoidable by good planning. Wrong or misleading
decisions are not the result of poor management. Lack of understanding, unexpected
changes, and misleading decisions are intrinsic to software development.

And lastly, it is not possible to “engineer” the production so that there would be
no need of the “software hero.” Good companies are made of heroes! Heroes are
not hackers—they are well-trained individuals that know how to play the game in
a team and are capable of devising creative and unique solutions that the “regular”
folks would not elaborate.

So, are software engineers so strange that the development of software is so
different than the production of any other good? Our answer is NO.

There are many disciplines that exhibit the same features as software devel-
opment. We have already mentioned criminology, but there is also medicine. For
example, when someone has a serious disease, if he can, he does not go just to
the general practitioner or to the specialist suggested by the general practitioner.
Everyone wants to go to the good doctor, the one that gives the best therapy and
solves even the most intricate cases! The process of devising new drugs is also
similar to software development, only a few attempts succeed and sometimes the
results of an experimentation are totally unexpected, and drugs intended to cure a
disease may result to cure totally different diseases.

Batie [2] mentions many other fields in which wicked problem issue areas exist:
terrorism, global climate change, nuclear energy, poverty, crime, ecological health,
pandemics, genetically modified food, water resource management, trade liberal-
ization, the use of stem cells, biofuel production, nanotechnology, gun control, air
quality, sustainable development, biodiversity, environmental restoration, forest fire
management, and animal welfare.

1.5 Summary 15

Also art restoration seems also to be a wicked problem. When the restoration
of the Sistine Chapel (from November 1984 to April 1994) had to be prepared,
the restorers knew that they could not plan every eventuality ahead (indicator 1).
They had to arbitrarily decide when the restoration is to be considered finished
since there is no objective criteria for this (indicators 2 and 4). There were infinite
methods, tools, and approaches to be chosen from (indicators 3, 6, and 8). In case of
a mistake leading to the dissolution of the initial frescoes by Michelangelo, it would
have been impossible (or extremely hard) to restore the initial state (indicator 5)
and they would have been blamed for it (indicator 10). Their existing experience
was definitely helpful; still every restoration is essentially unique (indicator 7).
Finally, the result of the restoration in 1994 was highly controversial; the result
was considered as terrific by some, as too aggressive, and, hence, as a destruction of
the original artwork by others (indicator 9).

1.5 Summary

The lack of physical constraints does not limit the way software is produced or used
as much as in other engineering fields. As a result, software is used to approach
problems never solved before. Software is used to solve old problems in new,
more efficient ways, which leads to development embarking into research (as was
discovered in 1968), trying to cope with (wicked) complexities never approached
before. Not clearly knowing which functionalities are needed makes it difficult to
meet budget and schedule targets.

“Engineering” as seen by Frederick W. Taylor seems not to really work for
software engineering. Brooks [3] found out why: due to the complexity, the need
of conformity, the changeability, and the invisibility of software systems it is very
hard to understand, model, and track the progress of software development [13]:

• It is hard to understand the current status: an invisible output is hard to describe
and also the constraints affecting it.

• It is hard to understand the progress: it is difficult to understand if our actions
contribute to the progress in the desired direction. Since the output of the process
is not tangible, it is very easy for the project to continue for a considerable time
before problems become apparent and without the possibility to verify that the
project is progressing in the desired direction.

• Everything seems possible: the lack of physical constraints can lead to a
perception that everything is possible with IT, although software development
is governed by real constraints.

Software engineering shows properties typically found in wicked problems—and
these properties have to be addressed.

16 1 Introduction

Problems

1.1. There is an ongoing discussion whether software development is an art or a
craft. Those that see it more as an art think that there are no rules that can help you
to develop good software: it is like for every other artist, either you have the ability
to paint, dance, or program or you do not. Since there are no rules, software is not
something that can be engineered because there are factors that contribute to the
success of software development, that depend on creativity, which we (still) cannot
engineer.

On the other hand, some see it more as a craft, which also has a creative
component, but there are rules one can follow to build good software and that one
does not need to be born with the ability to program software, but that one can
learn it.

What aspects of making software feel like an art, which like a craft to you? Which
position to do defend?

1.2. Gerald M. Weinberg once said: “If houses were built the way software is
built, the first woodpecker would bring down civilization.” Such anecdotes, sayings,
and jokes about software are forwarded every day from e-mailbox to e-mailbox.
Probably because they bluntly express what many users think about software: “the
average customer of the computing industry has been served so poorly that he
expects his system to crash all the time, and we witness a massive worldwide
distribution of bug-ridden software for which we should be deeply ashamed [5].”

Why, do you think, we could get along with this in the past, and still today we
can? A company producing cars with such a low quality would be already bankrupt.
Why does this not happen with software? Why do customers still buy software?

References

1. Ambler, S.W.: The non-existent software crisis: Debunking the chaos report. Online:
http://www.drdobbs.com/architecture-and-design/the-non-existent-software-crisis-debunki/
240165910 (2014). Accessed 30 April 2014

2. Batie, S.S.: Wicked problems and applied economics. Am. J. Agric. Econ. 90(5), 1176–1191
(2008)

3. Brooks, F.P. Jr.: No silver bullet: Essence and accidents of software engineering. IEEE Comput.
20(4), 10–19 (1987)

4. DeGrace, P., Stahl, L.H.: Wicked Problems, Righteous Solutions: A Catalogue of Modern Soft-
ware Engineering Paradigms. Yourdon Press Computing Series. Yourdon Press, Englewood
Cliffs (1990)

5. Dijkstra, E.W.: The end of computing science? Commun. ACM 44(3), 92 (2001)
6. Emam, K.E., Koru, A.G.: A replicated survey of IT software project failures. IEEE Softw.

25(5), 84–90 (2008)
7. Jørgensen, M., Moløkken-Østvold, K.J.: How large are software cost overruns? Critical

comments on the standish group’s chaos reports. Inf. Softw. Technol. 48(4), 297–301 (2006)
8. Laurenz, E.J., Verhoef, C.: The rise and fall of the chaos report figures. IEEE Softw. 27(1),

30–36 (2010)

http://www.drdobbs.com/architecture-and-design/the-non-existent-software-crisis-debunki/240165910
http://www.drdobbs.com/architecture-and-design/the-non-existent-software-crisis-debunki/240165910

References 17

9. Naur, P., Randell, B. (eds.): Software Engineering: Report on a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968. Scientific Affairs
Division, NATO (1969)

10. O’Regan, G.: A Brief History of Computing, 2nd edn. Springer, London (2012)
11. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit. Addison-

Wesley Professional, Boston (2003)
12. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy Sci. 4(2),

155–169 (1973)
13. Royal Academy of Engineering and British Computer Society: The Challenges of Complex IT

Projects: The Report of a Working Group from the Royal Academy of Engineering and the
British Computer Society. The Royal Academy of Engineering. Online: http://www.bcs.org/
upload/pdf/complexity.pdf (2004). Accessed 4 Dec 2013

14. Sauer, C., Gemino, A., Reich, B.H.: The impact of size and volatility on IT project perfor-
mance. Commun. ACM 50(11), 79–84 (2007)

15. Standish Group International: Chaos Manifesto 2013: Think Big, Act Small (2013)
16. Taylor, F.W.: The Principles of Scientific Management. Harper & Brothers, New York. Online:

http://www.gutenberg.org/ebooks/6435 (1911). Accessed 4 Dec 2013
17. Wikipedia contributors: Frederick winslow Taylor. Online: http://en.wikipedia.org/wiki/

Frederick_Winslow_Taylor (2013). Accessed 4 Dec 2013

http://www.bcs.org/upload/pdf/complexity.pdf
http://www.bcs.org/upload/pdf/complexity.pdf
http://www.gutenberg.org/ebooks/6435
http://en.wikipedia.org/wiki/Frederick_Winslow_Taylor
http://en.wikipedia.org/wiki/Frederick_Winslow_Taylor

Chapter 2
The Lean Revolution

Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away.

Antoine de Saint-Exupery

Less than a second passed when Uli called Athi back. “Fire me, not them. I am
responsible for the situation, I take all the blame for it.” “Sorry, it would not work.
We know you. You are smart, you know how to

Uli ran back to his office and called again a meeting of his four senior
architects. Euril, his second, and Perim arrived immediately: they perceived that
some important was going on. The other two, Sinon and Elp arrived later, but still
within the usual 10’.

At the beginning of the project Uli started the tradition of preparing a coffee
to all his senior architects. He did not want to change the ceremony on such day.
There was no reason whatsoever to show lack of respects for such group of dedicated
individuals. So, he started asking what they wanted: 2 cappuccinos, one Americano,
one decaf (for him), and one espresso. Uli went to the coffee machine and started the
process. They knew it would have taken a while to complete it, so they sat down and
started chatting. After about 10 minutes Uli reappeared and was quite distressed—
“Who wants the decaf cappuccino?”, he asked. No way, he messed up the orders!
He had to restart.

To make the process easier he decided to write down what everyone wanted. Only
four choices, but he was nervous (who would not be) and he knew from programming
that under stress the memory is not so effective. Once he completed to prepare the
beverages, he started to add the sugar. That was easy! That was a peculiar group—
all the five of them wanted the same amount and kind of sugar: half spoon of brown
sugar! He put all the cups in a raw and started to add it. The telephone rang—an
ad! He explained calmly (so to say) to the caller that he have never accepted to
have his name inserted in any list for advertisement and that they were violating his
privacy! But after the short call he forgot where he had added the sugar and where

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__2

19

20 2 The Lean Revolution

he did not! Since they were large beverages and the amount of sugar was small, he
could not possible to recover where he was.

And back to the room of the team, more exhausted, explaining the situation. Euril
suggested him to prepare one coffee at a time, asking each of them what she or he
wanted. Well, Uli thought it was a waste of time: he knew how to manage parallel
threads for preparation of coffees, but at this point he did not want to reply. And so
he started back, one at a time from the selection of the powder down to the addition
of the sugar and. . . everything went fine.

Uli started thinking, while drinking his decaf—he looked absent but after a few
moment a smile appeared in his face, and he shouted “Eureka!” and run out of the
office.

Everyone was shocked.

2.1 Introduction

In this book we focus on management, with specific reference to the production of
software, which poses the challenges we discussed in Chap. 1.

Management becomes challenging when the number of people in the team
grows. From a historical perspective, some of the first circumstances where this
has happened was during hunting and in war. The problem of management also
emerged with the first major movements of goods and was regulated by the presence
of a marketplace. Lastly, with the industrial revolution it emerged in the firm, where
hundreds and then thousands of people worked together to produce goods.

We now notice, especially in the area of mobile phone applications, that concepts
of the traditional market place get reintroduced in new ways. Vendors of cellular
phones like Apple and Google organize virtual marketplaces where a wealthy trade
of applications occurs. Typically, these applications are small and developed by
individual developers and small teams [5, 6].

During these first moments in history in which management was born, different
management styles emerged and have proven to be successful in different circum-
stances. It is important to have them in mind, as they reappeared later on also in the
software industry, often claiming that they were groundbreaking ideas.

In the first wars, soldiers from opposite armies used to run against each other and
to fight. Later, they realized that giving some structuring to the fight improved the
results. The Greeks had the idea of forcing the infantry to move neck-to-neck in a
large, rectangular shape, to act as a hammer against the enemies. They called such
structuring a phalanx (Fig. 2.1).

2.1 Introduction 21

Fig. 2.1 The Macedonian phalanx (image courtesy of Wikipedia [26])

In the fourth century BC, Philip the Second of Macedonia and his son Alexander
the Great perfected the structure of the Phalanx [10]. The Macedonian soldiers
were armed with a long lance, the sarissa of more than 5 m, and a shield. While
approaching the enemies, the first line had the sarissas down and the subsequent
lines kept it up. Once they were in touch with the opposing army, also the other
lines put the sarissas down, so that the enemies had to face a very dense cluster or
dangerous daggers and could not do nothing but to step back, well, in principle.

The phalanx is the quintessence of structuring for the army of the time. It required
discipline and a sense of duty. After all, the soldiers in the first line had to stay firm
in the lines even if the enemy was overwhelming and they knew that they were going
to be dead in a few moments. A soldier in the phalanx had nothing to do but to obey
and sacrifice himself.

A totally different approach was taken by the Roman Quintus Fabius
Maximus [16]. In the second century BC, the troupes of Carthage under the lead
of Hannibal attacked Rome. They came down from the Alps with elephants and
repeatedly defeated the Romans in open battles. Rome had a rule that in case
of emergency, most of the constitutional rights were suspended and almost all
the power went to an appointed dictators for 6 months. In this case, the Romans
selected as dictator an experienced man, Quintus Fabius Maximus. Fabius avoided
confronting Hannibal in open fields; rather, he tried the best intelligence to predict
the moves of Hannibal in Italy and entertained with him short fights when he
felt Hannibal was weaker. The long-term goal of Fabius was to put the army of
Hannibal under a constant stress so that he would have to leave Italy. Fabius was
very successful and Hannibal lost men and motivation.

Despite the winning approach, the Romans started criticizing Fabius. They
claimed he was a coward. Someone even suggested that he was a betrayer. Fabius
claimed that his goal was not to display courage but to save Rome. Still, his citizens
were not happy. At the end, going against all the typical rule of a dictatorship, they

22 2 The Lean Revolution

appointed another general, Minucius, to share the command in chief of the Roman
army. Minucius and Fabius decided to split the army in two. Minucius did not wait
much and at the first occasion attacked Hannibal, and if it were not for the wise and
intelligence rescue of Fabius, he would have faced an enormous defeat. Then the
Romans accepted the approach of Fabius and continued the war against Hannibal
with his wise strategy.

After a while, however, another man, Varro, build his political fortune by
criticizing the approach of Fabius, again claiming that it was not honorable, driven
by lack of courage, and so on. Varro wanted a face-to-face confrontation with
Hannibal. Again, the people liked this bold approach and appointed him as consul.
In short, Varro was badly defeated by Hannibal; the Roman reappointed Fabius and
eventually won.

Altogether, this short review evidences that even in the army, where obedience
and order are considered to be of paramount importance, there are situations where it
is better to have a very structured approach but also other situations when it is better
to act flexibly. Noticeably, there are people who claim that a flexible approach is
an evidence of lack of (management, technical, personal) skills, courage, resources,
vision, etc. The history of Fabius is a paradigmatic example. And these people claim
this despite all evidences: it looks like that they to apply some sort of aesthetic model
to management, where everything has to be ordered, clean, disciplined, symmetric,
and bold.

A similar discussion can be made for software development: the initial software
development models, such as the waterfall model, originated from the idea to
minimize the risk to do something wrong. One does everything step-by-step: plan,
think, implement, think again, test, think, and deploy. It is like planning to climb
Mount Everest: You do not want to end up somewhere unprepared and die. You plan
thoroughly and then carry out the plan. Waterfall was conceived as a risk-reducing
technique.

With time, practitioners realized that the waterfall model makes two assumptions
that frequently do not hold (e.g., [2, 3]):

• we have all the necessary information to make a plan and
• we face rising and changing costs, i.e., fixing something later in the process costs

more than fixing it earlier.

As we will see later, the Agile and Lean communities claim that both assumptions
do not always hold: sometimes it is not possible to plan everything. Better than to
speculate in the planning phase, it can be advantageous to develop a prototype and
then plan again once we find out. Moreover, it is not true that mistakes that are
corrected later in the process have extraordinary costs. Technologies like updates
over the Internet and programming techniques that keep the adaptability of the code
high and its complexity low, e.g., component-based architectures, refactoring, etc.,
help to keep the costs of change under control.

2.2 Henry Ford 23

If we want to compare this approach with the climb to Mount Everest we could
say that Agile and Lean are like exploring an uncharted forest: You cannot plan. You
carefully walk and chart it, and if you find out you went wrong, you go back a bit
and try again.

2.2 Henry Ford

As we mentioned in Chap. 1, Taylorism was the first prominent attempt to supply a
structured approach to managing a civil organization. We have already discussed in
Chap. 1 his ideas of:

• rigid and detailed upfront planning;
• division of labor and specialization of the workforce; and
• the clear formalization of a problem and division of a large problem in small

subproblems

The ideas of scientific management have deeply influenced software engineering,
software engineering intended in a broad sense, i.e., the “systematic design,
development, and development of software products and the management of the
software process [12]).”

Most of the ideas of Frederick W. Taylor were put in practice by Henry Ford.
Ford was almost a contemporary of Taylor, but it is unclear whether he was inspired
by the ideas of Taylor or he started his approach anew.

Ford was different from Taylor in his attention to the welfare of workers. He
introduced several improvements on the life of workers: for example, he set the
minimum wage to $5 per hour and improved the workplace safety to avoid serious
accidents [9]. During World War I and the crisis of the late 1920s also for his
factories the situation degraded, but still he did care for those working for him and
did not treat them as brainless machines.

In addition to the attention to the life of workers, Ford introduced two key ideas
to the production of cars (and, indeed, of any good): economies of scale and just-in-
time delivery.

Ford understands that the production of a car goes through several steps aimed
at producing the various parts of it. The production of each part requires in turn
the preparation of the instrumentations and of the tools, the acquisition of the raw
material, the actual work to produce the car, and then the disposal of the tools and the
dismissal of the waste. The acquisition of the raw material requires also interactions
with suppliers, typically external to the factory.

His idea is that to optimize the production of a car, each step should be optimized,
and in addition:

• more than one item at a time should be produced together in batches, so the
preparatory work could be factored out of several items and

• each item should be produced by workers specialized in such production.

24 2 The Lean Revolution

The idea is neat. Let us call p the time to prepare the instrumentations and the
tools, a the time for the acquisition of the raw material, w the time to do the actual
work to produce the car, and d the time for the disposal of the tools and the dismissal
of the waste. The improvements of the technology and of the process reduce the
value of w and of the overall production time.

Moreover, if we produce one item at a time, the total time to produce an item
(alone), ta is

ta D p C a C w C d

And the time to produce n cars Ta is

Ta D n � .p C a C w C d/

If we produce n cars in one batch, then, roughly speaking, the time to produce
the batch Tb is

Tb D p C a C n � w C d D .p C a C d/ C n � w

Now, Ta > Tb , since for Tb I do p C a C d only once. The larger the number of
cars n, the lower the production costs for one car. Figure 2.2 shows the average time
to produce one item for two possible values for w, wa, and wb , where wa > wb .

Fig. 2.2 Average time per
item when the batch size is
increased

A
ve

ra
ge

tim
e

pe
ri

te
m

Number of items per batch

a

b

wa > wb

wa

wb

Analogous equations can be drawn for the production costs. The phenomenon of
the reduction of average cost per item when the number of items increases is called
“economies of scale,” because scaling up the production results in better economies.

Note that there are limits to the scale-up; these limits are imposed by the physical
space available, by the dimensions of the machinery in place, by the possible

2.2 Henry Ford 25

deterioration of the raw material, and so on. Beyond such limits, an increase in
the production does not result in a reduction of the average costs; in such case there
are “diseconomies of scale.”

As we mentioned, often the production of goods requires the production of
components of such goods or their acquisition from suppliers. A key question is
how many components ought to be supplied to produce a good. The obvious answer
is exactly the amount needed. However, what if a component is damaged or wrong,
or if the production process proceeds faster than needed? Well, the idea is to pile up
a few more components “just in case” there is a need for them.

It is like when we prepare a crostata pie. The crostata is a simple, butter-based
pie with at the top the jam of choice. So, to bake a crostata we need flower, butter,
eggs, water, and, indeed, the jam of choice. When we prepare the crostata, though,
we may think that an egg can get broken, the butter may get old, or, worse, that at
the end we may decide to change the jam. So we get a few extra eggs, a constant
supply of fresh butter, and a variety of jams. This redundancy ensures that we do not
get stopped in the process of preparing a crostata. However, the redundancy has an
adverse effect: we need to handle an inventory of food for the crostata, which means
costs of refrigerations and costs for food that might be never used. Altogether, we
have extra costs that are due to our approach of “just in case.”

Applying the idea of “just in case” to the production of cars has even higher
needs of components, because, as mentioned, we might want to take full advantages
of our infrastructure and we might want to have an excess of components so that
machines would never stop. This results in even higher costs.

The idea of Ford is to keep the inventory to the minimum, getting all what is
needed “just-in-time” for its use and in full shape for it, so that there is no need for
the expensive inventory. So he put a lot of effort to coordinate suppliers inside the
company and suppliers outside the company.

“Just-in-time production” means that the parts needed during the production
process are made available at the right place, at the right moment, and in the right
quantity.

Altogether, Ford achieved a remarkable success with his production model.
Figure 2.3 evidences such success showing the variation in items produced and in
cost of the famous T model from 1908 to 1916.

The Ford model resulted in mass production of goods. When Ford started selling
his cars, only a miniscule fraction of the families had a car. His idea was that if he
managed to produce a solid and cheap car, he would have sold it—and this really
happened, at least initially. He once said: “Any customer can have a car painted any
colour that he wants so long as it is black” [9].

However, after World War II, two concurrent phenomena occurred [14]:

• a small but yet significant portion of the market was already saturated and
• the credo “if you make it, you can sell it” had no validity anymore. Economists

describe this event as a shift from a seller’s market to a buyer’s market [4, 19].

In such years people had less cash to spend and started to focus on the value. The
Ford model started to decline.

26 2 The Lean Revolution

1908 1910 1912 1914 1916

0

200 000

400 000

600 000

Year

N
um

be
ro

fc
ar

s
pr

od
uc

ed

1908 1910 1912 1914 1916

400

600

800

1 000

Year

A
ve

ra
ge

pr
od

uc
tio

n
co

st
s

pe
rc

ar
in

$

a b

Fig. 2.3 Variation of the production and of the cost of the Ford “Model T” [1]. (a) Production
volume per year. (b) Production costs per year

2.3 Taiichi Ōno and the Toyota Production System

When the Fordist model started to decline, a manager of Toyota, Taiichi Ono, had
a revolutionary idea. He stopped to focus on the minimization of costs through the
production of high quantities. Rather, he tried to align the production to what the
customers effectively required and to strive for the maximum efficiency in producing
that. His idea is that higher levels of efficiency require:

• to understand what produces perceivable value to the customers and
• to have a constant monitor of the production process, so that anything that does

not produce value is eliminated.

These two actions had three major needs:

• to focus on the customer, who best understands what he needs;
• to empower all the employees throughout the development process, from the

manager down to the janitor; and
• the employees who are the best people know what they do and can spot any area

of waste.

Instead of focusing on the minimization of costs through the production of high
quantities, the objective of Toyota was to align the production to what the market
effectively required and to strive for the maximum efficiency in producing that.

The Toyota Production System tries to maximize efficiency by eliminating all
activities that do not produce value to the customer. “Value” means the perceived
benefit by the customer and influences their satisfaction with the product and, finally,
what customers are willing to pay for it. Activities that do not produce value to the
customer, i.e., are wasting resources and should be removed.

This philosophy promoted by Toyota came back in the 1990s with the book
“Lean Thinking” by Womack and Jones [27]. “Lean Thinking” generalizes the

2.4 Creating a “Radiography” of the Production Process 27

ideas introduced by Toyota to achieve “Lean manufacturing” and brought the Lean
idea into new industries such as the pharmaceutical industry [15] or software
development [17].

The Toyota Production System continuously focuses on the activities that provide
value for the customer and removes unnecessary ones. This improvement is pursued
in a continuous, incremental way. Not radical changes such as in business process
reengineering [11] but constant improvements through optimization are the goal.

Womack and Jones identify five steps to enact Lean Thinking [27]:

1. Specify value from the standpoint of the end customer: understand what is
valuable for the customer, why the customer is willing to pay money for a certain
product or service;

2. Identify the activities along the production process that contribute in
creating what is valuable from the standpoint of the end customer, i.e.,
identify all the steps in the value stream;

3. Align the value-providing steps in a way that every product and service is
built or provided along a simple, predefined path, i.e., make the value-creating
steps flow toward the customer;

4. Start an activity only at the moment that it provides value to a concrete
customer requirement, i.e., let customers “pull value” from the next upstream
activity; and

5. Pursue perfection: continuously improve.

These aspects will be described in detail below: In Sect. 2.4 we describe how to
specify value from the standpoint of the end customer (step 1). Later in the chapter
we classify activities whether they contribute or not in creating what is valuable
from the standpoint of the end customer (step 2). Section 2.5 describes how the
Toyota Production System involves workers to constantly improve the production
process (steps 2 and 5). Section 2.6 describes the alignment of the value-providing
steps using a pull strategy (steps 3 and 4). The Sects. 2.7 and 2.8 describe how
activities can be coordinated so that they occur just-in-time to deliver the right parts
and information at the right moment at the right place (step 5). Finally, Sect. 2.9
describes which approaches the Toyota Production System uses to continuously
improve (step 5).

2.4 Creating a “Radiography” of the Production Process

The first step to understand which activities are not necessary is to understand what
is important from the standpoint of the end customer. It is necessary to understand
why the customer is willing to pay money for a certain product or service.

For this reason, the Toyota Production System constantly analyzes the ongoing
activities to identify:

• waste of overproduction, i.e., output that is not required and not valued by the
customer;

28 2 The Lean Revolution

• waste of waiting, i.e., output that unnecessarily has to wait for a limited resource
to be further processed. During this time the output can generate a set of costs,
e.g., it might block other resources or might become obsolete;

• waste of transportation, i.e., unnecessary transportation of goods within the
production process. Transportation costs can be lowered by aligning the pro-
duction process in a way that subsequent processing steps are carried out by
collocated machines;

• waste of processing, i.e., unnecessary processing activities. Understanding the
processing costs is the basis to understand the contribution of each activity to the
total production cost and to evaluate possible improvement actions;

• waste of inventory, i.e., keeping an unnecessary amount of unfinished products
in inventories. Unfinished products that are kept in inventories produce manage-
ment costs, which grow in relationship to the inventory size;

• waste of movement, i.e., the unnecessary movement of people or machines
during the production process;

• waste of making defective products, i.e., the costs deriving from producing
products that cannot be sold due to defects; and

• waste of talent, i.e., the under utilization of worker knowledge and skills.

A prerequisite for the identification of wasted resources is a clear understanding
of the costs and benefits of the performed activities. In the same way as wastes are
analyzed, problems have to be analyzed thoroughly to understand causes and to be
able to avoid the problem in the future.

As a starting point, the Toyota Production System advices to analyze the “value
stream”: all the required steps (value adding and non-value adding) to bring a
product from raw materials to the customer are captured. The result of this analysis
is used to identify methods to eliminate waste in the current production process.

To understand the value stream includes walking to the place where the produc-
tion takes place, talking to workers, and closely observing how a product is actually
made from start to finish. Figure 2.4 shows an example for a value stream. Four
different value streams produce the raw materials that are then used to produce cans
of Coke. Table 2.1 shows the analysis of the value stream of one box of Coke cans in
detail: for every step it shows the time the raw material waits in the incoming goods
inventory, is processed, and waits in the finished goods inventory and how much is
spoiled of the initial amount of aluminum.

Looking at Table 2.1, we can already see some wastes:

1. the difference between effective productive work (3 h) and the total cycle time
(11 months) is very high: 99 % of the time nothing happens;

2. the aluminum and the cans are carried through 12 storage facilities before they
are offered to the customer (cells marked with ①);

3. the cans are packed and unpacked three times on pallets (cells marked with ②);
and that

4. 4.24 % of the extracted aluminum is lost because cans are damaged when packed
empty at the can maker.

2.4 Creating a “Radiography” of the Production Process 29

Fig. 2.4 Value stream for
Coke [27]

Fir forest

Paper mill

Carton
plant

Carton
warehouse

Smelter

Hot rolling
mill

Cold rolling
mill

Can maker

Bauxite
mine

Reduction
mill

Corn
storage

Caramel
plant

Caramel
storage

Essence
plant

Corn field

Beet field

Beet
storage

Sugar plant

Sugar
storage

Bottler

Table 2.1 The value stream for one box of Coke cans [27].

Step

Time spent in Spoilage in %
of the initial
amount of
aluminium

Incoming
goods
inventory
(weeks)a

Processing
duration
(min)

Finished goods
inventory
(weeks)

Bauxite mine 0 20 2 0

Reduction mill 2 30 2 0

Smelter 12 120 2① 2

Hot rolling mill 2① 1 4① 4

Cold rolling mill 2① 1 4① 6

Can maker 2① 1 4①② 20

Bottler 0,6①② 1 5①② 24

Distributor 0①② 0 0,4①② 24

Store 0①② 0 0,3 24

Household 0,4 5 – –

Total 5 months 3 h 6 months 24

a Including the time needed to transport the goods from the preceding step

30 2 The Lean Revolution

The analysis of the value stream provides a picture of the value that the company
provides to the end customer. This helps to classify activities into three groups:

• activities that add value
• activities that do not add value; these activities can be divided into:

– activities that provide no value but are needed, e.g., because of current
technologies, law requirements, or production methods;

– activities that provide no value and are not needed, i.e., that can be removed.

The multi-level pie in Fig. 2.5 shows this classification: the inner ring divides
all activities into “non-value-adding” activities and “value-adding” activities. The
non-value-adding activities are then (in the outer ring) divided into needed and not
needed activities.

Fig. 2.5 Classification of
activities as value adding or
non-value adding [14]

Value adding

Non-value

adding

Not needed

Needed

All

Activities

The advice that the Toyota Production system gives is summarized in
the decision matrix in Fig. 2.6: Activities that do not add value and are not
needed should be removed; if they are needed but do not provide value,
they should be reduced, reengineered, and performed with the maximum
efficiency to minimize the wasted resources. If activities are adding value,
they should be constantly improved and performed with improving quality and
efficiency.

2.5 Worker Involvement 31

Remove activity

Reduce/reengineer
activity, focus on

efficiency

Maintain high quality,
focus on efficiency

Is
no

t r
eq

ui
re

d
by

th
e

cu
rr

en
tp

ro
du

ct
io

n
te

ch
no

lo
gy

Is
re

qu
ir

ed
by

th
e

cu
rr

en
tp

ro
du

ct
io

n
te

ch
no

lo
gy

Does not provide value for
the customer

Provides value for the
customer

Fig. 2.6 Classification of activities as decision matrix [14]

2.5 Worker Involvement

Workers are directly involved in the production process. They obtain a good
understanding of the performed activities and their benefit to the final output. This
understanding can be used to improve current practices and to increase the quality
of the output.

The content, sequence, timing, and outcome of each production step are stated
on a standard work sheet by the workers themselves [14]. Standard work sheets
have a twofold function: First, they help to assess the current activities by workers.
This creates awareness on how currently time and resources are spent. Second, they
function as the instrument to standardize work, i.e., prevent workers from using
different approaches (such as a different sequence) to perform their work.

The importance of standardization is pointed out by [23] variations in the way the
work is done is seen to hide the link between the performed work and the obtained
results. Only if the work follows a well-defined sequence of steps that it is instantly
clear when they deviate from the specifications.

If the work, e.g., is organized as a sequence of ten tasks, each of them expected
to be completed in 20 s, and one worker is doing task no. 5 before task no. 2, then
the sequence is not as planned and something must be wrong. In the same way, if
after 50 s, the worker is still busy with task no. 1, then again something is wrong.

In this way, the standard work sheet can be used as a visual control mechanism:
when a problem is detected, the worker and supervisor on the occurrence of a

32 2 The Lean Revolution

problem can decide what to do to prevent a recurrence of the problem—to change
the specifications, to change the production parameters, to retrain the workers, etc.

Since the standard work sheet defines how everybody is working, the analysis of
the reason for errors in the process output can be done analyzing the standard work
sheet. Through the continuous adaption of the standard work sheet to the working
practices, it allows to capture the experience of the workers and to enable learning
within the organization.

Figure 2.7 shows a possible way to specify the expected effort for an activity
that consists of four steps. The expected duration is marked with a solid line; the
movement (walking) to the next station to perform that step is marked with a dotted
line.

Step

Pick up
material

Fill
machine 1

Inspect
output

Pack

Effort

0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00

Fig. 2.7 Standard effort sheet [18]

The Toyota Production System categorizes within the categories shown in the
circle diagram in Fig. 2.8: all activities performed by a worker are considered
either work or waste (the inner ring). All needless activities (the “waste” slice) are
superfluous and have to be eliminated.

The remaining part of the activities (the slice “work in general”) is separated into
value-adding work, i.e., work that is creating the value required by the customer and
work that is needed because of the current working conditions. Examples include
going to another room to pick up a spare part, opening the package of goods ordered
from outside, operating machines, etc. It is the long-term goal to remove all non-
value-adding activities.

A particular attention is given to worker movements. Moving is not necessarily
providing value. It is part of value-adding but also of non-value adding work. Only
if it contributes towards completing the job, it should remain part of the production
process.

2.6 “Pull” and Not “Push” 33

Waste

Work in general

Worker

movement

Value-

adding work

All

Activities

Non-value-adding

work

Fig. 2.8 Classification of work as value adding or non-value adding within the Toyota Production
System [14]

Workers are organized within teams. The number of workers within each team is
determined by the types of problems expected to occur, the level of assistance the
team members need, and the skills and capabilities of the team’s leader [23]. Teams
are held responsible for the output, not the individual [14].

2.6 “Pull” and Not “Push”

In traditional manufacturing, the parts used during the production process are
produced independently by every work station, temporarily stored in inventories,
and used from there when needed. This approach has the advantage to decouple the
production of one work station from the remaining ones, but it requires the handling
of inventories, which produces a series of costs, e.g. [14]:

• opportunity costs: the costs of using resources like a storage room to keep
goods that are not yet requested by customers instead of using these resources
differently;

• risk costs: the costs that arise to avoid risks or to overcome the unfavorable event,
e.g., an insurance against fire;

• conservation costs: the costs of conserving the goods in a good state, e.g., heating;
• shrinkage costs: the costs of shrinkage of the goods present in stock because of

reasons different from consumption like theft, administrative errors, or spoilage;

34 2 The Lean Revolution

• management costs: the costs of managing the inventory and keeping track of the
amount of shrinkage, what is stored, what is consumed, and so on; and

• handling costs: the costs of moving products to, from, and within the inventory.

A decoupled production makes it difficult to understand if and how much value
is provided by every single production step. The Toyota Production system changes
this approach with the ambition to clearly define a “causality chain” where the
contribution of each activity to the final output becomes clear.

To achieve this, a coordination mechanism is sought that triggers all activities
that are necessary to deliver a certain product or service. Traditionally, this is done
using a “push” approach: the previous processes produce parts and “push” them to
the later ones. These, as soon as parts are available, process them further, and so on.

To obtain a coordination mechanism that creates a dependency between those
steps that produce value, a system is introduced that inverts the traditional coordi-
nation mechanism: not the earlier processes trigger later processes as soon as they
are finished, but the later processes, as soon as they foresee a given demand, “pull”
(request) the needed parts from the processes producing them.

This coordination mechanism is based on the idea that every process that needs
a specific part requests the type and amount of parts needed from the competent
upstream process.

This mechanism is introduced using the main production line as a starting point.
The production plan indicates the needed output as well as the needed quantity and
type of supply parts. To obtain the parts used to produce the final output, earlier
processes are notified of this need and only the required amount is produced and
provided to the main process.

This inverted coordination mechanism creates a chain of customer-supplier
relationships along the activities that contribute to create the value for the end
customer. The end customer signals the request for a product or service; this request
goes to the last step in the production process which activates (“pulls”) the upstream
activities necessary to provide the requested item.

The way to trigger an upstream process chosen by the Toyota Production System
is to send a message using a card (“Kanban” in Japanese). The example card in
Fig. 2.9 shows a retrieval Kanban that is used to retrieve 25 metal rings of size 5
from the production location “Machining M9” and to deliver it to “Assembly A7.”

The Kanban coordination mechanism forces the company to create a clear
production process with clear connections between each production step. Processes
requiring parts for their work retrieve (pull) these parts from preceding processes
(see Fig. 2.10).

An example of a production process consisting of three steps (production,
packaging, delivery) is shown in Table 2.2. For every production step also who acts
as a customer and who acts as a supplier are also specified.

2.7 The Right Parts at the Right Moment at the Right Place 35

Fig. 2.9 Example of a Kanban [18]

Inventory

Inventory

Inventory

Kanban
Parts Kanban

Parts

Fig. 2.10 Pulling parts from upstream processes

2.7 The Right Parts at the Right Moment at the Right Place

The Kanban system is used to clearly connect dependent production steps. The
inventories shown in Fig. 2.10 represent the in-process inventories, i.e., partially
completed goods, parts, or sub-assemblies that are no longer part of the raw
materials inventory and not yet part of the finished products inventory.

Inventories per se do not provide value to the customer (he does not explicitly
pay for it; they do not contribute directly to the outcome); they are needed because
of the current production methods. They are set up because of fluctuations in the

36 2 The Lean Revolution

Table 2.2 Example of “pulling” upstream activities.

Step Activity Customer Supplier

1 A customer requires a product. Customer Delivery

2 The delivery process obtains the required item
from the production process, packages it, and ships
it to the customer.

Delivery Production

3 The production process obtains the necessary raw
materials from the suppliers, builds the requested
item and ships it to the delivery process.

Production Suppliers

demand of a certain resource and guarantee an uninterrupted production process.
This means that the production of needed parts occurs earlier than required and the
in-process inventories are filled.

The amount of items kept in inventories could be minimized or even avoided
by finishing the production of the needed parts just before they can be further
processed, i.e., just in time. “Just-in-time production” means that the parts needed
during the production process are made available at the right place, at the right
moment, and in the right quantity.

From a management perspective, designing and realizing such a process are
complex, e.g., one mistake could delay the execution of all following activities and
would require a revision of the initial plan to compensate the effects of the delay. It
would be desirable to organize the activities so that a delay of one activity does not
require to revise the production plan by some central authority but that the execution
of the remaining activities automatically adapt to the new situation.

One way to achieve this is exactly by decoupling all production steps using
inventories and to push the produced items to the next step. To avoid the usage of
inventories, a way of organizing the production flow is needed, which is not based
on a predefined coordination mechanism but on a mechanism that is able to adapt
itself to unexpected events.

To create a self-adjusting system to handle the production of parts “just in
time,” the Toyota Production System extends the Kanban system to “pull” parts
and services from upstream processes (and in this way) to trigger their production.

Just-in-time production aims to perform activities only at the moment and in
the amount that is currently needed, i.e., is providing value. Within just-in-time
production, Kanban has the function to provide pick-up or transport information, to
trigger production, to create visibility, and in this way to prevent overproduction and
excessive transport (only items with a Kanban are produced or transported).

Moreover, they prevent the production of defective products: if the pulled or the
subsequent processes notice that products are defective, they can immediately stop
the production flow and investigate to find a solution. Through the Kanban it will be
possible to identify the process that produced the defectives, and since no products
are produced in advance, these (now discovered as defective) items do not have to
be thrown away.

2.7 The Right Parts at the Right Moment at the Right Place 37

Ideally, using just-in-time, products are built exactly in the order they are ordered.
As a consequence, just-in-time requires a higher flexibility from the preceding
processes. The “setup time,” i.e., the time a process needs to switch from producing
one item instead of another, has to be as short as possible.

Traditionally, because of long setup times, the amount of same items produced
has to be as high as possible so that the long setup time pays off (see Fig. 2.11, first
line).

Time

Time

Fig. 2.11 Just-in-time production requires quick setup times

If it is possible to reduce the setup times, it is possible to produce items as they
are required by the following processes (see Fig. 2.11, second line). This approach
avoids overproduction: only those parts effectively used by subsequent processes
can be produced. Moreover, the production of defective products is reduced: if the
subsequent process notices an incompatibility or a mistake in the previous process,
it is not necessary to throw away all the previous items produced on stock [14].

The Toyota Production process goes even further: it deliberately avoids to
produce the same type of product in batches to minimize in-process inventories [14].
If items are produced as in Fig. 2.12, items are produced on stock, which produces
the costs mentioned above. This example assumes that products 1 and 2 are sold on
a constant rate, but they are produced in this way to minimize costs.

If items are produced in small lot sizes, i.e., in small quantities, before switching
to the next required item (as shown in Fig. 2.13), the inventory size (and its costs) can
be reduced. As above, a prerequisite for this is a constant demand by the customers.
If there are peaks in the demand, a buffer inventory is nevertheless needed [8].

The Toyota Production system particularly stresses the importance of avoiding
overproduction since it causes a set of consequences like the creation of inventories
or the waste of resources because of the production of defective products. Therefore,
the alignment of all production steps to the demand is pursued.

Figure 2.14 shows an example in which the production of step 2 is the bottleneck
(producing only 30 items per hour), while step 1 is producing 45 items per hour.
This means that step 1 will produce items at a faster rate that they are used, which
causes costs to handle this excessive production.

To align the production to the demand coming from the end customer, the speed
of the just-in-time production is aligned to the speed of the demand. The production

38 2 The Lean Revolution

Q
ua

nt
ity

in
st

oc
k

Time

Time

Product 2
Product 1

Product 1 Product 2

Fig. 2.12 Producing items on stock [8]

Q
ua

nt
ity

in
st

oc
k

Time

Time

Product 1

Product 2

Product 1 Product 2

Fig. 2.13 Producing items just in time [8]

2.8 The Right Information at the Right Moment at the Right Place 39

Fig. 2.14 Unleveled
production [8]

Pr
od

uc
ed

qu
an

tit
y

pe
rh

ou
r

Production
step

1 2 3

45

30

40

is aligned to “takt time,” i.e., the total amount of products required divided by the
total amount of hours available for production. If, for example, the sales department
reports that 120 items of a certain product are needed per month and the production
is effectively operating 6 h (360 min) per day (this is the available time for work to
be done, already without break times and other interruptions such as meetings, etc.),
this results in a takt time of 360/120, i.e., 3 min per item. All production steps are
now aligned so that every 3 min, one item can be produced.

In the example of Fig. 2.14, the production is unleveled: it will require to create
inventories to produce parts at the stated quantities. Figure 2.15 shows this example
after leveling the production steps on a takt time of 42. The last production step, the
one from which no other step depends, is allowed to be shorter than the takt time
since this does not produce in-process inventory [8].

To achieve this, the different processes have to be reorganized (e.g., by slowing
down one process but using less workers or expanding the capacity of another
process adding workers or machines, and so on) so that all proceed at the same
pace.

2.8 The Right Information at the Right Moment
at the Right Place

Exactly as the just-in-time production of goods avoids costs, the just-in-time
delivery of information is advocated by the Toyota Production System: “Is it really
economical to provide more information than we need—more quickly than we
need it? [14].”

40 2 The Lean Revolution

Fig. 2.15 Leveled
production [8]

Pr
od

uc
ed

qu
an

tit
y

pe
rh

ou
r

1 2 3

42
Takt time

42 40

Production
step

Figure 2.16 shows an automobile assembly line with three subprocesses. Car
number 1 is about to exit the main production line and the chassis number 12 just
entered. The production schedule is sent to the main production line which attaches
to each chassis all the information needed for its production. The subprocesses
A, B, and C obtain the needed information through a Kanban as soon as they need
it: process A three steps in advance, process B two steps in advance, and process C
five steps in advance.

Main production line

Kanban
Kanban

Kanban

Process B

(2 steps)

Process C

(5 steps)

12

Process A

(3 steps)

13 25 47 69 80111

Fig. 2.16 Automobile assembly line [14]

The key idea of the Toyota Production System is to suppress excess information
[14]. The production plan is only sent to the main production line. All the needed
information is carried by the products being produced while the subprocesses are
coordinated through Kanbans.

2.9 Quality Management 41

2.9 Quality Management

Quality plays a central role within the Toyota Production System: the success on
the marketplace is seen as a result of the quality of the products and services which
are the determining factors for customer satisfaction. This assumption drives the
constant search for improvement throughout the company.

Moreover, the quality of the final product is seen as a result of the process pro-
ducing them. This assumption creates a high attention for a high-quality production
process according to the credo “prevention is better than healing” (see Fig. 2.17).

Quality management within the Toyota Production System is done on a continu-
ous basis. The goal is to constantly improve without disrupting the current process
[14]. The process used for continuous improvement was first discussed by Shewhart
[21] and promoted by Deming [7] as a systematic approach to problem solving.

Fig. 2.17 PDSA
(Plan-Do-Study-Act) within
the Toyota Production System Plan

Study

Act Do

The process consists of four steps: plan the activities to perform and their
expected outcome; execute the plan (do); study the outcome and compare it with
the expected outcome, i.e., understand how and why the realized result differs from
the expected one; and confirm the plan or adjust it (act).

The expected result of applying the PDSA paradigm is a controlled process,
i.e., a process that—within certain limits—produces predictable results. Predictable
means that it is possible to state—at least approximately—the probability that the
observed phenomenon will fall within the given limits [20].

The PDSA process follows the methodology for conducting experiments used in
science: hypothesis (plan), experiment (do), and evaluation (study). Some examples
of how people conduct experiments within the Toyota Production System are given
in Table 2.3 [23].

42 2 The Lean Revolution

Table 2.3 Experiments within the Toyota Production System [23]

Hypothesis Signs of a problem Responses

The person or machine can
do the activity as specified in
the standard worksheet

The activity is not done as
specified

Determine the true skill level
of the person or the true
capability of the machine and
train or modify as appropriate

If the activity is done as spec-
ified, the good or service will
be defect free

The outcome is defective Modify the activity

Customers’ requests will be
for goods and services in a
specific mix and volume

Responses do not keep pace
with requests

Determine the true mix and
volume of demand and the
true capability of the sup-
plier; retrain, modify activ-
ities, or reassign customer-
supplier pairs as appropriate

The Toyota Production System advices to ask why five times about every matter,
particularly to identify the root cause of problems. If, for example, a machine
stopped to work, the way to understand how to solve the underlying problem is
to ask five times why as in the following dialog [14]:

1. “Why did the machine stop?” “There was an overload and the fuse blew.”
2. “Why was there an overload?” “The bearing was not sufficiently lubricated.”
3. “Why was it not lubricated sufficiently?” “The lubrication pump was not

pumping sufficiently.”
4. “Why was it not pumping sufficiently?” “The shaft of the pump was worn and

rattling.”
5. “Why was the shaft worn out?” “There was no strainer attached and metal scrap

got it.”

The knowledge acquired in this way can be used to understand how value is
created, where resources are wasted, and what are the underlying causes when
problems occur.

Standardization plays a crucial role in the Toyota Production System. It is the
form how the company learns. Whenever a new aspect is learned, the standards
(such as the standard work sheet) have to be updated to reflect the new method of
production. Only through this the company can learn. Figure 2.18 shows a frequent
way how this idea is depicted: the Plan-Do-Study-Act cycle helps the company
achieve progress, but only standardization prevents the company from falling back
to initial quality levels.

2.9 Quality Management 43

Plan

Study

Act Do

Standardization

Progress

Fig. 2.18 The role of standardization [25]

Standardization is the instrument to enable organizational learning. It is the
formalization of knowledge. The adoption to a standard means to benefit from all
the experience packaged into it and is seen as the basis to proceed in improving
organizational performance.

The Toyota Production System puts a strong focus on the modification of
equipment, tools, and processes to embed the standards into it so that the compliance
to the standard happens automatically, i.e., is error proof.

Figure 2.19 shows first two connectors that can be attached in different ways;
this can lead to mistakes. The second pair of connectors allows only one way to be
connected.

Fig. 2.19 Error-proof
connectors [18]

+

–

+

–

Embedding standards within the equipment means to avoid the costs of checking
if the work is compliant to the standard as well as the costs to correct existing work,
not respecting the standard.

44 2 The Lean Revolution

If it is not possible to embed the standard into the equipment, visual control
mechanisms are embedded in the tool or equipment so that its user gets aware of a
mistake or a regulation without any effort. Figure 2.20 shows an example where the
worker immediately sees that the scissors are missing or where they should be put
when they have to be returned to the drawer.

Fig. 2.20 Visual control for
equipment [18]

To embed standards and knowledge into processes, the Toyota Production
System uses the concept of autonomation, that is, structuring the processes so that a
machine or a procedure are able to detect a problem in the produced output and
interrupt production autonomously rather than continue to run and produce bad
output [13, 14].

Autonomation, together with just-in-time production, is considered one of the
pillars of the Toyota Production System [14]. Figure 2.21 shows the concept of
autonomation through a simple autonomation system where the stop mechanism is
triggered because one part does not meet the size specifications.

Fig. 2.21 Using
autonomation to ensure
quality

2.10 Summary 45

Some authors use the term “quality-at-the-source” for autonomation [24], mean-
ing that quality is inherent in the production system and is not checked after the
process. Autonomation means that a machine is complemented with two additional
parts [13]: a mechanism to detect problems, i.e., abnormalities or defects, and a
mechanism to interrupt the production line or machine when a problem occurs.

The initial idea came from the construction of a weaving machine by Toyoda
Sakichi, the founder of the Toyota Motor Company, that could stop instantly if any
one of the threads broke. This machine contained a mechanism that could detect
problems and stop the machine to prevent the production of defective products. In
this way, the quality control after the production as well as discarding defective
output was avoided.

The use of autonomation has various organizational effects: no operators are
needed to constantly check the quality of the output of a given process and only
when an error occurs an operator has to be available. In this way one operator can
be in charge for several machines. Moreover, stopping the machine when a problem
occurs creates visibility and motivates everyone to clearly understand the problem.

On the basis of this thought, the Toyota Production System advises that every
worker should be given the possibility to push the stop button to halt the production
if any abnormality occurs.

The goal of quality management is to obtain the “ideal” output, i.e., the output of
an ideal person, group of people, or machine [23]:

• is defect free;
• can be produced and delivered just in time in the version requested;
• can be produced without wasting any materials, labor, energy, or other resources

(such as inventories); and
• can be produced in a work environment that is safe physically, emotionally, and

professionally for every employee.

2.10 Summary

The “Leitmotiv,” the guiding theme for the Toyota Production System, is that
an activity should be only carried out, if it provides value to the customer. The
consequences of this are manifold:

• it is necessary to understand the contribution of each activity to the value for the
customer (see Sect. 2.4);

• it is necessary to question current production methods to find new approaches
that allow to eliminate all those activities that are not needed or only needed
because of the current production method (see Sect. 2.4);

• it is necessary to involve workers in this assessment process because they are
directly involved with the work and know the best of what is really needed and
what is not (see Sect. 2.5);

46 2 The Lean Revolution

• it is necessary to create a visible link between the creation of the value for the
customer and all the carried out activities within the company: this is achieved
implementing a “pull” mechanism (see Sect. 2.6); and

• the goal is to make only “what is needed, when it is needed, and in the
quantity that is needed” just-in-time production (see Sect. 2.7) to minimize
overproduction;

The Toyota Production System favors quality management based on the Plan-
Do-Study-Act approach to promote organizational learning through standardization.
This approach promotes the creation of quality control mechanisms like the standard
work sheet or autonomation and accepts to stop the entire production when an error
has to be identified and fixed in exchange for a low defect rate of the output.

Problems

2.1. Compare a street crossing based on traffic lights with a roundabout (see
Fig. 2.22).

Fig. 2.22 Traffic lights vs. roundabout

Which one is safer and which has a higher throughput? What are the parallels
between the waterfall software development model and a Lean model?

2.2. Harry Sneed has come up with a model called the “devil’s square” [22] to
express how hard it is to provide the right quality and the right amount of features
and be on time and on budget (see Fig. 2.23).

The devil’s square claims that it is not possible (or at least hard) to arbitrar-
ily choose the quality, scope, development time, and the development costs of
a software project since the productivity (represented by the gray surface area) is
supposed to stay invariant in the short term.

References 47

Fig. 2.23 The devil’s
square [22]

+

–

+

– –

+ +

–

Productivity

CostsTime

Quality Scope

Imagine now a client wants that a project is finished earlier than planned. It is
like he wants to drag a corner of the productivity rectangle on one side—the “time”
side—towards the minus (depicted as the dashed rectangle in Fig. 2.23). The devil’s
square tells us that the surface of the gray area has to remain the same; therefore,
one of the other edges has to move towards the center:

• either the quality diminishes, or
• the scope diminishes (fewer features), or
• the costs increase.

What is the goal of Lean in this context? What are the expected effects to the
surface of the rectangle when a company introduces Lean?

References

1. Ayers, E.L., Gould, L.L., Oshinskyand, D.M., Soderlund, J.R.: American Passages: A History
in the United States: Since 1865. Cengage Advantage Books. Cengage Learning, Boston (2009)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley, Reading
(1999)

3. Boehm, B.W.: A spiral model of software development and enhancement. IEEE Comput. 21(5),
61–72 (1988)

4. Boone, L., Kurtz, D.: Contemporary Marketing, 2013 Update. Cengage Learning, Mason
(2012)

5. Corral, L., Janes, A., Remencius, T.: Potential advantages and disadvantages of multiplatform
development frameworks–a vision on mobile environments. Procedia CS 10, 1202–1207
(2012)

48 2 The Lean Revolution

6. Corral, L., Janes, A., Remencius, T.: Potential advantages and disadvantages of multiplat-
form development frameworks–a vision on mobile environments. In: Proceedings of the
International Workshop on Service Discovery and Composition in Ubiquitous and Pervasive
Environments (SUPE), Ontario, Canada (2012)

7. Deming, W.E.: Quality, productivity, and competitive position. Massachusetts Institute of
Technology Centre for Advanced Engineering Study (MIT-CAES), Cambridge (1982)

8. Drew, J., McCallum, B., Roggenhofer, S.: Unternehmen Lean: Schritte zu einer neuen
Organisation. Campus-Verlag, Frankfurt am Main (2005)

9. Ford, H., Crowther, S.: My Life and Work. Doubleday, Page & Company. Online: http://www.
gutenberg.org/ebooks/7213 (1922). Accessed 4 Dec 2013

10. Keegan, J.: A History of Warfare. Vintage, New York (1994)
11. Malhotra, Y.: Business process redesign: an overview. IEEE Eng. Manag. Rev. 26(3), 27–31

(1998)
12. Mills, H.D.: The management of software engineering, part i: principles of software engineer-

ing. IBM Syst. J. 19(4), 414–420 (1980)
13. Monden, Y.: Toyota Production System, 2nd edn. Industrial Engineering Press, Norcross

(1993)
14. Ōno, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press,

Cambridge (1988)
15. Petrillo, E.W.: Lean thinking for drug discovery — better productivity for pharma. Drug

Discov. World 8(2), 9–16 (2007)
16. Polybius: Histories. Macmillan, Reprint Bloomington 1962. Evelyn S. Shuckburgh, trans-

lator. Online: http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0543.tlg001.
perseus-eng1:1.1 (1889). Accessed 1 May 2014

17. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From Concept
to Cash. Addison-Wesley Professional, Upper Saddle River (2006)

18. Russell, R.S., Taylor, B.W.: Operations Management: Quality and Competitiveness in a Global
Environment. Wiley, Hoboken (2005)

19. Savitt, R.: What they wrote about world war ii: the journal of marketing 1939–1946. In:
Neilson, L.C. (ed.) Proceedings of the Biennial Conference on Historical Analysis and
Research in Marketing (CHARM). CHARM Association, New York (2011)

20. Shewhart, W.A.: Economic Control of Quality of Manufactures Product. D. Van Nos-
trand Company. Online: https://ia601607.us.archive.org/8/items/bstj9-2-364/bstj9-2-364.pdf
(1931). Accessed 4 Dec 2013

21. Shewhart, W.A., Deming, W.E.: Statistical Method from the Viewpoint of Quality Control.
Dover Books on Mathematics Series. Dover, New York (1939)

22. Sneed, H.M.: Software Management. Verlagsgesellschaft Rudolf Müller, Köln (1987)
23. Spear, S., Bowen, K.H.: Decoding the dna of the toyota production system. Harv. Bus. Rev.

77(5), 96–108 (1999)
24. Standard, C., Davis, D.: Running Today’s Factory: A Proven Strategy for Lean Manufacturing.

Hanser Gardner Publications, Cincinnati (1999)
25. Stewart, J.: The Toyota Kaizen Continuum: A Practical Guide to Implementing Lean. A

Productivity Press Book. CRC Press, Boca Raton (2011)
26. Wikipedia contributors: Macedonian phalanx. Online: http://mk.wikipedia.org/wiki/%D0

%9C%D0%B0%D0%BA%D0%B5%D0%B4%D0%BE%D0%BD%D1%81%D0%BA
%D0%B0_%D1%84%D0%B0%D0%BB%D0%B0%D0%BD%D0%B3%D0%B0 (2013).
Accessed 4 Dec 2013

27. Womack, J.P., Jones, D.T.: Lean Thinking: Banish Waste and Create Wealth in Your Corpora-
tion, 2nd edn. Free Press, New York (2003)

http://www.gutenberg.org/ebooks/7213
http://www.gutenberg.org/ebooks/7213
http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0543.tlg001.perseus-eng1:1.1
http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0543.tlg001.perseus-eng1:1.1
https://ia601607.us.archive.org/8/items/bstj9-2-364/bstj9-2-364.pdf
http://mk.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D0%B5%D0%B4%D0%BE%D0%BD%D1%81%D0%BA%D0%B0
http://mk.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D0%B5%D0%B4%D0%BE%D0%BD%D1%81%D0%BA%D0%B0
http://mk.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D0%B5%D0%B4%D0%BE%D0%BD%D1%81%D0%BA%D0%B0
%D1%84%D0%B0%D0%BB%D0%B0%D0%BD%D0%B3%D0%B0

Chapter 3
Towards Lean Thinking in Software Engineering

Quod potest fieri sufficienter per unum, superfluum est si per
multa fiat.
(If a thing can be done adequately by means of one, it is
superfluous to do it by means of several)

Thomas Aquinas, Summa Contra Gentiles, Ch. 70

On the street went Uli without thinking, and then to Nausicaa park, a few yards
away. He picked up his mobile phone. He sat on a bench, made sure that there was
none around, took a deep breadth and called XXX. What?! Yes, he called XXX.

The phone rang. XXX looked at the display and was astonished to see the name of
Uli. He knew that Uli had already received the bad news. He was hesitant to answer.
But then, the hell! “Uli, what do you want?” He expected to receive a sequence of
insults, well, it was not the first time nor it was likely to be the last: it is the part of
the life of a good manager, he thought. “Relax XXX! I am not here to complain for
your decision nor to talk to you of the miserable life of my folks who are going to be
be laid off.” “So, what?” “I want to make a deal with you. I want to prepare a coffee
for you, actually, an espresso, or, better, a lot of espressos, but one at a time.” “Uli,
are you OK?” “Yes, indeed, come and you will see. I am at Nausicaa Park, right
where Zeta Str. crosses with 17th Ave. Let us meet there in about one hour.” XXX
pondered a bit what to do. . . “well, I am a big boy and it is an open park. . . and, at
the end, the situation is so bad that wasting one hour or so won’t make it worse. . . ”
Still he let his secretary know where he was going, giving her instructions in case
he would have not be reachable on the phone in a couple of hours.

XXX arrived right on time. There was not point to let Uli wait. . . Uli was waiting
for him anxiously and greeted him smiling. “This guy may not be well,” XXX thought
“I have just fired his team and he smiles!” “Hi XXX, let us go to Phaeacians’, they
serve the best espresso in town, you will drink and understand.” The reader can
imagine what XXX thought. Still, Phaeacians’ is a big place, with a lots of folks, so
everything was still fine.

“XXX what would you like to have” “An espresso.” “So, please, 5 espressos and
3 decafs.” “Uli, are you OK? We are only the two of us?” “XXX, take it easy.”

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__3

49

50 3 Towards Lean Thinking in Software Engineering

Uli started to talk: “Look at how espressos are prepared. They are made one at
a time, according to the specs of each individual customer. It is not a coffee that is
brewed, say, once per hour. The reason is that each customer might want it a bit
different. Still it is coffee, but it is a peculiar coffee. And each customer really like
it her or his way. So our 5 espressos and 3 decafs are prepared one after the other.
The team is optimized to produce the specific, very specific value that each customer
wants, and every customer is unique.

Also notice that all the workers are capable of doing almost everything,
espressos, cappuccinos, lattes, but also regular coffees and stay at the cash, this
is essential, as at any time of the day someone may come to ask for a very specific
product. And it is not easy to make a good espresso or a good cappuccino. People
need to be properly instructed when they get hired, but then they need to learn
from each other. And, lastly, practice makes perfection. The difference between a
good cappuccino prepared by a talented and experienced person and a cappuccino
prepared by a novice is immense, the same difference between a piece of code wrote
by, say, Kent Beck and by a freshman. The funny thing is that also the tools used here
require experience. The coffee machines require a tuning and only after a while they
reach their top performances.

So, we have three terms here: value, knowledge, and improvement. I want to
struck a deal with you. You let us work again with you, and we will only concentrate
on those feature that create direct value for you, one at a time, and we will deliver
them to you one at a time, say, every two weeks, and you, indeed will pay only for
the one you accept one at a time, with no upfront investment and the possibility to
stop the work at any time with no penalties. It will be hard to convince Athi and J
but this will be my task, and, clearly, I will make very clear with them that we will
have the same opportunity of stopping the contract if it turns out that a given time is
not any more beneficial for us. We will just ask you to be patient and not to interfere
to much with the work. Well, at the beginning of each sequence of two weeks we will
get together and discuss your priorities and the amount of work we can do in the two
weeks, but then we will ask you to trust our ability to make informed and reasonable
decisions within the two weeks so that we could concentrate on producing value
for you. Still you will have the chance to come and see us and the system being
developed as much as you want—I mean all the system, including the source code.
And, I promise you, you will get every two weeks a release of something that provides
value to you. I promise you.” “Uli, you promised not to beg for another chance. . . ”
“Come on, XXX, this is not another chance! Consider how much you have already
invested on us. We know your organization, we know your requirements, we know
you, and we have a high esteem in you, even if we often disagreed on technical
choices. But, if we both commit on releases every two weeks, you will be able to tell
us immediately whether you like our espresso or we need to change something in
the way we prepare it—the machine, the blend, the temperature, the cup. . . ”

3.1 Introduction 51

XXX considered that to get another team up to speed he would have needed at
least one month and that Uli was not asking for money, unless he had produced a
useful feature. So, the situation appeared weird but no risk was evident, just a bit of
extra time to interact with these folks in this new funny way, but, if anything went
wrong, well the agreement was that he could say “Stop”. Also he liked the idea to
be allowed to jump in their time at any time without any advance notice—he has
always been curious to see how these nerds were developing software.

“OK, Uli. Let us try for two weeks, and then. . . But you talk to your bosses and
explain them honestly what we discussed—no negotiation on my side and the right
to stop at any time without any liability, paying only for what you have delivered to
me and I have liked.” “Deal!”

3.1 Introduction

Since its conception in the mid-1950s, Lean Thinking has been very successful in
manufacturing: it has helped organization to focus on value-providing activities,
to identify unnecessary ones, and therefore to increase the overall efficiency and
effectiveness of development. So the obvious idea was to extend it also to the
production of IT goods in general and specifically to software engineering. There
are several proposals on how to translate Lean principles into software engineering
practices, e.g., the Agile Manifesto [11], the pioneering work of Kent Beck [10], the
work of Mary and Tom Poppendieck [41], and so on.

In theory, it would be a good point now to present existing approaches to Lean
software development. We decided to do that only in Chap. 6 because before we
want to look at the roots of Lean and see how they already in the past influenced
different organizational practices. In part, this is because we do not want to present
Lean software development as the next holy grail, but we want to look at its
constituent parts or the perspectives one can look at Lean. After doing this, we can
avoid the problems we encounter today with Agile Methods, which we will describe
in Chap. 5.

The application of the principles of Lean management is a way to obtain software
development processes that are focused on the value to provide to the customer and
the constant aim to increase efficiency and effectiveness. To enable Lean software
development, the company has to become aware of its internal processes, identify
the value provided to the customer, and keep its own processes aligned to them to
produce what was identified as valuable.

This idea is not new. Several approaches, from the software engineering domain
and not, have already been proposed to help in this endeavor. Some—this list is not
exhaustive—of them are listed in Table 3.1.

52 3 Towards Lean Thinking in Software Engineering

Table 3.1 Approaches that focus on similar values as Lean

Year Proposal

1970s Rapid application development (RAD) [35]

1985 Quality improvement paradigm [6]

1986 Scrum (product development) [49]

1986 Spiral software development [13, 15]

1987 Six sigma [39]

1987 Goal question metric approach [8]

1989 Experience factory [7]

1991 Capability maturity model (CMM) [40]

1992 Balanced scorecard [33]

1995 Dynamic systems development method (DSDM) [48]

1999 Extreme programming (XP) [10]

1999 Feature driven development [19]

2000 Adaptive software development [28]

2000 Personal software process [30]

2001 Agile manifesto [11]

2002 Capability maturity model integration (CMMI) [18]

2004 Scrum (software development) [44]

2004 Crystal clear [20]

2007 GQMCstrategies [9]

2009 DevOps [31]

2011 Disciplined agile delivery [4]

In this chapter we will look at Lean from three perspectives and relate them to
the approaches of Table 3.1:

1. Value: methods that support the organization to focus on the understanding and
maximization of the delivered value;

2. Knowledge: methods that focus on the creation of a shared understanding of
the know-how, know-where, know-who, know-what, know-when, and know-why
within the company [42]; and

3. Improvement: methods that help to instill a culture of constant improvement.

We look at each perspective in the following three sections.

3.2 Value

Lean Thinking was developed to overcome the scarcity of resources that occurred
after World War II; its aim was to increase the efficiency [37]. Agility, also trying
to focus on processes that consist only of essential, value-adding activities, was
developed to address software development risks [10].

Agility, on the other hand, was developed to address the intrinsic variability and
randomness of software development. In both cases the key idea is to focus on value,
i.e., on activities that deliver business value to the customer. Such focus implies a

3.2 Value 53

substantial evaluation of activities, a reduction that addresses the problem of scarcity
of resources and also addresses the unpredictability of software development.

In fact, not addressing risks is inefficient if the costs of avoiding the risks are
lower than the expected costs if the risk occurs (see the next section). In particular,
changing requirements are a risk factor since they require the allocation of effort to
provide value to the client. To address this risk, Agile Methods encourage the use of
practices to “harness change for the customer’s competitive advantage [11].”

One such practice is delivering prototypes early in the process to obtain
feedback and to better know what provides value for the client. Rapid Application
Development [35] was one of the first approaches proposing this.

As for Lean Thinking, the highest priority for the “Manifesto for Agile Software
Development” [11] (which will be presented in detail in Chap. 4) is to deliver value
to the customer.

Concrete instantiations of the principles stated in the Agile Manifesto
include Scrum [44] (which originated from the product development method
Scrum [49]), Crystal Clear [20], Extreme Programming [10], Adaptive Software
Development [28], Feature Driven Development [19], and Dynamic Systems
Development Method [48]. Extreme Programming is taken as an example to show
how these principles are transformed into practices and will be presented in Chap. 4.

Around 5 years ago, DevOps [31] started to become popular, which builds on
the Lean idea that upstream processes have to be aligned with what is needed by
downstream processes. DevOps aims to close the gap between development and
operations and integrates both sides on three dimensions [2]:

• Process integration: the processes, in which development and operations are
both involved, e.g., the development of a solution into production or the solution
of a problem discovered in production are integrated. In this context the term
“continuous delivery” became popular, which describes a team that is able to
continuously (i.e., very often) integrate, build, test, and deploy its software into
production. The way how this is achieved is based on [29]:

– the creation of a repeatable, reliable process for releasing software,
– a high degree of automation,
– a high degree of traceability,
– continuous integration (see Chap. 4),
– autonomation,
– a clear definition of what “done” means,
– a shared responsibility of the delivery process, and
– continuous improvement.

• Tool integration: the tools that development and operations use are different.
Through an integration of the tools, the collaboration can be increased. For
example, a plugin written for the integrated development environment of the
developer could access production configuration information to simulate a test
using production parameters.

• Data integration: data that is collected by either team are shared or federated.
For example, usage statistics that operations track as well as configuration/in-

54 3 Towards Lean Thinking in Software Engineering

stallation details could be shared with developers. Through the federation of
this data, the consistency, accuracy, and therefore relevance of the data can be
increased.

Based on various Agile Methods, also hybrid methods such as Disciplined
Agile Delivery [4] were proposed. Scott Ambler defines Disciplined Agile Delivery
(DAD) as “a people-first, learning-oriented hybrid Agile approach to IT solution
delivery. It has a risk-value life cycle, is goal-driven, and is enterprise aware [3].”
Among others, DAD is based on Scrum, Extreme Programming, and Kanban (see
Chap. 10).

3.2.1 Risk as a Value-Maximizing Strategy

Risk is an event or a condition that may affect the outcome (i.e., the delivered
value) of a project [47]. It influences the expected value; therefore, it is important to
consider it during software development.

There are several risks in software production. Some of these include:

• the risk of not understanding the requirements of the customers;
• the risks that the customer changes her/his mind;
• the risks of choosing the wrong technology; and
• the risks of writing defective software.

The history of software development can be read as the history of how managers
and developers tried to mitigate such risks.

Risk can be characterized by two distinctive elements: probability and impact
[38]. One way to quantify the risk is to calculate the risk exposure [14]:

risk exposure D probability of an unsatisfactory outcome

� loss to the parties affected if the outcome is unsatisfactory

The waterfall model was the first to address risks: the risk to develop a product
that does not correspond to the requirements. The design was done only after
the requirements were clear, the implementation was done after the design was
completed, the system was then verified and tested at the end to again ensure that it
did what it should do.

The waterfall model acts on the first part of the equation: its intention is to lower
“the probability of an accident occurring” through a rigorous development process
encouraging thorough planning to foresee every eventuality.

The argumentation behind this model is similar to that in the construction of
houses: it happened that newly built houses had to be torn down after discovering
that their foundations were not built on stable land; analyzing the ground before
building the foundation would have helped to avoid this.

3.2 Value 55

This approach works best when we know the probability of the different risks. In
the case of construction, if we know that we are building a new house on a land that
may not be stable, we reduce our risks analyzing the ground.

There is a joke circulating on the Internet with the title: “If architects had to work
like software developers,” which illustrates the difficulties of unclear requirements;
see Appendix A. Such jokes unfortunately represent the reality for many developers
and consultants and shows that the risk that the customer does not know what he
wants is high.

Other plan-based approaches propose solutions that are not too different than
the waterfall. In essence, the first term of the multiplication (the probability of an
accident) seems hard to reduce.

The promoters of Agility work also on the second term of the multiplication, the
impact of the accident. They take advantage of tools that have been used for more
than 20 years in risk management (see also [36]) such as prototyping, risk analysis,
and iterative development combined as in the spiral development model [13, 15].

Boehm defines the spiral development model in the following way [15]: “The
spiral development model is a risk-driven process model generator. It is used to
guide multi-stakeholder concurrent engineering of software-intensive systems. It
has two main distinguishing features. One is a cyclic approach for incrementally
growing a system’s degree of definition and implementation while decreasing its
degree of risk. The other is a set of anchor point milestones for ensuring stakeholder
commitment to feasible and mutually satisfactory system solutions.”

The spiral software development model is an iterative software development
approach in which each cycle shows the following characteristics [15]:

1. Concurrent rather than sequential determination of artifacts.
2. Consideration in each spiral cycle of the main spiral elements:

• critical stakeholder objectives and constraints,
• product and process alternatives,
• risk identification and resolution,
• stakeholder review, and
• commitment to proceed.

3. Using risk considerations to determine the level of effort to be devoted to each
activity within each spiral cycle.

4. Managing stakeholder life cycle commitments.
5. Emphasis on activities and artifacts for system and life cycle rather than for

software and initial development.

The principles of Extreme Programming can be linked to risks they address (see
Chap. 4 for a detailed description of the principles). We listed some risks that each
principle addresses in Table 3.2.

56 3 Towards Lean Thinking in Software Engineering

Table 3.2 Risks addressed by extreme programming principles

Principle Risk

Humanity Costs and disruption of high turnover and missed opportunities for creative
action

Economics Costs of developing something with features or qualities not required by
the customer (obtaining a “technical success” but an “economic failure”)

Mutual benefit Having win-lose situations in which not all stakeholders benefit from the
collaboration, which will result in present or future costs [16]

Self-similarity Cost of “reinventing the wheel over and over again”; in fact there is a
widespread usage of patterns [27] in the Agile community

Improvement Cost of repeating the same mistakes over and over because the team does
not try to improve present practices

Diversity Cost of overlooking strengths, weaknesses, opportunities, and threats

Reflection Cost of repeating the same mistakes over and over because the team does
not learn from past projects

Flow Cost of wasting resources to develop a product that does not produce value
for the customer because the team was waiting too long for feedback

Opportunity Cost of wasting resources because the team does not improve its practices

Redundancy Cost of “betting all on one card,” i.e., one approach, and to have to redo
everything after discovering that it does not match the requirements

Failure Cost of not improving since the team does not risk to fail

Quality Cost of wasting resources because of bad source code quality (leading to
less predictable delivery) and the cost of losing customers because of bad
quality (compare with “win-lose” situations in [16])

Baby steps Cost of wasting resources because of an increase overhead of big changes
compared to small changes

Accepted
responsibility

Cost of wasting resources because of too much centralization

Let us recall the definition of risk exposure:

risk exposure D probability of an unsatisfactory outcome

� loss to the parties affected if the outcome is unsatisfactory

Agility leverages on both sides of the equation: it tries to avoid activities that
are not creating business value—so the probability of an accident is zero for those
activities that are never performed at all; on the other side, it tries to prepare for the
impact of the accident if it occurs (e.g., a change in requirements) to keep the loss
as low as possible.

3.3 Knowledge 57

3.3 Knowledge

The problem of managing knowledge is strongly related to the problem of managing
value.

Software is immaterial. We cannot touch it; the only way to handle it is to try
understanding it, that is, knowing it. Lean management focuses on an effective
management of the knowledge associated to the production.

Lean management in software focuses on methods that promote the creation
of a shared understanding of the know-how, know-where, know-who, know-what,
know-when, and know-why within the company [42]. The collection, storage,
organization, processing, and distribution of this understanding throughout the
software organization are essential to deliver value.

An approach that collects data about what the single developer does and relates
it to his performance is the Personal Software Process (PSP) [30].

Using the PSP, a developer keeps track of what he produces (looking at the size
of the source code), how much time he needs to produce it (measuring the required
time), the quality of the produced code (the number of defects found in the product),
and his estimation precision (comparing planned and actual completion dates).

The Goal Question Metric paradigm [8] is a methodology to specify measure-
ment models; it provides a mechanism to define a measurement strategy, and it
defines a measurement goal and the means to achieve this goal, i.e., which data
that has to be collected. The GQMCStrategies approach is an extension of the
Goal Question Metric paradigm which “provides mechanisms for explicitly linking
software measurement goals, to higher-level goals for the software organization,
and further to goals and strategies at the level of the entire business [9].” The
Goal Question Metric paradigm will be presented in Chap. 7, the GQMCStrategies
approach in Chap. 8.

Particularly since software is invisible, measurement is needed for understanding,
control, and improvement of software. Measurement helps us to quantify things we
observe in the real world and is useful in three ways [25]:

• Measurement helps to understand what is happening during the various activities
in which programmers are involved; they make aspects of process and product
more visible, giving a better understanding of relationships among activities and
the entities they affect.

• Measurement allows to control what is happening on our projects. The collected
data are used to predict what is likely to happen and to make changes to processes
and products that help us to meet our goals.

• Measurement helps to understand how to improve the processes and products.
For instance, we may adopt a new software development technique, based on
measures of its impact on the software quality.

The GQM approach will be described in detail in Chap. 7 since it plays a crucial
role in the context of the creation of a Lean software development process:

58 3 Towards Lean Thinking in Software Engineering

• it contributes creating organizational standards: it documents how the fulfillment
of the stated objectives is measured;

• it creates visibility about the degree of fulfillment of the stated objectives;
• it contributes to the “study” step within Plan-Do-Study-Act providing data about

the performed process; and
• it contributes to create visual control mechanisms within software engineering

(e.g., to show that a certain class has a cyclomatic complexity that is over a given
threshold or above average)

The Experience Factory [8], described in detail in Chap. 8, makes use of the
Goal Question Metric paradigm to set up an adaptation of the Plan-Do-Study-
Act paradigm that is tailored to software engineering. It combines the GQM
paradigm with the Plan-Do-Study-Act philosophy to optimize processes based upon
models of the business and the experience about the relationship between process
characteristics and product characteristics [5].

The Balanced Scorecard approach [33] is an approach to structure key perfor-
mance indicators within an organization in form of scorecards and to focus on a set
of scorecards that cover all parts of the organization to obtain a “balanced” picture:
“Think of the balanced scorecard as the dials and indicators in an airplane cockpit.
For the complex task of navigating and flying an airplane, pilots need detailed
information about many aspects of the flight. They need information on fuel, air
speed, altitude, bearing, destination, and other indicators that summarize the current
and predicted environment. Reliance on one instrument can be fatal. Similarly, the
complexity of managing an organization today requires that managers be able to
view performance in several areas simultaneously [33].”

Kaplan and Norton propose four scorecards (see Fig. 6.5) but point out that they
should be extended or new scorecards should be added if this gives a more complete
picture of the organization:

• financial: assesses the organization from the shareholders’ viewpoint: share-
holder value, liquidity, revenue growth, productivity, resource utilization, effi-
ciency, etc.;

• customer: assesses the organization from the customers’ viewpoint: perceived
quality of the product, reputation of the organization, customer loyalty, etc.;

• innovation and learning: assesses the capability of the organization to innovate
and continuously improve its processes looking at the available employee assets,
information systems capabilities, and organizational infrastructure; and

• business process effectiveness: assesses the maturity of the business processes
in efficiently and effectively providing the planned output.

The Balanced Scorecard approach implies causal links between the scorecards:
e.g., it is assumed that the financial scorecard is the most important; all other
scorecards contribute to the fulfillment of the financial goals. The Balanced
Scorecard paradigm defines the set of measurements that have to be collected to
assess the single scorecards and in this way defines the strategy of an organization
in terms of goals and measurements.

3.4 Improvement 59

Both the Balanced Scorecard and the GQM approach aim to create visibility
within the organization providing feedback through the measurement of key per-
formance indicators. Unlike the GQM approach, the Balanced Scorecard approach
links the measurement goals to the organizational strategy. The GQM approach
does not provide explicit support for integrating its software measurement model
with elements of the larger organization, such as higher-level business goals,
strategies, and assumptions, nor does it provide explicit support for dealing with
goal dependencies [9].

The misalignment of software development goals with the organizational goals
can have the following consequences [12]:

• the strategy is now known or used in the development of project goals and
measurements;

• the data collection at the project level does not reflect organizational goals;
• financial indicators tend to drive corporate decision making;
• measurement is done mechanically with no clear purpose; or
• measurement is done in isolation of other projects.

Different approaches have been proposed to overcome this gap, e.g., [12] propose
to integrate the Balanced Scorecard with GQM, or “GQMCStrategies” [9], which
is an approach that extends the GQM paradigm providing a methodology to link
high-level business goals to software measurement data.

3.4 Improvement

Constant improvement is also related to the problem of maximizing value: it is
essential to constantly verify if current working methods are still valid or if new
technologies, new methods, past experiences, etc. can be used to improve.

The previously mentioned approaches to collect knowledge like the GQM
approach and the GQMCStrategies approach contribute to the improvement per-
spective as they provide the necessary input to improve.

The development of the Shewhart cycle [46] represents a milestone in the
idea of constant improvement through standardization, which is based on the use
of feedback from previous iterations. The Shewhart cycle was later refined by
Edwards Deming as a systematic approach for problem solving within Total Quality
Management [24], i.e., quality management that is applied to all areas of the
organization.

The cycle consists of four steps: plan the activities to perform and their expected
outcome; execute the plan (do); study the outcome and compare it with the expected
outcome, i.e., understand how and why the realized result differs from the expected
one; and confirm the plan or adjust it (act). The expected result of applying the Plan-
Do-Study-Act paradigm is controlled processes, i.e., processes that—within certain
limits—produce predictable results. Predictable means that it is possible to state—at
least approximately—the probability that the observed phenomenon will fall within
the given limits [46].

60 3 Towards Lean Thinking in Software Engineering

The “Guide to the Software Engineering Body of Knowledge” [1] mentions Plan,
Do, Check, and Act (a synonym for Plan-Do-Study-Act) as an instrument to meet
quality objectives within software engineering, based on the assumption that the
quality of a product is directly linked to the quality of the process used to create
it [22, 23, 32].

Six Sigma, invented at Motorola 1987 [39], uses an approach, which is derived
from the PDSA-cycle, the DMAIC-cycle:

• Define (identify the problem),
• Measure (measure key attributes of the problem),
• Analyze (identify root causes),
• Improve (develop ideas to remove root causes), and
• Control (establish standard measures to maintain performance).

Also the Quality Improvement Paradigm [6], presented in Chap. 8, is based on
the PDSA-cycle and is used within the Experience Factory.

A process improvement approach that is based on the works of Shewhart
and Deming is the “Capability Maturity Model Integrated” (CMMI) [18] and its
predecessor “Capability Maturity Model” (CMM) [40]. While organizations have
several dimensions to improve the business of organizations (to improve the skills,
training, and motivation of people, to improve the tools and the equipment, and to
improve procedures and methods defining the relationship of tasks), the authors of
CMMI put their focus on the third possibility that “the quality of a system or product
is highly influenced by the quality of the process used to develop and maintain
it [18].”

The CMMI is a family of reference models covering the development and
maintenance activities applied to both products and services. In other words, CMMI
does not provide a process, but it describes the characteristics that processes
should contain (recommending best practices, proven to be effective through
experience) to create processes that effectively achieve its goals. The CMMI for
development foresees 22 process areas. A “process area” is a grouping of related
best practices in an area, which when implemented collectively satisfy a set of
goals considered important for making significant improvement in that area [18]. In
CMMI, depending on which process areas are implemented, a process can achieve
a maturity level from 1 to 5. The maturity levels are:

1. Initial,
2. Managed,
3. Defined,
4. Quantitatively Managed, and
5. Optimizing.

The recommended process areas for each maturity level are shown in Table 3.3.

3.4 Improvement 61

Table 3.3 Recommended process areas for the CMMI for development

Practice M
at

ur
it

y

Objective

Configuration management 2 Define work products, track and control changes to them,
and maintain their integrity

Measurement and analysis 2 Define and set up measurement and analysis activities,
provide measurement results

Project monitoring and control 2 Monitor the project against the plan and manage corrective
actions

Project planning 2 Establish estimates, develop a project plan, and obtain
commitment to the plan

Process and product quality
assurance

2 Verify and communicate the process and product quality

Requirements management 2 Ensure alignment between project work and requirements

Supplier agreement
management

2 Establish and satisfy supplier agreements

Decision analysis and
resolution

3 Ensure that all possible decisions are evaluated

Integrated project management 3 Coordinate the defined processes with all stakeholders

Organizational process
definition

3 Define how processes should be executed, tailored, and
assessed

Organizational process focus 3 Determine, plan, and implement process improvements

Organizational training 3 Determine the training needs, deliver training, and assess
the training effectiveness

Product integration 3 Ensure that the final product, assembled from different
components, conforms to the requirements and deliver it

Requirements development 3 Elicit customer requirements, develop product require-
ments, and analyze and validate requirements

Risk management 3 Identify, analyze, and mitigate risks

Technical solution 3 Design a product that implements the identified require-
ments

Validation 3 Assure that the output meets the needs of the client

Verification 3 Assure that the output was constructed according to the
requirements

Organizational process
performance

4 Establish performance baselines and models

Quantitative project
management

4 Monitor the performance quantitatively, analyze the root
causes of problems

Causal analysis and resolution 5 Determine and address causes of selected outcomes

Organizational performance
management

5 Select and deploy innovations

62 3 Towards Lean Thinking in Software Engineering

The CMMI approach is different from the approaches described so far. It
prescribes what should be present to achieve a certain maturity certification, but
it does not describe how this can be achieved. It is based on best practices that
the researchers at the Carnegie Mellon University identified in industry. Deming
frequently said: “You cannot inspect quality into a product [23],” meaning that
quality comes from improvement of the process [34]. According to this view, the
process has to be modified so that quality is part of the process itself.

So far we looked at larger proposals, methodologies, i.e., at “systems of methods
and principles [21]” that were proposed for specific problems and contexts. We want
to give two examples that also single practices coming from Lean can be used in
one’s software development process.

In the next two sections we give two examples of commonly used software
development practices, which adopt a “push” approach and analyze a possible “pull”
alternative: first (see Sect. 3.5), the practice of beginning the development collecting
requirements and pushing them into to the development process, and second (see
Sect. 3.6), the practice of developing code “bottom-up.”

3.5 “Push” vs. “Pull” in Software Engineering:
“Requirements-First” Development

The “push” approach is present whenever activities are triggered as soon as other
activities finish their work, obtaining their output as input. The risk involved with
the “push” approach is that the product or service, once it is “pushed” to the next
activity, does not correspond to what is required for further processing.

To begin the software development process, collecting requirements is prac-
ticed in nearly all software development approaches. Some approaches try to
collect all requirements upfront, and some iteratively collect a part of the require-
ments and implement them into an intermediate solution until all requirements
are implemented; still, both approaches “push” requirements to the development
process.

The definition of requirements converts business objectives into requirements
that take into consideration the technical possibilities and their costs. This step
requires considering the benefits and the costs of a technological solution in solving
a business problem. Usually the originators of requirements lack this knowledge,
which causes a large number of change requests during and after development [43].
This causes costs related to the following situations:

• the requirements do/do not optimally contribute to fulfill the business objectives;
• requirements change because old requirements have shown not to contribute to

the fulfillment of the business objectives;

3.5 “Push” vs. “Pull” in Software Engineering: “Requirements-First”. . . 63

• the implementation of the requirements costs more than an alternative implemen-
tation that fulfills the business objectives in the same way;

• requirements that would contribute to the business objectives and that would not
be costly to implement are not requested.

A possible “pull” approach can be achieved through an approach in which goals
are collaboratively identified before setting the requirements and used to “pull”
requirements and their priorities from the stakeholders [43]. Knowing the goals,
technicians can clarify issues earlier, offer ideas on what could be done to achieve
these goals, inform the business side on the different costs of possible alternatives
to allow prioritization of goals, and generate the technical requirements to fulfill the
overall goals.

The result is a development approach in which requirements are not “refined
down to an implementation,” i.e., taken as the starting point to develop an imple-
mentation that represents those requirements, but where the business objectives are
mapped to the capabilities of the technical platform to “equally consider and adjust
business goals and technical aspects to come to an optimal solution corresponding
to the current situation [43] (see Fig. 3.1).”

Fig. 3.1 Convergence of
technical capabilities and
business goals towards a
solution [43]

Business goals

Technical capabilities

Requirements that
describe solution

Requirements
are “pulled”

(generated) in
closing this

gap

Another similar approach is proposed by Briggs and Grünbacher [17] which
involves all success-critical stakeholders in a collaborative requirements negotiation
process to define win conditions (i.e., descriptions of business goals), issues (e.g.,
conflicts, technical difficulties, etc.), options (possibilities to solve the issues), and
agreements (agreed solutions to overcome issues). The goal is to obtain a “concisely
worded, non-redundant, unambiguous list of win conditions [17].”

64 3 Towards Lean Thinking in Software Engineering

3.6 “Push” vs. “Pull” in Software Engineering: “Bottom-Up”
Development

In “bottom-up” development, the development begins with building blocks that will
be used to create those parts that the end customer requires, similar to the process
of building a house: the foundation is built first. When developing top-down, “the
designer begins by determining what overall functions will be performed by the
software system, in what order, and under what conditions. He then proceeds to
develop a working top-level computer program, containing all the logic controlling
the sequencing between functions, but inserting dummy programs or “stubs” for the
functions. The succeeding steps consist of fleshing out the stubs into a lower-level
sequence of control logic, computation, and sub-functions, each of which is again
represented by a stub [45].”

Developers intuitively embark into the “bottom-up” paradigm since it is less
complex to design, implement, reuse, and test the single building blocks and then
continue to construct parts of the code using these building blocks instead of the
opposite approach.

The building blocks represent unfinished parts put on inventory producing costs
because of risks, e.g, often, different assumptions have been made during the
development of the individual components, which can lead to a high-level control
and data structure that are simply “kludged up,” which makes it difficult, i.e., costly
to maintain such an architecture if requirements change [45]. Moreover, a bottom-
up development approach makes it difficult to understand if and how much value is
provided by the single development activities.

Introducing a “pull” approach can be achieved adopting a top-down approach
as described above and introducing “pull” mechanisms such as test-driven devel-
opment [11]: test cases that are developed before the development define the goals
of the upcoming development step. These test cases are motivated by the relative
business objectives and “pull” the minimum amount of code that is necessary to
fulfill them. In other words, they describe the needed capability and “pull” the
minimum amount of code that is necessary to fulfill them.

The activities performed during test-driven development are as follows:

1. The programmer writes a test case that tests the desired functionality as if it were
already present in the code.

2. The initial test case fails, but it describes the expected outcome of the new
capability.

3. The next step is to make the test pass implementing the necessary code.
4. Refactor and pick the next requirement (go back to step 1).

Incremental additions can result in a confusing design and inhomogeneous or
difficult to read code parts. For this reason, the last step consists of refactoring, i.e.,
the improvement of the design under preservation of the existing functionality [26].

3.7 Summary 65

3.7 Summary

This chapter presented three perspectives under which we analyze Lean concepts:
value, knowledge, and improvement. We used the approaches presented in Table 3.1
to show that the values behind Lean already influenced a number of other concepts.
We repeat the table below (Table 3.4), adding the perspectives to which, we think,
the single approaches contribute the most.1

Table 3.4 Approaches that focus on similar values as Lean, together with the
perspective to which, we think, the single approach contributes the most

Year Proposal V
al

ue

K
no

w
le

dg
e

Im
pr

ov
em

en
t

1970s Rapid application development (RAD) [35] ✕

1985 Quality improvement paradigm [6] ✕

1986 Scrum (product development) [49] ✕

1986 Spiral software development [13, 15] ✕

1987 Six sigma [39] ✕

1987 Goal question metric approach [8] ✕ ✕

1989 Experience factory [7] ✕ ✕

1991 Capability maturity model (CMM) [40] ✕

1992 Balanced scorecard [33] ✕

1995 Dynamic systems development method (DSDM) [48] ✕

1999 Extreme programming (XP) [10] ✕

1999 Feature driven development [19] ✕

2000 Adaptive software development [28] ✕

2000 Personal software process [30] ✕ ✕

2001 Agile manifesto [11] ✕

2002 Capability maturity model integration (CMMI) [18] ✕

2004 Scrum (software development) [44] ✕

2004 Crystal clear [20] ✕

2007 GQMCstrategies [9] ✕ ✕

2009 DevOps [31] ✕

2011 Disciplined agile delivery [4] ✕

1In fact, for almost all the approaches, one could say that they contribute to all three perspectives,
because the three perspectives influence each other. For example, a better understanding of the
production processes helps to increase the delivered value, constant improvement also improves
the ability to collect and reuse knowledge, and so on.

66 3 Towards Lean Thinking in Software Engineering

We classified Rapid Application Development, spiral software development, the
Agile Manifesto, and proposals that are based on the Agile Manifesto as mainly
contributing to the understanding and maximization of the delivered value. They
also have elements to increase knowledge and improvement, but we think this is not
their primary goal.

We classified instruments like the Balanced Scorecard, the Experience Factory,
GQM, GQMCStrategies, and the PSP to the knowledge category, i.e., as methods
that focus on the creation of a shared understanding of the know-how, know-where,
know-who, know-what, know-when, and know-why within the company.

Finally, we classified methods that help to instill a culture of constant improve-
ment such as the Quality Improvement Paradigm, Six Sigma, the Capability
Maturity Model, and the Capability Maturity Model Integration, as mainly support-
ing improvement.

The two examples of existing approaches that translate Lean concepts into
software engineering show that this translation can occur in different ways. In the
first example, “pull” was used to organize the requirements engineering process and
in the second example, to devise a development strategy. In the following chapters
we develop a methodology to support such translation efforts.

Problems

3.1. Tag each process area of the CMMI (see Sect. 3.4) for development as:

• value, if its primary goal is to identify what has value and what has not;
• knowledge, if its primary goal is to increase the understanding of what happened,

what is happening, and what will happen; and
• improvement, if its primary goal is to improve the status quo.

3.2. Compare Define-Measure-Analyze-Improve-Control with Plan-Do-Study-
Act: link each step of the Define-Measure-Analyze-Improve-Control-cycle to one
or more steps of the Plan-Do-Study-Act-cycle.

References

1. Abran, A., Moore, J.W., Bourque, P., Dupuis, R. (eds.): Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society, Los Alamitos (2004)

2. Ambler, S.W.: Disciplined agile delivery and collaborative devops. Cutter IT J. 24(12), 18–23
(2011)

3. Ambler, S.W., Lines, M.: Disciplined agile delivery: an introduction. IBM Software Design and
Development, Thought Leadership White Paper. Online: http://public.dhe.ibm.com/common/
ssi/ecm/en/raw14261usen/RAW14261USEN.PDF (2011). Accessed 3 May 2014

http://public.dhe.ibm.com/common/ssi/ecm/en/raw14261usen/RAW14261USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/raw14261usen/RAW14261USEN.PDF

References 67

4. Ambler, S.W., Lines, M.: Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software
Delivery in the Enterprise. IBM Press Series. IBM Press, Upper Saddle River (2012)

5. Basili, V.R.: The experience factory and its relationship to other improvement paradigms. In:
Sommerville, I., Paul, M. (eds.) Proceedings of the European Software Engineering Conference
(ESEC). Lecture Notes in Computer Science, vol. 717. Springer, Berlin (1993)

6. Basili, V.R., Rombach, H.D.: Tailoring the software process to project goals and environments.
In: Proceedings of the International Conference on Software Engineering (ICSE). IEEE
Computer Society Press, Monterey (1987)

7. Basili, V.R., Caldiera, G., McGarry, F., Pajerski, R., Page, G., Waligora, S.: The software
engineering laboratory: an operational software experience factory. In: Proceedings of the
International Conference on Software Engineering (ICSE). ACM, Melbourne (1992)

8. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In: Marciniak,
J.J. (ed.) Encyclopedia of Software Engineering, vol. 1. Wiley, New York (1994)

9. Basili, V.R., Heidrich, J., Lindvall, M., Munch, J., Regardie, M., Trendowicz, A.:
GqmCStrategies — aligning business strategies with software measurement. In: Proceed-
ings of the International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE Computer Society, Madrid (2007)

10. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley, Reading
(1999)

11. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile software development. Online:
http://www.agilemanifesto.org (2001). Accessed 4 Dec 2013

12. Becker, S.A., Bostelman, M.L.: Aligning strategic and project measurement systems. IEEE
Softw. 16(3), 46–51 (1999)

13. Boehm, B.W.: A spiral model of software development and enhancement. IEEE Comput. 21(5),
61–72 (1988)

14. Boehm, B.W.: Software risk management: principles and practices. IEEE Softw. 8(1), 32–41
(1991)

15. Boehm, B.W.: Spiral development: experience, principles, and refinements. Technical Report
CMU/SEI-2000-SR-008, Carnegie Mellon University, Software Engineering Institute, Pitts-
burgh (2000)

16. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE Trans.
Softw. Eng. 14(10), 32–68 (1988)

17. Briggs, R.O., Grünbacher, P.: Easywinwin: managing complexity in requirements negotiation
with gss. In: Proceedings of the Annual Hawaii International Conference on System Sciences
(HICSS), vol. 1. IEEE Computer Society, Big Island (2002)

18. Chrissis, M.B., Konrad, M., Shrum, S.: Cmmi: Guidelines for Process Integration and Product
Improvement. The SEI Series in Software Engineering. Addison-Wesley, Boston (2003)

19. Coad, P., Luca, J.D., Lefebvre, E.: Java Modeling Color with UML: Enterprise Components
and Process. Prentice Hall PTR, Upper Saddle River (1999)

20. Cockburn, A.: Crystal Clear a Human-Powered Methodology for Small Teams. Addison-
Wesley, Boston (2004)

21. Collins: Collins English Dictionary — Complete & Unabridged, 10th edn. HarperCollins.
Online: http://www.collinsdictionary.com (2009). Accessed 4 Dec 2013

22. Crosby, P.B.: Quality is Free: The Art of Making Quality Certain. New American Library, New
York (1979)

23. Deming, W.E.: Out of the Crisis. Massachusetts Institute of Technology Centre for Advanced
Engineering Study (MIT-CAES), Cambridge (1982)

24. Deming, W.E.: Quality, Productivity, and Competitive Position. Massachusetts Institute of
Technology Centre for Advanced Engineering Study (MIT-CAES), Cambridge (1982)

25. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.
PWS Publishing, Boston (1998)

http://www.agilemanifesto.org
http://www.collinsdictionary.com

68 3 Towards Lean Thinking in Software Engineering

26. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design
of Existing Code. Addison-Wesley Object Technology Series. Addison-Wesley Professional,
Reading (1999)

27. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, Reading (1994)

28. Highsmith, J.A.: Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. Dorset House Publishing, New York (1999)

29. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build, Test,
and Deployment Automation. Addison-Wesley Professional, Upper Saddle River (2010)

30. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley Professional,
Reading (1996)

31. Hüttermann, M.: DevOps for Developers. Apressus Series. Apress, New York (2012)
32. Juran, J.M.: Juran on Leadership for Quality: An Executive Handbook. Free Press, New York

(1989)
33. Kaplan, R.S., Norton, D.: The balanced scorecard: measures that drive performance. Harv. Bus.

Rev. 70(1), 71–79 (1992)
34. Kasse, T.: Practical Insight into CMMI. Artech House Computing Library. Artech House,

Boston (2008)
35. Martin, J.: Rapid Application Development. Macmillan Publishing, New York (1991)
36. Nyfjord, J., Kajko-Mattsson, M.: Commonalities in risk management and agile process models.

In: International Conference on Software Engineering Advances (ICSEA). IEEE Computer
Society, Cap Esterel (2007)

37. Ōno, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press,
Cambridge (1988)

38. Padayachee, K.: An interpretive study of software risk management perspectives. In: Proceed-
ings of the Annual Research Conference of the South African Institute of Computer Scientists
and Information Technologists on Enablement Through Technology (SAICSIT). South African
Institute for Computer Scientists and Information Technologists, Port Elizabeth (2002)

39. Pande, P.S., Neuman, R.P., Cavanaugh, R.R.: The Six Sigma Way: How GE, Motorola, and
Other Top Companies are Honing Their Performance. McGraw-Hill Education, New York
(2000)

40. Paulk, M., Curtis, B., Chrissis, M.B., Averill, E.L., Bamberger, J., Kasse, T.C., Konrad, M.D.,
Perdue, J.R., Weber, C.V., Withey, J.V.: Capability maturity model for software. Technical
Report CMU/SEI-91-TR-24, Carnegie Mellon University, Software Engineering Institute,
Pittsburgh (1991)

41. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit. Addison-
Wesley Professional, Boston (2003)

42. Rus, I., Lindvall, M.: Knowledge management in software engineering. IEEE Softw. 19(3),
26–38 (2002)

43. Schnabel, I., Pizka, M.: Goal-driven software development. In: Proceedings of the Annual
IEEE/NASA Software Engineering Workshop (SEW). IEEE Computer Society, Columbia
(2006)

44. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
45. Selby, R.W. (ed.): Software Engineering: Barry W. Boehm’s Lifetime Contributions to

Software Development, Management, and Research. Practitioners Series. Wiley, Hoboken
(2007)

46. Shewhart, W.A., Deming, W.E.: Statistical Method from the Viewpoint of Quality Control.
Dover Books on Mathematics Series. Dover, New York (1939)

47. Software Engineering Standards Committee of the IEEE Computer Society: IEEE standard for
software life cycle processes: risk management (2001). IEEE Std 1540-2001

48. Stapleton, J.: DSDM Dynamic Systems Development Method: The Method in Practice.
Addison-Wesley, Reading (1997)

49. Takeuchi, H., Nonaka, I.: The new product development game. Harv. Bus. Rev. 64(1), 137–146
(1986)

Chapter 4
Agile Methods

Entia non sunt multiplicanda praeter necessitatem.
(Entities must not be multiplied beyond necessity.)

William Ockhamo

Very tired but happy, Uli moved back toward his office. Yes, he made it.
He just recollected that he left his senior architects in the middle of the meeting

and. . . it was 4 hours ago. Now it was about 6PM, so he would have not expected to
find anyone in.

He was wrong. Everyone was there waiting for him. The four of them had already
heard the bad news, but not yet the good one. They all thought that Uli had gone
out to shout and to let his anger dissolve and they would have never imagined the
reality.

When Uli entered his office, they were there. The atmosphere was surreal. Elp was
drinking a beer, Sinon and Euril were discussing a new paper by Tom De Marco,
where it looked like he was retracting all his previous beliefs, Perim was doing her
email on a new Android phone. Uli started to talk, but he cold not go ahead. His guys
were smart. They did not want to wait to be laid off, so actually all of them but Elp
have already sent out their resumes and Euril even got an offer. Elp was relaxed,
as he had already planned for about an year to move to the consulting industry.
They informed Uli of the news and reassured him of their everlasting friendship
and loyalty—they all thought he was a great boss and he had no liability for what
happened. Altogether, the cut of the project was perceived with a sense of freedom.

So, perhaps the good news was not such a good news! But, anyway, he was proud
of his guys. They were able to react very fast and very effectively.

“Look guys, I am not sure whether what I am going to tell you is going to affect
your decisions. . . ” he paused for a while “but XXX is ready to let us to go ahead on
the project if we are capable of changing the way we work. Substantially, we need
to provide him the required functionalities piecewise and frequently. I know that this
is going to affect the way we work, but it could be a fun experimentation. Rather
than dividing and scheduling the work based on technical choices, we need to focus
on what he perceives as a valuable element. Also, he will have the right to come to
see what we do at any time and also to quit the project at any time. He ensured me

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__4

69

70 4 Agile Methods

that he will not interfere with the specific design choices that we will take, provided
that we are able to supply him a constant flow of new and valuable functionalities.
And worse, these proposals come from me—I elaborated them from some readings
I made recently and from what I consider effective software engineering practices,
and adapting them to our specific environment.” Sinon smiled “this reflects also
some of the ideas that I was discussing with Euril on the paper I showed you
yesterday.” “Yes, indeed. Tom De Marco made me reflecting on something that
has been up in my mind for a long, very long time. It appears to me that when
we develop software we do not focus enough on the real value we provide to the
customer, the running functionalities. We have put together a sequences of methods
and practices and now we are slave of such things. It often looks more important to
follow such methods and practices rather than delivering the running system. Such
practices make us comfortable, let us feeling as if we were doing the right thing.
If the project fails, we are sorry, but we feel in a sense good, because we followed
such practices—so adverse and unavoidable events made the project failing, not us.
We become martyrs for the good (practices), not just people who failed. But the
practices and the methods are to provide value to the customer and not the other
way around.

And we are very skilled software engineers. We are here, we did this careers,
we studied for so many years, and, after all, we were born to follow virtue and
knowledge, to grow in competence, not to follow blindly the practices. So, I said—
stop.” This was one of the great speeches for which Uli was known. Sinon had tears
in her eyes. Elp thought he could gain this extra experience before going on is own.

Euril was a bit more hesitant: “Well, but proceeding in this way has not
necessarily produced better results than the old way. After all Tom De Marco
refrains explicitly from proposing a specific method.” “I do not want to stick to a
specific method. If the point were to devise a method, well, I would stay with the ones
we have and we know. But we do our work because we have values and principles to
follow—because we are proud to be software engineers. So, what I propose, rather,
is to define what are the core values of our work and then, based on such values, to
determine how to apply such values to our daily work with our customers. Needless
to say, the application will depend from customer to customer. Talking with XXX I
thought that the best way to proceed was the one we discussed, but this does not
prevent that in a different situation we could have a different application, actually,
this is very likely, almost certain.”

Perim looked convinced. Her eyes were shining over the translucent dark skin
of her face. Well, she was beautiful and people looking at her were nearly always
hypnotized. She started to talk softly: “I am with you.” She did not intend to do
so, but her statement reminded everyone the time when she dated Uli, so the folks
were even more concentrated on her. “But there are two key issues to address. The
first is that if we have such frequent releases and we focus on developing valuable
items in such time frames, we risk to loose the big picture of the system we are

4 Agile Methods 71

developing, and the overall architecture may go nuts. Then, currently we divide
our tasks based on our skills, working on such short time frame requires to forget
somewhat such skills, as there will be the time when we focus, say, on developing
a database related feature and the time on a network issues. How can we handle
such problems?” “Strike Perim!” Uli thought. He had these two issues also in his
mind, but he did not want to make evident that still not everything was clear in
his mind. “Perim, we need to develop some more situational awareness, so that
we learn how to react faster to external stimulus. Also, we need to strengthen our
horizontal skills; it is now evident that all of us should be not super-specialized in a
specific branch of software engineering, but we ought to be broad.” Uli had no idea
of what “situational awareness” meant, but he heard such term from a consultant
and thought that it was fuzzy enough to look like that he had an answer when he had
not. Also, he was not very convinced of all these issues related to horizontal skills,
actually, he was not even sure whether they applied also to software engineering or
only to some of the usual socio-psico-philo-disciplines whose experts were paid big
bucks to sell (what he thought was just) vapor.

“Uli, I am not sure what you mean but. . . ” Perim replied. Uli felt a stroke on
his stomach—was she going to uncover him? “but I think you are right. After all,
we have nearly always spent long times in building large architectures, but then we
have often ignored them and such time actually has only be a waste. I also think that
we are all smart people. Probably, it is better that we acquire all a good knowledge
of everything, and we can easily do it, so that we can learn better what the system
is as a whole, rather than to have the overall view of the system dispersed in our
individual understanding based on our very specific skill, so that everyone has a
really deep picture of the system from his viewpoint, the viewpoint of the technology
he masters, but there is none with a solid global view and, perhaps, the individual
perspectives even do not match. So, if we go this way, I would even propose that we
collectively share the responsibility for the overall system and for each piece of code,
that we let everyone modify each part of the code she or he think it is suitable—after
all we will (or should) all be competent in all the details of the system.” “Fine, fine,
fine” said Elp, “but to be on the safe side, let us have a good suite of tests pervading
the whole code, so that if anyone makes a change that actually breaks the code, it
will become immediately evident. We should aim at 90% coverage, at least for the
parts not related to user interfaces. With such constraint, with the fact that none
wants to look stupid making nonsense modifications ad with the usage of a good
version control system, so that we can revert any unlikely wrong modification that
may occur, I feel comfortable that we can proceed.”

Uli felt now tired but relaxed. He still had to get the go from Athi and from J, but
the team was with him. So he called Athi asking for a meeting with her and J the
day after and then took everyone out for dinner at Calypsos, where they would have
forgot the troubles in front of a good moussaka followed by a generous portion of
baklava a la mode.

72 4 Agile Methods

4.1 Introduction

It was the year 2001. A significant number of software engineers had already
been trying to apply the concepts of Lean management to software engineering.
A group of them decided to formalize their approach. They identified a set of
values and principles and synthesized them in the “Manifesto for Agile Software
Development” [5], also known as “Agile Manifesto” (see Fig. 4.1). We will now go
into the details of the Agile Manifesto and of its Principles to unveil some of its
facets. We also evidence how some such ideas were not conceived out of the blue—
actually they represent the synthesis of years of research and development in this
area.

Fig. 4.1 The Agile
Manifesto [5] We are uncovering better ways of developing

software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

The “Agile Manifesto” identifies two sets of values: the values lying on the left
of the document and the values lying on the right of the document (see Table 4.1).

It then claims that the values of the right are important, but they consider even
more important the values on the left. So they value individual and interactions
more than processes and tools, etc. It is worth noticing the graphic metaphor they
use: the values on the right are the values of the rational thinking, of the top-down,
Fordist/Taylorist, waterfall-ish development; after all, they are on the right side!
The values on the left sit on the side of the heart and the side of the emotions, of
the interactions and of the collaborations, of what often can be lost despite being so

Table 4.1 Set of values identified by the Agile Manifesto [5]

Values on the left Values on the right

Individual and interactions Processes and tools

Working software Comprehensive documentation

Customer collaboration Contract negotiation

Responding to change Following a plan

4.1 Introduction 73

important, since we are in a knowledge-intensive field and we know how many
defects come for misunderstanding requirements, people, code, documentations,
etc.

Right after the “Agile Manifesto,” the “Principles behind the Agile Manifesto”
were formalized. The values are translated into twelve principles to guide software
engineers in their everyday’s work (see Fig. 4.2).

1. Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily through-
out the project.

5. Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design en-
hances Agility.

10. Simplicity—the art of maximizing the amount of work not done—is
essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more effec-
tive, then tunes and adjusts its behavior accordingly.

Fig. 4.2 The 12 principles behind the Agile Manifesto [5]

The first two principles describe how an Agile software developer sees the world:
customer satisfaction is the highest priority, and the best way to achieve it is to adapt
to the evolving needs of the customer. In this context, “Agility” acknowledges the
impossibility to predict all the desired system upfront and provides support for the
natural evolution of requirements.

Moreover, while technical excellence is of paramount importance (Principle 9),
it is not the ultimate end of the project, which is in turn customer satisfaction.

This is further emphasized by Principle 7, where we acknowledge that any
measure that does not relate to the customer satisfaction has little sense. Only the
working software that can be supplied to the customer can be the measure of how
much we have progressed in the project. This rules out using as milestones our own
definitions of how the project should be done, for instance, including our analysis

74 4 Agile Methods

and design document, the amount of discussions we had internally, and so on. Note
that it is not said that such things are useless; it is written that they cannot be
an objective measure of how much we have progressed, because they reflect our
perception of the project and not the value that we provide to the customer, that is,
what matters at the end.

Principle 10 is further attached to this matter. Saying that we strive for simplicity
means that we eliminate anything that does not carry a value and so, in turn, that we
first focus on customer satisfaction, going back to the tenets of Lean Management.

The remaining principles describe how an Agile software developer chooses
to achieve Agility. These practices are not all new; some of them can be linked
to existing best practices; this evidences the evolutionary processes that lead the
creation of Agile Methods, that actually are rooted in years of software engineering
research and development, and that represent a comprehensive “fusion” of ideas.

Table 4.2 lists some concepts that seem to have inspired the principles of the
manifesto.

Table 4.2 Ideas that can be related to principles in the Agile Manifesto

Year Principle Idea

1954 11 Management by objectives [16]

1968 5 Job enrichment [23]

1970s 3 Rapid application development [28]

1971 6 Communication improvement by collocation of workers [35]

1975 4 Involvement of stakeholders [26]

1978 7–12 Toyota production system [30]

1986 12 Plan-Do-Study-Act [15, 34]

1988 3 Prototyping and iterative development [9]

The previous chapter mentioned Rapid Application Prototyping and Spiral
development which seem to have inspired Principle 3, i.e., to deliver working
software frequently.

Lucas pointed out in the 1970s that “the major reason most information systems
have failed is that we have ignored organizational behavior problems in the design
and operation of computer-based information systems [26].” He models failure
based on three classes of variables: user attitudes and perceptions, the use of
systems, and user performance [6]. The need to involve users, see what they expect,
how they use the system, how they perform, etc. throughout the project seems to
have influenced Principle 4.

Job Enrichment (see below) seems to have influenced Principle 5.
Weinberg in “The psychology of computer programming” [35] already describes

the communication improvement by collocation of workers; this might have influ-
enced Principle 6.

4.1 Introduction 75

The principles 7–11 can be linked to the ideas described in the previous chapter:
the idea to focus on what produces value (Principle 7), to involve and respect
workers (Principle 8), to focus on quality in the process (Principle 9), to focus
on simplicity (Principle 10), to let the team assume responsibility (Principle 11),
and to constantly improve (Principle 12). Also the approach of “Management by
Objectives [16]” proposed by Drucker might have influenced Principle 11.

“Best practices” are a popular way in software engineering to package and
transfer experience and knowledge. Table 4.3 shows examples of best practices;
according to Fraser [18], the practices in the table below were combined to what is
now known as “Agile Methods.”

Table 4.3 Software best practices are not new [18]

Best practice Year Introduced by

Requirements 0s (Exists since the beginning of time)

Pair programming 1950s John Von Neumann (IBM)

Project planning 1960s Mercury project (NASA)

Risk management 1960s Mercury project (NASA)

Software architecture 1960s Frederick P. Brooks, Edsger W. Dijkstra,
David L. Parnas

Software reuse 1960s Malcolm D. McIlroy (AT&T)

Test-driven design 1960s Mercury project (NASA)

Coding standards 1970s Brian W. Kernighan, P. J. Plauger

Collective ownership 1970s Unix, open source

Continuous integration 1970s IBM federal systems division

Data hiding and abstraction 1970s David L. Parnas

Documentation 1970s David L. Parnas

Incremental releases 1970s Victor R. Basili, Albert J. Turner

On-site customer 1970s Harlan D. Mills (IBM federal systems
division)

Simple design 1970s Victor R. Basili, Albert J. Turner

Software measurements 1970s Tom Gilb, Maurice H. Halstead

Evolutionary design 1980s Tom Gilb

Patterns 1980s Tom DeMarco, Timothy Lister, Gang of Four

Peopleware, sustainable pace 1980s Tom DeMarco, Timothy Lister

Use cases 1980s Ivar H. Jacobson

(continued)

76 4 Agile Methods

Table 4.3 (continued)

Best practice Year Introduced by

Software economics & estimation 1980s Barry W. Boehm

Metaphor 1990s Kent Beck, Martin Fowler,
Howard G. Cunningham

Refactoring 1990s William F. Opdyke, Martin Fowler

Retrospectives 1990s Norman L. Kerth, Linda Rising

4.2 Keeping the Process Under Control

At the heart of a development process, there are the mechanisms by which the
work of people is composed, synchronized, and synthesized together to produce
goods, that is, how to organize, control, and direct the activities of the workforce
to the ultimate success of the operations. We have already discussed how this was
implemented in the original ideas of Taylor and Ford and how this changed in the
early Lean Management approaches.

It appears therefore obvious that at the very heart of Agility, there is a different
way of organizing the work of people.

A key aspect of such organization is the “control” of the work of people to
ensure that they do what they are supposed to do. Often, controlling the work of
an employee means that the employee has to follow a sequence of (often written)
rules of behavior and that there is a supervisor that checks at given interval of
time whether the employee has done what he was supposed to do. This is true in
the Fordist/Taylorist approaches, and it is also true in the early Lean management
approaches. Having a fixed schedule of work with the need of a written permission
of the supervisor for any change, punching cards when entering and exiting the
office, writing reports of each own activities to be approved by the supervisor, etc.
are all mechanisms to control.

The fact is that there are several ways to implement the concept of “controlling
the work,” especially when dealing with motivated and skilled people. Michael L.
Harris [22] proposed an effective way to classify different types of control and in
which circumstances these types work best.

The selection of the most effective control mechanism depends on two factors:

1. the ability to measure the output, the “measurability,” and
2. the ability to specify in details the steps required to accomplish a given task, the

“specifiability.”

4.2 Keeping the Process Under Control 77

So if we put these two factors in a two-dimensional diagram (see Fig. 4.3), we
obtain four areas:

1. an area with high level of measurability and of specifiability;
2. an area where we have a high level of measurability of the output but little

specifiability;
3. an area where we have a high level of specifiability but little measurability; and
4. an area where we can neither measure directly the output nor specify the steps of

the work.

Perfect

L
ow

Imperfect

H
ig

h

Behavior Clan

Behavior or Outcome Outcome

Knowledge of transformation process

A
va

ila
bi

lit
y

of
ou

tc
om

e
m

ea
su

re
s

Fig. 4.3 Organizational use of control types [22]

When we are in the area with a high level of measurability and specifiability,
we know both how to produce an asset and how to measure whether it has been
produced correctly. A typical example of workers falling in this area is secretaries,
who can be controlled, for instance, either by checking their output, e.g., the
documents they have prepared, the arrangements they made, etc. Therefore, we can
apply either a control of the outcome or a control of the steps.

When we are in the area with a high level of measurability of the output but little
specifiability, we can control the process only by measuring the outcome. Cookers
are a clear example of works that are hardly controllable but can be controlled
simply by assessing the quality of the food that they prepare. Workers are evaluated
based on a comparison of their output with an expected output.

Output control is in line with Management by Objectives [16]: a “process
whereby the superior and subordinate managers of an organization jointly identify
its common goals, define each individual’s major areas of responsibility in terms of

78 4 Agile Methods

the results expected of him, and use these measures as guides for operating the unit
and assessing the contributions of each of its members [29].”

Altogether, outcome measures define how the optimal output should look like. If
a task outcome cannot be described or if an individual’s contribution to the outcome
cannot be easily determined, then using outcome-based control will not be efficient
and management by objectives becomes less effective.

Output control is related to Autonomation (see Chap. 2): autonomation requires
a mechanism to detect problems, i.e., requires that the output is measurable and
comparable to an objective.

Certain industries, among which is the software industry, produce goods with an
evolutionary pattern (see, e.g., [1]), that is, the outcome emerges gradually together
with its constraints: scope boundaries (given through the user stories) and ongoing
feedback (continuous course corrections through the interaction with stakeholders).
In this case we can use the term “emergent outcome,” which gives the sense of how,
for instance, Agile processes build gradually and piecewise systems towards a final
outcome. Measuring the emergent outcome is not easy, and it is often accomplished
by a direct intervention of the customer.

In the area with a high level of specifiability of the process but little measurability
of the output, we can control the steps that are accomplished but hardly measure
the output. But we trust that following the process does lead to the correct answer.
Clerical workers are often localized here. They accomplish steps that, composed
altogether, can produce successful results, but each step individually is hardly
measurable (filling a form, running an interview, checking items against a to-do
list, etc.). In this case we can have a behavioral control: workers are evaluated based
on a comparison of their performance to a pre-specified behavior that is known to
transform inputs to desired outcomes.

The area where we can neither measure directly the output nor specify the steps
of the work characterizes most knowledge-intensive works. Consider the case of a
medical doctor; the effectiveness of his work cannot be measured simply in terms
of the adherence to a set of steps. Otherwise, all doctors would be equally good,
while we know that there is a huge difference between a “regular” doctor and a
“good” doctor, our Dr. House. Moreover, also the output is not easy to measure. On
one side we do not want to wait for the patient to die to determine whether a task
was performed correctly. On the other side, treatments often have long-term effects,
so a comprehensive measurement would require years. This is exactly the same
for software engineers: it is not possible to trivialize the work of building software
systems in terms of a sequence of simple steps—otherwise there would not be the
huge well-known difference in productivity between a “regular” programmer and a
“good” programmer as reported by [10, 12–14].

Altogether, this calls for a different kind of control, the so-called clan control, in
short, the control by the peers.

Clan control mechanisms are based more on the promotion of a shared set of
values that result in a positive, efficient, and effective attitude towards the work
rather than in monitoring the actual work product. Once this attitude alignment is
achieved, it is expected that clan members self-regulate based on those common

4.3 Job Enrichment 79

values and their individual decisions are consistent with the interests of the
organization.

The implementation of an effective clan control is not trivial. This can be
achieved by selecting the correct individuals and by socializing with them to share
the values and the objectives of the organization [22]. Then, when clan control
emerges, rituals and ceremonies are used to promote common values among clan
members.

In software engineering it is not possible to know in advance which transfor-
mation process will lead to the desired outcome; the outcome is often produced
incrementally, and also the measurement of the output is often hard. Altogether,
emergent output control and clan control appear the most effective means to govern
the software development process. More about this topic will be discussed later.

4.3 Job Enrichment

A peculiar set of techniques can be very effective in the implementation of clan
control. The early Lean Management has gone beyond the simplistic concept of
division of labor. It recognized the advantages of motivated, responsible employees
through the adoption of techniques that promote motivation through non-monetary
remunerations to the workers, especially valuable for those who enjoyed the work
they do. Such set of techniques is called “Job Enrichment.” A summary of them is
listed in Table 4.4.

Job Enrichment can be an effective mechanism to promote an effective process
control, especially if an approach based on Clan Control is adopted. Therefore, it
is important to review some of the principles of Job Enrichment, as presented by
Herzberg [23].

Herzberg claims that it is of paramount importance to increase the accountability
and responsibility of employees, so that they themselves become motivated and
interested that their work has a high-quality outcome.

The “seven useful starting points for consideration” stated by Herzberg are shown
in Table 4.4. These suggestions are based on Herzberg’s studies that identified the
factors creating motivation, and those creating dissatisfaction are different (i.e., the
opposite of motivation is no motivation, and the opposite of dissatisfaction is no
dissatisfaction), as shown in the figure below.

The identified factors (see Fig. 4.4) causing motivation, the “motivator factors,”
are “achievement, recognition for achievement, the work itself, responsibility, and
growth or advancement.” The factors that can cause dissatisfaction when disad-
vantageous for the employee are “company policy and administration, supervision,
interpersonal relationships, working conditions, salary, status, and security.” These
factors—when favorable for the employee—which do not cause motivation but
avoid dissatisfaction are called hygiene factors [23].

80 4 Agile Methods

Table 4.4 Techniques of job enrichment [23]

Techniques Motivators involved

Removing some controls while retaining accountability Responsibility and
personal achievement

Increasing the accountability of individuals for own work Responsibility and recognition

Giving a person a complete natural unit of work (module,
division, area, and so on)

Responsibility, achievement,
and recognition

Granting additional authority to employees in their activity;
job freedom

Responsibility, achievement,
and recognition

Making periodic reports directly available to the workers
themselves rather than to supervisors

Internal recognition

Introducing new and more difficult tasks not previously
handled

Growth and learning

Assigning individuals specific or specialized tasks,
enabling them to become experts

Responsibility, growth, and
advancement

50% 40 30 20 10 0 10 20 30 40 50%

Factors characterizing 1844
events on the job that led to
extreme dissatisfaction

Factors characterizing 1753
events on the job that led to

extreme satisfaction

Achievement

Recognition

Work itself

Responsibility

Advancement

Growth

Company policy and administration

Supervision

Relationship with supervisor

Work conditions

Salary

Relationship with peers

Personal life

Relationship with subordinates

Status

Security

Hygiene
factors

Motivators

Fig. 4.4 Factors affecting job attitudes [23]

4.4 Endogenous and Exogenous Control Mechanisms 81

Now we understand Herzberg’s recommendations:

• to remove some controls while retaining accountability reduces a hygiene
factor (supervision) and increases motivator factors (responsibility and personal
achievement);

• to increase the accountability of individuals for own work reduces hygiene
factors (supervision, security; more accountability is connected to a higher risk
to fail) and increases a motivator factor (responsibility and recognition);

• to give a person a complete natural unit of work reduces hygiene factors
(company policy and administration, supervision) and increases motivator factors
(responsibility, achievement, and recognition);

• to grant additional authority to employees in their activity reduces hygiene factors
(company policies, supervision) and increases motivator factors (responsibility,
achievement, and recognition);

• to make periodic reports directly available to the works themselves rather than
to supervisors reduces a hygiene factor (supervision) and increases a motivator
factor (internal recognition);

• to introduce new and more difficult tasks not previously handled reduces a
hygiene factor (company policies and administration) and increases motivator
factors (growth and learning); and

• to assign individuals specific or specialized tasks, enabling them to become
experts, increases motivator factors (responsibility, growth, and advancement).

At this point of the book, it should be clear that producing software is not like
producing cars: there is not a high availability of reliable and solid measures of
the output and there is a lack of a sound knowledge of the transformation process.
Software engineering cannot define rules to control effectively the transformation
process; as mentioned, this calls for a Clan Control mechanism, which, in turn,
requires a high motivation of the individual through techniques such as Job
Enrichment.

4.4 Endogenous and Exogenous Control Mechanisms

Whether a control mechanism is clan control, process control, or output control,
it should be exercised with two different kinds of mechanisms: endogenous
mechanisms and exogenous mechanisms.

What we call “endogenous mechanisms” subsumes all methods that embed
control mechanisms into the process. We gave already examples of endogenous
control in the “Quality management” section of Chap. 2; the second connectors of
Fig. 2.19 are made in a way that it is not possible to connect them wrongly—the tool
box shown in Fig. 2.20 does not allow to put the scissors on a wrong place since they
would not fit.

82 4 Agile Methods

Autonomation is another example; it implements endogenous control indi-
rectly—through its mechanism that verifies a certain property of the produced
output and the alert mechanism, it enforces a given condition. Autonomation—by
alerting and stopping the machine automatically in case of an error—implements
endogenous control: it makes it impossible to produce something that does not fulfill
the condition verified through autonomation. Autonomation allows to verify more
complex conditions than to verify the correct size or location of objects (as in the
examples of Figs. 2.19 and 2.20).

The opposite of endogenous control is exogenous control: control that is not
embedded into the process but is coming from the actors involved in the process.

What is now endogenous control within a software methodology? We consider
the control endogenous if the application of a practice forces also others to fulfill
it. It is like in Fig. 2.20: once we all decide to put the scissors in the box shown in
the figure, there is only one way to put it. An example is the shared code practice
of Extreme Programming (see below): if we decide that everybody has the right
to change any part of the code, all team members are forced to, e.g., follow some
coding standards. If not, other team members will complain as soon as they want to
change that code.

4.5 Synchronizing the Flow of Work of Multiple People

Coordinating work means to manage dependencies between activities. Malone and
Crowston [27] consider different kinds of coordination, i.e., “managing dependen-
cies between activities”:

• shared resource,
• producer/consumer,
• simultaneity, or
• task/subtask.

A shared resource dependency is given when actors require access to the same
limited resource. An example would a be “first come/first serve” approach or to
assign time slots for each worker when accessing a resource.

In a producer/consumer dependency, one activity produces something that is used
by another activity. Coordination mechanisms for this type of relationship are that
the first activity is a prerequisite for the second or that a specific good has to be
transported from one place to another place to be further processed.

We talk about simultaneity dependency when activities have to occur on the same
time (or cannot occur at the same time). Scheduling a meeting is an example where
all participants have to be available. Another example is to find a free time slot for
a lecture at the university.

4.6 Extreme Programming (XP): A Paradigmatic Example of Agile Methods 83

This problem is quite complex since several simultaneity constraints apply:
students cannot attend more than one lecture at the same time, lecturers cannot give
more than one lecture at the same time, rooms cannot be occupied by more than one
class at a given time, all students of 1 year have to have time to attend (no other
compulsory lecture at the same time), and so on.

A task/subtask relationship exists when a set of subtasks contribute to the
achievement of a higher task or goal. The subtasks represent parts of the higher-level
task that are decomposed according to some criteria, e.g., by function, by product,
by customer, by geographical region, etc.

4.6 Extreme Programming (XP): A Paradigmatic Example
of Agile Methods

Extreme Programming (XP) is a software development methodology conceived and
refined by Kent Beck [3, 4] based on the principles of the Agile manifesto and
that tries to implement effective software development using the ideas of Lean
management.

The control is mostly exercised with Clan Control, using whenever possible
endogenous mechanisms and with an extensive use of simultaneity constraints
synchronization methods.

XP springs from a criticism of one of the axioms of traditional software
engineering: “The cost of changes grows exponentially as the project progresses.”
Since the work of Boehm [7, 8], there has been a common belief that the cost
of fixing a defect or to change a feature increases exponentially with the time of
fixing it, that is, if the cost is 1 during requirement elicitation, it becomes 10 during
analysis, 100 during design, 1,000 during coding, and so on.

If this curve is true, then it is essential, very essential to anticipate all decisions
and to collect all requirements initially and try to plan as detailed as possible all
the steps to perform. In other words, this curve demands a very Fordist model.
However, we have already discussed the inefficiencies of the Fordist models and
the impossibility to do the planning. So, in his groundbreaking work of 1999, Beck
questions whether this curve is really the only way to go or whether it is possible to
devise a different way to develop software, where the curve remains flat throughout
development (see Fig. 4.5).

If we are able to have defined a development model that supports a flat curve,
then the development process becomes “Agile,” that is, it is possible to apply
modifications also later in the development phases and non-Fordist development
models become applicable.

XP constantly is looking to adopt practices, methods, or technologies that
contribute to obtain a flatter cost of change curve.

84 4 Agile Methods

XP wants to establish a way to develop software where the cost of a change is
constant throughout the development. This means a change during the early phases
of development costs as much as a change made during maintenance. Such a curve
means that the development team is able to accept modifications also late in the
development project at a cost that does not depend on the point in time when the
modification is requested.

This goal implies a radical change on the culture of software development.

C
os

to
fc

ha
ng

e

Time

R
eq

ui
re

m
en

ts

A
na

ly
si

s
an

d
D

es
ig

n

C
od

in
g

Te
st

in
g

in
th

e
la

rg
e

Pr
od

uc
tio

n

XP

Traditional

Fig. 4.5 Traditional and Agile cost of change curve [4]

4.7 The Building Blocks of XP

As mentioned, XP is grounded on Clan Control. Therefore, XP is organized in terms
of values, principles, and practices (see Fig. 4.6), three levels of abstraction that
explain the way of thinking promoted by XP. The values represent the “constitution”
of the clan doing XP. The constitution is the base for all laws; still it remains at a
very high level. The constitution is then translated into laws.

The principles are the “laws” of the clan. The principles are then implemented
with specific operational rules of the clan, the practices. There are five values in the
constitution of XP: communication, simplicity, feedback, courage, and respect.

Communication is seen as the most important ingredient for effective coop-
eration within a clan, which is enhanced through respect: an attitude to accept
different viewpoints, constructively evaluate every possibility, and care about the
contributions of each person of the clan.

4.7 The Building Blocks of XP 85

14. Real Customer Involvement,
15. Incremental Deployment,
16. Team Continuity,
17. Shrinking Teams,
18. Root-Cause Analysis,
19. Shared Code,
20. Code and Tests,
21. Single Code Base,
22. Daily Deployment,
23.
24. Pay-Per-Use.

Extreme Programming

Values

Practices

Communication

Simplicity

Feedback

Courage

Respect

1. Humanity,
2. Economics,
3. Mutual Benefit,
4. Self-Similarity,
5. Improvement,
6. Diversity,
7. Reflection,

8. Flow,
9. Opportunity,
10. Redundancy,
11. Failure,
12. Quality,
13. Baby steps,
14. Accepted Responsibility

1. Sit Together,
2. Whole Team,
3. Informative Workspace,
4. Energized Work,
5. Pair Programming,
6. Stories,
7. Weekly Cycle,
8. Quarterly Cycle,
9. Slack,
10. Ten-Minute Build,
11. Continuous Integration,
12. Test-First Programming,
13. Incremental Design.

Primary

Principles

Corollary

Negotiated Scope Contract,

Fig. 4.6 The building blocks of extreme programming

Simplicity emphasizes that a team should try to be efficient: achieve the maxi-
mum business value with the minimum effort. During development, the “simplest
thing that could possibly work” [4] should be used.

The clan gathers feedback on everything it does. It includes discussing alter-
native ideas with clan members, evaluating the performance of a system through
a test, confronting customers with intermediate versions of a solution, and so on.
Finally, courage is necessary to be ready “to speak truths, pleasant or unpleasant,”
to “discard failing solutions,” and to “seek real, concrete answers” [4] within the
clan.

The values are interrelated, for example, simplicity diminishes the need for
communication and the need for feedback: requirements that are not needed do not
need to be discussed, constructing a test case to analyze the behavior of the system
in a tricky situation can anticipate future problems, etc (see Fig. 4.7).

86 4 Agile Methods

Values

Principles

Drive

Practices

Drive

Behavior

Strategy

Tactics

Drives

Guide

Guide indirectly,
when unforeseen

problems arise, when
the current practices
do not give enough

guidance

Fig. 4.7 Values, principles, and practices in XP

The law of every XP clan is based on the following 14 principles [4]. We list
them here below, bolding their original name.

Clan members shall:

• Avoid the “costs and disruption of high turnover and missed opportunities for
creative action” [4] (humanity).

• Remember that the goal is to create business value, meeting business goals, and
serving business needs. It is not the technically brilliant solution (economics).

• Seek “win-win” situations whenever possible (mutual benefit).
• Develop the capability to extract patterns from existing solutions to apply them

in new contexts, also at different scales (self-similarity).
• “Do the best you can today, striving for the awareness and understanding

necessary to do better tomorrow” [4] (improvement).
• Try to bring together a team with a “variety of skills, attitudes, and perspectives

to see problems and pitfalls, to think of multiple ways to solve problems, and to
implement the solutions” [4] (diversity).

• Reflect regularly about past successes and failures to institutionalize the lessons
learned from these experiences (reflection).

• Deliver a constant flow of valuable software to anticipate feedback and to split
complex tasks (such as integration) into many, easier-to-accomplish, iterations
(flow).

• See problems as opportunities for learning and improvement (opportunity).
• Solve critical, difficult problems from different angles, using different approaches

to overcome them (redundancy).
• Be prepared to risk to fail in order to learn from it (failure).
• Strive for high quality (quality); it increases predictability, productivity, and

effectiveness, but also acts as motivational factor, since people need to do work
they are proud of.

4.8 The XP Practices 87

• Improve in small steps (baby steps). Together with the concept of flow above,
we see how change is done in XP in Fig. 4.8: often and in small steps.

• Accept responsibility (accepted responsibility). To be responsible requires also
to obtain the authority to be able to fulfill the duties (this follows the principle
of congruence, which states that task, competence, and responsibility have to be
congruent to motivate and to be able to delegate [31]).

The principles shown above have their roots in the inspiring ideas that we
have previously described. As mentioned, these inspiring ideas were developed
before and contributed to define XP. In Fig. 4.8 we linked the principles to the six
previously developed ideas shown in Table 4.2.

Job Enrichment

Management by Objectives

Involvement of stakeholders

Communication improvement by
collocation of workers

Plan-Do-Study-Act

Prototyping and iterative development

Accepted Responsibility
Humanity

Mutual Benefit
Economics

Diversity

Improvement
Reflection
Opportunity
Failure
Quality

Flow
Redundancy
Baby steps

Self-Similarity

Fig. 4.8 Links between practices and inspiring ideas

4.8 The XP Practices

Practices describe the practical rules that the clan has to follow in its everyday life.
They are divided into primary and corollary practices to recommend adopters to start
with the primary ones and only, when they have an XP process in place, experiment
with the corollary ones.

Table 4.5 shows the practices as well as the classification recommended by [4].1

In the following sections (one per classification), we describe each practice in
detail.

1We categorize unclassified practices as “generic.”

88 4 Agile Methods

Table 4.5 XP practices with their classification [4]

Practice B
us

in
es

s

In
te

gr
at

io
n

Pl
an

ni
ng

Pr
og

ra
m

m
in

g

Te
am

Primary practices

Continuous integration ✕

Energized work

Incremental design ✕

Informative workspace

Pair programming

Quarterly cycle ✕

Sit together

Slack ✕

Stories ✕

10-min build ✕

Test-first programming ✕

Weekly cycle ✕

Whole team

Corollary practices

Code and tests ✕

Daily deployment ✕

Incremental deployment

Negotiated scope contract ✕

Pay-per-use ✕

Real customer involvement ✕

Root-cause analysis ✕

Shared code ✕

Shrinking teams ✕

Single code base ✕

Team continuity ✕

4.8 The XP Practices 89

4.8.1 Business Practices

The business practices recommend the adoption of practices that maintain Agility
and remove unnecessary activities in the negotiation and distribution process.

Daily deployment advises to put new software into production every night,
providing customers with value every day.

A negotiated scope contract aims to reduce the risk of writing software that
does not correspond to what the customer values. This practice recommends to
foresee contracts in which the time, costs, and quality are fixed but with a negotiation
of the precise scope of the system. Keeping the scope open allows customers to
continuously select which parts should be delivered next and allows developers to
fulfill the time, costs, and quality requirements.

Finally, pay-per-use recommends to charge the customer for every time the
system is used and not to let him buy the release. Pay-per-use allows to obtain faster
feedback from the market about the acceptance of the product than with pay-per-
release.

4.8.2 Integration Practices

The integration practices deal with the step of merging a modification with the rest
of the code and to test (i.e., integration testing) the newly combined code.

The practice of continuous integration advises to integrate and test changes
“after no more than a couple of hours [4].” The motivation is that the complexity
to integrate a modification with a code base that is itself changing because of other
team members applying modifications is rising over time.

The 10-min build practice supports continuous integration asking for a build
process and a run of all tests that does not take longer than 10 min. A build process
that takes too long discourages developers from using it often to obtain feedback.

4.8.3 Planning Practices

Planning involves all activities that help to decide who, how, when is going to do
what in the upcoming iterations. XP foresees the practices of weekly cycle and
quarterly cycle to plan activities, where the activities are described in the form of
stories and grouped by themes.

Requirements are written in the form of stories: short descriptions of customer
visible functionalities together with an estimation given by a programmer of the
effort to implement this story (see Fig. 4.9). Beck and Andres claim that according
to their experience, “every attempt [. . .] to computerize stories has failed to provide
a fraction of the value of having real cards on a real wall” (see the practice
“informative workspace”).

90 4 Agile Methods

Weekly cycle advises to plan work weekly. Planning includes reviewing the
progress of the previous week (also analyzing discrepancies between the planned
and effectively done amount of work), having the customers pick the stories to
implement this week, and letting team members sign up for the tasks and estimate
them (e.g., using “story points”). Weekly planning allows to estimate the velocity of
the team, i.e., how many story points per week can be done on average, and to use
this estimation for future planning (see Fig. 4.10).

Fig. 4.9 An example of a
user story

Fig. 4.10 Illustration of a
weekly and quarterly
planning cycle

Quarterly
cycle Weekly

cycle

Every quarter—so the practice quarterly cycle—the team reviews the past
work from a broader perspective, not focusing on optimizing team performance
internally, but considering the entire organization, identifying external bottlenecks,
etc. Following the business priorities, the theme/s (sets of stories addressing a
similar topic) are picked by the customers and planned for the upcoming quarter
(see Fig. 4.10).

The last practice of this section—slack—advises to reserve time for secondary
activities that can be used if the team gets behind or—if not needed—to allow pro-
grammers to dedicate part of their time to work on a project of their choosing [19].

4.8 The XP Practices 91

4.8.4 Programming Practices

Programming—to focus on working software—is one of the core values of XP.
The practice of code and test reflects this: only the code and the tests should be

maintained. Other artifacts such as class diagrams and design documents should be
generated from the code and tests. Only artifacts that contribute to “what the system
does today and what the team can make the system do tomorrow” are valuable [4].

Incremental design is based on the assumption that it is possible to keep the
cost of changing the software at a similar level as in Fig. 4.5. Under this assumption,
designing as late as possible reduces the risk of being wrong.

In incremental design “refactoring” plays a crucial role. Refactoring is “the
process of changing a software system in such a way that it does not alter the external
behavior of the code, yet improves its internal structure [17].”

Shared code states that everyone in the team that finds that something is wrong
with the system has the right to fix any part of the code, at any time. This practice
requires that everybody acts with responsibility.

Single code base states that there should be only one code stream. A temporary
branch should not be used more than a few hours since it will increase the
complexity of integration as time moves on.

Finally, test-first programming advises to write a failing automated test before
coding. Test-first programming affects programming on multiple levels: writing the
test before the code itself helps to focus on the goal of the current programming task,
encourages to write code that is easy to test and acts as a form of documentation
since it states the intentions of the tested piece of code.

The win-win negotiation model

Frequently software development evolves into one of the situations shown in
Table 4.6 [11], in which there is always one party that loses (the developer
writes the solution, the customer buys it, and the user uses it).

Table 4.6 Winners (�) and losers (�) for the different solutions

Proposed solution Developer Customer User

Cheap, Sloppy Product (“buyer knows best”) � � �

Lots of bells and whistles (“cost-plus”) � � �

Driving too hard a bargain (“best and final offers”) � � �

According to this model, those that “win” on the short term lose on the long
term since the losing party will not trust them anymore and maybe choose
somebody else for future projects.

(continued)

92 4 Agile Methods

Barry Boehm proposes a win-win negotiation model shown in Fig. 4.11
[2, 11, 20]: the win-win system is considered to be in equilibrium if all
stakeholders agree on the win conditions (i.e., stakeholder requirements) and
there are no outstanding issues.

Involves

Adopts
Agreement Option

Covers Addresses

IssueWin Condition

Fig. 4.11 The win-win negotiation model [33]

During the negotiation process stakeholders enter their win conditions,
identify conflicts, i.e., issues, devise options to propose solutions to an issue,
and agree on options to solve issues (the option linked to the issue, that
is adopted through the agreement, helps to obtain agreement among all
stakeholders on a win condition). This process continues until all stakeholders
have agreed on all win conditions (taking into consideration the adopted
options) or until the stakeholders decide that no consensus can be found and
the project should be canceled [33].

4.8.5 Team Practices

The practices dealing with team management describe how teams should be formed,
work, and reformed into new teams.

Real customer involvement means to consider all stakeholders as part of the
team and involve them in the quarterly and weekly planning. As no customer at all
makes it impossible to deliver value, having a “proxy customer,” i.e., a representative
of the real customer, can be as bad since this can end up in a “Chinese whispers”
game.

Root-cause analysis advises how a team should work: it should definitively
eliminate a defect together with its cause every time a defect is found. This is
accomplished writing an automated test that demonstrates the defect and fixing
the system afterwards so that if the problem occurs again, the test shows this.

4.8 The XP Practices 93

Moreover, this practice advises to—as in the Toyota Production System to ask five
times “why” (see Chap. 2)—identify and address the root cause of the problem, find
the responsible person, and develop a solution.

Shrinking teams recommend to keep the workload of teams that improve their
efficiency over time constant but gradually remove people from this team to form
other teams.

Team continuity advises to keep effective teams together. This does not mean
that teams are static, i.e., that never ever people change since the rotation of team
members helps to consistently spread knowledge and experience.

4.8.6 Uncategorized, Generic Practices

The here mentioned practices support the other practices.
Energized work means to work only as many hours as one can be productive

and only as many hours as one can sustain. This practice warns from overworking
resulting in spending time inefficiently and finally removing value from the project
instead of adding value to it.

Incremental deployment advises to deploy large systems not in one time (also
called “big bang deployment”) but gradually, shifting the workload gradually from
the old to the new system.

Informative workspace recommends to arrange the workspace in a way that an
“interested observer is able to walk into the team space and get a general idea of how
the project is going in fifteen seconds” [4]. One possibility is to use a task board as,
e.g., in Fig. 4.12: using a task board and stickers representing tasks the team can use
to keep track of the ongoing work as well as keep the work plan visible to everybody
that steps in within seconds (see for example Fig. 4.13).

The pair programming practice states: “write all production programs with two
people sitting at one machine” [4]. The aim of this practice is to keep each other
on task, inspire each other’s creativity, motivate each other, and hold each other
accountable to the team’s practices [24, 25].

Sit together advises to have the entire team in one open space to encourage
communication, having small private spaces nearby where team members can work
privately if needed.

While sit together aims at ensuring the proximity of people to ensure commu-
nication, the practice of whole team aims at ensuring the proximity of skills, i.e., it
means to include on the team people with all the skills and perspectives necessary for
the project to succeed (obtaining a cross-functional team). This “proximity of skills”
has the goal to supply the project with an easy access to the resources necessary to
succeed (Fig. 4.13).

94 4 Agile Methods

To Do This
week

Work in
progress

Verify Deploy Done

Estimate

Fig. 4.12 Example of a task board

Private space

Common areaTask board

Fig. 4.13 Example of an Agile work space

4.9 Control and Coordination Mechanisms 95

4.9 Control and Coordination Mechanisms

At the beginning of this chapter, we analyzed that it is possible to consider three
forms of control: outcome, behavior, and clan control. Harris [21] analyzed Agile
processes2 whether they adopt outcome, behavior, or clan controls in respect to the
following taxonomy:

• Outcome controls: measure performance against a priori specifications.

– Emergent outcome controls: manage outcomes in an evolutionary fashion.

� Scope boundaries: constrain creativity to insure focus on key areas.
� Ongoing feedback: provides corrective feedback as development occurs.

• Behavior controls: measure adherence to behaviors that transform inputs to
outputs.

• Clan Controls:

– Team: Team members provide task feedback to support coordination and
communication.

– Attitude: Individuals make decisions based on attitudes and values that are
congruent with organization’s attitudes and values.

We can analyze Extreme Programming from two different point of views: first,
as the whole methodology, asking what makes the team fulfill the different tasks,
and, second, analyzing the practices in detail asking how these practices use forms
of control to achieve their goal.

On the level of the whole methodology, Extreme Programming is driven by Clan
Control mechanisms, i.e., the objective that team members make decisions based
on attitudes and values that are congruent with organization’s attitudes and values.
Subsequently, Agile Methods deliberately choose outcome controls as a driver for
their work: “Working software is the primary measure of progress” (see Principle 7
of the Agile Manifesto).

Extreme Programming uses endogenous control mechanisms to create a high
visibility of every practice: everybody notices if somebody is programming alone
(instead of using Pair Programming); if one would not continuously integrate, the
entire development would stop and if one does too much overtime and is not able to
begin his work the next day together with the rest of the team, this is also noticed.

Harris [21] points out that on the practice level, different forms of control are
used to ensure that a given practice is successfully carried out (see Table 4.7).

2Harris speaks about “flexible processes” instead of Agile ones to include also development
organizations that are not using formal Agile methods but that use controlled, flexible processes
that manage towards emergent outcomes instead of managing towards a predefined specification.

96 4 Agile Methods

Table 4.7 Forms of control in the primary extreme programming practices [21]

Outcome

Controls
‚ …„ ƒ

E
m

er
ge

nt
O

ut
co

m
e

C
la

n
C

on
tr

ol
s

‚…„ƒ ‚…„ƒ

Practice T
ra

di
ti

on
al

ou
tc

om
e

Sc
op

e
B

ou
nd

ar
ie

s

O
ng

oi
ng

Fe
ed

ba
ck

B
eh

av
io

r
C

on
tr

ol
s

Te
am

A
tt

it
ud

es

Note

Continuous ✕ Always be ready to demo latest product.

integration ✕ Fix defects as they occur.

✕ Must maintain synchronization with others. No
surprises.

Energized
work

✕ When we are at work, we will do our best.

Incremental ✕ Each iteration focuses on only a few things.

design ✕ Each iteration is ready to use or demonstrate to the
market.

Informative ✕ Visible results.

workspace ✕ Outcomes are observable.

✕ Daily Progress is visible.

✕ Team can readily see each other’s progress.

Pair ✕ New ideas are tested with partner.

programming ✕ Work together.

✕ Activities transparent to team members.

Quarterly ✕ Place business constraints as well as market con-
straints.

Cycle ✕ Review with management. Guard against feature
creep.

Sit ✕ Progress observable by team members.

together ✕ Team members accessible for advice.

Slack ✕ Meeting weekly cycles more important than fea-
tures.

Stories ✕ Broad statements of intent focus efforts.

(continued)

4.9 Control and Coordination Mechanisms 97

Table 4.7 (continued)

Outcome

Controls
‚ …„ ƒ

E
m

er
ge

nt
O

ut
co

m
e

C
la

n
C

on
tr

ol
s

‚…„ƒ ‚…„ƒ

Practice T
ra

di
ti

on
al

ou
tc

om
e

Sc
op

e
B

ou
nd

ar
ie

s

O
ng

oi
ng

Fe
ed

ba
ck

B
eh

av
io

r
C

on
tr

ol
s

Te
am

A
tt

it
ud

es

Note

10- ✕ Make it easy to demonstrate.

min ✕ Don’t break overall system.

build ✕ Code must work well with others.

Test-first
program-
ming

✕ Develop a detailed goal for each feature.

Weekly
cycle

✕ Limit amount of change that can occur in each
iteration.

✕ Market feedback every 1–3 weeks.

✕ Work to short deadlines. One-day slips result in
miss of weekly target.

Whole ✕ Feedback including customer representative.

team ✕ Team is self-sufficient and unified. No mavericks.

Analyzing the coordination mechanisms of Extreme Programming, as a conse-
quence of choosing “Working software is the primary measure of progress,” the
dominating coordinating mechanism is “Simultaneity,” i.e., the need of working
together on a common outcome—source code—results in coordination problems
that have to be dealt with ensuring that all can work together avoiding possible
conflicts.

We analyzed which coordination mechanisms are faced on the practice level.
Table 4.8 shows our results for the main and corollary practices of Extreme
Programming. We indicate with a single dot when a practice faces a specific
coordination mechanism and has to deal with it, and we indicate with a circle when
a practice helps to alleviate a specific constraint since it makes it easier to deal with
it. Some examples:

• Continuous integration faces shared resources coordination mechanism: it is
forced to deal with a code base that is used also by others.

98 4 Agile Methods

• Sit together faces simultaneity constraints because it requires that all have time
to work nearby.

• Energized work alleviates the simultaneity constraint since it assumes that
workers that avoid working overtime are able to come on time in the morning
to work together.

Table 4.8 Coordination mechanisms for the practices of extreme
programming

Practice Sh
ar

ed
re

so
ur

ce
s

Pr
od

uc
er

/C
on

su
m

er

Si
m

ul
ta

ne
it

y

Ta
sk

/s
ub

ta
sk

Primary practices

Continuous integration +

Energized work –

Incremental design + + + +

Informative workspace – – – –

Pair programming + +

Quarterly cycle + + + +

Sit together +

Slack + + +

Stories + + +

10-min build + + +

Test-first programming +

Weekly cycle + + + +

Whole team +

Corollary practices

Code and tests –

Daily deployment + + + +

Incremental deployment + + + +

Negotiated scope contract –

Pay-per-use –

Real customer involvement +

Root-cause analysis +

Shared code +

Shrinking teams –

Single code base +

Team continuity +

4.10 Summary 99

4.10 Summary

Agility wants to help an organization to build teams and software that are able to
cope with the (changing) requirements of the client.

There are different interpretations of how Agility can be achieved, e.g., Extreme
Programming defines 5 values, 14 principles, and 13 primary and 11 secondary
practices to guide developers, managers, and clients towards the values identified in
the Agile manifesto.

This chapter shows that Extreme Programming is not just coding. It is a complex
framework that requires a disciplined approach to software engineering. The
questions are now: Is this enough? Is this framework complete? The next chapter
deals with open issues in Agile software development and how these issues can be
approached.

Problems

4.1. Looking at Fig. 4.5, can you give examples of software development practices
or activities that lower the traditional cost of change curve?

4.2. Imagine you had to introduce Extreme Programming in a software develop-
ment team that follows a waterfall process [32], such as in Fig. 4.14.

System
requirements

Software
requirements

Analysis

Program
design

Coding

Testing

Operations

Fig. 4.14 The waterfall software development process [32]

100 4 Agile Methods

The waterfall process is based on the traditional cost of change curve and
assumes that it is possible to collect all requirements upfront. Starting from
the requirements, it is conceived to help the development team to engineer the
envisioned software in a controlled way.

Which problems do you foresee? How will the clients react (that until now are
used to work with a team that used the waterfall process)? How would you address
them?

References

1. Bain, S.L.: Emergent Design: The Evolutionary Nature of Professional Software Development.
Net Objectives Lean-Agile Series. Addison-Wesley Professional, Upper Saddle River (2008)

2. Barry, W., Boehm, R.R.: Theory-W software project management principles and examples.
IEEE Trans. Softw. Eng. 15(7), 902–916 (1989)

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(1999)

4. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-
Wesley, Boston (2004)

5. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile software development. Online:
http://www.agilemanifesto.org (2001). Accessed 4 Dec 2013

6. Beynon-Davies, P.: Information systems ‘failure’ and ‘risk’ assessment: the case of the London
ambulance service computer-aided dispatch system. In: Doukidis, G.I., Galliers, R.D., Jelassi,
T., Krcmar, H., Land, F. (eds.) Proceedings of the European Conference on Information
Systems, Athens (1995)

7. Boehm, B.W.: Software engineering. IEEE Trans. Comput. 25(12), 1226–1241 (1976)
8. Boehm, B.W.: Software Engineering Economics. Prentice-Hall Advances in Computing

Science and Technology Series. Prentice-Hall, Englewood Cliffs (1981)
9. Boehm, B.W.: A spiral model of software development and enhancement. IEEE Comput. 21(5),

61–72 (1988)
10. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE Trans.

Softw. Eng. 14(10), 1462–1477 (1988)
11. Boehm, B.W., Bose, P., Horowitz, E., Lee, M.J.: Software requirements as negotiated win

conditions. In: Proceedings of the International Conference on Requirements Engineering
(ICRE). IEEE, Colorado Springs (1994)

12. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,
Reifer, D., Steece, B.: Software Cost Estimation with Cocomo II. Prentice Hall International,
Upper Saddle River (2000)

13. Curtis, B.: Substantiating programmer variability. Proc. IEEE 69(7), 846 (1981)
14. DeMarco, T., Lister, T.: Programmer performance and the effects of the workplace. In:

Proceedings of the International Conference on Software Engineering (ICSE). IEEE Computer
Society Press, London (1985)

15. Deming, W.E.: Out of the Crisis. Massachusetts Institute of Technology Centre for Advanced
Engineering Study (MIT-CAES), Cambridge (1982)

16. Drucker, P.F.: The Practice of Management. Harper & Row, New York (1954)
17. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design

of Existing Code. Addison-Wesley Object Technology Series. Addison-Wesley Professional,
Reading (1999)

http://www.agilemanifesto.org

References 101

18. Fraser, S.: Software “best” practices: agile deconstructed. In: Bomarius, F., Oivo, M., Jaring,
P., Abrahamsson, P. (eds.) Proceedings of the International Conference on Product-Focused
Software Process Improvement (PROFES). Lecture Notes in Business Information Processing,
vol. 32. Springer, Berlin/Heidelberg/Oulu (2009)

19. Gargiulo, S.: Route to the top: how employee freedom delivers better business. CNN. Online:
http://edition.cnn.com/2011/09/19/business/gargiulo-google-workplace-empowerment/index.
html (2011). Accessed 4 Dec 2013

20. Grünbacher, P., Boehm, B.W.: Easywinwin: a groupware-supported methodology for require-
ments negotiation. In: Proceedings of the European Software Engineering Conference (ESEC)
Held Jointly with ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). ACM, Vienna (2001)

21. Harris, M.L.: Using emergent outcome controls to manage dynamic software development.
Ph.D. thesis, University of South Florida (2006)

22. Harris, M.L., Hevner, A.R., Collins, R.W.: Controls in flexible software development. In:
Proceedings of the Annual Hawaii International Conference on System Sciences (HICSS),
Kauai, vol. 9 (2006)

23. Herzberg, F.: One more time: How do you motivate employees? Harv. Bus. Rev. 46(1), 53–62
(1968)

24. Janes, A., Russo, B., Succi, G.: Use of pair programming for experience exchange in a
distributed internship project. In: Fraser, S., Williams, L. (eds.) Proceedings of the International
Workshop on Pair Programming Explored. ACM, Seattle (2002)

25. Janes, A., Russo, B., Zuliani, P., Succi, G.: An empirical analysis on the discontinuous use
of pair programming. In: Marchesi, M., Succi, G. (eds.) Proceedings of the International
Conference on Extreme Programming and Agile Processes in Software Engineering (XP).
Lecture Notes in Computer Science, vol. 2675. Springer, Genova (2003)

26. Lucas, H.C.: Why Information Systems Fail. Columbia University Press, New York (1975)
27. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM Comput. Surv.

26(1), 87–119 (1994)
28. Martin, J.: Rapid Application Development. Macmillan Publishing, New York (1991)
29. Odiorne, G.S.: Management by Objectives: A System of Managerial Leadership. Pitman

Publishing Corporation, New York (1965)
30. Ōno, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press,

Cambridge (1988)
31. Reiß, M.: Das kongruenzprinzip der organisation. Wirtschaftswissenschaftliches Studium 11,

75–78 (1982)
32. Royce, W.W.: Managing the development of large software systems: concepts and techniques.

In: Proceedings of the International Conference on Software Engineering (ICSE). IEEE
Computer Society Press, Monterey (1987). Reprinted from Proceedings, IEEE WESCON,
August 1970, pp. 1–9, originally published by TRW

33. Selby, R.W. (ed.): Software Engineering: Barry W. Boehm’s Lifetime Contributions to
Software Development, Management, and Research. Practitioners Series. Wiley, Hoboken
(2007)

34. Shewhart, W.A., Deming, W.E.: Statistical Method from the Viewpoint of Quality Control.
Dover Books on Mathematics Series. Dover, New York (1939)

35. Weinberg, G.M.: The Psychology of Computer Programming. Computer Science Series. Van
Nostrand Reinhold, New York (1971)

http://edition.cnn.com/2011/09/19/business/gargiulo-google-workplace-empowerment/index.html
http://edition.cnn.com/2011/09/19/business/gargiulo-google-workplace-empowerment/index.html

Chapter 5
Issues in Agile Methods

Quel sol che pria d’amor mi scaldò ’l petto,
di bella verità m’avea scoverto,
provando e riprovando, il dolce aspetto;

e io, per confessar corretto e certo
me stesso, tanto quanto si convenne
leva’ il capo a proferer più erto;

(That Sun, which erst with love my bosom warmed,
Of beauteous truth had unto me discovered,
By proving and reproving, the sweet aspect.

And, that I might confess myself convinced
And confident, so far as was befitting,
I lifted more erect my head to speak.)

Dante Alighieri, Divina Commedia, Paradiso, Canto 3, 1–6

Eventually, the morning came. Uli could not sleep much. He had an intense day
and he managed to recover a desperate situation just buy making promises whose
impacts was almost completely unknown. And then, at the end, Perim stroke him with
the key question. And such question was still in his head. Situational awareness,
what the hell! The big picture, this was the point. “How can I be driven by
the request of the customers and still keep a cohesive view of the system I am
developing?” Uli kept asking himself.

The meeting with J and Athi was at 8:15. Uli did a fast breakfast at his favorite
coffee shop and he was ready for the discussion. Uli arrived at the office of J
at 8:10. . . better to be a bit earlier, he thought. Athi was already there—she was
actively discussing with J the new ideas of Uli. “How are you Uli?” asked J,
and, without waiting for a reply “let us go to the Olympus conference room. What
you propose us is something novel, we ought to discuss it with a few other folks.”
Something important was going on, thought Uli. Olympus was the largest and best
equipped conference room of FSS. The four most senior technical managers were
there, Ari, Helios, Eor, and Mes. In a few seconds also Hera, the CIO, arrived.

“Gentlemen, J started, I wanted all of you here to get your advice, started J. Here
we have a man who managed to rescue a contract that was almost gone, well almost
gone for his and his group. Rescue a contract, but still we do not know whether it will
be profitable for us to continue in such contract, as his rescue cost several additional

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__5

103

104 5 Issues in Agile Methods

commitments to the customer who are not customary in our tradition. What we are
discussing is not whether he is competent and capable to continue the contract. We
all pay a lot of respect to Uli. Rather, we are discussing whether it is profitable for us
to continue the contract with the approach proposed by Uli. So, please, stay focused.
Uli, please go ahead.” Uli started presenting the situation, what happened with
XXX, the morale, the break down, his idea. “It is not just a contract—he concluded—
it is the opportunity to assess if it is possible to develop software differently and
whether this different approach is suitable for us. And by saying this I do not
mean that we should risk the money of our shareholders undertaking dangerous
endeavors, I mean that there is a great opportunity to improve our operation and
to generate value for our company and we have to assess whether this opportunity
is for us. Please note that the fact that XXX may stop the contract at any time is a
major pros also for us as we will have the same right. So, if you will end up feeling
that the contract is not any more profitable for us, well, you will let us know and in
less than two weeks it will be over with no litigation, pain etc.”

Mes jumped up as if he had wings in his feet: “I like it Uli, yes I like it. We need
to assess if and how we can do better; our competition is assessing a new fad—they
call them Agile something, and I thing we should give a try to this as well.” Helios
nodded his head. He and Uli never went along particularly well. He thought Uli was
not enough “structured” to handle complex projects. He was a nice guy, with good
technical skills, but then, if there was the need of someone capable of playing hard
balls. . . well it was a different story. “Look Uli, I like your attempt to keep your team
united and not to lay off few of your fellows. This is indeed nice of you. However,
we need to make sure that we maintain sound engineering practices—someone else
could have to deal with the code you are producing now and would need a good
overall view of the system, including a well structured architecture, sound design
documents, commented code etc. And, especially, a nice overall perspective of what
we are producing.” Uli felt again a stroke on his stomach. He could not play the card
of “situational awareness” with Uli. Helios was an old fashioned software engineer,
with a very solid mathematical background and a deep, instinctual repulsion for
“all those folks making a hell of a lot of money out of useless blah blah blah.” So,
he preferred to pass and hope to get some help from some other questions. But when
Ari raised his hand he felt even more uncomfortable.

“It is nice to hear that we have wasted our time in useless activities such as
analysis documents, design documents, and, particularly, you know, activities that
never get recognized for doing good things for us (he intentionally mentioned Paul
Simon here as J was a fan of him), such as maintenance, training, scouting for new
ideas and so on.” Well Ari was not a nice teammate. He wanted to be in the position
of J but never managed. And he loved fights. He continued, “but what Uli proposes
does not create knowledge in the company, produces only some folklore in the team.
How can we ensure a long-lasting life of a project if we do not store the experience
we had in written format, such as in analysis and design documents?”

Eol coughed and got the attention from all the people in the room “Come on Ari,
these documents are Write Once, Read Never documents. They become immediately
obsolete, as they are not updated and it is pointless to say that we should be stricter

5.1 Introduction or “the Hype of Agile” 105

with our developers. If we have a harsh deadline in a few days, we work 24/7 on
such deadline and we forget about everything else. And once the deadline is passed
we are too tired to fix what we did outside the rule. Overall, I think that the idea
of Uli deserves some serious consideration. The facts that we always did something
should not mean that we keep doing it forever. Also, it is embarrassing that we
never experiment novel approaches to software development. We need to gather
some quantified elements that can guide us in how we will develop software in the
next decade. Still the problem of sharing and transmitting knowledge is indeed a
key problem. Not that we are doing it right now, but I would like to see it better
managed.”

Uli stood, joined his hands “Ladies, gentlemen” he started “we have to
acknowledge that our profession is still mostly a territory of unknown. We do not
have yet books with consolidated practices and everlasting principles. Only, via a
constant process of proof and refutation we can find the truth, the truth we love. So,
why are we scared to do it?”

J nodded. Uli thought that he did it. . . but Hera looked at J and then at Uli. She
did not like him, or, perhaps, she liked him too much—but she was the wife of J and
the CIO of the company! So she started by saying “Uli, you are a very respectable
manager, still I am not convinced by your words. Knowledge is a key issue. But
also for me there is an issue of value of what we do and the associated cost, which
we need to be able to quantify, and with your approach this becomes impossible.
Ari continued “and without measuring our value how can we work on well known
issues of constant process improvement, on getting CMM level 2, on being certified
by quality assessors?” Athi was ready to start talking, but then she realized that
Hera had been not too negative, and Hera would have been only bitterer if she tried
to defend Uli—Hera knew that she had a crush on Uli. . .

J nodded again. This time Uli was not happy. “Well, guys, here we raised
several issues that deserve a more comprehensive understanding. I am particularly
concerned on how we manage our most relevant asset, the knowledge, and then how
can we track the value we produce to our shareholders and how can we constantly
improve to keep our leadership on our competition. Still, I am intrigued by the words
of Uli, so the best way would be to ask Uli to prepare for 11AM a few slides in
which he explains how to plan to handle these three things: experience, value, and
improvement. The meeting is adjourned at 11AM in the East Meeting Room. It is 9,
so we have 5’ for a good espresso.”

5.1 Introduction or “the Hype of Agile”

Innovations often go through a phase of overenthusiasm or “hype” and—when the
expectations turn out to be unrealistic—subsequent disappointment. New technolo-
gies offer new opportunities, so the hope to overcome unsettled problems with the
existing solutions is high and generates excessively optimistic expectations.

106 5 Issues in Agile Methods

Time

V
is

ib
ili

ty

Technology
Trigger

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Productivity

Peak of
Inflated

Expectations

Fig. 5.1 Gartner’s Innovation Hype Cycle

Gartner’s Innovation Hype Cycle is based on this idea (see Fig. 5.1): it visualizes
the phases that an innovation goes through before becoming productive. Those
innovations that manage to go through Gartner’s Hype Cycle (not all do; see [20]
for some examples) pass the following phases [11]:

1. the Technology Trigger;
2. the Peak of Inflated Expectations;
3. the Trough of Disillusionment;
4. the Slope of Enlightenment; and
5. the Plateau of Productivity.

The Hype Cycle begins with the technology trigger—an innovation that gener-
ates significant attention in field. As it happened, for example, with the e-Business
hype of 1999, resulting in the burst of the dot-com bubble of 2000, it can happen
that the innovation is seen overly optimistic and leads to unrealistic expectations. In
Gartner’s Hype Cycle, this phase culminates in the “Peak of Inflated Expectations.”
In this phase, there may be some successful applications of a technology, but there
are typically more failures.

According to Gartner, there is a point where it is clear that the excessive
expectations cannot be met, and so the innovation gets less and less attention
and enters the “trough of disillusionment”—it becomes unfashionable. Still some
companies continue to use the technology to further explore the real benefits of
the technology, and in doing this, they pass through the “slope of enlightenment.”
This learning phase identifies where the technology is useful and where not, how it
should be used, and which disadvantages exist.

The final phase—for those technologies that do not become obsolete before
reaching it—is the “Plateau of Productivity,” a phase in which the benefits of
the innovation are widely demonstrated and accepted. The final height of the

5.1 Introduction or “the Hype of Agile” 107

plateau (the visibility of the technology) depends on how applicable the innovation
eventually is.

Agile Methods brought a new perspective to software development: the remark-
able focus on Agility and the ability to adapt easily to a variation of the requirement
or of the environment and to provide value to the customer. Thus, right after the pub-
lication of the Agile Manifesto, Agile Methods have been proposed as the universal
solution to a common problem: the strong demand to higher flexibility during the
development of software to increase productivity and customer satisfaction through
the entire development of a software system. The problem is indeed extremely hard,
and advocates of Agile Methods have been very effective in their propositions, so
Agile Methods have immediately gained an enormous popularity and still they are
popular; as an example you can count the hits on Google for software-related terms
combined with the word “Agile” (see Table 5.1).

Table 5.1 Hits on http://
www.google.com searching
for generic software
engineering terms in
combination with the term
“Agile” as of January 22,
2013

Search term Hits on Google

“Agile software development” 2,630,000

“Agile product management” 830,000

“Agile testing” 508,000

“Agile web development” 230,000

“Agile management” 209,000

“Agile architecture” 143,000

“Agile database development” 108,000

“Agile planning” 98,200

“Agile modeling” 78,600

“Agile AJAX” 64,700

“Agile game development” 24,600

“Agile documentation” 18,400

“Agile offshoring” 16,400

“Agile SOA” 14,400

“Agile requirement engineering” 12,700

However, if we look more closely at the evolution of one of the most popular of
Agile Methods, Extreme Programming (see Fig. 5.2), we notice that their popularity
has followed quite closely the Gartner’s Hype Cycle: after the first hype, there has
been a period of disillusion.1

In this chapter we conjecture reasons for the rise and the fall of Agile Methods.
The experience of this last decade evidences that Agile Methods are often praised
for virtues they do not have and are often blamed for deficiencies that they also
do not have. Using a well-known expression, Agile Methods are often criticized for

1This chart just shows how much Internet users were searching for the term “extreme program-
ming”; the interpretation that the decreasing interest is because of a decreasing interest in the
practice “extreme programming” is ours.

http://www.google.com
http://www.google.com

108 5 Issues in Agile Methods

07
.0

4.
20

03

19
.0

8.
20

04

01
.0

1.
20

06

16
.0

5.
20

07

27
.0

9.
20

08

09
.0

2.
20

10

24
.0

6.
20

11

05
.1

1.
20

12

0

20

40

60

80

100

Date

Vo
lu

m
e

in
de

x

Fig. 5.2 Google Trends search volume index for the search term “extreme programming” as of
January 22, 2013

their virtues and not for their vices. Understanding the real key limitations of Agility
and the alleged limitations that are just wrong reading of the works of the “founding
fathers” is an essential step to take full advantage of the excellent ideas present there
to build solid software engineering processes and products.

We think that we passed the peak of inflated expectations for Agile Methods—
the hype is over.2 The attention to the topic “Agile” has reduced. See, for example,
the number of papers with the terms “Agile,” “extreme programming,” or “scrum”
in the title or abstract published in the years in the most important conference in
Software Engineering, ICSE, the International Conference on Software Engineering
(see Fig. 5.3).3

According to Garner’s report “Hype Cycle for Application Development,
2013,” “Project-Oriented Agile Development Methodology” is “sliding into the
trough” [39] (see Fig. 5.4), which it was already in 2012 [12]. To begin to enter the
slope of enlightenment and to reach the plateau of productivity, it is now necessary

2We are looking at the initial hype of Agile Methods after the Agile Manifesto. New methods are
coming.
3The chart in Fig. 5.3 is quite selective. We looked only at one conference and searched for three
search terms. Nevertheless, Scrum and Extreme Programming (or a combination of them) are the
most popular Agile methods [26, 27, 29, 34, 37] and we think that the topics discussed at the top
conference in software engineering reflect the interests of the community. Moreover, we think
that papers published in ICSE represent a significant sample of the overall scientific production in
software engineering.

5.1 Introduction or “the Hype of Agile” 109

2000 2002 2004 2006 2008 2010

2

4

6

Year

N
um

be
ro

fp
ap

er
s

pu
bl

is
he

d

Fig. 5.3 Published articles (research and educational papers) containing the terms “Agile,”
“extreme programming,” or “scrum” in their title or abstract on the International Conference on
Software Engineering from 2000 to 2010

to understand the underlying principle of Agile Methods and to determine the time,
the scope, the means, and the extent of their applicability. In this way software
engineers and software companies can take full advantage of them, clearly when
they happen to be useful.

Time

V
is

ib
ili

ty

Technology
Trigger

Troughof
Disillusionment

Slopeof
Enlightenment

Plateauof
Productivity

Peakof
Inflated

Expectations

Fig. 5.4 Where the Gartner Group sees the “Project-Oriented Agile Development Methodology”
now

110 5 Issues in Agile Methods

5.2 The Dark Side of Agile

Agile Methods have generated a notable interest in the Software Engineering com-
munity as they address typical shortcomings of traditional software development.
Today it is almost impossible to find a practitioner in software production that has
not heard about Agile methods.

The mission of Agility is to flatten the “cost of change curve” (see Fig. 4.5), i.e.,
to increase the ability to change things also late in the development process to be
able to produce value throughout the process.

The need to be more flexible is beyond any doubt overwhelming. This explains
why Agility became immediately so popular: it was seen as the answer to such
need. The metaphor used was luring: Agility is the opposite of large and heavy—so
if software systems and software processes become too large and heavy, let us be
Agile! It was so fashionable to be “Agile” that always more people claimed to be so,
even if they were not. In particular, a number of consultants and managers adopted
quite “liberally” the term Agility to promote their services [7]. Agility was then
interpreted just as the cut in complexity, a rather simplistic and unjustified cut in
complexity whatever the term complexity was—documentation, good development
practices as design, etc. And this was against the ideas of the proposers especially
the most remarkable—we recommend to read the seminal paper of Martin Fowler
on Agility in design [13].

A “dark side” of Agility emerged.
In addition, most likely also against the wills of the proposers, enthusiastic early

subscribers to the Agile Manifesto became zealot. They wanted to do more, to do
better. So they read the Agile manifesto as in Fig. 5.5.

Fig. 5.5 The Dark Agile Manifesto [16–18]

These two phenomena together caused a set of misconceptions about Agile soft-
ware development—still common today—such as that it is forbidden to document
or to plan within Agile methods. The two phenomena also evidence what is still
today missing in the application of the Agile Manifesto, and it is highlighted by the

5.2 The Dark Side of Agile 111

last prescription of the Dark Agile Manifesto: teams need to understand how much
to value the items on the left (how much working software, how much customer
collaboration, how much responding to change) or the items on the right (how much
planning, how much contract negotiation, etc.).

In fact, the misconceptions about Agile can be linked to the four statements of
the “Dark Agile Manifesto.” Rakitin et al. [25] claim that the right way to “translate”
the Agile Manifesto is:

• Individuals and interactions over processes and tools: “Talking to people
instead of using a process gives us the freedom to do whatever we want.”

• Working software over comprehensive documentation: “We want to spend all
our time coding. Remember, real programmers don’t write documentation.”

• Customer collaboration over contract negotiation: “Haggling over the details
is merely a distraction from the real work of coding. We’ll work out the details
once we deliver something.”

• Responding to change over following a plan: “Following a plan implies we have
to think about the problem and how we might actually solve it. Why would we
want to do that when we could be coding?”

Such “translations” show that to some, Agile Methods appear as approach that
advocates coding without discipline, planning, and documenting: “this is nothing
more than an attempt to legitimize hacker behavior [25].”

In programming, “a hack is something we do to an existing tool that gives it
some new aptitude that was not part of its original feature set.” [32]. So by “hacker
behavior” Rakitin et al. claim that the adopters of Agile methods do not develop
software following standards, processes, and policies, i.e., do not follow state-of-
the-art practices that have been proven to be necessary or to contribute positively to
the successful outcome of the project.

The Agile community developed another term to describe such behavior and
to dissociate itself from it: the “cowboy coder.” The “cowboy way” advises not
to follow defined processes, standards, etc. to solve the required tasks faster
(see Fig. 5.6).

A traditional software engineer, a cowboy coder and an Agile software
engineer. . .

. . . chat with each other. Here is what they say:

Traditional
software
engineer

Agile
software
engineer

Cowboy
coder

Fig. 5.6 How a traditional software engineer, a cowboy coder, and an Agile software
engineer could look like

(continued)

112 5 Issues in Agile Methods

TRADITIONAL SOFTWARE DEVELOPER: I need to have completed analysis
and design before proceeding to code.

COWBOY CODER: I do not need any analysis and design.
AGILE SOFTWARE DEVELOPER: I do not need to have completed analysis

and design before proceeding to code.

TRADITIONAL SOFTWARE DEVELOPER: I need to write all the documenta-
tion in a complete and pervasive way so that people in the future will be
able to understand what is in here.

COWBOY CODER: I do not need any documentation.
AGILE SOFTWARE DEVELOPER: I need to write the code so that people in

the future will be able to understand what is in here. I need to write only
the documentation that is needed by people.

TRADITIONAL SOFTWARE DEVELOPER: Especially close to the deadline, I
need to work like crazy to get the project done. Programming is hard.

COWBOY CODER: Only close to the deadline, I need to work like crazy to get
the project done. Programming is fun.

AGILE SOFTWARE DEVELOPER: Especially close to the deadline, I need
to work no more than 40 h a week to get the project done, keeping a
constant pace and a fresh mind. Programming is fun.

TRADITIONAL SOFTWARE DEVELOPER: The code is mine and none is
allowed to touch it!

COWBOY CODER: The code is mine and none is allowed to touch it!
AGILE SOFTWARE DEVELOPER: The code is of the team and everyone is

allowed to modify it also extensively, provided the tests keep running!

TRADITIONAL SOFTWARE DEVELOPER: At the end we will do integration.
It is going to be hard, so we need to define precise interaction protocols
and to document them with maximal details.

COWBOY CODER: At the end we will do integration! No problem, it is easy:
it will take 5 min.

AGILE SOFTWARE DEVELOPER: We need to integrate our system at least
daily, so that at the end we will not have any problem.

TRADITIONAL SOFTWARE DEVELOPER: The customer should only see
working and cleaned-up versions of the product. It is important to balance
the contact with the customer so time is not wasted.

COWBOY CODER: If possible, the customer should only see the final versions
of the product. It is important to minimize the contact with the customer
so time is not wasted.

(continued)

5.2 The Dark Side of Agile 113

AGILE SOFTWARE DEVELOPER: The customer should (a) be constantly
exposed to the product being build and to the development team, and,
whenever possible, (b) have a representative on site.

TRADITIONAL SOFTWARE DEVELOPER: If it is not broken, do not touch it!
COWBOY CODER: Even if it is broken, do not touch it! Try to hide it!
AGILE SOFTWARE DEVELOPER: Even if it is not broken, constantly refactor

it! Use the test cases to ensure you do not introduce an undesired bug.

TRADITIONAL SOFTWARE DEVELOPER: Plan everything well in advance so
that there will be no need to change! A change is a clear symptom of bad
and/or not sufficient planning.

COWBOY CODER: Do not plan anything and try not to change! A change is a
clear symptom of an annoying customer or manager.

AGILE SOFTWARE DEVELOPER: Plan everything that you can reasonably
foresee and get ready to change! Changes occur naturally in software
projects.

TRADITIONAL SOFTWARE DEVELOPER: Change is evil! Fight it!
COWBOY CODER: Change is evil! Fight it!
AGILE SOFTWARE DEVELOPER: Change is human! Get ready to cope

with it!

We have seen in the previous chapter that Agile Methods, e.g., Extreme Program-
ming, actually are based on Best Practices and follow state-of-the-art methods. Agile
Methods acknowledge their importance and combine them in a way to maximize
Agility, i.e., the ability of the development team to respond to changes of the
requirements.

We partly attribute to “Agile extremists” that Agile methods acquired a reputation
in the management community as a sloppy, undisciplined method to “hack,” not
develop software.

The questions are now how we can avoid Agile extremism, how to understand
how much planning is needed to maximize value, when planning begins to destroy
value, etc. The Agile Manifesto does not answer this question.

In fact, Agile developers pose themselves the question of how much planning
is necessary to maximize the value, or in Lean terms, which is the minimal
combination of activities that maximize value.

This way of thinking is quite new. It was introduced by Value-based Software
Engineering [3, 4], a school of thought that criticizes that much of current software
engineering practice and research is done in a value-neutral setting. Many treat
every activity, requirement, use case, object, test case, defect, etc. as equally
important. Value-Based Software Engineering promotes the idea to integrate value

114 5 Issues in Agile Methods

considerations into the full range of existing and emerging software engineering
principles and practices [3].

Value-based Software Engineering promotes the creation of value-based require-
ments engineering, architecting, design and development, verification and vali-
dation, planning and control, risk management, quality management, and people
management, which consider the value they deliver to the stakeholders.

In Chap. 2 we analyzed how Lean Thinking aims to divide activities into:

• activities that add value and
• activities that do not add value; these activities can be further divided into:

– activities that provide no value but are needed, e.g., because of current
technologies, law requirements, or production methods;

– activities that provide no value and are not needed, i.e., that can be removed.

We would like to apply this approach to Agile Methods by selecting the right
amount of planning, contract negotiation, comprehensive documentation, and the
use of processes and tools looking at the value they provide. One way to accomplish
this, proposed by Value-based Software Engineering, is to consider the risk.

Risk is measured using risk exposure. Let us recall its definition:

risk exposure D probability of an unsatisfactory outcome

� loss to the parties affected if the outcome is unsatisfactory

The consideration of risk helps in this case to establish the optimal amount of the
activity (“planning” in the following example); Fig. 5.7 shows how.

R
is

k
ex

po
su

re

Time and effort invested in plans

Risk
exposure
due to

inadequate
plans

Risk
exposure
due to

market share
erosion

Total risk
exposure

Sweet spot

Fig. 5.7 Determination of the sweet spot [5]

On the horizontal axis we consider the time and effort invested in planning, on
the vertical the risk exposure.

5.2 The Dark Side of Agile 115

The first curve from the top-left to the bottom-right shows the risk exposure due
to inadequate plans. If no planning is done, there is a high risk exposure due to a
high probability that the project will fail if not enough planning is done and because
this will result in a high loss. The other extreme is that a lot of time and effort is
invested in planning; in this case the risk exposure can be reduced to a minimum.

The second curve from bottom-left to the top-right shows the risk exposure due
to market share erosion (what we described with the falling value in Fig. 5.7). If
we do not spend time and effort in plans and deliver quickly, the risk exposure is
low. On the other hand, if we plan too much and we spend too much time, the risk
exposure of the risk that our product will become obsolete will rise.

These two curves represent also the risk to destroy value: inadequate plans mean
that we might invest effort in something that does not create value, and market
share erosion means that we invested effort in something that is not needed anymore
because the market now requires something else.

The optimal amount of time and effort to spend in planning is determined by the
total risk exposure and its minimum, the “sweet spot” [5]. Risk exposure gives us the
possibility to spend that amount of time and effort that maximizes value creation.

It is not possible to calculate a generic sweet spot for all companies in all markets.
Its position depends on the environment.

For example, Fig. 5.8 shows the situation for a company in a rapidly changing
market: the risk of losing customers because the product is on the market too late is
higher than in the market of Fig. 5.7. We show this with a shifted curve for the risk
exposure due to market share erosion. As a result, the total risk exposure also shifts
to the left, resulting in a sweet spot that implies a lower amount of time and effort
to invest in plans than before.

R
is

k
ex

po
su

re

Time and effort invested in plans

Risk
exposure

due to
inadequate

plans

Risk
exposure

due to
market share

erosion

Total risk
exposure

Sweet spot

Fig. 5.8 Sweet spot in companies in turbulent markets [5]

116 5 Issues in Agile Methods

Figure 5.9 shows the opposite example: this market faces a high risk if the
product on the market is not working as planned, e.g., medical devices. As a result,
the risk exposure due to adequate plans is higher, resulting in a right shift of the
total risk exposure. This means that the optimal time and effort to invest in plans is
higher than in Fig. 5.7.

R
is

k
ex

po
su

re

Time and effort invested in plans

Risk
exposure
due to

inadequate
plans

Risk
exposure
due to

market share
erosionTotal risk

exposure

Sweet spot

Fig. 5.9 Sweet spot in companies in markets requiring thorough planning [5]

This example has shown that to determine the value of activities in software
development is not always an obvious exercise. The Agile manifesto claims: “Our
highest priority is to satisfy the customer through early and continuous delivery of
valuable software.” As an answer to our question of how much planning is needed
to “deliver valuable software,” Lean Thinking tells us to analyze planning and to get
rid of all activities that are not adding value.

We approached the example of planning and analyzing the risk exposure as
suggested by Value-Based Software Engineering. Still it is not clear how to obtain
the risk exposure curves and how to determine our current location on these curves
(how much time and effort are we currently investing in planning?).

We need a way to constantly measure the produced value of the performed
activities. We will approach this later in the chapter about measurement.

5.3 The Skepticism Towards Agile Methods

The adaptive nature of Agile methods was conceived with a premise in mind: it is
not possible to plan every detail in advance. This goes against conventional wisdom,
which teaches us to “first think, then do.” Software development is often compared
with an idealized view of construction works: since it is possible to plan a house

5.3 The Skepticism Towards Agile Methods 117

completely and then to construct it according to the plan, the same must be possible
for software.

Apart from the fact that such a view on construction words is simply wrong—
also when building a house it is not feasible to plan everything (e.g., what kind of
view you will have on the 3rd floor from the bedroom)—such expectations might
lead to the conclusion that Agile software development does not follow a rational
sequence of activities.

Another reason why Agile software development is not yet widely accepted is
because it goes against the current best practices of project management. Software
development projects are seen as any other project, and therefore, project managers
assume they should be managed as any other project.

The Guide to the Project Management Body of Knowledge is a recognized
standard for the project management profession [24].

Reading this standard brings one back to the times of the waterfall model: the
generic project life cycle is shown as in Fig. 5.10.

C
os

ta
nd

st
af

fin
g

le
ve

l

Time
Project
Management
Outputs

Project
Charter

Project
Management

Plan

Accepted
Deliverables

Archived
Project
Documents

Starting
the

project

Organizing
and

preparing

Closing
the

project

Carrying out the work

Fig. 5.10 Typical cost and staffing levels across the project life cycle [23]

The graph in Fig. 5.11 shows that what project managers trained using the
PMBOK standard expect is a waterfall-like progression of the different activities
of the project. The stakeholder influence, risk, and uncertainty at the beginning of
the project are considered high but diminishing over time. The cost of changes are
considered low at the beginning but increasing over time. Again, this resembles what
we know from the waterfall approach.

The Guide to the Project Management Body of Knowledge just briefly (half
a page) mentions the possibility to divide the project in iterations to reduce the
complexity of a project or (also just half a page) that requirements and scope are
difficult to define in advance.

118 5 Issues in Agile Methods

D
eg

re
e

Project time

Stakeholder influence, risk, and uncertainty

L
ow

H
ig

h

Cost of changes

Fig. 5.11 Stakeholder influence, risk, uncertainty, and the cost of changes during the project [5]

Hence, we assume that managers without IT background expect to work like the
standard teaches and will oppose an approach that appears to:

• promote inadequate preparation: Agile methods avoid big upfront designs as
it is expected that requirements should be analyzed and studied in depth only a
short time before their implementation;

• accept exploding costs of changes: the project manager assumes a traditional
cost of change as shown in Fig. 5.11, while Agile methods assume a cost of
change curve as shown in Fig. 4.5, i.e., that is flatter because of the adoption
of tools and techniques that allow to change things also later in the project life
cycle;

• accept a high risk: while in a traditional project the stakeholder influence,
risk, and uncertainty are considered to diminish (see Fig. 5.11), Agile methods
underline the importance of the possibility of the stakeholder to change the
priorities of the project throughout the project.

To put it in other words, if one looks at Agile methods from the perspective of
the Guide to the Project Management Body of Knowledge, the conclusions may be
wrong because they are based on assumptions that differ from the assumptions of
Agile methods.

The mismatch in the expectations originates from different approaches how
project management, engineering, development, etc. is carried out in the different
disciplines.

This mismatch can be seen also with other stakeholders, not only managers:
according to our experience, when customers are not familiar with software
engineering at all, they imagine it as something they know and behave accordingly.
Some imagine it as building a house: assume that first you have to plan and then you
construct according to the plan. Such customers react annoyed when you constantly

5.3 The Skepticism Towards Agile Methods 119

ask for feedback or requirements throughout the project since they planned to invest
time in the project only at the beginning.

Another thinking model is to see software development as to cook—you just
need to assemble different components in the right combination. When developers
are confronted with problems they have never seen before and need time to develop a
solution, this is seen as the fault of the developer that does not know all the available
components. A similar way is to see software developers like configuring a video
recorder: there are a predefined number of switches and buttons, and the skills of
the developer decide whether he is able to set up the system in the right way or not.

In addition, only few customers are aware of the difficulty of developers to
guarantee a correct functioning of the software since they are not domain experts.

In summary, different types of stakeholders have expectations that for them
are obvious and therefore are not communicated. Nevertheless, it is necessary to
deal with them: managers might come to the conclusion like [25], that what Agile
methods are proposing does not lead to the aimed objectives, i.e., that Agile methods
are not aligned to the business goals. Customers might come to the conclusion that
these company is incompetent because its developers constantly ask for feedback.

To overcome these differences it is necessary to share the underlying assump-
tions. As recommended by meeting facilitators, in a project it is important to agree
on:

1. “Where we are”: an assessment of the current situation;
2. “Where we want to go”: a description of the goals; and
3. “How to get there”: a description of the method to achieve the goal.

The mismatch we described above originates from a different understanding of
the three points above. Moreover, the mismatch in “how to get there” also related to
a mismatch in the first two points. Is the company facing an unseen problem without
detailed requirement but only some vague ideas or is the problem a standard problem
that can be carried out using proven solutions? “Where we are” wants to agree on
such questions to decide about “how to get there.” The same counts for “where we
want to go”: do we give priority to end users or to software written according to a
predefined specification?

We do not want to say that one option is always better than the other; what we
want to point out is that these three points have to be communicated and agreed
among all stakeholders [19]. We will see later how the Goal Question Metrics
approach can help in doing this.

What is knowledge?

The term knowledge is part of the “Data Information Knowledge Wisdom
Hierarchy” developed by Zeleny [40]. His knowledge taxonomy consists of
four terms (see Fig. 5.12): data, information, knowledge, and wisdom. Each
term represents a higher level of understanding [2].

(continued)

120 5 Issues in Agile Methods

Wisdom

Knowledge

Information

Data

Know-why

Know-how

Know-what

Know-nothing

Fig. 5.12 The Data, Information, Knowledge, Wisdom pyramid [40]

Data are represented through symbols or signs. Examples of data are “h2o,”
“yeast bacteria,” and “starch molecules.” Data alone are of no use; therefore,
Zeleny calls data “know-nothing.”

Information adds context to data so that they become useful. If we add
context to the examples of data above and, e.g., know that we want to bake
bread, we understand that we are looking at a list of ingredients: water, flour,
salt, spices, etc. This level of understanding is also called “know-what.” It also
includes the recipe for making bread that describes a number of steps to do
with the ingredients.

Knowledge is described as “know-how;” it refers “to observer’s distinc-
tion of ‘objects’ (wholes, unities) through which he brings forth from the
background of experience a coherent and self-consistent set of coordinated
actions [40].” Knowledge connects data and information into a network of
relations. In the bread baking example, knowledge describes the state that one
knows several recipes, understands the functions that the different ingredients
have in the recipe, and understands what happens if he forgets to add one
ingredient.

Wisdom goes again one step further and links knowledge with a goal.
In our taxonomy, wisdom is described as “know-why”: we know why the
different ingredients work and why we are using them. In our example this
would mean that we know why we are using water, flour, salt, and spices to
make bread and not croissants.

According to Ackoff, data, information, and knowledge are past oriented,
while wisdom is future oriented [2].

5.4 The Zen of Agile

Agile methods have been conceived and refined by “gurus,” e.g., Extreme Pro-
gramming by Kent Beck, Crystal Clear by Alistair Cockburn, and Scrum by Ken
Schwaber. This might be one of the intrinsic reasons for the problems we mentioned
before: the language of the gurus must be persuasive and often elusive.

5.4 The Zen of Agile 121

The guru is the person with wisdom—he knows what, when, and how things
should be done to achieve the desired goal. It is the interest of the guru to hide
the assumptions on which the rules are based and on which previous works he or
she based his findings and how he verified that what is claimed really works. For
example, it is not clear—reading the Agile Manifesto—why it is good to “focus on
individuals and interactions over processes and tools”: it is not stated why and how
software development should benefit from it.

The guru has no advantage in making her or his followers independent adults;
otherwise his role as a guru would vanish. In this way, the adopters remain
dependent on the guru: the adopters need the guru to continue to use the method
in cases not described by the guru upfront, e.g., how it can be extended, in which
order the different practices should be adopted, etc.

The described strategy of the gurus works because a precondition is met: the
followers of the guru—programmers, managers, requirement engineers, project
managers—are looking for a silver bullet: they want a simple, safe method that
solves their problems. And gurus are willing to give it to them.

This situation leads to a number of issues because we have to treat the method as
a black box: it is not possible to use its nuts and bolts for an evaluation; they have
to be reengineered (or ignored) if anything else than the entire package has to be
evaluated.

Having to treat an Agile Method as a black box, we do not know the rationale
behind the different constituent parts. Whenever we have to assess something
complex, conventional wisdom tells us to verify its constituent parts. Let us say
we want to evaluate the quality of a car. One step would be to check the quality
of the tires, the engine, etc. If we want to do that for an Agile Method, we have to
conduct a study on our own (as in [36]), since “Agile Method practices sometimes
lack clarity and the underpinning rationale is often unclear [9].”

Some authors define Agile methods, Extreme Programming in particular, as
irrational and vague [22, 33]. Other authors claim that the Agile Method practices
are on a too high level of abstraction which causes an inconsistent interpretation and
implementation [1, 5, 21].

Not having a clearly stated rationale behind methods and practices makes it also
difficult to tailor a method to specific needs [6, 14, 31, 35]. Without this knowledge
we do not know what we are risking if we omit one method or if we extend another.

Stephens and Rosenberg [33] compare Extreme Programming with a ring of
poisonous snakes, daisy-chained together (see Fig. 5.13). Each snake represents a
practice that has issues that are compensated by the use of another practice. “All
it takes is for one of the snakes to wriggle loose, and you’ve got a very angry,
poisonous serpent heading your way. What happens next depends on the snake and
to an extent on how good you are at damage control [33].”

The authors show that the different practices depend on each other such as:

1. Requirements are elicited gradually, which—since developers do not have a
complete picture—can result in wasted effort. This problem is alleviated by
incremental design, i.e., to be ready to change the design incrementally.

122 5 Issues in Agile Methods

2. Incremental design avoids designing everything upfront to minimize the risk of
being wrong. This practice is considered safe because the code is constantly
refactored.

3. Constant refactoring involves rewriting existing code that was thought to be
finished: it went through discussions and thinking to get the design right. It
potentially introduces new defects, but it is considered safe because of the
presence of unit tests.

4. Unit tests act as a safety net for incremental design and constant refactoring. With
unit tests it is difficult to verify the quality of the design of an architecture. Pair
programming alleviates this problem.

Fig. 5.13 Extreme
Programming from the point
of view of Stephens and
Rosenberg [33]

This shows that if we want to reach the plateau of productivity, i.e., if we want
to be able to use this method efficiently and effectively, we must understand when
Agile Methods pay off, why they work, how they work, how they can be adapted,
the understanding of the value of the single activities, etc. [15].

Taking the statements of the Agile manifesto, we should be interested on how to
manage knowledge on how to value individuals and interactions over processes and
tools, working software over comprehensive documentation, customer collaboration
over contract negotiation, and responding to change over following a plan.

To gain and share knowledge is one of the central points of Lean Thinking. In
fact methods such as just-in-time production bring problems quickly to the surface.
It has—among other effects—the effect to uncover problems and forces everybody
to solve the problem right away.

As described in Chap. 2, every worker has the right to stop the production line if
a problem occurs. This already tells to everybody that there is a problem. A signal
(“Andon” in Japanese) notifies all other workers where the problem took place so
that workers that have the skills to help can jump in (see Fig. 5.14).

5.4 The Zen of Agile 123

Time
Workstation 2

1 2 3 4

Workstation 1

Andon

Andon cord

Fig. 5.14 The Andon notifies everybody of the state on the production line

Extreme Programming, e.g., promotes the “Informative workspace” practice, and
uses a task board to visualize the current status of the project. Usually divided into
different sections that describe the status of each work station, user stories are placed
on the task board (see Fig. 4.12) depending on their status. So it is possible to get an
overview of the entire project on one sight.

It is important to understand that if we take all these tasks and put them into
a system where the location of the task does not represent the phase in which the
task is currently, but where, for example, we have a text field, in which we store the
“phase,” many advantages of the task board are lost. In fact, the task board embodies
the knowledge that:

• a task can only pass through a predefined set of phases;
• the first phase is the leftmost;
• the last phase is the rightmost;
• the sequence of phases is defined as the phases from left to right;
• many tasks stuck in the same phase signal a problem (the space for one phase is

limited).

The task board of Fig. 4.12 embodies what we described in Chap. 2 with “visual
control.” The task list of Table 5.2 does not show that phase 9 of the 4th task does
not exist—the task board makes it impossible to add a task to a phase that does not
exist.

Table 5.2 Example of a task
list

ID Description Phase

1 Set export filename to “export.xml” 1

2 Add feature to print in draft mode 4

3 Fix app crash when opening jpg file 2

4 Remove “save as pcx” option 9

124 5 Issues in Agile Methods

There are other examples of showing progress visually: Scrum [30] or Crystal
Clear [8] use “burn-down charts,” charts that show the development progress
against the predictions. An example is given in Fig. 5.15: on the vertical axis,
the remaining story points are shown and on the horizontal axis, the iteration. As
development progresses, developers implement user stories and the remaining story
points diminish. Jumps show when the original scope was modified: a jump upwards
shows that after one iteration, the team faced a new total amount of story points that
had to be done to finish the project, and a jump downwards means that the scope
was decreased.

Iteration

St
or

y
po

in
ts

60

1 2 3 4 5 6 7 8 9 10

50

40

30

20

10

Scope increase

Scope decrease

Fig. 5.15 Burn-down chart

The burn-down chart can be used to predict when the project will finish according
to the velocity of the team (i.e., how many story points the team is able to finish in
one iteration). Figure 5.16 shows how: let us assume we are in the 6th iteration. The
burn-down chart is shown on the top of Fig. 5.16; the velocity of the team after each
iteration is shown on the bottom.

Using the information about the past velocities, it is possible to estimate the
end of the project. For example, in Fig. 5.16, taking the average of the last three
velocities, we predict that this project (without further scope changes) will finish
after the 10th iteration.

In Chap. 1 we emphasized one of the main problems of software: it is invisible.
For this reason it is very easy for the project to continue for a considerable time
before problems become apparent [28].

Coming back to the Agile manifesto, we need to find ways to systematically
collect, organize, and share knowledge about software development and to rise
our understanding of the effects of our actions, similar to the burn-down charts
that visualize progress in value creation and the effects of scope changes to all
stakeholders.

This will be the content of the following chapter about experience management.

5.5 Summary or “What Stops us from Moving from Agile Towards Lean. . . 125

Iteration

St
or

y
po

in
ts

60

50

40

30

20

10

Iteration

V
el

oc
ity

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

14

10

6

2

12

8

4

Estimation

Fig. 5.16 Estimation with burn-down charts

5.5 Summary or “What Stops us from Moving from Agile
Towards Lean Software Engineering?”

“Agile thinking” and Lean Thinking are related [10,38]: if we understand Agility as
the ability to change quickly and leanness as the ability to be effective, then leanness
includes agility: if I’m Lean, I can change quickly. This does not hold the other way
around: if I can change quickly, I am not necessarily Lean. I could change quickly
in an ineffective way, wasting resources.

Lean Thinking tells us to focus on value, i.e., to clarify where we want to go
and our understanding of how to get there. The misconceptions, the inherent guru
approach, and therefore unknown background of Agile Methods stop companies
from using Agile Methods effectively and also to become Lean.

The knowledge—understood as “know-how”—that has to be internalized by all
stakeholders has to be gathered, documented, and shared. The “guru approach”
packages knowledge into simple, clear practices which are easy to explain and
to follow. Nevertheless, it is not the right approach since it makes it difficult to
understand when and which practice is appropriate, how to collect knowledge about
the production process, and how to improve.

126 5 Issues in Agile Methods

In Chap. 3 we identified three aspects that Lean Thinking emphasizes: the focus
on value, knowledge, and improvement. We now want to explore possibilities to
answer the following questions:

1. What is the value of every step? How much is enough? When is the point reached
where value is not increased anymore but destroyed?

2. How can I obtain knowledge about my production process? How can I create
visibility of the ongoing activities or problems? How can I store knowledge to
create experience? How can I design the production process so that the team uses
the gained experience?

3. How can we systematically improve? How can I build on the experience to
anticipate problems (create wisdom)? How can I make sure that some mistakes
never happen again?

We will look in the next chapters how three technologies—the Goal Question
Metric Approach, the Experience Factory, and Non-invasive Measurement—can be
used to overcome the described impediments.

Problems

5.1. How would you correct Fig. 5.10, the typical cost and staffing levels across the
project life cycle, and Fig. 5.11, the stakeholder influence, risk, uncertainty, and the
cost of changes during the project for an Agile project?

5.2. Imagine you are the boss of a small software development company. Which
actions would you do or which practices would you introduce to prevent that your
programmers fall into the trap of following a software guru?

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development Methods—
Review and Analysis, vol. 478. VTT Publications, Espoo. Online: http://www.vtt.fi/inf/pdf/
publications/2002/P478.pdf (2002). Accessed 4 Dec 2013

2. Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16, 3–9 (1989)
3. Boehm, B.W.: Value-based software engineering. ACM SIGSOFT Softw. Eng. Notes 28(2), 3

(2003)
4. Boehm, B.W.: Value-based software engineering: overview and agenda. In: Biffl, S., Aurum,

A., Boehm, B.W., Erdogmus, H., Grüunbacher, P. (eds.) Value-Based Software Engineering.
Springer, Berlin/Heidelberg (2006)

5. Boehm, B.W., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley Longman, Boston (2003)

6. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inf. Softw. Technol. 38(4), 275–280 (1996)

7. Ceschi, M., Sillitti, A., Succi, G., Panfilis, S.D.: Project management in plan-based and agile
companies. IEEE Softw. 22(3), 21–27 (2005)

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf

References 127

8. Cockburn, A.: Crystal Clear a Human-Powered Methodology for Small Teams. Addison-
Wesley, Boston (2004)

9. Conboy, K., Fitzgerald, B.: The views of experts on the current state of agile method tailoring.
In: McMaster, T., Wastell, D., Ferneley, E., DeGross, J. (eds.) Organizational Dynamics of
Technology-Based Innovation: Diversifying the Research Agenda. IFIP International Federa-
tion for Information Processing, vol. 235. Springer, New York (2007)

10. Dall’Agnol, M., Janes, A., Succi, G., Zaninotto, E.: Lean management — a metaphor for
extreme programming? In: Marchesi, M., Succi, G. (eds.) Proceedings of the International
Conference on Extreme Programming and Agile Processes in Software Engineering (XP).
Lecture Notes in Computer Science, vol. 2675. Springer, Genova (2003)

11. Fenn, J., Raskino, M.: Mastering the Hype Cycle: How to Choose the Right Innovation at the
Right Time. Gartner Series. Harvard Business Review Press, Boston (2008)

12. Finley, I., Wilson, N., Huizen, G.V.: Hype cycle for application development, 2012. Online:
http://www.gartner.com/id=2098316 (2012). Accessed 4 Dec 2013

13. Fowler, M.: Is design dead? In: Succi, G., Marchesi, M. (eds.) Extreme Programming
Examined. Addison-Wesley, Boston (2001)

14. Grundy, J.C., Venable, J.R.: Towards an integrated environment for method engineering. In:
Proceedings of the IFIP TC8, WG8.1/8.2 Working Conference on Method Engineering on
Method Engineering: Principles of Method Construction and Tool Support: Principles of
Method Construction and Tool Support. Chapman & Hall, Atlanta (1996)

15. Janes, A.: Measuring the effectiveness of agile methodologies using data mining, knowledge
discovery and information visualization. In: Marchesi, M., Succi, G. (eds.) Proceedings of
the International Conference on Extreme Programming and Agile Processes in Software
Engineering (XP). Lecture Notes in Computer Science, vol. 2675. Springer, Genova (2003)

16. Janes, A., Succi, G.: The dark side of agile software development. In: Proceedings of the ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Conference on Systems, Programming, and Applications: Software for Humanity
(SPLASH), Onward! ACM, Tucson (2012)

17. Janes, A., Succi, G.: The dark agile manifesto. Online: http://www.darkagilemanifesto.org
(2013). Accessed 4 Dec 2013

18. Janes, A., Succi, G.: The dark side of agile software development, first results. In:
Wuksch, B. D., Peischl, B., Kop, Ch. (eds.) Proceedings of the 11th User Conference on
Software Quality, Test, and Innovation (ASQT). Österreichische Computer Gesellschaft, Graz
(2014)

19. Janes, A., Šarūnas Marciuška, Sarcià, A., Succi, G.: Domain analysis in combination with
extreme programming to address requirements volatility problems. In: Proceedings of the
International Conference on Software Engineering and Knowledge Engineering (SEKE).
Knowledge Systems Institute, Boston (2013)

20. Järvenpää, H., Mäkinen, S.J.: Empirically detecting the hype cycle with the life cycle
indicators: an exploratory analysis of three technologies. In: Proceedings on the International
Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, Singapore
(2008)

21. Koch, A.S.: Agile Software Development: Evaluating The Methods For Your Organization.
Artech House Computing Library. Artech House, Boston (2004)

22. McBreen, P.: Questioning Extreme Programming. Addison-Wesley Longman, Boston, MA,
USA (2002)

23. Project Management Institute: A Guide to the Project Management Body of Knowledge
(PMBOK R� Guide), 4th edn. Project Management Institute, Newtown Square (2008)

24. Project Management Institute: A Guide to the Project management Body of Knowledge
(PMBOK R� Guide), 5th edn. Project Management Institute, Newtown Square (2013)

25. Rakitin, S.R., Donné, W., Holmes, N., de Boer, B.: Letters: Manifesto elicits cynicism; more
markup remarks. IEEE Comput. 34(12), 4 (2001)

26. Regis, B.N.N.: Evaluation of the Most Used Agile Methods (XP, LEAN, SCRUM): With the
Definition of Quality Developed by Toyota. LAP Lambert Academic Publishing, Germany
(2012)

http://www.gartner.com/id=2098316
http://www.darkagilemanifesto.org

128 5 Issues in Agile Methods

27. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in finnish
software industry. In: Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM). ACM, Lund (2012)

28. Royal Academy of Engineering and British Computer Society: The Challenges of Complex IT
Projects: The Report of a Working Group from the Royal Academy of Engineering and the
British Computer Society. The Royal Academy of Engineering. Online: http://www.bcs.org/
upload/pdf/complexity.pdf (2004). Accessed 4 Dec 2013

29. Rubin, K.S.: Essential Scrum: A Practical Guide to the Most Popular Agile Process. Addison-
Wesley Signature Series (Cohn). Pearson Education, Upper Saddle River. http://books.google.
at/books?id=3vGEcOfCkdwC (2012)

30. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
31. Smolander, K., Tahvanainen, V.P., Lyytinen, K.: How to combine tools and methods in

practice — a field study. In: Steinholtz, B., Sølvberg, A., Bergman, L. (eds.) Advanced
Information Systems Engineering. Lecture Notes in Computer Science, vol. 436. Springer,
Berlin/Heidelberg (1990)

32. Stafford, T., Webb, M.: Mind Hacks: Tips & Tricks for Using Your Brain. Hacks Series.
O’Reilly Media, Sebastopol (2004)

33. Stephens, M., Rosenberg, D.: Extreme Programming Refactored: The Case Against XP.
APress, Berkeley (2003)

34. Szőke, A.: Optimized feature distribution in distributed agile environments. In: Proceedings
of the 11th International Conference on Product-Focused Software Process Improvement
(PROFES). Springer, Limerick (2010)

35. Tolvanen, J.P., Lyytinen, K.: Flexible method adaptation in case: the metamodeling approach.
Scand. J. Inf. Syst. 5, 51–77 (1993)

36. Vanderburg, G.: A simple model of agile software processes—or—extreme programming
annealed. In: Proceedings of the Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM, San Diego (2005)

37. VersionOne.com: 8th annual state of agile survey. Online: http://www.versionone.com/pdf/
2013-state-of-agile-survey.pdf (2014). Accessed 4 May 2014

38. Wang, X., Conboy, K.: Comparing apples with oranges? the perceived differences between
agile and lean software development processes. In: Galletta, D.F., Liang, T.P. (eds.) Pro-
ceedings of the International Conference on Information Systems (ICIS). Association for
Information Systems, Shanghai (2011)

39. Wilson, N., Huizen, G.V., Prentice, B.: Hype cycle for application development, 2013. Online:
https://www.gartner.com/doc/2560015, (2013). Accessed 4 May 2014

40. Zeleny, M.: Management support systems: towards integrated knowledge management. Hum.
Syst. Manag. 7(1), 59–70 (1987)

http://www.bcs.org/upload/pdf/complexity.pdf
http://www.bcs.org/upload/pdf/complexity.pdf
http://books.google.at/books?id=3vGEcOfCkdwC
http://books.google.at/books?id=3vGEcOfCkdwC
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
https://www.gartner.com/doc/2560015,

Chapter 6
Enabling Lean Software Development

Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza.

(Consider ye the seed from which ye sprang;
Ye were not made to live like unto brutes,
But for pursuit of virtue and of knowledge.)

Dante Alighieri, Divina Commedia, Inferno, Canto 26, 118–120

Lazily, Uli went back to his office. He called Euril, Perim, Sinon, and Elp.
“Knowledge, value, improvement—this is what they asked me to clarify. . . Any
suggestion guys?” None spoke; they were all still a bit shocked of all what happened
the day before. “Well, I had a meeting with our top managers and actually there
were not so excited of keeping the project running. It appears that for some of them
not altering the consolidated way of doing business is more valuable than keeping
a project and trying something new. Can you believe this?” “Indeed, said Perim,
indeed. The good-old-way does not jeopardize any position while trying something
new may alter the current status of businesses. But you should also consider the
point they raised. I do think that there is something to think. Yesterday I asked
something similar and you answered with a typical consulting term. . . what was it?
Situational awareness—the usual consultant b***s**t!”

Uli stood, joined his hands “Ladies, gentlemen” he started “can you consider
why you started to work in software? What were your aims, your desires? All of you
knew at the time that this was the land of unknown, the land of discovery, the land of
opportunity. You selected software engineering because you aimed to increase your
knowledge and the knowledge of the human being, still being able to do something
concrete; you wanted to pursue your virtues. If you wanted to stay in a more
comfortable, secure, quite discipline, you would have built houses and not software
systems. If you wanted to be creative but not attached to the reality, you would
have studied management. But now, you are a software engineering—someone who
combines quest for the unknown and the ability to build solid elements, someone
who put knowledge, and also value and improvement at the top of his priorities.”

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__6

129

130 6 Enabling Lean Software Development

None said a word. Uli sat. Everyone was silent and it was a very loud silence.
The walls were speaking: two posters dominated the scene. On one side a big poster
contained an artistic painting of stars in the Austral hemisphere on the 9th of April.
It was a bit surreal but beautiful. In the spare time Uli used to joke with his senior
architects telling them that he would have liked to be the first western man crossing
the ocean to see such scene, or that he should have rented the space shuttle to take
them all for a space tour as a prize for completing the project on time. On the other
side there was the picture of an ancient Greek ship sinking during a horrendous
nightly hurricane, with a mountain in the background and under a pale light of the
moon; this picture had always been there, Uli disliked it but never took it away, as,
he said, reminded always the risk of a failure.

After this heavy silence and after staring at the two pictures Perim said: “I want
a ticket for the space shuttle!” and left the room. All the other also left.

At that point Uli knew what to do.

6.1 Introduction

The concept of Lean Software Development refers to the several attempts to transfer
and adapt the principle of Lean Management into Software Engineering.

Remember, Lean Management was conceived in Japan by Taiichi Ono [21] for
the automobile industry. Posting it to the software industry is not straightforward.

At the time of writing this book, a detailed methodology that fully applies the
principles of Lean Management to Software Engineering does not exist yet. We
have the impression that existing approaches do as if writing software would be
similar to producing a car and ignore that software is invisible. A comprehensive
measurement approach is needed that is aligned with the organizational goals as
evidenced by the founders of Lean.

Current approaches emphasize different values of Lean but neglect the need of
instilling a measurement and an experience management culture to overcome the
invisibility of software and to improve its development constantly.

6.2 Existing Proposals to Create “Lean Software
Development”

Practitioners and academics are exploring the terrain to adopt Lean ideas within
software development. Pioneers in this exploration are Mary and Tom Poppendieck.
In their book “Implementing Lean Software Development From Concept to
Cash” [23], they characterize Lean software development with the following seven
principles:

6.2 Existing Proposals to Create “Lean Software Development” 131

1. Eliminate waste;
2. Build quality—we used the terms “autonomation” and “standardization”;
3. Create knowledge;
4. Defer commitment—we used the term “just-in-time”;
5. Deliver fast—get frequent feedback from the customer and increase learning

through frequent deployments;
6. Respect people—we used the term “worker involvement”;
7. Optimize the whole—we used the term “constant improvement.”

Furthermore, to respect people means that the knowledge people accumulate
during their work is acknowledged and that they are given the possibility to change
the working processes. According to them, this has consequences on different
levels:

• Entrepreneurial Leadership: the leader promotes committed and thinking peo-
ple and concentrates their efforts on creating a product that provides maximum
value to the customer.

• Expert Technical Workforce: the company makes sure that the technical
expertise is nurtured and that teams have the expertise needed to accomplish
their goals.

• Responsibility-Based Planning and Control: teams are organized using “Man-
agement by Objectives” (see Chap. 4) and people are trusted to self-organize to
achieve their goals.

Curt Hibbs and his colleagues have developed a different proposal to adapt the
principle of Lean Management to Software Engineering. Their approach is more
oriented to the code. In their book “The Art of Lean Software Development, A
Practical and Incremental Approach,” [13] propose the following practices:

1. Source Code Management and Scripted Builds;
2. Automated Testing;
3. Continuous Integration;
4. Less Code;
5. Short Iterations; and
6. Customer Participation.

These principles are an implementation of the concept of autonomation to
coding.

The use of source code management and scripted builds together with automated
testing is one way to instantiate autonomation for software engineering.

Automated, scripted builds and automated testing autonomate coding because
they detect if the produced source code does not conform to the expectations
and stop the production process. Therefore, they contribute to avoid committing
defective code to the production code.

132 6 Enabling Lean Software Development

Continuous integration is also a form of autonomation. By continuously integrat-
ing the different parts of code, all the problems related to integrating different parts
of the software system become immediately evident and the production process does
not proceed forward until the issues that break the integrations are solved.

Short iterations and customer participation enable the team to obtain frequent
feedback and to improve the understanding of what creates value for the customer.

In summary, the proposal of Mary and Tom Poppendieck aims to “leanify” the
overall process while Hibbs and his colleagues specify how coding can be made
Lean.

Alan Shalloway et al. [25] take a more comprehensive perspective and propose
a “Lean-Agile software development.” Their approach is more generic than the two
previously presented and organizes the transition of Lean Thinking to Lean Software
Development into the following layered model (see Fig. 6.1):

1. Foundational Thinking. The underlying belief system of Lean Thinking, based
on the work of Deming.

2. Perspective and Principles. The Perspective is the choice of what is considered
important to observe in the process. The Principles are the rules of behavior that
adhere to the Foundational Thinking and are taken from the work of Mary and
Tom Poppendieck.

3. Attitudes. The choice of what is considered important and what is not.
4. Knowledge. “Know-how” based on experience or, in other words, “lessons

learned.”
5. Practices. Recommendations on what to do, based on the knowledge acquired.

Attitudes

Perspective

Foundational Thinking

Principles

Knowledge

Practices

Fig. 6.1 The layered structure of Lean-Agile software development [25]

What is continuous integration?

Martin Fowler and Kent Beck were the first to write about continuous
integration. We use ten practices proposed by Fowler [10] to explain this
concept:

(continued)

6.2 Existing Proposals to Create “Lean Software Development” 133

1. Maintain a single source repository: maintain all resources of one
software project in one place;

2. Automate the build: automate all steps to transform source code into a
running system.

3. Make your build self-testing: include automated tests in the build process
and execute them after building a new release.

4. Everyone commits to the mainline every day: the more often everybody
commits to the mainline, the lower the effort of resolving conflicting
changes by different developers becomes.

5. Every commit should build the mainline on an integration machine:
because of different reasons (e.g., undisciplined developers, environmental
differences between the developer machine and the integration machine,
etc.), tests can still fail on the integration machine. Therefore, every
commit should start an automatic build and test on the integration machine.

6. Keep the build fast: the faster the build, the faster the feedback that is
given to the developer, and the lower is the risk that other developers are
making their modifications based on the defective code, increasing the
caused damage.

7. Test in a clone of the production environment: test your build in an
environment that is similar to the production environment.

8. Make it easy for anyone to get the latest executable: put the latest
executable on a well-known place to allow demonstrations and exploratory
testing, find out about changes, etc.

9. Everyone can see what’s happening: communicate to everybody the state
of the build.

10. Automate deployment: to test the developed code in multiple environ-
ments, it is important to automate the necessary deployment steps.

Table 6.1 contains some of the tools currently available to support the
different phases of continuous integration.

Table 6.1 Tools to support continuous integration

Tool Useful
for step

Subversion [2], GIT [12] 1

Make [11], Apache Ant [1] 2

Unit testing frameworks (known as xUnit frameworks) such as Junit for
Java [16] or CppUnit for C++ [7], GUI testing frameworks such as Sikuli [26]

3

CruiseControl [8], Jenkins [15] 5

VMWare [31], VirtualBox [22] 7, 10

134 6 Enabling Lean Software Development

The three examples presented above (the proposal of Mary and Tom Poppendieck
and of Curt Hibbs and his colleagues and the approach of Alan Shalloway et al.)
show that Lean Thinking can be translated in different ways into software engi-
neering. However, all these three approaches lack an essential component of Lean
Management, its concrete use of real measurements supporting the process [19].
They are more faith-based, while Lean advocates a constant and concrete analysis
of the process to produce value and eliminate waste.

Concretely, our approach is to develop a Lean software development process that
avoids the three issues we identified in the previous chapter:

1. the problem of communicating the goals and methods of Agile methods to
stakeholders, which generates skepticism since Agile methods seem to ignore
“well-known” best practices;

2. the guru approach that has dominated the way Agile ideas became known among
practitioners; and

3. Agile extremists that promote the dark side of Agile.

Now we describe how we want to tackle these issues.

6.3 Share a Common Vision

Lean Thinking advocates new, unconventional methods for producing goods. It is
essential that these methods can be explained solidly to our customers. They should
not think that we are “original.” They should understand such methods and, at least,
understand that they are grounded in solid theories. Otherwise, we would not have
customers, or, worse, we might get customers who want to adopt our proposals
simply because they are cool, and when their coolness will go away, we will not
have anymore a job. It is interesting to note that several Agile projects had this fate,
despite being successful.

Therefore, we need to communicate to our customers how we work, what we do,
what outcomes we expect from it, and which support we need from them.

Agile methods heavily rely on the collaboration with the customers. Extreme
programming, for example, has a practice called “customer on-site,” requiring
customers to sit with the project team throughout the project and to supply the
essential knowledge of the applicative domain whenever needed and to help the
team to stay focused on the common goal.

However, customers have their own priority. In most cases, their ideal relation-
ship with the developers is that they communicate shortly their desires, and, after
a certain amount of time (the sooner, the better), they get what they dreamed at.
Van Deursen [30] has identified three major causes why it is hard to have customers
on-site.

6.3 Share a Common Vision 135

Actually, it turns out to be difficult to convince the customer that it is worth to
collaborate personally and continuously [30]:

• customers have to do their regular work and be on-site, which is not always
possible;

• the customer usually wants to buy a “whole solution,” and not to run a
customization project requiring his involvement; and

• the best customers from a programmer’s perspective are also often best in other
aspects, which makes them busy, and it is unlikely to allocate to the project all
the required time.

Some customers expect software development to be like building a house; they
want the “whole solution,” the “turn-key project.” They want to get the solution in
a ready-to-use condition. Such customers think: “Why do you ask me? You are the
expert, you should know. Why am I paying you?”

Having the customer on-site, we are only halfway through: establishing a
fruitful communication with the customer is also challenging. Some reasons for
this are [30]:

• Technologists and end users have a high “semantic gap,” which makes commu-
nication complicated. Both sides base their communication on assumptions. If
some information is based on an assumption that the other side does not know
about, this information might be not interpreted as intended by the speaker.
Making these gaps explicit, i.e., talking about the hidden underlying assumptions,
is perceived as an annoying, boring activity.

• Neither developers nor customers consider talking to each other a useful task, but
rather a waste of time.

• End users may resist changes in their way of working, making it very hard to
involve them in a constructive way in the customization of the product.

• Developers might be against an on-site customer. Beck and Andres [4] call it the
“sausage factory” effect when the developers think: “if the customers knew how
messed up software development was, they would never trust us.”

From a financial point of view, a trade-off exists between having a customer
on or off site. Let us analyze the trade-off looking at a client organization
“BusyClient” that hires the software organization “AgileCoders” to produce a tool
called “SuperTool.” BusyClient has to decide if its best sales representative, Mr.
Seller, should act as a customer on-site.

If Mr. Seller works as an on-site customer at AgileCoders, he is not working as a
sales representative, but as a requirement analyst. He can work a bit while sitting at
AgileCoders, but he cannot leave to visit customers. This causes considerable costs
for BusyClient and increases the total development costs of SuperTool.

The alternative is that Mr. Seller helps only off-site, which makes it harder for
AgileCoders to obtain a clear understanding of the requirements since Mr. Seller is
sometimes busy and not reachable when he is talking with customers.

136 6 Enabling Lean Software Development

AgileCoders might waste time because of misunderstandings, wrong assump-
tions because Mr. Seller is not available, and so on. This might then delay the
shipment of SuperTool, which increases again the costs for BusyClient.

Additionally, because the shipment of SuperTool is delayed, AgileCoders is also
facing higher costs compared to a scenario in which Mr. Seller acts as a customer on-
site. AgileCoders, which wants to survive on the long run, has to charge BusyClient
with this additional development costs.

In summary, BusyClient has to take decision: is it more costly to have Mr. Seller
work for a while at AgileCoders or to pay more for SuperTool?

BusyClient can decide using the concept of risk exposure explained previously.
The risk exposure of losing business opportunities increases the more Mr. Seller
is absent from BusyClient. On the other side, the risk exposure of an expensive
development of SuperTool decreases with the amount of time Mr. Seller invests to
manage requirements at AgileCoders (see Fig. 6.2). BusyClient should consider the
total risk exposure and choose the sweet spot that minimizes it.

R
is

k
ex

po
su

re

Time and effort invested by customers on-site

Risk exposure due to
unclear requirements

Risk exposure
due to the

absence of an
important

collaborator on
the client side

Total risk
exposure

Sweet spot

Fig. 6.2 Trade-off between an on-site and off-site customer

The current (2nd) edition of Extreme Programming sees on-site customers (the
practice is now called “Real Customer Involvement”) as a corollary practice, i.e., as
“difficult or dangerous to implement before completing the preliminary work of the
primary practices [4].”

In any case, with or without a customer on-site, AgileCoders and BusyClient
have to have a shared view on how the project is carried out. If they do not,
BusyClient might expect something different from what AgileCoders is delivering.
We observed such a situation with a company that was doing frequent releases. After
some time we noticed that the client was quite nervous because he interpreted the

6.3 Share a Common Vision 137

frequent releases as an indicator for low quality: in his eyes, the developers could
not get things right and had to fix things continuously.

There are several approaches to communicating a strategy to a client. One
possibility is a “mission statement”: it states the vision and describes the chosen
means to achieve it.

The mission statement of St. Michael’s Hospital in Ontario states that its vision is
“Creating a healthier world, through our culture of caring and discovery” and states
the following means to achieve it [29]:

1. providing exemplary physical, emotional, and spiritual care for each of our
patients and their families;

2. balancing the continued commitment to the care of the poor and those most in
need with the provision of highly specialized services to a broader community;

3. building a work environment where each person is valued and respected and has
an opportunity for personal and professional growth;

4. advancing excellence in health services education;
5. fostering a culture of discovery in all of our activities and supporting exemplary

health sciences research;
6. strengthening our relationships with universities, colleges, other hospitals, agen-

cies, and our community; and
7. demonstrating social responsibility through the just use of our resources.

The mission statement is easy to understand. Its aim is to be a general guidance
for the day-to-day decisions within the organization.

The problem arises if we do not know if the mission is being achieved or not. It
is like not knowing where we are on the map, then we do not know where to go to
reach our destination.

To understand how good we are in achieving the mission, we need to find ways
to measure it. For example, for the point five of the mission statement above, we
could look at the “Percent of time dedicated to research.” This measurement would
tell us how much time employees are able to dedicate to research.

Only through measurements can we objectively (see box below) assess the
current situation and compare our performance with the performance of others or
with our performance of the past.

Using the “Percent of time dedicated to research” to measure point 5 of the
mission statement defines what we specifically mean by it. It shows what we
consider important but also what we do not. For example, by not measuring tangible
results like patents or papers, we tell that we do not consider them essential.

This example shows that to find the right set of measurements, we need to have a
clear understanding of what is causing success and what is preventing it. If we have
a wrong perception of the reality, we will measure the wrong thing.

In the city, to measure how much time it will take us to reach some place, it is fine
to use the distance in km. On the mountain this is not enough. We have to consider
the height difference too; otherwise our estimation will be very imprecise.

138 6 Enabling Lean Software Development

This example shows that it can be necessary to collect a set of measurements to
have a precise understanding of the situation. On the other hand, we prefer having
few measurements to explain a situation than to have many. This preference (in
statistics called “parsimony”) aims to keep the measurement easy to understand
(and easy to extend if needed).

What does “objectively” mean?

The term “objectively” is a word used in everyday’s language. Objective is the
opposite of subjective. It means that we try to observe some object excluding
the influence of us looking at it. This is sometimes difficult or even impossible.

For example, if we take an experienced skier and ask whether some skiing
slope is steep, he will probably say: “no.” If we ask a beginner, he might be
frightened just to think about it.

The two answers are subjective: they depend on who gave the answer.
We cannot compare the answers of many skiers, since they are based on
evaluations of the terrain that are influenced by their own experience.

To get an objective answer, we need to find a way to measure the steepness
of the slope, independently from who is measuring. We need to (a) define a
measure of steepness and (b) define how the measurement is obtained, i.e.,
define a measurement procedure.

The second aspect—to define the measurement procedure—is crucial: only
if the measurement can be performed by anybody obtaining the same result
can we then speak about an objective measurement.

We could define the steepness in percent as the relationship between the
vertical climb and the horizontal distance. We measure how much height a
slope gains in relationship to how much horizontal distance it gains. Figure 6.3
shows a slope where (at the point where we measured) the vertical climb is
0.88 m and the horizontal distance is of 2 m.

0,
88

m

1,1 m

Fig. 6.3 Measuring the steepness of a slope

(continued)

6.3 Share a Common Vision 139

According to our definition, the steepness in percent is calculated as

0.88 m (vertical gain)

1.1 m (horizontal distance)
� 100 D 80 %

As a measurement procedure we choose to use two yardsticks: one is
positioned perpendicular and is used to measure the vertical gain, and one
leveled yardstick is used to measure the horizontal distance from the end of
the first yardstick back to the slope.

Using the steepness in percent and the agreed measurement procedure, we
can objectively say how steep a slope is, whether it is 10 % or around 100 %
as the couloir of Fig. 6.4.

Fig. 6.4 Joel couloir, Sella group, Dolomites, Italy: Is it steep or not?

140 6 Enabling Lean Software Development

An example of a “mission statement” with measurements is the Balanced
Scorecard (already mentioned in Chap. 3). The goal of the Balanced Scorecard is
to provide a balanced (all aspects of the company should be considered) view of the
performance of the company. The Balanced Scorecard itself, in its entirety, can act
as a mission statement since it defines what is important (what is measured, what is
considered relevant in the organization) and what is not.

The Balanced Scorecard is structured in perspectives, which are the different
views of the organization. The initial set of views proposed by the authors
are [17]:

1. Customer perspective: measures the ability of the company to provide value
to the customers. This perspective includes performance, quality, and service
measurements.

2. Internal business perspective: measures the ability of the company to adapt the
internal processes to satisfy customer needs.

3. Innovation and learning perspective: the customer and internal business per-
spective define what the company considers important for competitive success.
For example, the ability of the company to innovate, improve, and learn.

4. Financial perspective: measures if the company’s strategy, implementation, and
execution are contributing to bottom-line improvement.

The Balanced Scorecard helps to get an overall picture of the company.
A problem affects different parts of the company at different times. For example,

a customer service that is not able to satisfy customers will be visible looking at the
internal business perspective. If customers complain, it will appear in the customer
perspective. Finally, if customers switch to the competition, we will see it in the
financial perspective.

This means that we can map cause and effect relationships within the Balanced
Scorecard [20]. Figure 6.5 shows some of them as arrows between the perspectives.

We now present two ways to communicate a strategy to stakeholders: the
mission statement as well as the Balanced Scorecard. These two examples differ
in the approach: the Balanced Scorecard is a quantitative approach that collects
quantitative evidence to interpret the reality; the mission statement follows a
descriptive, qualitative approach (see Chap. 11) to give an overall picture of the
elements that characterize the strategy and how they interact.

The way a strategy is described depends also on the type of control we want
to exert. In Chap. 4 we discussed behavior controls (e.g., to ensure that employees
dedicate a certain amount of time to research) and outcome controls (e.g., to ensure
that developers produce a certain amount of code per year). In the same way, a
strategy can define the desired behavior and/or the desired results qualitatively or
quantitatively.

6.3 Share a Common Vision 141

There is decadelong debate whether the qualitative or quantitative approach
is preferable [3]; both have their advantages. Some authors combine qualitative
and quantitative approaches, for example, as “exploratory designs” or “explanatory
designs” [6]. An exploratory design begins with a primary qualitative phase, then the
findings are validated by quantitative results. An explanatory design is characterized
by an initial quantitative phase that is followed by a qualitative phase. Usually, the
qualitative results serve to explain the quantitative results.

In Lean management we find qualitative and quantitative approaches. The stan-
dard worksheet (see Chap. 2) uses a qualitative, descriptive approach. Autonomation
uses a quantitative approach to detect a problem; it requires some measurable
property to verify its correct value. Because of the importance of autonomation
in Lean management, we focus on quantitative ways to define and evaluate the
achievement of strategies.

We will use the GQM approach described in the next chapter (similar to
the Balanced Scorecard approach, but more general) to quantitatively define the
common vision, i.e., what Lean really means for the company. This will alleviate
the problem of communicating the goals and methods of Lean to stakeholders and
build trust towards those that claim the advantages of Lean.

Financial perspective

Goals Measures

Innovation and learning
perspective

Goals Measures

Customer
perspective

Goals Measures

Internal business
perspective

Goals Measures

How do
customers

see us?

What must
we excel at?

How can we
continue to
improve and
create value?

How can we
serve customers

better in the
future?

How do we look
to shareholders?

What are the emerging opportunities and challenges?

Are we
satisfying
customer
needs?

Are we
working

effectively
and

efficiently?

Internal efficiency +
customer satisfaction
= financial success

Fig. 6.5 The Balanced Scorecard [17]

142 6 Enabling Lean Software Development

6.4 Deprive Gurus of Their Power

We previously stated that Agile methods have been conceived and refined by
“gurus.” What we criticize is that gurus tell us the “know-how,” but not the “know-
why.” This critique is not completely fair, since gurus not always actually know the
“know-why,” i.e., the reason why what they preach is working.

Frequently, the gurus were those people that discovered the new method (e.g.,
Ken Schwaber, Kent Beck). They made the experience that something works and
something does not. It is this experience that they are describing in their books. This
does not mean that they were able to develop the wisdom why their method works.

If we need to find out how good a certain technology can work for us and cannot
find anyone that can tell us, we have to develop the experience ourselves. We need
to use the so-called scientific method1 to systematically find the knowledge we seek.
We need to [3] (see also [32]):

1. formulate a problem in form of hypotheses, i.e., tentative explanations;
2. identify what we want to study;
3. apply research methods to obtain data (e.g., observation, survey, experiment);
4. analyze the data; and
5. use the results to confirm or falsify the hypotheses;

Usually the scientific method begins with idea that pops up or somebody
promoting a new technology or method to us. “You have to do testing, then you
will have software without defects!” might be a claim. If you are a risk-seeking
person, you will immediately introduce testing throughout the company. You risk
that the advice is wrong and that the defects increase or that other aspects (such as
development speed) suffer. If you are a risk-averse person, you follow the scientific
method.

According to the scientific method, we need to formulate the research problem
first. An initial formulation could be: “Does testing reduce the number of defects?”
We will begin to investigate this question, develop test cases for classes, and
document the defects that we find for both types of classes: tested and untested.

We then will formulate the hypothesis: “Testing a method reduces the number
of defects in that method.” Counting the defects that we find and classifying them
whether they were found in tested or untested classes is the measurement with which
we test our hypothesis.

There is a difference between confirming hypotheses and falsifying them. If we
confirm a hypothesis, we do not know if there is some situation in the future that
falsifies it. If we falsify a hypothesis, we know it is false. If we are not able to falsify
it, we can consider the hypothesis provisionally valid.

1The here described scientific method should not be confused with the scientific method promoted
by Frederick Winslow Taylor.

6.4 Deprive Gurus of Their Power 143

In our case the result of our experiment can have three results:

1. we proof that the hypothesis is wrong: we now know that—in our environment
and in our experimental setting—testing does not reduce the number of defects;

2. we cannot proof that the hypothesis is wrong: we now know that—in our
environment and in our experimental setting—testing can reduce the number of
defects; and

3. we cannot proof that the hypothesis is wrong or right (e.g., if the results are
random): we cannot say anything; we have to continue investigating. Using the
words of the English writer William Cowper (1731–1800): “Absence of proof is
not proof of absence.”

The example shows that a hypothesis that is formulated vaguely is hard to falsify.
It is difficult to proof that testing never reduces the number of defects present in a
method. Moreover, the usefulness of a hypothesis that could not be falsified is not
high: the statement that testing can help is not that useful. An example of a more
specific hypothesis is: “Does the % of code that represents testing code correlate
with the number of defects?” Failing to falsify this hypothesis would mean that the
more we test, the less defects we have. We could then start to look at the optimal
amount of testing, and so on.

The experience that we gain from our experiments should be used to improve our
work. Only then the time and effort we invested will pay off. We have to document
our findings and refine them as we get more knowledge. To be able to apply it and
to get the support from others, we need to communicate our findings in way that
others understand it.

If we want to share our experience, we have to package it in a reusable form.
Reusable means that the know-how and know-why become evident: others can
understand how and why it works. Experience reuse wants to make use of previously
gained experience in similar problems to help to solve an actual one.

Being able to use a previously packaged experienced has several advan-
tages [5]:

• Shorter problem-solving time: the cumbersome task of designing experiments,
formulating hypotheses, collecting data, etc. can be avoided.

• Improved solution quality: building on previous experience can reduce the
probability of wrong decisions.

• Less skills are required: the problem solver needs to have less skills if he can
rely on previous experience.

The application of the scientific method in software development—the continu-
ous experimenting, evaluating, and adapting—is the way how software companies
innovate and gain competitive advantage. This finding convinced scientists and
practitioners to develop process models that embed the steps advised by the
scientific method.

Lean Thinking also advocates this method to constantly improve.

144 6 Enabling Lean Software Development

An example of such a study would be to compare Kanban and Scrum in a
specific context and find out their different effects. Such a study was conducted
by Sjøberg et al. [28], and they discovered that in their context, after replacing
Scrum with their implementation of the Kanban concept, they were able to reduce
the number of bugs and improve productivity.

In Chap. 8 we will look at the Experience Factory, which is one way to perform
continuous improvement using the scientific method and builds on the Plan-Do-
Study-Act method presented previously.

The relationship between Lean and Agile

We can find Agile ideas within Lean Thinking: “Everyone knows that things
do not always go according to plan. But there are people in the world who
recklessly try to force a schedule even though they know it may be impossible.
They will say ‘it is good to follow the schedule’ or ‘it is a shame to change
the plan,’ and will do anything to make it work. But as long as we cannot
accurately predict the future, our actions should change to suit changing
situations [21].”

Here Ono clearly describes Agile practices within the Toyota context. But
in the Toyota Production System, Agility is a means to an end, not an end in
itself. Also inside Agile Methods there are Lean principles, for example, the
tenth principle of the Agile Manifesto: “Simplicity—the art of maximizing
the amount of work not done—is essential.”

Altogether, these methods use each other to achieve their respective
goals:

• Agile Methods aim to achieve Agility, i.e., the ability to adapt to the needs
of the stakeholders.

• Lean production aims to achieve efficiency, i.e., the ability to produce what
the stakeholders need with the least amount of resources possible.

Both methods, Lean production and Agile methods, focus on being
effective: to maximize the value for their stakeholders. However, they have
different perspectives. While Agile Methods focus on software development,
Lean production is an approach that aims to optimize the entire organization.

To illustrate the different perspectives of Lean and Agile, we look at the
entire “socio-technical system” (see Fig. 6.6).

(continued)

6.4 Deprive Gurus of Their Power 145

Hardware

Software

User
activities

Clients User

User

Client

Domain

Product I/O

Domain
I/O

Business domain

Fig. 6.6 Socio-technical system [18]

This concept looks at IT organizations from three perspectives:

• the product perspective is about the hardware and software of the product;
• the domain perspective is about how users use the product; and
• the business domain perspective is about the business value the users are

able to add using the product.

For example, in most restaurants nowadays the waiter uses a device to
register the orders. The device is the product. The waiter is the user of the
product. The business domain perspective analyzes how well the waiter is
able to satisfy the wishes of the guests using the product.

Software is embedded into a socio-technical system, and users interact with
hardware and software to solve issues, which help to fulfill their business
goals. Therefore, software cannot be seen as a purely technical issue [27].

The difference between Agile and Lean is that they were conceived to work
in different perspectives of the socio-technical system.

Agile methods concentrate on the delivery of a product that provides value
to the user. The point of view is the one of the developer creating a product for
the user. The user knows what is best for him and provides the requirements.

Lean Thinking looks at the entire business domain and seeks the most
efficient way to create value for the client of the organization, not the user
of the product. This allows to optimize over the entire organization, not only
within the activity of software development as Agile methods do.

146 6 Enabling Lean Software Development

6.5 Disarm Extremists

In contrast to the gurus of the previous chapter, Agile extremists are the followers
of the guru. The extremists we are talking about are risk neutral, optimistic, and
idealistic people.

They are willing to accept risk to introduce radical changes. Because of their
optimism, risk is not managed, i.e., anticipated, estimated, and minimized using
countermeasures, but it is ignored. Problems are addressed as they arise. Their
idealism makes them see the whole world as Agile, Lean, etc. Every problem is
framed in their “believe system,” in their view of the world.

To rise the awareness that a given technology does not always work, we need
objective data; otherwise, we and the extremists discuss based on faith.

Unfortunately, the collection of objective data is expensive. The costs to intro-
duce a measurement program (for the first year) can account for 1–2 % of the
total engineering or IT effort [9]. In a study Rico and Pressman made in 2004,
the complete cost to use a manual measurement program like the Personal Software
Process [14] to help produce 10,000 lines was $145,600 [24].

To disarm extremists and confront them with hard data, in Chap. 8 we introduce
non-invasive measurement. This term—borrowed from medicine—indicates that
the measured object is not altered because of the measurement. In the case of
measurement, the term indicates that we adopt an approach in which no time has
to be spent for the measurement itself, just for the data analysis and interpretation.
This kind of measurement is non-invasive because it does not disturb, i.e., distract
those involved in the measurement process.

6.6 Summary

This chapter is an anticipation of what will follow in the following chapters: we will
introduce the different components we propose to create what we describe in the
preface: a practical implementation of Lean software development, gluing together
well-proven tools to provide a way to develop Lean. We want to achieve this through
the utilization of goal-oriented, automated measurement for the creation of a Lean
organization and the facilitation of Lean software development.

The components we foresee are:

• Agile Software Development, described in Chap. 4,
• Non-invasive measurement, described in Chap. 9,
• GQMCStrategies, described in Chap. 7,
• the Experience Factory, described in Chap. 8, and
• Lean Thinking (together with the practices proposed by Taiichi Ono in his book

“The Toyota Production System”), described in Chap. 2.

In Chap. 10 we will see how the different components work together.

References 147

Problems

6.1. Tag each software development practice of Mary and Tom Poppendieck’s
proposal of Lean software development as:

• value: if its primary goal is to identify what has value and what has not;
• knowledge: if its primary goal is to increase the understanding of what happened,

what is happening, and what will happen; and
• improvement: if its primary goal is to improve the status quo.

6.2. Imagine you have to develop a Balanced Scorecard for a software development
team. Which perspectives would you use? Which goals would you use for each
perspective?

References

1. Apache Software Foundation: Apache ant (2013). Online: http://ant.apache.org. Accessed 4
Dec 2013

2. Apache Software Foundation: Apache subversion (2013). Online: http://subversion.apache.org.
Accessed 4 Dec 2013

3. Atteslander, P.: Methoden der empirischen Sozialforschung. Studienbuch Series, 10th edn.
Walter de Gruyter, Berlin (2003)

4. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-
Wesley, Reading (2004)

5. Bergmann, R.: Experience Management: Foundations, Development Methodology, and
Internet-Based Applications. Lecture Notes in Computer Science. Lecture Notes in Artificial
Intelligence, vol. 2432. Springer, Berlin (2002)

6. Borrego, M., Douglas, E.P., Amelink, C.T.: Quantitative, qualitative, and mixed research
methods in engineering education. J. Eng. Educ. 98(1), 53–66 (2009)

7. CPPUnit Contributors: Cppunit—c++ port of junit (2013). Online: http://sourceforge.net/
projects/cppunit. Accessed 4 Dec 2013

8. CruiseControl contributors: Cruisecontrol (2013). Online: http://cruisecontrol.sourceforge.net.
Accessed 4 Dec 2013

9. Ebert, C., Dumke, R.: Software Measurement: Establish, Extract, Evaluate, Execute. Springer,
Berlin (2007)

10. Fowler, M.: Continuous integration (2006). Online: http://martinfowler.com/articles/
continuousIntegration.html. Accessed 4 Dec 2013

11. Free Software Foundation: Gnu make (2013). Online: http://www.gnu.org/software/make.
Accessed 4 Dec 2013

12. GIT Contributors: Git (2013). Online: http://git-scm.com. Accessed 4 Dec 2013
13. Hibbs, C., Jewett, S.P., Sullivan, M.: The Art of Lean Software Development: A Practical and

Incremental Approach. Theory in Practice. O’Reilly Media, Sebastopol (2009)
14. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley Professional,

Reading (1996)
15. Jenkins CI Contributors: Jenkins ci (2013). Online: http://jenkins-ci.org. Accessed 4 Dec 2013
16. JUnit Contributors: Junit (2013). Online: http://sourceforge.net/projects/junit. Accessed 4 Dec

2013
17. Kaplan, R.S., Norton, D.: The balanced scorecard: measures that drive performance. Harv. Bus.

Rev. 70(1), 71–79 (1992)

http://ant.apache.org
http://subversion.apache.org
http://sourceforge.net/projects/cppunit
http://sourceforge.net/projects/cppunit
http://cruisecontrol.sourceforge.net
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://www.gnu.org/software/make
http://git-scm.com
http://jenkins-ci.org
http://sourceforge.net/projects/junit

148 6 Enabling Lean Software Development

18. Lauesen, S.: Software Requirements: Styles and Techniques. Addison-Wesley, Harlow (2002)
19. Maglyas, A., Nikula, U., Smolander, K.: Lean solutions to software product management

problems. IEEE Softw. 29(5), 40–46 (2012)
20. Martinsons, M., Davison, R., Tse, D.: The balanced scorecard: a foundation for the strategic

management of information systems. Decis. Support Syst. 25(1), 71–88 (1999)
21. Ōno, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press,

Cambridge (1988)
22. Oracle: Virtualbox (2013). Online: http://www.virtualbox.org. Accessed 4 Dec 2013
23. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From Concept

to Cash. Addison-Wesley Professional, Upper Saddle River (2006)
24. Rico, D.F.: ROI of Software Process Improvement: Metrics for Project Managers and Software

Engineers. J Ross Publishing Series. J. Ross Publishing, Boca Raton (2004)
25. Shalloway, A., Beaver, G., Trott, J.R.: Lean-Agile Software Development: Achieving Enter-

prise Agility. Lean-Agile Series. Addison-Wesley Professional, Upper Saddle River (2009)
26. Sikuli Contributors: Sikuli script (2013). Online: http://sikuli.org. Accessed 4 Dec 2013
27. Sitter, L.U.D., Hertog, J.F.D., Dankbaar, B.: From complex organizations with simple jobs to

simple organizations with complex jobs. Hum. Relations 50, 497–534 (1997)
28. Sjøberg, D., Johnsen, A., Solberg, J.: Quantifying the effect of using kanban versus scrum:

a case study. IEEE Softw. 29(5), 47–53 (2012)
29. St. Michael’s Hospital: St. Michael’s Hospital, Mission & Values (2013). Online: http://www.

stmichaelshospital.com/about/mission.php. Accessed 4 Dec 2013
30. van Deursen, A.: Customer involvement in extreme programming: Xp2001 workshop report.

ACM SIGSOFT Softw. Eng. Notes 26(6), 70–73 (2001)
31. VMWare: vmware (2013). Online: http://www.vmware.com. Accessed 4 Dec 2013
32. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation in

Software Engineering. Computer Science. Springer, Berlin (2012)

http://www.virtualbox.org
http://sikuli.org
http://www.stmichaelshospital.com/about/mission.php
http://www.stmichaelshospital.com/about/mission.php
http://www.vmware.com

Part II
The Pillars of Lean Software Development

This second part illustrates the basic concepts of our implementation of Lean
Software Development, besides Agile software development and Lean Thinking:
Non-invasive Measurement, the Goal Question Metric and the GQMCStrategies
approach, and the Experience Factory.

The reader who knows already how the following methods work can skip these
chapters:

• the Goal Question Metric and the GQMCStrategies approach (see Chap. 7),
• the Experience Factory (see Chap. 8), and
• Non-invasive Measurement (see Chap. 9).

These three chapters can also be used independently from this book to learn about
the technologies they describe.

Chapter 7
The GQMCStrategies Approach

. . . pergis pugnantia secum
frontibus adversis conponere: non ego avarum
cum veto te, fieri vappam iubeo ac nebulonem:
est inter Tanain quiddam socerumque Viselli:
est modus in rebus, sunt certi denique fines,
quos ultra citraque nequit consistere rectum!

You keep on comparing issues that
are irreconcilable: when I advise you
not to be greedy I do not encourage you to throw away your
money!
There is something between Tania and the father in law of
Visellius:
there is a always a balanced way to do things, there are limits
beyond which nothing can be right!

Horace, Satires, 1, 1, 102–107

Est Meeting Room, 11AM. “Good morning everyone,” Uli started without even
waiting for J to open the meeting. But J was there and did not object: he understood
the level of excitement of the guy, so he simply nodded. “I had two hours to prepare
for this talk, and I have to tell you in true honesty what I did. I took a nap and then
a good espresso at Phaeacians, so I prepared myself with this device.” Uli showed a
napkin with a few lines on it. “I knew it was a waste of time!” Ari commented loud,
and Helios agreed with his expression. However, a nod from J was enough to let Uli
go ahead without any further comment.

“I felt asleep on my desk and I was dreaming at my code, my perfectly reusable
classes, my organization. I was revising a package for tour operator, aeaea.com,
and I was trying to make it really astonishing, factoring out all possible reusable
elements. Suddenly, the code started moving, shaking, vibrating.”

“Did you have some cocaine this morning?” Ari asked. A few people laughed,
but J nodded again and Uli went ahead.

“From the code a beautiful woman emerged. Not only she was incredibly pretty,
but she was really enchanting and had something magic in herself. She started:

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__7

151

152 7 The GQMCStrategies Approach

‘Stay with me Uli, keep making me better, work on me, do not let me alone, do not
deliver me unless you are really 100% sure you could stay forever away from me.’
She was luring me, and I could not resist. Euril then came into the room where I
was working, and he also stared at her, but. . . in a few seconds he was transformed
into a droid, well a programming droid, but just a droid. I was a bit frightened, but
the attraction for the woman was so strong that I kept dealing with her. The time
passed, I cannot quantify whether they were seconds, minutes, hours, or even years.
Also Sinon and Elp came into the room and they had the same fate as Euril. Still I
was devoting all my time to this sorceress, regardless of the resources spent.

Abruptly, Perim entered the room and screamed at me: ‘What the heck are
you doing Uli? Everyone in the office is becoming a programming droid, enjoys
programming, making the code perfect, and ignores that we indeed we need to
deliver value to our customer. We do not write code for a aesthetic desire of being
better, we do it because we have another, superior goal, to be successful!’ Well, only
a beautiful woman could have taken me away from the sorceress. . . ”

Hera smiled silently—she knew this; J stroke her with his eyes. . . He was jealous
of any woman working with him.

“Perim went ahead asking me how I was making sure that I was going in the
right direction, whether I was really achieving my goals. I had to admit that I was
not remembering them properly, but writing good code was always good. ‘Still, if
you consume all your resources on a tiny portion of the code and you forget what is
value for the customer, you are just lost! Now, please, do this, take just a short break
from this sorceress.’ Saying this Peril sat on my desk and put her body between me
and the screen/sorceress. ‘Now write down on a piece of paper what you want to
achieve, your goals, and then put down some simple, jet objective, questions that you
ask yourself to determine whether you are progressing toward them, and, eventually,
ways to gather numbers that answer such questions.’ I did it and it was immediately
clear to me that I was simply lost. I turned my head to the sorceress and, crying, I
told her: ‘I have to go, sorry. This is all so beautiful, but I cannot afford it any more.’
She hugged me for the last time.

‘You have found your way, a solid way to keep your navigation progressing, so
go. I give you my last advice, though. Go to the land of the dead, I mean, dead
projects, and ask their advice. They will be useful.’

She moved her left hand touching softly my face, my eyes, my lips, and my hands;
all my co-workers were not any more droids! She disappeared.”

7.1 Introduction

We mentioned already that one of the tenets of Lean management is visual control.
However, software is invisible. It would be hard to exercise visual control on
something that is not visible! A way to make it more visible is to use metrics.

7.1 Introduction 153

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

48

Fig. 7.1 To measure means to compare

Measuring an entity means assigning values to properties of such entity
(see Fig. 7.1) [7]. When we say that a box has a weight of 300 g and a width
of 48 cm, we mean that:

• There is a box.
• The box has at least two “measurable” properties, weight and width.
• The weight has a value of 300 g.
• The width has a value of 48 cm.

So we can now build our mental, “visual” image of the box even if we have not
seen the box.

Likewise if we say that we have a bottle of 1 L of Barolo wine with 14.5 % of
alcohol from 1964, we mean that we have a bottle of wine containing wine with the
following “measurable” properties:

• The brand is Barolo.1

• The amount is 1 L.
• The year of production is 1964.
• The alcoholic content is 14.5 %.

So now we can build again our image of the bottle of Barolo.
Measurement in software development is essential for understanding, control-

ling, and improving the development process. Software is invisible; therefore, we
need a way to make it visible. Through measurement we can do this.

The process of measuring is a process of comparing the interesting attribute of
an entity with one or more reference entities. For instance, if I want to measure the
width of a box, I need to compare it to the reference unit for width. Saying that the
box has a width of 48 cm means that I compared it with the centimeter, the reference

1Notice that we consider also the brand as measurable. It is measurable in the sense that we can
attach to it a clearly identified value belonging to a set of possible values. It is what is called
“nominal” measure by metrologists.

154 7 The GQMCStrategies Approach

unit for width, and I find that I can put 48 times the centimeter into the width I am
measuring.

Therefore, to make measurement possible, it is necessary to define a reference
unit. For example, to measure width, the reference unit can be the centimeter. In the
year 1793, during the French Revolution, the French Academy of Sciences decided
to introduce a more “rational” unit of measure for lengths—the meter. It defined the
meter as what they believed to be the ten-millionth of the distance from the Equator
to the North Pole through Paris. To make sure that everybody uses the same unit, an
iron “prototype meter” was created and kept in a safe place in Paris.

7.2 What Can We Measure?

Generally speaking, we can measure everything that we can observe. Some things
can be observed with our senses, and some things—such as the Higgs boson—
require the use of expensive equipment like the Large Hadron Collider in Geneva.

We distinguish direct and indirect observations. A direct observation studies the
properties of an event at the moment it occurs. Indirect observations study the traces
and effects of events after their occurrence and infer their properties.

Software development in a production process—this means that it is an activity
that consists of a series of steps taken to produce software. Typically a production
process has inputs (resources) and outputs (artifacts).

We can now measure everything that we are able to observe, for example:

• Which activities are executed in a typical project?
• How much time do we spend for testing?
• How much time do we spend to write documentation?
• How much code is reused?
• How much code do we produce per week?

Some other things cannot be observed directly; we have to observe them
indirectly, for example:

• How many mistakes do we make per week?
• What is the quality of our code?

These two examples are indirect measurements since we cannot observe the
mistake or the quality directly. Mistake and quality are concepts that need to be
further defined so that they can be inferred from other aspects that we can observe.

For example, to a mistake, we have to define how to identify a mistake once we
have the source code in front of us. After defining the rule of what constitutes a
mistake, we are able to interpret what we observe to identify interesting concepts
such as mistakes, delays, copy/pasted code, etc.

7.3 What Should We Measure? 155

The same applies to quality: we have to define what we mean by quality, then we
can define what to observe and how to interpret the observation to infer the quality.
For example, if the quality in our context is how fast an application is able to process
some operations, we can measure quality in two steps:

1. we observe the number of operations that the application is able to process per
minute and

2. we define which range of values we consider acceptable, average, and good.

In this way, we followed what we stated above: we observe values of properties
(operations per minute) and we interpreted the results and inferred an observation.

Figure 7.2 gives some examples of the four types of measurement we looked at:
direct or indirect observations and with or without tool support.

Direct

N
o

Indirect

Y
es

Finding out how many
requirements we

implement per sprint by
counting them during

development

Finding out how much
time we wasted last
week with meetings

looking at the calendar
entries

Measuring the average
time spent on the web

using a stop watch

Finding out who is the
most active developer
analyzing the commit
log of the source code
management system

Type of observation

To
ol

su
pp

or
t

Fig. 7.2 Measurement examples

7.3 What Should We Measure?

Not everything that can be measured should be measured. Measurement costs, so
the decision what to measure has to be based on the expected outcome of the
measurement.

Altogether, the decision on what to measure depends on what we want to find out
and on what can help us to understand the problem or to discover a new opportunity.
We need a framework that helps us to define what and how we want to measure.

156 7 The GQMCStrategies Approach

Let us assume we measured the quality of our code as in the example of the
previous section and we obtained a value of 12. Let us further assume that we
defined that if a value is bigger than 20 and smaller than 50, we consider it
acceptable. Our value is definitely too low and we decide to increase that value.

Now, that we want to understand how to increase that result, we need to perform
another measurement. We could measure the execution time of every component of
our application to discover which component is responsible for the largest amount
of time. That component is the one with the highest potential to improve speed, so
we want to focus on that component first.

This example shows that we need to understand what we want before we decide
what we want to measure and how we want to measure it. For this reason, the Goal
Question Metric (GQM) model proposed by Basili and Weiss is so important.

The GQM is used to define (a) what data have to be collected and (b) how the
data are interpreted.

A measurement framework is defined on three levels [2]:

1. Conceptual level (goal): defines what and why we study. What is studied is the
“object of study,” the specific products, processes, and resources. Why something
is studied identifies the reason, the different aspect taken into consideration, the
considered point of views, and the environment.

2. Operational level (question): here there are the questions that define (a) what
parts of the object of study are relevant and (b) what properties of such parts
are used to characterize the assessment or achievement of a related goal. Such
properties are often called the focus of the study. Altogether, the questions
specify which specific aspect of the object of study is observed to understand
if the goal is achieved or not. Questions are measurable entities that establish a
link between the object of study and the focus. For example, if the object of study
is a car and the focus is its environmental impact, a question could be: “How high
are the carbon dioxide emissions of the car?”.

3. Quantitative level (metric): defines the set of software measurements needed to
answer the questions in an objective (quantitative) way.

It is important not to confuse the focus with the point of view. The focus is the
part of the object of study that is studied. It is an objective view on the object of
study. The point of view describes who is measuring and represents a subjective
view on the measurement goal.

An Analogy from the Software Testing Domain

Software testing aims to understand if a program fulfills the requirements or
not. A specific type of testing is unit testing. Unit testing evaluates a piece of
source code and assesses if it works as intended. To define a unit test, we need
to define:

(continued)

7.3 What Should We Measure? 157

1. the source code to test (line 6 in Listing 7.1);
2. the initial state, i.e., the values of all variables that the tested source code

takes as an input (line 7 in Listing 7.1);
3. how to execute the tested source code (line 11 in Listing 7.1);
4. which part of the output we are interested in (line 15 in Listing 7.1); and
5. the value we expect to obtain as a result (line 15 in Listing 7.1).

The test consists in performing steps 1–5 and evaluating if the actual output
corresponds to the expected output.

1 // Prepare the environment
2 Class.forName(‘‘org.postgresql.Driver’’);
3 Connection connection = DriverManager.getConnection(&

connectionString);
4

5 // Set the initial state
6 SomeSuperCoolClass s = new SomeSuperCoolClass(connection);
7 s.setParameter(4);
8

9 // SomeSuperCoolClass.performOperation() is the
10 // tested source code and is executed here
11 SomeResult r = s.performOperation();
12

13 // SomeResult.getLength() is the aspect of the result
14 // we are interested in. The expected value is 5.
15 Assert.assertEquals(5, r.getLength());

Listing 7.1 A JUnit test case

A unit test can be seen as an analogy to the questions defined within a
GQM. A question refers to the object of study and inquires something about
the focus. Likewise, a unit test case refers to the tested source code and
inquires something about its execution.

The GQM defines the measurement model as a hierarchy of goals, questions,
and measurements (see Fig. 7.3). This hierarchy details what is measured, how it is
interpreted, and to which answers it leads.

The GQM in Fig. 7.4 evaluates the taste of a glass of Barolo, an Italian red wine.
In this example, the taste is evaluated using three criteria: the sweetness, the aroma,
and the flavor of the wine. To measure the sweetness of the wine, it is possible to
use an electronic oscillating U-tube meter (an objective measurement); to measure
the remaining two aspects, aroma and flavor, we use the personal evaluation of our
waiter, an expert in the field. The opinion of the waiter is not that objective, but it is
also not as subjective as asking a beginner.

The definition of measurement goals is critical to the successful application of the
GQM approach. As mentioned, every measurement goal has to be described stating
the purpose of the measurement (what and why it is measured), the perspective

158 7 The GQMCStrategies Approach

Goal 1 Goal 2

Question Question Question Question

Measurement Measurement Measurement Measurement

Interpretation model for goal 1

Conceptual level

Operational level

Quantitative level

Fig. 7.3 GQM measurement model

Goal

Question Question

Analyze
a glass of Barolo wine (object)
for the purpose of evaluation (why)
with respect to the taste (focus)
from the point of view of the rare wine drinker (who)
in the context of a dinner eating red meat (where)

How sweet is
the wine?

What is the
aroma of
the wine?

Measurement

Personal
evaluation

Measurement

Degrees Brix (◦Bx)
measured using an

electronic oscillating
U-tube meter

Question

What is the
flavor of
the wine?

Measurement

Personal
evaluation

Fig. 7.4 GQM model to evaluate the taste of a glass of Barolo wine

(what specifically is observed, the focus, and from which point of view the
observation is made), and the environment (in which context the measurement takes
place).

To ease the definition of measurement goals, the GQM supplies goal templates
(see Fig. 7.5).

The explicit formulation of the purpose, the perspective, and the environment is
used to understand which data are needed to fulfill the measurement goal and to
understand how to interpret the collected data.

7.3 What Should We Measure? 159

Fig. 7.5 A GQM goal template [1]

Figure 7.6 depicts that, starting from the object of study (the big cube), we define
the aspect of study (the small cube) and the point of view on it.

Purpose (why)

Developer

Manager

User

Aspect of study
(focus)

Perspective (focus and point of view)

Object of study
(locus)

Environment

Fig. 7.6 The definition of a measurement goal

Defining the “right” questions is not always trivial. Basili helps us in this respect
and classifies how such questions can be posed.

As said in the definition of the measurement goals, questions are used to
characterize the goal in a quantifiable way and measurements to describe the data

160 7 The GQMCStrategies Approach

that will be used to answer the questions. Basili et al. [2] classify GQM questions
into three groups:

1. questions that characterize the object of study with respect to the overall goal,
e.g.:

• Is Barolo considered a superb, good, or miserable wine?
• What is the average price of a bottle of Barolo?

2. questions that characterize relevant attributes of the object of study with respect
to the focus, e.g.:

• What is the aroma of the wine (e.g., spicy, smoky, oak, etc.)?
• What is the characteristic of the wine (e.g., tannin, rich, complex, etc.)?
• What is the sensation of the wine (e.g., sparkling, acid, crisp, etc.)?
• What is the flavor of the wine (e.g., plum, lemon, berry, etc.)?

3. and questions that evaluate relevant characteristics of the object of study with
respect to the focus, e.g.:

• Is the taste satisfactory from the viewpoint of a rare wine drinker?
• Does the taste match well with the meat?

Once we have the questions, we are not done. There could be multiple measure-
ments that can be used to answer the same question. As we have seen before, the
sweetness of wine can be measured using an electronic oscillating U-tube meter, but
it could be also evaluated using a personal evaluation.

The selection of measurements to answer the developed questions depend on
different factors, e.g., the amount and quality of data that is already available,
the cost-benefit ratio of performing a specific measurement, the level of precision
needed, etc.

We now consider an example; see Fig. 7.7. This figure shows a GQM model that
consists of one goal, two questions, and five measurements. In this example we want
to shorten the time needed to process change requests by a software development
team.

7.4 Applying the GQM Step-By-Step

Developing a fully fledged GQM is not always easy. In this section we present the
approach proposed by Park et al. [11] to simplify such task.

They propose the following sequence of steps:

1. Identify your business goals.
2. Identify what you want to know or learn.
3. Identify your subgoals.
4. Identify the entities and attributes related to your subgoals.
5. Formalize your measurement goals.

7.4 Applying the GQM Step-By-Step 161

Goal

Question Question

Metric Metric Metric Metric Metric

Analyze
change request processing (object)
for the purpose of improvement (why)
with respect to the timeliness (focus)
from the point of view of the project
manager (who)

in the context of the software
development department (where).

What is the current
change request
processing speed?

Is the performance
of the process
improving?

Average
cycle time

Standard
deviation

% of cases
outside of
the upper

limit

Current average cycle time
Baseline average cycle time

Subjective rating
of manager’s
satisfaction

Fig. 7.7 A GQM example [1]

6. Identify quantifiable questions and the related indicators that you will use to
help you achieve your measurement goals.

7. Identify the data elements that you will collect to construct the indicators that
help answer your questions.

8. Define the measures to be used and make these definitions operational.
9. Identify the actions that you will take to implement the measures.

10. Prepare a plan for implementing the measures.

The first step identifies the organizational goals that are used as a starting point.
The measurement goals are derived from the organizational goals to ensure that

only relevant goals are studied. The organizational goals need to be operationalized;
that means concrete measurable goals have to be derived from them to the level
where specific measures can be formulated.

For example, the business goal “Improve customer satisfaction” needs to be
operationalized repeating steps 1–4 above to obtain one or more measurement
goals that are concrete enough to allow an analysis through the collection of
measurements (see Figs. 7.8 and 7.9).

The second step identifies what is needed to understand, assess, predict, or
improve to achieve the stated business goals. The business goal of before, “improve
customer satisfaction,” needs to be refined stating the factors on which customer

162 7 The GQMCStrategies Approach

Step 3

Business
goal

Inputs and
resources

Is the personnel
turnover
hampering
product quality?

Improve
customer
satisfaction

Products
and by-

products

Internal
artifacts

Activities
and flow

paths

Is the
development
progress visible
to the customer?

Is the
source
code error
free?

How large is our
backlog of
customer change
requests?

Improve
communications

with the customer

Improve
performance of the

change management
process

Standardize
processes and

activities

Improve the
reliability of the
released code

Step 1

Step 2

Fig. 7.8 Goal oriented measurement example, the steps 1–3 [11]

satisfaction depends, what the ideal states of these factors are, and how the current
state of these factors can be evaluated.

Park et al. [11] propose these factors:

• inputs and resources,
• products and by-products,
• internal artifacts such as inventory and work in process, and
• activities and flow paths.

This step derives factors from the organizational goals that have to be observed
and controlled. The third step groups the aspects identified in step two into subgoals
that state goals for activities that support the business goals.

Starting from the subgoals obtained from step 3, step 4 focuses on how to reach
them identifying the entities and attributes that influence their outcome. Once these
entities and attributes are identified, step 5 creates GQM measurement goals as seen
above.

We can distinguish active and passive measurement goals [11]:

• active measurement goals aim at controlling or causing changes and
• passive measurement goals aim at learning or understanding.

7.4 Applying the GQM Step-By-Step 163

Step 3

Improve
communications

with the customer

Improve
performance of the

change management
process

Standardize
processes and

activities

Improve the
reliability of the
released code

E
nt

ity
A

ttr
ib

ut
es

Process
conformance Source code

Backlog of
customer change

requests

Customer
complaints

Processed
activities

Skipped
activities

Bugs

Testing
coverage

Size

Estimated
effort to
clear the
backlog

Number of
complaints

Step 4

Goal

Question

Metric Metric Metric Metric

Analyze
the backlog of customer change requests (object)
for the purpose of improvement (why)
with respect to the size (focus)
from the point of view of the developer (who)
in the context of the software
development department (where).

Step 5

Fig. 7.9 Goal-oriented measurement example, steps 4–5 [11]

Examples for the terminology used within the formal goal formulation of active
measurement goals are “to evaluate” or “to improve,” and “to characterize” or “to
predict” for passive goals.

Steps 6–8 correspond to the remaining definition of the GQM: step 6 identifies
quantifiable questions and the related indicators that will be used to achieve the
measurement goals, step 7 identifies the data elements that will be collected to
construct the indicators that help answer the questions, and step 8 defines the
measures to be used to make these definitions operational (see Figs. 7.8 and 7.9).

One novelty introduced by the approach of Park et al. is that they suggest to
add an intermediate step between the question definition and the measurements
definition phase, i.e., a phase in which indicators are explicitly identified. Moreover,
Park et al. use a definition of an indicator that is a more narrow one than we used,
i.e., “a picture or display of the kind one would like to have to help answer the
question [11].”

164 7 The GQMCStrategies Approach

Because of the use of (graphical) indicators as an intermediate step, they call this
approach the GQ(I)M approach.

In Chap. 11 we provide a detailed example on how to develop a GQM model.

7.5 Alignment

We already mentioned in Sect. 7.3 that not everything should be measured, but only
what brings value. The GQM approach brings one step further as it helps us to obtain
valid measurements (that means that we really measure what we want to measure;
see Chap. 9). The next step is to measure what brings value to the organization, that
is, what helps to fulfill the organizational goals. The approach described in Sect. 7.4
already implicitly linked measurement with the organizational goals as it started
identifying business goals.

Organizational goals are hierarchically structured [8]. Every activity within an
organization is a means to an end, a part of the organizational strategy to achieve an
organizational goal. In the same way a software engineering process that is part of a
set of processes within a larger organization has to be aligned to the organizational
goals to contribute to their achievement [3, 6, 12]. This results in a goal hierarchy
such as the example in Fig. 7.10, where each upper goal (e.g., a certain revenue as
financial goal) justifies the next goal (e.g., to increase sales), and so on.

Obtain
revenuex

. . .

Increase
reputation

Increase
sales

. . .

Increase
software quality. . .

Increase
reliability. . .

Decrease
failure rate. . .

Fig. 7.10 A goal hierarchy

7.5 Alignment 165

In the example of Fig. 7.10, the company decides to obtain a given financial
goal through an increase of sales. There would be alternative options shown by the
dashed box. The financial goal should be furthermore obtained through an increase
of the reputation of the company. This increased reputation is thought to be obtained
through an increase in the software quality. Moreover, in this example the software
department decides that this will be achieved through an increase of the reliability,
i.e., a decrease of the failure rate.

Such a goal hierarchy fulfills two functions: first, it describes abstract goals
in more detail; for example, “increase reliability” better describes what is meant
by “increase software quality.” Second, it describes means-end relationships; for
example, to increase the reputation of a company is the means to increase sales [13].

To support organizational decisions with data, we have to link measurement
goals to organizational goals [5]. The balanced scorecard approach described in
Chap. 3 does not define a methodology to perform this link. At this point we see
how the GQMCStrategies approach [5] extends the GQM model: it considers the
goal hierarchy motivated by the organizational strategy and creates a measurement
model that links business goals to measurement goals.

Figure 7.11 illustrates the concept: every element of the goal hierarchy is linked
to a GQM model that measures the achievement of the business goal at that level.

The decision of how a given goal should be achieved, what means are used to
obtain it, is defined by the strategy. A strategy is accepted by the organization as
the right approach to achieve its goals, given the environmental constraints and

Goal

Question Question

Metric Metric In
te

rp
re

ta
tio

n
m

od
el

Increase
reputation

. . .

Increase
software quality

. . .

Measures the
achievement of the

business goal

Goal

Question Question

Metric Metric In
te

rp
re

ta
tio

n
m

od
el

Goal hierarchy GQM measurement models

Fig. 7.11 Measurement along the goal hierarchy (adapted from [4])

166 7 The GQMCStrategies Approach

risks [10]. The strategy explicitly states the steps that have to be achieved to obtain
the desired goal.

To understand which software strategies are the most effective to achieve a given
organizational goal, it is important to link the organizational goals to the derived
goals of the underlying processes by explicitly stating which strategy was adopted.
This will help to develop the necessary knowledge to select and tailor the right
strategy in the future.

GQMCStrategies provides a goal template to support the measurement of
organizational goals. It consists of the following elements [5]:

• Object: the object of study (see Chap. 7);
• Focus: the aspect of study (see Chap. 7);
• Magnitude: the desired magnitude of improvement;
• Time frame: the time frame for achieving the goal;
• Organizational scope: the scope of responsibility for achieving the goal;
• Constraints: constraints or conflicting goals; and
• Relationships: relationships to other goals.

Table 7.1 shows an example of an organizational goal.

Table 7.1 GQMCStrategies business goal example

Element Example

Object Software product line A

Focus Net income

Magnitude 8 % per year

Time frame Every year

Organizational scope Development team 2

Constraints Maintain current product price

Relations Business goal “Increase market share”

The selection of a software development strategy that is aligned to the organiza-
tional goals is often difficult [3] since:

• there is a lack of understanding how software contributes to the organizational
goals;

• it is difficult to understand which software strategies are the most effective to
achieve a given business goal; and

• it is difficult to understand how established software strategies have to be tailored
considering influencing factors (e.g., requirements, regulations).

As a consequence, the strategy adopted within the organization and the under-
lying software development processes often mismatch [6]. Additionally, software
engineering projects are frequently faced with unrealistic goals [3]. If the contribu-

7.5 Alignment 167

tion of software engineering activities to the achievement of the organizational goals
is not clear, it is not possible to define an optimal business strategy that involves all
activities within an organization.

In summary, a software development organization has to:

1. develop an initial strategy that addresses the organizational goals and keep track
of the reasons why a certain strategy was thought to be effective or not (plan);

2. execute the actions foreseen in the strategy (do);
3. monitor the software development process to see if its outcome contributes to the

fulfillment of the organizational goals (check);
4. tailor the strategy to improve its effectiveness and start over again (act).

Different methods exist to develop strategies; a common approach is the SWOT
(Strength, Weaknesses, Opportunities, and Threats) analysis [9]. This analysis
assesses a given goal considering separately:

• Strengths: organizational aspects that support the achievement of the objective;
• Weaknesses: organizational aspects that inhibit the achievement of the objective;
• Opportunities: external conditions that support the achievement of the objective;
• Threats: external conditions that inhibit the achievement of the objective.

These groups of organizational attributes generate four groups of questions which
can be used to generate strategies and derive organizational goals from them by
trying to use our strengths and overcome our weaknesses to exploit opportunities
and to reduce our vulnerabilities against threats (see Fig. 7.12).

Strengths

O
pp

or
tu

ni
tie

s

Weaknesses

T
hr

ea
ts

How to use our strengths
to exploit opportunities?

How to we overcome
our weaknesses to

exploit opportunities?

How to use our strenghts
to reduce the vulnerability

against threats?

How to overcome our
weaknesses to reduce

the vulnerability against
the threats?

Internal Analysis

E
xt

er
na

lA
na

ly
si

s

Fig. 7.12 SWOT analysis [9]

168 7 The GQMCStrategies Approach

So far we described the GQMCStrategies approach in a simplified way. Fig-
ure 7.11 shows that GQM measurement models (which in GQMCStrategies are
called “GQM Graph”) directly measure the achievement of an organizational goal.
In fact, for each organizational goal, GQMCStrategies also considers [5]:

• Context factors: characteristics of an organization or its environment that have
an impact on measurement.

• Assumptions: Expected, uncertain characteristics of the organization or its
environment that have an impact on measurement.

• Strategy: A plan to achieve the organizational goal.

A GQMCStrategies model (called GQMCStrategies Grid) including all key
elements is depicted in Fig. 7.13.

Goal

Question Question

Metric Metric In
te

rp
re

ta
tio

n
m

od
el

Measures the
achievement of

GQM+Strategies Element
GQM Graph

Organizational
goal

Strategy

Realized by
a set of

Context/
Assumption

Leads to a set of

Is made
measureable

throughIn
flu

en
ce

s

GQM+Strategies Elements GQM Graph

Is part of

Fig. 7.13 GQMCStrategies Grid (adapted from [5])

In GQMCStrategies, the goal hierarchy is modeled using a hierarchy of GQMC-
Strategies Elements. For each element we define an organizational goal, context
factors, assumptions, and one or more strategies to achieve the goal.

7.6 Summary

The GQMCStrategies approach helps to define what we measure, why we mea-
sure it, and how the collected data are interpreted. It shows what is considered
important—it can be used to communicate this to other collaborators. It also states
which evidence is collected (measurements) to understand if the company goals
were achieved—so it states what finally counts.

Therefore, the GQMCStrategies should be constantly updated so that it reflects
the goals of the team, the department, and the organization [5]. It represents the

References 169

shared view of how value should be evaluated and therefore created. Basili et al.
recommend to update a GQMCStrategies grid using an approach based on the
Quality Improvement Paradigm (see Chap. 8) [5].

This chapter gave an overview of the Goal Question Metrics and the GQMC
Strategies approach. We needed this to understand how to put measurement into a
learning context, which will be discussed in the next chapter.

Problems

7.1. Imagine you want to evaluate how readable the source code of some program
is. Define a GQM model to describe what and why you would measure.

7.2. The development in company M occurs according to the following schema:
when a new project is started, a developer takes an old project that is the most
similar to the new requirements and makes a copy and starts implementing the
required modifications. To improve this process and to help the company to adopt
a component-based approach, we want to understand which pieces of code are the
best candidates for future components and which variability points they have.

To understand which pieces of code are the best candidates for future components
and which variability points they have, the company M defines the following goal:

• Object of study: the source code of two projects committed in our source code
repository;

• Purpose: evaluate;
• Focus: repeated source code;
• Stakeholder: Programmer;
• Context factors: the Java programming language.

Some of the questions connected to this goal are: “How much source code is
repeated from one project to another?” Which graphical indicator would you like to
have to answer these questions?

References

1. Basili, V.R.: The experience factory and its relationship to other improvement paradigms. In:
Sommerville, I., Paul, M. (eds.) Proceedings of the European Software Engineering Conference
(ESEC). Lecture Notes in Computer Science, vol. 717. Springer, Berlin (1993)

2. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In: Marciniak,
J.J. (ed.) Encyclopedia of Software Engineering, vol. 1. Wiley, New York (1994)

3. Basili, V.R., Heidrich, J., Lindvall, M., Munch, J., Regardie, M., Trendowicz, A.:
GqmCStrategies — aligning business strategies with software measurement. In: Proceed-
ings of the International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE Computer Society, Madrid (2007)

170 7 The GQMCStrategies Approach

4. Basili, V.R., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Münch, J., Rombach, H.D.,
Trendowicz, A.: Linking software development and business strategy through measurement.
IEEE Comput. 43(4), 57–65 (2010)

5. Basili, V.R., Trendowicz, A., Kowalczyk, M., Heidrich, J., Seaman, C., Münch, J.,
Rombach, D.: Aligning Organizations Through Measurement: The GQMCStrategies
Approach. The Fraunhofer IESE Series on Software and Systems Engineering. Springer
International Publishing, Berlin (2014)

6. Becker, S.A., Bostelman, M.L.: Aligning strategic and project measurement systems. IEEE
Softw. 16(3), 46–51 (1999)

7. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.
PWS Publishing, London (1998)

8. Heinen, E.: Das Zielsystem der Unternehmung. Die Betriebswirtschaft in Forschung und
Praxis. Gabler, Wiesbaden (1966)

9. Kotler, P.: Marketing Management. The Prentice Hall International Series in Marketing.
Prentice Hall of India (2000)

10. Object Management Group: Business motivation model (bmm) (2007). Online: http://www.
omg.org/spec/BMM,. Accessed 4 Dec 2013

11. Park, R.E., Goethert, W.G., Florac, W.A.: Goal-driven software measurement — a guidebook.
Technical Report CMU/SEI-96-HB-002, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh (1996)

12. Porter, M.E.: Competitive Advantage: Creating and Sustaining Superior Performance. The Free
Press, New York (1985)

13. Schwarz, R.: Controlling-Systeme: eine Einführung in Grundlagen, Komponenten und Meth-
oden des Controlling. Die Wirtschaftswissenschaften. Gabler, Wiesbaden (2002)

http://www.omg.org/spec/BMM,
http://www.omg.org/spec/BMM,

Chapter 8
The Experience Factory

Dicebat Bernardus Carnotensis nos esse quasi nanos gigantium
humeris insidentes, ut possimus plura eis et remotiora videre,
non utique proprii visus acumine, aut eminentia corporis, sed
quia in altum subvehimur et extollimur magnitudine gigantea.

(Bernard of Chartes used to say, that it is as if we are dwarfs
who seat on the shoulders of giants, so that we can see more
things and farer away than them; but this is not caused by a
better eye-vision or a taller body but because we are taken up
and raised by their magnitude.)

John of Salisbury, Metalogicon 3, 4.

Needless to say, the people in the room started being more interested.
“I woke up because the phone rang. It was the usual, well-known consultant

offering a new tool called Cimmerians to do post-mortem analysis—what a
coincidence! I felt asleep again. Now I was exploring a tool with really a poor
user interface, but the tool had a nice chatting module. Through this tool I was
immediately contacted by Agam.

The story was sad. Agam had just been fired by his contractor, who is also his
ex-wife, Clitem. Nothing personal, just that they needed to restructure the business,
and Agam is a great guy, but he is an external. They thought that the knowledge of
an external is not so valuable, because it is likely that he will move from contract to
contract to whoever pays him better—and this is understandable and obvious. But
the net result for the company is that the company then does not grow, because the
experience is lost. Agam tried to convince Clitem that he had only one contract left
open and that it is for his brother, so he could not reasonably give it up. She did not
change her mind and he was out.

Then Tires contacted me. He had just heard of Agam. Tires is an interesting guy.
He was never particularly successful, on the contrary, he made much less money
than he deserved. But he had brilliant ideas. He anticipated most of the future
trends of software development: object orientation, patterns, etc. However, he was
not trusted, perhaps because he was never able to market himself properly: instead
of presenting himself as the innovator or the troubleshooter, he looked most of the

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__8

171

172 8 The Experience Factory

time as an arrogant and very opinionated jerk with unconventional and ungrounded
ideas on how to develop software.

He told me: ‘You know, your capital is your mind, and your mind is crafted
by all the experience you have. So, capitalize your experience! I know that
someone already suggested you to define clearly your goal, your questions, your
measurements. This is good. But you can do more! Trace down your experience,
save it in a way that also other people will be able to take advantage of it and try
also to take advantage of other people experience. But do not do it in an ad-hoc
way. Do it systematically, and ask other to comment on it. Do not be afraid to share
successes and failures, to make wrong comments, to say something that is not right
or perfect, share!’ Then, he started cursing at Clitem and he left.”

8.1 Introduction

The single most valuable asset of a software company is the knowledge and the
experience of its people: knowledge and experience in developing the code, writing
documents, managing projects, and so on. Therefore, it is of paramount importance
for a software company to capitalize on such knowledge and experience and to
create an infrastructure where this knowledge and experience are stored, preserved,
and made available for use even when new projects come, new collaborators are
hired, or present collaborators move away.

The model of the Experience Factory proposed by Basili [4, 5] addresses such
need. However, before proceeding with the exploration of the concepts of the
Experience Factory, we focus our attention again to the so-called PDSA.

8.2 Why Plan-Do-Study-Act Does Not Work in Software
Engineering

The Experience Factory is an approach to collect and reuse past experiences, based
on the Plan-Do-Study-Act paradigm, PDSA [10]. As mentioned in Chap. 2, the
goal of the PDSA is to create within an organization a flow of constant quality
improvement based on four steps (see Fig. 8.1):

• plan the activities we need to perform so that we achieve the desired improve-
ment and their expected outcome;

• do execute the plan;
• study the outcome, measure it, and compare it with the expected outcome;

understand the reasons for the difference between reality and expectations;
• act according to the results, that is, institutionalize the planned activities or adjust

them.

8.2 Why Plan-Do-Study-Act Does Not Workin Software Engineering 173

Plan

Study

Act Do

Define the process

Execute the process

Control the process

Improve Process

Measure Process

Fig. 8.1 The Plan-Do-Study-Act cycle

A consequence of the PDSA is that the process in a company becomes more
controlled, that is, its results are more predictable. Predictable means that it is
possible to state, at least approximately, the probability that the observed results
will fall within given boundaries [20].

A more predictable process results in:

• a more reliable forecast of the effort required to complete the associated tasks,
• a more efficient allocation of resources, e.g., less inventories are needed since

one can trust that a certain output will be available for the following processes,
and

• an easier and earlier identification of the sources of errors: since the output and
the characteristics of the output are known, it will be—compared to a process
with unpredictable output—easier to detect anomalies and their sources.

A method to find out that a process result is unexpected is statistical process
control using control charts. Control charts (see Fig. 8.2) visualize the collected data
and its expected variability and support spotting anomalies, where it is likely that
something happened that should be further investigated.

The control chart in Fig. 8.2 shows the control chart of a “quality characteristic,”
i.e., an aspect the development team wants to observe and to “keep under control”
over time.

The center line marks the expected value of the visualized characteristic, the
upper and lower control limits mark the limits beyond those a point will be
considered abnormal. The upper and lower warning limits mark limits after which
countermeasures are suggested.

Unfortunately, it turned out to be difficult to apply statistical process control in
software development, even though it is a desirable goal. In fact, the task of the
“study” step of PDSA is to find out how to adapt the process so that it becomes
controlled.

Control charts as well as the PDSA were developed for replicable manufacturing
processes; therefore, they aim to optimize production processes that have limited
degrees of variability and can expose solid sets of standards. Within such production

174 8 The Experience Factory

Upper control limit

Center line

Lower control limit

Sample

Abnormal point

Upper warning limit

Lower warning limitQ
ua

lit
y

ch
ar

ac
te

ri
st

ic

2 4 6 8 10 12

10

12

16

20

22

Fig. 8.2 Statistical control chart [12]

processes, it is possible to collect statistically representative datasets based on the
continuous repetition of the same process and to develop quantitative models of the
process that lead to diagrams like the one in Fig. 8.2.

Software development is different [3]: its production has a very high degree of
variability. Altogether, the software discipline is evolutionary and experimental [15],
not as repetitive as a production process. It is often simply not possible to find
the same activity executed several times, so it is hard to collect data to analyze it
statistically [3].

Moreover, it is largely human based so that software development is less
predictable than production, model building is more difficult, the models are
less accurate, and we have to be cautious in the application of the models [3].
These problems caused the development of solutions that are adapted to software
engineering such as the Experience Factory.

8.3 The Experience Factory

The Experience Factory is an instrument to systematically collect, analyze, generate,
and reuse experience in software development [4]. Remember, experience is meant
as “valuable, stored, specific knowledge that was acquired in previous problem
solving situations [6].”

Experience management is a special kind of knowledge management. It is
restricted to managing experience, which is a special kind of knowledge. Experience
is a valuable, stored, specific knowledge that was acquired in a problem-solving
situation. Thereby, experience is in contrast to general knowledge, which has a
broader scope and which is discovered inductively from large bodies of experience,
e.g., through scientific research. This restriction has several important implications
for the knowledge management activities [6]:

8.3 The Experience Factory 175

• The Experience Factory approach defines a framework to continuously improve
the quality of the software development process. This is accomplished through
the systematic collection, creation, and reuse of experience.

• Experience management can be considered a variant of knowledge manage-
ment [8,18] that manages data and information and transforms it into knowledge
and wisdom to increase the understanding of the underlying principles of the
analyzed phenomena [1, 9].

We will use the concept of the Experience Factory as a way to implement
continuous learning within our approach. This experience can, once collected, be
used in two ways:

• as a controlling instrument: to compare expected outcomes (those coming
from the accumulated experience) with realized outcomes; this will allow to
understand the status and the progress of development, to detect variations in
the process that are not caused by common reasons, and to understand which
countermeasures will bring the process back into a controlled state [12] and

• as a process improvement instrument; by reusing accumulated experience to
improve (e.g., avoid repeating the same errors, standardize work, distribute
knowledge, etc.) the software development process.

The Experience Factory uses the Plan-Do-Study-Act approach, adapted to the
software development domain, called the Quality Improvement Paradigm (QIP) [2].

The QIP—as the PDSA approach—is a process model. It prescribes a set of
activities that have to be executed in the prescribed order to achieve the expected
results. It is an iterative model, i.e., it is based on the idea that a set of steps
is executed repeatedly until all the work is done. The steps are organized using
two cycles: the first is for long-term learning, and the second is executed during
the project phase and provides early feedback while the project is carried out
(see Fig. 8.3).

The main cycle consists of the following six steps [3, 5]:

1. characterize,
2. set goals,
3. choose processes,
4. execute,
5. analyze, and
6. package.

8.3.1 Work Distribution

Within the PDSA cycle (see Fig. 8.1), the goals of the first two steps (“planning
and doing”) and the last two steps (“studying and acting”) have different objectives:
“planning and doing” aim to solve a problem; “studying and acting” aim to capture
and reapply the gained knowledge to do better next time.

176 8 The Experience Factory

1. Characterize and
understand

2. Set goals

3. Choose processes,
methods, techniques, and

tools

5. Analyze
results

6. Package and
store experience

Organizational
learning

execution

4.B Analyze
results

4.C Provide
process with

feedback

Project learning

4.A Process

Fig. 8.3 The Quality Improvement Paradigm cycle [5]

The required skills for “planning and doing” are to develop ways to analyze
requirements, and design and implement a solution, and to validate and verify the
adopted solution with the requirements of the client. On the other hand, “checking
and acting” require the ability to study current working practices; to measure
how software is currently developed; to analyze, abstract, and generalize current
development methods; to develop new methods; to improve current methods; to
tailor existing methods to new problems; to formalize findings; etc (see Fig. 8.4).

For this reason, Basili et al. [4] recommend to introduce the Experience Factory
as a separate organizational unit that specializes in the “checking and acting” tasks
to support the other organizational unit responsible for “planning and doing.”

The Experience Factory is the organizational unit responsible for the “experience
packaging,” i.e., to use past experiences to develop improved ways to produce
software and to package this new knowledge in a way that it will be used in the next
Plan-Do-Study-Act cycle. In fact, the steps “study” and “act” deserve a particular
attention within software engineering since they have to be carried out differently
due to the particular nature of software (see Fig. 8.5).

The packaging and storing of experience are not and end by itself; it is the
responsibility of the entire organization to facilitate the reuse in all the activities
of the software development.

8.4 The QIP Step-by-Step 177

Fig. 8.4 Goals and skills
needed within the project
organization and within the
Experience Factory [4]

Goal

Pl
an

/D
o

Skills

C
he

ck
/A

ct

Problem solving

Develop techniques for
analysis, design,
implementation,

validation, verification

Experience packaging

Develop techniques for
abstraction,

generalization, tailoring,
formalization,

analysis/synthesis

8.4 The QIP Step-by-Step

We now describe every step proposed by the QIP in detail.
The characterize and understand step (step 1 in Fig. 8.3) analyzes the current

project with respect to different characteristics to find a similar set of projects. This
activity helps to identify a context in which it will be possible to reuse experiences.

The goal is to evaluate and compare the new project in respect to similar past
ones and use past projects for prediction. Different aspects can be used to categorize
a project, for example, the classification proposed by [11] (Fig. 8.5):

• people factors (e.g., expertise, organization, problem experience, etc.) [14],
• process factors (e.g., life cycle model, methods, tools, etc.),
• product factors (e.g., deliverables, required quality, etc.), and
• resource factors (e.g., target and development machines, time, budget, legacy

software, etc.).

“Set goals” (step 2 in Fig. 8.3) identifies the goals of the process execution. It
formalizes all aspects that are important and therefore should be observed during
the project development.

178 8 The Experience Factory

1. Characterize and
understand

2. Set goals

3. Choose processes,
methods, techniques, and

tools

5. Analyze
results

6. Package and
store experience

Organizational
learning

4.A Process
execution

4.B Analyze
results

4.C Provide
process with

feedback

Project learning Experience Factory

Fig. 8.5 Responsibilities of the Experience Factory [4]

The goals reflect what on organizational level is important. If they are measur-
able, their outcome can be compared to the actual results. A goal such as “we want
to have more beautiful user interfaces” without specifying what “more beautiful”
means is not measurable and therefore useless. After the development no one could
objectively tell how much “more beautiful” the user interface now is. Moreover, we
cannot assess how good we were in achieving our goal or how much we are distant
from our goal.

To ensure measurable goals, the QIP adopts the Goal Question Metric Method
(see Chap. 7).

After settings the goals, the appropriate means to achieve them have to be
selected (step 3 in Fig. 8.3). With means we intend to choose process models,
methods, tools, etc. The word “appropriate” expresses that we aim to select and
adjust means that are effective to obtain the stated goals.

We also want to improve our ability in choosing the appropriate means to achieve
our goals. It is necessary that what we choose is measurable so that we can observe
how much an action contributes to the achievement of a goal.

8.4 The QIP Step-by-Step 179

The “process execution” step (step 4.A in Fig. 8.3) represents the actual software
development activity prepared in the three steps before. Ideally, during this step we
collect data that can be used as input for the next step (analyze results).

Based on the stated goals, the collected data during software development, and
the reflections about ongoing and past projects, we revise the plan made in step 3
and compare the expected outcomes with the actual ones (step 4.B in Fig. 8.3) and
provide the process with feedback (step 4.C in Fig. 8.3). This phase aims to improve
our understanding of the results of our choices, to answer questions like “what is the
impact of the environmental factor A on the effectiveness of technique B?” or “how
does the development time change when technique X is used?”

To profit from the gained experience of the previous step, future projects should
be able to access and use it. The best way how this is done depends on the type
of experience we are dealing with; it could be process models, lessons learned,
checklists, source code, components, patterns, etc. The gained experience (step 5
in Fig. 8.3) has to be packaged and stored so that it can be used for future projects
(step 6 in Fig. 8.3).

The six steps of the QIP can be related to the four steps of the Plan-Do-Study-Act
paradigm (see Fig. 8.6).

1. Characterize and
understand

2. Set goals

3. Choose processes,
methods, techniques, and

tools

5. Analyze
results

6. Package and
store experience

Organizational
learning

4.A Process
execution

4.B Analyze
results

4.C Provide
process with

feedback

Project learning

Plan

Do

Study

Act

Fig. 8.6 The Quality Improvement Paradigm cycle [4]

180 8 The Experience Factory

Reflection, Retrospective, and Post-Mortem Analysis

One of the principles of the Agile Manifesto says: “At regular intervals, the
team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly.”

This principle to reflect on the past and to learn from it can be implemented
on different organizational levels. On the project level, the project team meets
regularly during the project to discuss how to become more effective in that
project. On the organizational level, all involved collaborators meet after a
project and discuss about the positive and negative aspects of past projects
and look on what to improve in future projects and how to improve the
professional development of every project participant [7].

The terms used for this learning activity vary. “Reflection” and “retrospec-
tives” are used for both organizational and project learning; “post-mortem
analysis” is used for organizational learning. Unfortunately, much of the
knowledge obtained in a project remains unnoticed and is never shared
between individuals or teams since reflection does not occur frequently in
practice [21].

The type of collected, analyzed, packaged, and reused experience depends on the
organizational goals. A possible taxonomy is [5]:

• product packages (programs, architectures, designs),
• tool packages (constructive and analytic tools),
• process packages (process models, methods),
• relationship packages (cost and defect models, resource models, etc.),
• management packages (guidelines, decision support models), and
• data packages (defined and validated data, standardized data, etc.).

Table 8.1 gives some examples of previous implementations of the Experience
Factory together with the experience and the format of the experience that was
managed.

The feedback given within the project learning loop (step 4.C in Fig. 8.3)
compares the actual project results with past experiences and provides immediate
feedback such as “your error density is now 10 percent higher than usual” or
“when you inspect more than five pages of code at a time, your performance goes
down [18].”

8.5 The Role of Measurement 181

Table 8.1 Examples of experiences and experience packages of previous implementations of the
Experience Factory.

Source Experience Format of the experience packages

[4] The impact that available technologies
have on the software process, which
technologies are beneficial to the envi-
ronment and, how the technologies must
be refined to best match the process with
the environment.

Training Programs, standards,
policies, guidebooks, pre-configured
environments

[5] The selection and the tailoring of
quality-focused software engineering
technology for specific processes.

Lessons-learned, “process packages”:
process definitions (stating the per-
formed activities, the adopted tech-
nologies, the involved people, used
resources) together with training and
consulting material.

[13] The accuracy of effort estimation prac-
tices, improvements in quality due to
formal reviews on requirements docu-
ments, the impact of a clear acceptance
process.

Intermediate results of previous projects,
checklists, templates

[18] Competence in software development
and acquisition.

Descriptions of software development
processes (e.g., software inspections,
software risk management, and require-
ments engineering), adapted for the
intended users, with links to training
materials, experiences, checklists, fre-
quently asked questions, and expert
emails. The content and the format of
the packaged experience is tailored to a
concrete anticipated usage situation.

[19] Experience on training, assessment, and
guidance of the following technical
areas: programming languages, Experi-
ence Factory, inspection, design, testing,
risk analysis, process, and other.

Document packages linked to the project
where they have been produced and to
the consultant that created it.

8.5 The Role of Measurement

The suggested way to study a problem in the Toyota Production System is to go
directly to the workers and see what they do [16]. This activity was also popularized
as “Management by wandering around” [17]. The idea is to observe firsthand which
problems collaborators face and how they cope with them, help them to improve,
get rid of obstacles, etc.

182 8 The Experience Factory

In fact, the last step, the step “act,” is crucial for organizational learning: only if
the obtained knowledge on how to improve has an impact on the current working
practices, the costs of studying the problem can be justified. Following the Toyota
philosophy, also organizational learning should be driven by the provided value for
the customer.

The step “study” should be performed with a clear goal, and this goal should be
of value for the customer so that the outcome, the input for the step “act,” improves
the production process in the right direction, driven by the provided value for the
customer.

The above described way to study a problem contained the words “go” and “see.”
These activities might be trivial for physical goods, e.g., it is immediately visible if
a door of a car is missing, but because of the invisible nature of software and its
complexity, to “go and see” if the software is correct is not possible. We need some
indirect way to “go and see” if the software development is currently producing
value and also to see if modifications to the development process are achieving the
desired effects.

Such an indirect way is software measurement. With software measurement, we
collect data about the employed resources to develop software, about the ongoing
development activity, and about the output of the project, i.e., the software itself.

It might be tempting to start to collect every aspect of the software development
process with the idea to analyze it later if something can be found to improve it. This
would follow the push philosophy described in Chap. 2: it would mean to create a
“data inventory,” to analyze the data, to generate improvement ideas, and to “push”
them to the software development teams after.

While this approach is useful in research or for an exploratory study, within a
Lean environment, the “pull” philosophy advises to drive the data collection by the
expected increase in the value for the customer and to avoid unnecessary costs.

To follow a pull philosophy means to start from an expected improvement of
the value for the customer, for example, avoiding to waste certain resources, or the
shortening of a necessary, but costly process. The knowledge needed to implement
an improvement constitutes the measurement goal, i.e., it justifies why data should
be collected at all. This immediately confronts the foreseen data collection costs
with the expected benefits. If the expected benefits outweigh the expected data
collection costs, the measurement goal “pulls” the required data from the data
collection processes. In other words, the expected improvement drives the data
collection needs, i.e., which data are collected and how data are collected.

The Goal Question Metric approach discussed in Chap. 7 is used within the
Experience Factory to implement the “pull” paradigm, i.e., the collected data are
justified by the goals and the value of achieving these goals for the customer.

8.6 Summary 183

8.6 Summary

This chapter presented the Experience Factory, an approach to organize the col-
lection, organization, and reuse of experience to support organizational learning.
It builds on the QIP and on the Goal Question Metric Approach. Since software
is invisible, we need to use measurement to collect experience. The next chapter
presents an efficient way to collect measurements: non-invasive measurement.

Problems

8.1. What type of wisdom (in the sense of “know-why,” see Chap. 5) would you
manage in an Experience Factory to support Lean Thinking? Distinguish between
organizational learning and project learning.

8.2. Assume you are responsible to introduce Lean software development in a
company. You start doing an SWOT analysis of the team, thinking about the
objective of introducing Lean software development. This is the result:

• Strengths:

– The team consists of many young members, willing to learn something new.
– The level of creativity is high.
– The average technical skills of the team is very high.

• Weaknesses:

– To follow a defined software development process is perceived as limiting.
For some, the end justifies the means; that means they sometimes use hacks to
implement a requirement instead of maintaining the readability and structure
of the code.

– It is hard to plan the work for a project; the planning accuracy is low.

• Opportunities:

– The market for tailored software is growing.
– The complexity of the problems customers have is growing; therefore,

their requirements are unclear at the beginning. An approach that enhances
flexibility helps to strengthen the position on the market.

• Threats:

– There is a high pressure from the competition to innovate.
– There is a high pressure from the competition to lower prices.
– Some team members think that there is no time for trying out another new

software development hype.

184 8 The Experience Factory

Answer the following questions:

1. How would you use the strengths of the team to reduce the vulnerability against
threats?

2. How would you use the strengths of the team to exploit opportunities?
3. How would you overcome the weaknesses of the team to reduce the vulnerability

against the threats?
4. How would you overcome the weaknesses of the team to exploit opportunities?

References

1. Ackoff, R.L.: From data to wisdom. J. Appl. Syst. Anal. 16, 3–9 (1989)
2. Basili, V.R.: Quantitative evaluation of software methodology. Technical Report TR-1519,

Department of Computer Science, University of Maryland, College Park (1985)
3. Basili, V.R.: The experience factory and its relationship to other improvement paradigms. In:

Sommerville, I., Paul, M. (eds.) Proceedings of the European Software Engineering Conference
(ESEC). Lecture Notes in Computer Science, vol. 717. Springer, Berlin (1993)

4. Basili, V.R., Caldiera, G., McGarry, F., Pajerski, R., Page, G., Waligora, S.: The software
engineering laboratory: an operational software experience factory. In: Proceedings of the
International Conference on Software Engineering (ICSE). ACM, Melbourne (1992)

5. Basili, V.R., Caldiera, G., Rombach, H.D.: The experience factory. In: Marciniak, J.J. (ed.)
Encyclopedia of Software Engineering, vol. 1. Wiley, New York (1994)

6. Bergmann, R.: Experience Management: Foundations, Development Methodology, and
Internet-Based Applications. Lecture Notes in Computer Science, Lecture Notes in Artificial
Intelligence, vol. 2432. Springer, Berlin (2002)

7. Birk, A., Dingsøyr, T., Stålhane, T.: Postmortem: Never leave a project without it. IEEE Softw.
19(3), 43–45 (2002)

8. Davenport, T.H., Probst, G.J. (eds.): Knowledge Management Case Book: Siemens Best
Practices, 2nd edn. Wiley, New York (2002)

9. Davenport, T.H., Prusak, L.: Working Knowledge: How Organizations Manage What They
Know. Harvard Business Review Press, Boston (1997)

10. Deming, W.E.: Quality, productivity, and competitive position. Massachusetts Institute of
Technology, Centre for Advanced Engineering Study (MIT-CAES), Cambridge (1982)

11. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.
PWS Publishing, London (1998)

12. Florac, W.A., Carleton, A.D.: Measuring the Software Process: Statistical Process Control for
Software Process Improvement. Addison-Wesley Professional, Reading (1999)

13. Houdek, F., Schneider, K., Wieser, E.: Establishing experience factories at daimler-benz: an
experience report. In: Proceedings of the International Conference on Software Engineering
(ICSE). IEEE Computer Society, Kyoto (1998)

14. Janes, A., Sillitti, A., Succi, G.: Non-invasive software process data collection for expert
identification. In: Proceedings of the International Conference on Software Engineering &
Knowledge Engineering (SEKE). Knowledge Systems Institute, San Francisco (2008)

15. Naur, P., Randell, B. (eds.): Software Engineering: Report on a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968. Scientific Affairs
Division, NATO (1969)

16. Ōno, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press,
Cambridge (1988)

17. Peters, T.J., Jr., Waterman, R.H.: In Search of Excellence. Harper & Row, New York (1982)

References 185

18. Schneider, K., von Hunnius, J.P., Basili, V.R.: Experience in implementing a learning software
organization. IEEE Softw. 19(3), 46–49 (2002)

19. Seaman, C.B., Mendonça, M.G., Basili, V.R., Kim, Y.M.: User interface evaluation and
empirically-based evolution of a prototype experience management tool. IEEE Trans. Softw.
Eng. 29(9), 838–850 (2003)

20. Shewhart, W.A.: Economic control of quality of manufactures product. D. Van Nostrand
Company (1931). Online: https://ia601607.us.archive.org/8/items/bstj9-2-364/bstj9-2-364.
pdf. Accessed 4 Dec 2013

21. Williams, T.: Identifying the hard lessons from projects—easily. Int. J. Proj. Manag. 22(4),
273–279 (2004)

https://ia601607.us.archive.org/8/items/bstj9-2-364/bstj9-2-364.pdf
https://ia601607.us.archive.org/8/items/bstj9-2-364/bstj9-2-364.pdf

Chapter 9
Non-invasive Measurement

Se vuoi che una cosa sia fatta, fai come il podestà di Buie, che
ordinava e poi faceva da solo.
(If you want that something gets done, do as the podestà of Buie,
who used to give orders and then to do the tasks himself.)

The grandma of one of the authors.

Ahead went Uli: “While I was still looking at the back of Tires, the phone rang, it
was Poli.

Poli is the son of Posis, a very wealthy investor in water drilling endeavors, and
because of such a father, he became the CIO of a software company for which we
do contracted work, as some of you might already know. I had to supply software
for him, and, believe me, it was hard. He was really a concrete head—the messages
passed to him very slowly and most of the time distorted.

Apparently, in my dream I was (still?) supplying him software. He cursed at me:
’I am in charge of the company and I need your software. You know, I know how
to make things working. I promise you, if you do not complete the software on time
I will let the whole world know about your incompetence. I will send a mail to the
whole world containing my frank opinion on you. I know you can sue me later, but I
will let the lawyers of my father to handle this. And, I do not want to give up with the
contract, I need your software now and it is too late to replace you, I cannot replace
you!’

The work on this software was a pure nightmare (well a nightmare inside a
nightmare), since he could never get firm on any single idea and he could not even
acknowledge this; every time we tried to sit down with him asking him to check
the requirements we wrote, he told us that he paid us so he did not want to spend
any additional time or resources for us: ‘guys, when I ask for an espresso, I do not
explain the waiter how to roast the coffee beans, ok? So, do your job, the one for
which you are paid!’ There was no point in trying to explain him that his involvement
in setting the requirements that were used for him was essential. No way, still he
could not do it!

I knew he could keep his threaten. Elp informed me that a friend of him working
for another supplied of Poli heard that he was already getting ready for the massive
spam. He also told me the message to put in the spam: ’<package name> package

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__9

187

188 9 Non-invasive Measurement

was screwed up by Uli, of FSS—he works so well!’ He was also paying some illegal
hackers to create a virus to disseminate this message in billion machines.

What could I do? Breaking the contract was not an option—he told me that in
such a case, no matter what would have been the consequences for him, the message
would have been divulged.

It was not possible to fight him directly, nor to force him to do something that
he did not want. He was very stubborn. So, the only way to cope with him was to
accept that he was going to send the message around and to try to embody in his
own desires what I wanted him to do. So, I had to get him to say what I wanted.

In word I needed to find a way so that, while Poli was doing what he wanted, what
his nature lead him to do, he was also doing what I wanted—that is to neutralize
any possible bad publicity against FSS and me.

I had an idea. ‘Poli, I called him on the phone, I want to ship you right now
a new version of the software with some of the improvements you wanted and one
addition!’ ‘Finally Uli, finally you could do it. Good. And what is the addition?’ ‘I
changed the name. You are right, what we do is something really trivial, so I decided
to call the package no. I wanted to acknowledge your help and your guidance, and
make sure that everyone in the world will have very clear in her or his mind your
role. So our work will be on nothing and you will get all the glory.’ ‘Thanks you Uli,
I think I deserve this, after spending so much time in coaching you!’ I closed the
phone, I changed the name of the package into “no” and I shipped it to Poli.

In some twenty minutes my phone rang. ‘Uli, it was Poli, do you think I am so
dumb not to understand that you just lured me with the change of name of package
and you did not do anything else? I am not stupid! I am a smart manager! Now you
will pay the consequences of your actions!’

Poli implemented his threat: the world was flooded of emails against me and FSS
saying: ‘no package was screwed up by Uli, of FSS—he works so well!”’

9.1 Introduction

Lean Thinking is based on the idea to collect data to find out how to control and
improve the process. Following the same line of thought, to improve software
development processes, we need to rely on measurement [14]. The gained insight
can be used by the management and by collaborators to understand the value
delivered to stakeholders, to deliver what is really needed, and to lower the risk
of software projects.

Understanding cause and effect relationships allows to improve the alignment of
inputs to outputs and thereby create a clear “line of sight” to desired results. This
helps to increase the productivity of software production [14]. Moreover, coding
quality, defect prevention, and effort prediction accuracy improve when developers
measure their personal development process and in this way better understand how
they work [25].

9.1 Introduction 189

What Is Good Data?

This box is useful for people who do not have (yet) a knowledge of the base
concepts of (software) measurement, such as measurement scales and the
representational condition, and can be skipped by the other.

There is an evergreen principle that lasted more than the law of Newton and
the principle of relativity of Einstein: “garbage in, garbage out.” It is necessary
to obtain good data to be able to obtain useful results. Now, what does “good”
data mean?

Collecting data, we collect information about the real world. In other
words, we describe interesting aspects of the real world using numbers (or
more general, symbols). These symbols should have the following desirable
properties [20]: the mapping from real-world objects to symbols follows the
representation condition of measurement, and the collected data are correct,
accurate, precise, and objective.

These desirable properties will be explained below starting from two
concepts: well definition and the scales.

Well defined means that our data originates from a measurement system
that maps real-world attributes unambiguously to the numbers or symbols
our data consists of. As in Fig. 9.1, the height of a building is mapped to a
number—50 and 110 in this example.

A B 50 110

The church is higher than
the house height(church) > height(house)

Fig. 9.1 Mapping the height of a building to a number

In many cases this mapping will be from real-world aspects to numbers,
but also other symbols are possible, as in Fig. 9.2, the hands show whether a
house fits our requirements or not.

A B

Fig. 9.2 Assigning non-numerical symbols

(continued)

190 9 Non-invasive Measurement

In fact, measurement distinguishes different classes of how to assign
symbols to real-world aspects: nominal, ordinal, interval, and ratio scales
[53, 54].

Which possibilities do we have to “organize” the assigned symbols? Do we
use symbols like the hands above or do we use numbers? Which advantages
do we have in choosing between them? These questions will be answered
below.

We say that symbols are assigned using a nominal scale if we create
categories (such as the two hands of Fig. 9.2) and assign our real-world
entities to these categories. Examples of nominal scales are gender (male/fe-
male), country of residence (Italy, Germany, Austria, etc.), and so on. This
assignment has to be homomorph, i.e., that if objects are the same in the real
world, they are also assigned to the same category (and also the opposite, that
they are in different categories if they are not the same in the real world).

Symbols that are part of a nominal scale can be only distinguished from
one another—such as the hands of Fig. 9.2: they represent different outcomes,
but the upward pointing thumb is not necessarily “greater” or “better” than
the downward pointing thumb (it even sounds strange to say this).

In a nominal scale, the concept of a “middle” element, a most representa-
tive element, or average is implemented by the mode (i.e., the value on the
abscissa of the maximum value in the probability density function [57]).

If we can rank the categories of symbols so that we can say that something
is higher, larger, smaller, etc. we say that we have an ordinal scale. An ordinal
scale has all the properties of a nominal scale, and it allows ranking. An
example of an ordinal scale is the grades given in school: “excellent” > “very
good” > “good” > “satisfactory” > “sufficient” > “insufficient.”

Figure 9.3 shows an example where the architecture of buildings was
evaluated using a Likert scale. The Likert scale, invented by the psychologist
Rensis Likert, consists of a set of options that indicate the level of agreement
to a given statement, for example:

• strongly disagree,
• disagree,
• neither agree nor disagree (undecided),
• agree, or
• strongly agree.

(continued)

9.1 Introduction 191

Fig. 9.3 Measuring the level
of agreement to a statement

A

B

C

“I like the

architecture of

this building”

×

×

×

St
ro

ng
ly

di
sa

gr
ee

D
is

ag
re

e

U
nd

ec
id

ed

A
gr

ee

St
ro

ng
ly

ag
re

e

This scale is an example of an ordinal scale. What ordinal scales do not
tell is the amount of difference between the categories. Is the difference from
“insufficient” to “sufficient” the same as from “good” to “very good”? Ordinal
scales does not represent this information, but this is the case for the so-called
interval scales.

In an ordinal scale, the average is also represented by the median (i.e., the
value at which the cumulative distribution function equals 0.5 [57]).

Interval scales define the differences between categories. An example is
a set of dates. Dates are on an interval scale—we can tell that the difference
between January 20th and January 30th is 10 days. We can also (as the ordinal
scale) rank dates and (as the nominal scale) distinguish different entities of
dates. So adding and subtracting works within an interval scale, for example,
April 22nd C 5 days D April 27nd. What does not work is multiplication
and division. It does not make sense to divide April 1st through 3rd (also this
sounds quite strange), such as to multiply August 15th by 3.

When we say “it does not make sense,” we mean that the operation of
multiplying and dividing is not defined for the interval scale. Clearly, we can
perform the division, but the result of such division does not make any sense.

We define a ratio scale, a scale where the mutual proportion between the
measurements makes sense. A ratio scale must have a “natural” zero element,
that is, an element representing the absence of the property being measured.
Table 9.1 contains some examples of ratio scales.

(continued)

192 9 Non-invasive Measurement

Table 9.1 Natural zero element for different measurements

Property Natural zero element

Temperature in kelvin Absolute zero

Duration in seconds No duration (instantly)

Weight in kilograms No weight

Price in euros Free

Speed in kilometers per second No speed, standstill

Distance in kilometers No distance

As said, ratio scales are like interval scales, just that they have a natural
zero element and in this way define how to interpret multiplication and
division: dividing e100 by 10 means to interpret its result as (the distance
of e100 to its natural zero element) divided 10.

In a ratio scale the average is represented also by the mean.
Figure 9.4 summarizes what we said so far about scales: nominal scales

allow to count the occurrences of mapped entities to our categories (A, B, and
C in the figure). Ordinal scales add the possibility of ranking the categories,
interval scales allow to distinguish the distance between the categories, and
finally ratio scales add a natural zero element.

Let us go back to the list of desirable properties that data should have
above.

Validity is given when the measurements really represent what we want to
measure. Assume we want to measure the intelligence of our cat, so we pick a
standard IQ test and ask our cat to fill it out. Probably Kitty, our cat, will score
quite badly on the test. Nevertheless, the conclusion that it has no intelligence
at all is incorrect (see Fig. 9.5).

As said before, measurement is about assigning numbers or symbols to
things we want to describe. The conclusion of Fig. 9.5 was wrong because the
rules applied to do the assignment did not maintain the empirical relationships
of the real world when translating them to numbers or symbols.

Nominal scale

A B C

Ordinal scale

A B C

Interval scale

3 5 7

Ratio scale

< < 50 31

Fig. 9.4 From the nominal to the ratio scale

(continued)

9.1 Introduction 193

This violated the representation condition of measurement. This condi-
tion is fulfilled if the measurement maps aspects of the real world into symbols
in such a way that the empirical relations are preserved in this mapping. This
means that the symbols or numbers follow the empirical relations that the
real-world object has.

In this context, to “validate a software measure” means that the representa-
tion condition is satisfied. A mapping that follows the representation condition
of measurement is well defined and valid.

Our cat scored zero on
the IQ test

Our cat is stupid!

Fig. 9.5 Example of a wrong conclusion because of invalid measures [20]

For example, if we analyze the produced source code of a team and count
the lines of code, this is a way to measure physical program size. In this
case it fulfills the representation condition of measurement but it does not for
functional program size: it is possible to have a poorly written program which
is larger in terms of lines but has less functionality. In the case of functional
program size, the representation condition is not fulfilled: a higher functional
program size in reality does not correspond to a higher number (i. e., the
mapping).

Once we have defined a correct mapping, we can focus on the data
collection process: it should collect correct, accurate, and precise data:

• Correctness means that the data was collected according to the mapping
rules that we defined. So if we say that the data are incorrect, we mean that
the rules to collect it were not followed, which means that our conclusions
(based on the assumption that the data was collected according to the rules)
could be wrong.

• Accuracy describes how close our data reflects the “true” value. If the
measurement is inaccurate, it could be that we are measuring using the
wrong means (remember the example of the cat above).

• Precision tells us to which degree of detail our measurement process
reliably measures. Accurate but imprecise measurement obtains data which
reflects the true value, but only to a certain degree of detail.

Assume the weather on a specific day will be partly sunny with a passing
shower in the morning. In the afternoon, the sunshine will even increase.
The following four forecasts illustrate the differences between accuracy and

(continued)

194 9 Non-invasive Measurement

precision (giving that the real weather was sunny with a bit of rain in the
morning):

• Inaccurate, imprecise: “It will rain all day.”
• Inaccurate, precise: “Mostly cloudy and windy in the morning. Mostly

cloudy; windy with a few showers in the afternoon. Windy with rain at
times in the evening. Windy with rain at times overnight.”

• Accurate, imprecise: “It will be sunny all day.”
• Accurate, precise: “Partly sunny with a passing shower in the morning.

Abundant sunshine in the afternoon. Breezy in the evening. Temperatures
will be from 24 to 30ıC.”

Precision is important in several situations: if we are performing a race on
a sailing boat, a precise wind forecast that tells us that starting from 3 p.m. on
a specific area of the lake it will be windless is crucial to win the race. In other
situations it is less useful: when hiking on a mountain, it is not of extraordinary
importance to know the height of the mountain to the millimeter.

The required precision will tell us which scale we need: is it, e.g., useful to
know the exact amount of lines of code per class of some code base or would
it be better to define groups (like “small,” “medium,” “large”) and assign the
classes to these groups? It depends on the specific circumstances and needs,
but less information can be more valuable since it can convey the message
faster.

In emergencies, or in general, whenever timeliness is more valuable than
to know the exact measure, imprecise (but accurate) data are accepted. John
Maynard Keynes stated once that “it is better to be vaguely right than precisely
wrong.”

The last desirable property of data that we want to point out is objectivity.
Objectivity (as the opposite of subjectivity) in our context means that inde-
pendently from who collected the data, the collected data will be the same.
Nevertheless, sometimes subjective data are the only data that is available,
for example, if we interview people about their opinions. The result of the
interview depends on the way how the interview was conducted. Particularly
in this case, it is important to document the methodology that was used to
obtain the data so that everybody can understand what the obtained data
represents.

This is also why we want that the data are correct: we want that the data
was collected according to (documented) mapping rules.

This idea is related to the concept of consistency, which means that
independently from who measured using which measuring tool, we want that
the collected data are the same. So if two developers count the lines of code
of a class, we want to obtain the same, consistent result. Moreover, if the data

(continued)

9.2 Does Measurements Collection Pay Off? 195

are correct, the collection process can be replicated. This means that others
can, using the same mapping rules, collect data in the same way.

Usually we do not just want to collect data but also to analyze it. If we
want that the analysis of the data are also objective, we have to document
which data we use, how we analyze it, and which conclusions we obtain in
such a way that the analysis can also be replicated. This does not guarantee
that our conclusions are valid but that their validity can be verified by others
repeating the analysis.

9.2 Does Measurements Collection Pay Off?

The aim of measuring is clear: we want to understand the development process
better to improve it. Is it worth it? Do benefits outweigh the costs? Collecting and
analyzing measurements takes time and therefore costs money. Moreover, “software
development is inherently different from a natural science such as physics, and its
measurements are accordingly much less precise in capturing the things they set out
to describe [15].” Therefore, we must be able to prove if, or better when and under
which conditions, it is worth it.

Ideally measurements collection should [20]:

• keep procedures simple;
• avoid unnecessary recording;
• train staff in the need to record data and in the procedures to be used;
• provide the results of data capture and analysis to the original providers promptly

and in a useful form that will assist them in their work; and
• validate all data collected at a central collection point.

This list considers the costs of data collection and the provided value to the team.
A standard way to calculate “if it is worth it” is to consider the return on

investment (ROI).

Return on Investment

The return on investment can be calculated dividing a financial representation
of the benefits through a financial representation of the cost [55]:

ROI D financial representation of the benefits

financial representation of the cost

(continued)

196 9 Non-invasive Measurement

For example, let us assume that measurement costs about e1,000.00 per
month (resulting from increased salaries because of additional time effort).
If through the availability of measures we can reduce development costs
by e1,000.00 (because we spend less time in unnecessary activities), the
resulting ROI would be 0: the benefit (i.e., the advantage that we have, the
gain) equals to the outcome (e1,000.00) minus the costs (e1,000.00). This
(e0), divided by the costs (e1,000.00), results in 0.

If the benefits would rise to e2,000.00, the resulting ROI would be
1, which means that for every invested Euro, the investment returns one
additional Euro.

If the benefits are about e500.00, the ROI becomes negative:

500:00 � 1;000:00

1;000:00
D �0:5:

ROI is easy to understand: what matters is if it is positive, negative, or 0
(breakeven). In this example we did not consider two aspects:

1. It can be that the benefits and cost occur during longer time periods so that
we want to value benefits and costs that occur today in a stronger way than
those that will occur in 10 years.

2. We did not consider how to quantify benefits and costs (which measure-
ments we use and how precise the measurement has to be).

The first aspect can be solved by using the net present value (NPV) to
analyze profitability [55]. NPV takes into consideration the time span between
an investment and the occurrence of returns. It can be calculated discounting
every benefit or cost using the following formula:

Rt

.1 C i/t
;

where t is the point in time the benefit or cost occurs (i.e., the number of
the year), i is the discount rate (usually a rate of return that could be earned
investing the resources in other projects with similar risk), and Rt is the cash
flow at time t (i.e., a positive number representing benefits, a negative number
representing costs).

Through the discounting of returns, those returns that occur tomorrow are
considered to be worth less than those that occur today. This means that this
calculation favors profits today than profits tomorrow.

The second aspect, the question of how to quantify benefits and costs,
has to consider which part of the reality we want to cover (i.e., how many
measurements we want to collect) and the degree of accuracy that is needed.

9.3 Non-Invasive Measurement 197

To decide how to measure benefits, we have to understand what our clients value.
Do our clients value quality? Then it is necessary to further investigate what quality
means for our customers and to measure that (e.g., ease of use, as few defects as
possible, etc.). Do they value a fast delivery more than quality? Then we should
keep measurements about quality to a minimum, and so on.

What is a benefit or not should depend on what the customers value. In
certain markets, it is time-to-market, and in others it is costs, prestige (such as
swiss watches), a specific functionality (such as wireless charging), a sustainable
production process etc. In some cases it is both. To collect measurements that are
not needed or not used means to waste time and money. This is exactly what Lean
Thinking wants to avoid: if a measurement is not used, the costs to collect and
analyze it should be removed.

The GQM approach described in Chap. 7 helps to link measurements, to
questions and those to goals. A GQM model should be created also for this reason:
the usefulness of a measurement becomes clear because of its link to a business goal.

After defining a minimum set of measurements, we have to decide about the
precision that is required to understand the delivered value to our customers. The
costs of collecting measurements, evaluating the results, and using the obtained
knowledge depend on the necessary effort to perform these tasks, which is influ-
enced by the chosen degree of precision.

In fact, to have a reliable computation of ROI in software development, one
needs to have in place a measurements collection program. We know that Lean
cannot be implemented without a suitable collection of measurements. Therefore,
measurements are a main part of our approach, not an add-on. Our goal is to
implement an effective measurement program, that is, we need to determine what
are the measurements needed by our customers and with what level of precision.

How often did we see claims about an increase of ROI that are pure science
fiction? Such computation of ROI is a waste and extremely dangerous as managers
might believe in it, once. Then, after the first disillusion, one might consider the
whole issue of data collection a pure fad, rejecting it forever.

In summary, software measurement is needed. However, we need to organize it
so that it can be effectively used; otherwise, it might end up being just a waste.
We need to constantly verify if the gained insight outweighs the caused costs since
this depends on the concrete case, for example, as in the example of profitability in
Table 9.2.

9.3 Non-Invasive Measurement

The term “non-invasiveness” comes from the medical field, in which it means
that the diagnosis does not require to actually look into the body [7]. In software
measurement, we mean the use of methods to collect data about the software
development process, about the product, and about the employed resources that do
not require the personal involvement of the participants of the process [48, 49].

198 9 Non-invasive Measurement

Table 9.2 Example of a ROI calculation [55]

Item Value

Costs:
Costs to collect measurements by the software developers (80 h of effort in
measurement-program-related tasks, measured from the hour-registration
system)

$5,000

Costs to elaborate and analyze the collected data (240 h of effort for the
measurement program, measured from hour-registration system)

$15,000

Total costs $20,000

Benefits:
Direct benefits:

260 h of effort saving during the measurement program due to a
measured reduction of interrupts

$16,000

60 h of effort saving due to the possible reuse of the collected data in
other investigations

$9,000

Total direct benefits $25,000

Indirect benefits:
1-week-early product delivery, measured from value the marketing
manager indicated

$100,000

Effort saving during remainder of the year due to the reduction of
interrupts

$50,000

Increased focus on quality and time expenditure, both in the project as
in other groups, measured from value for group manager (combination
of buy-in and personal value)

$100,000

Update of engineering documentation due to a measurable number of
interrupts on these documents, documentation measured from value for
engineers

$5,000

Total indirect benefits $255,000

Total benefits $280,000

ROI (calculated as (280,000–20,000)� 20,000) 13

To compare non-invasive measurement with invasive measurement, we will
relate the ROI of both approaches. Therefore, we will relate the costs and the
expected benefits of implementing both types of measurement.

The introduction costs of a measurement program (for the first year) can account
for 1–2 % of the total engineering or IT effort [16]. To make an example, Rico and
Pressman [44] studied the complete cost to use a manual measurement program
like the Personal Software Process [25] to help produce 10,000 lines of code and
obtained as a result $145,600. To reduce such costs is one significant motivator for
using non-invasive measurement tools [31, 47].

The costs (and so the return on investment) depend on the scope of the
measurement program. Some costs arise for both approaches, and some only for

9.3 Non-Invasive Measurement 199

one of the two. To compare the type of costs that arise in manual and non-invasive
measurement, we assume that they are carried out by the two processes shown in
Fig. 9.6 (manual data collection) and Fig. 9.7 (non-invasive data collection).

Define
measurement

goals

Define which
data has to be

collected

Define how the
data will be
interpreted

Distribute
forms

Train
collaborators

Devise forms

Fill out forms

Collect filled
out forms

Verifycorrect
filling out of the

forms

Train new
collaborators
(if present)

Distribute
resultsAnalyze data

NoYes

Is data correct,
accurate, and

precise?

Fig. 9.6 Example process to introduce and maintain a manual measurement program

For the manual measurement program of Fig. 9.6, we assume that forms are used
to collect data about the performed activities. Employees are supposed to fill out
these forms regularly and to hand them in for data analysis. The measurement team
has to verify the quality of the data regularly, analyze the data, and distribute the
results of the analysis.

We assume a similar process for non-invasive measurement in which
non-invasive tools are developed or acquired after deciding which data has to
be collected. The main differences in the cost structure are that non-invasive
measurement does not require to train collaborators on how to precisely and
accurately collect data, that forms have to be filled out at all, and that employees do
not have to be checked whether they filled out the form correctly or not [52].

These two scenarios represent the data collection activities on the short run. On
the long run, the entire process will be repeated since new measurement goals will
arise and this will require that all steps have to be performed from the beginning.

Table 9.3 lists the costs we consider in the two scenarios.
The costs reported so far represent costs caused by the activities required by a

given approach. The choice for one or the other approach causes also indirect costs,
i.e., costs that are not caused by the activities of the measurement process but that
are risks caused by the adopted measurement method. Some of such risks are:

200 9 Non-invasive Measurement

Define
measurement

goals

Define which
data has to be

collected

Define how the
data will be
interpreted

Deployt he
tools on all
machines

Develop or
acquire tools to

collect data

Deploy tools on
new machines

(ifpresent)

Distribute
results

Analyze data

No

Yes

Is data correct,
accurate, and

precise?

Fig. 9.7 Example process to introduce and maintain a non-invasive measurement program

• Risk of distraction: manual data collection forces employees to switch between
work and data collection on a regular basis since it is recommended to collect the
data while the memory about the reported fact is still fresh. Intuitively, the longer
the time that passes, the less precise will the memory about the fact be. This
means that an employee will be encouraged to regularly fill out data collection
forms to ensure a high accuracy of the data.

Task switching requires time and leads to a performance cost [32, 37, 41, 45,
46]. It creates costs because workers need time to “reorient” [9, 26, 56]. Steven
Jenkins [30] defines “deliberately planned, chronic interruptions” even as “worst-
case scenario” and advises to “never let people work on more than one thing at
once.”

• Risk of inaccurate data: the quality of manually collected data depends on the
care and attention that the participant is willing to invest in data collection. This
means that the data quality might be influenced by the context in which it is
collected such as workload, project, time, date, location, etc.

• Risk of incomplete data: the non-invasive approach cannot collect data about
nonobservable events. If data about nonobservable aspects (like opinions) is
needed, we have two possibilities:

– we use manual data collection (that means we measure directly), or
– we find an indicator [2], i.e., some observable aspect that helps us to

understand what we want to find out. (This means we measure indirectly.)
To evaluate an opinion about a certain product, we can use the sales figures
to estimate how good or how bad customers find a certain product. On the
other hand, we have to accept that the selected indicator might be incorrect,
inaccurate, or imprecise.

• Risk of incorrect data: non-invasive data collection records data without human
participation. A consequence of this is that incorrect data cannot be rectified

9.3 Non-Invasive Measurement 201

Table 9.3 Cost factors of non-invasive and manual measurement

Cost description M
an

ua
l

N
on

-i
nv

as
iv

e

Setup costs:
Define measurement goals, i.e., what has to be achieved ✕ ✕

Define which data has to be collected ✕ ✕

Define how the collected data will be interpreted ✕ ✕

Devise forms ✕

Train collaborators on how to correctly fill in the forms ✕

Develop or acquire tools to collect the data non-invasively ✕

Deploy the tools on all machines ✕

Recurring costs:
Train new collaborators on how to correctly fill out the forms ✕

Develop or acquire new tools to collect the data non-invasively ✕

Deploy tools on new machines ✕

Distribute forms ✕

Fill out forms with measurements ✕

Collect filled out forms ✕

Verify that the forms have been filled out correctly ✕

Analyze the results ✕ ✕

Distribute the results ✕ ✕

Verify that the collected data are correct, accurate, and precise ✕ ✕

immediately (on the time of recording). It is necessary to find the wrong
record after the recording and to update it. Everybody that tried to use speech
recognition software to author a document made this experience: it might take
more time to fix all the errors than to type it by hand. We face the same trade-
off in this situation. If the non-invasive data is not accurate or precise enough,
it can cost more to fix the data than to record it by hand. If there is no time or
possibility to rectify the data and we accept incorrect data, the risk of wrong
decisions increases.

Table 9.4 summarizes these risks again together with the data collection method
for which they apply.

202 9 Non-invasive Measurement

Table 9.4 Risks connected
to the data collection method

Risk description M
an

ua
l

da
ta

co
ll

ec
ti

on

N
on

-i
nv

as
iv

e
da

ta
co

ll
ec

ti
on

Risk of inaccurate data ✕

Risk of distraction ✕

Risk of incomplete data ✕

Risk of incorrect data ✕

Once the decision is made to measure (either manually or non-invasively), we
need to understand the cost development in relation to the measurement scope,
i.e., the quantity and quality of the data we need to collect. Measurement scope
is determined by the number of measures we need to collect, the precision we
require, etc. There is a positive relationship between cost and scope. In general,
the more scope is needed, the more costs are generated. We assume that the more
data we need to collect, the more sophisticated the involved technologies have to be.
This includes databases, data transfer mechanisms, analysis methods, visualization
methods, etc. Sophisticated technologies increase the learning and maintenance
effort for the development team and therefore also the costs. This means that it is not
cheap to collect a large amount of low-quality data: it would still require the setup
and maintenance of a system that is capable of processing such large amount of data.
On the other hand, collecting few high-quality data might also require sophisticated
technologies or algorithms. In general we assume that an increase of either quality
or quantity (or both) causes an increase in costs; this is why we aggregate those two
dimensions into “measurement scope.”

We cannot calculate the measurement costs without knowing the specific envi-
ronment in which a measurement program is going to be introduced, but we can
present factors that should be taken into consideration.

Figure 9.8 shows a possible development of costs in relation to the time dedicated
to measurement.1 It is based on the following assumptions:

1. The costs of measurement increase with the quantity and quality of data that is
needed.

2. Switching from product development to measurement and back requires time
and leads to a performance cost [32, 37, 41, 45, 46]. As the amount of task
switches and the measurement effort increases, the higher the costs of task
switching. Humphrey [25] recommends that the programmer has to collect the

1Figure 9.8 is not based on empirical data, but on our experience. The costs in a particular context
can be different than the ones depicted here.

9.3 Non-Invasive Measurement 203

measurements himself to maximize the learning effect. We assume that even in
the case that the programmer is not collecting the data himself, he would still
need to switch the task to answer the questions of the person that measures.

3. Decisions based on inaccurate data can cause costs. We assume that initially, as
more and more data are collected, also the possible cost of wrong decisions due
to inaccurate data rises. After a certain point, we collect enough data so that we
can cross-check the data for its accuracy and the costs can be reduced again.2

C
os

ts

Measurement scope

Labor
costs

Task switching
costs

Total costs of manual measurement

Costs due to
inaccurate data

Fig. 9.8 Possible total measurement costs of an organization in relation to manual measurement
effort.

The curves of Fig. 9.8 change as the context changes. The labor costs rise or fall
depending on the salary of the person that performs the measurement and based on
the activities (e.g., cross-checking data) that the measurement includes. The distrac-
tion costs fall or rise if the developer has a high or low task switching ability [3]
and if the collected measures require a low or high degree of concentration. Finally,
the costs due to inaccurate data fall or rise depending on the type of data and on the
type of decisions that are based on that data.

As said before, the type of costs and the development of costs change as the
context changes. Nevertheless, the instrument of depicting the foreseen development
of costs in relation to the measurement scope can help to decide how much
measurement is optimal.

2The costs of wrong decisions are represented as smaller than task switching costs. In fact, wrong
decisions can cost much more than task switching costs. In this picture we look at the cost
development, not at the absolute values that the curves depict.

204 9 Non-invasive Measurement

In the case of non-invasive measurement, we expect a cost development as in the
Fig. 9.9.3 It is based on the following assumptions:

1. The costs of measurement increase with the quantity and quality of data that
is needed. Differently from manual measurement, the labor costs grow only
when new tools have to be developed to cope with new types of measurements.
Once the tools are developed, the cost of collecting data is independent from the
number of measurements effectively collected, the precision, etc.

2. Some data cannot be collected automatically. We have to accept either not to
use such data or to rely on indicators. We consider the cost of incomplete data
in the graph as a decreasing cost. We think that the costs decrease since as the
amount of data grows, other data, that may not be collected automatically, can be
inferred.

3. Decisions based on incorrect data can cause costs. We expect that this cost
develops in a similar way as the cost of inaccurate data of manual measurement.
Initially, as more and more data are collected, also the possible cost of wrong
decisions due to incorrect data rises. After a certain point, we collect enough
data so that we can cross-check the data for its correctness and the costs can be
reduced again.

C
os

ts

Measurement scope

Labor costs

Total costs

Costs because of
Costs because of incorrect data

incomplete data

Fig. 9.9 Possible total measurement costs of an organization in relation to non-invasive measure-
ment effort

The curves of Fig. 9.9 also change as the context changes. The labor costs
rise or fall depending on the salary of the person that performs the measurement.
Investing money into the development of measurement components instead of
teaching employees how to collect data has two advantages:

3Figure 9.9 is not based on empirical data, but on our experience. The costs in a particular context
can be different than the ones depicted here.

9.3 Non-Invasive Measurement 205

• measurement components can be reused throughout the company, i.e., the
development costs pay off faster and

• measurement components embed the measurement knowledge, i.e., the knowl-
edge of how a specific measurement is collected.

The incorrect data costs fall or rise depending on the difficulty to directly collect
some specific data or on the quality of the indicator. Finally, the costs due to
incorrect data falls or rises depending on the type of data and on the type of decisions
that are based on that data.

Following the distinction between value-adding work, non-value-adding work,
and waste mentioned in Chap. 2 (see Fig. 2.5), measurement itself is a non-value-
adding work; it is not directly adding value to the output, and it is not required by
the customer. However, in software engineering it is needed to improve the value-
adding activities.

Software developers obtain considerable benefits from manually collecting data
and analyzing it [25]. However, the considerable effort and the disciplined approach
it requires are “too intrusive for many users who desire long periods of uninterrupted
focus for efficient and effective development [32].”

Non-invasive measurement reduces the effort to collect data through the automa-
tion of the data collection steps.

Not all possible measurement activities can be automated, since the wide range
of data often collected comes from sources which are difficult or impossible to
read in an automated way. To overcome this problem, it is possible to measure
indirectly: instead of measuring the attribute of an entity directly, we either measure
another attribute that correlates with the one we are interested in or we combine
other measurements to infer the desired measurement [2]. It can be that indirect
measurement results in a lower precision, but in many cases this is acceptable.

An example of indirect measurement is the time a programmer spends on a
project. A direct way to measure it is to require every developer to fill out a time
sheet. An indirect way to measure the time spent on a project could be to measure
the time spent editing files that are in the project folder on the server. A tool could
trace the time a person edits documents and sum up all the editing time [51].

Summing up all the times recorded by this tool, it is possible to obtain the time
spent editing the documents of a given project X (see Fig. 9.10), which (if most or all
the time is spent editing documents, writing code, etc.) can be a good approximation.

A way to overcome a too low precision is to combine different indirect
measurements to obtain a more detailed picture. In our example it could be possible
to write a plugin for the calendar application of every developer that collects the
time spent on meetings for each specific project and add that time to the project
time obtained using the method above (see Fig. 9.11).

As said above, sometimes the obtained precision is too low. For example, if
we need the exact time spent per activity, e.g., for billing purposes, manual data
collection is the only possibility.

The advantages of non-invasive measurement lie not only in lower data collection
costs: through the automated data collection, the data are collected always in

206 9 Non-invasive Measurement

Folder of project X

5’
10’

20’
40’

5’ 10’ 20’ 50’ 40’

50’

=++++

Direct Indirect

2 hours, 5 minutes

Fig. 9.10 Direct vs. indirect measurement

Folder of project X

Time spent editing files

Calendar of developer Y

+ appointments for project X = Time spent for project X
by developer Y

April

Fig. 9.11 Aggregation of different measurements to increase precision

the same way (ensuring correctness and consistency). Moreover, an automated
collection process does not depend on the person performing it, which ensures
objectivity.

In the context of Lean thinking, non-invasive measurement provides the input
to the problem detection mechanism used within autonomation (see Chap. 2).
Autonomation goes one step further then non-invasive measurement: not only the
data collection is automated but also the interpretation.

Using autonomation, it is possible to define a specific set of data together with
rules on how to interpret this data in order to warn developers or to stop the current
production process (in software development, we cannot stop the assembly line, but
we could, for example, block the check-in to the source control system if problems
within the code are found) [1, 10, 21].

9.4 Implementing Non-invasive Measurement 207

9.4 Implementing Non-invasive Measurement

In this section we want to give a more concrete idea of how non-invasive measure-
ment can be implemented. Non-invasive measurement for software development
should be able to capture all possible aspects of software engineering. Following
Fenton’s classification of software measurements, we are able to collect [20]:

• process measurements to describe the activities performed during software
development;

• product measurements to describe the output of the activities (documentation,
code, etc.); and

• resource measurements to describe the input of the activities (human effort,
electricity, etc.).

These aspects can be analyzed about their internal attributes (describing their
properties) or about their external attributes (describing how a process, product, or
resource relates to its environment). Some examples of measurements are shown
in Table 9.5: structure measurements analyze the components of an entity and how
these components are combined with each other. This helps, for example, to estimate
the quality of a component [19]. Size measurements describe the extent of entities
to estimate, e.g., the amount of test cases needed to cover all paths through the
code [35]. Resource costs describe in general how much it costs to operate a resource
for a given amount of time.

Table 9.5 Risks connected
to the data collection method

Internal External

Process Structure Duration

Product Size, structure Performance

Resource Costs Utilization

A non-invasive measurement framework for software development provides a set
of components to measure internal and external attributes of processes, products,
and resources [10,29,50]. These components can be seen as measurement probes or
sensors put into the software development process. These probes then report events
to a central repository where they can be analyzed in a second moment. Examples
for such probes are:

• An application for Google Android [23] that logs all phone calls from customers;
• A plugin for Eclipse [17] that logs the time spent developing and executing test

cases using JUnit [33];
• A plugin for Microsoft Visual Studio [39] that logs the time spent developing

code;

208 9 Non-invasive Measurement

• A plugin for Microsoft PowerPoint [38] that logs the time spent developing
presentations;

• A plugin for GIT [22] that connects to a source code repository and scans the
code for anomalies; or

• A custom plugin embedded in an application that reports specific events.

In general, if we analyze a software development process, we can collect [20]:

• Product measurements: systems that contain data about the product, such as
source code management systems, bug tracking systems, testing environments,
project management systems, etc., can be interfaced and the necessary informa-
tion extracted [27, 50].

• Process measurements: systems that are involved in software development
activities can be used to keep track of the process that is followed to develop the
needed output (such as mobile devices [8], software applications such as word
processors or integrated development environments, etc.). Measurement probes
can interface with the involved applications and log the performed activities.

• Resource measurements: resources are usually used during software devel-
opment. Their current utilization, workload, availability, efficiency, etc. can be
monitored and logged by measurement probes and reported to the measurement
server.

We distinguish two approaches to extract data:

• batch mode: the data are extracted on a regular basis (e.g., every night),
• background mode: the data are extracted instantly.

The batch mode is useful when detailed logging of the ongoing events is not
needed or if the data extraction process slows down the interfaced device or
application and therefore is too costly in terms of performance. Vice versa, the
background mode extracts data as soon as it becomes available.

We also distinguish two approaches to submit data to the central repository:

• online: the collected data are immediately submitted to the server,
• cached: the collected data are kept locally and submitted later.

A cached submission is necessary for devices that are not always connected to the
network, such as laptops, smart phones, tablet computers, etc. Also if the available
bandwidth is low, a cached approach that collects a chunk of data, compresses it,
and sends it later helps to keep the necessary transfer time low.

The component shown in Fig. 9.12 shows the UML diagram of a measurement
probe that checks out the last version of a source code repository, calculates source
code measurements, and sends the result to the server. Following our categorization
above, it works in batch mode and submits data using an online approach.

The component of Fig. 9.13 shows the UML diagram of a probe that collects data
(from two sources) online, transmitting the data using a cache.

9.4 Implementing Non-invasive Measurement 209

Measurement probe

Measurement

Software
Metrics

Extractor

Source Code
Repository

Downloader

Data
Transmission

Data
access

Fig. 9.12 An online, batch mode measurement probe

Measurement probe

Measurement

Local cache

Data Collection
1

Data Collection
2

Report

Report

Data
Transmission

Data
access

Fig. 9.13 A cached, background mode measurement probe

If not otherwise possible, this architecture can be extended to allow also manual
data input using a “measurement probe” that collects the manual input and sends it
in the same format as non-invasive probes (see Fig. 9.14) [43].

Measurement probe

Measurement
Manual

Data Input
Data

Transmission

Fig. 9.14 A measurement probe for manual data collection

The data collected by the different measurement probes has to be transmitted to a
central repository. If for the transmission of the collected data a protocol is used that
works over the Internet, the measurement framework can also be used for distributed
teams.

210 9 Non-invasive Measurement

A possible database schema using crow’s foot notation is shown in Fig. 9.16 [28].

Crow’s Foot Notation in Short

The crow’s foot notation is a notation in which to indicate cardinality; a fork
or crow’s foot indicates “many” by its many “toes,” hence the name.
The cardinality is the maximum number of times one record of one table can
be associated with records of the other table in the relation. The cardinality
can be either 1, then it is indicated by a line, or many, then it is indicated by a
fork.

The modality is the minimum number of times one record of one table has
to be associated with records of the other table in the relation. The modality
can be either 0, then it is indicated by a circle, or 1, then it is indicated by a
line.

The cardinality and modality are indicated on the line that connects two
tables (see Fig. 9.15).

Product properties

* id
name

Product metrics

* id
timestamp
value

Modality

Cardinality

Fig. 9.15 Cardinality and modality in the crow’s foot notation [6]

A table is denoted by a rectangle that contains the name of the table and the
names of the columns. The primary key columns are marked by a star at the
beginning of their name. A detailed explanation of the notation can be found
in [6].

In this database we store measurements for product, process, and resource
measurements. The database depicted in Fig. 9.16 is an idealized schema. In
fact the first version of a non-invasive measurement framework we implemented
had a similar schema as the one depicted here. Unfortunately, as the number
of measurements one wants to collect increases and as the number of developer
increases, the amount of data to handle can become very large. In Appendix B we
present a detailed architecture of the actual implementation we use.

Product measurements and resource measurements are stored following the same
pattern: they describe a product or resource using a defined set of properties. The
properties are stored in the tables “product properties” and “resource properties”
and are linked to the relative products and resources through the tables “product
measurements” and “resource measurements.”

9.5 The “Big-Brother” Effect of Non-invasive Measurement 211

product properties

*id
name

product metrics

*id
timestamp
value

products

*id
identifier

activities

*id
name

process metrics

*id
timestamp

resources

*id
name

resource metrics

*id
timestamp
value

resource properties

*id
name

Fig. 9.16 A possible database schema for collecting measurements

In our example database, process measurements describe which activities modify
(create, update, delete) which artifacts under the utilization of which resources.
Therefore, process measurements relate the three tables: “products,” “activities,”
and “resources.”

The concrete implementation of the measurement infrastructure depends on the
requirements it has to fulfill. An infrastructure that aims to collect data for a team of
12 people on a daily basis is different from an infrastructure for 100 that provides
real-time information on all events taking place.

9.5 The “Big-Brother” Effect of Non-invasive Measurement

Non-invasive data collection has the advantage of being invisible to the user so
that he has no additional effort in collecting data about the software development
process.

To manually collect data about one’s own development process helps to better
understand what the collected measurements mean, how they should be interpreted,
and what to do to improve the results. Past work on collecting and analyzing data
on one’s own development process has shown to help developers to understand and
improve their performance [25].

Any company that follows Lean Thinking also collects data to improve. Non-
invasive measurement allows to collect a large variety of data without human
intervention. On the one hand, this frees workers from the measurement effort
and motivates them because they can dedicate their attention to more important,

212 9 Non-invasive Measurement

interesting aspects of their work. On the other hand, there is the risk that constant
observation is perceived as intimidating, is felt as a permanent stress factor, and
leads to an overall lower performance [4].

Being constantly observed can be seen as a decrease in autonomy, i.e., that
the available alternatives for taking action that one has [11, 40] diminish because
of the observation. A decrease in autonomy, i.e., feeling that one has not the
freedom to choose what is best for him, has a negative impact on the motivation,
which furthermore can have negative consequences in the productivity of the single
employee [12, 13].

Software development depends mainly on the people involved. When we mea-
sure, we have to consider that software development relies on creative, motivated
people. People that have a personal interest in what they are doing are far
more productive than those that are not [24]. According to Fred Brooks, a good
programmer can be up to 5–10 times more productive than a bad programmer [5].

Therefore, companies are interested to keep their motivated programmers, not to
scare them away, and to help them to stay productive.

The concrete measurements that are collected and how they are used depends on
the management and on their perception of the situation inside the company. The
way in which management sees and interprets the current work of the employees
has an impact on the selection of the information in which the management is
interested [34].

We have to distinguish two possible uses of measurement: to enhance under-
standing or to control. If an input to the developers is experienced as an information,
it enhances their autonomy, whereas if it is experienced as controlling, it diminishes
autonomy [11]. The GQM approach presented in Chap. 7 helps to communicate
what is collected and how the collected data are useful as an instrument to improve.

Trying to monitor ongoing processes with the aim to identify problems in the
process and to come up with possible solutions before the problem becomes critical
is a legitimate goal for the management of a company. Monitoring employees to
verify that the performed work meets the expectations is a known issue in the
management literature and known as “principal-agent theory”: “Information enters
the picture because the principal needs to know if the agents are carrying out the
desired actions or at least are delivering the desired outcomes or results [18].”

Through monitoring, employees can be induced to behave according to the
expected behavior and are observed for this reason. This type of monitoring is a form
of external intervention intended to change a person’s behavior and therefore poses
a threat to autonomy: “. . . Surveillance displaces autonomy, mistrust undermines
self-regard, absence of support and help minimizes achievement, likelihood of
punishment for noncompliance reduces risk-taking and innovation, rigidity of
standards and administrative procedures precludes the individual’s use of his own
know-how [18].”

The suggestion is to focus on informational feedback that empowers people: “If
such summary data indicate to the manager that something is wrong within the
organizational unit for which he is responsible, he will turn not to staff [i.e., not to
the accounting or finance staff providing the data], but to his subordinates for help

9.5 The “Big-Brother” Effect of Non-invasive Measurement 213

in analyzing the problem and correcting it. He will not assign staff ‘policemen’ the
task of locating the ‘culprit.’ If his subordinates have data for controlling their own
jobs, the likelihood is that they will already have spotted and either corrected the
difficulty themselves or sought help in doing so [18].”

One of the most traditional theories that deals with the way in which management
sees and interprets the current work of the employees is McGregor’s “Theory
X and Theory Y” [36]. “Theory X and Theory Y” assumes that the behavior
of management depends on the “implicit personality model” that the manager
has about the employees. The assumptions on which both theories are based are
summarized in Table 9.6.

Table 9.6 Assumptions of Theory X and Theory Y [36]

Theory X Theory Y

The average human being has an inherent
dislike of work and will avoid it if possible

The expenditure of physical and mental effort
in work is as natural as play or rest

Because of this dislike of work, most people
must be coerced, controlled, directed, and
threatened with punishment to get them to
give adequate effort towards the achievement
of organizational objectives

External control and threat of punishment
are not the only means for bringing about
effort towards organizational objectives. Peo-
ple will exercise self-direction and self-
control in the service of objectives to which
they are committed

The average human being prefers to be
directed, wishes to avoid responsibility, has
relatively little ambition, and wants security
above all

Commitment to objectives is a function of the
rewards associated with their achievement.
The average human being learns, under
proper conditions, not only to accept but to
seek responsibility

The capacity to exercise a relatively high
degree of imagination, ingenuity, and creativ-
ity in the solution of organizational problems
is widely, not narrowly, distributed in the
population.
Under the conditions of modern industrial
life, the intellectual potentialities of the aver-
age human being are only partially utilized

Superiors are convinced that their employee’s personality pertains to the “Theory
X” and are convinced that in general the employee has a born antipathy against
work and tries to avoid it wherever possible. Additionally, the employee prefers
to be guided, does not like responsibility, and prefers security of employment. As
a consequence, the employee must be guided using advice and threatened with
punishment in order to convince him to fulfill the needed work tasks.

On the other side of the continuum, superiors that see their employee’s personal-
ity belonging to the category “Theory Y” believe that working is a natural activity
like playing or resting. To supervise and to threaten with punishment is not the only

214 9 Non-invasive Measurement

way to induce somebody to work for the companies’ goals, but it is also possible
that employees internalize the goals of the companies and consider them their own
goals and therefore comply with the rules and needs of the company. How much
somebody feels committed towards the companies’ goals depends on the rewards
that are connected to the fulfillment of the given task. The average employee, under
appropriate circumstances, does not only learn how to assume responsibility but also
to seek it.

The interesting result of McGregor [36] is that if a manager sees his employees
as “Theory X” and treats them as Theory X, they will become like Theory X. They
will start to dislike work and will do just the minimum that is required. Theory X is
a so-called self fulfilling prophecy: since a manager thinks his employees are lazy,
he uses coercion and control. Then, it is exactly this coercion and control that takes
away any motivation and makes the employees become as the manager expects.

Theories X and Y are extremes on a continuum of possible management styles. It
seems that the best solution is to adapt its style to the task and the person executing
it [42]. Nevertheless, in those teams where we had the impression that a rather
Theory X management style is in place, non-invasive measurement had negative
effects on motivation. On the other hand, where we had the impression that a Theory
Y management style is in place, non-invasive measurement had no negative effects
on motivation.

9.6 Summary

This chapter presented non-invasive measurement, a way to collect data without dis-
tracting programmers during their work. We stressed that non-invasive measurement
should be used in combination with measurement to clearly communicate what data
are collected and why they are collected, so that employees do not feel controlled
by the collected data but that they can use it to improve the software development
process.

Problems

9.1. Assume you are a manager convinced that Theory X is true. Which
non-invasive measurement probes would you want to develop to maximize
productivity? Now assume you are convinced that Theory Y is true. Which
non-invasive measurement probes would you need now?

9.2. We discussed that we foresee two ways to collect measurements non-
invasively: in batch and in background mode. What are the advantages and
disadvantages of each approach?

References 215

References

1. Astromskis, S., Janes, A., Sillitti, A., Succi, G.: Supporting governance in disciplined agile
delivery using non-invasive measurement and process mining. Cutter IT J. 26(11), 25–29
(2013)

2. Atteslander, P.: Methoden der Empirischen Sozialforschung, 10th edn. Studienbuch Series.
Walter de Gruyter, Berlin (2003)

3. Back, M.D., Schmukle, S.C., Egloff, B.: Measuring task-switching ability in the implicit
association test. Exp. Psychol. 52(3), 167–179 (2005)

4. Brödner, P., Knuth, M.: Nachhaltige Arbeitsgestaltung: Trendreports zur Entwicklung
und Nutzung von Humanressourcen. Bilanzierung innovativer Arbeitsgestaltung. Hampp,
München (2002)

5. Brooks, F.P., Jr.: The Mythical Man-Month (Anniversary edn.). Addison-Wesley Longman,
Reading (1995)

6. Carlos Coronel Steven A., Morris, P.R.: Database Systems: Design: Design, Implementation,
and Management, 9th edn. Cengage Learning, Boston (2009)

7. Collins: Collins English Dictionary — Complete & Unabridged, 10th edn. HarperCollins.
Online: http://www.collinsdictionary.com (2009). Accessed 4 Dec 2013

8. Corral, L., Janes, A., Remencius, T., Strumpflohner, J., Vlasenko, J.: A novel application of
open source technologies to measure agile software development process. In: Hammouda, I.,
Lundell, B., Mikkonen, T., Scacchi, W., (eds.) Proceedings of the International Conference on
Open Source Systems: Long-Term Sustainability (OSS), IFIP Advances in Information and
Communication Technology, vol. 378. Springer, New York (2012)

9. Czerwinski, M., Horvitz, E., Wilhite, S.: A diary study of task switching and interruptions.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI).
ACM, Vienna (2004)

10. Danovaro, E., Janes, A., Succi, G.: Jidoka in software development. In: Harris, G.E. (ed.) Com-
panion to the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). ACM, Nashville (2008)

11. Deci, E.L., Connell, J.P., Ryan, R.M.: Self-determination in a work organization. J. Appl.
Psychol. 74(4), 580–590 (1989)

12. Deci, E.L., Ryan, R.M.: The “what” and “why” of goal pursuits: human needs and the
self-determination of behavior. Psychol. Inq. 11(4), 227–268 (2000)

13. Deci, E.L., Ryan, R.M., Gagne, M., Leone, D., Usunov, J., Kornazheva, B.: Need satisfaction,
motivation, and well-being in the work organizations of a former eastern bloc country a
cross-cultural study of self-determination. Pers. Soc. Psychol. Bull. 27(8), 212–225 (2001)

14. DeMarco, T.: Controlling Software Projects. Yourdon Press, New York (1982)
15. DeMarco, T.: Software engineering: an idea whose time has come and gone? IEEE Softw.

26(4), 95–96 (2009)
16. Ebert, C., Dumke, R.: Software Measurement: Establish, Extract, Evaluate, Execute. Springer,

New York (2007)
17. Eclipse Foundation: Eclipse ide. Online: http://www.eclipse.org (2013). Accessed 4 Dec 2013
18. Ellerman, D.: Mcgregor’s theory vs. bentham’s panopticism: toward a critique of the economic

theory of agency. Knowledge Technol. Policy 14, 34–49 (2001)
19. Emam, K.E.: A primer on object-oriented measurement. In: Proceedings of the International

Software Metrics Symposium (METRICS). IEEE Computer Society, London (2001)
20. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.

PWS Publishing, Boston (1998)
21. Gašparič, M., Janes, A., Heričko, M., Succi, G.: Metrics-based recommendation system for

software engineering. In: Heričko, M. (ed.) Proceedings of the International Multiconference
Information Society, Collaboration, Software and Services in Information Society (CSS).
Ljubljana, Slovenia (2013)

22. GIT contributors: Git. Online: http://git-scm.com (2013). Accessed 4 Dec 2013

http://www.collinsdictionary.com
http://www.eclipse.org
http://git-scm.com

216 9 Non-invasive Measurement

23. Google: Google android. Online: http://www.android.com (2013). Accessed 4 Dec 2013
24. Herzberg, F.: One more time: How do you motivate employees? Harv. Bus. Rev. 46(1), 53–62

(1968)
25. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley Professional,

Boston (1996)
26. Ikonen, M.: Leadership in kanban software development projects: a quasi-controlled exper-

iment. In: Abrahamsson, P., Oza, N.V. (eds.) Proceedings of the International Conference
on Lean Enterprise Software and Systems (LESS), Lecture Notes in Business Information
Processing, vol. 65. Springer, Helsinki (2010)

27. Janes, A., Scotto, M., Pedrycz, W., Russo, B., Stefanovic, M., Succi, G.: Identification of
defect-prone classes in telecommunication software systems using design metrics. Inf. Sci.
176(24), 3711–3734 (2006)

28. Janes, A., Scotto, M., Sillitti, A., Succi, G.: A perspective on non invasive software manage-
ment. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference
(IMTC). IEEE, Sorrento (2006)

29. Janes, A., Sillitti, A., Succi, G.: Non-invasive software process data collection for expert
identification. In: Proceedings of the International Conference on Software Engineering &
Knowledge Engineering (SEKE). Knowledge Systems Institute, San Francisco (2008)

30. Jenkins, S.: Concerning interruptions. IEEE Comput. 39(11), 66–72 (2006)
31. Johnson, P.: You can’t even ask them to push a button: toward ubiquitous, developer-centric,

empirical software engineering. In: Proceedings of the NSF Workshop for New Visions for
Software Design and Productivity: Research and Applications. Nashville (2001)

32. Johnson, P.M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., Zhen, S., Doane, W.E.J.:
Beyond the personal software process: metrics collection and analysis for the differently
disciplined. In: Proceedings of the International Conference on Software Engineering (ICSE).
IEEE Computer Society, Portland (2003)

33. JUnit contributors: Junit. Online: http://sourceforge.net/projects/junit (2013). Accessed 4 Dec
2013

34. Lueger, G.: Beschaffung und auswahl von mitarbeitern. In: Kasper, H., Mayrhofer, W. (eds.)
Personalmanagement — Führung — Organisation, 2nd edn. Linde (1996)

35. McCabe, T.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320 (1976)
36. McGregor, D.: The Human Side of Enterprise. Mcgraw-Hill, New York (1960)
37. Meiran, N.: Reconfiguration of processing mode prior to task performance. J. Exp. Psychol.

22(6), 1423–1442 (1996)
38. Microsoft: Microsoft powerpoint. Online: http://office.microsoft.com/en-us/powerpoint

(2013). Accessed 4 Dec 2013
39. Microsoft: Microsoft visual studio. Online: http://www.microsoft.com/visualstudio (2013).

Accessed 4 Dec 2013
40. Mikl-Horke, G.: Industrie- und Arbeitssoziologie, 3rd edn. Oldenbourg Wissenschaftsverlag,

München (1995)
41. Monsell, S., Yeung, N., Azuma, R.: Reconfiguration of task-set: is it easier to switch to the

weaker task? Psychol. Res. 63, 250–264 (2000)
42. Morse, J., Lorsch, J.: Beyond theory. Harv. Bus. Rev. 48(3), 61–68 (1999)
43. Moser, R., Janes, A., Russo, B., Sillitti, A., Succi, G.: Prom: Taking an echography of your

software process. In: Proceedings of the XLIII Congresso Annuale AICA. Forum Editrice
Universitaria Udinese, Udine (2005)

44. Rico, D.F.: ROI of Software Process Improvement: Metrics for Project Managers and Software
Engineers. J Ross Publishing Series. J. Ross Publishing, Boca Raton (2004)

45. Rogers, R.D., Monsell, S.: Costs of a predictable switch between simple cognitive tasks. J. Exp.
Psychol. 124, 207–231 (1995)

46. Rubinstein, J.S., Meyer, D.E., Evans, J.E.: Executive control of cognitive processes in task
switching. J. Exp. Psychol. Hum. Percept. Perform. 27(4), 763–797 (2001)

47. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, integrating and analyzing software
metrics and personal software process data. In: Proceedings of the EUROMICRO Conference,

http://www.android.com
http://sourceforge.net/projects/junit
http://office.microsoft.com/en-us/powerpoint
http://www.microsoft.com/visualstudio

References 217

New Waves in System Architecture (EUROMICRO). IEEE, Belek-Antalya (2003)
48. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users. In: Al-Ani, B.,

Arabnia, H.R., Mun, Y. (eds.) Proceedings of the International Conference on Software
Engineering Research and Practice (SERP), vol. 1. CSREA Press, Las Vegas (2003)

49. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Non-invasive measurement of the software
development process. In: Orso, A., Porter, A., (eds.) Proceedings of the International Workshop
on Remote Analysis and Measurement of Software Systems (RAMSS). IEEE, Portland (2003)

50. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measures for mobile users: an architecture.
J. Syst. Archit. 50(7), 365–444 (2004)

51. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Measuring the architecture design process.
In: Arabnia, H.R., Reza, H. (eds.) Proceedings of the International Conference on Software
Engineering Research and Practice (SERP), vol. 1. CSREA Press, Las Vegas (2004)

52. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Monitoring the development process with
eclipse. In: Srimani, P.K., Abraham, A. (eds.) Proceedings of the International Conference
on Information Technology: Coding and Computing (ITCC), vol. 2. IEEE, Las Vegas (2004)

53. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946)
54. Stevens, S.S.: Mathematics, measurement and psychophysics. In: Stevens, S.S. (ed.) Handbook

of Experimental Psychology. Wiley, New York (1951)
55. van Solingen, R.: Measuring the roi of software process improvement. IEEE Softw. 21(3),

32–34 (2004)
56. van Solingen, R., Berghout, E., van Latum, F.: Interrupts: just a minute never is. IEEE Softw.

15(5), 97–103, (1998)
57. Viertl, R.: Einführung in die Stochastik: Mit Elementen der Bayes-Statistik und der Analyse

unscharfer Information, 3rd edn. Springers Lehrbücher der Informatik. Springer, New York
(2003)

Part III
Lean Software Development in Action

The third part illustrates how we combine the tools presented in the second part to
enact Lean Software Development. In particular Chap. 11 presents the experience
we gained in applying the described technologies to help teams to implement Lean
ideas in their software development process.

Chapter 10
The Integrated Approach

Again, a beautiful object, whether it be a living organism or any
whole composed of parts, must not only have an orderly
arrangement of parts, but must also be of a certain magnitude;
for beauty depends on magnitude and order.

Aristotle, The Poetics, VII

Uli sat down and let his body being absorbed by the comfortable chair that J
supplied him. Needless to say, most of the people in the room liked him. Only
Ari looked disappointed and started again attacking: “Could you please tell us,
or, at least, summarize us in clearly understandable language what you want us
to understand with your presentation?” J laughed: “What else do you want? A
lecture? But, Uli, let us make this old boxer happy. Recap him in few words the
essence of the story.”

“OK Ari, here we are. To make the approach working, we need three key
ingredients. The first is our ability to organize the measures and to give them
meaning. Measuring alone is not enough. There are many paradoxes of measures.”
“Uli, give me a break” said Ari “this is not a university course, here we are in
real business! Measuring it not easy but is doable. For instance, if I want to get fit
I measure my fitness—it is as simple as that! And I do the same with software.”
“Ari, you are smart indeed.” laughed Uli “but, how would you measure your
fitness?” “Uli, I measure my weight! I do not need a nobel prize to understand
this.” He laughed and everyone in the room also laughed. Also Uli laughed and
then continued. “Interesting, you are really smart! And so you will find that the
best is not to exercise! After exercising you will initially gain weight, because your
muscle will get stronger and absorb water. Now you will answer me that you will
also measure the calories consumed, and here again, if I measure the consumed
calories is better to stay fat, so I consume more calories: the energy consumption
is mv2, mass times the square of velocity, remember Ari, so the higher the mass the
higher the consumption!” Ari became angrier and angrier but did not say a word.
Uli continued “Therefore, it is important to build a system where we can organize
the measurements in a way that make sense, starting from our business goals,
then translating the business goals into technical goals, and then down defining
suitable questions to ask on whether we are achieving the goals, and lastly to define
measurements that would support answering the questions, which, once answered,

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__10

221

222 10 The Integrated Approach

will tell us if we are achieving our goals. In the case of fitness, I would propose that
we ask ourselves whether we are getting fitter and more effective in running. For the
first question I would measure not only our weight but also our heart rate after 30
minutes of jogging, and the fat material in our body. For the second question I would
measure the time it takes to us to run 5 kilometers. So, by using these measures, we
will first answer our questions, and then, using the answers, we will be able to
determine if we are moving toward our goal. Ari, is this crystal clear?” Ari did not
say a word and Uli took this as a yes.

“The second ingredient is that we need to take advantage of the experience we get
from other projects, not simply running post-mortem sessions, but really collecting
the experience also in quantified forms way and determine how such experience can
be reused later on. The best is if this can be done directly by the team members
themselves, but sometimes an external support can be beneficial.

The third ingredient is an effective measurements program, with the constraint
that, once installed and configured, this measurements program should not in any
way require any significant intervention from the side of the developers, so that
the data will be really and effectively collected. In other terms, the measurements
program should be non-invasive.”

J nodded. Everyone understood that it was a go and none objected to avoid
getting one of the withering glance from J. The meeting was adjourned.

10.1 Introduction

We began our journey looking at Lean production and wondering how to transfer its
ideas to software development. So far we collected many little pieces that we will
assemble now.

As we explained in Chap. 2, the main goal of Lean production is to eliminate
waste. The practices like just-in-time production, autonomation, standardizing
work, avoiding inventories, Kanban, pull and not push, etc. are not a goal itself;
they are means to achieve efficiency.

We are convinced that no other software development approach has internalized
the concept of just-in-time as much as the Agile Methods. We therefore think
that Agile Methods are intrinsically a Lean software development approach. What
we see as problematic, as we say in Chap. 5, is that Agile was not based on a
methodology based on measurement, but on a manifesto. Agilists did not learn the
skills to derive a Lean approach; they were taught what to do to be Lean.

A comparison with mountaineering may help to understand the difference. Let
us take the mountaineer Amy: she wants to climb the Ortler, a 3,905 m (12,812 ft)
high mountain in South Tyrol, Italy. The route is difficult and requires skills in
climbing, glacier hiking, and crevasse rescue techniques (see the route description
on Fig. 10.1).

Amy wants to reach the top and learn basic climbing techniques. Therefore, she
attends a course organized by the local mountaineers club to learn how to safely

10.1 Introduction 223

[htbp]

Pa
ye

rH
ut

(3
,0

29
m

,9
,9

37
.6

6
ft

)

Ta
ba

re
tta

pe
ak

(3
,1

28
m

,1
0,

26
2

ft
)

D
o

no
tg

o
to

th
e

pi
lla

ru
nd

er
th

e
ri

dg
e

N
or

m
al

ro
ut

e
to

Ta
ba

re
tta

H
ut

E
xp

os
ed

ri
dg

e,
be

ve
ry

ca
re

fu
l!

N
ot

ch

G
oo

d
pl

ac
e

to
pu

to
n

an
d

re
m

ov
e

cr
am

po
ns

A
lu

m
in

iu
m

ba
rs

G
la

ci
er

Pa
ss

ag
e

w
ith

ch
ai

n

Po
ss

ib
ili

ty
to

ro
pe

do
w

n
w

he
n

go
in

g
ba

ck
(c

a.
20

m
,6

6
ft

)

ca
.7

0
m

,2
30

ft
ca

.2
5

m
,8

2
ft

L
om

ba
rd

iB
iw

ak
(3

,3
16

m
,1

0,
87

9
ft

)

“H
ol

e
of

th
e

be
ar

”

C
ou

lo
ir

(s
ho

rt
)

St
ee

p
ic

e
or

ha
rd

sn
ow

(ti
ll

40
◦)

!

Fl
at

pl
at

ea
u

(c
re

va
ss

es
!)

T
he

or
ie

nt
at

io
n

on
th

e
gl

ac
ie

ri
s

di
ffi

cu
lt

w
ith

fo
g!

Sn
ow

ri
dg

e

O
rt

le
r(

3,
90

5
m

,1
2,

81
2

ft
)

R
op

e
do

w
n

w
he

n
go

in
g

ba
ck

F
ig

.1
0.

1
T

he
ro

ut
e

to
th

e
O

rt
le

r
(i

m
ag

e
c �

be
rg

st
ei

ge
n.

co
m

,c
ou

rt
es

y
of

[1
6]

)

224 10 The Integrated Approach

hike on glaciers and learns how to rescue herself and others from a crevasse. After
having acquired the required skills, she goes to the Ortler and reaches the top safely
since she has the competence to do it.

Henry is also a mountaineer, and he really wants also to reach the top of the
Ortler, but he is not confident that he can acquire the necessary skills, and anyway, he
has no time to train 1 year for that mountain. He hires the experienced mountaineer
Kent to go with him. Kent takes care of everything and just tells Henry what he
needs to do, where to hold himself, where to step, etc. Henry is not interested in the
reasons for this instructions; he is just interested in the result. Henry makes it also
to the top.

The difference between the two mountaineers Amy and Henry is that Amy will
learn from her experience since she was understanding what she was doing and she
could directly observe how well her choices worked. Henry executed the advice, he
stepped on one place and not on another—as Kent said—but he did not understand
the reasons behind these advices.1 In the future, if Henry wants to reach the top of
another difficult mountain, he will need Kent again.

In Chap. 6 we looked at existing proposals to implement Lean software devel-
opment. Their ideas are a faithful translation of Lean Thinking into software
development. However, in all their translations, we miss a part in which the future
Lean software developer learns how to do the translation himself or herself, how to
understand that he became Lean enough, how to understand what is missing, where
to start, what is too much, etc.

In Chap. 2 we abstracted Lean Thinking using three aspects:

1. Value: methods that support the organization to focus on the understanding and
maximization of the delivered value;

2. Knowledge: methods that focus on the creation of a shared understanding of
the know-how, know-where, know-who, know-what, know-when, and know-why
within the company;

3. Improvement: methods that help to instill a culture of constant improvement.

As we described in Chap. 6, several authors have translated Lean Thinking into
software development [9, 18, 19, 21]. A software developer that wants to do that
himself or herself has to learn how—to use the metaphor we used above—to climb
the mountain alone, i.e., how to learn how to focus on value, knowledge, and
improvement himself or herself.

Such a “Lean software developer” that does not need the gurus must have the
following skills [3, 4]:

• The Lean software developer is able to study the software development process
to identify waste and focus on creating value using measurement. Such mea-
surement is non-invasive (see Chap. 9) to minimize non-value-adding activities
[10, 11].

1We do not want to say that Henry did not learn anything during his trip, but we assume that he
learned much less than Amy.

10.1 Introduction 225

• As we mentioned multiple times, software engineering is development and not
production. The software discipline is evolutionary and experimental. Therefore,
the Lean software developer is able to organize improvement organizing knowl-
edge in a systematic way, using a method tailored to software development, such
as the Experience Factory (see Chap. 8).

• The Lean software developer is able to package wisdom in a reusable way, for
example, using the GQMCStrategies approach to explain the know-what (the
data to collect), the know-how (the goals to achieve), and the know-why (the
strategies to pursue) (see Chap. 7). To collect wisdom in such a way allows to
reuse it [1].

As the mountaineer Amy is able to climb the Ortler herself, the “Lean software
developer” is able to plan and do the journey to a Lean software development
process himself or herself.

To accomplish this, in this chapter we combine the five ideas presented in earlier
chapters to what we call “Lean Software Development in action”:

• Agile software development,
• Non-invasive measurement,
• GQMCStrategies,
• The Experience Factory, and
• Lean Thinking.

As we see in Fig. 10.1, the route to the Ortler mountain requires several skills:
from the so-called surefootedness (i.e., that one is able to walk over difficult terrain
without stumbling or falling) to climbing, techniques to safely walk on glaciers, and
to rescue somebody that fell into a crevasse.

In the previous chapters we explained each component we see as part of Lean
software development separately; now we will see how they work together. We
depicted the dependencies between each pillar as a concept map in Fig. 10.2. Do
not be scared! In the following paragraphs we will depict each part of this concept
map.2

In the following paragraphs, we will explain each part. On the top left corner, the
software development process is further divided into three concepts: activities,
employ resources, and produce artifacts (see Fig. 10.3).

The value stream is continuously monitored using non-invasive measurement.
The measures so collected describe the software development process and are then
interpreted by the GQMCStrategies model (see Fig. 10.4). The GQMCStrategies
model is updated when needed, i.e., when one aspect, e.g., an organizational goal or
a strategy, changes.

2A concept map is a graphical representation of the relationships among a set of concepts [17]. It
can be also used as a “knowledge elicitation technique which stimulates learners to articulate and
synthesize their actual states of knowledge during the learning process [14].”

226 10 The Integrated Approach

Agile software development process

Non–invasive
measurement

Resources

Measurement

Information

Artifacts

Knowledge &
Wisdom

Activities

collects

employ produce

defines

manages

interprets

provides

describes

supports

creates
influences

Lean Thinking

supports

model

Andon

visualizes

visualizes

Experience
Factory

interprets

GQM+Strategies

refines

influences

does

Legend:

Concept

Relationship between concepts describing the type of concept using a verb.

Data flow

Data

Data

Fig. 10.2 Concept map describing the interactions between the building blocks of Lean software
development

Agile software development process

Resources Artifacts

Activities

employ produce

Fig. 10.3 The concepts software development process, resources, and artifacts

10.1 Introduction 227

Agile software
development

process

Non–invasive
measurement

Measurement

collects

defines

interprets

provides

describes

model
GQM+Strategies

Data

Fig. 10.4 The concepts to monitor the software development process

For an organization or a team, Lean Thinking is a strategy that is opera-
tionalized using the GQMCStrategies model, which furthermore defines which
measurements are needed to understand how to control and improve the software
development process (see Fig. 10.5).

interprets

Lean Thinking

model
GQM+Strategies

influences

Data

Fig. 10.5 The concepts to monitor the software development process

Once collected, the collected data can be converted to information by interpret-
ing using the GQMCStrategies model. Let us assume we measure the cyclomatic
complexity [15] of a method and obtain the value 20. Up to now, “20” is just data.
Let us further assume that in the GQMCStrategies model, this measurement is
linked (through a question) to a measurement goal that wants to analyze if the testing
coverage of our most critical test cases is improving.

Using the GQMCStrategies model, we understand why we collect this number
and how to interpret it. It is transformed into the information “the testing coverage
of our most critical tests is too low” or “the testing coverage of our most critical
tests increased by 10 % compared to last month.”

The Experience Factory takes that information and collects and elaborates
knowledge and wisdom, i.e., lessons learned, field-tested process definitions,

228 10 The Integrated Approach

training and consulting material, checklists, frequently asked questions, software
patterns, and so on.

The Experience Factory provides to the software development process experi-
ence and wisdom about past projects and advice for upcoming issues. Activities that
are identified as non-value adding and not needed (see Chap. 2) by the Experience
Factory are constantly removed (see Fig. 10.6).

InformationKnowledge &
Wisdom

manages

creates
influences

model

Andon

visualizes

visualizes

Experience
Factory

interprets

GQM+Strategies

refines

Fig. 10.6 The concepts to interpret and visualize the collected data

The Experience Factory provides a platform for team members to diffuse their
knowledge and give them possibilities to influence current software development
practices.

The wisdom collected by the Experience Factory is used to improve the
measurement model, i.e., the goals of the team and the way how the goals are
measured.

Andon is finally used to support the software development process closing the
feedback loop and providing information, knowledge, and wisdom when needed.

10.2 The Role of Autonomation

When we discussed autonomation in Chap. 6, we already stated that its application
in software is not trivial since software is invisible. We cannot directly see if
something is wrong, and we cannot construct a machine so easily that checks the
quality as in the picture below.

The Lean software development process we envision in this chapter implements
autonomation. Autonomation in software engineering cannot be as exact as the one
encouraged by Lean production. As said before, software development is evolution-
ary and experimental. It is largely human based so that software development is less

10.2 The Role of Autonomation 229

predictable than production, model building is more difficult, the models are less
accurate, and we have to be cautious in the application of the models [5].

Autonomation consists of a mechanism to detect a problem and a mechanism
to notify everybody that an error was detected. We use the measurements collected
through non-invasive measurement together with the GQMCStrategies model as the
mechanism to detect a problem. The interpreted data about the current development
process is studied, compared to expected values, analyzed to identify anomalies,
etc. The GQMCStrategies model is used to understand if the measurement goals are
being achieved or not.

The second aspect of autonomation is a mechanism to notify all stakeholders
about the problem. In Lean production, signal boards called “Andon” are used
to notify everybody about the status of the production and to trigger countermea-
sures [2] (see Fig. 10.7).

Time

Workstation 2

1 2 3 4

Workstation 1

Andon

Andon cord

Fig. 10.7 The Andon notifies everybody of the state on the production line

The updated concept map of Lean software development is depicted in Fig. 10.8.
We marked the concept responsible of notifying stakeholders about the current
status of the project with “mechanism to notify” and the concepts responsible to
detect problems with “mechanism to detect a problem.”

In Lean production every worker that identifies a problem has the right to stop
the production line to prevent further damage and waste of resources. To implement
this concept in software development, an example is the use of “check-in policies”
in source control systems, which define conditions that a developer has to meet to
check in modified code.

In our concept map, the information to decide whether to stop software devel-
opment or not is visualized in the Andon, gained through the interpretation of
the collected data using the GQMCStrategy. The interruption of the software
development line cannot be accomplished as in a car factory. It would be an
interesting experiment to install a button that turns off all computers at once in case
of need.

230 10 The Integrated Approach

Software development process

Non–invasive
measurement

Resources

Measurement

Information

Artifacts

Knowledge &
Wisdom

Activities

collects

employ produce

defines

manages

interprets

provides

describes

supports

creates
influences

Lean Thinking

supports

model

Andon

visualizes

visualizes

Experience
Factory

interprets

GQM+Strategies

refines

influences

does

Legend:

Concept

Relationship between concepts describing the type of concept using a verb.

Data flow

Data

Data

Mechanism to notify

Mechanism to detect

Fig. 10.8 The concepts responsible for Autonomation in Lean software development

Stopping the software development line is something that all team members have
to respect with their behavior; it cannot be enforced, since software development is
a socio-technical system.

An interesting example of how the “software development line” can be stopped
is the translation of the Kanban concept into software development. As in Lean
production, in software development, Kanban is an instrument to minimize work-
in-progress inventory. It achieves that by setting a maximum number of work items
in each development phase. If one phase has reached the maximum number of work
items, it is not allowed to move any additional item into that phase. Practically, this
stops the entire software development process. As Lean production, the idea is that
all workers come and help to solve the issue before they can continue their work.

10.2 The Role of Autonomation 231

Henrik Kniberg and Mattias Skarin created the following comic strip that explains
how the Kanban idea can be applied within software engineering [13].

At the beginning all team members are at their place: we see a task board con-
sisting of five columns: “Backlog,” “Selected,” “Develop,” “Deploy,” and “Live!.”
The actors in this comic are customers (in Fig. 10.9 on the left under the “Backlog”
column), developers (in Fig. 10.9 in the middle, under the “Develop” column), and
system administrators (responsible for deployment; in Fig. 10.9 on the right, under
the “Deploy” column).

Selected

2

Deploy

1

Develop

Ongoing Done

2

A
B

E
D

C

Backlog Live!

Fig. 10.9 The initial situation [13]

The usual path of a requirement is as follows: the customer puts planned, but not
yet scheduled tasks into the “Backlog” column. The “Backlog” column is owned
by the customer; he can decide what stays there, how it is ordered, etc. When the
customer decides that a task should be developed, he moves it into the Selected
column. As soon as two developers (the programmers in this comic develop in pairs)
are available, they pick up the task from “Selected,” move it to “Ongoing,” and start
to work on it. When a task is done, they move it to “Done.” From there, the system
administrators (also working in pairs) pick it up, move the task to “Deploy,” and
work on the deployment. Finally, as they are done with the deployment, they move
the task to “Live!.”

In Fig. 10.10 the customer selects two items that developers should take and
implement.

In Fig. 10.11 we see that two start to work on A and two developers on B. The
customer already selected the next two requirements to develop, C and D.

In Fig. 10.12, the two developers working on A finished their task and move it to
Done. The system administrators see that and prepare to work on A. In the meantime
the customer is thinking which requirements to choose as next steps.

While the system administrators work on deploying A, in Fig. 10.13, the
developers pick C and start to work on that.

232 10 The Integrated Approach

!
Selected

2

Deploy

1

Develop

Ongoing Done

2

E
D

C

A

B

A and B are the two
most important
things to do right
now!

Backlog Live

Fig. 10.10 The customer selects next tasks to develop [13]

Selected

2

Deploy

1

Develop

Ongoing Done

2

A

B

We will do A!

We will do B!

C

D Great! Next
is C and D!

E
F

G

H

Backlog !Live

Fig. 10.11 Developers are working on A and B [13]

!
Selected

2
Deploy

1

Develop

Ongoing Done

2

B

C

DG

H A
A is done!

Ah, something
to deploy!

Hmm. . . I might
need J, K, and
L as well. . .

Backlog Live

Fig. 10.12 The system administrators begin working on A [13]

10.2 The Role of Autonomation 233

!
Selected

2

Deploy

1

Develop

Done

2

B

D

E
F

G

H A

Working on C!

Deploying A!J
K

L

C

Backlog Live

Fig. 10.13 The developers begin working on C [13]

Up to this point everything worked well, but now in Fig. 10.14, the deployment
team has problems deploying A.

The rest of the team continues to work as planned, the developers finish to
develop B, and the customer is thinking what to develop next.

It is also interesting that in this scenario, the developers do not care that A cannot
be deployed.

!
Selected

2

Deploy

1

Develop

Ongoing Done

2

B

D

E
F

G

H A

Crap! A does
not build!

J
K

L

C

B is done!

Backlog Live

Fig. 10.14 Component A cannot be deployed [13]

In Fig. 10.15, the developers that just finished developing B want to pick a new
task (D), but they cannot do that because the Kanban limit is reached.

The Kanban limit is displayed at the top of some columns and sets the maximum
amount of tasks that can be in that column at the same time. It limits the amount of
work-in-process items: without that limit, the developers would pick D and continue
programming, ignoring that task A cannot be deployed.

234 10 The Integrated Approach

!
Selected

2

Deploy

1

Develop

Ongoing Done

2

B

D

E
F

G

H A

J
K

L

C

We will do D!
No, wait. . . that
would break the
Kanban limit of 2!

Backlog Live

Fig. 10.15 The Kanban limit blocks developers from ignoring the deployment issue [13]

In Fig. 10.16, the pair of developers that cannot proceed goes to the bottleneck of
the process—the pair of system administrators—to help out.

Kanban assumes here that the developers—since they actually wrote the code—
are able fix the issue faster than the system administrators. This is why it makes
sense to stop the work of skilled specialists, the developers, until the problem is
solved.

Until now, the customer did not notice that there is any problem going on; he
continues his work and picks item K to be developed next.

Live!
Selected

2
Deploy

1

Develop

Ongoing Done

2

B

D

E
F

G

A

J

L

C

How can
we help?

What does
this *****
stack trace
mean?

K

K is pretty
urgent. I will
schedule it
next.

Fig. 10.16 The first developer pair helps to fix the deployment issue [13]

In the next figure (see Fig. 10.17)—while task A is still not deployed—the first
team of developers finishes C and the customer would like them to begin with the
next task K, but they realize that they have to help the others to fix the deployment
of A since the Kanban limit of two is still stopping them to begin the development
of a new task.

10.2 The Role of Autonomation 235

!
Selected

2

Deploy

1

Develop

Ongoing Done

2

B

DG

H A

L

Great, hope
you start K
soon!

C
C is done!

Sure, as
soon as we
sort out the
problem
with A.

Backlog Live

Fig. 10.17 The second developer pair finishes to develop C and goes to help fix the deployment
issue [13]

The situation now escalates: the second pair of developers goes to help the others
and—since they found the cause of the problem and are working on it—get the task
to develop a test case that will signal that type of problem in the future.

At this point the entire development is stopped, and also the customer notices
that there is some problem since he reached the maximum amount of tasks that he
or she can put into the “Selected” column (see Fig. 10.18).

!
Selected

2

Develop

Ongoing Done

2

BE
F

G

H A

J

L
I want F and G
as well. But
the Kanban
limit stops
me. Hmm. . .

C

How can we
help?

We don’t need any more
hands right now. But this
is a recurring problem, so
write a test for it to avoid
the problem in the future!

Backlog Live

Fig. 10.18 The customer notices that he is not allowed to add requirements anymore [13]

The customer now understands that there is some problem with one of the
previous requirements. In Fig. 10.19, the customer goes to the developers and asks
if he can help.

236 10 The Integrated Approach

!
Selected

2
Deploy

1

Develop

Ongoing Done

2

B

D

E
F

G

H A

J

L
K

Is there
anything I can
do? I am no
techie but. . .

C Sure! Please
bring us coffee
and protect us
from disruptions.

Backlog Live

Fig. 10.19 The customer tries to help to fix the deployment issue [13]

Instead of being confronted with a delay at the end of the project, the customer
can help redefining or simplifying the requirement now (similar to what we
discussed in Sect. 3.5).

According to our experience, the customer is often able to change the require-
ment so that it provides the same value for him as the original requirement but
is easier to implement. In this example, the customer cannot do much and the
developers send him to bring coffee.

Figure 10.20 shows how the team thinks back about the times where work-in-
progress inventory was not limited. It shows happy developers, system administra-
tors, and a busy customer that is concentrated on identifying what provides business
value for him.

!
Selected

2

Deploy

1

Develop

Ongoing Done

3

F

I

L
H

M

J

R M or H? M!
No, H! Hmm. . .
No wait, M! M
or H? Aaargh!

DG A

B
C

K

Don’t you miss the

Integration hell?
Big bang releases?

Ha ha!

Some weeks later. . .

old days? All-night

Backlog Live

Fig. 10.20 The final scene [13]

10.3 Closing the Loop with an Andon Board for Lean Software Development 237

This comic strip shows how Kanban implements the assumption of Lean
production that it is better to stop the line and fix the problem instead of continuing
and solving the problem later. Moreover, the strip shows how this idea can be
implemented in software development. The Kanban limits define the size of work-
in-progress inventory that the team considers acceptable and have to be adapted to
the team size.

Jidoka means not allowing defective parts to go ahead in the development
process. Therefore, we need a clear criteria, or rule, to decide whether a software
artifact is ready to proceed to the next production step. To evaluate these criteria,
suitable data have to be collected.

Interrupting production is done to prevent further damage and waste of resources.
Within software development an example hereof is the use of “check-in policies” in
source control systems, which define conditions that a developer has to meet to
check in modified code.

As a mechanism to “stop the production line,” we use the Andon concept in the
form of a dashboard that visualizes the problem. This creates visibility since every
developer working on that project sees that there is a problem.

10.3 Closing the Loop with an Andon Board for Lean
Software Development3

Ideally, dashboards inform about the state of a system and advise the user what to
do. Unfortunately, many dashboards are designed as mere data displays instead of
helping the user to make better decisions.

The term dashboard was already used in the nineteenth century when it repre-
sented a board in front of a carriage to stop mud from being splashed (dashed) into
the vehicle by the horse’s hoofs [6] (see Fig. 10.21). Later, in cars, the dashboard
was used to inform the driver about the status of the car. The indicators on the
dashboard help the driver to operate the car, and the colors of the indicators show
how urgent the matter is. Red indicators typically mean that the problem is serious
and that some action is required immediately.

Red indicators such as “check engine” or “low oil” require that the driver halts
the car immediately to stop further damage (see Fig. 10.22). Safety issues, such as
a non-working air bag, are also shown using red lamps. Yellow indicators show that
some action is required soon, such as the yellow low fuel light. Green indicators
inform the driver that something is turned on, such as the low beam lights.

3A version of this section originally appeared in the January 2013 issue of Cutter IT Journal,
published by Cutter Consortium www.cutter.com, c� 2013 Cutter Consortium. For more
information, please visit http://www.cutter.com/itjournal/fulltext/2013/01/itj1301c.html. All rights
reserved. Reproduced with permission.

http://www.cutter.com/itjournal/fulltext/2013/01/itj1301c.html

238 10 The Integrated Approach

Fig. 10.21 The dashboard of a horse carriage (image courtesy of Pearson Scott Foresman)

STOP

Check Engine Low Oil Low Fuel Low Beam Lights

Fig. 10.22 Typical indicators in a car dashboard.

The dashboard is designed so that the driver is able to intervene if the correct
functioning of the car is at risk. It is, so to speak, aligned to the business goal of the
driver. It helps the driver to achieve the goal of driving from point A to point B. In an
organization, the term “dashboard” is used to describe a system that visualizes data
useful for decision making [8]. Dashboards, as in the car, have the goal to inform
a user, but not to distract from the actual task. Therefore, the data in dashboards is
summarized using charts, tables, gauges, etc., as in Fig. 10.23.4

We use the term “dashboard” for a data visualization technique that aims to
inform and alert a user about the current state of the system. It operates in a “push”
mode, and it aims to distract and gather the attention of the user for a short moment
to inform about something important [12]. We see a dashboard as the opposite of
a visualization in which the user operates in “pull” mode, where he is examining
the visualized data, so to say “dives” into the data to explore, to understand the
reasons behind a problem, and to solve an issue. To distinguish dashboards from
visualizations that require interaction, we call the latter an information display.

These two visualization techniques do not exist in isolation. Frequently, a
dashboard allows to switch from the alerting mode into exploration mode and allows
the user to analyze and study the data behind the alert.

4Some authors (e.g., [7]) distinguish between dashboards and scorecards, depending if the
data measures performance (dashboard) or charts progress (scorecard). We consider the terms
dashboard and scorecard as synonyms.

10.3 Closing the Loop with an Andon Board for Lean Software Development 239

Area 1

Area 2

Area 3

Metric A:

Metric B:

Metric C:

Metric D:

Metric E:

Metric F:

Metric G:

Metric H

Metric I:

Metric J:

Area 4

2000
2001
2002
2003
2004
2005

A
10
21
21
55
23
16

B
72
11
55
15
68
93

C

72

86

D
72
41
11
28
09
32

E
12
51
69
33
41
96

Fig. 10.23 A typical dashboard [8]

The Balanced Scorecard described in Chap. 3 can be either dashboard, if it
conveys information in the “push” mode, or an information display, if it operates
in “pull” mode.

To be useful, a dashboard supports its users to fulfill their goals. Unfortunately,
many dashboards are not designed to do that [8]. Some dashboards are designed
to visualize as much data as possible, to demonstrate the graphical abilities of the
dashboard, to impress potential customers, to display all the available information,
etc. In this case they are not dashboards, but information displays.

To obtain a Lean dashboard, i.e., a dashboard that—as Andon—indicates when
the user has to intervene, we have to [12]:

• visualize the “right” data and
• choose the “right” visualization technique.

10.3.1 Visualizing the “Right” Data

To choose the right data, we visualize data that is obtained through the measurement
model defined by the GQMCStrategies model, which specifies which data we
collect, together with the reasons why we collect it. For example, we could define
that we collect McCabe’s cyclomatic complexity of every method (what) because
using that measurement, we can decide how much we have to test that code (why).

Once the collected data are linked to the reason why we need it, it is possible to
correctly interpret the data and to reuse it for future projects since we are able to put
it into the correct context [20].

240 10 The Integrated Approach

The GQMCStrategies measurement model describes what we call the “ideal
dashboard”: it measures the achievement of the organizational strategy, i.e., the
business goals. It adds to measurements the context, meaning the reasons for
collecting it and the business strategy that justifies it [12].

It is not always feasible to elaborate a detailed GQMCStrategies measurement
model, for example, if the strategy is frequently changing as a reaction to a volatile
market. It is up to the organization to decide which level of monitoring and which
kind of information is worthy to collect and to visualize.

Typically authors distinguish between strategic, tactical, and operational dash-
boards. Seen from the perspective of the GQMCStrategies measurement model,
a strategic dashboard visualizes the achievement of the upper goals of the goal
hierarchy; a tactical dashboard, the goals that aim to enact the strategy through
the so-called tactics; and an operational dashboard, the most detailed goals at the
bottom that measure the achievement of the tactics.

10.3.2 Visualizing Data “Right”

Dashboards can be designed in a variety of ways. There is not one right way;
it depends on the requirements the dashboard has to fulfill. Generally speaking,
aspects of technology acceptance are important, mainly the perceived usefulness
and the perceived ease of use [22]. Important considerations are [8]:

1. The dashboard should help the user to understand the context of the data, i.e.,
state why this data was collected, how it should be interpreted, how we can use
this data in future projects, etc.

2. The dashboard should help the user to understand the meaning of the data,
i.e., choose visualizations that require a minimum of effort to get the conveyed
message, be coherent in the chosen visualization strategies, allow the user to
choose the level of detail of the data, etc.

To design a dashboard that “pushes” information to the user, i.e., captures his
attention, we have to understand how much effort a user has to invest to see the
dashboard. A dashboard should inform the user in unexpected, unforeseen situations
about problems, anomalies, etc. Then, switching to exploration mode, it should
support the user to explore the data, to filter and to search, to investigate the reasons
that caused the data, etc.

To set up a dashboard that is used in a “push” scenario, we found the following
considerations important [8, 12, 23]:

1. The user should see the dashboard without any effort. For example, in the car,
the dashboard is built in such a way that it is in the range of vision of the driver.
An organizational dashboard should be displayed on a monitor in the corridor or
in the office where many are passing by. The information will be pushed to the

10.3 Closing the Loop with an Andon Board for Lean Software Development 241

users without their active participation. An example for such a dashboard is the
Andon board, used in Lean manufacturing and placed visibly so that everybody
can see it (see Fig. 10.7).

2. The user should not need to interact with visualizations to understand the data.
The charts have to be designed in such a way that an interaction is only necessary
when the user switches into the “pull” mode, i.e., the dashboard got the attention
of the user and he wants to investigate further.

3. Arrange the data to minimize the time needed to consult the dashboard. Place
the same information always on the same spot. Allow the user to develop habits,
e.g., every morning, when passing by with the coffee in the hand, she can check
the current size of the error log that is displayed in the upper right corner of the
dashboard.

4. Guide the attention of the user to indicate important information. There are
different mechanisms that draw the attention of the user. If they are overused,
the user neglects them. For example, if everything on the dashboard is blinking,
the user will ignore it.

5. Since we want that the users look at the dashboards by choice, also aesthetical
considerations can increase the interest for the user to look at the dashboard.

The next step is to choose the right visualization techniques. For dashboards we
focus on visualizations that minimize the time needed to understand what has to be
communicated instead of trying to convey as much information as possible.

To highlight important data, we use “pre-attentive processing,” which we will
explain now. Researchers have identified different graphical properties that are
processed pre-attentively and grouped them into form, color, motion, and spatial
position [23]. Pre-attentive processing elements have the advantage that they are
processed (i.e., understood) faster than not pre-attentive elements [23].

An example is provided in Fig. 10.24: both boxes a and b contain numbers. If
we look at the box on the left (see Fig. 10.24a) and try to count the number of 3s,
we have to process the numbers sequentially, i.e., we have to look at each number
separately and decide if it resembles the form of the number 3.

It is much easier to count the number of 3s in the right box (see Fig. 10.24b) than
in the left box (see Fig. 10.24a). This is because we identify color differences faster
than the meaning of a symbol.

1 0 4 2 1 3 7 8 6 7 6 4 3 2
1 3 6 8 7 5 4 3 5 6 7 8 0 0
9 7 5 2 0 9 5 3 7 8 0 1 2 7
9 8 2 3 8 6 1 9 0 5 8 4 1 6
4 7 9 4 7 2 2 2 3 7 4 9 0 1

1 0 4 2 1 3 7 8 6 7 6 4 3 2
1 3 6 8 7 5 4 3 5 6 7 8 0 0
9 7 5 2 0 9 5 3 7 8 0 1 2 7
9 8 2 3 8 6 1 9 0 5 8 4 1 6
4 7 9 4 7 2 2 2 3 7 4 9 0 1

a b

Fig. 10.24 How many 3s are present in the boxes?

242 10 The Integrated Approach

How strong something is noticed pre-attentively depends from how different the
highlighted element is from the others and how different the other elements are
among each other. Moreover, combining two pre-attentively processed properties
(such as color and shape in Fig. 10.25) cannot anymore be processed pre-attentively
and requires again a sequential processing of the information.

1 0 4 2 1 3 7 8 6 7 6 4 3 2
1 3 6 8 7 5 4 3 5 6 7 8 0 0
9 7 5 2 0 9 5 3 7 8 0 1 2 7
9 8 2 3 8 6 1 9 0 5 8 4 1 6
4 7 9 4 7 2 2 2 3 7 4 9 0 1

Fig. 10.25 How many 3s are present in the box?

The information visualized on the dashboard is based on the measurement
strategy operationalized as GQMCStrategies measurement model. Single measures
are operationalized as GQM measurement models like the one in Fig. 10.26.

Goal

Question Question

Metric Metric Metric Metric Metric

Analyze
change request processing (object)
for the purpose of improvement (why)
with respect to the timeliness (focus)
from the point of view of the project
manager (who)

in the context of the software
development department (where).

What is the current
change request
processing speed?

Is the performance
of the process
improving?

Average
cycle time

Standard
deviation

% of cases
outside of
the upper

limit

Current average cycle time
Baseline average cycle time

Subjective rating
of manager’s
satisfaction

Fig. 10.26 GQM model to evaluate the timeliness of change request processing

10.3 Closing the Loop with an Andon Board for Lean Software Development 243

To visualize the measurements, we used colored tiles that visualize the outcome
of the measurement, the trend (if the value is decreasing, stable, or increasing
over time), and the classification of the measurement as “good” (green), “warning”
(orange), or “critical” (red).

It is also possible to use shades of gray, patterns, or a different line thickness if
the dashboard has to be accessible to color-blind people. In the United States, the
Section 508 Amendment to the Rehabilitation Act of 1973 states that “Color coding
shall not be used as the only means of conveying information, indicating an action,
prompting a response, or distinguishing a visual element.” This legal requirement
applies only to federal agencies in the United States, but it is a good idea to add a
second distinctive element, such as line thickness and a pattern, or to choose colors
that are so different that they become distinctive shades of gray for a color-blind
person.

If a tile (like the one in Fig. 10.27) is red, that means that the measurement
is classified as “critical” and requires the attention of the team. The name of the
measurement is “A” and the current value is 10. The arrow shows that from the last
time the measure was evaluated, the value has increased.

A

10

Fig. 10.27 A tile that represents a measurement outcome [12]

10.3.3 Putting the Pieces Together

Figure 10.28 depicts a dashboard based on tiles. Each tile represents the outcome
of a measurement. The measurements are grouped with their questions and goals.
We use colors to depict the status of a measurement to allow users to look at the
dashboard using pre-attentive processing. The idea is that green tiles do not need to
be read; they can be ignored. Orange and red tiles require attention; developers and
managers should have a look on them.

The dashboard represents the measurement goals connected to one business goal.
In our dashboard implementation, the values displayed within a measurement tile
can either originate from actual data or it can be the result of another measurement
goal. Figure 10.29 illustrates how the dashboard allows users to navigate through
the GQMCStrategies measurement model. In step 1 the user clicked on the red tile
related to the business goal “Increase reputation.” That tile is not calculated using
actual data, but it is the result of a measurement goal that belongs to the business
goal “Increase software quality.” Therefore, after clicking on the tile, the users
obtain the GQM model for the business goal “Increase software quality.” Moreover,
the users see why the tile of the business goal “Increase reputation” was marked as
“critical”: one of the tiles of the business goal “Increase software quality” is critical.

244 10 The Integrated Approach

Goal 1

Goal 2

Goal 3

A

10

Ques�on 1

B

33

C

7%

D

3

Ques�on 1

E

18

Ques�on 2

F

0.98

G

22

Ques�on 1

I

33

J

7%

H

7

Ques�on 2

K

Ques�on 3

L

20

Fig. 10.28 A dashboard showing the measurement outcomes as tiles [12]

Increase
reputation

Increase
software quality

Goal hierarchy Visualizes the
achievement of the

business goal

Question 1 Question 2

Measurement goal 1

Question 1

Measurement goal 2

Question 1 Question 2

Measurement goal 1

Drill down along goal hierarchy
Visualizes the

achievement of the
business goal

Drill down along data aggregation

Chart

Structure

Process

Fig. 10.29 Possible drill-down path in the dashboard

10.4 Summary 245

The above described navigation from the generic to the detail (from a visualiza-
tion that summarizes to the data behind that summarization) is called “drill down.”
In Fig. 10.29, a user drills down from the first tile that caught his attention, i.e., he
switches into what we called above “exploration mode.” He is interested in finding
the reasons why the dashboard indicates a problem and how to solve the problem. He
drills down along the goal hierarchy, i.e., he sees the measurement goals, questions,
and measurements that visualize the achievement of a lower-level business goal.

It is not necessary to drill down along the goal hierarchy; also other forms of
navigation from generic to detail are possible, e.g., as depicted in Fig. 10.29, from
an aggregated measurement to a visualization or table that displays the data behind
the aggregation. The original data can be shown, for example, as a table, as a chart,
a petri net, a hierarchical structure, etc.

10.4 Summary

This chapter presented how we combine the concepts of Agile software develop-
ment, non-invasive measurement, GQM measurement, the Experience Factory, and
Lean Thinking to obtain Lean software development, i.e., the translation of Lean
concepts into software engineering. As we said in Chap. 3, this translation can occur
in different ways; nevertheless, we think that the presented technologies are essential
to enact Lean Thinking in software engineering following the recommendations of
Womack and Jones [24] already mentioned in Chap. 2:

1. Specify value from the standpoint of the end customer: understand what is
valuable for the customer and why the customer is willing to pay money for a
certain product or service;

2. Identify the activities along the production process that contribute in
creating what is valuable from the standpoint of the end customer, i.e.,
identify all the steps in the value stream;

3. Align the value-providing steps in a way that every product and service is
built or provided along a simple, predefined path, i.e., make the value-creating
steps flow towards the customer;

4. Start an activity only at the moment that it provides value to a concrete
customer requirement, i.e., let customers “pull value” from the next upstream
activity;

5. Pursue perfection: continuously improve.

In the last part of this chapter, we presented the Andon concept as an instrument
to communicate to the team the collected information, knowledge, and wisdom. We
described an Andon concept that is based on the idea that the team members get
informed without interacting with the visualization. We recommend to place the
Andon in a clearly visible place but where it does not distract the team members
(as, for example, in Fig. 10.30).

246 10 The Integrated Approach

Andon

Fig. 10.30 Possible position of the Andon board in the Agile office space presented in Chap. 4

The presented technologies to measure, reason about, and improve the software
development process are necessary to enact Lean Thinking in software engineering.
The next chapter presents three case studies that report our experiences in applying
them.

Problems

10.1. Each concept in Fig. 10.2 contributes to obtain a software development
process that is able to determine its value stream, create knowledge, and improve.
What types of data are handled by each concept?

10.2. Assume you set up a fantastic dashboard for your team. As you collect the
data and visualize it, you notice that all the measurements show problematic values.
You let the dashboard in place for some days and also show it to your collaborators,
but nobody cares; everybody continues his job as if everything would be fine. What
is going wrong?

References

1. Astromskis, S., Janes, A.: Towards a gqm model for is development process selection. In:
Proceedings of the tarpuniversitetinė magistrantųir doktorantų konferencija. Kaunas University
of Technology, Kaunas, Lithuania (2011)

2. Astromskis, S., Janes, A., Sillitti, A., Succi, G.: Andon for dentists. In: Proceedings of
the International Conference on Software Engineering and Knowledge Engineering (SEKE).
Knowledge Systems Institute, Boston (2013)

References 247

3. Astromskis, S., Janes, A., Sillitti, A., Succi, G.: Implementing organization-wide gemba using
non-invasive process mining. Cutter IT J. 26(4), 32–39 (2013)

4. Astromskis, S., Janes, A., Sillitti, A., Succi, G.: Supporting governance in disciplined agile
delivery using non-invasive measurement and process mining. Cutter IT J. 26(11), 25–29
(2013)

5. Basili, V.R.: The experience factory and its relationship to other improvement paradigms. In:
Sommerville, I., Paul, M. (eds.) Proceedings of the European Software Engineering Conference
(ESEC). Lecture Notes in Computer Science, vol. 717. Springer, New York (1993)

6. Collins: Collins English Dictionary — Complete & Unabridged, 10th edn. HarperCollins
(2009). Online: http://www.collinsdictionary.com. Accessed 4 Dec 2013

7. Eckerson, W.W.: Performance Dashboards: Measuring, Monitoring, and Managing Your
Business, 2nd edn. Wiley, New York (2010)

8. Few, S.: Information Dashboard Design: The Effective Visual Communication of Data. Oreilly
Series. O’Reilly Media, Cambridge (2006)

9. Hibbs, C., Jewett, S.P., Sullivan, M.: The Art of Lean Software Development: A Practical and
Incremental Approach. Theory in practice. O’Reilly Media, Sebastopol (2009)

10. Janes, A.: Providing decision-making support using non-invasive business process metrics
collection. In: Biffl, S., Friedrich, G., Grünbacher, P., Succi, G. (eds.) Proceedings of the Alpine
Software Engineering Workshop (ASEW). Institute for Systems Engineering and Automation,
Heiligenblut (2004)

11. Janes, A., Russo, B., Succi, G.: Using non-invasive measurement techniques in agile software
development: a swot analysis. In: Proceedings of the XLII Congresso Annuale AICA. AICA,
Benevento (2004)

12. Janes, A., Sillitti, A., Succi, G.: Effective dashboard design. Cutter IT J. 26(1), 17–24 (2013)
13. Kniberg, H., Skarin, M.: Kanban and Scrum — Making the Most of Both. InfoQ enterprise

software development series. lulu.com (2010)
14. Kornilakis, H., Grigoriadou, M., Papanikolaou, K.A., Gouli, E.: Using wordnet to support

interactive concept map construction. In: Proceedings of the International Conference on
Advanced Learning Technologies (ICALT). IEEE Computer Society, Joensuu (2004)

15. McCabe, T.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320 (1976)
16. Mitsche, E.: Ortler normalweg (2013). Online: http://www.bergsteigen.com/klettern/trentino-

suedtirol/ortler-alpen/ortler-normalweg. Alpinverlag Jentzsch-Rabl. Accessed 4 Dec 2013
17. Novak, J.D., Gowin, D.B.: Learning How to Learn. Cambridge University Press, Cambridge

(1984)
18. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit. Addison-

Wesley Professional, Boston (2003)
19. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From Concept

to Cash. Addison-Wesley Professional, Upper Saddle River (2006)
20. Rombach, H.D., Ulery, B.T.: Improving software maintenance through measurement. Proc.

IEEE 77(4), 581–595 (1989)
21. Shalloway, A., Beaver, G., Trott, J.R.: Lean-Agile Software Development: Achieving Enter-

prise Agility. Lean-Agile Series. Addison-Wesley Professional, Boston (2009)
22. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interven-

tions. Decis. Sci. 39(2), 273–315 (2008)
23. Ware, C.: Information Visualization: Perception for Design, 3rd edn. Morgan Kaufmann,

Boston (2012)
24. Womack, J.P., Jones, D.T.: Lean Thinking: Banish Waste and Create Wealth in Your Corpora-

tion, 2nd edn. Free Press, New York (2003)

http://www.collinsdictionary.com
http://www.bergsteigen.com/klettern/trentino-suedtirol/ortler-alpen/ortler-normalweg
http://www.bergsteigen.com/klettern/trentino-suedtirol/ortler-alpen/ortler-normalweg

Chapter 11
Lean Software Development in Action

ché non fa scïenza,
sanza lo ritenere, avere inteso.
(There is no knowledge
without the ability to retain what has been heard.)

Dante Alighieri, La Divina Commedia, Paradiso, Canto V, 41-42

Uli took a big breadth, look at the watch—exactly 24 hours have passed since all
this has started. He decided he was happy with his work and he deserved to devote
some time to himself. Picked up Argo, his dog, and went jogging.

11.1 Introduction

The here reported cases are the result of three action research [9, 66, 72] initiatives
in which we introduced aspects of Lean software development as described in this
book within three teams.

Before we begin describing the three case studies, we describe how these
case studies were carried out and evaluated, and how we introduced the software
development teams to the developed measurement tools. This is needed to know
how a case study has to be performed to be valid and which conclusions we can
make based on them.

Ideally, research is seen as in Fig. 11.1: a somehow linear process that passes the
phases of understanding the problem, devising a plan, carrying out the plan, and
reviewing the solution [91].

Doing applied research about software development process models is not that
easy. Sometimes we look enviously to our colleagues that study more theoretical
aspects of computer science. They are often able to reduce the complexity of a
problem ignoring many aspects that do not influence their problem.

As researchers, we create models. Models are simplified descriptions of the
reality. We create such models so that we can reason about them. Typically,
a researcher studies models to understand, evaluate, and improve them. To evaluate

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__11

249

250 11 Lean Software Development in Action

Understand the
problem

Devise
a plan

Carry out
the plan

Review the
solution

SolutionProblem

Fig. 11.1 An ideal, “rational” model of research

if the result is valid, the researcher will try to apply the model back to the reality,
i.e., to verify if what he found out about the model is also valid in the reality.

The abstraction and simplification of the reality into models can be useful to
understand the big picture, but it can also lead to wrong conclusions. For example,
the waterfall model is the result of an approach to software engineering that ignores
many sources of complexity. It assumes the case in which the requirements are clear
to everybody, software developers know how to construct the desired software, and
coordination problems do not exist.

In the previous chapters, we have discussed the objectives of Lean, i.e., flexible,
iterative, just-in-time approaches. Such approaches work better than plan-driven,
linear, “systematic” approaches in contexts that require frequent changes and
adaptations, such as those we find in wicked problems. The same applies to research
where the goal is clear, but the methodology to achieve it is influenced by many
aspects, i.e., it is complex.

The introduction of Lean software development itself is a wicked problem that
requires a research approach that is based on an iterative approach. We encountered
the research about how to introduce Lean software development as in Fig. 11.2, an
approach characterized by many iterations, repetitions, and errors.

Understand the
problem

Devise
a plan

Carry out
the plan

Review the
solution

Problem Solution

Fig. 11.2 A real model of research (sometimes referred to as the “Garbage can model” [20])

A research method that supports such an iterative approach is action research.
Action research is a qualitative research approach, i.e., an approach that aims to
get an in-depth understanding and the reasons behind the observed phenomena,
studying them in their real-life context. To better understand what action research
is, we first briefly discuss quantitative and qualitative research.

Both, quantitative and qualitative research, aim to investigate theories, i.e.,
explanations about some aspect of the world. A theory is a hypothetical story about
why acts, events, structure, and thoughts occur [112]. A theory could be: “The code
written on Monday’s contains more defects than the code written during the rest of

11.1 Introduction 251

the week. This is because programmers are still thinking about the weekend and are
distracted from their work.”

Theories should consist of [111]:

• What: which factors are part of the explanation of the phenomena of interest?
• How: how are the factors related?
• Why: what justifies the selection of factors and the proposed causal relation-

ships?
• Context: what are the boundary conditions, the who, where, when, under which

the theory is valid?

Empirical theories are explanations that are formulated and then tested against
experience by observation and experiment [93]. To be scientific, such theories have
to be falsifiable, that means that it is possible to find a “reproducible effect which
refutes the theory” [93].

Theories can be studied using quantitative or qualitative research. To study a
theory, we define hypotheses, which are (as theories) explanations about some
aspect of the world, but while a theory is a collection of already accepted, consistent
statements [8], a hypothesis is a proposition, a statement that has to be yet confirmed
or rejected.

Quantitative research wants to infer characteristics about a population, based on
the data gathered from a sample [112]. The researcher has to collect as much data as
is necessary to generalize the findings with a small possibility of error. Non-invasive
measurement, as we presented it in Chap. 9, is a quantitative method to evaluate the
software development process. The GQM approach presented in Chap. 7 is a method
to precisely define what we want to analyze to avoid making wrong conclusions (see
below the concept of “construct validity”). A typical quantitative research approach
is the experiment. For example, we might want to study how a treatment group
reacts to a particular drug compared to a (not treated) control group. The goal of a
researcher performing an experiment is to exclude everything he did not consider
and that might influence the experiment and therefore falsify the conclusions he
makes. This includes also himself: he has to obtain the data without influencing the
observed phenomena, since this might falsify the results [8].

It is not always possible to study something quantitatively, for example, if
statistical inference cannot be used since there are not enough items to study, or if it
is not possible to bring the studied item into the laboratory or to interview it. In such
cases qualitative research approaches developed methods to study the phenomena. It
is important to remember that the outcome of quantitative and qualitative is not the
same: qualitative research is not suited for the type of generalization done within
quantitative research (statistical generalization), since it does not collect enough
data about the studied subject [112]. It studies the reality in-depth to enlarge our
understanding of it and to develop new (or modify existing) theories about it.

This type of generalization is called analytical generalization. The aspects of the
reality we study are not selected because they are representative or typical; they
are selected because we think that they will contribute to our understanding. An
interesting aspect to study can be a typical situation but also the strange, exceptional,

252 11 Lean Software Development in Action

or unique one. In both cases we want to evaluate if we can confirm the studied theory
or not [112]. The exceptional case might even contribute more to our understanding
than the typical one.

A typical qualitative research method is the case study, which we will now ana-
lyze further. A case study “investigates a contemporary phenomenon in depth and
within its real-life context, especially when the boundaries between phenomenon
and context are not clearly evident. The case study inquiry copes with the technically
distinctive situation in which there will be many more variables of interest than data
points, and as one result relies on multiple sources of evidence, with data needing
to converge in a triangulating fashion, and as another result benefits from the prior
development of theoretical propositions to guide data collection and analysis [112].”

Typically, “scientists select a portion of the world to investigate and carry
out disciplined observations in experiments. If the results of the experiments are
repeatable, they count as part of the body of knowledge and progress can be made
in sequences of experiments trying to falsify hypotheses. Scientific knowledge is
then the accumulation of hypotheses which have not (yet) been refuted [19].”

Action research originated from the observation that quantitative approaches
work very well in natural science since the investigated phenomena there do not
change over time: “the inverse square law of magnetism is always, demonstrably,
an inverse square law [19].” Social phenomena, such as a software development
process, do change over time, hence the idea to participate in its change to
investigate the change process itself [19].

A researcher applying the action research method uses similar instruments as
those developed by the case study research community; in fact “both case-study
research and action research are concerned with the researcher’s gaining an in-depth
understanding of particular phenomena in real-world settings [12].” The difference
between action research and case study research is that action research actively
interacts with the studied phenomena, trying to accomplish something.

In action research, also used in software engineering [97], the researcher acts to
accomplish something and at the same time analyzes his and the actions of others to
learn from it. It is “action disciplined by enquiry, a personal attempt at understanding
while engaged in a process of improvement and reform [50].”

Action research involves the following steps [66]:

• planning a change,
• acting and observing the process and consequences of the change,
• reflecting on these processes and consequences,
• replanning,
• acting and observing again,
• reflecting again.

This research process is depicted in Fig. 11.3. This research process is suited
to address wicked problems, as described in Sect. 1.2, that can not be formulated
exhaustively and stated containing all the information needed for understanding and
solving the problem. Using action research, we can tackle a problem in an iterative
way. In fact, Fig. 11.3 resembles the Plan-Do-Study-Act cycle discussed in Chap. 2.

11.1 Introduction 253

Start

Revise plan

Act

Observe

Reflect

Plan

Continue?

Stop

Yes

No

Fig. 11.3 The action research process [66]

The actual steps performed within the “observe” step of Fig. 11.3 resemble what
we do in a typical case study: we want to understand why and how something
happened [112]. This understanding can be gained either from outside the observed
group or from inside, depending on the participation of the researcher to the
activities of the group. A classification that uses four degrees of participation [39]
distinguishes:

• “complete participant”: the observer participates to the observed activity in the
same way as all other participants. The others do not know that he is observing.

• “participant-as-observer”: as “complete participant,” except that the other
participants know that he is an observer. He dedicates a small part of the available
time to formally observe the group.

• “observer-as-participant”: similar to “participant-as-observer,” just that the
observer dedicates most of his time to formally observe the group and a small
amount of time to participate in the activities of the group.

• “complete observer”: does not participate in the activities of the group, only
observes.

Our approach is usually “observer-as-participant”: we participate in the activities
concerning the introduction of the measurement program, i.e., the definition of the
measurements, in part, the interpretation of the data, and the visualization of the
results.

254 11 Lean Software Development in Action

We summarize our discussion about quantitative, qualitative, and action research
in Table 11.1.

Table 11.1 Quantitative, qualitative, and action research [8, 65, 112]

Aspect Q
ua

nt
it

at
iv

e
re

se
ar

ch

Q
ua

li
ta

tiv
e

re
se

ar
ch

A
ct

io
n

re
se

ar
ch

Suited for statistical generalization ✕

Suited for analytical generalization ✕ ✕

Objective ✕

Subjective ✕ ✕

Concise and narrow focus ✕

Complex and broad focus ✕ ✕

Tests theory ✕

Develops theory ✕ ✕

The researcher influences the studied phenomena to achieve a goal ✕

11.2 Evaluating Action Research

The power of scientific method lies in the replicability of its results [19]. To dis-
tinguish replicable research from non-replicable research, scientists have identified
quality criteria that estimate how credible and how trustworthy the research results
are. The four most used quality criteria in case studies are [112]:

• Construct validity: this concept is identical to the “representation condition of
measurement” presented in Chap. 9. To ensure construct validity, the researcher
has to “select the specific types of changes that are to be studied, relate them to
the original objectives of the study, and demonstrate that the selected measures
of these changes do indeed reflect the specific types of change that have been
selected [112].”

• Internal validity: to ensure internal validity, we have to demonstrate that the
inferences made within the study are correct, i.e., that there is really a causal

11.2 Evaluating Action Research 255

relationship between two factors x and y and that there is third factor z that
influences both of them.

• External validity: this quality criteria evaluates if the findings of the research
can be generalized beyond the reported study.

• Reliability: we have to make sure that if another researcher performs the same
study again, he achieves the same results. We have to report the methodology
detailed enough that it becomes repeatable.

In the case of action research, “recoverability” plays an important role: one has
to be able to “appraise the judgments being made by the researcher in the course
of the work [19].” With a low recoverability, it is not possible to evaluate the four
criteria mentioned above.

To address validity threats, researchers use “tactics,” i.e., actions that are known
to lower the validity treat. We used the following tactics:

• Frequent feedback: we report the measurement results to the stakeholders of our
inquiry and ask to verify if the data represents what it is supposed to measure.
Moreover, we identify outliers (i.e., extreme values) and study in detail why
this outlier occurred. The analysis of extreme values helped to better understand
what a given measurement probe measures and how we have to change it to
measure what it should measure. An example of such a modification was to
introduce a timeout for the measurement of development effort. We thought that
if a developer leaves his computer to attend a meeting, the screensaver would tell
us that we should stop the collection of effort. Unfortunately there are several
users without an active screensaver, which results in too high effort for those
users. To ensure that what we measure corresponds to what we want to measure,
we added our own timeout to the measurement probes. Frequent feedback was
used to improve construct and internal validity.

• “Dogfooding”: to eat one’s own dog food, or dogfooding, is an expression
that describes that a company uses its own products. The use of one’s own
software helps researchers to understand how it is to be a user of a given tool
and to imagine what users would require. It therefore helps to ensure quality,
build up experience in using it, and better understand how to demonstrate its
capabilities. We used the measurement framework on ourselves for the same
reasons: to understand how valid our conclusions are, based on the collected
data. Dogfooding was used to improve construct and internal validity.

• Modeling: the explicit definition of the measurement goals and means using
the GQMCStrategies approach makes it easier for others to decide whether the
measurement approach can lead to the same results in their context. Modeling
was used to improve external validity, i.e., to understand in which contexts our
findings could be transferred.

• Raw data: the data that we collect is refined and summarized to fulfill the
measurement goals. We do not perform our transformations on the raw data,
but we generate new, refined data. Keeping the original data (and the ability to
redo all the calculations on it) helped us to document how a result was obtained,
to recover from defects (if we discovered a mistake in our analysis), and—if we

256 11 Lean Software Development in Action

discovered new aspects that made it necessary to reinterpret the historic data—to
ensure the relevance of the data. This practice also improved the reliability of our
approach, that is, to come to the same conclusions if the data would have been
collected another time.

11.3 Introducing Measurement Programs in Companies

To successfully introduce measurement in an organization or a team, one should not
fall into the trap to consider it just a technical or organizational problem.

Indeed, it is a challenge to write software that automatically collects data about
the value stream, analyzes it, and visualizes it so that stakeholders can guide the
activities towards the maximization of value. On the one hand, the best technology
is useless if it is not accepted because of psychological or organizational reasons. As
we said in Sect. 9.5, measurement can be perceived as a limitation to ones autonomy.
It is important to explain the goals of the measurement and to reach a consensus
about the adopted methods on how to reach these goals. On the other hand, the best
accepted measurement program is also useless if it collects the wrong data.

The literature distinguishes two types of success factors to introduce a measure-
ment program: technical success factors and organizational success factors. If we
want to ensure that a measurement program is successful, i.e., if the organization
gains an advantage from the measurement program, we have to consider such
success factors.

The technical success factors ensure that once it is clear what we want to
measure, the measurement occurs in a reliable, objective way. This depends
on [25, 41, 43, 55, 67, 108]:

1. the collected measurements,
2. the training of the collaborators involved in the data collection,
3. the training of the collaborators involved in the data analysis,
4. the data collection procedures,
5. the degree to which the data collection is automated, and
6. how easy it is for stakeholders to obtain the outcome of the measurement.

While technical success factors give an answer to the question “Are we collecting
the data right?” organizational success factors focus on the question “Are we
collecting the right data?” Organizational success factors ensure that the collected
data has value for the stakeholders within the organization. The value of the
collected measurements depends on [41–43, 89, 108]:

1. the value stakeholders attribute to them, i.e., if they see a value in having a given
set of measurements,

2. that enough resources are dedicated to the measurement,
3. that the management supports the measurement,

11.3 Introducing Measurement Programs in Companies 257

4. the level to which there are disciplined processes for software development in the
organization,

5. and if the institutional beliefs, i.e., the set of beliefs that exist in the organization
see value in the collection of measurements.

Particularly in small or medium enterprises, point 2 of the organizational success
factors, that enough resources are dedicated to the measurement, is a success factor
that is often neglected but becomes critical. The ways to address this success factor
are to [27, 43]:

• implement the measurement program incrementally;
• adapt the measurement program to the measurement maturity of the company;
• keep the measurement costs low through automation; and
• keep the training costs low through the use of known ways to access the data

(e.g., spreadsheets).

Based on these success factors, the action research process we adopted to
introduce Lean software development is the process depicted in Fig. 11.3. The
specific activities we carry out in each phase will be described below.

11.3.1 Plan

As first step we meet with stakeholders of the organization to understand their
business goals and how they think that Lean should influence their achievement.

After having understood the business goals, together with stakeholder represen-
tatives, we create a first set of GQM measurement models that measure the value
stream of their most important processes, i.e., we measure properties of the activities
along the production process that contribute in creating what is valuable from the
standpoint of the end customer. What is valuable depends on the organization, for
some it is the avoidance of bugs, for others time-to-market, and so on.

In this initial planning phase, we do not develop a full-fledged GQMCStrategies
model, but we begin with a small number of measurement goals, suggested by the
management. In other words, we do not perform the measurement process following
a waterfall approach (as might be suggested by the approach described in Chap. 9,
see Fig. 9.6), but we implement the measurement program incrementally.

This phase, together with the “revise plan” phase (see below), ensures that the
success factors mentioned above are fulfilled, i.e., that we pick measurements that
stakeholders value (see also problem 10.2).

According to our experience, it is crucial in this phase to determine all hardware
and software constraints that might be relevant for the development of the non-
invasive measurement probes. Some organizations have a very low hardware budget,
which means that their developers might work on machines with old operating
systems or low hardware capabilities. For example, a measurement probe written in
Java [86] or .NET [82] that stays in the memory all the time might not be accepted by

258 11 Lean Software Development in Action

developers if this slows down the whole machine because the operating system has
to swap the memory to the hard disk. A measurement probe written as a plugin for
a development environment, which slows down the application because it collects
data, might also not be an option.

The developers of the measurement probes should use them themselves (a
practice called “eating your own dog food”) to extensively test the measurement
probe in day-to-day operations and so to avoid that the measurement probe disturbs
the normal execution of the development tools on the computers of the final users. If
the measurement probes will limit the users in accomplishing their work, they will
remove them.

The outcomes of this phase are:

• an initial GQMCStrategies grid measuring aspects of the companies’ value
stream and

• a conceptual model of the non-invasive measurement probes that have to be
developed to collect the measurements described in the initial GQMCStrategies
grid.

11.3.2 Act

In this phase we develop the measurement probes and install them on the machines
of the organization. Some probes can collect the data from a central server and can
be installed on the server, and some probes need to be installed on every single
machines where users interact. This part is one of the most challenging from a
technical perspective: the developers of the measurement probes need to find a way
to trace the events they are interested in.

If the events are retrieved in batch mode (see Sect. 9.4), the developers have two
possibilities:

• the monitored application provides a functionality to extract the events in form
of a log file and the developers convert that log file into the format they need; or

• the developers have to understand the format in which the application stores its
data and write themselves a tool that exports the events in a suitable format.

If the events we want to collect take place using a specific program, and if the
program provides such facility, we can instrument the program. To “instrument a
program” means to be able to use mechanisms provided by the program or the
operating system to detect when a given event occurs. If the program does not
provide any possibility to monitor its internals, we can try to use the services
provided on the operating system level to monitor the application or its behavior.

The concept map depicted in Fig. 11.4 describes how a typical installation looks
like.

11.3 Introducing Measurement Programs in Companies 259

Has access to

Integration
server

Measurement
probe

Is installed on

Readsdata
from

Data
warehouse

Transfers data to

Experience
factory

Reads data from

Dashboard

Reads data
from

Client
computer

User

uses

provides
feedback

to

sends data to

reads

keeps data in

3rd party server

3rd party data

Fig. 11.4 A concept map that describes the installation of non-invasive measurement probes

We install measurement probes on the client computers that the user operates.
The measurement probes send data to the measurement server. The measurement
server collects all incoming data and stores it before it is transferred to the data
warehouse. A data warehouse is a database that stores a “copy of transaction data
[i.e., data that describe an event] specifically structured for query and analysis [68].”
The measurement server not only collects the data coming from measurement
probes installed on client computers but also from central data repositories in which
users keep their data. Examples for such central data repositories are:

• source code repositories such as Subversion [5] or GIT [38],
• issue tracking systems such as Bugzilla [17] or Trac [107],
• workflow management systems such as Bonita BPM [14],
• document management systems such as Alfresco [3], and
• business intelligence systems such as Pentaho [90].

260 11 Lean Software Development in Action

Such central data repositories are usually managed by a server, in which the
measurement server can contact and extract data on a regular basis. Moreover,
the measurement server can also integrate data coming from different data sources
before transferring it to the data warehouse.

The data warehouse contains all the collected measurements of a given team. We
use Apache Cassandra [4], an NoSQL database, to store all collected measurements.
To support our software development team, the experience factory extracts data from
the data warehouse and provides them in the form of raw data or charts to support
project learning and organizational learning (see Chap. 8).

The dashboard queries the data provided by the experience factory and visualizes
it showing (see Chap. 11):

• the name of the measurement,
• the value of the measurement,
• the change of the measurement compared to the previous measurement in the

form of a rising or falling arrow, and
• an evaluation of the value of the measurement (see below), visualized changing

the background color from green to red—that states if the measurement outcome
is very good, good, fair, poor, very poor, or unknown.

A measurement can be evaluated to quickly indicate if some action is required
or not. One way to evaluate a measurement is to compare it against a benchmark. A
benchmark is a value that somebody finds important and against which we compare
some value to understand whether this value is good or bad. The benchmark
can be based on some reasoning or completely arbitrary. An example for a
benchmark based on reasoning is to recommend a maximum team size of 12, since
psychological studies have shown that 12 is the maximum number of people one
person (e.g., the project manager) is able to guide. An example for an arbitrary
benchmark is that in Europe, the maximum number of people that can be in a car is
nine; otherwise, it is considered a bus, and to drive a bus, the driver needs a different
driving license.

According to our experience, organizations do not have a clear understanding
about their software development process before they begin measuring. Similarly,
they do not have a clear understanding about the benchmarks they want to achieve.
Not one of the companies we examined told us from the beginning about which
benchmarks we should compare the collected metrics.

To overcome this problem, we perform the following steps:

• if possible, we compare the obtained measurements against recommended values
of the literature,

• we do not benchmark the actual measurements but the changes of the measure-
ments (if they are increasing, decreasing, or stable),

• we use anomaly detection techniques which first collect measurements (assuming
that those measurements are the “normal” case) and then—using the first set of
measurements to build a model—we evaluate the current measurements to detect
anomalies, i.e., values that are very different from the “normal” case,

11.3 Introducing Measurement Programs in Companies 261

• we discuss benchmarks after we collected some data, for example, after seeing
that a defect takes on average 2 weeks to be fixed, the team might decide—
depending on the strategy of the company (see Chap. 8)—that we should define a
benchmark lower than 2 weeks and we should monitor our processes to find out
what stops us to achieve that benchmark.

Please note that in Chap. 7, we talked about the interpretation of measurements
to understand whether a given measurement goal is achieved or not. The evaluation
we describe here can be applied to all levels of the GQMCStrategies model: we can
evaluate the top goal, a subgoal, the answer to a question (i.e., the interpretation of
the measurements that were collected to answer the question), or the measurements
themselves.

If it is not possible to evaluate some measurement, i.e., decide whether the
outcome is positive, neutral, or negative, the measurement might be irrelevant and
not worth to collect.

The outcomes of this phase are:

• measurement probes that collect product, process, and resource measurements
needed to answer the questions of the GQM graph defined in the previous phase;

• the necessary infrastructure to collect all measurements and transfer them to a
central server; and

• rules that define how measurement outcomes are evaluated, i.e., the interpretation
models that are part of the previously defined GQMCStrategies grid.

11.3.3 Observe

In this phase we monitor the collected data as it is collected on the measurement
server and intervene if a measurement probe collects wrong or no data.

To guarantee the correct working of our own installation of the system, we
developed a watchdog application that regularly verifies if the components on the
measurement server are correctly working (e.g., check if the databases are all online,
the server answers to requests, etc.) and if some data was received within some
defined number of days. If one of this conditions is not met, we notify this to the
development team via e-mail. Additionally, this watchdog application has a REST
interface [35], which can be used to read the status of the last evaluation.

To visibly notify everybody that something is wrong, in parallel to the e-mail
alert, we use a device called “Karotz [83].” This device has the form of a rabbit
and contains a Linux [105] computer that connects to the Internet and can be
programmed using JavaScript [32].

After the start of Karotz, a green led is blinking on the rabbit to indicate that it is
now ready to receive messages; see Fig. 11.5a.

262 11 Lean Software Development in Action

a

b

c

Fig. 11.5 Different ways on how the Karotz device can notify the user. (a) Normal state.
(b) Moving ears. (c) Alert

The device exposes commands to:

• activate the lamp in different colors,
• deactivate the lamp,
• play a sound file,
• use text-to-speech to say something,
• move with the ears (used to draw attention before saying something); see

Fig. 11.5b,
• react to a button installed between the ears,
• react to somebody moving the ears,
• react to a command identified through speech recognition, and
• react to an RFID tag put under the nose of the rabbit.

The commands exposed by the device can be triggered using two methods: either
using a push approach, sending the commands to the device using REST, or using a
pull approach in which a custom JavaScript program runs in background and calls
the commands from inside the device.

We use the second approach and install a JavaScript application on the device that
regularly checks the status of the watchdog application through the REST interface.
If the watchdog program is not reachable, the Karotz device says “the watchdog
application is not responding” and the lamp blinks in orange until somebody presses
the button between the ears of the device. If the watchdog application responds, but
the status returned some component that does not work correctly, the Karotz device
blinks in red (see Fig. 11.5b) until somebody presses the button between the ears
and says “there is a problem with component X.” X, the name of the component not
responding correctly, is returned by the watchdog program in the status response.

The pseudocode for this application is shown in Listing 11.1:

1 // read the status of the watchdog server
2 var response = ’’;
3 try {

11.3 Introducing Measurement Programs in Companies 263

4 response = callUrlThatReturnsTheStatusOfTheServer();
5 }
6 catch (error) {
7 useTextToSpeechToSayThatTheWatchdogIsDown();
8 setTheLampToOrange();
9 blinkUntilTheButtonIsPressed();

10 }
11

12 if (!response.equals(’ok’)) {
13 useTextToSpeechToSayThatThereIsAProblem(response);
14 setTheLampToRed();
15 blinkUntilTheButtonIsPressed();
16 }

Listing 11.1 Pseudocode to read the status of the watchdog server

The advantage of using the Karotz device compared to other systems (e.g.,
continuous integration servers such as Jenkins [59]) is that—as we wrote for
dashboards in Chap. 10—it uses a push approach to notify the team about some
problem. The first thing in the morning that everybody sees is if the Karotz device
shows that there is a problem. The same approach has been used by others to notify
the team about build errors [29].

In fact, the Karotz device is one way to support autonomation: it obtains the
current status of a system and notifies the team if something is wrong.

The outcomes of this phase are:

• the observation of which data are collected and how they are interpreted,
• ideas to improve the collected data or its interpretation, and
• a mechanism to understand if the measurement framework is working correctly.

11.3.4 Reflect

As we collect the measurements, we provide feedback to the users about what data
has been collected. This feedback occurs daily through what we call the “daily
mail” and in regular feedback meetings in which we ask users what they think
about the collected data and the contribution of the collected data to achieve the
stated measurement goals. This step corresponds to a validation of the defined
measurements and questions.

Moreover, in this phase we analyze the collected data together with the stake-
holders of the organization and discuss how to use it to progress towards a Lean
organization. This step corresponds to a validation of the defined measurement
goals.

The outcomes of this phase are:

• ideas to improve the collected data or its interpretation, and
• the understanding of how the data can be used to infer how Lean a team is and

where it should improve first.

264 11 Lean Software Development in Action

11.3.5 Revise Plan

The results of the reflecting phase are used to adapt the measurement probes and
construct the complete GQMCStrategies model, together with the definition of
business goals following the template described in Table 7.1.

11.4 Case 1: Exploration or Exploitation?

In the first case,1 we studied how a software development team is investing its time
within small software company. The company management felt that there is a trade-
off between two aspects: exploration or exploitation:

• Exploitation: with exploitation the company management understood the
improvement of existing features of their software. This includes the fixing
of defects as well as the enhancement of existing features. Exploitation, in this
case, helps to maintain the existing customer base, but, as the competition is
constantly improving their products, on the long run is not enough to ensure that
the company remains profitable.

• Exploration: with this term the company management understood the innovation
of their products and the implementation of new features to address new
requirements by existing customers but particularly potential customers that
could not be acquired so far because of missing features.

The revenue stream of the software company consists of two parts: the first part
comes from the acquisition of new customers and the second part from a yearly
maintenance contract stipulated with the majority of the existing customers. The
maintenance contract is valuable for the customer and the software company:

• for the customer, the contract protects from unexpected expenses, e.g., if the
state changes, the laws regulating what and when companies have to report to
authorities and

• for the software company, the contract guarantees a certain revenue stream that
can be considered in the budget.

In the studied software company, the revenue generated by the maintenance
contracts is enough to cover a large part of the fixed costs. Therefore, it is important
to satisfy the requirements of existing customers to keep them. The software
company faces the problem that customers paying the maintenance fee expect every
modification to be included in that fee. If, for example, a trading company using
the software to handle its orders constructs an additional warehouse to handle
shipments, the company expects that all the configuration of the software it bought

1We use the structure proposed by [78] to report about the three action research cases.

11.4 Case 1: Exploration or Exploitation? 265

years ago is included. If the software company did not accept, it would be likely that
the trading company changes the software on the next occasion (if, e.g., a competitor
makes a tempting offer).

To alleviate this problem, the company does not upgrade customers with a
maintenance contract automatically to newer versions of the software but provides
only maintenance and support for the current version. If the customer wants to
upgrade (e.g., because he wants to use advanced features available only in a newer
version), this is not covered by the maintenance contract and he has to pay a separate
fee for the acquisition of the new version, the conversion of the old data to the new
format, and the training of the employees with the modifications in their working
process because of the features present in the new version.

For the software company, this means that it is important to balance the
development of its development team: a lot of improvement exploitation makes
customers happy on the short run, but on the long run, the competitors will create a
better product than the one of the company and the customers will switch. On the
other hand, a lot of innovation will help to acquire new customers faster but make
the existing customers unhappy. They will feel that their product is not maintained
and start to watch out to find something better.

The management is therefore interested to understand how the development team
is spending its time: some improvement is needed to justify the charged maintenance
fee and to keep the software installed on the machines of the clients up to date, but
too much improvement meant that the team had less time for innovation, i.e., to
develop features that attract new customers or that convince existing customers to
buy a version upgrade. Figure 11.6 depicts this trade-off.

Fig. 11.6 Trade-off between
innovation and improvement

%
of

tim
e

de
di

ca
te

d
to

in

no
va

tio
n

% of time dedicated to
improvement

100%

100%

Too much innovation

Too much improvement

On the abscissa we plot the % of time dedicated to improvement, and on the
ordinate, we plot the % of the time dedicated to innovation. If we assume that the
sum of both components (improvement and innovation) has to be 100 %, the line
on which all combinations of improvement and innovation lie is the one shown in
Fig. 11.6. If the team dedicates time to other activities, also points below the line are

266 11 Lean Software Development in Action

possible. The management assumes that the shaded areas are problematic because—
as said above—they represent a situation in which the company loses competitivity
on the long run.

This problem can also be modeled similar to the one discussed in Chap. 5 about
the determination of the sweet spot that minimizes risk exposure (see Fig. 11.7).

R
is

k
ex

po
su

re

Time and effort invested for innovation instead of improvement

Risk exposure due to
low innovation

Risk exposure
due to low

improvement
Total risk
exposure

Sweet spot

Fig. 11.7 The sweet spot between the risk of too much improvement and too much innovation

11.4.1 Theoretical Framework

A theoretical framework is the set of theories and of explanations (and the
relationships among them) on which we base our study [61].

In this case, we assume that:

• Development costs are mainly determined by labor costs since writing software
is a labor-intensive activity and hardware costs are low compared to personnel
costs [56, 102].

• To ensure the financial liquidity (on the short run) and the profitability (on the
long run) of a software company, it is important to balance between activities
that generate revenue and maintenance activities that keep existing customers
happy, i.e., to balance exploration and exploitation [75], as also suggested by the
Balanced Scorecard [64].

• Developers spend the most time of their day in front of the computer, which
means that using non-invasive measurement probes, we are able to track a
significant part of the effort. Not all time is used to code, but also to communicate
with others, gather information, etc.

11.4 Case 1: Exploration or Exploitation? 267

The concept map for this case is the one depicted in Fig. 10.2, which we repeat
in Fig. 11.8.

Agile software development process

Non–invasive
measurement

Resources

Measurement

Information

Artifacts

Knowledge &
Wisdom

Activities

collects

employ produce

defines

manages

interprets

provides

describes

supports

creates
influences

Lean Thinking

supports

model

Andon

visualizes

visualizes

Experience
Factory

interprets

GQM+Strategies

refines

influences

does

Legend:

Concept

Relationship between concepts describing the type of concept using a verb.

Data flow

Data

Data

Fig. 11.8 Concept map for the first case study

The roles that the different concepts in this case have are:

• The Agile software development process is the object of study, in particular the
activities.

• Measurement: we measure how much time a user spends modifying an artifact
as well as descriptive properties of the currently modified artifact to classify the
effort as exploration or exploitation, e.g., the name, containing folder, size, etc.

• Non-invasive measurement: we developed probes to identify process, product,
and resource measurements, i.e., who was doing what, for how long, on which
artifact.

268 11 Lean Software Development in Action

• Data: the collected data are a log of the activities of all team members.
• GQMCStrategies model: defines how an activity is classified as exploration or

exploitation.
• Information: a list of activities with their classification as exploration or exploita-

tion.
• Knowledge and Wisdom: understanding how much we invest in innovation or

exploitation helps us to reason about the know-how: about how innovation and
exploitation takes place, which other possibilities exist, and how we can better
coordinate those two activities. Furthermore, this knowledge helps us to identify
what stops us from innovating or exploiting previous innovations.

• Andon: visualizes the identified activities and their classification. Two visual-
izations are used: one to visualize the overall distribution between exploration
and exploitation over time and one to visualize this distribution for logical code
entities, i.e., packages (in Java), namespaces (in C#), classes, and methods.

• Experience Factory: we store the definitions on how we distinguish the time
spent for exploitation and time spent for exploration. We also store the history
of exploration and exploitation effort, together with the component that required
the effort. This can help the team to estimate the maturity of a given component.

The GQMCStrategies model consists of GQMCStrategies elements and GQM
graphs. Our starting point is the following GQMCStrategies element:

• Organizational goal: balance the amount of resources invested in exploration
and exploitation. Using the GQMCStrategies goal template, this goal can be
refined as follows:

– Object: all software development products
– Focus: invested time for innovation and exploitation
– Magnitude: ensure that the invested time spent on innovation and exploitation

is balanced. Initially this means that the employed resources should be equal
for exploration and exploitation. Over time, this might change to adapt the
software development activities to the market needs.

– Time frame: continuously
– Organizational scope: software development team

• Context factors: the optimal balance depends on different factors, e.g.:

– Imminent deadlines are approaching (e.g., an upcoming release): exploration
is (usually) not desired because the product has to be stabilized before delivery
(see, e.g., [24]).

– Critical defects present in the backlog: exploration is (usually) not desired
because critical defects can induce/force clients to switch to competing
solutions and can damage the reputation.

11.4 Case 1: Exploration or Exploitation? 269

– Promising new technologies become available: more exploration than
exploitation is (usually) desired, since that could provide the organization
a first-mover advantage [74] for a specific application.

• Assumptions:

– Continuous innovation of the product helps to maintain the competitive
advantage of the organization [106].

– Continuous improvement of the existing features helps to maintain the
usefulness of the product for the user [71].

– Constant refactoring increases maintainability [36].
– Development costs are mainly determined by labor costs.
– Software development labor costs are mainly determined by interactions with

the computer.

• Constraints:

– To reduce measurement costs, we favor non-invasive measurement over
manual measurement.

• Strategy: monitor the amount of time developers spend editing code that can be
classified as innovation or exploitation and visualize the outcome so that the team
can decide how to proceed.

The associated GQM graph consists of the following elements:

• Measurement goal: analyze the software development process for the purpose
to balancing with respect to the time developers spend writing code from the
point of view of the software developer in the context of a software development
project (follows the GQM goal template of Fig. 7.5)

• Questions:

1. Which artifacts are developers working on?
2. To which project do these artifacts belong?
3. How much time do they work on the different artifacts?
4. To which class of activities does the work on artifacts belong: documentation,

coding, testing, browsing, communication, or unknown?

• Metrics:

1. For question 1 we extract properties useful to identify the artifact:

– the application name of the focused artifact,
– the file name of the focused artifact,
– the package name of the focused artifact,
– the class name of the focused artifact,
– the class annotations of the focused artifact,
– the implemented interfaces by class of the focused artifact,
– the method signature of the focused artifact, and
– the method annotations of the focused artifact.

270 11 Lean Software Development in Action

2. For question 2 we extract properties to identify the project, since we want to
balance the effort per project:

– the project name of the focused artifact (if the focused artifact belongs to a
software development project) and

– the full path to the file name of the focused artifact (we use the full path
to extract the project, assuming that all files belonging to one project are
stored in the same folder).

3. For question 3:

– the time spent working on the focused artifact.

4. For question 4 we classify the data collected because of questions 1 and 2
according to the rules defined in Table 11.2.

• Interpretation model: we consider the goal satisfied if we are able to track and
classify at least 90 % of the daily working time of every developer.

Table 11.2 Rules to classify activities

Rule
Classify effort as

D
oc

um
en

ta
ti

on

C
od

in
g

Te
st

in
g

B
ro

w
si

ng

C
om

m
un

ic
at

io
n

U
nk

no
w

n

File name ends with “.docx” (e.g., Manual.docx) ✕

File name ends with “.java” (e.g., Database.java) ✕

Method is annotated with “@Test” ✕

Window title contains “http” (e.g., https://www.site.com) ✕

Application is “Skype” or “Microsoft Outlook” ✕

All other cases ✕

11.4.2 The Study

In this organization, the management understood what is valuable for the customer,
why the customer is willing to pay money for a certain product or service, and how
much it costs to the company (in terms of market share and in terms of salaries) to
provide the product or service.

https://www.site.com

11.4 Case 1: Exploration or Exploitation? 271

What was not clear was the cost distribution between the different activities
performed by the team. We started implementing measurement probes to monitor
development process activities. We developed three probes:

1. an application written in Microsoft C# [79] that tracks the current application
and the current document (if the application shows the current document in the
caption) through the operating system API,

2. a plugin for Eclipse [30] that tracks the current method (together with the
package, the class name, the file name, and the project), and

3. a plugin for Microsoft Office [80] that tracks the current application (editing
documents, spreadsheets, presentations, or databases) and the current document
name that is being edited.

The measurement probes were implemented as depicted in Fig. 9.13. The
measurement probe 1 obtains the currently focused window and its title text from
the operating system (see Fig. 11.9) and reports any window switch or title change
to the server. The title can—depending on the application—contain the full path to
the document.

Fig. 11.9 The caption of a
window

The other two probes (probes 2 and 3) are implemented as plugins for the hosting
application: the plugin for Eclipse is written in Java [86] and the plugin for Microsoft
Office in C#. Both plugins regularly poll the current method, namespace (in C#),
package (in Java), file, project, or document from the hosting application and report
changes to the measurement framework (see Fig. 11.10).

Fig. 11.10 The cursor within
a method in Eclipse

Table 11.3 shows sample data as it is collected by the three described probes.

272 11 Lean Software Development in Action

Table 11.3 Example data of case 1

Machine Application Item Duration Probe

1 Eclipse at.company.project8.Action.run() 10:00 2

2 Eclipse at.company.project8.ActionTest.test1() 12:00 2

2 Eclipse at.company.project8.ActionTest.test2() 7:30 2

1 Google Chrome http://www.codeproject.com 2:00 1

3 Google Chrome http://stackoverflow.org 7:00 1

4 Microsoft Excel c:\projects\Comparison.xlsx 9:00 3

4 Notepad c:\projects\project8\summary.txt 3:00 1

2 Microsoft Word c:\projects\project8\manual.docx 15:00 3

The so collected data represents the effort developers spend interacting with the
computer. We did not collect all the effort a developer spends during the day, e.g.,
how long somebody was attending meetings, was reading a magazine, was thinking,
or was talking. It would be possible to develop mechanisms to non-invasively track
the position of people within the office using RFID tags or to detect if somebody
is actually looking at the screen using an eye tracker. For the purpose of this study,
we found that the higher accuracy would not have justified the additional costs to
implement such a solution.

Since the team was using JUnit, it was possible to isolate the amount of time
dedicated to testing in comparison to coding. Test cases in JUnit are annotated with
“@Test.” By logging the time spent in methods with that annotation, we were able
to extract the testing effort.

The collected data was useful to get a picture of how the team was spending its
time: through rules (see Table 11.2) it was possible to classify activities as “docu-
mentation,” “coding,” testing,” “browsing,” “communication,” or “unknown” [7].

The information we gained in this way (see Table 11.41) helped to understand the
distribution of activities [6] during, for example, a month and to visualize it using
stacked bar charts such as in Fig. 11.11 or other visualizations that help to focus on
the important activities [37].

From the visualization in Fig. 11.11, we see that the different projects required
different amounts of documentation, coding, etc. Such information can be used
by the team to discuss why for certain projects such differences exists, if this is
a problem, and, in case it is a problem, how to address it.

At this point we were able to distinguish between high-level activities but not yet
understand whether these activities were performed with the intention to innovate
or to improve.

http://www.codeproject.com
http://stackoverflow.org

11.4 Case 1: Exploration or Exploitation? 273

0 20 40 60 80 100

Project 3

Project 2

Project 1

Time in hours

Pr
oj

ec
t

Documentation Coding Testing Browsing
Communication Unknown

Fig. 11.11 Distribution of activities for three projects

While brainstorming with the developers of the team how to accomplish this, one
developer noted that for certain types of applications, when they developed one or
several new features, they were creating new files to host the new functionality.

For example, let us assume that a user wants to manage, together with the contact
information of a customer, all the phone calls he receives from that customer. This
requires to add fields to the database, create new dialog boxes or extend existing
ones, and write code that stores to and reads the data from the database. If the
modification is small, developers will just modify or extend existing files; if the
modification is larger, developers will refactor existing files and add new files.

The developers hypothesized that when they are innovating a product, they
more often create files than modifying existing ones, and when they are improving
a product, they usually modify existing files instead of creating new ones. See
Table 11.4 for some examples.

Table 11.4 Reasons to create new files for different application types

Application type New files are created for

Data-driven applications Several new Java files to implement the user interface
and the interaction with the database

Web applications using JSP [87] Several new JSP files to implement the web pages and
Java files to implement servlets

REST services using Jersey [60] One new Java file for each group of services

Some arguments for this hypothesis were:

1. Developers love to plan and implement their own ideas, i.e., write code. On the
other hand, they hate to read code written by others [70]. Apparently developers
perceive it as painful to try to understand the rationale behind code written by
others. This might be one reason why we observe that developers tend to create
new code structures before extending existing ones.

274 11 Lean Software Development in Action

2. If it is important for the team to ensure maintainability, source code files cannot
grow infinitely. They have to be structured into small, simple (intended as the
antonym of complex), understandable, modular, reusable parts. This makes it
more likely that a developer creates new files when adding functionality. This
is confirmed by the descriptions in the literature of anti-patterns like “lava
flow” [16].

Some arguments against this hypothesis were:

1. False positives: because of the argument 1 mentioned above in favor for the
hypothesis, it can also be that new files are added to exploit not to explore.

2. False negatives: it might be true that the more code is added, the more likely it
is that a developer adds new files, but the degree of innovation is not related to
the amount of code generated. There can be very innovative good ideas that are
implemented refactoring existing files.

To examine this hypothesis, we extracted the commit log from a JSP web
application from its Subversion [5] repository. As we see in Listing 11.2, the output
states for every commit the user, the date, and the list of files that were added
(marked with an “A” at the beginning of the line), modified (marked with an “M”
at the beginning of the line), or deleted (marked with a “D” at the beginning of the
line).

1 svn log --username (user) --password (password) (repository)
2

3 ---
4 r32 | mike | 2013-01-13 00:43:13 -0600 (Sun, 13 Jan 2013)
5 Changed paths:
6 M /foo.c
7

8 Added defines.
9 ---

10 r31 | joe | 2013-01-10 12:25:08 -0600 (Thu, 10 Jan 2013)
11 Changed paths:
12 A /bar.c
13

14 Added new file bar.c
15 ---
16 r28 | sally | 2013-01-07 21:48:33 -0600 (Mon, 07 Jan 2013)
17 (and so on)

Listing 11.2 Extraction of the commit log from a Subversion repository using the command line
tool “svn”

The developers found that the result depicted in Fig. 11.12 supported the
hypothesis. If we define the exploration phase as one in which many new files are
created, we can see that the first version of the software contained the files 0–270,
and then for some time (1 month) the existing files were improved and the existing
functionality was stabilized. The next (slower) innovation phases can be seen for

11.4 Case 1: Exploration or Exploitation? 275

the files from 270 to 320 and from 320 to 380. Currently, another innovation phase
(starting from file 390) is ongoing.

0 50 100 150 200 250 300 350 400 450

0

100

200

300

400

500

600

File number

Fi
le

 a
ge

 in
 d

ay
s

Fig. 11.12 File age in days for each file of a Subversion repository containing a JSP web
application

Another example of such a study is depicted in Fig. 11.13. Here we see that the
project was not developed from scratch, but copied into the Subversion repository
812 days ago. A similar thing happened for the files 6,100–9,950 and 10,000–
11,000: a module developed in a separate repository was merged with the main
production code.

0

0

200

400

600

800

File number

Fi
le

ag
e

in
da

ys

2 000 8 000 10 000 12 0006 0004 000

Fig. 11.13 File age in days for each file of a Subversion repository containing a .NET application

276 11 Lean Software Development in Action

We decided to use this finding to differentiate between exploration and exploita-
tion as follows. We measure the time a user spends editing source code files using
the non-invasive measurement probes described above. The obtained data (see
Table 11.3) describes the editing effort on the method level (and aggregating all
the effort for one file, on the file level).

If we want to get an estimate of the amount of exploration (innovation) contained
in the effort, we are interested in how much time was spend on new files. The
newer the file, the more likely it is that the modification was an implementation
of something new. Following the same logic, if the file is old, we do not want to
count the editing time as much as for new files.

To achieve this, we multiply all editing times with �
ˇ
exploration, where 0 <

�exploration < 1 is the attenuation factor for exploration, a number that expresses how
much we want to reduce the time if the file is old and ˇ a number that expresses the
age of the file. Therefore, the degree of exploration of a developer d that edited n

files is given by:

dexploration D
n

X

f D0

effortd .f / � �
age.f/
exploration;

where the function effortd .f / returns the effort a user spent editing the file f and
age.f/ returns the age of the file f . In our case we calculated the effort of a file in
minutes, the age of a file in months, and chose � D 0:5.

Accordingly, the degree of exploitation is calculated as follows:

dexploitation D
n

X

f D0

effortd .f / � �
age.f/
exploitation;

where 0 < �exploration < 1 is the attenuation factor for exploitation. By choosing

�exploitation D .1 � �exploration/;

the sum dexploration C dexploitation corresponds to the actual effort the user spent
editing source code files and the values of dexploration and dexploitation correspond to
a distribution of the effort collected by our measurement probes, weighted by the
age of the files that were edited.

This approach follows a similar logic as the contemporary h-index [100]. This
index is used to value the research output of a scientist in academia extending
the idea behind the h-index [48]. The h-index estimates value of the output of a
researcher considering the amount of citation his work has received. This index is
calculated considering all the publications an author produced and the citations his
work received. In brief, the higher the h-index is, the more the works of a researcher
are cited. The authors of the h-index expect that a high number of citations means
that the work has a higher relevance than a work that is not cited.

Similar to our idea to estimate exploration, the contemporary h-index weights
the contribution of each work of a researcher according to its age, counting it less

11.4 Case 1: Exploration or Exploitation? 277

for older articles. This index aims to measure how innovative the research of an
author is.

Another similar approach is used by researchers to analyze the expertise level
based on commits to source code repositories. To estimate how much somebody
knows about a part of code, they study the commits of a given author, decreasing
their weight the more in the past they occurred [46, 96].

11.4.3 Results

We visualize the results in a dashboard, distinguishing organizational learning and
project learning (see Chap. 8). To support organizational learning, we show the
development of exploitation and exploration, for example, in a stacked bar chart
as in Fig. 11.14.

0 200 400 600 800

May 2013

April 2013

March 2013

January 2013

December 2012

November 2012

October 2012

September 2012

August 2012

July 2012

June 2012

May 2012

April 2012

March 2012

February 2012

January 2012

December 2011

November 2011

October 2011

September 2011

August 2011

Time in hours

M
on

th

Exploration Exploitation

1 2001 000

Fig. 11.14 Distribution of activities for three projects

278 11 Lean Software Development in Action

To support project learning, a visualization that shows the current distribution of
exploration and exploitation is useful, for example, in a hierarchical pie chart as in
Fig. 11.15.

Fig. 11.15 Hierarchical pie
chart relating the source code
size with the degree of
innovation (This visualization
was created using the d3.js
library [15])

(root)

it

plugin

data
ui

it.plugin.Load

This pie chart shows the structure of the source code together with two measure-
ments. The most inner ring is the root namespace (in C#) or the default package (in
Java). The next rings are the actual namespaces or packages. To explain the diagram,
we added some labels to the diagram depicted here. In the real implementation, a
label appears when the user hovers a specific segment with the mouse. The inner
segments represent namespaces or packages and the outer segments classes. The
size of the segment represents the logical lines of code, the color of the segment,
and the degree of exploration as calculated by our approach. In this visualization we
assign the colors green, orange, and red to different levels of exploration, depending
on what the team thinks is adequate. These thresholds are likely to be different for
a computer game compared to the software for a healthcare system.

11.4.4 Discussion

The here described action research was carried out together with the organization
interested in a non-invasive approach to find out whether they spend too much time
on exploration or exploitation.

The experience described here is not replicable to other environments without
considering whether the way how programmers explore and exploit occurs as
described here, and it therefore makes sense to measure exploration and exploitation
using the heuristic described here.

11.5 Case 2: Non-invasive Cost Accounting 279

Also, developers can sabotage our proposed way to measure, by creating files
when not innovating and vice versa. In our case the management considered this
acceptable and even positive since this demonstrated to the developers that there
was no intention to spy on them or to judge their personal abilities but to visualize
what was happening during the development process and to increase transparency.

A similar problem to the one described in this case study was addressed by
Nord and Ozkaya [85]: the authors aim to “provide a framework for balancing
the allocation of critical architectural tasks to development effort.” They study the
trade-off between having many small architectural increments with a high cost of
rework but causing only short delays in the production process, or having few large
architectural increments (what they call “rearchitecting”) but causing long delays
because of “significant rework beyond the expected limits of refactoring.” They
propose to highlight architecture-related tasks or to enforce work in progress limits
for “tasks architecture-focused acceptance test cases, architecture prototyping, or
rework to pay back architecture debt.” The idea is to balance the implementation
of features with the development of the architecture. Such an approach could have
been also used to support the team described in this case study.

From a Lean perspective, the here described case study contributed to the
maximization of value, the creation of knowledge, and improvement as summarized
in Table 11.5.

11.5 Case 2: Non-invasive Cost Accounting

Cost accounting is the theory and system of setting up, maintaining, and auditing
the documentation about the cost of items involved in the production [21].

Cost accounting can serve different purposes, for example [99]:

• to understand if past investments paid off or not, i.e., if the returns of an
investment were enough to cover the initial expense,

• to calculate a minimum price that covers the production costs, or
• to gather data about the possible consequences of decisions.

In the previous case, we observed the interactions a developer had with the
computer to, based on rules, infer the activities he was performing. In this case,
we used a similar approach to develop a non-invasive cost accounting approach for
software development. The goals were to first identify costs and then to attribute
them to their cause based on data collected non-invasively.

280 11 Lean Software Development in Action

Table 11.5 Lean aspects addressed by the first described case

Goal Strategy Rationale

Maximization of
value

Identification and
elimination of waste

We trace activities as they occur, using the
developed measurement probes, and classify the
data as exploration or exploitation. This helps to
identify “waste of processing” (see Chap. 2), i.e.,
unnecessary activities. In our case, we cannot
say that, e.g., a lot of exploration is not necessary
in general; it is not necessary at some specific
point in time and might become again necessary
later. For example, around important deadlines,
release dates, etc., exploration might be
undesirable, while during normal operations, it
might be desirable to identify new opportunities

Pull not push As advised in Chap. 8, the collected data was
only evaluated to determine exploration and
exploitation because this was a need identified
by the management. Only if more information
needs arise, more data should be collected, or
new ways to analyze it should be implemented
[57]

Leveled production Balancing exploration and exploitation supports
the idea to level the production

Creation of
knowledge

Andon The dashboard creates transparency, increases
the level of information (know-what), and
motivates the development team to discuss and
decide about the future strategy. The decided
way to automatically extract knowledge is
documented in the form of a GQMCStrategies
model. Thresholds that describe how much
exploration and how much exploitation is
desirable should be stored and documented in
the Experience Factory to inform everybody
about the goals of the measurement (see Chap. 9)

Worker involvement The worker involvement occurs in the regular
discussion on how to improve the identification
of exploration or exploitation and whether
currently more of one or the other is needed

Improvement Autonomation Non-invasive measurement together with the
Andon concept implement autonomation.
Implementing autonomation creates the
conditions so that it is easier to monitor and
ensure quality

11.5 Case 2: Non-invasive Cost Accounting 281

(A Not So Brief) Introduction to Cost Accounting

Cost accounting distinguishes between variable and fixed costs [99]:

• Fixed costs arise to provide what is needed to produce the desired products
or services, such as machines, factories, personnel, etc. To a certain degree,
they are independent to the produced output. For example, let us assume we
rent a doughnut factory. The rent we have to pay during 1 month does not
change whether we produce one doughnut or if we let the machines work at
their full capacity day and night. On the other hand, fixed costs do change
if we need to change the maximum output of our doughnut machines, for
example, if we need to buy more machines to be able to produce more
doughnuts per hour. Costs that we incur to increase our capabilities are
also called “stand-by costs.”

• Variable costs are costs that do change in relation to the output.

Variable and fixed costs (unless we change our production capacity)
change in relation to the output quantity as depicted in Fig. 11.16.

C
os

ts

Quantity

Fixed costs

Variable costs

Total costs

Fig. 11.16 Fixed, variable, and total costs [99]

Cost accounting also distinguishes between direct and indirect
costs [99]:

• Direct costs are costs that we incur because we produce a specific product
or we deliver a specific service. Since we know which product or service
caused them, we can directly attribute the costs to what caused them.
Examples of direct costs are the parts we need to produce to assemble a car
or the amount of work we need to develop a given software development
project.

• Indirect costs are “indirect” because [99]

(a) we cannot identify a specific product or service that caused the cost.
This might be because all products or services benefit from the incurred
cost. Examples for such costs are heating and lighting.

(continued)

282 11 Lean Software Development in Action

(b) we do not want to identify the specific product or service that caused
the cost because this would be too time consuming and therefore
expensive.

Fixed, variable, direct, and indirect costs appear in all combinations.
Table 11.6 gives some examples.

Depending on how we attribute costs to products and services, we will
obtain different results and make different types of conclusions. In the
following, we briefly look at three prominent approaches: Total Absorption
Costing, Variable Costing, and Activity-Based Costing.

Table 11.6 Examples of fixed, variable, direct, and indirect costs

Fixed Variable

Direct Stand-by costs need to produce
one specific product

Costs for raw materials

Indirect Heating costs Accounting costsa

aAccounting costs (in part) change in relation to the amount and complexity of products

and services an organization provides, but it is usually not worthy to attribute them directly

to the products and services that caused them

Total Absorption Costing distributes all costs (direct and indirect) to the
produced products or provided services. Let us assume, we are producing
bikes in a workshop and selling them over an online store. We produce two
bike models: model A and model B. Table 11.7 lists the costs to produce the
two models.

Table 11.7 Costs for producing the bike models A and B

Costs Model A Model B

Material e200 e500

Labor e60 e120

Rent e24,000 per year

Heating e1,000 per year

Marketing e10,000 per year

Administration e50,000 per year

The price that Total Absorption Costing calculates is the minimum long-
term price to cover all costs. It attributes the direct costs to the product that
caused it and distributes the indirect costs over all produced items as depicted
in Fig. 11.17.

(continued)

11.5 Case 2: Non-invasive Cost Accounting 283

Indirect costs

Direct costs model A

Direct costs model B

Total costs
model A

Total costs
model B

Fig. 11.17 Cost calculation in Total Absorption Costing

Table 11.8 shows the calculation of the production price of each model
using Total Absorption Costing, assuming that we sell 200 bikes of model A
and 50 bikes of model B per year. In this case we distribute the indirect costs
equally over all bikes. We could choose a different distribution key such as
machine hours, personnel hours, material used, etc.

Table 11.8 Total Absorption Costing example

Cost Model A Model B

Material e200 e500
C Labor e60 e120

D Total direct costs per bike e260 e620

Rent .e24; 000 � 250 D e96/ e96 e96
C Heating .e1; 000 � 250 D e4/ e4 e4
C Marketing .e10; 000 � 250 D e40/ e40 e40
C Administration .e50; 000 � 250 D e200/ e200 e200

D Total indirect costs per bike e340 e340

Total direct costs per bike e260 e620
C Total indirect costs per bike e340 e340

D Total costs (direct and indirect) per bike e600 e960

Let us also assume that a customer makes us the following offer: he would
buy 100 bikes of model B for e800 each. According to Total Absorption
Costing, we should not accept the offer, since the costs of a model B bike is
e960.

On the other hand, if we sold already 250 bikes, we covered already all
fixed costs and it is not necessary to charge e340 indirect costs per bike. For
the 100 additional bikes, e800 would be enough to cover the variable costs
and to contribute with e180 per bike to the profit.

(continued)

284 11 Lean Software Development in Action

This is what the proposers of Variable Costing criticize: that Total
Absorption Costing can lead to wrong decisions. The indirect costs of e340
per bike are based on the expected number of sold bikes. If the demand for
bikes increases (e.g., because of an increase in gasoline prices or due to a
special advertising campaign), the price is too high and could lead to missed
opportunities as the example above. On the other hand, if the demand for bikes
decreases, Total Absorption Costing recommends to increase the prices: with
a lower output, all indirect costs have to be redistributed over fewer items.
Increasing prices when the demand decreases is not the best way to stimulate
a stagnating market.

In summary, according to Variable Costing, the short-term minimum price
for a product is the price that covers only the variable costs. Of course, on the
long term, we have to cover also the fixed costs. Everything we earn above
the variable costs contributes to cover the fixed costs and to the profit (see
Fig. 11.18).

Fixed costs

Variable costs model A

Variable costs model B

Price
model A

Price
model B

Profit

Fig. 11.18 Cost coverage in Variable Costing

To evaluate the business performance, the organization can calculate the
contribution margin as in the example in Table 11.9. The contribution margin
is the total revenue minus the direct costs. It contributes to cover all indirect
costs and—if it exceeds them—contributes to the profit of the organization.
(Strictly speaking, revenue minus costs is not (yet) the profit, since income
taxes and interests still have to be subtracted. Therefore, revenue minus costs
is called “Net operating income.”)

Besides the problem that Total Absorption Costing can lead to wrong
decisions, some scholars consider it logically incorrect since Total Absorption
Costing redistributes the indirect costs equally over products and services

(continued)

11.5 Case 2: Non-invasive Cost Accounting 285

instead of looking at what caused the costs [51, 99]. This step might make
a product or service look more expensive than it really is and cause its
discontinuation even if it is profitable.

To overcome this problem, Activity-Based Costing distributes indirect
costs over products and services looking at the activities a product or service
needs to be produced or provided. Activity-Based Costing identifies the
performed activities and attributes the consumption of resources to those
activities [110]. It is based on the idea that activities cause costs and it is
possible to match these activities to the products and services that require
them [23]. Matching products and services to activities and then activities to
resource consumption costs identifies the reasons behind the cost of a given
product or service [110].

Table 11.9 Example of the calculation of the contribution margin and the net operating
income

Cost Model A Model B All models

Total revenue per bike e700 e1,100
� Total number of bikes produced 150 80

D Total revenue e105,000 e88,000 e193,000

Material per bike e200 e500
C Labor per bike e60 e120

D Total variable costs per bike e260 e620
D Total variable costs e39,000 e49,600 e88,600

Total revenue e105,000 e88,000
� Total variable costs e39,000 e49,600

D Contribution margin e66,000 e38,400 e104,400

Rent e24,000
C Heating e1,000
C Marketing e10,000
C Administration e50,000

D Total fixed costs e85,000

D Contribution margin e104,400
� Total fixed costs e85,000

D Net operating income e19,400

Table 11.10 shows an example of an ABC analysis for a customer service
department.

(continued)

286 11 Lean Software Development in Action

Let us assume it is the customer service department of the bike store
described above. The e50,000 indirect costs for administration are attributed
to three main activities: processing customer orders, handling customer
inquiries, and performing credit checks. The costs are attributed according
to the amount of time these activities take. For example, the assigned cost to
process customer orders equals to e50;000

100
� 70 D e35; 000. Then, after we

know that this activity was executed 500 times, we know that, on average, one
customer order costs e35;000

500
D e70.

The idea is to use the calculated cost-driver rates to estimate the cost
of future projects by just evaluating the activities we will perform. For
example, Fichman and Kemerer [34] used Activity-Based Costing to study
reuse activities and its cost structure.

Table 11.10 Activity-Based Costing example [63]

Activity % of time
spent

Assigned
cost

Activity
quantity

Cost-
driver rate

Process customer orders 70 % e35,000 500 e70.00

Handle customer inquires 10 % e5,000 1,000 e5.00

Perform credit checks 20 % e10,000 400 e25.00

Total 100 % e50,000

Activity-Based Costing attributes all costs (direct and indirect costs) to the
produced products and services and therefore suffers from the same problems
as Full Absorption Accounting. It violates the principle that costs should be
attributed to products and services only if their production or provision caused
the costs. Therefore, the calculated costs are useless to take any cost-related
decision about the produced products or services [99]. Nevertheless, taking
the perspective of the performed activities and—grouping all activities needed
to obtain some outcome—processes and studying how activities and processes
consume resources are useful to understand the causes behind the fixed costs,
and to decide how fixed costs can be reduced, converted into variable costs
(e.g., changing technology), or removed.

Following this line of thought, “Lean Accounting”—a cost accounting
method based on Activity-Based Costing—maps costs to value streams [77].

Activity-Based Costing (as Total Absorption Costing) implements a
“push” approach to cost accounting: it distributes (pushes) all costs over the
cost-items. In Table 11.10 we distributed the costs that the customer service
department generated over 100 % of the time that this department spent. We
then look how many percent of the total time the department spends for the

(continued)

11.5 Case 2: Non-invasive Cost Accounting 287

different activities to determine the costs that have to be distributed over the
specific activities.

Time-Driven Activity-Based Costing [63] implements a “pull” approach to
cost accounting [1]. Time-Driven Activity-Based Costing does not anymore
distribute the costs over all the available activities, but introduced the concept
of “standard costs.”

Standard costs are estimated or expected costs, used instead of the real
costs to do calculations in cost accounting. Once the real data are available,
it is then interesting to study the differences between the actual costs and
the standard costs and why these differences occurred. If the standard costs
are lower (higher) than the actual costs, the profit will be lower (higher) than
expected.

In Time-Driven Activity-Based Costing, we split the cost driver
into [63]:

• cost per time unit of supplying resource capacity and
• unit times of consumption of resource capacity by products, services, and

customers.

This means that instead of determining the cost-driver rate as in
Table 11.10, we have to:

1. determine the capacity of each resource,
2. determine the cost per unit of using that resource, and
3. estimate the standard unit times of consumption of resource capacity.

In our example we have to identify the capacity of the customer service
department. Let us say that this department consists of one employee and that
per year we have about 250 working days. In this case, if we work 7.5 h per
day (8 h � 2� 1

2
h of break), we have a capacity of 1 � .250 � 7 � 60/ D

105;000 min of work.
To determine the cost per unit of using the customer service department,

we consider the generated costs of e50,000. Therefore, the cost of 1 min of
work of this department is:

total costs

total capacity
D 50; 000

105; 000
D e0:48:

Finally, we estimate the standard unit times of consumption for each
activity as in Table 11.11.

What remains is to determine how many times we performed each activity.
Once we know this number, we have to multiply it with the cost to determine
the cost assigned to this activity. Table 11.12 shows the analysis for our
example.

(continued)

288 11 Lean Software Development in Action

This type of analysis shows the advantages of Time-Driven Activity-Based
Costing: we do not anymore distribute the costs over the available time, but
activities consume resources using standard cost rates. In this example, we
have different possibilities to evaluate Table 11.12:

• The customer service department is really underutilized: we can assign new
responsibilities to this department, i.e., new activities to lower the unused
capacity.

• The estimated unit times are too low; they do not reflect the reality. In
this case, we either increase the unit times or we investigate why they are
higher than expected.

Table 11.11 Standard unit times of consumption for each activity

Activity Standard unit times Cost-driver rate

Process customer orders 10 min per order 10 � 0:48 De4.80 per order

Handle customer inquires 15 min per inquiry 15 � 0:48 De7.20 per inquiry

Perform credit checks 60 min per check 60 � 0:48 De28.8 per credit check

Also in Time-Driven Activity-Based Costing, when estimating we have
to be aware (as mentioned in Chap. 9) that high precision often comes
with a high cost. Spending a lot of time to find the “perfect” cost-driver
rates or standard cost rates is not necessary. Usually, the objective is to be
approximately right, rather than precise [63].

Table 11.12 Time-Driven Activity-Based Costing example [63]

Activity Quantity U
ni

tt
im

e

To
ta

lt
im

e
us

ed
(i

n
m

in
ut

es
)

C
os

t-
dr

iv
er

ra
te

To
ta

lc
os

t
as

si
gn

ed

Process customer orders 500 10 5,000 e4.80 e2,400

Handle customer inquires 1,000 15 15,000 e7.20 e7,200

Perform credit checks 400 60 24,000 e28.80 e11,520

Total used 49,000 e21,120

Total supplied 105,000 e50,000

Unused capacity 56,000 e28,880

11.5 Case 2: Non-invasive Cost Accounting 289

In this case study, we describe how we supported an organization to implement
a Time-Driven Activity-Based Costing approach.

11.5.1 Theoretical Framework

In this case, we assume that:

• Development costs are mainly determined by labor costs since writing software
is a labor-intensive activity and hardware costs are low compared to personnel
costs [56, 102].

• The time one spends to develop is mainly determined by the actual writing,
rewriting, and refactoring of code in front of a computer.

• Developers spend the most time of their day in front of the computer, which
means that using non-invasive measurement probes, we are able to track a
significant part of the effort. Not all time is used to code, but also to communicate
with others, gather information, etc.

• It is possible that one person works on several computers. This means that we
have to remove the effort that is counted twice.

The concept map for this case, as in the previous case, is the one depicted in
Fig. 10.2. The roles that the different concepts in this case have are the same as in
the previous case study, with the following differences:

• Measurement: we measure how much time a user spends modifying an artifact
as well as descriptive properties of the currently modified artifact, e.g., the name,
containing folder, size, etc.

• GQMCStrategies model: defines which costs are measured and how they are
measured.

• Information: the list of artifacts with the amount of time each user modified it.
• Andon: visualizes the cost distribution within the code base.
• Knowledge and Wisdom: collects cost information of past projects to improve

the estimation of cost drivers (see below) and, therefore, the estimation of the
costs of future projects.

• Experience Factory: we store the cost accounting data of current and past
projects.

The GQMCStrategies element in this case is constructed as follows:

• Organizational goal: track software development costs using a cost accounting
approach. Using the GQMCStrategies goal template, this goal can be refined as
follows:

– Object: the software development process
– Focus: costs
– Magnitude: all costs generated by the work of the software development

teams are tracked and assigned to its cost item.
– Time frame: continuously
– Organizational scope: software development division

290 11 Lean Software Development in Action

• Assumptions:

– Development costs are mainly determined by labor costs.
– Software development labor costs are mainly determined by interactions with

the computer.
– Developers can work on more than one computer at the same time.

• Constraints:

– To reduce measurement costs, we favor non-invasive measurement over
manual measurement.

• Strategy: track the amount of time developers spend working on artifacts and
assign this time to the modified artifact.

The associated GQM graph consists of the following elements:

• Measurement goal: analyze the software development process for the purpose
of evaluation with respect to the costs from the point of view of the software
developer in the context of the software development team (follows the GQM
goal template of Fig. 7.5)

• Questions:

1. Which artifacts are developers working on?
2. How much effort do developers spend working on the different artifacts?
3. What caused the effort, i.e., what is the cost item?
4. At which computers are developers working?

• Metrics:

1. For question 1 we extract properties useful to identify the artifact:

– the application name of the focused artifact,
– the project name of the focused artifact,
– the file name of the focused artifact,
– the package name of the focused artifact,
– the class name of the focused artifact,
– the class annotations of the focused artifact,
– the implemented interfaces by class of the focused artifact,
– the method signature of the focused artifact, and
– the method annotations of the focused artifact.

2. For question 2:

– the time spent working on the focused artifact.

3. For question 3:

– the metrics collected because of question 1 (to be able to attribute effort to
source code items, e.g., a class that represents a feature) and

– tasks currently assigned to the developer (to be able to attribute effort to
the task that caused it).

11.5 Case 2: Non-invasive Cost Accounting 291

4. For question 4:

– log-on/log-off time reported by the operating system.

• Interpretation model: we consider the goal satisfied if we are able to track at
least 90 % of the daily working time of every developer.

11.5.2 The Study

The company for which we implemented non-invasive cost accounting traditionally
keeps track of the development effort of each developer by hand. Every developer
uses a company-internal website to record on what he is currently working. The
recorded data are similar to the data in Table 11.13.

Table 11.13 Manually entered data to keep track of costs in case 2

Date From To Project Notes

22.04.2013 08:00 09:00 Project A Implemented feature #24

22.04.2013 09:00 11:00 PDF library Implemented feature #15

22.04.2013 11:00 12:00 Project C Discussion about requirements

22.04.2013 14:00 15:00 Group meeting

22.04.2013 15:00 16:00 Project B Implemented feature #72

22.04.2013 16:00 18:00 Project C Resolved issue #251

23.04.2013 08:00 12:00 Project A On-site training

23.04.2014 14:00 18:00 Studied how to develop software
for Android

The reported effort is either:

• development effort

– for a specific project (as in line 1 in Table 11.13),
– for a common library used by the team, therefore not attributable to a specific

project (as in line 2 in Table 11.13),

• effort for supporting activities (e.g., meetings, learning)

– for a specific project (as in the lines 3 and 7 in Table 11.13), or
– not for a specific project (as in the lines 4 and 8 in Table 11.13).

Such an approach does not evaluate the costs of software development; it just
keeps track of the consumed resources without assigning them to the produced

292 11 Lean Software Development in Action

product or delivered service. In fact, the company did not know how much a module
of a given piece of software costs; it just knew how much it costs altogether, how
many resources were consumed, and for which tasks they were consumed.

Using this approach, we do not know where we invested our money; we just
know how much (the salaries of our programmers) and why (the tasks that they
were performing). Moreover, in our case the programmers were documenting the
task they were performing in a textual comment, which made it impossible to
perform any automated analysis over the recorded data.

The company was using Subversion [5] to store the source code in a central
location and to handle the common work on the source code by two development
teams. Moreover, after each completed task, team members were advised to write
the task ID of the just completed task into the commit message. This practice helps
to increase the traceability between tasks and source code, i.e., I know by which
tasks which source code was modified, but it does not tell me how much effort the
modification caused [44, 45].

Knowing how much we invested and if and how much we are still investing in
some technology is helpful to:

• estimate the skills of the team and decide on how to improve,
• decide whether the proposal of some programmer or consultant to “rewrite the

module in one day” is reasonable,
• estimate the complexity of some technology,
• estimate the required testing effort to ensure that some technology works,
• estimate the maturity of some technology.

We saw three solutions to estimate the effort behind produced source code:

1. estimate the effort based on cost drivers such as estimated size or complexity (as
e.g., in COCOMO II [13]),

2. estimate the effort based on the manual time sheet entries and the manual entries
in the commit log, or

3. measure the effort using a non-invasive plugin.

Cost estimation is a valid instrument to estimate the overall development cost
of some module. It is used to get a rough estimate of future costs to know what
to expect. On the other hand, cost estimation is not suited to estimate the costs
of particular aspect or to discover yet unknown sources of costs. Cost accounting
(and the company interested in non-invasive cost accounting) aims to document past
costs to identify such yet unknown sources of costs and their reasons. Therefore, we
excluded option 1.

We excluded also option 2 for the reasons mentioned in Chap. 9, i.e., that we did
not want to distract the programmers from doing what they can do best: designing
and developing software.

Cost accounting distinguishes between cost-type accounting (identifying all costs
we generate in the organization) and cost-unit accounting (attributing them to a
production unit, i.e., linking them to their reason) [99].

11.5 Case 2: Non-invasive Cost Accounting 293

To implement cost-type accounting, we implemented similar measurement
probes as described in Sect. 11.4:

1. a plugin for Microsoft Visual Studio [81] that tracks the current method (together
with the namespace, the class name, the file name, and the project),

2. a plugin for Eclipse [30] that tracks the current method (together with the
package, the class name, the file name, and the project), and

3. an application written in Microsoft C# [79] that tracks the current application
and the current document (if the application shows the current document in the
caption) through the operating system API.

The measurement probes were implemented as depicted in Fig. 9.13. The
probes 1 and 2 were implemented as plugins for the hosting application. The plugin
for Eclipse is written in Java [86] and the plugin for Microsoft Visual Studio in C#.
The plugins regularly poll the current method, package, namespace, file, project,
or document from the hosting application and report changes to the measurement
framework.

The measurement probe 3 is not strictly needed in this case; we kept it for
debugging reasons to understand what is happening on the machines in general.

Table 11.14 shows sample data as it is collected by the three described probes.

Table 11.14 Example data of case 2

M
ac

hi
ne

application Item D
ur

at
io

n

Pr
ob

e
1 Eclipse at.company.tools.Action.run() 10:00 2

2 Eclipse at.company.tools.ActionTest.test1() 12:00 2

2 Eclipse at.company.tools.ActionTest.test2() 7:30 2

1 Google Chrome http://www.codeproject.com 2:00 3

3 Google Chrome http://stackoverflow.org 7:00 3

4 Microsoft Visual Studio com.company.project7.Settings.save() 8:00 1

4 Microsoft Visual Studio com.company.project7.charts.Bar.draw() 15:00 1

4 Microsoft Visual Studio com.company.project7.print.Print(Chart c) 17:30 1

The data collected by the probes 1 and 2 represent the coding effort developers
spend interacting with the computer. As in Sect. 11.4, we did not directly collect all
the effort a developer spends during the day since we assumed that the benefits of
knowing what the developers were doing in that time would not justify the costs of
collecting that additional data. In terms of cost accounting, we considered that time
an indirect cost.

http://www.codeproject.com
http://stackoverflow.org

294 11 Lean Software Development in Action

We store the collected coding effort data using a hierarchical data structure as
depicted in Fig. 11.19. A node is either a project, a file, a package, a namespace,
a class, or a method. Nodes can have child nodes and properties (depicted as little
nodes attached to the nodes in the hierarchy such as “language” or “effort”).

Fig. 11.19 One hundred and
twenty seconds of effort spent
editing “method1” in the
class “Class1”

language=Java

effort=120

project

namespace1
Class1

void method1(int a)

company
com

Figure 11.19 depicts 120 s of effort a user had to modify the method “method1”
in the class “Class1,” which is in the package “com.company.namespace1” and is
part of the project “project.” Figure 11.20 represents another example in which a
user edited “method2” in the class “Class2.”

Fig. 11.20 Seventy five
seconds of effort spent editing
“method2” in the class
“Class2”

language=Java

effort=75

project

namespace2
Class2

int method2(String s)

company
com

To obtain the total effort spent by one user, we merge the threes as in Fig. 11.21:

Fig. 11.21 Seventy five
seconds of effort spent editing
“method2” in the class
“Class2”

language=Java

effort=120

project

namespace1
Class1

void method1(int a)

company
com

effort=75

namespace2
Class2

int method2(String b)

As we implemented the first version of non-invasive cost-type accounting, we
noticed that some developers (apparently) were able to work more than 24 h per
day. This was because these developers were using two or even more machines at
the same time, and we were just summing up the effort collected on all machines.
The total amount of time recorded on each machine was correct, but we wanted

11.5 Case 2: Non-invasive Cost Accounting 295

to measure the amount of work in terms of human effort, not computational effort.
Therefore, we decided to merge the effort per person in the following way.

Let us assume that one user has three machines. He uses two to develop and one
to browse and e-mail. Figure 11.22 shows such an example:

User opens http://google.com

Time

1

2

User moves focus to “method1”

User moves focus to “method2”

3

User follows a link

M
ac

hi
ne

8:00

User moves focus to “method3”

User closes file

User opens a sub page of http://stackoverflow.com

9:00 10:00 11:00 12:00 13:00 14:00 18:00

User shuts down computer

Fig. 11.22 Possible effort distribution between three machines

The user depicted in Fig. 11.22 begins the day opening the source code of
“method1” on machine 1. He sees that there is something wrong and begins to look
for the error. He opens “method2” on machine 2 but cannot find the problem. He
opens a browser on machine 3 and searches for a possible solution on http://google.
com. He finds a possible solution on http://stackoverflow.com, closes “method2,”
and edits “method3.” He sees that everything works now and closes the file on
machine 1.

Our initial measurement probes report effort from all three machines as in
Table 11.15.

The total effort that our probes recorded from 8:00 to 18:00 is 17 h and 10 min.
Since we wanted to estimate the human effort and not the computational effort, we
decided to work on a way to merge the work one user performs on all his machines
to obtain the effort per person.

The problem of counting effort multiple times arises from overlapping events. If
two events are not overlapping, the aggregated time line can be calculated simply
by copying the events from all machines (see Fig. 11.23).

To remove the overlapping parts of two events, we adopted the following rule:
“if two events overlap, modify the older event so that they do not overlap anymore.”

We distinguished two cases:

• The older event ends before the new event ends (see Fig. 11.24): we shorten the
older event till the beginning of the newer event.

http://google.com
http://google.com
http://stackoverflow.com

296 11 Lean Software Development in Action

Table 11.15 Data reported for the events depicted in Fig. 11.22

Machine Application Item From To Duration

1 Eclipse method1 8:00 12:30 4:30

2 Eclipse method2 9:00 13:00 4:00

3 Browser http://google.com 10:50 11:00 0:10

3 Browser http://stackoverflow.com/. . . 11:00 12:00 1:00

3 Browser http://stackoverflow.com/. . . 12:00 14:10 2:10

3 Browser http://stackoverflow.com/. . . 14:10 18:00 3:50

1 Eclipse method3 12:30 14:00 1:30

Fig. 11.23 Two events that
are not overlapping

Time

1

2

M
ac

hi
ne

All

• The older event ends after the new event (see Fig. 11.25): we split the older event
into one part until the newer event and one part after the newer event.

Fig. 11.24 The older event
begins before the newer event
and ends before the newer
event

Time

1

2

M
ac

hi
ne

All

This aggregation process was performed reading all events from the database and
inserting them according to the following algorithm:

1. Insert the first event (see Fig. 11.26).

http://google.com
http://stackoverflow.com/
http://stackoverflow.com/
http://stackoverflow.com/

11.5 Case 2: Non-invasive Cost Accounting 297

1

2
M

ac
hi

ne

All

Time

Fig. 11.25 The older event begins before the new event but ends after the new event

Time

1

M
ac

hi
ne

8:00 9:00 10:00 11:00 12:00 13:00 14:00 18:00

Fig. 11.26 The first event was inserted

2. Insert the next event and remove all overlapping parts of older events (see
Fig. 11.27).

Time

1

2

M
ac

hi
ne

8:00 9:00 10:00 11:00 12:00 13:00 14:00 18:00

Fig. 11.27 The second event was inserted and the overlapping parts of the older event removed

3. Continue at point 2 until all events are inserted (see Fig. 11.28 for an example of
an insertion of a third event).

According to this algorithm, the events in the example of Fig. 11.22 would be
inserted as in Fig. 11.29. The corresponding data are listed in Table 11.16.

As we implemented this first idea and used it for several months, we noted that its
performance was very slow. This algorithm requires that on every insertion, all older
events are checked and (in case they overlap) are modified. For example, it could

298 11 Lean Software Development in Action

Time

1

2

3

M
ac

hi
ne

8:00 9:00 10:00 11:00 12:00 13:00 14:00 18:00

Fig. 11.28 The third event was inserted and the overlapping parts of the older event removed

Time

1

2

3

M
ac

hi
ne

8:00 9:00 10:00 11:00 12:00 13:00 14:00 18:00

Fig. 11.29 First attempt to merge the effort of one user working on multiple machines

Table 11.16 Data reported for the events depicted in Fig. 11.29

Application Item From To Duration

Eclipse method1 8:00 9:00 1:00

Eclipse method2 9:00 10:50 1:50

Browser http://google.com 10:50 11:00 0:10

Browser http://stackoverflow.com/. . . 11:00 12:00 1:00

Browser http://stackoverflow.com/. . . 12:00 12:30 1:30

Eclipse method3 12:30 14:00 1:30

Browser http://stackoverflow.com/. . . 14:00 14:10 1:30

Browser http://stackoverflow.com/. . . 14:10 18:00 3:40

http://google.com
http://stackoverflow.com/
http://stackoverflow.com/
http://stackoverflow.com/
http://stackoverflow.com/

11.5 Case 2: Non-invasive Cost Accounting 299

happen that some developer was working on his laptop while not connected to the
Internet; therefore, his data was not uploaded for some time. When this developer
reconnected to the Internet, all past data had to be reevaluated to obtain the true
picture of the development effort.

What we did not consider is the amount of data that our system generated. In
Fig. 11.30, we depict the number of events collected from January 22, 2013 to July
15, 2013 (ca. 6 months). During this time, 41 users generated 1,232,030 events.

User

N
um

be
ro

fe
ve

nt
s

co
lle

ct
ed

in
6

m
on

th
s

0 10 20 30 40

0
50

,0
00

10
0,

00
0

15
0,

00
0

20
0,

00
0

Fig. 11.30 Number of events uploaded by 41 users in 6 months

We see that the frequency with which users change focus during their work
varies. Some reasons for this are that users use the computer in different ways,
because of different working styles or because of a different experience in using the
software [22].

To cope with the amount of data generated every day, we modified our measure-
ment strategy as follows. We did not measure the effort anymore individually on
each machine, but we collected only the focus changes on each machine.

A focus change occurs when a user changes the focus (i.e., the cursor or the
selection) from one item to another. What an “item” specifically is, is determined
by the measurement probes. In our case we captured the current method, together
with the package, the namespace, the class name, the file name, the project name,
and the project language.

As we merge all the focus changes of one user, and we sort it, we obtain the
sequence of focus changes, i.e., a sequence of items on which the user moved his
attention.

300 11 Lean Software Development in Action

Figure 11.31 depicts this approach: all focus changes are projected to a common
time line representing all machines. Once we copied all focus changes to the merged
time line, we calculate the time differences from one focus change to the other to
obtain the effort.

Time

1

2

3

M
ac

hi
ne

8:00 9:00 10:00 11:00 12:00 13:00 14:00 18:00

All

Fig. 11.31 Merging the effort based on focus changes

The effort resulting from the events on the common time line is shown in
Table 11.17.

Table 11.17 Data reported for the events depicted in Fig. 11.31

Application Item From To Duration

Eclipse method1 8:00 9:00 1:00

Eclipse method2 9:00 10:50 1:50

Browser http://google.com 10:50 11:00 0:10

Browser http://stackoverflow.com/. . . 11:00 12:00 1:00

Browser http://stackoverflow.com/. . . 12:00 12:30 1:30

Eclipse method3 12:30 14:10 1:40

Browser http://stackoverflow.com/. . . 14:10 ?a ?b

aWe do not know how long this event lasts since there is no event that starts
after this one
bSince we do not know till when the event lasts, we cannot calculate the
duration of this event

The computational effort for this new approach was much lower since the
detection of overlaps—which required that every new event was compared with
all older events of that day—is not required anymore. Three more aspects of the
approach are illustrated in Fig. 11.31 and Table 11.17:

http://google.com
http://stackoverflow.com/
http://stackoverflow.com/
http://stackoverflow.com/

11.5 Case 2: Non-invasive Cost Accounting 301

1. We only project focus change events to the common time line: we ignored the
events in which the user closed a file or shut down the computer.

2. For the last event of the time line, the length is not defined: since after the last
event there is no more focus change, we cannot calculate its length. We have to
remove it.

3. If no focus change occurs after an item was closed, the effort is attributed to
the closed item until a focus change occurs: “method3” was closed at 14:00
and at 14:10 the user continued browsing. In our second approach, we attribute
the 10 min between 14:00 and 14:10 to “method3” instead of “method2” (see
Table 11.17).

Aspect 3 is alleviated if users change their focus frequently. To verify this
condition, we analyzed the collected data depicted in Fig. 11.30 looking at the
duration of events, i.e., the time between one focus change and another. For this
data the median was 2 s, which means that the most frequent events had a duration
of 2 s.

To get a better understanding of the distribution of the duration of events, we used
a visualization called hexagon binning [73], a form of bivariate histogram, useful for
visualizing the structure in datasets with large n. The concepts of hexagon binning
we used are:

1. we tesselate the xy-plane over the set (range(x), range(y)) by a regular grid of
hexagons,

2. we count the number of points falling in each hexagon, and
3. we plot the hexagons using a color gradient in proportion to the counts.

The result is depicted in Fig. 11.32. According to this visualization, the majority
of events are very short, even though there are events that last up to 30 min.

Based on these results, we decided to adopt the new algorithm.
So far, we developed a cost-type accounting (identifying all costs we generate

in the organization) method to collect the effort per person during the software
development process. As a next step, we worked on cost-unit accounting, i.e.,
attributing the collected effort to a development unit, i.e., linking the costs to their
reason.

The “right” attribution of effort to the cost object, i.e., the item that we consider
responsible for that cost, depends on the goals of the organization.

In this case, the company—in parallel to the development projects for different
clients—was developing and maintaining a class library that they called the
“platform.” This class library was the place where the team collected all sorts
of code that was frequently needed. Using the terms of knowledge management
described in Chap. 5, it was the place where the team embedded knowledge and
wisdom. Refining and extending “the platform” was seen as a way to standardize
and disseminate new ideas for improvement (as depicted in Fig. 2.18). For the rest
of the case study, we will refer to this class library simply as platform.

From a cost accounting perspective, time invested in the platform was not directly
attributable to one project or client; hence, those costs had to be considered indirect
costs.

302 11 Lean Software Development in Action

0 200 400 600 800 1,000 1,200

0

8:20

16:40

25:00

Index (in thousands)

Ti
m

e
in

te
rv

al
be

tw
ee

n
fo

cu
s

ch
an

ge

1
3834
7668

11501
15334
19168
23001
26834
30668
34501
38334
42167
46001
49834
53667
57501
61334

Counts

Fig. 11.32 Hexagon binning visualizing the time intervals between focus changes of ca. 1.2
million events

Using the developed measurement probes, we were able to collect the editing
time and attribute it to the source code. In this case, the cost-item (the item to which
we want to attribute the costs) was the project.

Capitalization of Development Costs [98]

Similar to cost accounting, financial accounting aims to record business
transactions and operations [40], but while cost accounting is intended for
stakeholders internal to the business, financial accounting aims to inform
stakeholders external to the business. While organizations are free to adapt
cost accounting to their needs, the rules on how an accountant has to perform
financial accounting are regulated by law.

In financial accounting, two important concepts are [40, 54]:

• The balance sheet: it shows the financial situation of the business at a single
point in time. It compares all things an organization owns (assets) with all
the things an organization owes (liabilities) to others.

(continued)

11.5 Case 2: Non-invasive Cost Accounting 303

• The profit and loss account: it shows the financial performance of the
business over the past accounting period. It compares expenses with
revenues.

As we said, the balance sheet describes a given point in time, and the profit
and loss account describes a time span. At the end of an accounting period,
we use the profit and loss account to calculate the difference between revenues
and expenses. This difference is then called (this should not be a surprise now)
the profit (if it is positive) or the loss (if negative).

Let us see what happens when we incur an expense in financial accounting.
For example, we pay the salaries of our employees. The initial situation is
depicted in Fig. 11.33 in which we depict the balance sheet and the profit and
loss account.

Balance sheet Profit and loss account

Assets Liabilities Revenues Expenses

Fig. 11.33 Balance sheet and the profit and loss account

After the expense, the situation changed as it is depicted in Fig. 11.34: the
bank account (an asset) is lower than it was before and we have an expense.

If a company incurs many expenses, the assets will continuously diminish.
This can be a disadvantage for companies that produce software for their
internal use. For external stakeholders, it might look like the organization is
spending money without getting anything back. Moreover, the new software
that allows the organization to work more efficiently and faster is not recorded
anywhere.

Balance sheet Profit and loss account

Assets Liablities Revenues Expenses

Fig. 11.34 Balance sheet and the profit and loss account after an expense

(continued)

304 11 Lean Software Development in Action

This is different for tangible assets, e.g., a machine. If a company
constructs a machine using their own resources, the costs for constructing
this machine can be added to the assets part in the balance sheet. This allows,
among other things, to [40]:

• Show to external stakeholders that the value of the organization increased.
• Distribute the development costs over the lifetime of the machine: instead

of registering all the construction costs as expenses (and maybe incurring a
loss in that year), the expenses can be registered so that the profit and loss
account does not change, but only the assets increase. Then, every year,
a part of the asset is registered as an expense, due to the depreciation of
the asset. Depreciation means in this case that the asset loses its value over
time because it becomes outdated or (like a machine) deteriorates.

The International Accounting Standard 38 (IAS 38) describes under
which conditions a software has to be registered as an asset instead of an
expense [26]:

• it is probable that the future economic benefits that are attributable to the
asset will flow to the entity and

• the cost of the asset can be measured reliably.

Not all the costs can be considered; the standard distinguishes between
research and development costs. Research costs cannot be considered part
of the value of the asset; they have to be registered as expenses [26, 53].
If it is not possible to distinguish the research phase of an internal project
to create an intangible asset from the development phase, “the entity treats
the expenditure for that project as if it were incurred in the research phase
only [26].” Some interpretations of this standard claim that this is the case
if an organization uses Extreme Programming [10, 28]. As in Extreme
Programming phases of research and development alternate (as well the Lean
software development approach proposed in this book), the incurred costs
have to be counted as expenses.

The measurement probes presented in Chap. 9 can provide help to
“reliably separate research from development [10].” (“Reliably” here means
“objectively” as explained in Chap. 6.) During the development, non-invasive
measurement probes record the time needed to produce the entire source
code, together with the source code itself. Once the development is finished,
the source code contained in the final product is used to split the total
expenses in two parts:

1. the expenses for producing the source code present in the final version of
the product count as development costs and

2. the expenses for producing source code that was deleted or modified
afterwards count as research costs.

11.5 Case 2: Non-invasive Cost Accounting 305

Previously we looked at three ways to attribute costs to the cost-item: Total
Absorption Costing, Direct Costing, and Time-Driven Activity-Based Costing.

Knowing the development effort of the entire code base (“development” now
again intended as both research and development), we can compute the cost of the
project according to all three approaches we discussed above:

• Total Absorption Costing: we need to distribute the indirect costs to the cost-
items, the projects.

• Direct Costing: we only consider the direct costs and add a profit margin that,
after a year, should cover also the indirect costs.

• Time-Driven Activity-Based Costing: we look at the different activities that
take place during the development process and measure the amount of time they
consume resources.

We will now go through all three ways of cost accounting and discuss how we
implemented Time-Driven Activity-Based Costing for the organization. In this case
study we look at two major cost blocks:

• Labor costs: are theoretically direct, variable costs. It is expensive to track them
manually, but many organizations require from their employee to fill out some
form of time sheet to document what they are doing. If an organization is not
doing this, this cost block becomes an indirect, variable cost.

• Platform costs: the development of the shared library called “platform” occurs
while there are no other ongoing projects or—if it is urgent—in parallel with
other project activities. We consider it an indirect, fixed cost. The platform is
developed by the same team that develops the actual projects.

Table 11.18 shows the costs of the last accounting period that we want to analyze
using the three costing approaches. For the illustration of Total Absorption Costing
and Direct Costing, we assume that the development team is at least tracking
manually how much time they dedicate per project. We will explain later how we
collect this information automatically.

Table 11.18 Costs for producing projects 1 and 2

Costs Project 1 Project 2

Labor e108,000 e252,000

Hardware costsa e10,000

Platform development costsb e31,050

aCosts to replace obsolete hardware
bCosts to replace outdated platform code due to changes of legal constraints

306 11 Lean Software Development in Action

To compute the cost of a project according to Total Absorption Costing, we need
to redistribute the development costs of the platform over all projects, based on the
size of the project. The assumption is that if a project is large, it makes more use of
the platform, and vice versa.

Table 11.19 shows a solution based on Total Absorption Costing. In this case
we distribute the hardware costs according to the team size in each project and the
platform development cost according to the number of packages.

Table 11.19 Total Absorption Costing solution

Cost Project 1 Project 2

Labor e108,000 e252,000

D Total direct costs per project e108,000 e252,000

Team size 3 7

Number of packages 150 120

Hardware .e10; 000 � .3 C 7/ D e1; 000/ per person e3,000 e7,000

C Platform .e31; 050 � .150 C 120/ D e115/ per package e17,250 e13,800

D Total indirect costs per project e20,250 e20,800

Total direct costs per project e108,000 e252,000

C Total indirect costs per project e20,250 e20,800

D Total costs (direct and indirect) per project e128,250 e272,800

The team we worked with grouped all classes and interfaces that were meant
to be used together to provide one reusable functionality in one Java package. A
“component” is intended here as defined in [104], i.e., as a unit of composition with
contractually specified interfaces and explicitly stated context dependencies only.
Therefore, using the number of packages, we distribute the platform development
costs in relation to the provided functionality.

Another reason for this distribution is that according to the experience of the
team, larger projects profited more but generated also more new requirements from
the platform project.

According to Direct Costing, we do not distribute the indirect costs over the
cost-items. Table 11.20 shows the calculation of the net operating income for each
project.

In the case of Time-Driven Activity-Based Costing, we have to change our way to
look at costs: we have to think which activities occur and which resources they need.
In our case we consider two resources: the developer and the platform. For both we
continuously generate costs: the developer receives a wage and the platform requires
regular updates and maintenance.

11.5 Case 2: Non-invasive Cost Accounting 307

Table 11.20 Direct Costing solution

Cost Project 1 Project 2 All projects

D Total revenue e200,000 e300,000 e500,000

Labor e108,000 e252,000

D Total variable costs e108,000 e252,000 e360,000

Total revenue e200,000 e300,000

� Total variable costs e108,000 e252,000

D Contribution margin e92,000 e48,000 e140,000

Hardware costs e10,000

C Platform costs e31,050

D Total fixed costs e41,050

D Contribution margin e140,000

� Total fixed costs e41,050

D Net operating income e98,950

So far, the non-invasive measurement probes are able to collect the effort spent
on code, but we are not (yet) able to relate this effort to the project.

To accomplish this, we instrumented an existing system that the team was using:
a software-based Kanban board (see Chap. 10). The team had it developed internally
to manage its tasks.

Examples for a task are the implementation of a requirement, the correction of
defective code, or the update of the database software on the server. All tasks were
stored in a central database, from which we regularly extracted data to create our
own activity log.

The instrumentation of the Kanban board allowed us not only to link develop-
ment effort to a project but to each single task. The choice reflected the costing
requirements of the organization that was interested to know how much each task
costs the team. Such information is useful to:

• determine the price of a project based on the costs of implementing each
requirement,

• price additional requirements requested by the customer, or
• estimate the cost of future projects based on the costs of similar activities

performed in the past.

308 11 Lean Software Development in Action

An example of data we collected is shown in Table 11.21.

Table 11.21 Data extracted
from the Kanban board
software

Task Date Status

125 4.2.2013 Backlog

125 6.2.2013 Selected

125 7.2.2013 Develop

125 7.2.2013 Done

125 8.2.2013 Deploy

125 11.2.2013 Live!

127 11.2.2013 Backlog

128 11.2.2013 Backlog

129 11.2.2013 Backlog

128 13.2.2013 Deleted

Using this data we can reconstruct the life cycle of a task as depicted in
Fig. 11.35. The task in Fig. 11.35 was added to the “Backlog” and followed the
expected life cycle from “Backlog” to “Live!.”

Time

Develop
Done

St
at

us

Deploy

Backlog
Selected

Live!

Fig. 11.35 Life cycle of a task

Since some tasks get deleted before being completed, we added an additional
state “Deleted” to be able to reconstruct the life cycle of such tasks, too (see
Fig. 11.36).

We now combined the information about when tasks are under development
(when they have the status “Development”) with the data coming from our non-
invasive measurement probes as depicted in Fig. 11.37. We could also say: the
activities measured by our measurement probes (the time spent editing artifacts)

11.5 Case 2: Non-invasive Cost Accounting 309

Time

Develop
Done

St
at

us

Deploy

Backlog
Selected

Live!

Deleted

Fig. 11.36 Life cycle of a task that was deleted before being finished

are assigned to activities at a higher level, meaningful for the organization. We will
now explain Fig. 11.37 step-by-step.

Figure 11.37a depicts the life cycle of task ➀ and task ➁ (similar to Fig. 11.35
and Fig. 11.36). Task ➁ was added to the backlog and selected as next task to
develop before task ➀, but the developer picked task ➀ first, implemented it, and
then implemented task ➁.

Figure 11.37a depicts the activities that the developer performs (similar to the
data in Table 11.14). We see that:

• after the developer set task ➀ to “Development,” he modified method d(),
modified class A, and modified file C, and that

• after the developer set task ➁ to “Development,” he used the application “Skype”
and modified method b().

Knowing when a specific task had the status “Development,” helps us to attribute
lower-level activities (such as editing code) to higher-level activities (such as
performing a task). Figure 11.37c depicts how we attribute the lower level activities
to tasks. An example of the data that we can obtain with this approach is shown in
Table 11.22.

It could happen that a developer had more than one task in the development state
at the same time, a situation that is discouraged by the Kanban approach. In such
case, we split the development effort, which occurred while the tasks were under
development, into equal parts and assign to each task one part of the effort.

Using this approach, labor effort could be determined directly, without the need
to log manually what everybody was doing (except updating the status of the
Kanban board). To distribute the platform development costs, we used Time-Driven
Activity-Based Costing.

For this purpose we have to begin defining what we consider an activity. The
choice of what to consider an activity depends on the goals and information needs
of the organization. Finding out how much an activity costs has to be useful for the
organization. In our case, the term “activity” might refer to:

310 11 Lean Software Development in Action

a

b

c

Fig. 11.37 Linking the data coming from non-invasive measurement probes to tasks

11.5 Case 2: Non-invasive Cost Accounting 311

Table 11.22 Effort data together with the active task

Task Application Item From To Duration

56 Eclipse method1 8:00 9:00 1:00

56 Eclipse method2 9:00 10:50 1:50

56 Browser http://google.com 10:50 11:00 0:10

57 Browser http://stackoverflow.com/. . . 11:00 12:00 1:00

57 Browser http://stackoverflow.com/. . . 12:00 12:30 1:30

57 Eclipse method3 12:30 14:10 1:40

• modifying files,
• clicking on some item on the screen,
• communicating with another team member,
• importing a package,
• creating a test case.

For example, Fichman and Kemerer [34], who investigate the use of Activity-
Based Costing to distribute reuse costs over cost-items, use the following 13 reuse
activities:

1. develop reuse infrastructure,
2. maintain reuse infrastructure,
3. communicate existence of components,
4. administer reuse measurement, accounting and incentives,
5. analyze reuse opportunities,
6. develop or acquire reusable components,
7. certify components,
8. document, classify and store components,
9. search for components,

10. retrieve, understand and evaluate components,
11. adapt and integrate components,
12. maintain reusable components, and
13. update reusable components.

To distribute platform costs over the projects, we wanted to find an activity that
reflected the usage of the platform. An indicator for the usage is when another
developer refers to the platform using an “imports” statement and then instantiates a
class from the imported package. Our idea was therefore to observe how much other
projects made use of the components, i.e., packages provided by the platform.

To accomplish this, we developed a tool to scan over all Java files and collect
all package declarations (the same can be accomplished using JDepend [58]). The
result of such an analysis is shown in Table 11.23 (we anonymized all package
names).

http://google.com
http://stackoverflow.com/
http://stackoverflow.com/

312 11 Lean Software Development in Action

Table 11.23 Dependency matrix for a project

Packages on which project
packages depend

Project package

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Platform pack-
age 1

✕ ✕

Platform pack-
age 2

✕ ✕ ✕ ✕ ✕

Platform pack-
age 3

✕ ✕ ✕ ✕ ✕

Platform pack-
age 4

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Platform pack-
age 5

✕

Platform pack-
age 6

✕

Platform pack-
age 7

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Platform pack-
age 8

✕ ✕ ✕ ✕ ✕ ✕

Platform pack-
age 9

✕

Platform pack-
age 10

✕

Platform pack-
age 11

✕ ✕ ✕ ✕

Platform pack-
age 12

✕ ✕ ✕ ✕

Platform pack-
age 13

✕ ✕

Platform pack-
age 14

✕

Platform pack-
age 15

✕

Platform pack-
age 16

✕

3rd party
library
package
1

✕

(continued)

11.5 Case 2: Non-invasive Cost Accounting 313

Table 11.23 (continued)

Packages on which project
packages depend

Project package

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3rd party
library
package
2

✕

3rd party
library
package
3

✕

3rd party
library
package
4

✕ ✕

3rd party
library
package
5

✕ ✕

3rd party
library
package
6

✕

3rd party
library
package
7

✕

3rd party
library
package
8

✕

3rd party
library
package
9

✕

Java Class
Library
package
1

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Java Class
Library
package
2

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

(continued)

314 11 Lean Software Development in Action

Table 11.23 (continued)

Packages on which project
packages depend

Project package

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Java Class
Library
package
3

✕

Java Class
Library
package
4

✕

Java Class
Library
package
5

✕

Java Class
Library
package
6

✕ ✕ ✕ ✕

Java Class
Library
package
7

✕ ✕ ✕ ✕

Java Class
Library
package
8

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Java Class
Library
package
9

✕

Java Class
Library
package
10

✕

Java Class
Library
package
11

✕

Java Class
Library
package
12

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

(continued)

11.5 Case 2: Non-invasive Cost Accounting 315

Table 11.23 (continued)

Packages on which project
packages depend

Project package

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Java Class
Library
package
13

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Java Class
Library
package
14

✕

Java Class
Library
package
15

✕

Project
package
3

✕

Project
package
6

✕ ✕ ✕

Project
package
10

✕ ✕

Project
package
11

✕ ✕

The column headers contain all package names of a project, and the row headers
contain all package names on which the project packages depend on. Since the
company organized packages according to the modules and components of the
application, Table 11.23 was useful to understand how much certain components
of the project were using components of the platform.

To calculate how much a project used the platform, we just had to examine the
references identified by our tool. We did not distinguish if a project used a platform
package only once or several times.

This procedure assumes that platform packages are referenced only if they are
used. In our case the team used Eclipse, which displays a warning if a package
is referenced but not used. We observed that programmers frequently used the
keystroke Ctrl+Shift+O to automatically add package imports. This shortcut
also automatically removes all unnecessary package references. Therefore, we were
confident that only packages that were really in use were referenced since the team

316 11 Lean Software Development in Action

had an internal policy to remove all warnings before committing the code to the
repository.

Following the logic of Time-Driven Activity-Based Costing, we see the packages
of the platform as a provided capacity to the team. If one project uses all available
packages, it has to be charged more than another project that uses only one. In this
way we can assign the software development costs to projects in relation to the
importance of the platform for the projects.

Finally, we can now put all aspects together.
In standard Activity-Based Costing, one option would be to count all the unique

references to the platform and divide the platform development costs by the
total number of references. In Table 11.24 we assume that the platform has five
components and that we developed seven projects. In total, the 7 projects referenced
the platform 18 times.

Table 11.24 Standard Activity-Based Costing distribution of platform development costs

Activity % of time
spent

Assigned
cost

Activity
quantity

Cost-driver rate

Use of package 1 10 % e3,105.00 5 e621.00

Use of package 2 20 % e6,210.00 2 e3,105.00

Use of package 3 20 % e6,210.00 3 e2,070.00

Use of package 4 20 % e6,210.00 1 e6,210.00

Use of package 5 30 % e9,315.00 7 e1,330.71

Total 100 % e31,050.00 23

This means that according to Activity-Based Costing, we would charge the two
projects for each package they use according to the cost-driver rates in Table 11.24.
If, for example, project 1 uses packages 1, 2, and 3, we would add 621:00 C
3;105:00 C 2;070:00 D e5;796:00 to the direct costs of the project.

In the case of Time-Driven Activity-Based Costing, we have to:

1. Determine the capacity of each resource: as capacity we wanted to specify the
value of the platform to evaluate how much of the provided value was used. One
possibility is to simply value every provided component equally (as suggested
in [34]) or to value components differently, depending on their complexity, size,
development effort, or some other criteria.

We decided to differentiate between the different components using the
relative development effort of each component as an indicator of its value.
Therefore, the capacity of the platform was set to 100.

2. Determine the cost per unit of using that resource: if we assume that the total
value of the platform is 100 %, the cost for using 1 % of the platform is the
value of the platform for one project � 100. As in the value for the platform, we

11.5 Case 2: Non-invasive Cost Accounting 317

can set the entire development costs (e31,050), but this means that it is our target
to charge every project with the full cost of the platform.

In our case, the organization estimated the market value of the components
provided by the platform as e5,000. Therefore, 1 % was valued e50.

3. Estimate the standard unit times of consumption of resource capacity: for each
component in the platform project, we determine the time that was needed to
create it using our non-invasive measurement probes (see Table 11.25):

a. package 1: 10 %, cost-driver rate: 10 � 50:00 D 500:00;
b. package 2: 20 %, cost-driver rate: 20 � 50:00 D 1;000:00;
c. package 3: 20 %, cost-driver rate: 20 � 50:00 D 1;000:00;
d. package 4: 20 %, cost-driver rate: 20 � 50:00 D 1;000:00; and
e. package 5: 30 %, cost-driver rate: 30 � 50:00 D 1;500:00.

Table 11.25 Results of Time-Driven Activity-Based Costing using non-invasive measure-
ment probes

Activity Quantity U
ni

tp
er

ce
nt

ag
e

To
ta

lp
er

ce
nt

ag
e

us
ed

(i
n

pe
rc

en
ta

ge
s

of
th

e
pl

at
fo

rm
ef

fo
rt

)

C
os

t-
dr

iv
er

ra
te

To
ta

lc
os

t
as

si
gn

ed

Use of package 1 5 10 50 e500.00 e2,500.00

Use of package 2 2 20 40 e1,000.00 e2,000.00

Use of package 3 3 20 60 e1,000.00 e3,000.00

Use of package 4 1 20 20 e1,000.00 e1,000.00

Use of package 5 7 30 210 e1,500.00 e10,500.00

Total used 380 e19,000.00

Total supplied 500 e31,050.00

Unused capacity 120 e12,050.00

11.5.3 The Role of the Experience Factory in Cost Accounting

The organizational unit that is responsible for the Experience Factory can use the
data coming from cost accounting to support the team as described in Chap. 8 by
monitoring the ongoing processes and provide feedback based on past projects.
Some possible activities are [69]:

318 11 Lean Software Development in Action

• keep track of the costs of using certain products, tools, and processes and package
this experience so that it can be reused in future projects to forecast and plan;

• keep track of how much it costs to implement certain features and package this
experience to support the team in make-or-buy decisions;

• keep track of the long-term costs of certain products (long-term license costs,
hardware costs, maintenance costs, etc.) and package this experience so that it
can be reused in future projects to forecast and plan;

• keep track of the costs of unused resources and package this experience so that it
can be reused to optimize present and future production processes;

• support management to find a price for a produced product;
• calculate cost-driver rates; or
• develop cost models.

11.5.4 Results

This chapter reports how we used non-invasive measurement to determine the costs
of developing software and how to organize the collected costs according to three
cost accounting standards: Total Absorption Costing, Direct Costing, and Activity-
Based Costing.

To validate the detected costs, we implemented a daily feedback e-mail that
summarized the effort spent the day before. This approach wanted to imitate the
idea of the Personal Software Process [52] in which developers have to collect their
effort data to better understand their personal software process, i.e., how they are
developing software, in what they are slow, in what fast, etc. The idea was that in
this case, developers, seeing how they were spending their time, would get a better
understanding of how productive they are.

In this case we used the daily mail mainly to understand where our system had to
be modified. For example, there were situations in which users reported wrong effort
because they forgot to log off and continued to work with another user. For such
cases we implemented a feature in our user interface to reassign already collected
effort to another user.

11.5.5 Discussion

We described a possible implementation of Total Absorption Costing, Direct
Costing, and Activity-Based Costing in the context of source code costing. To
achieve this, we used non-invasive measurement.

As we pointed out already above, Full Absorption Costing has to be used
carefully: the attribution of indirect costs to cost-items is—from a logical point of
view—incorrect. On the other hand, it is useful to get a basic idea of which price
one could ask on the long term, to understand the impact of high investments in the

11.6 Case 3: Developing a Lean GQM Graph 319

platform, to determine the right balance between the investments in the platform and
the direct development in the project code, etc.

A misleading message that might come from Full Absorption Costing is that
teams that use the platform get punished for that as they are being charged for using
it. A team might be encouraged not to use the platform but to redevelop part of it,
obtaining lower costs than the costs assigned though Full Absorption Costing, and
to make the overall project look more profitable. This example shows again what we
explained above: Full Absorption Costing was not developed as a decision support
instrument.

From a Lean perspective, this project contributed to the maximization of value
and the creation of knowledge as summarized in Table 11.26.

Table 11.26 Lean aspects addressed by the second described case

Goal Strategy Rationale

Maximization
of value

Identification
and elimination
of waste

We inform the team which parts of the code cost much
and which less. This additional information helps to decide
whether the effort was spent in a useful way or not. This
can help make a better decision in future projects

Creation of
knowledge

Andon The cost information that we collect helps in decision
making. Since software is invisible and software can be
rewritten without any visible effects, we do not see all the
effort that is behind an ingenious piece of code. Knowing
the past costs of a program should help us to decide
whether our intern should try to rewrite

11.6 Case 3: Developing a Lean GQM Graph

In this case study we describe in detail how we developed, together with a software
development team, a GQMCStrategies model to specifically monitor the progress
of the team towards Lean.

11.6.1 Theoretical Framework

The starting point for this case study was an organization that wanted to improve
its efficiency and effectiveness and decided to do this by adapting their software
development processes towards a Lean approach.

320 11 Lean Software Development in Action

The performance measure of Lean practices is “leanness” [109], which Bayou
and de Korvin describe as: “manufacturing leanness is a strategy to incur less input
to better achieve the organization’s goals through producing better output [11].”

The corresponding GQMCStrategies element to measure leanness was defined
as follows:

• Organizational goal: improve leanness within software development. Using the
GQMCStrategies goal template, this goal can be refined as follows:

– Object: the software development process
– Focus: leanness
– Magnitude: reduction of time-to-market, improvement of quality
– Time frame: continuously, monthly evaluation of the progress
– Organizational scope: software development division

• Assumptions:

– Development costs are mainly determined by labor costs.
– Software development labor costs are mainly determined by interactions with

the computer.

• Constraints:

– To reduce measurement costs, we favor non-invasive measurement over
manual measurement.

• Strategy: use the principles proposed by Mary and Tom Poppendieck [92] to
guide the software development teams.

Following the strategy of this GQMCStrategies element, the subgoals to achieve
it are the principles stated by Mary and Tom Poppendieck [92]:

1. eliminate waste to become more efficient,
2. use autonomation and standardization to build quality into the process,
3. collect, maintain, and distribute know-how to exploit experience,
4. work just in time to minimize rework and to increase agility,
5. deliver fast to maximize learning,
6. involve the developer to learn from those who do the actual job: conceive and

write the software, and
7. constantly improve to become more effective and to stay competitive.

These (sub)goals will be the starting point to develop the GQM graph. The
concept map of the involved parts for this case is depicted in Fig. 11.38.

The role that the different concepts in this case have is the same as in the previous
one.

11.6 Case 3: Developing a Lean GQM Graph 321

Measurement

Data

InformationKnowledge &
Wisdom

defines

manages

interprets

Experience
Factory

interprets

model
GQM+Strategies

influences creates

Fig. 11.38 Concept map for the third case study

11.6.2 The Study

Following the methodology illustrated in Sect. 7.4, the proposed sequence of steps
was [88]:

1. identify your business goals,
2. identify what you want to know or learn,
3. identify your subgoals,
4. identify the entities and attributes related to your subgoals,
5. formalize your measurement goals,
6. identify quantifiable questions and the related indicators that you will use to

help you achieve your measurement goals,
7. identify the data elements that you will collect to construct the indicators that

help answer your questions,
8. define the measures to be used and make these definitions operational,
9. identify the actions that you will take to implement the measures, and

10. prepare a plan for implementing the measures.

322 11 Lean Software Development in Action

We will explain how we went through this sequence of steps to develop a GQM
graph to guide an organization towards becoming Lean.

11.6.2.1 Identify Your Business Goals

To measure “leanness,” we use the seven principles of Lean software development
by Mary and Tom Poppendieck (see Chap. 6):

1. eliminate waste to become more efficient,
2. use autonomation and standardization to build quality into the process,
3. collect, maintain, and distribute know-how to exploit experience,
4. work just in time to minimize rework and to increase agility,
5. deliver fast to maximize learning,
6. involve the developer to learn from those who do the actual job: conceive and

write the software, and
7. constantly improve to become more effective and to stay competitive.

In fact these goals should be stated by the organization. In our case the
organization was interested to explore possibilities to become more Lean, so we
used the goals above as a starting point.

The business goals are not isolated; they are dependencies between them. For
instance, the principle to “create knowledge” supports the principle “eliminate
waste,” since by applying knowledge, we do not repeat the same mistakes in the
future; therefore, we will not waste time and effort [47].

The mind map [18] in Fig. 11.39 illustrates the concepts we want to study. We
will refine this mind map as we refine the GQM model.

Know-How

Lean GQM

Autonomation and
standardization

Eliminate waste

Constantly improveInvolve the developer

Deliver fast

Just-in-time

Fig. 11.39 Main branches of the mind map depicting the business goals

11.6 Case 3: Developing a Lean GQM Graph 323

11.6.2.2 Identify What You Want to Know or Learn

The next step is to narrow down the specific aspects on which the organization is
interested. As suggested by Park et al. [88], we specify the entities we are interested
in together with the “questions that, if answered, would help you, in your role, plan
and manage progress toward your goals.”

We then grouped the identified entities into subgoals. To ensure that we cover
as many aspects as possible relevant in an software engineering project, we use as
entities the three categories proposed by Fenton and Pfleeger [33]:

• product (aspects about the outcome of the process: documentation, source code,
etc.),

• resource (aspects about the resources used to produce the output: software,
hardware, people, etc.), and

• process (the activities performed to obtain the desired output, using resources).

Tables 11.27, 11.28, 11.29, 11.30, 11.31, 11.32, and 11.33 list entities, questions,
and trade-offs we identified for the seven business goals. All tables have a similar
structure and consist of three elements:

• a question, which asks something about the current entity (product, resource, or
process) that helps to find out something that helps to achieve the business goal;

• a rationale, which explains why we asked that question; and
• the trade-off: together with every question, we also point out the trade-off we

identified. As we were formulating the questions and thinking about what we
asked, we realized that there is always a trade-off to consider. For example,
testing the software helps to identify defects, but if we only test, we have
less time to do other things. Using the terminology presented in Chap. 5, we
have to minimize the risk exposure of not testing enough and testing too
much.

The here listed questions are by no means exhaustive. They are the result of our
brainstorming with the company involved in this case study.

The mind map in Fig. 11.40 summarizes the identified entities and derived
questions.

324 11 Lean Software Development in Action

Table 11.27 Entities and questions derived from the business goal 1: eliminate waste to become
more efficient

Entity Question

Product 1.1 How much modified source code is not committed?
Rationale: work that has been modified but not committed is like an
inventory of unfinished goods. If others base their work on the source code
in the repository, it might be that their work is impacted by the uncommitted
modifications. On the other hand, it is advantageous to create a system that
is modular enough so that several programmers can work on different tasks
without impacting each other all the time
Trade-off: we have to avoid having too much rework and at the same time
avoid spending too much time in developing a modular architecture

Product 1.2 How much committed source code is not tested?
Rationale: the probability that untested source code contains defects is
higher than in tested source code. Fixing defects later might generate more
costs than testing now. On the other hand, testing requires time in which
we cannot do other things
Trade-off: we have to avoid testing too much and at the same time avoid
testing too little. If we have too many defects, we lose our reputation and
credibility

Product 1.3 How much committed source code is not documented?
Rationale: undocumented source code increases the time new team mem-
bers need to understand the intentions of the source code. On the other
hand, documenting a statement like “a D 5” with “We assign 5 to the
variable a” is useless and decreases the readability of the source code
Trade-off: we have to avoid documenting too much and at the same time
avoid documenting too less

Product 1.4 How much committed source code is not deployed?
Rationale: similar to source code that is not committed, source code that is
not deployed can contain defects that reveal itself only during deployment.
Deploying late means to delay the moment in which we try out our
work and understand if our assumptions were correct. On the other hand,
deploying all the time might have drawbacks too: customers might be
annoyed of getting updates all the time; updates on mobile devices can
occur only when the device is connected to a power source, and so on. The
team was using Kanban to organize their tasks. The defined Kanban limits
block the team if some tasks are developed but not deployed, but there were
tasks where the team needed input by the client or other organizations.
In such case the team accepted that the Kanban limit was not respected.
Nevertheless, it was important to regularly investigate how to complete the
open tasks
Trade-off: we have to avoid deploying too often and at the same time avoid
deploying too rarely

(continued)

11.6 Case 3: Developing a Lean GQM Graph 325

Table 11.27 (continued)

Entity Question

Product 1.5 How much do our customers value our products?
Rationale: we should constantly invest time to understand the value we are
providing with our products. It might be that we provide a product that
customers do not need or that we do not provide something they need.
The more we find out about how customers use our products and which
problems they solve with them, the more we can improve the value we
provide. On the other hand, we do not want to annoy customers too much
or spy on them violating their privacy
Trade-off: we have to avoid getting too much and at the same time avoid
getting too less feedback from customers

Resource 1.6 Which skills do we need to acquire or improve?
Rationale: having the “right” skills allows to offer valuable products. We
should dedicate time to improve our skills and to learn new skills. On the
other hand, we have to complete also the day-to-day work, since those
activities provide value to our customers
Trade-off: we have to avoid not improving and at the same time not working
on the routine activitiesa

Process 1.7 What is the value of the activities we perform?
Rationale: understanding how much each step contributes to the creation of
value helps to identify unnecessary steps. On the other hand, studying the
contribution of every little movement is not feasible
Trade-off: we have to avoid having an inefficient process because we do
not know what is happening and at the same time avoid spending too much
time analyzing it

Process 1.8 What are the costs of the activities we perform?
Rationale: understanding how much each activity costs allows us to
compare these costs with the value it provides. If something costs us $1,000
but for the customer is worth $100, we should look for alternative solutions
(e.g., buy it from somebody else and adapt it to our needs). On the other
hand, measuring costs in too high detail can be costly, too
Trade-off: we have to avoid wasting money for activities the customer does
not value and at the same time avoid spending too much effort analyzing
the cost-effectiveness

Process 1.9 Which mechanisms do we use to get frequent feedback from customers?
(rationale and trade-off as in question 1.5)

Process 1.10 How much time do we spend in reimplementing similar features again and
again?
Rationale: instead of solving the same problem again and again, we can
increase our effectiveness by increasing reuse. On the other hand, if we
create a process that reuses everything from past projects, we risk to
become inflexible and not able to solve new requirements in innovative
and creative ways
Trade-off: we have to avoid being inefficient because of rework and at the
same time avoid losing our agility

a This is the content of the case study discussed in Sect. 11.4

326 11 Lean Software Development in Action

Table 11.28 Entities and questions derived from the business goal 2: use autonomation and
standardization to build quality into the process

Entity Question

Product 2.1 How high is the coverage of the automated unit test cases?
Rationale: only automated test cases can be executed frequently and
automatically. Only the source code that is covered by such test cases is
tested frequently. As the complexity of a project increases, the probability
of doing mistakes increases and automated test cases can help. On the other
hand, it can be very difficult to automate a test case. In some cases we
need to change the source code so that another program (the test case) can
execute it as needed. In some other cases, quality is not needed and the
effort of testing the source code is unnecessary
Trade-off: we have to avoid having too low quality and at the same time
avoid having too high quality

Product 2.2 How high is the coverage of the automated integration test cases? (rationale
and trade-off as in question 2.1)

Product 2.3 How much of our build process is automated?
Rationale: an automated build process allows developers to frequently
integrate their changes with the rest of the source code base and to
understand how their changes impact the whole system. Moreover, it can be
implemented automatically. On the other hand, setting up and maintaining
an automated build system requires discipline by all team members and a
constant effort
Trade-off: we have to avoid having too low quality because of so-called
“bigbang” integrations at the end of an iteration and at the same time avoid
spending too much time in the automated build system

Product 2.4 How often does it happen that problems that have been fixed once appear
another time?
Rationale: recurring problems are an indicator of too low autonomation. If a
problem that might happen again is solved, it is important to cover it with a
test case. If it then reappears, we can solve it right away without impacting
others. Again, as in the questions before, it might be impossible or very
time consuming to develop a tool that monitors some specific system
Trade-off: we have to avoid loosing our reputation and trust from the client
because of recurring problems and at the same time avoid spending too
much time implementing autonomation

Product 2.5 What are frequent causes of defects?
Rationale: if we know frequent causes of defects, we can pay particular
attention to such kinds of defects or implement an autonomation solution
for it
Trade-off: we have to avoid doing the same mistakes over and over again
because we do not study typical problems and at the same time avoid
spending too much time studying our mistakes

(continued)

11.6 Case 3: Developing a Lean GQM Graph 327

Table 11.28 (continued)

Entity Question

Product 2.6 How much source code do we have to write from scratch for every new
project?
Rationale: if projects have repetitive aspects, it might be worthy to develop
a generic, reusable component. The drawback is that we might spend a
lot of time “gold platinga” a generic solution. Moreover, if we then expect
from everybody to reuse our predefined components, we indirectly stop
developers from developing innovative ideas like trying out a new way to
solve an old problem
Trade-off: we have to avoid wasting effort because of rework and low
quality and at the same time avoid limiting creativity

Product 2.7 How much documentation do we have to write from scratch for every new
project? (rationale and trade-off as in question 2.6)

Resource 2.8 Is somebody responsible and competent and does somebody have the
necessary power to implement autonomation?
Rationale: if nobody is responsible, or if the responsible does not have
the necessary skills or power to implement autonomation, it will not
happen [95]. On the other hand, if somebody is busy improving the process,
he cannot do other things
Trade-off: we have to avoid having defects because we are not implement-
ing autonomation and at the same time avoid implementing it more than
we need it

Process 2.9 Do we have standardized ways to perform activities that happen frequently?
Rationale: defined processes are a way to embed knowledge into manual
activities. On the other hand, we cannot automate aspects that require
creativity
Trade-off: we have to avoid wasting effort because we do not reuse
knowledge and at the same time avoid limiting creativity

aGold plating means to work on something more than necessary.

Table 11.29 Entities and questions derived from the business goal 3: collect, maintain, and
distribute “know-how” to exploit experience

Entity Question

Product 3.1 What are our strengths, weaknesses, opportunities, and threats?
Rationale: knowing our strengths, weaknesses, opportunities, and threats
reveals what we have to know and learn to improve and what we can
exploit or what we have to avoid. On the other hand, implementing a new
strategy, learning a new skill, etc., takes time. We have to carefully select
the options with the best probabilities of success, while continuing to work
on the projects that represent our strength.
Trade-off: we have to avoid not improving and getting bankrupt and at the
same time only improving and getting bankrupt

Product 3.2 Which technologies do we need to develop to meet the needs of the market
better? (rationale and trade-off as in question 3.1)

Resource 3.3 Is somebody responsible and competent and does somebody have the
necessary power to collect, manage, and distribute knowledge? (rationale
and trade-off as in question 2.8)

(continued)

328 11 Lean Software Development in Action

Table 11.29 (continued)

Entity Question

Resource 3.4 Is everybody aware of what is happening in the organization, team, or
project?
Rationale: we need to inform everybody about the strategy of the organi-
zation about everything that might impact the work of everybody. On the
other hand, there is the risk of information overload
Trade-off: we have to avoid not being informed at all and at the same time
avoid being informed too much

Resource 3.5 Which skills do we need to get to meet the needs of the market better?
(rationale and trade-off as in question 3.1)

Process 3.6 Do we have a process in place that supports the team in collecting
knowledge? (rationale and trade-off as in question 3.1)

Process 3.7 Do we have a process in place that uses the accumulated knowledge to
standardize it? (rationale and trade-off as in question 3.1)

Table 11.30 Entities and questions derived from the business goal 4: work “just in time” to
minimize rework and to increase agility

Entity Question

Product 4.1 How much source code do we modify because of changed requirements?
Rationale: if we study the impact of changed requirements, we get an idea
of how much we could save implementing “just-in-time”. On the other
hand, doing everything “just in time” stops us from optimizing frequent
activities
Trade-off: we have to avoid working only improvising and at the same time
avoid being inflexible

Product 4.2 What type of source code do we modify because of changed requirements?
(rationale and trade-off as in question 4.1)

Product 4.3 What type of requirements require the changes in the source code?
(rationale and trade-off as in question 4.1)

Resource 4.4 Which of our technologies stop us from doing something “just in time”?
Rationale: some technologies were conceived with a waterfall process in
mind and we spend a lot of time tweaking and tricking the technology to
work in an Agile way. We should dedicate time to find out how to switch
to another technology or how to modify the existing technology so that the
restrictions are removed. On the other hand, if we change our tools all the
time, there is no time to optimize them
Trade-off: we have to avoid changing our instruments too often and at the
same time avoid being inflexible

Process 4.5 Which of our methods and working habits stop us from doing something
“just in time”? (rationale and trade-off as in question 4.4)

Process 4.6 How much time do we spend because of changed requirements? (rationale
and trade-off as in question 4.1)

Process 4.7 What type of changes require the longest modifications in terms of time?
(rationale and trade-off as in question 4.1)

11.6 Case 3: Developing a Lean GQM Graph 329

Table 11.31 Entities and questions derived from the business goal 5: deliver fast to maximize
learning

Entity Question

Resource 5.1 How much are development activities automated?
Rationale: automated development steps can be adapted, extended, modi-
fied, etc. over time using the experience of the team. For example, if we find
out that some specific problem can arise only on some special hardware, we
can develop a test case that is executed on every nightly build. This allows
us to deliver reliable updates of the software in shorter time. Manual steps
have to be learned, and we lose it as soon as the person is not available. On
the other hand, we cannot automate aspects that require creativity
Trade-off: we have to avoid wasting effort because of manual work and at
the same time avoid limiting creativity

Process 5.2 How much are deployment (installation and setup) activities automated?
(rationale and trade-off as in question 2.3)

Process 5.3 How long does it take on average to solve a defect?
Rationale: we have to study how fast we are to understand what is blocking
us. On the other hand, we should not waste too much time studying
ourselves; getting a rough idea is enough
Trade-off: we have to avoid being too slow and at the same time avoid
spending too much time studying why we are slow

Process 5.4 How long does it take on average to implement a new feature? (rationale
and trade-off as in question 5.3)

Process 5.5 How long does it take on average to complete an iteration? (rationale and
trade-off as in question 5.3)

Table 11.32 Entities and questions derived from the business goal 6: involve the developer to
learn from those who do the actual job: conceive and write the software

Entity Question

Product 6.1 Which features would the developers suggest to implement?
Rationale: as pointed out in Chap. 3, clients rarely know the technological
possibilities developers do. We should listen to what developers propose to
make the lives of the clients easier. On the other hand, we all prefer to work
on something new than on something we know already inside out. There is
the risk that we spend our time only with the new, interesting challenges,
instead of fixing the older things
Trade-off: we have to avoid “gold plating” the software and at the same
time motivate everybody to be innovative

Product 6.2 Which features would the developers suggest to remove? (rationale and
trade-off as in question 6.1)

(continued)

330 11 Lean Software Development in Action

Table 11.32 (continued)

Entity Question

Product 6.3 Which are the most disliked features by developers?
Rationale: developers might have not like to work on some piece of source
code or project for different reasons, for example, if the source code is
of poor quality. In such case, making a mistake is easy and the developer
might be afraid to be blamed for things he did not intend to do. Such
behavior should be taken seriously and a discussion should be started
within the team why somebody does not like certain types of work and
how to alleviate this. Maybe some source code can be refactored, activities
automated, etc. On the other hand, some tasks are boring, but are required
Trade-off: we have to avoid discussing all the time about every little issue
and at the same time avoid not to discuss at all

Resource 6.4 Do we have a fruitful organizational culture that promotes innovation?
(rationale and trade-off as in question 6.3)

Resource 6.5 Is the team responsible and competent and does it have the necessary power
to contribute to the outcome of the work? (rationale and trade-off as in
question 2.8)

Process 6.6 What are the most disliked activities by developers? (rationale and trade-off
as in question 6.3)

Table 11.33 Entities and questions derived from the business goal 7: constantly improve to
become more effective and to stay competitive

Entity Question

Product 7.1 How does the required effort for typical activities change over time?
Rationale: as we collect more and more experience, we should become
more efficient and effective. If we do not, this might be an indicator that
we are not using some opportunities to improve. On the other hand, there
might be other reasons, e.g., that customers are more exigent than before,
that the competition is harder, etc.
Trade-off: we have to avoid working in a sloppy way and at the same time
avoid being inefficient because we want to be perfecta

Product 7.2 How often do we refactor source code?
Rationale: refactoring makes it easier to implement new features or to
modify existing ones. On the other hand, refactoring takes time, might
introduce new defects, and requires everybody in the team to be informed
about the refactoring. Sometimes we have to work with a system for some
time to understand which is the best refactoring
Trade-off: we have to avoid refactoring without a reason and at the same
time avoid not to refactor at all

(continued)

11.6 Case 3: Developing a Lean GQM Graph 331

Table 11.33 (continued)

Entity Question

Resource 7.3 Do we optimize resource utilization for the whole process instead of local?
Rationale: local optimizations are often easier to identify and to carry out
than global ones. Moreover, the complexity and risk we face tackling global
optimizations are usually higher than for local ones. Additionally, there
might be other aspects to consider: for example, if we drastically change
the user interface to diminish the effort of the average user, we might lower
the productivity of everybody at the beginning. If we change the entire API,
we would need to rewrite all the systems relying on it. On the other hand,
global optimizations are often able to improve the overall quality much
more than local ones
Trade-off: we have to avoid wasting resources optimizing locally and at the
same time avoid disrupting the entire product too often

Process 7.4 What stops us from improving? (rationale and trade-off as in question 4.4)
aVoltaire coined the phrase: “Perfect is the enemy of good”

Know-How

Lean GQM

Autonomation and
standardization

Eliminate waste

Constantly improve

Involve the developer

Deliver fast

Just-in-time

Process

Knowledge

Skills
Awareness
Organizational Structure

Technologies
SWOT

Collect
Use

Process
Resource

Product

Standards

Organizational Structure

Reuse
Causes of defects
Repeating problems
Build process
Test coverage

Documeintation
Source code

Unit tests
Integration tests

Process
Resource

Product

Reuse
Feedback
Costs
Value

Skills

Value
Source code

Not committed
Not tested
Not documented
Not deployed

Process
Resource

Product

Impediments

Optimization

Refactoring
Effort

Process
Resource
Product

Disliked activities

Organizational structure
Organizational culture

FeaturesAdded
Removed
Disliked

Process
Resource

Deployment automation
Time needed

Development automation

Fix defect
Implement features

Iteration

Process

Most time consuming changes
Effort

Techniques

Technologies
Size
Type

Cause
Changes

Resource
Product

Resource
Product

Fig. 11.40 Mind map depicting the business goals, entities, and derived questions

11.6.2.3 Identify Your Subgoals

As next step we group the aspects identified in the previous step into subgoals that
state goals for activities that support the business goals.

Again, the way how we grouped the questions to subgoals reflect the goals of
the organization. These subgoals are not all subgoals that can be derived from the
stated questions they are those that the team evaluated as important in their context
(Table 11.34).

332 11 Lean Software Development in Action

Table 11.34 Subgoals derived from the questions in Sect. 11.6.2.2

Subgoal Questions

1. Keep the amount of unfinished work to a minimum
Rationale: questions 1.1–1.4 deal with source code or documenta-
tion that is under development and not yet integrated with the rest
of the project. This subgoal states this objective for all sorts of
unfinished work. We decided to ignore measuring—in our case—too
detailed aspects, e.g., how much source code was not committed, and
to focus on the progress of the tasks along the Kanban board of the
team, which was going from “Backlog” to “Live!” (see Fig. 11.41)

1.1, 1.2, 1.3, and
1.4

2. Understand the value of our products
Rationale: question 1.5 deals with the value of what we produce
from the point of view of the client. Additionally, questions 6.1–
6.3 look at the value from the point of view of developers. Questions
4.1, 4.2, 4.3, and 7.2 ask about the modifiability of our product

1.5, 4.1, 6.1, 6.2,
6.3, and 7.2

3. Understand which skills we have to learn
Rationale: questions 1.6, 1.7, 3.1, 3.5, and 7.4 all deal with the value
of what we do and the skills we need. Question 6.5 asks in general
what kind of abilities we have or miss

1.6, 1.7, 3.1, 3.5,
6.5, and 7.4

4. Understand which technologies we need to develop or buy
Rationale: questions 3.2, 4.4, and 6.1 ask about technologies that we
need to acquire or produce

3.2, 4.4, and 6.1

5. Study the value of past activities to learn from mistakes
Rationale: questions 1.7, 1.9, 3.1, 4.5, 6.4, and 6.5 look at the
value of the activities we perform and our ability to improve it.
Question 4.5 looks at the activities that stop us from achieving “just-
in-time”

1.7, 1.9, 3.1, 4.5,
6.4, 6.5

6. Understand the reasons behind development costs
Rationale: questions 1.8 and 7.3 ask about the costs we have and our
ability to decrease them over time. Questions 1.10, 4.6, 4.7, 5.3, 5.5,
and 7.1 ask about the time we need to produce. Question 6.6 wants
to identify activities that should be automated

1.8, 1.10, 4.6,
4.7, 5.3, 5.4, 5.5,
6.6, 7.1, 7.3

7. Understand which experience we should collect and package
Rationale: questions 1.10, 2.4, and 2.5 deal with repeating problems
and the time we waste dealing with them. Questions 2.6, 2.7, and
2.9 deal with the reuse of old solutions to new projects. Questions
3.3, 3.6, and 3.7 ask if the organization has defined processes and
provided resources to collect and reuse knowledge. Question 7.1
wants to analyze if the collected knowledge is improving the
processes over time

1.10, 2.4, 2.5,
2.6, 2.7, 2.9, 3.3,
3.6, 3.7, 7.1

8. Make sure everybody has all the information needed to solve a
specific task
Rationale: question 3.4 asks if everybody has the right information
at the right moment to solve a task. Questions 6.3 and 6.6 want to
find out if developers need more information to perform their tasks
easier

3.4, 6.3, 6.6

(continued)

11.6 Case 3: Developing a Lean GQM Graph 333

Table 11.34 (continued)

Subgoal Questions

9. Embed quality into the process using autonomation
Rationale: automation is part of autonomation—autonomation
requires that some mechanisms checks the quality of the output auto-
matically and informs everybody if there is a problem. Questions
2.1, 2.2, 2.3, 5.1, and 5.2 ask about automation. Question 2.8 asks
about responsible team members for autonomation

2.1, 2.2, 2.3, 2.8,
5.1, 5.2

10. Embed quality into the process using standardization
Rationale: questions 2.9 and 3.7 ask about standardization and a
process that supports the creation of standards

2.9, 3.7

11.6.2.4 Identify the Entities and Attributes Related to Your Subgoals

Starting from the subgoals obtained from the previous step, in this step we focus
on how to reach them identifying the entities and attributes of those entities that
influence their outcome.

As we were defining entities and attributes, we noticed that we needed a clear
definition of what we mean by an entity. Therefore, in Table 11.35 we list all entities
and how we defined them.

Table 11.35 Entities related to the subgoals of Sect. 11.6.2.3

Entity Definition

Task The smallest unit of work subject to management accountabil-
ity. [101]. A collection of work tasks spanning a fixed duration within
the schedule of a software project is called activity [101]. We further
distinguish manual tasks, which require human work from automatic
tasks, which can be executed by a machine

Automated verification
system

Any software tool that automates part or all of the verification
process [103]. An example of such a system are JUnit [62] test cases

User documentation Documentation describing the way in which a system or component
is to be used to obtain desired results [103].

Software feature A distinguishing characteristic of a software item (e.g., performance,
portability, or functionality) [103]

Guideline An official recommendation or advice that indicates policies, stan-
dards, or procedures for how something should be accomplished [94]

Skill The ability to use a technology or methodology to support the
software development process

Source code Computer instructions and data definitions expressed in a form
suitable for input to an assembler, compiler, or other translator [103]

(continued)

334 11 Lean Software Development in Action

Table 11.35 (continued)

Entity Definition

Resource Skilled human resources, equipment, services, supplies, commodi-
ties, material, budgets, or funds [94]

Component A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties [104]. We use the term “component” to
underline the intention of the team to reuse a given piece of software
in future projects

The next table, Table 11.36, lists entities and attributes that we think help us to
fulfill the subgoals listed in Table 11.34. To do this, we also looked at the questions
from which the subgoals originated.

Table 11.36 Entities and attributes related to the subgoals of Sect. 11.6.2.3

Entity Attribute Subgoal

Task Phase
Rationale: keeping track of the current phase (e.g., Backlog, Selected,
Develop, Deploy, Live!) of each task helps the team to understand
when too much work is unfinished or at which phase too many tasks
are stuck

1.

Software
feature

Value for the client
Rationale: measures the importance of a feature for the client

2., 3.

Software
feature

Value for the developer
Rationale: measures how important a feature is for the developer

2., 3.

Software
feature

Skills that are needed to develop a feature
Rationale: measures the skills needed to develop a feature. Together
with the value of a feature, we can infer the skills we need to learn or
improve

3.

Software
feature

Technologies that are needed to develop a feature
Rationale: measures the technologies needed to develop a feature.
Together with the value of a feature, we can infer the technologies
we need to build or buy

4.

Task Generated value
Rationale: measures how important a task is for the client

5., 7.

Task Generated waste
Rationale: measures how much waste was generated during the
execution of this task

5., 7.

Task Occurrence
Rationale: measuring how often, in which sequence, at what time, etc.
we need to perform a given task helps us to understand its importance

5.

(continued)

11.6 Case 3: Developing a Lean GQM Graph 335

Table 11.36 (continued)

Entity Attribute Subgoal

Task Effect
Rationale: we need to keep track of the effects of tasks (the generated
source code, documents, etc.) to optimize the process, e.g., to find a
cheaper or better solution

6.

Task Costs
Rationale: the cost of a task has to match the value it has for
the customer. Knowing the costs of tasks helps to understand a)
which skills or technologies should be improved first to improve
efficiency, and b) it helps to decide which tasks should be automated
or supported by reusable solutions

3., 4.,
5., 6., 7.

Task Lifetime
Rationale: if problems or tasks are not solved for a long time, there
might be several reasons: the team is not aware of the task, the task
is difficult, the task is not challenging, etc. We have to identify such
tasks and learn how to cope with them

8.

Automated
verification
system

Coverage
Rationale: we need to understand how much of the source code is
tested automatically. We can then decide for which other source code
we set up automatic testing or for which source code it would be too
costly

9.

Guidelines Usage
Rationale: we need to understand for which activities we use guide-
lines during the development process. We can then decide for which
activities we should develop guidelines, or for which activities they
do not make sense

10.

The here identified entities and attributes are not complete. There are a variety
of entities and attributes we could measure to learn how to achieve the goals stated
in Table 11.34. To avoid wasting effort, the organization chooses the entities and
attributes that it finds the most insightful to achieve their measurement goals. In our
case, we choose the entities and attributes listed in Table 11.36, which we formalize
in the next section.

11.6.2.5 Formalize Your Measurement Goals

We now use the template described in Chap. 7 to describe measurement goals that
help us in the achievement of our subgoals and ultimately our business goals.
Table 11.37 lists all formal measurement goals we stated.

336 11 Lean Software Development in Action

Table 11.37 Formalized goals according to the GQM goal template (see Chap. 7)a

Purpose Perspective Environment
‚ …„ ƒ ‚ …„ ƒ ‚ …„ ƒ

For the purpose of③ From the point of view of a⑦
‚ …„ ƒ ‚…„ƒ

No.Analyze① C
ha

ra
ct

er
iz

at
io

n
E

va
lu

at
io

n
U

nd
er

st
an

di
ng

④

With respect to⑤ C
li

en
t

de
ve

lo
pe

r⑧

in
th

e
co

nt
ex

to
f

a
so

ft
w

ar
e

de
ve

lo
pm

en
tt

ea
m

w
it

hi
n

a
cu

st
om

so
ft

w
ar

e
de

ve
lo

pm
en

tc
om

pa
ny

⑨

Su
bg

oa
l

1. Software product② ✕ The amount and causes of unfin-
ished work⑥

✕ ✕ 1.

2. Software product ✕ The provided value ✕ ✕ 2.

3. Software product ✕ The potential provided value ✕ ✕ 2.

4. Software features ✕ The necessary skills ✕ ✕ 3.

5. Software features ✕ The necessary technologies ✕ ✕ 4.

6. Tasks ✕ The provided value ✕ ✕ 5.

7. Tasks ✕ The generated waste ✕ ✕ 5.

8. Production costs ✕ Tasks causing the costs ✕ ✕ 6.

9. Tasks ✕ The experience we can gain ✕ ✕ 7.

10. Tasks ✕ Visibility of the tasks ✕ ✕ 8.

11. Tasks ✕ The degree of autonomation ✕ ✕ 9.

12. Tasks ✕ The degree of standardization ✕ ✕ 10.

aThis table lists all formal goal elements in a tabular form. To read the goal in form of a complete
sentence, read it in the sequence depicted by the numbers ① to ⑨

11.6.2.6 Identify Quantifiable Questions and the Related Indicators That
You Will Use to Help You Achieve Your Measurement Goals

For each formal measurement goal in Table 11.37 we now state quantifiable
questions. As we stated in Chap. 7, we distinguish three types of questions:

1. questions that characterize the object of study with respect to the overall goal,
2. questions that characterize relevant attributes of the object of study with respect

to the focus, and
3. questions that evaluate relevant characteristics of the object of study with respect

to the focus.

11.6 Case 3: Developing a Lean GQM Graph 337

We stated the questions in Table 11.38. We based the questions on the identified
entities and attributes in Sect. 11.6.2.4.

Table 11.38 Quantifiable questions for the measurement goals in Table 11.37

No. Goal(s) Question Question
type

1. 1. How many tasks are in which phase? 3.

2. 1. How long are the tasks in their current phase? 3.

3. 1. What are the most frequent reasons that tasks stay in an
intermediate phasea for more than 1 iteration?

2.

4. 2., 3. How important are the existing software features for the client? 1.

5. 2. Which software features should we implement in the future? 1.

6. 3. Which software features should we implement in the future? 1.

7. 4. Which activities does a software developer perform during a
project?

2.

8. 4. How frequent are the different activity types? 3.

9. 4. In which sequence or combination are the different activity
types used?

3.

10. 5. Which technologies does a software developer use during a
project?

2.

11. 5. How often are the different technologies used? 3.

12. 5. In which sequence or combination are the different technolo-
gies used?

3.

15. 6. How important is each task for the client? 3.

16. 7. How much effort, in each software module, was spent on
rework?

2.

17. 7., 8. Which tasks generated the rework? 2.

18. 6., 8. Which code is written because of each task? 3.

19. 3., 4., 5.,
6., 7., 8.

How much does the implementation of a task cost? 3.

20. 8., 9.,
10.

How long does it take for each task to finish? 3.

21. 11. How much is autonomation used to ensure the quality of our
products?

3.

22. 12. How much is standardization used to ensure the quality of our
products?

3.

aBy “intermediate” we mean a phase that is not the first and not the last one

Now that we stated the questions, we looked for indicators that help us to answer
those questions. As we pointed out in Chap. 9, an “indicator” is something that
indicates and that points to the data. It helps us to infer the real data behind the
indicator [8]. Park et al. [88] call indicators “a picture or display of the kind one
would like to have to help answer the question.” Moreover, they state that according
to their experience “sketches of such pictures and displays help significantly in

338 11 Lean Software Development in Action

identifying and defining appropriate measures.” We followed this approach in this
chapter, too.

To answer questions 1, 2, 3, and 20, we instrumented a software-based Kanban
board that the team had developed internally (see Fig. 11.41).

Fig. 11.41 An internally developed Kanban board

The data about the different tasks were stored in a company-internal database.
This data could be extracted regularly as described in the second case study and
depicted in Table 11.21.

Question 4 aimed to classify the importance of the features of the application.
As we looked for indicators to measure “importance,” we noticed that, in our case,
the term “importance” was ambiguous. Therefore, we estimated it based on two
factors:

• how often the feature was used [76] and
• the worst-case loss if the feature was not working correctly.

Both factors were estimated for each feature to obtain estimates as the examples
in Table 11.39.

The final importance of a feature was then evaluated using the matrix depicted in
Fig. 11.42.

Validating our estimation of the feature usage was correct; the shipped product
contained a usage monitor that—with the permission of the user—collected anony-

11.6 Case 3: Developing a Lean GQM Graph 339

Table 11.39 Example importance estimates

Feature Usage W
or

st
-c

as
e

lo
ss

Code module

Manage invoicesa Medium High it.product.invoicing.invoice

Chatb High High it.product.chat.*

Mail merge function to print the New
Year’s greetingsc

Low High it.product.print.merge.*

Export function to transfer the invoice
data to the accounting systemd

Medium High it.product.export.*

aThe company prints about ten invoices per day. Therefore, if the invoicing system does not work,
this has not a big impact. If absolutely necessary, invoices can be written by hand and put into
the system later. On the other hand, if an invoice is sent with wrong data in it (e.g., with the
wrong amounts, the wrong numbering, etc.), this could result in a fine up to e2,065 per wrong
invoice [84]
bThe application has an internal chat system with which employees can use to communicate with
each other. For security reasons the single computers are not connected to the Internet; therefore,
the company is using this internal system. Even though this system is frequently used, it is not
critical
cThe application has a special module to print letters for the New Year’s greetings. If this system
does not work and cannot be repaired within weeks, this is not a problem. Nevertheless, if it is
not possible to print the letters before the December 29, all envelopes have to be addressed by
hand and this will cause considerable effort for the client
dIf the organization does not register on time all the produced invoices as required by the law,
this could result in a fine of 100–200 % of the taxes of the invoices that were not registered
correctly [84]

mous usage data. Using this data it was possible to measure how much different
features of the application were used by the customer.

Table 11.40 shows an example of the data that we collected using the usage
monitor. This example shows the data of a user that clicks on the menu on
“Customer,” “Search,” and then he enters some search criteria, clicks on “OK,” and
in the window that opens afterwards, he clicks on “Activities” and “Print.”

Above we defined a software feature as a “distinguishing characteristic of a
software item (for example, performance, portability, or functionality) [103].” Using
the type of indicator described here, we limited ourselves to measure only functional
aspects that the user could reach through the user interface.

Questions 5 and 6 aimed to collect proposals on how to extend the product
in the future and to improve its value. The assumption was that customers are
more interested in functionality that solves their current problems, while developers,
aware of the technical possibilities, are able to propose new, alternative ways to solve
the problems of the customer. Therefore, we allowed also developers to propose
new features or extensions to existing features in the form of tasks on the Kanban
board. New proposals—as the proposals of the client—were added to the “Backlog”

340 11 Lean Software Development in Action

Fig. 11.42 The evaluation of
the importance of a feature
based on its usage and
worst-case loss

Medium

Low

L
ow

High

H
ig

h

Frequency of use

W
or

st
-c

as
e

lo
ss

M
ed

iu
m

Medium

Medium High

HighHigh High

Low

Low Low

Table 11.40 Example usage data of a product

Timestamp Window class Item type Item caption

08.01.2013 09:36:10 it.program.Main Menu “Customer”

08.01.2013 09:36:15 it.program.Main Menu “Search”

08.01.2013 09:38:04 it.program.customer.Search Textbox “Name”

08.01.2013 09:41:04 it.program.customer.Search Button “OK”

08.01.2013 09:42:56 it.program.customer.Main Button “Activities”

08.01.2013 09:45:03 it.program.customer.Main Button “Print”

column of the Kanban board and then moved to “Selected” by the product owner if
he decided that this task should be carried out.

To answer questions 7–14, we use the activity data obtained through non-invasive
measurement. An example of the data that is collected is shown in Table 11.41.

To answer questions 10–12, we needed to find out the technologies that the team
was using. We used the applications obtained through non-invasive measurement as
in Table 11.41. In this case, we limited ourselves to track only the different software
technologies the team was using instead of every possible technology.

The indicators for the tasks 15–18 will be described below, first question 19: to
determine the cost of a task, we use non-invasive cost accounting as described in the
previous case study (see Table 11.22).

11.6 Case 3: Developing a Lean GQM Graph 341

Table 11.41 Example activity data obtained through non-invasive measurement
M

ac
hi

ne

Application Item D
ur

at
io

n

Activity

1 Eclipse at.company.project8.Action.run() 10:00 Coding

2 Eclipse at.company.project8.ActionTest.test1() 12:00 Coding

2 Eclipse at.company.project8.ActionTest.test2() 7:30 Coding

1 Google Chrome http://www.codeproject.com 2:00 Browsing

3 Google Chrome http://stackoverflow.org 7:00 Browsing

4 Microsoft Excel c:\projects\Comparison.xlsx 9:00 Documentation

4 Notepad c:\projects\project8\summary.txt 3:00 Unknown

2 Microsoft Word c:\projects\project8\manual.docx 15:00 Documentation

Question 15 wants to evaluate the importance of each task from the point
of view of the client. To answer these questions, we combine two answers: the
answer of question 4 and the manual classification of the importance of software
modules, and question 19. For question 4 we defined the importance (based on
feature usage and the worst-case loss) for each module. As in the previous case
study, the team organized different modules in different namespaces. This made it
possible to translate modules that the customer could understand (e.g., invoicing,
chat, or New Year’s greetings) into module names that corresponded to parts of the
source code (“it.product.invoicing,” “it.product.chat,” and “it.product.mailmerge”).
The non-invasive measurement probes described in the previous case study, allowed
it in this one to measure in which package the developers were working during
certain tasks, and to derive the importance of the task based on the importance of
the code they were working on.

Our first idea to answer questions 16 and 17 was to look if certain tasks were
going backwards the Kanban board, i.e., went to “Live!” but then went back to
“Development” because of rework. Unfortunately, whenever some module had to
be changed because of a changed requirement, the team members were not picking
an old task and moving it back to “Development,” they were creating a new task.
Therefore, we concentrated at the source code. We answered questions 16 and
17 looking at the data collected by non-invasive cost (see Table 11.17). We were
looking for parts in the code that were edited after a break of three iterations.

Question 18 identifies traceability links between the task and the written source
code. This link can be also determined by the non-invasive cost accounting module.

Questions 21 and 22 evaluate the degree of autonomation and standardization.
The first question can be answered automatically, calculating the coverage of the
source code that is covered by the used automated verification systems. Question 22,

http://www.codeproject.com
http://stackoverflow.org

342 11 Lean Software Development in Action

the coverage of the process by guidelines, has to be evaluated by hand. This
estimation was based on the existing process guidelines and the estimated frequency
they were used (Table 11.38).

Table 11.42 Indicators used to answer the questions of Table 11.38

No. Indicator
Questions

1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22

1. Kanban boarda ✕ ✕ ✕ ✕ ✕ ✕

2. Feature usageb and
worst-case loss estimation
by customerc

✕ ✕ ✕

3. Activity logd ✕ ✕ ✕ ✕ ✕ ✕

4. Non-invasive cost
accountinge

✕ ✕ ✕ ✕ ✕

5. Coverage evaluation based
on automated verification
systems

✕

6. Manual coverage
evaluation based on
personal evaluation by the
developers

✕

aSee Fig. 11.41, Tables 11.21 and 11.43
bSee Table 11.40
cSee Table 11.39
dSee Table 11.41
eSee Table 11.17

The selected indicators have to be validated, i.e., we have to make sure that they
represent what we want to measure. To ensure their validity, the team constantly
reviews the outcomes of the measurement and questions the conclusions we make
from the indicators.

As we were designing and choosing the indicators, we extended the information
we needed to store in the company-internal Kanban system. In summary, we had the
following data stored for each task:

• the short description of the task,
• the detailed description of the task,
• the date when the task was created,
• the author,
• the responsible,
• waits for, and
• the deadline

11.6 Case 3: Developing a Lean GQM Graph 343

Table 11.43 shows some example tasks.

Table 11.43 Example tasks
Sh

or
t

de
sc

ri
pt

io
n

D
et

ai
le

d
de

sc
ri

pt
io

n

C
re

at
ed

A
ut

ho
r

R
es

po
ns

ib
le

W
ai

ts
fo

r

D
ea

dl
in

e

. 9.1.2014 Andrea Joe Joe 1.5.2014

. 11.1.2014 Andrea Joe Customer 1.7.2014

. 12.1.2014 Andrea Joe Customer 1.7.2014

. 15.1.2014 Andrea Joe Andrea 31.1.2014

Moreover, for each task a separate table was created to log all status changes
together with the date when the status changed (to obtain the data as in Table 11.21
of the previous case study). The current status of the task was calculated using the
data of the status changes of the tasks. Through non-invasive cost accounting, we
were able to extract the source code that was edited (as in Table 11.22) because of
a task, and therefore, we could obtain its severity comparing the edited source code
with the defined importance of the different modules as in Table 11.39.

11.6.2.7 Identify the Data Elements That You Will Collect to Construct
the Indicators That Help Answer Your Questions

In this step we now define in more detail which data exactly we are going to collect.
We defined “a picture or display of the kind one would like to have to help answer
the question” for every question; in this section we will explain which data we need
to extract from the picture or display, i.e., the indicator.

Table 11.44 Measures extracted from the indicators of Table 11.42

No. Measure
Indicators

Question(s)
1 2 3 4 5 6

1. Number of phases ✕ 1.

2. Tasks per phase ✕ 1.

3. Task age ✕ 2.

4. Code that was affected by the task ✕ 3.

5. User that is working on the task ✕ 3.

6. Feature usage estimation ✕ 4.

7. Worst-case loss estimation ✕ 4.

(continued)

344 11 Lean Software Development in Action

Table 11.44 (continued)

No. Measure
Indicators

Question(s)
1 2 3 4 5 6

8. Proposed extensions to the system by customers
and developers

✕ 5., 6.

9. Performed activities ✕ 7.

10. Frequency of activities ✕ 8.

11. Frequent sequences or combinations of activities ✕ 9.

12. Used software technologies ✕ 10.

13. Frequency of technology use ✕ 11.

14. Frequent sequences or combinations of technology
use

✕ 12.

15. Importance of the modified module ✕ ✕ 15.

16. Implementation effort ✕ 19.

17. Implementation effort of code parts that were not
modified since 2 iterations

✕ 16.

18. Tasks that generated the implementation effort of
code parts that were not modified since 2 iterations

✕ 17.

19. Traceability links obtained through non-invasive
cost accounting

✕ 18.

20. Task life time ✕ 2.

21. Autonomation coverage ✕ 21.

22. Standardization coverage ✕ 22.

As we defined the data to extract from the indicators, we faced the problem that
frequently we could not collect automatically what we wanted to collect. In such a
situation we have several possibilities:

• we change the measurement goal,
• we change the measurement question,
• we change the indicator,
• we change the data, or
• we measure manually.

Of course, changing the goal or the question is not always a viable solution.
This sounds like the story of the drunk that lost his keys and searches for them not
where he lost them (in the park) but under the streetlight, because this is where
there was the light. Nevertheless, sometimes we can switch indicator to measure the
same data or we can change data to answer a similar question. As Park et al. put it:
“constructing useful indicators is a highly creative process [88].”

In our case, it was a priority to measure automatically so that the measurement
could be fed into our autonomation system and displayed on our dashboard.

Some decisions of this type were:

11.6 Case 3: Developing a Lean GQM Graph 345

• To answer question 3, i.e., the most frequent reasons why tasks are stuck in
intermediate phase for more than one iteration, we look at the source code that
was modified because of a task (measure 5) and at the person for whom the
task is waiting (measure 6). We hypothesized that we could understand from that
information what kind of problem existed. In fact, there might be many other
reasons that explain why a task takes longer than expected.

• To answer question 15, i.e., how important each task is for the client, we took
the importance of the module in which the code is edited for that task. This is an
approximation and it could be that there are tasks that have a different importance
for the client than the module it belongs to.

• To answer question 10, i.e., which technologies a software developer uses during
the project, we only look at the programs he is using. If the organization uses
different hardware technologies and it wants to track the usage of this hardware,
we need to come up with another measurement.

11.6.2.8 Define the Measures to Be Used and Make These Definitions
Operational

The goal of this section is to refine the measurements identified in the previous
section according to two criteria [88]:

• Communication: we have to make sure that others know what has been
measured, how it was measured, and what has been included and excluded.

• Repeatability: we have to make sure that others, equipped with the definition,
can repeat the measurements and get essentially the same results.

To accomplish this, we define for each measurement in Table 11.44 how it will
be collected (Table 11.45).

Table 11.45 Operational measurements, i.e., measurements that also state how to determine its
value

No. Definition R
es

ul
tt

yp
e

Example

1. Connect to the system that holds the data
depicted in Fig. 11.41 and count the number
of phases. For example, if the defined phases
are Backlog, Selected, Development, Done,
Deployment, and Live!, the result is 6

Number 6

2. Connect to the system that holds the data
depicted in Fig. 11.41 and count for each
phase the number of tasks whose last status
was in that phase

List Backlog: 20
Selected: 10
Development: 5
. . .

(continued)

346 11 Lean Software Development in Action

Table 11.45 (continued)

No. Definition R
es

ul
tt

yp
e

Example

3. Connect to the system that holds the data
shown in Table 11.21 and calculate for each
task its age counting the number of days
between the current date and the date when
they entered their current phase

List Task 5: 50 days
Task 8: 22 days
Task 9: 7 days
. . .

4. Connect to the system that holds the data
shown in Table 11.22 and extract all package
names that were modified while a given task
was active

List it.product.module1
it.product.module2
. . .

5. Connect to the system that holds the data
shown in Table 11.43 and extract all tasks
together with the person because of whom the
task is blocked

List 1: Andrea
2: Joe
. . .

6. Connect to the system that holds the data
shown in Table 11.39 and extract the feature
usage estimation

List Feature 1: high
Feature 2: medium
. . .

7. Connect to the system that holds the data
shown in Table 11.39 and extract the worst-
case loss estimation

List Feature 1: medium
Feature 2: low
. . .

8. Connect to the system that holds the data
depicted in Fig. 11.41 and get all tasks that are
in the Backlog

List Task 1
Task 2
. . .

9. Connect to the system that holds the data
depicted in Table 11.41 and get all activities

List Activity 1
Activity 2
. . .

10. Connect to the system that holds the data
depicted in Table 11.41 and calculate the fre-
quency of activitiesa

List Activity 1: 2512
Activity 2: 5573
. . .

11. Connect to the system that holds the data
depicted in Table 11.41 and calculate frequent
sequences or combinations of activitiesb

Lists Frequent activities: 1, 6,
12, . . .
Frequent combinations:
(1,2), (5,2,3)
. . .

12. Connect to the system that holds the data
depicted in Table 11.41 and get all technolo-
gies

List Technology 1
Technology 2
. . .

13. Connect to the system that holds the data
depicted in Table 11.41 and calculate the fre-
quency of technologiesa

List Technology 1: 221
Technology 2: 12
. . .

14. Connect to the system that holds the data
depicted in Table 11.41 and calculate frequent
sequences or combinations of technologiesb

Lists Frequent technologies:
2, 3, 5, . . .
Frequent combinations:
(1,2), (5,6)
. . .

(continued)

11.6 Case 3: Developing a Lean GQM Graph 347

Table 11.45 (continued)

No. Definition R
es

ul
tt

yp
e

Example

15. Connect to the system that holds the data
shown in Table 11.39, find the modified mod-
ules among the estimates, and assign the
importance of the module according to the
matrix depicted in Fig. 11.42. If no importance
or frequency of use is defined, assume low
importance

List it.product.module1: low
it.product.module2:
medium
. . .

16. Connect to the system that holds the data
shown in Table 11.17 and get the calculated
duration

List Class1: 600 min
Method5: 120 min
. . .

17. Connect to the system that holds the data
shown in Table 11.17, find the code parts that
were not modified since two iterations, and get
the calculated duration

List Class1: 600 min
Method5: 120 min
. . .

18. Connect to the system that holds the data
shown in Table 11.22, find the code parts that
were not modified since two iterations, and get
tasks that generated that effort

List Task1, Task2, . . .

19. Connect to the system that holds the data
shown in Table 11.22, and report the tasks and
the code those was modified while that tasks
were active

List Task1: class1, class2, . . .
Task2: method4, class3,
. . .
. . .

20. Connect to the system that holds the data
shown in Table 11.21, and calculate the life-
time of a task as the number of days from
when it has the status “Selected” to the day
it has the status “Life!”

List Task1: 5
Task2: 16 . . .
. . .

21. Connect to the automated verification system
and calculate the code coverage of the auto-
mated testsc

Value 90 %

22. Estimation by the developers of the part of
the development process that is covered by the
guidelines

Value 10 %

a We calculated the frequency counting how often activities occurred
b We considered frequent activities—those activities that occurred more than 20 % of the time. To
calculate frequent combinations we used association rule mining [2]
c We used EMMA [31], an open-source Java coverage analysis tool to calculate the coverage

348 11 Lean Software Development in Action

11.6.2.9 Identify the Actions That You Will Take to Implement
the Measures

To collect the data as we defined above, the team needs to:

• manage their tasks using the described Kanban software,
• extract the task data about the tasks as in Tables 11.21 and 11.43,
• measure the activities of the team as in Table 11.22,
• estimate the importance of features as in Table 11.39,
• measure the effort of the team as in Table 11.41,
• use an automated verification system that calculates the coverage,
• define guidelines for frequent activities, and
• estimate the part of the development process that is covered by the guidelines.

11.6.2.10 Prepare a Plan for Implementing the Measures

The plan to implement the above described measures is described in Sect. 11.3 of
this book.

11.6.3 Results

In this case study we describe how we started from questions and obtained a set of
measurements that can be regularly collected to support the team to with its efforts
to become more and more Lean.

11.6.4 Discussion

The here identified entities and questions are not universal; they have to be identified
by the organization. We started broad and as we were refining our questions to
measurement goals and measurements, we understood what was possible to collect
and what not. This approach is context dependent; that means that in teams different
from the one in which this GQM model was developed, we might become invalid
data, that is, data that does not measure what we think it measures.

From a Lean perspective, this project contributed to the maximization of value
and the creation of knowledge and improvement as summarized in Table 11.46.

11.7 Summary 349

Table 11.46 Lean aspects addressed by the third described case

Goal Strategy Rationale

Maximization
of value

Identification
and elimination
of waste

The collection of data that helps to fulfill the business goals
(and nothing more) maximizes the outcome: we do not
waste time and money to collect data that we do not need

Creation of
knowledge

GQM model The creation of the GQM model is a learning process
itself. It helps the organization to better understand what
its goals are and how they will understand whether they are
progressing towards their goals or not

Improvement Autonomation The here described approach is a precondition for autono-
mation: the GQM model interprets the collected data and
decides whether the team should be informed or not about
something that the measurement probes detected

11.7 Summary

The three case studies that we presented in this chapter illustrate different aspects of
our approach to Lean software development. The first study illustrates how a team
studied one specific aspect of their development process: whether they spend more
time exploring or exploiting. The second study illustrates an approach to study
software development costs to understand where the team should improve. The
third study shows the development of a GQM model to support the non-invasive
measurement of how Lean a team is and where the team should improve.

Problems

11.1. Some researchers think that action research is unscientific [49]. Why do you
think could somebody think of this?

11.2. Give an example of a hypothesis that can and one that cannot be examined
using a laboratory experiment.

11.3. Which is the only logically correct way to attribute indirect costs to the cost-
items?

11.4. How can a programmer cheat the system and use a package from the
“platform” project, but avoid to get charged for it?

350 11 Lean Software Development in Action

References

1. Adkins, T.: Five myths about time-driven activity-based costing. Sascom magazine. Online:
http://www.sas.com/news/sascom/2008q2/feature_abc.html (2008). Accessed 4 Dec 2013

2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large
databases. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data. ACM, Washington, DC (1993)

3. Alfresco: Alfresco. Online: http://www.alfresco.com (2013). Accessed 4 Dec 2013
4. Apache Software Foundation: Apache cassandra. Online: http://cassandra.apache.org (2013).

Accessed 4 Dec 2013
5. Apache Software Foundation: Apache subversion. Online: http://subversion.apache.org

(2013). Accessed 4 Dec 2013
6. Astromskis, S., Janes, A., Mahdiraji, A.R.: Egidio: a non-invasive approach for synthesizing

organizational models. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) Proceedings of the
International Conference on Software Engineering (ICSE). IEEE, Zürich (2012)

7. Astromskis, S., Janes, A., Sillitti, A., Succi, G.: Supporting cmmi assessment using dis-
tributed, non-invasive measurement and process mining. In: Proceedings of the International
Conference on Distributed Multimedia Systems (DMS). Knowledge Systems Institute,
Brighton (2013)

8. Atteslander, P.: Methoden der empirischen Sozialforschung, 10th edn. Studienbuch Series.
Walter de Gruyter, Berlin (2003)

9. Avison, D.E., Lau, F., Myers, M.D., Nielsen, P.A.: Action research. Commun. ACM 42(1),
94–97 (1999)

10. Baetge, J., Kirsch, H.J., Thiele, S. (eds.): Bilanzrecht, Handelsrecht mit Steuerrecht und den
Regelungen des IASB, Kommentar. Stotax Stollfuß Medien, Berlin (2009)

11. Bayou, M., de Korvin, A.: Measuring the leanness of manufacturing systems—a case study
of ford motor company and general motors. J. Eng. Technol. Manag. 25(4), 287–304 (2008)

12. Blichfeldt, B.S., Andersen, J.R.: Research design: creating a wider audience for action
research: learning from case-study research. J. Res. Pract. 2(1) (2006). http://jrp.icaap.org/
index.php/jrp/article/download/23/69

13. Boehm, B.W., Clark, B., Horowitz, E., Shelby, R., Westland, C.: An overview of the cocomo
2.0 software cost model. In: Software Technology Conference. ACM, Salt Lake City (1995)

14. Bonitasoft: Bonita. Online: http://www.bonitasoft.com (2013). Accessed 4 Dec 2013
15. Bostock, M.: Data-driven documents. Online: http://d3js.org (2013). Accessed 4 Dec 2013
16. Brown, W.J., Malveau, R.C., McCormick, H.W.S., Mowbray, T.J.: AntiPatterns: Refactoring

Software, Architectures, and Projects in Crisis. Wiley, New York (1998)
17. Bugzilla contributors: Bugzilla. Online: http://www.bugzilla.org (2013). Accessed 4 Dec

2013
18. Buzan, T.: Use Your Head. Guild Publishing, London (1984)
19. Checkland, P.B., Holwell, S.: Action research: its nature and validity. In: Kock, N. (ed.)

Information Systems Action Research: An Applied View of Emerging Concepts and Methods.
Springer’s Integrated Series in Information Systems, vol. 13, Springer, New York (2006)

20. Cohen, M.D., March, J.G., Olsen, J.P.: A garbage can model of organizational choice. Adm.
Sci. Q. 17(1), 1–25 (1972)

21. Collins: Collins English Dictionary—Complete & Unabridged, 10th edn. HarperCollins,
Glasgow. Online: http://www.collinsdictionary.com (2009). Accessed 4 Dec 2013.

22. Colombo, A., Damiani, E., Gianini, G., Scotto, M., Succi, G.: Identifying individual process
patterns by means of non-invasive measurements: preliminary results. In: International
Conference on Computational Cybernetics (ICCC). IEEE, Mauritius (2005)

23. Coulter, D., McGrath, G., Wall, A.: Time-driven activity-based costing. Accountancy Irel.
43(5), 12–15 (2011)

24. Cusumano, M.A., Selby, R.W.: How microsoft builds software. Commun. ACM 40(6), 53–62
(1997)

http://www.sas.com/news/sascom/2008q2/feature_abc.html
http://www.alfresco.com
http://cassandra.apache.org
http://subversion.apache.org
http://jrp.icaap.org/index.php/jrp/article/download/23/69
http://jrp.icaap.org/index.php/jrp/article/download/23/69
http://www.bonitasoft.com
http://d3js.org
http://www.bugzilla.org
http://www.collinsdictionary.com

References 351

25. Dawson, R., Nolan, A.J.: Towards a successful software metrics programme. In: Proceedings
of the International Workshop on Software Technology and Engineering Practice (STEP).
IEEE Computer Society, Amsterdam (2003)

26. Deloitte Global Services: Ias 38—intangible assets. Online: http://www.iasplus.com/en/
standards/ias38 (2013). Accessed 4 Dec 2013

27. Díaz-Ley, M., García, F., Piattini, M.: Implementing a software measurement program in
small and medium enterprises: a suitable framework. IEEE Softw. 2(5), 417–436 (2008)

28. Dobler, M., Kurz, G.: Aktivierungspflicht für immaterielle vermögensgegenstände in der
entstehung nach dem rege eines bilmog: kritische würdigung der f&e-bilanzierung im hgb-
abschluss de lege ferenda. KoR — Zeitschrift für internationale und kapitalmarktorientierte
Rechnungslegung 8(7/8), 485–493 (2008)

29. Downs, J., Plimmer, B., Hosking, J.G.: Ambient awareness of build status in collocated
software teams. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, Zürich (2012)

30. Eclipse Foundation: Eclipse ide. Online: http://www.eclipse.org (2013). Accessed 4 Dec 2013
31. EMMA contributors: Emma: a free java code coverage tool. Online: http://emma.sourceforge.

net (2013). Accessed 4 Dec 2013
32. European Computer Manufacturers Association: Standard ecma-262. Online: http://www.

ecma-international.org/publications/standards/Ecma-262.htm (2011). Accessed 25 May 2014
33. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.

PWS Publishing, London (1998)
34. Fichman, R.G., Kemerer, C.F.: Activity based costing for component-based software devel-

opment. Inf. Technol. Manag. 3(1), 137–160 (2002)
35. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans.

Internet Techno. 2(2), 115–150 (2002)
36. Fowler, M., Beck, K., john Brant, Opdyke, W., Roberts, D.: Refactoring: Improving the

Design of Existing Code. Addison-Wesley Object Technology Series. Addison-Wesley
Professional, Reading (1999)

37. Fronza, I., Janes, A., Sillitti, A., Succi, G., Trebeschi, S.: Cooperation wordle using
pre-attentive processing techniques. In: Proceedings of the International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE). IEEE, San Francisco
(2013)

38. GIT contributors: Git. Online: http://git-scm.com (2013). Accessed 4 Dec 2013
39. Gold, R.L.: Roles in sociological field observations. Soc. Forces 36, 217–223 (1958)
40. Goodyear, L.E.: Principles of Accountancy. American Bookkeeping Series. Goodyear-

Marshall, Cedar Rapids. Online: https://archive.org/details/principlesofacco00goodrich
(1913). Accessed 4 Dec 2013

41. Gopal, A., Krishnan, M.S., Mukhopadhyay, T., Goldenson, D.R.: Measurement programs in
software development: determinants of success. IEEE Trans. Softw. Eng. 28(9), 863–875
(2002)

42. Gopal, A., Mukhopadhyay, T., Krishnan, M.S.: The impact of institutional forces on software
metrics programs. IEEE Trans. Softw. Eng. 31(8), 679–694 (2005)

43. Hall, T., Fenton, N.: Implementing effective software metrics programs. IEEE Softw. 14(2),
55–65 (1997)

44. Hanspeter, D., Janes, A., Sillitti, A., Succi, G.: Improving the identification of traceability
links between source code and requirements. In: Proceedings of the International Conference
on Distributed Multimedia Systems (DMS). Knowledge Systems Institute, Miami Beach
(2012)

45. Hanspeter, D., Janes, A., Sillitti, A., Succi, G.: Semi-automatic requirement tracing in
modified code: an eclipse plugin. In: Proceedings of the International Conference on
Distributed Multimedia Systems (DMS). Knowledge Systems Institute, Miami Beach (2012)

46. Hattori, L.P., Lanza, M., Robbes, R.: Refining code ownership with synchronous changes.
Empir. Softw. Eng. 17(4–5), 467–499 (2012)

http://www.iasplus.com/en/standards/ias38
http://www.iasplus.com/en/standards/ias38
http://www.eclipse.org
http://emma.sourceforge.net
http://emma.sourceforge.net
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://git-scm.com
https://archive.org/details/principlesofacco00goodrich

352 11 Lean Software Development in Action

47. Hibbs, C., Jewett, S.P., Sullivan, M.: The Art of Lean Software Development: A Practical and
Incremental Approach. Theory in Practice. O’Reilly Media, Sebastopol (2009)

48. Hirsch, J.E.: An index to quantify an individual’s scientific research output that takes into
account the effect of multiple coauthorship. Scientometrics 85(3), 741–754 (2010)

49. Hope, K.W., Waterman, H.A.: Praiseworthy pragmatism? validity and action research. J. Adv.
Nurs. 44(2), 120–127 (2003)

50. Hopkins, D.: A Teacher’s Guide to Classroom Research, 4th edn. Open University Press,
Maidenhead (2008)

51. Horsch, J.: Kostenrechnung: Klassische und neue methoden in der unternehmenspraxis.
Zeitschrift für Betriebswirtschaft 80(10), 1121–1122 (2010)

52. Humphrey, W.S.: Introduction to the Personal Software Process. Addison-Wesley Profes-
sional, Reading (1996)

53. International Financial Reporting Standards Foundation: International accounting standard
38, intangible assets, technical summary. Online: http://www.ifrs.org/IFRSs/Documents/
English%20IAS%20and%20IFRS%20PDFs%202012/IAS%2038.pdf (2012). Accessed 4
Dec 2013

54. Ireland, J.: Principles of Accounting. Undergraduate study in Economics, Management,
Finance and the Social Sciences. University of London, London (2005)

55. Iversen, J., Mathiassen, L.: Lessons from implementing a software metrics program. In:
Proceedings of the Hawaii International Conference on System Sciences (HICSS). IEEE,
Maui (2000)

56. Jalote, P.: An Integrated Approach to Software Engineering, 3 edn. Texts in Computer Science
Series. Springer, New York (2005)

57. Janes, A., Succi, G.: To pull or not to pull. In: Arora, S., Leavens, G.T. (eds.) Companion to the
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). ACM, Orlando (2009)

58. JDepend contributors: Jdepend. Online: http://clarkware.com/software/JDepend.html (2013).
Accessed 4 Dec 2013

59. Jenkins CI contributors: Jenkins ci. Online: http://jenkins-ci.org (2013). Accessed 4 Dec 2013
60. Jersey contributors: Jersey. Online: https://jersey.java.net (2013). Accessed 4 Dec 2013
61. Anfara V.A, Jr., Mertz, N.T.: Theoretical Frameworks in Qualitative Research. Sage Publica-

tions, Thousand Oaks (2006)
62. JUnit contributors: Junit. Online: http://sourceforge.net/projects/junit (2013). Accessed 4 Dec

2013
63. Kaplan, R.S., Anderson, S.R.: Time-driven activity-based costing. Harv. Bus. Rev. 82(11),

131–138 (2004)
64. Kaplan, R.S., Norton, D.: The balanced scorecard: measures that drive performance. Harv.

Bus. Rev. 70(1), 71–79 (1992)
65. Keele, R.: Nursing Research and Evidence-Based Practice. Jones & Bartlett Learning,

Sudbury (2010)
66. Kemmis, S., McTaggart, R.: Participatory action research: communicative action and the

public sphere. In: Denzin, N.K., Lincoln, Y.S. (eds.) The SAGE Handbook of Qualitative
Research, 3rd edn. Sage, Thousand Oaks (2005)

67. Kilpi, T.: Implementing a software metrics program at nokia. IEEE Softw. 18(6), 72–77
(2001)

68. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional
Data Warehouses. Wiley, New York (1996)

69. Lasser, J.K.: Handbook of Cost Accounting Methods. D. Van Nostrand Company, New York
(1949)

70. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining mental models: a study of developer
work habits. In: Proceedings of the International Conference on Software Engineering (ICSE).
ACM, Shanghai (2006)

71. Lehman, M.: Programs, life cycles, and laws of software evolution. Proc. IEEE 68(9), 1060–
1076 (1980)

http://www.ifrs.org/IFRSs/Documents/English%20IAS%20and%20IFRS%20PDFs%202012/IAS%2038.pdf
http://www.ifrs.org/IFRSs/Documents/English%20IAS%20and%20IFRS%20PDFs%202012/IAS%2038.pdf
http://clarkware.com/software/JDepend.html
http://jenkins-ci.org
https://jersey.java.net
http://sourceforge.net/projects/junit

References 353

72. Lewin, K.: Action research and minority problems. J. Soc. Issues 2(4), 34–46 (1946)
73. Lewin-Koh, N.: Hexagon binning: an overview. Online: http://cran.r-project.org/web/

packages/hexbin/vignettes/hexagon_binning.pdf (2011). Accessed 4 Dec 2013
74. Lieberman, M.B., Montgomery, D.B.: First-mover strategies. Special Issue on Strategy

Content Research. Strat. Manag. J. 9, 41–58 (1988)
75. March, J.G.: Exploration and exploitation in organizational learning. Organ. Sci. 2(1), 71–87

(1991)
76. Marciuska, S., Gencel, C., Abrahamsson, P.: Exploring how feature usage relates to customer

perceived value: a case study in a startup company. In: Herzwurm, G., Margaria, T. (eds.)
Software Business. From Physical Products to Software Services and Solutions. Lecture
Notes in Business Information Processing, vol. 150. Springer, New York (2013)

77. Maskell, B.H., Baggaley, B.L.: Lean accounting: what’s it all about? Association for
Manufacturing Excellence’s Target Magazine (2006)

78. Mertler, C.A.: Action Research: Improving Schools and Empowering Educators. Sage
Publications, Thousand Oaks (2011)

79. Microsoft: Microsoft c#. Online: http://msdn.microsoft.com/en-us/vstudio/hh341490.aspx
(2013). Accessed 4 Dec 2013

80. Microsoft: Microsoft office. Online: http://office.microsoft.com (2013). Accessed 4 Dec 2013
81. Microsoft: Microsoft visual studio. Online: http://www.microsoft.com/visualstudio (2013).

Accessed 4 Dec 2013
82. Microsoft: .net. Online: http://www.microsoft.com/net (2013). Accessed 4 Dec 2013
83. Mindscape: Karotz. Online: http://www.karotz.com (2013). Accessed 4 Dec 2013
84. Monfreda, N.: Le sanzioni amministrative in materia di ii.dd. ed iva. Rivista della Scuola

superiore dell’economia e delle finanze a cura del Centro Ricerche Documentazione
Economica e Finanziaria, vol. VII, Issue 2. Online: http://rivista.ssef.it/site.php?page=
20051011123911977 (2010). Accessed 4 Dec 2013

85. Nord, R.L., Ozkaya, I., Sangwan, R.S.: Making architecture visible to improve flow manage-
ment in lean software development. IEEE Softw. 29(5), 33–39 (2012)

86. Oracle: Java. Online: http://www.java.com (2013). Accessed 4 Dec 2013
87. Oracle: Jsp. Online: http://www.oracle.com/technetwork/java/javaee/jsp/index.html (2013).

Accessed 4 Dec 2013
88. Park, R.E., Goethert, W.G., Florac, W.A.: Goal-driven software measurement—a guidebook.

Technical Report CMU/SEI-96-HB-002, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh (1996)

89. Parkinson, S.T., Counsell, S., Norman, M., Hierons, R.M., Lycett, M.: The precursor to
an industrial software metrics program. In: Proceedings of the International Conference on
Information Technology Interfaces (ITI). University of Zagreb, Cavtat (2008)

90. Pentaho contributors: Pentaho. Online: http://www.pentahobigdata.com (2013). Accessed 4
Dec 2013

91. Pólya, G.: How to Solve It: A New Aspect of Mathematical Method. Science Study Series.
Doubleday Anchor Books, Garden City (1957)

92. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From Con-
cept to Cash. Addison-Wesley Professional, Upper Saddle River (2006)

93. Popper, K.: The Logic of Scientific Discovery. Routledge, London (2002)
94. Project Management Institute: A Guide to the Project Management Body of Knowledge

(PMBOK R� Guide), 5th edn. Project Management Institute, Newtown Square (2013)
95. Reiß, M.: Das kongruenzprinzip der organisation. Wirtschaftswissenschaftliches Studium 11,

75–78 (1982)
96. Robbes, R., Röthlisberger, D.: Using developer interaction data to compare expertise metrics.

In: Working Conference on Mining Software Repositories (MSR). IEEE, San Francisco
(2013)

97. Santos, P.S.M.d., Travassos, G.H.: Action research use in software engineering: an initial
survey. In: Proceedings of the International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE Computer Society, Lake Buena Vista (2009)

http://cran.r-project.org/web/packages/hexbin/vignettes/hexagon_binning.pdf
http://cran.r-project.org/web/packages/hexbin/vignettes/hexagon_binning.pdf
http://msdn.microsoft.com/en-us/vstudio/hh341490.aspx
http://office.microsoft.com
http://www.microsoft.com/visualstudio
http://www.microsoft.com/net
http://www.karotz.com
http://rivista.ssef.it/site.php?page=20051011123911977
http://rivista.ssef.it/site.php?page=20051011123911977
http://www.java.com
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.pentahobigdata.com

354 11 Lean Software Development in Action

98. Astromskis, S., Janes, A., Sillitti, A., Succi, G.: An approach to non-invasive cost accounting.
In: Proceedings of the Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). Verona, Italy (2014)

99. Seicht, G.: Moderne Kosten- und Leistungsrechnung: Grundlagen und praktische Gestaltung,
8th edn. Linde, Wien (1995)

100. Sidiropoulos, A., Katsaros, D., Manolopoulos, Y.: Generalized hirsch h-index for disclosing
latent facts in citation networks. Scientometrics 72(2), 253–280 (2007)

101. Software Engineering Standards Committee of the IEEE Computer Society: IEEE standard
for software project management plans. IEEE Std 1058-1998 (1998)

102. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Reading (2010)
103. Standards Coordinating Committee of the Computer Society of the IEEE: IEEE standard

glossary of software engineering terminology. IEEE 610.12-1990 (1990)
104. Szyperski, C.: Component Software: Beyond Object Oriented Programming. Addison-Wesley

Professional, Reading (2002)
105. The Linux Foundation: Linux. Online: http://www.linux.org (2013). Accessed 4 Dec 2013
106. Thompson, J.L.: Strategic Management: Awareness and Change. Chapman & Hall, London

(1993)
107. Trac contributors: Trac. Online: http://trac.edgewall.org (2013). Accessed 4 Dec 2013
108. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interven-

tions. Decis. Sci. 39(2), 273-315 (2008)
109. Vinodh, S., Chintha, S.K.: Leanness assessment using multi-grade fuzzy approach. Int. J.

Prod. Res. 49(2), 431–445 (2011)
110. Wegmann, G.: The activity-based costing method: development and applications. IUP J.

Account. Res. Audit Pract. 8(1), 7–22 (2008)
111. Whetten, D.A.: What constitutes a theoretical contribution? Acad. Manag. Rev. 14(4), 490–

495 (1989)
112. Yin, R.K.: Case Study research, Design and Methods, 3rd edn. Applied Social Research

Methods Series. Sage Publications, Thousand Oaks (2009)

http://www.linux.org
http://trac.edgewall.org

Chapter 12
Conclusion

Jeder, der sich die Fähigkeit erhält, Schönes zu erkennen, wird
nie alt werden.
(Anyone who keeps the ability to see beauty never grows old.)

Franz Kafka

12.1 Introduction

As an applied researcher, we prefer to confront our ideas and models earlier and
more often with the reality than our theoretical colleagues. Doing so increases the
relevance of our research and forces us to keep a holistic view towards our research,
since it is not always possible to apply research just to a part of the world. This is—
according to our opinion—the most important lesson of Lean Thinking: optimize
the whole.

The foreword of Taiichi Ono’s book titled “Toyota Production System” contains
a “simple but brilliant [4]” description of the goal of Lean Manufacturing, which
is depicted in Fig. 12.1. Taiichi Ohno explains this figure saying: “All we are doing
is looking at the time line, from the moment the customer gives us an order to the
point when we collect the cash. And we are reducing that time line by removing the
non-value-added wastes [4].”

(reduce by removing non-value-adding activities)

Timeline

CashOrder

Fig. 12.1 A birds-eye view on the Toyota Production System [4]

The approach described in this book aims to make “go and see” easier, a method
that in Lean is called “Gemba.” Gemba represents the search for knowledge, i.e.,
the search for understanding the execution of processes, why certain activities
take the time they take, where we have to improve, and so on. Gemba promotes
a culture of measurement, i.e., a culture that wants to understand the best strategy to
achieve a given goal. This book describes how practitioners can use non-invasive

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9__12

355

356 12 Conclusion

measurement to implement autonomation and get feedback about their progress
towards getting more and more Lean.

Still we have to be careful: measurement and transparency do not work every-
where; it depends on the organizational culture. Organizational culture “is the
basic pattern of shared assumptions, values, and beliefs considered to be the
correct way of thinking about and acting on problems and opportunities facing the
organization [3].” Deal and Kennedy put it like this: “the way things get done around
here [2].”

If the culture promotes “the strongest survives,” nobody will be interested in
sharing data about his own performance since he might be afraid that somebody
could find out a weakness. On the other hand, if the culture supports collaboration
and learning, the individual team members will agree to measure their activities and
their software development process outcome to improve.

12.1.1 Lessons Learned

We would like to point out some lessons we learned as we supported organizations
becoming Lean using a measurement framework as described in this book:

• Do not expect that you get told what to do. We cannot go to a manager
and ask: “OK, so what should we measure to help you become Lean?” He
(probably) will not be able to give you an answer because he does not know
how measurement contributes to becoming Lean. This is similar to what we said
in Chap. 3 that we need to “convert business objectives into requirements that
take into consideration the technical possibilities and their costs.” The manager
is not aware of the technical possibilities and their costs. It is our task to study the
business needs of the organization and to propose opportunities to achieve them.
This is why we stressed the use of the GQMCStrategies approach so much.

• Explain what you are trying to achieve. Lean Thinking itself requires the
involvement of the person that is actually working in the production process,
because this person has the most knowledge about how to improve it. With
manual measurement, developers are aware of what is collected, because they
have to collect and provide the required data. Since our approach is based on
non-invasive measurement, the developers (and the other stakeholders) are not
“naturally” aware of the data that is now available; that means that they cannot
help us with new, innovative ways to analyze or to interpret it. As a consequence,
we have to spend more time (compared to manual measurement) explaining what
we are collecting, how we are processing the data, what information we gain from
it, etc. to obtain the acceptance and involvement of the team.

• Measure only what you need. A typical mistake at the beginning is to measure as
much as you can. It seems that the more data we have, the better decisions we can
make. We did this mistake, and—besides understanding that this is not true—we

References 357

realized that we spent a lot of time and money to build a system that we did not
need.

• Proceed incrementally. Begin with some few measurement goals and extend
them later. As the benefits of having non-invasive measurement and Andon in
place become visible, you can decide if it is worthy to extend the framework
to more measurements, more information, and more knowledge. We pointed out
already in Chap. 9 that data comes with a cost.

• Ensure privacy and confidentiality. Privacy (the possibility for the individual
to control one’s private life or personal affairs [1]) and Confidentiality (the
possibility for the individual to control one’s data) have to be ensured. Everybody
that is part of the measurement process should have the possibility to control
which data are collected about himself and who has access to it.

• Verify the validity of the collected data. The correct functioning of the measure-
ment system should be constantly verified, possibly using a Jidoka approach.
Some examples of such problems are:

– a measurement probe stops working;
– a computer gets disconnected from the network and the collected data are not

uploaded anymore;
– the assumptions under which a measurement probe was developed are not

valid anymore, and the collected data do not measure anymore what they
should.

To give every interested reader a hint of how to design such a framework,
Appendix B describes the architecture of our implementation.

Problems

12.1. Design a prototype architecture of a system to keep everybody informed
about the number of tasks with a high severity that are present in the backlog and if
the last nightly build failed.

References

1. Collins: Collins English Dictionary — Complete & Unabridged, 10th edn. HarperCollins
(2009). Online: http://www.collinsdictionary.com. Accessed 4 Dec 2013

2. Deal, T.E., Kennedy, A.A.: Corporate cultures: the rites and rituals of corporate life. Addison-
Wesley, Reading (1982)

3. McShane, S., Glinow, M.V.: Organizational Behavior. McGraw-Hill, New York (2000)
4. Ōno, T.: Toyota Production System: Beyond Large-Scale Production. Productivity Press,

Cambridge (1988)

http://www.collinsdictionary.com

Appendix A
If Architects Had to Work Like Software
Developers1

Dear Mr. Architect,
Please design and build me a house. I am not quite sure of what I need, so you

should use your discretion.
My house should have between two and forty-five bedrooms. Just make sure the

plans are such that the bedrooms can be easily added or deleted. When you bring
the blueprints to me, I will make the final decision of what I want. Also, bring me
the cost breakdown for each configuration so that I can arbitrarily pick one.

Keep in mind that the house I ultimately choose must cost less than the one I
am currently living in. Make sure, however, that you correct all the deficiencies that
exist in my current house (the floor of my kitchen vibrates when I walk across it,
and the walls don’t have nearly enough insulation in them).

As you design, also keep in mind that I want to keep yearly maintenance costs
as low as possible. This should mean the incorporation of extra-cost features like
aluminum, vinyl, or composite siding. (If you choose not to specify aluminum, be
prepared to explain your decision in detail.)

Please take care that modern design practices and the latest materials are used
in the construction of the house, as I want it to be a showplace for the most up-to-
date ideas and methods. Be alerted, however, that the kitchen should be designed to
accommodate, among other things, my 1952 Gibson refrigerator.

To ensure that you are building the correct house for our entire family, make
certain that you contact each of our children and also our in-laws. My mother-in-
law will have very strong feelings about how the house should be designed, since
she visits us at least once a year.

Make sure that you weigh all of these options carefully and come to the right
decision. I, however, retain the right to overrule any choices that you make.

1The author of this letter is unknown.

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9

359

360 A If Architects Had to Work Like Software Developers

Please don’t bother me with small details right now. Your job is to develop the
overall plans for the house: get the big picture. At this time, for example, it is not
appropriate to be choosing the color of the carpet. However, keep in mind that my
wife likes blue.

Also, do not worry at this time about acquiring the resources to build the house
itself. Your first priority is to develop detailed plans and specifications. Once I
approve these plans, however, I would expect the house to be under roof within
48 h.

While you are designing this house specifically for me, keep in mind that sooner
or later I will have to sell it to someone else. It therefore should have appeal to a
wide variety of potential buyers. Please make sure before you finalize the plans that
there is a consensus of the population in my area that they like the features this
house has.

I advise you to run up and look at my neighbor’s house that he constructed last
year. We like it a great deal. It has many features that we would also like in our new
home, particularly the 25 m swimming pool. With careful engineering, I believe that
you can design this into our new home without impacting the final cost.

Please prepare a complete set of blueprints. It is not necessary at this time to
do the real design, since they will be used only for construction bids. Be advised,
however, that you will be held accountable for any increase of construction costs as
a result of later design changes.

You must be thrilled to be working on an interesting project as this! To be able to
use the latest techniques and materials and to be given such freedom in your designs
is something that can’t happen very often.

Contact me as soon as possible with your complete ideas and plans.
Sincerely yours,

Dr. Joe Plumber

P.S.: My wife has just told me that she disagrees with many of the instructions
that I’ve given you in this letter. As architect, it is your responsibility to resolve these
differences. I have tried in the past and have been unable to accomplish this. If you
can’t handle this responsibility, I will have to find another architect.

P.P.S.: Perhaps what I need is not a house at all, but a travel trailer. Please advise
me as soon as possible if this is the case.

Appendix B
A Possible Architecture for a Measurement
Framework

This appendix presents the architecture of a measurement and visualization frame-
work to support Lean software development as described in this book. We follow the
4C1 view model of architecture proposed by Philippe B. Kruchten [18]. This model
is based on the idea that an architecture cannot be described precisely only from one
point of view since it accomplishes the requirements of different stakeholders, e.g.,
users, programmers, or system operators. The 4 C 1 model does not try to visualize
all aspects of an architecture in one diagram, but proposes different views, each
view with a different objective. The five views are the logical, process, physical,
development view, and the scenarios. We describe each view in Table B.1.

Table B.1 The views of the 4 C 1 view model of architecture

Name Content

Logical view Describes the logical entities of the architecture, i.e., the services
the system provides to its end users

Process view Describes the execution of operations by the entities described in
the logical view. It describes the runtime behavior of the architec-
ture

Physical view Describes how the software is deployed on hardware

Development view Describes how the code is organized within the development
environment

Scenarios Describes usage scenarios or, in other words, test cases of the
architecture

Scenarios describe what to expect from the architecture. They act as test cases,
specifying what the architecture should be capable of, given a certain input. We use
the schema proposed by Bass et al. [2] to describe a scenario. It consists of:

• the source of stimulus: the description of the entity that generated a stimulus,
i.e., something that requires a reaction from the architecture,

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9

361

362 B A Possible Architecture for a Measurement Framework

• the stimulus: the stimulus to which the system has to react,
• the environment: the external conditions under which the stimulus arrived,
• the artifact: the target of the stimulus,
• the response: the expected response of the architecture, and
• the response measure: a description how we will measure that the expected

reaction took place.

The single scenarios are implemented through architectural decisions. For exam-
ple, the choice to use an NoSQL database such as Apache Cassandra [1] instead
of a relational database has impacts on the quality of the architecture. It increases,
for example, scalability, because Apache Cassandra is constructed to allow adding
nodes (i.e., hardware) to a database cluster incrementally. On the other hand, Apache
Cassandra does not support referential integrity, transactions, the locking of records,
object-relational mapping, etc., which decreases the usability for developers.

This is an example of typical trade-offs one has to accept when designing an
architecture: in the example of Apache Cassandra, we have to give up usability to
obtain scalability. In fact, to design an architecture often means to balance the trade-
offs between different solutions [2].

B.1 Scenarios

The most important scenarios that guided us in the development of the here
described architecture are as follows (we use the terminology recommended
in [4]):

1. Modifiability: The measurement framework must support the collection of
measurements about employed resources, the performed processes, and the
produced artifacts. It must be possible to add, modify, and remove by the end
user on runtime (a) properties of the described resources, processes, and artifacts;
(b) measurement transformations (analyses that have to be performed before the
data can be visualized); and (c) measurement visualizations.

• the source of stimulus: System administrator;
• the stimulus: Add, modify, or remove a property, transformation, or visual-

ization;
• the environment: At runtime;
• the artifact: The database and all systems that interact with data, transforma-

tions, or visualizations;
• the response: The changed property, transformation, or visualization config-

uration is stored in the database and available in the rest of the system;
• the response measure: The modification should have instant effect, without

downtime for the end users.

2. Usability: The measurement framework must support the collection of measure-
ments in a distributed way, i.e., coming from different computers. If the server is

B.1 Scenarios 363

not reachable, the data must be collected on the client side and sent to the server
as it is reachable again.

• the source of stimulus: End user;
• the stimulus: Wants to upload data;
• the environment: At runtime;
• the artifact: Measurement system;
• the response: The measurement system caches the data locally and, as a

connection to the server is available, uploads it;
• the response measure: The data are uploaded with the minimal performance

impact to the system of the end user.

3. Usability: The measurement framework must support the visualization of mea-
surements or the result of an analysis based on measurements on the web. No
software should be installed on the client machines to visualize data, and the
visualizations itself must be small enough to be transferred over the Internet.

• the source of stimulus: End user;
• the stimulus: Wants to visualize measurements or the result of an analysis

based on measurements;
• the environment: At runtime;
• the artifact: Measurement system;
• the response: The measurement system retrieves the required visualization

from the server and visualizes it on a web page;
• the response measure: The measurements or visualizations are displayed

immediately (or with a minimal delay) after the request.

4. Usability: The measurement framework must support the organization of mea-
surements in the form of dashboards as described in Chap. 10.

• the source of stimulus: End user;
• the stimulus: Wants to organize measurements in the form of dashboards;
• the environment: At runtime;
• the artifact: Measurement system;
• the response: The measurement system supports the user in the definition of

dashboards as described in Chap. 10;
• the response measure: A dashboard can be created picking goals, questions,

and indicators. The time to accomplish this depends only on the size and
complexity of the dashboard.

5. Usability: The measurement framework must collect the measurements with a
minimal impact to the performance of the system of the end user.

• the source of stimulus: End user;
• the stimulus: Wants to collect measurements;
• the environment: At runtime;
• the artifact: Measurement system, operating system, and applications running

on the system of the end user;

364 B A Possible Architecture for a Measurement Framework

• the response: The measurement system collects the measurements and sub-
mits them to the server;

• the response measure: The user does not notice any performance loss of the
operating system or the applications he is using.

B.2 Logical View

Before we explain the structure of the database, we want to illustrate the data flow,
i.e., where data are gathered, how they are processed, where they are stored, and
how they are extracted to be visualized to the end user.

Figure B.1 illustrates the data flow diagram using the Yourdon/DeMarco nota-
tion.

The Yourdon/DeMarco Notation in Short. The Yourdon/DeMarco notation

uses the following elements to describe a data flow:

• rectangles to describe the start and end points,
• two horizontal lines to describe data containers (called data stores) from

which one can read and write,
• circles to describe functions that transform data, and
• arrows that describe the actual flow of data from one point to another.

A detailed explanation of the notation can be found in [29].

This data flow follows the data flow for a typical data warehouse [17]. The
data are extracted by the measurement probes and sent to the message queue. The
message queue is a data store that has two functions: (a) to minimize the time that
the client has to wait for the server to process the data and (b) to perform an initial
consistency check of the data. Moreover, it is used for debugging purposes to see
the incoming data before it is stored in the data warehouse. If the incoming data
are correct, a process reads the data waiting in the message queue and uploads in
into our Apache Cassandra data warehouse, i.e., our central repository. The tables
present in this repository are shown in Fig. B.2.

The data warehouse contains all the history of the data, but that is rarely needed.
Therefore, a process that extracts only the data that is needed for a particular
visualization extracts a part of the data and stores it in a separate database (called
“Project data mart” in the diagram”). From there, a visualization can read the data
and prepare the output that we submit to the browser of the user.

All three processes (the three circles in the diagram) in our architectures are based
on a plugin architecture. That means that a developer can:

B.2 Logical View 365

Message Queue
Measurement

probe

Verify correctness of incoming data
and upload the data warehouse

Apache Cassandra

Extract the data
needed for one or
more visualizations

Project data mart

Create
visualization

User

data

All dataPart of
the data

HTML and
JavaScript

Measurement
data

Measurement
data

Measurement

Fig. B.1 Data flow in the measurement framework

• add his own message queue plugin that handles the upload of a part of the data
that enters the message queue into the data warehouse,

• add his own data mart plugin that handles the extraction of a part of the data to
prepare it for a visualization, and

• add his own visualization plugin that creates a visualization.

This approach allows us to extend the system with new types of data or new
visualizations without changing the core of the system (see scenario 1). In the
database, these plugins are called ETL plugins (ETL stands for “Extract Transform
Load" and is used in the data warehouse terminology to describe processes that
extract data from a source, transform it, and load it into a target data store).

In the following we will explain the purpose of the different tables present in
the database. The tables in Fig. B.2 represent all the data that we collect. In our
implementation these tables are stored in an Apache Cassandra database [1].

We defined a generic data structure for product and process measurements. The
three tables handling the data for product measurements are:

• The table “product_metrics_item” stores data about products, i.e., software
projects. Product measurements describe a given point in time. This point in
time is stored in “product_metrics_run.” We store product metrics together
with pointers to the piece of code they describe. Some example records of the
“product_metrics_item” table for the run number 5 are shown in Table B.2.

366 B A Possible Architecture for a Measurement Framework

process metrics

*id
timestamp
type
plugin
machine
where

session

*id
timestamp
machine
user

*id
timestamp

run
*id
parent
type
name
metric1
metric2
metric3
. . .

product metrics reference

run
*id
who
how
whom

product metrics log

*id
type
timestamp
run
message

product metrics run

product metrics item

Fig. B.2 Database tables storing data about product measurements, process measurements, and
user sessions

• The table “product_metrics_reference” stores references (or links) between items
in the “product_metrics_item” table. The column “how” describes the type of
relationship. For example, we store if one class extends another class or if a class
is stored within a file, and so on.

• The table “product_metrics_log” stores warnings or error messages that arise
during the data upload.

The table “process_metrics” stores all the events that we collect about the
software development process. For each event we store the type of event, e.g.,
effort, which plugin reported the measurement, from which machine we obtained
the measurement and where, and in which application or piece of code the event
was triggered.

To identify each machine, we assign a GUID [20] to each machine during
installation. As the machine sends data to the server, it also submits its GUID.
Knowing from which machine data are coming from is useful for debugging
purposes.

To describe where the event was triggered, we use a JSON [8] object. This allows
us to have the necessary flexibility to add new measurements without having to
change the database structure (see scenario 1).

B.2 Logical View 367

Examples of what we store in the “where” column are shown in Listings B.1 and
B.2. The location described in Listing B.1 refers to a method “setResult” with one
parameter of type “double” within the class “AggregationResult.”

1 {
2 "file_name":"src/jobs/AggregationResult.java",
3 "id":[
4 {
5 "type":"namespace",
6 "name":"jobs"
7 },
8 {
9 "type":"class",

10 "name":"AggregationResult"
11 },
12 {
13 "type":"method",
14 "name":"setResult(double)"
15 }
16]
17 }

Listing B.1 Example event 1

The location described in Listing B.2 refers to an application that had the process
name “Inkscape” and had the caption “/data/figures/139.svg - Inkscape.”

1 {
2 "process":"inkscape",
3 "caption":"/data/figures/139.svg - Inkscape"
4 }

Listing B.2 Example event 2

In the first version of our measurement framework, we had also the user column
in the table “process_metrics.” Unfortunately it sometimes happened that the user
forgot to log off and recorded effort in the name of another user. To avoid updating
thousands (or millions) of records after such a case, we separated the user column
from the process metrics and stored it in the table “session.” Table B.3 shows some
example records of the session table.

From these example records, we see the user “6aac0291-919e-4443-. . . ” (also
a random GUID assigned upon installation) logged on machine “c14545ee-c5e2-
41e5-. . . ” at 9:00. Then, at 10:00, user “8e09c244-02ef-4899-. . . ” logged in on that
machine, and so on. Since we know the machines from which the events are reported
and we know the users that work on each machine, we can assign the events to the
users. If now a user notices that he forgot to log off or that data are by mistake
assigned to him, he can update the “sessions” table with the corrected data.

368 B A Possible Architecture for a Measurement Framework

Table B.2 Example records for the “product_metrics_item” table extracted using the Eclipse [9]
parser [15, 25]

Run Id Parent Type Name LOC CCa WMCb

5 1 Namespace It 2,000

5 2 1 Namespace Unibz 2,000

5 3 2 Namespace Measurement 2,000

5 4 3 Namespace Product 2,000

5 5 4 Class Task 200 10

5 6 4 Class Tenant 300 20

5 7 4 Class Owner 500 25

5 8 7 Method Add(int id) 500 5

9 7 Method Remove(boolean force) 500 8
a Cyclomatic Complexity [23]
b Weighted Methods per Class, the sum of the complexities of all the methods in a class [7]

Table B.3 Example records for the “session” table

Id Timestamp Machine User

1 08.01.2014 09:00 c14545ee-c5e2-41e5-. . . 6aac0291-919e-4443-. . .

2 08.01.2014 10:00 c14545ee-c5e2-41e5-. . . 8e09c244-02ef-4899-. . .

3 08.01.2014 11:00 3d68b8d0-b5df-4728-. . . 6aac0291-919e-4443-. . .

4 08.01.2014 12:00 6acbe0a3-ec85-4d5a-. . . 3c569127-51f5-44df-. . .

5 08.01.2014 15:00 6acbe0a3-ec85-4d5a-. . . b5dd6b5b-abcf-44e4-. . .

Figure B.3 describes the database tables storing data about the analysis of data to
prepare it for the visualizations. The table “etl_plugin” stores the locations of the jar
files, i.e., the plugins that we installed in our measurement system. We mentioned
for Fig. B.1 that any function in the data flow can be defined as a plugin.

If the measurement system wants to execute a plugin, it obtains the location of the
jar file that contains the plugin from the table “etl_plugin,” adds the corresponding
jar file that is stored in a known folder on the server to the class path, instantiates it,
and invokes it. The table “etl_plugin_settings” stores optional settings that a plugin
might require, and “etl_plugin_log” is a table in which a plugin can put debugging
messages.

When a data mart plugin extracts a part of the data from the data warehouse,
we call that an analysis run. After one analysis run, one record is added to table
“analysis_run.” The result of the run is:

• a list of items that are described (stored in the table “analysis_run_item”),
• data about the reported items (stored in the table “analysis_run_data”), and
• relations between the items (stored in the table “analysis_run_reference”).

B.2 Logical View 369

etl plugin

*id
name
class
scheduleetl plugin settings

*id
name
value

etl plugin log

*id
timestamp
message

project

*id
name

analysis run

*id
type
timestamp

analysis run data

*id
name
value

run
*id
parent
type
name

user

*id
full name
login name
password

analysis run reference

run
*id
who
how
whom

analysis run item

Fig. B.3 Database tables storing data about plugins, analyses, projects, and users

The result of an analysis run is entirely defined by the visualization plugin that
extracts the data from the data warehouse and prepares it for a visualization. It can
be data that describes one or more projects and one or more users. Therefore, a
visualization plugin has to specify for which user(s) and for which project(s) the
data are relevant. This is accomplished by adding references to the tables “user” and
“project.”

The tables of Fig. B.3 that start with “analysis_run” are stored in a specific
project database (the project data mart). All other tables are stored in the database
“configuration,” a database that is common to all projects in our system.

The third part of the database schema of our implementation is depicted in
Fig. B.4. It shows the tables we use to implement role-based access control [10].
We define user roles in the table “role” and link entries in the table “users” to
roles. Then, we define which roles a user has for each specific project in the table
“project_role_user.”

370 B A Possible Architecture for a Measurement Framework

Fig. B.4 Database tables
storing data about users and
projects

user

*id
full name
login name
password

role

*id
name

project role user

*id

The fourth part of the database schema of our implementation is depicted in
Fig. B.5, and it shows the tables we use to store the dashboards (see Chap. 10). We
link dashboards to a project, which means that they are visible for the users of that
project. This decision is made by the designer of the dashboard. He can decide to
share a dashboard with one or more projects.

In our approach, the decision of which measurements to consider and how
to visualize them is handled by a visualization plugin. By choosing a specific
visualization plugin, we choose the measurements it uses and we choose how these
measurements are visualized. If we look at the dashboard from a GQ(I)M point of
view, a plugin represents the indicator. This is why, the table “gqim_indicator” is
linked to a “etl_plugin.”

The first maybe intuitive alternative we considered when designing the system
was to allow the user to define all elements of the GQ(I)M interactively. The user
should then be able to pick a set of measurements and define how the system should
build an indicator out of these measurements. Then he could link the indicator to one
or more questions and those questions to goals. This would have meant for us that
we had to implement some sort of chart wizard as it can be found in spreadsheet
applications. This chart wizard would have to allow the user to define how the
measurements have to be combined to draw the chart.

We decided that—considering our skills—the effort to develop a chart wizard
as described above was much higher than developing a plugin-based system.
Moreover, we were confident that a plugin that could be written in Java that defines
an indicator gives to the author of an indicator a much higher flexibility than a chart
wizard created by us (see scenario 4).

The three tables “gqim_goal,” “gqim_question,” and “gqim_indicator” are tables
that are not linked with each other but just to one or more projects. This is why they
do not contain the actual GQ(I)M for a dashboard, but they are templates for goals,
questions, and indicators that can be used for GQ(I)Ms in various dashboards.

This means that if a user defines an indicator “Source code complexity of a
project,” he can share this indicator (together with its settings) with other projects,
where users can reuse it in their GQ(I)Ms.

B.2 Logical View 371

When a user defines a dashboard, he picks from the available goals, questions,
and indicators and saves this definition in the tables “gqim_definition_goal,”
“gqim_definition_question,” and “gqim_definition_indicator.”

All tables of Figs. B.4 and B.5 are stored in the database “configuration,” a
database that is common to all projects in our system. This database is modifiable
through the administrative interface of the system.

gqim goal

*id
object
purpose
focus
stakeholder
context
description

*id
name
description

gqim question

*id
name
description

gqim definition goal

*id
description

gqim definition question

*id
description

gqim definition indicator

*id
description

dashboard

*id
name

etl plugin

*id
name
class
schedule

project

*id
name

gqim indicator

gqm indicator settings

*id
name
value

Fig. B.5 Database tables storing data about the defined GQM, the stored data in the experience
factory, and visualizations

372 B A Possible Architecture for a Measurement Framework

B.3 Physical View

The UML deployment diagram in Fig. B.6 summarizes how our system is deployed
on the different machines.

Integration Server

�database�
Configuration

3rd party server

�database�
3rd party data

Apache Tomcat

Message queue

�database�
Data mart

�database�
Data warehouse

Client

�plugin�
Measurement

probe

�executable�
Measurement

probe 2

�executable�
Configuration

and Setup

�executable�
Data upload

Dashboard

Task
Scheduler

REST ServerAdministrative
interface

Data mart

Plugin
Plugin

�communication protocol
required by 3rd party server�

�REST�

Plugin

builder

Fig. B.6 UML deployment diagram of the deployed components in our measurement system

The components on the “Integration server” are:

• the three databases: the data warehouse, the project data mart, and the configura-
tion database,

• the message queue, together with the message plugins that handle the upload of
the incoming data into the data warehouse,

• the administrative interface,
• a REST [11] service to interface with the server,

B.5 Development View 373

• the “Data mart builder” that updated the data mart on regular time intervals using
the data mart plugins to extract parts of the data and stores it into the data mart.
As we see in the figure, the data mart plugins could also interact with servers
other than ours (what we call “3rd party servers”) to extract data and store it into
the data mart.

• the dashboard component, together with the visualization plugins that read data
from the project data mart to visualize it, and

• a task scheduler that runs the different plugins at predefined time intervals.

On the client side, we install:

• the measurement probes,
• a tool to configure data collection properties, and
• the component that uploads the data to the server.

B.4 Process View

The processes that are executed by the here described architecture are:

• the collection of measurements, defined by the measurement probes,
• the upload of the measurements to the data warehouse, defined by the message

queue plugins,
• the extraction of data to prepare it for a visualization, defined by the data mart

plugins, and
• the creation of a visualization, defined by the visualization plugins.

The precise steps that each one of these plugins or probes executes depends on
the specific data that has to be collected and visualized. The case studies in Chap. 11
illustrate some of the elaboration steps we performed through plugins.

B.5 Development View

We developed our measurement framework using Eclipse [9]. The hierarchical
structure of our directories is organized as the components depicted in Fig. B.6.

Solutions

Problems of Chapter 1

1.1 Software development certainly requires creativity. It requires it to match the
requirements of the client with the available technologies, to combine them into one
solution, and to apply the result to the real world so that the problem is solved.

This process requires the ability to pick several technologies, combine them,
imagine how a possible combination will work, which users will work with it, how
they will work with it, on which hardware it will run, and many things more. This
makes it similar to art, in which the artist combines different materials and skills
to create what he has in his mind, but this is not different from craftsmanship. The
difference between craftsmanship and art is that the result of craftsmanship has to
have a function, while art does not.

The need to fulfill a function guides and limits the software developer in his
choices. He cannot do whatever he wants to realize the idea he has. In fact, as the
software developer writes software that does not have a function anymore but just
represents an idea, he becomes indeed a software artist, for example, the piece of
code below: it compiles but it does not do anything useful except to convey an idea.
It is a poem taken from a collection of poems written in code, written in C++ by
Daniel Bezerra [3]:

1 class love {};
2

3 void main()
4 {
5 throw love();
6 }

Listing A.1 “Unhandled love,” a poem written in C++ by Daniel Bezerra

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9

375

376 Solutions

All three, art, craftsmanship, and software development, can be learned to a
certain extent, and for all three, talent certainly helps.

In summary, if we take “the need to fulfill a function” and “the presence of
rules that we have to follow to succeed” as criteria to decide whether software
development is an art or a craft, we think that it qualifies as a craft.

1.2 Venkatesh and Bala [28] studied “how and why employees make a decision
about the adoption and use of information technologies.” They see the intention to
use a technology influenced by mainly two factors: the perceived usefulness and
the perceived ease of use. This explains why we can observe that a software that
is perceived as useful but not easy to use is still used. On the other hand, this does
not mean that the customers are happy. As soon as they have an alternative that they
perceive as more useful or more easy to use, they will switch.

To survive in a competitive market, it is therefore important to constantly adapt
the solution to what the user needs. (In Chap. 3 we will point out that this is what
“quality” actually means: the conformance to user requirements.)

Problems of Chapter 2

2.1 The roundabout is not the best analogy to Lean, but it has some aspects that
are interesting to compare. Traffic lights increase safety and throughput. Image a
crossing as in Fig. A.1. The traffic on all four roads has to give way to the traffic
coming from the right. Therefore, everybody stops at the crossing to look if there
is a car coming from the right side. Using traffic lamps, only a part of the traffic
has to stop. Moreover, in a street without traffic lights, if all lanes are occupied, a
“deadlock” can occur: everybody is waiting for the next car on the right side.

The disadvantage of the traffic lights is that they do not adapt to the traffic flow
as good as the roundabout. Everybody that had to stop at a red traffic light on an
empty street knows what we mean.

Fig. A.1 A street crossing
without traffic lights

Solutions 377

The roundabout is an interesting solution: with a simple trick, we changed the
initial problem (which can become quite complex; see, e.g., Fig. A.2) into a much
simpler problem.

Fig. A.2 How do the three
cars pass this crossing
correctly?

Similar to this example, the ideas of Lean Thinking sometimes appear like simple
tricks, but on the other hand, they reduce the complexity of the problem significantly.

2.2 The idea of Lean is to increase the surface of the rectangle. We want to increase
our productivity by:

• organizing our work in such a way to reduce waste,
• increasing our knowledge about the development process, and
• increasing the value we provide to the customer.

This means that the resources that we have should remain the same; they should
just be used in a more effective and efficient way.

Problems of Chapter 3

3.1 There is no unique, right way to classify the practices whether they contribute
to identify what has value and what not, to increase knowledge, or to improvement.
The practices frequently contribute to multiple aspects of the software development
process.

Our proposal is listed in Table A.1

378 Solutions

Table A.1 Classification of CMM practices whether they contribute to identify what has value
and what not, to increase knowledge, or to improvement

Practice V
al

ue

K
no

w
le

dg
e

Im
pr

ov
em

en
t

Rationale

Causal Analysis and
Resolution

✕ Causal Analysis and Resolution aims to analyze past
mistakes, to develop a solution, and to avoid the
mistake in the future

Configuration
Management

✕ Configuration Management aims to organize work
products so that all team members can work produc-
tively on them

Decision Analysis and
Resolution

✕ Decision Analysis and Resolution aims to collect all
the information that is needed to avoid rework

Integrated Project
Management

✕ Integrated Project Management aims to ensure to
provide value to all stakeholders

Measurement and
Analysis

✕ Measurement and Analysis aims to collect all neces-
sary information to manage the process

Organizational
Performance
Management

✕ Organizational Performance Management aims to
select and deploy ways to improve the organizational
performance

Organizational Process
Definition

✕ Organizational Process Definition aims to minimize
the waste because of bad organization of the available
resources

Organizational Process
Focus

✕ Organizational Process Focus aims to determine,
plan, and implement process improvements

Organizational Process
Performance

✕ Organizational Process Performance aims to under-
stand the performance of the process

Organizational Training ✕ Organizational Training aims to provide the neces-
sary knowledge and wisdom to all employees

Product Integration ✕ Product Integration aims to ensure the final product
which corresponds to the requirements

Project Monitoring and
Control

✕ Project Monitoring and Control

Project Planning ✕ Project Planning aims to optimize the utilization of
the resources to achieve the desired goal. The goal
is to optimize the process to maximize the provided
value

Process and Product
Quality Assurance

✕ Process and Product Quality Assurance

Quantitative Project
Management

✕ Quantitative Project Management aims to collect all
the data that is necessary to manage the project

Requirements
Development

✕ Requirements Development aims to, based on the
requirements of the client, determine, analyze, and
validate the product requirements

Requirements
Management

✕ Requirements Management aims to identify what is
important for the client and to align the output to the
requirements

(continued)

Solutions 379

Table A.1 (continued)

Practice V
al

ue

K
no

w
le

dg
e

Im
pr

ov
em

en
t

Rationale

Risk Management ✕ Risk Management aims to prepare the organization to
all eventualities and to maximize the expected value

Supplier Agreement
Management

✕ Supplier Agreement Management aims to coordinate
with suppliers and agree on minimum quality stan-
dards to maximize the produced value

Technical Solution ✕ Technical Solution aims to choose the right technolo-
gies and to design the right product to maximize the
value for the client

Validation ✕ Validation aims to make sure the product provides
value to the client

Verification ✕ Verification aims to make sure the product was built
according to the requirements

3.2 The two cycles Define-Measure-Analyze-Improve-Control and Plan-Do-Study-
Act are very similar. The first step “Define” and “Plan” are identical. The “Do” step
of Plan-Do-Study-Act is missing in Define-Measure-Analyze-Improve-Control; it is
implied. The two steps “Measure” and “Analyze” correspond to “Study”; the final
steps “Improve” and “Control” correspond to “Act.”

Problems of Chapter 4

4.1 One assumption of the traditional cost of change curve is that once the software
is deployed, the costs to change something are the highest. These costs are the
actual costs of changing the code and the costs to redeploy the new solution. The
functionality to update over the Internet lowers these costs. Instead of sending to all
clients an update in the form of a floppy disk or a CD, now the new version can be
downloaded from the Internet. All major operating systems use this technology, as
well as many applications. Some applications update automatically without asking
(e.g., Google Chrome [12]). Also mobile operating systems frequently use this
functionality, then called “Update over the air.”

Not all costs can be avoided in this way: the costs of changing the code remain.
Since the amount of source code and the complexity tend to grow during the
development, changing the code later in the process has a higher probability to
affect other parts of the system then changing the code earlier in the process.

380 Solutions

Therefore, another technique to lower the costs of change is to use Component-
Based Programming[27] in which we combine components, i.e., as a unit of
composition with contractually specified interfaces and explicitly stated context
dependencies only.

A technique to get rid of the update problem at all is Software as a Service. Since
all clients interact with the software over a server, it is much easier to provide to all
clients the update: we just have to update the server side.

4.2 The outcome of the change from a waterfall process to an Agile one depends
on the willingness of all involved developers and clients to reevaluate their previous
ways of working. If the developers just stop collecting all requirements upfront but
are not willing to adopt the Agile practices to lower the cost of change curve, the
costs will be as predicted by the traditional cost of change curve.

The problems we foresee are of practical nature: suddenly developers have to
change methods that worked for many years. This will lower their productivity for
a while, which will influence their perceived achievement and their motivation [13].
Therefore, we recommend to begin using Agile in a small project that is not critical
so that developers can experiment and get familiar with the new practices and build
up confidence in using them.

Also for the customer a switch to Agile can be frustrating. We have seen that
many customers prefer to state all their requirements at the beginning of a project
and then would like not to hear anything anymore from the programmers. Some
others perceive it as annoying that they are asked for feedback regularly.

This shows that customers have to be involved in the decisions what “kind
of Agility” is most valuable for them. Agile assumes that we can maximize the
value for the customer getting frequent feedback on our work. Instead of investing
time (and therefore money) giving us feedback, it might be more valuable for a
customer to pay more for the product, in exchange for being less involved in the
requirements gathering process. This would mean that it would be the responsibility
of the software company to identify the requirements.

Not all software companies would accept such responsibility, but, for example,
management consulting companies such as PriceWaterhouseCoopers, Ernst &
Young, etc. would accept it. They would—for a different price than the software
company—analyze the situation of the customer and carry out the implementation
of an IT solution that is adequate to solve the problems of the customer [19].

Problems of Chapter 5

5.1 We expect the stakeholder influence, risk, uncertainty, and the cost of changes as
in Fig. A.3 during an Agile project. The stakeholder influence remains high to allow
the maximization of value. Therefore, the Agile team uses a development strategy
that keeps the cost of changes low.

We update the typical cost and staffing levels across the Agile project life cycle
as in Fig. A.4. We expect that the first two preparatory phases (“Starting the project”

Solutions 381

D
eg

re
e

Project time

Stakeholder influence, risk, and uncertainty

L
ow

H
ig

h

Cost of changes

Fig. A.3 Stakeholder influence, risk, uncertainty, and the cost of changes during an Agile project

C
os

ta
nd

 s
ta

ffi
ng

le
ve

l

Time
Project
Management
Outputs

Project
Charter

Project
Management

Plan

Accepted
Deliverables

Archived
Project
Documents

Starting
the

project

Organizing
and

preparing

Closing
the

project

Carrying out the work

Fig. A.4 Typical cost and staffing levels across the Agile project life cycle

and “Organizing and preparing”) are much shorter; therefore, we do not expect
that the staffing level rises considerably during this phase. During the main phase
(“Carrying out the work”), we do not expect that the team (typically) changes in
size since in software engineering, Brooks’ law applies, which states that “adding
manpower to a late software project makes it later [5].” Moreover, we expect that
Agile teams are small in comparison to other projects; this is why we draw the line
less continuous as in Fig. 5.10.

Finally, we expect, as in the initial figure, that the closing phase of the project is
handled only by a part of the team or assigned to a maintenance team.

382 Solutions

5.2 The problem is not to follow the recommendations of the guru. His recommen-
dations might indeed be very wise. The problem is that we do not know the rationale
behind his recommendations. Practitioners should try out the recommendations in
projects themselves and gain insight why certain mechanisms work and which need
to be adapted to the context of the project, the organization, and the team.

In addition, we would recommend to look already now at specific issues that
stop the team from being Agile. These issues are not mentioned in the books of the
gurus; they might be very specific to the business in which the organization operates.
It is therefore important to develop the skill to identify and to replace practices and
technologies that work against Agility.

Problems of Chapter 6

6.1 Our proposal to classify the Lean software development practices suggested by
Mary and Tom Poppendieck is listed in Table A.2.

Table A.2 Classification of the Lean software development practices suggested by Mary and
Tom Poppendieck whether they contribute to identify what has value and what not, to increase
knowledge, or to improvement

Practice V
al

ue

K
no

w
le

dg
e

Im
pr

ov
em

en
t

Rationale

Eliminate waste ✕ Eliminate waste aims to maximize the value provided
to the client

Build quality in ✕ Build quality aims to change the software develop-
ment process so that it is automatically enacted

Create knowledge ✕ Create knowledge aims to collect knowledge about
how to ensure the quality of the product

Defer commitment ✕ Defer commitment aims to minimize rework

Deliver fast ✕ Deliver fast aims to maximize the understanding of
what is valuable or not

Respect people ✕ Respect people aims to collect knowledge from all
stakeholders

Optimize the whole ✕ Optimize the whole aims to optimize to overall out-
come, not single steps in the process

6.2 Martinsons et al. [22] implemented a balance scorecard for an IT organization.
They chose the following perspectives:

• Business value: aims to understand the value that the business is producing.
• User orientation: aims to understand if the products and services provided by

the organization fulfill the needs of the user.

Solutions 383

• Future readiness: aims to understand if the organization is improving its
products and services and preparing for future changes and challenges.

• Internal process: aims to understand if internal process is efficient and effective.

Possible goals for each perspective are:

• Business value:

– ensure that the software projects provide value to the client and
– minimize the software development costs.

• User orientation:

– understand which technologies help the user to achieve his goals and
– understand the goals of the user.

• Future readiness:

– learn about new technologies that could be useful for the client and
– adapt to new hardware and software trends of the market.

• Internal process:

– minimize defects discovered after deployment and
– maximize reuse.

Again, this is one of the possible solutions: the “right” one depends on the
organization that will use it. It is important to understand the idea behind the
Balanced Scorecard: to look at the organization from different perspectives, each
perspective with its goals and measures.

Problems of Chapter 7

7.1 To evaluate the readability for the source code of an application, we can
begin defining the measurement goal using the GQM goal template presented in
Chap. 7:

• Object of study: the source code committed in our source code repository;
• Purpose: evaluate;
• Focus: readability;
• Stakeholder: programmer;
• Context factors: the Java programming language.

To evaluate this measurement goal, we could ask the following questions:

1. What is the readability for a specific file, package, class, method, or project?
2. Which files, packages, classes, or methods have the highest readability?
3. Which files, packages, classes, or methods have the lowest readability?
4. How does the readability develop over time in the code base?

384 Solutions

All these questions still need a defined way to evaluate the readability. We could
calculate a readability index based on the following measurements, which we can
calculate for each file, package, class, method, or project:

• the extensiveness of comments (the number of commented lines � total number
of lines),

• the extensiveness of blank lines (the number of blank lines � total number of
lines),

• the average length of the variable names, and
• the average length of the method names.

A remark: we once measured readability for a project using the measurements
above. We then noticed that programmers used to comment out code that was not
needed anymore, but they thought it might be useful in the future. Another reason
was that the commented-out code was used in testing scenarios. While we think this
is a bad practice, we could not ask the team to remove all the commented code;
therefore, we had to find a way to distinguish commented text from commented
code and ignore the commented code.

7.2 One graphical indicator could be a co-occurrence matrix as in Table A.3. The
darker the marker, the higher the similarity between the two files.

Table A.3 Co-occurrence
matrix example

Project 1 Project 2
‚ …„ ƒ ‚ …„ ƒ

Fi
le

1

Fi
le

2

Fi
le

3

Fi
le

4

Fi
le

5

Fi
le

6

Fi
le

7

Fi
le

8

Fi
le

9

Fi
le

10

Pr
oj

ec
t1

‚
…
„

ƒ File 1 ■ ■ ■

File 2 ■ ■

File 3 ■

File 4 ■

File 5 ■ ■

Pr
oj

ec
t2

‚
…
„

ƒ File 6 ■

File 7 ■ ■

File 8 ■ ■

File 9 ■ ■

File 10 ■ ■

Solutions 385

According to this matrix, it seems that a large part of file 1 was copied into files
8 and 9 in the second project. Similarly, a part of file 2 was copied into file 10. Files
3 and 4 were not used in the second project. Parts of file 5 are present in file 7 of the
second project.

This indicator can now be used to define a similarity index between two files or
two projects.

Problems of Chapter 8

8.1 Some examples of wisdom relevant for Lean Software Development are the
answers to the questions in Table A.4.

Table A.4 Examples of wisdom, relevant for Lean Software Development

Organizational learning Project learning

Question # # Rationale

It took our team 3 months
to complete the last project.
Why did it take that long?

✕ It is important to know how long it takes for us to
perform certain activities and why we chose to do those
activities. In many projects a lot of time passes because
we wait for input from the customer. It is important to
find out why it takes the customer so long; we might
be able to help him and gain time

We usually deploy a new
system on New Year’s Eve;
in this way it is easier to
migrate all the data from
accounting. Why is this the
best way?

✕ On New Year’s Eve, many organizations close their
current accounting period and start a new one. Intro-
ducing a new system that interacts with accounting on
this date saves the team from migrating a large part of
the old data into the new system. On the other hand,
this strategy limits the team in its decisions: a new
system can only be installed at a specific date during
the year. We need to verify if this is the best way to be
valuable for the client, i.e., if it is cheaper to maintain
this constraint, or if we should work on a sophisticated
import function that allows the team to deploy a new
system also during the year

We implemented feature X,
which could be useful for
other projects. How can we
make a component out of it
so that it can be reused?

✕ If source code is likely to be reused in the future, we
should package it to make it easy for others to use it

We are now working at
project Y; which
technologies can we use to
avoid committing to a
database technology?

✕ This step looks for package experience that can be used
to avoid committing on a technology early and then
wasting effort if this decision reveals as wrong

We are currently facing
many defects in project Z;
how can we improve the
defect rate?

✕ This step tries to solve a problem in a specific project
using previously collected experience

386 Solutions

8.2 This question does not have one valid answer; some possible suggestions for
the team are below. The answers we chose consider that the team might be skeptical
about the introduction of a new software development methodology.

1. We have to get a clear picture of the pressure from the competition to innovate
and lower the prices. There has to be a shared understanding about this and we
have to evaluate means to achieve this goal. Lean in this case is not a hype but
a viable method to study the own product costs and to decide how to reduce
them.

2. We have to study the market and understand which strategy is more likely to
succeed: upfront or iterative requirements gathering. With the high technical
skills, we can look for solutions that allow to reuse a previous solution or to
change the functionality of some implemented piece of code also later in the
process.

3. We have to demonstrate that a defined software development process is followed
only to the extent to improve flexibility and quality. Rules and regulations on how
to code, which coding standards to follow, how to develop test cases, etc. have to
be justified with the contribution they make to become more Lean.

4. The team has low planning skills. The team should decide whether it wants
to take the opportunity of being involved in tailed software projects. For this
purpose, it should keep the release cycles short so that the estimation errors do
not have a big impact on the entire project.

Problems of Chapter 9

9.1 If I think Theory X is true, I will focus on behavior control (see Chap. 4). I want
to make sure everybody is behaving correctly. For example, some measurement
probes would be:

• monitor the activities of a developer and warn the management if the sequence
of working steps is the recommended one;

• monitor the activities of a developer and warn the management if a test is written
before the actual code; and so on.

If I think Theory Y is true, I will focus on measurement probes that focus
on output and clan control. I have to make sure we produce the right result and
that everybody knows what the customer expects from us. For example, some
measurement probes would be:

• monitor the activities of a developer and warn the developer if some parts of the
code have a too high complexity,

• monitor the activities of a developer and warn the developer if some source code
has a too low testing coverage, etc.

Solutions 387

9.2 We need to develop a measurement probe in batch mode:

• if the data we collect describes a given point in time (e.g., we check out the
complete source code of a project on April 2nd) and

• if the data we collect describes a time interval and the system supports the
extraction of the data we are interested in (e.g., we read the entries of a log file
that describes events in time).

We need to develop a measurement probe in background mode if the data we
collect describes a time interval and we cannot extract the data we are interested in
after the fact. Then we need to develop a probe that logs what is happening as the
events are taking place.

Problems of Chapter 10

10.1 These are some examples of data on which the different concepts focus:

• Activities: work steps, for which we know which resources every step used,
which artifacts were modified, when it started, and when it ended;

• Resources: skilled human resources, equipment, services, supplies, commodities,
material, budgets, or funds [26];

• Artifacts: source code, user documentation;
• Measurement: instruction on how to obtain nominal, ordinal, interval, and ratio

scaled data;
• Non-invasive measurement: measurement probes, measurement schedules,

instructions on where from to extract data, instructions on how to transform
the data, instructions on where to submit the data;

• Data: nominal, ordinal, interval, and ratio scaled data;
• GQMCStrategies model: organizational goals, measurement goals, questions,

and measurements;
• Lean Thinking: principles;
• Knowledge and Wisdom: know-how and know-why (see Chap. 5);
• Information: know-what (see Chap. 5);
• Experience Factory: knowledge and wisdom; and
• Andon: visualizations.

10.2 There are several possibilities: one might be that your team members do not
consider it useful. Some reasons for this could be (these points are based on the
Technology Acceptance Model 3 [28]):

• the displayed data has no relevance for their job,
• the displayed data are hard to understand,
• the displayed data are hard to believe,
• it is not “cool” to use the displayed data; one cannot profile himself using it or it

is considered bad to use it,
• our past experience does not suggest us to use the displayed data, and
• nobody forces them to use the displayed data.

388 Solutions

Problems of Chapter 11

11.1 There exist different points of view of what researchers consider research. One
possible classification is given by Petersen and Gencel [24]:

• Positivist: they believe that an objective reality exists. We can clarify a hypothe-
sis based on objective observations and measurements.

• Interpretivist: they believe that there are different “realities” that we can
observe. We can clarify a hypothesis based on observations and measurements
in their context and understanding how its actors see and interpret the world.

• Participatory: they believe that we need to interact with what we are studying
to understand it. We can clarify a hypothesis based on our interaction with the
object of study.

• Pragmatist: they do not believe that we can create a model of the reality in our
mind; therefore, we study it looking at what effects it has [14]. We clarify a
hypothesis by identifying its practical consequences [14].

According to our experience, researchers that think that action research is
unscientific are probably positivists.

11.2 A hypothesis that is difficult to be evaluated in a laboratory (using a controlled
experiment) is, for example: “Anxiety is unrelated to drinking coffee.” There are
many factors that can influence the state of anxiety and it will be difficult to exclude
them all in the laboratory. In this case it would be more promising to study the
presence of anxiety in a group of people that consumed a moderate amount of
caffeine over a longer period [21].

A hypothesis that can be evaluated in a laboratory is one where we have control
over the factor of which we are studying the effects. An example of a hypothesis
that can be evaluated in the laboratory is: “Bacterial growth is not affected by
temperature.” We are able to exclude other factors than the temperature of which
we think that they might have an influence. Moreover, we are able to control the
temperature as we want.

11.3 There is no logically correct way, the only way is to calculate the costs
according to Direct Costing and to monitor the contribution margin.

11.4 If we assume that our measurement tool looks at the package imports at the
beginning of a file, he can refer to the class directly (without package import), e.g.,
as in Listing A.2.

1 public void hiddenUseOfPlatformMethod() {
2 // I want to use the class "Fancy" from the package
3 // com.cool.platform, but do not want to be charged for it.
4 com.cool.platform.Fancy c = new com.cool.platform.Fancy();
5 c.serveYourself();
6 }

Listing A.2 How to cheat the cost accounting system

References 389

Since our tool only parses the import statements at the beginning of Java source
code files, this use of a “platform” class is not detected.

This example shows that measurement should not be used to control people (see
Sect. 9.5) but to gather knowledge that can be used to improve.

Problems of Chapter 12

12.1 To set up such a system, we need two measurement probes: one that connects
to issue tracking system (e.g., Bugzilla [6]) and one that connects to the automatic
build and test system (e.g., Jenkins [16]).

Both systems, Bugzilla and Jenkins, offer a REST [11] application programming
interface. In this case we could collect the data just to visualize it, for example, we
saw a system like this that just displayed the collected numbers on a screen attached
on the wall as in Fig. A.5.

Fig. A.5 Monitor displaying
measurements

25 3
Blocking tasks Failed builds

The data could be collected regularly by a script or a Java application on a server
and visualized on a website on the monitor.

A more sophisticated system would save all the collected data to find the system
that fails the most or collects the causes why systems fail or why blocking tasks are
reported.

References

1. Apache Software Foundation: Apache cassandra (2013). Online: http://cassandra.apache.org.
Accessed 4 Dec 2013

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley Longman, Boston (2003)

3. Bertran, I.: code {poems}. In: Allen, J., Boshears, P. (eds.) Continent., 2.2. Continent (2012).
Online: http://www.continentcontinent.com/index.php/continent/index. Accessed 4 Dec 2013

4. Bradner, S.: Key words for use in rfcs to indicate requirement levels (1997). Online: http://
www.ietf.org/rfc/rfc2119.txt. Accessed 4 Dec 2013

5. Brooks, F.P., Jr.: The Mythical Man-Month (Anniversary edn.). Addison-Wesley Longman,
Boston (1995)

http://cassandra.apache.org
http://www.continentcontinent.com/index.php/continent/index
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

390 Solutions

6. Bugzilla Contributors: Bugzilla (2013). Online: http://www.bugzilla.org,. Accessed 4 Dec
2013

7. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw.
Eng. 20(6), 476–493 (1994)

8. Crockford, D.: Json: the fat-free alternative to xml (2006). Online: http://www.json.org/fatfree.
html. Accessed 4 Dec 2013

9. Eclipse Foundation: Eclipse ide (2013). Online: http://www.eclipse.org. Accessed 4 Dec 2013
10. Ferraiolo, D., Kuhn, R.: Role-based access control. In: Proceedings of the NIST-National

Computer Security Conference (NCSC). National Institute of Standards and Technology,
Baltimore (1992)

11. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans.
Internet Technol. 2(2), 115–150 (2002)

12. Google: Google chrome (2013). Online: http://www.google.it/chrome/browser/. Accessed 25
May 2014

13. Herzberg, F.: One more time: How do you motivate employees? Harv. Bus. Rev. 46(1), 53–62
(1968)

14. Hookway, C.: Pragmatism. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy,
Spring 2010 edn. The Metaphysics Research Lab, Center for the Study of Language and
Information, Stanford University, Stanford (2010). Online: http://plato.stanford.edu/archives/
spr2010/entries/pragmatism. Accessed 4 Dec 2013

15. Janes, A., Piatov, D., Sillitti, A., Succi, G.: How to calculate software metrics for multiple
languages using open source parsers. In: Petrinja, E., Succi, G., Ioini, N., Sillitti, A. (eds.)
Proceedings of the International Conference on Open Source Software: Quality Verification
(OSS). IFIP Advances in Information and Communication Technology, vol. 404. Springer,
Koper (2013)

16. Jenkins CI Contributors: Jenkins ci (2013). Online: http://jenkins-ci.org. Accessed 4 Dec 2013
17. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data

Warehouses. Wiley, New York (1996)
18. Kruchten, P.: The 4 C 1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)
19. Lauesen, S.: Software Requirements: Styles and Techniques. Addison-Wesley, Harlow (2002)
20. Leach, P.J., Mealling, M., Salz, R.: Rfc 4122: a universally unique identifier (uuid) urn

namespace (2005). Online: http://www.ietf.org/rfc/rfc4122.txt. Accessed 4 Dec 2013
21. Lee, M.A., Cameron, O.G., Greden, J.F.: Anxiety and caffeine consumption in people with

anxiety disorders. Psychiatry Res. 15(3), 211–217 (1985)
22. Martinsons, M., Davison, R., Tse, D.: The balanced scorecard: a foundation for the strategic

management of information systems. Decis. Support Syst. 25(1), 71–88 (1999)
23. McCabe, T.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320 (1976)
24. Petersen, K., Gencel, C.: Worldviews, research methods, and their relationship to validity

in empirical software engineering research. In: Proceedings of the Joint Conference of
the International Workshop on Software Measurement and the International Conference on
Software Process and Product Measurement (IWSM-Mensura). IEEE, Ankara (2013)

25. Piatov, D., Janes, A., Sillitti, A., Succi, G.: Using the eclipse c/c++ development tooling as
a robust, fully functional, actively maintained, open source c++ parser. In: Hammouda, I.,
Lundell, B., Mikkonen, T., Scacchi, W. (eds.) Proceedings of the International Conference
on Open Source Systems: Long-Term Sustainability (OSS). IFIP Advances in Information and
Communication Technology, vol. 378. Springer, Hammamet (2012)

26. Project Management Institute: A Guide to the Project Management Body of Knowledge
(PMBOK R� Guide), 5th edn. Project Management Institute, Newtown Square (2013)

27. Szyperski, C.: Component Software: Beyond Object Oriented Programming. Addison-Wesley
Professional, Reading (2002)

28. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interven-
tions. Decis. Sci. 39(2), 273–315 (2008)

29. Westfall, L.: The Certified Software Quality Engineer Handbook. ASQ Quality Press,
Milwaukee (2008)

http://www.bugzilla.org,
http://www.json.org/fatfree.html
http://www.json.org/fatfree.html
http://www.eclipse.org
http://www.google.it/chrome/browser/
http://plato.stanford.edu/archives/spr2010/entries/pragmatism
http://plato.stanford.edu/archives/spr2010/entries/pragmatism
http://jenkins-ci.org
http://www.ietf.org/rfc/rfc4122.txt

Index

A

Action research 252
Activity based costing 285
Agile manifesto 72
Agile software development 71–99
Alignment 164
Andon 239
Autonomation 44, 82

B

Balanced scorecard 58, 140
Behavioral control 77
Best practices 75
Bottom-up development 64

C

Capability Maturity Model Integration
(CMMI) 60

Capitalization 302
Case study 252
Changeability 7
Clan control 78
Complexity 7
Concept map 225
Conformity 7

Continuous integration 132
Control types 76
Coordination 82

mechanism 34
Cost accounting

definition 279
introduction 281

Cowboy coder 111
Crow’s foot notation 210

D

Dark Agile Manifesto, Janes 2012 110
Dashboard 237
Dashboarding 237–245
Define, Measure, Analyze, Improve, Control

(DMAIC) 60
Diseconomies of scale 25
DMAIC See Define, Measure, Analyze,

Improve, Control (DMAIC)

E

Economies of scale 24
Endogenous control 81
Engineering 6
Exogenous control 82
Experience factory 172–183
Exploitation 264

© Springer-Verlag Berlin Heidelberg 2014
A. Janes, G. Succi, Lean Software Development in Action,
DOI 10.1007/978-3-642-00503-9

391

392 Index

Exploration 264
Extreme programming 83
Extreme programming practices 87

G

Gemba 355
Goal question metric 152–169
Good data 189
GQMCstrategies 152–169
Gurus 142

H

Hacker 111
Hype cycle See Innovation hype cycle

I

Improvement 59
Innovation hype cycle 106
Invisibility 7

J

Job enrichment 79
Just-in-time 36

K

Kanban 34, 231
Kanban in software development 230
Karotz 261
Knowledge 57, 119

L

Lean thinking 20–46

M

Measurement 153
Mission statement 137
Mountaineering 222

N

Non-invasive measurement 188–214
Non-invasiveness 197

O

Objectively 138
Objectivity 138
Output control 77

P

Participation 253
PDCA See Plan Do Check Act
Plan Do Check Act See Plan Do Study Act
Plan Do Study Act 41, 59, 172
Post mortem analysis 180
Pre-attentive processing 241
Pull approach 62
Push approach 62

Q

Quality at the source See Autonomation
Quality improvement paradigm 175

R

Reflection 180
Research 249

qualitative 251
quantitative 251

Retrospective 180
Return of investment 195
Return on investment 195
Risk 54

exposure 56

S

Sausage factory 135
Scientific management 11
Scientific method 142

Index 393

Sheward cycle 59
Six Sigma 60
Software crisis 5
Standardization 42
Stopping the software development line 229
Sweet spot 114

T

Tame problem 8
Taylorism 11
Theory X 213
Theory Y 213
Top-down development 64
Total absorption costing 282

V

Validity 192, 254
Value-based software engineering 113
Variable Costing 284

W

Waste 27
Waterfall model 54
Wicked problem 8
Win-win negotiation model 91
Wisdom 119
Worker involvement 31

	Preface
	Acronyms
	Contents
	Part I Motivation for Lean Software Development
	1 Introduction
	1.1 Introduction
	1.2 Tame and Wicked Problems
	1.3 Software Development Is a Wicked Problem
	1.4 Taylorism and Software Development
	1.5 Summary
	Problems
	References

	2 The Lean Revolution
	2.1 Introduction
	2.2 Henry Ford
	2.3 Taiichi Ōno and the Toyota Production System
	2.4 Creating a ``Radiography'' of the Production Process
	2.5 Worker Involvement
	2.6 ``Pull'' and Not ``Push''
	2.7 The Right Parts at the Right Moment at the Right Place
	2.8 The Right Information at the Right Moment at the Right Place
	2.9 Quality Management
	2.10 Summary
	Problems
	References

	3 Towards Lean Thinking in Software Engineering
	3.1 Introduction
	3.2 Value
	3.2.1 Risk as a Value-Maximizing Strategy

	3.3 Knowledge
	3.4 Improvement
	3.5 ``Push'' vs. ``Pull'' in Software Engineering: ``Requirements-First'' Development
	3.6 ``Push'' vs. ``Pull'' in Software Engineering: ``Bottom-Up'' Development
	3.7 Summary
	Problems
	References

	4 Agile Methods
	4.1 Introduction
	4.2 Keeping the Process Under Control
	4.3 Job Enrichment
	4.4 Endogenous and Exogenous Control Mechanisms
	4.5 Synchronizing the Flow of Work of Multiple People
	4.6 Extreme Programming (XP): A Paradigmatic Example of Agile Methods
	4.7 The Building Blocks of XP
	4.8 The XP Practices
	4.8.1 Business Practices
	4.8.2 Integration Practices
	4.8.3 Planning Practices
	4.8.4 Programming Practices
	4.8.5 Team Practices
	4.8.6 Uncategorized, Generic Practices

	4.9 Control and Coordination Mechanisms
	4.10 Summary
	Problems
	References

	5 Issues in Agile Methods
	5.1 Introduction or ``the Hype of Agile''
	5.2 The Dark Side of Agile
	5.3 The Skepticism Towards Agile Methods
	5.4 The Zen of Agile
	5.5 Summary or ``What Stops us from Moving from Agile Towards Lean Software Engineering?''
	Problems
	References

	6 Enabling Lean Software Development
	6.1 Introduction
	6.2 Existing Proposals to Create ``Lean Software Development''
	6.3 Share a Common Vision
	6.4 Deprive Gurus of Their Power
	6.5 Disarm Extremists
	6.6 Summary
	Problems
	References

	Part II The Pillars of Lean Software Development
	7 The GQM+Strategies Approach
	7.1 Introduction
	7.2 What Can We Measure?
	7.3 What Should We Measure?
	7.4 Applying the GQM Step-By-Step
	7.5 Alignment
	7.6 Summary
	Problems
	References

	8 The Experience Factory
	8.1 Introduction
	8.2 Why Plan-Do-Study-Act Does Not Workin Software Engineering
	8.3 The Experience Factory
	8.3.1 Work Distribution

	8.4 The QIP Step-by-Step
	8.5 The Role of Measurement
	8.6 Summary
	Problems
	References

	9 Non-invasive Measurement
	9.1 Introduction
	9.2 Does Measurements Collection Pay Off?
	9.3 Non-Invasive Measurement
	9.4 Implementing Non-invasive Measurement
	9.5 The ``Big-Brother'' Effect of Non-invasive Measurement
	9.6 Summary
	Problems
	References

	Part III Lean Software Development in Action
	10 The Integrated Approach
	10.1 Introduction
	10.2 The Role of Autonomation
	10.3 Closing the Loop with an Andon Board for Lean Software Development
	10.3.1 Visualizing the ``Right'' Data
	10.3.2 Visualizing Data ``Right''
	10.3.3 Putting the Pieces Together

	10.4 Summary
	Problems
	References

	11 Lean Software Development in Action
	11.1 Introduction
	11.2 Evaluating Action Research
	11.3 Introducing Measurement Programs in Companies
	11.3.1 Plan
	11.3.2 Act
	11.3.3 Observe
	11.3.4 Reflect
	11.3.5 Revise Plan

	11.4 Case 1: Exploration or Exploitation?
	11.4.1 Theoretical Framework
	11.4.2 The Study
	11.4.3 Results
	11.4.4 Discussion

	11.5 Case 2: Non-invasive Cost Accounting
	11.5.1 Theoretical Framework
	11.5.2 The Study
	11.5.3 The Role of the Experience Factoryin Cost Accounting
	11.5.4 Results
	11.5.5 Discussion

	11.6 Case 3: Developing a Lean GQM Graph
	11.6.1 Theoretical Framework
	11.6.2 The Study
	11.6.2.1 Identify Your Business Goals
	11.6.2.2 Identify What You Want to Know or Learn
	11.6.2.3 Identify Your Subgoals
	11.6.2.4 Identify the Entities and Attributes Related to Your Subgoals
	11.6.2.5 Formalize Your Measurement Goals
	11.6.2.6 Identify Quantifiable Questions and the Related Indicators That You Will Use to Help You Achieve Your Measurement Goals
	11.6.2.7 Identify the Data Elements That You Will Collect to Construct the Indicators That Help Answer Your Questions
	11.6.2.8 Define the Measures to Be Used and Make These Definitions Operational
	11.6.2.9 Identify the Actions That You Will Take to Implement the Measures
	11.6.2.10 Prepare a Plan for Implementing the Measures

	11.6.3 Results
	11.6.4 Discussion

	11.7 Summary
	Problems
	References

	12 Conclusion
	12.1 Introduction
	12.1.1 Lessons Learned

	Problems
	References

	A If Architects Had to Work Like Software Developers
	B A Possible Architecture for a Measurement Framework
	B.1 Scenarios
	B.2 Logical View
	B.3 Physical View
	B.4 Process View
	B.5 Development View

	Solutions
	Problems of Chapter 1
	Problems of Chapter 2
	Problems of Chapter 3
	Problems of Chapter 4
	Problems of Chapter 5
	Problems of Chapter 6
	Problems of Chapter 7
	Problems of Chapter 8
	Problems of Chapter 9
	Problems of Chapter 10
	Problems of Chapter 11
	Problems of Chapter 12
	References

	Index

